
QoS Value Prediction Using
a Combination of Filtering Method
and Neural Network Regression

Soumi Chattopadhyay1(B) and Ansuman Banerjee2

1 Indian Institute of Information Technology, Guwahati, India
soumi61@gmail.com

2 Indian Statistical Institute, Kolkata, India

Abstract. With increasing demand and adoption of web services in the
world wide web, selecting an appropriate web service for recommendation
is becoming a challenging problem to address today. The Quality of Service
(QoS) parameters, which essentially represent the performance of a web
service, play a crucial role in web service selection. However, obtaining the
exact value of a QoS parameter of service before its execution is impossible,
due to the variation of the QoS parameter across time and users. Therefore,
predicting the value of a QoS parameter has attracted significant research
attention. In this paper, we consider the QoS prediction problem and pro-
pose a novel solution by leveraging the past information of service invoca-
tions. Our proposal, on one hand, is a combination of collaborative filtering
and neural network-based regression model. Our filtering approach, on the
other hand, is a coalition of the user-intensive and service-intensive mod-
els. In the first step of our approach, we generate a set of similar users on a
set of similar services. We then employ a neural network-based regression
module to predict the QoS value of a target service for a target user. The
experiments are conducted on theWS-DREAMpublic benchmarkdataset.
Experimental results show the superiority of our method over state-of-the-
art approaches.

1 Introduction

With the proliferation of emerging technologies in the era of Internet-of-Things
(IoT), the number of web services is increasing day by day. The existence of a
large number of competing, functionally equivalent web services in world wide
web, makes the problem of recommending an appropriate service for a specific
task, quite challenging in recent times. A number of different factors may actually
influence the process of recommendation [4,19,20]. The QoS parameter (e.g.,
response time, throughput, reliability, availability) being the representative of
the performance of a web service is one of the key factors that may have an
impact on service recommendation. However, the value of a QoS parameter of
a web service varies across time and users. Therefore, obtaining the exact QoS
that a user will witness during invocation is a difficult task. Prediction plays an
important role in this context to obtain a close enough approximate QoS value
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for recommendation. Quite evidently, the task of prediction is recognized as one
of the fundamental research challenges in the domain of services computing.
In this paper, we address the problem of predicting the QoS value of a service for
a given user by leveraging the past user-service QoS invocation profiles consisting
of the QoS values of a set of services across different users. A significant number
of research articles exist in literature which deal with this problem. Collaborative
filtering [3,15] is one of the most popular methods adopted in this domain to
predict the missing value. The collaborative filtering technique is classified into
two categories: memory-based and model-based. The memory-based collabora-
tive filtering comprises the computation of either the set of similar users [3] or
the set of similar services [14] or the combination of them [25] followed by the
computation of average QoS values and the computation of the deviation migra-
tion. However, these approaches suffer from the problem of the sparsity of the
user-service invocation matrix. Therefore, model-based collaborative filtering is
used which can deal with the sparsity problem. Matrix factorization [9,10,23]
is a class of model-based collaborative filtering technique used for this problem.
Though the contemporary approaches are able to predict the missing QoS value
of a service for a target user, however, the prediction accuracy still is not quite
satisfactory. Therefore, there is a scope for improving the prediction accuracy.

In this paper, we propose a new approach for predicting the QoS value of
a service for a target user. Our method combines two primary techniques, i.e.,
collaborative filtering with a regression method, to come up with a solution.
We first use the collaborative filtering technique to filter the set of users and
services. Our filtering method is again a combination of the user-intensive and
service-intensive filtering models. In user-intensive (service-intensive) filtering,
we first find a set of similar users (services) from the given user-service invoca-
tion profile. We then find a set of similar services (users) from the user-service
invocation profile corresponding to the set of users (services) obtained earlier.
Once the filtering is done, we combine the results for further processing. Instead
of computing the average QoS value and the deviation migration as done in the
collaborative filtering approach, in our final step, we employ a neural network-
based regression module to predict the QoS value of a service for a target user.
We have shown the significance of each step of our proposal experimentally.

We have implemented our proposed framework and tested the performance
of our approach on a public benchmark dataset, called WS-DREAM [24]. We
have compared our method with state-of-the-art approaches. The experimental
results show that our method achieves better performance in terms of accuracy
as compared to others.

The contributions of this paper are summarized below:
(i) We propose a new approach for QoS prediction. On one side, our approach

leverages the principle of collaborative filtering. On the other side, our app-
roach takes advantage of the power of a neural network-based regression
method.

(ii) We propose a filtering method, which is a combination of user-intensive and
service-intensive models.

(iii) To find the set of similar users (and services), we propose a method based
on unsupervised learning.
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(iv) We have implemented our framework. A rigorous experiment has been con-
ducted on the WS-DREAM dataset to establish our findings. The exper-
imental results demonstrate that our method is more efficient in terms of
prediction accuracy as compared to its contemporary approaches.

2 Related Work

A number of work [2,5,12,13,17] has been carried out in literature to address
the problem of QoS value prediction. Collaborative filtering [15,16,21] technique
is one of the key techniques used for the prediction. The collaborative filtering
approach can be of two types: memory-based and model-based. The memory-
based collaborative filtering approach uses the user-service invocation profile to
find the set of similar users or services. Depending on the similarity finding
method, the memory based collaborative filtering is again classified into two
categories: user-intensive and service-intensive. In the user-intensive collabora-
tive filtering method [3], a set of users similar to the target user is computed,
while in the service-intensive filtering method [14], a set of services similar to the
target service is computed. There are some research works [22,25] in literature,
which combine both the user-intensive and service-intensive filtering techniques
to obtain the predicted value. The main disadvantage of this approach is that the
prediction accuracy decreases as data gets sparse. One possible solution to this
problem is to employ model-based collaborative filtering. One such approach is
matrix factorization [9,10,20,23], which is widely used to predict the QoS value
of a service. In matrix factorization, the user-service QoS invocation matrix is
decomposed into the product of two lower-dimensional rectangular matrices to
improve the robustness and accuracy of the memory-based approach.

Although state-of-the-art approaches can predict the missing QoS values,
however, they fail to achieve satisfactory prediction accuracy. Therefore, in this
paper, we propose a novel approach to improve the prediction accuracy.

3 Overview and Problem Formulation

In this section, we formalize our problem statement. We begin with defining two
terminologies as follows.

Definition 1 (QoS Invocation Log). A QoS invocation log is defined as a
3-tuple (ui, sj , qi,j), where ui is a user, sj is a web service and qi,j denotes the
value of a given QoS parameter q when the user ui invoked the service sj. �

Once a user invokes a service, the corresponding invocation log is recorded.
The QoS invocation logs are stored in the form of a matrix. We now define the
concept of a QoS invocation log matrix.

Definition 2 (QoS Invocation Log Matrix). The QoS invocation log matrix
Q is a matrix with dimension n×k, where n is the number of users and k is the
number of web services. Each entry of the matrix Q(i, j) represents qi,j. �



138 S. Chattopadhyay and A. Banerjee

QoS Invocation Log

Historical
Information

Target user, Target service

Predicted QoS value
for the target user and the target service

Get similar set of users
on a similar set of services

based regression

Prediction
using neural network

Get similar set of users

Get similar set of services

Get similar set of services

Get similar set of users

User-intensive filtering

Service-intensive filtering

Fig. 1. Our proposed framework

Example 1. Consider U = {u1, u2, u3, u4, u5, u6} be a set of 6 users and S =
{s1, s2, s3, s4, s5, s6} be a set of 6 web services. Table 1 represents the QoS invo-
cation log matrix Q for the set of users U and the set of services S. Q(i, j)
represents the value of the response time (in millisecond) of sj ∈ S during the
invocation of sj by ui ∈ U . Our objective, here, is to predict the value of the QoS
parameter of a service for a user, where the user has never invoked the service
in past. For example, here, we want to predict the value of q1,3, which is marked
by ? symbol.

Table 1. Example of QoS invocation log matrix

S
U s1 s2 s3 s4 s5 s6

u1 0.25 0.3 0 ? 0.301 0 0.01

u2 0.25 0.33 0.32 0.322 0.1 0

u3 0.22 0.31 0.29 0 0.22 0.01

u4 0 0 0.31 0.311 0.4 0.15

u5 0.8 0 0 0.15 0.7 0.99

u6 0 0 0 0.1 0 0.9

It may be noted that each entry of this matrix essentially represents a QoS
invocation log. For example, consider the colored cell, which represents the QoS
invocation log (u3, s3, 0.29), i.e., the value of the response time of s3 is 0.29
during the invocation of s3 by u3. �

It may be noted that if a user ui has never invoked a service sj , the cor-
responding entry in the QoS invocation log is (ui, sj , 0). In other words, if
Q(i, j) = 0, this implies the user ui has never invoked the service sj . We now
formulate our problem of QoS prediction. We are given the following:
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– A set of users U = {u1, u2, . . . , un}.
– A set of web services S = {s1, s2, . . . , sk}.
– For each user ui, a set of invoked services Si ⊆ S.
– For each service si, a set of users that invoked si, U i ⊆ U .
– The QoS invocation log matrix Q for a given QoS parameter q.
– A target user ux and a target web service sy.

The objective of this problem is to predict the value of qx,y. In the next section,
we demonstrate our solution methodology in detail.

4 Detailed Methodology

Figure 1 illustrates the framework proposed in this paper. Our framework con-
sists of 4 basic modules: (a) a user-intensive filtering module, (b) a service-
intensive filtering module, (c) a module for combining the results obtained from
the previous steps and (d) a neural network based regression module. Each of
the user-intensive and the service-intensive filtering modules again consist of
two submodules. Given a target user ux and a target service sy, in user intensive
module, we first generate a set of users similar to ux, say USIM(ux). In the next
stage, we find a set of services similar to sy on USIM(ux), say SSIM(ux, sy).
Similarly, in the service-intensive filtering module, we first generate a set of ser-
vices similar to sy, say SSIM(sy), followed by a set of users similar to ux on
SSIM(sy), say USIM(sy, ux). Once we generate, USIM(ux), SSIM(ux, sy),
SSIM(sy) and USIM(sy, ux), in our third module, we combine all of them to
generate our final user-service QoS invocation log matrix QSIM . In the final mod-
ule, we employ a neural network based regression method on QSIM to predict
the value of qx,y. In the following subsections, we discuss each of these modules.

4.1 User-Intensive Filtering

This is the first module of our framework. In this module, we first find a set
of users similar to the target user and then find a set of services similar to the
target service on the previously computed user-set. We now discuss these two
steps in detail.

Find Similar Users. Given a target user ux, the objective of this step is to
find a set of users similar to ux. Since we do not have any contextual information
about a user, the similarity between two users ui and uj is calculated from their
service-invocation profiles. The key factors that are responsible for measuring
the similarity between two users are enlisted below:

(i) The set of web services invoked by either the user ui or the user uj , i.e.,
(Si ∪ Sj).

(ii) The set of common services invoked by the user ui and the user uj , i.e.,
(Si ∩ Sj).
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(iii) The correlation among the QoS values of the services in (Si ∩ Sj).

Cosine similarity measure [3] is one such measure which takes all the above
factors into account. We now define cosine similarity between two users.

Definition 3 (User Cosine Similarity SIMCS(ui, uj)). The cosine similar-
ity between two users ui and uj is defined as follows:

SIMCS(ui, uj) =

∑

sk∈Si,j

qi,k qj,k

√ ∑

sk∈Si

q2i,k

√ ∑

sk∈Sj

q2j,k

(1)

Where Si,j = Si ∩ Sj. �

It may be noted that the numerator of the above expression is calculated on the
set of common services invoked by ui and uj , while the denominator is calculated
on the individual service invocation profiles of ui and uj . The overall expression
essentially measures the QoS similarity between two users. Therefore, altogether
the cosine similarity measure takes care of all the factors discussed above to
compute the similarity between two users.

Given a target user ux, we now discuss our algorithm to find the set of users
similar to ux. Algorithms 1 and 2 demonstrate our method of finding the similar
users.

Algorithm 1. Find Similar Set of Users
1: Input = U , S, Q, ux

2: Output = USIM(ux)
3: for each ui and uj ∈ U do
4: Calculate SIMCS(ui, uj) and store it in a matrix called CosineUser(i, j);
5: end for
6: USIM(ux) = ClusterUsers(CosineUser, t);
7: return USIM(ux);

In the first step of Algorithm 1, we compute the similarity between each pair
of users ui and uj in U using cosine similarity measure as defined in Definition
3. It may be noted, the above definition is commutative, i.e., SIMCS(ui, uj) =
SIMCS(uj , ui). We then perform a clustering to find the set of users similar to
ux. Our proposed clustering algorithm, i.e., Algorithm 2, is a variant of the classi-
cal DBSCAN algorithm [8]. The clustering method takes a threshold parameter
t as an input. This threshold is a tunable parameter, which is used to decide
whether two users are similar. If the similarity measure between ui ∈ U and ux

is more than t, we consider them as similar users and add ui in USIM(ux).
Here, USIM(ux) represents the set of users similar to ux. The transitive simi-
larity between users is also considered in this algorithm. If a user ui is similar to
ux and another user uj is similar to ui, we then add uj to USIM(ux), since uj is
transitively similar to ux. The main motivation behind considering the transitive
similarity between users is as follows. The similarity between two users ui and
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uj is highly dependent on the set of common services they invoked. If ui and
uj do not invoke any common service, the similarity measure between ui and uj

becomes 0. However, it may so happen uj is not similar to ux, because of less
number of common service invocations. Again uj is highly similar to uk, which
is similar to ux. In that case, we should consider uj as well.

Algorithm 2. ClusterUsers
1: Input = CosineUser, t
2: Output = USIM(ux)
3: Add ux in USIM(ux);
4: repeat
5: for each new ui ∈ USIM(ux) not considered earlier do
6: for each uj ∈ U do
7: if USIMCS(ui, uj) ≥ t then
8: Add uj in USIM(ux), if not already added;
9: end if
10: end for
11: end for
12: until no new user is added in USIM(ux);
13: return USIM(ux);

Example 2 Consider Example 1, where we want to predict the value of q1,3.
Table 2 shows cosine similarities between each pair of users in U .

Table 2. Example of finding similar users in user-intensive filtering

U
U u1 u2 u3 u4 u5 u6

u1 1 0.84 0.578 0.31 0.35 0.08

u2 1 0.83 0.62 0.35 0.06

u3 1 0.56 0.44 0.02

u4 1 0.53 0.3

u5 1 0.69

u6 1

Consider the value of t = 0.6. Initially, USIM(u1) contains only u1. Using
the clustering algorithm discussed above, u2 is added in USIM(u1), since
SIMCS(u1, u2) = 0.84 > 0.6. The similarity between u2 and other users are
checked further. Depending on the similarity measures, u3 and u4 are added
further in USIM(u1). Therefore, USIM(u1) = {u1, u2, u3, u4}. �

In the next step of user-intensive filtering, we deal with USIM(ux) instead of
U , where USIM(ux) ⊆ U . Similarly, instead of dealing with the entire QoS
invocation log matrix, we now consider Qu. Qu is a sub-matrix of Q, containing
the rows for the users in USIM(ux).
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Find Similar Services. This is the second step of the user-intensive filtering
module. Given a target service sy, the objective of this step is to remove the set
of services dissimilar to sy. The similarity between two services si and sj can be
inferred from the following information:

1. The set of common users who invoked si and sj , i.e., (U i ∩ Uj).
2. The correlation among the QoS values of si and sj when invoked by the users

in (U i ∩ Uj).

We use Pearson Correlation Coefficient (PCC) [25] to measure the similarity
between the services, since it takes care of all the above factors. We now define
PCC similarity below:

Definition 4 (Service PCC Similarity SIMPS(si, sj)). The PCC similarity
between two services si and sj is defined as follows:

SIMPS(si, sj) =

∑

uk∈Ui,j
(qk,i − q̄i)(qk,j − q̄j)

√ ∑

uk∈Ui,j

(qk,i − q̄i)2
√ ∑

uk∈Ui,j

(qk,j − q̄j)2
(2)

where Ui,j = Ui ∩ Uj; q̄i = 1
|USIM(ux)|

∑

uk∈USIM(ux)

qk,i. �

It may be noted, the above definition is commutative, i.e., SIMPS(si, sj) =
SIMPS(sj , si).

We now use the same clustering technique as discussed above to find the set
of services similar to sy on the basis of Qu. The clustering algorithm generates
SSIM(ux, sy) as output, where SSIM(ux, sy) represents the set of services simi-
lar to sy. It may be noted that after this step, we have to deal with SSIM(ux, sy)
instead of S. Accordingly we change the QoS invocation log matrix. We now
consider Qus instead of Qu. Qus is a sub-matrix of Qu, containing the columns
corresponding to the services in SSIM(ux, sy). It may be noted, the size of Qus

is |USIM(ux)| × |SSIM(ux, sy)|.

4.2 Service-Intensive Filtering

This is the second module of our framework. In this step, we first find a set of
services similar to the target service and then find a set of users similar to the
target users on the previously calculated service-set. This method is philosophi-
cally similar to the user-intensive filtering method. Below, we discuss the steps
of this method briefly.

Find Similar Services. Given a target service sy, the aim of this step is
to find a set of services similar to sy. Since we do not have any contextual
information about a web service, the similarity between two services si and sj is
measured from their user-service invocation profiles. As in the case of the user-
intensive filtering method, we use the cosine similarity measure [3] to calculate
the similarity between two services. We now define cosine similarity between two
services as follows.
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Definition 5 (Service Cosine Similarity SIMCS(si, sj)). The cosine simi-
larity between two services si and sj is defined as follows:

SIMCS(si, sj) =

∑

uk∈Ui,j

qk,i qk,j

√ ∑

uk∈Ui
q2k,i

√ ∑

uk∈Uj

q2k,j

(3)

where Ui,j = Ui ∩ Uj. �

Once we calculate the cosine similarity between each pair of services in S, we
use the same clustering technique as discussed in Subsection 4.1 to find the set
of services similar to sy. The clustering algorithm returns SSIM(sy) as output,
which is used in the next step of the service-intensive filtering method. It may
be noted that SSIM(sy) ⊆ S represents the set of services similar to sy. Like
earlier, we change the QoS invocation log matrix as well. Instead of considering
the entire QoS invocation log matrix Q, we now consider Qs. It may be noted,
Qs is a sub-matrix of Q, containing the columns corresponding to the services
in SSIM(sy).

Find Similar Users. Given a target user ux, the objective of this step is to
remove the set of users dissimilar to ux. As in user-intensive filtering, we use
Pearson Correlation Coefficient (PCC) [25] to measure the similarity between
two users. We now define PCC similarity measure between two users as follows:

Definition 6 (User PCC Similarity SIMPS(ui, uj)). The PCC similarity
between two users ui and uj is defined as follows:

SIMPS(ui, uj) =

∑

sk∈Si,j

(qi,k − q̄i)(qj,k − q̄j)

√ ∑

sk∈Si,j

(qi,k − q̄i)2
√ ∑

sk∈Si,j

(qj,k − q̄j)2
(4)

where Si,j = Si ∩ Sj and q̄i = 1
|SSIM(sy)|

∑

uj∈SSIM(sy)

qi,j. �

The remaining procedure to find the set of users similar to ux on the basis of
Qs is same as earlier. The clustering algorithm returns USIM(sy, ux) as output,
where USIM(sy, ux) represents the set of users similar to ux. It may be noted
that after this step, we have to deal with USIM(sy, ux) instead of U . Accordingly
we change the QoS invocation log matrix. We now consider Qsu instead of Qs.
Qsu is a sub-matrix of Qs, containing the rows for the users in USIM(sy, ux).
It may be noted, the size of Qsu is |USIM(sy, ux)| × |SSIM(sy)|.

4.3 Find Similar Set of Users on a Similar Set of Services

The objective of the third module of our framework is to combine the outputs of
the user-intensive and service-intensive filtering methods. We take the intersec-
tion of the outputs to generate the final result. Consider SIM(ux) and SIM(sy)
represent the final set of similar users and the final set of similar services respec-
tively. These two sets are calculated as follows:
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SIM(ux) = USIM(ux) ∩ USIM(sy, ux) (5)

SIM(sy) = SSIM(ux, sy) ∩ SSIM(sy) (6)

Finally, we consider the QoS invocation log matrix as QSIM , which consists of
the rows and columns corresponding to the users in SIM(ux) and the services
in SIM(sy) respectively.

4.4 Prediction Using Neural Network Based Regression

This is the final module of our framework. Once we obtain the set of similar
users SIM(ux) and the set of similar services SIM(sy), we employ a neural
network based regression module [1] to predict the QoS value of the target ser-
vice for the target user. Before feeding our data into the neural network, we
preprocess the data. In the preprocessing step, we substitute all the 0 entries in
QSIM by the corresponding column average, except the position that is going
to be predicted. The main intuition behind this preprocessing step is as follows.
Firstly, QSIM (i, j) = 0 implies that the user ui has never invoked the service
sj . Therefore, the 0 entry in QSIM does not actually depict the true value of
QSIM (i, j). Secondly, the column average presents the average QoS values of sj
across all users in SIM(ux). Therefore, the average value is a better represen-
tative value than 0 for QSIM (i, j). The modified QoS log matrix is represented
by Q′

SIM (i, j).

U , S, Q
syux

sy

USIM(ux), S, Qu

USIM(ux), SSIM(ux, sy), Qus

ux

U , SSIM(sy), Qs

USIM(sy , ux), SSIM(sy), Qsu

SIM(ux), SIM(sy), QSIM

qx,y

SIM(ux), SIM(sy), Q′
SIM

User-intensive filtering Service-intensive filtering

Neural network based

Input

Output

Combined step

regression module

Fig. 2. Data flow in our framework

Finally, Q′
SIM is fed into the neural network. We train the neural network

with the service invocation profiles of the following users: SIM(ux)\{ux}. It may
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be noted that each training data corresponds to the service invocation profile
of a specific user. For each training data, the input layer of the neural network
consists of the QoS values of the services in SIM(sy) \ {sy}, and the output is
the QoS value of sy for the specific user. The objective is now to obtain the QoS
value of sy for ux, given the service invocation profile (i.e., the QoS values of the
services in SIM(sy) \ {sy}) of ux as input. Figure 2 shows the data flow in our
framework.

We now describe the neural network-based regression module [7] used in
this paper. We use a linear regression to predict the missing QoS value, i.e.,
estimating Y , given X by formulating the linear relation between X and Y , as
follows, Y = wX + β. To fit the linear regression line among data points, the
weight vector w and bias β are tuned using a neural network architecture [6].
Here, we employ a feed-forward neural network with back propagation, where
the weight values are fed forward, and the errors are calculated and propagated
back. We use the traingdx as training function, since it combines the adaptive
learning rate with gradient descent momentum training. Learngdm is employed
as an adaptive learning function. The Mean Squared Error (MSE) measures the
performance of the network to assess the quality of the net. Hyperbolic tangent
sigmoid is used as the transfer function. The experimental setup of this neural
network-based regression module is further discussed in Sect. 5.4.

5 Experimental Results

In this section, we demonstrate the experimental results obtained by our frame-
work. We have implemented our framework in MATLAB R2018b. All experi-
ments were performed on a system with the following configuration: Intel Core
i7-7600U CPU @ 2.8 GHz with 16 GB DDR4 RAM.

5.1 DataSets

We use the WS-DREAM [24] dataset to analyze the performance of our app-
roach. The dataset comprises of 5,825 web services across 73 countries and 339
web service users across 30 countries. The dataset contains 2 QoS parameters
response time and throughput. For each QoS parameter, a matrix with dimension
339 × 5825 is given. We use the response time matrix to validate our approach.

Training and Testing DataSet. We divide the dataset into two parts: training
set and testing set. We use a given parameter d(0 ≤ d ≤ 1), called density, to
obtain the training set. The density is used to denote the proportion of the QoS
invocation logs used as the training dataset. For example, if the total number of
QoS invocation logs is x and d is the density, the size of the training set then
equals to x × d, which is lesser than x. The remaining QoS invocation logs, i.e.,
x × (1 − d), are used as the testing dataset.

Each experiment is performed 5 times for each density value. Finally, the
average results are calculated and shown in this paper.
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5.2 Comparative Methods

We compare our approach with the following approaches from the literature:

– UPCC [3]: This method employs a user-intensive collaborative filtering app-
roach for QoS prediction.

– IPCC [14]: This approach employs service-intensive collaborative filtering for
QoS prediction.

– WSRec [22]: This method combines UPCC and IPCC.
– NRCF [16]: This method employs classical collaborative filtering to improve

the prediction accuracy.
– RACF [21]: Ratio based similarity (RBS) is used in this work and the result

is calculated by the similar users or similar services.
– RECF [25]: Reinforced collaborative filtering approach is used in this work

to improve the prediction accuracy. In this method, both user-based and
service-based similarity information are integrated into a singleton collabora-
tive filtering.

– MF [11]: Matrix factorization based approach is used here for prediction.
– HDOP [18]: This method uses multi-linear-algebra based concepts of tensor

for QoS value prediction. Tensor decomposition and reconstruction optimiza-
tion algorithms are used to predict QoS value.

As discussed earlier in this paper, we propose a collaborative filtering approach
followed by the neural network-based regression model (CNR). To show the
necessity of each step of our approach, we further compare our method with the
following approaches.

– NR: In this approach, we only consider the neural network-based regression
model, without using any collaborative filtering method.

– CR: In this approach, we use the same collaborative filtering method as
demonstrated in this paper. However, instead of using a neural network-based
linear regression model, a simple linear regression module is used here to pre-
dict the QoS value.

– UCNR: In this approach, we use the user-intensive collaborative filtering
method along with the neural network-based regression model.

– SCNR: In this approach, we use the service-intensive collaborative filtering
method along with the neural network-based regression model.

– CNRWoV: This approach is same as CNR. The only difference here, we do
not substitute the 0 entries in QSIM by the corresponding column average.

– CNRCC: In this approach, we use cosine similarity measure to find similar
users and services for both user-intensive and service-intensive filtering meth-
ods.

5.3 Comparison Metric

We use Mean Absolute Error (MAE) [25] to measure the prediction error in
our experiment. It may be noted that lower the value of MAE, better is the
prediction accuracy.
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Definition 7 (Mean Absolute Error (MAE)). MAE is defined as follows:

MAE =

∑

qi,j∈TD

|qi,j − q̂i,j |

|TD|

where, qi,j represents the ground truth QoS value of the jth service for the ith

user in the testing dataset TD. q̂i,j represents the predicted QoS value for the
same. �

5.4 Configuration of Our Experiment

To generate the set of similar users and services, empirically we chose the user-
threshold value between 0.5 to 0.6 and service-threshold value between 0.4 to
0.5 for our clustering methods. Later in this section, we show how the change of
the threshold value impacts on the prediction quality.

For the neural network-based regression model, we used the following config-
uration in our experiment. We considered 2 hidden layers in the neural network.
We varied the number of neurons in each hidden layer within the range [4, 128].
Finally, we obtained the best results for 16 neurons in the first hidden layer and
8 neurons in the second hidden layer. Among the hyper-parameters, the learning
rate was set to 0.01 with momentum 0.9. The training was performed up to 1000
epochs or up to minimum gradient of 10−5.

Table 3. Comparative study (MAE) on different prediction methods

Density UPCC IPCC WSRec NRCF RACF RECF MF HDOP CNR

0.10 0.6063 0.7000 0.6394 0.5312 0.4937 0.4332 0.5103 0.3076 0.2597

0.20 0.5379 0.5351 0.5024 0.4607 0.4208 0.3946 0.4981 0.2276 0.1711

0.30 0.5084 0.4783 0.4571 0.4296 0.3997 0.3789 0.4632 0.1841 0.0968

We present partial comparative study from Fig. 3(a) due to space constraint

5.5 Analysis of Results

Figure 3(a) and (b) show a comparative study for QoS prediction by different
approaches. Table 3 shows partial comparative results of Fig. 3(a) in a more quan-
titative way. From our experimental results, we have the following observations:

(i) It is evident from Table 3 and Fig. 3(a) that among all the approaches, our
proposed approach (CNR) produces the best result in terms of the prediction
accuracy, as CNR has the lowest MAE value among all the approaches for
each density value.

(ii) It can also be observed from Table 3 and Fig. 3(a) and (b) that as the density
increases, the value of MAE decreases. This is mainly because of the fact
that as the density increases, the number of QoS invocation logs in the
training dataset increases and thereby, the prediction accuracy increases.
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(iii) Figure 3(b) shows the requirement of each step of our proposal. As is evident
from the figure, CNR is better than NR, which explains the requirement of
the collaborative filtering approach. CNR is also better than CR, which
confirms the importance of the neural network-based regression model. On
one side, CNR is better than UCNR, on the other side, CNR is better
than SCNR, which indicates the necessity of our combine step. Further, we
compare CNR with CNRWoV, which shows the significance of replacing 0
entries in QSIM by the corresponding column average.

In CNR, we use the cosine similarity measure followed by PCC (i.e., cosine +
PCC). We have, therefore, further experimented our framework with other
combinations of similarity measures, such as cosine+cosine, PCC+PCC,
PCC+cosine, which did not work well in comparison with the cosine + PCC.
In Fig. 3(b), we present only the result of CNRCC (i.e., cosine+cosine),
which worked the second best.

(a) (b)

Fig. 3. Comparative study on different prediction methods

5.6 Impact of the Tunable Parameters on Our Experiment

In this subsection, we discuss the impact of the tunable parameters on the results
obtained by our proposed method. We used 4 tunable threshold parameters in
our experiments, i.e., a threshold value required to cluster the users and services
in the user-intensive and service-intensive filtering steps. However, we used the
same threshold value to cluster the users (services) in both the user-intensive
and service-intensive filtering steps.

Figure 4(a) shows the variation of MAE (along the y-axis) with respect to
the threshold (along the x-axis) required to cluster the services for a constant
threshold (shown as legends in the graph) required for user clustering. Similarly,
Fig. 4(b) shows the variation of MAE (along the y-axis) with respect to the the
threshold (along the x-axis) required to cluster the users for a fixed threshold
(shown as legends in the graph) required for service clustering.
From Fig. 4 (a) and (b), we have the following observations:

(i) As evident from both the figures, for the threshold value between 0.4 to 0.6,
we obtain better results in terms of prediction accuracy.
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(a) (b)

Fig. 4. Variation of MAE across the threshold used for (a) user clustering, (b) service clustering

(ii) For a very low value of the threshold, we may end up having the entire QoS
logs in the training dataset. In this case, we obtain the same results as NR
method.

(iii) For a very high threshold value, we end up having very less number of similar
users and similar services which are insufficient to train the neural network-
based regression model and thereby the prediction accuracy decreases.

In summary, as evident from our experiment, our proposed method outperformed
the major state-of-the-art methods in terms of prediction accuracy.

6 Conclusion

In this work, we propose a method to predict the value of a given QoS parameter
of a target web service for a target user. We leverage the collaborative filtering
approach along with the regression method. We conducted our experiments on
the WS-DREAM dataset. The experimental results show that our method is
more efficient in terms of prediction accuracy than the past approaches. However,
in this paper, we do not consider the fact that QoS parameters vary across
time as well. Even for a single user, the QoS value of a service can be different
across time. We wish to take up this task of QoS value prediction in a dynamic
environment going ahead.
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