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Abstract. In this paper, we present an architectural framework to per-
form Internet traffic classification in Satellite Communications for QoS
management. Such framework is based on Machine Learning techniques.
We propose the elements that the framework should include, as well as an
implementation proposal. We define and validate some of its elements by
evaluating an Internet dataset generated on an emulated Satellite Archi-
tecture. We also outline some discussions and future works that should
be addressed in order to have an accurate Internet classification system.
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1 Introduction

Internet traffic classification is a group of strategies that aims at classifying the
Internet traffic into predefined categories, such as normal or abnormal traffic,
the type of application (streaming, web browsing, VoIP, etc) or the name of the
application (YouTube, Netflix, Facebook, etc). Network traffic classification is
important in Satellite communication principally to manage bandwidth resources
and to ensure Quality of Service (QoS) requirements.

Traffic classification is widely implemented by Deep Parquet Inspection(DPI)
solutions. Most of the commercial solutions use this technology for traffic man-
agement. DPI performs a matching between the packet payload and a set of
stored signatures to classify network traffic. However, DPI fails when privacy
policies and laws prevent accessing the packet content, as well as the case of
protocol obfuscation or encapsulation. In order to overcome the former issues,
Machine Learning (ML) emerged as a suitable solution, not only for the traf-
fic classification task, but also for prediction and new knowledge discovery,
among other things. In this context, statistical features of IP flows are com-
monly extracted and stored from network traces to generate historical data. In
this way, different ML models can be trained with this historical data, and new
incoming flows can be analyzed with such models.
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In satellite networks, Internet traffic management is a key task due to it
allows improving the QoS. Commonly, traffic data is captured from satellite
Internet Service Providers (ISPs). The works in this area aim to classify and to
analyze Internet traffic in large networks [6,12,14]. The principle is to deploy
passive monitoring points in order to perform traffic classification. These mon-
itoring points can be at routers [6] or points of presence (PoPs) [12] of large
ISP networks. Another emerging approach is the use of Software-defined net-
works(SDNs) in satellite-terrestrial networks. In SDNs, traffic classification can
be easily deployed in the SDN’ master controllers as it is exposed in [1,8].

The authors outlined the complete process to achieve Internet traffic classifi-
cation in the survey paper [10]. Therefore, this approach focuses its attention on
developing a framework that can be deployed in a Satellite architecture. Such a
framework comprises all the necessary elements to achieve the goal, as well as,
additional components that should be integrated to assure a robust classification
tool. We propose a hierarchical classification system based on ML, which treats
encryption and flow patterns differently. We deploy the solution in a low level
language that allows having an efficient and fast classification output. We also
compare our approach with a well-known DPI solution called nDPI [2]. Finally,
we set discussions about some important components that are in development;
for instance, the treatment of tunneled connections and the evolution of the
Internet network.

2 QoS Management in Satellite Communications

At this point, we start by introducing the general reference model to provide
Satellite Communications. This model will serve us as guidance to find the
requirements to integrate ML in such architecture. A common reference model of
a multi-gateway Satellite architecture is shown in Fig. 1 [3]. This model is divided
into two main blocks: Satellite access network and Satellite core network. On one
hand, in the Satellite access network, a variety of network typologies can be used
to the connectivity of the elements; these included the Satellite gateways and
terminals. On the other hand, in the Satellite core network, an aggregate network
allows interconnecting with other operators, corporations and Internet Service
Providers (ISPs) through Points of Presence (PoPs).

Two main components of such model are described below:

– Satellite Terminal (ST): its function is to deliver broadband access to end-user
equipment through IP routers and/or Ethernet switches.

– Satellite Gateway (GW): this component is in charge of deploying user plane
functions such as packet routing and forwarding, interconnection to the data
network, policy enforcement and data buffering. These functionalities are
coordinated by the control and management systems of the Satellite net-
work. The GW is composed of forwarding and returning link (FL and RL)
subsystems, and a set of network functions. These network functions include
the Performance Enhancing Proxy (PEP), switching and routing interfaces
for the interconnection with the Satellite core network.
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Fig. 1. Reference model of a multi-gateway Satellite network architecture.

One of the main objectives of this architecture is to provide a reliable com-
munication system between different entities. However, improving the Quality
of Service (QoS) and Quality of Experience (QoE) of their users is of paramount
importance for network administrators. In principle, these last objectives can
be achieved by manipulating the network functions. More specifically, a Policy
Based Network (PBN) Architecture is deployed at this stage to perform traf-
fic management [7]. In order to improve the QoS, one of the most common
and accepted actions is to fulfill a set of requirements that can be executed by
profiling Internet traffic [5,13]. This idea parts from the assumption that some
Internet traffic is more sensitive to information loss and delay such as Internet
calling or video conference. In contrast, Internet browsing or file downloads are
less pruned to be affected by these error conditions.

Following this idea, the main goal of our proposal is to correctly profile the
Internet communications, to later transmit this information to a PBN that will
take the necessary actions for QoS management. Hence, in Fig. 2, we add two new
elements to allow Internet traffic classification: Monitoring and Classification
system. The resulting classification is forwarded to the PBN. In the figure above,
we also show two basic components comprised by the PBN: (i) A Policy Decision
Point (PDP) that takes decisions for itself and for other network elements. These
decisions imply actions for enforcement when the conditions of a policy rule are
met [15], and (ii) Policy Enforcement Point (PEP) which is a logical entity that
enforces policy decisions [15]. Marked Internet traffic can be forwarded to the
PDP, which in turn will identify the associated GWs or STs and determine if
more bandwidth should be assigned. This last decision is sent to the PEP for its
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execution. In addition to this, a QoS server can be deployed to enforcing QoS
for different flows directly, and not to the GWs and STs as the PEP does.

3 Architecture Design

Making an abstraction of the elements in a real Satellite network distribution, the
primary steps to achieve Internet traffic classification in a Satellite Architecture
are:

1. Intercept Internet traffic in the GW and ST through passive monitoring
points.

2. Compute statistical features that define the Internet flows.
3. Send the extracted features to the Classification system and mark the flows

with their QoS classes.
4. Forward the classification to the PDP that will take decisions in order to

improve the QoS. Then the PEP and QoS server will execute those decisions.

In order to design the system, we use a software engineering tool called
Capella1. This tool provides methodological guidance, intuitive model editing,
and viewing capabilities for Systems, Software and Hardware Architects. In
Capella, the Operational analysis and System analysis help finding and defining
the requirements of the system. Whereas, the Logical and Physical architectures
aim at developing the solution. Figure 2 shows a System Analysis viewpoint,
focused on the GW actor, developing the requirement: Provide Internet traffic
classification in Satellite Communications for QoS management. We will discuss
as follows the functions associated to this system analysis.

Fig. 2. System Analysis in the GW.

1 https://www.polarsys.org/capella/.

https://www.polarsys.org/capella/
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3.1 Classification System

Particularly, this system proposes an automatic and logic process to analyze
traffic in a hierarchical manner. The classification system is displayed in Fig. 3.
Briefly speaking, the process starts performing the Offline configuration process
in order to initialize the whole classification system (training process). In an
online manner, the flow features pass through a Flow discriminator 1 (D1) that
will be in charge of disjointing the non-encrypted/Encrypted flows from the
tunneled flows. This separation will allow us to treat each technology differently.
For instance, for the non-encrypted/Encrypted flows, classical ML models or
DPI solutions (denoted as Cl1) can label the flows. Whereas, the tunneled flows
will pass through another Flow discriminator 2 (D2) that separates the unitary
(only one application within the tunnel) and the multiple (several applications
at the same time in the tunnel). Finally, once the classifiers are actively working
the Online configuration component is receiving information that can induce to
change or to add models in the Model repository.

3.2 Monitoring System

Internet packets are captured to be organized into flows F . The construction
of the flow is given in Fig. 4. In principle, all the flows are built matching the
packet’s headers, source (src) and destination (dst) IPs and ports. However,
when D1 detected a multiplexed connection, the flow is broken into chunks of
flows within a time interval, as seen in Fig. 4. Then, statistical based features are

Fig. 3. Classification framework
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computed for each flow in order to describe the communications. In brief, the
properties computed are listed in Table 1. The passive monitoring and feature
extraction processes were studied by the authors in [9,11]. The categorization of
the packets (A, B, C, D, E and F) in Table 1 is obtained by studying the packet
length distributions per class in the dataset.

Fig. 4. Flow reconstruction.

Table 1. Result of the feature extraction process

Feature Metric Additional Information Flow direction Total

pktlen [m] [m] of the packet lengths “m” refers to the metric

Mean, Std, Min and Max

F ,Fsrc and Fdst 12

iat [m] [m] of the inter-arrival

time(iat)

- F ,Fsrc and Fdst 12

pktlen [cat] [m] [m] of the packet lengths per

[cat]

“cat” refers to the type of

packeta
F ,Fsrc and Fdst 72

iat [cat] [m] [m] of the iat per [cat] F ,Fsrc and Fdst 72

bytes [Δt] bytes per [Δt] “Δt” is the time windows F ,Fsrc and Fdst 3

pkt [Δt] packets counts per [Δt] - F ,Fsrc and Fdst 3

Total 174
a A: pktlen <= 170, B: pktlen > 170 and pktlen <= 902, C: pktlen > 902 and pktlen <= 1314,D:
pktlen > 1314 and pktlen <= 1426,E: pktlen > 1426 and pktlen <= 1500, F: pktlen > 1500

3.3 Classification Management

This component implements the offline and online reconfiguration. Regarding the
Online reconfiguration component, this element will be in charge of evaluating
the predictions performed by the classifiers. This is deployed in order to cope with
the evolution of the network. Therefore, in an online manner, this component
will evaluate if the traffic observed belongs to an existing QoS class; if so the
classifier will “evolve” to offer more accurate predictions. This approach can be
translated to a retraining process when new data is generated; nonetheless, there
are another approaches based on clustering that could detect class evolution.

As a final note, the current investigation does not treat the Online configu-
ration and Multiplexed treatment due to they involve more complex tasks that
will be presented in future works.
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4 Implementation Design

The implementation proposal is presented in Fig. 5, with the operational and
physical architecture in the same viewpoint. The subsystems proposed in Fig. 5
will define the way in which the components of the QoS management system
work. For instance, the Offline configuration will be developed by the Training
process and Historical data manager components, the Online configuration by
the Model manager and the Incremental Learning Model(ILM) manager compo-
nents. In addition to this, we define two new physical components that will be
necessary for the implementation: A GW server that will be in charge of taking
the Internet traffic for its further classification, and a Management Server that
will handle offline and online configurations.

It is worth mentioning that the functions of the GW server and the Manage-
ment Server can be comprised in the GW entity. This is modifiable according to
the resources available in the real Satellite Architecture. On the other hand, all
the functions concerning the Classification system are comprised in Framework:
which in turn is a library developed for this aim. For what concerns the sniffer,
we use existing solutions such as Libcap2 for performing the sniffing. Then, we
add the Flow reconstruction and Feature Extraction behaviors. The ML models
D1, Cl1, D2 and Cl2 will be selected in the experimental section.

Fig. 5. System analysis in the GW.

2 https://www.tcpdump.org/.

https://www.tcpdump.org/
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As additional comment, the reader can notice that the proposed implementa-
tion can be easily replicated in the ST component, as well as in different network
components where packet monitoring is feasible.

5 Emulated Satellite Internet Traffic

This data set is a private dataset called SAT data. The model of a multi-gateway
Satellite network in Fig. 6 with one ST and one GW was set over OpenSAND3,
which is a platform to emulate Satellite Communications. In addition to this, a
VPN configuration is disposed between the ST and the GW, with the objective
to emulate tunneled communications. Several applications were launched and
captured by OpenBACH4. The user behavior was mimicked by using Selenium5,
which is a tool to test web applications.

Fig. 6. Traffic emulation platform proposed in a Satellite Architecture.

The applications are launched in three main scenarios on the platform: (i)
Internet traffic without the tunnel (ii) Unitary scenarios with the VPN: only
one application at a time is launched, and (iii) Multiple scenarios with the VPN:
several applications are launched at the same time. Additionally, some network
configurations were imposed on OpenSand. For each scenario, the data collec-
tion process was performed in the GW and ST, before and after the VPN. In

3 http://opensand.org/.
4 https://www.openbach.org/.
5 https://www.seleniumhq.org/.

http://opensand.org/
https://www.openbach.org/
https://www.seleniumhq.org/
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this sense, all the possible transformations that the data perceived is recorded.
The labeling process is performed per file and application launched. However,
for the VPN tunnel, a special treatment was performed: for each packet getting
into the tunnel a flag was used to mark the application launched. Therefore, the
multiplexed connections are correctly labeled. This dataset is still in develop-
ment. In this particular work, we used only the data captured in the GW with
the applications in Table 2. These applications were launched differently to get a
heterogeneous dataset; for instance, different codecs and websites were used for
the VoIP and browsing applications, respectively. In Table 2, we show the flows
captured per application and the amount of packets with and without the VPN.
It is important to mention that the duration varies from 5 min up to 15 min. In
addition to this, the experiments over the VPN were carried by using UDP as
transport protocol.

Table 2. Class, packet and flow distribution of the SAT data in the GW.

Without VPN With VPN

QoS class Application Flows Packets Packets: Unitary Packets: Multiple

VoIP facebook voip 302 227997 74904 522275

skype voip 565 315281 60764 673780

twinkle voip 69 141663 26144 276995

Video skype video 579 925391 318335 2235781

facebook video 357 558880 162822 1000071

Streaming youtube video streaming 760 158177 19619 486141

Browsing web browsing 6852 749979 91705 1824852

Unknown unknown 58 2860 1080 2334

6 Experimental Evaluation

The training process was deployed by dividing the data as in Table 3. The com-
plete data is used to build D1, while for the rest of classifiers the data is adapted
according to their objectives. First at all, in order to build Cl2, we evaluate dif-
ferent time windows Δt to find the most adequate. Afterwards, we build the rest
of the classifiers with different ML approaches. The best approaches are selected,
and their average response time and accuracy are compared with nDPI.

Table 3. Data settings for building the classifiers.

Classifier All data

D1 Without VPN With VPN

Cl1 Unencrypted Encrypted

D2 unitary multiple

Cl2 unitary

MT multiple



A Wearable Machine Learning Solution for Internet Traffic Classification 211

6.1 Classification System Results

Table 4 shows the results after evaluating different time windows for the unitary
tunneled connections. The accuracy increase as Δt does; therefore, we compare
the average number of packets evaluated for each application in Fig. 7. We can
notice that for 5 ms and 10ms, the amount of packets is very low. To avoid this,
the new window will be adjustable in the sense that Δt = 10ms, but we wait
until we have at least 20 packets to process.

Table 4. Accuracy results for Cl2
varying Δt

Δt Num. flow Cl2

5 ms 167097 0.8982

10 ms 120395 0.9647

100 ms 26634 0.9673

Fig. 7. Average counts of packets for each Δt

On the other hand, the results in Table 5 show a comparison between sev-
eral classifiers: Decision Tree (DT), Random Forest (RF), K Nearest Neighbors
(KNN), Ada Boost, Voting and Extra Trees (ETs). The best performance is
standing up in bold. We picked DTs for the flow discrimination tasks, while RF
for the traffic classification task.

Table 5. Accuracy scores of several ML classifiers.

DT RF KNN AdaBoost Voting ETs

D1 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

Cl1 0.8876 0.9186 0.8617 0.7986 0.8941 0.8938

D2 0.9588 0.9646 0.9526 0.9584 0.9636 0.9638

Cl2 0.9321 0.9401 0.9209 0.8333 0.9358 0.9304

Following, the complete framework was implemented in C. The tree based
models are built in sklearn6 and parsed to C for faster Internet classifications,

6 https://scikit-learn.org.

https://scikit-learn.org
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inspired by the work in [4]. These tests were performed on a PC with an i7-
6700HQ CPU and 32 Gb RAM. The response time and accuracy are measured
over the test set. We also evaluate nDPI for traffic classification.

In Table 6, we can notice that the C implemented models maintain their accu-
racy. In the unencrypted case, ML outperforms nDPI; while, for the encrypted
case nDPI is unable to detect the class of an unitary session as Cl2 does. Regard-
ing the response time of the classifiers, in Table 7, we can notice that fast Internet
classifications are possible. It is important to mention that the model response
time differs for each entry depending on how deep they go into the tree’s branches
until a leaf is reached. In addition to this, the packet processing and flow meter-
ing response time varies from 5 ms to 15 ms.

Table 6. Accuracy (Acc) evaluat-
ing the test data

Acc

ML nDPI

Unencrypted D1 0.9999 1

Cl1 0.9186 0.5830

Encrypted D2 0.9588 X

Cl2 0.9401 X

Table 7. Average response time in
μs

Time(µs)

ML nDPI

Unencrypted D1 2.867 1

Cl1 5 6.6460

Encrypted D2 2.717 X

Cl2 5 X

6.2 About the Multiplexed Connections

We were able to divide the multiplexed connections between unitary and non
unitary scenarios. We saw that the unitary scenarios can be classified by clas-
sical ML approaches. The scenario with multiple applications within a tunnel
is challenge in this field. In order to illustrate the problem, we take the unitary
tunneled flows of Skype, YouTube and Browsing; and its equivalent mixed tun-
neled flow. We represent them as a combination of types of packets (A:E from
the source and 1:5 from the destination, using the packet lengths described in
Table 1). We count the average number of packets for each combination within
a time windows of 100ms and plot it into a heatmap. For instance, the flow
“AAB1CAA” has AA:2, AB:1, B1:1 and CA:1. This representation is in Fig. 8.
We can notice that the unitary tunneled connections have distinctively sequence
of patterns that are merged in the mixed tunneled flow. It is important to say
that the Skype pattern is maintained and might be identified. This illustration
gives us an idea of how to decrypt the behavior within the tunneled connections
by looking at the packet’s patterns. However, the complexity grows when more
than three applications are multiplexed in the tunnel.
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(a) Skype (b) YouTube

(c) Browsing (d) Skype,YouTube and Browsing
mixed

Fig. 8. Heatmap representation of the flows with Δt = 100 ms.

6.3 About the Evolution of Internet Traffic

Most of the publicly available datasets do not comprise all the existing appli-
cations on the Internet; in addition, the data collection process is tedious and
expensive as remarked in [10]. One of the main deficiencies of ML in this field
is handling with the evolution of the Internet traffic applications. If we consider
some important QoS classes such as YouTube, NetFlix, Skype or Facebook video;
as new incoming behavior, the classification accuracy might decrease consider-
ably. Our architectural proposal comprises a component that should schedule
retrainings of the models when the network administrators demand it. But also,
an automatic approach can be set to continuously modify the trees of the RFs in
the Model repository component. Such approach can be based on unsupervised
methods for detecting the Internet evolution.

6.4 About the QoS Management

As we previously mentioned, it suffice to place the classification system over
a network appliance that permits traffic monitoring. For instance, in the GW
component, the classification output is forwarded to the PDP in order to perform
the QoS management task. Depending on the classification output, QoS rules
will be applied to trigger actions that will manage the Satellite resources. If a
QoS rule is satisfied the traffic will be shaped as follows:



214 F. Pacheco et al.

– Aggregate flows: the QoS rule is applied over all the incoming packets sharing
the same tuple (IPsrc, IPdst, portsrc, portdst, proto).

– Unitary tunneled flows: all the incoming packets of the unitary tunneled com-
munications will be prioritized. However, this may be updated when the clas-
sification prediction of D2 or Cl2 changes in Δt.

– Multiplexed tunneled flows: we can think about prioritizing the tunnel as the
unitary case. Nevertheless, in parallel, other less sensitive applications will be
also benefited from this action. To avoid this, a classification per packet task
should be designed.

In addition to this, we need to be sure that the QoS requirements are satisfied
on time. For instance, according to [5], VoIP and Interactive video applications
are very sensitive to delivery delays, to be specific they can tolerate around
100ms; whereas, another important class such as Video streaming around 10 s.
We notice that the classification task can be achieved in 15 ms, giving sufficient
time to treat those sensitive classes.

7 Conclusion

This work presented a ML system that can be integrated to Internet traffic archi-
tectures, being the Satellite Architecture our main interest. The proposal can
be comparable with an existing DPI solution, which offers a portable software
solution for Internet traffic inspection. We tested our approach in the GW com-
ponent, with data captured from an emulated Satellite platform. This approach
outperformed in accuracy and time a well-known DPI solution. We displayed
the needs of having components that can deal with the evolution of the Internet
network and the multiplexed connections, these last aspects are in development.
Future works also include implementing the approach in the emulated Satellite
platform, and tuning the framework proposed given different network conditions.

Acknowledgment. We want to thank the Centre National d’Études Spatiales
(CNES), Toulouse, France for allowing us to use the SAT data, which is developed
under the project R&T CNES: Application du Machine Learning au Satcom.
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