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Abstract In this chapter, we will introduce the concepts of growth, competition,
and adaptation using bacteria. We will use both simulation and laboratory-based
exercises and provide practice with critical skills to assess your understanding
throughout the chapter. The chapter ends by focusing on the capacious and global
problem of antibiotic resistance, considered to be one of the most important public
health threats of the twenty-first century. We will review the basic biological
concepts underlying the phenomenon, and introduce the mathematical content
necessary to begin to create agent-based models in order to simulate and analyze
antibiotic resistance and its effect on the planet. we will present a selection of
research projects throughout the later portion of the chapter for you to further
explore antibiotic resistance and other contexts of bacteria.

Suggested Prerequisites This chapter is intended to be accessible to a wide range of undergrad-
uates. The only necessary prerequisite is a strong interest and desire to learn about simulation,
bacteria, and antibiotic resistance. We do recommended previous exposure to microbes and
introductory biology, programming—especially with NETLOGO, mathematical modeling, and data
analysis.

1 Introduction

Bacteria are microscopic, unicellular, prokaryotic organisms that can exist in the
form of spheres, rods, and spirals. The major category which differentiates bacteria
is the structure of their cell walls, which are called gram-positive or gram-negative.
The prototypical gram-negative organism, Escherichia coli, has an inner and outer
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membrane, between which is found a periplasmic space with a thin layer of
peptidoglycan. Gram-positive bacteria have a much thicker layer of peptidoglycan
surrounding their inner membrane and have no outer membrane. The prototype
gram-positive organism is Staphylococcus aureus.

Bacteria are noted for their ubiquity; they are some of the most adaptable and
resilient organisms on the planet. Different species of bacteria can survive and
grow at temperatures ranging from −10 to 100 ◦C. They can happily reside in cold
salty ponds and in the frigid waters of the polar regions to the boiling water of
hot springs. They can even be found growing in the vicinity of thermal volcanic
vents at the bottom of the oceans where temperatures exceed 300 ◦C. Bacteria are
also resilient to pH; they have been isolated in acid wastes from mines and in the
alkaline waters of soda lakes [63]. They have been isolated in black anaerobic silts
of estuaries and in the purest waters of biologically unproductive or oligotrophic
lakes. This means that, in whatever situation, bacteria can find a way of adapting
and surviving, regardless of the environment they find themselves [63].

Bacteria have proven a useful model system in which to investigate many cellular
functions and processes. They have simple genomes, many of which are amenable
to genetic modification. They can also be readily propagated in the laboratory,
and they have fast generation times. Knowledge gained when studying bacterial
systems can often be applied to homologous proteins in more complex higher
organisms. Bacteria are used in industry and are critical for the production of
yoghurt, cheese, sour cream, pickles, sauerkraut, and kombucha to name but a few.
Bacteria can also be engineered to make useful products such as human proteins
and drugs, and importantly they can be used in bioremediation and to detoxify
poisonous substances. It is their adaptability and resilience that not only makes
bacteria one of the world’s greatest allies but also one of the world’s greatest foes.
Bacteria are responsible for many different diseases and a major cause of morbidity
and mortality across the globe. One of the most important and clinically relevant
bacterial adaptations is antibiotic resistance.

1.1 Introduction to Antibiotic Resistance

The World Health Organization has named antibiotic resistance as one of the
most important public health threats of the twenty-first century [90]. Importantly,
infections caused by antibiotic-resistant organisms are associated with significant
mortality [3] and are an important economic burden, estimated to cost over $20
billion per year in the USA alone [35, 39, 113]. At least 23,000 people die from
infections with antibiotic-resistant bacteria annually in the USA as estimated by
the Centers for Disease Control and Prevention [3]. By 2050, it is estimated that
antibiotic resistance will cause around 300 million premature deaths, and result in
a loss of up to $100 trillion by the global economy [89]. More worryingly still, the
World Health Organization has warned that there is a serious lack of new antibiotics



Simulating Bacterial Growth, Competition, and Resistance 219

under development to combat the growing threat of antibiotic resistance [8], with
only eight of the 51 new antibiotics and biological agents currently in clinical
development to treat antibiotic-resistant pathogens adding value to the current drugs
on offer [62].

Antibiotic resistance is an ancient phenomenon, a consequence of long-term
biowarfare among organisms in their natural environments. Most antimicrobials are
natural molecules. In fact, many are secreted by bacteria and other environmental
organisms. When organisms growing in communities were exposed to the effects
of antibiotics secreted by members of the community, they evolved counter-
mechanisms to overcome their action in order to survive. Some organisms that are
naturally resistant to antibiotics are called intrinsically resistant. A great example
of intrinsic resistance occurs in multi-drug resistant gram-negative bacteria such as
E. coli, which are insensitive to many types of antibiotics used to effectively treat
gram-positive bacteria. Their resistance is due to the presence of the outer mem-
brane, which is the differentiating factor between gram-negative and gram-positive
bacteria. The outer membrane is impermeable to many molecules. Additionally,
these strains possess a variety of efflux pumps that can effectively pump out the
antimicrobial from the cells [84]. Many environmental organisms are prolifically
and intrinsically resistant to many different classes of antibiotics, and in particular,
those that dwell in the soil have many uncharacterized mechanisms of resistance
[38]. What is more intriguing is that antibiotic resistance often predates the clinical
use of antibiotics and has emerged independently of the selective pressure imposed
by using antibiotics [25, 37]. Scientists consider environmental organisms, such as
those found in soil or in the urban environment, to be important reservoirs of novel
resistance genes that could be transferred to pathogens. This presents a major health
concern [59].

While environmental organisms often have intrinsic mechanisms of resistance,
antibiotic-resistant bacteria in the hospital or clinical setting often exhibit resistance
that has been acquired. Acquired resistance emerges in a bacterial population that
was originally susceptible to the antibiotic. In response to exposure, resistance is
often acquired by mutations in the chromosome of the bacteria or the acquisition of
external resistance-encoding genes, i.e., horizontal gene transfer (HGT).

1.1.1 Genetic Basis of Antibiotic Resistance

Antibiotic resistance emerges genetically in two main ways:

• Resistance by mutation. Cells within a susceptible population of bacteria
develop mutations in genes that ameliorate the activity of the drug. These cells
thus survive the antimicrobial agent, multiply, and proliferate, while the sus-
ceptible cells succumb to the agent. Depending on the type of mutation, there
can be a fitness cost, and as a consequence, these mutations are only selected
for in the presence of the antibiotic. Interestingly, the use of antibiotics has
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been shown to increase the mutation rate of bacteria [68] and even to select for
mutants with higher mutation rates in the microbial flora of patients treated with
antibiotics [53].

• Resistance by horizontal gene transfer. HGT is a major driver of bacterial
evolution. This process involves the acquisition of foreign DNA, which could
contain genetic sequences that transfer the antibiotic resistance. HGT is fre-
quently responsible for acquired resistance to antibiotics and antimicrobials. The
most common mechanisms used by bacteria to acquire external genetic material
are transformation (incorporation of naked DNA), transduction (mediated by
phages—viruses that infect bacteria), and conjugation (when bacteria have “sex”
mediated by a pilus). The simplest type of HGT, transformation, is demonstrated
by a small number of species of high clinical relevance including the pneumococ-
cus or Streptococcus pneumoniae [86], and Neisseria meningitidis and Neisseria
gonorrhoeae [116]. Transduction by phages is a very important mode of HGT
and has been shown to be an important vehicle for resistance genes in the envi-
ronment [19]. The most common and most efficient form of HGT is conjugation.
This type of transfer needs cell-to-cell contact and is mediated by the presence of
conjugative elements in the genome of the donor cell. Tetracycline resistance is
readily transferred among N. gonorrhoeae and Enterococcus faecalis strains by
means of a conjugative plasmids, circular forms of DNA [71, 116]. Other types
of mobile DNA such as integrons and transposons also play important roles in
the dissemination of antibiotic resistance genes, such as carbapenamases [97].
Genes encoding resistance to streptomycin, spectinomycin, and sulfonamides as
well as metals such as mercury have been found on complex transposons and
plasmids in members of the Enterobacteriaceae [23].

1.1.2 Mechanistic Basis of Antibiotic Resistance

There are several categorizations of antibiotic resistance mechanisms:

• Modifying the antimicrobial molecule itself. One mechanism found in both
gram-positive and gram-negative bacteria is to produce enzymes that modify
the chemical composition of the antimicrobial molecule by phosphorylation,
acetylation, and adenylation. Chloramphenicol resistance is mediated by chlo-
ramphenicol acetyltransferases known as CATs, widespread among bacteria
[103]. Alternatively, some bacteria produce enzymes that can destroy the antibi-
otic itself. One of the most famous examples is the family of beta-lactamases.
Beta-lactamases were identified before the introduction of penicillin to the
market [12] and are considered to be ancient. More than 1000 different beta-
lactamases have been described to date.

• Blocking the action of the antibiotic against its target. The first line of
defense used by gram-negative bacteria to prevent antimicrobials from reaching
their intracellular or periplasmic targets is their outer membrane as we have
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discussed. In addition, they can prevent hydrophilic (water soluble) molecules
from traversing the membrane (which is not water soluble) using porins (channels
in the membrane) by altering the types of porins present, the expression of the
porin genes and by impeding porin function [85]. Efflux is another widespread
mechanism to avoid antibiotic action. E. coli can actively pump the antibiotic
tetracycline out of the cell using an efflux pump. Efflux pump mechanisms are
found in both gram-positive and gram-negative bacteria and can be antibiotic
specific such as mef which encodes macrolide resistance in pneumococci or can
be broadly specific facilitating the multi-drug resistance (MDR) phenotype [98].

• Changing the target site or bypassing it entirely. This occurs through two
main mechanisms, which include protection of the target and modifications of the
target site, decreasing affinity for the antibiotic. Tet(M) first described in Strepto-
coccus spp., interacts with the ribosome and actively dislodges tetracycline from
the target site [33]. Linezolid resistance involves mutation of the binding site in
the ribosome and results in decreased affinity of the drug for its ribosomal target
[78]. Lastly, bacteria can evolve entirely new target structures that have the same
function but bypass the antibiotic entirely, such as methicillin resistance in S.
aureus due to the acquisition of an exogenous PBP (PBP2a) and vancomycin
resistance in enterococci through modifications of the peptidoglycan structure
mediated by the van gene clusters [17, 31].

• Changing regulatory networks which control important metabolic path-
ways. An important example of this type of resistance is resistance to daptomycin
(DAP) and vancomycin (low level in S. aureus). In these cases, the bacteria
make systematic changes to fundamental systems such as their cell wall structure
to withstand the action of the drug. An example in both enterococci and S.
aureus, YycFG (WalKR), an essential two-component regulatory system, has
been implicated in cell wall synthesis and homeostasis, is important for resistance
to daptomycin. The exact mechanism is unknown, but it appears to involve
alteration in cell wall metabolism resulting in changes in surface charge which
repulses the positively charged calcium-DAP complex from the cell envelope
[22, 115]. High-level vancomycin resistance in S. aureus was the result of
acquisition by a methicillin-resistant S. aureus (MRSA) strain of the vanA gene
cluster from a vancomycin-resistant enterococcus (E. faecalis) isolate [107].
Thankfully such high-level resistance to the last available drug for treatment,
vancomycin, is rare in Staphylococci. However, low level resistance, called
vancomycin intermediate S. aureus (VISA), is much more prevalent and involves
several systematic changes that reduce peptidoglycan cross-linking (in the cell
wall) which results in a thicker cell wall. Additional changes in VISA cells
include an increase in fructose utilization and fatty acid metabolism, as well as
an increase in the expression of cell wall synthesis genes [56].
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1.2 Spread and Severity of Antibiotic-Resistant Infections

Infections due to antibiotic-resistant bacteria are already widespread in the USA and
across the planet [118]. In 2011, the Infectious Diseases Society of America (IDSA)
Emerging Infections Network survey of national infectious disease specialists con-
cluded that more than 60% of participants had seen a pan-resistant, untreatable bac-
terial infection within the prior year [109]. The gram-positive pathogens, S. aureus
and Enterococcus species, are responsible for a global pandemic, which poses the
biggest threat [3]. MRSA kills more Americans each year than HIV/AIDS, murder,
Parkinson’s, and emphysema combined [52]. Vancomycin-resistant enterococci
are developing resistance to many common antibiotics [50]. Health care settings
are seeing serious gram-negative infections due to resistant Enterobacteriaceae
(mostly Klebsiella pneumoniae), Pseudomonas aeruginosa, and Acinetobacter [3],
with multi-drug resistant gram-negative strains, including extended-spectrum beta-
lactamase-producing E. coli and N. gonorrhoeae emerging in the community and
non-health care settings [102]. A review in 2014 indicated that an estimated 700,000
deaths globally were caused by infections caused by antibiotic-resistant organisms,
and predicted this number rise to 10 million per year by 2050 [4, 89].

Antibiotic-resistant bacteria and the infections they cause are having an impact
on every field of medicine and have a significant impact on morbidity and mortality.
It has been estimated that infections caused by antibiotic-resistant bacteria have
two-fold higher rates of adverse outcomes compared with similar infections caused
by susceptible strains [36]. The impacts of negative outcomes include treatment
failure and/or death as well as economic impacts such as increased cost of care
and length of stay due to treatment failure of the antibiotic [44]. Serious infections
due to MRSA have a significantly higher case fatality rate when compared with
methicillin-susceptible S. aureus infections [36]. Enterobacteriaceae that produce
extended-spectrum beta-lactamases are associated with greater treatment failure and
mortality than non-ESBL producing strains [77]. Infections due to K. pneumoniae
with resistance to carbapenems demonstrate a two- to five-fold higher risk of
death than infections caused by carbapenem-susceptible strains [29]. Forty-five
percent of bacteremia cases due to carbapenem-resistant Acinetobacter baumannii
are associated with a 14-day mortality [87].

1.3 The Economic, Social, and Civic Impacts of Antibiotic
Resistance

It is also important to consider the impact that antibiotic-resistant bacteria have
on local and global economies, individuals, communities, and populations and on
policies, regulations, and future planning pertaining to healthcare, food production,
and agriculture. The emergence of antibiotic-resistant bacteria has been called a
“crisis” or “nightmare scenario” that could have “catastrophic consequences” and
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in recent years has been recognized as a global threat. As a consequence it is
now being recognized by governments and worldwide organizations as a target for
policy generation and implementation [83]. The federal Interagency Task Force on
Antimicrobial Resistance founded in 1999 succeeded in documenting collaboration
and communication among the 11 agencies working on resistance issues, but it
failed to set an agenda for federal response [1]. In 2013, the CDC declared that
the human race is now in the “post-antibiotic era,” and in 2014, the World Health
Organization (WHO) warned that the antibiotic resistance crisis is becoming dire
[80], stating that the problem “threatens the achievements of modern medicine.
A post-antibiotic era—in which common infections and minor injuries can kill—is
a very real possibility for the 21st century.” Antibiotic resistance poses a substantial
threat to US public health and national security according to the IDSA and the
Institute of Medicine. In March 2015, the Obama administration released a National
Action Plan for Combating Antibiotic-Resistant Bacteria [6] and the 2016 federal
budget almost doubled the amount of federal funding for combating and preventing
antibiotic resistance to more than $1.2 billion [1, 7].

1.3.1 Economic Burden of Antibiotic Resistance

Antibiotic-resistant infections pose an economic burden as well. Patients with
antibiotic-resistant infections spend longer in the hospital, from 6.4 to 12.7 days,
collectively adding an extra eight million hospital days [50]. The medical cost per
patient infected with an antibiotic-resistant strain is estimated to be in the range
of from $18,588 to $29,069 [21, 50]. The US economy faces a total economic
burden estimated to be as high as $20 billion in health care costs and $35 billion
a year in lost productivity due to antibiotic resistance [50]. Individual families and
communities lose wages and have higher health care costs [80]. Staggeringly, the
global gross domestic product could be reduced by 2–3.5% by 2050 due to the
mortality from antibiotic-resistant infections, about $60 and $100 trillion [4, 89].

1.3.2 Increased Impact on Subpopulations

Many subpopulations are affected by the rise in antibiotic-resistant pathogens
considerably more than others. We outline a few specific subpopulations below.

• Developing populations. For people in the developing world, a post-antibiotic
era has already arrived. In parts of Africa, studies have shown that as many
as 97% of S. aureus are caused by MRSA [11] and high levels of resistance
to amoxicillin and penicillin in S. pneumoniae and Haemophilus influenzae
have been observed, causing concern given that pneumonia is a leading cause
of death in children [114]. In India and Pakistan, up to 95% of adults carry
bacteria that are resistant to β-lactam antibiotics including carbapenems, where
by comparison, only 10% of adults in the Queens area of New York carry such
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bacteria [101]. Worryingly, not all countries are collecting data on the prevalence
of these bacteria and their infections. According to the WHO only 129 of 194
member countries provided any national data on drug resistance in bacteria with
only 22 countries tracking the organisms and resistance that pose the greatest
threat including S. aureus and methicillin, E. coli and cephalosporins, and K.
pneumoniae and carbapenems [101].

• Underserved and impoverished communities. According to 2016 US census
data, the official poverty rate was 12.7%, down from 13.5% in 2015. Since
2014, the poverty rate has fallen 2.1 percentage points from 14.8 to 12.7%. This
means that in 2016, 40.6 million people were living in poverty, 2.5 million fewer
than in 2015 and 6.0 million fewer than in 2014 [105]. For most demographic
groups, the number of people in poverty decreased from 2015. Adults aged 65
and older were the only population group to experience an increase in the number
of people in poverty [105]. Many factors associated with poverty contribute
to the development of antibiotic-resistant organisms, some of which impact
affecting resistance in the USA [95]. Studies have shown that seniors and low-
income patients obtain antimicrobials from other countries and may engage in the
sharing of medications while others will save antibiotics from a regimen they did
not complete and self-treat [95]. Self-treating can drive antimicrobial resistance
because of the inappropriate use of antibiotics for viral illness, the antimicrobials
may not work for the specific organism type and the dosage may be incorrect
[95]. The high cost of healthcare and lack of access to healthcare for those who
are uninsured, prevents many from seeking necessary and lifesaving treatment.
The WHO has cited the provision of universal healthcare as a means to

improve access to appropriate and affordable treatment of infections, especially for
the poor through enactment and enforcement of regulations, dissemination of treatment
guidelines based on antibiotic resistance surveillance data, along with awareness raising
on the responsible use of antimicrobials and the challenge of antibiotic-resistant
bacteria [26].

It is imperative to remove financial barriers and allow access to antimicrobial
treatment of infections.

• At-risk populations. While antibiotic-resistant bacteria pose a threat to the
population as a whole they are likely to cause illness in populations with
greater overall risk of contracting infectious diseases. These at-risk populations
include the military [32], the homeless [5], children attending daycare [9],
immunocompromised persons [42], and the elderly [18]. Using prisoners as
an example, community-associated MRSA outbreaks in the USA have been
reported among persons incarcerated in prisons and jails with estimates of
MRSA colonization in prisons as high as 80–90%. Crowding and sharing of
contaminated personal items may contribute to MRSA spread among incarcer-
ated persons [69]. Of considerable global concern, Russian prisons are said to be
driving resistance among strains of TB [61].



Simulating Bacterial Growth, Competition, and Resistance 225

1.3.3 Impact on the Food Supply and Agriculture

Antibiotics have been widely used in agriculture and in some countries for growth
promotion [64, 89]. This practice was discontinued in the European Union in
2006 [2]. In the Americas and Asia this practice is still in use, where large
scale husbandry systems contribute to infection with these bacteria. Treatment is
generally delivered via the feed or water to all animals regardless of their infection
status [73]. Data from the US Food and Drug Administration shows that in 2015,
74% of farm animal antibiotics were administered via feed and 21% in drinking
water, for mass medication. It is estimated that the use of medically important
antibiotics in food animals in the USA is approximately three times higher than
human use [74]. As a consequence, antibiotic use in animals is thought to be an
important selective pressure for antibiotic resistance globally [64]. Sales in the
USA in 2015 of the critically important fluoroquinolones antibiotics was 20 tonnes,
a 16% increase over 2014 and a 33% increase over 2013 [74]. However, in the
USA since 2005, the use of fluoroquinolones has been banned in poultry due to
scientific evidence that this use was leading to fluoroquinolone resistance in human
Campylobacter infections. In 2016, the FDA showed that sales and distribution of
all antimicrobial drugs approved for use in food-producing animals rose by 1%
from 2014 to 2015 [75]. An FDA policy named FDA Guidance for Industry #213,
asked that drug sponsors voluntarily remove growth promotion from the labels of
all medically important antibiotics used in food animals from 2017 onwards [76].
Thankfully, major US food companies such as McDonald’s and Tyson Foods have
reduced and in some cases eliminated antibiotics in their products [79]. The success
or failure of #213 will not be known for a number of years.

1.4 Introduction to Agent-Based Models of Bacteria

Agent-based models (ABMs) vary from differential equation (DE) models by differ-
entiating individual agents acting within the world, instead of treating populations
as homogeneous. Though it is common for DE models to capture heterogeneity in a
population by partitioning it into subpopulations (compartment models), probabilis-
tically perturbing parameters or rates of flow from one state to another (stochastic
differential equations (SDEs)), or using spatial characteristics of the world to
influence proportions of the population (partial differential equations (PDEs)), these
techniques all maintain anonymity of the agents within the population. There are
pros and cons to both types of modeling approaches. Used in conjunction, ABMs
and DEs can help us better understand the dynamics of a complex system than if
we used one method of modeling in isolation. There has been much discussion in
the modeling community about the individual benefits of each [28, 92, 94, 99, 104]
and the creation of hybrid models that incorporate both methods [27, 30, 119]. We
recommend that you read through the portions of these papers that quite elegantly
describe the utility of ABMs, often grounded in biological contexts.
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Recently, ABMs have been used in addition to DEs to explore the spread of
infectious disease throughout a population. Agents (e.g., bacteria, people, bears,
sharks, coral, hurricanes, houses) act as identifiable entities that make a series of
decisions, choosing between a prescribed set of options. For instance, the agents
may move throughout the world by moving in a uniformly random direction, then
potentially transmitting a disease to another agent with a probability that depends
on the distance between the agents. Using ABMs allows us to more easily integrate
spatial components and randomness into our model than formulating and analyzing
PDE or SDE models.1 Ultimately, we are interested in the behavior of the system
that emerges when the agents continue to make stochastic or deterministic decisions
based on their current state, which may be affected by other agents in the world
or their environment. In the models of bacterial behavior studied throughout this
chapter, we will often want to use an ABM to study the emergent behavior of the
system. For instance, we may want to predict the proportion of a population that
will be affected by an infectious disease or investigate the effects of an intervention
(e.g., antibiotics).

Though we include a research project on modeling the spread of infectious
disease, most of this chapter will be dedicated to creating, using, and interpreting
ABMs that simulate bacterial growth, competition between bacteria within a system,
and the ways that bacteria can gain resistance to an antibiotic. The ability to allow
probabilistic interactions between various agents in space will help us mimic the
biological mechanisms inherent in the processes to better understand the reasons
for emergent behavior that we witness, predict trends we expect to see in the future,
and reconcile the output of our models with the data collected through laboratory
experiments.

To create our ABMs, we will be using NETLOGO throughout this chapter—a
common environment for programming ABMs. Created by Uri Wilensky in 1999,
the platform is free to download with a plethora of texts to assist with the basics of
model creation and is currently one of the standards for ABMs [120]. See [100] and
[121] for thorough descriptions of ABMs, NETLOGO, and their use and capabilities.
Though we will spend time building a knowledge-base and familiarity with common
techniques and commands with tutorial-style exercises while designing models of
bacterial growth, we recommend that students who wish to pursue the challenge
problems and research projects outlined later in this chapter use supplemental
resources to gain additional experience and assistance with NETLOGO. Working
through Chapters 2, 4, and 5 of [100] would be particularly useful. If you feel
comfortable creating simulations in NETLOGO, you can likely move through the
next section relatively quickly, focusing your attention on the biological content. If
this is your first experience with programming and/or using NETLOGO, we strongly
recommend (at the least) completing the introductory exercises and three tutorials
created by Wilensky that are available for free on the NETLOGO website [120].

1This is especially notable for students that would like to research a complicated biological and/or
social phenomenon without a mathematical background that includes advanced topics like PDEs
and SDEs.
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Throughout the following sections, the exercises, challenge problems, and
projects are meant to prompt your own discovery of concepts associated with
bacteria and ABMs through guided inquiry. There are few responses that require
computations. Most will necessitate trial-and-error-type processes using the simula-
tions you will create, followed by thoughtful reflection on why an action “worked”
or “failed.” For this reason, solutions are not provided—though practically all
versions of the code are freely available on the QUBES (Quantitative Undergraduate
Biology Education and Synthesis) website [41], with some complete code included
in the Appendix.

2 Bacteria Growth

To gain some familiarity with modeling in NETLOGO, we will begin by creating
a model of simple bacterial growth. However, before we begin to dive into the
code, we need to distill down the microbiological background given in the previous
section to the basic processes integral to bacterial growth. Bacteria reproduce
asexually by a process called binary fission. Typically, bacteria divide into two
identical daughter cells, containing identical genetic material. Depending on the
strain of bacteria and the environmental conditions (e.g., temperature, nutrients),
the rate of cell division, called generation time, can vary. In a laboratory, E.
coli, a type of bacteria, divide every 15–20 min in nutrient-rich media. The same
bacterium will divide every 12–24 h in the human intestine, where the environment
is less friendly and nutrients are limited [49]. Certain disease-causing bacteria,
or pathogens, have especially long generation times even when measured in the
laboratory. Mycobacterium tuberculosis, the causative agent of TB, has a generation
time of 15–20 h. Long generation times are thought to play an advantage in their
capacity to cause disease or virulence [66].

Exercise 1 (Theory) The bacterium E. coli reproduce approximately once every
20 min in a near-optimal environment [106]. If you begin with one E. coli how
many bacteria would you expect to see after

1. 20 min?
2. 1 h?
3. 2 h?
4. 1 day?
5. n divisions (i.e., generation times)?

If you were to plot the number of E. coli cells against time, what type of curve would
you expect?
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An initial amount of bacteria, N0, with a generation time of tg , will theoretically
grow to

N(t) = N02
t
tg , (1)

after t units of time.

Exercise 2 (Theory) Check your responses to Exercise 1 with the formula given
in Eq. (1). In terms of the variables and parameters used in Eq. (1), how would you
calculate the number of divisions or generation times n?

When recording and graphing data generated in a laboratory experiment, biol-
ogists plot log (logarithm) counts of the bacteria, due to the large numbers of
bacteria.2 By the time bacteria have saturated the culture, there can be as many
as 8 × 108 cells per ml. You likely encountered this in the previous exercises
when calculating the number of bacteria after relatively few generations, even when
beginning with only one bacterium. Imagine trying to plot the numerical counts
you calculated in the previous exercises using a linear scale. You would either have
to use a very inaccurate scale, or you would run out of paper (or at least table
space). Using a log scale makes the very large cell counts typically found easier to
visualize. Since bacterial growth is exponential, the log transformation will appear
linear. Additionally, a log transformation allows us to estimate the generation time
of bacteria by simply finding the slope of the curve.

Exercise 3 (Theory) Show that the function log(N(t)) is linear. Then, determine
the generation time, tg , by only using the slope the linear function, log(N(t)).

Exercise 4 (Lab) Many of the following concepts can be demonstrated in
the laboratory with the minimum of resources and equipment. They can
be accomplished in a microbiology teaching lab under the supervision of
your biology or microbiology instructor. We have provided examples of
experiments (with commercial kits) that can reinforce your learning about
the simulations, which can be found here: [108]. In addition virtual labs and
online resources are supplied to aid with student learning.

Exercise 5 (Theory) Suppose we have discovered a new as of yet unidentified,
deadly bacterial pathogen, Morbum malum. Through extremely careful laboratory
experimentation, we closely monitored its growth. Beginning with a bacterial count
of approximately 1.0 × 108 M. malum cells, we estimated approximately 4.2 ×
109 cells 66 h and 6 min later by plating serial dilutions of the culture on agar and

2There is a debate over using log transformations with data that expresses counts when performing
advanced statistical analyses [88]. However, most of the arguments against this type of transfor-
mation come from ecologists who frequently encounter zero counts.
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counting the numbers of colonies that form (these are called colony-forming units
or cfu). Find an estimate for the generation time (or doubling time) of M. malum.
Compare this generation time with that of E. coli. Which bacteria would you expect
to pose more of a threat to humanity? Why?

Now, in NETLOGO, let us begin with a single bacterium centered in the world,
simulating a bacterium placed in the center of a nutrient-rich, continuous-culture
solution in a flask. In continuous culture, nutrients are added and waste is removed
continuously. In the Code tab, type the following in order to create a setup
procedure:

to setup
clear-all
create-turtles 1 [set shape "circle 2" set color pink]
reset-ticks

end

When this procedure is called, NETLOGO will clear any graphs and erase any
variable values it once knew, create one pink circle at the center of the world, then
reset the ticks to zero. A tick typically represents one iteration through the
code. Notice the primitive command to generate an agent is create-turtles.
Though we are creating bacteria, the default name for the agentset is turtles.3 We
set the shape as circles to approximate the form of the bacteria.4 Below the setup
procedure, create a go procedure. Use the hatch command in the code below to
model binary fission. Every time you click the go button this procedure will “hatch”
(create) a clone of each turtle in the agentset turtles. We will consider each tick
to be the estimated generation time of the bacteria.

to go
ask turtles [
hatch 1 [right random 360 forward 1]

]
tick

end

Do not forget to create a setup and go button in the interface area.

3In the NETLOGO language, all movable agents are called turtles. A parent programming language,
LOGO, could be used to program robots that moved in the physical world based on the commands
given. The original robots had shells that gave the appearance of a turtle. A pen could be attached
to them so they would draw their path on paper. Visualizing the agents as these roaming robots
may help you better understand the natural language programming conventions and syntax.
4If you are reading an electronic version of this text, we strongly recommend typing the sample
code into the Code tab of NETLOGO instead of copying and pasting. This will help with your
understanding of the flow and syntax. Also, and possibly more importantly, NETLOGO will not
understand the formatted quotation marks, and you will receive an error. The naming conventions,
spacing, hyphenation, and lack of capitalization used throughout the code are standard style choices
for NETLOGO.
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Exercise 6 (Code) The primitive procedures right, random, and forward
take a single number as an input. Vary the numeric inputs. Explain what each of
these primitives do.

Use the model to confirm your responses to Exercises 1 and 2. For now, leave
the Forever checkbox unclicked. When the Forever checkbox is clicked, a circular
arrow symbol appears in the bottom right-hand corner of the button. This makes the
go button run Forever—meaning NETLOGO will continue to loop through the code
until you unclick the go button. By default, the Forever option is turned off. This
allows you to view the evolution of the simulation after each tick by a manual click.
You may notice that it may be difficult to count the number of bacteria even after a
few ticks (and for your computer to generate such large numbers of circles). In order
to better understand and analyze the results of our simulation, we will want a count
of the bacteria. We can create a monitor that displays the exact number present at
any given iteration.

In the Interface tab, choose Monitor from the drop-down menu to the right of the
Add button. Click within the interface area to place your monitor. In the Reporter
text box, we want to report the count of the turtles. Type count turtles, then
click Ok. Now, click the go button a few times and note the count of bacteria.

Exercise 7 (Theory) Do the counts that appeared in the simulation match the
number of bacteria you calculated in Exercises 1 and 2? You found a closed-form
formula for the number of bacteria present after n generations. Can you find an
iterative formula for the number of bacteria present after n generation times given
the bacterial count at n − 1 generations?

It is difficult to understand the growth rate of the bacteria by just examining the
counts at each step. A graphical display of the counts will provide more insight.
In the Interface tab, choose Plot from the drop-down menu to the right of the Add
button. Click within the interface area to place your graph. The default Pen update
commands already contain the appropriate command, plot count turtles.
A pen is a line created by plotting the reporter over time, in this case, the total count
of bacteria over time. Following best practices, give the plot a more appropriate
title (e.g., Bacteria Growth Curve) and label the axes (e.g., Number of Bacteria,
Concentration of Bacteria (cfu/ml), Optical Density of the Bacteria (OD600) or
Absorbance5 versus Time6). Note, there are other modifications you can make to
the plot, like changing the color of the pen or adding more pens. Then click Ok.

5In the laboratory setting, spectrophotometry is often used to estimate the concentration of bacteria
(cells per ml or colony-forming units (cfu) per ml). In essence, light is shone through a bacterial
suspension and the spectrophotometer records the amount of light that makes it all the way through
to the sensor. This is called the optical density or OD. For instance an OD600 (600 refers to the
wavelength of the light used) of 1.0 is roughly the same as 8 × 108 cells/ml depending on the
strain. In the laboratory experiments provided in this chapter, this method is used to approximate
the count of the bacteria cells present at a given time [108].
6Note that we are simplifying our model so that each unit on the horizontal is a generation time of
the bacteria. This means the scale could have a wide range of standard time units. In the case of
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Now when you run the simulation, you should see a curve, showing the total amount
of bacteria over time. The slope of this curve is the growth rate. You can find the
complete code up to this point at [125]: Model 1.0.

Exercise 8 (Theory) What type of curve do you see? Is this what you expected?
Describe how the growth rate changes over time. Explain why this change in growth
rate occurs.

Exercise 9 (Code) As previously mentioned, biologists often plot bacterial counts
on a log scale. Create an additional plot in the interface area to show the growth
curve on a log scale.7 Does this curve appear as you expected? (See [125]: Model 1.1
for sample code.)8

At this point, our bacteria have not moved from their initial positions, with
clusters grown around the original, single bacterium. Though there are non-motile
bacteria (e.g., S. aureus), many types of bacteria are motile such as strains of E. coli.
Though E. coli are known to move in a coordinated fashion (which is an entire area
of study in itself),9 we will simplify this motion to allow free and random movement
of the bacteria [24].

We will take this opportunity to reorganize the model structure since we will be
asking the bacteria to do two separate sub-procedures: move and divide. Our goal is
to create a straightforward go procedure that will just ask the bacteria to move then
divide. Often when designing a simulation and determining the order of actions,
modelers will create flow diagrams to visually map an agent’s path through a single
tick. Figure 1 illustrates a simple example that we will use to build the code for
Model 1.2.0.

Then, we can translate the visual map we created into the go procedure that will
replace our previous go procedure:

to go
ask turtles [
move
divide

]
tick

end

E. coli, one tick could represent 20 min. However, if simulating M. tuberculosis growth, the same
change in the horizontal axis could represent 20 h.
7The NETLOGO Dictionary found on the NETLOGO website is extremely useful for browsing
available primitive commands and their necessary syntax. In this case, you may want to check the
NETLOGO Dictionary for help with the log primitive.
8It is good practice to save a model with a new name whenever you make a substantial addition or
change in the code. Also, make comments with text following a semicolon or two in the code to
help others understand what each line does. Often this will even be useful to remind yourself what
you were thinking when you wrote the code.
9Though not the focus of this chapter, cell motility is a very interesting topic of study. The
NETLOGO Model Library contains some models that explore this (e.g., Bacteria Food Hunt,
Bacteria Hunt Speeds). You could create a research project on this topic by performing a literature
search and designing a model that simulates the current understanding of the way bacteria move
on and in different media.
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Fig. 1 This flow diagram
shows a visual plan for
Model 1.2.0. The
initialization provided in the
setup procedure to create
one bacteria cell is the
starting point of the diagram.
Then the cell will move in a
way prescribed by the move
sub-procedure we will create.
Then, the cell will divide in a
way prescribed by the
divide sub-procedure we
will create

Create cell

Move

Divide

Input

Process

We must write a procedure for each of those actions. We have already written
the divide procedure; we just wrote it straight into the go procedure (hatch 1
[right random 360 forward 1]). We can copy and paste that into its own
procedure like so:

to divide
hatch 1 [right random 360 forward 1]

end

Note, we called the divide procedure within the turtle context in the go procedure
(ask turtles [...]). Therefore, we do not need to “ask” the turtles again in
the divide procedure. Always be mindful of the context of each procedure. Who
is being asked to act? Who is asking?

Now, we will insert a move procedure, giving the cells the same directions that
we gave to the “hatched” cells:

to move
right random 360
forward 1

end

At this point, we could simplify the code even more and instruct the daughter
cell that was “hatched” to follow the move procedure; however, we may want the
flexibility to change the way that the bacteria move in further additions and revisions
of this model. If you are interested in building a model that emulates the observed
movement of particular motile bacteria, you will certainly need to enhance the move
procedure. (See [125]: Model 1.2.0 and the Appendix for sample code.)

Exercise 10 (Theory) If we start with the same amount of bacteria in ten different
nutrient-rich flasks, would you expect to count the exact same number of bacteria
after 1 h in each of the flasks? Why?
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Example 10 is referring to deterministic versus probabilistic or stochastic system
dynamics. If we repeat a process over and over again, are we sure to get the same
result (deterministic) or will there be some (or possibly a lot of) variability in the
result (probabilistic)? For instance, our current model uses both deterministic and
probabilistic processes. The number of cells exactly doubles with each click; this
is deterministic. Each cell moves forward one step with each click (deterministic),
but in a uniformly random direction (probabilistic). Though we will always create
the same number of cells after n clicks, the cells will be located in different places
because of the probabilistic move procedure.

Exercise 11 (Theory) In reality, would you expect to see bacteria to continue
growing in this manner? Why?

One of the many reasons that you will witness variability in the growth (and not
just placement) of bacteria in laboratory experiments (and in nature) is that bacterial
cells die naturally, like all living organisms. Since bacterial growth rates are found
from empirical counts seen in the lab or in patients, the generation times used in
the model already account for cell death.10 In future models, we will consider many
other reasons for why the death rate may rise (or the growth rate will decrease), as
well as other environmental conditions that lead to variability in bacterial growth.

Challenge Problem 1 (Code) Update the flow diagram and code to add a proba-
bilistic natural death rate into Model 1.2.0. There are multiple ways this could be
done. A simplified version of natural death could be coded by asking each bacterium
at every tick to roll a (non-standard, many-sided) die to determine if they will die.
In other words, you would be asking each bacterium at every tick to die with some
probability p, where p is likely quite small. It is important to consider the order
of the sub-procedures. For instance, what is the difference in the effect if you allow
bacteria to die before versus after they reproduce? You will use the built-in random
and die commands in NETLOGO. (See [125]: Model 1.2.1 for sample code.)

When growing in a flask or on an agar plate in the laboratory, bacteria do not
demonstrate unrestricted exponential growth ad infinitum. A flask or an agar plate
would represent a closed system. In a closed system, the growth of an organism
is limited by the available resources and many other possible factors. This is
comforting, as otherwise the world would have been overrun by E. coli and many
other species of bacteria by now.

Exercise 12 (Theory) Consider some environmental conditions that might lead to
a reduction of the growth rate of bacteria. Why do you think these conditions would
lead to a reduction in growth rate?

10We have included a project on quantifying bacteria death at the end of the chapter. The idea uses
genetic sequencing techniques used more commonly when studying viruses, but could be applied
to estimate changes in bacterial death rates to identify genetic mutations that affect fitness [124].
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2.1 Bacterial Growth on Agar Plates

Let us assume the spatial aspects of the world is a limitation in the bacteria’s growth.
Suppose the bacteria is growing on a two-dimensional agar plate and that it is non-
motile. If space is not available for the bacteria to divide, then the bacteria will
not divide. We can model this in NETLOGO by using an if-statement. We check
the bacteria’s eight closest neighboring patches to see if any are empty. If so,
we will allow the bacteria to divide and occupy one of the available neighboring
patches. Model 1.1 simulated unrestricted growth of non-motile bacteria; alter the
go procedure of that model in following way:

to go
ask turtles [
if any? neighbors with [count turtles-here = 0] [

hatch 1 [
move-to one-of neighbors with [count turtles-here = 0]

]
]

]
tick

end

Now, the limitation on growth is the total number of patches in the simulated plate.
No longer will each bacterium divide at each tick. Observing the plot, notice the
growth now appears logistic. Instead of unlimited growth, we now see the total
bacteria count not only approaching but also achieving a carrying capacity. Figure 2
shows a flow diagram of the potential paths for each bacteria cell for the code as it
is written.11 (See [125]: Model 2.0.0 for sample code.)

Exercise 13 (Theory) Examining the graph of the log of the counts of bacteria
present at each generation time, why is the curve no longer linear?

Exercise 14 (Theory) Since the time it takes for each cell to divide now varies
based on its environment, would you expect the average generation time to be higher
or lower than when there were no spatial restrictions?

Exercise 15 (Theory) If you modify the necessary condition for cell division in
Model 2.0.0 to be count turtles-here <= 1, how do you think the model
output would change? Try these modifications in the code, making sure to change
both instances of the logical expression. Were you right? Compare the carrying
capacity to that of the previous model. Right-click on a patch. What do you notice
in the menu? In terms of the bacterial growth on a plate, what is the difference in
how the bacteria will form?

11If we were concerned about computational power, we may want to improve the efficiency of
this code. In its current form, the loop that continually asks bacteria that had already failed the
unoccupied-neighbors test is in vain; there is no mechanism in the current code to transform
occupied patches into unoccupied patches. We always want to be mindful of efficiency by
eliminating redundancy in the code and/or using structures that minimize computation time.
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Fig. 2 This flow diagram
shows a visual plan for
Model 2.0.0. The
initialization provided in the
setup procedure to create
one bacteria cell is the
starting point of the diagram.
Next, the cell must determine
if it has any unoccupied
neighboring patches. If so, the
cell divides, and the newly
formed daughter cell is placed
in one of the unoccupied
neighboring patches. If not,
the cell will continue to look
for open neighboring patches
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Challenge Problem 2 (Code) Even on plates, some bacteria (like certain strains of
E. coli) are motile on the thin film of fluid spanning the agar surface [34, 40, 60, 112].
Though they still express coordinated behavior (swimming, swarming, twitching,
etc.) in their motion on an agar plate, we will simplify this to add movement in a
uniformly random way like we used when modeling movement in a fluid. Create
two different models that introduce movement on a plate. One can be created by
inserting the move procedure from Model 1.2 into Model 2.0.0 ([125]: Model 2.0.1).
The other method could restrict movement in the same way that we restricted
the cell division, by only allowing a cell to divide if there is a neighboring patch
that contains no bacteria cells ([125]: Model 2.0.2). Describe the difference in the
bacterial growth between these two models. Why does the first model appear to
grow without bound, though with a significantly reduced growth rate?

2.2 Effects of Energy Source Availability on Bacterial Growth
on an Agar Plate

In the previous exercises, you explored the theoretical idea of the vertical, or three-
dimensional, growth of bacteria on an agar plate by allowing multiple cells to exist
on the same patch. This simulates stacked bacteria growing out from the plate.
Experimental results combined with modeling have shown that the growth rate of
bacteria is almost identical whether they are grown in broth or on agar with similar
nutrients [45]. This leads us to posit that there are other environmental factors that
cause bacteria growth to subside before spatial constraints could possibly cause a
statistically significant effect.

You may have considered the absence of an energy source as a condition likely
to reduce bacteria growth. Indeed, bacteria cannot survive forever on an unmodified
surface; without food from which to obtain energy, they would die. Let us modify
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our model of bacteria growth on a plate, Model 2.0.0, and introduce an initial food
source (e.g., sugar, in this case, glucose) that will be consumed by the bacteria over
time. First, we will add to the code a patch variable called sugar. At the very top of
the code in Model 2.0.0 type,

patches-own [sugar]

Then, in the setup procedure, we need to specify the initial amount of sugar on
each patch.

ask patches [set sugar 50]

We use 50 units here in order for the bacteria to grow to capacity before the food
source becomes limited. At every tick, we will ask each bacteria to consume one
unit of sugar from the patch they are on. Let us create a consume procedure in the
following way:

to consume
if [sugar] of patch-here = 0 [die]
ask patch-here [
if sugar > 0 [

set sugar sugar - 1
]

]
end

This procedure first checks if the sugar on the patch is depleted. If so, the bacterium
dies. In this case, the bacterium no longer exists to ask... anything. Therefore, the
consume procedure would be exited if there is no sugar on the patch. However, if
there is sugar left on the patch, the bacterium does not die and continues to consume
one unit of sugar (simulated by the incremental decrease in the value of the sugar
variable). Do not forget to add the new consume procedure into the go procedure,
like so:

to go
ask turtles [
consume
if any? neighbors with [count turtles-here = 0] [

hatch 1 [
move-to one-of neighbors with [count turtles-here = 0]

]
]

]
tick

end

We want to ask the bacteria to consume the sugar prior to dividing, as energy is
required for binary fission. Once we instruct the bacteria to consume the sugar, the
simulation will produce a logistic growth curve with a relatively steep decay rate
beginning after 52 iterations until all of the bacteria die. (See [125]: Model 2.1 for
sample code.)
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Exercise 16 (Code) When you run the simulation, the graph of the log growth
curve stops plotting and the title turns red. Investigate this. What is the error? Edit
the go procedure to force the simulation to terminate using the stop primitive
command to correct the error, while also eliminating unnecessary iterations. You
may find an alternative method than the solution provided in the sample code for
Model 2.2 in the Appendix and in [125].

Exercise 17 (Lab + Code) Bacterial growth on different substrates supple-
mented with different nutrients can be easily demonstrated in the laboratory.
We have provided ideas for experiments where students could use agar or
broth, or vary the conditions including the pH, the sugars incorporated into the
media, or vary the oxygenation [108]. Students would prepare serial dilutions
of bacteria and plate for counts. The counted values could be logarithmically
transformed and the log values graphed against units of time.

After collecting the data, vary the parameters in your model to best mimic
the trends you witnessed in the bacteria counts. Think about adjusting numeric
values like the initial amount of sugar, the maximum amount of sugar a single
bacteria consumes in one tick, or the restrictions on how closely packed the
bacteria can be. Devise methods for determining what makes your simulation
best reflect the data. Additionally, as you learn more about environmental
effects on bacteria growth, you can return to this exercise or the future lab
protocols provided to continue to improve the replication of the trends you
discovered by collecting data in the lab.

2.3 Effects of Energy Source Availability on Bacterial Growth
in a Flask

Now, in a three-dimensional flask, we would not expect spatial restrictions to affect
bacterial growth as much as the availability of an energy source. Additionally,
the food would be relatively uniformly dispersed throughout the solution through
mixing. We will return to our simulation that considers motile bacteria growing
unrestricted by space in a flask (Model 1.2.0), but now we will add a restriction
that they must have enough energy to perform binary fission and to generally
survive. To the two sub-procedures we already included (move and divide), let
us add two new sub-procedures to execute within the go procedure: consume and
expire.12 In Model 2.2, we added a consume procedure to ask the bacteria

12It seems that the obvious name for this sub-procedure would be “die.” However, as you previously
saw, die is a primitive command hard-coded into NETLOGO that performs the opposite action as
hatch—hatch creates a turtle, and die removes a turtle.
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to consume spatially fixed sugar on an agar plate. We will use a similar idea for
the consume procedure in a flask, while keeping the idea in mind that the sugar
will be well-mixed in the solution. We will begin by declaring sugar as a global
variable (globals [sugar]). We will also need the bacteria to have an energy
variable (turtles-own [energy]) that will determine whether the bacteria
can divide or if it will expire. Both of those declarations will need to be added to the
top of the code.

Exercise 18 (Code) In this new model, we will want to keep track of the amount of
sugar that remains in the system as it will be depleted over time and not replenished
(like agar in a plate or broth in a flask). Create a monitor in the interface area that
reports the amount of sugar that has not yet been consumed. Note, sugar is a variable,
not an agentset. The syntax is slightly different than the monitor that shows the
number of bacteria.

In the consume procedure, we will want each bacterium to consume a sugar
unit if it is available. This means the sugar will get depleted and the energy of the
bacterium will increase. However, if the sugar has been completely consumed, the
bacterium’s energy will remain the same. We could use the following code:

to consume
if sugar > 0 [
set sugar sugar - 1
set energy energy + 2

]
end

Now, we will alter the move procedure written in Model 1.2.0 to use energy:

to move
right random 360
forward 1
set energy energy - 1

end

So for every movement, the bacteria have their energy reduced by one unit.
However, while sugar is available, the bacteria will be steadily increasing their
energy levels at a rate of one unit per tick.

The divide sub-procedure introduced in Model 1.2.0 will be transformed into
a conditional process. For the purposes of our model, we will assume that in order
for bacteria to perform binary fission, they require a sufficient amount of energy.
Then, when the division occurs and the two daughter cells remain, they will each
have half of the original cell’s energy. Though this may not be the precise method of
energy redistribution, the even split will be a reasonable proxy. Therefore, we could
use the following code:

to divide
if energy >= 20 [
set energy energy / 2
hatch 1 [right random 360 forward 1]

]
end
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Note that the hatched bacterium is a clone of the original, and so has the same energy
level. Also, we have semi-arbitrarily set the energy threshold for binary fission to
be 20 energy units. This parameter was chosen in order to approximately reproduce
the growth patterns we see in the scientific studies that plot bacteria amounts or
concentrations over time. See [13, 45] for graphic and verbal explanations examples
of slightly more sophisticated curve-fitting techniques with experimental bacteria
growth data. Although the authors of these papers are using DE models, the basic
ideas are the same—use an underlying set of relationships and behaviors, then find
relative parameter values that best imitate the trends you see in the data.

The bacteria will die when their energy levels are completely depleted, and so
we can create a simple expire procedure in the following way:

to expire
if energy = 0 [die]

end

Exercise 19 (Code) The order that the sub-procedures are called within the go
procedure matters. What order makes sense to you? Change the order of the sub-
procedures in the code. Do you notice any changes in the emergent behavior? Repeat
this multiple times.

In this model, we will also begin with a larger number of randomly placed initial
bacteria to simulate a well-mixed solution. The energy level of each bacterium is
determined by a uniform distribution. Therefore we will alter the setup procedure in
this way:

to setup
clear-all
create-turtles 25 [
set shape "circle 2"
set color pink
set energy random 20
setxy random-xcor random-ycor

]
set sugar 100000
reset-ticks

end

The total amount of sugar is set to 100,000 units in order to visualize the
exponential growth, a plateau, then a sharp decay. The simulation will need to run
for approximately 100 ticks to witness the growth and decay. Just as we observed in
Model 2.1 (bacteria growth on an agar plate), the log plot turns red when all of the
bacteria have died. Therefore, we may fix this error in the same way by using the
stop command.

Exercise 20 (Code) If you do not wish to click the go button 100 times, create
another go button that runs the simulation until you unclick the button using
the Forever option. Note, in order to witness the growth and decay at a visually
processable speed, you may use the slider near the top of the Interface tab to slow
down the tick rate. (See [125]: Model 3.0.0 and the Appendix for sample code.)
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Exercise 21 (Code) What do you expect will happen in the simulation if the
amount of energy required for the bacteria to divide is decreased? Increased? Try
this in the model. Were you correct? What changed in the simulation output?

Challenge Problem 3 (Code) Instead of following the count of sugar by observing
the monitor, use the color of the world to indicate the amount of sugar that remains in
the solution. I suggest using the pcolor and scale-color primitive commands.
(See [125]: Model 3.0.1 for sample code.)

Challenge Problem 4 (Code) Return to Model 3.0 once more to incorporate a
spatial component of the nutrients in the way we used in the agar plate example in
Model 2.2. Do this by attaching quantities of sugar to the patches and only allowing
the bacteria to consume the sugar if it is on a patch that has remaining sugar. (See
[125]: Model 3.0.2 for example code if you get stuck.)

You may notice in Model 3.0.0 the plateau signifying the stationary phase is quite
abrupt and crudely models logistic growth. If you think about the nutrients available
in the flask, there would certainly be a spatial component; once a substantial portion
of the sugar has been broken down, not all bacteria would be in the proximity of an
energy source. Let us consider a way to simulate a spatially dependent food source
by using breeds in NETLOGO. Breeds allow us to designate classes of agents that
can have their own variables and actions. We will alter Model 3.0.0 that introduced
the four main sub-procedures: consume, move, divide, expire. The bacteria will be
a class of agents (breed) that are required to be in the proximity of a sugar (another
breed) in order to consume it and gain energy for binary fission. First, we must
define our breeds at the top of the code:

breed [sugars sugar]
breed [bacteria bacterium]

Note, the breed primitive requires both a plural and singular form of the agentset.
Instead of designating the energy variable to all agents by using turtles-own, we
can restrict the assignment of energy to only the bacteria using bacteria-own.
Essentially, we now use the plural name we gave to the agentset anywhere we would
have previously used turtles. The singular form is still reserved for addressing
a particular agent. Moreover, if we would like to address all agents (in this case
bacteria and sugar), we would still use the entire agentset of turtles. Now, we
must make some additions and slight alterations to the setup procedure. We must
populate the solution with sugar, so we will add:

create-sugars 2000 [
set shape "dot"
set color white
setxy random-xcor random-ycor

]

This creates 2000 randomly placed small white circles, representing sugar. Notice
we use create-sugars instead of create-turtles since we have two
distinct breeds. The initial amount of 2000 sugars was chosen in order to model
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all phases of growth and decay. Next, we need to modify the bacteria initialization
to designate the agents as bacteria:

create-bacteria 15 [
set shape "circle 2"
set color pink
set energy random 21
setxy random-xcor random-ycor

]

Again, the numbers were chosen to produce an accurate simulation. In the labora-
tory, bacteria growing in liquid are rotated quickly so as to agitate the contents,
ensuring mixing of nutrients, the cells themselves and good aeration. For our
simulation, we will assume the flask is shaken regularly to ensure the sugars
are mixing evenly in the solution. Thus, our simulated sugars (and bacteria) will
move randomly within the world. We add the movement of the sugar to the go
procedure in the following way:

ask sugars [
right random 360
forward 5

]

A forward movement of 5 ensures the remaining sugars are well-mixed and not
remaining far away from the bacteria clusters. In the move procedure for the
bacteria, increase the forward movement to 5 as well, as it seems as if the mixing
would have the same effect on the positional change of the sugar and bacteria.

The divide and expire sub-procedures for the bacteria will remain the same;
however, we must modify the consume procedure. Just as we considered the spatial
proximity of the bacteria and sugar in Challenge Problem 4, we will use a similar
concept here. The bacteria can only consume the sugar if they are adjacent to it. So,
we will use the built-in in-radius command to ask the bacteria to look with a
certain range around themselves and consume a sugar if they find one. If there are
no sugars within the designated area, the bacteria lose energy.

to consume
if any? sugars in-radius 2 [
ask one-of sugars in-radius 2 [die]
set energy energy + 15

]
end

Note, we have increased the energy gain from a sugar unit to 15, enough for the
bacteria to divide after consuming two sugars within a few ticks. This change
simulates conditions where bacteria can easily and quickly perform binary fission.
(See [125]: Model 4.0 for sample code.)

Exercise 22 (Code) Click the go button a few times and observe the growth
curves. Why do they appear flat? And, why is the sugar monitor reporting an error
(indicated by the red font color)? Compare to the number of bacteria. Does this
make sense? Edit the Pen update commands within the plots in order to plot the
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Fig. 3 The labeled curves show all four phases of bacterial growth: lag (A), log (B), stationary
(C), and death (D). The increasing then decreasing bacterial counts (left) are displayed in pink and
then shown on a log scale (right). The additional decreasing gray curve (left) displays the amount
of sugar remaining at each time step. The plots were generated with Model 4.3 found in [125]

actual bacterial growth curves. Then add an additional pen to the plot to display the
amount of sugar that remains. Modify the monitors for bacteria and sugar so that
they show the proper totals. (See [125]: Model 4.1 for sample code.)

Exercise 23 (Code) Run the simulation for 50 ticks. What is not happening?
Inspect a bacterium by right-clicking on it, choosing one of the bacteria on the
patch, and clicking Inspect from the menu shown. Carefully consider the values of
the variables associated with the bacterium. Find the logical error in the code that is
not producing the desired results. Then, alter the code in order to fix the simulation.
(See [125]: Model 4.2 for sample code.)

Model 4.2 simulates three of the four phases of bacterial growth: the log
(or exponential) phase, the stationary phase, and the death phase, shown in Fig. 3
by B, C, and D, respectively. The remaining phase, indicated by A, occurs at the
beginning of the growth process, called the lag phase. This is when the bacteria have
just been placed in the growth medium and are preparing for the necessary processes
that must take place in order to consume the energy source. The plots shown in
Fig. 3 are copies of simulated bacteria growth trajectories that were generated in
NETLOGO.13 Though the resolution of the data visualizations is lacking, these
images are shown here to validate your own output (with some variation, given
the variability in the simulation).14

13Though the horizontal axis is labeled as time, recall, the time unit used in this simulation is
arbitrary. The purpose of building this model was to replicate the phases of growth of an unspecified
bacteria in a closed system; we did not try to use parameter values that would approximate
growth with empirical cell counts or concentrations of a particular bacteria over time. Adjusting
the generation time to fit data you collected through a laboratory experiment or using a known
generation time to observe the emergent behavior of the system are components of many of the
proposed research projects later in the chapter.
14The letter labels in Fig. 3 were added in post-production. You should not expect to see those
when you create your plots in NETLOGO.
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Exercise 24 (Code) Modify your model to include a lag phase. Note, even when
the bacteria are adjusting to their new environment in the flask, they will continue
to move and use energy. (See [125]: Model 4.3 and the Appendix for sample code.)

Not only does the depletion of energy sources cause bacterial decay, but
paradoxically, the consumption of an energy source can contribute to bacteria death
as well. For instance, when E. coli consume glucose , they are fermenting the
glucose in a process called mixed-acid fermentation. This process results in the
production of acetate as well as other acids and gas (carbon dioxide) which acidifies
the medium, rendering the environment sub-optimal for the E. coli [16, 96]. Note,
if the bacteria were inhabiting a continuous-culture solution, the acidic waste would
be removed.

Let us add this unfortunate, yet natural, effect of consumption in a closed system
into our model. We will begin by including a new global variable, acidity, defined
at the very top of the code with globals [acidity]. Whenever we use a
global variable, it is important to initialize its value in the setup procedure. Since
we assume the initial medium is near-optimal, we will set the acidity to be zero,
set acidity 0. Since acid is added to the solution when sugar is consumed by
the bacteria, we need to incorporate an increase in acidity (or a decrease in pH) to
the consume procedure. After a sugar is consumed, we can simulate the acidity
level rising in this way:

to consume
if any? sugars in-radius 2 [
ask one-of sugars in-radius 2 [die]
set energy energy + 15
set acidity acidity + 1

]
end

In order to model the adverse effect of the acidity on the E. coli, we will add another
cause of death on top of starvation. One way to simulate the continual decay in the
quality of the solution due to acidity is to transform acidity into a death rate. We
will use the following code as an example:

to expire
if energy <= 0 [die]
if random-float 1 < acidity / 200000 [die]

end

Here, random-float is introduced as an alternative way to model probabilistic
behavior. This chooses a uniformly random non-negative floating point number that
is strictly less than 1. Then, because 200,000 is 100 times greater than the initial
amount of sugar specified in the setup procedure—and, therefore, much greater
than the maximum acidity value—this creates a monotonically increasing death
rate due to consumption with a minimum of 0 and a maximum of 0.01. In other
words, the acidity will begin by killing 0% of the bacteria with every tick and slowly
increases to killing 1% once all the sugar has been consumed. (See [125]: Model 5.0
and the Appendix for sample code.)
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In the versions of Model 1, we used one tick as a proxy for generation time. In the
versions of Models 2, 3, and 4, we restricted cell division by other environmental
conditions, e.g., occupation of neighboring patches, availability of an energy source.
We pose a research project to assess how environmental changes affect the average
generation time.

Research Project 1 We noted early in Sect. 2 that biologists have witnessed
significantly different generation times for E. coli when observed in a
laboratory versus in a human body. Use the sources provided above, along
with your own literature review, to determine potential causes of the variation
of generation times, e.g., availability of efficient energy sources, ability to
thrive in extreme temperatures. Create multiple models that incorporate those
environmental differences. Within each model, track the number of ticks
between every cell division. Record those disaggregated generation times
in a list for export. You may want to investigate the use of lists in the
Programming Guide found in the NETLOGO User Manual hosted on the
NETLOGO website [120]. You will want to analyze the simulated data by
considering measures of center and spread of generation times in a given
environmental setting, ultimately, reconciling the emergent behavior with data
you gathered by completing one of the laboratory protocols we provided or
with experimentally produced data found in the literature.

In the following steps to design the next iteration of the model, we will create a
slider so the user can input a bacteria’s empirically estimated generation time. This
will lay a framework that will allow simulated competition between two strains
of bacteria. However, we should be mindful that we are hard-coding a minimum
generation time into the simulation. Therefore, the average generation time that
emerges will be longer than the one specified.

At this point, we will adjust the code in order to allow for user-defined variability
in generation time. We will convert ticks to time units and create an internal counter
to track the time required before the cell division is completed. In making these
changes, we can also make some adjustments to improve the sample code given for
Exercise 24, which simulates the lag phase. First, we need to add a counter variable
to the bacteria. Within the variable declaration for the bacteria breed we will now
include:

bacteria-own [
energy
generation-time-counter

]

The generation-time-counter will increase by one for every tick, trigger-
ing a division when the counter has reached the specified generation time. Of course,
we still need to maintain the energy requirement for cell division as well. To keep
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track of each bacterium’s clock, we will insert a standard counter at the end of the
consume-move-expire-divide cycle within the go procedure:

ifelse ticks > 10
[
ask bacteria [

consume
move
divide
expire
set generation-time-counter generation-time-counter + 1

]
]
[
ask bacteria [ move ]

]

Note, when the ifelse conditional statement checks if the number of ticks is
greater than 10, this forces the lag phase to continue for 10 ticks (a possible solution
to Exercise 24 to include a lag phase in the growth curve). In the divide sub-
procedure, we must restrict the cell division even further than before. Not only is
an energy threshold required, but enough time must have passed for the bacteria to
complete binary fission. As an example, we will use the 20-min average generation
time of E. coli, where a tick represents 1 min in the following code:

to divide
if energy >= 100 and generation-time-counter >= 20 [
set energy energy / 2
set generation-time-counter 0
hatch 1 [right random 360 forward 1]

]
end

Here we remember to reset the generation-time-counter to 0 to
begin the binary fission process again. Recall, the “hatched” bacterium
will have the same variable values as its parent bacterium, resulting in the
generation-time-counter for both daughter cells to be 0.15 Notice that
the energy threshold has increased. This is due to the increase in the number of
sugars that the bacteria can consume between cell divisions and for the purpose of
simulating all phases of bacterial growth. We will also change the amount of energy
gained from the consumption of a sugar to 5 (set energy energy + 5) in
the consume procedure, in order to maintain the relatively arbitrary choice to have
the maximum amount of energy gained over the generation time to be equal to the
threshold needed for division.

Finally, we need to initialize the bacteria with a generation-time-counter
value in the setup procedure. We will allow this value to be a uniformly random
value between 0 and 20 using set generation-time-counter random 21

15It is important to recognize that in this construction, the 20-min generation time used here is a
minimum generation time; this will not result in an average generation time of 20 min.
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and placing this in the setup procedure in the creation of the bacteria. This way, all
bacteria will begin at different stages of preparedness for cell division. After the lag
phase is over, some of the bacteria will be able to split immediately, while others will
need a bit more time. This simulates the empirically driven concept that individual
bacteria will adjust to their environment at different rates. The stochasticity of
the cell division times is part of what gives us variability in the bacterial counts
after a fixed time has passed. Much work has been done to model with stochastic
differential equations and agent-based models backed with experimental evidence
on methods to measure the variability caused by multiple stochastic processes
during all phases of bacterial growth [15, 47].

Because of the additional ticks that result in additional consumed sugars, we will
increase the initial number of sugars. Instead of hard-coding the amount of sugar
added into the model, let us create a slider to allow us to change this value in the
interface without needing to alter the code. In the Interface tab, find slider in the
drop-down menu. Then click within the interface area to place the slider. Sliders
are named with the global variable that you plan to alter. Conventionally, we use a
descriptive noun or phrase with hyphens between words. In this case, we will name
the variable initial-sugars. Then, we will set the range and granularity of the
slider. In this case, we will allow the slider to go from 0 to 20,000 by 1000 sugar
increments. We set the default value to be the center, 10,000, since this results in an
outcome that displays all phases of bacterial growth.

Now, we need to incorporate this variable into our code. This user-determined
value should replace the previous hard-coded numeric value for the initial number
of sugars created in the setup procedure. Substitute create-sugars 2000
with create-sugars initial-sugars in the code. Now, we can use the
slider to change this value easily. Note, we did not need to define this global
variable using globals within the code. In fact, if you do this, you will receive an
error. In allowing the initial amount of sugar to be user-defined, we must alter the
death-by-acidity conditional statement. We will make this adjustment:

if random-float 1 < acidity / (500 * initial-sugars) [die]

By multiplying the user-determined global variable, initial-sugars, by 500,
we are restricting the death rate even more than in the previous version, now
simulating an even slower monotonic increase from 0 to 0.5%.

Finally, all that remains is to change the axis titles on the graphs to reflect the
appropriate units. Time in standard units (minutes, hours, etc.) is now measured by
the horizontal axis instead of a unit of time indicating a generation time.16 You may

16No units have been specified for time because any time unit could be used in the model as long
as we are consistent. For instance, in the case of E. coli, we use 20 for our generation-time
variable. The units on this variable are now minutes, and so the x-axis would show time in minutes.
If we were modeling bacteria with a longer generation time, like, M. tuberculosis, we may choose
to still use 20 for generation-time. However, the x-axis would be a measure of time in hours.
Alternatively, we could stick with minutes and set generation-time to be 1200, which would
mean the x-axis units would be minutes again. You may realize that such a large value for the
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also wish to remove the pen that displays the amount of sugar that was added in
Model 4.1, as we did in the sample code, so you can view the bacterial growth curve
in more detail. (See [125]: Model 6.0 for sample code.)

Exercise 25 (Code) Vary the parameter determining the maximum death rate due
to fermentation and increased acidity of the environment.

(a) What happens to the growth phases when the parameter is decreased? Why do
you think this occurs?

(b) Use the methods described in Research Project 1 to find the average generation
time for various values of the parameter. Is there an effect?

Exercise 26 (Code) Vary the slider for the initial value of added sugar.

(a) What do you notice in the time it takes to execute the simulation once? Why
does this occur?

(b) What do you notice in the graphical output when you run the simulation to
completion? Why does this occur?

(c) Use the methods described in Research Project 1 to find the average generation
time for various values of the sugar-slider. Is there an effect?

Exercise 27 (Code) Vary the amount of energy gained from consuming a sugar
and the threshold needed for cell division.

(a) What changes occur in the bacterial growth curve? Inspect the bacteria. Why
does this occur?

(b) Use the methods described in Research Project 1 to find the average generation
time for various values of the parameter. Is there an effect?

Exercise 28 (Code) At this point our simulation allows the bacteria to continue to
consume sugar and amass stores of energy. In reality, the bacteria would genetically
regulate this, so we will in our model as well. Include an additional condition in
the consume procedure to only allow bacteria to consume sugar if their energy is
below a fixed threshold, say 100 units. (See [125]: Model 6.1 for sample code.)

Exercise 29 (Theory) Instead of using the simulated data to find an average
generation time, how could you estimate the generation (doubling) time of the
bacteria from the graphs produced? You may want to consider Eq. (2). Use this
method to estimate and confirm the expected generation time of the E. coli example.
Now devise a method to find the generation time from the log bacteria growth curve.
Estimate and confirm the expected generation time with this method.

Exercise 30 (Code) Change the code to model Lactobacillus acidophilus, a pro-
biotic (i.e., “good bacteria”) that is part of healthy gut flora. L. acidophilus has an
average generation time of approximately 2.86 h when in a glucose solution [67].

generation time would lead to a lengthier simulation, as each tick or iteration through the go
procedure is one time unit, likely leading to a preference for using a specific unit of time.
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Use the methods from above to support that the changes you made in the code
actually reflect the new generation time.

Exercise 31 (Code) Create a slider in the interface for generation time to more
easily model different strains of bacteria. (See [125]: Model 6.2 and the Appendix
for the complete sample code.)

Research Project 2 DIY Lab: Let’s make kombucha!

We can witness the mixed-acid fermentation first-hand with a delicious experi-
ment you can conduct at home. Kombucha is a carbonated acidic beverage made
by fermenting sweet tea with a symbiotic culture of bacteria and yeast (SCOBY).
The SCOBY contains multiple strains of bacteria and yeast. You can acquire this
stiff, jelly-like culture by purchasing one online, getting one from a friend who
makes kombucha, or growing your own with a plain, unflavored kombucha that you
purchase at a store. The simplified process of fermentation that creates the finished
kombucha product is as follows: the yeast consume the sugar, which produces
carbon dioxide and ethanol. The bacteria then convert the ethanol into acid [72].
Note, because of the symbiotic nature of the yeast and bacteria, the ethanol that is
produced is mostly metabolized by the bacteria, causing the alcohol content of the
beverage to typically be kept to under 0.5% ABV (alcohol by volume).17 The longer
the SCOBY is thriving in the sweet tea solution, the more carbonated and acidic
the beverage becomes. Additionally, the acid-producing bacteria are genetically
predisposed to thrive in relatively high-acid environments—unlike many bacteria,
like E. coli, that would die in these conditions. For this project, you will combine
DIY scientific experimentation with computer simulation to better understand the
fermentation process and predict the outcomes of your kombucha dependent on
varied parameters.

1. Create a laboratory protocol to systematically measure the amount of sugar, acid,
and SCOBY present in the solution.18 If you are doing this at home—and not in a
lab—you could qualitatively measure the sugar with a sweetness scale, use litmus
strips to measure the pH, and either weigh the SCOBY with a kitchen scale or
estimate its volume by using a ruler to find its dimensions. Note, temperature can

17So, for those of you under the legal age for drinking most of the fermented beverages
currently on the market, you may legally consume the beverage produced after the project is
complete (unless your kombucha was produced in the lab—never consume anything that was
produced/modified/brought into the lab. There could be (and probably are) nasty hitchhiking
pathogens swimming around in there!).
18See [81] for an example of a chemistry-focused laboratory experiment that uses technical
equipment to perform measurements of more variables.
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affect growth rates and the fermentation process, so be sure to consider this in
your data collection. For a more advanced experiment, repeat your experiment
multiple times to collect more data.19

2. Use the data collected to find relationships between the three variables you
measured. Create a simulation that mimics the fermentation process. You may
want to create a few more breeds to model the additional organisms and
byproducts found in and necessary for the fermentation process. You should also
do additional research on the types of yeast and bacteria present in a standard
SCOBY to better model their interactions. Keep in mind that the bacteria used
are not affected by the rise in acidity—unlike our previous model that was made
with E. coli in mind.

3. Use the relationships you found to determine parameters and units for your
model.

4. Compare the results of your experiment with the results of your simulation
to assess your model’s validity. Adjust parameter values to maximize your
confidence in your model’s ability to predict the quantities or concentrations of
the model variables over time.

5. Consider several scenarios and use your model to predict the outcomes. Then,
test your predictions by making kombucha under conditions that are as close to
the hypothetical scenario you chose. For instance:

a. You are fermenting your sweet tea in an apartment in New York City over the
summer, and your air conditioner breaks. Alternatively, it is the winter, and
your heat gets shut off.

b. You order a SCOBY from a company online. You make kombucha as directed,
but the end product has an acidity level close to that of apple cider.

c. Oh no! Visible mold growth has appeared on the surface of your kombucha.20

Exercise 32 (Lab) The ability of bacteria to ferment sugars and to change
the environment can be demonstrated several ways. The simplest would be to
use solid media that changes color as the bacteria grow, ferment and produce
acid, the acid changes the pH, thus the agar changes color. Fermentation tubes
can also be used to demonstrate the ability of bacteria to ferment (this is
indicated by a color change) and to produce gas (a bubble) and pH indicator
strips could be inserted (cautiously) and the pH recorded. Triple sugar iron
slants can also be used to demonstrate fermentation and gas production but

(continued)

19Each fermentation process requires significant time (on the order of a month). You could consider
running multiple experiments simultaneously to produce more data in less time. You could also
vary parameters (type of tea, incubation temperature, light exposure) and see what happens.
20You will likely want to read through the next section on competition before tackling this scenario.
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Exercise 32 (continued)
also the production of H2S gas. All these procedures would require access to
the laboratory. You can find lab protocol examples here: [108].

3 Competition Between Bacteria Strains

Now that we have a simplified model of the growth of a single strain of bacteria,
let us consider a simulation of the competition between two types of bacteria that
consume the same energy source. There are many ways the bacteria could vary; they
could have different generation times, death rates, energy consumption rates, etc.
For instance, E. coli and Salmonella enteritidis both consume glucose for energy.
However, E. coli has a much shorter generation time than S. enteritidis, ∼20 min and
∼30 min, respectively. Therefore, we would expect when competing for the same
resource in a closed system, E. coli would grow at a faster rate than S. enteritidis
initially, while the environment is still habitable. Since there will eventually be many
E. coli to ferment the glucose and increase the acidity of the medium, this will cause
the environment to be much too acidic for both strains of bacteria in the solution.

Exercise 33 (Lab) Competition between bacteria as well as their ability to
adapt and evolve is one of the most fascinating labs to perform but it takes
more time than a standard lab. This may be best suited to a long-term project
or independent study. Find a mentor for this [108].

Challenge Problem 5 Use the main ideas from Model 6.2 to create a simulation
of two strains of bacteria competing over the same energy source. When analyzing
the results of the simulation, consider changes in the initial amount of sugar, initial
amount of each bacteria strain, and generation time of each strain. How do these
changes affect the amount of each bacteria strain over time?

Lactic acid bacteria, like the previously introduced Lactobacillus acidophilus, are
characterized by their production of lactic acid and their propensity for thriving in
high-acid environments that most bacteria cannot tolerate. However, L. acidophilus’
2.86 h generation time is significantly longer than that of E. coli’s—only 20 min.
Both strains can thrive independently in milk and consume lactose for energy [13].
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Exercise 34 (Theory) Suppose there are equal numbers of L. acidophilus and E.
coli in milk. Formulate a hypothesis for the trajectory of the quantity of each strain
over time.

Challenge Problem 6 Create a simulation to test the hypothesis you formulated in
Exercise 34.

Now, suppose we want to simulate competition in a solution containing two
energy sources: glucose and lactose. Let us return to competition between E. coli
and S. enteritidis. E. coli can metabolize glucose and lactose. However, in media
containing both glucose and lactose, E. coli favors glucose; it will metabolize all of
the glucose first, ignoring the lactose until the glucose has been consumed. The
genes needed for the breakdown of lactose are being repressed by the bacteria
in a tightly regulated process called catabolite repression [82]. While the bacteria
are breaking down the glucose, they produce a glucose breakdown product which
inhibits an important enzyme called adenylate cyclase. This enzyme is responsible
for the conversion of ATP (adenosine triphosphate—the energy currency of the cell)
into cAMP. When the E. coli have metabolized all the glucose, the breakdown
product is no longer created, and adenylate cyclase is activated, which forms
cAMP. When this happens, the cell relieves the repression on the genes for lactose
breakdown, the genes are transcribed, the proteins translated and the breakdown of
lactose as a source of energy can begin. On the other hand, S. enteritidis can only
metabolize glucose; it is a non-lactose fermenter.

Exercise 35 (Theory) Suppose we begin a culture with an equal number of cells
of E. coli and S. enteritidis. Assume they consume all energy sources at roughly the
same rate. Sketch the curves that represent the bacteria count of each type over time
when

1. no food source is added;
2. only glucose is added;
3. only lactose is added; and
4. glucose and lactose are added.

Challenge Problem 7 Modify the competition simulation you previously made to
include glucose and lactose, making sure to abide by the metabolic and fermentation
constraints outlined above. Use your simulation to confirm your expectations for the
curves in the previous exercise.

Lactose usually is fermented rapidly by Escherichia, Klebsiella, and some
Enterobacter species and more slowly by Citrobacter and some Serratia species. In
the clinical lab, this is the mechanism used to distinguish between pathogenic and
non-pathogenic Enterobacteriaceae—non-lactose fermenters are usually pathogens,
e.g., Salmonella and Shigella [14]. The ability of bacteria to ferment different sugars
can be demonstrated using a variety of procedures in the laboratory (See [108].).
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Exercise 36 (Lab) The ability of bacteria to ferment lactose is of particular
importance in clinical microbiology where non-lactose fermenters are com-
monly pathogenic. Students can determine the ability of bacteria to ferment
this sugar by simply streaking them onto MacConkey agar [14, 108].

4 Genetic Mutations

Every time a cell divides, there is a chance—albeit, typically quite a small
chance—for a genetic mutation. For instance, researchers have used whole-genome
sequencing to determine that E. coli have a mutation rate of approximately 2.2 ×
10−10 mutations per nucleotide per generation or 1 × 10−3 mutations per genome
per generation [65].21 However, this method is impractical for determining mutation
rates for bacteria with larger genomes due to the computationally expensive process.

Exercise 37 (Theory) Use the equivalent rates of mutation given above to approxi-
mate the number of nucleotides in the genome of the strain of E. coli studied in [65].

Challenge Problem 8 Use the approximate number of mutations per genome per
generation to create a simulation of E. coli growth with mutations. Track the total
number of mutations over time and the total number of mutated bacteria. Note, when
a mutated bacterium divides, it replicates the mutation.

Some genetic mutations affect the fitness of the bacteria—the bacteria’s ability
to survive and divide. For example, a mutation could improve the fitness of a
bacterium: it could enable the bacterium to consume a new energy source; it
could increase the range of temperatures in which the bacterium would thrive; it
could render a chemical compound ineffective whose purpose is to kill the bacteria
(more on this later!). However, genetic mutations can also decrease the fitness of a
bacterium: it could render the bacteria unable to complete the binary fission process;
it could prevent the bacteria from consuming a vital energy source; it could decrease
the range of pH levels that the bacteria could thrive. Another possibility is that the
mutation could have no effect on the fitness level of the bacterium at all.

Challenge Problem 9 Create a simulation that allows mutations to affect the
fitness level of bacteria in a positive, negative, or neutral direction. Incorporate
effects on survival and division.

21Though, it does appear that not all nucleotides are equally likely to mutate under selective
pressures due to evolutionary processes [65].
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Research Project 3 Create a model that allows the user to change the
environment (e.g., temperature, energy source, pH level). Simulate mutations
that directly affect the fitness of a bacterium to the potential changes in the
environment. Run your simulation many times with many different parameter
settings to identify combinations of parameter values where certain types of
mutated bacteria prevail. Read about the BehaviorSpace tool in NETLOGO to
assist with running this type of experiment.

Recall from the laboratory experiments and simulation exercises on bacterial
growth that biologists estimate the generation time of a bacteria strain in a fixed
environment by determining the number of bacteria present over multiple time
steps during the log growth phase. You may remember that we ignored natural
cell death (for the most part) in our growth models. This is due to the difficulty
in experimentally determining the number of bacteria that have died; our laboratory
procedure only records living cells as we count them on the agar. We cannot count
dead cells. Because there are no bacterial corpses to count, this makes estimating
a natural death rate difficult. In the study of viruses (virology), researchers often
use next generation DNA sequencing to determine viral death and genetic diversity
distributions [124]. Simply put, this technology allows you to determine the
proportions of a given DNA sequence as a fraction of all the DNA sequences in
a sample at a given time. If you can determine the number of each type of mutated
virus strains that exist in every sample over time, then when a strain no longer exists
in the sample, you know that (at least) all of those viruses have been lost. The same
method could conceivably be used in determining bacterial strain death, particularly
for bacteria with higher mutation rates.

Research Project 4 Create a model that includes (significantly) reduced
genome sequence of a bacteria and include a natural death rate. Force
mutations to the genome at a fixed rate. Isolate the different sequences made
by the mutations and track each strain’s count over time. From the data you
generate, attempt to recover the natural death rate you had hard-coded into the
model. Then, incorporate the effect that mutations can have on fitness levels
into your model. Could you use the data you generate to identify specific
portions of the genome that have particular effects on fitness? If you allow
changes in the environment, could you recover more information about the
mutations? Even though your findings will only be recovering information
you had to specify in the simulation, how could you use this process in a
laboratory setting to better understand bacterial mutations?
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5 Antibiotic Intervention and Resistance

Though most bacteria inside and outside of our bodies are harmless—or even
helpful, there are strains of bacteria that are detrimental to the health of a human.
When inside a human body, these disease-causing, or pathogenic, bacteria are often
treated with antibiotics in order to hasten the elimination of the bacteria, thereby
relieving the host of undesirable symptoms more quickly than their natural immune
response. As mentioned in the introduction, antibiotics are not only used to treat
humans but are widely used to promote growth in food-producing animals. Though
legislative efforts have been successful in decreasing the overall use of “medically
important” antibiotics in food-producing animals, FDA data has shown that in
2017, 62% of farm animal antibiotics were administered via feed, and 30% in
drinking water, for mass medication [10]. The widespread and non-discriminate use
of antibiotics in animal populations has been implicated in the rapid increase and
spread of antibiotic-resistant bacteria.

Challenge Problem 10 Modify and add an antibiotics breed to Model 6.2 to create
a simulation of the effect of antibiotics on bacterial growth. Determine a typical
prescribed dosing schedule of an antibiotic and incorporate this into the simulation
to track the bacterial growth over time. Consider alternative dosing schedules to
witness the effectiveness of antibiotics when a non-standard dosing schedule is
followed.22

Suppose you have a urinary tract infection (UTI), and your medical doctor pre-
scribes you Cipro (ciprofloxacin)—a broad-spectrum antibiotic, which indiscrimi-
nately kills all strains of bacteria—based on your description of your symptoms.
These broad-spectrum antibiotics will kill the pathogenic bacteria, but will also
eliminate “good bacteria” such as lactobacilli found in a healthy digestive tract
[55]. Alternatively, if your medical doctor first tests the bacteria present in a urine
sample, they could prescribe you with a narrow-spectrum antibiotic, like Primsol
(trimethoprim) that would only target the pathogenic bacteria causing the unwanted
symptoms of a UTI [51].

Challenge Problem 11 Simulate the effect that antibiotics have on bacteria. Con-
sider the varied affect that broad- versus narrow-spectrum antibiotics would have on
multiple strains of bacteria contained in a system.

Research Project 5 Expand the simulation from above to specifically con-
sider the use of broad-spectrum antibiotics for a UTI, which will kill the
“good” and “bad” bacteria. One of the probiotics (“good” bacteria) found

(continued)

22See the existing model, Bacterial Infection, located in the NETLOGO Model Library for an
example of this.
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Research Project 5 (continued)
in the urinary tract is Lactobacillus acidophilus, which was introduced in
a previous section. E. coli are a common cause of urinary tract infections.
L. acidophilus strains secrete antibacterial substances with activity against
E. coli, along with other bacteria and yeast [48]. L. acidophilus can also
thrive at much lower pH levels than E. coli. Use the ideas of bacterial
growth, competition, and antibiotic intervention to simulate the trajectory of
the populations of bacteria. In your model, consider the difference between
antibiotics introduced in a closed system (e.g., an agar plate in a laboratory)
or in the human (or livestock) body. For instance, how would the immune
system contribute to the elimination of the pathogens? Additionally, what if
narrow-spectrum antibiotics were used instead of broad-spectrum?

Under laboratory conditions, some antibiotics kill the targeted bacteria (bac-
tericidal), while others prevent the bacteria from dividing (bacteriostatic) [91].
For first line therapy of patients, bactericidal rather than bacteriostatic agents are
recommended because the eradication of microorganisms serves to limit, although
not completely avoid, the development of bacterial resistance [111]. Resistance has
been shown to occur more rapidly with bacteriostatic agents such as tetracyclines,
sulfonamides, and macrolides than it does with bactericidal agents such as beta-
lactams and aminoglycosides [111].

The use of antibiotics increases the chance of creating antibiotic-resistant
bacteria.23 Some bacteria gain resistance through mutations. Recall, mutations
occur at some rate per nucleotide per genome per generation. When antibiotics are
present, bacteria that are resistant will survive, while the others will die. This forces
the selection of this mutation in the genome.

Research Project 6 Modify the previous simulation that tracked genetic
mutations and their effect on fitness to focus only on mutations that result
in antibiotic resistance. Perform a literature search to find an estimate for an
average rate of acquiring resistance for a particular bacteria to a particular

(continued)

23Antibiotics can increase the mutation rate in bacteria [68]. Antibiotics not only impose a selective
challenge to all bacteria but also accelerate the rate of adaptation by magnifying the rate at which
advantageous mutations arise (any type of mutations, not just for resistance). In addition, mutation
rates have been shown to increase in the bacterial flora of patients treated with antibiotics, not only
for the targeted bacteria [53]. Strains that have acquired antibiotic resistance mutations often have a
lower growth rate and are less invasive or transmissible initially than their susceptible counterparts
[126]. The fitness costs of resistance mutations can be ameliorated by secondary site mutations.
These so-called compensatory mutations may restore fitness in the absence and/or presence of
antimicrobials.
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Research Project 6 (continued)
antibiotic. Then model the introduction of the antibiotic to the bacteria.
Run the simulation many times to analyze the outcomes. How frequently
is resistance gained and selected for? Consider the differences between the
effect of the antibiotic in a controlled laboratory setting and in the human
body. What other environmental factors may influence the rate of selection
for resistance?

Tuberculosis (TB) is often treated with a drug cocktail; in other words, a
collection of narrow-spectrum antibiotics that target Mycobacterium tuberculosis—
the causative agent of TB. Drug cocktails are prescribed in order to lessen the chance
of creating a resistant strain. The cocktail is often made of four bactericidal drugs:
isoniazid (INH), rifampin (RIF), streptomycin (STM) or ethambutol (EMB), and
pyrazinamide (PZA). The individual use of any of these drugs to treat TB has a
relatively high chance to cause resistance, but the risk is significantly reduced when
taken together.

Exercise 38 (Theory) Suppose an individual with sensitive TB was prescribed a
cocktail of INH, PZA, RIF, and EMB. The rate at which TB gains resistance to
each antibiotic in the cocktail has been previously determined—when introduced
in isolation. Resistance is acquired to INH at a rate of 2.56 × 10−8 mutations per
bacterium per division, PZA at a rate of 10−5, RIF at a rate of 3.32 × 10−9, and
EMB at a rate of 1.0 × 10−7 [57, 110]. Assuming each mutation is independent of
the other, at what rate would we expect TB to mutate to gain resistance to all four
antibiotics?

Research Project 7 Using the rates given above (and your own literature
review), create a simulation that supports your calculation. Use the estimate
for the generation time of M. tuberculosis (provided earlier in the chapter)
and the simulation to determine the typical length of time resistance would
emerge when taking any combination of the drugs in the cocktail. Find the
standard dosing schedule used for sensitive strains of TB. Use your model to
simulate the dosing schedule. Alter the schedule and/or dosages to change the
chances of resistance. What if you were just given one antibiotic at a time
and were only prescribed the next if the strain gained resistance to the current
drug? What if you used the same cocktail for a strain of TB that is already
resistant to at least one of the antibiotics?
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6 Spread of Antibiotic-Resistant Bacteria in Humans

Another way bacteria gain resistance is through horizontal gene transfer (HGT).
This is the process where bacteria acquire DNA from similarly-designed bacteria.
For instance, suppose you have acquired an innocuous strain of E. coli that has
gained resistance to carbapenem—antibiotics that are often considered to be the last
stand against bacteria. However, you have a healthy immune system that prevents
this strain of E. coli from reaching high enough levels to make you sick. Perhaps
you visit your elderly, diabetic grandfather in a nursing home, and you pick up an
antibiotic-sensitive strain of K. pneumoniae. The K. pneumoniae begins to make
you quite ill. You go to a walk-in clinic, and they prescribe you a broad-spectrum
antibiotic. The antibiotic begins to wipe out all of the bacteria in your body, but the
stress causes K. pneumoniae to conjugate with E. coli and in so doing to acquire
the carbapenamase plasmid that confers resistance [54]. After a few generations,
there are enough carbapenem-resistant K. pneumoniae to take hold. A healthy
immune system may be able to respond to this attack, but you did just wipe out
your entire gut flora with the broad-spectrum antibiotic. Unfortunately, the resistant
K. pneumoniae will not respond to another antibiotic now.

Exercise 39 (Lab) There are several commercially available kits to demon-
strate the ways that bacteria can exchange genetic information. Though they
require access to a microbiology lab, the resources needed are minimal and
the experiments are simple to perform and interpret [108].

Research Project 8 Create a simulation of HGT. Formulate a model of the
intracellular mechanisms and dynamics involved in the process, then consider
a human population-scale model of the implications of HGT on planetary
health.

Research Project 9 In the introduction, we discussed the societal causes
and implication of antibiotic resistance. There are many agent-based models
created in NETLOGO that address the spread of infectious disease. In the
NETLOGO Model Library you can find the epiDEM models, which give basic
models that simulate an epidemic [122, 123]. There are also NETLOGO ABMs
that consider the effect of antibiotic resistance [20], the spread of vector-
borne diseases [46], and the effect of vaccinations [58]. Other ABMs use

(continued)
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Research Project 9 (continued)
many of the above strategies and network structures to illustrate physical and
social connections between individuals [43, 70]. Other researchers are using
more advanced ABM systems that can utilize immense amounts of data. For
instance, many are incorporating Geographic Information Systems (GIS) data
to incorporate real city-structures and census data to better understand the
spread of infectious disease [93, 117]. We challenge you to create an agent-
based model that considers and analyzes the social implications of antibiotic
resistance that were addressed in the introduction. For instance, incarceration
of people with limited healthcare and physical space, regulation of antibiotic
use on livestock, use of broad- versus narrow-spectrum antibiotics, changes
in the prescription of antibiotics prompted by the regulation of healthcare,
and increased mobility of people and populations. Standard infectious disease
models could be adapted to incorporate these social effects. A thorough
analysis of the simulation could help inform policy or support further research
in the area you studied.

Appendix

Model 1.2.0

to setup
clear-all
create-turtles 1 [set shape "circle 2" set color pink]
reset-ticks

end

to go
ask turtles [
move
divide

]
tick

end

to move
right random 360
forward 1

end

to divide
hatch 1 [right random 360 forward 1]

end
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Model 2.2

patches-own [sugar]

to setup
clear-all
create-turtles 1 [set shape "circle 2" set color pink]
ask patches [set sugar 50]
reset-ticks

end

to go
ask turtles [
consume
if any? neighbors with [count turtles-here = 0] [

hatch 1 [move-to one-of neighbors with [count turtles-here
= 0]]

]
]
if count turtles = 0 [stop]
tick

end

to consume
if [sugar] of patch-here = 0 [die]
ask patch-here [
if sugar > 0 [

set sugar sugar - 1
]

]
end

Model 3.0.0

globals [sugar]

turtles-own [energy]

to setup
clear-all
create-turtles 25 [
set shape "circle 2"
set color pink
set energy random 20
setxy random-xcor random-ycor

]
set sugar 100000
reset-ticks

end

to go
ask turtles [
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consume
move
divide
expire

]
if count turtles = 0 [stop]
tick

end

to consume
if sugar > 0 [
set sugar sugar - 1
set energy energy + 2

]
end

to move
right random 360
forward 1
set energy energy - 1

end

to divide
if energy >= 20 [
set energy energy / 2
hatch 1 [right random 360 forward 1]

]
end

to expire
if energy = 0 [die]

end

Model 4.3

breed [sugars sugar]
breed [bacteria bacterium]

bacteria-own [energy]

to setup
clear-all
create-sugars 2000 [
set shape "dot"
set color white
setxy random-xcor random-ycor

]
create-bacteria 15 [
set shape "circle 2"
set color pink
set energy random 21
setxy random-xcor random-ycor

]
reset-ticks
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end

to go
ifelse ticks > 10
[
ask bacteria [

consume
move
divide
expire

]
]
[
ask bacteria [ move ]

]
if count bacteria = 0 [stop]
ask sugars [
right random 360
forward 5

]
tick

end

to consume
if any? sugars in-radius 2 [
ask one-of sugars in-radius 2 [die]
set energy energy + 15

]
end

to move
right random 360
forward 5
set energy energy - 1

end

to divide
if energy >= 20 [
set energy energy / 2
hatch 1 [right random 360 forward 1]

]
end

to expire
if energy <= 0 [die]

end

Model 5.0

globals [acidity]

breed [sugars sugar]
breed [bacteria bacterium]
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bacteria-own [energy]

to setup
clear-all
create-sugars 2000 [
set shape "dot"
set color white
setxy random-xcor random-ycor

]
create-bacteria 15 [
set shape "circle 2"
set color pink
set energy random 21
setxy random-xcor random-ycor

]
set acidity 0
reset-ticks

end

to go
ifelse ticks > 10
[
ask bacteria [

consume
move
divide
expire

]
]
[
ask bacteria [move]

]
if count bacteria = 0 [stop]
ask sugars [
right random 360
forward 5

]
tick

end

to consume
if any? sugars in-radius 2 [
ask one-of sugars in-radius 2 [die]
set energy energy + 15
set acidity acidity + 1

]
end

to move
right random 360
forward 5
set energy energy - 1

end
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to divide
if energy >= 20 [
set energy energy / 2
hatch 1 [right random 360 forward 1]

]
end

to expire
if energy <= 0 [die]
if random-float 1 < acidity / 200000 [die]

end

Model 6.2

globals [acidity]

breed [sugars sugar]
breed [bacteria bacterium]

bacteria-own [
energy
generation-time-counter

]

to setup
clear-all
create-sugars initial-sugars [
set shape "dot"
set color white
setxy random-xcor random-ycor

]
create-bacteria 15 [
set shape "circle 2"
set color pink
set energy random 100
setxy random-xcor random-ycor
set generation-time-counter random generation-time + 1

]
set acidity 0
reset-ticks

end

to go
ifelse ticks > 10
[
ask bacteria [

consume
move
divide
expire
set generation-time-counter generation-time-counter + 1

]
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]
[
ask bacteria [move]

]
if count bacteria = 0 [stop]
ask sugars [
right random 360
forward 5

]
tick

end

to consume
if any? sugars in-radius 2 and energy < 100 [
ask one-of sugars in-radius 2 [die]
set energy energy + 5
set acidity acidity + 1

]
end

to move
right random 360
forward 5
set energy energy - 1

end

to divide
if energy >= 100 and generation-time-counter >=

generation-time [
set energy energy / 2
set generation-time-counter 0
hatch 1 [right random 360 forward 1]

]
end

to expire
if energy <= 0 [die]
if random-float 1 < acidity / (500 * initial-sugars) [die]

end
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