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Abstract. The volume of heterogeneous data collected through a vari-
ety of sensors is growing exponentially. With the increasing popularity
of providing real-time data analytics services at the edge of the network,
the process of harvesting and analysing sensor data is thus an inevitable
part of enhancing the service experience for users. In this paper, we pro-
pose a fog-empowered data analytics service platform to overcome the
frequent sensor data loss issue through a novel deep autoencoder model
while keeping the minimum energy usage of the managed sensors at the
same time. The platform incorporates several algorithms with the pur-
pose of training the individual local fog model, saving the overall energy
consumption, as well as operating the service process. Compared with
other state-of-the-art techniques for handling missing sensor data, our
platform specialises in finding the underlying relationship among tem-
poral sensor data series and hence provides more accurate results on
heterogeneous data types. Owing to the superior inference capability,
the platform enables the fog nodes to perform real-time data analytics
service and respond to such service request promptly. Furthermore, the
effectiveness of the proposed platform is verified through the real-world
indoor deployment along with extensive experiments.

Keywords: Fog computing · Service-oriented networking · Deep
autoencoder · Energy-saving algorithm

1 Introduction

The rapid development of the Internet of Things (IoT) technologies has
unleashed the immense potential of large-scale data analytics. In the meantime,
the deluge of IoT data produced by these interconnected IoT objects becomes
one of the critical enablers for enhancing the intelligent human living environ-
ments [17]. The ultimate goal of aiding ambient living experience and improving
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quality of life continues to drive the success in the intersected field of IoT and
service-oriented computing.

As the core component of IoT that are generally located at the edge of
the network, various sensors take most of the credits in terms of forming the
intelligent living environment. These massively heterogeneous, dynamic sensor
data are facilitating a myriad of IoT applications in order to offer real-time,
context-aware, and highly personalised service. Moreover, there is no doubt that
in conjunction with the prosperity of IoT technology, the number of sensors is
growing exponentially as well.

In the act of being an integral part of the IoT network, heterogeneous sen-
sors always play an indispensable role in some prevailing IoT implementations
including smart city, agriculture and building, etc. [6]. However, the amount
of energy consumed by a large number of sensors is not negligible and thus
attracts the attention from both academia and industry to come up with differ-
ent energy conserving algorithms and frameworks to deal with this long-standing
problem, yet converging to the common goal - to improve the sustainability of
the IoT network involved heavily with sensors [5,13,18]. Apart from that, data
loss is inevitable in IoT network due to sensors’ inherent characteristics such
as malfunction or battery exhaustion. This phenomenon severely compromises
the quality of service (QoS) in some data-driven applications and poses a big
challenge [1].

Most of the IoT applications are in favour of providing the data analytics
service to some extent, taking advantage of the mature cloud computing is thus
a preferable option. However, as the most commonly used approach nowadays,
the colossal amount of data collected in the IoT network is simply transferred
to the cloud servers for further processing and analysing, which has severe side
effects on network performance and further causes communication overhead and
network congestion. Also, the majority of IoT applications deployed on the cloud
starts to concern the QoS being returned to the interested users, in which the
service transmission latency contributes a significant part in service consumers’
perception with regard to the overall performance of the service invocation.
Apart from that, the arising challenges like cloud energy waste and data privacy
issues also suggest that the reliance on traditional IoT-Cloud schema alone to
provide various IoT services is no longer effective and efficient, and an alternative
computing paradigm that could seal the gap between IoT devices and cloud to
provide better quality of service is needed [6].

Fog computing is emerged under this circumstance to complement the inad-
equacy of the IoT-Cloud schema. The idea of extending the cloud to the edge
of network closer to end users is considered as an alternative with the over-
arching goal of “off-loading” from the cloud where fog, as the proxy, could
be equipped with not only computation power, but also storage and network-
ing resources to accommodate various IoT applications. Most importantly, IoT
applications could be deployed in fog rather than the conventional approach on
either resource-constrained IoT devices or the remote cloud. In this regard, fog
and cloud complement each other and encompass other IoT devices to form a
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seamless cloud-fog-things service continuum in which service could be dissemi-
nated [19].

Machine learning technologies, especially deep learning, have celebrated mas-
sive successes in domains of IoT and service-orientated computing owing to their
adoptions in a wide range of IoT applications. The deployment of ubiquitous
sensors has played a crucial role in IoT infrastructure to empower various real-
time data analytic services such as health care monitoring, intrusive detection
and smart building, etc. Applications provisioning such services require to col-
lect, process, analyse and communicate enormous amount of sensor data consis-
tently in order to provide the highly customisable services related to the sensed
phenomena. However, these data-thirsty tasks are often plagued by the miss-
ing sensor data issue, which consequently compromises the performance of any
learning algorithms [10]. While most of the data complementing algorithms and
frameworks commonly fail to interpret underlying temporal data correlations
and underestimate the high complexity of predicting multi-type sensor data [3],
it is imperative to discover a powerful approach that could not only cope with
the missing data but also respond to such service request promptly.

In this paper, we present a novel energy-saving data analytics fog service
platform, namely ESDA, which serves the purpose of providing real-time, multi-
type and large-scale data analytics services for IoT devices. More specifically,
under the control of fog nodes, sensors no longer need to be constantly turned
on to transmit sensed data upwards. Fog, instead, will initiate the in-fog learning
process and use the trained local model to predict missed multi-type sensor data
that are substantial for many service requesters. More importantly, the platform
will automate the process of conserving energy cost of the platform by turning
sensors into the sleep mode during the service operation.

The main contributions of this paper are as follows:

1. To better serve real-time services in IoT context, a fog-empowered energy
saving data analytics platform is proposed. The fog can utilise dedicated
computation and storage resources to facilitate real-time data analytics ser-
vices. Besides, the platform offers a flexible deployment options through the
selection of different energy saving patterns.

2. Taking advantage of the recurrent neural network (RNN), a novel fog-based
deep encoder architecture is proposed to improve the accuracy of multi-type
sensor data prediction, which takes the internal time-series correlation into
account to enhance the inference accuracy.

3. An in-fog learning and predicting algorithm is designed and run at the fog
layer, where each fog node will train the local model and ensure an acceptable
data prediction accuracy to satisfy the need of data analytics services. Apart
from that, an energy conserving algorithm is incorporated to minimise the
overall energy consumption of the platform during the service operation.

4. Advantages of adopting the proposed platform are evaluated experimentally
through a real-world indoor deployment, along with its effectiveness and
applicability for many use cases in IoT environment empowered by fog com-
puting.
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The remainder of the paper is organised as follows. We review the related
work on sensor data prediction and acquisition, deep learning based real-time
data analytics and energy-saving approach in Sect. 2. In Sect. 3, we introduce the
proposed fog service platform architecture followed by the detailed explanation
of fog-enabled deep autoencoder (FEDA) and integrated algorithms. We then
present the deployment of our real-world indoor testbed as well as the compre-
hensive experiments conducted in Sect. 4, and we draw the conclusion and point
out the future work in Sect. 5.

2 Related Work

There are several previous efforts made towards developing methods in com-
plementing missing sensor values and saving energy consumption in the IoT
environment to fulfil different service needs.

The approaches to fill the incomplete data are actively studied in the area of
image processing. The authors in [12] presented an unsupervised visual feature
learning algorithm for image inpainting. By analogy with auto-encoders, this
algorithm utilises convolutional neural networks (CNN) to generate the incom-
plete region of another arbitrary image based on the surrounding context of the
incomplete part. In [8], the authors proposed a denoising autoencoder named
Multimodal Autoencoder (MMAE) to handle the missing multimodal data. This
method is an unsupervised learning technique using the deep neural network
(DNN). The empirical evaluation verified that the MMAE could outperform the
traditional principal components analysis (PCA) in prediction accuracy of the
feature values from multiple missing modalities in the scale between 0 and 1.

Satisfactory performance of data prediction can eliminate the demand to
periodically sending the original raw data to the cloud. The sensors whose data
can be accurately predicted are permitted to sleep as long as possible during
the network operation. Conceptually, the longer sleep time window that sensors
are allowed to have, the more energy can be saved for the network. The critical
task is how to precisely predict these incomplete data from sleeping or malfunc-
tioning sensors [2]. For this reason, recently there are several works focusing on
data prediction using machine learning for the IoT network: the authors in [11]
developed a data prediction algorithm with an error-correction learning scheme.
This algorithm is developed from recursive least squares (RSL) and is used to
improve the value which is initially predicted by using a small number of data.
The authors in [13] proposed a derivative-based prediction that uses a linear
model to observe the trends of data in recently captured data to predict the
future data. By analysing the latest data, this approach can produce a satisfac-
tory model for predicting data in the short-term. However, frequent updates on
trainable parameters of the model are required for holding this high accuracy in
predicting long-term data trends. The authors in [15] introduced CNN to learn
the correlation of the neighbouring sensor data to decide the sensors active/sleep
status, i.e., the sensors whose data can be accurately predicted will be turned
into the sleep mode in priority.
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Fig. 1. Fog service architecture

However, with the rapid increase of the number of devices in the IoT envi-
ronment, the heavy traffic volume generated by these sensors increases the pro-
cessing burden on the cloud. Moreover, the expected connection latency leads to
a degradation of the expectation of real-time data service. A potential solution
is to place the service providers closer to end devices/users’ side for the timely
service provision process and reduce the redundant data communication to the
cloud. For instance, the work [14] proved that for IoT environment like building
energy management system, by utilising a collaborative fog platform for deliv-
ering data processing service in a real-time manner, a significant reduction of
traffic volume to the cloud could be realised. Some works shift their attention
to using resource-constrained IoT devices to fulfil the allegedly computation-
intensive mission. For instance, the authors in [9] developed a light-weight, tree-
based classification algorithm for data prediction on IoT devices. This algorithm
learns a single, shallow, spare tree to reduce the required model size while form-
ing a small number of prototypes data representing the entire data sets. This
algorithm achieves high prediction accuracy while it can be executed on resource-
constrained IoT devices, i.e., Arduino Uno board. Similarly, to reduce the data
learning complexity, the authors in [4] proposed a k-nearest neighbour (k-NN)-
based algorithm by using a spare projection matrix that projects all data sets
into lower-dimension. One common issue for these two algorithms is that the
model trained on a resource-scarce device is merely meant for the individual
device, thus not suitable for providing data analytics service at a reasonable
scale.
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To the best of the authors’ knowledge, this is the first work to propose a
novel fog service platform to achieve prominent real-time data analytics in an
energy-saving style.

3 Overview of the ESDA Fog Service Platform

A multi-tier fog service architecture can be observed in Fig. 1. Under this struc-
ture, end things/users act as the service requester/receivers, and fog nodes, on
the other hand, are equipped with the computational and storage capability to
enable a variety of real-time IoT services that can be activated on demand and
delivered to the destination in a timely manner. In the service-oriented comput-
ing perspective, fog thus performs the role of the service provider. Besides, as
the traditional service provider in IoT-Cloud schema, the cloud could still be
the placeholder for a particular category of applications providing delay tolerant
services, e.g., large-scale data backup service. This figure also well demonstrates
what a hierarchical service continuum composed of IoT users/devices, fog and
cloud visually looks like in the IoT network.

Since the service transmission latency drops with the shortening of the geo-
graphical distance between deployed service providers and end things/users (ser-
vice requester/receiver), fog node could be placed in the vicinity of the raw data
source in any autonomous environment. In a smart building scenario, multi-type
sensors could interact directly with fog node in that area and feed raw data
to the analytical applications running at the fog layer. Fog, at the same time,
continually monitors the energy consumption status of each sensor to which it is
connected, and utilises the energy-saving algorithm to put sensors to the sleep
mode to extend their lifespan.

In the proposed ESDA fog service platform, a novel fog-enabled deep autoen-
coder model (FEDA), built on top of the long short term memory (LSTM)-based
sequence-to-sequence structure [16], is adopted as the core part of the data ana-
lytics application to satisfy the real-time data service enquiries. The name “fog-
enabled” comes from the fact that the whole training and inference process rely
heavily on the support of the local fog nodes. Also, this platform fills in the gap
concerning the missing sensor data when sensors are put into the sleep mode,
recharging or malfunction. Afterwards, fog could respond to relevant IoT devices
that depend on the returned service results to trigger corresponding actions, such
as temperature change by air conditioner or luminous intensity adjustment by
light controller.

Other than providing the reliable data analytics service, the platform also
aims to accomplish the sustainability by taking an efficient energy utilisation.
Both the in-fog learning algorithm for training the FEDA and the energy-saving
algorithm are incorporated into the platform and explained in the following
subsections.
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Fig. 2. FEDA model structure

3.1 Fog-Enabled Deep Autoencoder (FEDA)

An autoencoder is generally referred to as an unsupervised learning approach
where a deep neural network tries to reconstruct an input X after the reconstruc-
tion error between the ground truth X and network output’s X ′ is minimised
through an optimizer. In this circumstance, the embedding layer is often pre-
sented in the compressed format and used as the compact representation of the
data. One limitation of the traditional autoencoder is that the length of X ′ tends
to be the same as X, which is not ideal for predicting the temporal data series
that could end up being arbitrary length. Henceforth, we tend to leverage the
LSTM-based sequence-to-sequence architecture as the fundamental part of our
deep autoencoder owing to the capability of handling variable-length time series
input and output another variable-length time series data.

The LSTM originally proposed in [7], enable several state variables, includ-
ing hidden/control state ht and memory cell state ct to sustain the underlying
correlation among temporal data, where t means a certain timestamp. A single
LSTM unit’s operations can be expressed as:

it = σ (Wxixt + Whiht−1 + bi)
ft = σ (Wxfxt + Whfht−1 + bf )
ot = σ (Wxoxt + Whoht−1 + bo)
gt = φ (Wxgxt + Whght−1 + bg)
ct = ft � ct−1 + it � gt

ht = ot � φ (ct)

(1)

where σ is the sigmoidal non-linearity, φ is the tangent non-linearity and � is the
element-wise dot product. The weights and biases metrics for computing each
gate values are represented as Wi,j and bj , respectively.
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Figure 2 presents the graphical representation of FEDA model structure. We
apply LSTM in both encoder and decoder parts of the RNN, and the principal
philosophy of this model is that, for both encoder and decoder, the value at
xt+1 timestamp depends on previous state ht and previous output value xt to
learn the underlying time series correlation. In order to encompass the flexibility
required to predict the arbitrary missing sensor data given any previous time
window, we convert the variable-length input data up until timestamp t into a
fixed length embedding layer first, which afterwards will be fed into the encoding
part on the left. The last state generated by the encoding phase is then passed to
the right - the decoding phase, where the output starting from t+1 is predicted
for each forthcoming time step.

There are several points worth noting in the decoder part of the model.
Firstly, since it could be multiple LSTM units (circles in each rectangle in Fig. 2)
in each LSTM cell (rectangles in Fig. 2) throughout the network, in the decoding
phase, the results generated by a number of LSTM units from a single LSTM
cell, say n, is used as a mini-embedding vector whose size is equivalent to n.
These mini-embedding vectors are then multiplied and added with their dedi-
cated weight matrix Wt+1 and bias bt+1, respectively, to generate a single value
(ot+1) for that timestamp. Apart from that, the model generalises the coexistence
of heterogeneous sensor data types, i.e., a multi-functional sensor can detect the
value of temperature, humidity level, air pressure and luminous intensity at
the same time in real world, and this sensor then produces four types of data
repeatedly as the time elapses. To cope with that, each ot+1 is equipped with a
trainable scalar variable st+1 to scale the value of a specific data type up to its
original magnitude as close as possible.

3.2 Integrated Algorithms

There are two main algorithms integrated into the platform designed with dif-
ferent purposes. The first one controls the process of fetching the preliminary
trained model from the cloud based on historical backup data, communicating
the controlled sensors to collect training data, and initiating the training pro-
cess on each local fog node. The second one, on the other hand, focuses on the
management of connected sensors per fog node, as well as carries out service
operations from various service requesters. The details are broken down sepa-
rately as Algorithms 1 and 2.

Algorithm 1 consists of two phases. Every fog node i (i ∈ F) in phase one
firstly checks the availability of local model M(i), then it might use the prelim-
inary pre-trained model from the cloud and restore it (lines 1–5 in Phase 1).
As the preliminary model from the cloud is trained based on historical backup
sensor data stored on the cloud, it does not reflect the real-time sensor reading in
the environment and thus needs to be refined. The refinement process, in other
words, can be addressed as the continuous in-fog training for the preliminary
model. Each fog node collects sensor’s reading in its managed area, then creates
dataset D (lines 1–6 in Phase 2). To train the FEDA model used by each fog node,
D needs to be split into two time series parts Ds and De randomly, where Ds is
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fed into the model as variable-length input mentioned in Sect. 3.1. In contrast,
Dp corresponds to the predicted data series, and the reconstruction error E(i) is
calculated between Dp and De using a distance error measurement (lines 7–9),
e.g., Root Mean Square Error (RMSE) used here. It is worth noting the relation
between error E(i) and hyperparameter θ, where θ is a system-level parameter
defined to balance the trade-off between data reconstruction volume and energy
consumption amount. It could be explained as error tolerance threshold. Fog
will stop training the local model until the error is no greater than threshold θ
(lines 10–13). The pick-up strategy of the threshold value will be demonstrated
in Sect. 4.2.

Algorithm 1. In-fog learning algorithm

Phase 1: Preliminary Model Fetch

1: fog fi (i ∈ F) fetches the preliminary model M from the cloud
2: if M(i) not exists then
3: M(i) ← M
4: end if
5: restore local model M(i)

Phase 2: Local Model Refinement

1: D ← ∅
2: S ← sensors managed by fog fi
3: repeat
4: for ∀s ∈ S do
5: D.add(current reading of s)
6: end for
7: Separate D into two time series parts Ds and De

8: Dp ← M(i)(Ds)

9: E(i) ←
√

1
n

∑n
t=1(Dp,n − De,n)2

10: if E(i) > θ then
11: Feed D into M(i) to continue training
12: end if
13: until E(i) ≤ θ

Pseudocode in Algorithm 2 concerns on inactivating managed sensors in a
time period to reduce the overall energy consumption of the platform, as well
as resolving data analytics service request. To start with, fog nodes are aware of
the local model M(i) trained from Algorithm 1 and system-level hyperparame-
ter θ. Based on the selection of threshold θ, the platform is assigned with the
corresponding energy-saving pattern P , which is used to calculate sensor’s sleep
time T . In addition, variables tstarti and tendi are adopted as the indicator of
the sleep window (lines 1–6). During the service operation process, fog would
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receive periodic service request regarding the type and value of current sensor
reading from different IoT equipments in every time interval t (lines 8–9). If a
service request received falls into the sleep window of sensors, fog leverages M(i)

substantially to conduct the analytics service so that applicable results are able
to be returned back regardless (lines 11 and 12). For example, inside a building,
fog nodes may receive the temperature reading request from the air conditioner
operating in the controlled area every minute to attain the thermal comfort. The
sleep window needs to be re-calculated with the change of threshold θ along with
energy-saving pattern P (line 17).

Algorithm 2. Energy-saving and service operating algorithm
1: Energy-Saving for ∀fi ∈ F
2: M(i) ← local model trained by fog fi
3: P ← energy-saving pattern based on threshold value θ
4: Si ← sensors managed by fog fi
5: T ← sleep time calculated based on P
6: (tstarti , tend

i ) ← fog fi de-activates Si for T and records the sleep window
7: Service Operation for ∀fi ∈ F
8: Repeat at every interval t
9: R(i) ← service requests sent to fog fi at current interval t

10: for ∀r ∈ R(i) do
11: if t falls into window between (tstarti , tend

i ) then
12: fi employs M(i) to conduct analytic service regarding r
13: else
14: fi retrieves current sensor reading regarding r
15: end if
16: end for
17: Until θ changes

4 Experiments

We present the real-world experimental settings in an indoor deployment as well
as evaluation results in this section.

4.1 Experimental Setting

We introduce the building energy management system (BEMS) as the use case
to evaluate our proposed platform. Figure 3 illustrates a deployment example of
a BEMS application. The main objectives of BEMS include: 1. monitoring and
managing the overall energy consumption; 2. constantly checking the indoor
environment conditions (e.g., temperature, humidity) to ensure the comfort of
occupants. Fog, as the placeholder of the application, acts as a real-time data
analytics service provider to respond requests coming from various IoT devices.
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Fig. 3. Floor plan of real-world indoor deployment

Table 1. Setup parameters for experimental network

Parameters Values

Sensor number 18

Network area size 162 m2

Data collection interval 1 min

Data collection period 1 year

Data type Temperature (Celsius), humidity (%), luminous
intensity (Candela), barometric pressure (Pascal)

As mentioned earlier, the platform allows on setting of different energy-saving
patterns aligned with the system-level parameter θ for versatile deployment
scenarios, and such system-level parameters are controlled by system admin
(demonstrated in Fig. 3). Apart from that, fog nodes remain connected to both
sensors and other IoT devices such as humidifier, air conditioner and light, etc.
to complete the service continuum. For example, in Fig. 3, as shown by blue
arrows, fog nodes can send the analytics results straight to the air conditioning
and lighting systems for adjusting the current status. It is worth mentioning that
this real-world deployment happens inside an office building. The sensor (Texas
Instruments CC2650 SensorTag) placement information is shown in Fig. 3, and
the parameter details of the network topology are listed in Table 1.

4.2 Evaluation Results

It is of importance for applications such as BEMS deployed in the fog to pro-
vide real-time data analytics results as accurate as possible on which IoT ser-
vice requester like air conditioner could faithfully rely and adjust the behaviour
accordingly. We thus verify the effectiveness of the proposed platform through
comprehensive experiments. To assess the performance of FEDA, three other
state-of-the-art autoencoder variants are used as the benchmarks, including CNN
encoder, DNN encoder as well as vanilla RNN. Two forms of comparisons are
demonstrated here: real-world multi-type sensor data reading prediction at each
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Fig. 4. Prediction on multi-type sensor reading (4 data types) (Color figure online)

time point, and the continuous single data type prediction in a given period.
In addition, the experiment with regard to saving energy while retaining a sat-
isfactory prediction result is demonstrated at last. In order to ensure a fair
comparison, the Adam optimizer [8] is used across different learning techniques
with the learning rate 0.001, which is observed to learn the fastest during the
experiments.

Figure 4 displays the prediction results for multi-type sensor data reading at
each time point. As stated in Table 1, each fog node collects managed sensor
readings in 1 min interval for all four data types. To realise the test on the
adopted learning model in terms of predicting heterogeneous data types all at
once given a random length input, sensor reading in one time period has been
randomly masked off indicating the loss of the data, and each model predicts
on the lost heterogeneous data values, respectively. For each time interval (from
1 min to 6 min) in Fig. 4, sensors are set to read the surrounding phenomena
in the order of temperature, humidity, barometric pressure, and then luminous
intensity (four points connected into a line segment at every minute). The greyed-
out area indicates the period when the mimic data loss happens (sensors in
sleep or fault conditions), and the dashed-vertical line aligns with the prediction
results for that data type generated among different models, e.g. dashed grey
circle highlights on the prediction results on luminous intensity data type by
different models at 2nd min. It could be observed that the green line with up-
triangles markers (FEDA) generally have a closer distance to the ground truth
sensor reading (black line with dots) on each data type at every time stamp
compared with the other three.

Figure 5 amplifies the prediction results on each of the four data types in a
40 min time window, in which sensor data is mimicked to be missing from 10 to
30 mins. It is evident that for temperature, humidity and air pressure, the FEDA
clearly outperforms other competitors, and even in the extreme case of luminous
intensity where the value becomes 0 at some time point due to the office light
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Fig. 5. Prediction on individual data type

being turned off at night, our model reserves a conservative prediction following
the trend of the true sensor reading line. In general, both figures mentioned above
verify that the novel FEDA model adopted in our proposed platform excels in
delivering more accurate data analytics service from which the connected IoT
service requesters could primarily benefit with better QoS.

The experiment result regarding the relation between the system-level error
tolerance threshold θ and the total energy consumption in BEMS is shown in
Fig. 6. The left y-axis in the graph represents the different values of θ after
applying logarithm for better visualisation purpose, whereas the right y-axis
tells the energy consumption by percentage (when energy consumption is 100%,
all sensors are activated during the whole service operation period). The values
of θ are derived from the calculated prediction errors using the test dataset.
We conduct a grid search on θ and utilise four of them (errors calculated when
80%, 60%, 40% and 20% of total inactive times of all sensors, respectively) to
form the corresponding energy-saving patterns (P1–P4), which is shown as the
shared x-axis in the graph. It is as expected that the more sensors that are put
into the sleep mode longer, the more reconstruction errors will be encountered,
yet the less energy will be consumed for the whole system. We observe that
the decrease of the θ is not strictly linear, and the slope between P2 and P3
is greater than other segments of the line. Henceforth, we adopt the threshold
defined in P3 for both Algorithms 1 and 2, which empowers our platform to save
energy consumption up to 40% while keeping an acceptable error tolerance. It is
worth mentioning that the selection of patterns depends entirely on different use
cases and deployment scenarios. For instance, if the platform is adopted in the
smart agriculture use case where sensors and fog are placed in the geographically
remote area, then the energy saving could come to the priority so as to extend
the lifespan of energy-scarce sensors to a large extent, then the use of P1 might
be more appropriate than others.
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Fig. 6. Energy consumption and error tolerance threshold

5 Conclusion and Future Work

Our ESDA fog service platform is a low energy-cost IoT platform that provides
real-time data analytics service and can be deployed in many scenarios. With
the help of FEDA and in-fog learning, energy-saving algorithms, this platform
could extend the lifespan of managed sensors without deteriorating much of
the QoS thanks to the accurate data forecasting capability. We have deployed
the platform into a real-world indoor IoT testbed and adopted BEMS to verify
its effectiveness. The comprehensive experiment results demonstrate the supe-
riority of the platform. The platform also enhances the flexibility by allowing
to customise the error tolerance threshold θ to cater for different deployment
requirements. Moving forward, we will investigate the possibility of using collab-
orative learning schema in this platform, where fog leverages each other’s power
to reach the consensus on the learning model.
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