
Harmonia: A Continuous Service
Monitoring Framework Using DevOps
and Service Mesh in a Complementary

Manner

Haan Johng1(B), Anup K. Kalia2, Jin Xiao2, Maja Vuković2,
and Lawrence Chung1

1 University of Texas at Dallas, Richardson, TX 75080, USA
{haanmo.johng,chung}@utdallas.edu

2 IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
{Anup.Kalia,jinoaix,maja}@us.ibm.com

Abstract. Software teams today are required to deliver new or updated
services frequently, rapidly and independently. Adopting DevOps and
Microservices support the rapid service delivery model but leads to push-
ing code or service infrastructure changes across inter-dependent teams
that are not collectively assessed, verified, or notified. In this paper, we
propose Harmonia - a continuous service monitoring framework utilizing
DevOps and Service Mesh in a complementary manner to improve coor-
dination and change management among independent teams. Harmonia
can automatically detect changes in services, including changes that vio-
late performance SLAs and user experience, notify the changes to affected
teams, and help them resolve the changes quickly. We applied Harmo-
nia to a standard application in describing Microservice management to
assist with an initial understanding and strengths of Harmonia. During
the demonstration, we deployed faulty and normal services alternatively
and captured changes from Jenkins, Github, Istio, and Kubernetes logs
to form an application-centric cohesive view of the change and its impact
and notify the affected teams.

Keywords: DevOps · Service Mesh · Microservice · Monitoring ·
Enterprise Cloud Management

1 Introduction

Software teams today are required to deliver new or updated services frequently,
rapidly and independently. They look to DevOps to increase speed and fre-
quency of service delivery by automating testing and deployment of services.
Microservices, an architectural concept consisted of small-sized services that are
independently deployable, scalable, and manageable, further helps the software
teams to deliver services in a more rapid, incremental, and independent manner.

c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 151–168, 2019.
https://doi.org/10.1007/978-3-030-33702-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_12

152 H. Johng et al.

For example, Amazon and Netflix deploy thousands of times per day by using
DevOps and Microservices [6,15].

Although adopting DevOps and Microservice design brings the aforemen-
tioned benefits, it also brings communication and collaboration challenges among
independent software teams collectively contributing to changes in services over
time. As each team pushes code or service infrastructure changes into the envi-
ronment, its impacts on inter-dependent teams are not collectively assessed, noti-
fied, or verified. Rather they are present ad hocly across multiple data sources:
code changes and commits can be detected through git, deployment configura-
tion changes are visible through DevOps pipeline, runtime performance issues
can be reported by Istio or Kubernetes depending on what is monitored. How-
ever, there is no correlation across changes in an application code, its configu-
ration and runtime performance, especially when multiple independent services
and development teams are involved. As a result, integration errors, misconfigu-
rations, and security exposures may occur that are difficult to detect and trace
across teams and resolve in a timely manner. Today’s approach to detect and
diagnose issues caused by changes through performance diagnosis or root-cause
analysis is therefore time-consuming and reactive.

In this paper, we propose Harmonia1 - a continuous service monitoring frame-
work utilizing DevOps and Service Mesh in a complementary manner, as among
the first of its kind to the best of our knowledge, to improve coordination and
change management among independent teams. Harmonia can automatically
detect code and infrastructure changes in services, including changes in code,
configuration, deployment, and application performance. Furthermore, Harmo-
nia can assess the impact of the changes to other services, and notify the changes
to affected teams, whereby helping software teams resolve the changes quickly.
More specifically, Harmonia offers an ontology alignment between DevOps logs
and Service Mesh logs to utilize service deployment information from DevOps
together with service run-time interaction information from Service Mesh. Har-
monia supports declarative rules for detection and notifications to define what
to detect and notify and whom to be notified. Thus, Harmonia takes a proactive
approach to change management whereby defects and performance issues are
detected as they occur, their impact across service components are assessed, and
actions are taken by notifying both the teams (or team members) accountable
for the change as well as impacted by the change.

To demonstrate Harmonia, we have built a capability to correlate logs from
Github and Jenkins for DevOps and logs from Istio and Kubernetes for Ser-
vice Mesh. We applied Harmonia to the Bookinfo application, which is a stan-
dard application in describing Istio for Microservices management and ran a
simulation to comprehend the applicability of Harmonia and its strengths. Dur-
ing the simulation, we deployed faulty and normal services at regular intervals
to observe whether Harmonia is able to capture the changes and notify them
to the impacted teams correctly automatically. Our demonstration shows that,
compared to existing DevOps and Service Mesh frameworks, Harmonia offers a

1 Harmonia is the goddess of harmony and concord in Greek mythology.

Harmonia: A Continuous Service Monitoring Framework 153

better interpretability for software teams regarding service changes, the impact
of the changes, and source of the changes in a timely manner, by representing
service changes both in service deployment phase and in the run-time phase in
a single view.

The rest of the paper is organized as follows, Sect. 2 provides related work,
and Sect. 3 describes Harmonia. Section 4 presents our demonstration, followed
by observations and discussions. In the end, a summary of contributions and
future work are described.

2 Related Work

We discuss the related work on monitoring and root-cause analysis on microser-
vices and DevOps.

In terms of monitoring, Heinrich et al. [9] highlight research directions in
microservices with respect to performance-aware testing, monitoring and mod-
eling services. Specifically they emphasize that due to frequent releases, extensive
system and integration tests are not possible. Although canary deployments take
care some aspect of the problem by releasing the deployment to a few set of users,
however, such deployment process can be expensive and time-consuming. Pina
et al. [19] propose an approach to monitor microservices by decoupling moni-
toring functionalities from function-oriented microservices. For monitoring they
use Zuul an adapted gateway from Netflix. Fadda et al. [4] provide an approach
to support microservices deployment in multi-cloud environments emphasizing
on the quality of monitoring. Their proposed approach creates a knowledge base
that mediates between the perspectives of the cloud provider and the application
owner and a Bayesian network that enhances the provider’s monitoring capa-
bilities. Haselböck and Weinreich [8] propose guidance models for monitoring
microservices. The models are derived from literature, previous work on mon-
itoring distributed systems and microservice-based systems. Phipathananunth
and Bunyakiati [18] provide Pink a framework that monitors microservices to
assess non-functional properties such as session management, caching and secu-
rity. The major focus with such monitoring base contributions is primarily tied
to monitoring a service mesh. Such contributions do not connect service mesh
with DevOps that have additional information on deployment. In case of service
anomalies or abnormalities, such approaches may not trace microservices that
might get impact nor can notify the teams in charge of the services together with
recent deployment and program code change history on the services to help the
teams to plan mitigation actions instantly.

In terms of root cause analysis, Lin et al. [16] propose Microscope to detect
abnormal services with a ranked list of possible root causes. Wang et al. [20]
propose CloudRanger that constructs causal graphs to determine the culprit
services that are responsible for cloud incidents. Myunghwan et al. [14] provide
MonitorRank that monitors historical and current time-series metrics of each
sensor as its input along with the call graphs generated between the sensors to
create an unsupervised model for ranking. Chen et al. [3] propose CauseInfer

154 H. Johng et al.

that creates a two-layer hierarchical causality graph from a distributed system
to infer the root causes along the causal paths. Jayathilaka et al. [10] propose
Roots that monitors a full-stack application to determine the root cause for an
anomaly. It does so by analyzing previous workload data of the application and
the performance of the internal PaaS services on which the application depends.
Existing approaches to determine root causes are reactive based approaches,
i.e., they identify a root cause after an anomaly has occurred. Also the current
approaches do not consider logs generated from DevOps to pin point who is
accountable for the root cause.

In DevOps, most of the contributions emphasize on utilizing microservices
that facilitate rapid deployments of services. For example, Balalaie et al. [1]
emphasize on how monolithic architecture can be broken down in to microser-
vices considering microservices can quickly adapt to technological changes,
reduce time-to-market and provision a better development team structuring
around services. Zhu et al. [22] describe how DevOps can reduce time between
committing a change to a system and the change being productionized ensuring
high quality. Brunnert et al. [2] provide performance-relevant aspects of DevOps
concept. Fitzgerald and Stol [5] propose BizDev that continuously assess busi-
ness strategy and software development. Gupta et al. [7] propose an approach
to automatically discover execution behavior models for the deployed and the
new version using the execution logs. However, there seems a lack of studies on
DevOps using service mesh that provides monitoring information of microser-
vices and interactions among them. Without monitoring information, it is chal-
lenging to estimate the potential degree of impacts on other services before
deploying updates and analyze the actual impacts after the deployment.

3 Harmonia - A Continuous Service Monitoring
Framework

Harmonia is a continuous service monitoring framework that aims to reduce
delays in communications among independent software teams regarding changes
in services and impacts of the changes. Figure 1 shows the ontology of Harmonia.
By using DevOps and Service Mesh in a complementary manner, Harmonia
monitors changes in services by detecting violations of service level agreements
(SLAs, e.g., latency SLA) together with impacted services after the changes
are pushed. Harmonia further notifies software teams to assist them to take
appropriate actions to remediate their services from the impact. The Harmonia
rules define the following: what to detect and notify and whom to be notified.
Each rule acts as a reference to let software teams customize the rule for their
applications.

The underlying process in Harmonia consists of three steps as described in
Fig. 2. In the first step, Harmonia aligns the ontologies obtained from the service
deployment information i.e., from DevOps logs with run-time service interaction
information obtained from Service Mesh logs to create an integrated body of
knowledge. In the second step, once Harmonia detects changes in services from

Harmonia: A Continuous Service Monitoring Framework 155

Fig. 1. The ontology of Harmonia for detecting and notifying changes in services.

DevOps logs, it traces the dependent services that might have recently inter-
acted with the changed services. Harmonia does so by monitoring Service Mesh
logs. Based on the detected changes, Harmonia notifies the changes to associ-
ated software teams that own the dependent services. In the third step, Har-
monia detects SLA violations on services by monitoring Service Mesh logs after
changes are pushed. Then, Harmonia traces recent changes on the problematic
services, which are potential causes of the SLA violations, and notifies the change
information to associated software teams.

Fig. 2. The underlying process in Harmonia for detecting and notifying changes in
services.

3.1 Ontology Alignment Among DevOps and Service Mesh Logs

DevOps is a framework to automate deployment and testing of services from
development environments to production environments. Service Mesh is a frame-
work for monitoring and managing interactions among (micro-) services. DevOps
logs contain service deployment information such as logs for code push and ser-
vice deployment. However, such logs do not include run-time service interaction
information such as communications among services, latency between services
and so on. On the other hand, Service Mesh logs contain run-time service inter-
action information but do not contain service deployment information. Without
having the deployment information and run-time interaction information in a
single view, software teams as of now manually inspect the impacts of changes,
e.g., latency SLA violation, the source of such changes, software teams that
might be impacted by the changes, their contacts, and notify them accordingly.
Overall such process is time-consuming and the resultant delay in communica-
tion to appropriate software teams might delay the possible mitigation, thereby
hurting the goal of frequent service delivery to production environments.

156 H. Johng et al.

To create an integrated body of knowledge from DevOps and Service Mesh
logs, we extract ontologies from both the logs and align them by common
attributes. Work on log mining has researched in various domains [17]. For utiliz-
ing logs, it is essential to extract ontology, which is a set of important concepts,
relationships among the concepts, and constraints, to understand what knowl-
edge to utilize from the logs [11–13,21].

We extract the DevOps ontologies from Jenkins logs and the Service Mesh
ontologies from Istio logs as shown in Fig. 3. Note that different DevOps and
Service Meshes can produce different ontologies. Thus, the ontology is a ref-
erence ontology and may not generalize to other frameworks. Nonetheless the
underlying methodology to extract and align the onotologies remains the same.

Fig. 3. The ontology alignment among DevOps and Service Mesh logs.

In DevOps logs are generated based on specific tasks such as code push and
service deployment as stated earlier. We consider the code push task as pushing
code to Github (a source code repository), containerizing the code to generate
an image, and then pushing the image to Docker Hub (a container image repos-
itory). While pushing code to Github, the changed files and the committer’s ID
(email address) are recorded. The service deployment task is defined as accessing
a server using a server IP via Secure Shell (SSH) and deploying a container image
on a server. The logs of the code push task and the logs of service deployment
task are aligned by a common attribute “Container Name”.

The Service Mesh logs contain service instance information and interaction
information among service instances. The service instance information contains
a service name, an IP address, a port number and a container name. The inter-
action information contains an interaction date, a source service, a destination
service, the latency of the interaction, and an end user who requested the inter-
action.

We align the ontologies (information) from DevOps and Service Mesh based
on a common attribute “Container Name”. By aligning the ontologies of DevOps
and Service Mesh, we integrate service deployment and service interaction infor-
mation. For example, if latency SLA is violated during interacting between two

Harmonia: A Continuous Service Monitoring Framework 157

services, the destination service IP is mapped onto the IP of a deployment task.
Then, the image name of the deployment task is mapped onto the image name
of the code push task. From the code push task, we can trace the email address
of the code committer.

3.2 Proactive Change Detection and Notification

For assisting in fast communication and collaboration among the independent
software teams regarding changes in services, Harmonia automates detecting
changes in services, tracing the dependent services that can be impacted by the
changes, notifying the changes to appropriate teams.

To determine what to detect and notify and whom to be notified, Harmonia
follows predefined detection and notification (reference-) rules. Each rule consists
of a detection condition (C) and a notification action (A). We define each rule
as C → A. Either the condition or the action can be specialized to customize
the rules as (C’ → A) or (C → A’)

Suppose Team A in Fig. 4, is responsible for the Review service and deploys
the Review service after changing the code, Harmonia detects the deployment
change from the deployment task logs and changed files from the code push task
logs. We consider Review service as a depender service. We assume that there
are services that might be impacted by the changes in the depender service. We
refer such services as the Dependee services. The dependency can be extracted
from recent service interaction logs of Service Mesh. For example, in the Fig. 4,
the Product Page service that recently sent requests to the Review service is
considered as the dependee service. By tracing the deployment information of the
dependee (Product Page service), Harmonia notifies the changes of the depender
(Review service) to the committer of the dependee (Product Page service).

Fig. 4. Detecting changes and deployments of services and notifying to appropriate
software teams.

We provide a reference rule (R1) for the example scenario above as the
following:

– Condition (C1): The depender service (s) is deployed.

158 H. Johng et al.

– Action (A1): Notify the deployment and the change information of the depen-
der service (s) to other teams responsible for the dependee services (d).

R1 : deployed(s)C1
→ ∀d ∈ dependee(s), notify(d, s)A1

(1)

Below, we refine the reference rule 1 (R1) further. For example, if software
teams responsible for the critical services (c), which are not direct dependees
but had frequent interactions with the dependees, needs to be notified. Thus, we
refine the rule as follows:

– Condition (C1): The depender service (s) is deployed.
– Action (A2): Notify the deployment and change information of the depender

service (s) to teams responsible for the critical dependee services (c).

R2 : deployed(s)C1
→ (∀d ∈ dependee(s), notify(d, s)A1

)

∧ (∀c ∈ (¬dependee(s) ∧ dependee(d) ∧ is critical(s, c)), notify(c, s)A2
)

(2)

To implement the reference rules, we define (reference-) heuristic transla-
tion algorithms associated with the rules in Algorithm1 and 2. The deployed
procedure describes the steps of detecting changes and deployments of services
by using DevOps logs and Service Mesh logs in a complementary manner. We
assume that the logs are represented in the JSON format. The deployed pro-
cess takes logs from code push, deployment and run-time interaction, notifies
the change and deployment information to dependees, and then returns a list
of deployments including change information. The deployed process shows a
forward tracing from code push logs to run-time interaction logs to get the
dependees of the newly deployed services.

The notify procedure describes a backward tracing from service interaction
logs to code push logs to extract contact email addresses of the dependee ser-
vices. The notify process takes a list of dependees as notification targets and the
deployment information of a depender service. Then it notifies the changes of
the depender to dependees.

Transitive Impact Assessments. In addition to analyzing the impacts of
changes on direct dependee services described earlier, Harmonia assesses two
types of potential transitive impacts of service changes on other services. One is
assessing impacts on a competitive service in using a common service as described
in Fig. 5. The other one is assessing impacts on the other services invoked by the
changed services implicitly as depicted in Fig. 6.

The difference between existing root-cause analysis approaches and our tran-
sitive impact assessment is the proactive change detection and notification.
The root-cause analysis based approaches pinpoint the root-causes when mul-
tiple abnormal services are detected. In contrast, Harmonia considers newly
changed services as root-causes and proactively infers the transitive impacts
of the changes on other services.

Harmonia: A Continuous Service Monitoring Framework 159

Algorithm 1. A Heuristic Translation of deployed Condition to Code
1: pushedList ← read(pushed.json); � Obtained from Jenkins and Github Logs
2: deployedList ← read(deployed.json); � Obtained from Jenkins Logs
3: interactionList ← read(interaction.json); � Obtained from Istio Logs
4: namespaceList ← read(kubernetes.json); � Obtained from Kubernetes Logs
5: procedure deployed() � Called regularly. Forward Tracing of Logs
6: deployments, dependeeList, pushedList;
7: for each deployed ∈ deployedList do� 1. Get recent changes and deployments
8: for each pushed ∈ pushedList do
9: if pushed.containerName == deployed.containerName then

10: if pushed.date < deployed.date then
11: pushedList.add(pushed);

12: deployed.put(”changes”, pushedList);
13: for each namespace ∈ namespaceList do � 2. Get service names in

production
14: if deployed.containerName == namespace.containerName then
15: deployed.put(”serviceName”, namespace.instanceName);

16: for each interaction ∈ interactionList do � 3. Get dependees
17: if interaction.destination == deployed.serviceName then
18: dependeeList.add(interaction.source);

19: deployed.put(”dependees”, dependeeList);
20: deployments.put(”deployments”, deployed);
21: notify(dependeeList, deployed); � 4. Notify the changes and deployments

to dependees

22: return deployments � A set of deployments

To assess the potential transitive impacts of service changes, we further define
notations and rules for detecting and notifying service changes as below.

I = ({Ssrc}, {Sdst}, l, t), S = (n, {D}), D = (ct, cc, ci) (3)

The I is a set of individual interactions (i) within a time slot (T t
t−1). Each

interaction (i) consists of a source service (Ssrc), a destination service (Sdstc), an
interaction latency (l), and a timestamp (t). Each service (S) is composed of a
service name (n) and deployment information (D). The deployment information
(D) involves a changed time (ct), changed code information (cc), and changed
infrastructure information (ci). The latency of a service interaction can be caused
either by the changes in the source service or the changes in the destination
service.

Figure 5 depicts a transitive impact assessment among competitive services.
In this scenario, the service (S3) and the service (S5) are competing in invok-
ing the common service (S4), such as using a common API. A faulty change in
the service (S3) that occupies the service (S4) with a longer period can impact
the service (S5). Harmonia detects the transitive relationship between competi-
tive services by checking invoking sequences and latency propagations and then
notifying service changes among the competitive services as described below:

160 H. Johng et al.

Algorithm 2. A Heuristic Translation of notify Action to Code
1: procedure notify(tagets, deployed) � Backward Tracing of Logs
2: for each target ∈ targets do
3: for each namespace ∈ namespaceList do � 1. Get container names of

dependees
4: if namespace.serviceName == target then
5: target.put(”containerName”, namespace.containerName);

6: for each pushed ∈ pushedList do � 2. Get contacts of the dependees
7: if pushed.containerName == target.containerName then
8: sendEmail(pushed.email, deployed); � 3. Send an Email with

Deployment Information

Fig. 5. A transitive impact assessment among competitive services.

– Condition (C2): The interaction ij (from Sj to Sm) and the interaction
ik (from Sk to Sm) have occurred within a time slot T t

t−1. Service(Sj) and
service (Sk) are competitive services that can impact each other in invoking
the other service (Sm).

– Condition (C1.1): Service (Sj) is deployed, which is an instance of C1.
– Condition (C1.2): Service (Sm) is deployed, which is an instance of C1.
– Action (A1.1): Notify the deployment and change information of service (Sj)

to service (Sk) and service (Sm), which is an instance of A1.
– Action (A1.2): Notify the deployment and change information of service (Sm)

to service (Sj) and service (Sk), which is an instance of A1.

R3 : (∀ij , ik ∈ Itt−1, (ij .Sdst = ik.Sdst) ∧ (ij .t < ik.t) ∧ (ik.l > ij .l))C2
→

((ij .Ssrc.Dct ∈ T t
t−1)C1.1

→ (notify(ij .Ssrc.D, ij .Sdst) ∧ notify(ij .Ssrc.D, ik.Ssrc))A1.1
)∨

((ij .Sdst.Dct ∈ T t
t−1)C1.2

→ (notify(ij .Sdst.D, ij .Ssrc) ∧ notify(ij .Sdst.D, ik.Ssrc))A1.2
)

(4)

Figure 6 shows a scenario of a transitive impact assessment for services invok-
ing the other services implicitly. In this scenario, the service (S3) is not a direct
dependee of the service (S2) but implicitly invokes the service (S2). If a change
in the service (S2) increases the interaction latency between the service (S1) and
the service (S2), the service (S3) can be impacted. Harmonia captures the tran-
sitive impacts for services invoking other services implicitly by checking invoking
sequences and latency propagations and then notifying service changes among
the competitive services as described below:

Harmonia: A Continuous Service Monitoring Framework 161

Fig. 6. A transitive impact assessment for services invoking the other services implic-
itly.

– Condition (C3): The interaction ij (from Sj to Sk) implicitly invokes the
interaction ik (from Sk to Sm).

– Condition (C1.3): Service (Sm) is deployed, which is an instance of C1.
– Action (A

′
1.1): Notify the deployment and change information of service(Sm)

to service (Sj) and service (Sk), which is an instance of specialization of A1.

R4 : ∀ij , ik ∈ I
t
t−1, ((ij .Sdst = ik.Ssrc) ∧ (ij .t < ik.t))C3

∧ (ik.Sdst.D ∈ T
t
t−1)C1.3

→
notify(ik.Sdst.D, ik.Ssrc) ∧ notify(ik.Sdst.D, ij .Ssrc))

A
′
1.1

(5)

The proactive detection and notification rules aim to provide forewarning
among independent software teams. If the systems are sensitive for reliability,
the forewarning would help the independent software teams in communicating
and collaborating with richer information before an abnormality on the system
is detected.

3.3 Reactive Change Detection and Notification

DevOps software teams are required to deliver services more frequently and inde-
pendently to production environments, thereby increasing complexity in com-
munication and collaboration among the teams. For example, if SLA violations
occurred after deploying services independently, it is timing consuming to pin-
point causes of the SLA violations and impacted services and to notify the causes
to appropriate teams.

Consider the Product page service experiences a 3 s delay after the Team A
has deployed a new Review service as shown in Fig. 7. Harmonia automatically
detects the violations of the latency SLA when the Product Page service sents
a request to the Review service, tracking recent changes in the Review service,
and notifying the recent changes to the teams responsible for the Product Page
service to assist them react to the violation of latency SLA and remediate it.

A reference rule (R3) for the example scenario above is defined as below:

– Condition (C2): The latency of interaction from a source service (ssrc) to a
destination service (sdst) is higher than a latency SLA (lSLA).

– Action (A2): Notify the recent changes in the destination service (sdst) to
the teams responsible for the service (sdst) and dependee services (d).

162 H. Johng et al.

Fig. 7. Detecting SLA violations and impacted services and notifying recent changes
in services to appropriate teams.

R5 : ∀sdst ∈ (latency(ssrc, sdst) > lSLA)C2
) →

notify(sdst, sdst)A2
∧ (∀d ∈ dependee(sdst), notify(d, sdst)A2

)
(6)

The latency of an interaction between two services can occur due to both
changes in the source service and changes in the destination service. If dependees
of the source service and the destination service need to be notified with the
changes in source service and the destination service respectively, the reference
rule 3 can be refined as below:

– Condition (C2): The latency of interaction from a source service (ssrc) to a
destination service (sdst) is higher than a latency SLA (lSLA).

– Action (A′
2): Notify the recent changes in the source service (ssrc) and

destination service (sdst) to the teams responsible for the dependees of source
(dsrc) and dependees of destination (ddst).

R6 : ∀sdst ∈ (latency(ssrc, sdst) > lSLA)C2
) →

∀ddst ∈ dependee(sdst), notify(ddst, sdst)A2
) ∧ notify(sdst, sdst)A2

∧ ∀dsrc ∈ dependee(ssrc), notify(dsrc, ssrc)A′2) ∧ notify(ssrc, ssrc)A′2

(7)

In Algorithm 3 for the rule R4, the process for detecting violations of latency
SLA and notifying appropriate teams, shows a backward tracing from run-time
interaction logs to code push logs. The process assumes that the SLA specifica-
tion is documented in the JSON. The process gets recent changes in the source
and destination and then notify the changes to dependees of the source and
destination.

Transitive Impact Assessments. In the transitive impact assessment phase,
Harmonia pinpoints the root-causes of abnormal interactions, similar to the

Harmonia: A Continuous Service Monitoring Framework 163

Algorithm 3. A Heuristic Translation of latency Condition to Code
1: SLA ← read(SLA.json);
2: procedure latency()
3: deployments ← depolyed();
4: for each interaction ∈ interactionList do
5: if interaction.latency > SLA.latency then
6: for each namespace ∈ namespaceList do
7: if deployment.serviceName == interaction.destination then
8: notify(interaction.destination, deployment);
9: notify(interaction.destination.dependees, deployment);

10: if deployment.serviceName == interaction.source then
11: notify(interaction.source, deployment);
12: notify(interaction.source.dependees, deployment);

existing root-cause analysis based approaches. However, Harmonia goes beyond
by providing richer information to software teams with an understanding of
potential reasons why such abnormal interactions occurred. Harmonia addition-
ally pinpoints and notifies recent code changes and infrastructure changes in
abnormal services as a starting point of inspection, towards facilitating commu-
nication and collaborations among independent teams and fixing the issues more
quickly.

For assessing the actual impacts among competitive services, Harmonia uti-
lizes the rule (R3) defined during the proactive detection and the notification
phase. In the scenario described in Fig. 5, if the latency (l) of the interaction
(ij) (from service S3 to service S4) violates the latency SLA (lSLA), Harmonia
detects the code or infra changes and notifies to impacted teams. The detection
and notification rules are specialized from the rule (R3) and defined as below:

– Condition (C2.1): The latency of interaction from a source service (Ssrc)
to a destination service (Sdst) is higher than a latency SLA (lSLA) in an
interaction (ij).

– Condition (C2.2): The latency of interaction from a source service (Ssrc)
to a destination service (Sdst) is higher than a latency SLA (lSLA) in an
interaction (ik).

R7 : ∀ij , ik ∈ It
t−1, C2 ∧ (ij .l > lSLA)C2.1

∧ (ik.l > lSLA)C2.2
→ A1.1 ∧ A1.2 (8)

Similarly, Harmonia utilizes the rule (R4) for the detection and notification
rule for services invoking the other services implicitly. In the scenario described
in Fig. 6, if the interaction between the service (S1) and the service (S2) violates
the latency SLA due to a change in service (S2), Harmonia detects the latency
violations and notifies the change to impacted teams as defined below:

R8 : ∀ij , ik ∈ Itt−1, C3 ∧ C1.3 ∧ (ij .l > lSLA)C2.1
∧ (ik.l > lSLA)C2.2

→ A1.1 (9)

164 H. Johng et al.

4 Harmonia in Action

To assist with an initial understanding of the applicability of Harmonia, we
applied Harmonia to the Bookinfo application2, which is adopted as an official
sample application to describe the Istio framework, and compared the informa-
tion collected from Harmonia with the information obtained from existing frame-
works. The Bookinfo application displays the information of a book, including
a description of the book, book details (ISBN, number of pages, etc.), and book
reviews. The Bookinfo composed of four separate microservices - Product Page,
Detail, Review, and Rating. Jenkins is adopted in our demonstration to build
a sample DevOps pipeline, which consists of jobs for pushing code to Github,
building and containerizing the code, and deploying the container.

4.1 Experimentation Setting

Four Github accounts are assigned to the Review service, the Detail service, and
the Rating service. Each account is considered as a contact point of a software
team that is responsible for a service. A total of 1200 visitors to the Bookinfo
application are simulated. Sixty visitors per second are generated and access the
Bookinfo application through a gateway service. Two types of Rating service
are alternatively deployed every 10 s. We injected faulty code for causing delays
from one second to seven seconds in communicating with the review service to
one of the rating services. The other rating service works without causing delays.
Harmonia collected the service deployment information and service interaction
information every 10 s, detected violations of latency SLA, source of changes,
and impacted services, notified the violations and changes to the four contacts.
The latency SLA is given as one second. Then, we collected and compared the
information from Harmonia, Github, Jenkins, Kubernetes, and Istio.

4.2 Observation and Discussion

Table 1 summarizes the experimentation results, showing a quantitative compar-
ison with existing frameworks that measure the types of available information
regarding service changes.

The Github logs captured the 20 times of code changes, including lines of
changed code. The Jenkins logs captured the 20 times of code commitment
history, containerization history of the code, and deployment history of the con-
tainer. However, both Github and Jenkins have a lack of service run-time infor-
mation after the deployments. The Kubernetes logs captured the 20 times of
service container deployment history, and the Istio logs captured the number
of visitors to the Bookinfo application, the total number of interactions among
services, and the latency of the interactions. However, the Kubernetes and Istio
do not capture the information of changes in the service containers that are
newly deployed. Harmonia bridged the dichotomy between the DevOps tools

2 https://istio.io/docs/examples/bookinfo/.

https://istio.io/docs/examples/bookinfo/

Harmonia: A Continuous Service Monitoring Framework 165

Table 1. A quantitative comparison with existing frameworks.

Code

changes

Service

deployments

Problematic

deployments

Visitors Service

interac-

tions

SLA

violations

Identified

root-cause

Identified

impact

Total # of

Changes

20 20 10 1,200 10,753 932 220 712

Harmonia 20 20 10 1,200 10,753 932 220 712

Github 20 - - - - - - -

Jenkins 20 20 - - - - - -

Kubernetes - 20 - - - - - -

Istio - - - 1,200 10,752 932 - -

and Service Meshes by extracting and aligning the logs from the tools. Addition-
ally, based on the logs, Harmonia deduced ten problematic service deployments,
220 root-cause interactions that caused by problematic deployments, and 712
impacted interactions and notified the source of code changes and deployments
that cause the violations. To evaluate whether root-cause of changes can be iden-
tified, refer to Fig. 6, we injected a faulty code in the rating service (S2) (i.e.,
the root cause) which introduces delays in the interaction between the review
service (S1) and the rating service (S2). The interaction impacts on the other
interaction between the product page service(S3) and the review service (S1).
Among the total of 932 abnormal interactions that violate the latency SLA, Har-
monia detects the 220 interactions between the rating (S2) and review (S1) as
root-cause interactions. The 712 impacted interactions represent the interactions
between the product page (S3) and the review page (S1).

Fig. 8. AS-IS visualizations of a DevOps pipeline and a service mesh

Figures 8 and 9 show a visual comparison between Istio, Jenkins, and Harmo-
nia. The Jenkins pipeline described in Fig. 8a contains service deployment infor-
mation, such as deployment date, code changes, etc., but rarely involves run-time
service information after the deployments. On the other hands, as depicted in
Fig. 8b, Istio visualizes the run-time interactions and latencies among services
but has a lack of understanding about what kinds of service changes cause the
latency variations.

As described in Fig. 9, Harmonia visualizes the service deployment infor-
mation and run-time interaction information in a single view for helping inde-
pendent software teams in understanding the impact of changes in services.

166 H. Johng et al.

Fig. 9. A visualization of harmonia prototype

The Rating is colored red as the deployments of the Rating violated the latency
SLA. The interaction between the Review and the Rating colored red with a
solid line as it is a root-case interaction. The impacted interactions colored red
with dotted lines.

4.3 Threats to Validity

Currently, as Harmonia understands an integrated body of knowledge from spe-
cific logs of Github, Jenkins, Istio, and Kubernetes, the Harmonia ontology is
limited to be generalized. The Harmonia reference rule set for detection and noti-
fication is limited and straightforward yet to apply Harmonia to more diverse
domains. In addition, Harmonia utilizes a centralized point of a knowledge base,
whereas microservices build on independent teams with separation of concerns.
It would be necessary to decentralize the knowledge base appropriately in terms
of access control, ownership, and trust.

5 Conclusion

In this paper, we presented Harmonia - a continuous service monitoring frame-
work using both DevOps and Service Mesh in a complementary manner, as
among the first of its kind to the best of our knowledge, to facilitate commu-
nication and collaborations among DevOps software teams independently con-
tributing to service changes. Harmonia offers a reference ontology alignment of
DevOps logs and Service Mesh logs to have an integrated body of knowledge
between service deployment information from DevOps that includes code and
infrastructure changes of services and run-time service information from Service
Mesh that captures run-time interactions among service along with its latency.
Harmonia also offers detection and notification rules to enhance the understand-
ability of the changes in services and impacts of the changes.

To generalize our approach, we are planning to expand the ontology to cover
other DevOps and Service Mesh frameworks, such as Puppet, Chef, or Linke rd.
To enhance the Harmonia reference rule set, we are also planning to consider

Harmonia: A Continuous Service Monitoring Framework 167

more complex cases based on studying real application services in cloud-native
production environments. We would also like to further evaluate to what extent
can Harmonia notifications help development teams performing change manage-
ment and diagnosis.

References

1. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
DevOps: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

2. Brunnert, A., et al.: Performance-oriented DevOps: a research agenda. CoRR
abs/1508.04752 (2015). http://arxiv.org/abs/1508.04752

3. Chen, P., Qi, Y., Hou, D.: CauseInfer: automated end-to-end performance diagnosis
with hierarchical causality graph in cloud environment. IEEE Trans. Serv. Comput.
12(2), 214–230 (2019)

4. Fadda, E., Plebani, P., Vitali, M.: Monitoring-aware optimal deployment for appli-
cations based on microservices. Trans. Serv. Comput. 1–1 (2019)

5. Fitzgerald, B., Stol, K.J.: Continuous software engineering and beyond: trends and
challenges. In: Proceedings of the 1st International Workshop on Rapid Continuous
Software Engineering, pp. 1–9. ACM, Hyderabad (2014)

6. Forsgren, N., Kim, G., Kersten, N., Humble, J., Brown, A.: 2017 state of devops
report. Puppet+ DORA

7. Gupta, M., Mandal, A., Dasgupta, G., Serebrenik, A.: Runtime monitoring in
continuous deployment by differencing execution behavior model. In: Pahl, C.,
Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 812–827.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9 58

8. Haselböck, S., Weinreich, R.: Decision guidance models for microservice moni-
toring. In: Proceedings of the International Conference on Software Architecture
Workshops (ICSAW), pp. 54–61. IEEE (2017)

9. Heinrich, R., et al.: Performance engineering for microservices: research challenges
and directions. In: Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering Companion, pp. 223–226. ACM, L’Aquila (2017)

10. Jayathilaka, H., Krintz, C., Wolski, R.: Performance monitoring and root cause
analysis for cloud-hosted web applications. In: Proceedings of the 26th Interna-
tional Conference on World Wide Web, pp. 469–478. International World Wide
Web Conferences Steering Committee, Perth (2017)

11. Johng, H., Kim, D., Hill, T., Chung, L.: Estimating the performance of cloud-based
systems using benchmarking and simulation in a complementary manner. In: Pahl,
C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 576–591.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9 42

12. Johng, H., Kim, D., Hill, T., Chung, L.: Using blockchain to enhance the trustwor-
thiness of business processes: a goal-oriented approach. In: 2018 IEEE International
Conference on Services Computing (SCC), pp. 249–252. IEEE (2018)

13. Kalia, A.K., Xiao, J., Bulut, M.F., Vukovic, M., Anerousis, N.: Cataloger: catalog
recommendation service for IT change requests. In: Maximilien, M., Vallecillo, A.,
Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 545–560. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 40

14. Kim, M., Sumbaly, R., Shah, S.: Root cause detection in a service-oriented archi-
tecture. In: Proceedings of the ACM SIGMETRICS/International Conference on
Measurement and Modeling of Computer Systems, pp. 93–104. ACM, Pittsburgh
(2013)

http://arxiv.org/abs/1508.04752
https://doi.org/10.1007/978-3-030-03596-9_58
https://doi.org/10.1007/978-3-030-03596-9_42
https://doi.org/10.1007/978-3-319-69035-3_40

168 H. Johng et al.

15. Len Bass, I.W., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, Old Tappan (2015)

16. Lin, J., Chen, P., Zheng, Z.: Microscope: pinpoint performance issues with causal
graphs in micro-service environments. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q.
(eds.) ICSOC 2018. LNCS, vol. 11236, pp. 3–20. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03596-9 1

17. Motahari, H., Benatallah, B., Saint-Paul, R., Casati, F., Andritsos, P.: Process
spaceship: discovering and exploring process views from event logs in data spaces.
Proc. VLDB Endow. 1(2), 1412–1415 (2008)

18. Phipathananunth, C., Bunyakiati, P.: Synthetic runtime monitoring of microser-
vices software architecture. In: Proceedings of 42nd Annual Computer Software
and Applications Conference (COMPSAC), vol. 02, pp. 448–453 (2018)

19. Pina, F., Correia, J., Filipe, R., Araujo, F., Cardroom, J.: Nonintrusive monitoring
of microservice-based systems. In: Proceedings of the 17th International Sympo-
sium on Network Computing and Applications (NCA), pp. 1–8. IEEE (2018)

20. Wang, P., et al.: Cloudranger: root cause identification for cloud native systems.
In: Proceedings of 18th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), pp. 492–502 (2018)

21. Xiao, J., Kalia, A.K., Vukovic, M.: Juno: an intelligent chat service for IT service
automation. In: Liu, X., et al. (eds.) ICSOC 2018. LNCS, vol. 11434, pp. 486–490.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17642-6 49

22. Zhu, L., Bass, L., Champlin-Scharff, G.: Devops and its practices. IEEE Softw.
33(03), 32–34 (2016)

https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1007/978-3-030-17642-6_49

	Harmonia: A Continuous Service Monitoring Framework Using DevOps and Service Mesh in a Complementary Manner
	1 Introduction
	2 Related Work
	3 Harmonia - A Continuous Service Monitoring Framework
	3.1 Ontology Alignment Among DevOps and Service Mesh Logs
	3.2 Proactive Change Detection and Notification
	3.3 Reactive Change Detection and Notification

	4 Harmonia in Action
	4.1 Experimentation Setting
	4.2 Observation and Discussion
	4.3 Threats to Validity

	5 Conclusion
	References

