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Abstract Ordinary Differential Equation (ODE) models are ubiquitous throughout
the sciences, and form the backbone of the branch of mathematics known as
applied dynamical systems. However, despite their utility and their analytical and
computational tractability, modelers must make certain simplifying assumptions
when modeling a system using ODEs. Relaxing (or otherwise changing) these
assumptions may lead to the derivation of new ODE or non-ODE models and
sometimes these new models can yield results that differ meaningfully in the context
of a given application. The goal of this chapter is to explore some approaches
to relaxing these ODE model assumptions to derive models which can then be
analyzed in ways that parallel or build upon an existing ODE model analysis.
To accomplish this, the first part of this chapter (Sect. 2) reviews some common
methods for the application and analysis of ODE models. The next section (Sect. 3)
explores various ways of deriving new models by modifying the assumptions of
existing ODE models. This allows investigators to explore the extent to which
ODE model results are robust to changes in model assumptions, and to answer
questions that are better addressed using non-ODE models. The last part of this
chapter suggests a few specific project ideas (Sect. 4) and encourages undergraduate
researchers to share their results through presentations and publications (Sect. 5).

Suggested Prerequisites Knowledge of topics from a standard calculus sequence, basic linear
algebra, an introductory course in probability, and some familiarity with very basic differential
equations models are assumed. Readers would also benefit from having some basic programming
experience (in R, Python, MATLAB, or a similar high-level scientific programming language),
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and familiarity with calculus-based probability, stochastic processes (e.g., homogeneous and non-
homogeneous Poisson processes), statistical theory of estimators, biology, or experience with
mathematical modeling in an applied context.

1 Introduction

Ordinary Differential Equations (ODEs) models are ubiquitous throughout the
sciences, and are a cornerstone of the branch of applied mathematics known as
applied dynamical systems. Examples include the exponential and logistic growth
models, Newton’s laws of motion, Ohm’s law, chemical kinetics models, infectious
disease models for the control and treatment of diseases ranging from the common
cold to HIV and Ebola, and models for large scale ecosystem dynamics.

The utility of ODEs as mathematical models is partly a reflection of their
analytical and computational tractability, and also the relative ease of formulating
ODE model equations from assumptions about the system being modeled. Mod-
elers also have access to a well-developed set of mathematical approaches and
computational tools for analyzing ODEs [4, 10, 39, 41, 45, 50, 55, 56, 84, 94–
96, 119, 126, 127, 149, 155, 160, 165]. If there is a practically important or
scientifically interesting real-world system that changes over time, odds are very
good that someone has modeled it with one or more ODEs. However, despite
their utility, modelers must also make certain simplifying assumptions when using
ODEs to model a real-world system (e.g., that systems are well mixed, individuals
behave identically, etc.), and sometimes alternative assumptions can lead to different
outcomes that are very relevant in the context of the motivating application.

The goal of this chapter is to explore some approaches to relaxing these ODE
model assumptions to come up with new models that can then be used in ways that
parallel or build upon an existing ODE model application. This allows investigators
to explore the extent to which results obtained from the analysis of an ODE
model are robust to changes in certain model assumptions, and/or to address a
broader range of questions, some of which might be better answered through the
analysis of a similar ODE or non-ODE model (e.g., using a stochastic model of
population growth and decline to assess the distribution of time to extinction under
different population management scenarios [105]). Undergraduate students reading
this chapter are encouraged to initially focus on understanding the broader context
of the technical details presented in this chapter, and then later attempt to more fully
understand specific details, with the help of a research mentor or advisor, as they
work on a project.

A great recipe for an undergraduate research project is to (a) find an interesting
paper in a reputable, peer-reviewed journal that includes some analysis of an ODE
model, (b) repeat one or more analyses to confirm a specific published result,
and then (c) answer similar questions via the analysis of a new model derived by
modifying one or more assumptions of that original ODE model. Mathematically,
these projects often go one of two ways: Changing ODE model assumptions will
sometimes result in a new set of ODEs, while changing other assumptions can lead
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to the formulation of a new non-ODE model, e.g., a model that is defined using
partial differential equations (PDEs), stochastic differential equations (SDEs), or
discrete-time difference equations.

This chapter is divided into two main sections. First, we review some common
approaches to using ODEs models in Sect. 2, including methods of mathematical,
computational, and statistical analysis. Second, in Sect. 3, we address some of the
different ways that ODE model assumptions can be modified to derive new ODE or
non-ODE models, and additional project suggestions are presented in Sect. 4.

Examples are used throughout to illustrate the process of deriving a new model,
and some guidance is provided for analyzing or simulating these derived models.
Some examples include computer code written in the R programming language
[137]. R is a popular, free computing platform that is widely used, easy to install,
and well supported in terms of free resources to get started programming in R. For
readers that have no prior programming experience, or want to learn R, relevant
resources for getting started with R are provided in the appendix. To help readers
who are proficient in another language (e.g., Python, MATLAB, or Mathematica) but
who are unfamiliar with R, the R code in this chapter is annotated with comments
so that it can be more easily ported to other languages.

Lastly, many sections below include exercises that the readers should work
through as they read the sections. These are intended to help solidify the topics
being discussed, and should not require consulting outside resources. The challenge
problems are more involved, and are intended to push the reader to dig deeper into
the topic, or perhaps inspire a research project, by exploring additional resources
including software tools and other peer-reviewed publications.

2 Techniques for Analyzing ODE Models

Before we explore some of the ways in which we can alter ODE model assumptions
to obtain new (sometimes non-ODE) models, it is helpful to consider the kinds
of questions investigators address using ODE models, and some related methods
of ODE model analysis. This is done in Sects. 2.2–2.7. But first, for context, it
helps to review how ODEs can often (but not always, e.g., see Newton’s laws of
motion) be viewed as mean field models of a stochastic process, as this is often
the natural context in which to critically evaluate and revise the assumptions of
biological models.

2.1 ODEs as Mean Field Models

First order systems of ODEs are systems of equations that can be written as

dx
dt

= f (t, x, θ), x(0) = x0, (1)
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where the state variable vector x(t) = (x1(t), . . . , xn(t))
T ∈ R

n, the initial
condition vector x0 ∈ R

n, the parameter vector θ = (θ1, . . . , θp) ∈ R
p, and

the function1 f : R
n �→ R

n. We call such systems autonomous when the
right hand side f only depends on time through its dependence on the state
variables, i.e., when the right side of the system of equations can be written f (x, θ).
While these are deterministic equations, in the context of mathematical models
we often think of ODEs as mean field approximations of an underlying stochastic
model. More specifically, biological and other physical systems made up of large
numbers of discrete individuals can often be modeled as continuous-time, discrete-
state stochastic models (e.g., where the model tracks X(t), the integer number of
individuals alive at time t , which changes stochastically to reflect births and deaths
in the population). Thus, mean field models attempt to capture a particular kind of
average behavior of a stochastic model.

As detailed below, mean field ODEs that approximate these stochastic models
can often be derived from a stochastic model in two main steps: First, the
continuous-time model is approximated with a discrete-time model (step size Δt),
and the stochastic rule that describes how state variables change over one time step is
replaced with a deterministic rule obtained by simply averaging over that stochastic
model. Second, letting Δt → 0, the discrete-time model converges to an ODE (e.g.,
see [5, 20, 92] and the similar approach to derive stochastic differential equations
(SDEs) in [3]).

For example, consider a simple exponential growth model of the growing number
of bacteria, x(t), with per capita growth rate r , in a Petri dish that was inoculated
with x0 > 0 bacteria at time t = 0, given by

dx(t)

dt
= r x(t), x(0) = x0. (2)

Note that this is a continuous-state (i.e., x(t) ∈ R) deterministic model, despite the
fact that we envision the actual biological process as a integer-valued number of
bacterial cells dividing and dying stochastically over time. This dual perspective
is very important in that it provides a foundation for thinking about model
assumptions, and in some cases a starting point for deriving new models.

To clarify this link between stochastic and deterministic approaches, consider
the following derivation of Eq. (2) from the following stochastic model2 of bacterial
population growth. Let X(t) be the number of cells at time t . Assume that, over
a sufficiently small time period of duration Δt > 0, the probability p of each cell
dividing to give rise to a new cell is assumed to be identical for all cells, independent
of time, and given by

1This function is often referred to as the right hand side, abbreviated RHS, of the ODE.
2It is worth mentioning here that multiple different stochastic models can yield the same mean field
ODE model.
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p = r Δt, r > 0. (3)

A stochastic, discrete-time map can be used to model this process, as follows. If
there are X(t) cells at time t , then Δt time units later, at time t + Δt , there are

X(t + Δt) = X(t) + U(X(t), rΔt) (4)

cells present, where U(n, p) is a binomially distributed random variable where for
each of the n = X(t) cells there is a probability p = rΔt that a given cell will give
rise to a new cell by time t + Δt .

To derive the ODE model of exponential growth Eq. (2) as an approximation of
the above stochastic model, we follow the steps described above: The discrete-time
stochastic model is approximated by a mean field3 deterministic model, and then we
let the time step Δt → 0 to yield the desired ODE.

In this first step, the number of new cells U is replaced by the expected value
E(U) as follows. Assume that the number of cells X(t) is sufficiently large, and
that we use an appropriately small choice of Δt so that U is well approximated by a
binomial distribution. The expected value of this binomial random variable, where
n = X(t) trials and probability of success p = r Δt , is the product np = X(t) r Δt ,
thus we make the approximation U(X(t), r Δt) ≈ E(U(n = X(t), p = r Δt)) =
X(t) r Δt . This yields the mean field discrete-time model

x(t + Δt) = x(t) + r x(t)Δt. (5)

Note that we distinguish between these new state variable quantities x(t) (which are
R-valued expectations) and their integer-valued counterparts X(t), even though
we interpret both as representing the number of bacteria present at time t .
Lastly, rearranging this deterministic equation, and taking the limit as Δt → 0,
yields

x(t + Δt) − x(t)

Δt
→ dx(t)

dt
= r x(t). (6)

There are a few remarks on the above derivation that are worth mentioning.
First, a more careful derivation, that explicitly tracks error terms in the above
approximations, would yield the same mean field result, but those details were
omitted for brevity and clarity (for a more detailed example, see [92]). Second, mean
field models locally average how state variable change in time, and do not average

3The deterministic equation derived in this first step is called a mean field model because, for a
given point X(t) in state space, we take the distribution of possible steps the system might take on
the next time step, and define a new model by replacing that random quantity with its mean—in
this case, the mean of the binomial random variable U(n = X(t), p = rΔt). One could visualize
this on a grid of state space values with vectors pointing from x(t) to x(t + Δt), forming a vector
field.
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over full trajectories of a stochastic model. Thus, mean field model solutions can
differ markedly from the average over multiple stochastic model trajectories. Third,
for readers who are familiar with Poisson processes [145], this is a very useful
context for thinking about these underlying stochastic processes associated with
a mean field ODE. In fact, the approach above (i.e., discretizing time to derive a
mean field model) very much parallels the typical approach to deriving properties
of homogeneous and non-homogeneous Poisson processes by discretizing time then
taking the continuum limit (e.g., see the book [40], the standard derivation of the
binomial approximation of the Poisson distribution [106], and [92] for a some
relevant aspects of Poisson processes). In the context of Poisson processes, what
has been assumed in the stochastic model above can be rephrased as follows: each
individual cell replicates itself according to a Poisson process with rate r where the
events generated by the Poisson process mark the times at which replication events
occur.

Exercise 1 It is often appropriate to make simplifying assumptions when formulat-
ing mathematical models of real-world phenomena. The art of modeling is striking
a balance between simplicity, mathematical tractability, and capturing the important
mechanism that drive real-world processes. Often, these simplifying assumptions
are not explicitly stated as an exhaustive list as part of the model description,
for example, above we have assumed all cells are basically identical in terms of
their replication rates. What other implicit assumptions have been made in the
above example? Hint: What was assumed about resource limitation, cell mortality,
whether or not cells influence one another in terms of death and cell division, and
so on?

Challenge Problem 1 Formulate a similar stochastic model to Eq. (4), but replace
replication rate symbol r with b and include a mortality rate d. Show this yields
an identical mean field model to Eq. (2) where r = b − d. Hint: Show E(ΔX) ≈
X bΔt − X dΔt .

This ability to reframe the stochastic model assumptions in terms of Poisson
processes is important because the ODE model Eq. (2) reflects these underlying
exponential distributions through the per capita growth rate r . Importantly, this
pattern generalizes: when the appearance or loss of individuals in a given state
follows i.i.d. Poisson process first event time distributions with rate r(t) (i.e.,
exponential distributions if r is constant) then the per capita loss or growth rates
in corresponding mean field ODEs are the coefficients −r(t) or r(t), respectively.
This is illustrated by the following theorem, which is stated here without a proof
(the proof follows from more general theorems in [92]).

Theorem 1 Consider a continuous-time, stochastic, state transition model in which
individuals spend independent and identically distributed amounts of time in a given
state (X) and then transition to subsequent state Y. Suppose that individual dwell
times are either exponentially distributed with constant rate r , or (more generally)
follow the first event time distribution under a non-homogeneous Poisson process
with rate r(t). Further assume individuals enter X at rate ΛX(t) and the dwell time
in state Y follows the first event time under a (non-homogeneous) Poisson process
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with rate μ(t). Then, if x(t) and y(t) are the expected number of individuals in each
state X and Y, respectively, the mean field ODE model for this case is

dx

dt
= ΛX(t) − r(t) x(t) (7a)

dy

dt
= r(t) x(t) − μ(t) y(t). (7b)

To further illustrate how these underlying Poisson process rates are reflected
in ODE model terms, consider the well-known SIR model of infectious disease
transmission [98] (for more on SIR-type epidemic models, see [4, 7, 22, 23, 43, 98]).
In this model, a closed population of size N is assumed to be made up of
individuals who are either susceptible to an infectious disease, currently infected
(and infectious), or recovered from infection and immune to reinfection by the
pathogen. Accordingly, we let state variables S(t), I (t), and R(t) correspond to
the number of susceptible, infectious, and recovered individuals at time t . The SIR
model is a simple ODE model of how these numbers of individuals in each state
change over time, and is given by the equations

d

dt
S(t) = − λ(t) S(t) (8a)

d

dt
I (t) = λ(t) S(t) − γ I (t) (8b)

d

dt
R(t) = γ I (t) (8c)

where λ(t) ≡ β I (t) is the per capita infection rate (also called the force of infection
[7]), and γ is the per capita recovery rate. Note that, by the assumed dependence of
λ(t) on I (t) this is a nonlinear system of ODEs. This model can also be viewed as
the mean field model for an underlying stochastic state transition model of a large
but finite number of individuals that each transition from state S to I following “event
times” (the time spent in a given state; also called dwell times or residence times) that
obey a non-homogeneous Poisson process first event time distribution with rate λ(t).
Each individual similarly transitions from I to R following a homogeneous Poisson
process first event time distributions with rate γ , hence the time an individual spends
in state I is exponentially distributed with mean 1/γ (see [98] for a derivation, and
see [9, 13], and references therein for examples of the convergence of stochastic
models to mean field ODEs).

Altering the assumptions of ODE models like the SIR model above is often best
done when the modeler has adopted this mean field perspective. For example, if we
would like to relax the assumption that individuals immediately become infectious
and instead assume that they experience a latent period where they are infected but
not yet infectious for a time period that is exponentially distributed with mean 1/ν,
then we can introduce an exposed class and let E(t) be the number in this class at
time t . This yields the well-known SEIR model:
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d

dt
S(t) = − λ(t) S(t) (9a)

d

dt
E(t) = λ(t) S(t) − ν E(t) (9b)

d

dt
I (t) = ν E(t)) − γ I (t) (9c)

d

dt
R(t) = γ I (t). (9d)

Exercise 2 Under the SIR model, the time spent infected and infectious is the same,
and follows an exponential distribution with rate γ (i.e., with mean duration 1/γ ).
This is not the case under the SEIR model. Describe and compare the mean time
infected (i.e., between entering the exposed state and entering the recovered state)
for both the SIR and SEIR models, in terms of the mean time spent in the exposed
state and the mean time spent in the infectious state.

In summary, systems of ODEs that model individuals transitioning among
different states are often best thought of as a mean field model for some underlying
(often unspecified) continuous-time stochastic process. While in general it is true
that multiple different stochastic models can yield the same mean field ODE model,
it is still often very useful to associate a given ODE with the continuous-time
stochastic state transition model defined in terms of Poisson processes where the
Poisson process rates are given by the overall rates (i.e., ODE model terms) or
the per capita rates (i.e., coefficients on those terms) that appear in the right hand
side of the ODE model. We will explore one way of constructing such a model
from a system of ODEs using the Stochastic Simulation Algorithm in Sect. 3.3.1,
but throughout the remainder of this chapter we will often draw upon the intuition
associated with this underlying stochastic model implied by a given mean field ODE
model.

With this perspective in mind, we next review some standard ways of using ODE
models in applications.

2.2 Equilibrium Stability Analysis

Many questions about dynamical systems can be answered by asking What is the
eventual state of x(t) as t → ∞? For example, Does the disease epidemic end with
a local extinction of the pathogen, or does the disease become endemic and persist
by establishing itself at low levels in the population? Will new harvest regulations in
a fishery maintain a sustainable population of fish, or will the population be pushed
to extinction? Sometimes knowing where a system is going helps inform the path
it takes to get there, so these asymptotic results as t → ∞ can also be useful
for understanding short-term dynamics. Since many questions can be addressed
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by mathematical and computational analyses that reveal the long-term behavior of
a system, this is often a focus of an introductory course in mathematical biology
[4, 50], and the main focus of courses in applied dynamical systems [10, 84, 160]
and bifurcation theory [104, 165]. Here we review the basics of equilibrium
stability analysis, and in the next section we discuss analyses that build on these
concepts to further illuminate the behavior of ODE models in a dynamical systems
context.

Let us revisit the simple exponential growth or decay model Eq. (2) where we
assume a positive initial value, i.e., x(0) = x0 > 0, and that r ∈ R. Solutions to this
ODE have the form

x(t) = x0 er t (10)

thus we can see that the sign of r determines whether solutions x(t) diverge towards
∞ (r > 0) or converge towards zero (r < 0). Here we focus on solutions like the
latter, where the long-term behavior of the system is to settle on a steady-state value,
more commonly referred to as an equilibrium point.

Formally, an equilibrium point of a model dx/dt = f (x) is a state x∗ such that
f (x∗) = 0. Starting at such points yields solutions that remain there for all time,
which we refer to as equilibrium solutions.

An equilibrium stability analysis aims to accomplish two goals: First, to
determine how many different equilibrium points exist and find expressions for
those state values as a function of the model parameters, and second, to deter-
mine the (local) asymptotic stability of those equilibria. Identifying equilibria is
straightforward: simply set the system of equations equal to zero, and solve for
the state variable vector x∗ that satisfies f (x∗) = 0. The second step in a stability
analyses requires us to first clarify what is meant by an equilibrium point being
asymptotically stable.

In short, we call an equilibrium point stable if small perturbations away from that
point in state space yield trajectories that converge back towards said equilibrium
point, and unstable if small perturbations yield trajectories that diverge away
from the equilibrium point. More precisely, we can use the formal definition of
equilibrium stability given in [160]: If, for an equilibrium point x∗, there is a δ > 0
such that any trajectory x(t) that starts within a distance < δ from x∗ eventually
converges to x∗, then we call x∗ attracting. If for ε > 0 there is a δε > 0 such
that whenever a trajectory x(t) starts closer than δε to x∗ the trajectory remains
within a distance ε of x∗, then we call x∗ Lyapunov stable. If x∗ is both attracting
and Lyapunov stable, we say x∗ is (locally) asymptotically stable and this is what
is meant below when an equilibrium point x∗ is called stable, i.e., for sufficiently
small perturbations away from that point, trajectories x(t) stay within a small
neighborhood of that point and asymptotically converge towards x∗ (i.e., x(t) → x∗)
as t → ∞.

In practice, determining the stability of an equilibrium point is fairly straight-
forward; however, having an intuitive understanding of why the standard approach
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works requires some explanation. Because the vector field4 f (x) is usually smooth
(i.e., because f (x) is differentiable), zooming in very close to a given point (e.g., an
equilibrium point) the vector field is increasingly well approximated by a linear
vector field. Mathematically, this is a straightforward consequence of Taylor’s
Theorem: Recall that Taylor’s Theorem for functions of one variable [112] states
that if a function is differentiable at a then for x values in a neighborhood of a the
function can be approximated by

f (x) ≈ f (a) + f ′(a)(x − a) + . . . + 1

k!f
(k)(a)(x − a)k (11)

where the difference between f (x) and the approximation above vanishes as x → a.
This gives the linear approximation

f (x) ≈ f (a) + f ′(a)(x − a) (12)

for values of x in a small neighborhood of a. Similarly, Taylor’s Theorem for
multivariate functions5 f : Rn → R

n gives the linear approximation

f (x) ≈ f (a) + J (x − a) (13)

where J is the n × n Jacobian matrix whose entries are the partial derivatives
of f with respect to each component of x evaluated at x = a, i.e., if f (x) =
(f1(x), . . . , fn(x))T then

Jij = ∂fi

∂xj

∣
∣
∣
∣
x=a

(14)

Since f (x∗) = 0 (i.e., if x∗ is an equilibrium point), Taylor’s Theorem implies
that the linear approximation near x∗ is

dx
dt

≈ J (x − x∗). (15)

Moreover, if we let u = x − x∗ be the perturbation of x away from x∗, then

du
dt

≈ J u (16)

and thus the deviations (u) of trajectories very near x∗ are approximately solutions
to this linear system of first order differential equations.

4For each point in state space, one can think of the derivative dx
dt

as a vector pointing in a direction
that is tangent to the trajectory passing through that point.
5See upper level dynamical systems texts and online resources for the Taylor expansion of
multivariate functions.
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The importance of this linear approximation in the context of determining the
stability of an equilibrium point x∗ is that the eigenvalues [159] of matrix J can
tell us whether or not x∗ is stable (e.g., see linear stability analysis sections in [45,
84, 160, 165] or related texts on nonlinear dynamics). Why? Small perturbations
off of the equilibrium point will yield trajectories that are approximately x(t) ≈
u(t) + x∗ where u(t) is a solution to the above linearization Eq. (16). Importantly,
solutions to linear ODEs can be written explicitly in terms of the eigenvalues and
eigenvectors of the coefficient matrix J as shown for the 2-dimensional case in [45]
and for higher dimensions in [84]. Specifically, these solutions look like sums of
exponential growth and decay terms (sometimes multiplied by sine and cosine terms
if J has complex eigenvalues [84]) along the different directions determined by the
eigenvectors of J, where the growth and decay rates along these eigenvectors are the
real parts of the corresponding eigenvalues of J. Thus, if the eigenvalues of J all
have negative real parts, small perturbations off of x∗ will exponentially decay back
to that point, and if any eigenvalue has a positive real part, trajectories that start as
perturbations off of x∗ will diverge away from that point. The following stability
theorem formally summarizes this intuition (for further details, see [84, 165] or
similar texts):

Theorem 2 (Equilibrium Stability Criteria) Suppose x∗ is an equilibrium point
of dx/dt = f (x) and J is the Jacobian evaluated at x∗. Further assume the real
parts of the eigenvalues of J are all non-zero (i.e., Re(λi) 
= 0 for i = 1, . . . , n).
Then the equilibrium point is stable if all Re(λi) < 0, and unstable if any
Re(λi) > 0. If any eigenvalues have Re(λi) = 0 the stability of x∗ is determined by
higher order terms in the Taylor expansion of f about x = x∗. If the system is one
dimensional (i.e., if f : R → R) then x∗ is stable if f ′(x∗) is negative (and unstable
if f ′(x∗) is positive).

In computational applications, where it suffices to check stability of an equilib-
rium point for a specific set of parameter values, the above criteria are very practical.
It is usually straightforward to compute the Jacobian and use standard approaches
to find its eigenvalues (e.g., using the eigen() function in R). However, when
looking to obtain analytical stability conditions, it is often cumbersome to find
general expressions for eigenvalues and to find conditions under which they have
a negative real part. This is especially true for higher dimensional nonlinear
systems.

Importantly, we do not need to find these eigenvalues explicitly to determine if an
equilibrium point is stable. The Routh–Hurwitz criteria (Theorem 3 below) provide
a sometimes simpler way of checking whether or not all eigenvalues of Jacobian J,
evaluated at equilibrium point x∗, have negative real part by checking a set of criteria
that involve the coefficients of the Jacobian’s characteristic polynomial6 [159],

6This definition is used instead of the more common p(λ) = det(J − λI) since it ensures that the
roots are the eigenvalues of J and that the polynomial is monic, i.e., has a leading coefficient of 1
on the λn term.
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p(λ) = det(λI − J). (17)

In short, since the eigenvalues are the roots of the characteristic polynomial of
the Jacobian, satisfying the Routh–Hurwitz criteria implies that each of those
eigenvalues has negative real part, and thus, the equilibrium point is stable. This
is often the preferred approach when looking for general stability criteria (e.g., an
inequality describing parameter value relationships that yield a stable equilibrium
point) because in practice it typically yields meaningful stability criteria in fewer
intermediate steps compared to finding the eigenvalues, and their real parts, directly.

The following statement of the Routh–Hurwitz criteria was adapted from Ch. 4
in [4]7 and pg 233–234 of [45] (see also [117]).

Theorem 3 (Routh–Hurwitz Criteria) Consider the monic polynomial

p(λ) = λn + a1 λn−1 + · · · + an−1 λ + an (18)

with real coefficients ai . All roots of Eq. (18) have negative real part if and only if
all n principal minors of Hn (where aj = 0 for j > n) have positive determinants.

Hn =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

... · · · ...

a2n−1 a2n−2 a2n−3 a2n−4 · · · an

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(19)

The principal minors Hk , k = 1, . . . , n, are

H1 = a1, H2 =
[

a1 1
a3 a2

]

, . . . (20)

Equivalently, the real parts of the roots of the characteristic polynomial (i.e., the
real parts of each eigenvalue) all have negative real part if and only if the following
hold (similar criteria can be derived using the matrices above for n ≥ 6):

n = 2 : a2 > 0, and a1 > 0.

n = 3 : a1 > 0, a3 > 0 and a1a2 > a3.

n = 4 : a1 > 0, a3 > 0, a4 > 0, and a1a2a3 > a2
3 + a2

1a4.

n = 5 : ai > 0 (i = 1, . . . , 5), a1a5 + a1a2a3 > a2
3 + a2

1a4 and

(a1a4 − a5)(a1a5 + a1a2a3 − a2
3 − a2

1a4) > a5(a1a2 − a3)
2.

7Here we give the correct n = 5 case, which is missing a few terms in [4].
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Challenge Problem 2 Look up the analogues of Theorems 2 and 3 for determining
the stability of fixed points for discrete maps.

Here we have only briefly touched upon equilibrium stability analysis. Interested
readers are encouraged to consult standard applied dynamical systems texts, such
as [4, 45, 160], for additional details and related topics like the asymptotic stability
analysis of equilibria (also called fixed points) in discrete-time systems.

The following exercises illustrate the application of Theorems 2 and 3.

Exercise 3 The well-known logistic equation, where r,K > 0 and x ≥ 0, is
given by

dx

dt
= r x

(

1 − x

K

)

(21)

and has equilibria x = 0 and x = K . Use Theorem 2 to show that x = 0 is unstable
and x = K is stable. Hint: What is the derivative of f (x) with respect to x?

Exercise 4 The following extension of the logistic equation includes a strong Allee
effect: below a certain threshold (α > 0) the population declines towards 0.

dx

dt
= r x

(

1 − x

K

)(
x

α
− 1

)

(22)

Find all three equilibria of this model, and determine their stability.

The next few exercises deal with the Rosenzweig–MacArthur predator–prey
model (for background on this and related models, see [118, 125])

dN

dt
= r N

(

1 − N

K

)

− a P

k + N
N (23a)

dP

dt
= χ

a N

k + N
P − μP (23b)

where N and P are the prey and predator densities, respectively, r > 0 and K > 0
are the logistic growth rate and carrying capacity for the prey, a > 0 is the maximum
per-predator rate of predation, k is the half-saturation value of the prey population in
the Holling type-2 predation rate term (when N = k the per-predator predation rate
is a/2), χ > 0 is a conversion factor between the number of prey consumed and
predators born, and μ > 0 is the predator mortality rate corresponding to having
assumed exponentially distributed predator lifetimes with a mean lifespan 1/μ.

Exercise 5 Find equilibrium points of the Rosenzweig–MacArthur model above.
Note that it may be helpful to write these equilibrium values where one state variable
value is given as a function of parameter values, and the other is written as a function
of parameter values as well as the equilibrium value of the other state variable. Hint:
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There are three non-negative equilibria: one with zero organisms, one with only
prey, and one with both predators and prey coexisting.

Exercise 6 Find the Jacobian for this system (recall Eq. (14)), and evaluate it at
each equilibrium point. Hint: The Jacobian for the case with zero organisms is

[

r 0
0 −μ

]

. (24)

Challenge Problem 3 Find the characteristic polynomial of each Jacobian above
and apply the Routh–Hurwitz criteria to determine their stability. Hint: For the case
with zero organisms, the characteristic polynomial is

p(λ) = λ2 + (μ − r)λ − r μ. (25)

Challenge Problem 4 Repeat the above stability analysis for the Rosenzweig–
MacArthur model using a computer algebra system like the free software wxMax-
ima [163] (an improved user interface for Maxima [148]), Sage, or commercial
software such as Maple or Mathematica.

Challenge Problem 5 What are some other kinds of attractors besides equilibrium
points (e.g., limit cycles) and how do we determine their stability?

2.3 Bifurcation Analysis

An equilibrium stability analysis often reveals parameter space thresholds that
mark important qualitative transitions in the long-term behavior of solutions. These
typically manifest as inequalities involving model parameters and equilibrium
values.

For example, in our simple exponential decay equation, the coefficient a = 0
divides parameter space into cases of exponential decay (a < 0) and those
leading to exponential growth (a > 0). In infectious disease models, one can often
find an expression for the basic reproduction number of the pathogen (commonly
denoted as R0 and interpreted as the expected number of new infections per
infectious individual over the average duration of infectiousness when the number of
susceptible individuals is at the disease-free equilibrium). For example, for the SIR
model given by Eqs. (8) the number susceptible at the disease-free steady state is N ,
hence the rate of new infections per infectious individual, per unit time, is β N and
the mean duration of infectiousness is 1/γ . Thus8 (multiplying rate times time) we
have R0 = β N/γ . It is commonly the case that no epidemic will occur if R0 < 1

8These basic reproduction numbers are best derived from stability criteria, which often require
some rearrangement using a similar interpretation to arrive at the proper form of R0.
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(i.e., the disease-free equilibrium is stable) but an epidemic will occur if R0 > 1
(i.e., when infectious individuals more than replace themselves, on average). For
more on R0 calculations and its role in epidemic thresholds, see [22, 23, 35, 43].

In addition to changes in the stability of equilibria (or in some cases, their
appearance or disappearance) threshold phenomena also arise in non-equilibrium
dynamics. For example, the transition between steady-state and oscillatory behavior
is quite common in applications, e.g., it is exhibited by the Rosenzweig–MacArthur
model mentioned above in which there is a transition from predator and prey
coexisting at equilibrium to asymptotically periodic solutions where the predator
and prey populations oscillate together (this example will be discussed in more
detail below). In some higher dimensional models, these can include much more
complex dynamics, including transitions to chaos.

Bifurcation theory deals with the mathematical study of these transitions [73, 84,
104, 160, 165]. Formally, bifurcations are the thresholds in parameter space that
indicate where there are changes in the topological structure of the model behavior
(i.e., in the vector field defined by f ). For example, we can consider the set of
all parameters for which predators and prey coexist at equilibrium as topologically
equivalent,9 and topologically distinct from the case where the predators are unable
to live on the prey and go extinct. In essence, bifurcation thresholds partition
parameter space into regions that yield the same qualitative behavior, making them
an excellent tool for studying model dynamics in an applied setting.

The goals of a bifurcation analysis are to characterize where bifurcations occur
in parameter space, and to identify the types of bifurcation(s) involved. Importantly,
identifying the different types of bifurcations informs us of the long-term behavior
of solutions for parameters on either side of these bifurcation thresholds. These
boundaries are, fortunately, usually very well defined, e.g., they often involve an
equilibrium point where one of the real parts of its eigenvalues passes through
zero (recall that our stability criteria above say that an equilibrium point is stable
if the eigenvalues of the corresponding Jacobian have negative real part). More
complex bifurcations involving other types of attractors (e.g., limit cycles or
chaotic attractors) can be similarly characterized by extending the above notions
of equilibria and their stability to these other sets10 of points, e.g., limit cycles,
and their stability. Importantly, there are a small number of named bifurcations
that we often see arise in applications, e.g., Hopf bifurcations (where an isolated
equilibrium point changes stability and gives rise to a limit cycle—an isolated closed
curve in state space that is a solution of the model—i.e., a change from steady-
state to oscillatory dynamics), transcritical bifurcations (two equilibrium points
pass through one another and exchange stability), saddle-node bifurcations (where

9For readers unfamiliar with topological equivalence, this essentially means that the gross
qualitative features of solutions are the same across equivalent parameter sets, e.g., the number
of equilibrium points and their stability will be the same, even though their exact numerical values
may change. See [160, pg. 156], or more advanced treatments of topological equivalence in the
texts mentioned above.
10See the definition of an invariant set, and different types of attractors, in texts like [73, 104].



16 P. J. Hurtado

two equilibria collide and vanish). For a more detailed treatment of the different
bifurcations that commonly arise in applications, consult standard texts such as
[73, 84, 104, 160, 165].

In practice, the first step of a bifurcation analysis is to conduct an equilibrium
stability analysis. From there, stability thresholds can be identified and these can
sometimes be useful for identifying specific types of bifurcations. This will often
reveal equilibrium bifurcations like saddle-node and transcritical bifurcations, but
this can also reveal bifurcations involving non-equilibrium attractors like Hopf
bifurcations that involve limit cycles. For example, there is a very useful result
[74, 75] that states that, when using the Routh–Hurwitz criteria to determine
equilibrium stability, the loss of stability via the failure of the criterion listed last,
for each n value considered at the end of Theorem 3, coincides with the loss of
equilibrium stability via a Hopf bifurcation.

Computational methods also exist for conducting bifurcation analyses (e.g., see
[41, 55, 56, 155]), and can be quite useful for exploring model dynamics for
parameter values near a specific parameter set. A less sophisticated approach is
to simply use brute force to simulate solutions over a range of parameter values,
and analyze those simulation results to infer bifurcations (see Sect. 2.6 below for
more on simulating solutions to ODEs on the computer). For example, Fig. 1 shows
simulated asymptotic states of the Rosenzweig–MacArthur model over a range of
maximum predation rates, a.

The preferred approach, however, is to use computational methods that are
specifically designed to find bifurcations in parameter space. The reason? First,
the above simulation-based approach will typically miss part of the picture in
situations where different initial conditions lead to different attractors (i.e., cases of
bistability or multistability), or in cases where a bifurcation involves the creation
or disappearance of either an unstable equilibrium point or unstable limit cycle
(which can be practically impossible to find by running simulations unless you know
ahead of time where or how to look for them). Simulation based approaches also
rely on the investigator to infer what bifurcations might or might not be involved,
whereas software designed for bifurcation analysis includes rigorous mathematical
criteria that are automatically checked to notify the investigator when certain types
of bifurcations are found. Two popular software packages for conducting bifurcation
analyses are MatCont [41], which is freely available software that runs in Matlab,
and the software AUTO which is available in different forms including through
the XPPAUT simulation software [55, 56] which includes an interface for AUTO.
An introduction to using such software is beyond the scope of this book; however,
various tutorials and examples can easily be found online (see also the list of
software available on the SIAM Dynamical Systems activity group website [155]:
https://dsweb.siam.org/Software).

Challenge Problem 6 Improve upon the bifurcation diagram in Fig. 1 with an
equilibrium stability analysis and by using bifurcation continuation software such as
MatCont or XPPAUT to do a computational bifurcation analysis of the model given
by Eqs. (23). Use the parameter values given in the figure caption. Hint: Are there
any missing equilibria or other stable or unstable attractors not shown in Fig. 1?

https://dsweb.siam.org/Software
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Fig. 1 A “brute force” bifurcation diagram for the Rosenzweig–MacArthur model, generated by
numerically simulating solutions over very long time periods then plotting the long-term state
variable values as a function of parameter a. For solutions that converge to limit cycle oscillations,
the min and max values are plotted. Parameter values used: r = 1, K = 1000, a = 5, k = 500,
χ = 0.5, μ = 1, and initial condition (N0, P0) = (1000, 10). These results suggest a transcritical
bifurcation near a = 3 and a Hopf bifurcation near a = 6

2.4 A Few Comments on Approximation

In applications, some questions cannot be appropriately answered using the asymp-
totic analyses described above, but might instead be addressed using careful
approximations or simulations (numerical solutions to ODEs are discussed in
Sect. 2.6).

Approximation methods can be very useful for gaining insight into specific
phenomena. For example, in Sect. 2.2 linear approximation via Taylor’s Theorem
was used to clarify the behavior of trajectories near equilibria. Similar techniques
exist that use other expansions to make local approximations, e.g., Fourier expan-
sion can be used to approximate periodic solutions to quantify period–amplitude
relationships (for more on investigating oscillations in nonlinear dynamical systems,
see [140]). Whatever the technique, a good presentation of approximation-based
results should balance intuition and mathematical rigor, and hopefully make clear
the conditions for which the approximation is a good one.
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For example,11 consider this heuristic argument: the logistic growth model
Eq. (21) should approximately obey an exponential growth model

dx

dt
= r x (26)

when x values are near 0, since the term 1 − x/K ≈ 1 when x � K . Alternatively,
one could arrive at the same conclusion using a Taylor expansion of the logistic
equation about x = 0, which would yield the same linear approximation, but would
also yield a remainder that quantifies the approximation error.

Approximation methods can also be used to study transient dynamics, although
the approaches used vary by both the specifics of the model, and the question(s)
being asked. For example, one might ask when an epidemic might peak in the
SEIR model, and answering this question might require a different approach than
is used to determine the conditions under which the Rosenzweig–MacArthur model
exhibits damped oscillations that converge to a steady-state coexistence between
predator and prey. In addition to computational investigations (see Sect. 2.6), the
approximation approach described next in Sect. 2.5 is often used to disentangle
some transient dynamics and long-term asymptotic dynamics in systems with
multiple time scales, which commonly arise in biological applications.

2.5 Fast–Slow Analysis of Systems with Multiple Time Scales

In some systems of ODEs, sometimes called stiff systems, dynamics occur very
rapidly in certain directions in state space, while other parts of the system change
more slowly. These types of systems are said to have multiple time scales and
these can often be analyzed by separately considering the dynamics on the different
time scales using appropriate approximating models. In short, the slow time scale
state variables can often be treated as fixed constants, yielding an approximate
model that includes only the fast time scale variables. Once the dynamics of that fast
subsystem are understood, that information can be used to create a complementary
set of equations for the slow subsystem that approximates the long-term behavior
of the model. Often, the fast variables converge quickly to a quasi-steady-state
(i.e., an equilibrium point of the fast subsystem) it can typically be assumed that,
over the slow time scale, the fast time scale variables closely track these quasi-
equilibrium values. Thus, the ODEs governing the slow time scale variables can
be approximated by replacing all occurrences of the fast time scale variables with
these quasi-equilibrium expressions, thus reducing the system to a smaller number
of ODEs.

11Here, integration by parts will yield an equation for the solution curves x(t), but we proceed
assuming no such curves are available as this is typically the case in practice.
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To clarify, suppose an ODE model with n state variables can be separated into
slow (x) and fast (y) time scale variables and written as

dx
dt

= ε fslow(x, y, θ) (27a)

dy
dt

= ffast(x, y, θ). (27b)

Here 0 < ε � 1 and fslow and ffast are roughly the same order of magnitude,
hence dx/dt will be very small and x will change much more slowly than y. If the x
values are treated as constants in Eq. (27b) (i.e., if we let ε → 0) and there are
quasi-equilibrium expressions y∗(x, θ) that satisfy ffast(x, y∗(x, θ), θ) = 0 so that
the slow time scale dynamics can be approximated by

dx
dt

= ε fslow(x, y∗(x, θ), θ) (28)

where we see that the right hand side is purely a function of x and θ . For examples
of such fast–slow system analyses, see [17, 36, 37, 90, 91, 134, 142, 153] or see the
more thorough treatment of the topic in [103].

To illustrate how a fast–slow analysis can yield a simplified model, consider
the well-known Michaelis–Menten equation, which was originally used to model
a biochemical reaction in which an enzyme catalyzes the hydrolysis of sucrose
into simpler sugars [95]. In more general terms, the model is of a substrate S that
binds to enzyme E to form the complex ES which either dissociates back into
free enzyme and substrate, or undergoes a reaction that releases the enzyme and
a reaction product P . This can be written in chemical reaction equation notation as

E + S
kb�
ku

ES
kcat→ E + P

where kb is the binding rate, ku is the unbinding rate, and kcat is the catalytic rate.
Let the concentrations of enzyme E, substrate S, complex ES, and product P at
time t be denoted z(t), s(t), x(t), and p(t), respectively. A corresponding (mean
field) ODE model of this reaction is

dz

dt
= − kb z s + ku x + kcat x (29a)

ds

dt
= − kb z s + ku x (29b)

dx

dt
= kb z s − ku x − kcat x (29c)

dp

dt
= kcat x (29d)
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Note that there are two quantities in this model that remain constant over time: If
z0 is the initial amount of enzyme, and s0 is the initial amount of substrate, then
z + x = z0 and s + x + p = s0. Thus, we can omit the first equation (29a) from the
model since we can always infer z from x since z = z0 − x. Likewise, we can omit
Eq. (29c) since x = s0 − s − p. This yields the equivalent, but simpler, model

ds

dt
= − kb (z0 − (s0 − s − p)) s + ku (s0 − s − p) (30a)

dp

dt
= kcat (s0 − s − p). (30b)

Next, assume that the catalytic reaction is much faster than the other binding
and unbinding reactions, so that Eqs. (30) become a slow-fast system where s

very quickly reaches a quasi-equilibrium state that then slowly tracks the slower
timescale changes in p. In short,12 setting ds/dt = 0 and solving for that quasi-
equilibrium relationship between s and p yields

p(s) = −kb z0 s

ku + kb s
+ s0 − s (31)

which, when substituted into Eq. (30b), yields

dp

dt
= Vmax s

kd + s
(32)

where the maximum velocity (i.e., maximum rate of change of p) Vmax =
kcat z0 and the dissociation constant kd = ku/kb. Other assumptions can lead
to similar approximations for this same model [24, 95], and similar analyses
for mathematically related interaction processes have been used to derive similar
nonlinear response curves, e.g., compare the right hand side of Eq. (32) with the
predation rate in Eqs. (23) (for more details, see [38, 125] and references therein).

2.6 Computing Numerical Solutions to ODEs

It can often be useful to supplement analytical approaches with numerical sim-
ulation studies, e.g., to assess how well an approximate model compares to the
original model, or to investigate transient dynamics when analytical approaches
are not practical. In typical introductory ODE class, students are taught methods
for finding (or sometimes approximating) analytical solutions to a given set of
ODEs. Unfortunately, analytical solutions rarely exist for the kinds of nonlinear

12Here we are glossing over the formal details from singular perturbation theory [103] for deriving
equations that approximate the fast- and slow-timescale dynamics of this model.
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ODE models encountered in applications. This section introduces how to compute
numerical solutions to ODEs.

It is relatively straightforward to compute approximate numerical solutions to
ODEs using standard computational methods available in nearly all mathematical
software [138], or by coding up your own solver if the more advanced method
that you need is otherwise unavailable. In R, the ode function in the deSolve
package [156] implements various numerical methods that are each tailored to
provide reliable numerical solutions by addressing various numerical challenges
posed by different categories of ODEs. Similar tools exist in Matlab [115] and
additional solvers can sometimes be found in other software, e.g., in [78]. Here
we provide a simple introduction to computing numerical solutions in R, but leave
it to the reader to further investigate the conditions under which different methods
should, and should not, be applied. See the Appendices for resources to get started
using R, and for more on numerical methods see [115, 138, 155, 160] and references
therein.

2.6.1 Euler’s Method

To understand how various methods for computing numerical solutions are imple-
mented on a computer, it is instructive to see the very simple algorithm known as
Euler’s method. Like other methods, it approximates a continuous curve using a
discrete-time approximation where information about the derivative of the curve
(i.e., the right hand side of the ODE) is used to determine where the state variables
move to on each time step. Consider the generic system of ODEs

dx
dt

= f (t, x, θ), x(0) = x0 (33)

and note that, if we back off of the limit implicit in the derivative on the left, we get
that for small Δt ,

x(t + Δt) − x(t)

Δt
≈ f (t, x(t), θ) (34)

which can be rearranged to yield

x(t + Δt) ≈ x(t) + f (t, x(t), θ)Δt. (35)

Euler’s method approximates trajectories starting at x(0) = x0 by iterating the above
discrete-time map Eq. (34). This method has been improved upon in various ways,
which range from adaptively picking smaller or larger time steps when appropriate,
to incorporating information about the curvature of the trajectory to obtain a better
increment than the linear approximation f (t, x(t), θ)Δt .
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Consider Eq. (34) starting at time t = 0. The following information is needed
to implement Euler’s method and similar algorithms for computing numerical
solutions to ODEs: a starting vector of initial condition values x(0) = x0, parameter
values θ , and a way of computing the derivative f (t, x, θ).

The R code below illustrates how this is implemented using the ode function in
the deSolve package is illustrated below.

2.6.2 Numerical Solutions in R

The first step is to create a function that computes f (t, x, θ) given a specific value
of time t , the state of the system x, and a set of parameter values θ . Consider the SIR
model given by Eqs. (8). The right hand side of the model (the derivative function f )
is a function of the state variables S, I , and R and parameter values β and γ .
According to the R documentation13 for the ode function we must create an R
function that computes these derivatives based on three inputs—time, a vector of
state variable values, and a parameter vector, in that order, i.e., f (t, x(t), θ)—and
returns the vector of derivative values in an R object known as a list. This is
implemented in the following R code.

# We need to load the ode() function in package deSolve
# install.packages("deSolve") Install once, if needed
library(deSolve); # load deSolve into the workspace
# Define an SIR function to use with ode()
SIR = function(tval, X, params) {

S = X[["S"]] # one could also have used X[1]
I = X[["I"]] # ... X[2]
R = X[["R"]] # ... X[3]
B = params[["beta"]] # or params[1]
g = params[["gamma"]] # ... params[2]
# Now compute the SIR model derivatives
dS = -B*I*S
dI = B*I*S - g*I
dR = g*I
# Return the derivatives in a list to use with ode()
return(list(c(dS,dI,dR)))

}

Next, the ode function requires that we give it a set of initial conditions, a vector
of (user specified) time values for which to return state variable values, and a set of
parameter values. Thus, we must specify S(0), I (0), R(0) and parameters β and γ .
The ode function returns a matrix whose first column is the vector of time values,
and the subsequent columns are the corresponding state vector values (in this case,

13To view the documentation, load the package deSolve with the command
library(deSolve) then type ?ode into the R console. See the Appendix for additional
resources to get started using R.
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Fig. 2 Numerical solution to the SIR model, Eqs. (8). See the code in the main text for details

the values of S, I , and R). This is implemented in the following code, which also
plots the three numerical solution curves as functions of time (Fig. 2).

X0 = c(S=998, I=2, R=0) # Initial state values
Pars = c(beta=0.0003, gamma=0.1)
Time = seq(0, 150, length=200) # time values for ode()
# Now we can compute a numerical solution
Xout = ode(X0, Time, SIR, Pars) # Default: method="lsoda"
head(Xout, 3) # Show the first three rows of output

time S I R
[1,] 0.0000000 998.0000 2.000000 0.0000000
[2,] 0.7537688 997.5131 2.324244 0.1626696
[3,] 1.5075377 996.9476 2.700737 0.3517011

# Plot the numerical solution curves ...
par(mfrow=c(1,3)) # ... in a figure with 1 row, 3 columns.
plot(Time, Xout[,2], ylab="Susceptible (S)", ylim=c(0,sum(X0)),

type="l", lwd=2); abline(h=0) # abline() draws the x-axis
plot(Time, Xout[,3], ylab="Infected (I)", ylim=c(0,sum(X0)),

type="l", lwd=2); abline(h=0)
plot(Time, Xout[,4], ylab="Recovered (R)", ylim=c(0,sum(X0)),

type="l", lwd=2); abline(h=0)

Exercise 7 Modify the example above so that the ODE solver only uses the
equations for S and I , but not R. At the end of the code, after the output from
ode has been obtained, add the R column to Xout using the relationship R(t) =
N(0) − S(t) − I (t) (to convince yourself N = S + I + R is constant, note its
derivative dN/dt = 0).

Challenge Problem 7 Modify the code above by adding an exposed class so that
the code generates solutions of the SEIR model mentioned previously. Explore how
solution change for different values of ν.

Challenge Problem 8 Modify the code above to correspond to changing the
quantity β to a positive-valued function of time, e.g., using a periodic function such
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as β(t) = β0 + A sin(ω t). This makes the previously autonomous system of ODEs
into a non-autonomous system. To do this, modify the equations in SIR as well as
the parameter vector (to assign values to the new parameters in the model). How do
the solution curves change relative to the case where β is a constant?

Challenge Problem 9 Implement the Euler algorithm on your own, without using
ode and the 4th order Runge–Kutta (RK4) algorithm (e.g., see page 33 in [160]).

Challenge Problem 10 Use integration by parts to show the θ -Logistic model

dx

dt
= r x

(

1 −
(

x

K

)θ)

(36)

has an analytical solution, then modify the code above to find a numerical solution
using ode in R. Use initial conditions x(0) = 10, r = 1, and K = 1000, and
explore θ values above, below, and at θ = 1. Plot both curves together on the same
plot to compare the exact and approximate solution curves.

2.6.3 Keeping Numerical Solutions Positive: The Log-Transform Trick

The above approach to computing numerical solutions to ODEs can sometimes be
problematic for ODE models of biological systems. Often, in biological models
(e.g., like the SIR model mentioned above) one or more equations are of the form

dx

dt
= g(x) x. (37)

Importantly, this implies that trajectories x(t) slow as they asymptotically approach
x = 0, and therefore can never pass through x = 0. However, numerical
methods may take an approximated, discrete-time step that results in the simulated
x trajectory erroneously crossing zero (which should be impossible!). This can lead
to state variables running off to ±∞, and other undesirable behaviors. Fortunately,
there is a clever trick that allows us to avoid these numerical errors: if we assume
that x(t) > 0 over the time period for which we seek a numerical solution, then we
can let X = log(x) and by the properties of the natural log function14 it follows that

dX

dt
= d

dt
log(x) = 1

x

dx

dt

= 1

x
g(x)x = g(exp(X))

(38)

14Here the notation log(x) is used for the natural log function, instead of ln(x), following the
convention used in most modern scientific programming languages. Likewise, exp(x)=ex .
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Fig. 3 A numerical solution to the log-transformed SIR model using the same parameters and
initial conditions as in Fig. 2. See the code in the main text for details

That is, if we transform a strictly positive state variables x to a real-valued variable
X using the natural log function, then numerical solutions of X can take on both
positive and negative values that can later be transformed back to strictly positive x

values, since x = exp(X). This transformation of variables is the default approach
some modelers take to computing numerical solutions of models where trajectories
should remain strictly positive over a finite time interval.

One caveat to this approach is that, since X(t) → −∞ as x(t) → 0, it can
lead to numerical errors due to finite limits on the size of floating point values on
a computer. While it may seem contradictory to trade one numerical problem for
another, it is usually far less common (and much more manageable) in practice
to have a numerical solution diverging to −∞ and hitting the computer’s floating
point limit. Thus, this approach should be reserved for situations where x(t) remains
bounded away from 0 or converges slowly to 0. A second caveat is that often
times solutions that erroneously cross through 0 do so because of typos in the code
that defines the derivative function. Thus, carefully checking that the equations, as
implemented in the code, are free of errors is strongly advised before assuming that
numerical methods are to blame for seemingly erroneous numerical solutions.

To illustrate this approach, here is the above SIR model code rewritten in terms of
the log-transformed values X = log(S) and Y = log(I ) where we have also omitted
the R equation since the constant population size allows us to calculate R(t) once
the S(t) and I (t) curves are obtained using R(t) = N(0) − S(t) − I (t) (Fig. 3).

# A function for ode() to compute numerical solutions
# of the log-transformed SIR model.
logSI = function(tval, Xs, params) {

X = Xs[["X"]] # X = log(S)
Y = Xs[["Y"]] # Y = log(I)
B=params[["beta"]]
g=params[["gamma"]]
# Now compute the derivatives
dX = -B*exp(Y) # I = exp(Y)
dY = B*exp(X) - g # S = exp(X)
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# Return the derivatives in a list to use with ode()
return(list(c(dX,dY)))

}

# Initial conditions, log-transformed
logX0 = c(X=log(X0[["S"]]), Y=log(X0[["I"]]))
logXout = ode(logX0, Time, logSI, Pars) # requires deSolve

# Convert back to S and I, and calculate R
Xout = cbind(Time,S=exp(logXout[,2]), I=exp(logXout[,3]),

R=sum(X0) - exp(logXout[,2]) - exp(logXout[,3]))
head(Xout,3)

Time S I R
[1,] 0.0000000 998.0000 2.000000 -2.273737e-13
[2,] 0.7537688 997.5126 2.324242 1.631915e-01
[3,] 1.5075377 996.9464 2.700730 3.528366e-01

# Plot the numerical solution curves as before
par(mfrow=c(1,3)) # 3 panels in 1 row
plot(Time, Xout[,2], ylab="S", ylim=c(0,sum(X0)),

type="l", lwd=2); abline(h=0)
plot(Time, Xout[,3], ylab="I", ylim=c(0,sum(X0)),

type="l", lwd=2); abline(h=0)
plot(Time, Xout[,4], ylab="R", ylim=c(0,sum(X0)),

type="l", lwd=2); abline(h=0)

Exercise 8 Modify the code above to simulate the Rosenzweig–MacArthur model,
Eqs. (23), using the parameter values from Fig. 1 and using both direct implementa-
tion and the log-transformation technique. Plot both results to compare approaches.

Challenge Problem 11 Look at the different methods available through the ode
function in the deSolve package ([156]; type ?ode into R to view the docu-
mentation). When should you use one method over the other? Compare these to
the methods available in Matlab, Python, or other computing platforms (see also
[115, 138]).

Challenge Problem 12 It can be challenging to obtain numerical solutions to
stiff systems. Find resources like [116, 138] to help you better understand which
numerical methods work well for stiff (multiple time scale) systems in the R
package deSolve as well as in Matlab or similar software, and look up some stiff
models to use as examples. Use the different methods to find numerical solutions
for the same parameter values and time values, and compare these to methods that
should perform poorly (e.g., Euler). How different are the results from different
methods? How do R’s stiff solvers compare to those in Matlab or other software?
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2.7 ODEs as Statistical Models

This final section in Sect. 2 introduces some useful statistical concepts and basic
approaches to using an ODE model as the basis for a statistical model.15 Increas-
ingly, ODE models are being used as components of statistical models, e.g., for
making inferences about underlying mechanisms or for forecasting. Applications
include making inferences from model parameters estimated from time series data
(i.e., a sequence of state variable measurements taken at multiple time points,
that in some way corresponds to a sequence of state variable values), quantifying
uncertainty in those parameter estimates, forecasting, and conducting statistical
tests to determine whether a certain parameter is significantly different from zero
or whether one model fits the data better than another model (i.e., model selection).

2.7.1 A Brief Overview of Key Statistical Concepts

Parameter estimation can be approached in various ways, but to start off it is helpful
to first introduce some concepts from the statistical theory of estimators (e.g., see
[85, 106]). You may recall that certain formulas exist for estimating parameters
in specific contexts, e.g., for a normal (Gaussian) distribution with mean μ and
variance σ 2, an estimate of μ can be obtained by calculating the sample mean
ȳ = ∑n

i=1 yi/n of a random sample, i.e., n data points y1, . . . , yn where each yi are
independent draws from the given normal distribution. Formally, we refer to μ̂ ≡ ȳ

as an estimator because it defines a function of our data that yields a parameter
estimate. The “hat” notation indicates that μ̂ is an estimator of parameter μ. Note
that we could have chosen other estimators to compute an estimate of parameter μ,
e.g., (a) the median of the sample, (b) the geometric mean instead of the arithmetic
mean, or (c) the mean of the extreme values of the sample (i.e., the mean of ymin
and ymax).

Estimator theory in statistics deals in part with how to select an estimator with
certain desired properties. For example, some estimators are more robust to outliers
than others, and some may be more or less biased. A good place to begin discussing
properties of estimators is to recognize that estimators are functions of data, and
hence, we can think of them as functions of random variables. As such, estimators
are themselves random variables and therefore follow some distribution, and it
is that distribution that determines the properties of the estimator. For example,
the sample mean ȳ above is proportional to the sum of normal random variables,
and is therefore itself normally distributed with a mean and variance that can be
computed from the definitions of the yi distribution [85, 106]. In a statistical context,
a desirable property of an estimator is that it be unbiased, i.e., its expected value
equals the true parameter value of interest (if not, we say the estimator is biased).

15For related resources in R, see the packages such as CollocInfer [87], deBInfer [19], or
browse the relevant CRAN Task Views (https://cran.r-project.org/web/views/).

https://cran.r-project.org/web/views/
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Estimators should also have as small a variance as possible so that estimates fall
as close as possible to the mean (i.e., the true parameter value if the estimator is
unbiased). Hence, we typically strive for minimum variance, unbiased estimators;
however, in some circumstances we select estimators that may deviate from this
ideal (e.g., because they may be more robust to outliers and thus in practice may
perform better with “messy” data). In our simple normal distribution example,
note that

E(μ̂) = E

(
∑

yi/n

)

=
∑

E(yi)/n =
∑

μ/n = μ (39)

so this estimator is unbiased. But is it a minimum variance estimator? To answer that
question requires taking a deeper look into the theory of estimators that is beyond the
scope of this chapter. For a more in depth treatment of estimator theory, minimum
variance estimators, and a very nice result known as the Cramér–Rao lower bound,
see texts such as [28, 85, 106].

Alternatively, on a case-by-case basis, when trying to decide among different
estimation procedures or assessing properties of a given estimator, one could
simulate data repeatedly effectively sample from the estimator distribution(s), and
thus make these assessments computationally. By repeatedly estimating parameters
from simulated data, where the “true” parameter values are known, we can sample
from an estimator’s distribution a large number of times. That large sample of
estimates can then be used to assess properties like the mean and variance of
the estimator distribution. Comparing multiple estimators in this way can reveal
differences in their variance, and any bias can be quantified by calculating how well
the mean of the estimates compares to the parameter value used to generate samples
from the estimator distribution. For more on computational approaches in statistics,
see [70].

To illustrate, the following R code compares the three candidate estimators of
μ in the above example by reconstructing each estimator distribution by random
sampling: the standard arithmetic mean (ȳ), the geometric mean (y1 · y2 · · · yn)

1/n,
and the average of the two extreme values ymin and ymax (which we would expect
to perform poorly given how much data it omits from the calculation). This is
accomplished by repeatedly sampling from each estimator distribution by iteratively
drawing a random sample from the given normal distribution and then calculating
parameter estimates from that random sample.

# Begin by setting parameters for our simulations
mu = 25 # define our mean parameter for our normal distribution
sd = 2 # define our variance (variance = sd^2)
N = 10 # to simulate data, use a sample size of N
mu.est1 = c() # empty list for our arithmetic mean estimates
mu.est2 = c() # empty list for our geometric mean estimates
mu.est3 = c() # empty list for our mean(min,max) estimates
# Sample our estimators 100000 times each...
set.seed(6.28) # set seed to get reproducible random numbers
for(i in 1:100000) { # simulate and estimate 100000 times
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y = rnorm(N,mu,sd) # Simulate data. Read ?rnorm for details
mu.est1[i] = mean(y) # calculate the standard estimator
mu.est2[i] = prod(y)^(1/N) # the geometric mean
mu.est3[i] = (min(y)+max(y))/2 # the mean of ymin, ymax

}
# Plot results
par(mfrow=c(1,3)) # plots in 1 row, 3 columns
# First panel: standard estimator (population mean)
plot(density(mu.est1), # empirical density function

main=expression(hat(mu)==sum(y[i])/N),
xlab=expression(hat(mu)), xlim=c(21.5,29), ylim=c(0,0.65))

hist(mu.est1, 30, freq=FALSE, add=TRUE,
col=rgb(.6,.6,.6,.5), border=rgb(0,0,0,0.5))

text(27.5,0.6,paste("Mean =",signif(mean(mu.est1),4), ))
text(27.5,0.57,paste("SE =",signif(sd(mu.est1),3), ))
abline(h=0) # draw the horizontal axis
# Second panel: geometric mean
plot(density(mu.est2), # empirical density function

main=expression(hat(mu)==(prod(y[i]))^{1/N}),
xlab=expression(hat(mu)), xlim=c(21.5,29), ylim=c(0,0.65))

hist(mu.est2, 30, freq=FALSE, add=TRUE,
col=rgb(.6,.6,.6,.5), border=rgb(0,0,0,0.5))

text(27.5,0.6,paste("Mean =",signif(mean(mu.est2),4), ))
text(27.5,0.57,paste("SE =",signif(sd(mu.est2),3), ))
abline(h=0) # draw the horizontal axis
# Third panel: mean(ymin,ymax)
plot(density(mu.est3), # empirical density function

main=expression(hat(mu)==(y[min]+y[max])/2),
xlab=expression(hat(mu)), xlim=c(21.5,29), ylim=c(0,0.65))

hist(mu.est3, 40, freq=FALSE, add=TRUE,
col=rgb(.6,.6,.6,.5), border=rgb(0,0,0,0.5))

text(27.5,0.6,paste("Mean =",signif(mean(mu.est3),4), ))
text(27.5,0.57,paste("SE =",signif(sd(mu.est3),3), ))
abline(h=0) # draw the horizontal axis

The simulation output in Fig. 4 illustrates how estimators can differ in terms of
bias and their variance. In practice, it is not always possible to obtain unbiased
estimators that are also minimum variance estimators. However, choosing likeli-
hood based estimation procedures is usually a good starting point because they often
yield minimum variance estimates that are asymptotically unbiased (i.e., the bias
vanishes as the sample size grows).

2.7.2 Likelihood Based Parameter Estimation

Maximum likelihood based parameter estimation is a widely used approach in
statistical applications. Since the approach is not restricted to parameter estimation
for ODEs, and can also be used for the other kinds of models mentioned in this
chapter, it is worth reviewing some maximum likelihood basics before applying this
approach using ODE models. For further details, see [21, 28, 85, 106].
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Fig. 4 A comparison to assess the bias and relative variability of three candidate estimators for
the mean of a normal distribution: From left to right, the three panels show the result of simulating
100,000 samples (sample size of n = 10) and computing an estimate for the mean μ using either
the standard arithmetic mean (left), the geometric mean (center), or the mean of the extreme values
(right). The plots show a histogram with an empirical density function overlay. The empirical mean
and standard deviation (standard error) of the estimator distribution are shown in the top right of
each panel. The true value used to simulate the data was μ = 25. These results suggest that
the geometric mean may be slightly biased and have a slightly larger variance than the standard
estimator, while the third option appears to be unbiased but has substantially higher variance. For
more details, see the code in the main text

As mentioned above, statistical theory tells us that estimators derived by finding
the parameter set that maximizes the likelihood function (defined next) are usually
(but not always!) minimum variance estimators and often have little to no bias
(again, we would like to check these properties hold to the extent it is possible to
do so). We call these estimators maximum likelihood estimators (MLEs), and their
desirable statistical properties, combined with the relative ease of computing MLEs,
have made this a very popular approach to parameter estimation.

The likelihood function should be a familiar function to those who have taken
a first course in probability: In short, the likelihood function is just the joint
probability density function (for continuous data; or the joint mass function for
discrete data), but where we have fixed the values of our random variables (i.e.,
our data) and instead treat the distribution parameters as the unknown independent
variables. More specifically, for a set of independent observations y = (y1, . . . , yn)

(i.e., our data) where the distribution of yi is described by density function fi(yi, θ)

with parameter vector θ , the likelihood of θ , given the data y, is given by

L(θ |y) =
n

∏

i=1

fi(yi, θ). (40)
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That is, both the likelihood and joint density functions have the same mathematical
formulation, but we think of them as distinct functions over two different domains:
the familiar joint density function domain is the space of possible random variable
values (e.g., Rn for a sample of size n from a normal distribution), while the domain
of the likelihood function is the space of all possible parameter values θ (e.g., μ ∈ R

and σ > 0 in our normal distribution example).
In general, once we can write down a joint density function for our data, and thus

can specify a likelihood function L(θ |y) for parameter vector θ given the data y, the
MLE θ̂ is given by the parameter set that maximizes the likelihood function:

θ̂ = argmax
θ

L(θ |y). (41)

In practice, it is often both analytically and computationally easier to minimize the
negative log likelihood function nLL(θ |y) ≡ − log(L(θ |y)) rather than maximize
the likelihood function (the two yield equivalent estimators, due to the monotonicity
of the log function). Thus, we also have the equivalent definition of the MLE

θ̂ = argmin
θ

− log(L(θ |y)). (42)

In some cases (like the example below), formulas for the MLE can be found
using the standard approach taught in calculus: take the partial derivatives of the
negative log likelihood function nLL with respect to each unknown parameter, then
set each partial derivative to zero and solve to find the parameter values (which
will be functions of the data) that minimize the negative log likelihood (and thus
maximize the likelihood). If finding the MLE analytically is not a viable option (e.g.,
see [101]), computational optimization approaches can be used to find parameter
values that minimize nLL for a specific data set.

Continuing with our simple example from the previous section, suppose we
would like to use MLEs to estimate the unknown mean μ0 and standard deviation
σ0 for a normal distribution from a random sample of size n.16 Let yi denote the
ith observation in our sample (i = 1, . . . , n). The likelihood function in this case is
given by the same formulation as the joint density function

L(μ, σ |y) =
n

∏

i=1

f (yi, μ, σ ) (43)

where function f is the normal density function evaluated at yi using the given
mean μ and standard deviation σ . Recall that our yi values (our data) are now fixed
constants, and the domain of this likelihood function is the upper half of R2 since our
two independent variables (inputs) are μ ∈ R and σ > 0. The maximum likelihood

16Here the subscript 0 is used to distinguish the true parameters values μ0 and σ0 from the
candidate values μ and σ that one might plug in to the likelihood function.
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principle states that the parameter values μ = μ̂MLE and σ = σ̂MLE that together
maximize L(μ, σ |y) are the MLEs for unknown parameters μ0 and σ 2

0 . In this case,
these can be found analytically, and are

μ̂MLE = 1

n

n
∑

i=1

yi, and ̂σ 2
MLE = 1

n

n
∑

i=1

(yi − μ̂MLE)2. (44)

That is, the MLE for the mean is the familiar sample mean (recall Fig. 4), while
the MLE for the variance is the unadjusted sample variance. Importantly, while the
MLE for the mean μ0 is unbiased, since E(μ̂MLE) = μ0, the MLE for the variance
σ 2

0 is biased, since E(̂σ 2
MLE) = n

n−1σ 2
0 , but asymptotically unbiased since the bias

vanishes as sample size n → ∞. This example nicely illustrates how, in practice,
minimum variance unbiased estimators do not always exist, and we often prefer to
use unbiased estimators, even if they require a small increase in the variance of our
estimates.

In general, it is worth noting that there are no guarantees that an MLE exists, or
that when an MLE exists that it is unique.17 When no MLE exists, other approaches
to parameter estimation must be used or the model must be reformulated. In cases
where multiple MLEs exist, special considerations must be made to identify the
appropriate course of action (this is discussed below in the context of parameter
identifiability).

Exercise 9 Consider the normal distribution example above. Suppose we would
like to analyze a long-term series of water depth data (each depth measurement xi

has an associated time value ti) in a coastal bay to quantify a rise in sea level (which
we assume might be increasing linearly over the time period for which we have
data). Assume that the data collection site in the bay experiences tidal fluctuations
and that the expected value for a depth measurement at time t is assumed to follow
the curve d(t) given by

d(t) = d0 + m t + A sin(2π t/T ) (45)

where d0 is a baseline depth, m is the slope of the long-term increase (or decrease)
in sea level, and the last term describes the smaller timescale rise and fall of the tide
(which here has been simplified to have a fixed period T and fixed amplitude A).
Assume that wave activity and other factors introduce noise into these measurements
that roughly follow a normal distribution so that a measurement xi at time ti is
normally distributed with mean d(ti) and standard deviation σ . Write down the
likelihood function for this data set.

17Sufficient criteria for the existence of one or more MLEs are that the parameter space is compact
and the log likelihood surface is continuous. In practice, non-unique MLEs are more commonly
the problem, especially when working with nonlinear ODE models.
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Next, we look at an approach to using likelihood based parameter estimation
for ODE models where, in contrast to the exercise above, the mean value for our
likelihood calculation depends on a solution to an ODE. Since many ODEs do not
have a closed form solution, the mean therefore must be calculated using a numerical
solution to the ODE.

2.7.3 Likelihood Framework for ODEs

A popular framework for parameter estimation using ODE models is the following
(e.g., see [32, 33, 46, 47, 123, 141] and references therein). First, in order to
distinguish between the modeled “true” state of the system x (e.g., the number
of rabbits in a forest) versus the data y (e.g., the count of rabbits along multiple
transects), we define the process model Eq. (46a) (i.e., what we typically think of as
our mechanistic mathematical model of our real-world study system) and a set of
one (or more) variables that we refer to as the observation model Eq. (46b).

dx
dt

= f (x, θ), x(0) = x0 (46a)

y = g(x, θ) (46b)

Note that unknown parameters that one hopes to estimate may appear in both the
process and observation models. Typically, the observations (y values) are assumed
to be noisy, thus g above may represent a procedure for sampling y values from a
probability distribution appropriately parameterized by the underlying state of the
process model (i.e., its mean and/or variance, etc., might depend on x).

To illustrate how this framework is used to estimate ODE model parameters, we
use the following example of a logistic growth model where the observations yi are
assumed to be normally distributed with constant variance σ 2 and a mean that is
proportional (by some factor c) to the state variable at time ti , i.e., E(yi) = c x(ti):

dx

dt
= r x

(

1 − x

K

)

, x(0) = x0, (47a)

yi ∼ Normal(c x(ti), σ
2). (47b)

We may now consider estimating one or more of the parameters r , K , c, and
x0 within a maximum likelihood framework.18 It is strongly advised that, when
attempting a new-to-you parameter estimation procedure, you to implement it first

18It is worth pointing out that this model does not have a unique best-fit parameterization, unless
certain parameters are held constant (i.e., are already known), even when estimating parameters
from ideal data (e.g., a large sample with little or no noise)! This problem and the ways of resolving
the issue are detailed in the latter half of this section.
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on simulated data where the known “true” parameter values can be compared to
estimates. Hence, for the above example, we will first simulate data by picking a
series of time values (t1, t2, . . ., tn) and generating corresponding x(ti) values by
computing a numerical solution to the above logistic equation, Eq. (47a), then the
corresponding yi values can be sampled from the normal distributions given by
Eq. (47b). This is implemented in the following R code, and provides a data set with
known “true” parameters that can be used to evaluate and verify that the parameter
estimation procedure works as intended.

set.seed(6.28) # for repeatable random number generation
library(deSolve) # load the ode() function into the workspace

# Function to simulate x(t) using ode() in the deSolve package
odefunc = function(t,x,ps) { # see ?ode in R for details
with(as.list(ps),{ # Use named values in ps as variables
dx = r*x*(1-x/K); # (compare to SIR code above).
return(list(dx)); } )

}

# Simulate data. First, obtain an ODE solution
Time = seq(0,7,length=30) # 30 evenly spaced values from 0 to 7
params = c(r=2, K=500, c=0.1, sigma=2) # Model parameters
x0 = c(x=50) # labels our state variable x in xout below
xout = ode(y=x0, times=Time, func=odefunc, parms=params)
head(xout,2) # Display the first two rows of xout

time x
[1,] 0.0000000 50.00000
[2,] 0.2413793 76.29257

# Second, sample y values from the given normal distributions
mydata = cbind(Time, y = rnorm(nrow(xout),

mean = params["c"]*xout[,2], params["sigma"]))
head(mydata,2)

Time y
[1,] 0.0000000 5.539212
[2,] 0.2413793 6.369287

tail(mydata,2)

Time y
[29,] 6.758621 52.78624
[30,] 7.000000 48.87896

# Plot process model trajectory x(t) and data (t_i, y_i)
par(mfrow=c(1,2)) # Plot results in 1 row, 2 columns
plot(Time, xout[,2], type="l", ylim=c(0,550),

main="Process Model", ylab="x")
plot(mydata, pch=19, col="gray50", ylim=c(0,55),

main="Data (Simulated)")
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The remainder of this section illustrates how to carry out the parameter esti-
mation procedure, and how to conduct additional analyses to address a commonly
encountered problem where there exits multiple “best-fit” parameter estimates. This
is known as an identifiability problem (also called an estimability problem), and will
be discussed in greater detail below.

2.7.4 Parameter Estimation as an Optimization Problem

Continuing with the example above, let us assume that it is known that x0 = 50,
and we seek to estimate the other parameter values from our (simulated) data. The
likelihood of a given parameter set θ = (r,K, c, σ ) (given those n simulated pairs
of data ydata = (ti ,yi)) can be computed using the likelihood function defined as

L(r,K, c, σ |ydata) =
n

∏

i=1

f (yi, mean = c x(ti), sd = σ) (48)

where function f is the density function for a normal distribution19 with the given
mean and standard deviation, evaluated at yi , and parameters x0, r , and K are
used to numerically find x(ti). Our goal is to computationally find the set of
parameter values that maximizes L for a given data set. As stated above, it is
often more practical to minimize the negative log likelihood function nLL(θ |y) ≡
− log(L(θ |y)) rather than maximize the likelihood function. Thus, by properties of
the natural log function,

nLL(θ |y) = − log
(

n
∏

i=1

f (yi, mean = c x(ti), sd = σ)
)

= −
n

∑

i=1

log(f (yi, mean = c x(ti), sd = σ)).

We can now frame our parameter estimation problem as a computational
optimization problem. Since solutions x(t) typically have no closed form, we will
use numerical solutions of our process model in order to compute likelihoods.

Optimization algorithms essentially take a real-valued objective function (in our
case, a negative log likelihood function) which defines a surface over parameter
space, and from an initial set of parameter values (i.e., a point in parameter space)
moves through parameter space by moving “downhill” (or “uphill”) on the objective
function surface until the minimum (or maximum) objective function value is found.
Thus, to use generic optimization tools in software like R, we must construct a

19See dnorm in R.
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negative log likelihood function that conforms to the requirements of our chosen
optimization routines.

The objective functions defined below are written specifically to be used with
the generic optimization methods available under optim() and optimx() in R
[129]. These functions require that the first argument to the objective function be a
parameter vector, and any additional arguments are for passing in additional fixed
values (in this case, the data). See the help documentation for optim in R for further
details. The examples below use the default Nelder–Mead algorithm, which can be
relatively slow,20 and does not allow for the specification of explicit constraints (e.g.,
we would like to require the standard deviation parameter σ be positive), but often
gives good results where gradient-based methods perform poorly (for additional
optimization considerations and resources, see [128, 129, 161]).

In the context of our specific application, we additionally require that all
parameters are positive-valued. This is a common constraint; however, generic
unconstrained optimization methods like Nelder–Mead often work best when
allowed to freely consider all real numbers as candidate values for each unknown
parameter. To impose constraints on those parameter ranges requires us to either
modify our objective function—to coerce the optimization method into avoiding
negative parameter values—or to instead use a constrained optimization method.
When using a box-constrained optimization method in R (e.g., method L-BFGS-B
in optim) the limits on the range of possible parameter values can be specified
explicitly as arguments to optim or optimx. Here we only illustrate two variations
on the first approach, using unconstrained optimization with parameter constraints
built into the objective functions.

The first objective function (nLL1) implements this constraint by returning a
very large value if any parameter value is not strictly positive. This introduces
a discontinuity into the likelihood surface, which can cause problems for many
optimization methods, especially gradient-based methods (i.e., those methods that
use derivatives to “move downhill” to find objective function minima).

nLL1 = function(theta, tydat) {
# To disallow negative parameter values, nLL1 returns a large
# number if the optimization algorithm inputs any negatives.
# (See the text and nLL() below for better alternatives.)
if(any(theta<=0)) { return(1*10^10) }

# Otherwise, calculate our likelihood of theta given the data.
Times = tydat[,1] # 1st column are the times
Ys = tydat[,2] # 2nd column are the y values

# Simulate a trajectory x(t) under the given parameters (theta)
x0 = c(x=50) # For now, we assume x0 is known.
xout = ode(y=x0 ,times=Times, func=odefunc, parms=theta)

20The performance can be improved somewhat, e.g., by setting the flag kkt=FALSE to avoid
unnecessary computations or using parscale when parameter values vary by multiple orders of
magnitude. See the documentation for optim and optimx for details.
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# Return the -log(Lik) value under a normal distribution. Here
# we use the built-in ability to calculate log-density values
# by setting the argument log=TRUE. See ?dnorm for details.
return(-sum(dnorm(Ys,theta["c"]*xout[,2],

theta["sigma"],log=TRUE)))
}

The second (preferred) approach, implemented in nLL2 below, uses transforma-
tions (like those discussed in Sect. 2.6) to ensure parameter values remain strictly
positive. Here, (positive-valued) parameters are transformed using the natural log
and then unconstrained optimization is performed using these real-valued trans-
formed quantities. The resulting log-transformed values can then be transformed
back to positive parameter values using the exponential function exp(x) = ex . In
the example above, if we want r to remain strictly positive, we can re-parameterize
nLL1 using the transformed quantity q = log(r) (where r = exp(q) is positive for
all −∞ < q < ∞). Likewise, defining k = log(K), C = log(c), and S = log(σ )

so that K = exp(k), c = exp(C), and σ = exp(S), we can rewrite nLL1 above as a
function of these new parameters P = (q, k, C, S) where θ = exp(P ).

nLL2 = function(P, tydat) {
Times = tydat[,1] # 1st column are the times
Ys = tydat[,2] # 2nd column are the y values
# Next, obtain x(t) under the given parameters
x0 = c(x=50) # As above, we assume x0 is known.
xout = ode(x0, times=Times, func=odefunc,

parms = c(r=exp(P[["q"]]), K=exp(P[["k"]])))
# Return the -log(Lik) value under a normal distribution
return(-sum(dnorm(Ys,

exp(P[["C"]])*xout[,2], exp(P[["S"]]), log=T)))
}

While, in theory, the optimal parameter values obtained from these two
approaches should be identical, in practice round-off error and other factors can
lead to different outcomes. Optimization methods tend to perform better using the
log-transformation with unconstrained optimization, or using an explicit constrained
optimization method instead of the approach implemented in nLL1 above.

To illustrate this, the following code obtains parameter estimates using both
approaches described above. This requires that initial values are provided for the
parameters we would like to estimate, as required by optim.

# Initial parameter values for optimization using nLL1
theta0 = c(r=1, # Next, use the last y value for K, but

# divide that y value by c to get an x value...
K=as.numeric(mydata[nrow(mydata),2])/0.6,
c=0.6, sigma=0.1)

# The log transformed initial values for nLL2
P0 = c(q = log(theta0[["r"]]), k = log(theta0[["K"]]),

C = log(theta0[["c"]]), S = log(theta0[["sigma"]]) )
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# The true values, for comparison (impossible with real data!)
Ptrue = c(q = log(params[["r"]]), k = log(params[["K"]]),

C = log(params[["c"]]), S = log(params[["sigma"]]) )

# Fit the model both ways, then compare.
fit1 = optim(theta0, nLL1, tydat=mydata,

control=list(maxit=1e9, reltol=1e-10))
fit2 = optim(P0, nLL2, tydat=mydata,

control=list(maxit=1e9, reltol=1e-10))

The results from these two optimization runs are summarized below by showing
the lowest negative log likelihood value found, the corresponding parameter values,
the number of calls of the objective function (counts), and the convergence code21

indicating that the optimization routine reported no errors.

# Combine rows into a single object to display the results
rbind(fit1 = c(fit1$par, nLL=fit1$value,

counts=fit1$counts[[1]], conv.code=fit1$convergence),
fit2 = c(exp(fit2$par), nLL=fit2$value,

counts=fit2$counts[[1]], conv.code=fit2$convergence),
true = c(params, nLL1(params,mydata), NA, NA) );

r K c sigma nLL counts conv.code
fit1 1.8623 430.47 0.11738 2.2161 66.448 779 0
fit2 1.8619 430.29 0.11744 2.2171 66.448 295 0
true 2.0000 500.00 0.10000 2.0000 67.859 NA NA

Observe that the estimates are effectively the same, but the number of function
calls indicates that the optimization run on the log-transformed parameter values
(fit2) converged much faster. Furthermore, notice that the best estimate is slightly
off from the known (“true”) values used to simulate these data, due to the added
noise and finite sample size. For more on implementing and debugging this
optimization approach to parameter estimation, see [128, 129, 161].

Exercise 10 In the example above, we may wish to further assume c is a proportion
that cannot exceed 1. What other invertible functions might one use to map the open
interval (0, 1) to R?

Challenge Problem 13 Read through R’s help documentation for the optim
function (and the optimx function in the optimx package; see also [161]), and
identify one or more constrained optimization methods that can be used as an
alternative to Nelder–Mead. Also, modify the code above to include a third objective
function identical to nLL1 but with no checks on the sign of the parameter values.
Apply one or more constrained optimization method(s), and provide a comparative
summary of your results.

21Convergence code 0 indicates no errors, and convergence code 10 indicates degeneracy of the
Nelder–Mead simplex. The code 10 often occurs when the model is not identifiable and reaches a
“flat spot” in the objective surface.
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2.7.5 Recognizing Identifiability (Estimability) Problems

In practice, before we attempt using optimization to find our best-fit parameter
values, we must ask one important question that was neglected in the above example:
Does this model and estimation procedure have a unique best-fit parameter set, or
might there be multiple sets of parameter values that give equally good fits? That is,
phrased in terms of the geometry of the negative log likelihood surface: Is it roughly
bowl shaped (with a distinct minimum) or is it more like a valley with a connected
line of minima (or worse!)? In the first case, we call the model identifiable—it has a
unique likelihood-maximizing parameter set. In the second case, we say the model
is unidentifiable. While such problems may not affect forecasting of your observable
quantities, it is often the case that addressing any such identifiability problems
is essential to properly performing and drawing inferences from the parameter
estimates (e.g., see [11, 33, 46, 47, 57, 141]). Below, we introduce some ways of
assessing whether identifiability problems exist, and some approaches to correcting
the problem.

There are two predominant causes of identifiability problems that arise in
practice. First, sometimes our data lack the information needed to estimate one or
more parameters. For example, if our logistic model data were restricted to just
the early exponential growth phase of the trajectory shown in Fig. 5, we might
be able to estimate growth rate r , but our data would lack information about the
carrying capacity K . This can make K very difficult to estimate, and may result in
wildly different estimates of K depending on where the estimation procedure was
initialized. This can sometimes (but not always) lead to numerical problems if the
optimization methods used require the existence of a unique optimum. Perhaps a
worse outcome is that no numerical errors are reported, and a seemingly good (but
in reality, arbitrary) estimate of K is obtained. Without any further identifiability
or uncertainty analysis, the conclusions drawn from that flawed estimate would be
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Fig. 5 A trajectory x(t) of logistic model Eq. (47) (left) and a corresponding data set where the
simulated data values yi are normally distributed with a mean that is proportional to x(ti ). For
more details, see the corresponding code in the main text
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spurious (e.g., if K being very large or very small were of great importance). This
would be a practical identifiability problem, since it results from a shortcoming in
the data, not our model.

The second cause for identifiability problems arises from an overparameterized
model, e.g., where there are multiple parameter sets that yield the same outcomes
for the deterministic part of our model used to define the mean of observation
distributions. We call this a structural identifiability problem, and unlike practical
identifiability problems, these persist even when estimating parameters from ideal
data (e.g., full trajectories with no noise and arbitrarily large sample size).

For a simple example of a structurally unidentifiable model, consider the simple
linear regression model where the slope parameter m is replaced with two a
parameter expression m = m1 + m2, i.e., consider

E(yi) = (m1 + m2) xi + b. (49)

It is no surprise that this model has infinitely many best-fit parameter sets!
Specifically, if the standard regression model had a best-fit slope of say m̂ = 5
and intercept of b̂ = 2 then for our overparameterized model we would get equally
good fits out of any set of parameters where m̂1 + m̂2 = 5. Notice that in this simple
example, the problem has nothing to do with the amount of noise in the data, or
the sample size, but it is a fundamental property of the deterministic part of our
statistical model.

Since, in practice, both structural and practical identifiability problems manifest
in the form of an objective function that does not have a unique and/or well
defined optimum, a practical identifiability analysis is a good approach to assessing
whether or not such problems exist. This can then be complemented by a structural
identifiability analysis to look for identifiability problems that are caused by the
deterministic part of our model, if needed.

Next, we look at some approaches to conducting these identifiability analyses to
assess presence and extent of these problems, and see some ways to correct them.

2.7.6 Practical Identifiability Analysis

In practice, to assess whether or not an identifiability problem exists, the first step
is often to perform a practical identifiability analysis. Likelihood profiling is a
common way to perform a practical identifiability analysis when using a likelihood
based estimation procedure [32, 46, 141], because this is often the method used for
quantifying uncertainty in the parameter estimates (i.e., to approximate confidence
intervals) and thus requires no additional analyses. A more simplistic alternative
that can be used in other estimation frameworks (e.g., least-squares regression) is to
run the estimation procedure using multiple different initial parameter values, then
check to see if each converges to the same, or different, best-fit parameter estimates.

To illustrate this approach, we again consider estimating parameters for our
logistic example above, but we now assume x0 is unknown and thus a quantity
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we would like to estimate. To implement this in R, the code below first defines
a negative log likelihood function nLL (an extension of nLL2) that takes in the
additional free parameter X0 = log(x0). Unlike the case above, where x0 was
a known quantity, this additional free parameter makes the model structurally
unidentifiable.

Below, the estimation procedure described above was run for the full model (i.e.,
for nLL) using 1000 different initial parameter values. The pairwise relationships
among the best estimates out of those 1000 runs (based on nLL values) are plotted
in Fig. 6 to show their range of variation as well as any obvious patterns indicating
trade-offs between pairs of parameters. Here x0 is initialized using the first value in
our data set, and the 1000 different initial parameter sets are obtained by random
sampling from a uniform distribution so that each parameter value is within ±30%
of the initial parameter values specified above.

# nLL for the full example model with log-transformed parameters
nLL = function(P, tydat) {

Times = tydat[,1] # 1st column are the times
Ys = tydat[,2] # 2nd column are the y values
xout = ode(c(x=exp(P[["X0"]])), times=Times, func=odefunc,

parms=c(r=exp(P[["q"]]), K=exp(P[["k"]])))
# Return the -log(Lik) value under a normal distribution
return(-sum(dnorm(Ys, mean=exp(P[["C"]])*xout[,2],

sd=exp(P[["S"]]), log=TRUE)))
}

# Use the first y value for a crude initial estimate of x0
P0 = c(X0 = log(as.numeric(mydata[1,2])/0.6),

q = log(theta0[["r"]]), k = log(theta0[["K"]]),
C = log(theta0[["c"]]), S = log(theta0[["sigma"]]) )

# initialize a data frame to store optimization output
fits=data.frame(x0=NA,r=NA,K=NA,c=NA,sigma=NA,nLL=NA,code=NA)
set.seed(123) # for repeatable random number generation
for(i in 1:1000) {

# Random parameter values are within +/- 30% of true values
P0i = log( exp(P0) * runif(length(P0), 0.7, 1.3) )
fiti = optim(P0i, nLL, tydat=mydata, control=list(maxit=1e5))
fits[i,] = c(exp(fiti$par), nLL=fiti$value,

code=fiti$convergence)
}
# select the estimates within 0.01% of the best fit
fits = fits[order(fits$nLL,decreasing=FALSE), ]
fits2 = fits[(fits$code==0 | fits$code==10) &

fits$nLL <= 1.0001 * min(fits$nLL, na.rm=T), ]
# Omit some extremes to clean up the graphical output below
fits2 = fits2[fits2$K != max(fits2$K), ]
fits2 = fits2[fits2$K != min(fits2$K), ]
# log-scale plots to show pairwise tradeoffs, parameter ranges
pairs(fits2[,1:5], log="xy",

labels=c(expression(x[0]),"r","K","c",expression(sigma)))
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Fig. 6 Parameter estimates, on a log scale, obtained by running the optimization routine in our
estimation procedure for 1000 different starting parameter sets, then taking the estimates within
0.01% of the best estimate’s nLL value and plotting their pairwise relationships (note the best-fit
negative log likelihood value of these 350 top fits is 66.4476 and the worst is 66.4488). These
estimates (which exclude some extreme values to clarify patterns in the plots; see code for details)
have the following coefficients of variation: cvx0 = 5, cvr = 0.0013, cvK = 5.1, cvc = 3.2, and
cvσ = 0.0023. The very close negative log likelihood values, combined with the large ranges of
variation and correlations between some parameters indicate that there is an identifiability problem
(i.e., there is apparently no unique best-fit parameter set, either due to there being more parameters
than estimable quantities in the model, or the optimization method lacks the sensitivity to find
an existing optimum due to a nearly flat objective function near that optimum). It seems only r

and σ appear to be identifiable. Linear relationships on these log–log plots indicate linear, inverse,
or power law relationships between best-fit parameters. These estimates are slightly better (lower
negative log likelihood values) than the previous figure, where x0 was held constant at a non-
optimal value. See the code in the main text for further details

rownames(fits2)=c() # remove row numbers for the output below
head(fits2[,1:6],5) # Show the 5 best parameter estimates

x0 r K c sigma nLL
1 19.35396 1.8624 166.5768 0.30336 2.2170 66.448
2 11.51700 1.8623 99.1655 0.50959 2.2196 66.448
3 5.25086 1.8615 45.1620 1.11897 2.2166 66.448
4 3.55392 1.8610 30.5587 1.65359 2.2161 66.448
5 0.79901 1.8616 6.8779 7.34744 2.2188 66.448

summary(fits2[,1:3])

x0 r K
Min. : 0.07 Min. :1.86 Min. : 0.6
1st Qu.: 4.31 1st Qu.:1.86 1st Qu.: 37.2
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Median : 7.25 Median :1.86 Median : 62.6
Mean : 25.21 Mean :1.86 Mean : 217.2
3rd Qu.: 13.79 3rd Qu.:1.86 3rd Qu.: 119.1
Max. :1934.69 Max. :1.87 Max. :16685.9

summary(fits2[,4:6])

c sigma nLL
Min. : 0.003 Min. :2.21 Min. :66.4
1st Qu.: 0.424 1st Qu.:2.21 1st Qu.:66.4
Median : 0.807 Median :2.22 Median :66.4
Mean : 2.278 Mean :2.22 Mean :66.4
3rd Qu.: 1.359 3rd Qu.:2.22 3rd Qu.:66.4
Max. :78.369 Max. :2.23 Max. :66.4

Note that, while the estimates for r and σ are tightly clustered, the others vary
by multiple orders of magnitude! These wildly different parameter estimates, each
fitting equally well to the data (i.e., they have nearly identical negative log likelihood
values), are a strong indication of an identifiability problem.

Next, we conduct a structural identifiability analysis to assess whether or not
these problems arise from a structural identifiability problem (and would therefore
persist even for data with a very large sample size and little to no noise).
Importantly, even though this does not always yield the desired results (see [46, 121]
and references therein), it can often provide equations that exactly describe the
parameter trade-offs evident in Fig. 6.

2.7.7 Structural Identifiability Analysis

Structural identifiability problems can often be identified (and sometimes, corrected
for) by a structural identifiability analysis (e.g., see [11, 33, 46, 57, 122, 123, 141,
146] and references therein) that determines whether or not there is a one-to-
one mapping between the model parameters and the quantities in the model that
can be estimated (e.g., in our simple linear regression example above, Eq. (49),
there is no one-to-one mapping between parameters m1, m2, and b and the
estimable slope m and intercept b). These estimable quantities are also often called
(identifiable) parameter combinations. A commonly used method of conducting a
structural identifiability analysis is the input–output equation approach detailed in
the references above, and the benefit of this approach is that it can give you generic
analytical relationships (e.g., like the m = m1 + m2 relationship in Eq. (49)) that
can be used to correct the problem, e.g., by fixing one of the problem parameters in
order to make one or more others uniquely estimable.

Since the above practical identifiability analysis indicates an identifiability
problem, we here apply the input–output equation approach to determine whether
or not Eq. (46) is a structurally unidentifiable model, and if so, to discover the
identifiable parameter combinations.
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To do this, we first assume a zero-variance (deterministic) observation variable
y(t) = c x(t) and differentiate it with respect to t . Second, we substitute the process
model Eq. (47a) and substitute x = y/c to obtain a differential equation that is only
in terms of the observation variable y. The resulting equation is referred to as the
input–output equation, and for our logistic example it is given by

dy

dt
− r y − r

c K
y2 = 0, y(0) = c x0. (50)

Since this equation is a monic polynomial in terms of y and derivatives of y, it
follows that are our identifiable parameter combinations (i.e., the quantities we can
estimate from data) are the two coefficients in the input–output equation and the
initial condition, i.e., one can only estimate values for

r,
r

c K
, and c x0. (51)

What does this imply about the estimability of our model parameters? If there were
a one-to-one mapping between these three identifiable parameter combinations and
our four parameters, then we would expect there to be a unique best parameter
estimate (given ideal data). But, note that we have three identifiable parameter com-
binations and four model parameters, hence we cannot have a one-to-one mapping
between them. Thus, our example logistic model is structurally unidentifiable.

Obtaining these expressions for the trade-offs between parameters are a major
benefit of conducting a structural identifiability analysis. From the above example,
we have learned that we should expect a unique estimate for r , but any parameter
values for c, x0, and K that yield the same “best-fit” values of c K and c x0 will fit
equally well. Thus, the pairwise plots in Fig. 6 should show an inverse relationship
between c and x0 and between c and K (or, a linear relationship with negative
slope when viewed on a log–log plot), and a linear relationship with positive slope
between x0 and K . Also, by fixing one parameter—e.g., c or K or x0 (but not r)—
there would then be a one-to-one mapping between the three identifiable parameter
combinations and the three unknown model parameters. Often, in applications,
some parameters can be assigned values based on independent experiments, so
holding constant the most well known of these parameter values might correct these
identifiability problems and thus permit investigators to estimate the other unknown
parameters from data.

Exercise 11 In the logistic example above, prove that fixing c, K , or x0 corrects
the identifiability problem, whereas fixing r does not. To do this, suppose there are
two different sets of best-fit parameter values (r1, K1, x01, c1) and (r2, K2, x02, c2)
that yield the same identifiable quantities (51), i.e., c1 x01 = c2 x02, r1 = r2, and

r1
c1 K1

= r2
c2 K2

. Fix each parameter in turn (e.g., fix c1 = c2 = c), and show whether
or not the resulting system of equations permits two distinct parameter sets.
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Exercise 12 Structural identifiability results can provide explicit functional forms
describing trade-offs among unidentifiable parameters, like those shown in Fig. 6.
These can be found by writing our identifiable quantities explicitly and solving for
the implied relationships between parameters. For the example above, we have the
identifiable quantities α1 = c x0, α2 = r , and α3 = r/(c K), which are uniquely
estimable from an ideal data set. Use these expressions to show that the ratio K/x0 is
constant, and thus K and x0 have a positive linear relationship consistent with Fig. 6.
Verify the other pairwise relationships suggested by the log–log plots in Fig. 6.

Let us now use these results to correct our estimation procedure. Suppose that, in
our full logistic growth example, we had good reason to believe that our sampling
design captured roughly 10% of the population at any given time. That is, we can
reasonably assume c = 0.10. In that case, our negative log likelihood function could
be modified so that it takes in a vector of parameter values that does not include c

(and instead holds it fixed at 0.10), and likewise c would be omitted from initial
parameter value vector provided to optim.

These modifications are implemented in the practical identifiability analysis
below, which replicates the parameter estimation procedure 500 times for different
initial parameter sets. The results are shown in Fig. 7, where pairwise scatterplots of
the best-fit parameter estimates can be used to assess whether or not replicates seem
to be converging to a unique best-fit parameter set.
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Fig. 7 Pairwise plots of parameter estimates for the logistic model Eq. (47) where c = 0.1 is
fixed to correct the structural unidentifiability of the model (see Fig. 6). To illustrate the improved
convergence of estimates, 500 different initial parameter sets were used, and for the 65 of those
estimates with a negative log likelihood value within 0.01% of the best estimate, these had the
coefficients of variation: cvx0 = 0.002, cvr = 0.001, cvK = 0.00013, and cvσ = 0.0015
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nLLc = function(P, tydat) {
Times = tydat[,1] # 1st column = times; 2nd = y values
Ys = tydat[,2]
x0 = c(x=exp(P[["X0"]]))
xout = ode(x0, times=Times, func=odefunc,

parms = c(r=exp(P[["q"]]),K=exp(P[["k"]])))
# Return -log(Lik) value as in previous examples
return(-sum(dnorm(Ys, 0.1*xout[,2], exp(P[["S"]]),log=T)))

}

# initial P values for all but C=log(c)
P00 = P0[-4] # exclude the 4th element, C=log(c), from P0

# Pairwise plots to verify the identifiability problem is fixed
fits = data.frame(x0=NA,r=NA,K=NA,sigma=NA,nLL=NA,code=NA)
for(i in 1:500) {

# Random parameter values are within +/- 20% of true values
P00i = log( exp(P00) * runif(length(P00),0.8, 1.2) )
fiti = optim(P00i, nLLc, tydat=mydata,

control=list(maxit=1e6, reltol=1e-10))
fits[i,] = c(exp(fiti$par), nLL=fiti$value,

code = fiti$convergence)
}
# Display the best-fit estimates and the pairwise scatterplots
fits = fits[order(fits$nLL, decreasing=FALSE), ]
# Only include those with a nLL withing 0.01% of the best fit
fits2 = fits[(fits$code==0 | fits$code==10) &

fits$nLL <= 1.0001 * min(fits$nLL, na.rm=T), 1:5]
summary(fits2[,-5]) # Omit nLL quartiles (all are very close)

x0 r K sigma
Min. :58.25 Min. :1.858 Min. :504.9 Min. :2.210
1st Qu.:58.64 1st Qu.:1.861 1st Qu.:505.3 1st Qu.:2.216
Median :58.72 Median :1.862 Median :505.3 Median :2.216
Mean :58.70 Mean :1.862 Mean :505.3 Mean :2.217
3rd Qu.:58.76 3rd Qu.:1.863 3rd Qu.:505.4 3rd Qu.:2.219
Max. :58.91 Max. :1.871 Max. :505.4 Max. :2.230

# Estimates should be close to params, used to simulate the data,
# but not exact due to noise and finite sample size.
c(x0=50, params) # The values used to simulate the data.

x0 r K c sigma
50.0 2.0 500.0 0.1 2.0

rownames(fits2)=c() # erase the old row numbers from `fits
head(fits2[,1:5], 4) # The best estimates obtained are...

x0 r K sigma nLL
1 58.68502 1.862500 505.3260 2.215778 66.44762
2 58.69906 1.862127 505.3115 2.218590 66.44763
3 58.73725 1.861839 505.3141 2.216148 66.44763
4 58.72716 1.861420 505.3199 2.215563 66.44764
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pairs(fits2[,1:4], log="xy",
labels=c(expression(x[0]), "r", "K", expression(sigma)))

From these pairwise plots of parameter estimates, we see there is still some small
variation in our estimates, but the best estimates are now all clustered tightly around
the same value, and close to the true values used to simulate the data (note the
estimates would deviate more from the true values if we had fixed c at a value away
from 0.1). Some deviation from the true values is always expected when the data
set is noisy and has a small to moderate number of data points. Note that some
parameters show correlations, e.g., r and x0, indicating that there is some slight
trade-off between them. This is often the case when the objective surface (i.e., the
negative log likelihood surface) has a unique optimum but it lies along a nearly flat
trough with only a slight amount of curvature near the optimum, which can cause
the optimization routine to end prematurely. This suggests that our estimates might
be refined, if needed, using a different optimization method or by modifying the
control parameters so that the criteria for when to conclude that an optimum was
found are more conservative.

Exercise 13 Suppose data for the θ -logistic model (see Eq. (36)) were simulated
only for a short period of time starting with x0 � K so that only the exponential
growth phase was reflected in the data. Would you expect to be able to estimate K or
the exponent θ with much certainty? Likewise, for the logistic or θ -logistic models,
would you expect to be able to estimate r with any certainty if the data were only
sampled from a trajectory that started at carrying capacity x0 = K? Discuss these
in the context of structural versus practical identifiability.

Challenge Problem 14 There are still some correlations in Fig. 7 suggesting some
“trade-off” between estimated parameter values. Explore different optimization
routines and control settings. Are the correlations and variation in estimates
improved by a more finely tuned optimization procedure? How does increasing or
decreasing the noise, or the sample size, of our simulated data affect these estimates?

Challenge Problem 15 (Standardizing Parameters for Optimization) The
Nelder–Mead algorithm used in the examples above (as well as many other
optimization methods) may not perform well in situations where the parameter
values in question span many orders of magnitude. A simple way to correct this
problem is to standardize the optimization parameters. To do this, given p unknown
parameter values, one can introduce a new set of p scalars (initially set at 1) that
can be multiplied by a base parameter vector to create a new parameter vector.
Optimization is then done on these multipliers using a new objective function that
takes these new parameters as inputs, multiplies them by a base parameter set,
and then computes a negative log likelihood value for the resulting set of model
parameters using the original nLL function. To do this, begin with nLL above
and a base parameter set params0 such that the usual optimization call would be
optim(params0, nLL, ...). Next, write a new function nLLscaled that
takes a vector of parameter values M (initially all set to 1) as an input, and also
a second parameter vector basepars which can be passed in as an argument to
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optim using optim(M, nLLscaled, basepars=params0, ...). The
optimum parameter values returned by optim can be multiplied by params0 to
obtain the best-fit model parameters.

Implement this approach for the logistic example above, where c = 0.1 is
assumed to be known, and compare its performance (e.g., in terms of rates of
convergence and goodness of fit) to the unstandardized approach. Finally, note
that optim and optimx have a built-in way of achieving this scaling using the
parscale option (see the documentation for optim and optimx). Add this
built-in option to your comparison of approaches.

2.7.8 Statistical Analyses Beyond Parameter Estimation

Once we are happy with our parameter estimation procedure, other statistical
analyses can and should be conducted. For example, we typically should conduct
some sort of uncertainty quantification to assess how much certainty we have in
our parameter estimates. Uncertainty quantification is almost always necessary, as it
provides an essential context for evaluating any inferences drawn from estimates
obtained by fitting models to data. In the context presented above, uncertainty
quantification can be done by approximating confidence intervals for the parameter
estimates using likelihood profiling techniques, which, as mentioned above, can
also be used for practical identifiability analysis [47]. Resampling methods like
bootstrapping or other approaches to uncertainty quantification may also be used,
e.g., see [1, 2, 19, 21, 32, 70, 79, 114] and references therein. Model comparisons
can also be made, e.g., using likelihood ratio tests, relative AIC values, or similar
criteria (e.g., see [21, 123] and references therein). While uncertainty quantification
is not treated here in detail, readers fitting models to data are strongly encouraged to
quantify the level of uncertainty in their parameter estimates, forecasts, etc. as part
of any presentation or discussion of their final results.

2.7.9 Alternative Approaches to Parameter Estimation and Uncertainty
Quantification

New and improved methods for parameter estimation and uncertainty quantification
for ODE-based statistical models are still being actively developed, but in practice
the above approach is a good place to start. As mentioned at the start of this
section, there are other approaches than the one detailed above and some have
even been implemented as R packages. For example, the deBInfer package
can be used to implement Bayesian parameter estimation for ODE models [19].
A Bayesian framework offers many advantages, including a straightforward avenue
to uncertainty quantification using the posterior parameter distributions. Sometimes
likelihood surfaces that involve solutions to ODEs can deviate greatly from the
ideal “hump shaped” likelihood surface with a distinct optimum, and thus make
for a difficult computational optimization problem. Alternative methods have been



Rethinking ODE Model Assumptions 49

developed that instead use a different measure of how well the model fits the
data by comparing the right hand side of the ODE model (i.e., derivatives of the
solution curves) to derivatives of a non-parametric smooth curve fit to time series
data [139]. The package CollocInfer implements one of these functional data
analysis methods in R [87, 88], and there is also Matlab software for use with the
FDA package [86]. See also [14, 32] and the probe matching approach discussed in
[50, 97, 151].

2.7.10 Closing Remarks on Fitting ODE Models to Data

In general, it is strongly advised that any parameter estimation procedure be assessed
using data simulated from the exact statistical model being used, to verify that
the implementation was done correctly and that the estimates look reasonable
(additionally, this simulation-estimation check can be repeated for many simulated
data sets to generate a “boot-strapped” empirical distribution for the estimates,
which can then be used to assess estimator properties, e.g., to quantify bias).
An identifiability analysis also further helps to ensure the parameter estimation
procedure works as intended. If optimization challenges arise, other methods are
available by selecting a different method option in optim, or multiple methods
can be compared using optimx in the R package optimx. For even more
optimization options in R, see the CRAN Task View page on Optimization [161]
which lists additional methods available in various contributed R packages.

3 Identifying and Modifying Model Assumptions

The sections above introduce some useful methods for analyzing ODE models or
otherwise using them in an applied scientific setting. They also introduce some
of the simple ways in which new ODE models can be derived by altering the
assumptions of an existing model. In the sections that follow, we take a closer look at
the task critically evaluating ODE model assumptions, and formulating new models
that in some cases lead to new non-ODE models.

To aid in identifying assumptions associated with a given ODE model that might
be altered to yield a new ODE (or non-ODE) model, it helps to consider a few
general features of ODE models. First, there is the continuous (vs. discrete) nature
of ODE models, both in time and state space, as well as the deterministic (vs.
stochastic) nature of ODE models. Modifying one or both of these assumptions may
be both scientifically fruitful and mathematically interesting to investigate. Relaxing
the memoryless (vs. history-dependent) nature of ODEs can often yield different
results from a corresponding set of ODEs, as can altering the assumptions that a
system is autonomous (vs. driven by external forcing terms), non-spatial (vs. being
explicitly spatial), well-mixed, and/or composed of identical (vs. heterogeneous)
individuals. Modifying model assumptions like those listed above will often lead to
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opportunities to formulate new non-ODE models, while altering other assumptions
is perhaps more likely to yield new ODE models [4, 6, 45, 51, 100].

To illustrate, let us revisit the SIR model Eqs. (8) and its assumptions. First,
because ODEs are inherently memoryless (i.e., the future state of the system
depends only on the current state of the system, not the past), introducing any
dependence on past states of the system may yield a non-ODE model, unless the
necessary information about that history can be incorporated into the state variable
values at the present time (e.g., the addition of an exposed class and the resulting
SEIR model is a way of accounting for history by assuming an exponentially
distributed lag that manifests as an intermediate exposed state). As stated above,
the dwell times in states S and I follow Poisson process first event time distributions
(e.g., the duration if infectiousness is exponentially distributed with rate γ ), and
altering those distributions (as shown below) can yield ODE and non-ODE models.

Second, the SIR model is seemingly agnostic of any spatial relationships between
individuals, but (like many ODE models) it actually implicitly assumes that the
system is well mixed as opposed to assuming a contact process between individuals
that is, e.g., limited to nearest neighbors over some spatial domain. This implicit
assumption also implies no other sources of spatial heterogeneity, e.g., areas where
transmission rates are higher or lower than other areas.

Third, in the basic SIR model, individuals are assumed to be identical (or iden-
tically distributed) with respect to infectiousness and recovery times, as opposed
to assuming multiple categories of individuals differing in their transmission risk
(e.g., in modeling sexually transmitted infections, modelers typically acknowledge
that sexual interactions are not random, so individuals are often partitioned into age
classes or into groups that engage in low- versus high-risk behavior) or differ in
disease progression (e.g., vaccinated versus unvaccinated individuals, or individuals
that do or do not have a certain genotype that confers some protection from disease).

Fourth, the SIR model also assumes constant rates of per capita infection and
recovery, versus rates that vary over time. However, the transmission rate for many
childhood diseases is strongly driven by whether or not school is in session, as this
increases the contact rate among infected and susceptible children.

Fifth, the SIR model is also continuous in both time and state space, which may
not be desirable if one seeks to quantify the time it takes for an epidemic to end
(i.e., for I (t) = 0, which cannot happen in finite time under the ODE model) or
if one wants to use the SIR model as part of a statistical model for the analysis of
weekly case count data, which might be more tractable with a stochastic discrete-
time, discrete-state model.

Lastly, the SIR model makes very specific assumptions about the functional
forms of the transmission and recovery rates. It is possible to instead define models
that include more mathematically general terms (e.g., instead of defining the force of
infection as λ(I) ≡ β I one could more generally assume that the force of infection
λ is instead some unknown strictly increasing function of I—and possibly a function
of S and R too—where λ(0) = 0) which are quite amenable to mathematical
analyses to explore what results can be obtained that apply across this broader class
of models. This kind of model generalization based on more specific models can go
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a long way to draw more general conclusions from specific study systems, and can
also provide important context for drawing attention to the full range of dynamics
that one might observe in similar real systems (e.g., see [35]).

Modelers strive to find an appropriate balance between simplicity and reality. As
you can see from the SIR model assumptions listed above, there are often myriad
ways of altering the assumptions of an existing ODE model. Some of these may
be important to investigate, e.g., to better understand how a certain simplifying
assumption might impact a key results obtained from the model. On the other hand,
incorporating too many complicating assumptions can quickly make models too
complex to analyze, diminishing their utility for applications.

Students can often find an interesting research project by focusing on a single
ODE model assumption (e.g., the presence or absence of an Exposed class in the SIR
model) and that might be altered to yield a new set of ODEs that are still simple
enough to analyze and compare to the original model. But, students are particularly
encouraged to consider altering those simplifying assumptions that primarily serve
to ensure the model is a system of ODEs, especially when such assumptions might
seem to be an egregious oversimplification given the research question at hand, and
given the specifics of the real-world system(s) being modeled.

In the next few sections, we briefly introduce some approaches to generalizing,
or otherwise altering, these ODE model assumptions. To give a full treatment of
the analytical and computational aspects of deriving and analyzing these models
is beyond the scope of this chapter, so instead an effort has been made to provide
references to resources that can be consulted to dig deeper into these topics.

3.1 Autonomous ODEs to Non-autonomous ODEs

Autonomous ODE models, which only depend on the current state of the system
(i.e., that could be written with f (x, θ) in the context of Eq. (1)), assume that the
system dynamics are not governed by any other time-varying quantities. This is
often a major simplifying assumption for biological systems where, for example, the
true rates of growth, reproduction, and survival may vary greatly over time following
changes in temperature, light levels, or evolved seasonal patterns of behavior.
Accounting for this time dependence is often accomplished by incorporating time-
varying terms into ODEs, especially when incorporating strong seasonal or other
periodically varying quantities into the model (e.g., seasonal transmission patterns
in infectious diseases; e.g., see [34, 71] and references therein). Aperiodic and/or
stochastic environmental forcing terms can also often be represented by continuous
functions of time, e.g., to include temperature dependencies in a population growth
model using hourly temperature data interpolated to create a continuous function of
time.

While the choice to use a non-autonomous ODE model may preclude something
like an equilibrium stability analysis (since the notion of an equilibrium point is
often irrelevant when the system is being forced), however such extensions can often
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make for a great follow-up study of a system previously modeled with autonomous
ODEs [44, 143, 158]. Mathematical analysis can be done in some cases, e.g., where
the forcing functions are bounded around some mean or are periodic (e.g., see [15,
108]), or where they can be approximated by step functions thus allowing one to
represent the model with autonomous ODEs over specific time intervals [89].

For a simple example of a seasonally forced model, consider a logistic growth
model where we have separated out the birth and death processes in the form

dx

dt
= b x − (d + μx) x = (b − d) x

(

1 − x

(b − d)/μ

)

(52)

where the birth rate is modeled by an exponential-growth-like term with rate b, and
the per capita mortality rate d + μx is density dependent in that it increases from
a baseline level d at rate μ > 0 with increasing population size x. Rewritten in
the standard logistic equation form (Eq. (21)), we see the model has an exponential
growth rate r = b − d (we may assume b > d to ensure population growth) and a
carrying capacity K = (b − d)/μ = r/μ.

The following exercises illustrate how one might modify such a model to include
time-varying processes.

Exercise 14 Suppose Eq. (52) was to be used to model a population with density-
dependent growth, where temperature was either to be held constant in one set
of experiments or cycled between high and low temperatures to mimic a day–
night temperature cycle. To make this model non-autonomous, one could make b a
positive-valued function of time, and/or d a positive-valued function of time, and/or
the quantity b − d a function of time (e.g., by multiplying it by a function that
oscillates between values a little above and a little below 1, and whose long-term
average is 1), and/or μ a positive-valued function of time. For what scenarios might
one of these be more appropriate than the other?

Challenge Problem 16 Numerically investigate two or more instances of the
modified logistic models described in the exercise above.

Challenge Problem 17 Write down equations for a modified SIR model with a
periodic transmission rate β(t), e.g., using sine, cosine, or step functions (i.e., piece-
wise constant functions) that alternate periodically between two positive values.
Modify the R code in previous sections to find numerical solutions to this seasonally
forced SIR model, and compare model trajectories under different scenarios.

3.2 Deriving Deterministic Discrete-Time Models

For some applications, models that change according to discrete-time steps are
sometimes desirable, thus one may want to modifying the assumptions of an
existing ODE model to derive an analogous deterministic discrete-time model (or, as
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discussed in the next section, a stochastic discrete-time model). For example, one
might want to take an existing model of a continuously breeding organism and
modify it for use with an annual plant or an animal population that has a very distinct
breeding period each year (e.g., salmon or various insects, like mayflies). Another
example may be a desire to consider a discrete-time analog of an ODE model as
part of a statistical model to use with, e.g., weekly or monthly data. This is often
accomplished using an exact or approximate representation of how the (continuous-
time) ODE model trajectories change over a fixed time interval. For example, in
some cases a discrete-time map can be obtained when ODE model solutions can
be found analytically as in [89]. Alternatively, over short time steps, Euler’s method
gives an approximate discrete-time map x(t+Δt) = x(t)+f (x(t), θ)Δt . However,
there is some merit in taking a different approach by going back to a set of system-
specific assumptions and re-deriving an appropriate model from first principles.

For examples of biological applications of discrete-time models, readers are
encouraged to explore the literature. Many discrete-time models exist for studying
population dynamics, and various texts address formulating and analyzing discrete-
time models, including [4, 45, 50, 100, 126].

Exercise 15 Take the standard logistic model (or the form above, written in terms
of b, d, and μ) and use integration by parts to verify the analytical solution curve

x(t) = x0 K

x0 + (K − x0) exp(−r t)
, (53)

starting at x(0) = x0. Next, use that solution to find α and β such that this system
has a discrete-time map

x(k + Δt) = x(k)

α + β x(k)
. (54)

Hint: Consider the solution curve from time t = k to t = k + Δt .

Challenge Problem 18 Use a for loop to simulate a trajectory of the above
discrete map analogue of the continuous-time logistic equation. Use code from
previous sections to obtain a numerical solution to the continuous-time logistic
model, and also implement Eq. (53) and overlay these three trajectories in one plot.

Challenge Problem 19 Construct a discrete-time model (using the results from
the exercise above, and Eq. (52)) for the following scenario. Assume a migratory
population spends a portion of the year (0 < T1 < 1) on the breeding grounds,
where the population grows according to a logistic equation, then a proportion ρ1
survive a quick (assume it is instantaneous) migration to the wintering grounds.
Once there, natural mortality leads to an exponential decline in population size over
the remainder of the year. Then, of the remaining individuals, a fraction ρ2 survive
the return trip to the breeding grounds to start another annual cycle. Construct a map
x(t+1) = f (x(t)) that reflects all of these processes described above. Use resources
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like one of the references given above to do an analytical (or simulation-based)
equilibrium stability analysis of this map (see also [89, 150] for similar models).

3.3 Deriving Stochastic Models

Revising the assumptions of an ODE model to can sometimes result in the
need to derive a stochastic model, e.g., to investigate the role of demographic
stochasticity arising from individual births and deaths in a population, or to alter
implicit assumptions like the probability distribution describing the duration of
time individuals are infectious in an SIR-type disease model, or to use in deriving
a new deterministic model. Stochastic models can take various forms, ranging
from Markov chains to discrete maps to stochastic differential equations (SDEs),
just to name a few. This section introduces some common types of the stochastic
dynamic models found in applications. For further reading, see [3, 6, 21, 45, 131]
and references therein.

3.3.1 Continuous-Time, Discrete-State Stochastic Models

A natural stochastic model analogue of a given ODE model (if it can be viewed
as a mean field model of some unspecified stochastic process) is the particu-
lar continuous-time stochastic process based on Poisson processes mentioned in
Sect. 2.1. This is often used to add demographic stochasticity to a model, or alter
implicit individual-level assumptions to derive a new mean field model. This process
can often be derived via the approaches outlined in texts like [3, 6] and references
therein.

Another way to construct this model, especially for simulation purposes, is the
Stochastic Simulation Algorithm (SSA; also known as the Gillespie algorithm)
[68, 69, 133]. In short, the SSA is a straightforward algorithm for simulating the
stochastic analog of a mean field ODE using the Poisson process intuition illustrated
in the exponential growth example in Sect. 2.1. There are various extensions and
refinements of the SSA that an interested reader may wish to pursue, e.g., for time-
varying processes [162] or the simulation of large systems where computational
efficiency is important [26, 27, 31, 124]. Here we introduce the basic SSA algorithm.

To implement the SSA we first must identify all state transition events that lead
to a change in state variables, the corresponding state vector changes for each type
of event, and the corresponding rates for each event type. For example, in our SIR
example, the two basic event types are the transition from susceptible to infected and
the transition from infected to recovered, as detailed in Table 1. This information is
used to iterate the following two main steps of the SSA: first, simulate the time to
the next event, then determine which event type occurs.
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Table 1 Possible changes to the state vector x = (S, I, R) in a stochastic discrete-state discrete-
time SIR model with time step Δt , and their approximate probabilities

Event Update vector Probability = Rate·Δt

Transmission (ΔS, ΔI, ΔR) = (−1, 1, 0) β S I Δt

Recovery (ΔS, ΔI, ΔR) = (0, −1, 1) γ I Δt

First, to simulate the time to the next event we need to specify its probability
distribution. As mentioned in Sect. 2.1, the rate terms in our ODE that correspond
to these different transition events can be interpreted as Poisson process rates. In
an autonomous system, the time to the next event will be exponentially distributed
with a rate given by the sum of each event rate, since these rates depend only on
the state of the system, and so between events those rates are constant.22 Once this
overall event rate is calculated, the time to the next event is sampled from the given
exponential distribution.

The second step in the SSA is to determine which event type occurred, so the
state variables can be updated accordingly. To do this requires using the fact that
the probability of the ith event type occurring, pi , is given by the ratio of that event
rate (i.e., the corresponding term from the ODE) divided by the total rate. To clarify
this step, consider again the SIR model where our two events have corresponding
rates βSI (infection event) and γ I (recovery event), i.e., the probabilities of a new
infection or a recovery are approximately βSIΔt and γ IΔt , respectively. Here
we specify the overall rate of a transmission event occurring, as opposed to the per
capita rate. Then the probability p that the next event is a transmission event is given
by p = βSI/(βSI + γ I). Thus, the event type is determined by sampling from
this discrete probability distribution defined by these relative rates. This sampling is
done using the inverse transform sampling method [40] (see example below), and
then the state variables are updated accordingly. This process is then repeated to
obtain the desired simulated trajectory of the stochastic model.23

To illustrate how to apply the Stochastic Simulation Algorithm, it is implemented
below in R for the basic SIR model. The overall rate r that defines the time until the
next event is r = βSI + γ I as mentioned above, thus the probabilities of an event
being a transmission or recovery event are βSI/r and γ I/r , respectively. To sample
which event occurs, we simply sample from a Uniform(0,1) distribution and check
whether the sampled value falls below βSI/r (indicating a transmission event) or
above that value (indicating a recovery event).

These two steps are repeated until a specified time is reached, or until I (t) = 0
(at which point the state values become fixed for all future times).

22Since the time to the next event under multiple different Poisson processes—one for each
event type—is the minimum of the corresponding exponentially distributed event times, it is itself
exponentially distributed with a rate that is the sum of the individual rates.
23Additional intuition for this algorithm can be found in the section in [92] regarding “competing
clocks” in a Poisson process framework.
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# Using the same parameters and initial conditions above...
set.seed(8675309) # Repeatable random number generation
X = cbind(Time=c(0), S=c(998), I=c(2), R=c(0)) # Store output
B=0.0003 # parameter values
g=0.1

# Next a matrix of "update vectors" to add to the
# current state of the system, i.e., x(t), when either a
# transmission (row 1) or recovery (row 2) event occurs.
update = matrix(c(-1,1,0, 0,-1,1), nrow=2, ncol=3, byrow=TRUE)
# display the two row vectors
update

[,1] [,2] [,3]
[1,] -1 1 0
[2,] 0 -1 1

# Stochastic Simulation Algorithm iteration using a while loop
i = 1 # a counter for our while loop iterations
while(X[i,1] < 150 & X[i,3] > 0) { # while Time < 150 and I>0 ...

rates = c(B*X[i,2]*X[i,3] , g*X[i,3]) # indiv. event rates
r = sum(rates) # total rate of some event happening
tstep = rexp(1,r) # time to the next event is Exponential(r)

# Determine which event occurs
p = rates/r # Probability vector for each event type
u = runif(1) # Sample a Uniform(0,1)
j = which(u <= cumsum(p))[1] # Sample which event occurred
# The cumulative sum defines intervals [0,p1], [p1,p1+p2] ...
# with interval lengths p1, p2, ... The function which(...)
# returns the index for each interval including and above u.
# Index [1] returns the 1st of these -- the one containing u.
# Thus, Prob(j=1)=p1, Prob(j=2)=p2, etc.

# Store updated time and the state variables, in new row of X
X = rbind(X, c(X[i,1] + tstep, X[i,2:4] + update[j,]))
i = i+1 # increment our row index for X

} # end of while() loop
if(X[i,1] < 150) { # If I reached 0, extend simulation to t=150

X = rbind(X, c(150, X[nrow(X),2:4]))
}
head(X,3) # Display first and last few simulated values

Time S I R
[1,] 0.000000 998 2 0
[2,] 2.080826 997 3 0
[3,] 2.523152 997 2 1

tail(X,3)

Time S I R
[1884,] 119.9396 57 1 942
[1885,] 135.8091 57 0 943
[1886,] 150.0000 57 0 943
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Fig. 8 One realization of the Stochastic Simulation Algorithm applied to the SIR model, which
yields a simulated trajectory under the discrete-state, continuous-time analogue of the ODE-based
SIR model defined by Eqs. (8). Compare to the ODE model trajectory in Figs. 2 and 3. See the
code in the main text for further details

# Plot the stochastic trajectories as before
Time = X[,1]
par(mfrow = c(1,3)) # three panels in 1 row
plot(Time, X[,2], ylab="S", ylim=c(0,sum(X[1,2:4])),

type="l", lwd=2); abline(h=0) # Add a horizontal axis
plot(Time, X[,3], ylab="I", ylim=c(0,sum(X[1,2:4])),

type="l", lwd=2); abline(h=0)
plot(Time, X[,4], ylab="R", ylim=c(0,sum(X[1,2:4])),

type="l", lwd=2); abline(h=0)

These simulation results in Fig. 8 illustrate how this stochastic model captures
the random fluctuations induced by the discrete nature of individuals in the system,
and the probabilistic nature of the transmission and recovery processes. We call this
kind of stochasticity demographic stochasticity to distinguish it from environmental
stochasticity which might, for example, take the form of a non-constant transmission
coefficient β fluctuating in time. This may be modeled using a pre-specified curve as
discussed in the previous section, or by approximating the combined demographic
and environmental noise within a stochastic differential equation (SDE) framework
as discussed in the next section.

Exercise 16 Rerun the code above multiple times, but omit the set.seed() call
so that a different stochastic simulation is generated each time. Do all simulations
look the same, or not? How do these compare to Figs. 2 and 3?

Exercise 17 Combine the above SSA code with the code for plotting the numerical
solution curve to the ODE version of the SIR model, and overlay the ODE output
with the stochastic model output. How do the two trajectories compare?

Challenge Problem 20 Repeat the stochastic simulation above a few hundred
times, store each of the simulations, and plot them together in one graph. How do
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they compare? Plot or otherwise summarize the distribution (across these different
simulations) of any interesting quantities you can think of, e.g., peak number
infected, total number infected, time to end of epidemic, etc.

Challenge Problem 21 Iterate these stochastic simulations many times and for
each iteration store the first time at which I (t) = 0. Plot a histogram of these
extinction times.

Challenge Problem 22 Implement the Stochastic Simulation Algorithm (SSA) for
the Rosenzweig–MacArthur predator–prey model, Eqs. (23). Carefully consider the
dependence or independence of different events (e.g., loss of prey via predation
versus the birth of a new predator). As above, compare stochastic and ODE model
output for the same parameter values and initial conditions. Increasing a through the
Hopf bifurcation (see Fig. 1), noise may sometimes cause the predators or prey to
go extinct, especially as the amplitude of the oscillations increases with increasing
a. How does the average time to extinction vary with a above the threshold value
that gives rise to predator–prey oscillations?

3.4 Stochastic Differential Equations (SDEs)

A common way to approximate a continuous-time discrete-state stochastic model
is to derive a continuous-time, continuous-state model known as a stochastic
differential equation (SDE) which retains the key average (mean) changes over
time (like ODEs) as well as some of the covariance structure of the stochastic
fluctuations about that average behavior. There are multiple ways to derive SDEs,
but the derivation below follows Chapter 5 of [3].

First, consider the discrete-time approximation of the underlying continuous-
time stochastic model for our SIR equation, and the possible update vector values
corresponding to transmission and recovery events. These are summarized in
Table 1 where as above we only focus on the S and I equations since R can be found
later using R(t) = N0 − S(t) − I (t). Let the update vector Δx be a random vector
that takes on these possible values according to their corresponding probabilities.
The mean and second moment of the update vector Δx are, respectively,

E(Δx) =
[ −β S I

β S I − γ

]

Δt (55)

E(Δx(Δx)T) =
[

β S I −β S I

−β S I β S I + γ I

]

Δt. (56)

If we define µ = E(Δx)/Δt and B such that B2 = E(Δx(Δx)T)/Δt then
the SDE for this scenario—using drift coefficient µ and diffusion coefficient B—
is given by
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dx = µ dt + B dW (57)

where W(t) is a vector of two independent Wiener processes (i.e., standard
Brownian motion where for t > s each Wi(t) − Wi(s) is normally distributed with
mean 0 and variance t − s). Since W(t) is not time-differentiable, the notation used
in Eq. (57) implicitly assumes these quantities exist as the integrand of an integral
over time [3, 6, 131]. Thus, an SDE approximation of our stochastic SIR model is

[

dS(t)

dI (t)

]

=
[ −λ(t) S(t)

λ(t) S(t) − γ I (t)

]

dt + B dW. (58)

Matrix B can be found analytically in this case, but in general may need to be
computed numerically. Here, the covariance matrix B2 has multiple square roots,
but only one is a symmetric positive definite matrix [159], thus we use

B =

⎡

⎢
⎢
⎢
⎣

√
BSI

√
gI+BSI

√
(√

gI+√
BSI

)2+BSI

− BSI
√

(√
gI+√

BSI
)2+BSI

− BSI
√

(√
gI+√

BSI
)2+BSI

gI+√
BSI

√
gI+BSI

√
(√

gI+√
BSI

)2+BSI

⎤

⎥
⎥
⎥
⎦

. (59)

3.4.1 Numerical Solutions to SDEs

Numerical solutions to SDEs can be computed using algorithms similar to those
discussed in the section above for simulating ODEs, e.g., see [3, 16, 76, 83, 138,
147]. Below, the stochastic fourth-order Runge–Kutta algorithm from [76] is used
to numerically solve the above SDE version of the SIR model (Fig. 9). For additional
details on deriving, analyzing, and generating numerical solutions of SDEs and
related models (e.g., stochastic delay differential equations) see [3, 6, 93, 131].

############################################################
# Stochastic Runge-Kutta-4 for Stratonovich calculus,
# as described in Hansen and Penland 2006.

# A function to calculate the deterministic part of our SDE,
dSI = function(X, ps) { # i.e., the drift coefficient mu.

S = X[["S"]] # Unpack our state variable values
I = X[["I"]]
b = ps[["beta"]] # Unpack parameters
g = ps[["gamma"]]
return(matrix(c(-b*S*I, b*S*I - g*I), nrow=2, ncol=1))

}

sdeRK4 = function(X, dt, ps) {
S = X[["S"]]; I = X[["I"]]; # As in dSI above.
b = ps[["beta"]]; g = ps[["gamma"]];
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Fig. 9 One numerical solution to the SDE version of the simple SIR model defined by Eqs. (58)
and (59), simulated using a stochastic fourth-order Runge–Kutta algorithm [76]. Compare to the
ODE model trajectory in Fig. 2 and the Stochastic Simulation Algorithm (SSA) implementation of
that model in Fig. 8. See the code in the main text for further details

# Standard normal values with variance dt
dW = matrix(rnorm(2,mean=0,sd=sqrt(dt)), nrow=2, ncol=1)

# Square root of the second moment matrix B^2
B = matrix(c(sqrt(b*S*I)*sqrt(g*I)+b*S*I, -b*S*I,

-b*S*I, g*I + sqrt(b*S*I)*sqrt(g*I)+b*S*I)/
sqrt((sqrt(g*I) + sqrt(b*S*I))^2+b*S*I),
nrow=2, ncol=2)

# Define the terms of the stochastic RK4 scheme
# See Hansen and Penland 2006 for details.
k1 = dSI(X,ps)*dt + B %*% dW ## %*% is matrix multiplication
k2 = dSI(X + .5 * k1, ps)*dt + B %*% dW
k3 = dSI(X + .5 * k2, ps)*dt + B %*% dW
k4 = dSI(X + k3, ps)*dt + B %*% dW
return(X + (1 / 6) * (k1 + 2*k2 + 2*k3 + k4))

}

# Parameters for our numerical solution
Pars = c(beta=0.0003, gamma=0.1)
N=1000
X = data.frame(S=998, I=2) # Assume that R(0)=0
Time = c(0)
tstep = 0.1

# Iterate sdeRK4() steps to simulate a full trajectory
set.seed(246) # For repeatable random number generation
i=2 # counter for our while loop below
while(Time[i-1] < 150 & X[i-1,2]>0) { # while t<150, I>0

Time[i] = Time[i-1] + tstep
X[i,] = sdeRK4(X[i-1,],tstep,Pars)
i = i+1

}
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# Combine columns into a single data frame
Xout = cbind(Time, X, R = N - rowSums(X))
tail(Xout,4)

Time S I R
1417 141.6 81.05222 0.02383346 918.9239
1418 141.7 81.05465 0.04914261 918.8962
1419 141.8 81.06478 0.02691306 918.9083
1420 141.9 81.07035 -0.01539963 918.9450

# If I(t) dropped below zero on the last iteration...
if(Xout[i-1,3] < 0) { # ... set I=0 and extend to t=150:

Xout[i-1,3] = 0 # First set negative value to 0, then
Xout[i,] = Xout[i-1,] # duplicate that last row and
Xout[i,1] = 150 # set the final time to 150.

}

# Plot the numerical solution curves as before
par(mfrow=c(1,3)) # Plot 3 panels in 1 row
plot(Xout[,1], Xout[,2], ylab="Susceptible (S)", ylim=c(0,N),

xlab="Time", type="l", lwd=2); abline(h=0)
plot(Xout[,1], Xout[,3], ylab="Infected (I)", ylim=c(0,N),

xlab="Time", type="l", lwd=2); abline(h=0)
plot(Xout[,1], Xout[,4], ylab="Recovered (R)", ylim=c(0,N),

xlab="Time", type="l", lwd=2); abline(h=0)

Challenge Problem 23 Derive and implement SSA- and SDE-based stochastic
simulations of the logistic equation with explicit birth and death rates given by
Eq. (52). How do their assumptions differ? What similarities and differences can you
identify between these two stochastic implementations of the ODE-based logistic
growth model?

3.5 Distributed Delay Equations

Another widespread ODE model assumption that can be altered is the assumed
exponentially distributed dwell times24 that are so often encountered as simplifying
assumptions in mean field ODEs. Choosing other dwell time assumptions can some-
times alter model behavior in ways that are important for a given application
(e.g., [63, 64]). Typically, models that relax this assumption must be derived from
stochastic model first principles, and often the end result is a set of integral
equations or integro-differential equations rather than ODEs (e.g., [80]). Under
certain distributional assumptions, these integral equations can also be realized as a

24The dwell time, or passage time, is the duration of time an individual spends in a given state. As
discussed in Sect. 2.1, ODEs with linear loss rate terms implicitly assume that—in the context of
Sect. 3.3.1—the times individuals spend in that state are exponentially distributed.
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system of ODEs (e.g., see [64, 65, 92, 154]), and in some cases it is possible to write
down those ODEs directly from the stochastic model assumptions (see Sect. 3.5.2
and references therein). The following sections introduce these distributed delay
equation models, as well as the linear chain trick (LCT) and a generalized linear
chain trick (GLCT) for approximating or exactly representing these with systems of
ODEs. Discrete delay differential equations (DDEs), which can be thought of as the
zero-variance limit of a distributed delay equation, are also introduced in Sect. 3.5.4.

3.5.1 Integral and Integro-Differential Equations

Integral and integro-differential equations arise as a more general way of writing
mean field models for continuous-time stochastic processes, especially when the
dwell time distributions and related assumptions do not permit an ODE rep-
resentation of the mean field model (e.g., when the model is not memoryless
[92]). Specific forms, known as Volterra integral equations and Volterra integro-
differential equations (or sometimes just referred to as Volterra equations) are
named after the prolific mathematician and physicist Vito Volterra (born 3 May
1860, died 11 October 1940) who, building upon his work on functionals in
functional analysis, laid the groundwork to use integral and integro-differential
equations to study biological problems.

One approach to derive a mean field distributed delay model in the form of an
integral equation is to first derive a discrete-time mean field model that accounts for
all the past movements into and out of the different states. This can be done for an
arbitrary dwell time distribution, as shown in the following example.

For an example of such a derivation, consider again our SIR model (see also
[92]). Suppose we seek to model I (t)—the number of infected individuals at time
t—with an integral equation. To begin, the time interval [0, t] is partitioned into
a large number of N sub-intervals, each of duration Δt . We can refer to each
sub-interval by indexing the start time of each interval as ti , i.e., the ith sub-
interval is (ti , ti + Δt]. Assume the number of new infections during the ith time
interval is binomially distributed where there are n = S(ti) individuals who might
become infected, each with probability p = βI (ti)Δt , during that time period of
duration Δt . Thus, by properties of binomial distributions, the expected number of
new infections during the ith time interval is np = βS(ti)I (ti)Δt . For each of
these cohorts entering the infectious state during the same time interval, assume all
follow the same dwell time distribution with domain [0,∞), cumulative distribution
function (CDF) F(t), and survival function G(t) ≡ 1 − F(t) = P(X > t). It then
follows that, for the cohort of individuals who entered the infectious state during the
ith sub-interval of time, the expected proportion that remains in that state at time t

(after t − ti time units) is G(t − ti ).
With those details in hand, a discrete-time mean field model of the number of

infected individuals at time t is obtained by summing over all N of the sub-intervals
of time (where t = NΔt), accounting for (a) the expected number entering in each



Rethinking ODE Model Assumptions 63

time interval, and (b) the proportion of each cohort25 remaining in I at time t :

I (t) =
initial cohort
︷ ︸︸ ︷

I (0)G(t) +
N

∑

i=1

expected influx
︷ ︸︸ ︷

βS(ti)I (ti)Δt G(t − ti )
︸ ︷︷ ︸

proportion remaining at time t

. (60)

Recognizing this as a Riemann sum, we can take the limit as Δt → 0 (N → ∞)
and replace the times ti with the integration variable s to yield the continuous-time
mean field model given by the (Volterra) integral equation

I (t) = I (0)G(t) +
∫ t

0
βS(s)I (s)G(t − s) ds. (61)

Similarly, one can go on to derive the full generalization of the SIR model, which
incorporates general distributions for the time spent in the susceptible state, and the
time spent in the infectious state (i.e., the duration of infectiousness also called
the infectious period) which each have the respective CDFs FS(t) and FI (t) (i.e.,
survival functions Gi(t) = 1 − Fi(t)). Written as above, the equations are

S(t) = S(0)GS(t) (62a)

I (t) = I (0)GI (t) +
∫ t

0
β I (s) S(s)GI (t − s) ds (62b)

R(t) = N − S(t) − I (t) (62c)

where N = S(0)+ I (0)+R(0). The ODE model given by Eqs. (8) is a special case
of the above model. This can be shown by assuming the time spent in the susceptible
state obeys the 1st event time under a Poisson process with rate λ(t) = β I (t), and
thus GS(t) = exp

( − ∫ t

0 β I (u) du
)

, and further assuming GI (t) = exp
( − γ t

)

.
However, in this more general framework one could consider various other choices
for the dwell time distribution that describes the duration of infectiousness. For more
details and similar models see [29, 63, 92, 102, 113].

One can undertake analyses (analogous to those mentioned above for ODE
models) to investigate integral equation dynamics; however, even basic equilib-
rium stability analyses and computing numerical solutions requires more careful
approaches than for ODEs [12, 25, 80, 111]. In practice, a combination of analytical
and numerical methods can be used to study these types of distributed delay
equations. However, another alternative is to take advantage of the fact that, for
some choices of the dwell time distribution, differentiating these integral equations
can yield equivalent systems of ODEs, as detailed in the next section.

25For simplicity, we here assume the initial cohort enters state I at t = 0 and thus follows the same
dwell time distribution G.
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3.5.2 Linear Chain Trick

The linear chain trick (LCT; also known as the gamma chain trick) allows us to
derive a new ODE model from an existing ODE model that assumes an exponential
dwell time distribution in one or more states by replacing that assumption with
an Erlang26 distributed dwell time. It also allows for the derivation of a system
of ODEs that approximates a distributed delay equation, or a delay differential
equation (as illustrated in Sect. 3.5.4). Erlang distributions are the special set of
gamma distributions that can be thought of as the sum of k independent exponential
distributions, each with the same rate [85, 106, 145]. Importantly, the LCT allows
modelers to write down this new ODE model directly, without going through
the process of constructing a more general integral equation model (as in the
above example), and/or without explicitly deriving ODEs from an integral equation
(as discussed below).

The LCT works as follows. We seek to replace a target state and corresponding
state variable x in an ODE—which has an implicit exponential dwell time distri-
bution with a mean dwell time of 1/r (or equivalently, rate r , i.e., the loss rate
in the dx/dt equation is −r x)—with a series of substates xi that partition state x

into k substates. Individuals enter the state into the first substate x1, then transition
to the second substate, and so on, in series. This ensures that the overall passage
time through these substates is Erlang distributed, since the sum of k exponentially
distributed random variables with rate rk yields an Erlang distribution with mean
k/(rk) = 1/r , as desired.27

The LCT is applied to specific model equations as follows. Suppose a state x in
the model has an input rate Λ(t) and an exponential dwell time with rate μ (i.e.,
mean 1/μ), and thus the mean field ODE equation is of the form

dx

dt
= Λ(t) − μx(t). (63)

To instead assume an Erlang distributed duration of time with the same mean (1/μ),
the equation for x(t) can be replaced with equations for k substates xi(t), where
x(t) = ∑

xi(t), and the equation above is replaced by

dx1(t)

dt
= Λ(t) − μk x1(t) (64a)

dxj (t)

dt
= μk xj−1(t) − μk xj (t), for j = 2, . . . , k. (64b)

26Erlang distributions are gamma distributions with integer-valued shape parameters. Compared to
exponential distributions, the Erlang density function is more hump shaped and the variance can
be made arbitrarily small, as is sometimes desired in applications.
27Readers familiar with Poisson processes may recall that homogeneous Poisson processes
have inter-event times that are exponentially distributed, and the time to the kth event under a
homogeneous Poisson process with rate r is Erlang distributed with rate r and shape k.
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Furthermore, one can choose a value of k in order to implement the desired variance
(increasing k decreases the variance). Often, it is preferable to specify the desired
coefficient of variation28 instead, since the coefficient of variation (cv) for an Erlang
distribution is determined solely by shape parameter k, where cv = 1/

√
k. Note cv

can be specified to yield an integer-valued k = 1/cv2.
Other model equations may also need to be modified when implementing the

LCT, for example you may need to replace expressions involving state variable x(t)

with the sum of the new substate variables xi(t), and any input rates into other states
that depend on the loss rate from x, formerly μx(t), must instead depend on the new
loss rate μk xk(t) (for an example, see below).

To illustrate, suppose that for our original SIR model Eqs. (8) we wanted to
replace our exponentially distributed dwell time (rate γ ; mean 1/γ ) in the infected
state with an Erlang distribution with mean 1/γ and coefficient of variation of 1/3
(i.e., k = 9). To do this using the LCT, we simply replace the ODE

dI

dt
= β S I − γ I (65)

as indicated above, and modify the transmission and recovery rate terms to yield

dS

dt
= − β

( 9
∑

i=1

Ii(t)

)

S(t) (66a)

dI1

dt
= β

( 9
∑

i=1

Ii(t)

)

S(t) − γ k I1(t) (66b)

dI2

dt
= γ k I1(t) − γ k I2(t) (66c)

...

dI9

dt
= γ k I8(t) − γ k I9(t) (66d)

dR

dt
= γ k I9(t). (66e)

In practice, the LCT may be more challenging to apply if there are additional
model complexities like transitions to multiple states or substate transitions that
should not “reset the clock” for the overall dwell time distribution in a state. For
guidance on applying the LCT in those situations, see [92].

28The coefficient of variation is the standard deviation divided by the mean.
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Challenge Problem 24 As illustrated above, the LCT can quickly increase the
number of state variables. Explore the consequences of this increase in dimension-
ality either in terms of model dynamics, and/or the accuracy of numerical solutions.

3.5.3 Mathematical Foundations of the Linear Chain Trick

For readers interested in the mathematical machinery behind the LCT, the following
is a brief overview of how to explicitly derive ODEs from integral equations.

The Erlang density and survival functions are given (respectively) by

gk
r (t) = r

(r t)k−1

(k − 1)!e
−rt (67a)

Gk
r (t) =

k
∑

j=1

1

r
g

j
r (t). (67b)

The following recursion relationship between Erlang density functions and their
derivatives is the linchpin of the LCT, as summarized in Theorem 4 (adapted from
[92], which follows Eqs. 7.11 in [154]); see [92] for extensions).

Theorem 4 The Erlang density functions g
j
r (t), with rate r and shape j , satisfy

d

dt
g1

r (t) = − rg1
r (t), where g1

r (0) = r, (68a)

d

dt
g

j
r (t) = r [gj−1

r (t) − g
j
r (t)], where g

j
r (0) = 0 for j ≥ 2. (68b)

This recursion relation allows one to differentiate integral equations like Eqs. (62)
with assumed Erlang dwell times, and formally derive equivalent mean field ODEs
like Eqs. (66). The linear chain trick can also be generalized to a much broader
family of dwell time distributions that includes the phase-type distributions as
detailed in [92]. More specifically, these phase-type distributions describe the
distribution of times it takes to hit an absorbing state in a continuous-time Markov
chain, and there is a straightforward formula for writing the ODEs for such cases
based on the corresponding transition matrix and rate vector for the continuous-
time Markov chain representation of the assumed phase-type distribution. Interested
readers should consult [92, 154] and references therein for further details, as here
we only introduce the standard linear chain trick.

Challenge Problem 25 Take the I (t) equation from the Volterra integral form of
the SIR model (Eqs. (62)) and assume an Erlang distribution survival function with
rate r and shape k. Use the Leibniz rule for differentiating integrals to prove that the
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above set of equations for Ii are correct. Hint: After differentiating the integral and
applying Theorem 4, use the substitution

Ij (t) = I0
1

r
g

j
r (t) +

∫ t

0
β S(s) I (s)

1

r
g

j
r (t − s)ds. (69)

3.5.4 Delay Differential Equations

Another approach to modifying the exponential delay assumption implicit in many
ODE models is to consider taking the limit of the dwell time distribution’s variance
to zero while the mean is fixed at some value τ . This yields equations of the form29

dx
dt

= f (t, x(t), x(t − τ), θ) (70)

where τ > 0 thus allowing the derivative of the current state (at time t) to depend
on the past state of the system τ time units into the past. These are known as
(discrete) delay differential equations (DDEs) [154], and while DDEs are slightly
more difficult to analyze than ODEs (e.g., in terms of equilibrium stability analysis),
they are easier to mathematically analyze and to compute numerical solutions
for, relative to integral and integro-differential equations. It is also worth noting
that DDEs often exhibit more complex dynamics than similar (non-delayed) ODE
models (e.g., see the simple example in the Appendix of [67]).

There are many resources that address the analysis of DDEs (e.g., [8, 18, 154,
155]), and applications of DDEs are common in the scientific literature, so the
various methods of mathematical analysis will not be reviewed here. Numerical
solutions can be obtained using the dede function in the deSolve package in R
[156], which is used in a similar fashion to the ode function but with a few caveats.
First, unlike ODEs (which are memoryless and only depend on the current state)
DDEs depend on the history of the system. Thus, to begin a numerical solution and
compute forward in time starting at time t = 0 requires that x(t) be defined over
the time interval t ∈ [−τ, 0]. That is, unlike the vector of initial state values needed
to simulate trajectories for ODEs, DDEs require initial functions over [−τ, 0] to
obtain numerical solutions (for example code in R, see the bottom of the help
documentation for dede which illustrates how to specify these initial function
values).

DDEs with a finite number of state variables are actually, in a sense, infinite
dimensional in that all of the values of x(t) between time t − τ and t can be thought
of as state variables. To provide some intuition for why this is the case (and thus
provide a means of approximating DDEs with ODEs, or vice versa) consider the

29More generally, if there are multiple lag values τi , i = 1, . . . , k, the right hand side is of the form
f (t, x(t), x(t − τ1), . . . , x(t − τk), θ).
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following construction of the SIR model with a discrete delay based on Eqs. (66),
the SIR model with an Erlang distributed duration of infection. Recall that, for a
fixed mean duration of infectiousness 1/γ , the shape parameter k represents the
number of substates Ii necessary to include in the ODE when assuming an Erlang
distributed delay between acquiring an infection, and recovery. Recalling that the
coefficient of variation (and the variance) decreases as k increases, it follows that
taking k → ∞ should yield a model that has a discrete delay of exactly τ = 1/γ .
For all k,

∑
Ii(t) = I (t) = N0 − S(t) − R(t), thus in the limit as k → ∞ the

number entering the recovered state during an infinitesimally small period of time
approaches exactly the same number who became infected τ = 1/γ time units ago
(i.e., the rate of recovery at t is β I (t − τ) S(t − τ)), one could write a DDE version
of this model as

dS(t)

dt
= − β (N0 − S(t) − R(t)) S(t) (71a)

dR(t)

dt
= β (N0 − S(t − τ) − R(t − τ)) S(t − τ). (71b)

Exercise 18 Differentiate I (t) = N0 − S(t) − R(t) and use Eqs. (71) to show that
the full version of the model above can be written as

dS(t)

dt
= − β I (t) S(t) (72a)

dI (t)

dt
= β I (t) S(t) − β I (t − τ) S(t − τ) (72b)

dR(t)

dt
= β I (t − τ) S(t − τ). (72c)

Exercise 19 Consider repeating the above derivation of a DDE for the basic
SEIR model, where we would like to change the assumption of an exponentially
distributed latent period (with mean τ = 1/ν) to a discrete delay with the same
mean, i.e., we would like to assume that the incubation period before an exposed
individual becomes infectious is exactly τ units of time. Justify whether or not this
model should be of the form

dS(t)

dt
= − β I (t) S(t) (73a)

dI (t)

dt
= β I (t − τ) S(t − τ) − γ I (t) (73b)

dR(t)

dt
= γ I (t) (73c)

by first generalizing the SEIR model using the linear chain trick, and then letting
the variance of the latent period go to zero (i.e., letting k → 0).
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Lastly, the above procedure can also be reversed as a way of constructing
a system of ODEs that approximates a DDE by relaxing the “zero-variance”
assumption to instead assume an Erlang distributed delay with mean τ . This well-
known approximation method is described at the end of Chapter 7 in [154].

For example, consider the following DDE version of the Rosenzweig–MacArthur
model, where we assume that there is some period of time τ between predators
consuming prey and the subsequent arrival of new predators in the system [167].

dN(t)

dt
= r N(t)

(

1 − N(t)

K

)

− a P (t)

k + N(t)
N(t) (74a)

dP (t)

dt
= χ

a N(t − τ)

k + N(t − τ)
P (t − τ) − μP(t) (74b)

This may be reasonable if, for example, food resources are quickly turned into
offspring and their overall maturation time has a small coefficient of variation
(compare Eq. (74) to the model in §6.2 of [118]). Here we may treat the delayed
rate of new predators entering the system (i.e., the recruitment rate)

χ
a N(t − τ)

k + N(t − τ)
P (t − τ) (75)

as the input rate into this previously unwritten count of offspring that will eventually
become adults. Approximating with the LCT introduces a series of intermediate
state variables Yi , i = 1, . . . , k reminiscent of the linear chain trick results above,
where we assume the value of k such that it gives the desired coefficient of variation
(recall k = 1/c2

v) for an assumed Erlang distribution of incubation times. Relaxing
the discrete delay assumption to include some non-zero variance in the incubation
period therefore yields the following ODE model.

dN(t)

dt
= r N(t)

(

1 − N(t)

K

)

− a P (t)

k + N(t)
N(t) (76a)

dY1(t)

dt
= χ

a N(t)

k + N(t)
P (t) − k

τ
Y1(t) (76b)

dYj (t)

dt
= k

τ
Yj−1(t) − k

τ
Yj (t), for j = 2, . . . , k (76c)

dP (t)

dt
= k

τ
Yk(t) − μP(t) (76d)

It should be noted that these finite-state approximations of DDE models, espe-
cially for large k (i.e., small coefficient of variation), can have different dynamics
relative to the original DDE, and they can also be numerically problematic when
computing numerical solutions for large k values.
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Challenge Problem 26 Use the dede and ode functions in deSolve to generate
comparable numerical solutions to the two SIR models (and/or the two predator–
prey models) above, and compare those solution curves for various values of k (i.e.,
for various values of the implicitly assumed variance about the mean delay value τ ).
Think carefully about the initial function values for the DDE model solutions (e.g.,
consider using ODE model solution curves for these values) so that the simulated
results can be fairly compared.

3.6 Individual Heterogeneity

Different approaches exist for relaxing the ODE model assumption of homogeneity
among individuals in a given state. This may be a reasonable assumption for
the individual molecules in a solution of chemical reactants, but may be an
oversimplification for a population of plants or animals. The most straightforward
way to relax this assumption is to simply assume a finite number of distinct types
of individuals. For example, this has been done with models of sexually transmitted
infections to account for low- and high-risk groups [22, 81], and in multispecies
interaction models where prey can occur in forms that are either undefended (a good
food resource) or well-defended (a poor food resource) [36, 49, 168, 169].

Methods for modeling a continuum of individual heterogeneity also exist, e.g., to
allow something like individual size to vary along a continuum as opposed to a finite
set of possible size classes. For example, in a discrete-time case, this scenario can
be modeled using integral projection models [53, 54, 120], which can offer benefits
over discrete-state models when used for parameter estimation since smooth kernels
with only a few parameters may have fewer parameters to estimate than a model
with a larger number of discrete states, each with their own related parameters.
In continuous-time, a PDE model can be used to describe the time-evolution of a
continuous trait distribution across a population, and there are a variety of analytical
and computational resources available for such models, e.g., [45, 52, 100, 127].

Another approach to constructing a model that incorporates individual hetero-
geneity is to implement an agent based (also known as individual based) model
[72]. These computational models allow for the inclusion of more complex rules
governing individual behavior than can typically be incorporated into a tractable
mathematical model. These approaches have been used quite successfully to better
understand phenomena like animal movements in groups or through heterogeneous
environments (e.g., [50, 66, 72, 144]). While these typically do not allow much
mathematical analysis, they can be useful for modeling specific systems that are
data rich or are otherwise well understood, and can form the basis for subsequently
deriving mathematical models that aim to address very specific phenomena observed
in simulations.
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3.7 Spatially Explicit Models

Spatial effects are perhaps one of the most important components of real-world
systems that frequently get oversimplified by using ODE models, and some of the
other types of models discussed above. ODE models typically assume that systems
are well mixed and not constrained by spatial distances. However, incorporating
these spatial dependencies can have a significant impact on how these models
behave. There is a sizable body of literature on spatial models and methods for
analyzing various types of spatially explicit models. Here we just scratch the surface
of this topic and provide only a very brief introduction to a few of these modeling
approaches, and leave it to the reader to seek out a more in depth treatment of
spatially explicit models.

Readers in search of a research project that includes spatial effects are encour-
aged to derive a spatially explicit model (like one of the model types listed below)
from an existing ODE model, or to slightly modify the assumptions of an existing
spatially explicit model, for example a PDE model. One might also consider the
more ambitious option of deriving a multipatch or network model based on an
existing spatial (e.g., PDE) model, or vice versa.

One approach to deriving a spatially explicit model from an existing non-spatial
model is to simply consider dividing the system up across multiple “patches.”
A well-known example of such models are the metapopulation models in population
ecology [77, 109, 110, 132]. In these contexts, the dynamics within each patch can be
governed by a simple model, such as an ODE model, and some explicit rules can be
imposed that govern movement or other interactions between patches. Constructing
these sorts of multipatch models is an easy way to explore how spatially dependent
processes affect dynamics. These models can also be used to explore the effects of
spatial heterogeneity by allowing model parameters to vary from patch to patch. In
recent decades, such models have been revisited in the context of the burgeoning
field of network science [130], allowing investigators to bring the tools and insights
from the study of networks to bear on understanding how the patterns of patch
connectedness (i.e., the network properties) shape system-wide dynamics.

Many examples of multipatch and network models exist in the literature,
and some of the standard methods of ODE model analysis can be applied to
these models. However, these methods must sometimes be adapted for the high
dimensionality of these systems (e.g., see [30] and references therein; also compare
methods in the literature for calculating epidemic thresholds on networks with the
next generation operator approach to calculating the basic reproduction number R0
for small to medium sized model, as detailed in [43]). For an introduction to methods
for network models, see [130, 135, 136] and also [58–62, 152].

Another approach to explicitly incorporating space into a dynamical systems
model is to discretize a continuous 1-, 2-, or 3-dimensional spatial domain into a
finite number of contiguous patches. This special case of the previously described
patch models can then be analyzed using approximation methods such as pair
approximation [48, 82, 110], or by taking the limit as the patch size shrinks to zero
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to derive a PDE model. As mentioned above, there are other resources available
that cover methods for deriving, analyzing, and numerically simulating PDE models
(including the methods available in the deSolve package in R). Interested readers
may find more detailed treatments of these topics in [45, 50, 100, 127] and related
publications (also, see the list of “books in related areas” in the preface of [45]).

4 Choosing a Research Project

I hope the preceding sections have inspired you to reevaluate a familiar ODE model,
or to seek out an ODE model related to a topic of particular interest to you, and take
a critical look at the explicit and implicit assumptions of that model. The sections
above provide an overview of some commonly used methods for analyzing ODE
models (or otherwise using them in a research setting), and an overview of some
ways that ODE model assumptions can be altered to derive new models in pursuit
of new avenues of research.

From the perspective of conducting research to advance our collective knowledge
of how the world works, research projects that parallel an existing ODE model
analysis (using a model derived by meaningfully altering the assumptions of that
original model) can help incrementally build upon an existing body of work. These
types of research projects can be great for student researchers, since they provide
some guidance in terms of which questions are worth asking, and which types of
analyses can be used to address those questions. Additionally, these alternative
models can also provide opportunities to ask new questions about important real-
world systems that may not be as practical (or possible) to answer using an
existing ODE model (e.g., the distribution of extinction times is more appropriately
addressed in a discrete-state stochastic model). For these reasons, the relationships
between different models and their differing assumptions are a wonderful place
to probe and challenge our understanding of the real-world systems we seek to
understand through mathematical modeling.

4.1 Additional Project Topics

Scientifically, many open problems exist in the study of specific systems that
are being investigated using ODE models. As stated in the introduction, studying
multiple mathematical models of the same system, each with slight variations in
assumptions, can yield a more clear understanding of which results are robust
across models (e.g., see [1, 2, 99, 107]) and across similar real-world systems.
These studies can also identify which results might be meaningfully influenced by
simplifying assumptions. Below are a few additional project ideas to consider that
have some potential to lead to yield meaningful contributions to the very broad field
of mathematical biology.
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Research Project 1 (Timing in Infectious Disease Models) Recently,
increased attention has been given to the importance of properly modeling
the presence or absence of latent periods in infectious disease models [164],
and the importance of making proper assumptions about the distributions that
describe the duration of time spent in different model states [64, 65]. Many
models exist in the literature for various diseases in wildlife and humans
(and for other types of multispecies interactions that do not involve infectious
parasites), and improving a model in this manner can make a great project.

One approach to tackling this project is to do the following:

1. Search the literature for relatively recent publication using an SIR-type ODE
model to study a specific infectious disease. Diseases in non-human hosts or
diseases that are otherwise not heavily researched (e.g., not HIV or Malaria,
Dengue, or Rabies) are perhaps more likely to be modeled using relatively simple
or otherwise poorly refined models.

2. Identify key model assumptions and the research aims addressed in the paper,
paying careful attention to timing and the presence or absence of latent periods.
Which assumptions would be the most important to reconsider?

3. Identify a question you plan to answer, and deriving a new model based on
modifying just one (or maybe two) relevant assumptions, e.g., adding a latent
period.

4. If possible, consult with a public health or infectious disease expert who has
some expert knowledge of the system(s) being modeled.

5. Focusing on one question asked in the original paper, recreate the published
analyses to verify those results.

6. Conduct an analogous analysis of your new model to address the same question
under your revised assumptions, and/or conduct additional analyses to address
other important questions.

From a more mathematical or methodological perspective, there are also some
open questions related to the analytical and computational tools that exist for
the various model frameworks mentioned in the sections above. While these can
be more challenging problems to tackle, and may require a preparation beyond
the typical undergraduate curriculum, some of these questions are still accessible
to undergraduate researchers and could make interesting and impactful research
projects.

Research Project 2 (Numerical Solutions for Distributed Delay Equa-
tions) Methods to compute numerical solutions to integral and integro-
differential equations (often called Volterra integral and integro-differential

(continued)
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Research Project 2 (continued)
equations) are currently being developed and refined. Review the literature,
and select two or more methods and compare their performance under
different modeling scenarios (e.g., periodically forced systems or systems
with multiple time scales). To provide a reference point for evaluating the
accuracy of numerical solutions, the example models used are typically simple
enough to have analytical solutions. A nice spin on this project would be
to use distributional assumptions that allow integral or integro-differential
equations to be fully reduced to an equivalent system of ODEs according
to the linear chain trick (LCT, see Sect. 3.5.2) or the generalized linear chain
trick (GLCT) [92]. How well do numerical solutions to those ODEs perform
in these comparisons?

A project like this could be conducted as follows:

1. Identify some numerical methods for one or more types of distributed delay
equations (e.g., just integral equations).

2. Do a literature search to find appropriate models to use as examples. Include
some with analytical solutions, and some that could be written as ODEs via the
LCT and therefore simulated using appropriate ODE solvers.

3. Establish a set of criteria by which to compare the different methods (e.g.,
computing time per numerical solution, implementation time or some other
measure of the effort required leading up to computing numerical solutions, the
accuracy relative to some baseline solution such as an analytical solution, and so
forth).

4. Implement the planned comparisons.

Students interested in exploring statistical projects may choose to focus on ODE-
based models or projects that involve other modeling frameworks.

As discussed in Sect. 2.7, investigating statistical properties of dynamic models
can be done using simulated data so that the known “true” parameter values can
be used to evaluating the parameter estimation procedure. Therefore one can take
almost any dynamic model and assess the statistical properties of that model under
certain observation process assumptions or using different estimation techniques.
This is especially meaningful when done for models that were used in evaluating
real data where it is unclear that models have identifiable parameters, and/or where
additional analyses (e.g., a power analysis) might provide important context for
interpreting the analysis of real data.

Research Project 3 (Estimator Properties) Investigate the statistical prop-
erties of a system-specific ODE model that has previously been (or might
someday be) fit to empirical data.
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This project could be approached as follows:

1. First, as above, find a peer-reviewed publication that includes an ODE model
that was fit to data. Focus on searching in journals in application areas where
such analyses are unlikely to be included in the publication.

2. Conduct a structural and/or practical identifiability analysis of the model.
3. Conduct a simulation-based study to characterize what if any bias exists for the

estimation procedure used in the publication.
4. Assess what (if any) uncertainty quantification was done, and consider further

analyses if warranted.

Research Project 4 (Fitting Models with Delays to Data) It is not well
understood whether (or under which conditions) distributed delay equations
can be fit to data from comparable discrete delay equations (and vice versa)
and yield correct parameter inferences or predictions about future states of
the system. While deriving general statements about fitting one model type to
another may be challenging, these questions can be addressed in the context
specific cases, perhaps laying the groundwork for identifying more general
patterns.

For this project, consider doing the following:

1. Find a published distributed or discrete delay model, and derive the complemen-
tary model so that you have a discrete delay model paired with an analogous
distributed delay model.

2. Use the linear chain trick to write a set of ODEs for the distributed delay model.
3. Design a simulation-based experimental comparison, thinking carefully about

the differences in assumptions between models, then simulate data under each
model. Fit each model to each data set.

4. How biased are the estimates in each case? Which quantities can or cannot be
estimated well (e.g., other parameter values in the model unrelated to the form
of the delays), and/or how well does each model forecast a continuation of those
simulated data sets?

5 The Importance of Publishing

Finally, perhaps the single most important part of conducting research is to share
that research with your colleagues, the broader scientific community, and the public.
This might include preparing and presenting a poster at a local poster session or
professional conference, or preparing a final manuscript for submission to a peer-
reviewed journal, so that others may benefit from your work.
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Once a project is underway, work with your research mentor to begin drafting
your manuscript in LATEX using templates and guidelines provided by journals for
authors. Write up your results as if you were planning to submit the manuscript for
publication. To select a journal, start with the one that published the paper you are
basing your work on, and talk to your mentor about which journal might be most
appropriate for you to submit your work to.

In addition to standard peer-reviewed journals, there are also a number of
options available for publishing undergraduate research through the peer-review
process. Examples include journals like Spora: A Journal of Biomathematics,
SIAM Undergraduate Research Online (SIURO), and regional or university-related
journals like The Minnesota Journal of Undergraduate Mathematics, The Journal
of Undergraduate Research at Ohio State, or the Nevada State Undergraduate
Research Journal.
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Appendix

Getting Started Writing in LATEX and Programming in R

Installing the free software LATEX and R should be straightforward, but here are
some installation tips for Microsoft Windows and Mac OS X users (Linux users can
find similar installation instructions using the resources mentioned below). Readers
are encouraged to ask other students and faculty at their institution about additional
resources.

There are two pieces of software each, for LATEX and R, that should be
installed: the basic LATEX and R software, and an enhanced user interface that
facilitates learning for new users and helps established users with their day-to-



Rethinking ODE Model Assumptions 77

day workflow (e.g., helpful menus, code autocompletion and highlighting, custom
keyboard shortcuts, advanced document preparation capabilities, etc.). Educators
will appreciate that both TeXstudio and R Studio have a consistent user interface
across operating systems, making them ideal for group or classroom environments
where students may be running a mix of operating systems.

If installing both LATEX and R (recommended), install the base software first
(in either order) before installing TeXstudio and/or R Studio (in either order). More
detailed instructions and resources are provided below.

Installing and Using LATEX

There are different implementations of LATEX available: MiKTeX is a popular
Microsoft Windows option (http://miktex.org/), and TeX Live a popular Mac OS
X option. TeX Live comes as part of a full 2 gigabyte installation called MacTeX
(www.tug.org/mactex/; which includes the popular editors TeXstudio and TeXShop)
or can be installed through a smaller 110 megabyte bundle BasicTeX (www.tug.
org/mactex/morepackages.html). Configure LATEX to install packages “on the fly”
without prompting you for permission. This can be done during (preferred) or
after installation. Also download and install Ghostscript (www.tug.org/mactex/
morepackages.html).

Next, install the TeXstudio editor (www.texstudio.org/), preferably after R is
installed. Various settings can be changed after installation, including color themes,
and configuring TeXstudio to compile a type of LATEX document that includes blocks
of R code known as a Sweave or knitr document (use knitr).

For additional LATEX resources, see the author’s website (www.pauljhurtado.com/
R/), the LaTeX wikibook [166], the AMS Short Math Guide for LATEX [42], and
references and resources listed therein.

Installing and Using R

Download R from www.r-project.org/ and use the default installation process. Once
R is installed (and, preferably once LATEX is installed), install R Studio from www.
rstudio.com. By installing R Studio after LATEX, you will be able to create multiple
document types to generate PDFs, including R Markdown documents and knitr
documents. Helpful online resources include the “cheat sheets” on the R Studio
website, introductory courses by DataCamp (www.datacamp.com) and Software
Carpentry (www.software-carpentry.org), [157] for a gentle introduction to R and
some applications to population modeling, and R resources on the author’s website
(www.pauljhurtado.com/R/).

http://miktex.org/
www.tug.org/mactex/
www.tug.org/mactex/morepackages.html
www.tug.org/mactex/morepackages.html
www.tug.org/mactex/morepackages.html
www.tug.org/mactex/morepackages.html
www.texstudio.org/
www.pauljhurtado.com/R/
www.pauljhurtado.com/R/
www.r-project.org/
www.rstudio.com
www.rstudio.com
www.datacamp.com
www.software-carpentry.org
www.pauljhurtado.com/R/
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