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Abstract Hidden Markov Models (HMMs) can be used to solve a variety of
problems from facial recognition and language translation to animal movement
characterization and gene discovery. With such problems, we have a sequence of
observations that we are not certain is correct—we are not sure our observations
accurately reveal the corresponding sequence of actual states, which are hidden—
but we do know some important probabilities that will help us. In this chapter,
we will develop the probability theory and algorithms for two types of problems
that HMMs can solve—calculate the probability that a particular sequence of
observations occurs and determine the most likely corresponding sequence of
hidden states. The chapter will end with a collection of research projects appropriate
for undergraduates.

Suggested Prerequisites Previous programming experience; a basic understanding of probabil-
ity; knowledge of Markov models, such as in Module 13.4, “Probable Cause: Modeling with
Markov Chains,” from [19]; understanding of parallel programming for optional Sect. 9, “Parallel
Forward Algorithm,” and optional Sect. 10.3, “Parallel Viterbi Algorithm” and the corresponding
projects.

1 Introduction

We can employ Hidden Markov Models (HMMs) to solve a variety of problems
from facial recognition and language translation to animal movement characteriza-

A. B. Shiflet (�) · G. W. Shiflet · D. A. Kaplun
Wofford College, Spartanburg, SC, USA
e-mail: shifletab@wofford.edu; shifletgw@wofford.edu; kaplunda@email.wofford.edu

M. Cannataro · P. H. Guzzi · C. Zucco
University “Magna Græcia” of Catanzaro, Catanzaro, Italy
e-mail: cannataro@unicz.it; hguzzi@unicz.it

© Springer Nature Switzerland AG 2020
H. Callender Highlander et al. (eds.), An Introduction to Undergraduate Research
in Computational and Mathematical Biology, Foundations for Undergraduate
Research in Mathematics, https://doi.org/10.1007/978-3-030-33645-5_8

353

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33645-5_8&domain=pdf
mailto:shifletab@wofford.edu
mailto:shifletgw@wofford.edu
mailto:kaplunda@email.wofford.edu
mailto:cannataro@unicz.it
mailto:hguzzi@unicz.it
https://doi.org/10.1007/978-3-030-33645-5_8


354 A. B. Shiflet et al.

tion and gene discovery (see “Further Reading”). In such a problem, we know a
sequence of observations, but we are not certain that our observations are accurate;
the actual sequence of states is hidden, or unknown. However, we often know for
each state the probability that it is the initial one, the probabilities of transitioning
from any one state to every other state, and the probabilities of a state resulting
in each type of observation. Hidden Markov Models can attack three types of
problems:

• Likelihood problem: Calculate the probability of a particular sequence of
observations

• Decoding problem: For a particular sequence of observations, determine the most
likely underlying sequence of states

• Training problem: For a sequence of observations and a sequence of hidden
states, discover the most likely HMM parameters

In this article, we cover the basics of Hidden Markov Models, algorithms, and
applications involving the first two types of problems. We begin with an example of
how HMMs are used to advance our understanding of genetics and the workings of
the human body.

1.1 Case in Point

Nina was 15 years old and 50 inches tall. Her mother was concerned that her
daughter was so short. The Centers for Disease Control and Prevention growth
charts indicate a range for normal height for 15-year-old females to be between
60 and 68 inches [2]. Testing done from her physical examination indicated that
Nina has growth hormone deficiency. Children diagnosed with this deficiency have
inadequate secretion of growth hormone (GH), a hormone produced and stored by
somatotropic cells of the pituitary gland at the base of the brain. Growth hormone
molecules are stored in the pituitary until growth hormone-releasing hormone
(GHRH) is secreted by the brain. The secreted GHRH binds specifically to growth
hormone-releasing hormone receptors, found within the cell membranes that
form the surface of the somatotropic cells. The receptor is associated with a protein,
called a G-protein, which transduces the external signal into internal chemical
signals (second messengers). The second messengers induce the cell to release GH.

Because Nina’s brother was given the same diagnosis, both patients were referred
for genetic evaluation. The results of these tests indicated that both children had a
genetic mutation in the gene that codes for the GHRH receptor. This mutation may
alter the receptor enough that it no longer binds to the signal as well, and therefore
there is less internal response to the signal. Hence, less GH is released into the
bloodstream. Children with growth hormone deficiency are generally treated with
periodic injections of GH.

The mechanism for the release of growth hormone from the pituitary is very
complex. Much is still unknown about G-proteins and their receptors, so scientists
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are working to unravel these mysteries. So, how do G-proteins and receptors relate
to hidden Markov models? One example is found in experiments conducted at
the University of Birmingham, UK [22]. Using sophisticated imaging studies of
individual G-proteins and receptors, researchers could track and map the diffusion of
particles (proteins) along the membrane. Using HMM, they assumed that particles
shift among discrete diffusive states that follow a randomly determined course.
They found that G-proteins and receptors move through four discernable, diffusive
states, varying from immobile to fast diffusing, and have association with four
different diffusion coefficients, which are the possible observations. Their results
were consistent with results of the imaging studies. From these experiments and
analyses, the scientists concluded that G-proteins and their receptors are sequestered
into small membrane compartments. Such restriction of diffusion allows the two
particles to bind more easily, although the binding is very short-lived.

From these results we understand more about how these important components
in cell signaling work. As we figure out the intricacies of cell signaling, we may
discover ways to modify or correct defects in the components.

2 Example Model

Although the studies of human growth factor are quite interesting, there are many
other more approachable problems. Moreover, we will consider other genetic
applications of HMMs later in this chapter. Thus, we begin our study of the
mathematics of HMMs with a simpler hypothetical example involving animal
behavior.

With a primary diet of leaves, which are not very nutritional and are hard to
digest, red howler monkeys spend most of their time eating and resting. Suppose
scientists in a simplified appraisal considered the monkey to be in two primary
states, eating ( E ) or resting/sleeping ( R ), so that the set of possible states is
S = {E, R}. Moreover, suppose the biologists observe that, on average, the monkeys
spend 30% of their time eating and 70% sleeping or resting. In this case, where u0
is the state at time 0 and P indicates probability, the initial state probability, π ,
for E is π(E) = P(u0 = E ) = 0.30, and the initial state probability for R is
π(R) = P (u0 = R ) = 0.70. (As we will see later, the choice of variable, u,
represents the “underlying,” or hidden, state.)

Suppose also the biologists determined that if a monkey is eating at hour k, so
that its state is uk = E, then there is a 60% chance that the animal will be eating
the next hour (k + 1), or uk+1 = E. Thus, in terms of conditional probability,
P(uk+1 = E | uk = E) = 0.6 and P(uk+1 = R | uk = E) = 1 − 0.6 = 0.4; that is,
given uk = E, the probability of uk+1 = E is 0.6, and the probability of uk+1 = R
is 0.4. Suppose the scientists also discovered that P(uk+1 = E | uk = R) = 0.2,
so that P(uk+1 = R | uk = R) = 1 − 0.2 = 0.8. If resting at hour k, the animal
has a 20% chance of eating and an 80% chance of resting the next hour. Figure 1
presents a state diagram of the findings, with probabilities of transitioning from one
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R E0.8 0.6
0.4

0.2

Fig. 1 State diagram for hypothetical study on red howler monkeys

state to another on the arrows. Thus, the following transition matrix summarizes
their findings:

T =

uk/uk+1 E R

E
R

[
0.6 0.4
0.2 0.8

]
.

We can also denote these transition probabilities, t , as t (previous state, next state),
so t (E, E) = 0.6, t (E, R) = 0.4, t (R, E) = 0.2, and t (R, R) = 0.8. The transition
probabilities (or, comparably, matrix T) form a Markov model with each state,
uk+1, only depending on its previous state, uk , and no other states.

Suppose, however, scientists want to study the behavior of a red howler monkey
in a more remote area. Knowing they will have limited opportunities of making
visual observations, they attach a small microphone to one of the monkeys, whom
they name Holly. The biologists discern that when hearing munching (M), the
monkey is probably eating; but when hearing breathing (B) noises, the animal
is likely to be at rest. Thus, the set of possible observations is O = {M, B}.
These hypothetical researchers have developed a computer program to analyze the
sounds and record B or M once an hour. However, the microphone/computational
results are not completely accurate. Besides background noises, such as from rain
or other monkeys, a sleeping Holly might be moving her mouth, perhaps dreaming
of luscious leaves. For a while, the scientists are able to observe Holly personally
and with their computer-enhanced microphone. In doing so, they discover that there
is a 90% chance that if Holly is resting (uk = R), then their monitoring system
indicates breathing noises (vk = B). (We select the symbol v to represent the
“visible,” or observed, symbol obtained from the monitoring system). Thus, the
emission probability, e, of B at state R is e(B | R) = P(vk = B | uk = R) = 0.9,
so that e(M | R) = P(vk = M | uk = R) = 1 − 0.9 = 0.1. However, the scientists
discover that the system is only 80% accurate in detecting eating; given that Holly
is eating (uk = E), their computer program interprets the audio signal as munching
noises (vk = M) 80% of the time. Thus, the emission probability of M given state
E is e(M | E) = P(vk = M | uk = E) = 0.8 and e(B | E) = P(vk = B | uk =
E) = 1 − 0.8 = 0.2. The HMM property of output independence states that
regardless of the situation, the probability of an observation, vk , only depends on the
corresponding underlying state, uk , that leads to the observation and no other states
or observations. For example, the probability of the system displaying an output of
munching (M) depends exclusively on underlying state of Holly eating (E).
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After Holly scampers into the jungle, where the scientists cannot make visual
observations, their monitoring system records an observation of B or M each
hour. Using this sequence of observations, or observed symbol sequence (v =
v1, v2, v3, . . . , vn, abbreviated v1v2v3 . . . vn), and the measures for initial, transi-
tion, and emission probabilities, (π, t, e), the scientists can answer a number of
questions. Such problems generally fall in one of three categories: likelihood, decod-
ing, and learning problems. For example, the scientists might want to determine
the probability, or likelihood, of obtaining an observed symbol sequence, P(v), to
discern if v is an unusual sequence of observations or not. As another likelihood-
type problem, the scientists might want to determine the probability that a particular
sequence of states, or underlying state sequence (u = u1u2u3 . . . un) would
generate a particular v; so that they need to evaluate P(v | u). Additionally, given a
particular observation, vk , the scientists might want to know the probability of an
underlying state, uk , written P(uk | vk). Determining P(uk �= uk+1 | v) represents a
change-detection problem. In this case, given a sequence of monitoring system
readings, we are determining the probability of Holly eating 1 h but resting the
next, or vice versa. Perhaps in earlier studies we observed that usually the monkeys
eat for exactly two time periods before sleeping deeply for at least 3 h, and we
might want to use our system to estimate Holly’s sleeping habits. In a decoding-
type problem, they might be interested in finding the most likely u to generate
a particular observed sequence, v. In a learning-type problem or training-type
problem, for an observation sequence, v, and a set of states, we would be interested
in determining the parameters for the system. For example, suppose we do not
know the numbers for the initial state probabilities and in the transition and output
matrices of the HMM associated with Holly. Given a long sequence of observations,
such as v = MMMBBBBBBMM. . . BB, a learning-type problem is to derive those
numbers for the HMM that maximize the likelihood of observing the sequence, v.
Determination of these parameters is called training the HMM.

In all cases, we are using observations and probabilities, which include a Markov
model, to estimate something that is hidden. Hence, the name of this system is
Hidden Markov Model (HMM). The HMM for Holly consists in the following
parameters, which Fig. 2, an expansion of Fig. 1, diagrams:

Holly’s HMM
State space, or set of possible states, S = {E, R}, with elements representing
eating and resting/sleeping, respectively.

Observation space, or set of possible observations, O = {M, B}, with
elements representing munching and breathing noises, respectively.

Initial state probabilities, π(E) = 0.30 and π(R) = 0.70
Transition probabilities, t (E, E) = 0.6, t (E, R) = 0.4, t (R, E) =

0.2, and t (R, R) = 0.8, summarized by the following transition matrix:

(continued)
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T =

uk/uk+1 E R

E
R

[
0.6 0.4
0.2 0.8

]

Emission probabilities, e(M | E) = 0.8, e(B | E) = 0.2, e(M | R) =
0.1, and e(B | R) = 0.9, summarized by the following output, or emission,
matrix:

hidden/observable M B

E
R

[
0.8 0.2
0.1 0.9

]

B M

0.1 0.2

Hidden

Observed

R E0.8 0.6
0.4

0.2

0.9 0.8

Fig. 2 Diagram of HMM for hypothetical study on red howler monkeys

Answers to Quick Review Questions appear at the end of the module, after
“Projects.”

Quick Review Question 1
Consider the HMM diagram in Fig. 3 where the initial state probability for A is 0.2
and for B is 0.1. Determine each of the following:

a. The set of possible states, S

b. The set of possible observations, O

c. t(B, C)
d. t(B, A)
e. The transition matrix with column headings being uk+1
f. π(A)

g. π(C)

h. e(G | B)
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Fig. 3 HMM diagram for Quick Review Question 1

i. e(H | C)

j. The output (emission) matrix with column headings being observable values

3 Probability Equalities

Before we can start solving some of the problems with the HMM, we need to
consider several probability equalities.

3.1 Joint Probability

Joint probability evaluates the probability of the simultaneous occurrence of two
events, A and B, which are not necessarily independent as follows:

P(A and B) = P(A, B) = P(A |B) ·P(B) (1)

and

P(A and B) = P(A, B) = P(B |A) ·P(A), (2)

where the comma means “and,” or “intersection.”
For example, consider Holly’s HMM. Specifically, P(E) = π(E) =

0.30, P (R) = π(R) = 0.70, and the output, or emission, matrix is
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hidden/observable M B

E
R

[
0.8 0.2
0.1 0.9

]
.

Knowing their probabilities, we can condition on the hidden states, E or R. For
example, P(hidden =E and observable =M) = P(E, M) = P(M | E) · P(E) =
0.8 · 0.3 = 0.24.

Quick Review Question 2
Calculate each of the following:

a. P(E, B)

b. P(R, M)

c. P(R, B)

d. P(E, M) + P(E, B) + P(R, M) + P(R, B)

e.
∑

x∈{M, B}
P(E, x) = P(E, M) + P(E, B)

f.
∑

x∈{M, B}
P(R, x)

g. The sum of the answers to Parts e and f
h.

∑
x∈{E, R}

P(x, M)

i.
∑

x∈{E, R}
P(x, B)

j. The sum of the answers to Parts h and i

To obtain an intuition for why the joint probability relationship Eq. (1) is true,
consider the Venn diagram in Fig. 4, where the area for A consists in the areas a

and c, while B contains areas B and c. Let us evaluate each term and verify that the
left-hand side equals the right-hand side in Eq. (1). P(A, B), the probability that an
item is simultaneously in A and B, is the area of the intersection, c, divided by the
diagram’s entire area, (a + b + c + d), or

P(A, B) = c

a + b + c + d
.

Fig. 4 Venn diagram
A B

a bc

d
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Asking for P(A | B) means, “Given that an item is in B, what is the probability that
the item is also in A?” B’s area is b + c, while the part of A that is simultaneously
in B is c, so

P(A | B) = c

b + c
.

The probability that an item is in B considers the area of B, (b + c), in relationship
to the whole diagram, whose area is (a + b + c + d), so that

P(B) = b + c

a + b + c + d
.

Substituting in Eq. (1) and simplifying, as follows, we verify that the left-hand side
does indeed equal the right-hand side:

P(A, B)
?= P(A|B) · P(B)

c

a + b + c + d

?= c
����(b + c)

·
���b + c

a + b + c + d

c

a + b + c + d
= c

a + b + c + d
.

This argument is not a proof of Eq. (1) but does provide intuition into the equality.

Quick Review Question 3
Using a similar argument as for Eq. (1), provide an intuitive argument for Eq. (2).

If A and B are independent, so that A does not depend on B and vice versa,
P(A | B) = P(A) and P(B | A) = P(B). Thus, for independent events, the
equality reduces to the following:

P(A and B) = P(A, B) = P(A) ·P(B) for independent A and B. (3)

3.2 Marginal Probability

We can summarize the calculations from the last section, particularly Quick Review
Question 2, for the joint probabilities in a matrix as follows:

M B

E
R

[
0.24 0.06
0.07 0.63

]
0.30
0.70

0.31 0.69 1.00

. (4)
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Each matrix element gives a joint probability. For example, the probability that
the monkey is eating (E) while the monitoring system simultaneously indicates
munching (M) is P(E, M) = 0.24.

As developed in the quick review question, the sum of the probabilities in each
row is to the right, and the sums of the column probabilities are below. When the
monkey is eating (E), the equipment will either record munching (M) or breathing
(B) with probabilities P(E, M) = 0.24 and P(E, B) = 0.06, respectively. Thus, the
probability that the monkey is eating is 0.24 + 0.06 = 0.30, a value indicated in
Holly’s HMM by π(E) = 0.30 and calculated in Quick Review Question 2 e for∑
x∈{M, B}

P(E, x) = P(E, M) + P(E, B). That is, the probability of E is the sum of

the probabilities of hidden value E with each of the possible observable values, M
and B; or P(E) =

∑
x∈{M, B}

P(E, x).

Additionally, the values below Matrix (4) are the sums of the probabilities in
the columns. Here, we have new information. The probability of the equipment
recording munching is 0.31; Holly is either eating (with probability 0.24) or
resting/sleeping (with probability 0.07). Quick Review Question 2 h determined
this value for

∑
x∈{E, R}

P(x, M) = P(E, M)+P(R, M), which is P(M). We see that

the probability of observable value M is equal to the sum of the joint probabilities
of M and every possible hidden state, E and R; or P(M) =

∑
x∈{E, R}

P(x, M).

These row and column sums are called marginal probabilities because they
are written in the “margins” of the matrix. For example, the marginal probability
of M is P(M) =

∑
x∈{E, R}

P(x, M) = P(E, M) + P(R, M) = 0.31, and we are

marginalizing over {E, R}. Notice also that the sum of the marginal probabilities on
the right (or below) is 1.00, which is the sum of all the probabilities in the matrix.
In general, the marginal probability of y is as follows:

P(y) =
∑

x∈X

P(x, y) =
∑

x∈X

P(y, x). (5)

Quick Review Question 4
Consider the following matrix of joint probabilities:

F G H

J
K

[
0.05 0.18 0.20
0.36 0.11 0.10

]

a. Determine P(J).
b. Determine the marginal probability of K.
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c. For Part b, give the set over which we are marginalizing.
d. Using the matrix of joint probabilities, the answer for P(J) in Part a, and joint

probability formula (1) or (2), determine the conditional probability P(G | J).
e. Using the answer for Part b, determine P(G | K).
f. Write P(K) using sigma notation.
g. Determine P(F).
h. Using the answer for Part g, determine P(J | F).
i. Using the answer for Part g, determine P(K | F).
j. Determine the marginal probability of G.
k. For Part j, give the set over which we are marginalizing.
l. Write P(G) using sigma notation.

m. Determine P(H).

3.3 Bayes’ Theorem

Bayes’ Theorem, or Bayes’ Law, which follows, is useful in manipulating
conditional probabilities:

P(A |B) = P(B |A) ·P(A)

P (B)
. (6)

Sometimes, we do not know P(A | B) directly, but we do have values for each of
the probability terms on the right. In this case, using Bayes’ Theorem we can easily
evaluate P(A | B). For example, suppose we need to evaluate the probability of
Holly eating (E) given that the equipment registers munching (M), P(E | M). From
Holly’s HMM, we know P(M | E) = e(M | E) = 0.8 and P(E) = π(E) = 0.30.
Moreover, in the “Marginal Probability” section, we calculated P(M) = 0.31. Thus,
we can calculate P(E | M) using Bayes’ Law as follows:

P(E | M) = P(M | E) · P(E)

P (M)
= 0.8 · 0.3

0.31
≈ 0.77.

Exercise 1 provides an intuitive justification for Bayes’ Law.
Another version of Bayes’ Theorem in which the comma means “and,” or

“intersection,” is as follows:

P(A |B, C) = P(B |A,C) ·P(A |C)

P (B |C)
. (7)

Notice that this form is the same as the original version, except C is always in the
condition. Using a Venn diagram, Exercise 2 provides intuition into Eq. (7).
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Quick Review Question 5
Evaluate each of the following using P(J) = 0.43, P (K) = 0.57, P (F) =
0.41, P (G) = 0.29, P (H) = 0.30, P (G | J) = 0.42, P (G | K) = 0.35, P (J | F) =
0.12, P (K | F) = 0.88, and the matrix of joint probabilities from Quick Review
Question 4:

F G H

J
K

[
0.05 0.18 0.20
0.36 0.11 0.10

]

a. P(J | G)

b. P(K | G)

c. P(F | J)
d. P(F | K)

4 Probability of a State Given an Observation

Using Bayes’ Theorem, other probability equalities, and HMM, we can determine
the probabilities of a variety of situations. For example, suppose after Holly
scampers off into the jungle, at hour k the monitoring equipment registers vk = M,
munching. The scientists might wonder if she really is eating, or, symbolically, if it
is true that uk = E. They are asking, “For this single munching reading and without
reference to earlier readings, what is the likelihood, or probability, that Holly is
eating?” This question falls in the category of an HMM likelihood problem. In
notation, they want to discover P(uk = E | vk = M), abbreviated P(E | M); that
is, given a reading of M, what is the probability that Holly is in state E.

Examining the HMM model, we do not find the answer directly. However, using
Bayes’ Theorem, we can rewrite the question as follows:

P(uk = E | vk = M) = P(vk = M | uk = E) · P(uk = E)

P (vk = M)

or, alternatively,

P(E | M) = P(M | E) · P(E)

P (M)
.

The advantage of this equality is that we can evaluate each of the terms on the right.
Consulting Holly’s HMM, P(M | E) = e(M | E) = 0.8, and P(E) = π(E) = 0.30.
The denominator, P(M) does take a bit more thought. If the monitoring system
records vk = M, Holly could either be eating (uk = E, vk = M) or resting (uk =
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R, vk = M). Thus, marginalizing over E, R, we have

P(vk = M) = P(uk = E, vk = M) + P(uk = R, vk = M)

or

P(M) = P(E, M) + P(R, M).

Using a joint probability to determine the first summand, we have

P(E, M) = P(M, E) = P(M | E) · P(E).

That is, the probability of Holly eating leaves and the system recording munching
is the same as the probability that the equipment correctly records munching when
Holly is eating and Holly really is enjoying her dinner. Similarly,

P(R, M) = P(M | R) · P(R).

The probability of Holly resting and the system indicating munching is identical
to the probability of an incorrect recording of munching when she is resting and
Holly is actually inactive. Thus, putting the pieces together determined from joint
and marginal probabilities, we have

P(M) = P(E, M) + P(R, M)

= P(M | E) · P(E) + P(M | R) · P(R).

Fortunately, from Holly’s HMM, we know each of the terms on the right:
P(M | E) = e(M | E) = 0.8, P (E) = π(E) = 0.30, P (M | R) = e(M | R) =
0.1, and P(R) = π(R) = 0.70. Incorporating all calculations, we have the
following:

P(E | M) = P(M | E) · P(E)

P (M)
= P(M | E) · P(E)

P (M | E) · P(E) + P(M | R) · P(R)

P (E | M) = 0.8 · 0.3

0.8 · 0.3 + 0.1 · 0.7
≈ 0.77.

There is a 77% chance of Holly eating when the system records munching.
In general, for Holly’s situation, the following equation determines the probabil-

ity of an underlying state, uk , given an observation, vk:

P(uk | vk) = P(vk | uk) · P(uk)

P (vk)
= P(vk | uk) · P(uk)

P (vk | E) · P(E) + P(vk | R) · P(R)

or, using sigma notation,
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P(uk | vk) = P(vk | uk) · P(uk)∑
x∈{E, R} P(vk | x) · P(x)

.

However, most systems have more than two states. Thus, for other HMMs with S

being the set of all (hidden) states, we have the following:

P(uk | vk) = P(vk |uk) ·P(uk)∑
x∈S P (vk | x) ·P(x)

. (8)

Quick Review Question 6
For Holly’s HMM, determine the following:

a. P(R | M)

b. P(R | B)

c. P(E | B)

Quick Review Question 7
Suppose P(F) = 0.41, P (G) = 0.29, P (H) = 0.30, P (J | F) = 0.12, P (J | G) =
0.62, P (J | H) = 0.26. Determine P(F | J).

5 Probability of a Sequence of States Generating a Sequence
of Observations

In this section, we consider a problem that would usually not occur but whose
answer will help us in the solution of other more realistic problems: Knowing a
sequence of states, u, what is the probability of a particular sequence of observa-
tions, v, or P(v | u). For example, suppose we could spy on Holly in the jungle
and discover that initially she rested (u1 = R), but in the next 2 h she ate (u2 =
E and u3 = E), so that u = REE. Also, suppose we want to discover the probability
that the monitoring equipment registers breathing (v1 = B) followed by munching
and then breathing noises in the next two readings (v2 = M and v3 = B), or
v = BMB. Thus, we are interested in P(v = BMB | u = REE) = P(BMB | REE).
Figure 5 presents a trellis diagram of the situation, with state circles unshaded,
observation circles shaded, and arrows denoting conditional dependencies.

Fig. 5 Trellis diagram with
state circles unshaded,
observation circles shaded,
and arrows denoting
conditional dependencies

u2= E u3 = E

v1= B v2= M v3= B

u1= R
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Because of the HMM property of output independence, the probability of each
observation, vi , only depends on the corresponding state, ui . For example, the
probability that the equipment’s third reading is B, given that Holly is eating the
third hour, P(v3 = B | u3 = E), is the emission probability, e(B | E) = 0.2.
Because of independence, to evaluate P(BMB | REE), we take the product of the
three corresponding emission probabilities as follows:

P(BMB | REE) = P(B | R) · P(M | E) · P(B | E)

= e(B | R) · e(M | E) · e(B | E)

= 0.9 · 0.8 · 0.2

= 0.144.

In general, for sequences of length n, u = u1u2 . . . un and v = v1v2 . . . vn, we have

P(v|u) = e(v1|u1) · e(v2|u2) . . . e(vn|un).

We can abbreviate the product with pi notation to yield the following equality for
the probability of an observation sequence given a hidden sequence:

P(v |u) =
n∏

i=1

e(vi |ui). (9)

Quick Review Question 8

a. Evaluate P(MMMB | ERER)

b. Suppose a team catches up with Holly in the jungle and finds her sleeping for 6 h.
Calculate the probability that the equipment in the base camp registers correctly
records breathing over that period.

6 Probability of a State Sequence and an Observation
Sequence

Another likelihood problem considers the probability of a particular observation
sequence and a particular state sequence. There is an important difference between
this and the problem in the previous section. For the previous problem, given
a hidden sequence, u, we wanted to determine the conditional probability of a
particular visible sequence, v, namely P(v | u). In the current problem, we desire
the joint probability that both a hidden sequence, u, and a visible sequence, v, occur,
or P(v, u).
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For example, in the case of Holly, we might want to know the chance of the
equipment registering a sequence of breathing (B), munching (M), and breathing
(B), while she is actually resting (R), eating (E), and eating (E). By the joint
probability equality (1), we can calculate this probability, P(BMB, REE), as
follows:

P(BMB, REE) = P(BMB | REE) · P(REE). (10)

That is, the joint probability of both BMB and REE is the probability of BMB given
REE and that REE really does occur.

We determined the conditional probability P(BMB | REE) in the previous
section as 0.144, while Holly’s Markov model enables us to calculate the chance
of the hidden state sequence REE. As the trellis diagram in Fig. 5 illustrates, REE
involves three independent events: Holly is initially resting; given that she is resting
the first hour, she is eating the next hour; and she continues eating from the second
hour to the next. Thus, the probability of the state sequence REE is as follows:

P(REE) = P(u1 = R) · P(u2 = E | u1 = R) · P(u3 = E | u2 = E).

From Holly’s HMM, we know P(u1 = R) = π(R) = 0.70 and the transition
probabilities P(u2 = E | u1 = R) = t (R, E) = 0.2 and P(u3 = E | u2 = E) =
t (E, E) = 0.6. Thus, the probability of the state sequence REE is as follows:

P(REE) = π(R) · t (R, E) · t (E, E) = 0.70 · 0.2 · 0.6 = 0.084.

Substituting values into Eq. (10), we have the following:

P(BMB, REE) = P(BMB | REE) · P(REE) = 0.144 · 0.084 ≈ 0.012.

Although given hidden sequence REE, there is approximately a 14% chance of
observable sequence BMB, there is only about a 1% chance of BMB and REE
simultaneously occurring.

Quick Review Question 9
Use the answers from Quick Review Question 8 as needed.

a. Evaluate P(MMMB,ERER)

b. Find the probability that Holly sleeps for 6 h and the monitoring equipment
registers breathing over that same time period.

Generalizing, based on the Markov property, the probability of a sequence of
observations, u, is as follows:

P(u) = π(u1) ·
n∏

i=2

t (ui−1, ui). (11)
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Moreover, considering individual sequence elements, we have the following:

P(v |u) =
n∏

i=1

P(vi |ui) =
n∏

i=1

e(vi |ui). (12)

Thus, using Eqs. (11) and (12), the generalized formula for the joint probability of
particular observable and hidden sequences is as follows:

P(v, u) = P(v |u) ·P(u) =
(

n∏

i=1

e(vi |ui)

) (
π(u1) ·

n∏

i=2

t (ui−1, ui)

)
.

(13)
A useful reorganization of Eq. (13), which follows, is evocative of the trellis

diagram in Fig. 5:

P(v, u) = π(u1) · e(v1 | u1) ·
(

n∏
i=2

[t (ui−1, ui) · e(vi | ui)]

)

= π(u1) · e(v1 | u1) · t (u1, u2) · e(v2 | u2) · t (u2, u3) ·
e(v3 | u3) · · · t (un−1, un) · e(vn | un).

Regrouping this expression, as follows, is revealing for the joint probability
P(v, u) = P(u, v):

P(v, u) =
[
. . .
[[

[π(u1) · e(v1 | u1)]· t (u1, u2) · e(v2 | u2)
]· t (u2, u3) · e(v3 | u3)

]
· · ·
]

·t (un−1, un) · e(vn | un).

Notice that the product of the first two terms, which are in the inner brackets,
[π(u1) · e(v1 | u1)], is P(u1, v1), or P(u, v), when u and v are one-element
sequences. Moreover, the product of the terms in the next set of brackets is
P(u1,2, v1,2), which is P(u, v) when u and v are two-element sequences. The
expression in the next set of brackets calculates P(u1,3, v1,3); and the expression in
the outermost set of brackets is P(u1,n−1, v1,n−1), which is P(u, v) for sequences
of n − 1 elements. Thus, we can use recursion to define P(u, v). A recursive
task is one that calls itself. In this example, we employ the joint probability
P(u1,n−1, v1,n−1) in the definition of the joint probability P(u, v). The following
recursive formula for P(u, v) will be useful in further algorithms:

P(u, v) = P(u1,n, v1,n) =
{

π(u1) · e(v1 |u1), if n = 1
P(u1,n−1, v1,n−1 · t (un−1, un) · e(vn |un), if n > 1

.

(14)
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7 Probability of a Sequence of Observations: The Forward
Algorithm

A more realistic likelihood problem is to determine the probability of an observed
sequence, P(v). For example, we might want to calculate the probability that the
monitoring equipment registers breathing sounds and then munching noises the next
2 h, P(v = BMM).

7.1 Obvious Solution

In the last section, we determined the simultaneous probability of a visible and a
hidden sequence. Thus, the obvious solution for this short sequence is to marginalize
over all the possible three-element hidden state sequences. For S = {E, R}, there
are two choices, E and R, for each of the three positions, yielding 23 = 8 possible
hidden sequences. Thus, marginalizing over this set of eight underlying sequences,
U = {RRR, RRE, RER, REE, ERR, ERE, EER, EEE}, we can calculate P(BMM)

as follows:

P(BMM) =
∑
u∈U

P (BMM, u) =
∑
u∈U

[P(BMM |u) · P(u)] .

Expanding the first sum, we have the following:

P(BMM) = P(BMM, RRR) + P(BMM, RRE) + P(BMM, RER)

+P(BMM, REE) + P(BMM, ERR) + P(BMM, ERE)

+P(BMM, EER) + P(BMM, EEE).

We can calculate each of these joint probabilities using Eqs. (12) or (13) from the
last section. Such a solution seems feasible, although tedious. However, consider
the situation where we have sequences of 10 elements. The number of 10-element
sequences formed from {E, R} is 210 = 1024, so that we would have 1024
summands. Doubling to 20 observations, the number of possible sequences, and,
hence, the number of summands, is over a million, 220 = 1, 048, 576. Astoundingly,
the number sequences of length 100 is over 1030. As these calculations illustrate,
for h hidden states and n observations, there are hn number of possible hidden
sequences; as n gets larger, hn grows exponentially. Thus, this solution has an
exponential growth rate on the order of hn, written O(hn).

Quick Review Question 10
For each string length, find the number of strings formed from the bases
A, C, T, and G.
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a. 3
b. 10
c. 20
d. 21

7.2 Forward Algorithm

For realistic problems, often the number of states (h) and certainly the number of
observations (n) are large, so that hn is enormous, too great to compute by hand,
and, in fact, intractable even for a computer. Clearly, we must find a better way to
calculate P(v), the probability of an observed sequence. Fortunately, the forward
algorithm is much faster. The algorithm employs dynamic programming, which
divides a problem into a collection of smaller problems and uses the solutions to
these smaller problems to solve the larger problem. For the forward algorithm, we
store answers to the smallest problems in the first column of a matrix. Repeatedly,
we solve progressively larger problems, employing the answers in the previous
column and storing the answers in a new column. Finally, the answer to the overall
problem, the probability of an observed sequence, is the sum of the elements in the
last column.

For P(BMM), we employ a matrix with the same number of rows as the
number of states, h, and the same number of columns as the length of the
observation sequence, n. For Holly’s HMM, with S = {E, R} and observed sequence
v =BMM, h = 2 and n = 3, so we store values in a 2 × 3 matrix, F , with row and
column headings from S and v, respectively:

B M M

F = E
R

[
� � �
� � �

]
.

7.3 Forward Algorithm Initialization

Initially, we solve the smaller problem of P(B), which by marginalizing Eq. (5) is
as follows:

P(B) =
∑
x∈S

P (B, x) = P(B, E) + P(B, R).

We will place the calculation of P(B, E) in fE1 , the element in the E row and first
column of F, while fR1 will be P(B, R). The probability of u1 = B is the sum
of these two values in the first column. For the calculation of the summands, we
employ the step for n = 1 of the recursive formula (14) as follows:
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E

R

start

E( ) e B | E( ) = 0.3 0.2 = 0.06

R( ) e B | R( ) = 0.7 0.9 = 0.63

fE1 = 0.06

fR1 = 0.63

Fig. 6 Initialization step of the forward algorithm

P(B, E) = π(E) · e(B | E)

and

P(B, R) = π(R) · e(B | R).

The initial probabilities are π(E) = 0.30 and π(R) = 0.70, and the emission
probabilities are e(B | E) = 0.2, e(B | R) = 0.9. Thus, as Fig. 6 illustrates,
P(B, E) = 0.06 and P(B, R) = 0.63. Thus, placing these values from the
initialization step in the first column, the matrix F is as follows:

B M M

F = E
R

[
0.06 � �
0.63 � �

]
.

Quick Review Question 11
The HMM in Quick Review Question 1 and Fig. 3 contains the following informa-
tion:
S = {A, B, C} and O = {G, H}
π(A) = 0.2, π(B) = 0.1, π(C) = 0.7

uk/uk+1 A B C

T =
A
B
C

⎡
⎣0.1 0.4 0.5

0.2 0.2 0.6
0.3 0.2 0.5

⎤
⎦
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hidden/observable G H

A
B
C

⎡
⎣0.9 0.1

0.6 0.4
0.1 0.9

⎤
⎦.

Suppose we wish to use the forward algorithm to calculate P(HHGH).

a. Give the size of F , the forward algorithm matrix.
b. Calculate f

A1 .
c. Write the conditional probability for fA1 symbolically; that is, write fA1 as

P(x | y) with the symbols for x and y for this example.
d. Calculate fB1 .
e. Write the conditional probability for fB1 symbolically.
f. Calculate fC1 .
g. Write the conditional probability for fC1 symbolically.
h. Calculate P(H).

7.4 Forward Algorithm Step 2

In the calculation of P(BMM), after initialization, which calculates the summands
of P(B), we approach a little bit larger problem, P(BM). Fortunately, as we will
see, we can use the values in the first column in the solution of this probability. As
we did in the initialization step, we employ marginality to split the problem into a
sum of joint probabilities. With marginality, we have

P(BM) =
∑
x∈S2

P(BM, x), (15)

where S2 represents the set of all two-element sequences with elements from S =
{E, R}, S2 = {EE, ER, RE, RR}; and, in general, Sn denotes the set of all n-element
sequences over S. Thus, expanding Eq. (15) symbolically, we have the following
sum:

P(BM) = P(BM, EE) + P(BM, ER) + P(BM, RE) + P(BM, RR). (16)

Let us calculate one of these summands, P(BM, ER). Applying the second line
of the recursive definition of P(u, v), Eq. (14), we have the following:

P(BM, ER) = P(B, E) · t (E, R) · e(M | R).
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Fortunately, we calculated P(B,E) in the initialization step, and its value is matrix
element f

E1 = 0.06. Moreover, Holly’s HMM gives t (E, R) and e(M | R) as 0.4 and
0.1, respectively. Thus, P(BM, ER) = 0.06 · 0.4 · 0.1 = 0.0024.

Quick Review Question 12
Calculate P(BM, RR).

For fE2 we add the elements of Eq. (16) with sequences that end in E. Similarly,
fR2 is the sum of elements with sequences that end in R. Rewriting Eq. (16)
illustrates the process:

P(BM) = [P(BM, EE) + P(BM, RE)] + [P(BM, ER) + P(BM, RR)]
= fE2 + fR2 .

(17)

With sigma notation, we have the following equations for the second-column
elements:

fE2 =
∑
x∈S

P (BM, xE)

and

fR2 =
∑
x∈S

P (BM, xR).

From the calculations above and in Quick Review Question 12, we know that
P(BM, ER) = 0.0024 and P(BM, RR) = 0.0504. Thus, fR2 = P(BM, ER) +
P(BM, RR) = 0.0024 + 0.0504 = 0.0528.

Quick Review Question 13
Using P(BM, EE) = 0.0288 and P(BM, RE) = 0.1008, calculate fR2 .

Figure 7 illustrates the calculation of the second column of matrix F with
P(BM, EE) + P(BM, RE) = fE2 and P(BM, ER) + P(BM, RR) = fR2 . Thus,
the developing F now is as follows:

B M M

F = E
R

[
0.06 0.1296 �
0.63 0.0528 �

]
.

Moreover, the sum of the elements in the second column, 0.1824, is P(BM); that
is, for sequences of length two, there is an 18.24% chance of BM being an output
sequence.
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E

R

E

R

fE1 t(E, E) e(M | E) =
0.06 0.6 0.8 = 0.0288

fR1 t(R, R) e(M | R) =
0.63 0.8 0.1 = 0.0504

fE1 t(E, R) e(M | R) =
0.06 0.4 0.1 = 0.0024

fR1 t(R, E) e(M | E) =
0.63 0.2 0.8 = 0.1008

fR1 = 0.63

fE1 = 0.06

fE2 =
0.0288 + 0.1008 =

0.1296

fR2 =
0.0024 + 0.0504 =

0.0528

Fig. 7 Calculation of the second column of forward matrix, F

Quick Review Question 14
The HMM in Quick Review Questions 1 and 11 and Fig. 3 contains the following
information:
S = {A, B, C} and O = {G, H}
π(A) = 0.2, π(B) = 0.1, π(C) = 0.7

uk/uk+1 A B C

T =
A
B
C

⎡
⎣0.1 0.4 0.5

0.2 0.2 0.6
0.3 0.2 0.5

⎤
⎦

hidden/observable G H

A
B
C

⎡
⎣0.9 0.1

0.6 0.4
0.1 0.9

⎤
⎦ .

Suppose we wish to use the forward algorithm to calculate P(HHGH). As calculated
in Quick Review Question 11, the first column of the forward algorithm matrix F

contains fA1 = 0.02, fB1 = 0.04, and fC1 = 0.63.

a. Give the number of summands in the calculation of fB2 .
b. For fB2 , calculate the first summand, which employs fA1 as a factor.
c. For fB2 , calculate the second summand, which employs fB1 as a factor.
d. For fB2 , calculate the third summand.
e. Calculate fB2 .



376 A. B. Shiflet et al.

7.5 Forward Algorithm Completion

The calculation of the third column of F for P(BMM) proceeds in a similar manner
to that of the second column. We use the small-problem answers in the previous
column to calculate the values for the new column. Quick Review Question 15 steps
through the process.

Quick Review Question 15
This question completes the forward algorithm for P(BMM).

a. Write P(BMM) using sigma notation similar to that in Eq. (15).
b. Write out S3.
c. Enumerate P(BMM) symbolically as in Eq. (17), grouping together the ele-

ments of fE3 and fR3.
d. Notice in the calculation of fE3 that two probabilities have sequences that end

in EE, P(BMM, EEE) and P(BMM, REE). Moreover, by Eq. (14), we have the
following:

P(BMM, EEE) = P(BM, EE) · t (E, E) · e(M | E)

P(BMM, REE) = P(BM, RE) · t (E, E) · e(M | E).

With the last two factors being identical, we can group the sum of the
probabilities as follows:

P(BMM, EEE)+P(BMM, REE)=[P(BM, EE)+P(BM, RE)]·t (E, E) · e(M|E).

In a similar manner, show the development to write the sum of the remaining
two terms of fE3 using fR2 .

e. As in Part d, write the sum of two terms of fE3 using fE2 .
f. As in Part d, write the sum of two terms of fR3 using fE2 .
g. Evaluate P(BMM, EEE) + P(BMM, REE), developed symbolically in Part d.
h. Referring to the answer to Part d, evaluate P(BMM, ERE) + P(BMM, RRE).
i. Referring to the answer to Part e, evaluate P(BMM, EER) + P(BMM, RER).
j. Referring to the answer to Part f, evaluate P(BMM, ERR) + P(BMM, RRR).
k. Using the answers to Parts g and i, calculate fE3.
l. Using the answers to Parts h and j, calculate fR3.

m. Calculate P(BMM)

Figure 8 illustrates the development of the last column of the forward matrix,
which Quick Review Question (15) solved. Moreover, with this and previous
calculations, we can complete the forward matrix as follows:
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E

R

E

R

fE2 = 0.1296

fR2 = 0.0528

fE 3 =
0.062208 + 0.008448 =

0.070656

fR 3 =
0.005184 + 0.004224 =

0.009408

fE2 t E, E( ) e M | E( ) =
0.1296 0.6 0.8 = 0.062208

fR2 t R, R( ) e M | R( ) =
0.0528 0.8 0.1 = 0.004224

fE2 t E, R( ) e M | R( ) =
0.1296 0.4 0.1 = 0.005184

fR2 t R, E( ) e M | E( ) =
0.0528 0.2 0.8 = 0.008448

Fig. 8 Step 3 of forward algorithm in calculation of P(BMM)

B M M

F = E
R

[
0.06 0.1296 0.070656
0.63 0.0528 0.094080

] (18)

Then, we can calculate P(BMM) as the sum of the elements in the last column,
or P(BMM) = 0.080064. There is approximately an 8% chance of the output
sequence BMM.

As the work for Quick Review Question 15 indicates, we can iterate through the
matrix, using one column in the evaluation of the next. For S = {E, R} and ith
output symbol, vi , we have:

fEi
= fE(i−1)

· t (E, E) · e(vi | E) + fR(i−1)
· t (R, E) · e(vi | E)

=
∑
y∈S

[
f

y(i−1)
· t (y, E) · e(vi | E)

]

and

fRi
= fE(i−1)

· t (E, R) · e(vi | R) + fR(i−1)
· t (R, R) · e(vi | R)

=
∑
y∈S

[
f

y(i−1)
· t (y, R) · e(vi | R)

]
.

In general, for state x,

f
xi

=
∑
y∈S

[
f

y(i−1)
· t (y, x) · e(vi | x)

]
.
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Moreover, the sum of the elements in column i is the probability of the sequence
of the first i observations, P(v1,i ). For example, in (18), we completed the forward
matrix for P(BMM) to be the following:

B M M

F = E
R

[
0.06 0.1296 0.070656
0.63 0.0528 0.094080

]
.

The sum of the elements in the first column is P(B) = 0.69, while the sum of the
second-column elements is P(BM) = 0.1824. The answer we desire, P(BMM), is
the sum of the elements in the final column, 0.080064; the probability of BMM is
approximately 8%. To summarize,

P(v) =
∑

x∈S

fxn, (19)

where v is a sequence of n observations and fxn is the element in row x and column
n of the forward matrix F . The following quick review question considers the total
number of calculations for such a probability using the forward algorithm.

Quick Review Question 16
This question analyzes the complexity of the forward algorithm.

a. Suppose a HMM has 5 hidden states. Give the number of rows in the forward
matrix, F .

b. In Holly’s HMM with 2 hidden states, the calculation of each of the two
elements in the first column involved one product, for a total of 2 products.
For 5 hidden states, give the total number of products in the evaluation of the
first column.

c. For h states, give the total number of products in the evaluation of the first
column.

d. Suppose x is one of these 5 hidden states. Not including the initialization step,
give the number of terms having fx(i−1) as a factor, where fx(i−1) is the forward
matrix value in row x and column (i−1). This value is the same number of lines
emanating from an f -value. For example, in Fig. 8, two terms had f2E (or f2R)
as a factor and two lines emanating from f2E (or f2R).

e. For 2 hidden states, each of these terms involves two products. Give the number
of products when we have 5 hidden states.

f. Give the number of these products when we have h hidden states. Note that the
number of products does not depend on the number of hidden states.

g. Give the number of elements in the forward matrix for 5 hidden states and 20
observations, not including those in the first column.

h. Give the number of elements in the forward matrix for h hidden states and n

observations, not including those in the first column.
i. Using your answers from Parts b, e, and g, for 5 hidden states and 20

observations, give the total number of products.
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j. Using your answers from Parts c, f, and h, for h hidden states and n observations,
give the total number of products. Simplify the result.

k. Give the total number of sums used in the calculations of the elements in the
first column of a forward matrix, F .

l. For 5 hidden states and not including the initialization step, give the number of
sums used in the calculation of f

xi
, where x is a hidden state and i is a column.

For example, in Fig. 8, f3E (or f3R) has two summands and, thus, one sum.
m. For h hidden states, give the number of sums used in the calculation of f

xi
,

where x is a hidden state and i is a column greater than 1.
n. For h hidden states and n observations, give the total number of sums used in

the calculations of the elements of the forward matrix. Use answers from Parts
h, k, and m. Simplify the result.

o. For h hidden states and n observations, give the total number of sums and
products in the calculation of the elements of F . Use answers from Parts j and n.

p. Give the complexity of the forward algorithm.

As indicated in Quick Review Question 16, for h states and n observations, the
forward matrix, F , has h rows and n columns, yielding hn number of elements. Most
of these elements employ h summands of three factors each, although elements in
the first column have fewer terms. Thus, the approximate amount of work involved
in creating the forward matrix is on the order of nh2. Moreover, to calculate the
probability of the observed sequence, we add the h elements in the last column. In
comparison to nh2, h is inconsequential, so the forward algorithm is on the order
of nh2, written O(nh2). The complexity O(nh2) is a dramatic improvement over
the exponential complexity, O(hn), for our original solution. For example, suppose
our HMM has h = 10 hidden states and we wish to know the probability of a
sequence of n = 9 observations. The original approach to the solution would involve
hn = 109 = 1,000,000,000, a billion calculations, while the forward algorithm
would employ only about nh2 = 9 · 102 = 900 calculations.

8 Probability of a Genomics Sequence

In this section, we employ the forward algorithm to solving an important biological
problem—locating genes.

8.1 Biology Background

Proteins, which are the basic molecules of life, perform many essential functions,
such as forming the structural components of cells and, in the case of protein
enzymes, catalyzing chemical reactions. Simple proteins are chains formed from
20 amino acids.
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In the cell, the nucleic acid DNA (deoxyribonucleic acid) contains the encoded
information for the building of all the proteins needed by a cell. DNA acts through an
intermediary nucleic acid, RNA (ribonucleic acid), to synthesize proteins. RNA has
one long chain of molecules, called nucleotides, while two strands of nucleotides
compose DNA. Each nucleotide is made up of a sugar, a phosphate, and a nitrogen
base, which can be adenine (A), guanine (G), cytosine (C), or thymine (T) in
DNA or uracil (U) in RNA. In DNA, A in one strand bonds with T in the other
strand, while C and G bond together. Each of these pairs of complementary bases
is referred to as a base pair (bp).

Virtually every cell (except red blood cells) in the human body contains
chromosomes, or sequences of very long DNA molecules. The genome is the
complete set of chromosomes in a cell and contains the organism’s hereditary
information. For example, a human genome has 23 pairs of chromosomes (46 total)
with each pair having one chromosome from each parent. A gene is a subsequence
of a chromosome that contains information for building a protein. Although lengths
vary greatly, an average gene contains about 28,000 base pairs [1]. Some contiguous
sections of each chromosome are not part of any gene, but some are important for
the regulation of gene expression.

8.2 Locations of Genes

We can employ the forward algorithm to solve an important problem in genomics—
the locations of genes—by helping us find areas of high CG concentration. In
mammalian DNA, the sequence of bases CG appears more frequently upstream of,
or before, a gene than in other parts of a DNA sequence, where CG occurs much
less than expected from random occurrences of C and G. We call an area of greater
concentration of CG a CpG island, where “p” in “CpG” represents a phosphate
linking the bases C and G. The reason that CG occurs infrequently in much of a
sequence of DNA is that often CG transforms to (methyl-C)G before mutating to
TG. However, the transformation from CG to TG is suppressed in the CpG islands.
A DNA segment of 200 bases is a CpG island if CG occurs at least 50% of the time
and the ratio of observed-to-expected number of CpGs is greater than 0.6 [7].

Figure 9a and b contains transition matrices for sequences in and not in CpG
islands, respectively. The matrices were derived from a database of human DNA

a bxi xi
+ A    C    G  T + A    C    G T
A 0.180 .0274 0.426 0.120 A 0.300 0.205 0.285 0.210
C 0.171 0.368 0.188 C 0.322 0.298 0.302

xi1 G 0.161 0.339 0.375 0.125 xi1 G 0.248 0.246 0.298 0.208
T 0.079 0.355 0.384 0.182 T 0.177 0.239 0.292 0.292

0.274 0.078 

Fig. 9 Possible transition matrix for (a) samples within CpG islands and for (b) samples not within
CpG islands [4]



What Are the Chances?—Hidden Markov Models 381

sequences using 48 accepted CpG islands. In the matrix for CpG islands, the
probability of the pair CG (or the probability that G occurs, given that C has just
appeared) is 0.274, written as P(xi = G | xi−1 = C) = P(G | C) = 0.274, while in
the CpG negative matrix (Fig. 9b), the probability of the sequence CG is much lower,
P(G | C) = 0.078. Stanke [21] uses π = (0.148, 0.334, 0.365, 0.154) as the initial
state probability vector for CpG islands and π = (0.260, 0.249, 0.241, 0.251) for
non-CpG islands. For each situation, we assume the emission matrix is as follows:

hidden/observable A C G T

A
C
G
T

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

.

Project 5 employs these hidden Markov models in accessing the probabilities of
output sequences inside and outside CpG islands.

9 Parallel Forward Algorithm (Optional)

Although the forward algorithm has a big improvement in speed over the brute-force
technique discussed initially, for a large number of observations and states, such as
often encountered in genetics problems, the sequential forward algorithm can take
a long time. To speed the task, we can employ parallel programming.

9.1 Communication

One obvious way to parallelize is to have different processes calculate different
initial values for the first column and to have different processes compute separate
summands, such as those in the middle sections of Figs. 7 and 8. In Holly’s HMM
with s = 2 states, we employ 2 processes for the initialization step; and in general,
for s states, each of s processes could compute a different first-column element.
In subsequent steps for Holly’s HMM as in Figs. 7 and 8, each new state is a linear
combination of the previous states, so each process calculates the new state by using
the inputs from the arrows that point to that state. In theory, s processes are needed
for s states to calculate the summands simultaneously. In reality, communication of
appropriate forward matrix elements must occur for evaluation of the next column
elements, and such communication limits the speedup of the parallel algorithm.
Thus, it can often be more efficient to have less processes, so that each process
does more work and less communication.
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The heart of the forward algorithm is the matrix that holds the probabilities for
the sequence of observations. From the perspective of the parallel program, each
process could have its own copy of the matrix and would have to communicate
the value of its calculated cell to all the other processes. Alternatively, the
processes could share the same matrix, which would reduce the amount of needed
communication. Such consideration of communication is important in deciding how
to implement the parallel algorithm.

9.2 Implementation of the Parallel Forward Algorithm

The parallel forward algorithm, available to professors by request, is implemented
using the OpenMP library. OpenMP (OMP) uses threads, which are like processes
except that the threads share the same memory. Thus, threads communicate by
reading and writing to the same matrix.

Communication limits speedup of the algorithm because when multiple threads
have to use the same matrix cell, these lightweight processes must take turns—two
threads cannot access a cell simultaneously. Thus, increasing the number of threads
for any parallel program comes with a tradeoff: Each thread has less work to do, so
the work can be done faster; but a thread must wait longer when multiple threads
need to access the same matrix cell. Speedup of a parallel program depends on the
number of threads used, and increasing the number of threads to its theoretical limit
does not always improve speedup.

To illustrate, Table 1 gives timings and speedups and Fig. 10 depicts these
timings for serial and parallel OMP implementations of the forward algorithm. One
definition of speedup using n threads (or processes) is the length of time to execute
the serial algorithm divided by the length of time to execute the corresponding
parallel algorithm. Notice that the speedup of the parallel algorithm is a function
of the number of states and the number of threads. For example, for 2048 states, the
speedup is the greatest at about 4 threads:

speedup = 9.9255 s/ 4.0269 s = 2.4648.

However, with 4096 states, 8 threads are better:

speedup = 43.6465 s/ 11.9184 s = 3.6621.

Even with more states, the use of more threads eventually suppresses speedup
because of the need for additional communication.
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Table 1 Timings and speedup for forward algorithm

Time in seconds

1 2 3 4 8 16 32
# States Serial thread threads threads threads threads threads threads

512 0.214 0.2490 0.1696 0.1722 0.2473 0.7697 1.3663 2.4829

1024 2.6585 2.7506 1.7230 1.1925 1.0848 1.8645 2.8908 4.9911

2048 9.9255 10.0194 7.2314 5.6453 4.0269 4.1924 5.9881 10.0612

4096 43.6465 44.2792 27.9575 20.2691 16.7255 11.9184 13.4140 20.6784

Speedup

1 2 3 4 8 16 32
# States thread threads threads threads threads threads threads

512 0.8593 1.2619 1.2424 0.8653 0.2780 0.1566 0.0862

1024 0.9665 1.5429 2.2293 2.4507 1.4258 0.9196 0.5326

2048 0.9906 1.3726 1.7582 2.4648 2.3675 1.6575 0.9865

4096 0.9857 1.5612 2.1534 2.6096 3.6621 3.2538 2.1107
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1 thread 2 threads 3 threads 4 threads 8 threads 16 threads 32 threads

512 states 1024 states 2048 states 4096 states

Fig. 10 Timings for forward algorithm
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10 Decoding Problem

We employ the HMM forward algorithm to solve likelihood problems, such as
the likelihood of monitoring equipment registering breathing sounds (B) and then
munching noises (M) the next 2 h for Holly Howler, P(v = BMM). We use the
Viterbi algorithm to solve another type of HMM problem, decoding. In this case,
given a sequence of observations, such as v = BMM, we determine the most
probable sequence of underlying states, u, to yield v. Thus, we wish to determine
the u with maximum P(u | v), such as the sequence of three states, u, that yields
max(P (u | v = BMM)).

10.1 Obvious Solution

In the development above, we learned by joint probability that P(u, BMM) =
P(u | BMM) · P(BMM). Thus, the problem of determining the state sequence u

that maximizes P(u | BMM) is equivalent to the problem of determining the u that
maximizes P(u, BMM)/P (BMM). However, because P(BMM) is a constant, the
problem simplifies to finding u where P(u, BMM) is maximum. The most obvious
method to solve the problem is to determine P(u, BMM) for every possible three-
element state sequence, S3 = {RRR, RRE, RER, REE, ERR, ERE, EER, EEE},
using a version of the forward algorithm, and then to select the u with the largest
probability. However, this solution is exponentially large because for a sequence of
n observations with h = 2 states, the number of possible n-element state sequences,
or the number of elements in Sn, is hn = 2n. In general, for h number of states,
the number of n-element state sequences is hn. The much faster Viterbi algorithm
is another dynamic programming algorithm, which has the forward algorithm as its
base.

10.2 Viterbi Algorithm

The key to the Viterbi algorithm is Eq. (14), repeated below, for calculating a joint
probability:

P(u, v) = P(u1,n, v1,n) =
{

π(u1) · e(v1|u1), if n = 1
P(u1,n−1, v1,n−1 · t (un−1, un) · e(vn|un), if n > 1

((14))
Beginning the Viterbi algorithm in the same way as the forward algorithm for
observation sequence BMM in Holly’s HMM, we employ a 2 × 3 matrix, G, with
first-column elements being gE1 = P(B, E) = π(E) · e(B | E) and gR1 = P(B, R) =
π(R) · e(B | R). The initialization step is identical to that of the forward algorithm
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(see Fig. 6), resulting in the following initial Viterbi matrix, G:

B M M

G = E
R

[
0.06 � �
0.63 � �

]
.

Quick Review Question 17
Calculate the first-column elements of the Viterbi matrix to calculate u for
max(P (u | HHGH)) using the HMM in Fig. 11, which contains the following
information:

S = {A, B, C} and O = {G, H}

π(A) = 0.2, π(B) = 0.1, π(C) = 0.7

uk/uk+1 A B C

T =
A
B
C

⎡
⎣0.1 0.4 0.5

0.2 0.2 0.6
0.3 0.2 0.5

⎤
⎦

hidden/observable G H

A
B
C

⎡
⎣0.9 0.1

0.6 0.4
0.1 0.9

⎤
⎦.

Computations of the second column of the Viterbi and the forward matrices also
begin in the same way with calculating the product of a first-column element, a
transition value, and an emission value. As in Fig. 7 for the forward algorithm,
Fig. 12 of the current module for the Viterbi algorithm makes the following

Fig. 11 HMM diagram for
Quick Review Question 17 Hidden

A B

G H

C

0.2

0.3

0.5

0.2 0.2

0.4 0.6
5.01.0

0.9 0.1 0.6 0.4 0.1 0.9

Observed
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gR2 =
max(0.0024, 0.0504) =

0.0504

gE2 =
max( 0.0288, 0.1008) =

0.1008

gE1 t(E, E) e(M | E)=
0.06  0.6  0.8 = 0.0288

gE1 t(E, R) e(M | R)=
0.06  0.4 - 0.1 = 0.0024

gR1 t(R, E) e(M | E)=
0.63  0.2  0.8 = 0.1008

fR1 t(R, R) e(M | R)=
0.63  0.8  0.1 = 0.0504

gR1 = 0.63

gE1 = 0.06

R R

E E

Fig. 12 Calculation of the second column of Viterbi matrix, G

computations using first-column values, gE1 and gR1 , that correspond to fE1 and
fR1 , respectively, of the forward matrix:

gE1 · t (E, E) · e(M | E)

gE1 · t (E, R) · e(M | R)

gR1 · t (R, E) · e(M | E)

gR1 · t (R, R) · e(M | R)

However, instead of taking the sum of pairs of expressions (first and third transition-
ing to E, second and fourth transitioning to R) as we did with the forward algorithm,
we take the maxima as follows:

gE2 = max(gE1 · t (E, E) · e(M | E), gR1 · t (R, E) · e(M | E))

gR2 = max(gE1 · t (E, R) · e(M | R), gR1 · t (R, R) · e(M | R)).

Figure 12 details these computations with boldface arrows indicating the maxima.
The following displays the developing Viterbi matrix, G:

B M M

G = E
R

[
0.06 0.1008 �
0.63 0.0504 �

]
.

Quick Review Question 18
Suppose we wish to use the Viterbi algorithm to find the state sequence, u, with
maximum P(u, HHGH) for the HMM in Quick Review Question 17. As calculated
in that question, the first column of the Viterbi algorithm matrix G contains gA1 =
0.2, gB1 = 0.4, and gC1 = 0.63.
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max( 0.004032, 0.004032 ) =
0.004032

gR3=

max( 0.048384, 0.008064 ) =
0.048384

gE3=
gE2 t(E, E) e(M | E)=

0.1008  0.6  0.8 = 0.048384

gE2 t(E, R) e(M | R)=
0.1008 - 0.4 - 0.1 = 0.004032

gR2 t(R, E) e(M | R)=
0.0504 - 0.2 - 0.8 = 0.008064

gR2 t(R, R) e(M | R)=
0.0504  0.8  0.1 = 0.004032

gE2 = 0.1008

gR2 = 0.0504 R R

E E

Fig. 13 Step 3 of Viterbi algorithm in calculation of P(BMM)

a. The calculation of gB2 involves three expressions whose values are
0.0032, 0.0032, and 0.0504. Calculate gB2 .

b. Calculate g
A2 .

Calculations of subsequent Viterbi matrix elements for this example proceed in
a similar fashion. With observation vi , we employ the following evaluations for the
elements of column i:

gEi
= max(gE(i−1)

· t (E, E) · e(vi | E), gR(i−1)
· t (R, E) · e(vi | E))

gRi
= max(gE(i−1)

· t (E, R) · e(vi | R), gR(i−1)
· t (R, R) · e(vi | R))

.

With boldface arrows indicating maximum values, Fig. 13 illustrates the calculation
of the final column of the Viterbi matrix. Note that there are two paths to R that
yield the maximum, 0.004032. The completed Viterbi matrix is as follows:

B M M

G = E
R

[
0.06 0.1008 0.048384
0.63 0.0504 0.004032

]
.

In general, using Viterbi’s algorithm for any HMM; for state, x; observation, vi ;
and set of states, S, we have the following calculation for a Viterbi matrix element
in row x and column i:

g
xi

= max
y∈S

(
g

y(i−1)
· (y, x) · e(vi | x)

)
.

Quick Review Question 19
Suppose we wish to use the Viterbi algorithm to find the state sequence, u, with
maximum P(u, HHGH) for the HMM in Quick Review Question 17. Suppose, also,
that the third column of the Viterbi matrix G contains gA3 = 0.0765, gB3 = 0.0340,
and gC3 = 0.0142. Calculate gC4 to four decimal places.
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To calculate the probability of the visible sequence with the forward algorithm,
we added the probabilities in the final column. However, to calculate the maximum
joint probability of a hidden sequence and a given visible sequence using the Viterbi
algorithm, we find the maximum of the values in the final column. Thus, for Holly’s
HMM, we have the following:

max
u∈S3

(u, BMM) = max(0.048384, 0.004032) = 0.048384.

However, we would like to calculate max(P (u| BMM)) for this u. Recall that

P(u, BMM) = P(u | BMM) · P(BMM).

Dividing both sides by the factor P(BMM), we have

P(u | BMM) = P(u, BMM)/P (BMM).

Moreover, using the forward algorithm, we discovered P(BMM) = 0.080064.
Thus, over all three-element hidden sequences, u,

max(P (u | BMM)) = 0.048384/0.080064 = 0.604317.

More important than finding this maximum probability, we would like to discover
the particular state sequence that yields this maximum. Fortunately, by backtracking
through the Viterbi matrix, we can determine this hidden sequence. Figure 14 sum-
marizes results of Figs. 9 and 10 with arrows indicating the expressions generating
the maxima. To calculate the state sequence, u, that results in max(P (u | BMM)) =
0.604317, we start by finding the maximum in the final column, 0.048384, which
is in row E. Backtracking through the path indicated by the arrows, we then go to
column 2, row E and finally to column 1, row R. Reading the row values from left to
right, we obtain the state sequence u = REE. Thus, given observed sequence BMM,
REE is the most likely state sequence, and P(REE | BMM) = 0.604317, which is
over 60%.

Quick Review Question 20
Suppose we wish to use the Viterbi algorithm to find the state sequence, u, with
maximum P(u | HHGH) for the HMM in Quick Review Question 17. Suppose,
also, that P(HHGH) = 0.1028 and the Viterbi matrix, G, is in Fig. 15, with arrows
indicating the direction from which maxima came.

Fig. 14 Final Viterbi matrix
with arrows indicating the
paths 0.06

0.63

0.1008

0.0504

0.048384

0.004032

B M M

E

R
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Fig. 15 Viterbi matrix for
Quick Review Question 20
with arrows indicating the
direction from which maxima
came

a. Calculate the maximum P(u, HHGH) for hidden state sequence u.
b. Calculate the maximum P(u | HHGH) for hidden state sequence u.
c. Give the u that achieves these maxima.

10.3 Parallel Viterbi Algorithm (Optional)

As with the forward algorithm, we can use high performance computing to achieve
faster results when a decoding problem involves a large number of states and/or
observations. Moreover, we can parallelize the Viterbi algorithm similarly to the
forward algorithm with OpenMP and threads communicating by reading and writing
to the same matrix. Project 6 calculates the speedup that can be achieved using HPC
with this algorithm.

11 Detecting CpG Islands

One example of an HMM decoding problem with a solution employing the Viterbi
algorithm involves detecting genes. As discussed in section “Probability of a
Genomics Sequence,” an area of greater frequency of the base sequence CG can
be an indicator that a gene is to follow. The section presented initial probabilities,
emission matrices, and possible transition matrices for samples within and not
within such CpG islands, called positive and negative areas, respectively [4].
Suppose we also have transition probabilities from bases in positive areas (A+,
C+, T+, G+) to bases in negative areas (A−, C−, T−, G−, respectively) and vice
versa. Then, using the Viterbi algorithm, for a given observed sequence of bases
from {A, C, T, G}, we can compute the most likely hidden sequence from the
set of states, S = {begin/end, A+, C+, T+, G+, A−, C−, T−, G−}, where the sign
indicates whether the base is probably in a CpG island or not. Project 7 considers
such a decoding problem, where we can decode areas of high CpG concentration,
containing bases A+, C+, T+, and G+.
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Exercises

1 As we did in Quick Review Question 3 using the Venn diagram in Fig. 4, provide
an intuitive justification for the first version of Bayes’ Theorem in Eq. (6).

2 Use a Venn diagram to justify the second version of Bayes’ Theorem in Eq. (7).
3 This exercise relates to the HMM in Quick Review Question 14.

a. Calculate fA2 .
b. Calculate fC2 .
c. Calculate P(HH).
d. Calculate P(HHG).

Projects

1 Write a sequential program to calculate the probability of a state given an
observation using Eq. (8).

2 a. Develop a sequential program to calculate the probability of a sequence of
states generating a sequence of observations using Eq. (9).

b. Develop a parallel version of this program, having each thread responsible
for a portion of the factors and gather the results into a final product.

c. For large sequence length, time the parallel version for increasing numbers of
threads. Produce a graph of the speedup versus the number of threads similar
to Fig. 10.

3 a. Develop a sequential program to calculate the probability of a state sequence
and an observation sequence using Eq. (13).

b. Develop a parallel version of this program, having each thread responsible
for a portion of the factors and gather the results into a final product.

c. For large sequence length, time the parallel version for increasing numbers of
threads. Produce a graph of the speedup versus the number of threads similar
to Fig. 10.

4 a. Using the forward algorithm, develop a sequential program to calculate the
probability of a sequence of observations.

b. Develop a parallel version of this program.
c. For large sequence length, time the parallel version for increasing numbers of

threads. Produce a graph of the speedup versus the number of threads similar
to Fig. 10.

5 Download ProbabilitiesHumanPN.txt [15], which stores the transition matrices
from Fig. 9, and “Accessing Chromosome 19 Data” (AccessingChr19Data.pdf )
[14], which describes how to access gene locations and subsequences from
chromosome 19 of the human genome. Using the UCSC Genome Browser [23],
select several subsequences of about 50 bases that occur in a CpG island and
several that do not. Using a sequential or parallel forward algorithm program
that you develop, determine the probability of each subsequence twice, once for
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each hidden Markov model in section “Probability of a Genomics Sequence,”
and calculate how many more times likely the subsequence is to be in a CpG
island than not. Do your results concur with those of the UCSC Genome
Browser?

6 a. Using the Viterbi algorithm, develop a sequential program to determine
the most likely sequence of hidden states corresponding to a sequence of
observations.

b. Develop a parallel version of this program.
c. For a large sequence length, time the parallel version for increasing numbers

of threads. Produce a graph of the speedup versus the number of threads
similar to Fig. 10.

7 Download ProbabilitiesHumanV.txt [16], which contains the transition matrix
and other data described in the section “Detecting CpG Islands” from [8],
and “Accessing Chromosome 19 Data” (AccessingChr19Data.pdf ) [14], which
describes how to access gene locations and subsequences from chromosome 19
of the human genome. Using the UCSC Genome Browser [23], select several
subsequences of about 50 bases that overlap CpG islands. Using a sequential
or parallel Viterbi algorithm program that you develop, for each downloaded
sequence, determine the most likely hidden sequence of states from

S = {begin/end, A+, C+, T+, G+, A−, C−, T−, G−}

and its probability. Do your results concur with those of the UCSC Genome
Browser?

8 Scientists have used telemetry data, such as from radio tags or collars, to monitor
wildlife movement and HMMs to infer an animal’s hidden behavior [9, 11].
Download telemetry.nlogo [17], a NetLogo program to simulate using telemetry
to follow an animal and interpret its actions, and “Using a NetLogo Program”
(UsingNetLogo.pdf ) [18], a brief description of how to interact with a NetLogo
simulation [12]. With NetLogo, which is free to download, we can generate
agent-based models that have autonomous, decision-making agents, which have
states and behaviors. In the simulation telemetry.nlogo, an animal wanders at
random unless thirsty. When thirsty, the animal moves to water, in the center of
the world, and stays in the water until satiated. The user can observe, through
this simulated telemetry, if the animal is in water (W), facing water but not in
water (F), or not facing water and not in water (A). The state of the animal is
thirsty, either on way to water or in water (T); or not thirsty, not on way to water
and not in water (N).

a. Read the description of the model under the Info tab for the program.
Estimate the parameters for an HMM to model the scenario as described
in the section “Things to Try.”

b. Using this HMM, take part of an observation sequence from file output,
say of about 50 observations; and with your forward algorithm program,
determine the probability of that subsequence.
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c. Using your Viterbi algorithm program and the subsequence of observations
from Part b, determine the most likely corresponding state sequence. Calcu-
late the percentage of the sequence derived using the Viterbi algorithm that
agrees with the actual state sequence generated by the NetLogo program.

d. Revise the NetLogo program, telemetry.nlogo, to save to a file at least
100 observation sequences of length 50 and to store in another file the
corresponding hidden state sequences. Revise your Viterbi program to read
the file of observation sequences and to produce another file of derived state
sequences. Write another program to read the latter output file of derived
state sequences and the file of state sequences from your NetLogo program
and to calculate the fraction of time the two files agree. That is, what is the
probability that your Viterbi program will accurately generate the underlying
state sequence.

e. Extend the model in telemetry.nlogo as suggested under the Info tab in the
section “Extending the Model.” Tutorials on programming with NetLogo can
be obtained from [20] and [12].

9 [9] described using telemetry to obtain movement data of bison, which could
be in underlying, hidden states of “encamped” or “exploratory.” Their paper
discussed several types of HMMs to use observations to infer a bison’s states.
Observations were bivariant, involving step length and turning angles, or
directions. In an encamped state, the animals were observed to have numerous
long steps and few turns; while in an exploratory state, bison were seen having
short steps with more frequent reversals.

a. Similar to telemetry.nlogo, available on the website containing this module
and discussed in the previous project, develop a NetLogo simulation of bison
movement that outputs important totals and writes to one file a sequence of
hidden states and to another file the corresponding sequence of observations
[17]. In Part b of this project, we will use the output data to estimate an HMM.
Then, using this HMM, we will take a sequence of observations and attempt
to derive the underlying state sequence. We can compare our derivation
with the state sequence from the NetLogo simulation. “Using a NetLogo
Program” and tutorials on programming with NetLogo can be obtained from
[18] and [20], respectively. Note that we could model the step lengths as
being random numbers taken from different exponential distributions, each
with step lengths ranging from 0.0 to 0.6 km/d. The turning angles for an
exploring and for an encamping animal can be modeled as random numbers
from normal distributions with means of 0 and 180 degrees/d, respectively.
([9] employed Weibull distributions for step lengths and wrapped Cauchy
distributions for turning angles.)

b. Estimate the parameters for an HMM to model the scenario.
c. Using this HMM, take part of an observation sequence from file output,

say of about 50 observations; and with your forward algorithm program,
determine the probability of that subsequence.
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d. Using this HMM, take part of an observation sequence from file output, say
of about 50 observations; and with your Viterbi algorithm program, derive
the most likely corresponding subsequence of observations. Calculate the
percentage of the sequence derived using the Viterbi algorithm that agrees
with the actual state sequence generated by the NetLogo program.

e. Revise your NetLogo program to save to a file at least 100 observation
sequences of length 50 and to store in another file the corresponding hidden
state sequences. Revise your Viterbi program to read the file of observation
sequences and to produce a file of derived state sequences. Develop another
program to take the latter output file of derived state sequences and the file
of state sequences from your NetLogo program and to calculate the fraction
of time the two files agree. That is, what is the probability that your Viterbi
program will accurately generate the underlying state sequence.

10 a. In the programming language of your choice (such as Python, R, MAT-
LAB, Mathematica, or C++), develop a program that uses the probabilities
from Holly’s HMM of this module to generate a given number of states
and corresponding observations. Save the sequences to separate files. For
example, the initial state should be selected at random using the initial
state probabilities. Have the program select the corresponding observation
at random with probabilities indicted by the emission matrix. The next state
should be picked at random using probabilities from the transition (Markov)
matrix, and so forth.

b. Repeat Parts c–e from Project 9 using this program.
11 a. Repeat Project 10 a for a generalized situation. That is, develop a procedure

with input of a vector of state names or their abbreviations, a vector of
observation names or their abbreviations, an HMM (initial vector, transition
matrix, and emission matrix), and a number ( n ) of states/observations for an
output sequence. Then, using the HMM’s probabilities, have the procedure
generate and return a sequence of n states and corresponding sequence of n

observations.
b. Develop the two HMMs from Project 5. Using your procedure from Part

a, generate subsequences of length 50 for the positive and the negative
models. Using a forward algorithm program that you develop, determine the
probability of each subsequence twice, once for each hidden Markov model.
For the positive subsequence, calculate how many more times likely the
subsequence is to be in a CpG island than not. For the negative subsequence,
calculate how many more times likely the subsequence is not to be in a CpG
island than to be in a CpG island.

c. A gene in DNA and the corresponding subsequence of RNA have exons,
which contain part of the encoding information, such as for proteins,
separated by introns, or non-coding segments. RNA splicing removes the
introns and reassembles the exons so that translation to the protein can
eventually occur, and a splice is the location of a cut between an intron
and an exon. In DNA and RNA, each non-terminal nucleotide attaches to
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the #5 carbon, written 5’ carbon, of a sugar at one end and the #3 carbon,
3’ carbon, of its neighbor at the other end. Thus, we consider a nucleotide
chain to have a specific 5’-3’ orientation. Develop the “Toy HMM” for a
5’ splice recognition problem in [5], and using your procedure from Part a,
repeat Project 9, Parts c–e.
For each of the following HMMs, using your procedure from Part a, repeat

Project 9, Parts c–e:

d. Project 7
e. The unfair-casino HMM in Fig. 1 of [3] or other sources
f. The weather HMM on the fourth slide of [10]
g. The weather HMM in Sections 1 and 2 of [6]
h. The light-dark chocolate candy HMM in Section 5, “Exercises,” of [6]
i. The tree-growth rings HMM in Section 1, “A Simple Example,” of [13].

12 a. Study the Baum-Welch (or forward-backward) algorithm for solving the
training (or learning) problem mentioned in sections “Introduction” and
“Example Model,” and develop a program to solve the problem.

b. Using the NetLogo program telemetry.nlogo, available on the website con-
taining this module and discussed in Project 9, generate a collection of
state and corresponding observation sequences [17]. Using these and your
program from Part a, determine the parameters for an HMM.

c. With your procedure from Project 10 a, generate a collection of state and
corresponding observation sequences. Using these and your program from
Part a, determine the parameters for a trained HMM. Compare this HMM to
Holly’s HMM.

Do the same process as described in Part c for the following HMMs:
d. The two HMMs of Project 11 b
e. Project 11 c
f. Project 11 d
g. Project 11 e
h. Project 11 f
i. Project 11 g
j. Project 11 h
k. Project 11 i

Answers to Quick Review Questions

1 a. {A, B, C}
b. {G, H}
c. 0.6
d. 0.2
e.
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uk/uk+1 A B C

T =
A
B
C

⎡
⎣0.1 0.4 0.5

0.2 0.2 0.6
0.3 0.2 0.5

⎤
⎦

f. 0.2
g. 0.7 = 1 − π(A) − π(B)

h. 0.6
i. 0.9
j.

hidden/observable G H

A
B
C

⎡
⎣0.9 0.1

0.6 0.4
0.1 0.9

⎤
⎦

2 a. P(E, B) = P(B | E) · P(E) = 0.2 · 0.3 = 0.06
b. P(R, M) = P(M | R) · P(R) = 0.1 · 0.7 = 0.07
c. P(R, B) = P(B | R) · P(R) = 0.9 · 0.7 = 0.63
d. 1.00 = 0.24 + 0.06 + 0.07 + 0.63
e. 0.30 = 0.24 + 0.06
f. 0.70 = P(E,M) + P(R,B) = 0.07 + 0.63
g. 1.00
h. 0.31 = P(E, M) + P(R, M) = 0.24 + 0.07
i. 0.69 = P(E, B) + P(R, B) = 0.06 + 0.63
j. 1.00

3

P(A,B)
?= P(B|A) · P(A)

c

a + b + c + d

?= c
����(a + c)

·
����(a + c)

a + b + c + d

c

a + b + c + d
= c

a + b + c + d

4 a. 0.43 = 0.05 + 0.18 + 0.20
b. 0.57 = 0.36 + 0.11 + 0.10
c. {F, G, H}
d. 0.42 because

P(G, J) = P(G | J)·P(J), so P(G | J) = P(G, J)/P (J) = 0.18/0.43 ≈ 0.42

e. 0.19 because
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P(G, K)=P(G | K)·P(K), so P(G | K)=P(G, K)/P (K)=0.11/0.57≈0.19

f.
∑

x∈{E, G, H}
P(K, x) or

∑
x∈{E, G, H}

P(x, K)

g. 0.41 = 0.05 + 0.36
h. 0.12 because

P(J, F) = P(J | F) ·P(F), so P(J | F) = P(J, F)/P (F) = 0.05/0.41 ≈ 0.12

i. 0.88 because

P(K, F)=P(J | F) · P(F), so P(K | F)=P(K, F)/P (F)=0.36/0.41 ≈ 0.88

j. 0.29 = 0.18 + 0.11
k. {J,K}
l.

∑
x∈{J, K}

P(G, x) or
∑

x∈{J, K}
P(x, G)

m. 0.30 = 0.20 + 0.10
5 a. 0.62 because P(J | G) = P(G | J) · P(J)/P (G) = 0.42 · 0.43/0.29 ≈ 0.62

b. 0.69 because P(K | G) = P(G | K) · P(K)/P (G) = 0.35 · 0.57/0.29 ≈ 0.69
c. 0.11 because P(F | J) = P(J | F) · P(F)/P (J) = 0.12 · 0.41/0.43 ≈ 0.11
d. 0.63 because P(F | K) = P(K | F) · P(F)/P (K) = 0.88 · 0.41/0.57 ≈ 0.63

6 a. 0.23 ≈ 1 − P(E | M) ≈ 1 − 0.77
b. 0.91 because P(R | B) = P(B | R) · P(R)/(P (B | E) · P(E) + P(B | R) ·

P(R)) = 0.9 · 0.7/(0.2 · 0.3 + 0.9 · 0.7) = 0.9 · 0.7/0.69 ≈ 0.91
c. 0.09 ≈ 1 − P(R | B) ≈ 1 − 0.91; alternatively, P(E | B) = P(B | E) ·

P(E)/(P (B | E) · P(E) + P(B | R) · P(R)) = 0.2 · 0.3/0.69 ≈ 0.09
7 0.16 ≈ P(F | J) = P(J | F) ·P(F)/[P(J | F) ·P(F)+P(J | G) ·P(G)+P(J | H) ·

P(H)] = 0.12 · 0.41/[0.12 · 0.41 + 0.62 · 0.29 + 0.26 · 0.30]
8 a. 0.0576 = P(MMMB | ERER) = e(M | E) · e(M | R) · e(M | E) · e(B | R) =

0.8 · 0.1 · 0.8 · 0.9
b. 0.53144 ≈ P(BBBBBB | RRRRRR) = e(B | R)6 = 0.96

9 a. 0.00055 ≈ P(MMMB,ERER) = P(MMMB | ERER)·P(ERER) = 0.0576·
π(E) · t (E, R) · t (R, E) · t (E, R) = 0.0576 · 0.3 · 0.4 · 0.2 · 0.4, where
P(MMMB | ERER) = 0.0576 is from Quick Review Question 8 a.

b. 0.1219 ≈ P(BBBBBB, RRRRRR) = P(BBBBBB | RRRRRR) ·
P(RRRRRR) = 0.53144 · π(R) · t (R, R)5 = 0.53144 · 0.70 · 0.85 where
P(BBBBBB | RRRRRR) ≈ 0.53144 is from Quick Review Question 8 b.

10 a. 64 = 43

b. 1,048,576 = 410

c. 1,099,511,627,776 = 420

d. 4,398,046,511,104 = 421

11 a. 3 × 4
b. 0.02 = π(H) · e(H | A) = 0.2 · 0.1
c. P(A, H)
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d. 0.04 = π(H) · e(H | B) = 0.1 · 0.4
e. P(B, H)

f. 0.63 = π(H) · e(H | C) = 0.7 · 0.9
g. P(C, H)

h. 0.69 = P(A, H)+P(B, H)+P(C, H) = fA1 +fB1 +fC1 = 0.02+0.04+0.63
12 0.0504 = P(BM, RR) = P(B, R)·t (R, R)·e(M | R) = fR1 ·t (R, R)·e(M | R) =

0.63 · 0.8 · 0.1
13 0.1296 = P(BM, EE) + P(BM, RE) = 0.0288 + 0.1008
14 a. 3

b. 0.0032 = fA1 · t (A, B) · e(H | B) = 0.02 · 0.4 · 0.4
c. 0.0032 = fB1 · t (B, B) · e(H | B) = 0.04 · 0.2 · 0.4
d. 0.0504 = fC1 · t (C, B) · e(H | B) = 0.63 · 0.2 · 0.4
e. 0.0568 = 0.0032 + 0.0032 + 0.0504

15 a. P(BMM) = ∑
x∈S3 P(BMM, x)

b. {EEE, EER, ERE, ERR, REE, RER, RRE, RRR}
c. P(BMM) = [P(BMM, EEE) + P(BMM, ERE) + P(BMM, REE) +

P(BMM, RRE)]+ [P(BMM, EER)+P(BMM, ERR)+P(BMM, RER)+
P(BMM, RRR)] = fE3 + fR3

d. P(BMM, ERE) + P(BMM, RRE) = P(BM, ER) · t (R, E) · e(M | E) +
P(BM, RR) · t (R, E) · e(M | E) = [P(BM, ER) + P(BM, RR)] · t (R, E) ·
e(M | E) = fR2 · t (R, E) · e(M | E)

e. P(BMM, EER) + P(BMM, RER) = fE2 · t (E, R) · e(M | R)

f. P(BMM, ERR) + P(BMM, RRR) = fR2 · t (R, R) · e(M | R)

g. 0.062208 = 0.1296 · 0.6 · 0.8
h. 0.005184 = 0.1296 · 0.4 · 0.1
i. 0.008448 = 0.0528 · 0.2 · 0.8
j. 0.004224 = 0.0528 · 0.8 · 0.1
k. 0.70656 = 0.062208 + 0.008448
l. 0.009408 = 0.005184 + 0.004224

m. 0.080064 = 0.070656 + 0.009408
16 a. 5

b. 5
c. h

d. 5
e. 2
f. 2
g. 95 = 5 · 19
h. h · (n − 1)

i. 195 = 5 + 95 · 2
j. 2hn − h because h + h · (n − 1) · 2 = h + 2hn − 2h = −h + 2hn

k. 0
l. 4

m. h − 1
n. h2(n − 1) − hn − h or h2n − h2 − hn − h because 0 + (h − 1) · h · (n − 1) =

(h2 − h)(n − 1) = h2n − hn − h2 − h = h2(n − 1) − hn − h
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o. h2n − h2 + hn − 2h because (2hn − h) + (h2n − h2 − hn − h) = h2n −
h2 + hn − 2h

p. O(h2n)

17 gA1 = 0.2, gB1 = 0.4, and gC1 = 0.63
18 a. 0.0504 =max(0.0032, 0.0032, 0.0504)

b. 0.0189 =max(0.0002, 0.0008, 0.0189)

19 0.0344 because of the following: gA3 ·t (A, C)·e(H | C) = 0.034425; gB3 ·t (B, C)·
e(H | C) = 0.01836; gC3 · t (C, C) · e(H | C) = 0.00639; and the maximum of
these expressions is 0.034425.

20 a. 0.0344, the maximum in the final column
b. 0.33463 = 0.0344/0.1028
c. CCAC

Further Reading

• Baldi, P., Chauvin, Y., Hunkapiller, T. and McClure, M.A.: Hidden Markov
models of biological primary sequence information. Proc. of the Natl. Academy
of Sciences, 91(3), 1059–1063 (1994)

• Gales, M., Young, S.: The application of hidden Markov models in speech
recognition. Foundations and Trends in Signal Processing, 1(3), 195–304 (2007)

• Kamal, M.S., Chowdhury, L., Khan, M.I., Ashour, A.S., Tavares, J.M.R., Dey, N.:
Hidden Markov model and Chapman Kolmogrov for protein structures prediction
from images. Computational Biology and Chemistry, 68 231–244 (2017)

• Krogh, A., Brown, M., Mian, I.S., Sjölander, K., Haussler, D.: Hidden Markov
models in computational biology: Applications to protein modeling. J. of Molec-
ular Biology, 235(5), 1501–1531 (1994)

• Manogaran, G., Vijayakumar, V., Varatharajan, R., Kumar, P.M., Sundarasekar,
R., Hsu, C.H.: Machine learning based big data processing framework for cancer
diagnosis using hidden Markov model and GM clustering. Wireless Personal
Communications, 102(3), 2099–2116 (2018)

• McGibbon, R.T., Ramsundar, B., Sultan, M.M., Kiss, G., Pande, V.S.: Under-
standing protein dynamics with L1-regularized reversible hidden Markov mod-
els. arXiv preprint arXiv:1405.1444 (2014)

• Petersen, B.K., Mayhew, M.B., Ogbuefi, K.O., Liu, V.X., Greene, J.D., Ray, P.:
Modeling sepsis disease progression using hidden Markov models (No. LLNL-
CONF-740757). Lawrence Livermore National Lab.(LLNL), Livermore, CA (U.
S.) (2017)

• Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. of the IEEE 77(2): 257–286 (1989)

• Ramanathan, N.: Applications of hidden Markov models.
http://www.cs.umd.edu/~djacobs/CMSC828/ApplicationsHMMs.pdf

http://www.cs.umd.edu/~djacobs/CMSC828/ApplicationsHMMs.pdf


What Are the Chances?—Hidden Markov Models 399

• Sharp, C., Bray, J., Housden, N.G., Maiden, M.C., Kleanthous, C.: Diversity and
distribution of nuclease bacteriocins in bacterial genomes revealed using Hidden
Markov Models. PLoS Computational Biology, 13(7), p.e1005652 (2017)

• Williams, J.P., Storlie, C.B., Therneau, T.M., Jack Jr, C.R., Hannig, J.: A
Bayesian approach to multi-state hidden Markov models: application to dementia
progression. arXiv preprint arXiv:1802.02691 (2018)

• Yoon, B.: Hidden Markov models and their applications in biological sequence
analysis. Curr. Genomics 10(6), 402–415 (2009)

Acknowledgements Our thanks go to the Fulbright Specialist Program, University “Magna
Græcia” of Catanzaro, and Wofford College for funding the Shiflets’ visit to the university and to
the National Computational Science Institute Blue Waters Student Internship Program for funding
Dmitriy Kaplun’s internship.

References

1. B10NUMB3R5: the database of useful biological numbers. http://bionumbers.hms.harvard.
edu/bionumber.aspx?&id=105336&ver=2

2. Centers for Disease Control and Prevention: 2–20 years: girls stature-for-age and weight-for-
age percentiles. https://www.cdc.gov/growthcharts/data/set2clinical/cj41c072.pdf

3. Cerulo, L., Ceccarelli, M., Di Penta, M., Canfora, G.: A hidden Markov model to detect
coded information islands. In: Source Code Analysis and Manipulation (SCAM) IEEE 13th
International Working Conference on Source Code Analysis and Manipulation: 157–166.
https://doi.org/10.1109/SCAM.2013.6648197 (2013)

4. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis. Cambridge
University Press, Cambridge (1998)

5. Eddy, S.R.: What is a hidden Markov model? Nat Biotechnol. 22(10), 1315–6 (2004) https://
doi.org/10.1038/nbt1004-1315

6. Fosler-Lussier, E.: Markov models and hidden Markov models: a brief tutorial. International
Computer Science Inst. http://di.ubi.pt/~jpaulo/competence/tutorials/hmm-tutorial-1.pdf

7. Gardiner-Garden, M., Frommer, M. CpG islands in vertebrate genomes. J. Mol. Biol. 196,
261–282 (1987)

8. Huson, D.: Chapter 8: Markov chains and hidden Markov models. In course: Algorithms
in Bioinformatics University of Tübingen. https://ab.inf.uni-tuebingen.de/teaching/ss08/gbi/
script/chapter08-hmms.pdf

9. Langrock, R., King, R., Matthiopoulos, J., Thomas, L., Fortin, D., Morales, J.M.: Flexible and
practical modeling of animal telemetry data: hidden Markov models and extensions. Ecology,
93:2336–2342 (2012)

10. Lyngsø, R.: “Hidden Markov models.” http://www.stats.ox.ac.uk/~mcvean/DTC/STAT/
Lectures/Weds_wk2/hidden_markov_models.pdf

11. Morales, J.M., Haydon, D.T., Frair, J.L., Holsinger, K.E., Fryxell, J.M.: Extracting more out of
relocation data: building movement models as mixtures of random walks. Ecology 85:2436–
2445 (2004)

12. NetLogo home page. https://ccl.northwestern.edu/netlogo/
13. Stamp, M.: A revealing introduction to hidden Markov models. https://www.cs.sjsu.edu/~

stamp/RUA/HMM.pdf
14. Shiflet, A.: Accessing Chromosome 19 data. AccessingChr19Data.pdf in https://ics.wofford-

ecs.org/files/HMM.zip

http://bionumbers.hms.harvard.edu/bionumber.aspx?&id=105336&ver=2
http://bionumbers.hms.harvard.edu/bionumber.aspx?&id=105336&ver=2
https://www.cdc.gov/growthcharts/data/set2clinical/cj41c072.pdf
https://doi.org/10.1109/SCAM.2013.6648197
https://doi.org/10.1038/nbt1004-1315
https://doi.org/10.1038/nbt1004-1315
http://di.ubi.pt/~jpaulo/competence/tutorials/hmm-tutorial-1.pdf
https://ab.inf.uni-tuebingen.de/teaching/ss08/gbi/script/chapter08-hmms.pdf
https://ab.inf.uni-tuebingen.de/teaching/ss08/gbi/script/chapter08-hmms.pdf
http://www.stats.ox.ac.uk/~mcvean/DTC/STAT/Lectures/Weds_wk2/hidden_markov_models.pdf
http://www.stats.ox.ac.uk/~mcvean/DTC/STAT/Lectures/Weds_wk2/hidden_markov_models.pdf
https://ccl.northwestern.edu/netlogo/
https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
https://ics.wofford-ecs.org/files/HMM.zip
https://ics.wofford-ecs.org/files/HMM.zip


400 A. B. Shiflet et al.

15. Shiflet, A.: Possible transition matrices for samples within and not within CpG islands.
ProbabilitiesHumanPN.txt in https://ics.wofford-ecs.org/files/HMM.zip

16. Shiflet, A.: Transition matrix and other data from Hudson. ProbabilitiesHumanV.txt in https://
ics.wofford-ecs.org/files/HMM.zip

17. Shiflet, A.: Telemetry program telemetry.nlogo in NetLogo. telemetry.nlogo in https://wofford-
ecs.org/files/HMM.zip

18. Shiflet, A. Using a NetLogo program. UsingNetLogo.pdf in https://ics.wofford-ecs.org/files/
HMM.zip

19. Shiflet, A., Shiflet, G. Introduction to Computational Science: Modeling and Simulation for
the Sciences, 2nd ed., Princeton University Press (2014)

20. Shiflet, A., Shiflet, G. NetLogo agent-based files. https://ics.wofford-ecs.org/agent/NetLogo
21. Stanke, M.: Markov chains and hidden Markov models, Free University of Berlin. http://www.

mi.fu-berlin.de/wiki/pub/ABI/HiddenMarkovModelsWS13/script.pdf
22. Sungkaworn, T., Jobin, M.L., Burnecki, K., Weron, A., Lohse, M.J., Calebiro, D.: Single-

molecule imaging reveals receptor-G protein interactions at cell surface hot spots. Nature
550(7677) 543–547 (2017)

23. UCSC Genome Browser. https://genome.ucsc.edu/cgi-bin/hgGateway

https://ics.wofford-ecs.org/files/HMM.zip
https://ics.wofford-ecs.org/files/HMM.zip
https://ics.wofford-ecs.org/files/HMM.zip
https://wofford-ecs.org/files/HMM.zip
https://wofford-ecs.org/files/HMM.zip
https://ics.wofford-ecs.org/files/HMM.zip
https://ics.wofford-ecs.org/files/HMM.zip
https://ics.wofford-ecs.org/agent/NetLogo
http://www.mi.fu-berlin.de/wiki/pub/ABI/HiddenMarkovModelsWS13/script.pdf
http://www.mi.fu-berlin.de/wiki/pub/ABI/HiddenMarkovModelsWS13/script.pdf
https://genome.ucsc.edu/cgi-bin/hgGateway

	What Are the Chances?—Hidden Markov Models
	1 Introduction
	1.1 Case in Point

	2 Example Model
	3 Probability Equalities
	3.1 Joint Probability
	3.2 Marginal Probability
	3.3 Bayes' Theorem

	4 Probability of a State Given an Observation
	5 Probability of a Sequence of States Generating a Sequence of Observations
	6 Probability of a State Sequence and an Observation Sequence
	7 Probability of a Sequence of Observations: The Forward Algorithm
	7.1 Obvious Solution
	7.2 Forward Algorithm
	7.3 Forward Algorithm Initialization
	7.4  Forward Algorithm Step 2
	7.5 Forward Algorithm Completion

	8 Probability of a Genomics Sequence
	8.1 Biology Background
	8.2 Locations of Genes

	9 Parallel Forward Algorithm (Optional)
	9.1 Communication
	9.2 Implementation of the Parallel Forward Algorithm

	10 Decoding Problem
	10.1 Obvious Solution
	10.2 Viterbi Algorithm
	10.3 Parallel Viterbi Algorithm (Optional)

	11 Detecting CpG Islands
	Exercises
	Projects
	Answers to Quick Review Questions
	Further Reading
	References


