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Series Preface

Research experience has become an increasingly important aspect of undergraduate
programs in mathematics. Students fortunate enough to take part in such research,
either through their home institution or via an external program, are exposed to the
heart of the discipline. These students learn valuable skills and habits of mind that
reach beyond what is typically addressed by the undergraduate curriculum, and are
often more attractive to graduate programs and future employers than peers without
research experience.

Despite their growing value in the community, research experiences for under-
graduate students in mathematics are still the exception rather than the rule. The time
commitment required to run or partake in a successful program can be prohibitive,
and support for students and mentors is limited. For the faculty member, establishing
such a program often requires taking a sophisticated topic outside the scope of the
typical undergraduate curriculum and translating it in order to make it accessible
to undergraduates with limited backgrounds. It also requires identifying problems
or projects that are amenable to undergraduate exploration yet still relevant and
interesting to the wider mathematical community. For the undergraduate, pursuing
research can often mean reviewing extensive articles and technical texts while
meeting regularly with a faculty member. This is no easy feat for the modern
undergraduate with a heavy class load, or one who counts on a summer job to help
offset academic costs.

The primary goal of the Foundations for Undergraduate Research in Mathe-
matics series is to provide faculty and undergraduates with the tools they need to
pursue collaborative or independent undergraduate research without the burden it
often requires. In order to attain this goal, each volume in the series is a collection
of chapters by researchers who have worked extensively with undergraduates to a
great degree of success. Each chapter will typically include the following:

• A list of classes from the standard undergraduate curriculum that serve as
prerequisites for a full understanding of the chapter

• An expository treatment of a topic in mathematics, written so a student with the
stated prerequisites can understand it with limited guidance

v



vi Series Preface

• Exercises and Challenge Problems to help students grasp the technical concepts
introduced

• A list of specific open problems that could serve as projects for interested
undergraduates

• An extensive bibliography and carefully chosen citations intended to provide
undergraduates and faculty mentors with a keen interest in the topic with
appropriate further reading

On reading a chapter and doing the recommended exercises, the intention is that
a student is now ready to pursue research, either collaboratively or independently,
in that area. Moreover, that student has a number of open research problems at hand
on which they can immediately get to work.

Undergraduate research programs are prevalent in the sciences, technology and
engineering and their tremendous benefits are well-documented. Though far less
common, the benefits of undergraduate research in mathematics are equally valuable
as their scientific counterparts, and increased participation is strongly supported by
all the major professional societies in mathematics. As the pioneering series of its
type, Foundations for Undergraduate Research in Mathematics will take the lead
in making undergraduate research in mathematics significantly more accessible to
students from all types of backgrounds and with a wide range of interests and
abilities.

University of Portland
Aaron Wootton



Introduction

While each volume of the Foundations for Undergraduate Research in Mathematics
(FURM) series will be characterized by a commitment to undergraduate education,
and representative of a particular subdiscipline within mathematics, we designed
our volume to bring some unique features to the series, in particular in the range
of types of mathematics, the depth of partner discipline understanding, and special
highlights on mentoring and the process of research. This project is dear to the
authors because we have been active in guiding undergraduate research projects
for many years, and the unique applications in this volume are a reflection of our
own philosophy of engagement. We are inspired by our students’ passions. Some
students are passionate about a specific area within biology and bring with them an
enthusiasm for asking questions. Some students come with a love for mathematics
and a desire to use their mathematical prowess to solve pressing problems of our
day. We then have the privilege of helping students discover the right mathematics
for the question or, if constrained by our mathematical area of training, the right
question for the mathematics. Most importantly, we encourage mentors to take the
backseat and let students own the process as much as possible.

Because the journey sometimes involves finding the right math, the content in this
volume spans the breadth of mathematical and computational biology. This includes
many topics that we believe to be appropriate for student–faculty exploration
that are not normally addressed by the undergraduate curriculum (e.g., Hidden
Markov Models, bifurcation diagrams, convolutional neural networks, agent-based
models). The diversity of areas also allows multiple options for students of varying
mathematical exposure to start research in mathematical and computational biology.

Equally important is the emphasis of this volume on applications. While we
endeavor to help make any new math accessible, the examples of research included
in the text also explain the biology needed to be a researcher in this area. They
explain the fundamental questions our disciplinary friends have and then show
how mathematics gives new understanding to these biological challenges. While
each chapter has a different application focus, some chapters include a variety of
applications, all centered around that chapter’s primary theme. The volume thus
provides a wide variety of application areas to inspire students.

vii



viii Introduction

Finally, we have solicited from individuals who have won awards for their
mentoring and whose students have won national research awards—individuals like
Dr. Castillo-Chavez and Dr. Prieto Lagarica. As such, some of our authors also take
the time to talk about the productive engagement in undergraduate research, from
both the student’s and the mentor’s point of view.

Our intended audience is broad: undergraduate mathematics faculty, with a
particular emphasis on faculty interested in (but not necessarily experienced in)
mathematical and computational biology, and students with sophomore- to junior-
level coursework as a background and likely studying in a STEM field. Undergrad-
uate faculty wishing to direct research will benefit from the many project ideas
suggested by the authors herein, as will faculty simply wishing to expand their
own research repertoire in a new direction. Undergraduate STEM students will
appreciate the accessible yet rigorous treatment of topics previously relegated to the
graduate curriculum, some of these are with fairly minimal prerequisite assumptions
(e.g., calculus and linear algebra). The benefits of undergraduate research, both for
the mentee and the mentor, are myriad. One in particular, though, is contributing
to the scientific community writ large. We hope that if this book inspires you
to advance scientific knowledge in the field of computational biology through
research, then you will consider submitting your work for publication to one of
many undergraduate research journals serving the field such as Involve, SIAM
Undergraduate Research Online, or Spora: A Journal of Biomathematics.

Chapters 1–4 focus on ordinary differential equations from modeling to analysis.
Chapters 5–7 focus on agent-based and network models. Chapters 8–10 focus on
other computational approaches such as parallel computing, neural networks, and
computational fluid dynamics. Chapters are ordered by prerequisite knowledge in
and between these sets.

In Chapter 1, “Building New Models: Rethinking and Revising ODE Model
Assumptions,” the commonly adopted assumptions of ordinary differential equa-
tions models, where the applications are endless (disease dynamics is a major
area), are revisited. The reader is introduced to an array of techniques of relaxing
such assumptions, with an emphasis on investigating the resulting implications.
Prerequisites for interested readers include some familiarity with basic ideas from
calculus, differential equations, calculus-based probability, and linear algebra.

Chapter 2, “A Tour of the Basic Reproductive Number and the Next Generation
of Researchers,” then takes readers through a set of techniques to analyze SIR
disease models accessible to anyone who has taken differential equations-oriented
modeling course. They also describe a number of projects, such as student–teacher
ratios and co-infection, that have utilized these techniques in the context of the well-
known undergraduate summer research program at Arizona State University. The
authors also provide a section on mentoring for faculty working with undergraduate
researchers.

Next, Chapter 3, “The Effect of External Perturbations on Ecological Oscilla-
tors,” introduces readers to the world of oscillatory behaviors that are present in
a host of real-world applications, from seasonal outbreaks of childhood diseases
to action potentials in neurons. Students with a foundation in ordinary differential
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equations and some experience in modeling and simulation will find this chapter to
be an exciting adventure into analyzing oscillating systems.

Chapter 4, “Exploring Modeling by Programming: Insights from Numerical
Experimentation,” then moves on to look at protein regulation, parasite transmission
in cats, and treatment costs in an influenza outbreak. They use numerical methods
and experimentation with their ordinary differential equations models to conduct
their research. A first course in differential equations and introductory programming
would be a helpful background.

The focus of Chapter 5, “Simulating Bacterial Growth, Competition, and Resis-
tance with Agent-Based Models and Laboratory Experiments,” is centered on
bacteria: their growth, competition, and adaptation, including antibiotic resistance.
These ideas are modeled using individual-based models as opposed to structured
population models seen in many of the other chapters of this text. The reader will
note that a very brief introduction to the free software package NetLogo would
be helpful before reading this chapter, but otherwise, it is rather accessible to any
undergraduate student eager to learn about this method of modeling.

Chapter 6, “Agent-Based Modeling in Mathematical Biology: A Few Examples,”
is unique in its presentation style. This chapter is intended to guide readers through
an inquiry-based independent study in agent-based models, designed for students
that have no prior modeling or programming experience. However, to more quickly
move through the modules, programming and graph theory are recommended. A
research project in infection response to serve as an illustration of the types of
projects, along with student co-author reflections ongoing through the independent
study and conducting this research project, is included at the end. Also summaries
of additional application areas along with invasive species, biofilms, and cellular
dynamics are included.

Next, Chapter 7, “Network Structure and Dynamics of Biological Systems,”
introduces the basic concepts of networks in biological systems and provides the
reader with a foundation on how to assess the effects of network structure on system
dynamics. This chapter illustrates well the fact that networks are ubiquitous in
biology, with applications to gene regulatory networks, food webs, and the spread
of disease through social contact networks, just to name a few. A first course in
calculus-based probability is recommended, and some familiarity with graph theory
or network theory would be helpful for students interested in this area.

Chapter 8, “What Are the Chances?—Hidden Markov Models,” presents the
concept of Hidden Markov Models to study a wide variety of applications, including
facial recognition, language translation, animal movement, and gene discovery.
Students familiar with probability and programming will find this chapter readily
accessible. For the student with experience in parallel computing, optional research
projects are provided to give students a taste of how parallel computing can increase
efficiency in Hidden Markov Modeling.

Next, in Chapter 9, “Using Neural Networks to Identify Bird Species from
Birdsong Samples,” the authors analyze scalograms (visualizations of sound) to
identify which bird species made the sound. They use the mathematical construct of
a wavelet transform on the scalograms and then feed them into the computational
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tool of a convolutional neural network to perform this classification. Students should
expect linear algebra and multivariable calculus and introductory programming
(preferably in Python) to assist them in understanding.

Finally, Chapter 10, “Using Regularized Singularities to Model Stokes Flow:
A Study of Fluid Dynamics Induced by Metachronal Ciliary Waves,” illustrates
some current work in computational fluid dynamics as applied to pulmonary cilia
(hair-like fibers within the lung). The authors also provide plenty of suggestions for
additional extensions. The required prerequisites are vector calculus and program-
ming; however, it is beneficial if the reader also has an understanding of cellular
biology, physics, partial differential equations, and computational fluid dynamics.
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Building New Models: Rethinking and
Revising ODE Model Assumptions

Paul J. Hurtado

Abstract Ordinary Differential Equation (ODE) models are ubiquitous throughout
the sciences, and form the backbone of the branch of mathematics known as
applied dynamical systems. However, despite their utility and their analytical and
computational tractability, modelers must make certain simplifying assumptions
when modeling a system using ODEs. Relaxing (or otherwise changing) these
assumptions may lead to the derivation of new ODE or non-ODE models and
sometimes these new models can yield results that differ meaningfully in the context
of a given application. The goal of this chapter is to explore some approaches
to relaxing these ODE model assumptions to derive models which can then be
analyzed in ways that parallel or build upon an existing ODE model analysis.
To accomplish this, the first part of this chapter (Sect. 2) reviews some common
methods for the application and analysis of ODE models. The next section (Sect. 3)
explores various ways of deriving new models by modifying the assumptions of
existing ODE models. This allows investigators to explore the extent to which
ODE model results are robust to changes in model assumptions, and to answer
questions that are better addressed using non-ODE models. The last part of this
chapter suggests a few specific project ideas (Sect. 4) and encourages undergraduate
researchers to share their results through presentations and publications (Sect. 5).

Suggested Prerequisites Knowledge of topics from a standard calculus sequence, basic linear
algebra, an introductory course in probability, and some familiarity with very basic differential
equations models are assumed. Readers would also benefit from having some basic programming
experience (in R, Python, MATLAB, or a similar high-level scientific programming language),

Electronic supplementary material The online version of this chapter (https://doi.org/10.1007/
978-3-030-33645-5_1) contains supplementary material, which is available to authorized users.
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2 P. J. Hurtado

and familiarity with calculus-based probability, stochastic processes (e.g., homogeneous and non-
homogeneous Poisson processes), statistical theory of estimators, biology, or experience with
mathematical modeling in an applied context.

1 Introduction

Ordinary Differential Equations (ODEs) models are ubiquitous throughout the
sciences, and are a cornerstone of the branch of applied mathematics known as
applied dynamical systems. Examples include the exponential and logistic growth
models, Newton’s laws of motion, Ohm’s law, chemical kinetics models, infectious
disease models for the control and treatment of diseases ranging from the common
cold to HIV and Ebola, and models for large scale ecosystem dynamics.

The utility of ODEs as mathematical models is partly a reflection of their
analytical and computational tractability, and also the relative ease of formulating
ODE model equations from assumptions about the system being modeled. Mod-
elers also have access to a well-developed set of mathematical approaches and
computational tools for analyzing ODEs [4, 10, 39, 41, 45, 50, 55, 56, 84, 94–
96, 119, 126, 127, 149, 155, 160, 165]. If there is a practically important or
scientifically interesting real-world system that changes over time, odds are very
good that someone has modeled it with one or more ODEs. However, despite
their utility, modelers must also make certain simplifying assumptions when using
ODEs to model a real-world system (e.g., that systems are well mixed, individuals
behave identically, etc.), and sometimes alternative assumptions can lead to different
outcomes that are very relevant in the context of the motivating application.

The goal of this chapter is to explore some approaches to relaxing these ODE
model assumptions to come up with new models that can then be used in ways that
parallel or build upon an existing ODE model application. This allows investigators
to explore the extent to which results obtained from the analysis of an ODE
model are robust to changes in certain model assumptions, and/or to address a
broader range of questions, some of which might be better answered through the
analysis of a similar ODE or non-ODE model (e.g., using a stochastic model of
population growth and decline to assess the distribution of time to extinction under
different population management scenarios [105]). Undergraduate students reading
this chapter are encouraged to initially focus on understanding the broader context
of the technical details presented in this chapter, and then later attempt to more fully
understand specific details, with the help of a research mentor or advisor, as they
work on a project.

A great recipe for an undergraduate research project is to (a) find an interesting
paper in a reputable, peer-reviewed journal that includes some analysis of an ODE
model, (b) repeat one or more analyses to confirm a specific published result,
and then (c) answer similar questions via the analysis of a new model derived by
modifying one or more assumptions of that original ODE model. Mathematically,
these projects often go one of two ways: Changing ODE model assumptions will
sometimes result in a new set of ODEs, while changing other assumptions can lead
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to the formulation of a new non-ODE model, e.g., a model that is defined using
partial differential equations (PDEs), stochastic differential equations (SDEs), or
discrete-time difference equations.

This chapter is divided into two main sections. First, we review some common
approaches to using ODEs models in Sect. 2, including methods of mathematical,
computational, and statistical analysis. Second, in Sect. 3, we address some of the
different ways that ODE model assumptions can be modified to derive new ODE or
non-ODE models, and additional project suggestions are presented in Sect. 4.

Examples are used throughout to illustrate the process of deriving a new model,
and some guidance is provided for analyzing or simulating these derived models.
Some examples include computer code written in the R programming language
[137]. R is a popular, free computing platform that is widely used, easy to install,
and well supported in terms of free resources to get started programming in R. For
readers that have no prior programming experience, or want to learn R, relevant
resources for getting started with R are provided in the appendix. To help readers
who are proficient in another language (e.g., Python, MATLAB, or Mathematica) but
who are unfamiliar with R, the R code in this chapter is annotated with comments
so that it can be more easily ported to other languages.

Lastly, many sections below include exercises that the readers should work
through as they read the sections. These are intended to help solidify the topics
being discussed, and should not require consulting outside resources. The challenge
problems are more involved, and are intended to push the reader to dig deeper into
the topic, or perhaps inspire a research project, by exploring additional resources
including software tools and other peer-reviewed publications.

2 Techniques for Analyzing ODE Models

Before we explore some of the ways in which we can alter ODE model assumptions
to obtain new (sometimes non-ODE) models, it is helpful to consider the kinds
of questions investigators address using ODE models, and some related methods
of ODE model analysis. This is done in Sects. 2.2–2.7. But first, for context, it
helps to review how ODEs can often (but not always, e.g., see Newton’s laws of
motion) be viewed as mean field models of a stochastic process, as this is often
the natural context in which to critically evaluate and revise the assumptions of
biological models.

2.1 ODEs as Mean Field Models

First order systems of ODEs are systems of equations that can be written as

dx
dt

= f (t, x, θ), x(0) = x0, (1)
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where the state variable vector x(t) = (x1(t), . . . , xn(t))
T ∈ R

n, the initial
condition vector x0 ∈ R

n, the parameter vector θ = (θ1, . . . , θp) ∈ R
p, and

the function1 f : R
n �→ R

n. We call such systems autonomous when the
right hand side f only depends on time through its dependence on the state
variables, i.e., when the right side of the system of equations can be written f (x, θ).
While these are deterministic equations, in the context of mathematical models
we often think of ODEs as mean field approximations of an underlying stochastic
model. More specifically, biological and other physical systems made up of large
numbers of discrete individuals can often be modeled as continuous-time, discrete-
state stochastic models (e.g., where the model tracks X(t), the integer number of
individuals alive at time t , which changes stochastically to reflect births and deaths
in the population). Thus, mean field models attempt to capture a particular kind of
average behavior of a stochastic model.

As detailed below, mean field ODEs that approximate these stochastic models
can often be derived from a stochastic model in two main steps: First, the
continuous-time model is approximated with a discrete-time model (step size Δt),
and the stochastic rule that describes how state variables change over one time step is
replaced with a deterministic rule obtained by simply averaging over that stochastic
model. Second, letting Δt → 0, the discrete-time model converges to an ODE (e.g.,
see [5, 20, 92] and the similar approach to derive stochastic differential equations
(SDEs) in [3]).

For example, consider a simple exponential growth model of the growing number
of bacteria, x(t), with per capita growth rate r , in a Petri dish that was inoculated
with x0 > 0 bacteria at time t = 0, given by

dx(t)

dt
= r x(t), x(0) = x0. (2)

Note that this is a continuous-state (i.e., x(t) ∈ R) deterministic model, despite the
fact that we envision the actual biological process as a integer-valued number of
bacterial cells dividing and dying stochastically over time. This dual perspective
is very important in that it provides a foundation for thinking about model
assumptions, and in some cases a starting point for deriving new models.

To clarify this link between stochastic and deterministic approaches, consider
the following derivation of Eq. (2) from the following stochastic model2 of bacterial
population growth. Let X(t) be the number of cells at time t . Assume that, over
a sufficiently small time period of duration Δt > 0, the probability p of each cell
dividing to give rise to a new cell is assumed to be identical for all cells, independent
of time, and given by

1This function is often referred to as the right hand side, abbreviated RHS, of the ODE.
2It is worth mentioning here that multiple different stochastic models can yield the same mean field
ODE model.



Rethinking ODE Model Assumptions 5

p = r Δt, r > 0. (3)

A stochastic, discrete-time map can be used to model this process, as follows. If
there are X(t) cells at time t , then Δt time units later, at time t + Δt , there are

X(t + Δt) = X(t) + U(X(t), rΔt) (4)

cells present, where U(n, p) is a binomially distributed random variable where for
each of the n = X(t) cells there is a probability p = rΔt that a given cell will give
rise to a new cell by time t + Δt .

To derive the ODE model of exponential growth Eq. (2) as an approximation of
the above stochastic model, we follow the steps described above: The discrete-time
stochastic model is approximated by a mean field3 deterministic model, and then we
let the time step Δt → 0 to yield the desired ODE.

In this first step, the number of new cells U is replaced by the expected value
E(U) as follows. Assume that the number of cells X(t) is sufficiently large, and
that we use an appropriately small choice of Δt so that U is well approximated by a
binomial distribution. The expected value of this binomial random variable, where
n = X(t) trials and probability of success p = r Δt , is the product np = X(t) r Δt ,
thus we make the approximation U(X(t), r Δt) ≈ E(U(n = X(t), p = r Δt)) =
X(t) r Δt . This yields the mean field discrete-time model

x(t + Δt) = x(t) + r x(t)Δt. (5)

Note that we distinguish between these new state variable quantities x(t) (which are
R-valued expectations) and their integer-valued counterparts X(t), even though
we interpret both as representing the number of bacteria present at time t .
Lastly, rearranging this deterministic equation, and taking the limit as Δt → 0,
yields

x(t + Δt) − x(t)

Δt
→ dx(t)

dt
= r x(t). (6)

There are a few remarks on the above derivation that are worth mentioning.
First, a more careful derivation, that explicitly tracks error terms in the above
approximations, would yield the same mean field result, but those details were
omitted for brevity and clarity (for a more detailed example, see [92]). Second, mean
field models locally average how state variable change in time, and do not average

3The deterministic equation derived in this first step is called a mean field model because, for a
given point X(t) in state space, we take the distribution of possible steps the system might take on
the next time step, and define a new model by replacing that random quantity with its mean—in
this case, the mean of the binomial random variable U(n = X(t), p = rΔt). One could visualize
this on a grid of state space values with vectors pointing from x(t) to x(t + Δt), forming a vector
field.
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over full trajectories of a stochastic model. Thus, mean field model solutions can
differ markedly from the average over multiple stochastic model trajectories. Third,
for readers who are familiar with Poisson processes [145], this is a very useful
context for thinking about these underlying stochastic processes associated with
a mean field ODE. In fact, the approach above (i.e., discretizing time to derive a
mean field model) very much parallels the typical approach to deriving properties
of homogeneous and non-homogeneous Poisson processes by discretizing time then
taking the continuum limit (e.g., see the book [40], the standard derivation of the
binomial approximation of the Poisson distribution [106], and [92] for a some
relevant aspects of Poisson processes). In the context of Poisson processes, what
has been assumed in the stochastic model above can be rephrased as follows: each
individual cell replicates itself according to a Poisson process with rate r where the
events generated by the Poisson process mark the times at which replication events
occur.

Exercise 1 It is often appropriate to make simplifying assumptions when formulat-
ing mathematical models of real-world phenomena. The art of modeling is striking
a balance between simplicity, mathematical tractability, and capturing the important
mechanism that drive real-world processes. Often, these simplifying assumptions
are not explicitly stated as an exhaustive list as part of the model description,
for example, above we have assumed all cells are basically identical in terms of
their replication rates. What other implicit assumptions have been made in the
above example? Hint: What was assumed about resource limitation, cell mortality,
whether or not cells influence one another in terms of death and cell division, and
so on?

Challenge Problem 1 Formulate a similar stochastic model to Eq. (4), but replace
replication rate symbol r with b and include a mortality rate d. Show this yields
an identical mean field model to Eq. (2) where r = b − d. Hint: Show E(ΔX) ≈
X bΔt − X dΔt .

This ability to reframe the stochastic model assumptions in terms of Poisson
processes is important because the ODE model Eq. (2) reflects these underlying
exponential distributions through the per capita growth rate r . Importantly, this
pattern generalizes: when the appearance or loss of individuals in a given state
follows i.i.d. Poisson process first event time distributions with rate r(t) (i.e.,
exponential distributions if r is constant) then the per capita loss or growth rates
in corresponding mean field ODEs are the coefficients −r(t) or r(t), respectively.
This is illustrated by the following theorem, which is stated here without a proof
(the proof follows from more general theorems in [92]).

Theorem 1 Consider a continuous-time, stochastic, state transition model in which
individuals spend independent and identically distributed amounts of time in a given
state (X) and then transition to subsequent state Y. Suppose that individual dwell
times are either exponentially distributed with constant rate r , or (more generally)
follow the first event time distribution under a non-homogeneous Poisson process
with rate r(t). Further assume individuals enter X at rate ΛX(t) and the dwell time
in state Y follows the first event time under a (non-homogeneous) Poisson process
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with rate μ(t). Then, if x(t) and y(t) are the expected number of individuals in each
state X and Y, respectively, the mean field ODE model for this case is

dx

dt
= ΛX(t) − r(t) x(t) (7a)

dy

dt
= r(t) x(t) − μ(t) y(t). (7b)

To further illustrate how these underlying Poisson process rates are reflected
in ODE model terms, consider the well-known SIR model of infectious disease
transmission [98] (for more on SIR-type epidemic models, see [4, 7, 22, 23, 43, 98]).
In this model, a closed population of size N is assumed to be made up of
individuals who are either susceptible to an infectious disease, currently infected
(and infectious), or recovered from infection and immune to reinfection by the
pathogen. Accordingly, we let state variables S(t), I (t), and R(t) correspond to
the number of susceptible, infectious, and recovered individuals at time t . The SIR
model is a simple ODE model of how these numbers of individuals in each state
change over time, and is given by the equations

d

dt
S(t) = − λ(t) S(t) (8a)

d

dt
I (t) = λ(t) S(t) − γ I (t) (8b)

d

dt
R(t) = γ I (t) (8c)

where λ(t) ≡ β I (t) is the per capita infection rate (also called the force of infection
[7]), and γ is the per capita recovery rate. Note that, by the assumed dependence of
λ(t) on I (t) this is a nonlinear system of ODEs. This model can also be viewed as
the mean field model for an underlying stochastic state transition model of a large
but finite number of individuals that each transition from state S to I following “event
times” (the time spent in a given state; also called dwell times or residence times) that
obey a non-homogeneous Poisson process first event time distribution with rate λ(t).
Each individual similarly transitions from I to R following a homogeneous Poisson
process first event time distributions with rate γ , hence the time an individual spends
in state I is exponentially distributed with mean 1/γ (see [98] for a derivation, and
see [9, 13], and references therein for examples of the convergence of stochastic
models to mean field ODEs).

Altering the assumptions of ODE models like the SIR model above is often best
done when the modeler has adopted this mean field perspective. For example, if we
would like to relax the assumption that individuals immediately become infectious
and instead assume that they experience a latent period where they are infected but
not yet infectious for a time period that is exponentially distributed with mean 1/ν,
then we can introduce an exposed class and let E(t) be the number in this class at
time t . This yields the well-known SEIR model:
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d

dt
S(t) = − λ(t) S(t) (9a)

d

dt
E(t) = λ(t) S(t) − ν E(t) (9b)

d

dt
I (t) = ν E(t)) − γ I (t) (9c)

d

dt
R(t) = γ I (t). (9d)

Exercise 2 Under the SIR model, the time spent infected and infectious is the same,
and follows an exponential distribution with rate γ (i.e., with mean duration 1/γ ).
This is not the case under the SEIR model. Describe and compare the mean time
infected (i.e., between entering the exposed state and entering the recovered state)
for both the SIR and SEIR models, in terms of the mean time spent in the exposed
state and the mean time spent in the infectious state.

In summary, systems of ODEs that model individuals transitioning among
different states are often best thought of as a mean field model for some underlying
(often unspecified) continuous-time stochastic process. While in general it is true
that multiple different stochastic models can yield the same mean field ODE model,
it is still often very useful to associate a given ODE with the continuous-time
stochastic state transition model defined in terms of Poisson processes where the
Poisson process rates are given by the overall rates (i.e., ODE model terms) or
the per capita rates (i.e., coefficients on those terms) that appear in the right hand
side of the ODE model. We will explore one way of constructing such a model
from a system of ODEs using the Stochastic Simulation Algorithm in Sect. 3.3.1,
but throughout the remainder of this chapter we will often draw upon the intuition
associated with this underlying stochastic model implied by a given mean field ODE
model.

With this perspective in mind, we next review some standard ways of using ODE
models in applications.

2.2 Equilibrium Stability Analysis

Many questions about dynamical systems can be answered by asking What is the
eventual state of x(t) as t → ∞? For example, Does the disease epidemic end with
a local extinction of the pathogen, or does the disease become endemic and persist
by establishing itself at low levels in the population? Will new harvest regulations in
a fishery maintain a sustainable population of fish, or will the population be pushed
to extinction? Sometimes knowing where a system is going helps inform the path
it takes to get there, so these asymptotic results as t → ∞ can also be useful
for understanding short-term dynamics. Since many questions can be addressed
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by mathematical and computational analyses that reveal the long-term behavior of
a system, this is often a focus of an introductory course in mathematical biology
[4, 50], and the main focus of courses in applied dynamical systems [10, 84, 160]
and bifurcation theory [104, 165]. Here we review the basics of equilibrium
stability analysis, and in the next section we discuss analyses that build on these
concepts to further illuminate the behavior of ODE models in a dynamical systems
context.

Let us revisit the simple exponential growth or decay model Eq. (2) where we
assume a positive initial value, i.e., x(0) = x0 > 0, and that r ∈ R. Solutions to this
ODE have the form

x(t) = x0 er t (10)

thus we can see that the sign of r determines whether solutions x(t) diverge towards
∞ (r > 0) or converge towards zero (r < 0). Here we focus on solutions like the
latter, where the long-term behavior of the system is to settle on a steady-state value,
more commonly referred to as an equilibrium point.

Formally, an equilibrium point of a model dx/dt = f (x) is a state x∗ such that
f (x∗) = 0. Starting at such points yields solutions that remain there for all time,
which we refer to as equilibrium solutions.

An equilibrium stability analysis aims to accomplish two goals: First, to
determine how many different equilibrium points exist and find expressions for
those state values as a function of the model parameters, and second, to deter-
mine the (local) asymptotic stability of those equilibria. Identifying equilibria is
straightforward: simply set the system of equations equal to zero, and solve for
the state variable vector x∗ that satisfies f (x∗) = 0. The second step in a stability
analyses requires us to first clarify what is meant by an equilibrium point being
asymptotically stable.

In short, we call an equilibrium point stable if small perturbations away from that
point in state space yield trajectories that converge back towards said equilibrium
point, and unstable if small perturbations yield trajectories that diverge away
from the equilibrium point. More precisely, we can use the formal definition of
equilibrium stability given in [160]: If, for an equilibrium point x∗, there is a δ > 0
such that any trajectory x(t) that starts within a distance < δ from x∗ eventually
converges to x∗, then we call x∗ attracting. If for ε > 0 there is a δε > 0 such
that whenever a trajectory x(t) starts closer than δε to x∗ the trajectory remains
within a distance ε of x∗, then we call x∗ Lyapunov stable. If x∗ is both attracting
and Lyapunov stable, we say x∗ is (locally) asymptotically stable and this is what
is meant below when an equilibrium point x∗ is called stable, i.e., for sufficiently
small perturbations away from that point, trajectories x(t) stay within a small
neighborhood of that point and asymptotically converge towards x∗ (i.e., x(t) → x∗)
as t → ∞.

In practice, determining the stability of an equilibrium point is fairly straight-
forward; however, having an intuitive understanding of why the standard approach
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works requires some explanation. Because the vector field4 f (x) is usually smooth
(i.e., because f (x) is differentiable), zooming in very close to a given point (e.g., an
equilibrium point) the vector field is increasingly well approximated by a linear
vector field. Mathematically, this is a straightforward consequence of Taylor’s
Theorem: Recall that Taylor’s Theorem for functions of one variable [112] states
that if a function is differentiable at a then for x values in a neighborhood of a the
function can be approximated by

f (x) ≈ f (a) + f ′(a)(x − a) + . . . + 1

k!f
(k)(a)(x − a)k (11)

where the difference between f (x) and the approximation above vanishes as x → a.
This gives the linear approximation

f (x) ≈ f (a) + f ′(a)(x − a) (12)

for values of x in a small neighborhood of a. Similarly, Taylor’s Theorem for
multivariate functions5 f : Rn → R

n gives the linear approximation

f (x) ≈ f (a) + J (x − a) (13)

where J is the n × n Jacobian matrix whose entries are the partial derivatives
of f with respect to each component of x evaluated at x = a, i.e., if f (x) =
(f1(x), . . . , fn(x))T then

Jij = ∂fi

∂xj

∣
∣
∣
∣
x=a

(14)

Since f (x∗) = 0 (i.e., if x∗ is an equilibrium point), Taylor’s Theorem implies
that the linear approximation near x∗ is

dx
dt

≈ J (x − x∗). (15)

Moreover, if we let u = x − x∗ be the perturbation of x away from x∗, then

du
dt

≈ J u (16)

and thus the deviations (u) of trajectories very near x∗ are approximately solutions
to this linear system of first order differential equations.

4For each point in state space, one can think of the derivative dx
dt

as a vector pointing in a direction
that is tangent to the trajectory passing through that point.
5See upper level dynamical systems texts and online resources for the Taylor expansion of
multivariate functions.
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The importance of this linear approximation in the context of determining the
stability of an equilibrium point x∗ is that the eigenvalues [159] of matrix J can
tell us whether or not x∗ is stable (e.g., see linear stability analysis sections in [45,
84, 160, 165] or related texts on nonlinear dynamics). Why? Small perturbations
off of the equilibrium point will yield trajectories that are approximately x(t) ≈
u(t) + x∗ where u(t) is a solution to the above linearization Eq. (16). Importantly,
solutions to linear ODEs can be written explicitly in terms of the eigenvalues and
eigenvectors of the coefficient matrix J as shown for the 2-dimensional case in [45]
and for higher dimensions in [84]. Specifically, these solutions look like sums of
exponential growth and decay terms (sometimes multiplied by sine and cosine terms
if J has complex eigenvalues [84]) along the different directions determined by the
eigenvectors of J, where the growth and decay rates along these eigenvectors are the
real parts of the corresponding eigenvalues of J. Thus, if the eigenvalues of J all
have negative real parts, small perturbations off of x∗ will exponentially decay back
to that point, and if any eigenvalue has a positive real part, trajectories that start as
perturbations off of x∗ will diverge away from that point. The following stability
theorem formally summarizes this intuition (for further details, see [84, 165] or
similar texts):

Theorem 2 (Equilibrium Stability Criteria) Suppose x∗ is an equilibrium point
of dx/dt = f (x) and J is the Jacobian evaluated at x∗. Further assume the real
parts of the eigenvalues of J are all non-zero (i.e., Re(λi) 
= 0 for i = 1, . . . , n).
Then the equilibrium point is stable if all Re(λi) < 0, and unstable if any
Re(λi) > 0. If any eigenvalues have Re(λi) = 0 the stability of x∗ is determined by
higher order terms in the Taylor expansion of f about x = x∗. If the system is one
dimensional (i.e., if f : R → R) then x∗ is stable if f ′(x∗) is negative (and unstable
if f ′(x∗) is positive).

In computational applications, where it suffices to check stability of an equilib-
rium point for a specific set of parameter values, the above criteria are very practical.
It is usually straightforward to compute the Jacobian and use standard approaches
to find its eigenvalues (e.g., using the eigen() function in R). However, when
looking to obtain analytical stability conditions, it is often cumbersome to find
general expressions for eigenvalues and to find conditions under which they have
a negative real part. This is especially true for higher dimensional nonlinear
systems.

Importantly, we do not need to find these eigenvalues explicitly to determine if an
equilibrium point is stable. The Routh–Hurwitz criteria (Theorem 3 below) provide
a sometimes simpler way of checking whether or not all eigenvalues of Jacobian J,
evaluated at equilibrium point x∗, have negative real part by checking a set of criteria
that involve the coefficients of the Jacobian’s characteristic polynomial6 [159],

6This definition is used instead of the more common p(λ) = det(J − λI) since it ensures that the
roots are the eigenvalues of J and that the polynomial is monic, i.e., has a leading coefficient of 1
on the λn term.
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p(λ) = det(λI − J). (17)

In short, since the eigenvalues are the roots of the characteristic polynomial of
the Jacobian, satisfying the Routh–Hurwitz criteria implies that each of those
eigenvalues has negative real part, and thus, the equilibrium point is stable. This
is often the preferred approach when looking for general stability criteria (e.g., an
inequality describing parameter value relationships that yield a stable equilibrium
point) because in practice it typically yields meaningful stability criteria in fewer
intermediate steps compared to finding the eigenvalues, and their real parts, directly.

The following statement of the Routh–Hurwitz criteria was adapted from Ch. 4
in [4]7 and pg 233–234 of [45] (see also [117]).

Theorem 3 (Routh–Hurwitz Criteria) Consider the monic polynomial

p(λ) = λn + a1 λn−1 + · · · + an−1 λ + an (18)

with real coefficients ai . All roots of Eq. (18) have negative real part if and only if
all n principal minors of Hn (where aj = 0 for j > n) have positive determinants.

Hn =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

... · · · ...

a2n−1 a2n−2 a2n−3 a2n−4 · · · an

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(19)

The principal minors Hk , k = 1, . . . , n, are

H1 = a1, H2 =
[

a1 1
a3 a2

]

, . . . (20)

Equivalently, the real parts of the roots of the characteristic polynomial (i.e., the
real parts of each eigenvalue) all have negative real part if and only if the following
hold (similar criteria can be derived using the matrices above for n ≥ 6):

n = 2 : a2 > 0, and a1 > 0.

n = 3 : a1 > 0, a3 > 0 and a1a2 > a3.

n = 4 : a1 > 0, a3 > 0, a4 > 0, and a1a2a3 > a2
3 + a2

1a4.

n = 5 : ai > 0 (i = 1, . . . , 5), a1a5 + a1a2a3 > a2
3 + a2

1a4 and

(a1a4 − a5)(a1a5 + a1a2a3 − a2
3 − a2

1a4) > a5(a1a2 − a3)
2.

7Here we give the correct n = 5 case, which is missing a few terms in [4].
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Challenge Problem 2 Look up the analogues of Theorems 2 and 3 for determining
the stability of fixed points for discrete maps.

Here we have only briefly touched upon equilibrium stability analysis. Interested
readers are encouraged to consult standard applied dynamical systems texts, such
as [4, 45, 160], for additional details and related topics like the asymptotic stability
analysis of equilibria (also called fixed points) in discrete-time systems.

The following exercises illustrate the application of Theorems 2 and 3.

Exercise 3 The well-known logistic equation, where r,K > 0 and x ≥ 0, is
given by

dx

dt
= r x

(

1 − x

K

)

(21)

and has equilibria x = 0 and x = K . Use Theorem 2 to show that x = 0 is unstable
and x = K is stable. Hint: What is the derivative of f (x) with respect to x?

Exercise 4 The following extension of the logistic equation includes a strong Allee
effect: below a certain threshold (α > 0) the population declines towards 0.

dx

dt
= r x

(

1 − x

K

)(
x

α
− 1

)

(22)

Find all three equilibria of this model, and determine their stability.

The next few exercises deal with the Rosenzweig–MacArthur predator–prey
model (for background on this and related models, see [118, 125])

dN

dt
= r N

(

1 − N

K

)

− a P

k + N
N (23a)

dP

dt
= χ

a N

k + N
P − μP (23b)

where N and P are the prey and predator densities, respectively, r > 0 and K > 0
are the logistic growth rate and carrying capacity for the prey, a > 0 is the maximum
per-predator rate of predation, k is the half-saturation value of the prey population in
the Holling type-2 predation rate term (when N = k the per-predator predation rate
is a/2), χ > 0 is a conversion factor between the number of prey consumed and
predators born, and μ > 0 is the predator mortality rate corresponding to having
assumed exponentially distributed predator lifetimes with a mean lifespan 1/μ.

Exercise 5 Find equilibrium points of the Rosenzweig–MacArthur model above.
Note that it may be helpful to write these equilibrium values where one state variable
value is given as a function of parameter values, and the other is written as a function
of parameter values as well as the equilibrium value of the other state variable. Hint:
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There are three non-negative equilibria: one with zero organisms, one with only
prey, and one with both predators and prey coexisting.

Exercise 6 Find the Jacobian for this system (recall Eq. (14)), and evaluate it at
each equilibrium point. Hint: The Jacobian for the case with zero organisms is

[

r 0
0 −μ

]

. (24)

Challenge Problem 3 Find the characteristic polynomial of each Jacobian above
and apply the Routh–Hurwitz criteria to determine their stability. Hint: For the case
with zero organisms, the characteristic polynomial is

p(λ) = λ2 + (μ − r)λ − r μ. (25)

Challenge Problem 4 Repeat the above stability analysis for the Rosenzweig–
MacArthur model using a computer algebra system like the free software wxMax-
ima [163] (an improved user interface for Maxima [148]), Sage, or commercial
software such as Maple or Mathematica.

Challenge Problem 5 What are some other kinds of attractors besides equilibrium
points (e.g., limit cycles) and how do we determine their stability?

2.3 Bifurcation Analysis

An equilibrium stability analysis often reveals parameter space thresholds that
mark important qualitative transitions in the long-term behavior of solutions. These
typically manifest as inequalities involving model parameters and equilibrium
values.

For example, in our simple exponential decay equation, the coefficient a = 0
divides parameter space into cases of exponential decay (a < 0) and those
leading to exponential growth (a > 0). In infectious disease models, one can often
find an expression for the basic reproduction number of the pathogen (commonly
denoted as R0 and interpreted as the expected number of new infections per
infectious individual over the average duration of infectiousness when the number of
susceptible individuals is at the disease-free equilibrium). For example, for the SIR
model given by Eqs. (8) the number susceptible at the disease-free steady state is N ,
hence the rate of new infections per infectious individual, per unit time, is β N and
the mean duration of infectiousness is 1/γ . Thus8 (multiplying rate times time) we
have R0 = β N/γ . It is commonly the case that no epidemic will occur if R0 < 1

8These basic reproduction numbers are best derived from stability criteria, which often require
some rearrangement using a similar interpretation to arrive at the proper form of R0.
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(i.e., the disease-free equilibrium is stable) but an epidemic will occur if R0 > 1
(i.e., when infectious individuals more than replace themselves, on average). For
more on R0 calculations and its role in epidemic thresholds, see [22, 23, 35, 43].

In addition to changes in the stability of equilibria (or in some cases, their
appearance or disappearance) threshold phenomena also arise in non-equilibrium
dynamics. For example, the transition between steady-state and oscillatory behavior
is quite common in applications, e.g., it is exhibited by the Rosenzweig–MacArthur
model mentioned above in which there is a transition from predator and prey
coexisting at equilibrium to asymptotically periodic solutions where the predator
and prey populations oscillate together (this example will be discussed in more
detail below). In some higher dimensional models, these can include much more
complex dynamics, including transitions to chaos.

Bifurcation theory deals with the mathematical study of these transitions [73, 84,
104, 160, 165]. Formally, bifurcations are the thresholds in parameter space that
indicate where there are changes in the topological structure of the model behavior
(i.e., in the vector field defined by f ). For example, we can consider the set of
all parameters for which predators and prey coexist at equilibrium as topologically
equivalent,9 and topologically distinct from the case where the predators are unable
to live on the prey and go extinct. In essence, bifurcation thresholds partition
parameter space into regions that yield the same qualitative behavior, making them
an excellent tool for studying model dynamics in an applied setting.

The goals of a bifurcation analysis are to characterize where bifurcations occur
in parameter space, and to identify the types of bifurcation(s) involved. Importantly,
identifying the different types of bifurcations informs us of the long-term behavior
of solutions for parameters on either side of these bifurcation thresholds. These
boundaries are, fortunately, usually very well defined, e.g., they often involve an
equilibrium point where one of the real parts of its eigenvalues passes through
zero (recall that our stability criteria above say that an equilibrium point is stable
if the eigenvalues of the corresponding Jacobian have negative real part). More
complex bifurcations involving other types of attractors (e.g., limit cycles or
chaotic attractors) can be similarly characterized by extending the above notions
of equilibria and their stability to these other sets10 of points, e.g., limit cycles,
and their stability. Importantly, there are a small number of named bifurcations
that we often see arise in applications, e.g., Hopf bifurcations (where an isolated
equilibrium point changes stability and gives rise to a limit cycle—an isolated closed
curve in state space that is a solution of the model—i.e., a change from steady-
state to oscillatory dynamics), transcritical bifurcations (two equilibrium points
pass through one another and exchange stability), saddle-node bifurcations (where

9For readers unfamiliar with topological equivalence, this essentially means that the gross
qualitative features of solutions are the same across equivalent parameter sets, e.g., the number
of equilibrium points and their stability will be the same, even though their exact numerical values
may change. See [160, pg. 156], or more advanced treatments of topological equivalence in the
texts mentioned above.
10See the definition of an invariant set, and different types of attractors, in texts like [73, 104].
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two equilibria collide and vanish). For a more detailed treatment of the different
bifurcations that commonly arise in applications, consult standard texts such as
[73, 84, 104, 160, 165].

In practice, the first step of a bifurcation analysis is to conduct an equilibrium
stability analysis. From there, stability thresholds can be identified and these can
sometimes be useful for identifying specific types of bifurcations. This will often
reveal equilibrium bifurcations like saddle-node and transcritical bifurcations, but
this can also reveal bifurcations involving non-equilibrium attractors like Hopf
bifurcations that involve limit cycles. For example, there is a very useful result
[74, 75] that states that, when using the Routh–Hurwitz criteria to determine
equilibrium stability, the loss of stability via the failure of the criterion listed last,
for each n value considered at the end of Theorem 3, coincides with the loss of
equilibrium stability via a Hopf bifurcation.

Computational methods also exist for conducting bifurcation analyses (e.g., see
[41, 55, 56, 155]), and can be quite useful for exploring model dynamics for
parameter values near a specific parameter set. A less sophisticated approach is
to simply use brute force to simulate solutions over a range of parameter values,
and analyze those simulation results to infer bifurcations (see Sect. 2.6 below for
more on simulating solutions to ODEs on the computer). For example, Fig. 1 shows
simulated asymptotic states of the Rosenzweig–MacArthur model over a range of
maximum predation rates, a.

The preferred approach, however, is to use computational methods that are
specifically designed to find bifurcations in parameter space. The reason? First,
the above simulation-based approach will typically miss part of the picture in
situations where different initial conditions lead to different attractors (i.e., cases of
bistability or multistability), or in cases where a bifurcation involves the creation
or disappearance of either an unstable equilibrium point or unstable limit cycle
(which can be practically impossible to find by running simulations unless you know
ahead of time where or how to look for them). Simulation based approaches also
rely on the investigator to infer what bifurcations might or might not be involved,
whereas software designed for bifurcation analysis includes rigorous mathematical
criteria that are automatically checked to notify the investigator when certain types
of bifurcations are found. Two popular software packages for conducting bifurcation
analyses are MatCont [41], which is freely available software that runs in Matlab,
and the software AUTO which is available in different forms including through
the XPPAUT simulation software [55, 56] which includes an interface for AUTO.
An introduction to using such software is beyond the scope of this book; however,
various tutorials and examples can easily be found online (see also the list of
software available on the SIAM Dynamical Systems activity group website [155]:
https://dsweb.siam.org/Software).

Challenge Problem 6 Improve upon the bifurcation diagram in Fig. 1 with an
equilibrium stability analysis and by using bifurcation continuation software such as
MatCont or XPPAUT to do a computational bifurcation analysis of the model given
by Eqs. (23). Use the parameter values given in the figure caption. Hint: Are there
any missing equilibria or other stable or unstable attractors not shown in Fig. 1?

https://dsweb.siam.org/Software
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Fig. 1 A “brute force” bifurcation diagram for the Rosenzweig–MacArthur model, generated by
numerically simulating solutions over very long time periods then plotting the long-term state
variable values as a function of parameter a. For solutions that converge to limit cycle oscillations,
the min and max values are plotted. Parameter values used: r = 1, K = 1000, a = 5, k = 500,
χ = 0.5, μ = 1, and initial condition (N0, P0) = (1000, 10). These results suggest a transcritical
bifurcation near a = 3 and a Hopf bifurcation near a = 6

2.4 A Few Comments on Approximation

In applications, some questions cannot be appropriately answered using the asymp-
totic analyses described above, but might instead be addressed using careful
approximations or simulations (numerical solutions to ODEs are discussed in
Sect. 2.6).

Approximation methods can be very useful for gaining insight into specific
phenomena. For example, in Sect. 2.2 linear approximation via Taylor’s Theorem
was used to clarify the behavior of trajectories near equilibria. Similar techniques
exist that use other expansions to make local approximations, e.g., Fourier expan-
sion can be used to approximate periodic solutions to quantify period–amplitude
relationships (for more on investigating oscillations in nonlinear dynamical systems,
see [140]). Whatever the technique, a good presentation of approximation-based
results should balance intuition and mathematical rigor, and hopefully make clear
the conditions for which the approximation is a good one.
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For example,11 consider this heuristic argument: the logistic growth model
Eq. (21) should approximately obey an exponential growth model

dx

dt
= r x (26)

when x values are near 0, since the term 1 − x/K ≈ 1 when x � K . Alternatively,
one could arrive at the same conclusion using a Taylor expansion of the logistic
equation about x = 0, which would yield the same linear approximation, but would
also yield a remainder that quantifies the approximation error.

Approximation methods can also be used to study transient dynamics, although
the approaches used vary by both the specifics of the model, and the question(s)
being asked. For example, one might ask when an epidemic might peak in the
SEIR model, and answering this question might require a different approach than
is used to determine the conditions under which the Rosenzweig–MacArthur model
exhibits damped oscillations that converge to a steady-state coexistence between
predator and prey. In addition to computational investigations (see Sect. 2.6), the
approximation approach described next in Sect. 2.5 is often used to disentangle
some transient dynamics and long-term asymptotic dynamics in systems with
multiple time scales, which commonly arise in biological applications.

2.5 Fast–Slow Analysis of Systems with Multiple Time Scales

In some systems of ODEs, sometimes called stiff systems, dynamics occur very
rapidly in certain directions in state space, while other parts of the system change
more slowly. These types of systems are said to have multiple time scales and
these can often be analyzed by separately considering the dynamics on the different
time scales using appropriate approximating models. In short, the slow time scale
state variables can often be treated as fixed constants, yielding an approximate
model that includes only the fast time scale variables. Once the dynamics of that fast
subsystem are understood, that information can be used to create a complementary
set of equations for the slow subsystem that approximates the long-term behavior
of the model. Often, the fast variables converge quickly to a quasi-steady-state
(i.e., an equilibrium point of the fast subsystem) it can typically be assumed that,
over the slow time scale, the fast time scale variables closely track these quasi-
equilibrium values. Thus, the ODEs governing the slow time scale variables can
be approximated by replacing all occurrences of the fast time scale variables with
these quasi-equilibrium expressions, thus reducing the system to a smaller number
of ODEs.

11Here, integration by parts will yield an equation for the solution curves x(t), but we proceed
assuming no such curves are available as this is typically the case in practice.



Rethinking ODE Model Assumptions 19

To clarify, suppose an ODE model with n state variables can be separated into
slow (x) and fast (y) time scale variables and written as

dx
dt

= ε fslow(x, y, θ) (27a)

dy
dt

= ffast(x, y, θ). (27b)

Here 0 < ε � 1 and fslow and ffast are roughly the same order of magnitude,
hence dx/dt will be very small and x will change much more slowly than y. If the x
values are treated as constants in Eq. (27b) (i.e., if we let ε → 0) and there are
quasi-equilibrium expressions y∗(x, θ) that satisfy ffast(x, y∗(x, θ), θ) = 0 so that
the slow time scale dynamics can be approximated by

dx
dt

= ε fslow(x, y∗(x, θ), θ) (28)

where we see that the right hand side is purely a function of x and θ . For examples
of such fast–slow system analyses, see [17, 36, 37, 90, 91, 134, 142, 153] or see the
more thorough treatment of the topic in [103].

To illustrate how a fast–slow analysis can yield a simplified model, consider
the well-known Michaelis–Menten equation, which was originally used to model
a biochemical reaction in which an enzyme catalyzes the hydrolysis of sucrose
into simpler sugars [95]. In more general terms, the model is of a substrate S that
binds to enzyme E to form the complex ES which either dissociates back into
free enzyme and substrate, or undergoes a reaction that releases the enzyme and
a reaction product P . This can be written in chemical reaction equation notation as

E + S
kb�
ku

ES
kcat→ E + P

where kb is the binding rate, ku is the unbinding rate, and kcat is the catalytic rate.
Let the concentrations of enzyme E, substrate S, complex ES, and product P at
time t be denoted z(t), s(t), x(t), and p(t), respectively. A corresponding (mean
field) ODE model of this reaction is

dz

dt
= − kb z s + ku x + kcat x (29a)

ds

dt
= − kb z s + ku x (29b)

dx

dt
= kb z s − ku x − kcat x (29c)

dp

dt
= kcat x (29d)
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Note that there are two quantities in this model that remain constant over time: If
z0 is the initial amount of enzyme, and s0 is the initial amount of substrate, then
z + x = z0 and s + x + p = s0. Thus, we can omit the first equation (29a) from the
model since we can always infer z from x since z = z0 − x. Likewise, we can omit
Eq. (29c) since x = s0 − s − p. This yields the equivalent, but simpler, model

ds

dt
= − kb (z0 − (s0 − s − p)) s + ku (s0 − s − p) (30a)

dp

dt
= kcat (s0 − s − p). (30b)

Next, assume that the catalytic reaction is much faster than the other binding
and unbinding reactions, so that Eqs. (30) become a slow-fast system where s

very quickly reaches a quasi-equilibrium state that then slowly tracks the slower
timescale changes in p. In short,12 setting ds/dt = 0 and solving for that quasi-
equilibrium relationship between s and p yields

p(s) = −kb z0 s

ku + kb s
+ s0 − s (31)

which, when substituted into Eq. (30b), yields

dp

dt
= Vmax s

kd + s
(32)

where the maximum velocity (i.e., maximum rate of change of p) Vmax =
kcat z0 and the dissociation constant kd = ku/kb. Other assumptions can lead
to similar approximations for this same model [24, 95], and similar analyses
for mathematically related interaction processes have been used to derive similar
nonlinear response curves, e.g., compare the right hand side of Eq. (32) with the
predation rate in Eqs. (23) (for more details, see [38, 125] and references therein).

2.6 Computing Numerical Solutions to ODEs

It can often be useful to supplement analytical approaches with numerical sim-
ulation studies, e.g., to assess how well an approximate model compares to the
original model, or to investigate transient dynamics when analytical approaches
are not practical. In typical introductory ODE class, students are taught methods
for finding (or sometimes approximating) analytical solutions to a given set of
ODEs. Unfortunately, analytical solutions rarely exist for the kinds of nonlinear

12Here we are glossing over the formal details from singular perturbation theory [103] for deriving
equations that approximate the fast- and slow-timescale dynamics of this model.
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ODE models encountered in applications. This section introduces how to compute
numerical solutions to ODEs.

It is relatively straightforward to compute approximate numerical solutions to
ODEs using standard computational methods available in nearly all mathematical
software [138], or by coding up your own solver if the more advanced method
that you need is otherwise unavailable. In R, the ode function in the deSolve
package [156] implements various numerical methods that are each tailored to
provide reliable numerical solutions by addressing various numerical challenges
posed by different categories of ODEs. Similar tools exist in Matlab [115] and
additional solvers can sometimes be found in other software, e.g., in [78]. Here
we provide a simple introduction to computing numerical solutions in R, but leave
it to the reader to further investigate the conditions under which different methods
should, and should not, be applied. See the Appendices for resources to get started
using R, and for more on numerical methods see [115, 138, 155, 160] and references
therein.

2.6.1 Euler’s Method

To understand how various methods for computing numerical solutions are imple-
mented on a computer, it is instructive to see the very simple algorithm known as
Euler’s method. Like other methods, it approximates a continuous curve using a
discrete-time approximation where information about the derivative of the curve
(i.e., the right hand side of the ODE) is used to determine where the state variables
move to on each time step. Consider the generic system of ODEs

dx
dt

= f (t, x, θ), x(0) = x0 (33)

and note that, if we back off of the limit implicit in the derivative on the left, we get
that for small Δt ,

x(t + Δt) − x(t)

Δt
≈ f (t, x(t), θ) (34)

which can be rearranged to yield

x(t + Δt) ≈ x(t) + f (t, x(t), θ)Δt. (35)

Euler’s method approximates trajectories starting at x(0) = x0 by iterating the above
discrete-time map Eq. (34). This method has been improved upon in various ways,
which range from adaptively picking smaller or larger time steps when appropriate,
to incorporating information about the curvature of the trajectory to obtain a better
increment than the linear approximation f (t, x(t), θ)Δt .
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Consider Eq. (34) starting at time t = 0. The following information is needed
to implement Euler’s method and similar algorithms for computing numerical
solutions to ODEs: a starting vector of initial condition values x(0) = x0, parameter
values θ , and a way of computing the derivative f (t, x, θ).

The R code below illustrates how this is implemented using the ode function in
the deSolve package is illustrated below.

2.6.2 Numerical Solutions in R

The first step is to create a function that computes f (t, x, θ) given a specific value
of time t , the state of the system x, and a set of parameter values θ . Consider the SIR
model given by Eqs. (8). The right hand side of the model (the derivative function f )
is a function of the state variables S, I , and R and parameter values β and γ .
According to the R documentation13 for the ode function we must create an R
function that computes these derivatives based on three inputs—time, a vector of
state variable values, and a parameter vector, in that order, i.e., f (t, x(t), θ)—and
returns the vector of derivative values in an R object known as a list. This is
implemented in the following R code.

# We need to load the ode() function in package deSolve
# install.packages("deSolve") Install once, if needed
library(deSolve); # load deSolve into the workspace
# Define an SIR function to use with ode()
SIR = function(tval, X, params) {

S = X[["S"]] # one could also have used X[1]
I = X[["I"]] # ... X[2]
R = X[["R"]] # ... X[3]
B = params[["beta"]] # or params[1]
g = params[["gamma"]] # ... params[2]
# Now compute the SIR model derivatives
dS = -B*I*S
dI = B*I*S - g*I
dR = g*I
# Return the derivatives in a list to use with ode()
return(list(c(dS,dI,dR)))

}

Next, the ode function requires that we give it a set of initial conditions, a vector
of (user specified) time values for which to return state variable values, and a set of
parameter values. Thus, we must specify S(0), I (0), R(0) and parameters β and γ .
The ode function returns a matrix whose first column is the vector of time values,
and the subsequent columns are the corresponding state vector values (in this case,

13To view the documentation, load the package deSolve with the command
library(deSolve) then type ?ode into the R console. See the Appendix for additional
resources to get started using R.
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Fig. 2 Numerical solution to the SIR model, Eqs. (8). See the code in the main text for details

the values of S, I , and R). This is implemented in the following code, which also
plots the three numerical solution curves as functions of time (Fig. 2).

X0 = c(S=998, I=2, R=0) # Initial state values
Pars = c(beta=0.0003, gamma=0.1)
Time = seq(0, 150, length=200) # time values for ode()
# Now we can compute a numerical solution
Xout = ode(X0, Time, SIR, Pars) # Default: method="lsoda"
head(Xout, 3) # Show the first three rows of output

time S I R
[1,] 0.0000000 998.0000 2.000000 0.0000000
[2,] 0.7537688 997.5131 2.324244 0.1626696
[3,] 1.5075377 996.9476 2.700737 0.3517011

# Plot the numerical solution curves ...
par(mfrow=c(1,3)) # ... in a figure with 1 row, 3 columns.
plot(Time, Xout[,2], ylab="Susceptible (S)", ylim=c(0,sum(X0)),

type="l", lwd=2); abline(h=0) # abline() draws the x-axis
plot(Time, Xout[,3], ylab="Infected (I)", ylim=c(0,sum(X0)),

type="l", lwd=2); abline(h=0)
plot(Time, Xout[,4], ylab="Recovered (R)", ylim=c(0,sum(X0)),

type="l", lwd=2); abline(h=0)

Exercise 7 Modify the example above so that the ODE solver only uses the
equations for S and I , but not R. At the end of the code, after the output from
ode has been obtained, add the R column to Xout using the relationship R(t) =
N(0) − S(t) − I (t) (to convince yourself N = S + I + R is constant, note its
derivative dN/dt = 0).

Challenge Problem 7 Modify the code above by adding an exposed class so that
the code generates solutions of the SEIR model mentioned previously. Explore how
solution change for different values of ν.

Challenge Problem 8 Modify the code above to correspond to changing the
quantity β to a positive-valued function of time, e.g., using a periodic function such
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as β(t) = β0 + A sin(ω t). This makes the previously autonomous system of ODEs
into a non-autonomous system. To do this, modify the equations in SIR as well as
the parameter vector (to assign values to the new parameters in the model). How do
the solution curves change relative to the case where β is a constant?

Challenge Problem 9 Implement the Euler algorithm on your own, without using
ode and the 4th order Runge–Kutta (RK4) algorithm (e.g., see page 33 in [160]).

Challenge Problem 10 Use integration by parts to show the θ -Logistic model

dx

dt
= r x

(

1 −
(

x

K

)θ)

(36)

has an analytical solution, then modify the code above to find a numerical solution
using ode in R. Use initial conditions x(0) = 10, r = 1, and K = 1000, and
explore θ values above, below, and at θ = 1. Plot both curves together on the same
plot to compare the exact and approximate solution curves.

2.6.3 Keeping Numerical Solutions Positive: The Log-Transform Trick

The above approach to computing numerical solutions to ODEs can sometimes be
problematic for ODE models of biological systems. Often, in biological models
(e.g., like the SIR model mentioned above) one or more equations are of the form

dx

dt
= g(x) x. (37)

Importantly, this implies that trajectories x(t) slow as they asymptotically approach
x = 0, and therefore can never pass through x = 0. However, numerical
methods may take an approximated, discrete-time step that results in the simulated
x trajectory erroneously crossing zero (which should be impossible!). This can lead
to state variables running off to ±∞, and other undesirable behaviors. Fortunately,
there is a clever trick that allows us to avoid these numerical errors: if we assume
that x(t) > 0 over the time period for which we seek a numerical solution, then we
can let X = log(x) and by the properties of the natural log function14 it follows that

dX

dt
= d

dt
log(x) = 1

x

dx

dt

= 1

x
g(x)x = g(exp(X))

(38)

14Here the notation log(x) is used for the natural log function, instead of ln(x), following the
convention used in most modern scientific programming languages. Likewise, exp(x)=ex .
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Fig. 3 A numerical solution to the log-transformed SIR model using the same parameters and
initial conditions as in Fig. 2. See the code in the main text for details

That is, if we transform a strictly positive state variables x to a real-valued variable
X using the natural log function, then numerical solutions of X can take on both
positive and negative values that can later be transformed back to strictly positive x

values, since x = exp(X). This transformation of variables is the default approach
some modelers take to computing numerical solutions of models where trajectories
should remain strictly positive over a finite time interval.

One caveat to this approach is that, since X(t) → −∞ as x(t) → 0, it can
lead to numerical errors due to finite limits on the size of floating point values on
a computer. While it may seem contradictory to trade one numerical problem for
another, it is usually far less common (and much more manageable) in practice
to have a numerical solution diverging to −∞ and hitting the computer’s floating
point limit. Thus, this approach should be reserved for situations where x(t) remains
bounded away from 0 or converges slowly to 0. A second caveat is that often
times solutions that erroneously cross through 0 do so because of typos in the code
that defines the derivative function. Thus, carefully checking that the equations, as
implemented in the code, are free of errors is strongly advised before assuming that
numerical methods are to blame for seemingly erroneous numerical solutions.

To illustrate this approach, here is the above SIR model code rewritten in terms of
the log-transformed values X = log(S) and Y = log(I ) where we have also omitted
the R equation since the constant population size allows us to calculate R(t) once
the S(t) and I (t) curves are obtained using R(t) = N(0) − S(t) − I (t) (Fig. 3).

# A function for ode() to compute numerical solutions
# of the log-transformed SIR model.
logSI = function(tval, Xs, params) {

X = Xs[["X"]] # X = log(S)
Y = Xs[["Y"]] # Y = log(I)
B=params[["beta"]]
g=params[["gamma"]]
# Now compute the derivatives
dX = -B*exp(Y) # I = exp(Y)
dY = B*exp(X) - g # S = exp(X)
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# Return the derivatives in a list to use with ode()
return(list(c(dX,dY)))

}

# Initial conditions, log-transformed
logX0 = c(X=log(X0[["S"]]), Y=log(X0[["I"]]))
logXout = ode(logX0, Time, logSI, Pars) # requires deSolve

# Convert back to S and I, and calculate R
Xout = cbind(Time,S=exp(logXout[,2]), I=exp(logXout[,3]),

R=sum(X0) - exp(logXout[,2]) - exp(logXout[,3]))
head(Xout,3)

Time S I R
[1,] 0.0000000 998.0000 2.000000 -2.273737e-13
[2,] 0.7537688 997.5126 2.324242 1.631915e-01
[3,] 1.5075377 996.9464 2.700730 3.528366e-01

# Plot the numerical solution curves as before
par(mfrow=c(1,3)) # 3 panels in 1 row
plot(Time, Xout[,2], ylab="S", ylim=c(0,sum(X0)),

type="l", lwd=2); abline(h=0)
plot(Time, Xout[,3], ylab="I", ylim=c(0,sum(X0)),

type="l", lwd=2); abline(h=0)
plot(Time, Xout[,4], ylab="R", ylim=c(0,sum(X0)),

type="l", lwd=2); abline(h=0)

Exercise 8 Modify the code above to simulate the Rosenzweig–MacArthur model,
Eqs. (23), using the parameter values from Fig. 1 and using both direct implementa-
tion and the log-transformation technique. Plot both results to compare approaches.

Challenge Problem 11 Look at the different methods available through the ode
function in the deSolve package ([156]; type ?ode into R to view the docu-
mentation). When should you use one method over the other? Compare these to
the methods available in Matlab, Python, or other computing platforms (see also
[115, 138]).

Challenge Problem 12 It can be challenging to obtain numerical solutions to
stiff systems. Find resources like [116, 138] to help you better understand which
numerical methods work well for stiff (multiple time scale) systems in the R
package deSolve as well as in Matlab or similar software, and look up some stiff
models to use as examples. Use the different methods to find numerical solutions
for the same parameter values and time values, and compare these to methods that
should perform poorly (e.g., Euler). How different are the results from different
methods? How do R’s stiff solvers compare to those in Matlab or other software?
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2.7 ODEs as Statistical Models

This final section in Sect. 2 introduces some useful statistical concepts and basic
approaches to using an ODE model as the basis for a statistical model.15 Increas-
ingly, ODE models are being used as components of statistical models, e.g., for
making inferences about underlying mechanisms or for forecasting. Applications
include making inferences from model parameters estimated from time series data
(i.e., a sequence of state variable measurements taken at multiple time points,
that in some way corresponds to a sequence of state variable values), quantifying
uncertainty in those parameter estimates, forecasting, and conducting statistical
tests to determine whether a certain parameter is significantly different from zero
or whether one model fits the data better than another model (i.e., model selection).

2.7.1 A Brief Overview of Key Statistical Concepts

Parameter estimation can be approached in various ways, but to start off it is helpful
to first introduce some concepts from the statistical theory of estimators (e.g., see
[85, 106]). You may recall that certain formulas exist for estimating parameters
in specific contexts, e.g., for a normal (Gaussian) distribution with mean μ and
variance σ 2, an estimate of μ can be obtained by calculating the sample mean
ȳ = ∑n

i=1 yi/n of a random sample, i.e., n data points y1, . . . , yn where each yi are
independent draws from the given normal distribution. Formally, we refer to μ̂ ≡ ȳ

as an estimator because it defines a function of our data that yields a parameter
estimate. The “hat” notation indicates that μ̂ is an estimator of parameter μ. Note
that we could have chosen other estimators to compute an estimate of parameter μ,
e.g., (a) the median of the sample, (b) the geometric mean instead of the arithmetic
mean, or (c) the mean of the extreme values of the sample (i.e., the mean of ymin
and ymax).

Estimator theory in statistics deals in part with how to select an estimator with
certain desired properties. For example, some estimators are more robust to outliers
than others, and some may be more or less biased. A good place to begin discussing
properties of estimators is to recognize that estimators are functions of data, and
hence, we can think of them as functions of random variables. As such, estimators
are themselves random variables and therefore follow some distribution, and it
is that distribution that determines the properties of the estimator. For example,
the sample mean ȳ above is proportional to the sum of normal random variables,
and is therefore itself normally distributed with a mean and variance that can be
computed from the definitions of the yi distribution [85, 106]. In a statistical context,
a desirable property of an estimator is that it be unbiased, i.e., its expected value
equals the true parameter value of interest (if not, we say the estimator is biased).

15For related resources in R, see the packages such as CollocInfer [87], deBInfer [19], or
browse the relevant CRAN Task Views (https://cran.r-project.org/web/views/).

https://cran.r-project.org/web/views/
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Estimators should also have as small a variance as possible so that estimates fall
as close as possible to the mean (i.e., the true parameter value if the estimator is
unbiased). Hence, we typically strive for minimum variance, unbiased estimators;
however, in some circumstances we select estimators that may deviate from this
ideal (e.g., because they may be more robust to outliers and thus in practice may
perform better with “messy” data). In our simple normal distribution example,
note that

E(μ̂) = E

(
∑

yi/n

)

=
∑

E(yi)/n =
∑

μ/n = μ (39)

so this estimator is unbiased. But is it a minimum variance estimator? To answer that
question requires taking a deeper look into the theory of estimators that is beyond the
scope of this chapter. For a more in depth treatment of estimator theory, minimum
variance estimators, and a very nice result known as the Cramér–Rao lower bound,
see texts such as [28, 85, 106].

Alternatively, on a case-by-case basis, when trying to decide among different
estimation procedures or assessing properties of a given estimator, one could
simulate data repeatedly effectively sample from the estimator distribution(s), and
thus make these assessments computationally. By repeatedly estimating parameters
from simulated data, where the “true” parameter values are known, we can sample
from an estimator’s distribution a large number of times. That large sample of
estimates can then be used to assess properties like the mean and variance of
the estimator distribution. Comparing multiple estimators in this way can reveal
differences in their variance, and any bias can be quantified by calculating how well
the mean of the estimates compares to the parameter value used to generate samples
from the estimator distribution. For more on computational approaches in statistics,
see [70].

To illustrate, the following R code compares the three candidate estimators of
μ in the above example by reconstructing each estimator distribution by random
sampling: the standard arithmetic mean (ȳ), the geometric mean (y1 · y2 · · · yn)

1/n,
and the average of the two extreme values ymin and ymax (which we would expect
to perform poorly given how much data it omits from the calculation). This is
accomplished by repeatedly sampling from each estimator distribution by iteratively
drawing a random sample from the given normal distribution and then calculating
parameter estimates from that random sample.

# Begin by setting parameters for our simulations
mu = 25 # define our mean parameter for our normal distribution
sd = 2 # define our variance (variance = sd^2)
N = 10 # to simulate data, use a sample size of N
mu.est1 = c() # empty list for our arithmetic mean estimates
mu.est2 = c() # empty list for our geometric mean estimates
mu.est3 = c() # empty list for our mean(min,max) estimates
# Sample our estimators 100000 times each...
set.seed(6.28) # set seed to get reproducible random numbers
for(i in 1:100000) { # simulate and estimate 100000 times
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y = rnorm(N,mu,sd) # Simulate data. Read ?rnorm for details
mu.est1[i] = mean(y) # calculate the standard estimator
mu.est2[i] = prod(y)^(1/N) # the geometric mean
mu.est3[i] = (min(y)+max(y))/2 # the mean of ymin, ymax

}
# Plot results
par(mfrow=c(1,3)) # plots in 1 row, 3 columns
# First panel: standard estimator (population mean)
plot(density(mu.est1), # empirical density function

main=expression(hat(mu)==sum(y[i])/N),
xlab=expression(hat(mu)), xlim=c(21.5,29), ylim=c(0,0.65))

hist(mu.est1, 30, freq=FALSE, add=TRUE,
col=rgb(.6,.6,.6,.5), border=rgb(0,0,0,0.5))

text(27.5,0.6,paste("Mean =",signif(mean(mu.est1),4), ))
text(27.5,0.57,paste("SE =",signif(sd(mu.est1),3), ))
abline(h=0) # draw the horizontal axis
# Second panel: geometric mean
plot(density(mu.est2), # empirical density function

main=expression(hat(mu)==(prod(y[i]))^{1/N}),
xlab=expression(hat(mu)), xlim=c(21.5,29), ylim=c(0,0.65))

hist(mu.est2, 30, freq=FALSE, add=TRUE,
col=rgb(.6,.6,.6,.5), border=rgb(0,0,0,0.5))

text(27.5,0.6,paste("Mean =",signif(mean(mu.est2),4), ))
text(27.5,0.57,paste("SE =",signif(sd(mu.est2),3), ))
abline(h=0) # draw the horizontal axis
# Third panel: mean(ymin,ymax)
plot(density(mu.est3), # empirical density function

main=expression(hat(mu)==(y[min]+y[max])/2),
xlab=expression(hat(mu)), xlim=c(21.5,29), ylim=c(0,0.65))

hist(mu.est3, 40, freq=FALSE, add=TRUE,
col=rgb(.6,.6,.6,.5), border=rgb(0,0,0,0.5))

text(27.5,0.6,paste("Mean =",signif(mean(mu.est3),4), ))
text(27.5,0.57,paste("SE =",signif(sd(mu.est3),3), ))
abline(h=0) # draw the horizontal axis

The simulation output in Fig. 4 illustrates how estimators can differ in terms of
bias and their variance. In practice, it is not always possible to obtain unbiased
estimators that are also minimum variance estimators. However, choosing likeli-
hood based estimation procedures is usually a good starting point because they often
yield minimum variance estimates that are asymptotically unbiased (i.e., the bias
vanishes as the sample size grows).

2.7.2 Likelihood Based Parameter Estimation

Maximum likelihood based parameter estimation is a widely used approach in
statistical applications. Since the approach is not restricted to parameter estimation
for ODEs, and can also be used for the other kinds of models mentioned in this
chapter, it is worth reviewing some maximum likelihood basics before applying this
approach using ODE models. For further details, see [21, 28, 85, 106].
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Fig. 4 A comparison to assess the bias and relative variability of three candidate estimators for
the mean of a normal distribution: From left to right, the three panels show the result of simulating
100,000 samples (sample size of n = 10) and computing an estimate for the mean μ using either
the standard arithmetic mean (left), the geometric mean (center), or the mean of the extreme values
(right). The plots show a histogram with an empirical density function overlay. The empirical mean
and standard deviation (standard error) of the estimator distribution are shown in the top right of
each panel. The true value used to simulate the data was μ = 25. These results suggest that
the geometric mean may be slightly biased and have a slightly larger variance than the standard
estimator, while the third option appears to be unbiased but has substantially higher variance. For
more details, see the code in the main text

As mentioned above, statistical theory tells us that estimators derived by finding
the parameter set that maximizes the likelihood function (defined next) are usually
(but not always!) minimum variance estimators and often have little to no bias
(again, we would like to check these properties hold to the extent it is possible to
do so). We call these estimators maximum likelihood estimators (MLEs), and their
desirable statistical properties, combined with the relative ease of computing MLEs,
have made this a very popular approach to parameter estimation.

The likelihood function should be a familiar function to those who have taken
a first course in probability: In short, the likelihood function is just the joint
probability density function (for continuous data; or the joint mass function for
discrete data), but where we have fixed the values of our random variables (i.e.,
our data) and instead treat the distribution parameters as the unknown independent
variables. More specifically, for a set of independent observations y = (y1, . . . , yn)

(i.e., our data) where the distribution of yi is described by density function fi(yi, θ)

with parameter vector θ , the likelihood of θ , given the data y, is given by

L(θ |y) =
n
∏

i=1

fi(yi, θ). (40)
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That is, both the likelihood and joint density functions have the same mathematical
formulation, but we think of them as distinct functions over two different domains:
the familiar joint density function domain is the space of possible random variable
values (e.g., Rn for a sample of size n from a normal distribution), while the domain
of the likelihood function is the space of all possible parameter values θ (e.g., μ ∈ R

and σ > 0 in our normal distribution example).
In general, once we can write down a joint density function for our data, and thus

can specify a likelihood function L(θ |y) for parameter vector θ given the data y, the
MLE θ̂ is given by the parameter set that maximizes the likelihood function:

θ̂ = argmax
θ

L(θ |y). (41)

In practice, it is often both analytically and computationally easier to minimize the
negative log likelihood function nLL(θ |y) ≡ − log(L(θ |y)) rather than maximize
the likelihood function (the two yield equivalent estimators, due to the monotonicity
of the log function). Thus, we also have the equivalent definition of the MLE

θ̂ = argmin
θ

− log(L(θ |y)). (42)

In some cases (like the example below), formulas for the MLE can be found
using the standard approach taught in calculus: take the partial derivatives of the
negative log likelihood function nLL with respect to each unknown parameter, then
set each partial derivative to zero and solve to find the parameter values (which
will be functions of the data) that minimize the negative log likelihood (and thus
maximize the likelihood). If finding the MLE analytically is not a viable option (e.g.,
see [101]), computational optimization approaches can be used to find parameter
values that minimize nLL for a specific data set.

Continuing with our simple example from the previous section, suppose we
would like to use MLEs to estimate the unknown mean μ0 and standard deviation
σ0 for a normal distribution from a random sample of size n.16 Let yi denote the
ith observation in our sample (i = 1, . . . , n). The likelihood function in this case is
given by the same formulation as the joint density function

L(μ, σ |y) =
n
∏

i=1

f (yi, μ, σ ) (43)

where function f is the normal density function evaluated at yi using the given
mean μ and standard deviation σ . Recall that our yi values (our data) are now fixed
constants, and the domain of this likelihood function is the upper half of R2 since our
two independent variables (inputs) are μ ∈ R and σ > 0. The maximum likelihood

16Here the subscript 0 is used to distinguish the true parameters values μ0 and σ0 from the
candidate values μ and σ that one might plug in to the likelihood function.
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principle states that the parameter values μ = μ̂MLE and σ = σ̂MLE that together
maximize L(μ, σ |y) are the MLEs for unknown parameters μ0 and σ 2

0 . In this case,
these can be found analytically, and are

μ̂MLE = 1

n

n
∑

i=1

yi, and ̂σ 2
MLE = 1

n

n
∑

i=1

(yi − μ̂MLE)2. (44)

That is, the MLE for the mean is the familiar sample mean (recall Fig. 4), while
the MLE for the variance is the unadjusted sample variance. Importantly, while the
MLE for the mean μ0 is unbiased, since E(μ̂MLE) = μ0, the MLE for the variance
σ 2

0 is biased, since E(̂σ 2
MLE) = n

n−1σ 2
0 , but asymptotically unbiased since the bias

vanishes as sample size n → ∞. This example nicely illustrates how, in practice,
minimum variance unbiased estimators do not always exist, and we often prefer to
use unbiased estimators, even if they require a small increase in the variance of our
estimates.

In general, it is worth noting that there are no guarantees that an MLE exists, or
that when an MLE exists that it is unique.17 When no MLE exists, other approaches
to parameter estimation must be used or the model must be reformulated. In cases
where multiple MLEs exist, special considerations must be made to identify the
appropriate course of action (this is discussed below in the context of parameter
identifiability).

Exercise 9 Consider the normal distribution example above. Suppose we would
like to analyze a long-term series of water depth data (each depth measurement xi

has an associated time value ti) in a coastal bay to quantify a rise in sea level (which
we assume might be increasing linearly over the time period for which we have
data). Assume that the data collection site in the bay experiences tidal fluctuations
and that the expected value for a depth measurement at time t is assumed to follow
the curve d(t) given by

d(t) = d0 + m t + A sin(2π t/T ) (45)

where d0 is a baseline depth, m is the slope of the long-term increase (or decrease)
in sea level, and the last term describes the smaller timescale rise and fall of the tide
(which here has been simplified to have a fixed period T and fixed amplitude A).
Assume that wave activity and other factors introduce noise into these measurements
that roughly follow a normal distribution so that a measurement xi at time ti is
normally distributed with mean d(ti) and standard deviation σ . Write down the
likelihood function for this data set.

17Sufficient criteria for the existence of one or more MLEs are that the parameter space is compact
and the log likelihood surface is continuous. In practice, non-unique MLEs are more commonly
the problem, especially when working with nonlinear ODE models.
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Next, we look at an approach to using likelihood based parameter estimation
for ODE models where, in contrast to the exercise above, the mean value for our
likelihood calculation depends on a solution to an ODE. Since many ODEs do not
have a closed form solution, the mean therefore must be calculated using a numerical
solution to the ODE.

2.7.3 Likelihood Framework for ODEs

A popular framework for parameter estimation using ODE models is the following
(e.g., see [32, 33, 46, 47, 123, 141] and references therein). First, in order to
distinguish between the modeled “true” state of the system x (e.g., the number
of rabbits in a forest) versus the data y (e.g., the count of rabbits along multiple
transects), we define the process model Eq. (46a) (i.e., what we typically think of as
our mechanistic mathematical model of our real-world study system) and a set of
one (or more) variables that we refer to as the observation model Eq. (46b).

dx
dt

= f (x, θ), x(0) = x0 (46a)

y = g(x, θ) (46b)

Note that unknown parameters that one hopes to estimate may appear in both the
process and observation models. Typically, the observations (y values) are assumed
to be noisy, thus g above may represent a procedure for sampling y values from a
probability distribution appropriately parameterized by the underlying state of the
process model (i.e., its mean and/or variance, etc., might depend on x).

To illustrate how this framework is used to estimate ODE model parameters, we
use the following example of a logistic growth model where the observations yi are
assumed to be normally distributed with constant variance σ 2 and a mean that is
proportional (by some factor c) to the state variable at time ti , i.e., E(yi) = c x(ti):

dx

dt
= r x

(

1 − x

K

)

, x(0) = x0, (47a)

yi ∼ Normal(c x(ti), σ
2). (47b)

We may now consider estimating one or more of the parameters r , K , c, and
x0 within a maximum likelihood framework.18 It is strongly advised that, when
attempting a new-to-you parameter estimation procedure, you to implement it first

18It is worth pointing out that this model does not have a unique best-fit parameterization, unless
certain parameters are held constant (i.e., are already known), even when estimating parameters
from ideal data (e.g., a large sample with little or no noise)! This problem and the ways of resolving
the issue are detailed in the latter half of this section.
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on simulated data where the known “true” parameter values can be compared to
estimates. Hence, for the above example, we will first simulate data by picking a
series of time values (t1, t2, . . ., tn) and generating corresponding x(ti) values by
computing a numerical solution to the above logistic equation, Eq. (47a), then the
corresponding yi values can be sampled from the normal distributions given by
Eq. (47b). This is implemented in the following R code, and provides a data set with
known “true” parameters that can be used to evaluate and verify that the parameter
estimation procedure works as intended.

set.seed(6.28) # for repeatable random number generation
library(deSolve) # load the ode() function into the workspace

# Function to simulate x(t) using ode() in the deSolve package
odefunc = function(t,x,ps) { # see ?ode in R for details
with(as.list(ps),{ # Use named values in ps as variables
dx = r*x*(1-x/K); # (compare to SIR code above).
return(list(dx)); } )

}

# Simulate data. First, obtain an ODE solution
Time = seq(0,7,length=30) # 30 evenly spaced values from 0 to 7
params = c(r=2, K=500, c=0.1, sigma=2) # Model parameters
x0 = c(x=50) # labels our state variable x in xout below
xout = ode(y=x0, times=Time, func=odefunc, parms=params)
head(xout,2) # Display the first two rows of xout

time x
[1,] 0.0000000 50.00000
[2,] 0.2413793 76.29257

# Second, sample y values from the given normal distributions
mydata = cbind(Time, y = rnorm(nrow(xout),

mean = params["c"]*xout[,2], params["sigma"]))
head(mydata,2)

Time y
[1,] 0.0000000 5.539212
[2,] 0.2413793 6.369287

tail(mydata,2)

Time y
[29,] 6.758621 52.78624
[30,] 7.000000 48.87896

# Plot process model trajectory x(t) and data (t_i, y_i)
par(mfrow=c(1,2)) # Plot results in 1 row, 2 columns
plot(Time, xout[,2], type="l", ylim=c(0,550),

main="Process Model", ylab="x")
plot(mydata, pch=19, col="gray50", ylim=c(0,55),

main="Data (Simulated)")



Rethinking ODE Model Assumptions 35

The remainder of this section illustrates how to carry out the parameter esti-
mation procedure, and how to conduct additional analyses to address a commonly
encountered problem where there exits multiple “best-fit” parameter estimates. This
is known as an identifiability problem (also called an estimability problem), and will
be discussed in greater detail below.

2.7.4 Parameter Estimation as an Optimization Problem

Continuing with the example above, let us assume that it is known that x0 = 50,
and we seek to estimate the other parameter values from our (simulated) data. The
likelihood of a given parameter set θ = (r,K, c, σ ) (given those n simulated pairs
of data ydata = (ti ,yi)) can be computed using the likelihood function defined as

L(r,K, c, σ |ydata) =
n
∏

i=1

f (yi, mean = c x(ti), sd = σ) (48)

where function f is the density function for a normal distribution19 with the given
mean and standard deviation, evaluated at yi , and parameters x0, r , and K are
used to numerically find x(ti). Our goal is to computationally find the set of
parameter values that maximizes L for a given data set. As stated above, it is
often more practical to minimize the negative log likelihood function nLL(θ |y) ≡
− log(L(θ |y)) rather than maximize the likelihood function. Thus, by properties of
the natural log function,

nLL(θ |y) = − log
(

n
∏

i=1

f (yi, mean = c x(ti), sd = σ)
)

= −
n
∑

i=1

log(f (yi, mean = c x(ti), sd = σ)).

We can now frame our parameter estimation problem as a computational
optimization problem. Since solutions x(t) typically have no closed form, we will
use numerical solutions of our process model in order to compute likelihoods.

Optimization algorithms essentially take a real-valued objective function (in our
case, a negative log likelihood function) which defines a surface over parameter
space, and from an initial set of parameter values (i.e., a point in parameter space)
moves through parameter space by moving “downhill” (or “uphill”) on the objective
function surface until the minimum (or maximum) objective function value is found.
Thus, to use generic optimization tools in software like R, we must construct a

19See dnorm in R.
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negative log likelihood function that conforms to the requirements of our chosen
optimization routines.

The objective functions defined below are written specifically to be used with
the generic optimization methods available under optim() and optimx() in R
[129]. These functions require that the first argument to the objective function be a
parameter vector, and any additional arguments are for passing in additional fixed
values (in this case, the data). See the help documentation for optim in R for further
details. The examples below use the default Nelder–Mead algorithm, which can be
relatively slow,20 and does not allow for the specification of explicit constraints (e.g.,
we would like to require the standard deviation parameter σ be positive), but often
gives good results where gradient-based methods perform poorly (for additional
optimization considerations and resources, see [128, 129, 161]).

In the context of our specific application, we additionally require that all
parameters are positive-valued. This is a common constraint; however, generic
unconstrained optimization methods like Nelder–Mead often work best when
allowed to freely consider all real numbers as candidate values for each unknown
parameter. To impose constraints on those parameter ranges requires us to either
modify our objective function—to coerce the optimization method into avoiding
negative parameter values—or to instead use a constrained optimization method.
When using a box-constrained optimization method in R (e.g., method L-BFGS-B
in optim) the limits on the range of possible parameter values can be specified
explicitly as arguments to optim or optimx. Here we only illustrate two variations
on the first approach, using unconstrained optimization with parameter constraints
built into the objective functions.

The first objective function (nLL1) implements this constraint by returning a
very large value if any parameter value is not strictly positive. This introduces
a discontinuity into the likelihood surface, which can cause problems for many
optimization methods, especially gradient-based methods (i.e., those methods that
use derivatives to “move downhill” to find objective function minima).

nLL1 = function(theta, tydat) {
# To disallow negative parameter values, nLL1 returns a large
# number if the optimization algorithm inputs any negatives.
# (See the text and nLL() below for better alternatives.)
if(any(theta<=0)) { return(1*10^10) }

# Otherwise, calculate our likelihood of theta given the data.
Times = tydat[,1] # 1st column are the times
Ys = tydat[,2] # 2nd column are the y values

# Simulate a trajectory x(t) under the given parameters (theta)
x0 = c(x=50) # For now, we assume x0 is known.
xout = ode(y=x0 ,times=Times, func=odefunc, parms=theta)

20The performance can be improved somewhat, e.g., by setting the flag kkt=FALSE to avoid
unnecessary computations or using parscale when parameter values vary by multiple orders of
magnitude. See the documentation for optim and optimx for details.
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# Return the -log(Lik) value under a normal distribution. Here
# we use the built-in ability to calculate log-density values
# by setting the argument log=TRUE. See ?dnorm for details.
return(-sum(dnorm(Ys,theta["c"]*xout[,2],

theta["sigma"],log=TRUE)))
}

The second (preferred) approach, implemented in nLL2 below, uses transforma-
tions (like those discussed in Sect. 2.6) to ensure parameter values remain strictly
positive. Here, (positive-valued) parameters are transformed using the natural log
and then unconstrained optimization is performed using these real-valued trans-
formed quantities. The resulting log-transformed values can then be transformed
back to positive parameter values using the exponential function exp(x) = ex . In
the example above, if we want r to remain strictly positive, we can re-parameterize
nLL1 using the transformed quantity q = log(r) (where r = exp(q) is positive for
all −∞ < q < ∞). Likewise, defining k = log(K), C = log(c), and S = log(σ )

so that K = exp(k), c = exp(C), and σ = exp(S), we can rewrite nLL1 above as a
function of these new parameters P = (q, k, C, S) where θ = exp(P ).

nLL2 = function(P, tydat) {
Times = tydat[,1] # 1st column are the times
Ys = tydat[,2] # 2nd column are the y values
# Next, obtain x(t) under the given parameters
x0 = c(x=50) # As above, we assume x0 is known.
xout = ode(x0, times=Times, func=odefunc,

parms = c(r=exp(P[["q"]]), K=exp(P[["k"]])))
# Return the -log(Lik) value under a normal distribution
return(-sum(dnorm(Ys,

exp(P[["C"]])*xout[,2], exp(P[["S"]]), log=T)))
}

While, in theory, the optimal parameter values obtained from these two
approaches should be identical, in practice round-off error and other factors can
lead to different outcomes. Optimization methods tend to perform better using the
log-transformation with unconstrained optimization, or using an explicit constrained
optimization method instead of the approach implemented in nLL1 above.

To illustrate this, the following code obtains parameter estimates using both
approaches described above. This requires that initial values are provided for the
parameters we would like to estimate, as required by optim.

# Initial parameter values for optimization using nLL1
theta0 = c(r=1, # Next, use the last y value for K, but

# divide that y value by c to get an x value...
K=as.numeric(mydata[nrow(mydata),2])/0.6,
c=0.6, sigma=0.1)

# The log transformed initial values for nLL2
P0 = c(q = log(theta0[["r"]]), k = log(theta0[["K"]]),

C = log(theta0[["c"]]), S = log(theta0[["sigma"]]) )
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# The true values, for comparison (impossible with real data!)
Ptrue = c(q = log(params[["r"]]), k = log(params[["K"]]),

C = log(params[["c"]]), S = log(params[["sigma"]]) )

# Fit the model both ways, then compare.
fit1 = optim(theta0, nLL1, tydat=mydata,

control=list(maxit=1e9, reltol=1e-10))
fit2 = optim(P0, nLL2, tydat=mydata,

control=list(maxit=1e9, reltol=1e-10))

The results from these two optimization runs are summarized below by showing
the lowest negative log likelihood value found, the corresponding parameter values,
the number of calls of the objective function (counts), and the convergence code21

indicating that the optimization routine reported no errors.

# Combine rows into a single object to display the results
rbind(fit1 = c(fit1$par, nLL=fit1$value,

counts=fit1$counts[[1]], conv.code=fit1$convergence),
fit2 = c(exp(fit2$par), nLL=fit2$value,

counts=fit2$counts[[1]], conv.code=fit2$convergence),
true = c(params, nLL1(params,mydata), NA, NA) );

r K c sigma nLL counts conv.code
fit1 1.8623 430.47 0.11738 2.2161 66.448 779 0
fit2 1.8619 430.29 0.11744 2.2171 66.448 295 0
true 2.0000 500.00 0.10000 2.0000 67.859 NA NA

Observe that the estimates are effectively the same, but the number of function
calls indicates that the optimization run on the log-transformed parameter values
(fit2) converged much faster. Furthermore, notice that the best estimate is slightly
off from the known (“true”) values used to simulate these data, due to the added
noise and finite sample size. For more on implementing and debugging this
optimization approach to parameter estimation, see [128, 129, 161].

Exercise 10 In the example above, we may wish to further assume c is a proportion
that cannot exceed 1. What other invertible functions might one use to map the open
interval (0, 1) to R?

Challenge Problem 13 Read through R’s help documentation for the optim
function (and the optimx function in the optimx package; see also [161]), and
identify one or more constrained optimization methods that can be used as an
alternative to Nelder–Mead. Also, modify the code above to include a third objective
function identical to nLL1 but with no checks on the sign of the parameter values.
Apply one or more constrained optimization method(s), and provide a comparative
summary of your results.

21Convergence code 0 indicates no errors, and convergence code 10 indicates degeneracy of the
Nelder–Mead simplex. The code 10 often occurs when the model is not identifiable and reaches a
“flat spot” in the objective surface.
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2.7.5 Recognizing Identifiability (Estimability) Problems

In practice, before we attempt using optimization to find our best-fit parameter
values, we must ask one important question that was neglected in the above example:
Does this model and estimation procedure have a unique best-fit parameter set, or
might there be multiple sets of parameter values that give equally good fits? That is,
phrased in terms of the geometry of the negative log likelihood surface: Is it roughly
bowl shaped (with a distinct minimum) or is it more like a valley with a connected
line of minima (or worse!)? In the first case, we call the model identifiable—it has a
unique likelihood-maximizing parameter set. In the second case, we say the model
is unidentifiable. While such problems may not affect forecasting of your observable
quantities, it is often the case that addressing any such identifiability problems
is essential to properly performing and drawing inferences from the parameter
estimates (e.g., see [11, 33, 46, 47, 57, 141]). Below, we introduce some ways of
assessing whether identifiability problems exist, and some approaches to correcting
the problem.

There are two predominant causes of identifiability problems that arise in
practice. First, sometimes our data lack the information needed to estimate one or
more parameters. For example, if our logistic model data were restricted to just
the early exponential growth phase of the trajectory shown in Fig. 5, we might
be able to estimate growth rate r , but our data would lack information about the
carrying capacity K . This can make K very difficult to estimate, and may result in
wildly different estimates of K depending on where the estimation procedure was
initialized. This can sometimes (but not always) lead to numerical problems if the
optimization methods used require the existence of a unique optimum. Perhaps a
worse outcome is that no numerical errors are reported, and a seemingly good (but
in reality, arbitrary) estimate of K is obtained. Without any further identifiability
or uncertainty analysis, the conclusions drawn from that flawed estimate would be

0 1 2 3 4 5 6 7

0
10

0
30

0
50

0

Process Model

Time

x

0 1 2 3 4 5 6 7

0
10

20
30

40
50

Data (Simulated)

Time

yFig. 1

Fig. 5 A trajectory x(t) of logistic model Eq. (47) (left) and a corresponding data set where the
simulated data values yi are normally distributed with a mean that is proportional to x(ti ). For
more details, see the corresponding code in the main text
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spurious (e.g., if K being very large or very small were of great importance). This
would be a practical identifiability problem, since it results from a shortcoming in
the data, not our model.

The second cause for identifiability problems arises from an overparameterized
model, e.g., where there are multiple parameter sets that yield the same outcomes
for the deterministic part of our model used to define the mean of observation
distributions. We call this a structural identifiability problem, and unlike practical
identifiability problems, these persist even when estimating parameters from ideal
data (e.g., full trajectories with no noise and arbitrarily large sample size).

For a simple example of a structurally unidentifiable model, consider the simple
linear regression model where the slope parameter m is replaced with two a
parameter expression m = m1 + m2, i.e., consider

E(yi) = (m1 + m2) xi + b. (49)

It is no surprise that this model has infinitely many best-fit parameter sets!
Specifically, if the standard regression model had a best-fit slope of say m̂ = 5
and intercept of b̂ = 2 then for our overparameterized model we would get equally
good fits out of any set of parameters where m̂1 + m̂2 = 5. Notice that in this simple
example, the problem has nothing to do with the amount of noise in the data, or
the sample size, but it is a fundamental property of the deterministic part of our
statistical model.

Since, in practice, both structural and practical identifiability problems manifest
in the form of an objective function that does not have a unique and/or well
defined optimum, a practical identifiability analysis is a good approach to assessing
whether or not such problems exist. This can then be complemented by a structural
identifiability analysis to look for identifiability problems that are caused by the
deterministic part of our model, if needed.

Next, we look at some approaches to conducting these identifiability analyses to
assess presence and extent of these problems, and see some ways to correct them.

2.7.6 Practical Identifiability Analysis

In practice, to assess whether or not an identifiability problem exists, the first step
is often to perform a practical identifiability analysis. Likelihood profiling is a
common way to perform a practical identifiability analysis when using a likelihood
based estimation procedure [32, 46, 141], because this is often the method used for
quantifying uncertainty in the parameter estimates (i.e., to approximate confidence
intervals) and thus requires no additional analyses. A more simplistic alternative
that can be used in other estimation frameworks (e.g., least-squares regression) is to
run the estimation procedure using multiple different initial parameter values, then
check to see if each converges to the same, or different, best-fit parameter estimates.

To illustrate this approach, we again consider estimating parameters for our
logistic example above, but we now assume x0 is unknown and thus a quantity
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we would like to estimate. To implement this in R, the code below first defines
a negative log likelihood function nLL (an extension of nLL2) that takes in the
additional free parameter X0 = log(x0). Unlike the case above, where x0 was
a known quantity, this additional free parameter makes the model structurally
unidentifiable.

Below, the estimation procedure described above was run for the full model (i.e.,
for nLL) using 1000 different initial parameter values. The pairwise relationships
among the best estimates out of those 1000 runs (based on nLL values) are plotted
in Fig. 6 to show their range of variation as well as any obvious patterns indicating
trade-offs between pairs of parameters. Here x0 is initialized using the first value in
our data set, and the 1000 different initial parameter sets are obtained by random
sampling from a uniform distribution so that each parameter value is within ±30%
of the initial parameter values specified above.

# nLL for the full example model with log-transformed parameters
nLL = function(P, tydat) {

Times = tydat[,1] # 1st column are the times
Ys = tydat[,2] # 2nd column are the y values
xout = ode(c(x=exp(P[["X0"]])), times=Times, func=odefunc,

parms=c(r=exp(P[["q"]]), K=exp(P[["k"]])))
# Return the -log(Lik) value under a normal distribution
return(-sum(dnorm(Ys, mean=exp(P[["C"]])*xout[,2],

sd=exp(P[["S"]]), log=TRUE)))
}

# Use the first y value for a crude initial estimate of x0
P0 = c(X0 = log(as.numeric(mydata[1,2])/0.6),

q = log(theta0[["r"]]), k = log(theta0[["K"]]),
C = log(theta0[["c"]]), S = log(theta0[["sigma"]]) )

# initialize a data frame to store optimization output
fits=data.frame(x0=NA,r=NA,K=NA,c=NA,sigma=NA,nLL=NA,code=NA)
set.seed(123) # for repeatable random number generation
for(i in 1:1000) {

# Random parameter values are within +/- 30% of true values
P0i = log( exp(P0) * runif(length(P0), 0.7, 1.3) )
fiti = optim(P0i, nLL, tydat=mydata, control=list(maxit=1e5))
fits[i,] = c(exp(fiti$par), nLL=fiti$value,

code=fiti$convergence)
}
# select the estimates within 0.01% of the best fit
fits = fits[order(fits$nLL,decreasing=FALSE), ]
fits2 = fits[(fits$code==0 | fits$code==10) &

fits$nLL <= 1.0001 * min(fits$nLL, na.rm=T), ]
# Omit some extremes to clean up the graphical output below
fits2 = fits2[fits2$K != max(fits2$K), ]
fits2 = fits2[fits2$K != min(fits2$K), ]
# log-scale plots to show pairwise tradeoffs, parameter ranges
pairs(fits2[,1:5], log="xy",

labels=c(expression(x[0]),"r","K","c",expression(sigma)))
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Fig. 6 Parameter estimates, on a log scale, obtained by running the optimization routine in our
estimation procedure for 1000 different starting parameter sets, then taking the estimates within
0.01% of the best estimate’s nLL value and plotting their pairwise relationships (note the best-fit
negative log likelihood value of these 350 top fits is 66.4476 and the worst is 66.4488). These
estimates (which exclude some extreme values to clarify patterns in the plots; see code for details)
have the following coefficients of variation: cvx0 = 5, cvr = 0.0013, cvK = 5.1, cvc = 3.2, and
cvσ = 0.0023. The very close negative log likelihood values, combined with the large ranges of
variation and correlations between some parameters indicate that there is an identifiability problem
(i.e., there is apparently no unique best-fit parameter set, either due to there being more parameters
than estimable quantities in the model, or the optimization method lacks the sensitivity to find
an existing optimum due to a nearly flat objective function near that optimum). It seems only r

and σ appear to be identifiable. Linear relationships on these log–log plots indicate linear, inverse,
or power law relationships between best-fit parameters. These estimates are slightly better (lower
negative log likelihood values) than the previous figure, where x0 was held constant at a non-
optimal value. See the code in the main text for further details

rownames(fits2)=c() # remove row numbers for the output below
head(fits2[,1:6],5) # Show the 5 best parameter estimates

x0 r K c sigma nLL
1 19.35396 1.8624 166.5768 0.30336 2.2170 66.448
2 11.51700 1.8623 99.1655 0.50959 2.2196 66.448
3 5.25086 1.8615 45.1620 1.11897 2.2166 66.448
4 3.55392 1.8610 30.5587 1.65359 2.2161 66.448
5 0.79901 1.8616 6.8779 7.34744 2.2188 66.448

summary(fits2[,1:3])

x0 r K
Min. : 0.07 Min. :1.86 Min. : 0.6
1st Qu.: 4.31 1st Qu.:1.86 1st Qu.: 37.2
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Median : 7.25 Median :1.86 Median : 62.6
Mean : 25.21 Mean :1.86 Mean : 217.2
3rd Qu.: 13.79 3rd Qu.:1.86 3rd Qu.: 119.1
Max. :1934.69 Max. :1.87 Max. :16685.9

summary(fits2[,4:6])

c sigma nLL
Min. : 0.003 Min. :2.21 Min. :66.4
1st Qu.: 0.424 1st Qu.:2.21 1st Qu.:66.4
Median : 0.807 Median :2.22 Median :66.4
Mean : 2.278 Mean :2.22 Mean :66.4
3rd Qu.: 1.359 3rd Qu.:2.22 3rd Qu.:66.4
Max. :78.369 Max. :2.23 Max. :66.4

Note that, while the estimates for r and σ are tightly clustered, the others vary
by multiple orders of magnitude! These wildly different parameter estimates, each
fitting equally well to the data (i.e., they have nearly identical negative log likelihood
values), are a strong indication of an identifiability problem.

Next, we conduct a structural identifiability analysis to assess whether or not
these problems arise from a structural identifiability problem (and would therefore
persist even for data with a very large sample size and little to no noise).
Importantly, even though this does not always yield the desired results (see [46, 121]
and references therein), it can often provide equations that exactly describe the
parameter trade-offs evident in Fig. 6.

2.7.7 Structural Identifiability Analysis

Structural identifiability problems can often be identified (and sometimes, corrected
for) by a structural identifiability analysis (e.g., see [11, 33, 46, 57, 122, 123, 141,
146] and references therein) that determines whether or not there is a one-to-
one mapping between the model parameters and the quantities in the model that
can be estimated (e.g., in our simple linear regression example above, Eq. (49),
there is no one-to-one mapping between parameters m1, m2, and b and the
estimable slope m and intercept b). These estimable quantities are also often called
(identifiable) parameter combinations. A commonly used method of conducting a
structural identifiability analysis is the input–output equation approach detailed in
the references above, and the benefit of this approach is that it can give you generic
analytical relationships (e.g., like the m = m1 + m2 relationship in Eq. (49)) that
can be used to correct the problem, e.g., by fixing one of the problem parameters in
order to make one or more others uniquely estimable.

Since the above practical identifiability analysis indicates an identifiability
problem, we here apply the input–output equation approach to determine whether
or not Eq. (46) is a structurally unidentifiable model, and if so, to discover the
identifiable parameter combinations.
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To do this, we first assume a zero-variance (deterministic) observation variable
y(t) = c x(t) and differentiate it with respect to t . Second, we substitute the process
model Eq. (47a) and substitute x = y/c to obtain a differential equation that is only
in terms of the observation variable y. The resulting equation is referred to as the
input–output equation, and for our logistic example it is given by

dy

dt
− r y − r

c K
y2 = 0, y(0) = c x0. (50)

Since this equation is a monic polynomial in terms of y and derivatives of y, it
follows that are our identifiable parameter combinations (i.e., the quantities we can
estimate from data) are the two coefficients in the input–output equation and the
initial condition, i.e., one can only estimate values for

r,
r

c K
, and c x0. (51)

What does this imply about the estimability of our model parameters? If there were
a one-to-one mapping between these three identifiable parameter combinations and
our four parameters, then we would expect there to be a unique best parameter
estimate (given ideal data). But, note that we have three identifiable parameter com-
binations and four model parameters, hence we cannot have a one-to-one mapping
between them. Thus, our example logistic model is structurally unidentifiable.

Obtaining these expressions for the trade-offs between parameters are a major
benefit of conducting a structural identifiability analysis. From the above example,
we have learned that we should expect a unique estimate for r , but any parameter
values for c, x0, and K that yield the same “best-fit” values of c K and c x0 will fit
equally well. Thus, the pairwise plots in Fig. 6 should show an inverse relationship
between c and x0 and between c and K (or, a linear relationship with negative
slope when viewed on a log–log plot), and a linear relationship with positive slope
between x0 and K . Also, by fixing one parameter—e.g., c or K or x0 (but not r)—
there would then be a one-to-one mapping between the three identifiable parameter
combinations and the three unknown model parameters. Often, in applications,
some parameters can be assigned values based on independent experiments, so
holding constant the most well known of these parameter values might correct these
identifiability problems and thus permit investigators to estimate the other unknown
parameters from data.

Exercise 11 In the logistic example above, prove that fixing c, K , or x0 corrects
the identifiability problem, whereas fixing r does not. To do this, suppose there are
two different sets of best-fit parameter values (r1, K1, x01, c1) and (r2, K2, x02, c2)
that yield the same identifiable quantities (51), i.e., c1 x01 = c2 x02, r1 = r2, and

r1
c1 K1

= r2
c2 K2

. Fix each parameter in turn (e.g., fix c1 = c2 = c), and show whether
or not the resulting system of equations permits two distinct parameter sets.
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Exercise 12 Structural identifiability results can provide explicit functional forms
describing trade-offs among unidentifiable parameters, like those shown in Fig. 6.
These can be found by writing our identifiable quantities explicitly and solving for
the implied relationships between parameters. For the example above, we have the
identifiable quantities α1 = c x0, α2 = r , and α3 = r/(c K), which are uniquely
estimable from an ideal data set. Use these expressions to show that the ratio K/x0 is
constant, and thus K and x0 have a positive linear relationship consistent with Fig. 6.
Verify the other pairwise relationships suggested by the log–log plots in Fig. 6.

Let us now use these results to correct our estimation procedure. Suppose that, in
our full logistic growth example, we had good reason to believe that our sampling
design captured roughly 10% of the population at any given time. That is, we can
reasonably assume c = 0.10. In that case, our negative log likelihood function could
be modified so that it takes in a vector of parameter values that does not include c

(and instead holds it fixed at 0.10), and likewise c would be omitted from initial
parameter value vector provided to optim.

These modifications are implemented in the practical identifiability analysis
below, which replicates the parameter estimation procedure 500 times for different
initial parameter sets. The results are shown in Fig. 7, where pairwise scatterplots of
the best-fit parameter estimates can be used to assess whether or not replicates seem
to be converging to a unique best-fit parameter set.
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Fig. 7 Pairwise plots of parameter estimates for the logistic model Eq. (47) where c = 0.1 is
fixed to correct the structural unidentifiability of the model (see Fig. 6). To illustrate the improved
convergence of estimates, 500 different initial parameter sets were used, and for the 65 of those
estimates with a negative log likelihood value within 0.01% of the best estimate, these had the
coefficients of variation: cvx0 = 0.002, cvr = 0.001, cvK = 0.00013, and cvσ = 0.0015
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nLLc = function(P, tydat) {
Times = tydat[,1] # 1st column = times; 2nd = y values
Ys = tydat[,2]
x0 = c(x=exp(P[["X0"]]))
xout = ode(x0, times=Times, func=odefunc,

parms = c(r=exp(P[["q"]]),K=exp(P[["k"]])))
# Return -log(Lik) value as in previous examples
return(-sum(dnorm(Ys, 0.1*xout[,2], exp(P[["S"]]),log=T)))

}

# initial P values for all but C=log(c)
P00 = P0[-4] # exclude the 4th element, C=log(c), from P0

# Pairwise plots to verify the identifiability problem is fixed
fits = data.frame(x0=NA,r=NA,K=NA,sigma=NA,nLL=NA,code=NA)
for(i in 1:500) {

# Random parameter values are within +/- 20% of true values
P00i = log( exp(P00) * runif(length(P00),0.8, 1.2) )
fiti = optim(P00i, nLLc, tydat=mydata,

control=list(maxit=1e6, reltol=1e-10))
fits[i,] = c(exp(fiti$par), nLL=fiti$value,

code = fiti$convergence)
}
# Display the best-fit estimates and the pairwise scatterplots
fits = fits[order(fits$nLL, decreasing=FALSE), ]
# Only include those with a nLL withing 0.01% of the best fit
fits2 = fits[(fits$code==0 | fits$code==10) &

fits$nLL <= 1.0001 * min(fits$nLL, na.rm=T), 1:5]
summary(fits2[,-5]) # Omit nLL quartiles (all are very close)

x0 r K sigma
Min. :58.25 Min. :1.858 Min. :504.9 Min. :2.210
1st Qu.:58.64 1st Qu.:1.861 1st Qu.:505.3 1st Qu.:2.216
Median :58.72 Median :1.862 Median :505.3 Median :2.216
Mean :58.70 Mean :1.862 Mean :505.3 Mean :2.217
3rd Qu.:58.76 3rd Qu.:1.863 3rd Qu.:505.4 3rd Qu.:2.219
Max. :58.91 Max. :1.871 Max. :505.4 Max. :2.230

# Estimates should be close to params, used to simulate the data,
# but not exact due to noise and finite sample size.
c(x0=50, params) # The values used to simulate the data.

x0 r K c sigma
50.0 2.0 500.0 0.1 2.0

rownames(fits2)=c() # erase the old row numbers from `fits
head(fits2[,1:5], 4) # The best estimates obtained are...

x0 r K sigma nLL
1 58.68502 1.862500 505.3260 2.215778 66.44762
2 58.69906 1.862127 505.3115 2.218590 66.44763
3 58.73725 1.861839 505.3141 2.216148 66.44763
4 58.72716 1.861420 505.3199 2.215563 66.44764
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pairs(fits2[,1:4], log="xy",
labels=c(expression(x[0]), "r", "K", expression(sigma)))

From these pairwise plots of parameter estimates, we see there is still some small
variation in our estimates, but the best estimates are now all clustered tightly around
the same value, and close to the true values used to simulate the data (note the
estimates would deviate more from the true values if we had fixed c at a value away
from 0.1). Some deviation from the true values is always expected when the data
set is noisy and has a small to moderate number of data points. Note that some
parameters show correlations, e.g., r and x0, indicating that there is some slight
trade-off between them. This is often the case when the objective surface (i.e., the
negative log likelihood surface) has a unique optimum but it lies along a nearly flat
trough with only a slight amount of curvature near the optimum, which can cause
the optimization routine to end prematurely. This suggests that our estimates might
be refined, if needed, using a different optimization method or by modifying the
control parameters so that the criteria for when to conclude that an optimum was
found are more conservative.

Exercise 13 Suppose data for the θ -logistic model (see Eq. (36)) were simulated
only for a short period of time starting with x0 � K so that only the exponential
growth phase was reflected in the data. Would you expect to be able to estimate K or
the exponent θ with much certainty? Likewise, for the logistic or θ -logistic models,
would you expect to be able to estimate r with any certainty if the data were only
sampled from a trajectory that started at carrying capacity x0 = K? Discuss these
in the context of structural versus practical identifiability.

Challenge Problem 14 There are still some correlations in Fig. 7 suggesting some
“trade-off” between estimated parameter values. Explore different optimization
routines and control settings. Are the correlations and variation in estimates
improved by a more finely tuned optimization procedure? How does increasing or
decreasing the noise, or the sample size, of our simulated data affect these estimates?

Challenge Problem 15 (Standardizing Parameters for Optimization) The
Nelder–Mead algorithm used in the examples above (as well as many other
optimization methods) may not perform well in situations where the parameter
values in question span many orders of magnitude. A simple way to correct this
problem is to standardize the optimization parameters. To do this, given p unknown
parameter values, one can introduce a new set of p scalars (initially set at 1) that
can be multiplied by a base parameter vector to create a new parameter vector.
Optimization is then done on these multipliers using a new objective function that
takes these new parameters as inputs, multiplies them by a base parameter set,
and then computes a negative log likelihood value for the resulting set of model
parameters using the original nLL function. To do this, begin with nLL above
and a base parameter set params0 such that the usual optimization call would be
optim(params0, nLL, ...). Next, write a new function nLLscaled that
takes a vector of parameter values M (initially all set to 1) as an input, and also
a second parameter vector basepars which can be passed in as an argument to
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optim using optim(M, nLLscaled, basepars=params0, ...). The
optimum parameter values returned by optim can be multiplied by params0 to
obtain the best-fit model parameters.

Implement this approach for the logistic example above, where c = 0.1 is
assumed to be known, and compare its performance (e.g., in terms of rates of
convergence and goodness of fit) to the unstandardized approach. Finally, note
that optim and optimx have a built-in way of achieving this scaling using the
parscale option (see the documentation for optim and optimx). Add this
built-in option to your comparison of approaches.

2.7.8 Statistical Analyses Beyond Parameter Estimation

Once we are happy with our parameter estimation procedure, other statistical
analyses can and should be conducted. For example, we typically should conduct
some sort of uncertainty quantification to assess how much certainty we have in
our parameter estimates. Uncertainty quantification is almost always necessary, as it
provides an essential context for evaluating any inferences drawn from estimates
obtained by fitting models to data. In the context presented above, uncertainty
quantification can be done by approximating confidence intervals for the parameter
estimates using likelihood profiling techniques, which, as mentioned above, can
also be used for practical identifiability analysis [47]. Resampling methods like
bootstrapping or other approaches to uncertainty quantification may also be used,
e.g., see [1, 2, 19, 21, 32, 70, 79, 114] and references therein. Model comparisons
can also be made, e.g., using likelihood ratio tests, relative AIC values, or similar
criteria (e.g., see [21, 123] and references therein). While uncertainty quantification
is not treated here in detail, readers fitting models to data are strongly encouraged to
quantify the level of uncertainty in their parameter estimates, forecasts, etc. as part
of any presentation or discussion of their final results.

2.7.9 Alternative Approaches to Parameter Estimation and Uncertainty
Quantification

New and improved methods for parameter estimation and uncertainty quantification
for ODE-based statistical models are still being actively developed, but in practice
the above approach is a good place to start. As mentioned at the start of this
section, there are other approaches than the one detailed above and some have
even been implemented as R packages. For example, the deBInfer package
can be used to implement Bayesian parameter estimation for ODE models [19].
A Bayesian framework offers many advantages, including a straightforward avenue
to uncertainty quantification using the posterior parameter distributions. Sometimes
likelihood surfaces that involve solutions to ODEs can deviate greatly from the
ideal “hump shaped” likelihood surface with a distinct optimum, and thus make
for a difficult computational optimization problem. Alternative methods have been
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developed that instead use a different measure of how well the model fits the
data by comparing the right hand side of the ODE model (i.e., derivatives of the
solution curves) to derivatives of a non-parametric smooth curve fit to time series
data [139]. The package CollocInfer implements one of these functional data
analysis methods in R [87, 88], and there is also Matlab software for use with the
FDA package [86]. See also [14, 32] and the probe matching approach discussed in
[50, 97, 151].

2.7.10 Closing Remarks on Fitting ODE Models to Data

In general, it is strongly advised that any parameter estimation procedure be assessed
using data simulated from the exact statistical model being used, to verify that
the implementation was done correctly and that the estimates look reasonable
(additionally, this simulation-estimation check can be repeated for many simulated
data sets to generate a “boot-strapped” empirical distribution for the estimates,
which can then be used to assess estimator properties, e.g., to quantify bias).
An identifiability analysis also further helps to ensure the parameter estimation
procedure works as intended. If optimization challenges arise, other methods are
available by selecting a different method option in optim, or multiple methods
can be compared using optimx in the R package optimx. For even more
optimization options in R, see the CRAN Task View page on Optimization [161]
which lists additional methods available in various contributed R packages.

3 Identifying and Modifying Model Assumptions

The sections above introduce some useful methods for analyzing ODE models or
otherwise using them in an applied scientific setting. They also introduce some
of the simple ways in which new ODE models can be derived by altering the
assumptions of an existing model. In the sections that follow, we take a closer look at
the task critically evaluating ODE model assumptions, and formulating new models
that in some cases lead to new non-ODE models.

To aid in identifying assumptions associated with a given ODE model that might
be altered to yield a new ODE (or non-ODE) model, it helps to consider a few
general features of ODE models. First, there is the continuous (vs. discrete) nature
of ODE models, both in time and state space, as well as the deterministic (vs.
stochastic) nature of ODE models. Modifying one or both of these assumptions may
be both scientifically fruitful and mathematically interesting to investigate. Relaxing
the memoryless (vs. history-dependent) nature of ODEs can often yield different
results from a corresponding set of ODEs, as can altering the assumptions that a
system is autonomous (vs. driven by external forcing terms), non-spatial (vs. being
explicitly spatial), well-mixed, and/or composed of identical (vs. heterogeneous)
individuals. Modifying model assumptions like those listed above will often lead to
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opportunities to formulate new non-ODE models, while altering other assumptions
is perhaps more likely to yield new ODE models [4, 6, 45, 51, 100].

To illustrate, let us revisit the SIR model Eqs. (8) and its assumptions. First,
because ODEs are inherently memoryless (i.e., the future state of the system
depends only on the current state of the system, not the past), introducing any
dependence on past states of the system may yield a non-ODE model, unless the
necessary information about that history can be incorporated into the state variable
values at the present time (e.g., the addition of an exposed class and the resulting
SEIR model is a way of accounting for history by assuming an exponentially
distributed lag that manifests as an intermediate exposed state). As stated above,
the dwell times in states S and I follow Poisson process first event time distributions
(e.g., the duration if infectiousness is exponentially distributed with rate γ ), and
altering those distributions (as shown below) can yield ODE and non-ODE models.

Second, the SIR model is seemingly agnostic of any spatial relationships between
individuals, but (like many ODE models) it actually implicitly assumes that the
system is well mixed as opposed to assuming a contact process between individuals
that is, e.g., limited to nearest neighbors over some spatial domain. This implicit
assumption also implies no other sources of spatial heterogeneity, e.g., areas where
transmission rates are higher or lower than other areas.

Third, in the basic SIR model, individuals are assumed to be identical (or iden-
tically distributed) with respect to infectiousness and recovery times, as opposed
to assuming multiple categories of individuals differing in their transmission risk
(e.g., in modeling sexually transmitted infections, modelers typically acknowledge
that sexual interactions are not random, so individuals are often partitioned into age
classes or into groups that engage in low- versus high-risk behavior) or differ in
disease progression (e.g., vaccinated versus unvaccinated individuals, or individuals
that do or do not have a certain genotype that confers some protection from disease).

Fourth, the SIR model also assumes constant rates of per capita infection and
recovery, versus rates that vary over time. However, the transmission rate for many
childhood diseases is strongly driven by whether or not school is in session, as this
increases the contact rate among infected and susceptible children.

Fifth, the SIR model is also continuous in both time and state space, which may
not be desirable if one seeks to quantify the time it takes for an epidemic to end
(i.e., for I (t) = 0, which cannot happen in finite time under the ODE model) or
if one wants to use the SIR model as part of a statistical model for the analysis of
weekly case count data, which might be more tractable with a stochastic discrete-
time, discrete-state model.

Lastly, the SIR model makes very specific assumptions about the functional
forms of the transmission and recovery rates. It is possible to instead define models
that include more mathematically general terms (e.g., instead of defining the force of
infection as λ(I) ≡ β I one could more generally assume that the force of infection
λ is instead some unknown strictly increasing function of I—and possibly a function
of S and R too—where λ(0) = 0) which are quite amenable to mathematical
analyses to explore what results can be obtained that apply across this broader class
of models. This kind of model generalization based on more specific models can go
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a long way to draw more general conclusions from specific study systems, and can
also provide important context for drawing attention to the full range of dynamics
that one might observe in similar real systems (e.g., see [35]).

Modelers strive to find an appropriate balance between simplicity and reality. As
you can see from the SIR model assumptions listed above, there are often myriad
ways of altering the assumptions of an existing ODE model. Some of these may
be important to investigate, e.g., to better understand how a certain simplifying
assumption might impact a key results obtained from the model. On the other hand,
incorporating too many complicating assumptions can quickly make models too
complex to analyze, diminishing their utility for applications.

Students can often find an interesting research project by focusing on a single
ODE model assumption (e.g., the presence or absence of an Exposed class in the SIR
model) and that might be altered to yield a new set of ODEs that are still simple
enough to analyze and compare to the original model. But, students are particularly
encouraged to consider altering those simplifying assumptions that primarily serve
to ensure the model is a system of ODEs, especially when such assumptions might
seem to be an egregious oversimplification given the research question at hand, and
given the specifics of the real-world system(s) being modeled.

In the next few sections, we briefly introduce some approaches to generalizing,
or otherwise altering, these ODE model assumptions. To give a full treatment of
the analytical and computational aspects of deriving and analyzing these models
is beyond the scope of this chapter, so instead an effort has been made to provide
references to resources that can be consulted to dig deeper into these topics.

3.1 Autonomous ODEs to Non-autonomous ODEs

Autonomous ODE models, which only depend on the current state of the system
(i.e., that could be written with f (x, θ) in the context of Eq. (1)), assume that the
system dynamics are not governed by any other time-varying quantities. This is
often a major simplifying assumption for biological systems where, for example, the
true rates of growth, reproduction, and survival may vary greatly over time following
changes in temperature, light levels, or evolved seasonal patterns of behavior.
Accounting for this time dependence is often accomplished by incorporating time-
varying terms into ODEs, especially when incorporating strong seasonal or other
periodically varying quantities into the model (e.g., seasonal transmission patterns
in infectious diseases; e.g., see [34, 71] and references therein). Aperiodic and/or
stochastic environmental forcing terms can also often be represented by continuous
functions of time, e.g., to include temperature dependencies in a population growth
model using hourly temperature data interpolated to create a continuous function of
time.

While the choice to use a non-autonomous ODE model may preclude something
like an equilibrium stability analysis (since the notion of an equilibrium point is
often irrelevant when the system is being forced), however such extensions can often
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make for a great follow-up study of a system previously modeled with autonomous
ODEs [44, 143, 158]. Mathematical analysis can be done in some cases, e.g., where
the forcing functions are bounded around some mean or are periodic (e.g., see [15,
108]), or where they can be approximated by step functions thus allowing one to
represent the model with autonomous ODEs over specific time intervals [89].

For a simple example of a seasonally forced model, consider a logistic growth
model where we have separated out the birth and death processes in the form

dx

dt
= b x − (d + μx) x = (b − d) x

(

1 − x

(b − d)/μ

)

(52)

where the birth rate is modeled by an exponential-growth-like term with rate b, and
the per capita mortality rate d + μx is density dependent in that it increases from
a baseline level d at rate μ > 0 with increasing population size x. Rewritten in
the standard logistic equation form (Eq. (21)), we see the model has an exponential
growth rate r = b − d (we may assume b > d to ensure population growth) and a
carrying capacity K = (b − d)/μ = r/μ.

The following exercises illustrate how one might modify such a model to include
time-varying processes.

Exercise 14 Suppose Eq. (52) was to be used to model a population with density-
dependent growth, where temperature was either to be held constant in one set
of experiments or cycled between high and low temperatures to mimic a day–
night temperature cycle. To make this model non-autonomous, one could make b a
positive-valued function of time, and/or d a positive-valued function of time, and/or
the quantity b − d a function of time (e.g., by multiplying it by a function that
oscillates between values a little above and a little below 1, and whose long-term
average is 1), and/or μ a positive-valued function of time. For what scenarios might
one of these be more appropriate than the other?

Challenge Problem 16 Numerically investigate two or more instances of the
modified logistic models described in the exercise above.

Challenge Problem 17 Write down equations for a modified SIR model with a
periodic transmission rate β(t), e.g., using sine, cosine, or step functions (i.e., piece-
wise constant functions) that alternate periodically between two positive values.
Modify the R code in previous sections to find numerical solutions to this seasonally
forced SIR model, and compare model trajectories under different scenarios.

3.2 Deriving Deterministic Discrete-Time Models

For some applications, models that change according to discrete-time steps are
sometimes desirable, thus one may want to modifying the assumptions of an
existing ODE model to derive an analogous deterministic discrete-time model (or, as



Rethinking ODE Model Assumptions 53

discussed in the next section, a stochastic discrete-time model). For example, one
might want to take an existing model of a continuously breeding organism and
modify it for use with an annual plant or an animal population that has a very distinct
breeding period each year (e.g., salmon or various insects, like mayflies). Another
example may be a desire to consider a discrete-time analog of an ODE model as
part of a statistical model to use with, e.g., weekly or monthly data. This is often
accomplished using an exact or approximate representation of how the (continuous-
time) ODE model trajectories change over a fixed time interval. For example, in
some cases a discrete-time map can be obtained when ODE model solutions can
be found analytically as in [89]. Alternatively, over short time steps, Euler’s method
gives an approximate discrete-time map x(t+Δt) = x(t)+f (x(t), θ)Δt . However,
there is some merit in taking a different approach by going back to a set of system-
specific assumptions and re-deriving an appropriate model from first principles.

For examples of biological applications of discrete-time models, readers are
encouraged to explore the literature. Many discrete-time models exist for studying
population dynamics, and various texts address formulating and analyzing discrete-
time models, including [4, 45, 50, 100, 126].

Exercise 15 Take the standard logistic model (or the form above, written in terms
of b, d, and μ) and use integration by parts to verify the analytical solution curve

x(t) = x0 K

x0 + (K − x0) exp(−r t)
, (53)

starting at x(0) = x0. Next, use that solution to find α and β such that this system
has a discrete-time map

x(k + Δt) = x(k)

α + β x(k)
. (54)

Hint: Consider the solution curve from time t = k to t = k + Δt .

Challenge Problem 18 Use a for loop to simulate a trajectory of the above
discrete map analogue of the continuous-time logistic equation. Use code from
previous sections to obtain a numerical solution to the continuous-time logistic
model, and also implement Eq. (53) and overlay these three trajectories in one plot.

Challenge Problem 19 Construct a discrete-time model (using the results from
the exercise above, and Eq. (52)) for the following scenario. Assume a migratory
population spends a portion of the year (0 < T1 < 1) on the breeding grounds,
where the population grows according to a logistic equation, then a proportion ρ1
survive a quick (assume it is instantaneous) migration to the wintering grounds.
Once there, natural mortality leads to an exponential decline in population size over
the remainder of the year. Then, of the remaining individuals, a fraction ρ2 survive
the return trip to the breeding grounds to start another annual cycle. Construct a map
x(t+1) = f (x(t)) that reflects all of these processes described above. Use resources
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like one of the references given above to do an analytical (or simulation-based)
equilibrium stability analysis of this map (see also [89, 150] for similar models).

3.3 Deriving Stochastic Models

Revising the assumptions of an ODE model to can sometimes result in the
need to derive a stochastic model, e.g., to investigate the role of demographic
stochasticity arising from individual births and deaths in a population, or to alter
implicit assumptions like the probability distribution describing the duration of
time individuals are infectious in an SIR-type disease model, or to use in deriving
a new deterministic model. Stochastic models can take various forms, ranging
from Markov chains to discrete maps to stochastic differential equations (SDEs),
just to name a few. This section introduces some common types of the stochastic
dynamic models found in applications. For further reading, see [3, 6, 21, 45, 131]
and references therein.

3.3.1 Continuous-Time, Discrete-State Stochastic Models

A natural stochastic model analogue of a given ODE model (if it can be viewed
as a mean field model of some unspecified stochastic process) is the particu-
lar continuous-time stochastic process based on Poisson processes mentioned in
Sect. 2.1. This is often used to add demographic stochasticity to a model, or alter
implicit individual-level assumptions to derive a new mean field model. This process
can often be derived via the approaches outlined in texts like [3, 6] and references
therein.

Another way to construct this model, especially for simulation purposes, is the
Stochastic Simulation Algorithm (SSA; also known as the Gillespie algorithm)
[68, 69, 133]. In short, the SSA is a straightforward algorithm for simulating the
stochastic analog of a mean field ODE using the Poisson process intuition illustrated
in the exponential growth example in Sect. 2.1. There are various extensions and
refinements of the SSA that an interested reader may wish to pursue, e.g., for time-
varying processes [162] or the simulation of large systems where computational
efficiency is important [26, 27, 31, 124]. Here we introduce the basic SSA algorithm.

To implement the SSA we first must identify all state transition events that lead
to a change in state variables, the corresponding state vector changes for each type
of event, and the corresponding rates for each event type. For example, in our SIR
example, the two basic event types are the transition from susceptible to infected and
the transition from infected to recovered, as detailed in Table 1. This information is
used to iterate the following two main steps of the SSA: first, simulate the time to
the next event, then determine which event type occurs.
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Table 1 Possible changes to the state vector x = (S, I, R) in a stochastic discrete-state discrete-
time SIR model with time step Δt , and their approximate probabilities

Event Update vector Probability = Rate·Δt

Transmission (ΔS, ΔI, ΔR) = (−1, 1, 0) β S I Δt

Recovery (ΔS, ΔI, ΔR) = (0, −1, 1) γ I Δt

First, to simulate the time to the next event we need to specify its probability
distribution. As mentioned in Sect. 2.1, the rate terms in our ODE that correspond
to these different transition events can be interpreted as Poisson process rates. In
an autonomous system, the time to the next event will be exponentially distributed
with a rate given by the sum of each event rate, since these rates depend only on
the state of the system, and so between events those rates are constant.22 Once this
overall event rate is calculated, the time to the next event is sampled from the given
exponential distribution.

The second step in the SSA is to determine which event type occurred, so the
state variables can be updated accordingly. To do this requires using the fact that
the probability of the ith event type occurring, pi , is given by the ratio of that event
rate (i.e., the corresponding term from the ODE) divided by the total rate. To clarify
this step, consider again the SIR model where our two events have corresponding
rates βSI (infection event) and γ I (recovery event), i.e., the probabilities of a new
infection or a recovery are approximately βSIΔt and γ IΔt , respectively. Here
we specify the overall rate of a transmission event occurring, as opposed to the per
capita rate. Then the probability p that the next event is a transmission event is given
by p = βSI/(βSI + γ I). Thus, the event type is determined by sampling from
this discrete probability distribution defined by these relative rates. This sampling is
done using the inverse transform sampling method [40] (see example below), and
then the state variables are updated accordingly. This process is then repeated to
obtain the desired simulated trajectory of the stochastic model.23

To illustrate how to apply the Stochastic Simulation Algorithm, it is implemented
below in R for the basic SIR model. The overall rate r that defines the time until the
next event is r = βSI + γ I as mentioned above, thus the probabilities of an event
being a transmission or recovery event are βSI/r and γ I/r , respectively. To sample
which event occurs, we simply sample from a Uniform(0,1) distribution and check
whether the sampled value falls below βSI/r (indicating a transmission event) or
above that value (indicating a recovery event).

These two steps are repeated until a specified time is reached, or until I (t) = 0
(at which point the state values become fixed for all future times).

22Since the time to the next event under multiple different Poisson processes—one for each
event type—is the minimum of the corresponding exponentially distributed event times, it is itself
exponentially distributed with a rate that is the sum of the individual rates.
23Additional intuition for this algorithm can be found in the section in [92] regarding “competing
clocks” in a Poisson process framework.
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# Using the same parameters and initial conditions above...
set.seed(8675309) # Repeatable random number generation
X = cbind(Time=c(0), S=c(998), I=c(2), R=c(0)) # Store output
B=0.0003 # parameter values
g=0.1

# Next a matrix of "update vectors" to add to the
# current state of the system, i.e., x(t), when either a
# transmission (row 1) or recovery (row 2) event occurs.
update = matrix(c(-1,1,0, 0,-1,1), nrow=2, ncol=3, byrow=TRUE)
# display the two row vectors
update

[,1] [,2] [,3]
[1,] -1 1 0
[2,] 0 -1 1

# Stochastic Simulation Algorithm iteration using a while loop
i = 1 # a counter for our while loop iterations
while(X[i,1] < 150 & X[i,3] > 0) { # while Time < 150 and I>0 ...

rates = c(B*X[i,2]*X[i,3] , g*X[i,3]) # indiv. event rates
r = sum(rates) # total rate of some event happening
tstep = rexp(1,r) # time to the next event is Exponential(r)

# Determine which event occurs
p = rates/r # Probability vector for each event type
u = runif(1) # Sample a Uniform(0,1)
j = which(u <= cumsum(p))[1] # Sample which event occurred
# The cumulative sum defines intervals [0,p1], [p1,p1+p2] ...
# with interval lengths p1, p2, ... The function which(...)
# returns the index for each interval including and above u.
# Index [1] returns the 1st of these -- the one containing u.
# Thus, Prob(j=1)=p1, Prob(j=2)=p2, etc.

# Store updated time and the state variables, in new row of X
X = rbind(X, c(X[i,1] + tstep, X[i,2:4] + update[j,]))
i = i+1 # increment our row index for X

} # end of while() loop
if(X[i,1] < 150) { # If I reached 0, extend simulation to t=150

X = rbind(X, c(150, X[nrow(X),2:4]))
}
head(X,3) # Display first and last few simulated values

Time S I R
[1,] 0.000000 998 2 0
[2,] 2.080826 997 3 0
[3,] 2.523152 997 2 1

tail(X,3)

Time S I R
[1884,] 119.9396 57 1 942
[1885,] 135.8091 57 0 943
[1886,] 150.0000 57 0 943
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Fig. 8 One realization of the Stochastic Simulation Algorithm applied to the SIR model, which
yields a simulated trajectory under the discrete-state, continuous-time analogue of the ODE-based
SIR model defined by Eqs. (8). Compare to the ODE model trajectory in Figs. 2 and 3. See the
code in the main text for further details

# Plot the stochastic trajectories as before
Time = X[,1]
par(mfrow = c(1,3)) # three panels in 1 row
plot(Time, X[,2], ylab="S", ylim=c(0,sum(X[1,2:4])),

type="l", lwd=2); abline(h=0) # Add a horizontal axis
plot(Time, X[,3], ylab="I", ylim=c(0,sum(X[1,2:4])),

type="l", lwd=2); abline(h=0)
plot(Time, X[,4], ylab="R", ylim=c(0,sum(X[1,2:4])),

type="l", lwd=2); abline(h=0)

These simulation results in Fig. 8 illustrate how this stochastic model captures
the random fluctuations induced by the discrete nature of individuals in the system,
and the probabilistic nature of the transmission and recovery processes. We call this
kind of stochasticity demographic stochasticity to distinguish it from environmental
stochasticity which might, for example, take the form of a non-constant transmission
coefficient β fluctuating in time. This may be modeled using a pre-specified curve as
discussed in the previous section, or by approximating the combined demographic
and environmental noise within a stochastic differential equation (SDE) framework
as discussed in the next section.

Exercise 16 Rerun the code above multiple times, but omit the set.seed() call
so that a different stochastic simulation is generated each time. Do all simulations
look the same, or not? How do these compare to Figs. 2 and 3?

Exercise 17 Combine the above SSA code with the code for plotting the numerical
solution curve to the ODE version of the SIR model, and overlay the ODE output
with the stochastic model output. How do the two trajectories compare?

Challenge Problem 20 Repeat the stochastic simulation above a few hundred
times, store each of the simulations, and plot them together in one graph. How do
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they compare? Plot or otherwise summarize the distribution (across these different
simulations) of any interesting quantities you can think of, e.g., peak number
infected, total number infected, time to end of epidemic, etc.

Challenge Problem 21 Iterate these stochastic simulations many times and for
each iteration store the first time at which I (t) = 0. Plot a histogram of these
extinction times.

Challenge Problem 22 Implement the Stochastic Simulation Algorithm (SSA) for
the Rosenzweig–MacArthur predator–prey model, Eqs. (23). Carefully consider the
dependence or independence of different events (e.g., loss of prey via predation
versus the birth of a new predator). As above, compare stochastic and ODE model
output for the same parameter values and initial conditions. Increasing a through the
Hopf bifurcation (see Fig. 1), noise may sometimes cause the predators or prey to
go extinct, especially as the amplitude of the oscillations increases with increasing
a. How does the average time to extinction vary with a above the threshold value
that gives rise to predator–prey oscillations?

3.4 Stochastic Differential Equations (SDEs)

A common way to approximate a continuous-time discrete-state stochastic model
is to derive a continuous-time, continuous-state model known as a stochastic
differential equation (SDE) which retains the key average (mean) changes over
time (like ODEs) as well as some of the covariance structure of the stochastic
fluctuations about that average behavior. There are multiple ways to derive SDEs,
but the derivation below follows Chapter 5 of [3].

First, consider the discrete-time approximation of the underlying continuous-
time stochastic model for our SIR equation, and the possible update vector values
corresponding to transmission and recovery events. These are summarized in
Table 1 where as above we only focus on the S and I equations since R can be found
later using R(t) = N0 − S(t) − I (t). Let the update vector Δx be a random vector
that takes on these possible values according to their corresponding probabilities.
The mean and second moment of the update vector Δx are, respectively,

E(Δx) =
[ −β S I

β S I − γ

]

Δt (55)

E(Δx(Δx)T) =
[

β S I −β S I

−β S I β S I + γ I

]

Δt. (56)

If we define μ = E(Δx)/Δt and B such that B2 = E(Δx(Δx)T)/Δt then
the SDE for this scenario—using drift coefficient μ and diffusion coefficient B—
is given by
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dx = μ dt + B dW (57)

where W(t) is a vector of two independent Wiener processes (i.e., standard
Brownian motion where for t > s each Wi(t) − Wi(s) is normally distributed with
mean 0 and variance t − s). Since W(t) is not time-differentiable, the notation used
in Eq. (57) implicitly assumes these quantities exist as the integrand of an integral
over time [3, 6, 131]. Thus, an SDE approximation of our stochastic SIR model is

[

dS(t)

dI (t)

]

=
[ −λ(t) S(t)

λ(t) S(t) − γ I (t)

]

dt + B dW. (58)

Matrix B can be found analytically in this case, but in general may need to be
computed numerically. Here, the covariance matrix B2 has multiple square roots,
but only one is a symmetric positive definite matrix [159], thus we use

B =

⎡

⎢
⎢
⎢
⎣

√
BSI

√
gI+BSI

√
(√

gI+√
BSI

)2+BSI

− BSI
√
(√

gI+√
BSI

)2+BSI

− BSI
√
(√

gI+√
BSI

)2+BSI

gI+√
BSI

√
gI+BSI

√
(√

gI+√
BSI

)2+BSI

⎤

⎥
⎥
⎥
⎦

. (59)

3.4.1 Numerical Solutions to SDEs

Numerical solutions to SDEs can be computed using algorithms similar to those
discussed in the section above for simulating ODEs, e.g., see [3, 16, 76, 83, 138,
147]. Below, the stochastic fourth-order Runge–Kutta algorithm from [76] is used
to numerically solve the above SDE version of the SIR model (Fig. 9). For additional
details on deriving, analyzing, and generating numerical solutions of SDEs and
related models (e.g., stochastic delay differential equations) see [3, 6, 93, 131].

############################################################
# Stochastic Runge-Kutta-4 for Stratonovich calculus,
# as described in Hansen and Penland 2006.

# A function to calculate the deterministic part of our SDE,
dSI = function(X, ps) { # i.e., the drift coefficient mu.

S = X[["S"]] # Unpack our state variable values
I = X[["I"]]
b = ps[["beta"]] # Unpack parameters
g = ps[["gamma"]]
return(matrix(c(-b*S*I, b*S*I - g*I), nrow=2, ncol=1))

}

sdeRK4 = function(X, dt, ps) {
S = X[["S"]]; I = X[["I"]]; # As in dSI above.
b = ps[["beta"]]; g = ps[["gamma"]];
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Fig. 9 One numerical solution to the SDE version of the simple SIR model defined by Eqs. (58)
and (59), simulated using a stochastic fourth-order Runge–Kutta algorithm [76]. Compare to the
ODE model trajectory in Fig. 2 and the Stochastic Simulation Algorithm (SSA) implementation of
that model in Fig. 8. See the code in the main text for further details

# Standard normal values with variance dt
dW = matrix(rnorm(2,mean=0,sd=sqrt(dt)), nrow=2, ncol=1)

# Square root of the second moment matrix B^2
B = matrix(c(sqrt(b*S*I)*sqrt(g*I)+b*S*I, -b*S*I,

-b*S*I, g*I + sqrt(b*S*I)*sqrt(g*I)+b*S*I)/
sqrt((sqrt(g*I) + sqrt(b*S*I))^2+b*S*I),
nrow=2, ncol=2)

# Define the terms of the stochastic RK4 scheme
# See Hansen and Penland 2006 for details.
k1 = dSI(X,ps)*dt + B %*% dW ## %*% is matrix multiplication
k2 = dSI(X + .5 * k1, ps)*dt + B %*% dW
k3 = dSI(X + .5 * k2, ps)*dt + B %*% dW
k4 = dSI(X + k3, ps)*dt + B %*% dW
return(X + (1 / 6) * (k1 + 2*k2 + 2*k3 + k4))

}

# Parameters for our numerical solution
Pars = c(beta=0.0003, gamma=0.1)
N=1000
X = data.frame(S=998, I=2) # Assume that R(0)=0
Time = c(0)
tstep = 0.1

# Iterate sdeRK4() steps to simulate a full trajectory
set.seed(246) # For repeatable random number generation
i=2 # counter for our while loop below
while(Time[i-1] < 150 & X[i-1,2]>0) { # while t<150, I>0

Time[i] = Time[i-1] + tstep
X[i,] = sdeRK4(X[i-1,],tstep,Pars)
i = i+1

}
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# Combine columns into a single data frame
Xout = cbind(Time, X, R = N - rowSums(X))
tail(Xout,4)

Time S I R
1417 141.6 81.05222 0.02383346 918.9239
1418 141.7 81.05465 0.04914261 918.8962
1419 141.8 81.06478 0.02691306 918.9083
1420 141.9 81.07035 -0.01539963 918.9450

# If I(t) dropped below zero on the last iteration...
if(Xout[i-1,3] < 0) { # ... set I=0 and extend to t=150:

Xout[i-1,3] = 0 # First set negative value to 0, then
Xout[i,] = Xout[i-1,] # duplicate that last row and
Xout[i,1] = 150 # set the final time to 150.

}

# Plot the numerical solution curves as before
par(mfrow=c(1,3)) # Plot 3 panels in 1 row
plot(Xout[,1], Xout[,2], ylab="Susceptible (S)", ylim=c(0,N),

xlab="Time", type="l", lwd=2); abline(h=0)
plot(Xout[,1], Xout[,3], ylab="Infected (I)", ylim=c(0,N),

xlab="Time", type="l", lwd=2); abline(h=0)
plot(Xout[,1], Xout[,4], ylab="Recovered (R)", ylim=c(0,N),

xlab="Time", type="l", lwd=2); abline(h=0)

Challenge Problem 23 Derive and implement SSA- and SDE-based stochastic
simulations of the logistic equation with explicit birth and death rates given by
Eq. (52). How do their assumptions differ? What similarities and differences can you
identify between these two stochastic implementations of the ODE-based logistic
growth model?

3.5 Distributed Delay Equations

Another widespread ODE model assumption that can be altered is the assumed
exponentially distributed dwell times24 that are so often encountered as simplifying
assumptions in mean field ODEs. Choosing other dwell time assumptions can some-
times alter model behavior in ways that are important for a given application
(e.g., [63, 64]). Typically, models that relax this assumption must be derived from
stochastic model first principles, and often the end result is a set of integral
equations or integro-differential equations rather than ODEs (e.g., [80]). Under
certain distributional assumptions, these integral equations can also be realized as a

24The dwell time, or passage time, is the duration of time an individual spends in a given state. As
discussed in Sect. 2.1, ODEs with linear loss rate terms implicitly assume that—in the context of
Sect. 3.3.1—the times individuals spend in that state are exponentially distributed.
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system of ODEs (e.g., see [64, 65, 92, 154]), and in some cases it is possible to write
down those ODEs directly from the stochastic model assumptions (see Sect. 3.5.2
and references therein). The following sections introduce these distributed delay
equation models, as well as the linear chain trick (LCT) and a generalized linear
chain trick (GLCT) for approximating or exactly representing these with systems of
ODEs. Discrete delay differential equations (DDEs), which can be thought of as the
zero-variance limit of a distributed delay equation, are also introduced in Sect. 3.5.4.

3.5.1 Integral and Integro-Differential Equations

Integral and integro-differential equations arise as a more general way of writing
mean field models for continuous-time stochastic processes, especially when the
dwell time distributions and related assumptions do not permit an ODE rep-
resentation of the mean field model (e.g., when the model is not memoryless
[92]). Specific forms, known as Volterra integral equations and Volterra integro-
differential equations (or sometimes just referred to as Volterra equations) are
named after the prolific mathematician and physicist Vito Volterra (born 3 May
1860, died 11 October 1940) who, building upon his work on functionals in
functional analysis, laid the groundwork to use integral and integro-differential
equations to study biological problems.

One approach to derive a mean field distributed delay model in the form of an
integral equation is to first derive a discrete-time mean field model that accounts for
all the past movements into and out of the different states. This can be done for an
arbitrary dwell time distribution, as shown in the following example.

For an example of such a derivation, consider again our SIR model (see also
[92]). Suppose we seek to model I (t)—the number of infected individuals at time
t—with an integral equation. To begin, the time interval [0, t] is partitioned into
a large number of N sub-intervals, each of duration Δt . We can refer to each
sub-interval by indexing the start time of each interval as ti , i.e., the ith sub-
interval is (ti , ti + Δt]. Assume the number of new infections during the ith time
interval is binomially distributed where there are n = S(ti) individuals who might
become infected, each with probability p = βI (ti)Δt , during that time period of
duration Δt . Thus, by properties of binomial distributions, the expected number of
new infections during the ith time interval is np = βS(ti)I (ti)Δt . For each of
these cohorts entering the infectious state during the same time interval, assume all
follow the same dwell time distribution with domain [0,∞), cumulative distribution
function (CDF) F(t), and survival function G(t) ≡ 1 − F(t) = P(X > t). It then
follows that, for the cohort of individuals who entered the infectious state during the
ith sub-interval of time, the expected proportion that remains in that state at time t

(after t − ti time units) is G(t − ti ).
With those details in hand, a discrete-time mean field model of the number of

infected individuals at time t is obtained by summing over all N of the sub-intervals
of time (where t = NΔt), accounting for (a) the expected number entering in each
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time interval, and (b) the proportion of each cohort25 remaining in I at time t :

I (t) =
initial cohort
︷ ︸︸ ︷

I (0)G(t) +
N
∑

i=1

expected influx
︷ ︸︸ ︷

βS(ti)I (ti)Δt G(t − ti )
︸ ︷︷ ︸

proportion remaining at time t

. (60)

Recognizing this as a Riemann sum, we can take the limit as Δt → 0 (N → ∞)
and replace the times ti with the integration variable s to yield the continuous-time
mean field model given by the (Volterra) integral equation

I (t) = I (0)G(t) +
∫ t

0
βS(s)I (s)G(t − s) ds. (61)

Similarly, one can go on to derive the full generalization of the SIR model, which
incorporates general distributions for the time spent in the susceptible state, and the
time spent in the infectious state (i.e., the duration of infectiousness also called
the infectious period) which each have the respective CDFs FS(t) and FI (t) (i.e.,
survival functions Gi(t) = 1 − Fi(t)). Written as above, the equations are

S(t) = S(0)GS(t) (62a)

I (t) = I (0)GI (t) +
∫ t

0
β I (s) S(s)GI (t − s) ds (62b)

R(t) = N − S(t) − I (t) (62c)

where N = S(0)+ I (0)+R(0). The ODE model given by Eqs. (8) is a special case
of the above model. This can be shown by assuming the time spent in the susceptible
state obeys the 1st event time under a Poisson process with rate λ(t) = β I (t), and
thus GS(t) = exp

( − ∫ t

0 β I (u) du
)

, and further assuming GI (t) = exp
( − γ t

)

.
However, in this more general framework one could consider various other choices
for the dwell time distribution that describes the duration of infectiousness. For more
details and similar models see [29, 63, 92, 102, 113].

One can undertake analyses (analogous to those mentioned above for ODE
models) to investigate integral equation dynamics; however, even basic equilib-
rium stability analyses and computing numerical solutions requires more careful
approaches than for ODEs [12, 25, 80, 111]. In practice, a combination of analytical
and numerical methods can be used to study these types of distributed delay
equations. However, another alternative is to take advantage of the fact that, for
some choices of the dwell time distribution, differentiating these integral equations
can yield equivalent systems of ODEs, as detailed in the next section.

25For simplicity, we here assume the initial cohort enters state I at t = 0 and thus follows the same
dwell time distribution G.
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3.5.2 Linear Chain Trick

The linear chain trick (LCT; also known as the gamma chain trick) allows us to
derive a new ODE model from an existing ODE model that assumes an exponential
dwell time distribution in one or more states by replacing that assumption with
an Erlang26 distributed dwell time. It also allows for the derivation of a system
of ODEs that approximates a distributed delay equation, or a delay differential
equation (as illustrated in Sect. 3.5.4). Erlang distributions are the special set of
gamma distributions that can be thought of as the sum of k independent exponential
distributions, each with the same rate [85, 106, 145]. Importantly, the LCT allows
modelers to write down this new ODE model directly, without going through
the process of constructing a more general integral equation model (as in the
above example), and/or without explicitly deriving ODEs from an integral equation
(as discussed below).

The LCT works as follows. We seek to replace a target state and corresponding
state variable x in an ODE—which has an implicit exponential dwell time distri-
bution with a mean dwell time of 1/r (or equivalently, rate r , i.e., the loss rate
in the dx/dt equation is −r x)—with a series of substates xi that partition state x

into k substates. Individuals enter the state into the first substate x1, then transition
to the second substate, and so on, in series. This ensures that the overall passage
time through these substates is Erlang distributed, since the sum of k exponentially
distributed random variables with rate rk yields an Erlang distribution with mean
k/(rk) = 1/r , as desired.27

The LCT is applied to specific model equations as follows. Suppose a state x in
the model has an input rate Λ(t) and an exponential dwell time with rate μ (i.e.,
mean 1/μ), and thus the mean field ODE equation is of the form

dx

dt
= Λ(t) − μx(t). (63)

To instead assume an Erlang distributed duration of time with the same mean (1/μ),
the equation for x(t) can be replaced with equations for k substates xi(t), where
x(t) = ∑

xi(t), and the equation above is replaced by

dx1(t)

dt
= Λ(t) − μk x1(t) (64a)

dxj (t)

dt
= μk xj−1(t) − μk xj (t), for j = 2, . . . , k. (64b)

26Erlang distributions are gamma distributions with integer-valued shape parameters. Compared to
exponential distributions, the Erlang density function is more hump shaped and the variance can
be made arbitrarily small, as is sometimes desired in applications.
27Readers familiar with Poisson processes may recall that homogeneous Poisson processes
have inter-event times that are exponentially distributed, and the time to the kth event under a
homogeneous Poisson process with rate r is Erlang distributed with rate r and shape k.
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Furthermore, one can choose a value of k in order to implement the desired variance
(increasing k decreases the variance). Often, it is preferable to specify the desired
coefficient of variation28 instead, since the coefficient of variation (cv) for an Erlang
distribution is determined solely by shape parameter k, where cv = 1/

√
k. Note cv

can be specified to yield an integer-valued k = 1/cv2.
Other model equations may also need to be modified when implementing the

LCT, for example you may need to replace expressions involving state variable x(t)

with the sum of the new substate variables xi(t), and any input rates into other states
that depend on the loss rate from x, formerly μx(t), must instead depend on the new
loss rate μk xk(t) (for an example, see below).

To illustrate, suppose that for our original SIR model Eqs. (8) we wanted to
replace our exponentially distributed dwell time (rate γ ; mean 1/γ ) in the infected
state with an Erlang distribution with mean 1/γ and coefficient of variation of 1/3
(i.e., k = 9). To do this using the LCT, we simply replace the ODE

dI

dt
= β S I − γ I (65)

as indicated above, and modify the transmission and recovery rate terms to yield

dS

dt
= − β

( 9
∑

i=1

Ii(t)

)

S(t) (66a)

dI1

dt
= β

( 9
∑

i=1

Ii(t)

)

S(t) − γ k I1(t) (66b)

dI2

dt
= γ k I1(t) − γ k I2(t) (66c)

...

dI9

dt
= γ k I8(t) − γ k I9(t) (66d)

dR

dt
= γ k I9(t). (66e)

In practice, the LCT may be more challenging to apply if there are additional
model complexities like transitions to multiple states or substate transitions that
should not “reset the clock” for the overall dwell time distribution in a state. For
guidance on applying the LCT in those situations, see [92].

28The coefficient of variation is the standard deviation divided by the mean.
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Challenge Problem 24 As illustrated above, the LCT can quickly increase the
number of state variables. Explore the consequences of this increase in dimension-
ality either in terms of model dynamics, and/or the accuracy of numerical solutions.

3.5.3 Mathematical Foundations of the Linear Chain Trick

For readers interested in the mathematical machinery behind the LCT, the following
is a brief overview of how to explicitly derive ODEs from integral equations.

The Erlang density and survival functions are given (respectively) by

gk
r (t) = r

(r t)k−1

(k − 1)!e
−rt (67a)

Gk
r (t) =

k
∑

j=1

1

r
g

j
r (t). (67b)

The following recursion relationship between Erlang density functions and their
derivatives is the linchpin of the LCT, as summarized in Theorem 4 (adapted from
[92], which follows Eqs. 7.11 in [154]); see [92] for extensions).

Theorem 4 The Erlang density functions g
j
r (t), with rate r and shape j , satisfy

d

dt
g1

r (t) = − rg1
r (t), where g1

r (0) = r, (68a)

d

dt
g

j
r (t) = r [gj−1

r (t) − g
j
r (t)], where g

j
r (0) = 0 for j ≥ 2. (68b)

This recursion relation allows one to differentiate integral equations like Eqs. (62)
with assumed Erlang dwell times, and formally derive equivalent mean field ODEs
like Eqs. (66). The linear chain trick can also be generalized to a much broader
family of dwell time distributions that includes the phase-type distributions as
detailed in [92]. More specifically, these phase-type distributions describe the
distribution of times it takes to hit an absorbing state in a continuous-time Markov
chain, and there is a straightforward formula for writing the ODEs for such cases
based on the corresponding transition matrix and rate vector for the continuous-
time Markov chain representation of the assumed phase-type distribution. Interested
readers should consult [92, 154] and references therein for further details, as here
we only introduce the standard linear chain trick.

Challenge Problem 25 Take the I (t) equation from the Volterra integral form of
the SIR model (Eqs. (62)) and assume an Erlang distribution survival function with
rate r and shape k. Use the Leibniz rule for differentiating integrals to prove that the
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above set of equations for Ii are correct. Hint: After differentiating the integral and
applying Theorem 4, use the substitution

Ij (t) = I0
1

r
g

j
r (t) +

∫ t

0
β S(s) I (s)

1

r
g

j
r (t − s)ds. (69)

3.5.4 Delay Differential Equations

Another approach to modifying the exponential delay assumption implicit in many
ODE models is to consider taking the limit of the dwell time distribution’s variance
to zero while the mean is fixed at some value τ . This yields equations of the form29

dx
dt

= f (t, x(t), x(t − τ), θ) (70)

where τ > 0 thus allowing the derivative of the current state (at time t) to depend
on the past state of the system τ time units into the past. These are known as
(discrete) delay differential equations (DDEs) [154], and while DDEs are slightly
more difficult to analyze than ODEs (e.g., in terms of equilibrium stability analysis),
they are easier to mathematically analyze and to compute numerical solutions
for, relative to integral and integro-differential equations. It is also worth noting
that DDEs often exhibit more complex dynamics than similar (non-delayed) ODE
models (e.g., see the simple example in the Appendix of [67]).

There are many resources that address the analysis of DDEs (e.g., [8, 18, 154,
155]), and applications of DDEs are common in the scientific literature, so the
various methods of mathematical analysis will not be reviewed here. Numerical
solutions can be obtained using the dede function in the deSolve package in R
[156], which is used in a similar fashion to the ode function but with a few caveats.
First, unlike ODEs (which are memoryless and only depend on the current state)
DDEs depend on the history of the system. Thus, to begin a numerical solution and
compute forward in time starting at time t = 0 requires that x(t) be defined over
the time interval t ∈ [−τ, 0]. That is, unlike the vector of initial state values needed
to simulate trajectories for ODEs, DDEs require initial functions over [−τ, 0] to
obtain numerical solutions (for example code in R, see the bottom of the help
documentation for dede which illustrates how to specify these initial function
values).

DDEs with a finite number of state variables are actually, in a sense, infinite
dimensional in that all of the values of x(t) between time t − τ and t can be thought
of as state variables. To provide some intuition for why this is the case (and thus
provide a means of approximating DDEs with ODEs, or vice versa) consider the

29More generally, if there are multiple lag values τi , i = 1, . . . , k, the right hand side is of the form
f (t, x(t), x(t − τ1), . . . , x(t − τk), θ).
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following construction of the SIR model with a discrete delay based on Eqs. (66),
the SIR model with an Erlang distributed duration of infection. Recall that, for a
fixed mean duration of infectiousness 1/γ , the shape parameter k represents the
number of substates Ii necessary to include in the ODE when assuming an Erlang
distributed delay between acquiring an infection, and recovery. Recalling that the
coefficient of variation (and the variance) decreases as k increases, it follows that
taking k → ∞ should yield a model that has a discrete delay of exactly τ = 1/γ .
For all k,

∑
Ii(t) = I (t) = N0 − S(t) − R(t), thus in the limit as k → ∞ the

number entering the recovered state during an infinitesimally small period of time
approaches exactly the same number who became infected τ = 1/γ time units ago
(i.e., the rate of recovery at t is β I (t − τ) S(t − τ)), one could write a DDE version
of this model as

dS(t)

dt
= − β (N0 − S(t) − R(t)) S(t) (71a)

dR(t)

dt
= β (N0 − S(t − τ) − R(t − τ)) S(t − τ). (71b)

Exercise 18 Differentiate I (t) = N0 − S(t) − R(t) and use Eqs. (71) to show that
the full version of the model above can be written as

dS(t)

dt
= − β I (t) S(t) (72a)

dI (t)

dt
= β I (t) S(t) − β I (t − τ) S(t − τ) (72b)

dR(t)

dt
= β I (t − τ) S(t − τ). (72c)

Exercise 19 Consider repeating the above derivation of a DDE for the basic
SEIR model, where we would like to change the assumption of an exponentially
distributed latent period (with mean τ = 1/ν) to a discrete delay with the same
mean, i.e., we would like to assume that the incubation period before an exposed
individual becomes infectious is exactly τ units of time. Justify whether or not this
model should be of the form

dS(t)

dt
= − β I (t) S(t) (73a)

dI (t)

dt
= β I (t − τ) S(t − τ) − γ I (t) (73b)

dR(t)

dt
= γ I (t) (73c)

by first generalizing the SEIR model using the linear chain trick, and then letting
the variance of the latent period go to zero (i.e., letting k → 0).
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Lastly, the above procedure can also be reversed as a way of constructing
a system of ODEs that approximates a DDE by relaxing the “zero-variance”
assumption to instead assume an Erlang distributed delay with mean τ . This well-
known approximation method is described at the end of Chapter 7 in [154].

For example, consider the following DDE version of the Rosenzweig–MacArthur
model, where we assume that there is some period of time τ between predators
consuming prey and the subsequent arrival of new predators in the system [167].

dN(t)

dt
= r N(t)

(

1 − N(t)

K

)

− a P (t)

k + N(t)
N(t) (74a)

dP (t)

dt
= χ

a N(t − τ)

k + N(t − τ)
P (t − τ) − μP(t) (74b)

This may be reasonable if, for example, food resources are quickly turned into
offspring and their overall maturation time has a small coefficient of variation
(compare Eq. (74) to the model in §6.2 of [118]). Here we may treat the delayed
rate of new predators entering the system (i.e., the recruitment rate)

χ
a N(t − τ)

k + N(t − τ)
P (t − τ) (75)

as the input rate into this previously unwritten count of offspring that will eventually
become adults. Approximating with the LCT introduces a series of intermediate
state variables Yi , i = 1, . . . , k reminiscent of the linear chain trick results above,
where we assume the value of k such that it gives the desired coefficient of variation
(recall k = 1/c2

v) for an assumed Erlang distribution of incubation times. Relaxing
the discrete delay assumption to include some non-zero variance in the incubation
period therefore yields the following ODE model.

dN(t)

dt
= r N(t)

(

1 − N(t)

K

)

− a P (t)

k + N(t)
N(t) (76a)

dY1(t)

dt
= χ

a N(t)

k + N(t)
P (t) − k

τ
Y1(t) (76b)

dYj (t)

dt
= k

τ
Yj−1(t) − k

τ
Yj (t), for j = 2, . . . , k (76c)

dP (t)

dt
= k

τ
Yk(t) − μP(t) (76d)

It should be noted that these finite-state approximations of DDE models, espe-
cially for large k (i.e., small coefficient of variation), can have different dynamics
relative to the original DDE, and they can also be numerically problematic when
computing numerical solutions for large k values.
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Challenge Problem 26 Use the dede and ode functions in deSolve to generate
comparable numerical solutions to the two SIR models (and/or the two predator–
prey models) above, and compare those solution curves for various values of k (i.e.,
for various values of the implicitly assumed variance about the mean delay value τ ).
Think carefully about the initial function values for the DDE model solutions (e.g.,
consider using ODE model solution curves for these values) so that the simulated
results can be fairly compared.

3.6 Individual Heterogeneity

Different approaches exist for relaxing the ODE model assumption of homogeneity
among individuals in a given state. This may be a reasonable assumption for
the individual molecules in a solution of chemical reactants, but may be an
oversimplification for a population of plants or animals. The most straightforward
way to relax this assumption is to simply assume a finite number of distinct types
of individuals. For example, this has been done with models of sexually transmitted
infections to account for low- and high-risk groups [22, 81], and in multispecies
interaction models where prey can occur in forms that are either undefended (a good
food resource) or well-defended (a poor food resource) [36, 49, 168, 169].

Methods for modeling a continuum of individual heterogeneity also exist, e.g., to
allow something like individual size to vary along a continuum as opposed to a finite
set of possible size classes. For example, in a discrete-time case, this scenario can
be modeled using integral projection models [53, 54, 120], which can offer benefits
over discrete-state models when used for parameter estimation since smooth kernels
with only a few parameters may have fewer parameters to estimate than a model
with a larger number of discrete states, each with their own related parameters.
In continuous-time, a PDE model can be used to describe the time-evolution of a
continuous trait distribution across a population, and there are a variety of analytical
and computational resources available for such models, e.g., [45, 52, 100, 127].

Another approach to constructing a model that incorporates individual hetero-
geneity is to implement an agent based (also known as individual based) model
[72]. These computational models allow for the inclusion of more complex rules
governing individual behavior than can typically be incorporated into a tractable
mathematical model. These approaches have been used quite successfully to better
understand phenomena like animal movements in groups or through heterogeneous
environments (e.g., [50, 66, 72, 144]). While these typically do not allow much
mathematical analysis, they can be useful for modeling specific systems that are
data rich or are otherwise well understood, and can form the basis for subsequently
deriving mathematical models that aim to address very specific phenomena observed
in simulations.
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3.7 Spatially Explicit Models

Spatial effects are perhaps one of the most important components of real-world
systems that frequently get oversimplified by using ODE models, and some of the
other types of models discussed above. ODE models typically assume that systems
are well mixed and not constrained by spatial distances. However, incorporating
these spatial dependencies can have a significant impact on how these models
behave. There is a sizable body of literature on spatial models and methods for
analyzing various types of spatially explicit models. Here we just scratch the surface
of this topic and provide only a very brief introduction to a few of these modeling
approaches, and leave it to the reader to seek out a more in depth treatment of
spatially explicit models.

Readers in search of a research project that includes spatial effects are encour-
aged to derive a spatially explicit model (like one of the model types listed below)
from an existing ODE model, or to slightly modify the assumptions of an existing
spatially explicit model, for example a PDE model. One might also consider the
more ambitious option of deriving a multipatch or network model based on an
existing spatial (e.g., PDE) model, or vice versa.

One approach to deriving a spatially explicit model from an existing non-spatial
model is to simply consider dividing the system up across multiple “patches.”
A well-known example of such models are the metapopulation models in population
ecology [77, 109, 110, 132]. In these contexts, the dynamics within each patch can be
governed by a simple model, such as an ODE model, and some explicit rules can be
imposed that govern movement or other interactions between patches. Constructing
these sorts of multipatch models is an easy way to explore how spatially dependent
processes affect dynamics. These models can also be used to explore the effects of
spatial heterogeneity by allowing model parameters to vary from patch to patch. In
recent decades, such models have been revisited in the context of the burgeoning
field of network science [130], allowing investigators to bring the tools and insights
from the study of networks to bear on understanding how the patterns of patch
connectedness (i.e., the network properties) shape system-wide dynamics.

Many examples of multipatch and network models exist in the literature,
and some of the standard methods of ODE model analysis can be applied to
these models. However, these methods must sometimes be adapted for the high
dimensionality of these systems (e.g., see [30] and references therein; also compare
methods in the literature for calculating epidemic thresholds on networks with the
next generation operator approach to calculating the basic reproduction number R0
for small to medium sized model, as detailed in [43]). For an introduction to methods
for network models, see [130, 135, 136] and also [58–62, 152].

Another approach to explicitly incorporating space into a dynamical systems
model is to discretize a continuous 1-, 2-, or 3-dimensional spatial domain into a
finite number of contiguous patches. This special case of the previously described
patch models can then be analyzed using approximation methods such as pair
approximation [48, 82, 110], or by taking the limit as the patch size shrinks to zero
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to derive a PDE model. As mentioned above, there are other resources available
that cover methods for deriving, analyzing, and numerically simulating PDE models
(including the methods available in the deSolve package in R). Interested readers
may find more detailed treatments of these topics in [45, 50, 100, 127] and related
publications (also, see the list of “books in related areas” in the preface of [45]).

4 Choosing a Research Project

I hope the preceding sections have inspired you to reevaluate a familiar ODE model,
or to seek out an ODE model related to a topic of particular interest to you, and take
a critical look at the explicit and implicit assumptions of that model. The sections
above provide an overview of some commonly used methods for analyzing ODE
models (or otherwise using them in a research setting), and an overview of some
ways that ODE model assumptions can be altered to derive new models in pursuit
of new avenues of research.

From the perspective of conducting research to advance our collective knowledge
of how the world works, research projects that parallel an existing ODE model
analysis (using a model derived by meaningfully altering the assumptions of that
original model) can help incrementally build upon an existing body of work. These
types of research projects can be great for student researchers, since they provide
some guidance in terms of which questions are worth asking, and which types of
analyses can be used to address those questions. Additionally, these alternative
models can also provide opportunities to ask new questions about important real-
world systems that may not be as practical (or possible) to answer using an
existing ODE model (e.g., the distribution of extinction times is more appropriately
addressed in a discrete-state stochastic model). For these reasons, the relationships
between different models and their differing assumptions are a wonderful place
to probe and challenge our understanding of the real-world systems we seek to
understand through mathematical modeling.

4.1 Additional Project Topics

Scientifically, many open problems exist in the study of specific systems that
are being investigated using ODE models. As stated in the introduction, studying
multiple mathematical models of the same system, each with slight variations in
assumptions, can yield a more clear understanding of which results are robust
across models (e.g., see [1, 2, 99, 107]) and across similar real-world systems.
These studies can also identify which results might be meaningfully influenced by
simplifying assumptions. Below are a few additional project ideas to consider that
have some potential to lead to yield meaningful contributions to the very broad field
of mathematical biology.
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Research Project 1 (Timing in Infectious Disease Models) Recently,
increased attention has been given to the importance of properly modeling
the presence or absence of latent periods in infectious disease models [164],
and the importance of making proper assumptions about the distributions that
describe the duration of time spent in different model states [64, 65]. Many
models exist in the literature for various diseases in wildlife and humans
(and for other types of multispecies interactions that do not involve infectious
parasites), and improving a model in this manner can make a great project.

One approach to tackling this project is to do the following:

1. Search the literature for relatively recent publication using an SIR-type ODE
model to study a specific infectious disease. Diseases in non-human hosts or
diseases that are otherwise not heavily researched (e.g., not HIV or Malaria,
Dengue, or Rabies) are perhaps more likely to be modeled using relatively simple
or otherwise poorly refined models.

2. Identify key model assumptions and the research aims addressed in the paper,
paying careful attention to timing and the presence or absence of latent periods.
Which assumptions would be the most important to reconsider?

3. Identify a question you plan to answer, and deriving a new model based on
modifying just one (or maybe two) relevant assumptions, e.g., adding a latent
period.

4. If possible, consult with a public health or infectious disease expert who has
some expert knowledge of the system(s) being modeled.

5. Focusing on one question asked in the original paper, recreate the published
analyses to verify those results.

6. Conduct an analogous analysis of your new model to address the same question
under your revised assumptions, and/or conduct additional analyses to address
other important questions.

From a more mathematical or methodological perspective, there are also some
open questions related to the analytical and computational tools that exist for
the various model frameworks mentioned in the sections above. While these can
be more challenging problems to tackle, and may require a preparation beyond
the typical undergraduate curriculum, some of these questions are still accessible
to undergraduate researchers and could make interesting and impactful research
projects.

Research Project 2 (Numerical Solutions for Distributed Delay Equa-
tions) Methods to compute numerical solutions to integral and integro-
differential equations (often called Volterra integral and integro-differential

(continued)
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Research Project 2 (continued)
equations) are currently being developed and refined. Review the literature,
and select two or more methods and compare their performance under
different modeling scenarios (e.g., periodically forced systems or systems
with multiple time scales). To provide a reference point for evaluating the
accuracy of numerical solutions, the example models used are typically simple
enough to have analytical solutions. A nice spin on this project would be
to use distributional assumptions that allow integral or integro-differential
equations to be fully reduced to an equivalent system of ODEs according
to the linear chain trick (LCT, see Sect. 3.5.2) or the generalized linear chain
trick (GLCT) [92]. How well do numerical solutions to those ODEs perform
in these comparisons?

A project like this could be conducted as follows:

1. Identify some numerical methods for one or more types of distributed delay
equations (e.g., just integral equations).

2. Do a literature search to find appropriate models to use as examples. Include
some with analytical solutions, and some that could be written as ODEs via the
LCT and therefore simulated using appropriate ODE solvers.

3. Establish a set of criteria by which to compare the different methods (e.g.,
computing time per numerical solution, implementation time or some other
measure of the effort required leading up to computing numerical solutions, the
accuracy relative to some baseline solution such as an analytical solution, and so
forth).

4. Implement the planned comparisons.

Students interested in exploring statistical projects may choose to focus on ODE-
based models or projects that involve other modeling frameworks.

As discussed in Sect. 2.7, investigating statistical properties of dynamic models
can be done using simulated data so that the known “true” parameter values can
be used to evaluating the parameter estimation procedure. Therefore one can take
almost any dynamic model and assess the statistical properties of that model under
certain observation process assumptions or using different estimation techniques.
This is especially meaningful when done for models that were used in evaluating
real data where it is unclear that models have identifiable parameters, and/or where
additional analyses (e.g., a power analysis) might provide important context for
interpreting the analysis of real data.

Research Project 3 (Estimator Properties) Investigate the statistical prop-
erties of a system-specific ODE model that has previously been (or might
someday be) fit to empirical data.
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This project could be approached as follows:

1. First, as above, find a peer-reviewed publication that includes an ODE model
that was fit to data. Focus on searching in journals in application areas where
such analyses are unlikely to be included in the publication.

2. Conduct a structural and/or practical identifiability analysis of the model.
3. Conduct a simulation-based study to characterize what if any bias exists for the

estimation procedure used in the publication.
4. Assess what (if any) uncertainty quantification was done, and consider further

analyses if warranted.

Research Project 4 (Fitting Models with Delays to Data) It is not well
understood whether (or under which conditions) distributed delay equations
can be fit to data from comparable discrete delay equations (and vice versa)
and yield correct parameter inferences or predictions about future states of
the system. While deriving general statements about fitting one model type to
another may be challenging, these questions can be addressed in the context
specific cases, perhaps laying the groundwork for identifying more general
patterns.

For this project, consider doing the following:

1. Find a published distributed or discrete delay model, and derive the complemen-
tary model so that you have a discrete delay model paired with an analogous
distributed delay model.

2. Use the linear chain trick to write a set of ODEs for the distributed delay model.
3. Design a simulation-based experimental comparison, thinking carefully about

the differences in assumptions between models, then simulate data under each
model. Fit each model to each data set.

4. How biased are the estimates in each case? Which quantities can or cannot be
estimated well (e.g., other parameter values in the model unrelated to the form
of the delays), and/or how well does each model forecast a continuation of those
simulated data sets?

5 The Importance of Publishing

Finally, perhaps the single most important part of conducting research is to share
that research with your colleagues, the broader scientific community, and the public.
This might include preparing and presenting a poster at a local poster session or
professional conference, or preparing a final manuscript for submission to a peer-
reviewed journal, so that others may benefit from your work.
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Once a project is underway, work with your research mentor to begin drafting
your manuscript in LATEX using templates and guidelines provided by journals for
authors. Write up your results as if you were planning to submit the manuscript for
publication. To select a journal, start with the one that published the paper you are
basing your work on, and talk to your mentor about which journal might be most
appropriate for you to submit your work to.

In addition to standard peer-reviewed journals, there are also a number of
options available for publishing undergraduate research through the peer-review
process. Examples include journals like Spora: A Journal of Biomathematics,
SIAM Undergraduate Research Online (SIURO), and regional or university-related
journals like The Minnesota Journal of Undergraduate Mathematics, The Journal
of Undergraduate Research at Ohio State, or the Nevada State Undergraduate
Research Journal.
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Appendix

Getting Started Writing in LATEX and Programming in R

Installing the free software LATEX and R should be straightforward, but here are
some installation tips for Microsoft Windows and Mac OS X users (Linux users can
find similar installation instructions using the resources mentioned below). Readers
are encouraged to ask other students and faculty at their institution about additional
resources.

There are two pieces of software each, for LATEX and R, that should be
installed: the basic LATEX and R software, and an enhanced user interface that
facilitates learning for new users and helps established users with their day-to-
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day workflow (e.g., helpful menus, code autocompletion and highlighting, custom
keyboard shortcuts, advanced document preparation capabilities, etc.). Educators
will appreciate that both TeXstudio and R Studio have a consistent user interface
across operating systems, making them ideal for group or classroom environments
where students may be running a mix of operating systems.

If installing both LATEX and R (recommended), install the base software first
(in either order) before installing TeXstudio and/or R Studio (in either order). More
detailed instructions and resources are provided below.

Installing and Using LATEX

There are different implementations of LATEX available: MiKTeX is a popular
Microsoft Windows option (http://miktex.org/), and TeX Live a popular Mac OS
X option. TeX Live comes as part of a full 2 gigabyte installation called MacTeX
(www.tug.org/mactex/; which includes the popular editors TeXstudio and TeXShop)
or can be installed through a smaller 110 megabyte bundle BasicTeX (www.tug.
org/mactex/morepackages.html). Configure LATEX to install packages “on the fly”
without prompting you for permission. This can be done during (preferred) or
after installation. Also download and install Ghostscript (www.tug.org/mactex/
morepackages.html).

Next, install the TeXstudio editor (www.texstudio.org/), preferably after R is
installed. Various settings can be changed after installation, including color themes,
and configuring TeXstudio to compile a type of LATEX document that includes blocks
of R code known as a Sweave or knitr document (use knitr).

For additional LATEX resources, see the author’s website (www.pauljhurtado.com/
R/), the LaTeX wikibook [166], the AMS Short Math Guide for LATEX [42], and
references and resources listed therein.

Installing and Using R

Download R from www.r-project.org/ and use the default installation process. Once
R is installed (and, preferably once LATEX is installed), install R Studio from www.
rstudio.com. By installing R Studio after LATEX, you will be able to create multiple
document types to generate PDFs, including R Markdown documents and knitr
documents. Helpful online resources include the “cheat sheets” on the R Studio
website, introductory courses by DataCamp (www.datacamp.com) and Software
Carpentry (www.software-carpentry.org), [157] for a gentle introduction to R and
some applications to population modeling, and R resources on the author’s website
(www.pauljhurtado.com/R/).

http://miktex.org/
www.tug.org/mactex/
www.tug.org/mactex/morepackages.html
www.tug.org/mactex/morepackages.html
www.tug.org/mactex/morepackages.html
www.tug.org/mactex/morepackages.html
www.texstudio.org/
www.pauljhurtado.com/R/
www.pauljhurtado.com/R/
www.r-project.org/
www.rstudio.com
www.rstudio.com
www.datacamp.com
www.software-carpentry.org
www.pauljhurtado.com/R/
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award winning Research Experience for Undergraduates (REU) that has been
running every summer since 1996. Since 1997, students have developed and
proposed their own research questions and derived their research projects from
them as the keystone of the program. Because MTBI’s mentors have no control over
what students are interested in, we need to introduce a suite of flexible techniques
that can be applied to a broad variety of interests. In this paper, we walk through
examples of some of the most popular techniques at MTBI: epidemiological or
contagion modeling and reproductive number analysis. We include an overview
of the next generation matrix method of finding the basic reproductive number,
sensitivity analysis as a technique for investigating the effect of parameters on the
reproductive number, and recommendations for interpreting the results. Lastly, we
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1 Introduction

The Mathematical and Theoretical Biology Institute (MTBI) at Arizona State
University is a summer Research Experience for Undergraduates (REU) that has
been running every summer since 1996. From 1996 through its 2018 summer
program, MTBI has recruited and enrolled a total of 507 regular first-time under-
graduate students and 78 advanced (returning) students. To date MTBI students
have completed 211 technical reports, many of which have been converted into
publications (including, but not limited to, projects used as examples in this paper
[4, 30, 38, 41, 57]).

The program has received external recognition in the form of multiple national
awards. The Director of MTBI was awarded a Presidential Award for Excellence in
Science, Mathematics and Engineering Mentoring (PAESMEM) in 1997 and the
American Association for the Advancement of Science Mentor Award in 2007.
Also in 2007, the AMS recognized MTBI as a Mathematics Program that Makes a
Difference, and MTBI was awarded a Presidential Award for Excellence in Science,
Mathematics and Engineering Mentoring (PAESMEM) in 2011.

A key feature of MTBI is that students start with their own research topics and
associated questions [21, 23]. As a result, students often know more about the topic
being investigated than the mentors. This means that the mathematical techniques
taught at MTBI need to be extremely flexible and well suited to a large population of
research problems. In this paper, we give an overview of some of the mathematical
techniques that are most commonly used at MTBI, and how they can be put together
to form a complete research project.

1.1 Overview

The MTBI summer program runs for 8 weeks. In the first 3 weeks, students attend
lectures in theoretical ecology and various epidemiological-contact-contagion mod-
eling techniques, as used in broadly understood dynamical systems: nonlinear
systems of difference and differential equations, discrete and continuous time
Markov chains, partial differential equations and agent based modeling. In the final
5 weeks of the program, students form self-selected groups of three to five
undergraduates, and investigate a problem of their own choosing. They research
the background of the problem, identify a question, construct a model to address
the question, analyze the results, and write a technical report describing their
project. While the faculty mentors’ experience is primarily in mathematical biology,
students’ interests can be quite diverse [21]. Past projects have included such diverse
topics as epidemiology [1, 4, 5, 12, 27, 38, 39, 47, 48], eating disorders [40, 41],
party politics [13, 57], prison education [2, 49], immigration [25], the menstrual
cycle [37], education [29, 30, 32, 42], and ecology [28, 45, 55, 56]. Because of the
broad variety of student selected topics, students frequently know a lot more about
the modeling application than the mentors do. Students take the lead on the project
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and provide subject matter knowledge, while mentors provide general expertise in
mathematical modeling techniques that can be applied to a broad variety of topics.

The most common modeling method in MTBI is systems of ordinary differential
equations, with a focus on equilibrium analysis and the basic reproductive num-
ber (R0). By far the most popular techniques for reproductive analysis at MTBI
have been the next generation matrix (NGM) and sensitivity analysis. These are
extremely powerful, accessible, and flexible techniques that can be applied to a
broad variety of situations. Since the founding of the REU in 1996 to the present
year of 2018, students have written 211 technical reports. Of these reports, 34.6%
have used sensitivity analysis, 22.7% have used the NGM, and 12.3% have used
both. Since the techniques became popular with MTBI students in 2003, there have
been 140 technical reports: 50.7% have used sensitivity analysis, 31.4% have used
the NGM, and 19.3% have used both [51].

In this article, we provide an introduction to the next generation method of
finding the basic reproductive number (R0), details of how the reproductive number
might be checked of accuracy and meaningfully interpreted, and an introduction to
sensitivity analysis of R0 as a way of evaluating the impact of possible interventions.
This introduction is followed by examples of some complexities that can arise in
using these techniques and how to handle them. All examples come from actual stu-
dent projects, the full texts of which can be found on the MTBI website [51]. Lastly,
we will provide some notes for mentors with an interest in student-led projects.

All together, this paper provides a nearly complete template for project in
epidemiological modeling. We do not discuss how to formulate a model here, except
for some notes to the mentors, so that part of the template is not complete. Also there
are many other techniques that can be included in an epidemiological/contagion
research paper that can add further insights into the model. A research project is
never really done. However, this paper will provide a guide for turning the model
that a student comes up with into a story that includes some results, conclusions,
and some recommendations. So that while this research effort might just be the first
chapter of the story that you tell about your research interests, it nevertheless has a
satisfying ending.

1.2 What Is the Basic Reproductive Number and Why
Is It Important?

Epidemiologists study the spread and control of diseases,1 and so the first question
they are usually interested in is whether or not it is possible to eradicate/eliminate

1Also other contagions. Epidemiological modeling it is quite common as it accounts for the
interactions of individuals and the possibility that contacts may lead to transitions in the state
of the individuals involved (contagion) and the possibility that cumulative transitions may or may
not be effective in spreading the contagion. The contagion is usually a disease, but it does not have
to be. A rumor, a meme, or an addiction, for example, would make a good contagion.
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the disease or whether or not it is possible to prevent the disease from invading a new
population. The basic reproductive number is related to responses to both questions.

In most, but not all epidemic models, an equilibrium state exists where the
disease does not exist. This is a state where the population is made up entirely of
uninfected people, that is, the infected populations are zero. It is typically called the
disease-free equilibrium.

1.2.1 Definitions of R0

Biologically, the basic reproductive number (R0) is often interpreted as “the
expected2 number of new infections created by a single (typical) infectious indi-
vidual in a population that is otherwise completely uninfected.” The typical units
structure for R0 looks something like:

R0 = infections

time · infected
(duration of infection). (1)

We can interpret the left-hand factor infections
time·infected as the expected number

of people that one person will infect per unit time. When we multiply by
(duration of infection), we get the expected number of people that one person
will infect over the entire time that they have the disease. Now imagine that a
disease is invading for the first time. There is one infected person. If R0 number is
greater than 1, then—on average—infected people more than replace themselves
(increase the infected population by more than 1) before they recover, (reducing
the infected population by 1) and the disease grows. If this number is less than 1,
then—on average—infected people do not replace themselves before they recover
and the disease dies out.

However, as we will see in our examples, both this structure and its biological
interpretation can be subject to considerable variation. In order to really explore R0,
we need to establish what it means independent of any particular model. This means
we need a mathematical definition.

Practically, R0 is a number calculated from the parameters of the model that can
be used to answer fundamental questions about disease invasion, persistence, and
control. When R0 < 1, values close to the disease-free equilibrium tend toward the
disease-free equilibrium making it impossible for a new disease to invade. When
R0 > 1, values close to the disease-free equilibrium tend away from the disease-
free equilibrium making it impossible for a disease to completely die out as long as
there is sufficient supply of susceptibles. Examining the conditions under which R0
changes from greater than one to less than one can suggest possible interventions
to control a disease. This gives us enough information to define basic reproductive
number mathematically.

2Alternatively “typical” or “average.”
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Definition 1 We formally define R0 a function of the parameters of the model
such that R0 < 1 implies that the disease-free equilibrium is locally asymptotically
stable,3 and R0 > 1 implying that the disease-free equilibrium is unstable.4

1.2.2 Methods of Finding R0

Historically, R0 was found by directly investigating the stability of the disease-free
equilibrium, and this is an approach that is still used today. But for models with
a lot of compartments or a lot of non-linearities, a direct analysis of the disease-
free equilibrium can be extremely algebraically intensive. In 1990, Diekmann et al.
[33] developed a new approach to finding the basic reproductive number that uses
a reduced form of the model. This reduces the computational complexity of the
problem of stability and makes complex models more accessible. It is a method that
has become very popular with our own students, but tutorials can be difficult to find,
so we decided to share this method of finding R0 here, along with some techniques
for interpreting the results.

1.3 Additional Reading

For an introduction to the techniques used in MTBI in general, we recommend
the MTBI course book [9]. Alternative books with similar content include [35]
or [54]. For more information on formulating a research question, we recommend
[58]. For more details on how to derive a model, we recommend [54]. For more
detailed treatment of the next generation method, see [33, 34]. For a deeper dive
into sensitivity analysis, see [3]. For a full collection of MTBI tech reports, see [51].
For further reading into the design of MTBI’s mentorship model, we recommend
reading [14, 18, 23, 24].

2 An Introductory Example: Student–Teacher Ratio

Katie Diaz, Cassie Fett, Grizelle Torres-Garcia, and Nicholas M. Crisosto were the
authors of the project we will use in our first example [32]. While most students
at MTBI take on ecology or biology projects, these students were particularly
interested in problems related to the quality of education in the USA. They worried
about students feeling discouraged by working in stressful school conditions with
little teacher support. As budget cuts started to affect class sizes, they were

3Populations close to the equilibrium tend toward the equilibrium.
4Populations close to the equilibrium tend away from the equilibrium
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concerned that problems with student attitudes and dropping out would increase.
So they designed a model to investigate the problem of how student–teacher ratio
in classes affects class sizes. In this model, Diaz, Feet, Torres-Garcia, and Crisosto
modeled a discouraged attitude as something that both students and teachers could
have. By social interaction, teachers and students could both pass on (metaphorically
infect others with) this negative attitude.

This student project example [32] is 2003, when the NGM and sensitivity where
first becoming popular with MTBI students and mentors. It received a poster award
at the AMS/MAA Joint Meetings in 2004. The project uses a relatively simple model
to study the development of positive or discouraged attitudes in the interactions
between students and teachers, and tells the full story of using the NGM to find R0,
interpreting the expression of R0, and using sensitivity analysis of R0 to explore
the effect of model parameters on the behavior of the system. Because the model is
relatively simple, this project serves as an excellent introductory example. We will
explore possible complications that you might encounter in your own project with
later examples. Like all student project examples used in this paper, the full text
of the students’ technical report can be found on the MTBI website [51], and we
strongly encourage students to review the original reports and related materials.

2.1 The Model

The researchers constructed a model with four classes: Teachers with positive
attitudes P1, discouraged teachers D1, students with positive attitudes P2, and
discouraged students D2. They assumed that each group influenced every other
group through a random mixing contagion process, resulting in the following system
of four differential equations5:

Ṗ1 = μ1q1 + λ1P1D1 + λ2P2D1 − β1D1P1 − β2D2P1 − μ1P1

Ḋ1 = μ1(1 − q1) − λ1P1D1 − λ2P2D1 + β1D1P1 + β2D2P1 − μ1D1

Ṗ2 = μ2q2 + λ1P1D2 + λ2P2D2 − β1D1P2 − β2D2P2 − μ2P2

Ḋ1 = μ2(1 − q2) − λ1P1D2 − λ2P2D2 + β1D1P2 + β2D2P2 − μ2D2

(2)

where μi represents the rate of flow of group i into and out of the school, qi is the
proportion of new recruits into group i with positive attitudes, λj is the rate at which
a discouraged person is encouraged by an interaction with a positive person from
group j , and βj is the rate at which a positive person is discouraged by an interaction

5Ṗ is notation used in the sciences for dP
dt

. Historically, dot notation comes from Newton, while
fraction notation is from Leibniz. Newton had a strong influence on the sciences, particularly
physics, and many scientific fields working with calculus continue to use his notation.
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with someone with a discouraged person from group j . Because the total population
of each group is constant (Ṗi + Ḋi = 0; i = 1, 2), the researchers chose to define
the classes as proportions rather than populations, and set Pi + Di = 1; i = 1, 2.

2.2 Finding R0 with the Next Generation Matrix

The next generation matrix method for finding R0 is a relatively recent and useful
reformulation for determining the stability of a disease-free or contagion-free
equilibrium, that was introduced by Diekmann et al. [33]. First we will explain
the general strategy that inspired this approach to finding R0, and then we will
describe precisely how to carry out that strategy mathematically, using the student–
teacher model as an example.

2.2.1 The Intuition Behind the NGM Strategy

Intuitively, the next generation method is based on the common structure of R0
described above (Eq. (1)). To aid in the discussion, we have reproduced that
structure here.

R0 = infections

time · infected
(duration of infection). (3)

In most models, the duration of the infection (units of time) is represented as a
recovery rate (units of 1

t ime
). For example, in the simple differential equation (̇I ) =

−μI , the expected time that an individual would stay in I is 1
μ

. If we also observe
that the left factor of (3) represents the rate at which individuals infect others, then
we can rewrite Eq. (3) as

R0 = infections

time · infected

1

individual recovery rate

R0 =(individual infection rate)(individual recovery rate)−1.

(4)

The next generation method extends this idea to matrices. In situations when
there are multiple types of infection to keep track of, the NGM separates the infected
system into two matrices of rates. Traditionally, these matrices of rates are called F

and V :

R = [infection rates][recovery rates]−1

R = FV −1.
(5)
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However, the R in this equation is a matrix, not a number. So it cannot represent
the basic reproductive number. Instead it represents a sort of measure of how each
class changes multiplicatively to the next generation. If we imagine a vector of
infected classes Y , then near the equilibrium

Y (t + 1) ≈ RY(t)

Y (t) ≈ RtY (0).
(6)

In order to explore how the size of Y changes, we use the eigenvector equation.6

If Y is an eigenvector then:

RY = λY

Y (t) ≈ λtY (0).
(7)

We see that when |λ| < 1, then Y decreases. Since Y represents infected classes,
this means the infection dies out. When |λ| > 1, then Y increases and the disease
grows.

In order to be sure the disease dies out, we need all eigenvalues |λ| < 1. If any
eigenvalue is greater than 1 in absolute value, then there is a path for the disease to
grow. This means we only need to check the eigenvalue that is largest in absolute
value (called the dominant eigenvalue). If this dominant eigenvalue is in (−1, 1), all
eigenvalues are within (−1, 1) and the disease dies out. If the dominant eigenvalue
is greater than 1 in absolute value, then the disease can grow. So the dominant
eigenvalue has the properties we are looking for in a basic reproductive number.
R0 = λ = ρ(FV −1), the dominant eigenvalue of FV −1.

2.2.2 The Mathematical Approach

Formally, the next generation method begins by separating the classes of the
model into two vectors: a vector X of “uninfected” classes and a vector Y of
“infected” classes. In this model, the infection process is bi-directional. From one
point of view, positive people are “infecting” discouraged people with positivity.
From another perspective, discouraged people are “infecting” positive people with
discouragement. Given the choice, the researchers chose to think of discouragement
as the infection. In Exercises 1 and 2 you will have the opportunity to show what
happens if you make the opposite choice.

The researchers chose discouragement as the infection, so X = [P1, P2]T , and
Y = [D1,D2]T . Now that we have defined the infection, we proceed to find the
infection-free equilibrium. In this case, a discouragement-free equilibrium does

6For a more thorough treatment of the biological interpretation of eigenvalues and eigenvectors,
see the chapters on discrete time modeling from Bodine et al. [7].
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not exist unless q1 = q2 = 1, so this becomes a condition of the model. In the
scenario where all people arrive with positive attitudes, then the discouragement-
free equilibrium is: X∗ = [1, 1]T , and Y ∗ = [0, 0]T . We will also define a
point for the discouragement-free equilibrium that includes all four classes W ∗ =
(P ∗

1 ,D∗
1 , P ∗

2 ,D∗
2) = (1, 0, 1, 0).

The main advantage of the NGM method is that it allows the researcher to ignore
any uninfected classes and focus only on the infected classes. This reduces the
complexity of calculations in the model. In this model, X is discarded and the new
equation for the model is

Ẏ =
[

Ḋ1

Ḋ2

]

=
[

μ1(1 − q1) − λ1P1D1 − λ2P2D1 + β1D1P1 + β2D2P1 − μ1D1

μ2(1 − q2) − λ1P1D2 − λ2P2D2 + β1D1P2 + β2D2P2 − μ2D2

]

.

(8)

The next step is to separate the Y equation for discouraged classes into two
separate rate vectors: F represents the rates of all flows from X to Y , and V
represents rates of all other flows. We also adjust signs so that

Ẏ = F − V . (9)

In the student–teacher model, the separation is

Ẏ =
[

β1D1P1 + β2D2P1

β1D1P2 + β2D2P2

]

−
[−μ1(1 − q1) + λ1P1D1 + λ2P2D1 + μ1D1

−μ2(1 − q2) + λ1P1D2 + λ2P2D2 + μ2D2

]

(10)

so

F =
[

β1D1P1 + β2D2P1

β1D1P2 + β2D2P2

]

(11)

V =
[−μ1(1 − q1) + λ1P1D1 + λ2P2D1 + μ1D1

−μ2(1 − q2) + λ1P1D2 + λ2P2D2 + μ2D2

]

. (12)

Note that although the terms μ1(1 − q1) and μ2(1 − q2) represent rates of new
infections, they are not rates flows from X to Y, but instead rates for flows from
outside the system into Y. Because of this, these terms are included in V and not F .
However, these terms are also problematic because they prevent a discouragement-
free equilibrium from existing. Because q1 = q2 = 1 is a necessary condition for
the discouragement-free equilibrium to exist, we set q1 = q2 = 1 and V becomes

V =
[

λ1P1D1 + λ2P2D1 + μ1D1

λ1P1D2 + λ2P2D2 + μ2D2

]

. (13)
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Next we define F and V as the Jacobian matrices of F and V evaluated at the
discouragement-free equilibrium W ∗ = (P ∗

1 ,D∗
1 , P ∗

2 ,D∗
2) = (1, 0, 1, 0)

F =
(

∂F

∂Y

)∣
∣
∣
∣
W ∗

, V =
(

∂V

∂Y

)∣
∣
∣
∣
W ∗

. (14)

So for the student–teacher discouragement model

F =
[

β1P1 β2P1

β1P2 β2P2

]∣
∣
∣
∣
(1,0,1,0)

=
[

β1 β2

β1 β2

]

(15)

V =
[

λ1P1 + λ2P2 + μ1 0
0 λ1P1 + λ2P2 + μ1

]∣
∣
∣
∣
(1,0,1,0)

=
[

λ1 + λ2 + μ1 0
0 λ1 + λ2 + μ2

]

. (16)

This allows us to calculate our next generation matrix and the basic reproductive
number.

Definition 2 The next generation matrix is FV −1, where F is the Jacobian of
the rates of flows from uninfected to infected classes evaluated at the disease-free
equilibrium, and V is the Jacobian of the rates of all other flows to and from infected
classes evaluated at the disease-free equilibrium (Eqs. (9) and (14)).

Definition 3 The basic reproductive number (R0) is the spectral radius (largest
eigenvalue) of the next generation matrix: R0 = ρ(FV −1) [33, 34].

So in the student–teacher model, the next generation matrix is

FV −1 =
[

β1 β2

β1 β2

]

⎡

⎢
⎣

1

λ1 + λ2 + μ1
0

0
1

λ1 + λ2 + μ2

⎤

⎥
⎦

=
⎡

⎢
⎣

β1

λ1 + λ2 + μ1

β2

λ1 + λ2 + μ2
β1

λ1 + λ2 + μ1

β2

λ1 + λ2 + μ2

⎤

⎥
⎦ (17)

and the basic reproductive number is

R0 = ρ(FV −1) = β1

λ1 + λ2 + μ1
+ β2

λ1 + λ2 + μ2
. (18)

Exercise 1 If you interpret a positive attitude as the infection instead of discour-
agement, how does the form of the resulting R0 change?
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2.3 Interpreting R0

Traditionally, the basic reproductive number (R0) is interpreted as “the average7

number of new infections created by a single (typical) infectious individual in a
population that is otherwise completely uninfected.” If R0 < 1, then an infection
does not replace itself, and the disease dies out. If R0 > 1 then the infection more
than replaces itself and the disease spreads.

An important feature of this interpretation is that by describing R0 as people per
person or infections per infection, R0 is a dimensionless quantity. We can use this
feature as a way to check our result in Eq. (18).

Since P1, P2, D1, and D2 are proportions, they are also dimensionless. Examin-
ing Eq. (2), we see that in order for units to match on both sides of the equation, this
means that λi , βi , and μi must all have units of 1

time . Then in Eq. (18), we see that R0

has units of 1/time
1/time and so is dimensionless. This does not mean that we necessarily

calculated R0 correctly, but it is a good safety check.
The basic reproductive number is interpreted in a population that is mostly

susceptible, meaning that it must be interpreted in situations very close to the
disease-free equilibrium. When we compute the Jacobian around the disease-free
equilibrium, we are approximating the original model with an easier to interpret
linear model. In short the analysis is local and mathematically speaking we are
talking about local asymptotic stability.

Ẏ = F − V ≈ FY − V Y. (19)

In the case of the student–teacher discouragement model, this gives us

[

Ḋ1

Ḋ2

]

≈
[

β1D1 + β2D2

β1D1 + β2D2

]

−
[

(λ1 + λ2 + μ1)D1

(λ1 + λ2 + μ2)D2

]

. (20)

Linear models are relatively simple to interpret in the context of populations. In
the contexts of proportions the interpretation is a little bit more complex. So for now
let us imagine that the classes D1 and D2 represent populations, and we will correct
for proportions afterwards.

In population models, λ1+λ2+μ1 can be interpreted as a general “death rate” for
the D1 (discouraged teacher) class. Since average lifespan is the inverse of the exit
rate in a linear model, 1

λ1+λ2+μ1
is the average length of a single episode of teacher

discouragement. Similarly 1
λ1+λ2+μ2

is the average length of a single episode of
student discouragement. Similarly β1 and β2 can be interpreted as birth rates. But
β1 and β2 are both used as inputs into both equations. So 1/β1 is the average length

7Alternatively “typical” or “expected”.
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of time it takes for a discouraged teacher to create two new discouraged people: a
new discouraged student and a new discouraged teacher, and 1/β2 is the average
length of time for a discouraged student to create a new discouraged person and a
new discouraged teacher.8

Putting these interpretations together, we have that 1/(λ1+λ2+μ1)
1/β1

is the average
time that it takes a teacher to get discouraged divided by the average time it
takes a teacher to discourage a new student–teacher pair. This then calculates the
average number of student–teacher pairs that a single teacher discourages. Similarly

β2
λ1+λ2+μ2

is the average number of student–teacher pairs that a single student
discourages. Put together we have that R0 is the average number of new discouraged
student–teacher pairs created by a discouraged teacher and a discouraged student.

There are two problems with this interpretation, and both problems are tied to
the idea that D1 and D2 are proportions not populations. Our interpretation of R0 is
based on the idea of a single discouraged teacher and a single discouraged student.
But D1 = D2 = 1 is not the case of a single teacher and a single student. Instead
these are the cases of the entire populations being discouraged. So there are two
problems with this. The first problem is that D1 = D2 = 1 represent different
numbers of teachers and students, because the total populations are different. The
second problem is that in order for us to interpret R0, we need the population to be
mostly uninfected, which means that D1 and D2 need to be small. So we need an
interpretation that is meaningful for D1 and D2 as proportions, with D1 = D2 � 1.

So an overall better interpretation of this basic reproductive number is that
it measures the combined percentage of discouraged teachers and percentage of
discouraged students produced by a small percentage of discouraged teachers and
equivalent small percentage of discouraged students throughout the duration of time
that those small percentages are discouraged. For example, if R0 is 2, then we could
interpret this as saying that when the percentage of discouraged people is small,
the percentage of the next generation of discouraged people will be approximately
twice as big.

This structure of calculating the number of new infections per infection as
infection rate
output rates is a very common structure that you will see in a lot of basic reproductive

numbers. So it is important to remember both in interpreting your R0 and in using
that interpretation to check your calculations.

Exercise 2 Continuing from Exercise 1: If you interpret a positive attitude as the
infection instead of discouragement, how does the interpretation of the resulting R0
change?

8Remember that these approximations are only valid in a population that is almost entirely
uninfected, so these interpretations cannot really be used for parameter estimation of λi or βi .
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2.4 Sensitivity Analysis

Since the basic reproductive number models whether an initial infection spreads
or dies out, researchers typically want to know the effect of the parameters of the
model on R0. The problem is that the model typically has a significant number of
parameters. This makes it difficult to do a full exploration of R0. For example, we
typically cannot plot R0 as a function of every parameter in N-dimensional space.
There are a few solutions to the problem. If there are only one or two parameters
that can be controlled by policy, and the other parameters have known values, then
a typical approach is to create a graph of R0 as a function of those controllable
parameters, and look at the contour where R0 = 1. Sensitivity analysis is a different
approach that can be used to efficiently examine many parameters at once by
focusing on local changes in the parameter values [3]. When parameter values are
unknown, sensitivity analysis can sometimes provide some useful general results.
When parameter values can be estimated, sensitivity analysis can be used to suggest
an intervention.

The key idea of sensitivity analysis it to look at how a small percentage change in
one parameter affects the corresponding percentage change in a quantity of interest
(in this case, R0). So for example, a sensitivity index of 2 would mean that for a very
small increase in the parameter, R0 increases by twice that percentage. A sensitivity
index of −0.5 would mean that for a very small increase in the parameter, R0
decreases by half that percentage.

The reason why sensitivity analysis uses percentages rather than bare changes is
so that different parameters with different units can be compared on an even playing
field. If a parameter is measured in miles, a change of 0.0001 is much more dramatic
a difference than if the parameter is measured in feet. But a change of 0.01% would
be the same regardless of unit.

To calculate the percentage change in the parameter, we calculate the percentage
change in the parameter ξ as Δξ

ξ
. Similarly, the percentage change in R0 would

be ΔR0
R0

. The sensitivity index of R0 with respect to the parameter ξ is then just the
quotient of these two percent change, as long as the percentage change is sufficiently
small. The way we make sure that the change in percentage is small enough is by
taking a limit, so that Δξ becomes ∂ξ and ΔR0 becomes ∂R0.

Definition 4 The sensitivity index Sξ of R0 with respect to parameter ξ is given by
Eq. (21):

Sξ = ξ

R0

∂R0

∂ξ
. (21)

In the student–teacher discouragement model, the researchers calculated the
sensitivity of R0 with respect to each parameter.
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Sβ1 = β1

R0(λ1 + λ2 + μ1)
Sμ1 = −μ1

Sβ1

(λ1 + λ2 + μ1)

Sβ2 = β2

R0(λ1 + λ2 + μ2)
Sμ2 = −μ2

Sβ2

(λ1 + λ2 + μ2)

Sλ1 = −λ1

(
Sβ1

(λ1 + λ2 + μ1)
+ Sβ2

(λ1 + λ2 + μ2)

)

Sλ2 = −λ2

(
Sβ1

(λ1 + λ2 + μ1)
+ Sβ2

(λ1 + λ2 + μ2)

)

. (22)

Because all parameter values are positive and R0 is positive, the sensitivity
indices Sβ1 and Sβ1 are positive, while the indices Sλ1 , Sλ2 , Sμ1 , and Sμ2 are
negative. This gives us an expected result. Increasing the rates at which discouraged
teachers and teachers successfully convert other students and teachers (βi) increases
to growth in discouragement R0. Increasing the rate at which positive teachers
and students convert other students and teachers (λi) reduces R0. What might be
less expected is that increasing the rate of student and teacher turnover (μi) also
decreases R0. This is because of the assumption that q1 = q2 = 1 that was needed
to find an R0. Because all new people entering the school have positive attitudes,
turnover removes discouraged people and replaces them with positive people.

Next we can look at which sensitivity indices have the largest impact on the
system. Because μi < λ1 + λ2 + μi we have that |Sβi

| > |Sμi
|. So changing the

rate that discouraged teachers or students recruit always has a stronger impact than
the same percentage change in the corresponding turnover rate. Because λ1 + λ2 <

λ1+λ2+μi we have that |Sβ1 +Sβ2 | > |Sλ1 +Sλ2 |, which suggests that targeting the
spread of negative attitudes overall is more effective than targeting positive attitudes
overall.

Exercise 3 Continuing from Exercises 1 and 2: Use sensitivity analysis to investi-
gate the effect of the model parameters on the spread of positive attitudes and make
a recommendation.

The researchers also used parameter estimates to calculate the sensitivity indices
numerically, although the exact values they used are not included in the original
paper. Using these parameter estimates they found that in order from largest to
smallest absolute value Sβ2 = 0.5959, Sλ2 = −0.5224, Sβ1 = 0.4041, Sλ1 =
−0.435, Sμ1 = −0.04004, Sμ2 = −0.002159. This means that in a school that
would be modeled by these parameter estimates, the effects that students have on
the attitudes of teachers and students (β2 and λ2) have the strongest impact on the
spread of discouragement, but the impact of teachers (β1 and λ1) is not that much
less. Turnover (μ1 and μ2) has little impact in this scenario. Which interventions
the researchers recommend, however, would depend on other factors, such as how
difficult or costly it could be to alter a particular parameter.
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2.5 Other Full Examples

The full process of analysis in this example was: (1) Use the next generation matrix
to find the basic reproductive number, (2) interpret the basic reproductive number as
a way of verifying the calculation, and (3) use sensitivity analysis to investigate the
effect of parameters on the model and make recommendations for intervention. The
student–teacher model [32] is one full example of this process with a small model.
Because details necessarily had to be omitted, we highly recommend that you read
the original 2003 paper at https://mtbi.asu.edu/tech-report.

Other MTBI student papers that give detailed examples of the full process are:

• A 2012 study on HIV and malaria co-infection [4]
• A 2012 study on prison reform [2]
• A 2007 study on HIV and Tuberculosis [27]
• A 2006 study on the economics of sex work [31]

As you are reading some of the cited papers and technical reports, you will
notice that they do not always use notation in the same way. While the calculations
for F and V are always the same, notation for intermediate steps can vary. Some
researchers define X as the infected class, and Y as the uninfected class, so that
X = F − V . Some researchers do not define their uninfected X and infected Y

classes explicitly, and you have to identify how they separated their classes from the
F and V expressions. Other researchers will define F and V for all the classes in
the model (in the student–teacher model F and V would be 4 × 4 instead of 2 × 2)
but still only calculate the Jacobian for the infected classes, so the resulting F and
V are still the same (2 × 2) matrices as above. Regardless of intermediate steps and
choice of notation, F and V are used consistently as in Eq. (14) and Definition 2.

Exercise 4 No paper ever includes all the details of the mathematics. Choose one of
the papers above and reconstruct the missing steps in the NGM method. Define X,
Y , F , and V . Then take the Jacobian to find F and V , calculate the next generation
matrix FV −1, and find the spectral radius R0. Verify your results with the results
from the paper.

Exercise 5 No paper ever includes all the details of the mathematics. Choose one
of the papers above and find their reproductive number, then calculate the sensitivity
indices for each parameter included in the reproductive number. If the paper
includes detailed parameter estimates, then use these estimates to also calculate
the sensitivity indices numerically. Use the parameter definitions given in the paper
to interpret the sensitivity indices and suggest a possible intervention. Verify your
results with the results from the paper.

https://mtbi.asu.edu/tech-report
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3 Challenges in the of the Next Generation Matrix

Because we introduced these techniques with a simple model, we have really only
spent time with a “best case” scenario. Since your own project will likely involve a
more complicated model, this also means that it is likely that a situation could arise
where you are not quite sure what the best decision is. In the next few sections, we
will discuss some complications that can arise when using these techniques to study
a model of your own creation. We will discuss each of these scenarios briefly using
examples from actual student projects, with a focus on the decisions that needed to
be made. As always, we encourage you to read the original papers [51] as a way of
filling in some of the missing details. And you should always consult your research
mentor about complications in your own model.

In this first section, we will discuss some complications that can arise when
finding and using a next generation matrix. Most of these complications revolve
around decisions related to how to define the uninfected (X) and infected (Y )
classes.

3.1 Defining the Infected Class: Infected but Not Infectious

This complication arose in research project from 2018 on the spread of herpes [1].
Herpes (HSV-2) is a disease that “hides” in the nervous system of the host, and only
periodically emerges to cause symptoms on the skin. Current treatments can force
the disease into the asymptomatic stage, but cannot eliminate the disease from the
body entirely, so it always returns. When the disease emerges, initial symptoms
resemble a lot of other diseases, while later symptoms are distinctive. Current
protocols only administer treatment when the disease has progressed to the later
stage, and the patient has already been infections for some time. The question the
Luis Almonte-Vega, Monica Colón-Vargas, Ligia Luna-Jarrń, Joel Martinez, and
Jordy Rodriguez-Rincón, wanted to study was the cost effectiveness of treating
during the early stages when the disease is less infectious, but money would be
wasted on treating false positives. Could spending extra on treating people who
only might have herpes save money in the long run by reducing the prevalence of
the disease?

The model the students constructed had seven population compartments: S for
susceptible, I1 for mildly symptomatic individuals, I2 for strongly symptomatic
individuals, L for asymptomatic individuals, T1 for individuals with mild symptoms
undergoing treatment, T2 for strongly symptomatic individuals undergoing treat-
ment, and X for false positive undergoing treatment.

During the project, the question arose of how to separate the infected and
uninfected classes for the next generation matrix. To illustrate, let us consider
a simple SIR model with partial immunity. Susceptible people become infected,
infected people recover, and recovered people have a chance of being infected again.
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So the flows would be S → I ↔ R. In this scenario, the only population that has
the disease is I , so the separation of classes for the NGM would be X = [S,R]T
uninfected and Y = [I ] infected.

But there could be another interpretation of this diagram where the disease is
never fully eradicated. In the case of herpes, the asymptomatic stage resembles
recovery, but it is really the same infection. So the structure of the model S →
I ↔ L. In this scenario, the both I and L have the disease, so the separation of
classes for the NGM would be X = [S] uninfected and Y = [I, L]T infected. The
key distinction here is that the flow from L → I in the SIL model is considered a
new stage in the same infection, while the flow from R → I in the SIR model is a
completely new infection.

So in the HSV-2 model, the students separated the classes into [S,X]T unin-
fected, and [I1, I2, L, T1, T2] infected. L, T1, and T2 were included because even
though the people in these compartments had no symptoms and were not contagious,
they still carried the disease in their bodies, so they were still infected.

We will discuss how to interpret the reproductive number from this model
in Sect. 4.4.

3.2 Defining the Infected Class: Multiple Levels of Infection

This complication arose in a research project from 2001 on collaborative learning
[29, 30], and another research project from 2005 on the success of political third
parties [13]. The 2005 paper on third parties is more detailed, so it is the one we will
discuss here, and also the one we recommend that you read first.

Karl Calderon, Clara Orbe, Azra Panjwani, and Daniel Romero were inspired
by the 2000 election, when election analysts attributed the defeat of Al Gore to
splitting the base. Ralph Nader, a Green Party candidate who won 2% of the vote,
which many believed could otherwise have gone to Gore and turned the election.
Using the growth of the Green Party as a source of data, the researchers wanted to
study the growth of grassroots political movements, and explore voter recruitment
strategies.

The third party model had a relatively simple structure, where the researchers
considered three levels of engagement. A population S of people who were
susceptible to the messages of the political party, a population V of people who
voted for the third party, and a population M of active members of the party.
Both voters and members could convince susceptible to become voters, although
members were more effective than voters. Also members could recruit voters to
become members. Lastly, voters could change their mind. So the structure of the
model was S ↔ V → M .

This model was interesting because it had two processes that could be considered
an infection: the recruitment of voters from S → V by voters and members, or
the recruitment of members from V → M by members. In the first case, where
voting is the infection, the separation of classes would be X = [S] uninfected, and
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Y = [V,M]T infected. In the second case, where membership is the infection,
the separation of classes would be X = [S, V ]T uninfected and Y = [M] infected.
Unlike the case of HSV-2 above, where the researchers needed to make a decision to
identify the correct separation, here there is not correct separation. The researchers
needed both perspectives to understand the behavior of the model. So this model
did the NGM process twice (once with each separation) and had two reproductive
numbers.

We will discuss how to interpret these reproductive numbers in Sect. 4.3.

Exercise 6 The collaborative learning paper [29, 30] has a very similar model to
the third parties paper [13], but their NGM section is extremely light on details.
Use the model from the collaborative learning paper and the NGM method to find
both reproductive numbers for this model. Verify your results with the results from
the paper.

3.3 Unclear Which Eigenvalue Is Largest: Co-infection

Another complication that can arise is with the definition of R0 as the spectral radius
of the NGM. The spectral radius is the largest eigenvalue, but sometimes it is not
clear which eigenvalue of the NGM is largest. This is a common problem when
studying the interaction between two diseases that can co-infect. Two projects that
encountered this problem were a 2012 paper on HIV and malaria co-infection [4, 5],
and a 2007 project on HIV and tuberculosis co-infection [27]. Both papers are very
similar. We will use the malaria model for this example.

Kamal Barley, Sharquetta Tatum, and David Murillo were inspired by the high
prevalence of both HIV and malaria in the Republic of Malawi. Both diseases
increase the impact on the other. HIV weakens the immune system, which makes it
easier for malaria to infect people, and malaria increases the viral load of HIV. In
particular the researchers were interested in studying how the interactions between
these two diseases might increase mortality.

In the malaria-HIV model, there were six classes: S susceptible humans, IM

humans infected with malaria, IH humans infected with HIV, IHM humans infected
with both diseases, V susceptible mosquitos, and IV mosquitos carrying malaria.
So in this model, there were four infected classes Y = [IM, IH , IHM, IV ]T and the
researchers calculated the NGM to be

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
βV MΛ

αNμV

0
βH

μH + α

βH kγ

(μH + α)(μHM + kγ + α)
+ ρ2βH

μHM + kγ + α
0

0 0 0 0
βMV Nα

Λ(μM + γ + α)
0

ρ4βMV Nα

Λ(μHM + kγ + α)
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(23)
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In this matrix, subscript H is for HIV, M for malaria, and HM for both. Λ

is recruitment rate for humans, N is the total population of humans, the βs are
infection rates, μs and α are mortality rates, γ is the recovery rate from malaria,
and k is the reduction in this recovery rate due to HIV infection.

This model has two eigenvalues that could both be largest, depending on
parameter values:

R0H = βH

μH + α

R0M =
√

βMV βV M

μV (μM + γ + α)
.

(24)

So the basic reproductive number is whichever of these two eigenvalues happens
to be the largest.

R0 = max{R0H ,R0M }. (25)

This is a very common structure for R0 in the case of co-infection. We will
discuss how to interpret this result in Sects. 4.2 and 4.5.

Exercise 7 The malaria paper [4] also has a reduced model with four compart-
ments. Read the paper to identify the reduced model, and find R0 for the reduced
model by using the NGM method. Verify your results with the results from the paper.

4 Challenges in Interpreting R0

We have already discussed one scenario that complicated the interpretation of R0:
the situation where we are adding proportions instead of populations. However,
the overall the structure of the basic reproductive number in the student–teacher
model followed a relatively simple infection rate

output rates structure that is common to many
basic reproductive numbers. In this section, we will discuss other forms that R0
can take that commonly appear in student projects, and how to interpret those
structures. In order to keep these sections short, we will primarily be using flow
diagrams to discuss the models. As always we strongly encourage you read the
original papers for more details on the models and analysis. Furthermore, every
paper cited in this section also used a next generation approach to finding the basic
reproductive number, so these are all good sources if you want additional examples
of that approach.
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4.1 Multiple Infection Pathways: The Case of SARS

This example project is from 2004 on the spread of SARS [38, 39]. Julijana
Gjorgjieva, Kelly Smith, and Jessica Snyder were inspired by the prominent news
coverage of the 2002 SARS epidemic. In particular, they were interested in the
control plan for SARS. Because the disease was new and there was no treatment,
control focused on isolating people who showed symptoms, and tracing their
contacts to identify other people who might have the disease. Since no treatment had
been developed, the researchers saw an opportunity to compare the current tracing-
and-isolation control plan to a possible future vaccination strategy.

The control plan for SARS involved tracing an infected individual’s contacts
in order to identify who else was at risk of contracting SARS, but this tracing
process was not always successful. Treatment for SARS generally involved isolation
to prevent further spread. So the model used classes for S susceptible, Ei traced
latent, En untraced latent, I infectious, W isolated, R recovered, and D dead.
This resulted in a model where an individual could take many different paths.
For example, an individual could never be identified by doctors and pass through
S → En → I → D (Fig. 1), or an individual could be caught in the infectious
stage and pass through isolation and treatment and survive, passing through S →
En → I → W → R (Fig. 1).

Fig. 1 Flow diagram for the SARS model with contact tracing: S susceptible, En untraced latent,
Ei traced latent, I untraced infectious, W diagnosed and isolated infectious, D dead, and R

recovered [39]. β is the infection rate, k is the rate of developing symptoms, θ is the probability
that the patient is diagnosed while latent, α is the rate that infected individuals become isolated, δ

is the death rate due to infection, and γ s are recovery rates
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Using the next generation approach, the researchers found the following basic
reproductive number9:

R0 = β

(
(1 − ρ)lθ

δ + γ2
+ (1 − ρ)l(1 − θ)α

(δ + γ2)(α + δ + γ1)
+ (1 − ρ)(1 − θ)

α + δ + γ1
+ ρl

δ + γ2

)

.

(26)

This R0 follows the standard infection rate
output rates pattern, but because there are multiple

pathways to get to I or W , these rates need to be averaged together by the proportion
of individuals who follow each path. Examining the flow diagram (Fig. 1), the only
path to I is S → En → I . Individuals are infected at a rate β. Of these individuals,
a proportion (1 − ρ) enter En, and of these individuals in En, a proportion (1 − θ)

enters I . Looking at the outflows of I : average time in I is 1
α+δ+γ1

, so the infection rate
output rates

for I would be β
α+δ+γ1

, weighted by the proportion of infected individuals who enter
I : (1 − ρ)(1 − θ), which is what we see in Eq. (26).

W is less infectious than I , so the rate of those infected by W is βl < β. All
the terms with l in the numerator then involve pathways to W . Let us examine the
second term, βl(1−ρ)(1−θ)α

(δ+γ2)(α+δ+γ1)
. In this term, βl

(δ+γ2)
is infection rate

output rates for W . (1 − ρ) is the
proportion moving from S → En. (1 − θ) is the proportion moving from En → I .
Lastly, α

(α+δ+γ1)
is the rate from I → W divided by the total rate out of I , so it is the

proportion of individuals moving from I to W . So this term represents the infection
contribution from the S → En → I → W path.

Similarly the first term βl(1−ρ)θ
δ+γ2

represents the infection contribution from the

S → En → W path, and the final term βlρ
δ+γ2

represents the infection contribution
from the S → Ei → W path.

Exercise 8 Imagine that each of the proportions in this model is instead a probabil-
ity. Combine each of these four paths together to create a probability tree diagram.
Interpret R0 as the expected value of infection rate

output rates for a single individual passing
through the system at random.

4.2 The Maximum of Two Reproductive Numbers:
Co-infection

This example project is from 2007 on the spread of HIV and tuberculosis [27].
Like the malaria project above, Diego Chowell-Puente, Brenda Jiménez-González,
and Adrian Smith were interested in studying how two deadly diseases interacted
in South Africa, where both are common. TB is often carried latently, and HIV

9In the original model, the researchers also included a vaccination parameter in R0, but we have
omitted it from this example.



108 C. W. Castillo-Garsow and C. Castillo-Chavez

Fig. 2 Flow diagram for the HIV-TB co-infection model: S susceptible, L infected with latent TB,
I infectious stage TB, H infected with HIV, HL infected with HIV and latent TB, HI infected with
HIV and infectious stage TB, and A developed AIDS [27]

increases the chance of TB developing symptoms. So the researchers wanted to
construct a model that would suggest strategies to control both epidemics.

Tuberculosis has a latent stage, during which a person is infected but unin-
fectious. HIV has an asymptomatic infectious stage, and the symptomatic stage,
when the infected person has developed AIDS. In order to track the behavior of a
population, the researchers needed to develop a model that captures every possible
combination of stages, as seen in Fig. 2. Note that the infection terms need to be
summed over a large number of compartments, because a large number of different
compartments all carry the same disease. For example, H , HL, HI , and A all carry
HIV and can infect a susceptible with HIV, so the HIV infection rate must include
all of these compartments.

Like most co-infection models, the basic reproductive number for this model
included a maximum.

R0 = max{RT B
0 , RHIV

0 }

RT B
0 = β1

γ2 + μ + τ
· k

γ1 + k + μ

RHIV
0 = β2

ω + μ
+ β2ε3

μ + σ
· ω

ω + μ
.

(27)
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In order to interpret this reproductive number, let us examine each component
using the tools from Sect. 4.1. Beginning with RT B

0 , we see that the first factor
β1

γ2+μ+τ
is the infection rate for TB divided by the sum of the rates out of I . So

this factor takes the form infection rate
output rates for TB by itself. The second factor k

γ1+k+μ

takes the form of rate from L to I divided by total rate out of L. So this is the
proportion of people in L who enter I . Taken together, this is the basic reproductive
number for the S → L → I pathway by itself. This would be the path that TB takes
if there were no HIV.

Similarly, RHIV
0 is the reproductive number for HIV by itself. β2

ω+μ
is infection rate

output rates

for the H class, β2ε3
μ+σ

is the infection rate
output rates for the A class, and ω

ω+μ
is the proportion of

people moving from H → A.
The basic reproductive number for the whole system is the maximum of these

two reproductive numbers because R0 only tracks infected or uninfected. Once a
person in infected with either of the two diseases, they are counted as infected.
Being infected with both involves first being infected with one, and then the other.
Because R0 is only concerned with the disease-free state, that second co-infection
is not relevant. Only the first infection affects the disease-free state, so in examining
the disease-free state, we are only concerned with whichever infection is strongest.

For another example of this type of co-infection R0, see the HIV-malaria model
[5] discussed in Sects. 3.3 and 4.5.

4.3 Two Thresholds and Backwards Bifurcations

In this section we will return to the 2005 project on third parties from Sect. 3.2. In
this project [13], there were three classes of population: S susceptible, V voters,
and M members. Because either voting or membership could be considered the
infection, there were also two reproductive numbers:

R1 = β − φ

μ + ε

R2 = γ

μ

(

1 − 1

R1

)

.

(28)

In this model (Fig. 3), when a susceptible encounters a voter, there are two
possible outcomes. Either the voter can influence the susceptible to become a voter
(S → V ), or the susceptible can convince the voter not to vote (S ← V ). The
former happens at rate β and the latter occurs at rate φ, so the net rate of people
being influenced to vote is β − φ, and this becomes the infection rate, while μ + ε

is time in V . So R1 follows our standard pattern of infection rate
output rates .

For R2, γ is the infection rate, and μ is the exit rate. Following our pattern

from Sect. 4.1, the remaining factor
(

1 − 1
R1

)

should be some sort of proportion
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Fig. 3 Flow diagram for the third party model: S susceptible, V voters, and M members [13]

of the population. To figure this out, let us go back to an earlier interpretation of
R0 from Sect. 2.3. We think of R0 as infection rate

output rates , but because our rates typically

have units of 1/time, we can also think of R0 as total time infectious
time it takes to infect someone . So then

1
R1

would be time it takes to convince someone to vote
total time as a voter . In other words, it is the proportion

of voters who are currently convincing a susceptible to vote. Then
(

1 − 1
R1

)

is the

proportion of voters who are not currently occupied convincing someone else to
vote, which means they have free time to interact with a member and be susceptible
to membership.

An interesting feature of this two threshold model is that R1 only measures the
impact of voters on susceptibles, but members can also convince susceptibles to
vote. This means it is possible for members to exist as a population when R1 < 1,
as long as enough members exist in the population. This is known as a backward
bifurcation. Also note that when R1 < 1, R2 < 0. This negative value for R2
is a little difficult to interpret, but it is occurring because members are recruiting
susceptibles to become voters and then almost immediately recruiting those voters
to become members, so voters have no time to recruit susceptibles as voters. This
maintains the member population without maintaining the voter population.

4.4 Geometric Series: Returning to the Infectious Class

In this section, we continue the discussion of the 2018 herpes model [1]. A key
feature of herpes discussed in Sect. 3.1 is that a single infection goes through
multiple cycles of infectiousness. This leads to a potentially infinite number of paths
to I: S → I , S → I → L → I , S → I → L → I → L → I , etc. Each of these
paths is still a single infection, so each path needs to be considered in the basic
reproductive number. In order to study this phenomenon, the researchers started
with a simplified model before moving on to their full model. The simplified model
only has compartments for S susceptible, I infected, and L latent (Fig. 4). The basic
reproductive number for this simplified model was:

R0 = β

μ + γ
· 1

1 − γ
μ+γ

· r
μ+r

. (29)
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Fig. 4 Flow diagram for the simplified herpes model: S susceptible, I infectious, and L latent [1]

In this basic reproductive number, β is the infection rate, divided by μ + γ is
the time in I , so this forms our standard basic reproductive number. Our previous
examples have suggested that the remaining factor should be a proportion. γ

μ+γ
is

the proportion of people who leave I to enter L, and r
μ+r

is the proportion of people

who leave L to return to I . So the product p = γ
μ+γ

· r
μ+r

is the proportion of people
in I who make a single round trip back to I (I → L → I ).

Because people can make this round trip any number of times, we need to account
for all possible pathways. Infection for people who make zero round trips would be

β
μ+γ

, from one round trip would be β
μ+γ

p, two round trips: β
μ+γ

p2, three round

trips: β
μ+γ

p3, etc.

R0 = β

μ + γ

∞
∑

k=0

pk. (30)

Because the limit of a geometric series with common ratio p is 1
1−p

, we have the
form of R0 given in Eq. (29).

Exercise 9 Other student projects with examples of this kind of looping R0 include
a 2018 study of prison recidivism [49] and a 2010 study of immigration [25]. Choose
one of these two projects, describe a model, use unit analysis to identify the units
of each parameter, verify that the reproductive number is unitless, and interpret the
reproductive number using the techniques you have learned so far.

4.5 Geometric Mean: Indirect Transmission

The project is from 2005 on the spread of HIV between two sexes: male truck drivers
and female sex workers [47]. Titus Kassem wanted to focus on the interaction
between two populations that were both at high risk of HIV in Nigeria. In particular,
truck drivers travel frequently and for great distances and interact with sex workers
in many different places. High numbers of sexual partners and travel lead to a
disproportionally large influence on the geographic spread of HIV. So Kassem
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wanted to study these two at-risk groups, and how their different ideas about condom
usage affected the spread of HIV.

The model used six classes, Sm susceptible males, Im HIV infected males, Am

males with AIDS, and similarly for females. The paper did not provide a flow
diagram, so instead, we duplicate the equations here.

Ṡm = μmNm + ψmAm − μSm − β1Sm

If

Kf

˙Im = β1Sm

If

Kf

− (γm + μm)Im

Ȧm = γmIm − (ψm + μm)Am

Ṡf = μf Nf + ψf Af − μSf − β1Sf

Im

Km

İf = β2Sf

Im

Km

− (γf + μf )If

Ȧf = γf If − (ψf + μf )Af .

(31)

Exercise 10 Construct a flow diagram for this HIV model. Label each arrow with
the corresponding term from Eq. (31).

The researchers found that the basic reproductive number was:

R0 =
√

β1β2

(γm + μm)(γf + μf )
. (32)

Exercise 11 The paper has omitted the details of these steps. Use a NGM to verify
the basic reproductive number found in Eq. (32).

The basic reproductive number has an interesting form of the geometric mean
between two values: β1

(γm+μm)
is the infection rate

output rates for males, and β2
(γf +μf )

is the
infection rate
output rates for females.

The reason for the geometric mean is because the disease has to make a round
trip. In order for a male to infect another male, the disease must first infect a female,
and vice-versa. So the number of new infected males produced by a single infected
male is the number of infected females produced by that infected male, times the
number of infected males produced by each new infected female. For example, if a
male infects 8 females, and each female infects 2 males, then the number of newly
infected males produced by that original male would be 8 · 2 = 16. But this is a
two-step process. In order to scale the process back to a single infection step, we
need to average the two values. Because the process is multiplicative, we average
with a geometric mean instead of an arithmetic mean. Note that

√
8 · 2 = 4 and

4 · 4 = 16, while an arithmetic mean does not quite work: 8+2
2 = 5 and 5 · 5 = 25.
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Fig. 5 Flow diagram for the math anxiety model: P for primary student, Sn for non-anxious
secondary student, Sa for anxious secondary student, Tn for non-anxious teacher, and Ta for
anxious teacher [42]

Exercise 12 Return to the HIV-malaria model [5] discussed in Sects. 3.3 and 4.2.
Draw the flow diagram, explain the model, conduct a unit analysis, and interpret the
basic reproductive number using the techniques you have learned so far.

4.6 Not Quite a Geometric Mean: Generational Models

This example comes from a 2017 study on the spread of math anxiety in a
school [42]. Arie Gurin, Guillaume Jeanneret, Meaghan Pearson, and Melissa
Pulley were inspired by their own past struggles with mathematics, and concern
for the impact that math anxiety has on the recruitment and retention of women
and minorities into STEM. Because many women with math anxiety become
elementary school teachers who teach mathematics, the researchers wanted to study
how generations of teachers might influence students attitudes toward mathematics
as those students become teachers themselves. The researchers were looking to
identify a best point of intervention to break the cycle of teachers with math anxiety
creating new generations of teachers with math anxiety.

The model had five classes: P for primary student, Sn for non-anxious secondary
student, Sa for anxious secondary student, Tn for non-anxious teacher, and Ta for
anxious teacher (Fig. 5).
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In this model, the basic reproductive number was

RS = εa

σ + εn + βn

, RT = qnaμ + ηa

μ + ηn + ω + α

RCT S = σγa(1 − qan)

μ + ηn + ω + α
, RCST =

Ψ μ
γn

+ βaμ
σγn

σ + εn + βn

(33)

R0 = RS + RT +√

(RS − RT )2 + 4RCT SRCST

2
(34)

where RS represents the typical number of new anxious students recruited by a
single anxious student (Sn → Sa), RT represents the typical number of new anxious
teachers recruited by a single anxious teacher (Tn → Ta), RCT S represents the
typical number of new anxious students mentored into becoming anxious teachers
by a single anxious teacher (Sn → Ta), and RCST represents the typical number of
new anxious students recruited by a single anxious teacher (P, Sn → Sa).

Interpreting the reproductive number requires two useful mathematical facts:

√
A + B ≤ √

A + √
B (35)

max{A,B} = A + B + |A − B|
2

. (36)

Applying these to the form of R0 we have

max{RS,RT } ≤ R0 ≤ max{RS,RT } +√

RCT SRCST . (37)

RS and RT are within generation effects, and the form of R0 tells us that either
of these is strong enough by itself to support an epidemic of math anxiety. If enough
students recruit their peers, or enough teachers recruit their peers, then anxiety is
sustained.

The geometric mean term represents a generational effect that takes place in
two paths: in the first path, an anxious teacher mentors a non-anxious student into
becoming an anxious teacher (Sn → Ta). In the second path, an anxious teacher
mentors a non-anxious student into becoming an anxious student (P, Sn → Sa).
These are the two ways that an anxious teacher can pass on their anxiety to the next
generation.

However, this is not a true geometric mean. Unlike the HIV model, the two paths
do no share endpoints, so this is not an average of two events happening sequentially.
Instead what is happening is that neither of these paths makes a full cycle. One path
is student to teacher, and the other path is teacher to student. So each represents only
a half-step of infection and not a full teacher to teacher or student to student cycle,
so each needs to be square-rooted.

Lastly, note that if there are no peer-pressure effects (RS = RT = 0), then
the generational effects by themselves may not be enough to sustain the epidemic.
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However, generational effects can create an epidemic where peer-pressure by itself
might not be enough (RS = RT < 1). This is not a straight sum because the
two methods of spread (peer-pressure and generational) are competing with each
other. For example, when teachers recruit more primary students to become anxious
secondary students, it creates fewer non-anxious secondary students to be recruited
by their peers so the peer effect is weaker. Another example is when anxious
students recruit more non-anxious students through peer-effects, it leaves fewer non-
anxious students to be recruited though mentoring effects.

Exercise 13 Other student projects with similar forms for R0 include a 2001 study
on bulimia [40, 41] and 2018 study on hospital screening for MRSA [12]. Choose
one of these papers, draw the flow diagram, explain the model, conduct a unit
analysis, and interpret the basic reproductive number using the techniques you have
learned so far.

5 Ways to Complicate Your Sensitivity Analysis

Sensitivity analysis is an extremely flexible technique and there is really no end
to the number of ways that you can complicate it. For example, in a simple
variation, you could study the sensitivity of the equilibria to the parameter values,
or the sensitivity of the equilibria to R0. You can also use more complex methods
and numerical simulations to look at sensitivity of a compartment to a particular
parameter as a function of time. Examples of student projects using this type of
forward sensitive analysis include a 2018 study on the menstrual cycle [37] and
a 2018 study of MRSA [12]. Using this approach, George et al. [37] was able
to identify specific days in the menstrual cycle that intervention would be most
effective.

All of these approaches go beyond studying the basic reproductive number and
are outside of the scope of this paper. For details on these and other ways to
use sensitivity analysis, we really recommend that you read an in-depth paper on
the subject [3] and explore some of the many student projects that use sensitivity
analysis in ways not described here [51].

6 Conclusions for Students

In this paper, we have shown you an overview of the most popular techniques used
at MTBI, as well as examples of variety of topics that you can investigate with these
techniques. All together, this article forms a sort of “research project in a box.” It is
up to you to unpack the contents of the box, consult your research mentor, and add
your own personal interests to generate a unique research project.
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This approach does some with some warnings: While reproductive number
analysis is the most commonly used approach at MTBI, it is not suitable for
every research project. This is an extremely flexible approach than can be used to
investigate a lot of projects, not every problem is well suited to an ODE contagion
model. Sometimes a different modeling approach, such as difference equations [15],
Markov chains [53], cellular automata [43], agent based modeling [28], a probability
model [50], or a statistical approach [46] is better suited to a particular research
project.

Even within the realm of differential equations, not every question is a question
that can be answered by reproductive analysis. For example: sometimes a problem
is an equilibrium problem [49], or a cost problem [1], or an optimal control
problem [11]. The reproductive number can be useful in investigating these types
of problems, but it does not provide the whole story.

What is most important is that you choose a research project that you are
passionate about. Our best projects come from students who have chosen a topic
personally meaningful to them. Many of our student projects are driven by students
who have suffered from the very diseases or social problems they choose to study.
This passion gives students the drive to really dig deep into the topics that they
choose to study. It improves their understanding of the problem, the accuracy of
their model, the effort they put into their mathematics, and the quality of their
interpretations and recommendations.

So our advice for building a project is as follows: (1) Keep in mind what
kinds of techniques are possible, both techniques described in this paper and other
techniques you might have learned about. (2) Think about what kinds of questions
can be answered with the different techniques are your disposal. (3) Be aware that
there are more techniques that your mentor can help you with that you might not
think of on your own. (4) Find a topic that you are passionate about. (5) Define
a research question that is interesting to you. (6) Let the research question choose
your techniques, do not let your techniques choose your research question.

7 Generating Possible Research Questions

In developing a project, we prefer to that you choose a topic that has a personal
meaning to you, as passion tends to make the best projects. But a research problem
should also be of interest to others. Generating research questions/projects often
emerges from reading what was said or left untouched in articles at the interface
of the biological, computational, mathematical, and social sciences. Here are some
directions and possibilities:
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Research Project 1 The official confirmation of an outbreak of Ebola hem-
orrhagic fever in West Africa took place in 2014. Efforts to assess its impact
and what could be learned from it were launched [19]. Models made use of
earlier estimates of the basic reproductive number [26] with modeling results
providing increased understanding of Ebola dynamics and helping assess the
impact of various control efforts [17]. Soon after an effective vaccine was
discovered and tested. Yet, as the 2018 Ebola epidemic in the Republic of
Congo evolved, we began to experience one of the worst outbreaks. In short,
fighting Ebola, vaccine in hand, did not prevent its devastating impact on the
affected populations, Why?

Research Project 2 What is the impact of cross-immunity on influenza
strain dynamics and how does its role compare to the effect of partially
effective vaccines? What if we had a partially effective universal flu vaccine?
What percentage of the population should be vaccinated to ameliorate the
impact of an outbreak?

One of the most challenging family of viruses is that associated with influenza A.
Currently, there are three subtypes of influenza A, with variants of each subtype,
called strains, being continuously generated across the world and transported
primarily by the mobility patterns of billions of individuals. Influenza involves what
it is known as seasonal and pandemic variants. The kind spread and its impact
depends on the variation between strains. The 1918 pandemic was devastating and
it has been linked to at least 50 million deaths. Vaccines, typically effective against
seasonal influenza, are in general ineffective against novel strains, the most likely of
drivers of pandemic influenza. As an outbreak sweeps a region, it alters the average
immunological profile of a population. By how much? Well it depends on levels of
protection, cross-immunity, that may protect against future strains. Some relevant
references include [8, 10, 52].

Research Project 3 The HIV epidemic, the re-emerging tuberculosis (TB)
epidemic and their synergistic impact on each other, including the growth of
antibiotic resistant TB as well as the need to reduce the evolution of resistance
on HIV treatment are ongoing challenges. Studying the modeling history of
these diseases brings tremendous insights and would help those willing to go
through the mathematics, and offers the opportunity to learn new methods as
well. We recommend the following references [16, 20, 22].
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Research Project 4 A most important challenge facing the study of epi-
demics come from key questions at the intersection of three fields, demogra-
phy, epidemiology, and genetics. These problems are particularly challenging
because they involve multiple temporal scales: the epidemiological, the
demographic, and the evolutionary time scales. What models and approaches
have we developed to address the joint dynamics of these three processes? A
good place to start may be [36].

Research Project 5 Moving from the field of epidemiology but still looking
at problems that involve some form of contagion can also be addressed
in frameworks built to address particular data patterns. We have work, for
example, on the spread of scientific ideas and on whether or not there is a
copycat effect on that temporal patterns generated by school mass shootings
[6, 59]. In general, social science provides many opportunities to innovate
with epidemiological techniques. Many of our students have had success with
projects in this area.

8 Notes for Mentors

Guiding a student-led research project is a very different experience from assigning
a research project. Assigning a research project allows the mentor to anticipate and
plan for any difficulties that might arise, but it comes at the cost of student passion.
A student-led research project is a passionate research project, but it will often be in
an area outside your area of expertise. The mentor of a student-led research project is
always playing catch-up. She (or he) relies on her experience and expertise to think
faster than the students and anticipate problems that might arise while the project is
being developed.

The primary role of the mentor of a student-led project is to serve as an academic
advisor in almost the same way that you would mentor a graduate thesis. The mentor
pushes to the student farther, provides instruction when students suffer from a skill
gap, and generally encourage students to work to find their own answers instead of
providing answers.

Part your role as a mentor will be to push the students to really understand
the context. Make sure students do research into the subject and look at previous
models. Use your knowledge of the literature and your academic connections to
suggest places that students might research.

One of the most difficult things for students to do is to develop a research
question. Help the students make sure their research question is clearly defined,
academically interesting, and small enough that students can get some results within
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the time limit of their project. In general, the best research questions tend to be about
choosing between mechanisms or strategies. Make sure that students avoid yes/no
questions or questions where the answer is obvious.

For example, the Herpes group in 2018 [1] went through a number of research
questions including “What is the effect of early treatment on HSV-2?” This is
not a good research question because the answer “HSV-2 infections decrease” is
obvious. The group further refined their research question to being about the cost
of treatment, then about the relative cost of two different treatment strategies, and
finally about finding the most cost-effective combination of both strategies.

In developing a research question and a corresponding model, it is important that
mentors help students maintain a delicate applied mathematics balance. Students are
often driven by a mathematical question or a biological question and tend to forget
the other half of the model. When a model or question that is too mathematical,
students tend to only pay lip-service to the biology. The biology becomes inaccurate,
or the interpretation of the results becomes uninteresting. When a model or question
is too biological, typically the students want to include every possible detail, the
problem becomes too complex, and mathematical results become impossible within
the time limit of the project. For more information on the delicate balance between
biology and mathematics, the different ways in which researchers from different
fields value models, and how these differences affect students selecting a research
question, we highly recommend reading Smith et al. [58].

Similarly, do not let students get away with stating bare mathematical results.
Students have tendency to assume that bare mathematical results speak for them-
selves. But students are supposed to provide topic level expertise. Force discussion,
interpretation, and recommendations. There is a reason why we have included
such a long section on the interpretation of R0. Students should not anticipate that
the readers of their papers will do the work of converting results into academic
significance.

A major part of the role of a mentor is to make sure that mathematical models
do not get too big. Use your modeling experience to anticipate the complexity of
the model students propose. Count compartments and non-linearities to anticipate
the complexity of the algebra. In many ways, Sect. 4 on interpreting the basic
reproductive number is more useful for mentors than students. Mentors can use this
approach backwards to anticipate the form of R0 and how complex it will be. For
example, if students want to construct a model has a generational effect, a loop-back
latency period, and co-infection, squash that immediately. The resulting R0 would
be a total mess.

Much of the role of mentor is to provide mathematical expertise. Students will
often come up with interesting research questions or models where the necessary
analysis does not match the mathematical techniques they have learned in class.
Much of mentoring is providing just-in-time tutoring in mathematical techniques
that students either do not know about or have not learned very well. Occasionally,
you will be missing tools as well, and a problem will require an approach or a
technique that you are not familiar with. When you encounter this scenario of
missing tools, learn the tools. One of the benefits of expertise and experience is
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that you learn mathematics much faster and much better than a student. Use this
ability to learn to tutor your students in the missing tools that you both need.

Lastly, the most important role of a mentor is to inflame the passions that students
have for a topic. Students work much harder when they are passionate about a topic.
They innovate in ways we would not think to and study ideas that we would not
normally study. They push us to innovate and improve our own practice of research.
This is the primary reason why MTBI has used student-led projects since 1997.

Motivating students can be a tricky and often frustrating business. We have
found that having a social agenda greatly improves the interest of both students and
funding agencies in our program [23]. MTBI is a program driven by social impact.
The entire program is intentionally designed to improve the representation of
minorities in the sciences by creating a pipeline to graduate school. This intentional
design is not hidden from students. We share our social and political passions with
students, and this in turn encourages them to explore social and biological problems
that they are passionate about. They see that mathematics can have a direct impact
on the world and are fueled by their own passions to make the world a better place.

In the past, we have met with some resistance to this idea. We have encountered
faculty who have strongly believed that student researchers and funding agencies
should be motivated primarily by the intellectual merit of a research project without
emphasizing broader impacts. We understand and share the frustrations of many of
these researchers. It is a difficult thing to feel as if the research we are passionate
about is not valued by others on its own merits. But the reality is the broader impacts
will always be an important motivator for students and a determinant in attracting
diverse populations to the mathematical sciences. And while we can say that intel-
lectual merit is definitely a necessary motivator of students [44], the appeal of mak-
ing a change in society does not take away from that motivation, it only adds to it.
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The Effect of External Perturbations
on Ecological Oscillators

Eli E. Goldwyn

Abstract Population interactions cause oscillations across a variety of ecological
systems. These ecological population oscillators are subject to external forces
including climatic effects and migration. One way of understanding the impact
of these perturbations is to study their effect on the phase of the oscillations. We
introduce tools commonly used to describe the phase of oscillating phenomena in
cardiac dynamics, circadian rhythms, firing neurons, and more recently, coupled
predator–prey dynamics. We walk the reader through the applications of these
methods to several common ecological models and present research opportunities
to extend these techniques to other models to address specific ecological issues and
phenomena.

Suggested Prerequisites A first course in differential equations is essential, including the study
of equilibrium and stability. An acquaintance with mathematical modeling and simulation is
recommended.

1 Introduction

Oscillatory behavior is ubiquitous in the physical and natural world. Prominent
examples include the number of daylight hours over the year, the position of a
mass on a frictionless spring, seasonal outbreaks of childhood diseases in the pre-
vaccination era, action potentials in a neuron, and predator–prey populations. Math-
ematical modeling of oscillatory behavior has widespread applications including
improving the control and management of disease epidemics, treating pathological
conditions such as Parkinson’s disease and epilepsy and better understanding and
protecting ecological populations. More specifically, perturbations to ecological
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oscillators can cause nearby populations to synchronize or desynchronize with
each other, which has important implications for species persistence and extinction,
especially in the face of global climate change.

The goal of this chapter is to give students sufficient background on oscillators
and their properties to work on the research projects in population ecology described
in Sect. 4. Each of the projects involve oscillatory systems in ecology and most of
them involve finding, using, and/or interpreting the phase response curve (PRC),
a function that measures the effect of an external perturbation on an oscillator, to
better understand the underlying properties of the oscillator. The majority of the
projects require only mathematics up to a first course in undergraduate differential
equations. Familiarity with simulating differential equations is not required (it is
recommended). Although we ask the student to interpret models and results in their
ecological context, no background knowledge of ecology is necessary (interest in
ecology is recommended). To limit the amount of coding required for the project,
we provide some MATLAB code and XPP code (see Appendix 1 and 2).

This chapter is organized so that Sect. 2 introduces oscillatory systems, provides
a few ecological examples, and introduces several standard differential equation
tools to understand these systems. Much of this material may be familiar from an
introductory differential equations class. Section 3 introduces the more advanced
topic of describing oscillating systems by their phase of the oscillation and
includes several examples. Section 4 provides several in-depth research projects.
The Appendix 1, 2, 3 describes and provides links to several relevant programs in
MATLAB and XPP and adjustable graphs using Desmos. It also describes additional
chemical oscillating system that can be used in one of the projects and contains
an optional section on non-dimensionalization and relaxation oscillators. Exercises
are included throughout the chapter and are written to reinforce the important
mathematical skills necessary for the research projects and to provide opportunities
to reflect on their ecological importance. The individual exercises vary greatly in
difficulty and likely time necessary for completion.

1.1 Further Reading

The online peer-reviewed encyclopedia Scholarpedia (http://www.scholarpedia.org/
article/Main_Page) is an excellent resource that has in-depth pages on most of the
major topics discussed in the chapter, think Wikipedia but authored by experts in the
field and peer-reviewed. Scholarpedia has pages on many of the models discussed
here, including: predator–prey models including the Lotka–Volterra model [15],
the FitzHugh–Nagumo model [16]. There are also pages on phase models [17],
isochrons [18], and phase response curves [19], as well as a page on XPP [20].

Many introductory differential equations texts will cover the eigenvalue and
eigenvector method of finding and classifying stability as well as nullcline analysis
for understanding the qualitative behavior of a system of differential equations. For

http://www.scholarpedia.org/article/Main_Page
http://www.scholarpedia.org/article/Main_Page
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a particularly accessible treatment of these topics, try the Adler calculus book [10].
For a more ecologically focused text, [9] also covers these topics while providing
more ecological modeling context. It also covers non-dimensionalizing systems of
differential equations. For a more advanced treatment, [7] also covers these topics
and is often used as a textbook for a second course in differential equations. Many
examples of biological oscillators can be found in [12], while the book [8] provides
an in-depth but not too technical look at many examples of synchrony in biology
(an important phenomenon involving multiple interacting oscillators).

The topics in Sect. 3 are often covered in more mathematically advanced texts
that may be very difficult for undergraduate mathematicians. Chapter 10 of [5]
(available for free at www.izhikevich.org) does an excellent job of describing
phase models, isochrons, the PRC, and the three different methods of deriving the
infinitesimal PRC, in a way that is more approachable than the original texts on
these topics. Though a challenging read for undergraduates, Arthur Winfree’s classic
book [11], is a deep look at oscillatory systems and even describes his invention of
isochrons.

2 Oscillators

In this section we define several terms describing oscillations, give examples and
exercises involving differential equations that produce oscillatory behavior, and
describe several techniques to find if and when a system produces oscillations.
The goal of this section is to familiarizing the reader with oscillatory systems and
techniques used to understand them. Some or all of the definitions and techniques
may be review for more advanced students.

Definition 1 A function F is periodic if F(t + P) = F(t), for all t . The smallest
such P > 0 is the period of F .

We define oscillatory behavior as equivalent to a periodic function and we use
the term periodic orbit to refer to a periodic solution to a differential equation. Fur-
thermore, we define any ecological phenomenon described by a periodic function as
an ecological oscillator. Perhaps the most common physical example of oscillatory
behavior is the frictionless spring-mass system, i.e., a simple harmonic oscillator.
This system is described in many introductory differential equation courses.

Example 1 Let S(t) describe the number of hours of sunlight in a day. The number
of sunlight hours in a day attains its maximum at the summer solstice, its minimum
at the winter solstice, and has a period of 1 year. This function has discrete domain
(the integers 0–365 ignoring leap years), however, we approximate it using a
continuous function for the exercise below.

Exercise 1 Let the function S(t) = A + B sin(ωt + φ) describe the number of
sunlight hours in a day (with t in days) in your hometown. Look up the date and
number of sunlight hours for the summer and winter solstices and the spring and

www.izhikevich.org
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fall equinox of your hometown this year. Use this information to find A,B,ω, φ.
Find the amplitude and period of the oscillator.

Example 2 Consider an object with mass m on a spring with spring constant k. Let
the system start with no velocity and stretch x0 units from its resting state. Assume
the system has no friction and define x(t) as the distance between the mass and
its resting position at time t . The distance the mass is from its resting state can be
described by the following second order differential equation with initial values:

m
d2x

dt2 = −kx

x(0) = x0

x′(0) = 0 (1)

The only functions that have second derivatives that are a negative number times
the original function are the sine and cosine functions. After applying the initial

conditions, we find the solution is x(t) = x0 sin(ωt), with ω =
√

k
m

. This spring-

mass system is an oscillator with period 2π
ω

. That is, the mass will continue to
oscillate between x0 and −x0 with the above period indefinitely. We start with
an introduction of the frictionless spring-mass system because it is a relative
straightforward example of an oscillatory physical system and we can analytically
find its solution, period, and amplitude.

Definition 2 An equilibrium of a system of differential equations exists when all
variables are constant over time, i.e., when every differential equation in the system
equals 0.

Exercise 2 Define y = x′ and rewrite Eq. (1) as a system of two first-order
differential equations y′ and x′ (hint: if y = x′, then y′ = x′′). Show that the origin
is an equilibrium by plugging into the system and showing that both differential
equations equal zero. Classify this equilibrium as a linear center by showing that
the eigenvalues of the coefficient matrix are purely imaginary.

Example 3 Consider a model of the dynamics of love affairs described in Chapter 5
of [7]. The variable R(t) represents Romeo’s love (R(t) > 0) or hate (R(t) < 0) for
Juliet and vice versa for J (t). A linear model describing the change in their feelings
for each other can be written as:

dR

dt
= aR + bJ

dJ

dt
= cR + kJ (2)

Exercise 3 Interpret each of the four parameters in (2). Specifically, describe
what positive values or negative values indicate. What values for a, b, c, k lead to
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oscillatory behavior? Would that make for a “healthy” or “stable” relationship? Does
the initial state of the relationship matter?

There are several different methods that can be used to classify the stability of
the equilibrium in Exercise 3:

1. Use simulation software such as MATLAB or XPP and vary the parameter values
until oscillatory behavior occurs.

2. Calculate the nullclines and perform phase-plane analysis (see below).
3. Calculate the eigenvalues of the Jacobian matrix evaluated at the equilibrium (see

below).

Since the Romeo–Juliet model is linear, method (3) will work. Method (2) often
leaves it unclear whether the system has a closed loop and therefore oscillates, or
spirals inwards to a stable equilibrium, or outwards. For that reason, it is often
helpful to combine methods (2) and (3). Unfortunately, for non-linear systems, even
combining a sketch of the phase plane with nullclines and arrows is not enough to
demonstrate oscillations. Hence the importance of performing simulations (or using
more sophisticated techniques).

Definition 3 The phase plane for a system of two differential equations is a
graph with one variable (population) on the horizontal axis and the other variable
(population) on the vertical axis (time is not explicitly plotted on the phase plane).

While a more complete description of phase-plane analysis can be found in
many differential equations texts and in [7] and [9], here is a quick synopsis for
the Romeo–Juliet model. First draw a graph with vertical axis J (t) and horizontal
axis R(t). This is the phase plane. The R- and J -nullclines correspond to points
(R, J ) for which dR

dt
= 0 and dJ

dt
= 0, respectively. Notice that equilibrium points

correspond to intersections of R- and J -nullclines. Solving for dR
dt

= 0, we find
only one R-nullcline, the line J = − a

b
R. Next calculate the J -nullcline and sketch

both nullclines on the phase plane. Note that the solution can only cross the R-
nullcline vertically and the J -nullcline horizontally. Unless the parameters are such
that the two nullclines are the same line, this will divide the phase plane into 4
regions. Since the differential equations are continuous, the sign of dR

dt
and dJ

dt

can only change when its corresponding nullcline is crossed and cannot change
inside a region. Therefore the direction of the solution on the phase plane (up/down
and right/left) is the same in each region. By plugging values into our differential
equations, we can find the cardinal direction of the solution in each region of the
phase plane separated by the nullclines, see Fig. 1. We can then sketch an arrow
pointing in those cardinal directions on the phase plane.

Definition 4 A solution to a system of differential equations is a function that
satisfies the initial conditions and each individual differential equation.

We can roughly sketch solutions to the differential equations by following the
arrows and the rules about which direction a nullcline can be crossed. By examining
the possible arrow configurations and nullclines, we can often figure out the stability
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Fig. 1 The R-nullclines is plotted in blue and the R-nullcline is plotted in red for the Romeo–Juliet
model, with parameter values a = 1, b = −2, c = 2, k = 1 and initial conditions R(0) = J (0) =
1. Black arrows indicate the cardinal direction of the solution

of an equilibrium and whether oscillations occur. As described above, this nullcline
analysis may not be sufficient to determine oscillations. See [23] for nullclines of
this system with adjustable parameter values plotted using Desmos.

Definition 5 The Jacobian matrix is the matrix of all first-order partial derivatives
of the system of differential equations.

Consider a system of two differential equations as in (2). Let F(R, J ) = dR
dT

and
G(R, J ) = dJ

dT
.

Jacobian =

⎡

⎢
⎢
⎢
⎣

dF

dR

dF

dJ

dG

dR

dG

dJ

⎤

⎥
⎥
⎥
⎦

(3)
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The local stability of any equilibrium can be determined by finding the eigen-
values of the Jacobian matrix evaluated at the equilibrium. The dynamics of even
a seemingly simple system of differential equations can be quite complicated and
oftentimes it is necessary to perform both a phase-plane analysis and to classify the
stability of equilibria by calculating the eigenvalues of the Jacobian matrix in order
to determine if a system has a periodic orbit. Since the Romeo-Juliet model is linear,
oscillatory behavior is possible only if the two eigenvalues are purely imaginary. As
we will see in subsequent sections, for non-linear systems of differential equations,
this condition of purely imaginary eigenvalues is not necessary for oscillations
(nor is it sufficient).

Example 4 Calculate the Jacobian matrix for the Romeo–Juliet model, find the
eigenvalues, and classify the stability for various parameter values.

The partial derivative of the function dR
dt

with respect to R is a and its partial
derivative with respect to J is b. Likewise, the partial derivative of the function
dJ
dt

with respect to R is c and its partial derivative with respect to J is k. This yields
a Jacobian matrix:

Jacobian =
[

a b

c d

]

The eigenvalues, λ, of the Romeo–Juliet model (or any system of differential
equations) satisfy:

det(Jacobian − λI) = 0

For a system of two differential equations, the above equation, with τ =
trace(Jacobian) and � = det(Jacobian), can be written as the characteristic
polynomial:

λ2 − τλ + � = 0

2.1 Predator–Prey Models

The interaction between predator and prey species can cause large scale oscillation.
Perhaps the most famous data set in population ecology is that of the snowshoe
hare and its predator, the Canadian lynx. Thanks to the Hudson’s Bay Company,
there are nearly 100 years of data showing fairly regular oscillations of these species
with a 10-year period [2]. In this section, we introduce several different two-variable
differential equation predator–prey models. Depending on the structure of the model
and the parameter values, these systems can exhibit oscillatory behavior similar to
that of the hare-lynx and other populations. The general form of this model is:
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dx

dt
= f (x) − g(x, y)

dy

dt
= cg(x, y) − h(y) (4)

The populations (usually described in terms of biomass as opposed to population
number) at time t of the prey and predator are x(t) and y(t), respectively. The
function f (x) describes the growth rate of the prey in the absence of predation
and depends only on the prey biomass. The predator death rate, or loss of biomass,
depends only on the predator population and is modeled with the function h(y). The
predation rate depends on the interaction between the two populations and therefore
depends on both of their biomasses. Here, g(x, y) is the prey loss due to predation
and the parameter 0 < c < 1 is the conversion rate from prey biomass to predator
biomass. While the variables x and y can instead measure population size, using
biomass allows for a more natural interpretation of c and allows for the populations
to be modeled by continuous variables.

2.1.1 Lotka–Volterra Predator–Prey Model

The Lotka–Volterra (LV) predator–prey model was derived independently by
Alfred Lotka and Vito Volterra in the 1920s and is a staple of most introductory
differential equations courses. The LV model follows the formulation of Eq. (4) with
exponential growth of the prey in the absence of predators, exponential decay of the
predator in the absence of prey, and a linear per-predator predation rate (sometimes
called Holling Type I functional response):

f (x) = rx

g(x, y) = axy

h(y) = my (5)

Each of the parameters r , a, and m in Eq. (5) is positive, r is the growth rate of the
prey, m is the death rate of the predator, and a is the per capita predation rate. The
left column of Fig. 2 graphs the solution for LV model with the top panel showing a
time-series plot (the populations on the vertical axis and time on the horizontal axis)
and the bottom row showing the phase planes. We can see from this figure that the
solution to the LV model is oscillatory.

Exercise 4 Derive the analytical solution to the LV model in implicit form. First
find dy

dx
by dividing dy

dt
by dx

dt
. Separate and integrate this differential equation.

Unfortunately, we cannot solve this expression explicitly for y in terms of x,
however, we can find an implicit expression relating x and y. Pick your own initial
conditions and parameter values and use a graphing program (the browser-based
graphing calculator at desmos.com works well) to see the shape of the oscillation

desmos.com
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Fig. 2 The left column shows simulations of the Lotka–Volterra oscillator (Eq. (5)) with parameter
values a = 1, r = 1, m = 1, c = 0.8, and initial conditions x(0) = 2, y(0) = 1.5, and the
Rosenzweig–MacArthur oscillator (Eq. (6)) with parameter values a = 1, r = 1, m = 1/3, c =
0.8, b = 1.5, K = 4.5, and initial conditions x(0) = 2.23, y(0) = 0.89. Top row are the time-
series plots with prey in blue and predator in red. The bottom row is the phase plane in black with
the prey and predator nullclines also plotted in blue and red, respectively

on the x–y plane. Change the values of your initial conditions and parameters one at
a time and observe their effect on the shape and amplitude of the oscillation. Does
that fit your intuition as to what would happen?

Unlike the more complicated systems that we will explore later, the LV model
can be solved (see Exercise 4). To understand the qualitative behavior of a system of
differential equations, we first find and then classify the stability of all the equilibria.

The LV model has two equilibria, the trivial equilibrium at extinction (x∗, y∗) =
(0, 0), and a coexistence equilibrium with (x∗, y∗) = ( m

ca
, r

a
).The trivial equi-

librium has one positive and one negative equilibrium (λ1,2 = r,−m) making
it a saddle. The eigenvalues of the coexistence equilibria are purely imaginary,
λ1,2 = ±i

√
mr . Purely imaginary eigenvalues suggest that an equilibrium may

be a center but are inconclusive and can exhibit a variety of behaviors depending on
higher order terms. In LV model, and in the frictionless spring-mass system, every
initial condition (with the exception of the coexistence equilibrium and one species
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Fig. 3 Simulation of the Lotka-Volterra oscillator (top) and the Rosenzweig-MacArthur model
(bottom) for three different initial conditions (stars)

being extinct) lies on a periodic orbit. In other words, every initial condition leads
to oscillations as long as each population is greater than zero and the system is not
at the coexistence equilibrium. The implicit relationship between x and y that you
found in Exercise 4 and the top panel of Fig. 3 demonstrates that there are infinitely
many periodic orbits. MATLAB and XPP code simulating the LV model can be
found in the Appendix 1 and 2.

Exercise 5 Calculate the Jacobian matrix for the LV model and evaluate it at the
two equilibria described above. Find the eigenvalues at each equilibrium. Check to
make sure you get the same values as above.

Exercise 6 Calculate the prey and predator nullclines and graph them on the phase
plane. Find the direction in each of the regions and sketch some trajectories for
different initial conditions. Can we determine if the system is oscillatory from the
phase plane alone or do we also need information from the Jacobian?

2.1.2 Rosenzweig–MacArthur Model

The Rosenzweig–MacArthur Model (RM) is formulated similarly to the LV model
(Eqs. (4) and (5)), but with different functional forms for prey-growth rate f (x) and
the predation g(x, y). While the LV model assumes unbounded exponential growth
of the prey in the absence of the predator and unbounded per-predator predation
as the prey population gets infinitely large, the RM model assumes that each of
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these terms has natural maxima. The RM assumes logistic growth of the prey in
the absence of predation, with carrying capacity K and a per-predator predation
rate that includes predator satiation (Holling Type II functional response) with a
maximum rate of a and a half-saturation constant of b. Predator death has the same
functional form as in the LV model. The individual terms in the RM model using
the formulation of Eq. (4) are now

f (x) = rx(1 − x/K)

g(x, y) = axy

b + x

h(y) = my (6)

While the RM model is more complex than the LV model as it has two additional
parameters, it is generally considered to be a better description of many predator–
prey populations.

Exercise 7 Sketch the per capita growth rate of the prey in the absence of predation
for both the LV and RM model, f (x)

x
in (5) and (6). Why is the logistic growth

rate in the RM model generally considered to be more realistic? Are there any
circumstances where using the exponential growth rate from the LV model may
be reasonable?

Exercise 8 Let us compare the difference in the per-predator predation rates,
p(x) = g(x,y)

y
, between the LV and RM models. For the RM model, calculate p(0),

p(b), lim
x→∞ p(x), and notice that p′(x) is a decreasing function. Put that information

together to sketch p(x) for the RM model. Sketch p(x) for the LV model. Examine
how the parameters a and b affect predation. Describe why the predator satiation
model is generally accepted as a more appropriate model of predator behavior than
the linear model.

While the LV model produces oscillations for any non-zero parameter values
and non-zero initial populations, the RM model only produces oscillations under
a specific range of parameter values. For other parameter values the system will
go to a stable coexistence equilibrium. Additionally, while the LV model produces
oscillations that return to the initial conditions, the RM model has a unique stable
limit cycle.

Definition 6 An asymptotically stable limit cycle is a periodic orbit upon which
nearby trajectories converge.

This means that if the RM system starts with initial condition near this limit cycle,
then the system will always approach this limit cycle. The top panel on Fig. 3 shows
that different initial conditions for the LV model can lead to different periodic orbits,
while solutions to the RM model approach a unique asymptotically stable limit cycle
(bottom panel). Initial conditions outside the limit cycle spiral inwards towards it,
while initial conditions inside the limit cycle spiral outwards towards it.
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Exercise 9 Perform phase-plane analysis for the RM model (sketch the nullclines
for the RM and find the cardinal directions of the solution in each region). Note
that the position of the nullclines depends on the relative values of certain parameter
combinations (assume K > b). What inequalities involving the parameter values
must be true to produce oscillations? Note that the coexistence equilibrium is an
unstable spiral and the system has an asymptotically stable limit cycle if the vertical
nullcline is to the left of the vertex of the parabolic nullcline (see right column
of Fig. 2).

Consider the RM model with parameters that produce oscillations as in the right
column of Fig. 2. Ecological oscillators with low population levels in the trough
of the oscillation can be at risk of extinction in the event of a negative event
such as a drought or if there are so few individuals that it becomes difficult to
find a mate. Intuitively, it seems that one way to prevent low prey populations at
the trough of the oscillation would be to improve the habitat for the prey (increase
the carrying capacity K). Counter-intuitively, increasing K leads to larger amplitude
oscillations, lower troughs, and therefore a greater chance of prey extinction. In
fact, decreasing K decreases the amplitude of oscillations and eventually changes
the equilibrium from an unstable spiral to a stable spiral which will stabilize the
population. This phenomenon of an improving prey habitat increasing the likelihood
of prey extinction was originally described by Michael Rosenzweig as the “Paradox
of Enrichment.”

Exercise 10 Starting with the parameter values in the right column of Fig. 2,
increase K and simulate the RM model. Notice that the amplitude of the oscillation
increases and that the minimum prey population decreases. Next decrease K until
the system is no longer oscillatory. Observe this with simulations and by noticing
that the vertical nullcline is now to the right of the vertex of the parabolic nullcline.
Determine the stability of the coexistence equilibrium by calculating the eigenvalues
with the original parameters and the new lower K .

The phenomenon described in the above exercise where an equilibrium that is
an unstable spiral which produces a stable limit cycle becomes a stable spiral as a
parameter is varied is one type of Hopf-bifurcation [22]. In addition to predator–
prey systems, Hopf-bifurcations appear in a variety of other physical systems
[7], including certain chemical oscillators described in the project section and the
Appendix 4.

Exercise 11 Consider a model with predation following a Holling Type III function

response g(x, y) = ax2y

b2+x2 . Repeat your analysis from Exercise 8, but notice p′(x)

is no longer strictly decreasing and that p′(0) = 0.

Exercise 12 Examine the per predator predation for each of the Holling Types I–
III functional responses (Exercises 8 and 11). What can we say about the predator’s
behavior that each functional response describes?
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Predators are often described as specialists (only consume one prey species) or
generalists (consuming a variety of prey species). Think about the above exercise in
terms of both of these types of predators.

Exercise 13 Find parameter values that lead to limit cycle behavior of the system
with predation following a Type III function response. This can be done either by
guessing and check using XPP or MATLAB simulations, or by nullcline analysis
(it may be helpful to first non-dimensionalize this model). For additional help see
the Desmos graphs with nullclines plotted with sliders to manually change the
parameter values [23].

3 The Phase of an Oscillator

Imagine a runner doing counter-clockwise laps at a constant speed around a circular
track of radius r . We can think of the runner’s position on the phase plane as a
unique pair of points (x, y). Switching to polar coordinates, we can label each point
by its angle and distance from the origin using (r, θ) and θ ∈ [0, 2π). Each point
is mapped using the trigonometric relationship x = r cos θ and y = r sin θ . Since
the track is a circle, r is constant and therefore the position of the runner can be
described by a single variable called the phase. The phase, θ(t), measures how far
around the track the runner is at time t with θ(2π) = θ(0) as a runner who is just
starting is in the same position as a runner who has completed exactly one lap. The
phase of the oscillator therefore describes the proportion (if we divide it by 2π ) of
the way around the track the runner is in terms of time.

Example 5 The Stuart–Landau (SL) oscillator can be written as a system of two
differential equations using polar coordinates. As written below, the SL oscillator
has a stable limit cycle flowing counter-clockwise on the unit circle with period 2π .
This is a mathematical description of the example of the runner described above with
added information describing what happens when the runner is inside or outside of
the track.

dr

dt
= r − r3

dθ

dt
= 1. (7)

Exercise 14 Show that the SL oscillator has an unstable equilibrium at the origin
and that the unit circle is asymptotically stable limit cycle (find and classify all
equilibria of the differential equation dr

dt
).

Note that for now we are only concerned with behavior on the limit cycle, we
save discussion for behavior off the limit cycle for the next two sections. For the
SL oscillator, the convention is to define the initial phase θ = 0 as the point on
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Fig. 4 Top panel is a time-series plot of x-component of the Stuart–Landau oscillator. The bottom
panel is a time-series plot of the phase, θ

the plane where x = 1 and y = 0, though that is arbitrary. Since the change in
phase is constant (the runner is going a constant speed when on the circular track
in the SL oscillator), phase can be written as θ(t) = t (mod 2π). This can be seen
in Fig. 4 where the phase increases linearly, resetting every 2π time units, while the
runner’s position on the x-axis is the cosine function. Returning to our track-running
metaphor, the SL oscillator is the example where a runner is running at a constant
speed around the unit circle (left column of Fig. 5).

We can describe all of the predator–prey oscillators previously discussed by just
the phase (so long as the system is on a periodic orbit) as opposed to two variables
describing the populations of the prey and the predator. Just like the SL oscillator
has the property that θ(0) = θ(2π), predator–prey oscillators with a period of T

necessarily have the property that x(0) = x(T ) and y(0) = y(T ). Unlike the SL
oscillator, ecological and other biological oscillators do not move around the phase
plane at constant speed. Figure 5 shows phase-plane solutions to the SL, LV, and
RM models. Squares are plotted every 1/5 of the period to demonstrate that the
speed around the periodic orbit is constant for the SL model, but not for the LV
or RM models. Returning to our running metaphor, the LV and RM models have
irregularly shaped tracks and a runner whose speed changes depending on where
they are in the track. Notice that for the parameter values in Fig. 5, the LV model
is slower when both populations are low and that the prey population changes very
little between boxes 3 and 4.
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Fig. 5 The phase plane and time-series plots for the Stuart–Landau oscillator (left), Lotka–
Volterra model (middle), and Rosenzweig–MacArthur model (right), with parameter values
from Fig. 2. We choose initial conditions as the maximum value of the x-component for each
model. The squares are plotted every 1/5 increment of the period

3.1 Isochrons

The Greek word isochron is translated as “equal time” and refers to the set of initial
conditions of an oscillator that result in the same phase of an oscillator after an
infinite amount of time. The notion of isochrons allows us to extend our notion of
phase to points off of the limit cycle. Returning again to our running metaphor,
imagine two runners whose speeds are dictated by a system of differential equations
such as the SL or RM models. If the two runners start in different positions (with at
least one of them not initially on the limit cycle), but eventually end up in the same
position, then they started on the same isochron. An isochron therefore consists
of all starting running positions where the runners eventually end up at the same
place. More plainly, the points (x1, y1) and (x2, y2) are on the same isochron of an
oscillator if they approach each other after a long time.
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Definition 7 Consider a point (x1(0), y1(0)) on an asymptotically stable limit cycle
and another point (x2(0), y2(0)) not on the limit cycle. These points are on the same
isochron if (x2(t), y2(t)) → (x1(t), y1(t)) as t → ∞.

Every point on an individual isochron has the same phase, therefore two points
that are on the limit cycle cannot be on the same isochron as they have different
phases. The notion of isochrons cannot be applied to systems like the LV model
and the frictionless spring-mass system (as opposed to the SL and RM oscillators)
because while they are oscillators, they do not have an asymptotically stable limit
cycle. Consider a runner obeying the LV model. If the runner is pushed off the
track, she will continue to run in a loop, but would never return to the track (top
panel in Fig. 3).

Unfortunately, analytically calculating isochrons is very difficult for even seem-
ingly simple systems. The SL oscillator is an exception in that it has radial isochrons
since the rate of change of the phase is always constant, see Fig. 6. We provide a
MATLAB program that numerically computes the isochrons of an oscillator [23]
(see Appendix 1 for a description on how this program works). The phase plane for
any system with a stable limit cycle is dense with isochrons. In Fig. 6, we plot ten
equally spaced in time isochrons for the SL and RM model.

Figure 7 shows the response of the SL oscillator to both horizontal and vertical
perturbations. In the left column, shifting the system horizontally while starting at
the point (1, 0), leaves the system on the same isochron and therefore they approach
each other as time increases. In the right column, shifting the system vertically
advances (red) or delays (blue) the phase. This is illustrated in the bottom right
corner of Fig. 7 by a horizontal shift in the phase of the oscillator, called a phase
shift.

With ten equally spaced (in terms of time) isochrons plotted, the space between
any two isochrons is one-tenth of the period. The SL oscillator has equally spaced
isochrons which indicates that the system is moving around the oscillator at a
constant speed. More tightly packed isochrons indicate that the system is moving
slower in that region, while more spaced out isochrons indicate a faster moving
section. The isochrons for the RM model in Fig. 6 indicate a system that is moving
faster in the top right corner when the prey and predator populations are relatively
large and slower on the left side when the prey population is small. Isochron figures
for RM model can be found in [4] for additional parameter values.

Exercise 15 What important feature do we notice is different between isochrons
coming from a system that produces rapid increases and decreases in prey pop-
ulation versus those that come from a system with smoother oscillations (see
Exercise 10)? For the RM model, either numerically compute the isochrons yourself
or refer to [4].
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Fig. 6 Ten isochrons plotted in black along with the stable limit cycle in red for the Stuart–Landau
oscillator and the Rosenzweig–MacArthur model with parameters as in Fig. 2

3.2 The Effects of Perturbations on Phase

Return to our runner and imagine she is bumped (perturbed) so that she is now a few
feet inside the track on the grass, like the inner curve of the top-left panel of Fig. 7.
Instead of immediately returning to the track, she slowly winds back out to the track
(see dr

dt
in Eq. (7)). The phase response curve (PRC) measures how far she is ahead

or behind of where she would have been had she not been bumped. Note that the
PRC may depend on her phase when she was bumped and on how far off of track
she was bumped.

Definition 8 The phase response curve measures the transient change in the period
of an oscillator induced by a perturbation as a function of the phase at which it is
received and of the magnitude of the perturbation.
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Fig. 7 Simulations of the Stuart–Landau oscillator starting with initial condition (1, 0) and then
perturbed after the completion of one cycle. The open circles refers to the position after the
perturbation, the star 1/5 of an oscillation later, and the square after 2/5 of an oscillation later. The
left column describes perturbations of x leading to positions (0.4, 0) blue, (1, 0), black, and (1.6, 0)

red, while the right column describes perturbations of y such that the positions are (1,− tan(π/5)),
blue, (1, 0), black, and (1,− tan(π/5)), red. The top row is the phase plane with the values for x

and y plotted, the middle row shows the time-series plot of the perturbed variable, and the bottom
row is the phase plotted as a function of time. The horizontal perturbations kept the system on
the same isochron, and therefore the three points converged and the phase was unchanged. The
vertical perturbation of ± tan(π/5) advance or delays the phase by one isochron (6), or exactly
1/10 of a cycle

In this chapter we only consider instantaneous perturbations, i.e., the runner
experiences a one-time shove, as opposed to a longer lasting shouldering out of the
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way. As defined above, the PRC is a function of two variables and is defined only on
the limit cycle. Let the vector #»ε be the magnitude and direction of the perturbation:

PRC(θ; #»ε ) = θnew − θ. (8)

Similarly to isochrons, finding the PRC analytically is usually not possible,
however, as with isochrons, we can calculate the PRC for the SL oscillator.

Exercise 16 Use trigonometry to find an implicit expression for the new phase,
θnew, of the SL oscillator if it is perturbed horizontally with magnitude b at phase θ .

The solution to the above exercise is worked out in [12] (they refer to it as the
Poincaré oscillator):

cos(2πθnew) = b + cos 2πθ√
1 + 2b cos 2πθ + b2

.

To numerically approximate the PRC, we perturb the system, run time forward,
and then compare the phase of the perturbed system (θnew) to the unperturbed
system (θ ). See the Appendix 1 for more details on the numerical simulations.
The PRC is positive at a certain phase if a perturbation at that phase leads to
a phase advance (red curves in the right column of Fig. 7), the PRC is negative
if the perturbation leads to a phase delay (blue curves in the right column of
Fig. 7), and it is zero if the perturbation does not affect the phase. The horizontal
perturbations of the SL model when θ = 0 shown in the left column of Fig. 7 did
not change the phase of the runner, i.e., the runner ends up in the same position
whether she was perturbed to the right 0.6 units, to the left 0.4 units, or not at all.
Another way to determine the PRC is to measure how many isochrons (if you plot a
finite number of isochrons) the system crosses due to the perturbation. A horizontal
perturbations of the SL when θ = 0 (or θ = π ) leaves the solution on the same
isochron, as can be seen in the top-left panel of Fig. 6. Therefore the PRC = 0 for
those perturbations, with the exception that if the perturbation is large enough, the
system jumps past the unstable equilibria at the origin and speeds up an entire half
cycle (Fig. 8).

Consider the perturbation in the vertical direction by ± tan(π/5) in the right
column of Fig. 7. In the red curve, the oscillator is perturbed exactly one isochron
ahead of where it was before the perturbation (see the isochrons of the SL model in
the top panel of Fig. 6). Since there are ten isochrons this is a phase advance of 10%
of the phase (top panel of Figs. 6 and 8). Since the period of the oscillator is equal to
2π , this corresponds to a PRC value of 2π/10. In general, when the PRC has a large
positive value perturbations will increase the phase of the oscillator substantially,
when the PRC has a large negative value a perturbation will delay the phase, and
when the PRC has a value close to zero, a perturbation will leave the phase nearly
unchanged.
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Fig. 8 The phase response curve for the Stuart–Landau oscillator for vertical perturbations. The
top figure has a perturbation magnitude of tan(π/5) and the bottom figure has a perturbation of 1.2
in the vertical direction. When the phase of the oscillator is 3π/2 the large vertical perturbation
goes from slowing down the phase by half the period to speeding it up by half the period

Exercise 17 Calculate by hand the magnitude of perturbation necessary to advance
the phase of the SL oscillator by 10% if the perturbation increases x and y the same
amount (i.e., the angle of the perturbation is 45◦ in the phase plane) and it occurs at
the point (1, 0).

Exercise 18 Calculate the PRC for small positive prey perturbation of the RM
model for parameter values leading to smooth oscillations and again for parameters
leading to rapid increases and decreases of prey populations (see Exercise 10)
Describe the differences in the PRCs that come from prey perturbations of these
two different types of behavior. What can we conclude about the differing effects on
the populations of this perturbation?

The infinitesimal PRC (iPRC) is the limit of the PRC as the magnitude of
the perturbation goes to zero. In theory, the iPRC can be found numerically
using the same method as the regular PRC, however, numerical errors mean
that great care must be used for these calculations. Fortunately the iPRC can be
computed by numerically solving the so-called adjoint equation [5]. Unfortunately,
the mathematics behind these calculations is beyond the scope of this chapter and is
difficult for most undergraduate students (see chapter 10 of [5] for three different
derivations of the iPRC). We include this discussion of the iPRC because the
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program XPP has a built in routine that approximates the iPRC, which may be
more approachable then the MATLAB code for those who want to limit coding
and computational time. Detailed step-by-step instructions on using XPP can be
found in the Appendix 2 of this chapter and in [6]. The iPRC (as opposed to the
PRC) is useful for understanding the effect of frequent and very small perturbations
and leads to the beautiful study of “weakly coupled oscillators” [14]. In predator–
prey models, small perturbations can represent small weather effects or the effect of
small amounts of migration in spatially separated populations [3]. We can also use
results from studies of small perturbations to approximate the effect of somewhat
larger perturbations.

4 Suggested Research Projects

As discussed throughout this chapter, finding the isochrons and the PRC of an
oscillator is the key to understanding the effect of external perturbations on these
systems. Ecological populations are regularly hit with both small and large pertur-
bations in the form of climatic events, migration, and other external shocks. To that
end, the projects all involve calculating isochrons and/or PRCs. Unfortunately
analytically finding the PRC or isochrons of even relatively simple systems is
often very difficult. Because of this, each of the projects includes at least some
computational work. We provide several MATLAB routines to help the student get
started [23] and give instructions on using the program XPP as it requires minimal
actual programming. This section is structured so that the projects are written in
increasing order of difficulty.

Research Project 1 Numerically calculate the PRC of the Rosenzweig–
MacArthur model for different magnitudes and types of perturbations.

The PRC for small and large prey-only perturbations in the RM model was
explored in [3] and [4], respectively. PRCs for predator-only perturbations or pertur-
bations for both populations have not been explored. Many realistic perturbations in
ecology would likely include effects on both populations as it may be due to severe
weather, for example. Therefore exploring how sensitive the PRC is to perturbations
of both populations may shed more insight than the existing work. Try varying the
magnitude of the perturbations on each population. Think of a specific predator–
prey system, what type of perturbation would affect the prey population more
than the predator population, or vice versa? Also, compare the difference between
perturbations that are proportional to the size of the populations and perturbations
that are of fixed size.
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Research Project 2 Numerically calculate the PRC and the isochrons for
various parameter sets of a predator–prey model with logistic growth of the
prey, linear death of the predator, and predation following a Type III functional
response.

As we saw in Exercise 11, different ecological populations are better described
by different functional responses, both for prey-growth and predation. The PRC
in the RM model for a prey perturbation has been described in [3, 4]. However,
we are not aware of any work on this for an ecological oscillator where predation
follows a Type III functional response. As many predators have predation functions
that follow this functional response, calculating the PRC of these systems will better
describe the effect of a perturbation on these systems. Before attempting to calculate
the PRC and isochrons, be sure that the parameter values that you choose lead to a
stable limit cycle.

Research Project 3 Find your own oscillator and calculate the PRC and
isochrons.

There are many oscillators in biology, chemistry, and physics that were not
described in this chapter. Pick your own system (just make sure it has an asymp-
totically stable limit cycle and that the oscillation is not forced), and numerically
calculate the PRC and isochrons. What do these results tell us about the effect
of relevant external perturbations to the system? Interesting examples include
the Selkov Model which describes glycolysis (see Appendix 4), as well as The
Brusselator (see Appendix 4) and The Oregonator (a system of three differential
equations) [21], which model autocatalytic chemical reactions.

Research Project 4 Explore the effect of periodic forcing on an ecological
oscillator.

The perturbations explored so far in this chapter were all one-time events.
However, many ecological systems are subject to regular repeated perturbations,
notably seasonal effects. Examine the effect that periodic forcing has on the RM
model and how a different frequency of forcing can have different effects on the
oscillator. Start by having an external perturbation hit with the same frequency of
the oscillator. What is the effect of these perturbations on the period and amplitude
of oscillations? How does varying the timing within the cycle and the magnitude
of the perturbation change these results. Does knowing the PRC of this oscillator
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help predict the effect of this periodic forcing? Next try varying the frequency of
the perturbation so that it occurs just a little more (or less) frequently then oscillator
completes a cycle. How does these perturbations effect the period and amplitude of
oscillation? What if the periodic forcing occurs every other oscillation, or twice per
oscillation? More generally, explore the effect that these perturbations have on the
period and the amplitude of the oscillator as you vary their frequency and magnitude.

Research Project 5 Use the PRC to inform the step-size of an adaptive
time step numerical differential equation solver. Compare the computational
efficiency and accuracy of this method to other popular methods such as
Runge–Kutta 4 and MATLAB’s ode45.

Euler’s method and Runge–Kutta 4 are two of the most commonly used explicit
methods for approximating solutions to differential equations such as the one
described in this chapter. Explicit methods such as these employ a fixed time step
for calculations. Depending on the nature of the differential equation, it can be
more computationally efficient to use a method that has an adaptive time step, like
the Dormand–Prince method that MATLAB uses in its ode45 method. Practically,
use a very small step-size or error threshold to accurately approximate the solution
to one of the above oscillators with a stable limit cycle. Calculate the PRC for
a small perturbation of the oscillator and make the step-size of your differential
equation solver a function of the PRC. Compare the accuracy and computation
time of your solver to other existing solvers. Probably the most straightforward
comparison would be how accurate the method approximates the period. If the
system is a relaxation oscillator, does that affect your results? This project is
more computationally intensive than the other and probably requires some previous
programming experience as well as experience with differential equation solvers or
a numerics course.

Acknowledgements Thanks to Joshua Goldwyn for helping to brainstorm potential project ideas
involving the phase response curve and for helpful comments on earlier drafts. Additional thanks to
Timothy Lewis, Meredith Greer, and Per Sebastian Skardal for many helpful ideas for improvement
from previous drafts.

Appendix 1: MATLAB Code

Some MATLAB code is provided to assist the reader in getting started on the
exercises and the projects. See webpage [23] to download the MATLAB files that:

• Calculate isochrons of an oscillator—adapted from [5].
• Calculate the PRC of an oscillator—adapted from [5].
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• Simulate the SL, LV, and RM models.

Summary of isochron.m

• You must provide the period of the oscillator and an initial condition on the
asymptotically stable limit cycle

• Input the number of isochrons desired in the output figure
• Choose the time step of integration and the spatial resolution of the figure
• The program approximates the rest of the limit cycle
• The program then picks points near the center of the limit cycle and integrates

backwards to find other points on the isochron
• The program plots the limit cycle and the isochrons

Summary of prc.m

• You must provide the period of the oscillator and an initial condition on the
asymptotically stable limit cycle

• Input the number of points on the phase that the program will calculate the prc for
• Choose the magnitude and direction of the perturbation
• Choose the number of cycles necessary for the system to return sufficiently close

to the limit cycle after the perturbation
• The program approximates the rest of the limit cycle and finds the number of

time steps to a chosen point on the limit cycle (usually easiest to pick a point
where the prey population is maximized)

• The program then runs the solution for several cycles starting from the perturbed
location

• The program then measure how far this solution is from where it would have
been without a perturbation

• The program then plots the PRC

Appendix 2: XPP Code

For those not familiar with or wanting to learn MATLAB, this appendix provides
instructions for using free program XPP. This program was developed by Bard
Ermentrout and can be used to approximate solutions to differential equations, graph
these solutions, and calculate the iPRC. (XPP has many other tools and applications
for dynamical systems not related to this chapter). Instructions for downloading
and using XPP can be found at: http://www.math.pitt.edu/~bard/xpp/xpp.html. Two
important pluses for XPP are that it is free to download and requires little to
know actual programming. It is essentially a java applet. The major downside to
XPP is that it was originally developed for MSDOS, so the interface can be a bit
cumbersome at first. For more in-depth details and tutorial on XPP, including all the
uses of XPP not relevant to this chapter, see the instruction book [6].

When opening XPP, you need to open it with a system of differential equations
already chosen. These equations must be in the form of “*.ode.” Figure 9 shows the

http://www.math.pitt.edu/~{}bard/xpp/xpp.html
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Fig. 9 Screen shot of the phase-plane solution to the Lotka-Volterra model as calculated by XPP

phase-plane solution to the LV model plotted. The clickable top row can be used to
edit the initial conditions, “ICs,” the parameter values, “Param,” or to look at the
approximate solution in numeric form. “Data.” You can also check but not edit the
system of differential equations by clicking on “Eqns.” In order to actually compute
anything you need to navigate through the left menus. These menus can be accessed
either by clicking on them or by using hot keys with are just the capital letter. The
below list includes instructions to the most relevant commands for this chapter.

• To simulate a model: “Initialconds,” “Go”
• To graph the phase plane: “Viewaxes,” “2D,” and then adjust the axis as you

prefer.
• To output the results to a .csv or other file: click on “Data” on the top and then

“Write.”
• To calculate the iPRC

– First limit the time to exactly one period: “nUmerics,” “Total,” then enter the
length of one period.

– Return to the main screen then: “nUmerics,” “Averaging,” “Adjoint”

• XPP is not set up to calculate the PRC with a non-infinitesimal perturbation. This
can be done manually by perturbing the system off its limit cycle, simulating the
system, then seeing how far ahead (or behind) the perturbed system is from the
unperturbed system.
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In addition, extra XPP files are provided at [23] for the following models:

• LV model
• RM model

Appendix 3: Desmos Graphs

To help understand the structure of the nullclines and when certain predator–prey
models will oscillate, we provide links to two different Desmos pages on the
webpage [23]. One Desmos page has a graph of the nullclines of the Romeo–Juliet
model and the other has graphs for the RM model, and the RM but with predation
following a Type III functional response. Each graph has sliders so that the viewer
can see the effect of each parameter value on the shape and location of the nullclines.

Appendix 4: Other Oscillators

The Selkov model for glycolysis can be written as:

dx

dt
= − − x + ay + x2y (9)

dy

dt
= b − ay − x2y. (10)

Like the RM model, this system undergoes a Hopf-bifurcation. The parameter
regime where oscillations occur can be found using nullcline analysis and simu-
lations, as described previously in this chapter.

The Brusselator is a model for certain autocatalytic reactions including the
Belousov–Zhabotinsky reaction. It can be written as:

dX

dt
= A + X2Y − BX − X (11)

dY

dt
= BX − X2Y. (12)

Let A,B > 0. This system also experiences a Hopf-bifurcation. The bifurcation
occurs when B = 1+A2. This system often has relaxation-oscillator type behavior,
so great care needs to be made to avoid numerical error if you use prc.m or
isochron.m.
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Appendix 5: Non-dimensionalization and Relaxation
Oscillators∗

This is an optional section that describes relaxation oscillators and the process
of transforming a dimensional system like the LV and RM models described
above into dimensionless systems. Non-dimensionalizing a system of differential
equations reduces the number of parameters in a model to make techniques like
finding the eigenvalues of a Jacobian and phase-plane analysis easier to compute
and interpret. It is also useful in helping to determine the relationship between
parameter values that yield different qualitative dynamics. A quick overview of non-
dimensionalization can be found in [7] and [9]. For a more in-depth explanation, try
[13] or appeal to the Buckingham π theorem.

The LV model has four parameters, r, a, c,m. Non-dimensionalization is an
important technique that reduces the number of parameters in a model and therefore
makes the above calculation easier. Rewriting Eqs. (4) and (5) with the following
substitutions: X = ca

r
x, Y = a

r
y, τ = rt , and μ = m

r
yields

dX

dτ
= x − xy

dY

dτ
= xy − μy. (13)

Exercise 19 Find all the equilibria in the system of differential equations (13).
Classify the stability of each equilibrium by evaluating the Jacobian at the equi-
librium point. You should get analogous results to what we found in the original
dimensional model. Find the implicit relationship between Y and X and graph it.

Exercise 20 Find a different non-dimensional substitution of the LV model that
also reduces the number of parameters in the system to one.

The FitzHugh–Nagumo model (FN) is a classic example of a relaxation oscillator
(if a = b = 0 then Eq. (14) is the Van der Pol oscillator, described in detail
Chapter 10 of [5]). The FN model is a simplified description of a spiking neuron
with voltage described by v(t) and the recovery variable described by w(t):

dv

dt
= v − v3

3
− w + Iext

dw

dt
= 1

τ
(v + a − bw). (14)

From the differential equations, we can see that a large τ indicates v(t) changing
much faster than w(t). This difference in characteristic time scales between how
quickly the two variables change describes a relaxation oscillator. Compare the top
plots from Figs. 2 and 10. The time-series solutions for the LV model are more
sinusoidal while the solution for v(t) in the FitzHugh–Nagumo model is more
jagged with periods of very fast increase or decrease representing the separation
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Fig. 10 Solutions for the FitzHugh-Nagumo model with a = 0.7, b = 0.8, Iext = 0.5 and initial
conditions v(0) = −1 and w(0) = −1/6. The top figure shows the time-series solutions. The
bottom figure shows the phase plane with the solution in black. The w-nullcline is the blue line and
the v-nullcline is the red cubic

in time scales. To further illustrate this, consider the initial conditions chosen at
the local minimum of the cubic (−1,−1/6) as in the bottom panel of Fig. 10. As
time increases, v(t) will rapidly increase while w(t) will change very little. This
is illustrated in Fig. 10: the top panel is the time-series and the blue curve, v(t),
increases very rapidly near t = 10, 50, 90, and in the bottom panel which is the
phase plane and the black curve moves nearly straight to the right very quickly.
After moving to the right, the system will slowly work its way up the right side
of the red cubic until it hits the local maximum (1, 7/6), this can be seen in the
slower increase in the w(t) and decrease in v(t) in the top figure. After the system
reaches the local max of the cubic, it will quickly shoot across to the left side of the
cubic, this corresponds to the very rapid decrease in v(t) in the top figure (blue).
We will see in subsequent sections that this difference in time scales has important
ramifications on the phase response curve.

Exercise 21 Complete the nullcline analysis by finding the direction of the solution
in each section between the nullclines. Given the separation of time scales, what has
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to be true about the intersection of the nullclines for the system to have a stable limit
cycle (as opposed to a stable equilibrium at the intersection)?

As with the LV model, we can reduce the number of parameters in the RM model
by non-dimensionalizing [3]:

dX

dτ
= 1

ε

(

X(1 − αX) − XY

1 + X

)

dY

dτ
= XY

1 + X
− μY. (15)

Much like the parameter τ in Eq. (14), ε represents the difference in time scales
between the prey and the predator, with ε < 1 indicating a prey population
which responds faster than the predator population. By graphing the nullclines and
performing phase-plane analysis, we find that conditions α < 1 and μ < 1−α

1+α
are

required for a stable limit. If both inequalities hold, the system has three equilibria,
the trivial equilibrium at extinction, and the prey only equilibria with X∗ = 1/α and
predator extinct, both of which are saddles, and the coexistence equilibrium which
is an unstable spiral.

Consider Eq. (15) with a very small ε. The prey population would change much
faster than the predator population and a time-series graph of the prey population
would look less like a smooth sine curve that we see with the hare and lynx and
would have very rapid increases followed by slower changes as the predator reacts
slowly to the new prey population. This difference in time scales is found in a variety
of insect outbreak populations, a famous such example is the that of the spruce-
budworm and the balsam fir and is studied in [1].

Exercise 22 Plot the solutions for X(τ) and Y (τ) for ε = 0.1, α = 0.4, μ = 0.4 as
in the bottom panel of Fig. 3. Decrease ε and observe the prey population exhibiting
sharper “boom-bust” type dynamics. Can you get this same type of behavior by
varying α and/or μ? Interpret why (Hint: think about the nullclines).

References

1. Ludwig, D. and Jones, D.D. and Holling, C.S., Qualitative analysis of insect outbreak systems:
the spruce budworm and forest. J. Animal Ecol. 47, 315–332 (1978)

2. Moran, PAP. The statistical analysis of the Canadian lynx cycle. II. Synchronization and
meteorology. Aust. J. Zool. 1, 291–298 (1953)

3. Goldwyn, EE., Hastings A. When can dispersal synchronize populations? TPB. 73,395–402
(2008)

4. Goldwyn, EE., Hastings A. The roles of the Moran effect and dispersal in synchronizing
oscillating populations. JTB. 289,237–246 (2011)

5. Izhikevich, E., Dynamical Systems in Neuroscience: The Geometry of Excitability and
Bursting. The MIT Press (2007)

6. Ermentrout G.B., Simulating, Analyzing, and Animating Dynamical Systems. SIAM (2002)



154 E. E. Goldwyn

7. Strogatz, S.H., Nonlinear Dynamics and Chaos, 2nd edition. CRC Press (2015)
8. Strogatz, S.H., Sync: the emerging science of spontaneous order. Hyperion (2003)
9. Hastings, A., Population Biology: Concepts and Models. Springer-Verlag (1996)

10. Adler, F.R., Modeling the Dynamics of Life, 3rd edition. Brooks/Cole (2013)
11. Winfree, A.T., The Geometry of Biological Time 2nd edition. Springer-Verlag (2001)
12. Glass, L. , Mackey, M., From Clocks to Chaos. Princeton University Press (1988)
13. Holmes, M.H., Introduction to the Foundations of Applied Mathematics. Springer (2009)
14. Schwemmer, M.A., Lewis, T.J. The Theory of Weakly Coupled Oscillators. Phase Response

Curve in Neuroscience. Springer (2012)
15. Hoppensteadt, F.: Predator-Prey Model http://www.scholarpedia.org/article/Predator-prey_

model. Cited 26 Oct 2018
16. Izhikevich, E.M., FitzHugh, R.: FitzHugh-Nagumo Model http://www.scholarpedia.org/

article/FitzHugh-Nagumo. Cited 26 Oct 2018
17. Izhikevich, E.M.,Ermentrout, G.B. Phase Model http://www.scholarpedia.org/article/Phase_

model. Cited 26 Oct 2018
18. Josic, K., Shea-Brown, E.T., Moehlis, J: Isochron http://www.scholarpedia.org/article/

Isochrons. Cited 26 Oct 2018
19. Canavier, C.C..: Phase Response Curve http://www.scholarpedia.org/article/Phase_response_

curve. Cited 29 Oct 2018
20. Ermentrout, G.B.: XPPAUT http://www.scholarpedia.org/article/XPPAUT. Cited 26 Oct 2018
21. Field, R.J.: Oregonator http://www.scholarpedia.org/article/Oregonator. Cited 12 June 2019
22. Kuznetsov, Y.A.: Andronov-Hopf Bifurcation http://www.scholarpedia.org/article/Andronov-

Hopf_bifurcation. Cited 21 June 2019
23. Goldwyn, E.E.: MATLAB and XPP code for Phase Sensitivity of Ecological Oscillators https://

sites.up.edu/goldwyn/phase-sensitivity-of-ecological-oscillators/. Cited 26 Oct 2018

http://www.scholarpedia.org/article/Predator-prey_model
http://www.scholarpedia.org/article/Predator-prey_model
http://www.scholarpedia.org/article/FitzHugh-Nagumo
http://www.scholarpedia.org/article/FitzHugh-Nagumo
http://www.scholarpedia.org/article/Phase_model
http://www.scholarpedia.org/article/Phase_model
http://www.scholarpedia.org/article/Isochrons
http://www.scholarpedia.org/article/Isochrons
http://www.scholarpedia.org/article/Phase_response_curve
http://www.scholarpedia.org/article/Phase_response_curve
http://www.scholarpedia.org/article/XPPAUT
http://www.scholarpedia.org/article/Oregonator
http://www.scholarpedia.org/article/Andronov-Hopf_bifurcation
http://www.scholarpedia.org/article/Andronov-Hopf_bifurcation
https://sites.up.edu/goldwyn/phase-sensitivity-of-ecological-oscillators/
https://sites.up.edu/goldwyn/phase-sensitivity-of-ecological-oscillators/


Exploring Modeling by Programming:
Insights from Numerical
Experimentation

Brittany E. Bannish and Sean M. Laverty

Abstract This chapter aims to provide students the background necessary to use
computational methods and numerical experimentation to pursue mathematical
research. We provide a brief refresher on differential equations, model building, and
programming, followed by in-depth discussions of how numerical experimentation
was critical to three undergraduate research projects involving parasite transmission
in feral cats, the role of protein regulation in establishing circadian rhythms, and
treatment costs in an influenza outbreak. Code (written in R) is provided for most of
the models and nearly all of the figures presented in the chapter, so that the reader
may learn the programming as they go along. We also propose ideas for extending
the research projects presented in the text. Both deterministic and stochastic models
are presented and the critical role of computational methods in obtaining solutions
is illustrated.

Suggested Prerequisites Exposure to mathematical modeling is encouraged and an interest in
biology or the life sciences is beneficial. Basic knowledge of differential equations is required.
Some exposure to computer programming is helpful but not required.

1 Introduction

This chapter aims to provide students the background necessary to use com-
putational methods and numerical experimentation to inform their mathematical
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research. We also hope this chapter provides a convincing argument for the role
of programming in mathematical modeling. Mathematical models of life science
systems are presented. Our focus is less on building the models themselves
(we assume students have some background knowledge on model building), and
more on how computing can be used to generate results and inform the direction of
research. Most models of real-world phenomena are too complicated (or impossible)
to solve by hand, but all hope is not lost; computers can be a researcher’s best
tool. Numerical experimentation can provide “quick” insight about the model
being studied, and can confirm (or deny) hypotheses about the basic mechanisms
underlying the system of interest. The results of numerical experimentation can
suggest directions to pursue for more rigorous mathematical analysis, and for new
model modifications.

In this chapter we give a brief refresher of mathematical modeling (Sect. 1.2) and
programming (Sect. 1.3), then focus on the myriad ways numerical experimentation
can improve model analysis and solving. We introduce basic programming and
analysis of math models with the simple predator–prey model (Sect. 2). From there
we scale up to more complicated models that our own students have studied:
parasite transmission in wild cats (Sect. 3), the role of protein regulation in
establishing circadian rhythms (Sect. 4), and treatment costs in an influenza outbreak
(Sect. 5). We conclude with an overview of simple stochastic models and stochastic
extensions to the predator–prey and influenza models presented earlier (Sect. 6).
We include several open-ended projects that students should be able to make some
headway on through numerical experimentation.

With few exceptions, complete, annotated code is given in the text that can be
used to reproduce the contents of many figures. In a few instances where the code
is bit too long or complicated to include in the text itself, we provide information in
the Appendix. We do encourage typing at least some of the code from the printed
page to your computer (rather than copy and pasting); this will allow you to make
errors and practice debugging and editing, which are useful skills for this type of
mathematical research. Additionally, all code is available at the chapter’s GitHub
page (https://github.com/seanteachesmath/FURM), where it is organized in folders
by project.

1.1 Differential Equations Refresher

We start with a brief review of differential equations. For a more thorough
treatment, we direct the reader to several excellent books on the subject [5, 7].
A differential equation is an equation that contains derivatives of an unknown
function. For example,

dP

dt
= λP (1)

https://github.com/seanteachesmath/FURM
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is a differential equation that says the derivative of P(t) is equal to constant
λ times P(t). The solution of the differential equation is the function P(t) that
satisfies Eq. (1). You can verify that P(t) = Ceλt , for arbitrary constant C, is
a solution. The particular value of C can be determined by an initial condition,
P(t0) = P0. An initial condition gives the value of the unknown function at a
single time point. For example, if we know that P(0) = 15, then the solution
to the initial value problem (differential equation along with an initial condition)
is P(t) = 15eλt . For a quantity that changes in time, the differential equation
describing that change is often called a dynamical system. For example, Eq. (1) is a
dynamical system for P .

Exercise 1 Verify that P(t) = 15eλt is a solution to the differential equation given
in Eq. (1), with initial condition P(0) = 15.

A differential equation is linear if all terms are linear in the unknown function

and its derivatives. For example, Eq. (1) is linear, but
dP

dt
= rP

(

1 − P

K

)

is

nonlinear because of the P 2 term on the right-hand side. In general, it is much easier
to solve linear differential equations than nonlinear differential equations; nonlinear
differential equations are often “solved” numerically on a computer.

Exercise 2 Identify which differential equations are linear and which are nonlinear.
In all examples, P and t are variables; all other letters represent constants.

1.
dP

dt
= −r(P − K)

2.
dP

dt
= rP

3.
dP

dt
= rP

(P

A
− 1

)(

1 − P

K

)

4.
dP

dt
= rP e−mP

5.
dP

dt
= a + rP

A system of differential equations is two or more differential equations in two or
more unknown variables. For example,

dP

dt
= r1P

(

1 − P
K1

)

− δ1PQ (2)

dQ

dt
= r2Q

(

1 − Q
K2

)

− δ2PQ (3)

with r1, r2, δ1, δ2,K1,K2 constant, is a nonlinear, two-dimensional (2D) system of
differential equations. It is nonlinear because of the P 2, Q2, and PQ terms, and it is
2D because there are two equations. Additionally, this system of equations is said to
be coupled since P shows up in the dQ

dt
equation and Q shows up in the dP

dt
equation.

In other words, you cannot solve one of the differential equations in isolation; you
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must know both P and Q simultaneously. Systems of equations can be even more
difficult than single differential equations to solve analytically, so we rely heavily
on graphical and computational techniques, which are introduced in Sect. 1.3.

1.2 Mathematical Modeling Refresher

Differential equations are often used to model biological or physical systems.
A mathematical model is an equation or system of equations that describes a
real-world process. For example, Eq. (1) is a model of a population experiencing
exponential growth (if λ > 0) or decay (if λ < 0). A number or constant in a model,
like λ, is called a parameter. If we let the variable (or state variable) P(t) describe
the population at time t , then the model equation says that the change in population
( dP

dt
) is proportional to the current population (λP ). Similarly, the system given by

Eqs. (2) and (3) is a mathematical model of two species that compete for a resource.
Let P(t) be the population of species 1, and Q(t) be the population of species 2.
Then the model says each species grows logistically in the absence of the other
species (the r1P(1 − P

K1
) and r2Q(1 − Q

K2
) terms), but that interactions between the

species negatively affect both species (the −δiPQ terms). Logistic growth takes into
account the fact that most populations have limited resources (food, water, space,
etc.), and so are unable to grow exponentially forever. In Eq. (2), for example, K1
represents the carrying capacity—the maximum population the environment can
support. When P is small relative to K1, the term (1 − P

K1
) is close to 1, and the

population grows approximately exponentially. However, as P increases and gets
closer to K1, the term (1 − P

K1
) is close to 0, and the population growth rate slows

to about 0. The last term in each equation is obtained using the law of mass action
which says that the rate at which the species interact is directly proportional to their
populations [25]. For example, if there are a lot of individuals of species 1, and only
a handful of species 2, then the rate at which the two species interact will be smaller
than if there were also a lot of species 2. For much more detail about model building
and classical techniques of analysis, see Refs. [13, 24, 29, 30, 34, 35, 44] which are
excellent resources for beginners and beyond.

When we set out to build a mathematical model, we start by learning as much
as we can about the real-world system we are trying to explain. It is helpful to
make note about what quantities are changing (these will be the variables in the
model), and how the various components interact with each other. It is often critical
to make some simplifying assumptions in order to keep the model small enough to
be tractable. However, it is also important to put in enough detail that the model is a
decent representation of reality. (Modelers have adapted the quotation attributed to
Albert Einstein: “A model should be as simple as possible, but no simpler.”)

Assuming we are studying a system that only changes in time (not also in space,
for example), then we can model the change using the types of differential equations
discussed above. We put the derivative on the left-hand side of the equation, and then
on the right-hand side use the law of mass action, Michaelis–Menten kinetics [29],
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or any other appropriate argument to mathematically write all the ways the variable
can change. For example, consider the spread of an infectious disease through a
population. The population can be divided into two categories: susceptible people
(S), who do not have the disease now but could contract it in the future; and
infectious people (I ), who have the disease and are able to spread it to others. Once a
person recovers from the disease, they are immediately susceptible again; there is no
period of immunity. Ignore all births and deaths, and assume that susceptible people
can become infectious after having contact with an infectious individual. Then we
can write the “SIS model” [32]

dS

dt
= −βSI + γ I (4)

dI

dt
= βSI − γ I. (5)

Equation (4) says that the number of susceptible people decreases (change in
susceptible people, dS

dt
, is negative) when susceptible people come into contact

with infectious people and become infectious themselves (−βSI ). The number
of susceptible people increases (change in susceptible people, dS

dt
, is positive)

when infectious people recover and become susceptible again (+γ I ). Similarly, in
Eq. (5), there is an increase in infectious people when susceptible people become
infectious (+βSI ), and a decrease in infectious people when they recover (−γ I ).
The epidemiological and modeling literature is rich with variations of this type of
infectious disease model. For further reading, see [2, 8, 26, 37].

The SIS model is an example of a compartmental model, in which we divide
the total population into different “compartments” (in this case, a “susceptible”
compartment and an “infectious” compartment), and draw arrows to indicate how
individuals in the population move between compartments. All individuals in a
given compartment are assumed to behave uniformly and have the same charac-
teristics; there are no differences between individuals in a particular compartment.
Figure 1 shows the compartmental SIS model for the parameters described in the
previous paragraph. Most of the examples presented in this chapter can be described
as compartmental models.

Exercise 3 Consider an infectious disease moving through a population. Individ-
uals in the population can be susceptible (disease-free, but able to get infected),
infectious (currently infected and able to spread the disease), or recovered (no longer
infected and unable to be reinfected). Susceptible people can become infectious
through contact with infectious individuals. Infectious people can recover at some
fixed rate. Ignore all births and deaths. Write a model based on the given word story.

Exercise 4 Consider the infectious disease model below, where R represents recov-
ered people. Explain in words what each term of each equation means biologically.
Can you think of a disease that might be modeled this way?
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S I

infection

recovery

Fig. 1 Compartmental SIS model corresponding to Eqs. (4) and (5). Susceptible individuals move
into the infectious compartment, at a rate βSI , proportional to the product of the numbers of
susceptible and infectious individuals. Infectious individuals recover at a constant rate γ and the
flow back to the susceptible compartment is given by the term γ I

dS

dt
= −βSI + ωR (6)

dI

dt
= βSI − γ I (7)

dR

dt
= γ I − ωR (8)

We have, to this point, ignored a difficult part of modeling: determining realistic
parameter values. To gain insight into the behaviors of the model using numerical
approaches, we need to specify numerical values for the rates and interaction
parameters (e.g., β and γ ) in the model equations. This can often be a major hurdle
to overcome at any stage of research, and depending on the level of experience of
the researcher, can be an intimidating, or even off-putting, task. Often specifying
parameters can be done by reviewing related models where similar parameters have
been estimated or reported, which could require detailed reading of sometimes
highly specialized literature. Care must be taken to ensure that parameter values
from published sources apply to your model. Does that value reported in a paper
about mouse experiments make sense in your model of humans, for example? These
are important decisions to make. Reading the subject matter literature can often be
inspiring or enlightening, but it can also be easy to fall down a rabbit hole and get
lost in a trail of scientific papers. Strive for a good balance of reading enough of
the literature to get ballpark values for some parameters, but not getting so bogged
down in the literature that you do not have time for anything else.

Luckily, some parameters can be readily approximated. For example, taking into
account the appropriate unit of measure, mortality rates of simple models are often
approximated by taking the reciprocal of the lifespan of the organism in question.
Otherwise, given no better starting point, we like to take the approach of setting all
parameters to a value of one in order to ensure that the model is coded correctly
(you can read much more about coding in Sect. 1.3 and throughout the rest of this
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chapter). This allows the researcher to execute code, or debug to isolate and correct
errors, before refining and experimenting with parameters. It can be illuminating to
increase or decrease parameters, one at a time, by powers of ten to see the effects on
dynamics. From a purely mathematical and computational perspective, this could
lead the researcher towards interesting behaviors of the dynamical system. From the
mathematical biology perspective, this could help constrain parameters based on
what model behaviors are realistic or not. To some degree, the uncertainty in some
parameters is what provides an opportunity for experimentation when working with
mathematical models, and is a way that mathematical modeling can benefit the life
science communities.

1.3 Programming Refresher

As models are often systems of nonlinear differential equations that are hard or
impossible to solve analytically, we rely heavily on the freely available, open-
source program (and programming language) R for generating numerical and
graphical results of our mathematical models [42]. We provide R code for the
models discussed in this chapter, but the reader can adapt the code to work in
their favorite software. For first-time coders, we recommend downloading R and
using the provided code as a way to get familiar with mathematical software. For
the projects highlighted in this chapter, we use built-in methods in the package
deSolve [43]. Our emphasis is not on developing numerical methods, but instead
on using existing, well-established methods to study our own mathematical models.
Note that throughout this chapter we provide code that replicates the data in the
figures, but not necessarily the aesthetics of the figures. We attempt to provide the
minimal code necessary to get started on research projects, and leave it to the reader
to learn more about plotting options. We speak briefly about these options in the
Appendix.

Considering our simplest population model from Eq. (1), we will briefly illustrate
the idea behind numerical algorithms to solve differential equations, before showing
how the model can be solved with built-in methods. The most basic method for
numerically solving a first-order differential equation is Euler’s method. A detailed
explanation of Euler’s method can be found in any differential equations textbook [5,
7]; here we give the basic idea behind the algorithm, using Eq. (1) as our model.
Euler’s method uses the fact that over a short interval the tangent line to a function
is a good approximation to the actual function. If we can link up tangent lines in a
systematic way, we can produce a piecewise linear function that approximates the
true solution.

Rewrite Eq. (1) as dP
dt

= f (t, P ) where f (t, P ) = λP , and assume initial
condition P(t0) = P0. Since the derivative at a point gives the slope of the tangent
line at that point, we interpret f (t0, P0) as the slope of the tangent line to P at
point (t0, P0). We will discretize time into equal intervals of length h by computing
ti = t0 + ih, i = 0, 1, . . . , n. Then, we use the point-slope equation for a line to
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find the equation of the tangent line:

P = f (t0, P0)(t − t0) + P0. (9)

If our second time point, t1, is close enough to t0, we can approximate the solution
P(t1) using Eq. (9). Let P1 denote the approximation to true solution P(t1), so

P1 = f (t0, P0)(t1 − t0) + P0 (10)

P1 = hf (t0, P0) + P0, (11)

where we used the fact that the length of the time interval, t1 − t0, is h. This process
can be iterated as many times as desired. To find the approximate value of P at time
t2, call it P2, we use

P2 = hf (t1, P1) + P1. (12)

In general, to find the approximate value of P(ti+1), compute

Pi+1 = hf (ti , Pi) + Pi. (13)

Equation (13) is the main equation in Euler’s method.
For a concrete example of Euler’s method, consider

dP

dt
= f (t, P ) = 0.3P, (14)

with initial condition P(0) = 8.0, and discrete time steps of size h = 0.1. Say we
want to approximate the solution P over the time interval [0, 10]. Then

P1 = hf (t0, P0) + P0

= 0.1f (0, 8.0) + 8.0

= 0.1
(

(0.3)(8.0)
)

+ 8.0 = 8.2400, (15)

P2 = hf (t1, P1) + P1

= 0.1f (0.1, 8.2400) + 8.2400

= 0.1
(

(0.3)(8.2400)
)

+ 8.2400 = 8.4872, (16)

P3 = hf (t2, P2) + P2

= 0.1f (0.2, 8.4872) + 8.4872

= 0.1
(

(0.3)(8.4872)
)

+ 8.4872 = 8.7418. (17)

We could continue in this manner 97 more times until we reach
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Fig. 2 Exact and approximate solutions to Eq. (1) with λ = 0.3 and initial condition P(0) = 8.
The exact solution was found by integrating and the approximate solutions were calculated using
Euler’s method with step sizes of h = 0.1 (“small” h, black dots) and h = 1 (“big” h, gray dots)

P100 = 0.1f (9.9, P99) + P99, (18)

which is the approximation of P(t) at time point t = t100 = 10. This would be
incredibly tedious to do by hand. A computer, however, is very efficient at repeated
calculations such as these. We can program Euler’s method and quickly get the
entire approximation. Figure 2 shows the plot of the true solution, P(t) = 8e0.3t

and two different Euler approximations: one obtained with a step size of h = 0.1,
and one with a step size of h = 1. Notice that the approximation is much better with
the smaller step size. This is because the tangent line is a good approximation to the
function over a short distance, so the shorter the time step we choose, the better the
approximation.

The code parallels the work described in the calculations with one exception—in
the code we set the model parameter value, find the total length of time, and plot
the true solution. This might seem strange—to plot an exact solution, then to work
to generate approximations to this solution—but this approach allows us to better
understand how the numerical solutions compare to the exact solution.

The code provided throughout this chapter uses a tab to indicate where the
longer line (that could not fit on one line of text) continues onto the next line.
If you are copying and pasting code from an electronic source, you may have
to delete these tabs in order for the code to run correctly. Additionally, you may
have to “find and replace” the single quote ('), as printed on the page, with
the standard single quote from your keyboard. More thorough details about the
code syntax are described in Sect. 2.2, but you should not be afraid to search
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online for documentation, examples, and further explanation. Useful commands are
summarized in the Appendix, specifically in Tables 4 and 5.

The first line of the block of code below is just a comment indicating that we
are defining the parameter, the initial condition, and the maximum time. R does not
execute lines of code that begin with the number sign (#), so we can type comments
to ourselves in the code by using #’s. The next three lines of code define the
values for the parameter, initial condition, and maximum time, using the assignment
operator <- in place of where you might have expected an equals sign. After the
next comment indicating we are about to look at the true solution, we plot the true
solution. The plot() command takes the true solution as input (function(t)
tells R that what follows is a function of t, and the true solution, P(t) = P0e

λt ,
is written in a form R understands, using * for multiplication), and then specifies
various plotting options. lwd=2 sets the line width of the graph to be 2-times the
default width. col=2 sets the line color to be red, the second color in R’s default
list of colors. xlim=c(0,tmax) sets the plot range for the x-axis to be from
0 to tmax (which earlier we set to be 10). The command c(...) makes a
vector whose entries are specified by the values inside the parentheses. Finally,
xlab='time', ylab='p' tells R what we want the x-axis and y-axis to be
labeled (in this case “time” and “p”).

## parameter, initial, and max time values
lambda <- 0.3
p0 <- 8.0
tmax <- 10

## true solution
plot(function(t) p0*exp(lambda*t), lwd=2, col=2,
xlim=c(0, tmax), xlab='time', ylab='p')

Since we have already plotted the exact solution, we can use the next three chunks
of code to specify the step size h, calculate the number of steps, and generate and
plot the corresponding numerical approximation. Repeat the next three chunks of
code with another value of h to generate additional approximate solutions. The
first chunk of code sets the step size and initializes the P and t values, the second
performs the calculation, and the third handles the graphics.

## length of step
h <- 0.1

## number of steps
n <- ceiling(tmax/h)

## initialize
ts <- 0.0
ps <- p0

From here the method itself is quite simple, as given below. We use a common
programming technique called a for loop, in which a chunk of code is executed
repeatedly. for (i in 2:n){...} tells R that we want to start with i=2,
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execute the code contained in the curly brackets, and then update i to equal 3,
execute the code contained in the curly brackets, and then update i to equal 4, etc.,
all the way until i=n (which we previously calculated, and is 100 for this example).
The code inside the curly brackets is where Euler’s method is actually being
computed. We save the P estimates, ps, as a set. To access the first number in the
set, which we defined to be p0, we would type ps[1]. To access the tenth number
in the set, we would type ps[10], etc. So the code within the curly braces below
calculates the next P estimate, ps[i] by taking the previous estimate, ps[i-1],
plus the time step times λ times the previous estimate, h*(lambda*ps[i-1]),
for i from 2 to n. The next time point, ts[i], is calculated by adding h to the
previous time point, ts[i-1].

## method
for (i in 2:n) {

## approximations
ps[i] <- ps[i-1] + h*(lambda*ps[i-1])
ts[i] <- ts[i-1] + h

}

Finally, we plot each of the approximate solutions on the same graph we
already plotted the exact solution. The command lines(ts, ps, . . .)
takes coordinates given by ts (the t-values) and ps (the approximated p-values)
and connects the corresponding points with line segments. The optional arguments
lty, lwd, pch set the line style, line width, and point symbol, respectively.

## plotting approximates
lines(ts, ps, type='b', lty=3, lwd=2, pch=19)

## adding a legend
legend(`bottomright', c('exact', 'approx'),
lwd=2, col=c(2, 1), lty=c(1, 3), bg='white')

The exact solution and the results of Euler’s method with the two step sizes are given
in Table 1.

Built-in differential equations solvers in mathematical software (like R) use
more sophisticated methods than Euler’s method, but the idea is the same: find
a way to approximate the continuous solution at discrete points, in a way that
minimizes the error between the true solution and the approximation. Common
“higher order methods” (so-called because they approximate solutions to a higher
order of accuracy) are Heun’s method and the Runge–Kutta methods [9]. The
interested reader can learn much more about higher order methods by reading the
classic textbook [9], but rather than code up these methods ourselves, we will use a
built-in solver in R. To solve the same initial value problem

dP

dt
= 0.3P, P (0) = 8 (19)
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Table 1 Exact solution and
Euler’s method numerical
approximations with two
different time step values to
the initial value problem
dP
dt

= 0.3P, P (0) = 8.0.
The column labeled “Time”
represents the actual t value,
not the number of time steps.
For instance, “Time” 3
corresponds to the third time
step (t3) for h = 1, but to the
30th time step (t30) for
h = 0.1

‘Small’ step ‘Big’ step

Time Exact (h = 0.1) (h = 1)

0 8.00 8.00 8.00

1 10.8 10.75 10.40

2 14.58 14.45 13.52

3 19.68 19.42 17.58

4 26.56 26.10 22.85

5 35.85 35.07 29.70

6 48.40 47.13 38.61

7 65.33 63.34 50.20

8 88.19 85.13 65.26

9 119.04 114.40 84.84

10 160.68 153.75 110.29

using deSolve in R, we would use the code given below. The note in the
code (which refers back to the text) refers to the step of loading the deSolve
package. This only has to be done once per session, but the package may
need to be installed the very first time that it is to be used. This can be
done relatively simply by navigating the user menus or with the command
install.packages(''deSolve'') prior to loading the package.

## load package
library(deSolve) ## ** see text **

## give model
POPmod <- function(t, x, parms) {

with(as.list(c(parms, x)), {
dP <- lambda*P
list(c(dP))

})}

Now we can specify parameters, the times for which we want solution values, and
the initial conditions. With those specified, we can run the numerical solver. In
general we prefer to combine the last two lines applying as.data.frame()
directly to the lsoda() command, but as presented below it fits better on
the printed page. lsoda is a slightly more sophisticated (than Euler’s method)
numerical solver, which tends to make for a good, fast, reliable default. Other
numerical solvers available in deSolve are discussed in Appendix Table 5.
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## list parameter(s)
parms <- c(lambda = 0.3)

## specify times solution should be returned
times <- seq(0, 10, by=0.01)

## specify initial condition(s)
xstart <- c(P = 8.0)

## apply solver
out <- lsoda(xstart, times, POPmod, parms)
out <- as.data.frame(out)

We could use lines(out$time, out$P) or points(out$time,
out$P) with optional line or point style arguments to add this numerical solution
to an existing plot. However, as we have done earlier, we can plot the solution values
in a new window.

## plot solution
plot(out$time, out$P, type='l', col='red',
lwd=2, ylim=c(0, max(out$P)), las=1)

The $ symbol accesses a named column from a named data frame. For example,
lsoda creates an output (which we called out) whose first column is named time
and whose second column is named whatever the dependent variable is (in our
case, P). So, out$time accesses the column called time in the out data frame.

The results from the lsoda(...) solver from deSolve (not shown) are
closer to the true solution than either of the Euler’s method approximations. In fact,
the solutions from the built-in solver match the true solution to at least 6 decimal
places over the interval 0 ≤ t ≤ 10. This may seem like a large amount of work
to solve an equation whose solution can be found by integrating, but the approach
here scales relatively easily to more complex models. All that must be done to apply
this approach to more complex models, as is done in later examples in the text (e.g.,
Sect. 2.2), is to give additional equations, parameters, and initial conditions.

Exercise 5 Modify the given Euler’s method code to solve the initial value problem

dP

dt
= −0.1P, P (2) = 14

for 2 ≤ t ≤ 5. Experiment with several different h values. Then, modify the given
code to solve the initial value problem using the built-in deSolve command.

Exercise 6 Modify the given Euler’s method code to solve the initial value problem

dP

dt
= −3P + e−t , P (0) = 0

for 0 ≤ t ≤ 1. Note that the right-hand side explicitly contains t , so the ti values
should appear explicitly in the code. In particular, instead of
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ps[i] <- ps[i-1] + h*(lambda*ps[i-1])

we will now need

ps[i] <- ps[i-1] + h*(lambda*ps[i-1]+exp(ts[i-1]))

in the main Euler’s method step. Plot the numerical solutions for several different h

values, along with the true solution, P(t) = 1
2e−3t

(

e2t − 1
)

.

Exercise 7 This exercise is identical to Exercise 6, except the lambda value is an
order of magnitude bigger. Modify the given Euler’s method code to solve the initial
value problem

dP

dt
= −30P + e−t , P (0) = 0

for 0 ≤ t ≤ 1. Plot the numerical solutions for h values 0.1, 0.05, 0.01, and 0.001,
along with the true solution, P(t) = 1

29e−30t
(

e29t − 1
)

. Note that Euler’s method

did a poor job approximating the solution until the smallest step size. Using a more
sophisticated method like lsoda or Runge–Kutta 4 (rk4) in R produces a much
better approximation by h = 0.01. Verify this by plotting the true solution and the
numerical solution obtained using the built-in deSolve command.

2 Predator–Prey

To practice what we reviewed in Sect. 1, we will consider a specific example
involving animal populations. We will use differential equations to build a model,
and then use computational techniques to solve the model and make predictions
about the populations.

Consider a population of prey (say hares, H(t)) and of predators (lynx, L(t))
where H,L are measured in number of animals per area (also called “density”).
Assume that in the absence of lynx, the hare population increases exponentially at
constant rate α, measured in units 1

s . In the absence of hares, the lynx population
exponentially decays at a constant rate of δ

( 1
s

)

, meaning that the lynx cannot
survive on any food source other than hares. The interaction of both lynx and hares
negatively affects the hares

(

whose population decreases at a constant rate of β
( 1

density·s
))

, and positively affects the lynx
(

whose population increases at a constant

rate of γ
( 1

density·s
))

, proportionally to how many animals are present. The increase
in lynx population upon interaction with hares is due to increased reproduction
resulting from feeding; eating hares keeps the lynx healthy enough to successfully
reproduce. Given these assumptions, a basic “predator–prey” model (also known as
the “Lotka-Volterra” model [7]) can be written:
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dH

dt
= αH − βHL (20)

dL

dt
= γHL − δL. (21)

This is a two-dimensional, nonlinear model (because of the 2 state variables, H and
L, and the −βHL and γHL terms). For a thorough derivation and analysis of this
predator–prey model, see [5, 7, 13]. We assume that γ < β, to reflect the fact that
there is not a one-to-one relationship between the harm to prey, and the benefit to
predators, caused by predation. In other words, when a hare gets eaten, that is really
bad for the prey (it died), but it may only be slightly beneficial for the predator; the
predator might need several meals like that to reproduce and produce new lynxes.

2.1 Analytical Results

Due to the nonlinearity of model (20) and (21), pencil-and-paper analysis is difficult.
While we cannot derive explicit solutions H(t) and L(t), we can find a parametric
relationship between the variables using a method called separation of variables [7].
Notice that dividing dL

dt
by dH

dt
gives

dL

dH
= L(γH − δ)

H(α − βL)
, (22)

or, upon separating variables,

α − βL

L
dL = γH − δ

H
dH. (23)

Integrating each side with respect to its indicated variable yields

α log (L) − βL = γH − δ log (H) + c, (24)

where c is a constant that depends on the initial conditions H(0) and L(0).
Equation (24) can be written in standard parametric form as

α log (L) − βL − γH + δ log (H) = c. (25)

Simply deriving Eq. (25) does not provide much insight into what happens to
the populations of hares and lynx. Here we see another instance of the benefit of
computing. Using technology to plot the parametric curve for c ≈ 3.343 (obtained
from initial conditions H(0) = 50, L(0) = 8), we obtain a closed curve (Fig. 3).
A plot in which one dependent variable is plotted as a function of the other
dependent variable is often called a phase plane. Tracing the curve in the phase
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Fig. 3 Solutions to the
predator–prey model in the
phase plane. The solutions
begin from initial conditions
H(0) = 50, L(0) = 8
(indicated by the solid dot),
and quantities move along the
curve in the direction of the
arrow as time progresses
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plane counterclockwise shows the population levels of the 2 species as time goes on.
We see that the populations oscillate. For example, starting from initial condition
(H(0), L(0)) = (50, 8), the population of hares is moderate, while the population
of lynx is fairly low. As time goes on, the hare population increases quite a bit
(almost to 150) because there are not that many lynxes to eat them, while the lynx
population only increases a modest amount. However, after some time, the lynx
population starts to increase by a large amount (there are lots of hares to eat, so the
lynxes are able to reproduce at a higher rate), while the hare population actually
decreases (they are being eaten by all the new lynxes). After the hare population
gets to about ten individuals, the lynx population decreases precipitously (because
there are no longer enough hares to eat), while the hare population only shows a
modest decline. The hare population then rebounds and starts to increase (because
there are fewer lynxes to eat them), while the lynx population barely increases, until
we reach the original starting point, and the whole process repeats.

Another analytical technique is to find the steady states (or equilibria or fixed
points) of the model. These are the values at which the populations are unchanging
(

i.e., where dH
dt

= 0 and dL
dt

= 0
)

. Setting the derivatives equal to 0 and using
algebra to solve the resulting system of equations yields two steady states: H =
0, L = 0 and H = δ/γ, L = α/β. See [5, 7] for details on how to do stability
analysis to classify the steady states. For our purposes, we prefer to numerically
solve model (20)–(21), which allows us to clearly see the dynamics.

Exercise 8 Apply separation of variables to find a closed form solution to the SIS
model given in Eqs. (4) and (5). Is there anything surprising about the result? It may
be helpful to consider the equation that describes the rate of change of the quantity
N(t) = S(t) + I (t).



Exploring Modeling by Programming: Insights from Numerical Experimentation 171

2.2 Numerical Results

To explicitly see how the two populations change in time, we can numerically solve
the nonlinear system of equations. Assuming that we have already installed and
loaded the packages (see Sect. 1.3 otherwise), we can define the model by creating
the function PPmod.

## a Predator--Prey model
PPmod <- function(t, x, parms) {

with(as.list(c(parms, x)), {
dH <- alpha*H - beta*H*L
dL <- gamma*H*L - delta*L
list(c(dH, dL))

})}

If we change the model (as we may do in the exercises that follow), it would make
sense to change the text after the comment, as well as the name of the function.
The first line of the block of code is just a comment indicating the name of this
particular model. The second line of the block defines the function as one that
accepts the arguments t (for time), x (for the states), and parms (for the parameters
of the model). The next two lines define the differential equations of our model,
with the assignment operator <- in place of where you might have expected an
equals sign. The shorthand dH is used to indicate the left-hand side of the differential

equation,
dH

dt
, and on the right-hand side * is used for multiplication. The first line

after the model has been specified lists the values returned by the function PPmod,
and the final line closes up parentheses and brackets opened earlier. One minor detail
has slipped past until now: the third line with(as.list(c(parms, x)), {
serves the purpose of making our parameter and variable values available during the
execution of the function.

Next we parameterize and initialize our model, as well as provide a list of times
for which we want solution values. Here c(...) makes a vector whose entries can
be named and seq(...) automates making a vector of a given length or spacing.

## parameters
(parms <- c(alpha=1.1, beta=0.05, gamma=0.01,
delta=0.5))

## vector of time steps
(times <- seq(0, 500, by=0.1))

## initial conditions
(xstart <- c(H = 50, L = 8))

An alternative approach to the above section omits the outer set of parentheses on
each line. What we have shown in the text is a shortcut that allows for simultaneous
assignment and printing of an object. Without these parentheses each object is
“silently” assigned without being printed to the screen. In many cases we like the
approach above as it provides another opportunity to troubleshoot and error check.
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The initial conditions, time values, model, and parameter values are fed to a
built-in solver, here lsoda(), and the output is processed into a “data frame” by
as.data.frame(...). Treating the output as a data frame means that we can
conveniently access columns by name for graphing or calculations. As earlier, we
print this on separate lines for readability, but the two lines can be combined.

out <- lsoda(xstart, times, PPmod, parms)
out <- as.data.frame(out)

It would be worth taking a few moments to explore the output by using a few
built-in commands including head(...) which gives the first 6 rows of output
(e.g., head(out) gives the first 6 rows of the data frame out), tail(...)
which gives the last 6 rows, and summary(...) which robustly gives column by
column summaries of its argument. Go ahead, try. We will wait. Next, it is possible
to access specific columns by their name, such as out$time, or their position in
the output, such as out[ , 1] for the first column. To look at the first row of
output, perhaps to verify our initial conditions were applied correctly, we would
use out[1, ]. Leaving the row or column blank gives all entries of the requested
column or row. For example out[10, 2] gives the tenth value of the second
column (in this case out[10, 'H'] is equivalent). Depending on your purpose it
may be easier (or safer) to refer to a quantity by name or number.

We can then plot results of the model by making two separate plots (as shown)
or by specifying the figure layout (such as par(mfrow=c(1,2)). The command
matplot(...) allows us to plot two (or more) quantities simultaneously.

## plot 1
matplot(out$time, out[, c('H', 'L')], type='l',
lwd=2, col=c('blue', 'red'), lty=1,
ylim=c(0, 150), xlab='Time', ylab='Population
densities (number/area)', las=1)
legend('topleft', c('Prey (H)', 'Predator (L)'),
col=c('blue', 'red'), lty=1, bg='white')

## plot 2
plot(out$H, out$L, type='l', xlim=c(0, 150),
ylim=c(0, 50), xlab=`Prey (H)',
ylab='Predator (L)', las=1)

Figure 4 shows the solutions as a function of time (i.e., the “dynamics”), as
well as the solution curve in the phase plane. In the dynamics plot, we see that
as time goes on, the populations oscillate, with the peaks in predator population
(red curve) lagging behind the peaks in prey population (blue curve). In fact, this
time course data is information that we were unable to get from analysis alone, as
we were unable to explicitly solve for H(t) and L(t). In the next section, we will
apply the techniques we learned from the predator–prey system analysis to a more
complicated model of parasite transmission in cats.
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Fig. 4 Solutions to the predator–prey model obtained using our PPmod code. Parameter values
α = 1.1, β = 0.05, γ = 0.01, δ = 0.5, and initial conditions H(0) = 50, L(0) = 8 were used.
(Left) Solution densities plotted against time. (Right) Solutions in the phase plane

Exercise 9 Modify the provided code to solve the model where instead of
alpha*H, the hare population grows at a constant rate alpha. In this case,
the constant rate alpha models immigration—hares entering the population at a
rate that does not depend on the current population density of hares.

Exercise 10 Modify the predator–prey model and code to study a system with a
second predator species. Assume both predators eat the same prey species, but do
not directly interact with each other. What happens if the second predator species
has a higher benefit rate (the γ term) than the first species, but also a higher death
rate (δ)?

Exercise 11 Modify the predator–prey model and code to study a system with a
second prey species. Assume both prey species are eaten by the predator, but do
not directly interact with each other. What happens if the second prey species has
a higher growth rate (α) than the first species, but is also preferred by the predator
species (β is higher)?

3 Toxoplasma gondii Transmission in Cats

Armed with the confidence we accrued in Sects. 1 and 2 to build and numerically
solve mathematical models, we will begin applying these techniques to open-ended
research projects. The models presented in Sects. 3–5 all started as undergraduate
research projects, and they are good starting points for independent research.
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Toxoplasma gondii (T. gondii) is one of the most successful parasites on Earth,
infecting cats, rats, seals, and more than a third of the human population [27].
Animals contract the parasite by consuming infected food or coming in contact
with infected cat feces. Toxoplasmosis, the disease caused by T. gondii, presents
flu-like symptoms in humans, but can be deadly to endangered monk seals.
Pregnant women with toxoplasmosis can have miscarriages, stillbirths, and other
birth anomalies [40]. Cats are the only animal in which T. gondii reproduces, so
it is critical to understand how the parasite moves through a cat population, and
then potentially spills into other species. In a year-long undergraduate research
project, we built and analyzed a between-host differential equations model to study
transmission of T. gondii; specifically, we studied how pathogen infectiousness and
shedding rate into the environment affect the proliferation of infection in the cat
population. For additional models of T. gondii, see [17, 23].

A schematic of the model is shown in Fig. 5. The basic idea of our model is that
infectious cats shed T. gondii oocysts (a specific life-stage of a parasite) into the
environment. Susceptible cats that are exposed to these oocysts in the environment
can become infected with the parasite. The model equations are

Susceptible Cats
dS

dt
= b − ωES − mS (26)

Acutely Infectious Cats
dI

dt
= ωES − γ I − δImI (27)

Chronically Infectious Cats
dC

dt
= γ I − δCmC (28)

Fig. 5 Schematic model of T. gondii transmission in cats. S is the number of susceptible cats, I

is the number of acutely infectious cats, C is the number of chronically infectious cats, and E is
the number of oocysts in the environment. This figure was modified from [31], and is reproduced
here with permission. Copyright ©2018 Society for Industrial and Applied Mathematics. Reprinted
with permission. All rights reserved
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Oocysts in Environment
dE

dt
= λI I + λCC − ηE (29)

where b is the birth rate of cats
( # cats

week

)

, m is the death rate of cats
( 1

week

)

, γ is the loss

of acute infection in cats
( 1

week

)

, δI is the infection-associated mortality in acutely

infectious cats (unitless), δC is the infection-associated mortality in chronically

infectious cats (unitless), η is the oocyst degradation rate in the environment
(

1
week

)

,

ω is the rate of infection in cats
( 1

# oocysts×week

)

, λI is the oocyst shedding rate per

acutely infectious cat
( # oocysts

cat×week

)

, and λC is the oocyst shedding rate per chronically

infectious cat
( # oocysts

cat×week

)

, where oocysts are measured in billions.
Many parameter values can be found in, or estimated from, the literature (see

citations in [31]). Other parameter values are harder to estimate. In the following
section we discuss how numerical experimentation can help overcome this difficulty.

3.1 Role of Technology

In this project, we focus specifically on how the rate of infection (ω) affects
steady-state population sizes. First, we use numerical solutions to generate intuition
about the model behavior and biological system. Then we use programming to
compute substantial calculations (solving the model dozens of times for dozens of
different parameter values) to generate patterns. Then, insight gleaned from those
patterns guides our use of analytical techniques to derive concrete evidence for the
predictions obtained via numerical experimentation.

The model in Eqs. (26)–(29) can be translated to the code below. The student
began with computer code for numerically solving the two-dimensional predator–
prey model (see Sect. 2, specifically Sect. 2.2 for examples of the preliminary code)
and updated the code to reflect the new variables and equations. In the code we use
a “dot” where we might otherwise use an underscore to denote a subscript.

TOXOmod <- function(t, x, parms) {
with(as.list(c(parms, x)), {

## susceptible cats
dCs <- B - Omega*E*Cs - M*Cs

## infected cats
dCi <- Omega*E*Cs - Gamma*Ci - Delta.i*M*Ci

## chronically infected cats
dCc <- Gamma*Ci - Delta.c*M*Cc

## environment
dE <- (Lambda.i*Ci + Lambda.c*Cc) - eta*E
list(c(dCs, dCi, dCc, dE))

})}
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The model then needs parameters, a list of times for which to calculate the
solution, and initial conditions. It is very important that the initial conditions match
the order of the output listed in the model, and that the order of the output listed in
the model matches the order of the listed equations.

## The parameters
parms <- c(

B = 60*(1/52), ## birth rate of kittens per week
Omega = 0.046, ## rate of infection
M = 0.2*(1/52), ## mortality of cats
Gamma = 11/15, ## loss of acute infection
Delta.i = 1.05, ## added mortality from acute
Delta.c = 1.0005, ## added mortality from chronic
eta = 4*(1/52), ## oocyst decay rate
Lambda.i = (0.07/11), ## acute shedding rate
Lambda.c = 0) ## chronic shedding rate

## vector of timesteps
times <- seq(0, 50*52, by=1)

## initial conditions
xstart <- c(Cs = 495, Ci = 5, Cc = 0, E = 0)

Finally, we solve the system of differential equations. Again, we use the built-in
solver lsoda, which is a reliable default solver.

## run model
out <- lsoda(xstart, times, TOXOmod, parms)
out <- as.data.frame(out)

In Sects. 3.2 and 3.3 we discuss various ways to use technology to visualize the
model results and run more in-depth numerical experiments.

3.2 Dynamics

To illustrate the model dynamics we plot the cat solutions with an inset for the
relatively small acutely infectious cat population. The fig arguments of the second
instance of par() set the internal plot window for the inset. Here the student chose
a somewhat sophisticated color scheme for the plotting to match the colors of the
diagram in Fig. 5. With this choice of colors, the use of line styles makes the plot
more readable in black and white or for the vision-impaired.

## plot susceptibles
plot(out$time, out$Cs, type='l', col='#B276B2', lty=1,

ylim=c(0, 500), las=1, lwd=3,
xlab='Time (in weeks)', ylab='Cats')

## add acute then chronic
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lines(out$time, out$Ci, col='#F17CB0', lty=3, lwd=3)
lines(out$time, out$Cc, col='#FAA43A', lty=2, lwd=3)
## legend
legend(`topright', c('S', 'I', 'C'), lty=c(1, 3, 2),

lwd=2, col=c('#B276B2', '#F17CB0', '#FAA43A'),
bg='white')

## acute infection closeup
par(fig = c(0.25, 0.80, 0.5, 0.95), new = T)
plot(out$time, out$Ci, type='l', col='#F17CB0', lty=3,

lwd=3, xlim=c(0, 600), ylim=c(0, 35),
xlab='Time (in weeks)', ylab=`Infectious', las=1)

We also plot the environmental parasite burden in a separate window since its
scaling is quite different from that of the cat population.

## plot oocysts
plot(out$time, out$E, type='l', col='#60BD68', las=1,

lwd=3, ylim=c(0, 2), xlab='Time (in weeks)',
ylab='Oocysts in Environment (billions)')

## legend
legend('topright', 'E', lwd=2, col='#60BD68',

bg='white')

Figure 6 shows the dynamics of the system for ω = 0.046 1
# oocysts×week ,

with other parameter values as given in the caption. Note that rather than trying
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1100 ,

λC = 0. Initial conditions were S(0) = 495, I (0) = 5, C(0) = 0, and E(0) = 0
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to solve the nonlinear system of 4 coupled differential equations analytically, we
relatively quickly and easily solved the system numerically. We see that for the given
parameters, each cat subpopulation displays decaying oscillations and eventually
levels out at a fixed value (i.e., reaches a steady state). The number of oocysts in
the environment also oscillates until reaching a small, but nonzero, steady state. In
the long run, there will be very few acutely infectious cats (the pink dotted line is
almost 0), and more chronically infectious than susceptible cats (the dashed orange
line is above the solid purple line).

3.3 Stability Analysis

For the results above, we picked 0.046 1
# oocysts×week as the value of the unknown rate

of infection parameter, ω. But should we expect similar results if we pick a different
value for ω? We do not want to overgeneralize our results and assume that because
the chronically infectious subpopulation of cats reaches a nonzero steady state, that
it will also reach a nonzero steady state for any set of parameter values. What if the
true value of ω is 0.01 1

# oocysts×week , for instance, and results are totally different?

Then by only looking at the case ω = 0.046 1
# oocysts×week , we will be making

claims about cat subpopulations and suggesting methods for controlling T. gondii
transmission that are not based on the true system. Enter numerical experimentation.
We can quickly test a range of parameter values and see how the model behaves.

Given the results of well-planned numerical experimentation, we determined that
it would be worth studying the effect of the rate of infection parameter ω on the
dynamics. To investigate this we set a range of values with which to parameterize
the model.

## sets range of parameters
omegas <- seq(0, 0.15, length=101)

## initialize 'vals' for storage
vals <- NULL
sols <- NULL

From here we calculated and stored the complete solution corresponding to each
value and also recorded the final value of the solution.

## steps through omegas
for(i in 1:length(omegas)){

parms['Omega'] <- omegas[i]

## solve and store solution
out <- lsoda(xstart, times, TOXOmod, parms)
sols[[i]] <- as.data.frame(out)

## saves last row, 2nd through last column of solution
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Fig. 7 Plot of stable steady-state values of the cat subpopulations for varying rates of infection, ω.
Color and line styles are Susceptible (S): purple, solid; Acutely Infectious (I ): pink, dotted;
Chronically Infectious (C): orange, dashed. Parameter values used for these results are as follows:
b = 60

52 ,m = 2
520 , γ = 11

15 , δI = 1.05, δC = 1.0005, η = 4
52 , λI = 7

1100 , λC = 0, and ω was
varied from 0 to 0.15 by steps of 0.0015

vals <- rbind(vals, out[nrow(out), 2:ncol(out)])
}

Now we can plot the suspected equilibrium values against the corresponding
parameter values. At the moment we say “suspected” because it is possible that
the solution has not reached equilibrium by the time we stop our code. A fast, but
unrigorous, way to test this is to inspect the plot in Fig. 7 for any jumps or bumps
that might indicate that the solution has yet to reach equilibrium at the time that the
numerical solution is stopped. If we see jumps or bumps, we inspect the dynamics
of the corresponding stored solution and, if necessary, calculate the solution for a
longer time until it reaches equilibrium. Additionally (or alternatively), we could
numerically check for equilibria by looking at the variable values at the last several
time points; if the values are the same up to some tolerance that makes sense for the
given problem (say, 6 decimal places), then we consider equilibrium to be reached.

## panel 1
matplot(omegas, vals[,1:3], type='l', lty=c(1,3,2),

lwd=2, col=c('#B276B2', '#F17CB0', '#FAA43A'),
xlab='Rate of infection',
ylab='Cat steady-state values', las=1)

## panel 2
plot(omegas, vals[,4], type='l', lty=1, lwd=2,

col='#60BD68', las=1, xlab='Rate of infection',
ylab='Oocyst steady-state values (billions)')
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We numerically solved the model equations 101 times for 101 different ω values
ranging from 0 to 0.15 1

# oocysts×week by steps of 0.0015, and saved the steady-
state values of each subpopulation from each run (as seen in the code above).
Figure 7, where we plot the steady-state values as functions of ω, summarizes
the results. Note that the results are actually discrete points, but we have joined
them with a line. We learn quite a lot about the system from this graph. Firstly, we
see that for “small enough” ω values (below about 0.03 1

# oocysts×week ), T. gondii is
completely eradicated from the system; the steady-state subpopulations of acutely
and chronically infectious cats are 0, and we only end up with susceptible cats
in the population. For rates of infection above about 0.03 1

# oocysts×week , T. gondii
remains, mostly in the form of chronically infectious cats. Notice also that at
ω ≈ 0.06 1

# oocysts×week , we switch from a population in which susceptible cats
dominate, to a population in which chronically infectious cats dominate.

Here we should pause to note that it is possible to generate the same figure using
analysis, rather than numerics. Much literature is dedicated to the subject of the
“basic reproductive number,” R0, or the number of new infections caused by a single
acutely infectious individual in a fully susceptible population. We direct the reader
to Refs. [11, 12] for a general discussion, and to Ref. [31] for the R0 calculation
for model Eqs. (26)–(29). Using this analysis one can show that T. gondii will be
eradicated from the population if

ω < m2ηδC(γ + δIm)

(
δC(γ + δIm) + γ

γ b(γ λC + δCλIm)

)

. (30)

For the parameter values used in this study, that means ω < 0.0596 1
# oocysts×week .

So while it is possible to do some analysis on this system, it is faster and more
illuminating, in our opinion, to do the numerical study first. After getting a feel
for the problem, and recognizing that there is a switch in behavior, we can do the
pen-and-paper analysis.

3.4 Implications

The actual rate of infection is unknown, but if our other parameter values are
realistic, then Fig. 7 can help us determine a range of possible ω values for a given
cat population. For instance, if we know that a particular population of cats has a
steady population of chronically infectious cats, then we know that ω must be larger
than 0.03 1

# oocysts×week (because below that value the model predicts there are no
chronically infectious cats).

Rate of infection depends on two separate things: the probability of infection
when a susceptible cat encounters the parasite, and the rate at which a cat encounters
the parasite. It is unlikely that we can change the probability of infection, but
perhaps it is possible to change the rate at which a cat encounters the parasite. Or,
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we can aim to reduce the total number of oocysts in the environment, by treating the
environment with an agent that kills T. gondii oocysts.

The modeling and numerical experimentation helped elucidate potential targets
for reducing T. gondii infection in cats. At this stage in mathematical biology
research, it is useful to discuss the model and/or results with a biologist familiar
with the system you are studying. The biologist can give you a feel for how feasible
the model results and implications are, and suggest further avenues of study. Also,
your model results may cause the biologist to think differently about the system,
which could lead to exciting new experiments the biologist might not have thought
of otherwise.

In the projects below, we pose a lot of questions to get the reader/researcher
started. We do not know the answers to these questions, or even if the answers will
be interesting. Do not constrain yourself to our questions. If you see some interesting
results, dig into them. Ask your own questions.

Research Project 1 (Additional Parameter Studies) In the model
described in Sect. 3, we assumed the rate at which chronically infected cats
shed oocysts into the environment, λC , is 0 # oocysts

cat×week . How do results change
if λC is small but nonzero? Which situation seems most realistic? There
is a range of values we have estimated for most of the parameters in the
model [31], but for the results shown above, we usually used the midpoint
of the range (with the exception of the δ parameters). What happens if you
use the upper range of all of the parameters? What about the lower range?
When you change so many values at once, it is hard to tell which one(s) is/are
responsible for the differences in results. Can you systematically change
parameters in such a way to identify which are having the biggest effect on
results? (For example, making λI its maximum value seems to drastically
change the quantitative, but not qualitative results.) Are there parameters that
change the qualitative results, too? Is there ever a situation in which acutely
infectious cats have a large steady-state population? Is there ever a situation
in which the populations oscillate forever, without reaching a steady state?

Research Project 2 (Birth Function) In the model described in Sect. 3, we
assumed that cats were born at a constant rate, free of the T. gondii parasite,
irrespective of the number of cats present. Can you think of other reasonable
assumptions for cat reproduction? (For example, should the rate at which cats
are born depend on the number of cats in the population? If so, should it
depend on the numbers in all subpopulations, or only some subpopulations?
Does a logistic growth term make more sense? etc.) How would you

(continued)
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Research Project 2 (continued)
implement these different rates into the model? Once implemented, can you
repeat the types of numerical studies described above? What conclusions do
you draw about how T. gondii spreads through a cat population? How could
humans attempt to reduce the spread of T. gondii? Note: using different birth
functions could fundamentally change model results. You may find other,
more interesting avenues to pursue, rather than simply looking at how steady-
state values change with varying ω. Be curious as you analyze the dynamics
of your model, and ask (then try to answer) new questions.

Research Project 3 (Cat Ecology) Consider what changes to the model
would be necessary to account for a prey species upon which cat reproduction
depended (see the predator–prey model as a start) or if we considered
predators of the cats themselves. Make an assumption about cats as predators
or prey and add another species to the model. Does this second species have a
direct role in the transmission of infection or does it mostly act to manipulate
the cat population?

Research Project 4 (New Model System) The model described in Sect. 3
was for T. gondii transmission in a population of cats. Read about a different
parasite or disease, and build a new model of its transmission through its host
population. Now use numerical techniques to study your model and make
predictions about how to best maintain a healthy population.

4 Circadian Rhythms and Alcohol Dependence

In Sect. 3 we studied a problem on the large scale of environments and populations.
Similar techniques can be used to study smaller-scale phenomena, like activity
within a cell.

The mammalian circadian oscillator is the body’s internal, 24-h clock that
controls brain wave activity, energy production, and other biological activities
(and, incidentally, is responsible for the jet lag experienced when changing time
zones). Acute and chronic alcohol consumption disrupts a regular circadian rhythm,
which subsequently affects mood regulation, sleep cycles, blood pressure, and other
biological rhythms [28]. For the following project, we started with a model from the
literature [4], tweaked it to include an effect of alcohol, and then analyzed the model
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results numerically to gain biological insight. Further modeling ideas are listed as
Projects 5 through 7.

Deoxyribonucleic acid (DNA) contains the genes that regulate almost everything
in a living organism. During transcription, messenger ribonucleic acid (mRNA) is
made from DNA. Then the mRNA is decoded to produce active proteins in the
process of translation. Proteins are critical to organismic life; proteins are necessary
for the structure, regulation, and function of tissues and organs. In this project, we
consider four proteins that are involved in regulating circadian rhythms.

For a more thorough explanation of the biology and the model, see Becker-
Weimann et al. [4]. In the brief explanation that follows, mRNA is represented
by italics, and protein is represented by ALL CAPS. Figure 8 shows a schematic
of the simplified biology used to build the mathematical model. Within the
nucleus of a neuron, the transcriptionally active BMAL1/CLOCK (Ba) heterodimer
(macromolecule formed from two distinct proteins) activates transcription of Per2
and Cry genes, resulting in more Per2/Cry mRNA (Pm), and consequently more
PER2/CRY protein (Pc) in the cytosol. The PER2/CRY complex is transported
to the nucleus (Pn), where it inhibits Per2/Cry transcription and activates Bmal1
transcription. This increases the amount of Bmal1 mRNA (Bm) and BMAL1 protein
(Bc) in the cytosol. The BMAL1 protein can be transported to the nucleus (Bn),
where upon activation to the transcriptionally active form, BMAL1* (Ba), it is
able to activate transcription of Per2 and Cry, starting the cycle all over again. See
Becker-Weimann et al. for an explanation of model assumptions [4].

The model described by Fig. 8, as presented in Becker-Weimann et al., is

Per2/Cry mRNA
dPm

dt
= vP (Ba + c)

kMP (1 + (Pn/ki)s) + (Ba + c)
− dPmPm (31)

PER2/CRY (cyto.)
dPc

dt
= kbPm

q − dPcPc − kin
P Pc + kout

P Pn (32)

PER2/CRY (nuc.)
dPn

dt
= kin

P Pc − kout
P Pn − dPnPn (33)

Bmal1 mRNA
dBm

dt
= vB(Pn)

r

kr
MB + (Pn)r

− dBmBm (34)

BMAL1 prot. (cyto.)
dBc

dt
= ktBm − dBcBc − kin

B Bc + kout
B Bn (35)

BMAL1 prot. (nuc.)
dBn

dt
= kin

B Bc − kout
B Bn − dBnBn + kdBa − dBaBn (36)

BMAL1 (trans. active)
dBa

dt
= kaBn − kdBa − dBaBa (37)

where “cyto.” refers to “in the cytoplasm,” “nuc.” refers to “in the nucleus,” “prot.”
refers to “protein,” and “trans. active” refers to “transcriptionally-active form.”
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Fig. 8 Model of mammalian circadian oscillator. (Adapted from [4].) The asterisk on BMAL1*
protein Ba indicates that this BMAL1 protein is transcriptionally active, and is able to start
transcription of Per2/Cry genes. Dashed arrows represent degradation of mRNA and protein, solid
arrows represent a positive effect, and the solid line with a vertical bar at the end represents a
negative effect of Pn on activation of Pm. The red parameter, a, is our novel modification to the
model

As a brief modeling aside, the function f (Pn) = (Pn)r

kr
MB+(Pn)r

on the right-hand

side of Eq. (34) is called a Hill function [29]. Hill functions, which have a sigmoidal
shape, are commonly used in modeling because they describe cooperativity of
smaller molecules (called ligands) binding to macromolecules (like enzymes or
receptors). In the variables of our model, Pn is the concentration of unbound ligand
and kMB is the ligand concentration that results in half of the macromolecule
binding sites being occupied by ligand. The Hill coefficient, r , is a measure of the
cooperativity: if r > 1, then when a ligand binds to the macromolecule, the binding
affinity for other ligands increases (bound ligands encourage additional binding of
ligands, called “positive cooperativity”); if r < 1, then when a ligand binds to
the macromolecule, the binding affinity for other ligands decreases (bound ligands
discourage additional binding of ligand, called “negative cooperativity”); if r = 1,
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the binding affinity of a ligand to the macromolecule is independent of whether
or not other ligands are already bound (called “noncooperativity”). In our model,
r = 3, meaning that once Pn binds to Bm, even more Pn is likely to bind.

4.1 Role of Technology

Clearly the nonlinear, seven-dimensional model in Eqs. (31)–(37) is too compli-
cated to solve analytically. By solving numerically, we find approximately 24-h
oscillations in the mRNA and proteins, as expected in healthy circadian oscillations
(see Exercise 12).

Exercise 12 Use technology to reproduce Figure 3A from [4]. Required parameter
values are available in [4] and in the Appendix of this chapter.

To investigate the effect alcohol has on this system, we make one small change
to Eq. (31):

dPm

dt
= avP (Ba + c)

kMP (1 + (Pn/ki)s) + (Ba + c)
− dPmPm. (38)

Here, a represents the effect of alcohol in reducing transcription of Per and
Cry. If a = 1, we have the standard, maximal transcription rate given in Becker-
Weimann et al.; if a = 0, the effect of alcohol is so strong that transcription has
been completely shut off. Values of a between 0 and 1 represent varying degrees of
reduction in transcription. Using technology, we can study the effect parameter a

has on the system.
To understand the effect of alcohol on circadian rhythms, we numerically solve

the model using a values less than 1 and compare the results to the Becker-Weimann
et al. model, which does not contain alcohol. Sample code is provided in the
Appendix, but the idea is very similar to that presented in Sect. 3: input the model
equations, parameters, time steps, and initial conditions, then solve the equations.
As in Sect. 3, we can solve the model for a range of values of a particular parameter
(in this case a instead of ω), and save information about how the model variables
behave for each parameter value. In this project, however, we find oscillations rather
than equilibrium values; our mRNA and protein concentrations are not leveling out
at certain values, but rather oscillating as time goes on.

4.2 Model Dynamics

The dynamics of the model (Eqs. (32)–(38)) are shown in Fig. 9. In the left panel
of Fig. 9, the concentrations of PER2/CRY protein and BMAL1 protein in the
absence of alcohol are shown as gray solid and black dashed curves, respectively.
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Fig. 9 Dynamics of model with parameter values and initial conditions specified in the sample
code in the Appendix. Parameter values that differ between plots are (Left) a = 0.2; (Right)
a = 0.1. Only late time points are displayed in the figure on the left to show that oscillations are
sustained, even in the presence of alcohol

The same proteins in the presence of a strong alcohol effect (a = 0.2) are shown
in red. We see that alcohol reduces both the peak concentration and the period of
oscillation. A shorter period of oscillation means a less-than-24-h circadian rhythm,
which would negatively affect the health of the individual. In the right panel of
Fig. 9, the concentrations of PER2/CRY and BMAL1 in the absence of alcohol are
still shown in gray and black, and in red are the concentrations in the presence
of a stronger alcohol dependency (a = 0.1). In this case, oscillations disappear
completely, meaning there is no longer a circadian rhythm. Studies have linked the
disruption of the circadian oscillator to the development of cancer [18], heart disease
[41], and depression [36], so our theoretical patient whose oscillations disappear
could be in trouble.

4.3 Bifurcation

When simply changing a parameter value results in a drastic qualitative switch in
behavior (e.g., moving from a regime in which oscillations persist into one with
no oscillations), we say that a bifurcation has occurred. (See Ref. [44] for a nice
introduction to bifurcations.) We can get a clearer picture of the effect parameter
a has on the system by conducting a numerical experiment. To obtain Fig. 10 we
numerically solve the model equations 30 different times for 30 different a values,
equally spaced between a = 0.0 and a = 1.0. For each value of a, we numerically
calculate the peak protein concentration (using findpeaks() in the pracma
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Fig. 10 Effect of varying a, the alcohol sensitivity parameter, on (Left) peak values and (Right)
period of oscillation, with other parameter values specified in the sample code. Note that a values
near 0 indicate a large alcohol effect; a = 1 indicates no alcohol effect

package [6]) and use the peak times to calculate the period of oscillations, then
summarize the results in Fig. 10. From this computational work, we see that there
must be a bifurcation that occurs at an a close to 0.2; for a ≥ 0.2, oscillations
exist, but for a < 0.2, there is a stable steady state without oscillations. We also
see that alcohol seems to have a bigger effect on peak BMAL1 protein than on
peak PER2/CRY protein. Peak PER2/CRY protein levels are not that different for
a-values between 0.3 and 1.0, but peak BMAL1 protein levels are reduced by about
half in that same a range. Alcohol seems to affect the period of oscillation of
PER2/CRY and BMAL1 proteins in the same way (gray squares and black circles
are almost indistinguishable in Fig. 10 (Right panel)).

It is possible to make bifurcation diagrams with specialized software like XPP
AUTO [16]. A bifurcation diagram plots the stable and unstable steady states, as
well as the periodic orbits (regions of oscillations), of the system as a function
of a parameter value. Making bifurcation diagrams look “nice” can take quite
a lot of finessing, but we can learn a lot of the same information using the
numerical technique we employed to make Fig. 10. We will not explicitly discuss
the construction of bifurcation diagrams here, but we turn the interested reader to
the XPP AUTO tutorial for detailed information and sample codes [14, 15].

Research Project 5 (Bifurcation Diagram) Use XPP AUTO to make a
bifurcation diagram using a as the bifurcation parameter. This could take quite
a bit of fine-tuning, as well as decision-making. For example, which variable
should you focus on as a varies? Perhaps start with PER2/CRY or BMAL1

(continued)
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Research Project 5 (continued)
protein. Is it also worth looking at how mRNA levels are affected by a? After
creating the bifurcation diagram, analyze it to understand how alcohol affects
the concentration of your chosen variable. What insight does this give you into
possible targets for treating patients with alcohol-dependent circadian rhythm
problems?

We made a fairly simple modification (Eq. (38)) to an already-published
model [4]. This is a great way to get started on a research project. Read a published
model, looking carefully at the model assumptions. Is there an assumption you
could relax, or another factor that you could add? Asking questions will get you
thinking about the problem in new ways, and could open up avenues of exploration.
For example, in Eqs. (31)–(37), proteins PER2 and CRY were treated as a single
protein; no distinction was made between the two. One extension of the model
would be to include both proteins (and their corresponding mRNA), in order to
understand the relative importance of each individual protein (see Project 7).

Care must be taken not to make the new model overly complicated (assumptions
should still be made in order to keep the model “as simple as possible but no
simpler”), but modifying an existing model is a good way to get your feet wet with
research. Another benefit of modifying an existing model is that you can compare
the results of your new model to the results of the published model. You can see if the
changes you made had a large effect on the system or not. Even if your results look
similar to the original, something important has been learned: whatever changes
you made likely aren’t critical to the underlying problem (or you did not model
these critical components appropriately).

Research Project 6 (Time-Dependent Alcohol Parameter) In Eqs. (32)–
(38), the effect of alcohol was modeled as a constant, a, or as a piecewise
constant. Modify the model so that the alcohol parameter is a time-dependent
function, a(t). The help file for the lsoda differential equations solver
contains examples of how to accomplish this in general, but for simple
choices of forcing function, the term can just be added in-line in the
differential equation. Think of functions that might reasonably model alcohol
consumption over time, and implement them one at a time into the code.
Compare and contrast the results from each case. What insight does this
give you into possible targets for treating patients with alcohol-dependent
circadian rhythm problems?
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Research Project 7 (Modified Model) Modify the model to account sepa-
rately for PER2 and CRY (rather than including them in a single variable).
Do background reading to decide how best to do this. Compare results of this
model to the model presented in Eqs. (32)–(38). Was it important to account
for the two proteins separately, or was it reasonable to make the assumption
that we could treat them as the same protein?

5 Influenza Dynamics, Healthcare Options,
and Associated Costs

Our final research example returns to larger-scale, population-level infectious
disease dynamics. In this project, we study the dynamics of a common pathogen
and the healthcare costs associated with its treatment.

At some point in your life, you or someone you know has likely contracted
influenza, commonly called “the flu.” Symptoms vary, but are often bad enough
to keep the sufferer home from work or school. In the USA alone it has been
estimated that the annual impact of seasonal influenza infections is approximately
31.4 million outpatient visits, 3.1 million days of hospitalization, and over 600,000
life-years lost [39]. Mathematical models of influenza seek to explain person-to-
person transmission dynamics at the population level [10, 38], the immune response
to infection at the individual level [3], and even the evolutionary dynamics of the
virus within and across epidemics [33]. Broadly speaking, infections by seasonal
influenza viruses pose serious risk to the elderly, the young, and to those with
compromised immune systems.

The project described in this section was the result of a year-long undergraduate
research effort aimed at analyzing traditional epidemiological models from an
actuarial science perspective; that is, understanding the healthcare costs associated
with a variety of public health approaches to managing seasonal influenza. We were
especially interested in how assumptions or decisions about treatment influenced the
total healthcare costs accumulated across one or more seasons. This model presents
an attempt at specifying a few of the complex medical, economic, and ethical factors
that meet at the intersection of infectious disease dynamics and public health and
policy. You are encouraged to explore the consequences of our assumptions, as well
as some of your own, in a few of the projects at the end of this section.

The diagram in Fig. 11 can be transcribed into Eqs. (39)–(45). Implicit in the
model is the assumption that all births create susceptible individuals and that there is
no vertical transmission of infection (infection from mother to newborn) or transfer
of acquired immunity to offspring. Births occur at a constant rate of p individuals
per year and all individuals are subject to natural mortality at a rate m per year.
The transmission parameter β characterizes the rate at which new cases occur in
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Fig. 11 Compartments and
transitions for the influenza
model. We consider
populations that are healthy
or susceptible S, infectious I ,
vaccinated V , dead D,
recovered naturally N , or
recovered following
treatment R. Though the
transition is not shown to
simplify the diagram,
vaccinated, naturally
recovered, and treated
individuals are allowed to
lose immunity and return to
the susceptible group

response to interactions between susceptible and infectious individuals. We have
modeled the loss of infection (and infectiousness) as a process whereby individuals
are lost to death or recovery at a rate γ . A fraction δ die and the remaining fraction
(1 − δ) are assumed to have recovered in response to treatment with probability ρ,
or naturally with probability (1 − ρ). Individuals are vaccinated at a rate of ζ per
year and all individuals with immunity, including those who have recovered from
infection, lose immunity at a rate ω.

Susceptible
dS

dt
=p−mS−βSI−ζS + ω(V + N + R) (39)

Vaccinated
dV

dt
= ζS − mV − ωV (40)

Infectious
dI

dt
= βSI − γ I − mI (41)

Natural recovery
dN

dt
= (1 − δ)(1 − ρ)γ I − mN − ωN (42)

Recovery after treatment
dR

dt
= (1 − δ)ργ I − mR − ωR (43)

In an uncommon twist, we append Eq. (44) to help explicitly track the number of
deaths associated with infection

Dead
dD

dt
= δγ I. (44)
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The distinction between natural recovery, recovery following treatment, and death
as outcomes of infection in the model is somewhat unique. In particular, by certain
choices of parameters (e.g., δ = 0 and/or ρ = 1), we can conveniently experiment
with different outcomes of infection using the same model (see Project 12).

Depending on the goal of a particular modeling project, deaths may be ignored
or lumped in with members of a “removed” category—those individuals for some
reason unable to participate in dynamics. Since significant financial costs are
associated with death, we made a decision to track influenza-related deaths. Ignoring
Eqs. (44)–(45), the model presented would be a fairly generic and flexible model
of infectious disease transmission allowing for vaccination, recovery with and
without medical intervention, and infection-associated deaths [2, 8, 26]. We assign
healthcare costs associated with vaccination by z, with infection by b, with death
by d, with natural recovery by n, and with hospitalization-aided recovery by r .
Specifically, Eq. (45) allows us to track the healthcare costs associated with many of
the transitions recorded in the other model equations (e.g., cost of vaccination, cost
of curative antiviral treatment).

Cost
dC

dt
=zζS + bβSI + dδγ I + n(1−δ)(1−ρ)γ I + r(1 − δ)ργ I (45)

Many of the healthcare cost parameters listed in the sample code were calculated by
scaling national estimates to a population of size and density reflective of Oklahoma
County, Oklahoma (roughly one thousand per square mile) [39].

5.1 Role of Technology

The model described in Eqs. (39)–(45) is a seven-dimensional nonlinear system of
differential equations, for which numerical approaches are appropriate and quite
helpful. As in the other projects presented in this chapter, we begin with computer
code for numerically solving the two-dimensional predator–prey model (Sect. 2.2)
and update the code to reflect the new variables and equations. See Appendix for
new code.

Again, we are interested in both the dynamics of the model and how the model
results change as a function of a specific parameter. In this case, we are interested
in the vaccination rate, ζ . We conduct a similar experiment to that described in
Sect. 3.3, where we solve the model for several values of ζ , and then plot the
equilibrium values of the state variables as a function of ζ . The vaccination rate
is a parameter that we have some control over in real-life situations, which makes
this project particularly interesting. We can use our numerical experimentation to
suggest ideal (but realistic) vaccination rates that can minimize the cost of an
influenza outbreak.

Finally, technology plays an essential role in an extension to this project: the
development of an analogous stochastic model of these dynamics. We will discuss
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Fig. 12 Sample results for influenza transmission dynamics (Left) and cost (Right) as described in
Fig. 11 from initial conditions S(0) = 980, V (0) = 10, I (0) = 10 with other variables initialized
to zero

this model and its analysis more carefully in Sect. 6.4, so we only mention here
that studying a model of this complexity is really only possible by using numerical
approaches.

5.2 Model Dynamics

We present sample dynamics in Fig. 12 (Left panel) for initial conditions and
parameters stated in the code samples in the Appendix. We start from a mostly
susceptible population with small groups of infected and vaccinated individuals.
For the parameters specified in the included computer code (see Appendix), we
find a large spike in the infectious group followed by increases in the sizes of the
two recovered groups: those that recover naturally outnumber those that undergo
treatment. Fortunately, for this parameterization, influenza-related deaths are rather
rare. Since much of the population has some form of immunity (following recovery
or vaccination), the second outbreak, which is centered near t ≈ 60 weeks,
is relatively small. Additionally, the accumulation of healthcare and associated
economic costs is plotted in Fig. 12 (Right panel). The initial rise in the cost function
is largely due to costs related to infection and treatment, while the slower, sustained
rise beyond t = 20 weeks is attributed largely to the cost of vaccination.

Exercise 13 Investigate the cost of vaccination by plotting the right graph in Fig. 12
with and without vaccination included in the cost. Then plot with and without
treatment included in the cost. Is it more costly to vaccinate or treat influenza?
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5.3 Stability Analysis

After studying the behavior of this model for a variety of parameterizations,
we gained some insight into which parameters were of interest biologically or
dynamically. Specifically, we chose to numerically solve the model for a range
of vaccination parameter values, ζ , then to plot the long-term behaviors as a
function of ζ . The graph that this approach yields is similar to a bifurcation
diagram generated using by-hand analysis or more specialized software such as
XPP AUTO (Fig. 13). We see that for vaccination rates above ζ ≈ 0.09 1

week , the
infection is eliminated and the population is comprised solely of individuals from
the susceptible and vaccinated groups.

These results can be verified by a direct calculation of equilibrium values and
an analysis of stability, but we started with the numerical results in order to gain
intuition about the model. Now that numerical experimentation seems to suggest
that ζ is an important parameter, we can calculate by hand the inequality for which
infection is eliminated

ζ >
(ω + m)(βp − m(γ + m))

m(γ + m)
. (46)

Whether this inequality is satisfied for a given vaccination rate, ζ , depends on the
two host demographic parameters (natural mortality rate, m, and population birth
rate, p) and three epidemiological parameters (the rate at which infection ends, γ ,
the transmission parameter, β, and the rate at which immunity wanes, ω).

Research Project 8 (Oscillations) Plan and carry out well-organized
numerical experiments with the transmission parameter β, the vaccination
rate ζ , the rate at which immunity wanes ω, and perhaps the recovery rate γ ,
to determine if the short-lived, damped oscillations illustrated in Fig. 12 can
ever be sustained.

Research Project 9 (Host Demography: The Birth Function) We chose
a constant birth rate p for only susceptible individuals, which has certain
important implications for the dynamics. Explore the effects of other choices
of birth terms, for example p(S +V + I +R +N). To start, ask yourself how
the units of p differ between each form. You might also ask what happens
under the popular assumption of a logistically growing population.
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Fig. 13 Long-term numerical solution values plotted against the vaccination rate. The labels
“Treated” and “Natural” both refer to recovered populations, with and without antivirals, respec-
tively. Points on the graph illustrate the equilibrium values of the solution plotted in Fig. 12, where
ζ = 0.023076923 1

week . While knowing ζ to so many decimal places is not biologically feasible,
we report the decimal places here for mathematical reproducibility

Research Project 10 (Host Behavior: The Transmission Function) The
paper “How should pathogen transmission be modelled?” [37] discusses a
variety of possible models of pathogen transmission. Modify the influenza
healthcare cost model by choosing an alternative form of pathogen transmis-
sion as described in the paper. Identify any new assumptions about pathogen
transmission or host behavior that come with this new form of transmission
function. Alter the model code and explore the dynamics of your modified
model.

Research Project 11 (Quarantine) Imagine an alternative where we con-
sider the role of quarantine—that is, the removal of infectious individuals
to prevent further transmission. How do the diagram and equations change?
Are these individuals given antivirals that may lead to recovery, or simply
supportive care that may allow them to recover naturally?
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Research Project 12 (To Treat or Not to Treat) According to cost esti-
mates made from the literature, natural recovery is relatively inexpensive
when compared to recovery following treatment, and especially when com-
pared with the case where infection ends in death. With this in mind,
experiment with the parameter δ (the probability that infection ends with
death, where larger values indicate a particularly lethal infection) and/or ρ

(the probability that an infection ends as the result of treatment). Imagine your
goal is to keep people healthy and costs low. What can you do to reduce costs
over time by preventing infection through vaccination and providing treatment
to those infected? From your experiments, what model parameters (i.e., public
health strategies) might you strive for and what real-world constraints might
you face?

6 Stochastic Models

The models presented thus far can be interpreted as giving the average outcome of
the systems. If we are interested in individual, specific outcomes, in which chance
or randomness can play a role, we need a new modeling technique.

Numerical experimentation is particularly useful when studying problems that
involve randomness. All the models discussed up to this point were deterministic;
that is, given initial conditions, the models predict the exact, unique outcome
with complete certainty. Now we will transition to stochastic (or random) models.
Stochastic models give the probability of an outcome; given the same initial
conditions, a stochastic model will produce a different final result every time it is
solved. Each of these solutions represents a sample path from the unique underlying
probability distribution. In this section we will discuss stochastic models and
stochastic extensions of deterministic models discussed earlier in the chapter. For a
thorough overview of stochastic processes and their relation to biology, see [1, 19].

6.1 Simple Birth–Death Process

A stochastic process is a system that describes the evolution of a time-dependent
random variable, for example, N(t), the number of individuals in a population. The
probability that the random variable N takes on the value of n at time t is given by

P(N = n, t) = P(n, t) = Pn(t) (47)
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where in general it is more convenient to subscript by the value of n than to include
n as an argument to the function [1, 19]. A master equation of a stochastic process
is an equation for the time evolution of probability distributions. For example,

dPn(t)

dt
= μ(n + 1)Pn+1(t) + r(n − 1)Pn−1(t) − (μ + r)nPn(t) (48)

could describe the time evolution of the probability of a population having n

individuals at time t . Here we let r ( 1
time ) denote the birth rate and μ ( 1

time ) denote
the death rate. The left-hand side of Eq. (48) represents the change in probability
(given by the derivative), and the right-hand side lists all the ways the population
could transition to or from the n state. The first two terms on the right-hand side say
that we can increase the probability of the population having n individuals in two
ways: (1) the population could have contained n + 1 individuals, but one of them
died; (2) the population could have contained n − 1 individuals, and a new one was
born. These terms are multiplied by (n + 1) and (n − 1), respectively, because any
one of the n + 1 or n − 1 individuals could have died or given birth. The probability
the population has size n is decreased if the population was already size n, and one
individual died or was born. This type of model is called a birth-death process.

Solving master Eq. (48) analytically is possible, but requires the use of moment
generating functions to derive a partial differential equation that can be solved using
the method of characteristics (see [19] for details of the solution techniques). These
are nontrivial mathematical concepts. The probability the population has size n at
time t , Pn(t), is obtained by Taylor expanding the probability generating function
G(t, z) below about z = 0,

G(t, z) =
(

(z − 1)μe(r−μ)t − rz + μ

(z − 1)re(r−μ)t − rz + μ

)N

, (49)

where N is the size of the population at time t = 0. Though there is certainly
nothing wrong with it, we imagine you agree that this is not a particularly illustrative
solution. How many individuals are we likely to end up with at any given time? It
is not at all clear from the analytical solution. We could use technology to Taylor
expand then plot the resulting function in order to gain more intuition into what is
happening. However, in practice, in our undergraduate research programs, we would
approach this problem numerically from the get-go. We explain our approach in the
following section.

6.2 Gillespie Algorithm

“We” (read: someone else) solved the relatively simple master equation for the
birth–death process in Eq. (48), to obtain the probability distribution of population
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size as a function of time. However, for even slightly more complicated systems, the
master equation can become very difficult (or even impossible) to solve analytically.
In this case, numerical computation is critical. The Gillespie algorithm generates
statistically exact realizations of the master equation. In other words, a result
obtained by solving the master equation using the Gillespie algorithm is not an
approximation; it is a true solution (out of many possible solutions, because of the
randomness) of the master equation. This means we can use a computer to generate
exact statistics, instead of having to analytically solve a big, potentially ugly, master
equation.

The Gillespie algorithm explicitly simulates every possible reaction between the
individuals in the system; the algorithm randomly chooses which reaction happens
next, and the time at which the reaction happens, using exponential distributions and
parameter values from the model [20, 21]. The basic steps of the Gillespie algorithm
are as follows:

0. Initialize the system so t = 0 and x = number of individuals.
1. Compute the propensity functions (based on the reaction rates), ai(x) for i =

1, . . . total number of reactions, and the sum, a0(x) =
∑

i

ai(x).

2. Pick 2 uniformly distributed random numbers, r1 and r2. To determine which
reaction happens next, we calculate r1 and then look for the first j for which

r1 <
1

a0(x)

j
∑

i=1

ai(x).

Compute the time to the next reaction, τ , via

τ = − ln (r2)/a0(x).

3. Update the system by increasing the time by τ , and by updating the number of
individuals in the system according to the chosen reaction.

4. Return to step 1 and repeat, until either there are no individuals left, or we have
reached a pre-determined final time or final number of events.

The propensity functions, ai(x), can be thought of as the stochastic reaction rates.
Given that the system contains x individuals at time t , the probability that reaction i

occurs somewhere in the system in the infinitesimal time interval [t, t +dt) is given
by ai(x)dt [22]. For our purposes, we can think of these propensity functions as the
number of individuals at time t , x, times the rate at which that number changes. For
example, the propensity function describing a birth would be a1(x) = rx, because
each of the x individuals could birth a new individual at rate r .
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6.2.1 A Sample Calculation

Let us walk through one iteration of a specific example to see how this works in
practice. Assume we have a birth-death process and we start with a population with
eight individuals. Assume the birth rate is r = 0.4 1

time , the death rate is μ =
0.1 1

time , and our initial population contains eight individuals.

0. Initialize by setting t1 = 0, x1 = 8.
1. Set a1 = rx1 = 0.4(8) and a2 = μx1 = 0.1(8), so a0 = 0.5(8) = 4.
2. Pick r1 = 0.3077661, r2 = 0.2576725 from a uniform distribution.

(a) Now start summing up the propensity functions, checking to find the first for
which the sum is greater than r1a0 = (0.3077661)(4) = 1.2310644:
a1 = 3.2 > 1.2310644. Since we have a number bigger than 1.2310644,
we stop here (there is no need to add the second propensity function). This
means the first reaction is the one that occurs next.

(b) Calculate the time to the next reaction:
τ1 = − ln (0.2576725)/4 = 0.3390165.

3. Update t2 = t1+τ1 = 0+0.3390165 = 0.3390165, and x2 = x1+1 = 8+1 = 9
(because the reaction that was chosen in step 2 corresponds to birth).

4. Repeat, with the new “initial” conditions t2 = 0.3390165, x2 = 9.

6.2.2 A Computer Implementation

To ensure that the code exactly reproduces the first few results presented in the
worked example above, we will set the seed of the random number generator using
set.seed(100), where there is nothing special about our choice of the number
100. Any time you run such a model it is good to set the seed in the file so that you
can reliably reproduce the sequence of values, possibly for debugging purposes—
was your result the result of random chance or a programming error?

set.seed(100) ## for reproducibility
## parameters

(r <- 0.4)
(mu <- 0.1)

## transition probabilities
(a <- c(r, mu))

## transitions
(trans <- c(1, -1))

## initialization
(Xs <- X <- 8)
taus <- 0

Below we choose to run a maximum of 199 steps of the method (if it is even
allowed to go that far). The loop starts at i=2 since the step corresponding to
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i=1 was taken care of during the initialization above. By default, the for-loop
prints no output to the screen. Below the assignments are wrapped with parentheses
for testing purposes. This way we could manually set a few values for i and step
through the calculation one line at a time and see printed output. Equally useful is
the included, but commented out, line that prints the reaction selected in the method.
Uncommenting this allows the user to detect if the same reaction is repeatedly, and
perhaps erroneously, selected due to the misspecification of the probability values
or other coding errors. One important line, if(Xs[i]==0)break; ensures that
the calculation stops when the population reaches zero. Notice that if we continued
the calculation with a population size of zero that we would divide by zero in the
following iteration.

for(i in 2:200){
if(X==0)break;
(rn <- runif(2))
(rate <- a*Xs[i-1])
(pr <- cumsum(rate)/sum(rate))
(rxn <- min(which(pr > rn[1])))
## print(rxn) ##(useful to debug)
(X <- X + trans[rxn])
(Xs <- c(Xs, X))
(taus[i] <- - log(rn[2])/sum(rate))

}

For reasons we will discuss in the exercises, we have chosen to store the time
increments τ rather than the progression of time t itself. Before plotting we should
calculate the cumulative sum of the taus to calculate the actual clock time. The
remaining two lines allow us to specify “nice” upper axes limits based on the results
of the simulation.

## calculate actual time
(times <- cumsum(taus))
(tmax <- ceiling(max(times)))
(xmax <- ceiling(max(Xs)))

The results can be plotted using the following code which displays the integer-
valued solution to the stochastic model as points, and the calculated exact solution
to the corresponding deterministic model as a smooth curve (Fig. 14). In general,
plotting a function in R is not quite as easy as it is in other “symbolic”-oriented
languages—here it requires the specification that we are plotting a function(t)
so that the values of the independent variable can be provided in the specification of
the x-axis limits.

plot(function(t)Xs[1]*exp((r-mu)*t), col=2, lwd=2,
xlim=c(0, tmax), ylim=c(0, xmax),
xlab='Time', ylab='Population size', las=1)

points(times, Xs, pch=19, lwd=2)
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Fig. 14 Three sample stochastic solutions plotted with the corresponding deterministic solution
(from an appropriately parameterized Eq. (1)). In all cases, the initial population size is 8

To really get a sense of what stochastic models are all about, at this point we
should rerun the entire code (except for the set.seed line, since that would
lead to the identical randomization and result, and the plot line, since that would
open a new plotting window). Running just the final line of the plotting commands
(lines) will superimpose the results of the new simulation on top of the existing
plot that contains the deterministic solution and first stochastic sample solution
(Fig. 14).

Exercise 14 Use the Gillespie algorithm code provided to run ten simulations of a
birth-death process with r = 0.1 1

time and μ = 0.4 1
time , for initial population sizes

of 8 and 80. Set the final time to be t = 100. What happens in the ten cases? Does
the population always go extinct by time 100? Does the population sometimes go
extinct and sometimes survive? How do your results change if r = 0.4 1

time and
μ = 0.1 1

time ? Experiment by changing other values and see what results you get.
Can you justify your results biologically?

Even for simple stochastic models, the analysis of master equations becomes
quite involved. Perhaps more important than the relative ease of studying stochastic
models by simulation is the realization that the stochastic analog of a deterministic
model can allow the researcher to approach vastly different questions. In even the
simplest population model (such as that from Eq. (1)), and depending on parameters,
the solution may indicate that a population exponentially decays towards a size
of zero, but never reaches zero. In the stochastic analog to this model, extinction
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is indeed possible. The stochastic model allows for calculations about the time to
extinction or how the time to extinction depends on initial population size.

6.3 Stochastic Extension of Predator–Prey Model

Here we formulate the stochastic analog of the predator–prey model. The deter-
ministic predator–prey model can be made into a stochastic model if we replace
the rates by their underlying event probabilities. Practically, we think of replacing
the interactions that occur in the deterministic model with the corresponding
interactions and transitions that define the stochastic model. A very rewarding
exercise is to write the master equation for this model, describing the probabilities
of having H = h hares and L = � lynxes at time t . Instead of writing the
master equation, here we will specify the interactions and transitions in tabular form
in Table 2.

Exercise 15 Write the master equation for the stochastic predator–prey model.

With these transitions, we can formulate a transition matrix (shown with states
as labeled rows and transitions as labeled columns in Eq. (50)).

αH βHL γHL δH

Hare 1 −1 0 0
Lynx 0 0 1 −1

(50)

To implement the Gillespie algorithm for this problem we store the reaction rates,
initialize the state vector X and solution Xs, initialize the vector of time increments,
and define the transition matrix.

parms <- c(alpha=1.1, beta=0.05, gamma=0.01, delta=0.5)
Xs <- X <- t(c(H=50, L=8))
taus <- 0
trans <- rbind(c(1, -1, 0, 0), c(0, 0, 1, -1))

Table 2 Interactions and terms from the model in Eqs. (20) and (21) with the associated stochastic
transitions

Interaction Term Transitions

Hare production αH h ← h + 1, � ← �

Lynx-hare interaction (predation) βHL h ← h − 1, � ← �

Lynx production γHL h ← h, � ← � + 1

Lynx mortality δH h ← h, � ← � − 1

Arrows are used to indicate the assignment of a new value. For example, the first row corresponds
to prey birth so the new h value is h + 1 and � value is unchanged (set to itself)
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Now we step through the process for an arbitrary number of steps (here up to
10,000), all the while ensuring that there is at least one individual in the population.
Should both populations go extinct, the calculation halts. Our rate vector includes
4 possible events (see Table 2 and Eq. (50)), and once a “reaction” is selected
that column of the transition matrix is selected in order to update the vector of
states. After the reaction is selected, the corresponding time increment is stored as
taus[i].

for(i in 2:10000){
## stops at extinction

if(sum(X) == 0)break;
## same as before

rn <- runif(2, 0, 1)
## rate contains more possibilities

rate <- with(as.list(parms),
c(alpha*X[1], beta*X[1]*X[2],
gamma*X[1]*X[2], delta*X[2]))

## same as before
prop <- cumsum(rate)/sum(rate)
rxn <- min(which(rn[1] < prop))

## apply transition and store state
X <- X + t(as.matrix(trans[, rxn], 2, 1))
Xs <- rbind(Xs, X) ## other ways to do this

## store time increment
taus[i] <- -log(rn[2])/sum(rate)

}

To this point we have only stored the time increments; from here calculating the
vector of event times is as simple as taking the cumulative sum of the increments.
We bind the event times (times) to the model states (which were stored in the
two-column matrix Xs), then assign names to the columns to facilitate use.

## calculate event times
times <- cumsum(taus)

## organize output
dat <- as.data.frame(cbind(times, Xs))
names(dat) <- c("time", "H", "L")

A sample solution to the stochastic model, generated with initial conditions and
parameters matching those from the deterministic model and using the code above,
is plotted with the code below. This solution is plotted with the corresponding
deterministic solution in Fig. 15 (Left panel). The sample stochastic solution is the
thinner, jagged curve and the deterministic solution is the thicker, smoother curve.
Additional 9 solutions to the stochastic model are shown in Fig. 15 (Right panel).
This can be accomplished by rerunning the stochastic code and adding solutions to
the plot of the first solution using matlines().
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Fig. 15 Comparison of stochastic and deterministic results to the predator–prey model. (Left)
Smooth curves show deterministic solution and jagged curves show stochastic solution. (Right)
Ten sample stochastic solutions with identical parameters and initial conditions. In all cases, the
initial conditions are 50 hares and 8 lynxes

## a fairly generic plot, one solution
matplot(dat$time, dat[, c("H", "L")], type='l', lwd=1,

col=c('blue', 'red'), lty=1, xlab="Time",
ylab="Population densities (number/area)", las=1)

Figure 15 (Right panel) shows that the oscillatory nature of the solutions often
persists, but variability in the second peak (and its timing) for each species is quite
striking compared to the corresponding solution of the deterministic model.

By using the Gillespie algorithm to numerically solve the stochastic predator–
prey model, we were able to quickly generate many sample solutions, which
would have been unattainable through analytical techniques alone. Additionally,
we could run the Gillespie algorithm thousands of times more and generate
distributions of time to the extinction of either species, of the time lag between
peaks, and of peak population sizes. In the deterministic model, extinction is
impossible and peak heights and periods do not vary. So we are able to obtain more
(and different) information from a stochastic model, but only through the use of
numerical computation. From a practical perspective, numerically solving this more
complex stochastic model requires only slight modification to the approach used in
the simpler one-dimensional case. Scaling up pen-and-paper analysis in a similar
manner would be more work, and at some point, practically impossible.
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Research Project 13 (Three-Dimensional Predator–Prey Model) In
Exercises 10 and 11 in Sect. 2.2, you were asked to write down three-
dimensional deterministic models involving either two predator and one
prey species, or one predator and two prey species. Write the stochastic
extensions of these models, and code up the Gillespie algorithm to solve
the models. Think of a real-world system that could be described by either
of these models. Read about those species, and try to estimate some of the
reaction rates. Gather some data from the model output (e.g., extinction time
distributions for several values of a parameter of interest). How do the results
change with changing parameter values?

6.4 Stochastic Extension of Influenza Dynamics Model

Similar to the stochastic extension of the predator–prey model, it is possible to list
all reactions in the influenza dynamics model (see Eqs. (39)–(45)). To keep Table 3
as simple as possible, we only list one example of the possible reactions associated
with mortality and with loss of immunity.

The reactions are ordered in a vector similar to, but much bigger than, the one
used in Sect. 6.2.2, and we construct a transition matrix to help update the model
state vector once a reaction is selected in the Gillespie algorithm. In this model,
some reactions have an associated healthcare cost which accumulates with the
selection of a reaction. As we saw in the earlier stochastic models, the stochastic
influenza model can be used to study a variety of unique questions involving
extinctions or rare outcomes.

In Fig. 16 (Left panel), we show the result of a stochastic simulation of the
model compared with the associated deterministic model results obtained by
numerically solving Eqs. (39)–(42). Black dots indicate points in time for which

Table 3 Interactions and terms from the model in Eqs. (39)–(44) with the associated stochastic
transitions

Interaction Term Transitions

Susceptible increase p S ← S + 1

Mortality e.g., mS S ← S − 1

Infection βSI S ← S − 1, I ← I + 1

Vaccination ζS S ← S − 1, V ← V + 1

Immunity loss e.g., ωV e.g., V ← V −1 and S ← S+1

Infection-associated mortality δγ I I ← I − 1,D ← D + 1

Natural recovery (1 − ρ)(1 − δ)γ I I ← I − 1, N ← N + 1

Recovery with antivirals ρ(1 − δ)γ I I ← I − 1, R ← R + 1
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Fig. 16 Comparison of stochastic and deterministic results. (Left) Full sample stochastic and
deterministic solution over 100 weeks. (Right) Evolution of cost for stochastic model. Initial
conditions are the same as in Fig. 12

only two infectious individuals are present in the stochastic solution. Remarkably,
the infection persists through these periods (which range in length from 2 to 4 days);
in other words, influenza was on the cusp of eradication, but was able to bounce
back. In a different stochastic solution, it is possible that influenza would go extinct.
These types of results are impossible to obtain from the deterministic model, which
does not reach zero in finite time (solutions can asymptotically approach zero, but
never actually reach it).

We could use a collection of simulation results, say 1000 or more, to calculate
the distribution of the times at which the infection vanishes, of the peak infection
sizes, or of a number of other characteristics. A hallmark of deterministic models
is that using identical initial conditions and identical parameters, we would expect
identical results from two analyses (analytical or numerical) for the same model.
In contrast, as few as two solutions to an identically parameterized and initialized
stochastic simulation illustrate the surprising variability inherent in these models.
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Research Project 14 (Stochastic Influenza Model) Write code to solve the
stochastic influenza model given in Table 3. Fix the parameter values and
initial conditions and run at least 1000 simulations, saving the data from each
simulation. Calculate how many times the infection vanished, and investigate
how this percentage changes as certain parameter values are varied. Think
carefully about which parameters can be controlled. If you find a parameter
set for which the infection often vanishes, calculate the distribution of times
at which the infection vanishes. Repeat this type of experiment, but now
looking at cost of infection. Continue to ask (and answer) questions like this:
what would you recommend to someone who is trying to reduce the effect of
influenza in a population?

7 Conclusion

With computers we can numerically solve systems of equations that are challenging,
if not impossible, to solve analytically. Since we can then generate numerical
solutions quite quickly and easily, we can carry out numerical experiments by
varying different parameter values to learn how model dynamics are affected. As
research progresses, comparing results to real-world data can help identify likely
values of unknown parameters. We can use numerical results to help decide which
avenues to follow for additional experimentation, or to set up a more targeted pen-
and-paper analysis. Through this chapter, we hope we have convinced you of the
value of programming and computation as research tools and demonstrated that
numerical experimentation is an incredibly important approach when analyzing
mathematical models. To encourage your pursuits, notice that we have provided
the information and the code necessary to start experimenting on your own.

To start a mathematical modeling research project, you can find a published
model and modify it somehow (like Sect. 4), or learn the relevant biology needed to
comfortably write your own model (like Sects. 3 and 5). Writing a model is a great
way to organize your thoughts and assess your understanding of how various parts
of the biological system are connected. Once the model has been written, you can
quickly solve it numerically to see if results make sense. If the dynamics are really
different than expected, you know you need to modify the model before proceeding.
Perhaps you left out an important variable, or are using unrealistic parameter values,
or simply have a typo in your code. Once you obtain reasonable results, you can
start to experiment in earnest, or perhaps reach out to experts in the field. What
happens if you change one parameter value? Are there bifurcations in your model,
where qualitative behavior changes as you change a parameter value? What do you
learn about the biological system you are studying? Can you propose experiments
to biologists to help confirm your model predictions?
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As you pursue research, it is important to keep asking questions. After all, your
project began with a question, one asked by you or suggested by someone else. As
you generate results in the search for answers, keep an open mind to the new
questions that emerge.
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Appendix 1: Notes on Programming

Where possible we have attempted to simplify code in such a way to allow you
to more simply reproduce the figures in this Chapter. We expect that the results
you are able to produce from running code snippets will match those that we have
included in the chapter, but please do not be alarmed by slight aesthetic differences.
In particular, we prefer to use the mtext(...) command in R to generate axis
labels which can be adjusted slightly more easily than can the defaults. For example,
to produce many of our figures in the text, by plotting the model output ..., we
recommend the code

plot(..., xlab='Time', ylab='Population size')

For our own use, we prefer the slightly more complex code below, which results in
slightly better looking output, though this is a matter of preference.

par(mfrow=c(1, 1), mar=c(4.1, 4.1, 1.1, 1.1))
plot(..., xlab='', ylab='') # empty axis labels
mtext('Time', 1, line=2.5, font=2, cex=1.25)
mtext('Population size', 2, line=2.5, font=2, cex=1.25)

The first line of this code sets the layout of the plot, here one row by one column,
and the second sets the plot margins in the order bottom-left-top-right. We add our
plot (with blank labels) to a window of that shape and configuration and add text
to the margins. The ambitious reader may be interested in exploring the graphics
capabilities of the ggplot2 package.

Figures can be saved from menu selections or using the following approach

pdf('filename.pdf', height=5, width=5)
## insert arbitrary figure code
dev.off()
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Table 4 List of useful commands and operations included in the base installation of R
Code Name Example Notes
<- Assignment

operator
x <- 5 Assigns the value 5 to the

object x
c() Concatenation x <- c(1, 2, 3) Assigns the vector to the

object x
+ - * / ^ Arithmetic

operations
((1 + 2)/(3*4))^2 * Is needed for multiplication

plot() Plot plot(x, y) Plots vector y against x (for
equally sized vectors)

mtext() Margin text mtext('x-axis', 1) Adds ‘margin text’ to side 1
(bottom), with other options
available

legend() Plot legend See text Adds a legend with custom text
and line styles and colors

lines() Adds lines (or
curves) to an
existing plot

lines(x2, y2) This function is not ’strong
enough’ to open its own
window and can only be used
to add to existing plots

Table 5 List of differential equations solvers and commands included in deSolve

Code Name Example Notes
euler() Euler’s method euler(xstart, times,

<<model>>, parms)
Poor choice, requires small
time step

rk() Runge–Kutta
methods

rk(..., method='rk4') Same arguments as above
can specify method= to be
one of rk2, rk4 or others
in documentation

lsoda() ’Livermore’
solver

lsoda(...) Robust solver, default for
ode(...) function, can
be called directly

Entering ?pdf into the R console will show how the pdf(...) command works
and related commands like png(...} or jpeg(...).

A few examples of syntax and useful commands for basic calculations or plotting
are given in Table 4. A brief overview of available differential equations solvers from
the deSolve package is given in Table 5.

Appendix 2: Circadian Rhythm Code

Start by defining the model. We have included some if statements that allow
us to turn the alcohol parameter on or off at a given time (t.switch1 and
t.switch2), to test how the system responds. Earlier we mentioned having to
find and replace in order to replace the printed single quote used to specify many
arguments in R if you copy code from an electronic source. Here we use double
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asterisks (**) to enter exponents rather than the more familiar caret (^), since the
latter does not copy well from electronic text.

## the model
CLOCKmod <- function(t, x, parms) {

with(as.list(c(parms, x)), {
## alcohol value switch
if(t > t.switch1){
a <- 1
}
if(t > t.switch2){
a <- 1
}

#conc. of Per2/Cry mRNA
dY1 <- (a*v1b*(Y7+c))/(k1b*(1+(Y3/k1i)**p+Y7+c))

-k1d*Y1
# conc. of PER2/CRY complex in the cytoplasm

dY2 <- k2b*(Y1)**q - k2d*Y2 - k2t*Y2 + k3t*Y3
# conc. of PER2/CRY complex in the nucleus

dY3 <- k2t*Y2 - k3t*Y3 - k3d*Y3
# conc. of Bmal1 mRNA

dY4 <- (v4b*(Y3)**r)/((k4b)**r + (Y3)**r) - k4d*Y4
# conc. of BMAL1 protein in the cytoplasm

dY5 <- k5b*Y4 - k5d*Y5 - k5t*Y5 + k6t*Y6
# conc. of BMAL1 protein in the nucleus

dY6 <- k5t*Y5 - k6t*Y6 - k6d*Y6 + k7a*Y7 - k6a*Y6
# conc. of transcriptionally active form BMAL1

dY7 <- k6a*Y6 - k7a*Y7 - k7d*Y7
# the output

list(c(dY1, dY2, dY3, dY4, dY5, dY6, dY7))
})}

Again to verify our assignments, we print the parameters and initial conditions
to the screen, but since times refers to a very long vector, we assign it but do not
print it to the screen.

(parms <- c(v1b = 9, k1b = 1, k1i = 0.56, c = 0.01,
p = 8, k1d = 0.12, k2b = 0.3, q = 2, k2d = 0.05,
k2t = 0.24, k3t = 0.02, k3d = 0.12, v4b = 3.6,
k4b = 2.16, r = 3, k4d = 0.75, k5b = 0.24,
k5d = 0.06, k5t = 0.45, k6t = 0.06, k6d = 0.12,
k6a = 0.09, k7a = 0.003, k7d = 0.09,
a = 1, t.switch1 = 5000, t.switch2 = 5000))

times <- seq(0, 5000, by=0.1)
(xstart <- c(Y1 = 0.25, Y2 = 0.3, Y3 = 1.15,
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Y4 = 0.85, Y5 = 0.72, Y6 = 1.35, Y7 = 1.075))

To assess the role of the alcohol sensitivity parameter on dynamics, we first
numerically solve the model for the original parameter value a = 1, store, and
plot the solution over the interval of interest.

## calculate solution
out <- lsoda(xstart, times, CLOCKmod, parms)
out <- as.data.frame(out)

## plots
plot(out$time, out$Y3, type='l', col='gray',

lty=1, lwd=2, ylim=c(0, 5), xlim=c(0, 250),
xlab='Time (hours)',
ylab='Protein amounts (nM)', las=1)

lines(out$time, out$Y5 + out$Y6 + out$Y7,
type='l', col='black', lty=2, lwd=2)

Then, we change the value of a in the list of parameters by manually resetting
it. Since the initial conditions, solution times, and the structure of the model itself
are unchanged, we can simply calculate a new solution with the updated parameters
and add the desired results to the existing plot. This realization allows us to greatly
simplify our computer code by leaving out large, redundant chunks that would
otherwise be tempting to repeat.

## fix parameter value, repeat as necessary
parms['a'] <- 0.1
out2 <- lsoda(xstart, times, CLOCKmod, parms)
out2 <- as.data.frame(out2)

After computing the solution for the parameter of interest, we can add these
solutions to our existing plot to better understand the role of the parameter.

## add corresponding solutions
lines(out2$time, out2$Y3, type='l', col='red',

lty=1, lwd=2)
lines(out2$time, out2$Y5 + out2$Y6 + out2$Y7,

type='l', col='red4', lty=2, lwd=2)

Finally, since the plot is now quite complex, we add a nice legend.

## add legend
legend('topleft', c('PER2/CRY Protein',

'BMAL1 Protein', 'PER2/CRY Protein (w/ alcohol)',
'BMAL1 Protein (w/ alcohol)'), col=c('gray',
'black', 'red', 'red4'), lty=c(1, 2, 1, 2), lwd=2,
bg='white')

For space purposes, we have not included the code in which peak concentrations
were calculated and stored. This was done using the pracma package [6], and can
be found in the project’s GitHub page.
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Appendix 3: Influenza Code

First we define the model, since the equation for the change in cost is long, the +
at the end of the first two parts of the equation ensures that each subsequent line is
counted as continuation of the previous line.

## the model
FLUmod <- function(t, x, parms) {

with(as.list(c(parms, x)), {
#for all, m is parameter for natural mortality
#Susceptible

dS <- p - m*S - beta*S*I - zeta*S + omega*(V + N + R)
#Vaccination

dV <- zeta*S - m*V - omega*V
#Infectious

dI <- beta*S*I - gamma*I - m*I
#Recovered Naturally

dN <- (1 - delta)*(1 - rho)*gamma*I - m*N - omega*N
#Treated, coded as R to avoid confusion with T for TRUE

dR <- (1 - delta)*(rho)*gamma*I - m*R - omega*R
#Mortality

dD <- delta*gamma*I
#Added cost equation

dC <- z*zeta*S + b*beta*S*I + d*delta*gamma*I +
+ n*(1 - delta)*(1 - rho)*gamma*I +
+ r*(1 - delta)*(rho)*gamma*I
list(c(dS, dV, dI, dN, dR, dD, dC)) # the output

})}

Then we define parameters, the list of times for which to calculate the solution,
and initial conditions. The factor of 1/52 included in many of the parameter values
was used to scale all values to be measured in weeks. To provide example dynamics
in Fig. 12, we solve the model over a period of 2 years.

## parameters
parms <- c(p = (13)*(1/52), m = (0.013)*(1/52),

beta = (0.08)*(1/52), zeta = (1.2)*(1/52),
gamma = (12)*(1/52), omega = (0.8)*(1/52),
delta = 0.0005, rho = (1/3), z = 52.92,
b = 3.00, d = 542430.70, n = 110.28, r = 5613.65)

## time points
times <- seq(0, 52*2, by=0.1)

## initial values
xstart <- parms['p']/parms['m']*c(S = 0.98,V = 0.01,

I = 0.01, N = 0, R = 0, D = 0, C = 0)
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Finally, we use the numerical solver lsoda to find the model solution.

out <- lsoda(xstart, times, FLUmod, parms)
out <- as.data.frame(out)

The matplot(...) command lets us plot multiple columns simultaneously
(even allowing for different line styles or widths in addition to colors). We can
access multiple columns of output, each of which corresponds to a model variable,
by referring to their numbers (e.g., out[, c(2, 4, 6)]), a range of numbers
(e.g., out[, 2:6], which is all of the entries 2 through 6), or by name (as shown
in the sample code below). Since the vector of custom colors is rather long, we
define the cols at the start, which can be referenced anytime the variables are
plotted.

## define colors
cols <- c("red", "gray", "green", "blue", "magenta")
## panel 1
matplot(out$time, out[, c('S', 'V', 'I', 'R','N')],

type='l', lty=1, lwd=2, col=cols,
xlab='Time (weeks)', ylab='Population
densities (number/area)', las=1)

legend('topright', c('Susceptible', 'Vaccinated',
'Infectious', 'Treated', 'Natural'),
col=cols, lty=1, lwd=2, bg='white')

## panel 2 (cost scaled to millions)
plot(out$time, out$C/1e6, type='l', lty=1,

xlab='Time (weeks)', ylab='Cost (millions USD)',
las=1)

To solve the model for a range of ζ parameter values, then plot the long-term
behaviors as a function of ζ as it varies, we use the code below.

## time vector
times <- seq(0, 52*200, by=0.1)

## range of zeta values
zetas <- c(seq(0.0, 0.2, by=0.01))

## object to store model output
vals <- NULL

for(i in 1:length(zetas)){
parms['zeta'] <- zetas[i]
out <- lsoda(xstart, times, FLUmod, parms)
out <- as.data.frame(out)
if(i/10==floor(i/10))print(i) ## progress bar
vals <- rbind(vals, out[nrow(out), ])

}
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The above code assigns the parameter value of interest, calculates the corre-
sponding solution, and stores the final output of the solution in an object called
vals. Here we take advantage of the power of the computer to generate solutions
over a very long span of time, just to ensure that solutions have equilibrated.
Inspecting plots of solutions against time (as in Fig. 12) offers some explanation,
as the dynamics of the two recovered groups are especially slow.

matplot(zetas, vals[, c('S', 'V', 'I', 'R', 'N')],
type='l', lty=1, lwd=2, col=cols,
xlim=c(0, 0.2), ylim=c(0, 1000), xlab='Vaccination
rate', ylab='Population steady-state values', las=1)

legend('topleft', c('Susceptible', 'Vaccinated',
'Infectious', 'Treated', 'Natural'),
col=cols, lty=1, lwd=2, bg='white')
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Simulating Bacterial Growth,
Competition, and Resistance with
Agent-Based Models and Laboratory
Experiments

Anne E. Yust and Davida S. Smyth

Abstract In this chapter, we will introduce the concepts of growth, competition,
and adaptation using bacteria. We will use both simulation and laboratory-based
exercises and provide practice with critical skills to assess your understanding
throughout the chapter. The chapter ends by focusing on the capacious and global
problem of antibiotic resistance, considered to be one of the most important public
health threats of the twenty-first century. We will review the basic biological
concepts underlying the phenomenon, and introduce the mathematical content
necessary to begin to create agent-based models in order to simulate and analyze
antibiotic resistance and its effect on the planet. we will present a selection of
research projects throughout the later portion of the chapter for you to further
explore antibiotic resistance and other contexts of bacteria.

Suggested Prerequisites This chapter is intended to be accessible to a wide range of undergrad-
uates. The only necessary prerequisite is a strong interest and desire to learn about simulation,
bacteria, and antibiotic resistance. We do recommended previous exposure to microbes and
introductory biology, programming—especially with NETLOGO, mathematical modeling, and data
analysis.

1 Introduction

Bacteria are microscopic, unicellular, prokaryotic organisms that can exist in the
form of spheres, rods, and spirals. The major category which differentiates bacteria
is the structure of their cell walls, which are called gram-positive or gram-negative.
The prototypical gram-negative organism, Escherichia coli, has an inner and outer
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membrane, between which is found a periplasmic space with a thin layer of
peptidoglycan. Gram-positive bacteria have a much thicker layer of peptidoglycan
surrounding their inner membrane and have no outer membrane. The prototype
gram-positive organism is Staphylococcus aureus.

Bacteria are noted for their ubiquity; they are some of the most adaptable and
resilient organisms on the planet. Different species of bacteria can survive and
grow at temperatures ranging from −10 to 100 ◦C. They can happily reside in cold
salty ponds and in the frigid waters of the polar regions to the boiling water of
hot springs. They can even be found growing in the vicinity of thermal volcanic
vents at the bottom of the oceans where temperatures exceed 300 ◦C. Bacteria are
also resilient to pH; they have been isolated in acid wastes from mines and in the
alkaline waters of soda lakes [63]. They have been isolated in black anaerobic silts
of estuaries and in the purest waters of biologically unproductive or oligotrophic
lakes. This means that, in whatever situation, bacteria can find a way of adapting
and surviving, regardless of the environment they find themselves [63].

Bacteria have proven a useful model system in which to investigate many cellular
functions and processes. They have simple genomes, many of which are amenable
to genetic modification. They can also be readily propagated in the laboratory,
and they have fast generation times. Knowledge gained when studying bacterial
systems can often be applied to homologous proteins in more complex higher
organisms. Bacteria are used in industry and are critical for the production of
yoghurt, cheese, sour cream, pickles, sauerkraut, and kombucha to name but a few.
Bacteria can also be engineered to make useful products such as human proteins
and drugs, and importantly they can be used in bioremediation and to detoxify
poisonous substances. It is their adaptability and resilience that not only makes
bacteria one of the world’s greatest allies but also one of the world’s greatest foes.
Bacteria are responsible for many different diseases and a major cause of morbidity
and mortality across the globe. One of the most important and clinically relevant
bacterial adaptations is antibiotic resistance.

1.1 Introduction to Antibiotic Resistance

The World Health Organization has named antibiotic resistance as one of the
most important public health threats of the twenty-first century [90]. Importantly,
infections caused by antibiotic-resistant organisms are associated with significant
mortality [3] and are an important economic burden, estimated to cost over $20
billion per year in the USA alone [35, 39, 113]. At least 23,000 people die from
infections with antibiotic-resistant bacteria annually in the USA as estimated by
the Centers for Disease Control and Prevention [3]. By 2050, it is estimated that
antibiotic resistance will cause around 300 million premature deaths, and result in
a loss of up to $100 trillion by the global economy [89]. More worryingly still, the
World Health Organization has warned that there is a serious lack of new antibiotics
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under development to combat the growing threat of antibiotic resistance [8], with
only eight of the 51 new antibiotics and biological agents currently in clinical
development to treat antibiotic-resistant pathogens adding value to the current drugs
on offer [62].

Antibiotic resistance is an ancient phenomenon, a consequence of long-term
biowarfare among organisms in their natural environments. Most antimicrobials are
natural molecules. In fact, many are secreted by bacteria and other environmental
organisms. When organisms growing in communities were exposed to the effects
of antibiotics secreted by members of the community, they evolved counter-
mechanisms to overcome their action in order to survive. Some organisms that are
naturally resistant to antibiotics are called intrinsically resistant. A great example
of intrinsic resistance occurs in multi-drug resistant gram-negative bacteria such as
E. coli, which are insensitive to many types of antibiotics used to effectively treat
gram-positive bacteria. Their resistance is due to the presence of the outer mem-
brane, which is the differentiating factor between gram-negative and gram-positive
bacteria. The outer membrane is impermeable to many molecules. Additionally,
these strains possess a variety of efflux pumps that can effectively pump out the
antimicrobial from the cells [84]. Many environmental organisms are prolifically
and intrinsically resistant to many different classes of antibiotics, and in particular,
those that dwell in the soil have many uncharacterized mechanisms of resistance
[38]. What is more intriguing is that antibiotic resistance often predates the clinical
use of antibiotics and has emerged independently of the selective pressure imposed
by using antibiotics [25, 37]. Scientists consider environmental organisms, such as
those found in soil or in the urban environment, to be important reservoirs of novel
resistance genes that could be transferred to pathogens. This presents a major health
concern [59].

While environmental organisms often have intrinsic mechanisms of resistance,
antibiotic-resistant bacteria in the hospital or clinical setting often exhibit resistance
that has been acquired. Acquired resistance emerges in a bacterial population that
was originally susceptible to the antibiotic. In response to exposure, resistance is
often acquired by mutations in the chromosome of the bacteria or the acquisition of
external resistance-encoding genes, i.e., horizontal gene transfer (HGT).

1.1.1 Genetic Basis of Antibiotic Resistance

Antibiotic resistance emerges genetically in two main ways:

• Resistance by mutation. Cells within a susceptible population of bacteria
develop mutations in genes that ameliorate the activity of the drug. These cells
thus survive the antimicrobial agent, multiply, and proliferate, while the sus-
ceptible cells succumb to the agent. Depending on the type of mutation, there
can be a fitness cost, and as a consequence, these mutations are only selected
for in the presence of the antibiotic. Interestingly, the use of antibiotics has
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been shown to increase the mutation rate of bacteria [68] and even to select for
mutants with higher mutation rates in the microbial flora of patients treated with
antibiotics [53].

• Resistance by horizontal gene transfer. HGT is a major driver of bacterial
evolution. This process involves the acquisition of foreign DNA, which could
contain genetic sequences that transfer the antibiotic resistance. HGT is fre-
quently responsible for acquired resistance to antibiotics and antimicrobials. The
most common mechanisms used by bacteria to acquire external genetic material
are transformation (incorporation of naked DNA), transduction (mediated by
phages—viruses that infect bacteria), and conjugation (when bacteria have “sex”
mediated by a pilus). The simplest type of HGT, transformation, is demonstrated
by a small number of species of high clinical relevance including the pneumococ-
cus or Streptococcus pneumoniae [86], and Neisseria meningitidis and Neisseria
gonorrhoeae [116]. Transduction by phages is a very important mode of HGT
and has been shown to be an important vehicle for resistance genes in the envi-
ronment [19]. The most common and most efficient form of HGT is conjugation.
This type of transfer needs cell-to-cell contact and is mediated by the presence of
conjugative elements in the genome of the donor cell. Tetracycline resistance is
readily transferred among N. gonorrhoeae and Enterococcus faecalis strains by
means of a conjugative plasmids, circular forms of DNA [71, 116]. Other types
of mobile DNA such as integrons and transposons also play important roles in
the dissemination of antibiotic resistance genes, such as carbapenamases [97].
Genes encoding resistance to streptomycin, spectinomycin, and sulfonamides as
well as metals such as mercury have been found on complex transposons and
plasmids in members of the Enterobacteriaceae [23].

1.1.2 Mechanistic Basis of Antibiotic Resistance

There are several categorizations of antibiotic resistance mechanisms:

• Modifying the antimicrobial molecule itself. One mechanism found in both
gram-positive and gram-negative bacteria is to produce enzymes that modify
the chemical composition of the antimicrobial molecule by phosphorylation,
acetylation, and adenylation. Chloramphenicol resistance is mediated by chlo-
ramphenicol acetyltransferases known as CATs, widespread among bacteria
[103]. Alternatively, some bacteria produce enzymes that can destroy the antibi-
otic itself. One of the most famous examples is the family of beta-lactamases.
Beta-lactamases were identified before the introduction of penicillin to the
market [12] and are considered to be ancient. More than 1000 different beta-
lactamases have been described to date.

• Blocking the action of the antibiotic against its target. The first line of
defense used by gram-negative bacteria to prevent antimicrobials from reaching
their intracellular or periplasmic targets is their outer membrane as we have
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discussed. In addition, they can prevent hydrophilic (water soluble) molecules
from traversing the membrane (which is not water soluble) using porins (channels
in the membrane) by altering the types of porins present, the expression of the
porin genes and by impeding porin function [85]. Efflux is another widespread
mechanism to avoid antibiotic action. E. coli can actively pump the antibiotic
tetracycline out of the cell using an efflux pump. Efflux pump mechanisms are
found in both gram-positive and gram-negative bacteria and can be antibiotic
specific such as mef which encodes macrolide resistance in pneumococci or can
be broadly specific facilitating the multi-drug resistance (MDR) phenotype [98].

• Changing the target site or bypassing it entirely. This occurs through two
main mechanisms, which include protection of the target and modifications of the
target site, decreasing affinity for the antibiotic. Tet(M) first described in Strepto-
coccus spp., interacts with the ribosome and actively dislodges tetracycline from
the target site [33]. Linezolid resistance involves mutation of the binding site in
the ribosome and results in decreased affinity of the drug for its ribosomal target
[78]. Lastly, bacteria can evolve entirely new target structures that have the same
function but bypass the antibiotic entirely, such as methicillin resistance in S.
aureus due to the acquisition of an exogenous PBP (PBP2a) and vancomycin
resistance in enterococci through modifications of the peptidoglycan structure
mediated by the van gene clusters [17, 31].

• Changing regulatory networks which control important metabolic path-
ways. An important example of this type of resistance is resistance to daptomycin
(DAP) and vancomycin (low level in S. aureus). In these cases, the bacteria
make systematic changes to fundamental systems such as their cell wall structure
to withstand the action of the drug. An example in both enterococci and S.
aureus, YycFG (WalKR), an essential two-component regulatory system, has
been implicated in cell wall synthesis and homeostasis, is important for resistance
to daptomycin. The exact mechanism is unknown, but it appears to involve
alteration in cell wall metabolism resulting in changes in surface charge which
repulses the positively charged calcium-DAP complex from the cell envelope
[22, 115]. High-level vancomycin resistance in S. aureus was the result of
acquisition by a methicillin-resistant S. aureus (MRSA) strain of the vanA gene
cluster from a vancomycin-resistant enterococcus (E. faecalis) isolate [107].
Thankfully such high-level resistance to the last available drug for treatment,
vancomycin, is rare in Staphylococci. However, low level resistance, called
vancomycin intermediate S. aureus (VISA), is much more prevalent and involves
several systematic changes that reduce peptidoglycan cross-linking (in the cell
wall) which results in a thicker cell wall. Additional changes in VISA cells
include an increase in fructose utilization and fatty acid metabolism, as well as
an increase in the expression of cell wall synthesis genes [56].
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1.2 Spread and Severity of Antibiotic-Resistant Infections

Infections due to antibiotic-resistant bacteria are already widespread in the USA and
across the planet [118]. In 2011, the Infectious Diseases Society of America (IDSA)
Emerging Infections Network survey of national infectious disease specialists con-
cluded that more than 60% of participants had seen a pan-resistant, untreatable bac-
terial infection within the prior year [109]. The gram-positive pathogens, S. aureus
and Enterococcus species, are responsible for a global pandemic, which poses the
biggest threat [3]. MRSA kills more Americans each year than HIV/AIDS, murder,
Parkinson’s, and emphysema combined [52]. Vancomycin-resistant enterococci
are developing resistance to many common antibiotics [50]. Health care settings
are seeing serious gram-negative infections due to resistant Enterobacteriaceae
(mostly Klebsiella pneumoniae), Pseudomonas aeruginosa, and Acinetobacter [3],
with multi-drug resistant gram-negative strains, including extended-spectrum beta-
lactamase-producing E. coli and N. gonorrhoeae emerging in the community and
non-health care settings [102]. A review in 2014 indicated that an estimated 700,000
deaths globally were caused by infections caused by antibiotic-resistant organisms,
and predicted this number rise to 10 million per year by 2050 [4, 89].

Antibiotic-resistant bacteria and the infections they cause are having an impact
on every field of medicine and have a significant impact on morbidity and mortality.
It has been estimated that infections caused by antibiotic-resistant bacteria have
two-fold higher rates of adverse outcomes compared with similar infections caused
by susceptible strains [36]. The impacts of negative outcomes include treatment
failure and/or death as well as economic impacts such as increased cost of care
and length of stay due to treatment failure of the antibiotic [44]. Serious infections
due to MRSA have a significantly higher case fatality rate when compared with
methicillin-susceptible S. aureus infections [36]. Enterobacteriaceae that produce
extended-spectrum beta-lactamases are associated with greater treatment failure and
mortality than non-ESBL producing strains [77]. Infections due to K. pneumoniae
with resistance to carbapenems demonstrate a two- to five-fold higher risk of
death than infections caused by carbapenem-susceptible strains [29]. Forty-five
percent of bacteremia cases due to carbapenem-resistant Acinetobacter baumannii
are associated with a 14-day mortality [87].

1.3 The Economic, Social, and Civic Impacts of Antibiotic
Resistance

It is also important to consider the impact that antibiotic-resistant bacteria have
on local and global economies, individuals, communities, and populations and on
policies, regulations, and future planning pertaining to healthcare, food production,
and agriculture. The emergence of antibiotic-resistant bacteria has been called a
“crisis” or “nightmare scenario” that could have “catastrophic consequences” and



Simulating Bacterial Growth, Competition, and Resistance 223

in recent years has been recognized as a global threat. As a consequence it is
now being recognized by governments and worldwide organizations as a target for
policy generation and implementation [83]. The federal Interagency Task Force on
Antimicrobial Resistance founded in 1999 succeeded in documenting collaboration
and communication among the 11 agencies working on resistance issues, but it
failed to set an agenda for federal response [1]. In 2013, the CDC declared that
the human race is now in the “post-antibiotic era,” and in 2014, the World Health
Organization (WHO) warned that the antibiotic resistance crisis is becoming dire
[80], stating that the problem “threatens the achievements of modern medicine.
A post-antibiotic era—in which common infections and minor injuries can kill—is
a very real possibility for the 21st century.” Antibiotic resistance poses a substantial
threat to US public health and national security according to the IDSA and the
Institute of Medicine. In March 2015, the Obama administration released a National
Action Plan for Combating Antibiotic-Resistant Bacteria [6] and the 2016 federal
budget almost doubled the amount of federal funding for combating and preventing
antibiotic resistance to more than $1.2 billion [1, 7].

1.3.1 Economic Burden of Antibiotic Resistance

Antibiotic-resistant infections pose an economic burden as well. Patients with
antibiotic-resistant infections spend longer in the hospital, from 6.4 to 12.7 days,
collectively adding an extra eight million hospital days [50]. The medical cost per
patient infected with an antibiotic-resistant strain is estimated to be in the range
of from $18,588 to $29,069 [21, 50]. The US economy faces a total economic
burden estimated to be as high as $20 billion in health care costs and $35 billion
a year in lost productivity due to antibiotic resistance [50]. Individual families and
communities lose wages and have higher health care costs [80]. Staggeringly, the
global gross domestic product could be reduced by 2–3.5% by 2050 due to the
mortality from antibiotic-resistant infections, about $60 and $100 trillion [4, 89].

1.3.2 Increased Impact on Subpopulations

Many subpopulations are affected by the rise in antibiotic-resistant pathogens
considerably more than others. We outline a few specific subpopulations below.

• Developing populations. For people in the developing world, a post-antibiotic
era has already arrived. In parts of Africa, studies have shown that as many
as 97% of S. aureus are caused by MRSA [11] and high levels of resistance
to amoxicillin and penicillin in S. pneumoniae and Haemophilus influenzae
have been observed, causing concern given that pneumonia is a leading cause
of death in children [114]. In India and Pakistan, up to 95% of adults carry
bacteria that are resistant to β-lactam antibiotics including carbapenems, where
by comparison, only 10% of adults in the Queens area of New York carry such
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bacteria [101]. Worryingly, not all countries are collecting data on the prevalence
of these bacteria and their infections. According to the WHO only 129 of 194
member countries provided any national data on drug resistance in bacteria with
only 22 countries tracking the organisms and resistance that pose the greatest
threat including S. aureus and methicillin, E. coli and cephalosporins, and K.
pneumoniae and carbapenems [101].

• Underserved and impoverished communities. According to 2016 US census
data, the official poverty rate was 12.7%, down from 13.5% in 2015. Since
2014, the poverty rate has fallen 2.1 percentage points from 14.8 to 12.7%. This
means that in 2016, 40.6 million people were living in poverty, 2.5 million fewer
than in 2015 and 6.0 million fewer than in 2014 [105]. For most demographic
groups, the number of people in poverty decreased from 2015. Adults aged 65
and older were the only population group to experience an increase in the number
of people in poverty [105]. Many factors associated with poverty contribute
to the development of antibiotic-resistant organisms, some of which impact
affecting resistance in the USA [95]. Studies have shown that seniors and low-
income patients obtain antimicrobials from other countries and may engage in the
sharing of medications while others will save antibiotics from a regimen they did
not complete and self-treat [95]. Self-treating can drive antimicrobial resistance
because of the inappropriate use of antibiotics for viral illness, the antimicrobials
may not work for the specific organism type and the dosage may be incorrect
[95]. The high cost of healthcare and lack of access to healthcare for those who
are uninsured, prevents many from seeking necessary and lifesaving treatment.
The WHO has cited the provision of universal healthcare as a means to

improve access to appropriate and affordable treatment of infections, especially for
the poor through enactment and enforcement of regulations, dissemination of treatment
guidelines based on antibiotic resistance surveillance data, along with awareness raising
on the responsible use of antimicrobials and the challenge of antibiotic-resistant
bacteria [26].

It is imperative to remove financial barriers and allow access to antimicrobial
treatment of infections.

• At-risk populations. While antibiotic-resistant bacteria pose a threat to the
population as a whole they are likely to cause illness in populations with
greater overall risk of contracting infectious diseases. These at-risk populations
include the military [32], the homeless [5], children attending daycare [9],
immunocompromised persons [42], and the elderly [18]. Using prisoners as
an example, community-associated MRSA outbreaks in the USA have been
reported among persons incarcerated in prisons and jails with estimates of
MRSA colonization in prisons as high as 80–90%. Crowding and sharing of
contaminated personal items may contribute to MRSA spread among incarcer-
ated persons [69]. Of considerable global concern, Russian prisons are said to be
driving resistance among strains of TB [61].
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1.3.3 Impact on the Food Supply and Agriculture

Antibiotics have been widely used in agriculture and in some countries for growth
promotion [64, 89]. This practice was discontinued in the European Union in
2006 [2]. In the Americas and Asia this practice is still in use, where large
scale husbandry systems contribute to infection with these bacteria. Treatment is
generally delivered via the feed or water to all animals regardless of their infection
status [73]. Data from the US Food and Drug Administration shows that in 2015,
74% of farm animal antibiotics were administered via feed and 21% in drinking
water, for mass medication. It is estimated that the use of medically important
antibiotics in food animals in the USA is approximately three times higher than
human use [74]. As a consequence, antibiotic use in animals is thought to be an
important selective pressure for antibiotic resistance globally [64]. Sales in the
USA in 2015 of the critically important fluoroquinolones antibiotics was 20 tonnes,
a 16% increase over 2014 and a 33% increase over 2013 [74]. However, in the
USA since 2005, the use of fluoroquinolones has been banned in poultry due to
scientific evidence that this use was leading to fluoroquinolone resistance in human
Campylobacter infections. In 2016, the FDA showed that sales and distribution of
all antimicrobial drugs approved for use in food-producing animals rose by 1%
from 2014 to 2015 [75]. An FDA policy named FDA Guidance for Industry #213,
asked that drug sponsors voluntarily remove growth promotion from the labels of
all medically important antibiotics used in food animals from 2017 onwards [76].
Thankfully, major US food companies such as McDonald’s and Tyson Foods have
reduced and in some cases eliminated antibiotics in their products [79]. The success
or failure of #213 will not be known for a number of years.

1.4 Introduction to Agent-Based Models of Bacteria

Agent-based models (ABMs) vary from differential equation (DE) models by differ-
entiating individual agents acting within the world, instead of treating populations
as homogeneous. Though it is common for DE models to capture heterogeneity in a
population by partitioning it into subpopulations (compartment models), probabilis-
tically perturbing parameters or rates of flow from one state to another (stochastic
differential equations (SDEs)), or using spatial characteristics of the world to
influence proportions of the population (partial differential equations (PDEs)), these
techniques all maintain anonymity of the agents within the population. There are
pros and cons to both types of modeling approaches. Used in conjunction, ABMs
and DEs can help us better understand the dynamics of a complex system than if
we used one method of modeling in isolation. There has been much discussion in
the modeling community about the individual benefits of each [28, 92, 94, 99, 104]
and the creation of hybrid models that incorporate both methods [27, 30, 119]. We
recommend that you read through the portions of these papers that quite elegantly
describe the utility of ABMs, often grounded in biological contexts.
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Recently, ABMs have been used in addition to DEs to explore the spread of
infectious disease throughout a population. Agents (e.g., bacteria, people, bears,
sharks, coral, hurricanes, houses) act as identifiable entities that make a series of
decisions, choosing between a prescribed set of options. For instance, the agents
may move throughout the world by moving in a uniformly random direction, then
potentially transmitting a disease to another agent with a probability that depends
on the distance between the agents. Using ABMs allows us to more easily integrate
spatial components and randomness into our model than formulating and analyzing
PDE or SDE models.1 Ultimately, we are interested in the behavior of the system
that emerges when the agents continue to make stochastic or deterministic decisions
based on their current state, which may be affected by other agents in the world
or their environment. In the models of bacterial behavior studied throughout this
chapter, we will often want to use an ABM to study the emergent behavior of the
system. For instance, we may want to predict the proportion of a population that
will be affected by an infectious disease or investigate the effects of an intervention
(e.g., antibiotics).

Though we include a research project on modeling the spread of infectious
disease, most of this chapter will be dedicated to creating, using, and interpreting
ABMs that simulate bacterial growth, competition between bacteria within a system,
and the ways that bacteria can gain resistance to an antibiotic. The ability to allow
probabilistic interactions between various agents in space will help us mimic the
biological mechanisms inherent in the processes to better understand the reasons
for emergent behavior that we witness, predict trends we expect to see in the future,
and reconcile the output of our models with the data collected through laboratory
experiments.

To create our ABMs, we will be using NETLOGO throughout this chapter—a
common environment for programming ABMs. Created by Uri Wilensky in 1999,
the platform is free to download with a plethora of texts to assist with the basics of
model creation and is currently one of the standards for ABMs [120]. See [100] and
[121] for thorough descriptions of ABMs, NETLOGO, and their use and capabilities.
Though we will spend time building a knowledge-base and familiarity with common
techniques and commands with tutorial-style exercises while designing models of
bacterial growth, we recommend that students who wish to pursue the challenge
problems and research projects outlined later in this chapter use supplemental
resources to gain additional experience and assistance with NETLOGO. Working
through Chapters 2, 4, and 5 of [100] would be particularly useful. If you feel
comfortable creating simulations in NETLOGO, you can likely move through the
next section relatively quickly, focusing your attention on the biological content. If
this is your first experience with programming and/or using NETLOGO, we strongly
recommend (at the least) completing the introductory exercises and three tutorials
created by Wilensky that are available for free on the NETLOGO website [120].

1This is especially notable for students that would like to research a complicated biological and/or
social phenomenon without a mathematical background that includes advanced topics like PDEs
and SDEs.
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Throughout the following sections, the exercises, challenge problems, and
projects are meant to prompt your own discovery of concepts associated with
bacteria and ABMs through guided inquiry. There are few responses that require
computations. Most will necessitate trial-and-error-type processes using the simula-
tions you will create, followed by thoughtful reflection on why an action “worked”
or “failed.” For this reason, solutions are not provided—though practically all
versions of the code are freely available on the QUBES (Quantitative Undergraduate
Biology Education and Synthesis) website [41], with some complete code included
in the Appendix.

2 Bacteria Growth

To gain some familiarity with modeling in NETLOGO, we will begin by creating
a model of simple bacterial growth. However, before we begin to dive into the
code, we need to distill down the microbiological background given in the previous
section to the basic processes integral to bacterial growth. Bacteria reproduce
asexually by a process called binary fission. Typically, bacteria divide into two
identical daughter cells, containing identical genetic material. Depending on the
strain of bacteria and the environmental conditions (e.g., temperature, nutrients),
the rate of cell division, called generation time, can vary. In a laboratory, E.
coli, a type of bacteria, divide every 15–20 min in nutrient-rich media. The same
bacterium will divide every 12–24 h in the human intestine, where the environment
is less friendly and nutrients are limited [49]. Certain disease-causing bacteria,
or pathogens, have especially long generation times even when measured in the
laboratory. Mycobacterium tuberculosis, the causative agent of TB, has a generation
time of 15–20 h. Long generation times are thought to play an advantage in their
capacity to cause disease or virulence [66].

Exercise 1 (Theory) The bacterium E. coli reproduce approximately once every
20 min in a near-optimal environment [106]. If you begin with one E. coli how
many bacteria would you expect to see after

1. 20 min?
2. 1 h?
3. 2 h?
4. 1 day?
5. n divisions (i.e., generation times)?

If you were to plot the number of E. coli cells against time, what type of curve would
you expect?
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An initial amount of bacteria, N0, with a generation time of tg , will theoretically
grow to

N(t) = N02
t
tg , (1)

after t units of time.

Exercise 2 (Theory) Check your responses to Exercise 1 with the formula given
in Eq. (1). In terms of the variables and parameters used in Eq. (1), how would you
calculate the number of divisions or generation times n?

When recording and graphing data generated in a laboratory experiment, biol-
ogists plot log (logarithm) counts of the bacteria, due to the large numbers of
bacteria.2 By the time bacteria have saturated the culture, there can be as many
as 8 × 108 cells per ml. You likely encountered this in the previous exercises
when calculating the number of bacteria after relatively few generations, even when
beginning with only one bacterium. Imagine trying to plot the numerical counts
you calculated in the previous exercises using a linear scale. You would either have
to use a very inaccurate scale, or you would run out of paper (or at least table
space). Using a log scale makes the very large cell counts typically found easier to
visualize. Since bacterial growth is exponential, the log transformation will appear
linear. Additionally, a log transformation allows us to estimate the generation time
of bacteria by simply finding the slope of the curve.

Exercise 3 (Theory) Show that the function log(N(t)) is linear. Then, determine
the generation time, tg , by only using the slope the linear function, log(N(t)).

Exercise 4 (Lab) Many of the following concepts can be demonstrated in
the laboratory with the minimum of resources and equipment. They can
be accomplished in a microbiology teaching lab under the supervision of
your biology or microbiology instructor. We have provided examples of
experiments (with commercial kits) that can reinforce your learning about
the simulations, which can be found here: [108]. In addition virtual labs and
online resources are supplied to aid with student learning.

Exercise 5 (Theory) Suppose we have discovered a new as of yet unidentified,
deadly bacterial pathogen, Morbum malum. Through extremely careful laboratory
experimentation, we closely monitored its growth. Beginning with a bacterial count
of approximately 1.0 × 108 M. malum cells, we estimated approximately 4.2 ×
109 cells 66 h and 6 min later by plating serial dilutions of the culture on agar and

2There is a debate over using log transformations with data that expresses counts when performing
advanced statistical analyses [88]. However, most of the arguments against this type of transfor-
mation come from ecologists who frequently encounter zero counts.
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counting the numbers of colonies that form (these are called colony-forming units
or cfu). Find an estimate for the generation time (or doubling time) of M. malum.
Compare this generation time with that of E. coli. Which bacteria would you expect
to pose more of a threat to humanity? Why?

Now, in NETLOGO, let us begin with a single bacterium centered in the world,
simulating a bacterium placed in the center of a nutrient-rich, continuous-culture
solution in a flask. In continuous culture, nutrients are added and waste is removed
continuously. In the Code tab, type the following in order to create a setup
procedure:

to setup
clear-all
create-turtles 1 [set shape "circle 2" set color pink]
reset-ticks

end

When this procedure is called, NETLOGO will clear any graphs and erase any
variable values it once knew, create one pink circle at the center of the world, then
reset the ticks to zero. A tick typically represents one iteration through the
code. Notice the primitive command to generate an agent is create-turtles.
Though we are creating bacteria, the default name for the agentset is turtles.3 We
set the shape as circles to approximate the form of the bacteria.4 Below the setup
procedure, create a go procedure. Use the hatch command in the code below to
model binary fission. Every time you click the go button this procedure will “hatch”
(create) a clone of each turtle in the agentset turtles. We will consider each tick
to be the estimated generation time of the bacteria.

to go
ask turtles [
hatch 1 [right random 360 forward 1]

]
tick

end

Do not forget to create a setup and go button in the interface area.

3In the NETLOGO language, all movable agents are called turtles. A parent programming language,
LOGO, could be used to program robots that moved in the physical world based on the commands
given. The original robots had shells that gave the appearance of a turtle. A pen could be attached
to them so they would draw their path on paper. Visualizing the agents as these roaming robots
may help you better understand the natural language programming conventions and syntax.
4If you are reading an electronic version of this text, we strongly recommend typing the sample
code into the Code tab of NETLOGO instead of copying and pasting. This will help with your
understanding of the flow and syntax. Also, and possibly more importantly, NETLOGO will not
understand the formatted quotation marks, and you will receive an error. The naming conventions,
spacing, hyphenation, and lack of capitalization used throughout the code are standard style choices
for NETLOGO.
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Exercise 6 (Code) The primitive procedures right, random, and forward
take a single number as an input. Vary the numeric inputs. Explain what each of
these primitives do.

Use the model to confirm your responses to Exercises 1 and 2. For now, leave
the Forever checkbox unclicked. When the Forever checkbox is clicked, a circular
arrow symbol appears in the bottom right-hand corner of the button. This makes the
go button run Forever—meaning NETLOGO will continue to loop through the code
until you unclick the go button. By default, the Forever option is turned off. This
allows you to view the evolution of the simulation after each tick by a manual click.
You may notice that it may be difficult to count the number of bacteria even after a
few ticks (and for your computer to generate such large numbers of circles). In order
to better understand and analyze the results of our simulation, we will want a count
of the bacteria. We can create a monitor that displays the exact number present at
any given iteration.

In the Interface tab, choose Monitor from the drop-down menu to the right of the
Add button. Click within the interface area to place your monitor. In the Reporter
text box, we want to report the count of the turtles. Type count turtles, then
click Ok. Now, click the go button a few times and note the count of bacteria.

Exercise 7 (Theory) Do the counts that appeared in the simulation match the
number of bacteria you calculated in Exercises 1 and 2? You found a closed-form
formula for the number of bacteria present after n generations. Can you find an
iterative formula for the number of bacteria present after n generation times given
the bacterial count at n − 1 generations?

It is difficult to understand the growth rate of the bacteria by just examining the
counts at each step. A graphical display of the counts will provide more insight.
In the Interface tab, choose Plot from the drop-down menu to the right of the Add
button. Click within the interface area to place your graph. The default Pen update
commands already contain the appropriate command, plot count turtles.
A pen is a line created by plotting the reporter over time, in this case, the total count
of bacteria over time. Following best practices, give the plot a more appropriate
title (e.g., Bacteria Growth Curve) and label the axes (e.g., Number of Bacteria,
Concentration of Bacteria (cfu/ml), Optical Density of the Bacteria (OD600) or
Absorbance5 versus Time6). Note, there are other modifications you can make to
the plot, like changing the color of the pen or adding more pens. Then click Ok.

5In the laboratory setting, spectrophotometry is often used to estimate the concentration of bacteria
(cells per ml or colony-forming units (cfu) per ml). In essence, light is shone through a bacterial
suspension and the spectrophotometer records the amount of light that makes it all the way through
to the sensor. This is called the optical density or OD. For instance an OD600 (600 refers to the
wavelength of the light used) of 1.0 is roughly the same as 8 × 108 cells/ml depending on the
strain. In the laboratory experiments provided in this chapter, this method is used to approximate
the count of the bacteria cells present at a given time [108].
6Note that we are simplifying our model so that each unit on the horizontal is a generation time of
the bacteria. This means the scale could have a wide range of standard time units. In the case of
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Now when you run the simulation, you should see a curve, showing the total amount
of bacteria over time. The slope of this curve is the growth rate. You can find the
complete code up to this point at [125]: Model 1.0.

Exercise 8 (Theory) What type of curve do you see? Is this what you expected?
Describe how the growth rate changes over time. Explain why this change in growth
rate occurs.

Exercise 9 (Code) As previously mentioned, biologists often plot bacterial counts
on a log scale. Create an additional plot in the interface area to show the growth
curve on a log scale.7 Does this curve appear as you expected? (See [125]: Model 1.1
for sample code.)8

At this point, our bacteria have not moved from their initial positions, with
clusters grown around the original, single bacterium. Though there are non-motile
bacteria (e.g., S. aureus), many types of bacteria are motile such as strains of E. coli.
Though E. coli are known to move in a coordinated fashion (which is an entire area
of study in itself),9 we will simplify this motion to allow free and random movement
of the bacteria [24].

We will take this opportunity to reorganize the model structure since we will be
asking the bacteria to do two separate sub-procedures: move and divide. Our goal is
to create a straightforward go procedure that will just ask the bacteria to move then
divide. Often when designing a simulation and determining the order of actions,
modelers will create flow diagrams to visually map an agent’s path through a single
tick. Figure 1 illustrates a simple example that we will use to build the code for
Model 1.2.0.

Then, we can translate the visual map we created into the go procedure that will
replace our previous go procedure:

to go
ask turtles [
move
divide

]
tick

end

E. coli, one tick could represent 20 min. However, if simulating M. tuberculosis growth, the same
change in the horizontal axis could represent 20 h.
7The NETLOGO Dictionary found on the NETLOGO website is extremely useful for browsing
available primitive commands and their necessary syntax. In this case, you may want to check the
NETLOGO Dictionary for help with the log primitive.
8It is good practice to save a model with a new name whenever you make a substantial addition or
change in the code. Also, make comments with text following a semicolon or two in the code to
help others understand what each line does. Often this will even be useful to remind yourself what
you were thinking when you wrote the code.
9Though not the focus of this chapter, cell motility is a very interesting topic of study. The
NETLOGO Model Library contains some models that explore this (e.g., Bacteria Food Hunt,
Bacteria Hunt Speeds). You could create a research project on this topic by performing a literature
search and designing a model that simulates the current understanding of the way bacteria move
on and in different media.
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Fig. 1 This flow diagram
shows a visual plan for
Model 1.2.0. The
initialization provided in the
setup procedure to create
one bacteria cell is the
starting point of the diagram.
Then the cell will move in a
way prescribed by the move
sub-procedure we will create.
Then, the cell will divide in a
way prescribed by the
divide sub-procedure we
will create

Create cell

Move

Divide

Input

Process

We must write a procedure for each of those actions. We have already written
the divide procedure; we just wrote it straight into the go procedure (hatch 1
[right random 360 forward 1]). We can copy and paste that into its own
procedure like so:

to divide
hatch 1 [right random 360 forward 1]

end

Note, we called the divide procedure within the turtle context in the go procedure
(ask turtles [...]). Therefore, we do not need to “ask” the turtles again in
the divide procedure. Always be mindful of the context of each procedure. Who
is being asked to act? Who is asking?

Now, we will insert a move procedure, giving the cells the same directions that
we gave to the “hatched” cells:

to move
right random 360
forward 1

end

At this point, we could simplify the code even more and instruct the daughter
cell that was “hatched” to follow the move procedure; however, we may want the
flexibility to change the way that the bacteria move in further additions and revisions
of this model. If you are interested in building a model that emulates the observed
movement of particular motile bacteria, you will certainly need to enhance the move
procedure. (See [125]: Model 1.2.0 and the Appendix for sample code.)

Exercise 10 (Theory) If we start with the same amount of bacteria in ten different
nutrient-rich flasks, would you expect to count the exact same number of bacteria
after 1 h in each of the flasks? Why?
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Example 10 is referring to deterministic versus probabilistic or stochastic system
dynamics. If we repeat a process over and over again, are we sure to get the same
result (deterministic) or will there be some (or possibly a lot of) variability in the
result (probabilistic)? For instance, our current model uses both deterministic and
probabilistic processes. The number of cells exactly doubles with each click; this
is deterministic. Each cell moves forward one step with each click (deterministic),
but in a uniformly random direction (probabilistic). Though we will always create
the same number of cells after n clicks, the cells will be located in different places
because of the probabilistic move procedure.

Exercise 11 (Theory) In reality, would you expect to see bacteria to continue
growing in this manner? Why?

One of the many reasons that you will witness variability in the growth (and not
just placement) of bacteria in laboratory experiments (and in nature) is that bacterial
cells die naturally, like all living organisms. Since bacterial growth rates are found
from empirical counts seen in the lab or in patients, the generation times used in
the model already account for cell death.10 In future models, we will consider many
other reasons for why the death rate may rise (or the growth rate will decrease), as
well as other environmental conditions that lead to variability in bacterial growth.

Challenge Problem 1 (Code) Update the flow diagram and code to add a proba-
bilistic natural death rate into Model 1.2.0. There are multiple ways this could be
done. A simplified version of natural death could be coded by asking each bacterium
at every tick to roll a (non-standard, many-sided) die to determine if they will die.
In other words, you would be asking each bacterium at every tick to die with some
probability p, where p is likely quite small. It is important to consider the order
of the sub-procedures. For instance, what is the difference in the effect if you allow
bacteria to die before versus after they reproduce? You will use the built-in random
and die commands in NETLOGO. (See [125]: Model 1.2.1 for sample code.)

When growing in a flask or on an agar plate in the laboratory, bacteria do not
demonstrate unrestricted exponential growth ad infinitum. A flask or an agar plate
would represent a closed system. In a closed system, the growth of an organism
is limited by the available resources and many other possible factors. This is
comforting, as otherwise the world would have been overrun by E. coli and many
other species of bacteria by now.

Exercise 12 (Theory) Consider some environmental conditions that might lead to
a reduction of the growth rate of bacteria. Why do you think these conditions would
lead to a reduction in growth rate?

10We have included a project on quantifying bacteria death at the end of the chapter. The idea uses
genetic sequencing techniques used more commonly when studying viruses, but could be applied
to estimate changes in bacterial death rates to identify genetic mutations that affect fitness [124].
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2.1 Bacterial Growth on Agar Plates

Let us assume the spatial aspects of the world is a limitation in the bacteria’s growth.
Suppose the bacteria is growing on a two-dimensional agar plate and that it is non-
motile. If space is not available for the bacteria to divide, then the bacteria will
not divide. We can model this in NETLOGO by using an if-statement. We check
the bacteria’s eight closest neighboring patches to see if any are empty. If so,
we will allow the bacteria to divide and occupy one of the available neighboring
patches. Model 1.1 simulated unrestricted growth of non-motile bacteria; alter the
go procedure of that model in following way:

to go
ask turtles [
if any? neighbors with [count turtles-here = 0] [

hatch 1 [
move-to one-of neighbors with [count turtles-here = 0]

]
]

]
tick

end

Now, the limitation on growth is the total number of patches in the simulated plate.
No longer will each bacterium divide at each tick. Observing the plot, notice the
growth now appears logistic. Instead of unlimited growth, we now see the total
bacteria count not only approaching but also achieving a carrying capacity. Figure 2
shows a flow diagram of the potential paths for each bacteria cell for the code as it
is written.11 (See [125]: Model 2.0.0 for sample code.)

Exercise 13 (Theory) Examining the graph of the log of the counts of bacteria
present at each generation time, why is the curve no longer linear?

Exercise 14 (Theory) Since the time it takes for each cell to divide now varies
based on its environment, would you expect the average generation time to be higher
or lower than when there were no spatial restrictions?

Exercise 15 (Theory) If you modify the necessary condition for cell division in
Model 2.0.0 to be count turtles-here <= 1, how do you think the model
output would change? Try these modifications in the code, making sure to change
both instances of the logical expression. Were you right? Compare the carrying
capacity to that of the previous model. Right-click on a patch. What do you notice
in the menu? In terms of the bacterial growth on a plate, what is the difference in
how the bacteria will form?

11If we were concerned about computational power, we may want to improve the efficiency of
this code. In its current form, the loop that continually asks bacteria that had already failed the
unoccupied-neighbors test is in vain; there is no mechanism in the current code to transform
occupied patches into unoccupied patches. We always want to be mindful of efficiency by
eliminating redundancy in the code and/or using structures that minimize computation time.
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Fig. 2 This flow diagram
shows a visual plan for
Model 2.0.0. The
initialization provided in the
setup procedure to create
one bacteria cell is the
starting point of the diagram.
Next, the cell must determine
if it has any unoccupied
neighboring patches. If so, the
cell divides, and the newly
formed daughter cell is placed
in one of the unoccupied
neighboring patches. If not,
the cell will continue to look
for open neighboring patches
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Challenge Problem 2 (Code) Even on plates, some bacteria (like certain strains of
E. coli) are motile on the thin film of fluid spanning the agar surface [34, 40, 60, 112].
Though they still express coordinated behavior (swimming, swarming, twitching,
etc.) in their motion on an agar plate, we will simplify this to add movement in a
uniformly random way like we used when modeling movement in a fluid. Create
two different models that introduce movement on a plate. One can be created by
inserting the move procedure from Model 1.2 into Model 2.0.0 ([125]: Model 2.0.1).
The other method could restrict movement in the same way that we restricted
the cell division, by only allowing a cell to divide if there is a neighboring patch
that contains no bacteria cells ([125]: Model 2.0.2). Describe the difference in the
bacterial growth between these two models. Why does the first model appear to
grow without bound, though with a significantly reduced growth rate?

2.2 Effects of Energy Source Availability on Bacterial Growth
on an Agar Plate

In the previous exercises, you explored the theoretical idea of the vertical, or three-
dimensional, growth of bacteria on an agar plate by allowing multiple cells to exist
on the same patch. This simulates stacked bacteria growing out from the plate.
Experimental results combined with modeling have shown that the growth rate of
bacteria is almost identical whether they are grown in broth or on agar with similar
nutrients [45]. This leads us to posit that there are other environmental factors that
cause bacteria growth to subside before spatial constraints could possibly cause a
statistically significant effect.

You may have considered the absence of an energy source as a condition likely
to reduce bacteria growth. Indeed, bacteria cannot survive forever on an unmodified
surface; without food from which to obtain energy, they would die. Let us modify
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our model of bacteria growth on a plate, Model 2.0.0, and introduce an initial food
source (e.g., sugar, in this case, glucose) that will be consumed by the bacteria over
time. First, we will add to the code a patch variable called sugar. At the very top of
the code in Model 2.0.0 type,

patches-own [sugar]

Then, in the setup procedure, we need to specify the initial amount of sugar on
each patch.

ask patches [set sugar 50]

We use 50 units here in order for the bacteria to grow to capacity before the food
source becomes limited. At every tick, we will ask each bacteria to consume one
unit of sugar from the patch they are on. Let us create a consume procedure in the
following way:

to consume
if [sugar] of patch-here = 0 [die]
ask patch-here [
if sugar > 0 [

set sugar sugar - 1
]

]
end

This procedure first checks if the sugar on the patch is depleted. If so, the bacterium
dies. In this case, the bacterium no longer exists to ask... anything. Therefore, the
consume procedure would be exited if there is no sugar on the patch. However, if
there is sugar left on the patch, the bacterium does not die and continues to consume
one unit of sugar (simulated by the incremental decrease in the value of the sugar
variable). Do not forget to add the new consume procedure into the go procedure,
like so:

to go
ask turtles [
consume
if any? neighbors with [count turtles-here = 0] [

hatch 1 [
move-to one-of neighbors with [count turtles-here = 0]

]
]

]
tick

end

We want to ask the bacteria to consume the sugar prior to dividing, as energy is
required for binary fission. Once we instruct the bacteria to consume the sugar, the
simulation will produce a logistic growth curve with a relatively steep decay rate
beginning after 52 iterations until all of the bacteria die. (See [125]: Model 2.1 for
sample code.)
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Exercise 16 (Code) When you run the simulation, the graph of the log growth
curve stops plotting and the title turns red. Investigate this. What is the error? Edit
the go procedure to force the simulation to terminate using the stop primitive
command to correct the error, while also eliminating unnecessary iterations. You
may find an alternative method than the solution provided in the sample code for
Model 2.2 in the Appendix and in [125].

Exercise 17 (Lab + Code) Bacterial growth on different substrates supple-
mented with different nutrients can be easily demonstrated in the laboratory.
We have provided ideas for experiments where students could use agar or
broth, or vary the conditions including the pH, the sugars incorporated into the
media, or vary the oxygenation [108]. Students would prepare serial dilutions
of bacteria and plate for counts. The counted values could be logarithmically
transformed and the log values graphed against units of time.

After collecting the data, vary the parameters in your model to best mimic
the trends you witnessed in the bacteria counts. Think about adjusting numeric
values like the initial amount of sugar, the maximum amount of sugar a single
bacteria consumes in one tick, or the restrictions on how closely packed the
bacteria can be. Devise methods for determining what makes your simulation
best reflect the data. Additionally, as you learn more about environmental
effects on bacteria growth, you can return to this exercise or the future lab
protocols provided to continue to improve the replication of the trends you
discovered by collecting data in the lab.

2.3 Effects of Energy Source Availability on Bacterial Growth
in a Flask

Now, in a three-dimensional flask, we would not expect spatial restrictions to affect
bacterial growth as much as the availability of an energy source. Additionally,
the food would be relatively uniformly dispersed throughout the solution through
mixing. We will return to our simulation that considers motile bacteria growing
unrestricted by space in a flask (Model 1.2.0), but now we will add a restriction
that they must have enough energy to perform binary fission and to generally
survive. To the two sub-procedures we already included (move and divide), let
us add two new sub-procedures to execute within the go procedure: consume and
expire.12 In Model 2.2, we added a consume procedure to ask the bacteria

12It seems that the obvious name for this sub-procedure would be “die.” However, as you previously
saw, die is a primitive command hard-coded into NETLOGO that performs the opposite action as
hatch—hatch creates a turtle, and die removes a turtle.
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to consume spatially fixed sugar on an agar plate. We will use a similar idea for
the consume procedure in a flask, while keeping the idea in mind that the sugar
will be well-mixed in the solution. We will begin by declaring sugar as a global
variable (globals [sugar]). We will also need the bacteria to have an energy
variable (turtles-own [energy]) that will determine whether the bacteria
can divide or if it will expire. Both of those declarations will need to be added to the
top of the code.

Exercise 18 (Code) In this new model, we will want to keep track of the amount of
sugar that remains in the system as it will be depleted over time and not replenished
(like agar in a plate or broth in a flask). Create a monitor in the interface area that
reports the amount of sugar that has not yet been consumed. Note, sugar is a variable,
not an agentset. The syntax is slightly different than the monitor that shows the
number of bacteria.

In the consume procedure, we will want each bacterium to consume a sugar
unit if it is available. This means the sugar will get depleted and the energy of the
bacterium will increase. However, if the sugar has been completely consumed, the
bacterium’s energy will remain the same. We could use the following code:

to consume
if sugar > 0 [
set sugar sugar - 1
set energy energy + 2

]
end

Now, we will alter the move procedure written in Model 1.2.0 to use energy:

to move
right random 360
forward 1
set energy energy - 1

end

So for every movement, the bacteria have their energy reduced by one unit.
However, while sugar is available, the bacteria will be steadily increasing their
energy levels at a rate of one unit per tick.

The divide sub-procedure introduced in Model 1.2.0 will be transformed into
a conditional process. For the purposes of our model, we will assume that in order
for bacteria to perform binary fission, they require a sufficient amount of energy.
Then, when the division occurs and the two daughter cells remain, they will each
have half of the original cell’s energy. Though this may not be the precise method of
energy redistribution, the even split will be a reasonable proxy. Therefore, we could
use the following code:

to divide
if energy >= 20 [
set energy energy / 2
hatch 1 [right random 360 forward 1]

]
end
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Note that the hatched bacterium is a clone of the original, and so has the same energy
level. Also, we have semi-arbitrarily set the energy threshold for binary fission to
be 20 energy units. This parameter was chosen in order to approximately reproduce
the growth patterns we see in the scientific studies that plot bacteria amounts or
concentrations over time. See [13, 45] for graphic and verbal explanations examples
of slightly more sophisticated curve-fitting techniques with experimental bacteria
growth data. Although the authors of these papers are using DE models, the basic
ideas are the same—use an underlying set of relationships and behaviors, then find
relative parameter values that best imitate the trends you see in the data.

The bacteria will die when their energy levels are completely depleted, and so
we can create a simple expire procedure in the following way:

to expire
if energy = 0 [die]

end

Exercise 19 (Code) The order that the sub-procedures are called within the go
procedure matters. What order makes sense to you? Change the order of the sub-
procedures in the code. Do you notice any changes in the emergent behavior? Repeat
this multiple times.

In this model, we will also begin with a larger number of randomly placed initial
bacteria to simulate a well-mixed solution. The energy level of each bacterium is
determined by a uniform distribution. Therefore we will alter the setup procedure in
this way:

to setup
clear-all
create-turtles 25 [
set shape "circle 2"
set color pink
set energy random 20
setxy random-xcor random-ycor

]
set sugar 100000
reset-ticks

end

The total amount of sugar is set to 100,000 units in order to visualize the
exponential growth, a plateau, then a sharp decay. The simulation will need to run
for approximately 100 ticks to witness the growth and decay. Just as we observed in
Model 2.1 (bacteria growth on an agar plate), the log plot turns red when all of the
bacteria have died. Therefore, we may fix this error in the same way by using the
stop command.

Exercise 20 (Code) If you do not wish to click the go button 100 times, create
another go button that runs the simulation until you unclick the button using
the Forever option. Note, in order to witness the growth and decay at a visually
processable speed, you may use the slider near the top of the Interface tab to slow
down the tick rate. (See [125]: Model 3.0.0 and the Appendix for sample code.)
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Exercise 21 (Code) What do you expect will happen in the simulation if the
amount of energy required for the bacteria to divide is decreased? Increased? Try
this in the model. Were you correct? What changed in the simulation output?

Challenge Problem 3 (Code) Instead of following the count of sugar by observing
the monitor, use the color of the world to indicate the amount of sugar that remains in
the solution. I suggest using the pcolor and scale-color primitive commands.
(See [125]: Model 3.0.1 for sample code.)

Challenge Problem 4 (Code) Return to Model 3.0 once more to incorporate a
spatial component of the nutrients in the way we used in the agar plate example in
Model 2.2. Do this by attaching quantities of sugar to the patches and only allowing
the bacteria to consume the sugar if it is on a patch that has remaining sugar. (See
[125]: Model 3.0.2 for example code if you get stuck.)

You may notice in Model 3.0.0 the plateau signifying the stationary phase is quite
abrupt and crudely models logistic growth. If you think about the nutrients available
in the flask, there would certainly be a spatial component; once a substantial portion
of the sugar has been broken down, not all bacteria would be in the proximity of an
energy source. Let us consider a way to simulate a spatially dependent food source
by using breeds in NETLOGO. Breeds allow us to designate classes of agents that
can have their own variables and actions. We will alter Model 3.0.0 that introduced
the four main sub-procedures: consume, move, divide, expire. The bacteria will be
a class of agents (breed) that are required to be in the proximity of a sugar (another
breed) in order to consume it and gain energy for binary fission. First, we must
define our breeds at the top of the code:

breed [sugars sugar]
breed [bacteria bacterium]

Note, the breed primitive requires both a plural and singular form of the agentset.
Instead of designating the energy variable to all agents by using turtles-own, we
can restrict the assignment of energy to only the bacteria using bacteria-own.
Essentially, we now use the plural name we gave to the agentset anywhere we would
have previously used turtles. The singular form is still reserved for addressing
a particular agent. Moreover, if we would like to address all agents (in this case
bacteria and sugar), we would still use the entire agentset of turtles. Now, we
must make some additions and slight alterations to the setup procedure. We must
populate the solution with sugar, so we will add:

create-sugars 2000 [
set shape "dot"
set color white
setxy random-xcor random-ycor

]

This creates 2000 randomly placed small white circles, representing sugar. Notice
we use create-sugars instead of create-turtles since we have two
distinct breeds. The initial amount of 2000 sugars was chosen in order to model
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all phases of growth and decay. Next, we need to modify the bacteria initialization
to designate the agents as bacteria:

create-bacteria 15 [
set shape "circle 2"
set color pink
set energy random 21
setxy random-xcor random-ycor

]

Again, the numbers were chosen to produce an accurate simulation. In the labora-
tory, bacteria growing in liquid are rotated quickly so as to agitate the contents,
ensuring mixing of nutrients, the cells themselves and good aeration. For our
simulation, we will assume the flask is shaken regularly to ensure the sugars
are mixing evenly in the solution. Thus, our simulated sugars (and bacteria) will
move randomly within the world. We add the movement of the sugar to the go
procedure in the following way:

ask sugars [
right random 360
forward 5

]

A forward movement of 5 ensures the remaining sugars are well-mixed and not
remaining far away from the bacteria clusters. In the move procedure for the
bacteria, increase the forward movement to 5 as well, as it seems as if the mixing
would have the same effect on the positional change of the sugar and bacteria.

The divide and expire sub-procedures for the bacteria will remain the same;
however, we must modify the consume procedure. Just as we considered the spatial
proximity of the bacteria and sugar in Challenge Problem 4, we will use a similar
concept here. The bacteria can only consume the sugar if they are adjacent to it. So,
we will use the built-in in-radius command to ask the bacteria to look with a
certain range around themselves and consume a sugar if they find one. If there are
no sugars within the designated area, the bacteria lose energy.

to consume
if any? sugars in-radius 2 [
ask one-of sugars in-radius 2 [die]
set energy energy + 15

]
end

Note, we have increased the energy gain from a sugar unit to 15, enough for the
bacteria to divide after consuming two sugars within a few ticks. This change
simulates conditions where bacteria can easily and quickly perform binary fission.
(See [125]: Model 4.0 for sample code.)

Exercise 22 (Code) Click the go button a few times and observe the growth
curves. Why do they appear flat? And, why is the sugar monitor reporting an error
(indicated by the red font color)? Compare to the number of bacteria. Does this
make sense? Edit the Pen update commands within the plots in order to plot the



242 A. E. Yust and D. S. Smyth

2200
co

un
ts

0 A

A
B

B
C

Bacteria and Sugar Curves Low Bacterial Growth Curve

C

D

D

0 time 36.3

3.35

lo
g 

ba
ct

 c
ou

nt

0

0 time 36.3

Fig. 3 The labeled curves show all four phases of bacterial growth: lag (A), log (B), stationary
(C), and death (D). The increasing then decreasing bacterial counts (left) are displayed in pink and
then shown on a log scale (right). The additional decreasing gray curve (left) displays the amount
of sugar remaining at each time step. The plots were generated with Model 4.3 found in [125]

actual bacterial growth curves. Then add an additional pen to the plot to display the
amount of sugar that remains. Modify the monitors for bacteria and sugar so that
they show the proper totals. (See [125]: Model 4.1 for sample code.)

Exercise 23 (Code) Run the simulation for 50 ticks. What is not happening?
Inspect a bacterium by right-clicking on it, choosing one of the bacteria on the
patch, and clicking Inspect from the menu shown. Carefully consider the values of
the variables associated with the bacterium. Find the logical error in the code that is
not producing the desired results. Then, alter the code in order to fix the simulation.
(See [125]: Model 4.2 for sample code.)

Model 4.2 simulates three of the four phases of bacterial growth: the log
(or exponential) phase, the stationary phase, and the death phase, shown in Fig. 3
by B, C, and D, respectively. The remaining phase, indicated by A, occurs at the
beginning of the growth process, called the lag phase. This is when the bacteria have
just been placed in the growth medium and are preparing for the necessary processes
that must take place in order to consume the energy source. The plots shown in
Fig. 3 are copies of simulated bacteria growth trajectories that were generated in
NETLOGO.13 Though the resolution of the data visualizations is lacking, these
images are shown here to validate your own output (with some variation, given
the variability in the simulation).14

13Though the horizontal axis is labeled as time, recall, the time unit used in this simulation is
arbitrary. The purpose of building this model was to replicate the phases of growth of an unspecified
bacteria in a closed system; we did not try to use parameter values that would approximate
growth with empirical cell counts or concentrations of a particular bacteria over time. Adjusting
the generation time to fit data you collected through a laboratory experiment or using a known
generation time to observe the emergent behavior of the system are components of many of the
proposed research projects later in the chapter.
14The letter labels in Fig. 3 were added in post-production. You should not expect to see those
when you create your plots in NETLOGO.
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Exercise 24 (Code) Modify your model to include a lag phase. Note, even when
the bacteria are adjusting to their new environment in the flask, they will continue
to move and use energy. (See [125]: Model 4.3 and the Appendix for sample code.)

Not only does the depletion of energy sources cause bacterial decay, but
paradoxically, the consumption of an energy source can contribute to bacteria death
as well. For instance, when E. coli consume glucose , they are fermenting the
glucose in a process called mixed-acid fermentation. This process results in the
production of acetate as well as other acids and gas (carbon dioxide) which acidifies
the medium, rendering the environment sub-optimal for the E. coli [16, 96]. Note,
if the bacteria were inhabiting a continuous-culture solution, the acidic waste would
be removed.

Let us add this unfortunate, yet natural, effect of consumption in a closed system
into our model. We will begin by including a new global variable, acidity, defined
at the very top of the code with globals [acidity]. Whenever we use a
global variable, it is important to initialize its value in the setup procedure. Since
we assume the initial medium is near-optimal, we will set the acidity to be zero,
set acidity 0. Since acid is added to the solution when sugar is consumed by
the bacteria, we need to incorporate an increase in acidity (or a decrease in pH) to
the consume procedure. After a sugar is consumed, we can simulate the acidity
level rising in this way:

to consume
if any? sugars in-radius 2 [
ask one-of sugars in-radius 2 [die]
set energy energy + 15
set acidity acidity + 1

]
end

In order to model the adverse effect of the acidity on the E. coli, we will add another
cause of death on top of starvation. One way to simulate the continual decay in the
quality of the solution due to acidity is to transform acidity into a death rate. We
will use the following code as an example:

to expire
if energy <= 0 [die]
if random-float 1 < acidity / 200000 [die]

end

Here, random-float is introduced as an alternative way to model probabilistic
behavior. This chooses a uniformly random non-negative floating point number that
is strictly less than 1. Then, because 200,000 is 100 times greater than the initial
amount of sugar specified in the setup procedure—and, therefore, much greater
than the maximum acidity value—this creates a monotonically increasing death
rate due to consumption with a minimum of 0 and a maximum of 0.01. In other
words, the acidity will begin by killing 0% of the bacteria with every tick and slowly
increases to killing 1% once all the sugar has been consumed. (See [125]: Model 5.0
and the Appendix for sample code.)
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In the versions of Model 1, we used one tick as a proxy for generation time. In the
versions of Models 2, 3, and 4, we restricted cell division by other environmental
conditions, e.g., occupation of neighboring patches, availability of an energy source.
We pose a research project to assess how environmental changes affect the average
generation time.

Research Project 1 We noted early in Sect. 2 that biologists have witnessed
significantly different generation times for E. coli when observed in a
laboratory versus in a human body. Use the sources provided above, along
with your own literature review, to determine potential causes of the variation
of generation times, e.g., availability of efficient energy sources, ability to
thrive in extreme temperatures. Create multiple models that incorporate those
environmental differences. Within each model, track the number of ticks
between every cell division. Record those disaggregated generation times
in a list for export. You may want to investigate the use of lists in the
Programming Guide found in the NETLOGO User Manual hosted on the
NETLOGO website [120]. You will want to analyze the simulated data by
considering measures of center and spread of generation times in a given
environmental setting, ultimately, reconciling the emergent behavior with data
you gathered by completing one of the laboratory protocols we provided or
with experimentally produced data found in the literature.

In the following steps to design the next iteration of the model, we will create a
slider so the user can input a bacteria’s empirically estimated generation time. This
will lay a framework that will allow simulated competition between two strains
of bacteria. However, we should be mindful that we are hard-coding a minimum
generation time into the simulation. Therefore, the average generation time that
emerges will be longer than the one specified.

At this point, we will adjust the code in order to allow for user-defined variability
in generation time. We will convert ticks to time units and create an internal counter
to track the time required before the cell division is completed. In making these
changes, we can also make some adjustments to improve the sample code given for
Exercise 24, which simulates the lag phase. First, we need to add a counter variable
to the bacteria. Within the variable declaration for the bacteria breed we will now
include:

bacteria-own [
energy
generation-time-counter

]

The generation-time-counter will increase by one for every tick, trigger-
ing a division when the counter has reached the specified generation time. Of course,
we still need to maintain the energy requirement for cell division as well. To keep
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track of each bacterium’s clock, we will insert a standard counter at the end of the
consume-move-expire-divide cycle within the go procedure:

ifelse ticks > 10
[
ask bacteria [

consume
move
divide
expire
set generation-time-counter generation-time-counter + 1

]
]
[
ask bacteria [ move ]

]

Note, when the ifelse conditional statement checks if the number of ticks is
greater than 10, this forces the lag phase to continue for 10 ticks (a possible solution
to Exercise 24 to include a lag phase in the growth curve). In the divide sub-
procedure, we must restrict the cell division even further than before. Not only is
an energy threshold required, but enough time must have passed for the bacteria to
complete binary fission. As an example, we will use the 20-min average generation
time of E. coli, where a tick represents 1 min in the following code:

to divide
if energy >= 100 and generation-time-counter >= 20 [
set energy energy / 2
set generation-time-counter 0
hatch 1 [right random 360 forward 1]

]
end

Here we remember to reset the generation-time-counter to 0 to
begin the binary fission process again. Recall, the “hatched” bacterium
will have the same variable values as its parent bacterium, resulting in the
generation-time-counter for both daughter cells to be 0.15 Notice that
the energy threshold has increased. This is due to the increase in the number of
sugars that the bacteria can consume between cell divisions and for the purpose of
simulating all phases of bacterial growth. We will also change the amount of energy
gained from the consumption of a sugar to 5 (set energy energy + 5) in
the consume procedure, in order to maintain the relatively arbitrary choice to have
the maximum amount of energy gained over the generation time to be equal to the
threshold needed for division.

Finally, we need to initialize the bacteria with a generation-time-counter
value in the setup procedure. We will allow this value to be a uniformly random
value between 0 and 20 using set generation-time-counter random 21

15It is important to recognize that in this construction, the 20-min generation time used here is a
minimum generation time; this will not result in an average generation time of 20 min.
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and placing this in the setup procedure in the creation of the bacteria. This way, all
bacteria will begin at different stages of preparedness for cell division. After the lag
phase is over, some of the bacteria will be able to split immediately, while others will
need a bit more time. This simulates the empirically driven concept that individual
bacteria will adjust to their environment at different rates. The stochasticity of
the cell division times is part of what gives us variability in the bacterial counts
after a fixed time has passed. Much work has been done to model with stochastic
differential equations and agent-based models backed with experimental evidence
on methods to measure the variability caused by multiple stochastic processes
during all phases of bacterial growth [15, 47].

Because of the additional ticks that result in additional consumed sugars, we will
increase the initial number of sugars. Instead of hard-coding the amount of sugar
added into the model, let us create a slider to allow us to change this value in the
interface without needing to alter the code. In the Interface tab, find slider in the
drop-down menu. Then click within the interface area to place the slider. Sliders
are named with the global variable that you plan to alter. Conventionally, we use a
descriptive noun or phrase with hyphens between words. In this case, we will name
the variable initial-sugars. Then, we will set the range and granularity of the
slider. In this case, we will allow the slider to go from 0 to 20,000 by 1000 sugar
increments. We set the default value to be the center, 10,000, since this results in an
outcome that displays all phases of bacterial growth.

Now, we need to incorporate this variable into our code. This user-determined
value should replace the previous hard-coded numeric value for the initial number
of sugars created in the setup procedure. Substitute create-sugars 2000
with create-sugars initial-sugars in the code. Now, we can use the
slider to change this value easily. Note, we did not need to define this global
variable using globals within the code. In fact, if you do this, you will receive an
error. In allowing the initial amount of sugar to be user-defined, we must alter the
death-by-acidity conditional statement. We will make this adjustment:

if random-float 1 < acidity / (500 * initial-sugars) [die]

By multiplying the user-determined global variable, initial-sugars, by 500,
we are restricting the death rate even more than in the previous version, now
simulating an even slower monotonic increase from 0 to 0.5%.

Finally, all that remains is to change the axis titles on the graphs to reflect the
appropriate units. Time in standard units (minutes, hours, etc.) is now measured by
the horizontal axis instead of a unit of time indicating a generation time.16 You may

16No units have been specified for time because any time unit could be used in the model as long
as we are consistent. For instance, in the case of E. coli, we use 20 for our generation-time
variable. The units on this variable are now minutes, and so the x-axis would show time in minutes.
If we were modeling bacteria with a longer generation time, like, M. tuberculosis, we may choose
to still use 20 for generation-time. However, the x-axis would be a measure of time in hours.
Alternatively, we could stick with minutes and set generation-time to be 1200, which would
mean the x-axis units would be minutes again. You may realize that such a large value for the
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also wish to remove the pen that displays the amount of sugar that was added in
Model 4.1, as we did in the sample code, so you can view the bacterial growth curve
in more detail. (See [125]: Model 6.0 for sample code.)

Exercise 25 (Code) Vary the parameter determining the maximum death rate due
to fermentation and increased acidity of the environment.

(a) What happens to the growth phases when the parameter is decreased? Why do
you think this occurs?

(b) Use the methods described in Research Project 1 to find the average generation
time for various values of the parameter. Is there an effect?

Exercise 26 (Code) Vary the slider for the initial value of added sugar.

(a) What do you notice in the time it takes to execute the simulation once? Why
does this occur?

(b) What do you notice in the graphical output when you run the simulation to
completion? Why does this occur?

(c) Use the methods described in Research Project 1 to find the average generation
time for various values of the sugar-slider. Is there an effect?

Exercise 27 (Code) Vary the amount of energy gained from consuming a sugar
and the threshold needed for cell division.

(a) What changes occur in the bacterial growth curve? Inspect the bacteria. Why
does this occur?

(b) Use the methods described in Research Project 1 to find the average generation
time for various values of the parameter. Is there an effect?

Exercise 28 (Code) At this point our simulation allows the bacteria to continue to
consume sugar and amass stores of energy. In reality, the bacteria would genetically
regulate this, so we will in our model as well. Include an additional condition in
the consume procedure to only allow bacteria to consume sugar if their energy is
below a fixed threshold, say 100 units. (See [125]: Model 6.1 for sample code.)

Exercise 29 (Theory) Instead of using the simulated data to find an average
generation time, how could you estimate the generation (doubling) time of the
bacteria from the graphs produced? You may want to consider Eq. (2). Use this
method to estimate and confirm the expected generation time of the E. coli example.
Now devise a method to find the generation time from the log bacteria growth curve.
Estimate and confirm the expected generation time with this method.

Exercise 30 (Code) Change the code to model Lactobacillus acidophilus, a pro-
biotic (i.e., “good bacteria”) that is part of healthy gut flora. L. acidophilus has an
average generation time of approximately 2.86 h when in a glucose solution [67].

generation time would lead to a lengthier simulation, as each tick or iteration through the go
procedure is one time unit, likely leading to a preference for using a specific unit of time.
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Use the methods from above to support that the changes you made in the code
actually reflect the new generation time.

Exercise 31 (Code) Create a slider in the interface for generation time to more
easily model different strains of bacteria. (See [125]: Model 6.2 and the Appendix
for the complete sample code.)

Research Project 2 DIY Lab: Let’s make kombucha!

We can witness the mixed-acid fermentation first-hand with a delicious experi-
ment you can conduct at home. Kombucha is a carbonated acidic beverage made
by fermenting sweet tea with a symbiotic culture of bacteria and yeast (SCOBY).
The SCOBY contains multiple strains of bacteria and yeast. You can acquire this
stiff, jelly-like culture by purchasing one online, getting one from a friend who
makes kombucha, or growing your own with a plain, unflavored kombucha that you
purchase at a store. The simplified process of fermentation that creates the finished
kombucha product is as follows: the yeast consume the sugar, which produces
carbon dioxide and ethanol. The bacteria then convert the ethanol into acid [72].
Note, because of the symbiotic nature of the yeast and bacteria, the ethanol that is
produced is mostly metabolized by the bacteria, causing the alcohol content of the
beverage to typically be kept to under 0.5% ABV (alcohol by volume).17 The longer
the SCOBY is thriving in the sweet tea solution, the more carbonated and acidic
the beverage becomes. Additionally, the acid-producing bacteria are genetically
predisposed to thrive in relatively high-acid environments—unlike many bacteria,
like E. coli, that would die in these conditions. For this project, you will combine
DIY scientific experimentation with computer simulation to better understand the
fermentation process and predict the outcomes of your kombucha dependent on
varied parameters.

1. Create a laboratory protocol to systematically measure the amount of sugar, acid,
and SCOBY present in the solution.18 If you are doing this at home—and not in a
lab—you could qualitatively measure the sugar with a sweetness scale, use litmus
strips to measure the pH, and either weigh the SCOBY with a kitchen scale or
estimate its volume by using a ruler to find its dimensions. Note, temperature can

17So, for those of you under the legal age for drinking most of the fermented beverages
currently on the market, you may legally consume the beverage produced after the project is
complete (unless your kombucha was produced in the lab—never consume anything that was
produced/modified/brought into the lab. There could be (and probably are) nasty hitchhiking
pathogens swimming around in there!).
18See [81] for an example of a chemistry-focused laboratory experiment that uses technical
equipment to perform measurements of more variables.
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affect growth rates and the fermentation process, so be sure to consider this in
your data collection. For a more advanced experiment, repeat your experiment
multiple times to collect more data.19

2. Use the data collected to find relationships between the three variables you
measured. Create a simulation that mimics the fermentation process. You may
want to create a few more breeds to model the additional organisms and
byproducts found in and necessary for the fermentation process. You should also
do additional research on the types of yeast and bacteria present in a standard
SCOBY to better model their interactions. Keep in mind that the bacteria used
are not affected by the rise in acidity—unlike our previous model that was made
with E. coli in mind.

3. Use the relationships you found to determine parameters and units for your
model.

4. Compare the results of your experiment with the results of your simulation
to assess your model’s validity. Adjust parameter values to maximize your
confidence in your model’s ability to predict the quantities or concentrations of
the model variables over time.

5. Consider several scenarios and use your model to predict the outcomes. Then,
test your predictions by making kombucha under conditions that are as close to
the hypothetical scenario you chose. For instance:

a. You are fermenting your sweet tea in an apartment in New York City over the
summer, and your air conditioner breaks. Alternatively, it is the winter, and
your heat gets shut off.

b. You order a SCOBY from a company online. You make kombucha as directed,
but the end product has an acidity level close to that of apple cider.

c. Oh no! Visible mold growth has appeared on the surface of your kombucha.20

Exercise 32 (Lab) The ability of bacteria to ferment sugars and to change
the environment can be demonstrated several ways. The simplest would be to
use solid media that changes color as the bacteria grow, ferment and produce
acid, the acid changes the pH, thus the agar changes color. Fermentation tubes
can also be used to demonstrate the ability of bacteria to ferment (this is
indicated by a color change) and to produce gas (a bubble) and pH indicator
strips could be inserted (cautiously) and the pH recorded. Triple sugar iron
slants can also be used to demonstrate fermentation and gas production but

(continued)

19Each fermentation process requires significant time (on the order of a month). You could consider
running multiple experiments simultaneously to produce more data in less time. You could also
vary parameters (type of tea, incubation temperature, light exposure) and see what happens.
20You will likely want to read through the next section on competition before tackling this scenario.
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Exercise 32 (continued)
also the production of H2S gas. All these procedures would require access to
the laboratory. You can find lab protocol examples here: [108].

3 Competition Between Bacteria Strains

Now that we have a simplified model of the growth of a single strain of bacteria,
let us consider a simulation of the competition between two types of bacteria that
consume the same energy source. There are many ways the bacteria could vary; they
could have different generation times, death rates, energy consumption rates, etc.
For instance, E. coli and Salmonella enteritidis both consume glucose for energy.
However, E. coli has a much shorter generation time than S. enteritidis, ∼20 min and
∼30 min, respectively. Therefore, we would expect when competing for the same
resource in a closed system, E. coli would grow at a faster rate than S. enteritidis
initially, while the environment is still habitable. Since there will eventually be many
E. coli to ferment the glucose and increase the acidity of the medium, this will cause
the environment to be much too acidic for both strains of bacteria in the solution.

Exercise 33 (Lab) Competition between bacteria as well as their ability to
adapt and evolve is one of the most fascinating labs to perform but it takes
more time than a standard lab. This may be best suited to a long-term project
or independent study. Find a mentor for this [108].

Challenge Problem 5 Use the main ideas from Model 6.2 to create a simulation
of two strains of bacteria competing over the same energy source. When analyzing
the results of the simulation, consider changes in the initial amount of sugar, initial
amount of each bacteria strain, and generation time of each strain. How do these
changes affect the amount of each bacteria strain over time?

Lactic acid bacteria, like the previously introduced Lactobacillus acidophilus, are
characterized by their production of lactic acid and their propensity for thriving in
high-acid environments that most bacteria cannot tolerate. However, L. acidophilus’
2.86 h generation time is significantly longer than that of E. coli’s—only 20 min.
Both strains can thrive independently in milk and consume lactose for energy [13].
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Exercise 34 (Theory) Suppose there are equal numbers of L. acidophilus and E.
coli in milk. Formulate a hypothesis for the trajectory of the quantity of each strain
over time.

Challenge Problem 6 Create a simulation to test the hypothesis you formulated in
Exercise 34.

Now, suppose we want to simulate competition in a solution containing two
energy sources: glucose and lactose. Let us return to competition between E. coli
and S. enteritidis. E. coli can metabolize glucose and lactose. However, in media
containing both glucose and lactose, E. coli favors glucose; it will metabolize all of
the glucose first, ignoring the lactose until the glucose has been consumed. The
genes needed for the breakdown of lactose are being repressed by the bacteria
in a tightly regulated process called catabolite repression [82]. While the bacteria
are breaking down the glucose, they produce a glucose breakdown product which
inhibits an important enzyme called adenylate cyclase. This enzyme is responsible
for the conversion of ATP (adenosine triphosphate—the energy currency of the cell)
into cAMP. When the E. coli have metabolized all the glucose, the breakdown
product is no longer created, and adenylate cyclase is activated, which forms
cAMP. When this happens, the cell relieves the repression on the genes for lactose
breakdown, the genes are transcribed, the proteins translated and the breakdown of
lactose as a source of energy can begin. On the other hand, S. enteritidis can only
metabolize glucose; it is a non-lactose fermenter.

Exercise 35 (Theory) Suppose we begin a culture with an equal number of cells
of E. coli and S. enteritidis. Assume they consume all energy sources at roughly the
same rate. Sketch the curves that represent the bacteria count of each type over time
when

1. no food source is added;
2. only glucose is added;
3. only lactose is added; and
4. glucose and lactose are added.

Challenge Problem 7 Modify the competition simulation you previously made to
include glucose and lactose, making sure to abide by the metabolic and fermentation
constraints outlined above. Use your simulation to confirm your expectations for the
curves in the previous exercise.

Lactose usually is fermented rapidly by Escherichia, Klebsiella, and some
Enterobacter species and more slowly by Citrobacter and some Serratia species. In
the clinical lab, this is the mechanism used to distinguish between pathogenic and
non-pathogenic Enterobacteriaceae—non-lactose fermenters are usually pathogens,
e.g., Salmonella and Shigella [14]. The ability of bacteria to ferment different sugars
can be demonstrated using a variety of procedures in the laboratory (See [108].).
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Exercise 36 (Lab) The ability of bacteria to ferment lactose is of particular
importance in clinical microbiology where non-lactose fermenters are com-
monly pathogenic. Students can determine the ability of bacteria to ferment
this sugar by simply streaking them onto MacConkey agar [14, 108].

4 Genetic Mutations

Every time a cell divides, there is a chance—albeit, typically quite a small
chance—for a genetic mutation. For instance, researchers have used whole-genome
sequencing to determine that E. coli have a mutation rate of approximately 2.2 ×
10−10 mutations per nucleotide per generation or 1 × 10−3 mutations per genome
per generation [65].21 However, this method is impractical for determining mutation
rates for bacteria with larger genomes due to the computationally expensive process.

Exercise 37 (Theory) Use the equivalent rates of mutation given above to approxi-
mate the number of nucleotides in the genome of the strain of E. coli studied in [65].

Challenge Problem 8 Use the approximate number of mutations per genome per
generation to create a simulation of E. coli growth with mutations. Track the total
number of mutations over time and the total number of mutated bacteria. Note, when
a mutated bacterium divides, it replicates the mutation.

Some genetic mutations affect the fitness of the bacteria—the bacteria’s ability
to survive and divide. For example, a mutation could improve the fitness of a
bacterium: it could enable the bacterium to consume a new energy source; it
could increase the range of temperatures in which the bacterium would thrive; it
could render a chemical compound ineffective whose purpose is to kill the bacteria
(more on this later!). However, genetic mutations can also decrease the fitness of a
bacterium: it could render the bacteria unable to complete the binary fission process;
it could prevent the bacteria from consuming a vital energy source; it could decrease
the range of pH levels that the bacteria could thrive. Another possibility is that the
mutation could have no effect on the fitness level of the bacterium at all.

Challenge Problem 9 Create a simulation that allows mutations to affect the
fitness level of bacteria in a positive, negative, or neutral direction. Incorporate
effects on survival and division.

21Though, it does appear that not all nucleotides are equally likely to mutate under selective
pressures due to evolutionary processes [65].
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Research Project 3 Create a model that allows the user to change the
environment (e.g., temperature, energy source, pH level). Simulate mutations
that directly affect the fitness of a bacterium to the potential changes in the
environment. Run your simulation many times with many different parameter
settings to identify combinations of parameter values where certain types of
mutated bacteria prevail. Read about the BehaviorSpace tool in NETLOGO to
assist with running this type of experiment.

Recall from the laboratory experiments and simulation exercises on bacterial
growth that biologists estimate the generation time of a bacteria strain in a fixed
environment by determining the number of bacteria present over multiple time
steps during the log growth phase. You may remember that we ignored natural
cell death (for the most part) in our growth models. This is due to the difficulty
in experimentally determining the number of bacteria that have died; our laboratory
procedure only records living cells as we count them on the agar. We cannot count
dead cells. Because there are no bacterial corpses to count, this makes estimating
a natural death rate difficult. In the study of viruses (virology), researchers often
use next generation DNA sequencing to determine viral death and genetic diversity
distributions [124]. Simply put, this technology allows you to determine the
proportions of a given DNA sequence as a fraction of all the DNA sequences in
a sample at a given time. If you can determine the number of each type of mutated
virus strains that exist in every sample over time, then when a strain no longer exists
in the sample, you know that (at least) all of those viruses have been lost. The same
method could conceivably be used in determining bacterial strain death, particularly
for bacteria with higher mutation rates.

Research Project 4 Create a model that includes (significantly) reduced
genome sequence of a bacteria and include a natural death rate. Force
mutations to the genome at a fixed rate. Isolate the different sequences made
by the mutations and track each strain’s count over time. From the data you
generate, attempt to recover the natural death rate you had hard-coded into the
model. Then, incorporate the effect that mutations can have on fitness levels
into your model. Could you use the data you generate to identify specific
portions of the genome that have particular effects on fitness? If you allow
changes in the environment, could you recover more information about the
mutations? Even though your findings will only be recovering information
you had to specify in the simulation, how could you use this process in a
laboratory setting to better understand bacterial mutations?
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5 Antibiotic Intervention and Resistance

Though most bacteria inside and outside of our bodies are harmless—or even
helpful, there are strains of bacteria that are detrimental to the health of a human.
When inside a human body, these disease-causing, or pathogenic, bacteria are often
treated with antibiotics in order to hasten the elimination of the bacteria, thereby
relieving the host of undesirable symptoms more quickly than their natural immune
response. As mentioned in the introduction, antibiotics are not only used to treat
humans but are widely used to promote growth in food-producing animals. Though
legislative efforts have been successful in decreasing the overall use of “medically
important” antibiotics in food-producing animals, FDA data has shown that in
2017, 62% of farm animal antibiotics were administered via feed, and 30% in
drinking water, for mass medication [10]. The widespread and non-discriminate use
of antibiotics in animal populations has been implicated in the rapid increase and
spread of antibiotic-resistant bacteria.

Challenge Problem 10 Modify and add an antibiotics breed to Model 6.2 to create
a simulation of the effect of antibiotics on bacterial growth. Determine a typical
prescribed dosing schedule of an antibiotic and incorporate this into the simulation
to track the bacterial growth over time. Consider alternative dosing schedules to
witness the effectiveness of antibiotics when a non-standard dosing schedule is
followed.22

Suppose you have a urinary tract infection (UTI), and your medical doctor pre-
scribes you Cipro (ciprofloxacin)—a broad-spectrum antibiotic, which indiscrimi-
nately kills all strains of bacteria—based on your description of your symptoms.
These broad-spectrum antibiotics will kill the pathogenic bacteria, but will also
eliminate “good bacteria” such as lactobacilli found in a healthy digestive tract
[55]. Alternatively, if your medical doctor first tests the bacteria present in a urine
sample, they could prescribe you with a narrow-spectrum antibiotic, like Primsol
(trimethoprim) that would only target the pathogenic bacteria causing the unwanted
symptoms of a UTI [51].

Challenge Problem 11 Simulate the effect that antibiotics have on bacteria. Con-
sider the varied affect that broad- versus narrow-spectrum antibiotics would have on
multiple strains of bacteria contained in a system.

Research Project 5 Expand the simulation from above to specifically con-
sider the use of broad-spectrum antibiotics for a UTI, which will kill the
“good” and “bad” bacteria. One of the probiotics (“good” bacteria) found

(continued)

22See the existing model, Bacterial Infection, located in the NETLOGO Model Library for an
example of this.
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Research Project 5 (continued)
in the urinary tract is Lactobacillus acidophilus, which was introduced in
a previous section. E. coli are a common cause of urinary tract infections.
L. acidophilus strains secrete antibacterial substances with activity against
E. coli, along with other bacteria and yeast [48]. L. acidophilus can also
thrive at much lower pH levels than E. coli. Use the ideas of bacterial
growth, competition, and antibiotic intervention to simulate the trajectory of
the populations of bacteria. In your model, consider the difference between
antibiotics introduced in a closed system (e.g., an agar plate in a laboratory)
or in the human (or livestock) body. For instance, how would the immune
system contribute to the elimination of the pathogens? Additionally, what if
narrow-spectrum antibiotics were used instead of broad-spectrum?

Under laboratory conditions, some antibiotics kill the targeted bacteria (bac-
tericidal), while others prevent the bacteria from dividing (bacteriostatic) [91].
For first line therapy of patients, bactericidal rather than bacteriostatic agents are
recommended because the eradication of microorganisms serves to limit, although
not completely avoid, the development of bacterial resistance [111]. Resistance has
been shown to occur more rapidly with bacteriostatic agents such as tetracyclines,
sulfonamides, and macrolides than it does with bactericidal agents such as beta-
lactams and aminoglycosides [111].

The use of antibiotics increases the chance of creating antibiotic-resistant
bacteria.23 Some bacteria gain resistance through mutations. Recall, mutations
occur at some rate per nucleotide per genome per generation. When antibiotics are
present, bacteria that are resistant will survive, while the others will die. This forces
the selection of this mutation in the genome.

Research Project 6 Modify the previous simulation that tracked genetic
mutations and their effect on fitness to focus only on mutations that result
in antibiotic resistance. Perform a literature search to find an estimate for an
average rate of acquiring resistance for a particular bacteria to a particular

(continued)

23Antibiotics can increase the mutation rate in bacteria [68]. Antibiotics not only impose a selective
challenge to all bacteria but also accelerate the rate of adaptation by magnifying the rate at which
advantageous mutations arise (any type of mutations, not just for resistance). In addition, mutation
rates have been shown to increase in the bacterial flora of patients treated with antibiotics, not only
for the targeted bacteria [53]. Strains that have acquired antibiotic resistance mutations often have a
lower growth rate and are less invasive or transmissible initially than their susceptible counterparts
[126]. The fitness costs of resistance mutations can be ameliorated by secondary site mutations.
These so-called compensatory mutations may restore fitness in the absence and/or presence of
antimicrobials.
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Research Project 6 (continued)
antibiotic. Then model the introduction of the antibiotic to the bacteria.
Run the simulation many times to analyze the outcomes. How frequently
is resistance gained and selected for? Consider the differences between the
effect of the antibiotic in a controlled laboratory setting and in the human
body. What other environmental factors may influence the rate of selection
for resistance?

Tuberculosis (TB) is often treated with a drug cocktail; in other words, a
collection of narrow-spectrum antibiotics that target Mycobacterium tuberculosis—
the causative agent of TB. Drug cocktails are prescribed in order to lessen the chance
of creating a resistant strain. The cocktail is often made of four bactericidal drugs:
isoniazid (INH), rifampin (RIF), streptomycin (STM) or ethambutol (EMB), and
pyrazinamide (PZA). The individual use of any of these drugs to treat TB has a
relatively high chance to cause resistance, but the risk is significantly reduced when
taken together.

Exercise 38 (Theory) Suppose an individual with sensitive TB was prescribed a
cocktail of INH, PZA, RIF, and EMB. The rate at which TB gains resistance to
each antibiotic in the cocktail has been previously determined—when introduced
in isolation. Resistance is acquired to INH at a rate of 2.56 × 10−8 mutations per
bacterium per division, PZA at a rate of 10−5, RIF at a rate of 3.32 × 10−9, and
EMB at a rate of 1.0 × 10−7 [57, 110]. Assuming each mutation is independent of
the other, at what rate would we expect TB to mutate to gain resistance to all four
antibiotics?

Research Project 7 Using the rates given above (and your own literature
review), create a simulation that supports your calculation. Use the estimate
for the generation time of M. tuberculosis (provided earlier in the chapter)
and the simulation to determine the typical length of time resistance would
emerge when taking any combination of the drugs in the cocktail. Find the
standard dosing schedule used for sensitive strains of TB. Use your model to
simulate the dosing schedule. Alter the schedule and/or dosages to change the
chances of resistance. What if you were just given one antibiotic at a time
and were only prescribed the next if the strain gained resistance to the current
drug? What if you used the same cocktail for a strain of TB that is already
resistant to at least one of the antibiotics?
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6 Spread of Antibiotic-Resistant Bacteria in Humans

Another way bacteria gain resistance is through horizontal gene transfer (HGT).
This is the process where bacteria acquire DNA from similarly-designed bacteria.
For instance, suppose you have acquired an innocuous strain of E. coli that has
gained resistance to carbapenem—antibiotics that are often considered to be the last
stand against bacteria. However, you have a healthy immune system that prevents
this strain of E. coli from reaching high enough levels to make you sick. Perhaps
you visit your elderly, diabetic grandfather in a nursing home, and you pick up an
antibiotic-sensitive strain of K. pneumoniae. The K. pneumoniae begins to make
you quite ill. You go to a walk-in clinic, and they prescribe you a broad-spectrum
antibiotic. The antibiotic begins to wipe out all of the bacteria in your body, but the
stress causes K. pneumoniae to conjugate with E. coli and in so doing to acquire
the carbapenamase plasmid that confers resistance [54]. After a few generations,
there are enough carbapenem-resistant K. pneumoniae to take hold. A healthy
immune system may be able to respond to this attack, but you did just wipe out
your entire gut flora with the broad-spectrum antibiotic. Unfortunately, the resistant
K. pneumoniae will not respond to another antibiotic now.

Exercise 39 (Lab) There are several commercially available kits to demon-
strate the ways that bacteria can exchange genetic information. Though they
require access to a microbiology lab, the resources needed are minimal and
the experiments are simple to perform and interpret [108].

Research Project 8 Create a simulation of HGT. Formulate a model of the
intracellular mechanisms and dynamics involved in the process, then consider
a human population-scale model of the implications of HGT on planetary
health.

Research Project 9 In the introduction, we discussed the societal causes
and implication of antibiotic resistance. There are many agent-based models
created in NETLOGO that address the spread of infectious disease. In the
NETLOGO Model Library you can find the epiDEM models, which give basic
models that simulate an epidemic [122, 123]. There are also NETLOGO ABMs
that consider the effect of antibiotic resistance [20], the spread of vector-
borne diseases [46], and the effect of vaccinations [58]. Other ABMs use

(continued)
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Research Project 9 (continued)
many of the above strategies and network structures to illustrate physical and
social connections between individuals [43, 70]. Other researchers are using
more advanced ABM systems that can utilize immense amounts of data. For
instance, many are incorporating Geographic Information Systems (GIS) data
to incorporate real city-structures and census data to better understand the
spread of infectious disease [93, 117]. We challenge you to create an agent-
based model that considers and analyzes the social implications of antibiotic
resistance that were addressed in the introduction. For instance, incarceration
of people with limited healthcare and physical space, regulation of antibiotic
use on livestock, use of broad- versus narrow-spectrum antibiotics, changes
in the prescription of antibiotics prompted by the regulation of healthcare,
and increased mobility of people and populations. Standard infectious disease
models could be adapted to incorporate these social effects. A thorough
analysis of the simulation could help inform policy or support further research
in the area you studied.

Appendix

Model 1.2.0

to setup
clear-all
create-turtles 1 [set shape "circle 2" set color pink]
reset-ticks

end

to go
ask turtles [
move
divide

]
tick

end

to move
right random 360
forward 1

end

to divide
hatch 1 [right random 360 forward 1]

end
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Model 2.2

patches-own [sugar]

to setup
clear-all
create-turtles 1 [set shape "circle 2" set color pink]
ask patches [set sugar 50]
reset-ticks

end

to go
ask turtles [
consume
if any? neighbors with [count turtles-here = 0] [

hatch 1 [move-to one-of neighbors with [count turtles-here
= 0]]

]
]
if count turtles = 0 [stop]
tick

end

to consume
if [sugar] of patch-here = 0 [die]
ask patch-here [
if sugar > 0 [

set sugar sugar - 1
]

]
end

Model 3.0.0

globals [sugar]

turtles-own [energy]

to setup
clear-all
create-turtles 25 [
set shape "circle 2"
set color pink
set energy random 20
setxy random-xcor random-ycor

]
set sugar 100000
reset-ticks

end

to go
ask turtles [
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consume
move
divide
expire

]
if count turtles = 0 [stop]
tick

end

to consume
if sugar > 0 [
set sugar sugar - 1
set energy energy + 2

]
end

to move
right random 360
forward 1
set energy energy - 1

end

to divide
if energy >= 20 [
set energy energy / 2
hatch 1 [right random 360 forward 1]

]
end

to expire
if energy = 0 [die]

end

Model 4.3

breed [sugars sugar]
breed [bacteria bacterium]

bacteria-own [energy]

to setup
clear-all
create-sugars 2000 [
set shape "dot"
set color white
setxy random-xcor random-ycor

]
create-bacteria 15 [
set shape "circle 2"
set color pink
set energy random 21
setxy random-xcor random-ycor

]
reset-ticks
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end

to go
ifelse ticks > 10
[
ask bacteria [

consume
move
divide
expire

]
]
[
ask bacteria [ move ]

]
if count bacteria = 0 [stop]
ask sugars [
right random 360
forward 5

]
tick

end

to consume
if any? sugars in-radius 2 [
ask one-of sugars in-radius 2 [die]
set energy energy + 15

]
end

to move
right random 360
forward 5
set energy energy - 1

end

to divide
if energy >= 20 [
set energy energy / 2
hatch 1 [right random 360 forward 1]

]
end

to expire
if energy <= 0 [die]

end

Model 5.0

globals [acidity]

breed [sugars sugar]
breed [bacteria bacterium]
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bacteria-own [energy]

to setup
clear-all
create-sugars 2000 [
set shape "dot"
set color white
setxy random-xcor random-ycor

]
create-bacteria 15 [
set shape "circle 2"
set color pink
set energy random 21
setxy random-xcor random-ycor

]
set acidity 0
reset-ticks

end

to go
ifelse ticks > 10
[
ask bacteria [

consume
move
divide
expire

]
]
[
ask bacteria [move]

]
if count bacteria = 0 [stop]
ask sugars [
right random 360
forward 5

]
tick

end

to consume
if any? sugars in-radius 2 [
ask one-of sugars in-radius 2 [die]
set energy energy + 15
set acidity acidity + 1

]
end

to move
right random 360
forward 5
set energy energy - 1

end
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to divide
if energy >= 20 [
set energy energy / 2
hatch 1 [right random 360 forward 1]

]
end

to expire
if energy <= 0 [die]
if random-float 1 < acidity / 200000 [die]

end

Model 6.2

globals [acidity]

breed [sugars sugar]
breed [bacteria bacterium]

bacteria-own [
energy
generation-time-counter

]

to setup
clear-all
create-sugars initial-sugars [
set shape "dot"
set color white
setxy random-xcor random-ycor

]
create-bacteria 15 [
set shape "circle 2"
set color pink
set energy random 100
setxy random-xcor random-ycor
set generation-time-counter random generation-time + 1

]
set acidity 0
reset-ticks

end

to go
ifelse ticks > 10
[
ask bacteria [

consume
move
divide
expire
set generation-time-counter generation-time-counter + 1

]
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]
[
ask bacteria [move]

]
if count bacteria = 0 [stop]
ask sugars [
right random 360
forward 5

]
tick

end

to consume
if any? sugars in-radius 2 and energy < 100 [
ask one-of sugars in-radius 2 [die]
set energy energy + 5
set acidity acidity + 1

]
end

to move
right random 360
forward 5
set energy energy - 1

end

to divide
if energy >= 100 and generation-time-counter >=

generation-time [
set energy energy / 2
set generation-time-counter 0
hatch 1 [right random 360 forward 1]

]
end

to expire
if energy <= 0 [die]
if random-float 1 < acidity / (500 * initial-sugars) [die]

end
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Agent-Based Modeling in Mathematical
Biology: A Few Examples

Alexandra L. Ballow, Lindsey R. Chludzinski, and Alicia Prieto-Langarica

Abstract Agent Based Modeling is a computer based modeling approach that
allows undergraduate students to dive into research with very little mathematical
background. This chapter aims to give students and faculty a better idea of what
ABM is and a few examples of where and how it can be used to model real-life
problems in mathematical biology. An example project is explained in detail for the
reader to use as a guide. Also, in the afterword, the student co-authors will discuss
their experience and share their advice to other students interested in doing research
in mathematical biology.

Suggested Prerequisites We are writing this chapter with the assumption that student readers are
either comfortable with programming or willing to learn and have basic knowledge of probability.
This chapter is set up as inquiry-based research. The premise is that exercises start basic enough
that any college student willing to put the time can work through the chapter exercises (this could
form the basis of an independent study, for example) and be ready to undertake an agent-based
modeling project. A student who has all suggested prerequisites should be able to more rapidly
complete the exercises and then dive quickly into the research projects. In Sect. 3, the author
expands on how to approach this chapter for students with different backgrounds.

1 Preface

The faculty author, Prieto-Langarica, would like to begin by discussing her personal
philosophy in leading undergraduate research, as it is with this philosophy in mind
that the following projects and exercises are written. In her relatively short career,
the author has led over fifty students in research projects, ranging from mathematical
biology to data science applied to psychology and with students ranging from high
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school and all the way to master’s degree. However, the way in which the author
leads research might not be the most common.

When meeting a potential research student, the highest importance is given to
the student’s professional goal and particular needs. This way, research is viewed
as a mechanism to acquire the tools and skill to succeed at such goal, with research
topic and research outcome becoming less important. For this reason, research is
treated as an opportunity to experiment, to led students take risks, develop their own
ideas and their own models, make their own mistakes and learn how to recognize
shortcomings and improve on their models. Most of the students the author works
with start as freshmen, or before. They take their time to discover concepts on their
own, then eventually articulate their own research ideas, many times far surpassing
the author’s knowledge on the topic.

This kind of research approach might sound odd and even scary as the professor
will no longer be the expert, but just another collaborator for the student. However,
giving students ownership of their work comes with high reward. Students report
being better prepared for future research endeavors, they develop confidence and
excitement about mathematics, they become comfortable with the idea of thinking
mathematics in every aspect of their lives. In addition, students who decide to
enter the workforce after an undergraduate degree, have reported success in making
operations and procedures at their current job better, faster, cheaper, more optimal
giving credit to the skills learned while undertaking research as undergraduates.

One last very important recommendation is for the faculty and the students
to seek collaborations. From students working in groups to working with faculty
in other departments, the power of collaborating within and across disciplines
provides the student with invaluable skills required in academia and the industry.
When working with a team of biology and mathematics majors, and partnering
with biology faculty, we expose the students to different ways of thinking and to
knowledge in different disciplines. In addition, faculty in these departments may
offer great research problems and/or data.

2 Introduction

Agent-Based Modeling, from here on referred to as ABM, is a relatively new
mathematical/computational way of modeling real-life phenomena that allows
stochasticity. Historically, mathematical models have often been limited to analytic
models and our ability to “solve” analytically such models [33]. However, with
computer simulations, we are not limited by mathematical tractability and are free to
create models as complex and as close to reality as data collection and understanding
of the system permit.

Since ABM started, it has been used to model many types of situations in
biology and the social sciences. In general, ABM is an excellent tool to model and
experiment with real-life situations where outcomes are highly dependent on ran-
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domness. For mathematical biology research, it has evolved into an effective method
to mathematically investigate biological phenomenon [5, 20, 24]. In addition, ABM
is a supremely useful tool to introduce deep theoretical, mathematical concepts,
especially when used in tandem with other more classical modeling techniques.
It is especially valuable as a way for mathematicians and experts in other fields to
communicate. In a time where multi-disciplinary work is becoming more and more
the standard, ABM is quickly becoming an indispensable tool [14, 17, 34].

So what exactly is Agent Based Modeling? ABMs are models where individuals
or agents are described as unique and autonomous entities that usually interact
with each other and their environment locally. These agents can be cells, animals,
humans, businesses, institutions, and any other entity that has a goal and makes
decisions mostly based on that goal [33]. In practice, ABMs are computational
programs that follow the evolution of a collection of individuals making decisions
based on their neighbors and the state of the system.

A particular kind of Agent-Based Model is a Cellular Automata [CA] Model
[2, 11, 43]. A CA model is based on a grid. Each cell in the grid is in one of a set of
possible states at each point in time. Each time step, the state of each cell is updated
based on the previous state, as well as the previous state of the “neighboring” cells.
The way neighborhoods are defined depends on the problem and will be explored
in future exercises. CA models are easy to start but can get extremely complex. The
study of the theory behind CA models has rapidly grown in the last two decades,
and it is a rich field of study for mathematicians as well as computer scientists.

It is worth noting that ABM is considered inferior by some mathematicians,
particularly in the pure mathematics field. Leaving aside the question whether this
argument has any validity, the author of this manuscript defends the great value
ABM offers in training undergraduates in applied mathematics. ABM has huge
potential simply to teach students about collaborative work in mathematical biology
and/or the social sciences. In order to satisfy the more pure at heart, the author
recommends using this type of modeling in tandem with more classical types of
modeling and/or analyzing the agent based model fully with the introduction of
heavy probabilistic and analytic tools.

This chapter is organized as follows. Section 3 suggests previous knowledge
(or concurrent learning) that students should acquire before or while working on
the exercises and/or suggested problems in this chapter. Recall, Prieto-Langarica’s
styles of advising tends to leave students free to experiment with ideas and construct
their own hypothesis. Many of the exercises suggested throughout this work are
very open ended. This is intentional as a way to get students comfortable with open
ended questions, very similar to those found in the real world, but often lacking in
the classroom. The author encourages students and faculty to work through these
exercises in teams, to talk about your results, to formulate hypotheses, and to work
on expanding the algorithms suggested here.
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3 Background for Students and Faculty

One of the main reasons Prieto-Langarica has used and continues to use this type of
modeling with undergraduate students is how little initial background students need,
and how much they can learn while constructing their models. A student with no
programming experience, who might not have the time to learn how to program, can
use already well-established ABM languages such as NetLogo [42], which are easy
to learn and allow students to start running simulations within a few weeks. Here
are a few NetLogo tutorials that might be of use to students and faculty [7, 15, 33].
However, the author highly recommends taking the time to learn more complex
programming languages such as C++, Python, or even Matlab, which will most
likely be useful to the student beyond their undergraduate training. The examples
in this chapter aim to stay as general as possible when it comes to programming
language.

As for mathematical background, a general high school level probability knowl-
edge will be more than enough to start working with ABMs. Once the model is
running, higher level mathematical tools can be used to analyze the ABM and
to extract population level information. Advanced students with a background in
mathematical analysis and maybe even partial differential equations may want to
write discrete probabilistic equations for the system and attempt to upscale the
system into a continuous population level. This will be beyond the scope of this
chapter but interested students can look at books [4], or articles [32].

This chapter starts by detailing introductory exercises, followed by more in-
depth exercises. It then describes a current undergraduate project as an example
for students to follow, detailing each step of the research process and what will
be done/can be done in order to expand on it. The last section includes some
interesting applications, projects, or modeling choices that can be made by other
faculty/undergraduate teams, as well as sources where faculty can find other
applications.

The faculty author wishes to re-emphasize the importance of collaboration, as a
skill faculty need to teach students, in order to advance science in general. Most
of the projects the author has been involved with began by attending Biology
Department Seminars and asking Biology faculty for possible collaborations. This
not only helps the faculty member, but is an invaluable lesson for the students
who gain experience with real-life problems and with real-life data. The author
encourages the faculty reading this chapter to do the same, and seek out problems
and collaborations within their own institutions.

4 Introduction to ABM

In this section, several exercises will be given for students who wish to start
gaining experience with this type of modeling. These exercises may be done in
any programming language the student and professor prefer. Ideally, the faculty
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can work with multiple students at the same time who can try to program on their
own but who will then work together comparing their approach and collaborating in
improving on solutions.

4.1 Spatial Transmission

The first set of exercises will help construct a CA Model, and therefore take place
on a grid. These exercises aim to familiarize the researcher with situations in which
something (for example, a disease, or gossip, or a political position) spreads in time
and space. Every cell in the grid has a value, but its value can change at every time
step, depending on the values of its geographical neighbors.

Note In most programming languages, you can represent a grid by a matrix. Be
mindful of different ways in which elements of the matrix are indexed depending
on the language you are using.

Problem 1 Start with a matrix and randomly fill it out with zeros and ones. Define
Neighborhood Type 1 as the element on top, below, on the right, and on the left. In
Table 1, the element labelled Indi has four neighbors marked with the letter N .

At each time step, every element in the matrix can change or remain the same,
based on the values of the immediate neighbors, that is, the more zeros around the
neighborhood, the higher the probability that the element either stays or becomes
a zero. Let p0

i,j = the probability of the number in cell (i, j) in the grid changing

(or remaining) a 0 and p1
i,j = the probability of the number in cell (i, j) in the

grid changing (or remaining) a 1. Create an experiment with different rules for how
these numbers will change. Here is an example of one possible such rule for the grid
shown in Table 2.

Table 1 Neighborhood
Type 1 N

N Indi N

N

The center cell in the grid
labelled Indi contains the
individual and the cells
with N represent that
individual’s neighbors.
In the literature, this
type of neighborhood is
known as Von Neumann
Neighborhood [36]
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Table 2 Sample grid the
center cell in the grid labelled
Indi has three neighbors with
value 0 and one neighbor
whose value is 1

0

0 Indi 0

1

Table 3 Neighborhood
Type 1 N N N

N Indi N

N N N

The center cell in the grid
labelled Indi contains the indi-
vidual and the cells with
N represent that individual’s
neighbors. In the literature,
this type of neighborhood is
known as Moore Neighbor-
hood [36]

p0
i,j = 1

4
(3) = 3

4

p1
i,j = 1

4
(1) = 1

4
.

Since the cell has 3 “zero” neighbors and 1 “one” neighbor.
Let T be the number of steps you run the program for. Run the simulation for

T = 10, 100, 1000 times. Use the same initial conditions for all your simulations.

Problem 2 Define Neighborhood Type 2 as in Table 3. Repeat the exercise using
the same initial conditions but with the different neighborhood. What changes?

Challenge Problem 1 Define Neighborhood Type 3 as in Table 4. Repeat the
exercise using the same initial conditions but with the different neighborhood. What
changes? Consider two types of neighbors D and N . What if the influence of D

is less than N? How would you implement this? After running simulations of both
problems describe how your results change.

Challenge Problem 2 What happens if you add a number? For example, what
would happen if you fill the matrix with zeros, ones, and negatives ones? Repeat
the Challenging Problem 1 using ones, zeros, and negative ones.
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Table 4 Neighborhood
Type 3 D D D D D

D N N N D

D N Cell N D

D N N N D

D D D D D

The center cell contains the individual and the cells
with and N represent the center cell’s neighbors

4.2 Random Walks

In most biological situations, individuals will move either randomly [39] or directed
by environmental cues [23]. The following set of problems addresses situations in
which the goal is to track the movement of one or more individuals. Since even
directed movement almost always has a random component, you will be asked to
run your program many times and report the average behavior of individuals.

Problem 3 (One Dimensional) Start with n particles placed in the same point in a
one dimensional grid. At each time step, each particle will randomly decide to move
one step to the left or one step to the right to the neighboring point in the grid. Run
the program for T time steps. After T time steps, record the number of particles at
each point in the grid. Run the simulation for N = 100, N = 1000, N = 10,000,
and finally for N = 100,000 times. Record the average number of particles in each
point in the grid. How do things change when you vary T ? How do things change
from N = 10,000 and N = 100,000? How do things change if you allow particles
to choose between moving left, moving right or staying?

Problem 4 (Two Dimensional) Repeat the exercise above with particles in the
middle of the plane and let particles choose between moving up, down, right, and
left. How do things change if you let the particle move diagonally? (i.e., there are
eight directions of movement). Compare the results of both experiments.

Challenge Problem 3 (Three Dimensional) Repeat exercise above with particles
in the middle of a three dimensional space. Let particles move in 1 out of 6
directions. How does your simulations change when you move from one to
two dimensions and then to three dimensions? What challenges do you find
in working with three dimensions? What do you think will change if you add
diagonal directions? (i.e., how many directions will there be? How will adding
these directions change your results?)



280 A. L. Ballow et al.

Problem 5 (Directed Walks) Start with two different kinds of particles. Think of
the particles as predator and a prey. Predators sense and chase prey. In practice, that
means that a certain percent of the time, 0 ≤ q ≤ 1, which is fixed and given at
the beginning of the simulation, predators will move towards prey and the rest of
the time (1 − q), they will just move randomly. Start in one dimension with one
predator and one prey and for now let the prey move completely randomly. Vary
initial condition and report the time it takes for the predator to reach the prey. This
exercise is far more interesting in two and three dimensions; do both, and pick how
many directions of movement you want to use.

Problem 6 (Many Predators) Add more predator and prey particles but make
all the predators start at one point in the plane (or space) and all the prey in
a different point in the plane (or space). Vary initial conditions and report the
average number of particles in each point in space after running your simulations
N = 100, 1000, 10,000, 100,000 times for a fixed set of initial conditions. What
are “interesting” initial conditions? How does the final distribution of particles
change if you vary the “percent” of the time the movement is directed as opposed to
random? Do this same exercise on two and three dimensions (how will you report
averages in three dimensions?).

Challenge Problem 4 In reality, most of the time, q depends on how far the
predator is from the prey. How would you implement this?
Note to Faculty: this is an excellent time to introduce the concept of metrics and
different metrics to students. A great exercise here would be to run this program
using different metrics and making observations and hypothesis of how the results
of the program would change under different metrics.

4.3 Reproduction

Another very important biological process that can be modeled using ABM is
reproduction. Biologically, reproduction can be either sexual or asexual. The
following series of exercises prepares students to model those kind of situations.

Problem 7 (Asexual Reproduction) Start with a large rectangular domain and a
few circular particles randomly placed on it. Assign a randomly selected positive
integer to each particle ti . Each particle will reproduce, by division, at T = ti .
Every time a particle divides, the daughter particles should be placed in the same
spot as the mother particle with probability p = 1/2 and in adjacent grid points
with probability 1 − p. After division, assign new integers ti to each particle. Run
the simulation for long enough to fill out the grid with particles and record how long
it took to fill out the grid.

Problem 8 (Asexual Reproduction 2) Start this exercise using the same condi-
tions as Exercise 7; however, the reproduction clocks on the particles should be
randomly chosen with a Poisson distribution, with λ = 20 the average waiting
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time until reproduction. Just as in the previous exercise, run the simulation for long
enough to fill out the grid with particle and record how long it took to fill out the
grid.
Note to Faculty: This is an excellent opportunity to discuss probability and queue
theory with students. A great book to facilitate learning is: [16].

Challenge Problem 5 (Asexual Reproduction 3) Repeat the same exercise as
above, with all the characteristics discussed included and one simple change: when
reproduction happens, the particles pile up in towers. As soon as a tower reaches
over 10 particles length, the towers will crumble and spill out randomly into
neighboring grid points. Towers can start building up from there. Run this simulation
until all points in the grid have at least one particle. This is also known as the
sandpile problem [6].

Problem 9 (Sexual Reproduction 4) Start with a large grid and two different
randomly placed particles, one male, one female. Allow the particles to move
randomly. When the particles are a certain predefined distance d from each other,
they will move towards each other. Once the particles find each other, a new particle
will be produced and a random gender will be assigned. The particles then will
continue moving randomly for a fix number of steps T , when they become eligible to
reproduce again, at which time they can move randomly until they run into another
particle of the opposite gender. Run this simulation until there are half the particles
than grid points.

4.4 Movement in Graphs

Sometimes it makes sense to look at a biological process as a process happening
in graphs. Some applications of this can be found in epidemiology [18]. The
following series of exercises aim to familiarize students with working with graphs.
For all these exercises, students will need to be familiar with the adjacency matrix
associated with a graph. The authors suggest students who wish to learn about
graphs use any of the following books [10, 21, 41].

Problem 10 (Randomly Creating Graphs) For n = 10, 100, 1000 create a
random undirected graph with n vertex and n, 2n, n2 randomly placed edges. For
each graph calculate:

• The vertex degree
• The average vertex degree
• The graph distance matrix
• The vertex connectivity
• The closeness centrality
• The betweenness centrality
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Problem 11 (Movement in a Graph) Randomly create a 100 vertex graph and
1000 edges. Randomly place a particle in one of the vertices. Each time step, the
particle can move to any other connected vertex. Follow the particle for at least
1000 time steps and record the number of times each vertex was visited.

Problem 12 (Movement in a Graph 2) Randomly create a 100 vertex graph and
1000 edges. Randomly place a particle in one of the vertices. Each time step, the
particle can move to any other connected vertex. This time the particle can only
visit each vertex once. For the same graph and different initial placement, record
how many vertices were visited.

Problem 13 (Particle Chasing Particle) Randomly create a 100 vertex graph and
1000 edges. Make sure your graph is completely connected. Randomly place two
different particles (particle a and particle b) in two different vertices. Each time
step, particle a will choose to move closer to particle b by moving to any other
connected vertex. Particle b will move randomly. Play this game until particle a

catches up with particle b. Let Ti = the number of time steps it took a to catch
b on simulation i. Run this game 100,000 times and plot the distribution of T . Is
there anything you can say hypothesis about T and how it depends on any of the
measurements you calculated on the first problem in this section?

Note that this system is similar to the predator–prey system we studied in
Problem 5, this time with particles moving on a graph.

Challenge Problem 6 (Particle Chasing Particle 2) Randomly create a 100 ver-
tex graph with 1000 edges. Make sure your graph is completely connected.
Randomly place two different particles (particle a and particle b) in two different
vertices. Each time step, particle a will choose to either move randomly qa fraction
of the time, or move closer to particle b by moving to any other connected vertex
1−qb fraction of the time with 0 ≤ qa ≤ 1. Particle b will move away from particle
a 1 − qb fraction of the time and randomly qb fraction of the time with 0 ≤ qb ≤ 1.
Play this game until particle a catches up with particle b. Let Ti = the number of
time steps it took a to catch b on simulation i Run this game 100,000 times and
plot the distribution of T . What happens when qa > qb? How about when qb > qa?
Are there any hypothesis you can come up with about what you think T will be
equal to? Do you think T depends on any of the measurements you calculated on
the first problem in this section? If so, is there a way in which you could relater such
measurements to T ?

Challenge Problem 7 (Particle Chasing Particle 3) Same problem than last one,
however, in reality, qa and qb should depend on the distance between a and b. How
would you implement this?
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5 Research Projects

In Sect. 5.1, the authors will describe in detail a particular problem they are currently
working on using agent-based modeling as an example ABM research project
for readers to follow. This project at the stage described was conducted by two
sophomores (co-authors Ballow and Chludzinski) in collaboration with Dr. Diana
Fagan from the Biology Department at Youngstown State University. By this point,
the students had met with Dr. Fagan on multiple occasions, and she has given
them material relevant to the context to read. The project team had also met
throughout the semester to report on the progress of our model and to calibrate
and improve in the biological understanding. The final project goal is to have
a computational simulation that can be used as a tool to test different medical
interventions. Collaborating with experts in other disciplines has provided us not
only with real-life data for model realism and parameterization, but has greatly
helped the students develop the skills to communicate outside mathematics.

The students started working on ABMs for modeling wounds as Freshmen, a
little under a year ago. This was informed by some prior knowledge of Prieto-
Langarica and a literature review. However, after a few months of experimenting
with building models the group established a collaboration with the Biology
Department and were able to start working with Dr. Fagan in modeling subcutaneous
infections.

This is a particular approach the faculty author recommends: as much as possible,
one should take advantage and start collaborations with the Biology/Ecology
department (or other departments in the university). Not only does this potentially
advance the faculty members’ own research agenda, but it provides a unique
opportunity for students to be involved in multi-disciplinary research. This is an
invaluable experience and particularly important skill to have in the current state of
academia and industry.

5.1 Modeling Subcutaneous Infections

Subcutaneous infections may be only a small subset of an impressive realm of
immunological topics, yet they hold a very significant impact on the human
population. By one count, over 1400 species of pathogens capable of causing disease
in mankind have been identified in literature [38]. Under the right conditions, a
single bacterium is capable of producing upwards of 20 million new bacteria in
only 24 h [3]. With such staggering numbers, it is scarcely surprising that humans
are well equipped with a number of protective mechanisms.

The human immune system has three main layers of defense: physical barriers,
such as the skin, innate immunity, and the adaptive immune response. Our skin
is responsible for preventing a practically innumerable number of pathogens from
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entering the body; innumerable simply because it is nearly impossible to count all
of the diseases an individual did not catch but may have been exposed too.

When a pathogen does enter the body, it is almost immediately faced with a
battalion of cells fighting against it. Among the first responders are the macrophages,
an important kind of phagocyte that resides in tissue. One of the many jobs of the
macrophage is to begin attacking pathogens while sounding an alarm by releasing
several different kinds of effector molecules. Many of these molecules lead to the
inflammation often associated with infections and are thus collectively referred to
as inflammatory mediators. These include a number of proteins called cytokines
and chemokines, such as TNF-α and CXCL8 (also known as IL-8). CXCL8 binds
with very specific receptors on the neutrophil, a short-lived phagocyte whose sole
purpose is to kill pathogens. The binding of CXCL8 changes the adhesive properties
of the neutrophil, enabling it to slow down and begin to interact with the blood
vessel walls. TNF-α is responsible for allowing neutrophils and similar cells to
cross the blood vessel in a multi-step process called extravasation. This involves
the neutrophils slowing and rolling along the wall of the blood vessel, squeezing
through, and migrating towards the infection [29].

Once a neutrophil has reached the infection it will engulf and essentially consume
pathogens. This process is called phagocytosis, a term accurately derived from the
Greek root “phagein” meaning “to eat” [1]. Like before, the process is facilitated
by receptors. This time the receptors are specific for proteins generated by the
pathogens. As soon as a pathogen has been ingested it is attacked by a host
of enzymes and quickly degraded. As neutrophils are particularly designed for
phagocytosis, they commit most of their resources to creating and containing these
enzymes [29]. Once their supply of digestive material is depleted, they go through
apoptosis, or pre-programmed death. The resulting pus is later cleaned up by
the more versatile macrophages [26]. This attack requires an increased need for
oxygen, referred to as the respiratory burst. This activity is also accompanied by the
production of additional enzymes designed to protect surrounding tissue from the
destructive effects of the toxins in use [13].

Although this process programmed into people usually gets the job done, there
are times that the innate immune response fails to completely control an infection.
When phagocytosis alone cannot overpower pathogens, specific antibodies are
produced to combat the problem. This incredible process, the adaptive immune
response, takes time when the body is first introduced to a certain variety of
pathogen. However once a given pathogen has been introduced, a small amount
of its corresponding antibody is kept on hand at all times and future infections can
be vanquished much more rapidly [3]. It is this response that vaccinations seek to
strengthen, by introducing extremely small amounts or dead samples of common
problematic pathogens.

The goal of the subcutaneous infection modeling begun by Prieto-Langarica
and three undergraduate researchers has been to create an accurate and adaptable
representation of the processes of innate immunity first initiated when a pathogen
enters the body. Such a model is important to further the understanding of why
some infections can be effectively countered by innate immunity and why others
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require medical assistance such as antibiotics or vaccinations. Patients with deficient
numbers of neutrophils or otherwise compromised immune systems suffer from
frequent infections and their devastating effects. It could be that a visual simulation
of what occurs during the inflammatory response, coupled with more traditional
methods of modeling, will allow researchers to more efficiently develop treatments
of subcutaneous infections.

To model the response to infection, the researchers considered only a small
section of the human body including a segment of a blood vessel and tissue. Initially,
the neutrophils move through the blood vessel in one direction. An infection starts
to bloom in the area designated as tissue, starting off as a singular cell. This is all
represented by a matrix. Each number in the matrix is represented by a different
color in a grid, allowing the user to fully visualize the system. The empty cells
are zeroes, the infection is made up of threes, the blood vessel wall fives, and the
neutrophils are twos.

Each of these cells moves in different ways in the human body and some, such
as the neutrophils, move differently depending on where they are in the body. Each
of these stipulations has to be considered in the model. In order to do so, for loops
are used to locate different cells and the part of the body they are in. For example,
a 2 (neutrophil) outside of the blood vessel can move in all 8 directions. Each of
these directions is given a number representation, shown in Table 5. Then by means
of a user defined function one of these directions is randomly chosen, taking into
consideration only possible moves (i.e., a neutrophil cannot be placed outside the
bounds of the matrix without an error so any move which causes the neutrophil to
move out of bounds is not considered). Then the program makes sure the neutrophil
is only moving to an empty spot or somewhere with infection. Finally the system
subtracts 2 from that cell of the matrix and adds 2 to the new random location of the
neutrophil. This process is repeated for each neutrophil outside of the blood vessel
and similar processes are repeated for other particles; for instance, a 2 (neutrophil)
within the bounds of the blood vessel can only move three directions so only 1
through 3 are direction options. After each particle is moved within its parameters

Table 5 This table
represents the different ways
particles can move

5 4 3

6 Cell 2

7 8 1

The numbers are given to
indicate the different direc-
tions. During the simulations,
particles can move in any of
those 8 directions with differ-
ent probabilities
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the colored grid is shown. When this process is repeated several times the particles
on the grid appear to move and give a semi-accurate visual representation of the
movement of the particles (Fig. 1).

Now that the system is set up, it is time to introduce the characteristics of the body
when an infection hits. The one initial cell of infection grows randomly outward one
cell for every two movements of the cells, using the same system while skipping
the step where the previous location of the cell is deleted, giving the appearance
of growth instead of movement. Inflammatory mediators should now start moving
through the system from infected cells. One inflammatory mediator is added to
a random spot bordering the boundary of the infection using the same methods
as above. These inflammatory mediators move randomly upward until they move
into the blood vessel. When a neutrophil comes into contact with an inflammatory
mediator, the whole system of neutrophils slows down and begins to move down
toward the infection. The particles sometimes move randomly and other times move
toward the closest infection point. When the neutrophils make it to the infection,
they combine to create a new number in the matrix for one cycle and then that
number is removed to represent the killing of the infection (phagocytosis), the death
of the neutrophil (apoptosis), and the removal of the dead cells.

The current program is a working model of infection in the human body. Factors
like the size of the system, the size of the initial infection, and the growth rate
of the infection can easily be manipulated. Great care has been taken to closely
parallel the biological processes represented, yet there is still a lot that can be
done to this model to make it more accurate. Ideally, the model should be made
three dimensional and the initial count of neutrophils should be based on biological
data. The communication between particles and the decision making involved in
their movements will eventually need to incorporate more mathematically precise
methods. Currently all cells appear to be the same size, when in reality there is great
variation in both size and shape of the cell types. These variations are biologically
very significant, and likely will prove to have a great impact on the appearance
of the model and the probability of the infection being successfully removed.
The movement of particles across the blood stream, known as extravasation,
is presently shown in a very simplified manner. Currently neutrophils simply
slow down and cross the line representing the vessel wall, while in reality the
process involves several distinct steps, each of which involves unique interactions
between the different cells. Macrophages, which play two very important roles of
initially releasing the chemical signals that initiate the inflammatory response and
cleaning up dead material are not included in the present model. The processes of
phagocytosis, apoptosis, and the removal of pus are simplified to one stage but may
eventually be expanded into the three distinct steps that would technically be correct.

Although some of these potential adjustments may prove to be insignificant to
the mechanisms being reproduced, the researchers hope to begin to implement each
of them in time and investigate their potential impacts. Both undergraduates plan to
continue working with the model throughout their undergraduate career, hopefully
creating an effective tool for other researchers and potentially moving towards an
industry leading model.
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Fig. 1 Example of the visualization of the model as the infection grows and the neutrophils and
inflammatory mediators move throughout the system
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5.2 Research Projects for ABM in Biology

Research Project 1 In general, ABM that simulate the invasion of a non-
native species will deal with the geographical spread of the species, popula-
tions growth. It can also include predator–prey dynamics and consumption of
natural resources. The exact details will depend on the particular problem of
interest. Once a model is constructed based on ecological information, the
model can be used to answer a wide variety of important questions. One
particular place to look for research projects is in management of invasive
species.

An invasive species can be any kind of living organism, plant, insect, fish, fungus,
bacteria, or even an organism’s seeds or eggs that are not native to an ecosystem and
causes harm. They can harm the environment, the economy, or even human health.
This problem has been well studied in the field of ecology and in mathematical
ecology [30, 31, 35, 37]. However, there are many questions open for investigation.
Most existing models aim to be as general as possible. Even models dealing with
a specific species invading a specific region, try to be general and offer general
answers to their own proposed questions.

ABMs are effective tools to deal with very specific invasive species problems.
For example, the faculty author has worked with an undergraduate student, Meghan
Chambers, in using ABM to test different control strategies to deal with the invasion
of the Coqui Frog in the Hawaii islands. The Coqui Frog is a native species of
Puerto Rico and was brought to the Hawaiian islands, where in the absence of a
natural predator, the population has grown exponentially. The Coqui Frog threatens
the natural Hawaiian ecosystem and in addition, due to their loud night singing,
neighborhoods invaded by the frog have decreased in value.

Due to her participation in the PURE Math program (a research experience for
undergraduate students in Hawaii), Megan was able to make connections with the
ecology department at the University of Hawaii and was able to get data that we used
to create the ABM. This is another great argument for faculty seeking to engage in
this type of research with undergraduates to pursue collaborations with biologists to
get access to knowledge, data and to very specific questions they need answered.

Research Project 2 A CA Model can be created to demonstrate the effects
an over population of geese can have over the environment and the health of
other animal species. These kind of visualization can be an invaluable tool
for educating the public. More important than that, however, is the use the
CA model can have in testing other population control strategies, such as
sterilizations, and test scheduling routines for such interventions.
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Another set of possible projects can be found in population control problems.
As an example, the city of Youngstown Ohio is lucky to have one of the largest,
most beautiful metropolitan parks in the nation. During the summer of 2014, the
populations of Canadian Geese in the park exploded. Overpopulation of a particular
species can bring all sorts of ecological in-balances and habitat depletion. In order to
mitigate the damage of the growing geese population, the United State Department
of Agriculture had to euthanize large groups of geese several times through the
year. Here is an article on the local paper [25]. As one can imagine, this produced
a very negative reaction from the Youngstown populations who did not want to see
the geese being killed. The city has a strong relationship with the park and there are
numerous educational programs for students of all ages and even for adults. The park
management wishes to find other none lethal ways to control the population and the
city is very willing to learn about the effects to the environment of overpopulation
of a species.

In this particular CA model, each cell can represent a small park area containing
information about the number of geese, the quality of that area as a breeding place,
availability of resources, whether this area is accessible to humans (to model the
effect that humans feeding the wild life), any information on natural predators,
among other markers of interest. Most of this information can be given by the
Youngstown Metropolitan Parks authorities. Since it is of interest to model one
season, the time step can be set as small as a day or maybe a week. The CA can
show the movement of geese through the park, births and natural deaths. Once a CA
is constructed that mimics the current park situation, the model can be used to test
many different population control strategies, teach park attendees the consequences
of feeding the wild life, and help educate the public to why it is necessary to control
the populations.

Research Project 3 A fascinating project for students interested in ecologi-
cal problems is to model migration of a specific bird of interest. Students can
create a CA Model in which each element in the matrix saves information
on all measurable factors that determine migration patterns. Once a model
has been created, the model can be used to predict migration changes due to
changes in the terrain, such as night lights from cities, changes in climate and
deforestation, among others.

Migratory bird species rely on environmental cues to travel in response to the
seasons. Migration is controlled by internal mechanisms that ensure arrival and
departure times coincide with the right temperatures and peak food availability [8].
Despite this, rapid climate change has altered environmental cues over the recent
decades; as a result, these birds are forced to shift not only their time of flight but
also their flight patterns to make up for variation in food supply and temperature [8].
According to [22], migratory birds are declining at much higher rates compared to
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non-migratory birds. Changes in weather and habitat are among the primary drivers
of bird population decline [22]. Additionally, collisions with man-made structures
kill thousands of birds each year and are expected to kill millions by 2030 [12].

As an example, in collaboration with the Geography department at Youngstown
State University, a group of students have been working on mathematically mod-
eling the recent shifts in migratory patterns from land use change and population
density for one bird species, the Yellow-rumped Warbler, and to predict how these
migratory patterns will look in the future. Since shifting environmental cues due
to climate change have been driving shifts in bird migration patterns over recent
decades, an alteration in land type and population density coupled with prolonged
start of migration will contribute to a change in the most efficient route for the
Yellow-rumped warbler.

The geography department has helped the team get detailed information on the
state of the terrain under the migration route for the Yellow-rumped Warbler and
have guided predictions on changes in terrain due to climate change. Students are
working on incorporating this information into the model and will use it to predict
future migration patterns and health of the overall population.

There are two ways in which this project can be developed. If the reader would
like to focus on the environment itself, this could be a great project to develop
a CA Model. However, if the reader wants to consider the birds as agents, an
ABM might be a better way to model this. The article [19] contains a lot of
information of different migratory species and how climate change is perturbing
their migration patterns. The author also recommends using NetLogo [42] and its
GIS data capabilities.

Research Project 4 The field of microbiology offers many opportunities
for Agent Based Modeling and for close collaborations with biologist who
are currently experimenting at the cellular level. ABM done in tandem with
experiments offer the opportunity to create data driven models which can then
guide further experimentation. The authors will describe two past projects
she worked on with undergraduate students and with biologists in an effort to
inspire similar projects.

The importance of collaborations with biologists cannot be overstated. In
addition, ABMs are an incredible asset as a visualization tool to communicate with
other scientists, so collaborations that start with ABM models can evolve into the
development of more complex experiment-driven models. Below are two examples
of two different projects in microbiology.

Bone Formation and Metabolism
At the macroscopic scale bone is a static, hard tissue, however, at the microscopic
level, bone consists of different types of cells, bone matrix cells (Osteocytes),
cells that create new bone (Osteoblast) and cells that destroy old or defective bone
(Osteoclast).
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This project was done in very close collaboration with Dr. Marnie Saunders at
the Biomedical Engineering Department at Akron University. Dr. Saunder’s lab was
experimenting with bone cells and trying to understand how cells communicate with
each other. They developed small area experiments in which they isolated a few bone
cells and observed their behavior under different stimulus.

The faculty author has done some preliminary work in this area with students, but
there are still open questions available, started with a Cellular Automata Model
which aimed to replicate their exact lab experiments. In the lab, cells that create
bone, Osteoblasts, are placed in a matrix and induced to begin bone formation.
Measurement of bone formation is taken after one, two, four, eight, sixteen, and
26 days. The data were used to create a CA model and we validated the model using
a permutation test. This CA model can then be modified to improve bone formation
and this will lead to new possible experiments Dr. Saunder’s lab can perform. Most
of the CA model was developed by a mathematics student during her Junior year.
Preliminary results for this project can be found in [40].

In this case, as the cells are not moving but mineralizing and creating bone, a
CA was better suited to model the locations where minearlization was happening.
Other examples of possible applications of cellular biology in which movement is
negligible are:

• Angiogenesis. As tumors grow, they require more oxygen and other nutrients
to grow. By sending signals to nearby blood vessels, tumors are able to extend
those blood vessels towards themselves, providing all the oxygen and nutrients
necessary to grow. Processes such as this can be modeled using a Cellular
Automata Model, where blood vessels extend to neighboring squares in the grid,
dependent on concentrations of chemoatractants [9].

• Wound healing is a process well studied and yet many questions remain. New
uses of STEM cells to enhance healing are being tested in different ways in
many Biology or Biomedical Engineering Departments at universities all across
the country. Using data provided by biologist or immunologist, a CA model can
be constructed to simulate the wound area, the immune response, bacteria, and
normal tissue. This models can start simple, with just a few types of cells, and
increase in complexity with time [44].

Pre-Natal Muscle Formation
The Mathematics Department at the University of Texas at Arlington (UTA) was
interested in starting collaborations with the Nursing Department at UTA, and in
particular, with a Nursing faculty whose lab studies muscle formation in the fetus.
As in many cases, the biologists do not necessarily see the point of a collaborations
with mathematicians, so by creating a ABM that simulates their in vitro experiments
and using it as a visualization tool for the Nursing professor, the lab was able to see
the potential for a collaboration. This collaboration has led to grant proposals and
will produce peer reviewed publications as well.

The ABM that helped this collaboration start was done by a team of four
freshmen students, two mathematics majors and two pre-med. The ABM tracked
a few initial cells before differentiation. Each cell would then differentiate into a
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myocite (muscle cell), reproduce, move towards neighboring cells, align with them,
and merge to form muscle fibers. Students learned to program (in Matlab), learned
quite a bit about fetus formation, learned cellular biology, and in mathematics, they
learned about probability and a bit about measures.

In the project described above, the movement of cells and their orientation is a
vital component of what needs to be better understood. Therefore, an ABM was
developed which tracks cells position, orientation, length, and polarity (since cell
fuse at the poles).

Research Project 5 With the right collaboration, students create ABM
which model the competition for resources that naturally arise between
cancerous and non-cancerous cells. The problem of competing populations
is a well-studied problem and a wide variety of standard models exist in
the literature [27, 28]. One real-world application of a competing population
system that has become increasingly important is the modeling of cancerous
and non-cancerous cells as competing populations. Since ABM is good for
modeling very complex systems, the model can start simple and complexity
can be added as students learn more about the biology or get access to lab
data. They can start by modeling competing cells and add the different growth
rates, the immune response, angiogenesis (the formation of arteries around a
tumor), tumor formation, the necrotic nucleus of tumors, etc.

6 Afterword

In this section, the two student authors whose work was feature in Sect. 5.1 of this
chapter will talk about their personal experience being involved in the subcutaneous
example research project. By sharing their experience, the authors hope that other
students and faculty thinking about doing research in this area can learn what we did
right, what needs improvement and ultimately, why enabling students to do research
early in their undergraduate career is a worthwhile endeavor.

6.1 Lindsey Chludzinski

As a first semester Freshman, I knew very little about college or research projects,
and essentially nothing about mathematical biology research, agent-based model-
ing, or programming. When we embarked on this project we had no experience and
almost no background to draw from. We honestly did not know what the end goal
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of the project would be, why we were doing it, or how long it was going to take. But
it was an opportunity to try something new and it ended up being a good one.

Although it is obviously not ideal to have no idea what one is doing, the nature
of our research project ended up being well suited for our lack of knowledge. We
started by learning the basics of Matlab and a very simplified general overview
of our biological topic. Our research professor gradually added more details to
the exercises she assigned us, and the Biology professor that we are working with
gradually provided us with more information and reading materials. The problems
that seemed insurmountable at the beginning of our project, things as basic as
making a for loop or creating a matrix, are now more or less routine for us. I would
imagine that our current impossible challenges will quickly lead to new knowledge
and new obstacles.

As a student that has always preferred to work through confusing topics in
solitude one of the biggest initial challenges for me was learning how to problem
solve with a partner. I had never really struggled with group work, but I had
also only ever collaborated on topics that I was already confident in. Learning
to admit that I had no clue what was going on or where to go next took some
time. Learning to make suggestions that might be absolutely wrong was also an
adjustment. Thankfully, Alex and Dr. Prieto-Langarica have been incredibly patient
partners.

We have grown a lot in our ability to code—a skill I never really expected to have
but that is obviously applicable in a lot of areas. We have made a lot of mistakes,
some of which we are still facing the consequences for. When we first embarked on
this project every half line of code we wrote was painful and required at least two
Google searches. Once we got the hang of it we were able to crank out about 1600
lines of working code in just a few months, which to an experienced coder is likely
insignificant, but to our novice perspectives seemed incredible. Once we finally had
a program that looked cool and appeared to get the job done we decided to review
what we had written and quickly discovered how disorganized, unreadable, and
inefficient our technique was. Debugging was nearly impossible and finding any
specific line took so long that we would forget what we were looking for before we
found it. We have spent the last semester of our research completely rewriting the
code for the program and in order to bring it down to about 300 hundred lines, doing
essentially the same thing that it did before. In the process we have encountered
a lot of new (or previously hidden) problems, but we are slowly addressing and
eliminating them. To someone of any degree of genuine skill our current work would
probably be embarrassing, but to us it feels like an accomplishment. It has been a
constant cycle of problem finding, problem solving, problem fixing, and problem
creating, but we are making progress.

If I had to start the project over, I do wish that we had taken more time to learn
the basic mechanisms of how MatLab reads through a program, how the syntax
works, how to choose variable names that make sense and can be remembered, or
what separates efficient code from a disastrous mess. Although we learned as we
went, I would suggest to other students to spend as much time as possible reading
about their topics before jumping in. It was also difficult to actually understand and
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envision the end goal of our project, largely because it was and still is evolving as
our abilities and interests and progress evolves. If you choose to start a project with
as little background as we had, be patient. Occasionally take the time to compare
what you have accomplished to what your original understanding was. Even slow
progress has significance.

We had the opportunity to present a talk about our research at the MathFest in
Denver this past summer. Our advisor helped us apply for travel grants and made the
trip to our first academic conference possible. It was thrilling to hear the amazing
things other undergraduates are working on, and it was very rewarding to share our
own efforts. As has been the recurring theme in this experience, I learned a lot about
research and a lot of practical life skills.

Mathematics and Biology are beautiful on their own, but any time the two can be
combined is nothing short of awesome. Our particular project has not yet required
very advanced levels of math, but I think it has exercised our critical thinking and
problem solving abilities. I look forward to delving into new ways to apply deeper
math to our topic and to potentially creating a useful research tool for medical
professionals.

As a whole, my research experience has often been frustrating and confusing
and slow moving, but it has been extremely constructive and altogether worthwhile.
I have grown as a student, as a presenter, and as a partner. I have learned how to
collaborate with others, how to problem solve, and how to use Matlab. What I find
most exciting is that we still have a lot of room to continue with this project. As an
undergrad, I highly advise other students to get involved in research as early as
possible.

6.2 Alexandra Ballow

My story is a little different than most. I came into college wanting a career in
academia and anxious to start research. I sought out professors who would work
with me and was referred to Dr. Prieto-Langarica. She was trying to put together a
team to research wound healing computationally. I had no interest in biology and no
experience in coding, but I was happy to accept the opportunity doing math research,
even if the focus was different from the projects I dreamed of doing.

For me, the people I am working with are invaluable. My ability to work well
can be impeded by bad partners and severely improved by good partners. Because
I knew this about myself, I wanted to make sure I had a good partner to experience
research for the first time with. To that end, I recommended Lindsey, who was in my
English and Calculus classes and a budding friend. All I knew was she was a biology
major, so I hoped she could fill in the gaps of my lacking biology knowledge. Dr.
Prieto encouraged me and promised to start small, but it still was comforting to
have someone with me almost as clueless about how research worked. Dr. Prieto
happily brought Lindsey into the project and the two of us were able to start. These
details probably feel insignificant, a few days compared to the weeks we have spent
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researching, but looking back, I feel like these little decisions were the reasons we
have been able to succeed. We were a small team who wanted to work together,
the undergraduates involved had equal knowledge and were eager to learn, and the
professor was careful to preserve that eagerness with challenges just hard enough to
cause a struggle, but not too hard to crush spirits. Lindsey and I learned everything
together, we encouraged each other, pushed each other, and struggled through the
hard times together.

Our complete lack of understanding at the beginning of this project did not
matter at the end, because Dr. Prieto-Langarica helped teach us coding and the
infection healing process as we built the model. We struggled through one task
at a time starting as simple as building a matrix and eventually, after many hours
brainstorming in the library and hundreds of Google searches later, we had a
working model. I do not mean to belittle the struggles and accomplishments and
triumphs that happened during this time. We both learned so much, grew so much.
There are no words to describe what this experience has given me or how strongly I
recommend all undergraduates start research as early as possible. The project does
not matter. I had no interest in biology, but knowing how to do biomath research
and understanding how to work within other fields has been invaluable. It does not
matter how young you are, how inexperienced you are, or how little you know about
what you are researching. Find a good group of people and a patient professor and
everyone, freshmen too, can do research.

6.3 Lindesy and Alex

For both of us, the modeling process has been well suited for our limited back-
ground. When we first began we had extremely limited knowledge of the biology
behind infections and essentially no background in MatLab or coding. Throughout
this project we have learned a tremendous amount every step of the way. In the
beginning Dr. Prieto gave us very simple exercises to complete in Matlab, seemingly
unrelated to the overall goal. These exercises are very similar to those included here.
The first task was to create a matrix of zeroes with ones randomly placed around the
edges. This may sound like a simple undertaking, but to someone who had never
coded before it was extremely difficult. We tried different tactics and fiddled with
the program for over a month before we finally created the matrix as described.

Giving us a month to do something so simple probably sounds a bit crazy
when Dr. Prieto-Langarica could have given them the simple two lines of code.
However, what we learned in that month was well worth the time invested. We
learned more than coding. Dr. Prieto-Langarica was teaching us how to complete a
research project, not how to complete this specific project. We learned the process,
the frustration, the ups and downs of actually discovering something. We began to
develop a new approach to problem solving and established how to collaborate on
challenges neither of us initially understood. With our new knowledge we started
to tackle the next problem; making the particles move. This problem took even



296 A. L. Ballow et al.

longer, the rest of the semester. This was another good use of time. By the time we
had completed the assignment we had a deeper understanding of coding and a more
efficient approach to debugging. We were learning the possibilities and complexities
of a new language.

All of these discoveries were made while on the side, we were focused on
wounds. Once we had enough experience to create a rough representation of
something a partnership with an immunology professor in the biology department
was established. With her guidance, it was decided to transfer the research focus to
infections, due to a slightly simpler pattern of movement and a significantly smaller
number of cell types involved in the basic processes. Because we had learned the
basics of coding, the second time around was much easier. We were able to apply
what we learned to set up the system quickly. Dr. Prieto directed their progress by
breaking the big picture into simplified pieces, yet she only offered specific advice
after the undergraduates began to approach each step independently. This allowed
us to take ownership of OUR project. Despite the slower pace and the increased
amount of mistakes made resulting from the trial and error methods often used, the
experience gained through the progress achieved so far has proven invaluable.
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Network Structure and Dynamics
of Biological Systems

Deena R. Schmidt

Abstract Many biological systems in nature can be represented as a dynamic
model on a network. Examples include gene regulatory systems, neuronal networks,
food webs, epidemics spreading within populations, social networks, and many
others. A fundamental question when studying biological processes represented as
dynamic models on networks is to what extent the network structure is contributing
to the observed dynamics. In other words, how does network connectivity affect a
dynamic model on a network? In this chapter, we will explore a variety of network
topologies and study biologically inspired dynamic models on these networks.

Suggested Prerequisites A standard first course in calculus-based probability is recommended.
Some familiarity with graph theory and/or network theory is recommended, but not required. Some
familiarity with biology, mathematical modeling, and simulation in R will be helpful.

1 Introduction

This chapter focuses on network structure and dynamics in biological systems. Here
we use the term network to mean a graph consisting of a set of nodes (also called
vertices) connected by edges. The network reflects the structure of the biological
system, and the overall dynamics are determined by a dynamic model on the
network such that state variables associated with the nodes (and possibly also the
network topology) change over time. We use the term dynamic model in the broad
sense to mean a mathematical model describing how those state variables change
over time. We will focus on stochastic process models that evolve on a network, but
we can also consider deterministic processes (e.g., differential equation models) on
a network within this framework. In this chapter we will often refer to such dynamic
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models, either stochastic or deterministic, simply as processes on a network. Formal
definitions of fundamental network concepts are given in Sect. 3 and examples of
processes on a network are given in Sect. 5.

The aim of this chapter is to introduce the topic of network structure and
dynamics for modeling a variety of biological systems, and to guide students toward
interesting research projects on the topic. This chapter is not intended to be an
exhaustive resource that includes all necessary background to do research in this
area. Indeed, there are many books and a vast literature on each of the examples and
projects given in this chapter. The goal, rather, is to introduce the basic concepts
and motivation as well as to provide resources (e.g., R code, further references)
that students can use in collaboration with their advisor to work on the suggested
(or related) research projects in this area.

Suggested research projects are outlined in Sect. 6. These projects involve
modeling and analyzing different biological processes using the tools of network
science and applied probability. In particular, students will learn about a variety
of network models (i.e., models of network structure) which allow for different
types of network connectivity. Which network structure is most appropriate for
modeling a particular biological system depends on that particular biological setting.
Students will then learn about processes (dynamic models) on networks, and explore
what types of biological systems can be modeled as such. The level of projects
envisioned ranges from a course term project or a small summer REU project up
through projects that could span multiple semesters as part of, for example, the
undergraduate McNair Program.

A fundamental question when studying biological systems represented as
dynamic models on networks is to what extent the network structure is contributing
to the observed dynamics? In other words, how does network connectivity affect a
given process on the network? This will be the focus of the first part of this chapter,
and one of the most important problems in network science today [33]. A more
difficult problem is to connect these modeling ideas to real biological processes. For
example, we could study how (physical) social contacts affect disease progression
in a population. We could look at how neuronal connectivity affects the collective
behavior of a neuronal network within the brain. These examples have a fixed
(possibly randomly generated) network structure and look at a process evolving on
the network. We could also study how changing the network structure over time
might influence the process on the network.

In order to build up to the research projects at the end of this chapter, we present
the material along with selected exercises intended to deepen the understanding of
each topic. It is strongly recommended that students attempt these exercises before
moving on to the next topic. Knowledge of basic probability, as in a standard first
course in calculus-based probability, is recommended. Some familiarity with graph
theory and/or network theory is recommended, but not required to work through this
chapter. Some familiarity with biology, mathematical modeling, and simulation in
R will be helpful, but not required. We will define all necessary terms and concepts
needed to work on the research projects.
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The remainder of the chapter is organized as follows: Section 2 gives an overview
of biological systems represented as dynamic models on networks along with some
examples. Section 3 presents the fundamentals of network theory which include
mathematical descriptions of networks, network metrics and properties used to
characterize network structure. In Sect. 4, we introduce network models which are
used to explore different connection topologies, and in Sect. 5 we discuss various
dynamic models or processes on networks. Lastly, Sect. 6 describes the suggested
research projects on this topic.

1.1 Further Reading

This chapter will only scratch the surface of the vast topic of biological networks
in terms of structure and dynamics. For comprehensive references on the basics
of probability and stochastic processes, see Sheldon Ross’ books [39, 40]. A nice
reference for stochastic processes in biology is given by Allen [7]. For a more com-
plete introduction to network theory, see Mark Newman’s book [33]. For more
details on dynamical processes on networks, see [11, 36, 37]. A comprehensive
reference on adaptive networks is given by Gross and Sayama [26]. For an advanced
mathematical treatment of random graphs and random graph dynamics, see [14, 20].
Other references will be given throughout the rest of the chapter.

A significant part of the exercises and projects will involve computation and
simulation via the statistical software R [38]. In terms of learning basic R, there
are many resources available, particularly online. For example, see the tutorial
“Getting Started with R” by the support team at RStuido at https://support.rstudio.
com/hc/en-us/articles/201141096-Getting-Started-with-R [1] and the interactive
course “Introduction to R” by DataCamp at https://www.datacamp.com/courses/
free-introduction-to-r [2]. At the end of this chapter is an Appendix containing the
R code used to create all figures as well as additional definitions and examples for
simulating basic stochastic processes.

2 Biological Systems Represented as Dynamic Models
on Networks

Networks play a central role in the biological sciences as they form the basis of
a wide variety of biological processes across scales, from molecular and cellular
processes to species interactions. Particularly at the molecular level, most genes and
proteins carry out their functions within a complex network of interactions with
other genes and proteins rather than on their own.

https://support.rstudio.com/hc/en-us/articles/201141096-Getting-Started-with-R
https://support.rstudio.com/hc/en-us/articles/201141096-Getting-Started-with-R
https://www.datacamp.com/courses/free-introduction-to-r
https://www.datacamp.com/courses/free-introduction-to-r
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After several decades of collecting large-scale data on biological networks,
researchers have discovered various network properties that appear to be typical of
the structure or topology of many biological networks. This has led to considerable
research aimed at understanding the origin of such network topologies as well
as the corresponding biological relevance or function. Essentially, researchers are
interested in linking structure with biological function by studying the interplay of
network topology and the dynamic model defined on the network.

Many biological systems in nature can be modeled as a dynamic model on a
network. Examples include gene regulatory networks, protein–protein interaction
networks, metabolic pathways, neuronal networks, food webs, epidemics spreading
within populations, and social networks, just to name a few; see also Table 1.

As a simple example, consider a food web consisting of three species: grass,
mice, and snakes. Figure 1 illustrates the food web by showing what each species
eats. Grass is the producer, or base of the food web, which grows as a result of
sunlight, carbon dioxide, and water. Mice eat the grass and snakes eat mice. In this
network, the nodes are the species and the edges have a direction to them (denoted
by an arrow) corresponding to the food each species eats. Specifically, an edge from
species A pointing to species B means that A is the food consumed by B. In other
words, B eats A.

The next example illustrates that sometimes more complicated notions of edges
are needed when modeling specific biological interactions. Figure 2 shows a cartoon
example of a gene regulatory network for a set of three genes: X, Y, and Z. On the

Table 1 Examples of networks in biology

Network Nodes Edges

Brain (neuronal networks) Neurons Synapses

Gene regulatory networks Transcription factors Regulatory interactions

(gene products)

Protein–protein interaction networks Proteins Protein interactions

Food webs Species Predation

Metabolic pathways Metabolites Bio-chemical reactions

Social contact networks People Social interactions

Grass Mouse Snake

Fig. 1 A simple example of a food web describing what each species eats. Grass is the producer,
mice eat grass, and snakes eat mice. Reproduced with permission from Surya Zaidan ©123RF.com
under a standard license
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X A

Z Y

Gene X

Gene Y

Gene Z

TF - Z

TF - X/A

TF - Y

Fig. 2 An example of a gene regulatory network describing the interactions between three genes
X, Y, and Z via their gene products, or transcription factors (TF). Transcription factors regulate
gene expression by turning genes on or off. The left diagram is the biological representation
showing TFs (ovals) binding to the DNA (horizontal lines) and regulating the expression of genes
(rectangles). On the right is the associated network diagram where the nodes are TFs and the edges
are regulatory interactions. Edges with arrowheads indicate positive (activating) interactions that
turn on gene expression, whereas the edge with a hammerhead indicates a negative (inhibiting)
interaction that turns off the expression of gene Z

left-hand side is the biological representation. Each gene is transcribed and then
translated into a protein product called a transcription factor (TF), color coded to
match its gene. A TF then binds to the DNA upstream of a (possibly) different
gene to control its expression. It is certainly possible for a gene to control its own
expression but that is not represented here. These TFs are modeled as ovals and
the color coordinated arrows show whether the interaction is positive (activating
gene expression) or negative (inhibiting gene expression). The black arrow with the
hammerhead is the only negative interaction, and the interpretation is that the TF
made from gene Y inhibits the expression of gene Z.

On the right-hand side of Fig. 2 is the network representation of the gene
regulatory network example. The nodes are the transcription factors corresponding
to genes X, Y, and Z. The two types of edges, denoted by arrowheads and
hammerheads, represent the activating and inhibiting interactions described above,
respectively. Note that the regulation of gene Y requires a TF complex made up of
two TFs: TF-X and TF-A, denoted by TF-X/A. However, the regulation of gene A is
not part of the network. This brings up an important point that biological networks
are part of a larger complex system of interactions, and typically we only study a
small part of that complex system at a time.

Before describing the other biological examples listed in Table 1 and related
examples in more detail, we need to introduce some basic concepts from network
theory so that we can properly describe network structure (or connectivity),
properties, and metrics.
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3 Fundamentals of Network Theory

A network is simply a collection of points connected together pairwise by links.
In the field of network theory, these points are called nodes or vertices and the
links are called edges. In mathematical terms, a network is also known as a graph
and we will use these terms interchangeably. We use the terminology from graph
theory to formally define a network as a graph G(V,E), where V is the set of nodes
(or vertices) and E is the set of edges. Typically, the set of nodes V = {1, 2, . . . , N}
consists of N natural numbers so that the number of nodes in the set is |V | = N .
We will define the edge set E after a brief discussion of the different types of edges
that can occur.

Mathematically, we typically think of two different types of edges1: directed
and undirected, and which type is used depends on the interactions between the
nodes. A directed network2 consists of directed edges, or edges with arrowheads that
indicate a directed interaction between pairs of nodes, as shown in the motivating
example in Fig. 1. In that case, edge (i, j) is an ordered pair representing an
interaction from node i to node j , but not vice versa (unless edge (j, i) is also
present in the graph). So the edge set E for a directed network G(V,E) is given by
the set of ordered pairs identifying which nodes are connected by a directed edge:

E = {(i, j) : ∃ a directed edge from node i to j}. (1)

Alternatively, edges in an undirected network G(V,E) assume a bidirectional
interaction between pairs of nodes and are illustrated simply by line segments rather
than arrows. The edge set E in this case is given by the set of unordered pairs
identifying which pairs of nodes are connected by an undirected edge:

E = {{i, j} : ∃ an undirected edge between nodes i and j}. (2)

Figure 1 is an example of a directed network. Each directed edge (i, j) has
biological meaning: species i is the food consumed by species j . Figure 3
shows two examples of undirected networks. Note that one is connected and one
is disconnected; we define these terms below.

A network can be connected so that all nodes are connected together in some
way by edges. Another way to describe a connected network is one in which no
single node or subset of nodes are disconnected from the network. Alternatively, a
disconnected network is a network that consists of two or more disjoint parts with no
edges connecting those parts together. Figure 3 illustrates the difference between a
connected and a disconnected undirected network. The left panel shows a connected

1The term edge is frequently reserved for undirected edge, and directed edges are often called arcs.
Link is often used as the general term encompassing all types of such objects.
2Directed graphs are also called digraphs, and graph could mean either directed or undirected.
Often, graph is used to mean an undirected graph.
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Fig. 3 Left: an example of a connected network with 10 nodes and 15 edges. Right: an example
of a disconnected network consisting of 3 separate parts. These are both undirected networks

Fig. 4 An example of a
directed network with 10
nodes and 13 directed edges.
This is a (weakly) connected
network. Note that the
bidirectional edge between
nodes 1 and 7 is represented
by two edges: (1, 7) and (7, 1)
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network with 10 nodes and 15 edges, and the right panel shows a disconnected
network with three separate parts.

Figure 4 shows a directed network. This network appears to be connected, but is
actually only weakly connected since not every edge is bidirectional; if it had this
property, it would be strongly connected. We defer further discussion of weak and
strong connectivity for directed graphs to Sect. 3.2, and we give formal definitions
of connected and disconnected undirected graphs in Sect. 3.1.

Note that none of the example networks shown here have a node with an edge
that loops back to itself; such an edge is called a self-loop. In this chapter, we only
consider networks with no self-loops.

It is important to understand when to use a directed network and when to use an
undirected network. We need to think about edges both in a mathematical context
and in the context of the particular biological application in terms of the dynamics
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on the network. In the food web example in Fig. 1, we use a directed network
because those interactions clearly occur in one direction; species B eats species
A and not vice versa. In infectious disease models, for instance, the nodes are
individuals and the edges represent direct contact between individuals. Such contact
is a bidirectional interaction and so we typically use an undirected contact network.
However, the infection spreads from person to person along the contact network in
a directed manner: Alice may infect Bob, or Bob may infect Alice, but both events
do not occur simultaneously in the same outbreak. So here the direction of infection
is a property of the disease dynamics, not of the contact network.

When thinking about a dynamic model on a network, sometimes we need to
think about additional properties of the edges (in addition to directedness), such
as weighted edges or how different directed edges influence node dynamics. For
example, the gene regulatory network in Fig. 2 is a directed network with two
different types of edges that represent activation and inhibition of gene expression.
We can assign positive or negative edge weights, respectively, to account for these
interactions in the model. As another example, for the infectious disease example
discussed above, we might assign edge weights to represent how frequently different
individuals come into contact in a given amount of time. We could do the same thing
for the food web example, to represent how much food each species consumes per
unit time. These edge weights, then, are treated as properties of the dynamic model
on the network; the edge weights agree with the rules for the dynamics. In Sect. 5,
we will discuss how to account for different types of directed edges in the context
of a specific dynamic model on a network.

In this chapter, we will focus mainly on the simplest type of networks: undirected,
unweighted networks with no self-loops, and we will develop most of our theory
in this framework. However, the last suggested research project will illustrate the
use of other types of networks: directed and weighted (with no self-loops), and
these concepts will be specifically developed in Sects. 3.2 and 5.3. In Sect. 3.1, we
define the fundamental mathematical concepts used in network theory for undirected
networks, and in Sects. 3.3 and 3.4 we introduce a variety of network metrics and
centrality measures that can be used to quantify network structure. The R code to
generate all figures in this chapter is given in the Appendix [38].

3.1 Mathematics of Undirected Networks

A network can be characterized in various ways. The most fundamental object used
to characterize a network is the adjacency matrix, defined formally in Definition 1.
This is a matrix of size N ×N , where N is the number of nodes in the network, that
describes the connections between each pair of nodes in a network.

Definition 1 The adjacency matrix A = (aij ) of an undirected network G(V,E),
where |V | = N is an N × N matrix such that each entry aij is either 1 or
0, corresponding to the presence or absence of an edge between nodes i and j ,
respectively. In other words,
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Fig. 5 Left: an undirected
network with 4 nodes and 4
edges. Right: corresponding
adjacency matrix
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1 0 0

aij =
{

1, if {i, j} ∈ E

0, if {i, j} /∈ E.
(3)

Recall that the edge set E for an undirected network is a set of unordered pairs; see
Eq. (2).

For undirected graphs, A is a symmetric matrix, meaning that aij = aji for all
i, j ∈ V and hence A = AT . Figure 5 shows an undirected network (left panel) and
its corresponding adjacency matrix A (right panel). We can check that the figure
agrees with the matrix. For instance, we see that there is an edge between nodes
1 and 2 and also that entries a1,2 and a2,1 are both 1. Since this is an undirected
network, A is symmetric. Also notice that the diagonal entries of A are zero. This is
true for networks with no self-loops.

Another fundamental property of a network is its degree distribution, defined
formally in Definition 3. First we define the degree of a node in a network.

Definition 2 The degree of a node in an undirected network G(V,E) is the number
of connections (edges) it has to other nodes in the network. We denote the degree of
node i ∈ V by ki .

For an undirected network of N nodes, we can compute the degree of each node by
summing over the columns of the unweighted adjacency matrix A = (aij ) for each
row i as

ki =
N
∑

j=1

aij . (4)

Going back to the example network in Fig. 5, since each row of the adjacency matrix
A corresponds to a node in the network, if we sum up the 1s in the first row, we get
2 which means that the degree of node 1 is 2. This agrees with the figure since node
1 has two edges. Likewise, the degree of node 2 is 3, and so on.

Definition 3 The degree distribution of an undirected network G(V,E) is a
function P(k), where k = 0, 1, 2, . . . that defines the fraction of nodes in the
network with degree k.



308 D. R. Schmidt

To see this, note that if there are N nodes in the network and a subset Nk of them
have degree k, then P(k) = Nk/N . For the example in Fig. 5, N = 4 and the degree
distribution is

P(1) = 1

4
, P (2) = 2

4
, P (3) = 1

4
. (5)

The value P(k) can also be thought of as a probability, specifically the probability
that a randomly chosen node in the network has degree k. This viewpoint will
become useful when we study network models in Sect. 4.

Once we know the degree distribution of a network (i.e., ki for each i ∈ V ),
we can compute the mean degree of the nodes in the network. For an undirected
network G(V,E) with |V | = N nodes and |E| = M edges, the mean degree is

c = 1

N

N
∑

i=1

ki = 2M

N
(6)

since each edge contributes to the degrees of the two nodes it connects. Hence, each
edge is counted twice and we get twice the total number of edges in the numerator
above.

One last important network property is the notion of a path between any two
given nodes, defined below.

Definition 4 A path3 Pi0,in in an undirected network G(V,E) is a sequence of
nodes i0, i1, . . . , in ∈ V starting at i0 and ending at in such that every consecutive
pair of nodes in the sequence is connected by an edge in the network. Edges can be
traversed in either direction.

In general, nodes and edges can occur more than once in a path. The path length of
a given path is calculated by counting the total number of edges in the path. If an
edge is traversed more than once, it is counted each time it is traversed.

We have a closed path if the path ends at the same node at which it started, or
i0 = in in Pi0,in . A closed path can include repeated nodes and edges.

Definition 5 A cycle is a closed path in which all nodes and edges in the path are
distinct.

Now that we have defined a path in an undirected network, we are able to provide
formal definitions of connected and disconnected networks in the undirected case.

Definition 6 An undirected network is connected if there exists a path connecting
any two nodes in the network. Alternatively, an undirected network is disconnected
if it is not connected.

3There are different names for path in the literature. The definition given above is also called a
walk. A simple path refers to a path in which all nodes are distinct. Terminology depends on the
source.
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In Sects. 3.3 and 3.4, we will dive deeper into metrics used to quantify network
structure, noting that several of these metrics are based on path length. Further
characterization of network structure involves quantifying connectivity properties
such as clustering. Intuitively, clustering relies heavily on the notion of a cycle. The
more cycles a network has, the more complex it is in terms of structure.

If a network contains no cycles, then it is acyclic. A special type of acyclic
network is called a tree.

Definition 7 A tree is a connected undirected network that is acyclic.

The connected network example in Fig. 3 has several cycles, but the disconnected
network example has no cycles. As a result, each piece of this disconnected network
is a tree. There are numerous examples of trees in nature, such as river networks and
human arteries or veins (but not both or cycles would be present).

The exercises given below and at the end of each section in this chapter are
intended to be done first by hand and then by using R (if applicable) as a way to
introduce the software by solving simple tasks (and by checking your work). The
exercises in this section focus on the example networks given in Figs. 3 and 4; these
networks are intentionally simple (N = 10 nodes in each case) so that computations
can be done by hand. Once students become comfortable using R, these exercises
can be repeated in R, perhaps also for larger example networks generated in R or
from other sources.

Exercise 1 Find the adjacency matrix for each network shown in Fig. 3.

Exercise 2 Compute the node degrees for each network given in Figs. 3 and 5, and
compute their degree distributions. In addition, compute the mean degree for each
network.

Exercise 3 Give an example of a path from each of the networks shown in Figs. 3
and 5.

Exercise 4 For the connected network in Fig. 3, list all cycles of length 3 and length
5. List all cycles along with their lengths for the network in Fig. 5.

3.2 Mathematics of Directed Networks

Here we show how the theory developed in Sect. 3.1 changes for directed networks.
We start with the adjacency matrix.

Definition 8 The adjacency matrix A = (aij ) of a directed network G(V,E),
where |V | = N is an N × N matrix such that each entry aij is either 1 or 0,
corresponding to the presence or absence of a directed edge from node i to node j ,
respectively. In other words,
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Fig. 6 Left: a directed
network with 4 nodes and 4
edges. Right: corresponding
adjacency matrix
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1 0 0

aij =
{

1, if (i, j) ∈ E

0, if (i, j) /∈ E.
(7)

Here, the edge set E is a set of ordered pairs (i, j) such that there is a directed edge
from i to j ; see Eq. (1).

Recall that for undirected graphs, A is a symmetric matrix. However, this is not
necessarily true for directed graphs since it is possible to have an edge from node i

to node j but not vice versa. In that case, we would have aij = 1 but aji = 0, and
hence A 
= AT . See Fig. 6 for a directed network along with its adjacency matrix A.
Note that A is not symmetric.

The notation used in Definition 8, where the edge direction runs from the first
index to the second index, is frequently used in the literature; see [11], for instance.
Other references, such as [16, 33], define the adjacency matrix entry aij to be a
directed edge from node j to node i which is the reverse order of the definition
above. These differences in notation are something to keep in mind when reviewing
the literature or when using software to calculate various network metrics.

Next, node degree has a more complex meaning in directed networks. In a
directed network, each node has two different degrees: the in-degree, or the number
of incoming edges to that node, and the out-degree, or the number of outgoing edges
from that node. We use the adjacency matrix to compute the in-degrees and out-
degrees for each node i in the network as

kin
i =

N
∑

j=1

aji, kout
i =

N
∑

j=1

aij . (8)

The total degree of a node in a directed graph is the sum of its in-degree and out-
degree:

ktot
i = kin

i + kout
i . (9)

For a directed network with N nodes and M edges, the mean in-degree and mean
out-degree are equal,
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cin = 1

N

N
∑

i=1

kin
i = 1

N

N
∑

i=1

kout
i = cout = c

2
= M

N
. (10)

This equality (cin = cout) comes from the fact that a directed edge from any node
must point to another node in the network, so on average the in- and out-degrees
must be equal.

The definition of a path between any two nodes is also modified for directed
networks. A directed path is a path (see Definition 4) with the additional property
that in a directed network, each edge in the path must be traversed in the direction
defined by that edge. A cycle in a directed network is given by Definition 5 with
directed path instead of path.

Lastly, connectivity is more complex in the directed network setting. Here we
introduce two different notions of connectivity for a directed network: weakly
connected and strongly connected.

Definition 9 A directed network is weakly connected if replacing all directed edges
with undirected edges yields a connected undirected network. A directed network is
strongly connected if there exists a directed path from node i to j for every pair of
nodes i, j in the network. Alternatively, a directed network is disconnected if it is
not weakly connected.

Every strongly connected network is also weakly connected, but not vice versa.
Recall the directed network in Fig. 4 from the beginning of Sect. 3. If all edges
were undirected, this network would be connected and so it is a weakly connected
directed network. It is not strongly connected, however, since there is no directed
path from node 1 to node 4, for example.

Exercise 5 Find the adjacency matrix for the network shown in Fig. 4.

Exercise 6 Compute the node in-degrees and out-degrees, mean in-degree, and
mean out-degree for the networks given in Figs. 4 and 6.

Exercise 7 Give an example of a path from each of the networks shown in Figs. 4
and 6.

Exercise 8 For the network in Fig. 4, list all cycles along with their lengths.

3.3 Network Metrics

There are numerous metrics used to quantify network structure. The first set of
metrics we will discuss are based on path length. In the previous two sections, we
defined the notion of a path between any two nodes in a network (undirected or
directed), and we talked about computing the path length. We can use path length
to compute the distance, in terms of number of edges traversed, between any two
nodes in a network. However, we need to be more specific. Which path are we
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talking about? There may be several different paths between a pair of nodes in a
network.

Of broad interest is the shortest path between two nodes in a network, also known
as the geodesic path.

Definition 10 Given a network G(V,E), a geodesic path between nodes i and j in
the network is the shortest path, in terms of number of edges, between i and j .

A widely used metric is the length of the geodesic path between a pair of nodes in the
network, also known as the geodesic distance or shortest distance in the network.

Definition 11 Given a network G(V,E), the geodesic distance between nodes i

and j in the network, denoted by d(i, j), is the length (in number of edges) of the
geodesic path between i and j .

The geodesic distance between a node i and itself, d(i, i), is defined to be 0. If two
nodes are in different parts of a disconnected network such that there is no path
connecting them, then the geodesic distance between them is defined to be infinite.
Note that geodesic paths are not necessarily unique since it is possible to have two
or more paths of the same length. In a directed graph, the geodesic path from node
i to node j might not agree with the geodesic path from node j to node i. Hence, it
is possible and actually quite likely that d(i, j) 
= d(j, i) in that case. In undirected
graphs, however, the geodesic paths between two nodes and their associated lengths
must agree.

There are several related metrics that are also used to quantify network structure.
First is the average geodesic distance between any two nodes in the network, also
called the average path length and implicitly means the average geodesic path
length. This metric is computed by first computing the shortest distance between
each pair of nodes in the network and then by taking the mean over these distances.
Mathematically, this is given by

d̄i = 1

N

N
∑

j=1

d(i, j). (11)

This definition includes the possibility that i = j , but we know that d(i, i) = 0 so
it is not contributing to the sum.4 If the network is disconnected, then there are at
least two nodes with no path between them, and hence their path length is infinite.
It follows that the average path length in this case is infinite.

The average path length metric tells us, on average, the number of steps (edges)
it takes to get from one node in the network to another. One can interpret this metric

4Some researchers prefer to exclude the case i = j and instead use d̄i = 1
N−1

∑N
j=1,j 
=i d(i, j).

The difference in the leading factors becomes negligible in large graphs. See [33, chapter 6] for
further discussion of these two definitions.
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as a measure of efficiency of mass transfer in a metabolic network, for instance. It
turns out that many real-world networks have a short average path length.

The second related metric is known as the network diameter.

Definition 12 Given a network G(V,E), the network diameter is the longest
geodesic path between any pair of nodes in the network for which a path exists.

In other words, this is the shortest distance between the two most distant nodes in
the network. Of interest is studying how the diameter of a network depends on its
size, or number of nodes N .

Exercise 9 Compute both the shortest and longest geodesic paths for the networks
given in Fig. 3, and give the geodesic distance for each of these paths. What is the
network diameter in each case?

Exercise 10 Repeat Exercise 9 for the directed network in Fig. 4.

3.4 Centrality Measures

The next set of measures defined in this section capture different features of network
structure than the metrics given in the previous section, which were based on path
length. To date, a lot of research on networks has focused on understanding what
nodes are the most important or most central in a network. This idea of centrality
has led to the development of an array of centrality measures which we describe
below. For simplicity, we only consider undirected networks here.

Perhaps the most straightforward measure of centrality in a network is node
degree, defined as the number of edges connected to a node in a network (see
Sect. 3.1, Definition 2). Node degree is sometimes also called degree centrality, and
this is a widely used measure in network theory. Degree centrality is a ranking of
nodes such that nodes with more connections are ranked higher; the node with the
largest degree has the highest degree centrality.

Definition 13 Given a network G(V,E), the normalized degree centrality is
defined for each node i ∈ V by

Cd(i) = ki

maxj kj

,

where ki is the degree of node i and the denominator is the maximum node degree
in the network.

Other related centrality measures we will consider are betweenness centrality,
closeness centrality, and transitivity. There are many other centrality measures that
are in the literature, but we will not explore them all here. See [33, chapter 7] for a
more complete and detailed discussion of such measures.
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Betweenness centrality measures the extent to which a node lies on paths between
other nodes. In other words, how often is a node between two other nodes in the
sense that it lies on the geodesic path between those two nodes? How often does
this happen between any two nodes in the network? Such nodes may act as bridges
connecting different regions of the network.

Definition 14 Given a network G(V,E), betweenness centrality of node i ∈ V is
defined by

Cb(i) =
∑

j

∑

k

gjk(i)

gjk

,

where gjk(i) is the number of geodesic paths from node j to node k that pass
through node i, and gjk is the total number of geodesic paths from j to k. This
measure is defined for all nodes i ∈ V .

We adopt the convention that gjk(i)/gjk = 0 if both gjk(i) and gjk are zero.
Nodes with a high degree or nodes that are between other nodes are noteworthy

characteristics in terms of network structure. What about nodes that are close to
many other nodes in the network? Those nodes may or may not also be between
many other nodes. This is the idea of closeness centrality. This measure uses the
geodesic distance from a node to all other nodes in the network. Recall the average
geodesic distance of a node, defined in Eq. (11). Taking the inverse of this measure
yields closeness centrality.

Definition 15 Given a network G(V,E) with |V | = N , closeness centrality of
node i ∈ V is defined by

Cc(i) =
⎡

⎣
1

N

N
∑

j=1

d(i, j)

⎤

⎦

−1

= N
∑N

j=1 d(i, j)
,

where d(i, j) is the geodesic distance (in number of edges) from node i to other
nodes j ∈ V .

In other words, closeness centrality is the inverse of the average shortest path length
between a node and all other nodes in the network. Recall that d(i, i) = 0 for
each node i ∈ V by definition. Also recall that d(i, j) = ∞ if i and j belong to
separate (disconnected) parts of the network. In disconnected networks, we use the
convention that 1/∞ ≡ 0 to compute this metric.

Recalling Eq. (11), there is an alternate version of closeness centrality that
excludes the term i = j in the sum. This changes the factor 1/N to 1/(N −1) which
hardly has any influence for large graphs. Also, we are typically only interested in
the relative centralities of the different nodes rather than absolute values, so in this
chapter, we will use the version given in Definition 15. This is the version commonly
used in many references [33].
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The last measure we will define is known as transitivity which is a measure
of clustering within a network, and is widely used in network theory. Transitivity
means that if node i is connected by an edge to node j , and node j is connected by
an edge to node k, then node k is connected by an edge to node i. This is a cycle of
length three, the smallest cycle possible in a network with no self-loops. Recall that
a cycle is a closed path in which all nodes and edges are distinct; see Definition 5.
A path of length two is given by the sequence of nodes i, j, k with edges (i, j)

and (j, k). A path of length two is also called a triple since three nodes are joined
together by a path consisting of two edges. Then a cycle consisting of three nodes
is called a closed triple. These concepts are used to define an important structural
metric called the transitivity coefficient, more commonly known as the clustering
coefficient [33].

Definition 16 The clustering coefficient5 C is the ratio of the number of closed
triples to the total number of triples:

C = number of closed triples

number of all triples (open and closed)
.

This is the frequency of closed triples in the network, or the fraction of triples that
are closed.

Moreover, we can calculate the number of closed triples as 3 × the number
of triangles in the network. The factor of 3 is due to the fact that each triangle
is associated with three nodes, and each triangle gets counted three times when
we count up the number of closed triples. For instance, the triangle ijk contains
the triples ijk, jki, and kij . See Fig. 7 for an illustration of triangles and triples.
Therefore, we have an equivalent definition of the clustering coefficient:

i

k j

i

k j

i

k j

Triangle;
closed triple 

Triple, open
or closed 

Open triple;
path of length 2 

Fig. 7 Illustrations of triples and triangles. Middle: a triple is a path of length two connecting
three nodes i, j, and k. The presence or absence of edge (i, k) yields a closed or open triple,
respectively. Left: a triangle ijk consists of three closed triples: ijk, jki, and kij . Right: an open
triple or a path of length two such that edge (i, k) is absent

5This is also known as the global clustering coefficient. Some authors, most notably Watts and
Strogatz [46], use a different definition known as the network average clustering coefficient which
is the average of node (local) clustering coefficients. This alternate definition does not always give
the same value as the global version.
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C = 3 × number of triangles

number of all triples
. (12)

Since the above two definitions of C are equivalent, it is up to the reader to decide
which version to use.

The clustering coefficient ranges between 1 for perfect transitivity (all nodes are
connected in triangles) and 0 for a network with no triangles. The latter is the case
for networks such as trees, which have no cycles (see Definition 7).

For further reading and a more detailed coverage of network metrics and
centrality measures, see [33, chapters 6–7] and [11, chapter 1].

Exercise 11 Compute each measure of centrality (degree, betweenness, and close-
ness) for the connected network given in Fig. 3 (or Fig. 5 if working by hand).

Exercise 12 Compute the clustering coefficient for the connected network given in
Fig. 3.

Exercise 13 Compute the three measures of centrality and the clustering coefficient
for the disconnected network given in Fig. 3.

4 Network Models

In this section we will describe a variety of different network models. In Sect. 4.1 we
describe some special types of graphs that are fundamental objects in graph theory,
and in Sect. 4.2 we describe three classes of random graphs. By random graph, we
mean that there is a probability distribution describing the family of graphs produced
under the random graph model considered, and that any given graph constructed
from that model is a realization from the family of such graphs. Random graphs are
often used in biological applications because they are thought to be more realistic
representations of biological systems. Lastly, we describe a class of networks whose
structure changes over time, known as adaptive networks. In this case, since the
dynamic topology is coupled with the dynamics of the process on the network, we
defer this topic to the end of Sect. 5.

4.1 Special Types of Graphs

We focus on undirected graphs here and in the rest of Sect. 4 for simplicity. The first
type of graph we will discuss is one in which all nodes have the same degree. This
is called a regular graph in graph theory. In particular, a k-regular graph is a regular
graph in which all nodes have degree k. Special cases of a regular graph include a
ring graph which means the nodes are arranged in a ring and connected to their two
nearest neighbors, and a complete graph which means that every node is connected
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Fig. 8 Left: a ring network with 10 nodes; each node is connected to its 2 nearest neighbors.
Right: a complete graph with 10 nodes; each node is connected to the other 9 nodes in the graph

to the other N − 1 nodes in the graph (where the graph has N nodes total). Figure 8
shows examples of a ring network and a complete network, each with N = 10
nodes. Note that in these examples, the ring network is also a 2-regular graph and
the complete network is also a 9-regular graph.

Another special case of a regular graph is known as the r-regular ring graph,
meaning that each node is initially connected only to its r nearest neighbors (r/2
nearest neighbors on each side). The r-regular ring network, in particular, will
come into play when we discuss small-world networks in the next section. See
the left panel of Fig. 10 for an illustration of a 6-regular ring network; each node
is connected to its 3 nearest neighbors on each side. In general, the structure of
regular networks is well-known and can be used to compare the structure of different
random networks.

To generate the networks shown in Fig. 8, use the function make_ring(N) to
make a ring graph on N nodes and the function make_full_graph(N) to make
a complete graph on N nodes. Both of these functions are in the igraph package
in R; see Appendix for the code used in Fig. 8.

Exercise 14 Compute the shortest and longest geodesic paths for the ring and
complete networks given in Fig. 8. What is the network diameter in each case?

Exercise 15 Compute each measure of centrality (degree, betweenness, and close-
ness) for the ring and complete networks given in Fig. 8.

Exercise 16 Compute the clustering coefficient for the ring and complete networks
given in Fig. 8.
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4.2 Random Graphs

In random graph models, we generate networks that have specific properties of
interest, such as a particular degree distribution, but which are otherwise random.
Random graphs are interesting objects to study and have become an important topic
in advanced probability theory as well as in a variety of biological applications.
In biological applications, we may not know the actual network of interest. For
example, we may not know all details the contact network of a large group of people,
and we typically do not know all the connections between all neurons in the brain.
But we may know some characteristic properties of these networks, such as degree
distribution and clustering coefficients. So we can gain some insight by studying the
dynamics on typical networks with these properties, that is, random networks.

Random networks shed light on the structural properties of networks, and are
used as a template for modeling processes on networks. In Sect. 5, we study different
biologically inspired processes on networks such as epidemics and neuronal activity.
In this section, we will explore three important random graph models: the Erdős–
Rényi model, the small-world model, and the scale-free model. For simplicity, we
only consider undirected graphs in our descriptions below.

Each random graph model describes a family or ensemble of graphs and rules
for how to generate a representative graph (or a realization) from the model. Each
model starts with a set of N nodes and then edges are added to connect the nodes
according to a random process. For more details on the random graphs described in
this section and related network models, see [14, 33, 42].

4.2.1 Erdős–Rényi Random Graph

We begin with one of the most fundamental and widely studied random graph
models which was introduced by Erdős and Rényi [21, 22]. The Erdős–Rényi (ER)
random graph model assumes that, for a given set of nodes, any possible edge occurs
independently of all other possible edges with a given probability. More precisely,
the model starts with N nodes and the network is generated by connecting each pair
of nodes with probability p, independently of all other pairs of nodes in the network.
The family of ER random graphs with N nodes and edge probability p is denoted by
G(N,p). See Fig. 9 for an illustration of an ER random graph with N = 30 nodes
and edge probability p = 0.2.

In the ER model, a node is equally likely to be connected to each of the N − 1
other nodes in the network. As a result, the probability P(k) that a node has degree k

is given by the binomial distribution

P(k) =
(

N − 1

k

)

pk(1 − p)N−1−k for k = 0, 1, . . . , N − 1. (13)
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Fig. 9 A realization of an Erdős–Rényi random graph with 30 nodes and edge probability 0.2

In other words, G(N,p) has a binomial degree distribution. Now we can easily
compute the expected value of the degree of a node, also known as the mean degree,
which is c = (N −1)p. This result is intuitive; the mean number of edges connected
to a node is the product of the number of possible edges (N − 1) and the probability
that an edge actually exists (p). The mean degree of the ER network shown in Fig. 9
is approximately 5.8 which agrees with the theory.

An interesting mathematical result (see [33, chapter 12] for more details) shows
that in the limit as the number of nodes goes to infinity,

P(k) =
(

N − 1

k

)

pk(1 − p)N−1−k → e−c ck

k! as N → ∞, (14)

where c = (N − 1)p is the mean degree derived above and c is assumed to
be constant. The limiting distribution is the Poisson distribution with parameter
c. Thus, if we have a very large ER network, then its degree distribution is
approximately Poisson. For more details on the Poisson distribution and other
probability distributions, see [39].

To generate an ER random graph in R with the igraph package, use either
function sample_gnp(N,p) or erdos.renyi.game(N,p), where N is the
number of nodes in the graph and p is the edge probability. Then use plot to
visualize the graph. See Appendix for the code used to generate Fig. 9. For further
reading on Erdős–Rényi random graphs, see [33, chapter 12] and [11, chapter 3].
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Exercise 17 Generate a realization of an ER random graph from G(N = 30, p =
0.2) in R. Use the functions in the igraph package to compute the degree
distribution of your graph and visualize by making a histogram. Also compute the
mean degree.

Exercise 18 Generate ten different realizations drawn from G(N = 30, p = 0.2)

and plot their associated degree histograms. What do you notice? Are some nodes
more connected than others? Is the entire network connected? How often do you get
a realization that is disconnected? How variable is the mean degree?

Exercise 19 Explore realizations of G(N = 30, p) for different choices of the edge
probability p. How does changing p affect the shape of the degree distribution, the
mean node degree, and connectivity? What happens if you increase the number of
nodes N?

Challenge Problem 1 Generate several realizations of an ER random graph from
G(N = 30, p = 0.2) in R. Use the functions in the igraph package (or write
your own code) to compute the following for each realization: the lengths of the
shortest and longest geodesic paths in the network, the average path length, the
three measures of centrality, and the clustering coefficient for the network. What
patterns do you observe?

4.2.2 Small-World Networks

Another class of random networks known as small-world networks were introduced
by Watts and Strogatz [46] after they noticed that many naturally occurring networks
displayed greater clustering than an Erdős–Rényi random network. Small-world
networks are characterized by a high degree of clustering as well as a short average
path length between any two nodes in the network. In particular, an edge in a small-
world network is more likely to occur if it would complete a triangle, as described
in Sect. 3.4.

The small-world model by Watts and Strogatz [46] can be described as follows:
Start with N nodes initially connected as an r-regular ring network, where each
node is initially connected only to its r/2 nearest neighbors on each side. The next
step introduces a rewiring probability q which means that some edges are removed
and then rewired to random new positions. Specifically, we look at each edge in
the ring network, and with probability q we remove that edge and replace it with
one that joins two nodes chosen uniformly at random. This leads to a network with
shortcuts, also known as long-range connections, which is what gives small-world
networks their characteristic short average path lengths.

Figure 10 shows a representative small-world network for r = 6 in the center
panel with rewiring probability q = 0.05; this network has about 5% of its edges
rewired compared to the initial 6-regular ring network. The left and right panels,
respectively, show networks representing the two extreme cases of no rewiring
(q = 0, ring network with r = 6) and complete rewiring (q = 1, equivalent to
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Fig. 10 Small-world networks generated from the Watts–Strogatz model [46] with 20 nodes, each
node is initially connected to its six nearest neighbors (r = 6) and then the graph is rewired with
a specified probability. From left to right, the rewiring probability is q = 0, 0.05, and 1 which
correspond to a 6-regular ring graph, a characteristic small-world graph, and a graph with complete
rewiring (same as ER random graph), respectively

a realization from the ER model with the same edge probability as the small-world
network).

A variant of the Watts–Strogatz (WS) small-world model is to not remove any
edges during the rewiring step, but only add the shortcut edges to the initial r-
regular ring network (as in the original model, with probability q per edge). The
two versions are similar in the regime that is of interest to most researchers,
the case where q is small. The reason this variant exists is because it is more
straightforward to calculate network properties such as degree distribution in this
alternate version [33]. We will use the alternate version below when discussing the
degree distribution.

In order to describe the degree distribution for the small-world model in which
no edges are removed, we need to compute the number of shortcuts that are added to
a node. Once shortcuts are added to the ring network, the degree k of a node is r (the
number of initial nearest neighbor connections) plus the number of shortcut edges s

attached to it. There will be on average rq shortcuts that end at any given node. The
number of shortcuts attached to any one node follows a Poisson distribution with
mean rq, so that the probability a node has s shortcuts is approximately (for large
N and small q)

P(s) = e−rq (rq)s

s! for s = 0, 1, . . . (15)

Recall that the total degree of a vertex is k = r+s. Solving for s yields s = k−r and
plugging this into Eq. (15) gives the degree distribution for the small-world model:

P(k) = e−rq (rq)k−r

(k − r)! (16)

for k ≥ r and P(k) = 0 if k < r . For more details on the derivation of the degree
distribution, see [33, chapter 15].
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Small-world networks are often used in models of biological systems due to their
more realistic structural features as compared to other network models. Examples
include brain (neuronal) networks [12, 45] and protein networks that regulate fat
metabolism in budding yeast [4], just to name a few. In addition, small-world
networks can be used in models of social networks upon which infectious diseases
spread [27, 28]. We will consider epidemics on networks in Sect. 5.

To generate a small-world network in R (via the igraph package), use the
function sample_smallworld(1,N,h,q) where the parameters correspond
to the notation used above and h = r/2. Note that this is the original small-world
model where each edge is removed and rewired with probability q. In particular, the
first parameter is set to 1 so that initially we start with a 1-dimensional r-regular ring
graph, and the second parameter is N since the graph consists of N nodes total. The
third parameter h is the number of nearest neighbors a node is initially connected
to on each side so that it has 2h = r initial nearest neighbors. The last parameter
q is the rewiring probability discussed above. See Appendix for the code used to
generate Fig. 10. For further reading on small-world networks, see [33, chapter 15],
[11, chapter 3], and [46].

Exercise 20 Generate a realization of a small-world network with N = 20, r = 6,
and q = 0.05 in R. Use the functions in the igraph package to compute the degree
distribution of your graph and visualize by making a histogram. Also compute the
mean degree.

Exercise 21 Generate ten different realizations from the model in Exercise 20 and
plot their associated degree histograms. What do you notice? Are some nodes more
connected than others? How variable is the mean degree?

Exercise 22 Explore realizations from the small-world model for different choices
of rewiring probability q. How does changing q or r affect the shape of the degree
distribution, the mean node degree, and connectivity?

Exercise 23 Compute the clustering coefficient for the network in Exercise 20.
Explore how the clustering coefficient changes as q increases or decreases.

Challenge Problem 2 Generate several realizations of a small-world network from
the Watts–Strogatz model with parameters N = 20, r = 6, and q = 0.05 in R. Use
the functions in the igraph package to compute the lengths of the shortest and
longest geodesic paths in the network and the three measures of centrality for each
realization. Repeat for small-world networks with rewiring probabilities q = 0 and
q = 1 for comparison.

4.2.3 Scale-Free Networks

The last class of networks that we investigate are known as scale-free networks, and
they are an important subclass of the small-world networks discussed in Sect. 4.2.2
[8, 10, 33]. Scale-free networks have a degree distribution that follows a power law
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(at least asymptotically). By asymptotically, we mean that as the number of nodes
in the network tends to infinity, the degree distribution approaches a power law
relationship. That is, the probability that a node has degree k is given by

P(k) ∼ k−α, (17)

where the exponent α > 0. In other words, for large values of k the fraction of nodes
of degree k is proportional to k−α .

Empirical studies have found such distributions with α in the range 2 ≤ α ≤ 3
for many important networks that occur in nature [6, 17, 33], including neuronal
networks [5, 32] and contact networks of people [29]. As a result, the scale-free
nature of various biological networks makes for an interesting topic of research.

The most striking feature of scale-free networks is the presence of nodes that
have very high degree, much higher than the average degree of a node in the
network. The highest degree nodes are known as hubs. The power law degree
distribution is a heavy-tailed distribution which means that the tail of the distribution
is heavier (tends to 0 slower) than an exponential distribution. A heavy tail is what
allows hubs to exist. In addition, scale-free networks have short average path length
(similar to small-world networks), but the amount of clustering is closer to that
of an ER random graph rather than a small-world network. In contrast, small-world
networks generally have a higher clustering coefficient than scale-free or ER random
networks.

The most popular model for generating scale-free networks is the preferential
attachment model, developed by Barabási and Albert [10]. This model was proposed
to explain the appearance of power-law distributions in real networks. We will also
refer to this model as the Barabási–Albert (BA) scale-free network model.

The BA scale-free network model proceeds as follows: We start with a small
connected network of m0 ≥ 2 nodes and add new nodes to the network one at a
time until we have a total of N nodes. The probability that the new node will be
connected to an existing node i is given by

pi = ki
∑

j kj

. (18)

This probability is proportional to the degree ki of node i. High degree hubs tend
to quickly accumulate more links, while nodes of small degree are much less likely
to gain new connections. Hence, new nodes have a so-called preference to attach
themselves to hub nodes, and this explains the name “preferential attachment” in
the model.

Figure 11 shows a realization of a scale-free network with N = 50 nodes. We
can easily see that node 1 has the highest degree in the network, with 16 neighbors.
Hence, node 1 is a hub in this network. In larger scale-free networks with N > 100,
we would likely find several hubs.

To generate a BA scale-free network in R (igraph package), use the function
sample_pa(N, directed = FALSE, out.pref = TRUE) making sure
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Fig. 11 A realization of a Barabási–Albert scale-free random graph with 50 nodes. Notice that
node 1 has a much higher degree than the other nodes, illustrating the hub structure characteristic
of scale-free networks

to change the options as indicated. Then use plot to visualize the graph. Note that
the sample_pa() function has the argument directed = TRUE, meaning that
by default it generates a directed network. Changing this setting to directed
= FALSE generates an undirected network, and this setting can be changed in
ER network generation as well. Alternatively, the function as.directed(G)
converts any undirected graph G to its strongly connected version (for each
component if disconnected). See Appendix for the code used to generate Fig. 11.
For further reading on scale-free networks and the preferential attachment model,
see [33, chapter 14].

Exercise 24 Generate by hand a realization of a scale-free network with N = 10
nodes using the preferential attachment model that starts with m0 = 2 nodes
connected together by an edge. Add new nodes one at a time until the network has 10
nodes total, and at each time step, use Eq. (18) (and a suitable device for generating
random numbers) to choose which existing node the new node will attach to.

Exercise 25 Generate a realization of a scale-free network with N = 50 in R. Use
the functions in the igraph package to compute the degree distribution of your
graph and visualize by making a histogram. Also compute the mean degree.
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Exercise 26 Generate ten different realizations from the model in Exercise 25 and
plot their associated degree histograms. What do you notice? Are some nodes more
connected than others? How variable is the mean degree?

Exercise 27 Use the functions in the igraph package to compute the clustering
coefficient and the length of the shortest geodesic path for the network you generated
in Exercise 25.

5 Processes on Networks

Up to this point, we have focused on the structure of a given system as represented
by the network topology. Now we consider the dynamics of the system which are
determined by a dynamic model on a network such that the state variables associated
with the nodes change over time. A dynamic model is a mathematical model
describing how those state variables change over time. We will focus on stochastic
process models that evolve on a network, but we can also consider deterministic
processes (e.g., differential equation models) on a network within this framework.
Here we will often refer to such dynamic models, either stochastic or deterministic,
simply as processes on a network.

When studying a process on a network, a key question arises: To what extent is
the network structure reflected in the dynamics of the process on the network? This
question will be the driving force for the rest of this chapter, and will be of particular
interest for some of the research projects detailed in Sect. 6.

In the following sections, we describe a variety of processes that take place on a
network, and we do not focus on the specific structure of the underlying network. We
are thinking of the network as a static template on which to explore changes in the
state of the nodes as the process evolves on the network. The biologically inspired
processes we study are percolation, epidemic spreading, and neuronal activity. The
last part of this Sect. 5.4 explores adaptive networks in which both the process and
the network structure are dynamic and change over time.

The aim here is to introduce students to several different processes on networks
by providing the basic background needed to understand more about each topic.
Indeed, many books have been written on each of these topics, and this chapter
will only scratch the surface. The hope is that one or more of these examples will
pique your interest, so at the end of each section, we provide additional resources
for students interested in pursuing projects in these areas.

A brief overview of the basics of stochastic processes is given in the Appendix.
For a good reference on introductory probability theory, see [39]. For introductory
stochastic processes, see [19, 40], and for stochastic processes arising in biology,
see [7]. For further reading about processes on networks in biology and other
applications, see [11, 30, 33, 37, 42].
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5.1 Percolation

Percolation processes are based on a spreading of activity throughout the network
and one of the simplest processes to consider on a network [11, 37, 42]. There are
various types of percolation processes, but we will only describe one specific type in
this chapter. We focus on bootstrap percolation which is an activation process such
that nodes become active once sufficiently many of their neighboring nodes are
active [3, 13]. Bootstrap percolation can also be thought of as an infection process,
and is often used in models of epidemics on networks.

More precisely, the process proceeds as follows: Given a network G(V,E) such
that |V | = N , each of the N nodes can be in one of two states: active or inactive.
Initially, each node is active with probability ρ. Typically a small fraction of initially
active nodes is used, for instance, 5% of the total number of nodes in the network
N which corresponds to ρ = 0.05. In that case, for a network of size N = 100, we
have on average five nodes that are initially active at time t = 0. We then define an
updating rule for how activity spreads throughout the network as time goes forward
in discrete time steps t = 1, 2, 3, . . . . We keep track of the number of active nodes in
the network at time t , denoted by X(t). Bootstrap percolation uses a threshold rule
which says that once a node has at least k active nearest neighbors, then it becomes
active in the next time step. Lastly, once a node becomes active, it stays active and
cannot revert back to the inactive state.

Note that this is a deterministic process that is discrete in time and space; the
time index t ∈ {0, 1, 2, . . . } and X(t) takes on non-negative integer values in the
set S = {0, 1, . . . , N}. In other words, {X(t) : t = 0, 1, 2, . . . } is a discrete-time
process taking values in the discrete (i.e., finite) state space S. The only randomness
comes from the probabilistic rules governing network generation, the associated
degree distribution of the network, and the initial condition of each node starting
out in the active state with probability ρ. Once the network is chosen, this is a
deterministic dynamic model with trajectories completely specified by the initial
conditions.

How can we compute the value of X(t) at each time step t? First, we need to
keep track of the state xi(t) of each individual node i ∈ V at time t . We do this as
follows: Let

xi(t) =
{

1, if node i is active at time t

0, if node i is inactive at time t.
(19)

Suppose node i is inactive at time t (for t ≥ 0); that is, xi(t) = 0. If at least k of
node i’s neighbors are active at time t , then node i becomes active at time t + 1 and
xi(t + 1) = 1. Recall that once a node becomes active, it stays in the active state
from then on. We can sum over the xi(t)’s to compute the number of active states at
time t , likewise for time t + 1, and so on. Specifically,
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X(t) =
N
∑

i=1

xi(t), for t = 0, 1, 2, . . . . (20)

This process depends on the threshold value k as well as the number of neighbors
each node has. For k = 1, bootstrap percolation on a connected network with at
least one initially active node will eventually reach the state of all nodes becoming
active, meaning that X(t) = N for some time t . Of interest is studying how the
process changes for different values of k, and/or for different network topologies.
This is the topic of suggested research project 2 in Sect. 6.

Bootstrap percolation on a network as described above can be simulated in R.
For the case k = 1, the adjacency matrix of the network can easily be used to update
the system at each time step. See Exercise 30 below for some details on how to
simulate this process.

A related stochastic process that can evolve on a network is a random walk; see
the Appendix for formal definitions of these two terms. A stochastic process is used
to model the evolution of a system over time. A random walk describes the path
of an individual walking on the nodes of a network over time. The path starts at a
(possibly randomly chosen) initial node i0 ∈ V at time t = 0 for a given network
G(V,E) such that |V | = N . Now suppose that a node i is occupied at time t , and
call this the current state. Then, given the current state, the move to the next state j

at time t + 1 is chosen randomly, with equal probability, from the nearest neighbors
of node i. The stochasticity in this random walk occurs when ki > 1, where ki is
the degree of the currently occupied node i. This means that there is more than one
possible state to move to in the next time step, and each state transition happens with
probability pij = 1/ki .

The random walk is a discrete-time process and is defined on the same state space
S = {0, 1, . . . , N} as the bootstrap percolation process above. In the Appendix, we
define a random walk on the state space of the integers; this process is denoted by
{Y (t) : t = 0, 1, 2, . . . }. We also provide R code to simulate this random walk,
see Exercise 28 and Fig. 15 in the Appendix. See Exercise 29 for details on how to
adapt this code to evolve on a finite network. Lastly, we define a related stochastic
process {Ỹ (t) : t = 0, 1, 2, . . . } to count the number of distinct nodes that have been
visited in the random walk by time t . In other words, we can think of the Ỹ (t) as the
number of active nodes at time t and compare this process to bootstrap percolation;
see Challenge Problem 3 below.

For further reading on bootstrap percolation, see [3, 13]. For further reading on
percolation processes in general or applied to biology, see [33, chapter 16] and [37,
chapter 3]. More details on random walks can be found in chapter 4 of [40] and
chapter 1 of [19].

Exercise 28 Use the R code in the Appendix (section on Selected Stochastic
Processes) to simulate a random walk (RW) on the integers. Set the transition
probability p = 1

2 to simulate a symmetric RW and explore what happens for other
values of p 
= 1

2 .
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Exercise 29 Modify the random walk R code given in the Appendix (section on
Selected Stochastic Processes) to evolve on a given connected network of N nodes,
say N = 10. Recall that a random walk describes the path of an individual walking
on the nodes of the network. Given the current state (say node i is occupied), the
move to the next state is chosen randomly, with equal probability, from the nearest
neighbors of node i. Run the simulation for 50 time steps and plot the sample path
with time on the x-axis and the states on the y-axis.

Exercise 30 Write a script in R to simulate bootstrap percolation on a given
network. For instance, generate and fix an Erdős–Rényi random graph G(N =
10, p) (choose p small enough so that you get a disconnected network, say p =
0.2), and then simulate bootstrap percolation on the graph using ρ = 0.1 and a
threshold value of k = 1. Run the simulation for 10 time steps or until the process
reaches a stable state such that no further state changes can occur. Repeat with k = 2
or larger.

Challenge Problem 3 Generate a random network, say an Erdős–Rényi random
graph G(N = 100, p = 0.02). Fix the network and explore how bootstrap
percolation differs from a random walk on the given network. Specifically, look at
how quickly or slowly Ỹ (t) reaches the number of nodes that are eventually turned
on by the percolation process (for k = 1) and how this number may remain different
as t → ∞ when k > 1.

5.2 Epidemics on Networks

A very interesting biological process that we can model on a network is the
spread of an infectious disease over a so-called contact network [23, 28, 33, 37].
A contact network is a network model for how individuals interact with one another
in a population. In particular, nodes represent individuals and edges represent
interactions (direct contact) between individuals through which an infection can
spread from individual to individual.

Before diving into epidemics on networks, we first briefly describe a few
classical epidemic models with no associated network structure. These are known
as compartmental models in which a set of compartments describes the states
of the individuals, for instance, “susceptible,” “infected,” and “recovered,” and
parameters are used to describe the transition rates for individuals changing states
[15]. The traditional modeling approach does not involve contact networks, but
rather assumes that individuals in the population are well-mixed. This term means
that each individual has an equal chance of coming into contact with every other
individual in the population, a somewhat unrealistic representation of the real world.
Compartmental models are typically described using ordinary differential equations
(ODEs) which are deterministic models with continuous-state transitions.

The simplest compartmental model is known as the Susceptible-Infected (SI)
model which partitions the population into two classes (or compartments): suscepti-
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Fig. 12 Flowcharts for three compartmental models described in the text: (a) SI model, (b) SIS
models, and (c) SIR model. “S” stands for susceptible, “I” stands for infected, and “R” stands for
recovered; parameters β and γ refer to the transmission rate and recovery rate, respectively, for the
infectious disease considered

ble (S) and infected (I ). The model assumes that susceptible individuals can become
infected when they come in contact with an infected individual (given a particular
transmission rate β of the infection). Also, once an individual is infected with the
disease, they remain infected for all time.

A slightly more complicated version of the SI model allows for individuals to
recover (R) from the infection (given a particular recovery rate γ ); this model is
known as the Susceptible-Infected-Recovered (SIR) model. A third model, known as
the Susceptible-Infected-Susceptible (SIS) model allows for individuals to become
susceptible again once they have recovered from the infection. Hence, the SIS model
is a good model for infectious diseases that do not yield long-term immunity such
as the common cold or norovirus. See Fig. 12 for an illustration of the flowcharts
which describe the set of epidemic states and the rates of transition between states
(defined formally below) for each of these models.

In reality, most people have a regular set of contacts (e.g., family, neighbors,
co-workers) with whom they interact. Therefore, using a contact network to model
person-to-person interactions in an infectious disease model is more realistic than
the well-mixed assumption given in the classical compartmental models discussed
above [11, 33, 37].

As an extension of the classical models, here we consider the influence of
network structure on the propagation of an epidemic [11, 23, 29, 30]. To do this,
we place a compartmental model on a network so that each node belongs to one
of the possible epidemic states, for instance, susceptible or infected corresponding
to the SI model, and the nodes have updating rules for how their states change.
We start with a random undirected network G(V,E) with |V | = N . The nodes in
the network represent individuals and each node’s set of nearest neighbors are their
possible contacts; this is the contact network on which an epidemic can spread.

The dynamics of an epidemic model on a network can be defined in different
ways. Typically, one uses a stochastic process to model disease spread on a network
due to the inherent randomness in how infectious diseases spread; see the Appendix
for more details on stochastic processes. Here will consider a stochastic process in
which the infection is transmitted from an infected node to a susceptible neighboring
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node at rate β. Then βΔt is the probability of transmitting the infection within in
a small interval of time Δt on a given edge that connects an infected node and a
susceptible node. The infection rate for a given susceptible node depends on the
number of infected neighbors it has, and this term is defined formally below in the
SI network model. Note that this rate is used in each of the network epidemic models
considered in this section.

5.2.1 SI Network Model

First consider the Susceptible-Infected (SI) model on a contact network G(V,E)

with |V | = N . The set of nodes V is partitioned into two compartments: susceptible
(S) nodes i ∈ S and infected (I ) nodes j ∈ I . Moreover, the sets of nodes in each
compartment are disjoint, i.e., S ∩ I = ∅ and S ∪ I = V . For simplicity, suppose
initially that only one node is infected.

Now for a given susceptible node i ∈ S in the network, we can count the number
of infected neighbors it has at any given time. Suppose i has m infected neighbors
at time t , where m ≤ ki and ki is the degree of node i. The probability that node i

remains susceptible during a time interval of length Δt is

P(i ∈ S → i ∈ S) =
m
∏

j=1

(1 − βΔt) = (1 − βΔt)m, (21)

where the product is taken over node i’s m infected neighbors, and each neighbor
fails to transmit the infection during that time with probability 1 − βΔt .

Alternatively, since the only options in the SI model are for node i to remain
susceptible or to become infected, the probability of node i becoming infected
during a time interval of length Δt is

P(i ∈ S → i ∈ I ) = 1 − (1 − βΔt)m → βm as Δt → 0. (22)

Therefore, we define the infection rate (or transmission rate) for a susceptible node
with m infected neighbors to be βm [33, 37]. This is the continuous-time version
of the stochastic process described above since we are letting the length of the time
step Δt go to 0. One could also formulate this process as a discrete-time stochastic
process with a small time step, and this is often done in practice to simulate the
process.

Note that β is also the infection rate parameter used in the well-mixed epidemic
models. One must take caution when reading about epidemic models on networks
versus their well-mixed counterparts; these two β parameters are not equivalent.
In the network case, β is the rate of contact that leads to infection between an
infected node and a single susceptible node, whereas in the well-mixed case, β

is the rate of contacts that lead to infection between an infected individual and all
other individuals in the population.
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If the contact network is a connected network, the ultimate fate of each node is
to become infected after some time so that the entire network is in the infected state.
The amount of time it will take for this to happen depends on the network structure
and the infection rate describing the inherent randomness in the infection process. If
the network is not connected, only the part of the network connected by a path to the
initially infected node will become infected. In that case, the behavior of the process
will depend on the location of the first infected node. The SI model is a good model
for diseases that cannot be cured.

Lastly, we note an important connection between the SI model and bootstrap per-
colation with k = 1. These are different models because the latter is a deterministic
process, while the former is a stochastic process. However, the common ground
between these models is that the set of eventually infectious nodes will be exactly
the same as the set of nodes that gets turned on by bootstrap percolation with k = 1.

5.2.2 SIR Network Model

A slightly more complicated model is the Susceptible-Infected-Recovered (SIR)
model on a contact network G(V,E) with |V | = N . Here V is partitioned into
three compartments: susceptible nodes i ∈ S, infected nodes j ∈ I , and recovered
(R) nodes k ∈ R. Note that S, I, and R are disjoint sets and that S ∪ I ∪ R = V .
For simplicity, suppose initially that only one node is infected and that all other
nodes are susceptible. The SIR model uses the same infection rate β (or βm for a
susceptible node with m infected neighbors) as the SI model.

The SIR model allows individuals to recover from the infection, so now we need
to define the recovery rate γ of an infected node. The transition of an infected node
to the recovered state is commonly modeled as a stochastic process with rate γ that
does not depend on the states of the neighboring nodes. As a result, each infected
node moves to the recovered state at a constant rate γ . Hence, in a time interval of
length Δt the probability that an infected node becomes recovered is γΔt , and the
probability that it remains infected is 1 − γΔt . Note that once individuals recover
from the infection, they are no longer able to become infected. The SIR model is a
good model for diseases that confer immunity.

An interesting quantity to measure in SIR network models is the final size of the
infection which is the total number of individuals who have experienced infection
over the course of the epidemic. Mathematically, this is the number of recovered
individuals R(t) as t → ∞ [30].

5.2.3 SIS Network Model

Another related model is the Susceptible-Infected-Susceptible (SIS) model on a
contact network G(V,E) with |V | = N . This model assumes that infected
individuals can recover from the disease and then become susceptible again. The
set of nodes V is partitioned into two compartments as in the SI model, but we have
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the additional recovery rate γ given in the SIR model describing the transition of
infected nodes back to the susceptible state. As above, we suppose initially that only
one node is infected and that all other nodes are susceptible.

As in the SIR model, we use the same two transition rates: β and γ defined
above because these parameters describe the rate that individuals leave states S and
I , respectively. However, in the SIS model, the recovery rate γ now describes the
transition back to the susceptible state. Therefore, in a time interval of length Δt ,
the probability that an infected node recovers from the infection and is once again
susceptible to infection is γΔt , and the probability that it remains infected is 1 −
γΔt . Lastly, note that the SIS model is a good model for diseases that do not confer
long-term immunity.

For further reading on epidemics on networks, see chapter 3 in [37], chapter 17
in [33], [27], [30], [11, chapter 9], and [23, section 3.3] as well as references therein.

Exercise 31 Discuss qualitative differences between the SIR, SIS, and SI network
models. Assume a random undirected connected contact network. In particular,
think about the possible final outcomes of an epidemic in the three models.

Exercise 32 Think about which epidemic model (SI, SIR, SIS) best fits several
common infectious diseases, for instance, influenza, norovirus, herpes, and chicken
pox. Describe an epidemic model for one of these infectious diseases.

Challenge Problem 4 Simulate the SI model on the ring graph with N = 10 nodes
in R. Use β = 0.2 for the infection rate as discussed in the text above, i.e., if a
susceptible node has m infected neighbors, then the infection rate is βm = 0.2m.
Recall that in a ring graph each node has exactly two neighbors, thus at any given
time for any given node, 0 ≤ m ≤ 2. Start with 1 infected individual. How long
does it take for all nodes to become infected?

Challenge Problem 5 Modify the simulation described in Challenge Problem 4 to
evolve on the complete graph with N = 10 nodes.

5.3 Neuronal Activity

Neuronal activity refers to neurons in the brain firing action potentials, also
called nerve impulses or spikes; action potentials play a key role in cell-to-cell
communication. The activity of a single neuron excites or inhibits the activity of
neurons connected to it, and the collective network activity directs the body to
perform myriad tasks. It is important to note that neuronal connections are directed,
and hence biologically realistic models of neuronal network activity should use
directed graphs.

Here we describe a model of neuronal spiking activity on a generic directed
network G(V,E) that was developed in [42]. Note that this is more challenging
than the previous models in this chapter. We think of the nodes as neurons and
the edges as neuronal connections (or synapses), and we only consider excitatory
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connections. We assume that each node fires action potentials at random times
according to a Poisson process with a given rate λ. The Poisson process is a well-
known continuous-time stochastic processes in probability theory; see the Appendix
(section on Selected Stochastic Processes) for a formal definition and R code to
simulate the process. Figure 16 (see Appendix) shows an illustration of a sample
path for the case λ = 1. Also see [40] for more details on this process.

Suppose that each node i ∈ V fires action potentials over time according to a
Poisson process with rate ri . We interpret ri as the firing rate of node i which can
change over time in response to neighboring node activity. We assume that each
node has a constant background firing rate r0 (same for all nodes), and when node i

is activated above its baseline, it decays back down to its baseline level according to
the firing rate equation

dri

dt
= 1

τr

(r0 − ri), (23)

where τr is a time constant. To model interactions with neighboring neurons, when
node i fires an action potential, the firing rate of each of its neighboring nodes j

(i.e., nodes j such that (i, j) ∈ E) gets a boost by a constant parameter g > 0.
Hence, we formulate the updating rule as

rj → rj + gaij , (24)

where aij is the i, j th entry in the adjacency matrix A = (aij ) of the network G.
Recall that aij = 1 if there is an edge from node i to node j . Lastly, we impose a
refractory period after node i fires an action potential which is a short period of time
during which node i cannot fire again.

As described in more detail in Sect. 6, we can simulate this neuronal activity
process on analogues of any particular network drawn from one of the random
network models described in Sect. 4 for directed graphs. Then we can investigate
the influence of network structure on the dynamics of the process on the network.
Suggested research project 6 describes a modified version of this model by
considering a small number of inhibitory connections between nodes. In that case,
we account for how different individual directed edges (excitatory and inhibitory
connections) influence node dynamics in the model by assigning a positive or
negative sign to those terms, respectively.

Researchers have looked at modeling neuronal activity in different contexts.
Recent work in [34, 35] considered a model of two interacting neuronal populations
that mimics the dynamics of sleep-wake cycling in developing rats. The spiking
model considered in [42] can be viewed as expanding the wake-active population
node from the model in [35] into a network of individual spiking neurons where the
activity of each node is described by a stochastic differential equation. Other studies
have modeled the random gating of ion channels as a stochastic process on specific
networks found in neuroscience [43, 44]. There are several other examples in the
literature, see [11, chapter 12] for further reading and additional references.
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There has also been some work linking neuronal activity to networks with
specific topologies. In particular, recent studies have suggested that certain neuronal
networks found in the brain have small-world network structure [12, 45]. The
authors justify this as an attractive model for brain networks in terms of anatomical
structure and function since small-world networks can minimize the costs of wiring
(by introducing shortcut edges) while supporting high dynamical complexity.

Exercise 33 See the Appendix (Selected Stochastic Processes) for an R script to
simulate a Poisson process {N(t) : t ≥ 0} with rate λ = 1, and for more details
on the Poisson process. Recall that N(0) = 0 by definition. Run the simulation five
times and compute the number of events that have occurred by time t = 10 for each
run.

Exercise 34 Use the R script in the Appendix (Selected Stochastic Processes) to
simulate a Poisson process {N(t) : t ≥ 0} with rate λ = 3. Repeat with increasing
values for λ, such as 5, 10, and 20. Compare to the simulation in Exercise 33. In
particular, how does increasing the rate λ influence the average number of events
that have occurred by time t = 10? What do you notice about the distribution of time
between events (also known as the interarrival times, see same section in Appendix
for definition) in each case?

Challenge Problem 6 Write a script in R to simulate the neuronal spiking process
defined by Eqs. (23) and (24) on a given directed network. For instance, generate
and fix a Barabási–Albert scale-free network on N = 50 nodes and then simulate
neuronal activity on the network using the following parameter values: r0 =
0.002 ms−1, ri = r0 ms−1 (initially for all i), τr = 10, and g = 0.01r0 ms−1.
Set the refractory period to 20 ms. Run the simulation for 10,000 time steps and
plot the average firing rate over time.

5.4 Adaptive Networks

The intent of this short section is to briefly introduce the idea of adaptive networks.
If interested, students should be able to modify the project on epidemic spreading to
include a particular change in network structure over time. Additionally, we point
students to some of the vast literature available on this topic.

Biological systems are dynamic, meaning that they change over time, and the
networks that represent them are also dynamic. A recent study reveals the dynamic
nature of biological networks [9]. This study focused on how genetic networks
rewire themselves in response to DNA damage and showed that a static network of
interactions is not realistic for this system. This is not unique to genetic networks.
For example, social networks can be highly dynamic, especially in the context of
infectious disease transmission. People tend to change their daily interactions (or
contacts) once they show symptoms of a disease, for instance, by staying home
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from work or school. The change in contact network structure might evolve along
with the time course of the disease. When modeling biological systems, therefore,
such questions naturally arise: How can we model the growth of networks? How
can we model networks that change over time, both in terms of the structure and
dynamics on the network? As one example, note that the Barabási–Albert model
for generating a scale-free network is essentially based on modeling the growth of a
contact network.

In many biological applications, the dynamics of the process on the network
and the dynamics of the network itself occur on similar time scales. Such networks
are known as adaptive networks [25, 26, 41]. These networks display a dynamic
interplay between the state of the nodes and the structure of the network.

An interesting and realistic example of a dynamic model on a time-dependent
network is an adaptive SIS network model [25], in which a susceptible node can
break any connection (edge) to an infected node and rewire it to a randomly chosen
susceptible node. See also [30] for a comprehensive reference on the mathematics
of epidemics on networks and [31] for epidemics specifically on adaptive networks.
We will discuss this topic in more detail in Sect. 6 when describing research projects.

For further reading on this topic, see [26, 37]. For the specific application of
epidemics on adaptive networks, see [25, 31].

Challenge Problem 7 Extend a standard model, such as a random walk on the
complete graph with N = 10 nodes, to a context where network connectivity is
changing over time. For instance, assume that at each time step, one of the occupied
node’s neighbors breaks its connection (edge) with probability ρ. Simulate both the
standard model and the adapted version with dynamic connectivity in R. In the latter
case, explore how the random walk changes for different values of ρ.

Challenge Problem 8 Come up with your own adaptive network model related to a
particular biological network. Simulate the model in R and use the igraph package
to visualize the changing network structure over time.

6 Suggested Research Projects

In this section, we describe six research-level projects centered on analyzing the
network structure and dynamics of different biological systems. The first five focus
on undirected networks and the last project explores directed networks in the
neuronal activity setting. These projects can be studied both analytically and by
simulation. We recommend using the igraph package in R for network generation
and simulation of processes evolving on the network [18, 38]. We also recommend
using the Appendix for basic sample code that can be modified to suit the projects.

The first project is a comparative study of network structure for the different
network models presented in this chapter.
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Research Project 1 Compute and compare the different centrality measures,
average path length, and clustering coefficient (defined in Sect. 3) for the three
different random network models presented in Sect. 4.

In particular, for research project 1 you want to:

(a) Fix the number of nodes to be the same for each network model, for example,
N = 100, and then generate realizations from each of the three models: Erdős–
Rényi (ER) random graph model, Watts–Strogatz (WS) small-world model, and
Barabási–Albert (BA) preferential attachment model for generating a scale-free
network; see Sect. 4.2. Focus on undirected networks.

(b) First focus on a representative realization from each of the network models and
compute each metric. For average path length, restrict this computation to the
largest connected component in the graph, also known as the giant component,
in the case of a disconnected network. Then compute averages for each metric
over 10 (or more) realizations of each network model.

(c) Look for trends, similarities, and differences between the network models.
Change parameters (e.g., ER edge probability, small-world rewiring probabil-
ity) and re-evaluate.

(d) Repeat for larger networks (e.g., N = 1000) and/or directed strongly connected
networks.

The next project investigates one of the simplest processes on a network:
bootstrap percolation.

Research Project 2 Study bootstrap percolation on different networks struc-
tures. For example, use the same process on an Erdős–Rényi random network,
a small-world network, and a scale-free network. Compute and compare
metrics that quantify how quickly activity spreads through the network.

In particular, for research project 2 you want to:

(a) Fix the number of nodes to be the same for each network model, for example,
N = 100, and then generate representative realizations from: ER model, WS
small-world model, BA scale-free model, and complete graph; see Sect. 4.2.
Focus on undirected networks.

(b) Plot the observed degree distribution for each of the networks generated in (a).
(c) Set k = 1 and ρ = 0.01 in bootstrap percolation. Compare the average,

minimum, and maximum time to percolation (first time step at which all nodes
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in the initially active component are active) for many realizations of the process
on each of the networks.

(d) Compute the clustering coefficient for each network structure generated above.
Explore how the duration of the process changes for the different network
structures and relate this back to the differences in clustering. Compare these
results to the duration of the process on the complete graph.

(e) Look for trends, similarities, and differences between the process on the
different network models. Change parameters (e.g., ER edge probability, small-
world rewiring probability, activity threshold k in the process, number of
initially active nodes ρ) and re-evaluate.

In the next two projects, you will consider the following questions: How do
diseases propagate on networks? What properties of networks encourage or prevent
the spread of an epidemic?

Research Project 3 Construct and analyze an epidemic network model for
an infectious disease spreading through a population of N individuals.

In particular, for research project 3 you want to:

(a) First identify an infectious disease that you can justifiably model with one of
the epidemic network models discussed in Sect. 5.2: SI, SIR, or SIS network
model.

(b) Define the contact network using, for instance, the WS small-world network
model with moderate rewiring (say q = 0.05) or the BA scale-free network
model, each with N = 100 nodes; see Sect. 4.2. Use an undirected network.

(c) For the infection process, start with a single randomly chosen infected individ-
ual and define how the infection spreads from one individual node to the next
(e.g., specify the parameters β and γ ).

(d) Study the time course of the epidemic via simulation in R. Plot the number of
infected, susceptible, and (if applicable) recovered nodes over time. Run many
realizations of the process on the same fixed contact network. Compute the
maximum number of infected nodes averaged over all realizations. If using an
SI model, compute the average time it takes for all nodes in the initially infected
component to become infected.

(e) Explore how the centrality score of the initially infected node influences the
time course of the epidemic (and also the final size of the epidemic if using an
SIR model; recall definition in Sect. 5.2).

(f) Change the network structure (e.g., ring, complete graph, or different random
network models) and repeat steps above. Explore how changing the network
structure affects the infection process.
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Research Project 4 Modify and reanalyze the epidemic model from Project
3 to include an adaptive network framework. That is, the network evolves
in time according to some rule which is related to the infectious disease. For
instance, an individual (node) changes their contact network by increasing the
chance that they stay home after developing symptoms. How does this affect
the spread of the epidemic?

For research project 4, careful thought is required to realistically define how
the contact network changes over time in response to individuals getting sick. In
particular, you want to:

(a) Define the rules for how the adaptive network changes over time. For instance,
suppose individuals change their contact network by increasing the chance
that they stay home after developing symptoms. This can be modeled by
assuming that each infected node will break its connection (edge) with each
of its susceptible neighbors with a given probability q, similar to Challenge
Problem 7.

(b) Study how quickly the epidemic spreads via simulation in R. Plot the number of
infected, susceptible, and (if applicable) recovered nodes over time. Run many
realizations of the process and compute the maximum number of infected nodes
averaged over all realizations. Compare the adaptive network version of the
disease process to the static network version.

(c) Repeat parts (a) and (b) for different values of q or for different adaptive rules.

Alternatively, advisors/students could find a paper that studies dynamics on
networks in another biological context, impose or modify the rules for how the
network changes over time, and then re-run the analysis presented in that paper.

Research Project 5 With the help of your advisor, find a paper that studies
a biological system in a network context (adaptive or not). Identify an
assumption the authors make that could be altered to yield a new but similar
model. Repeat the analysis presented in the paper on the modified model.

In particular, for research project 5 you want to:

(a) Identify an assumption that could be altered, or a new assumption that could be
imposed, to yield a new but similar model. For example, modify the rules (or
impose new rules) for how the network gets rewired over time, or change the
dynamics of the process on the network.

(b) Pick a particular analysis or question answered in the paper. First re-create
that result so that you are confident in your ability to do the analysis; you can
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check your answer. Then re-run the same analysis on the modified model you
develop.

(c) Discuss your results and how they compare to the results in the motivating paper.

For a concrete example, use the paper by Watts and Strogatz [46] on the dynamics
of small-world networks. In that paper, they describe a simplified model for the
spread of an infectious disease on a family of small-world graphs where the rewiring
parameter p varies from 0 to 1. Focus on the simulation results in their Figure 3. Re-
run this simple disease model with an adaptive network framework.

The last project explores neuronal activity on different network structures and
incorporates a second type of connection between nodes: inhibitory connections. In
addition, this project uses directed networks.

Research Project 6 Generate a variant of the dynamical process used to
model neuronal activity on a random directed network G(V,E) described
in Sect. 5.3 to include a small number of inhibitory connections. Simulate the
process on different network topologies and explore how network structure
affects the dynamics of the process.

In particular, for research project 6 you want to:

(a) Fix the number of nodes to be the same for each network model, for example,
N = 100, and then generate representative realizations from: ER model,
WS small-world model with moderate rewiring, and BA scale-free model; see
Sect. 4.2. Use as.directed() to generate directed network analogues and
focus on strongly connected networks.

(b) Modify the neuronal activity process so that some small proportion p of nodes
make inhibitory connections with their neighbors and the remaining nodes make
excitatory connections as before. Suppose p = 0.1. Then for a network with
N = 100 nodes, randomly choose pM = 10 nodes to be inhibitory. Recall that
each node i fires action potentials according to a Poisson process with rate ri .
Now we can modify Eqs. (23) and (24) in different ways to model inhibition. For
instance, given an inhibitory node i∗ and its neighboring nodes j , the updating
rule (Eq. (24)) could be modified by subtracting a constant amount g > 0
from the firing rate of i∗’s neighboring nodes. In this case, Eq. (23) would stay
the same. This scenario puts excitatory and inhibitory effects on similar same
timescales and is given by the modified equations:

rj → max(rj − gai∗j , 0) (25)

dri∗

dt
= 1

τr

(r0 − ri∗). (26)
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Alternatively, we could impose a longer timescale for inhibition by temporarily
dropping the baseline firing rate r0 for i∗’s neighboring nodes j . We introduce
a new parameter r0,j to denote this change to node j ’s baseline firing rate, and
then the magnitude of the drop below the original baseline r0 exponentially
decays back to r0. The modified equations in this case are given by

r0,j → θ · r0,j , where θ ∈ [0, 1] (27)

dr0,j

dt
= 1

τr0,j

(r0 − r0,j ). (28)

For large values of τr0,j
(i.e., for small τ−1

r0,j
) and small values of θ , this

introduces a slow inhibitory timescale relative to the excitatory node dynamics.
See Sect. 5.3 and Challenge Problem 6 for possible parameter values to use.

(c) Choose one of the modifications above and write an R script to run simulations
of the process.

(d) Compare the dynamic activity on the three networks. For instance, compute and
plot the average firing rate over time. Compute and plot the firing rate for the
highest degree node in the network and compare to the average firing rate over
time. Repeat for the lowest degree node. Additionally, compute the maximal
length of a time interval (in milliseconds) during which there are no gaps in
activity of more than δ = 1 ms between subsequent firings. Such periods of
activity are called active bouts. Explore how the different network topologies
affect the dynamics of the process in terms of average firing rate and active bout
duration. Change δ and re-evaluate.

(e) Increase the number of inhibitory connections (choose p > 0.1) and repeat the
steps above. How does this change the dynamics of the process? How many
inhibitory connections are needed to yield different dynamics than the fully
excitatory case?

(f) Investigate how the refractory period influences the dynamic activity on the
three networks. Specifically, increase or decrease the refractory period (set at
20 ms) in the model and repeat steps (d) and (e) above.

Acknowledgements The author thanks two reviewers whose comments greatly helped to clarify
and focus the content of this chapter. The author also thanks Paul Hurtado for helpful discussions
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Appendix

Here we provide the R code used to generate all network figures in this chapter with
the exception of Figs. 1, 2, 7, 12, 13, and 14 which were created from scratch in MS
PowerPoint. Networks were generated using the igraph package (version 1.0.1)
in R (version 3.5.3) [18, 38]. Note that the code below will generate a realization
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or sample network from the given model. These are random graph models, and
their generation is based on probabilistic rules (e.g., edge probabilities in the Erdős–
Rényi model). Therefore, it is unlikely that you will generate the exact same sample
network given in this chapter, but rather a different sample network with the same
or similar network properties.

We also give a brief overview of the basics of stochastic processes, including
formal definitions of stochastic process, random walk, and Poisson process. We
provide sample R code to simulate a simple random walk which is intended for
use in Exercise 28 and can be adapted for Challenge Problem 3. Lastly, we provide
R code to simulate a Poisson process for use in Exercises 33 and 34 and Research
Project 3.

R Code for Figures

###################################################################
# Figures in Section 3
###################################################################

# First, install the igraph package and load the igraph library
library(igraph)

# FIGURE 3
# Sample connected undirected network, N is number of nodes
N=10;
g <- erdos.renyi.game(N,0.25)
iglayout1 = layout.fruchterman.reingold(g)
plot(g, layout=iglayout1, vertex.size=20, vertex.label.dist=0,
vertex.color="lightblue")

# Sample disconnected undirected network
N=10;
g <- erdos.renyi.game(N,0.1)
iglayout1 = layout.fruchterman.reingold(g)
plot(g, layout=iglayout1, vertex.size=20, vertex.label.dist=0,
vertex.color="lightblue")

# FIGURE 4
# Sample directed network, weakly connected
N=10;
g <- erdos.renyi.game(N,0.1,directed = TRUE)
iglayout1 = layout.fruchterman.reingold(g)
plot(g, layout=iglayout1, vertex.size=20, vertex.label.dist=0,
vertex.color="lightblue")

# FIGURE 5
# Sample undirected network and adjacency matrix
N=4;
g <- erdos.renyi.game(N,0.5)
iglayout1 = layout.fruchterman.reingold(g)
plot(g, layout=iglayout1, vertex.size=20, vertex.label.dist=0,
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vertex.color="lightblue")

# Retrieves the adjacency matrix used in the above graph
adj <- get.adjacency(g)
adj

# FIGURE 6
# Sample directed network and adjacency matrix
N=4;
g <- sample_pa(N, directed = TRUE)
plot(g, layout=iglayout1, vertex.size=20, vertex.label.dist=0,
vertex.color="lightblue")

# Retrieves the adjacency matrix used in the above graph
adj <- get.adjacency(g)
adj

###################################################################
# Figures in Section 4
###################################################################

# FIGURE 8
# Ring network
g <- make_ring(10)
plot(g, layout=layout_with_kk, vertex.color="lightblue")

# Complete graph
g <- make_full_graph(10)
plot(g, layout=layout_with_kk, vertex.color="lightblue")

# FIGURE 9
# Erdos-Renyi network
N=30; p=0.2
g <- sample_gnp(N,p)
plot(g, vertex.size=10, vertex.color="wheat")
# hist(degree_distribution(g), 20, col = "wheat")

# FIGURE 10
# Small-world network: Watts--Strogatz model
N <- 20

# WS network with no rewiring (q=0)
g1 = sample_smallworld(1, N, 3, 0) -- sample realization
mean_distance(g1)
transitivity(g1, type="average")

# > mean_distance(g1)
# [1] 2.105263
# > transitivity(g1, type="average")
# [1] 0.6

# WS network with small rewiring (q=0.05)
g2 = sample_smallworld(1, N, 3, 0.05) -- sample realization
mean_distance(g2)
transitivity(g2, type="average")

# > mean_distance(g2)
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# [1] 1.936842
# > transitivity(g2, type="average")
# [1] 0.4841667

g3 = sample_smallworld(1, N, 3, 1) -- sample realization
mean_distance(g3)
transitivity(g3, type="average")

# > mean_distance(g3)
# [1] 1.831579
# > transitivity(g3, type="average")
# [1] 0.2939432

# Plot all three networks together in one row
# Use layout option to keep nodes in a circle
par(mfrow = c(1,3))
plot(g1, vertex.size=10, layout=layout.circle)
plot(g2, vertex.size=10, layout=layout.circle)
plot(g3, vertex.size=10, layout=layout.circle)

# FIGURE 11
# Scale-free network: Barabasi-Albert model
# This model is directed by default
# Use "directed = FALSE" to make undirected
g <- sample_pa(50, directed = FALSE, out.pref = TRUE)
degree_distribution(g)
plot(g, vertex.size=10, vertex.color="wheat")

Basics of Stochastic Processes

Knowledge of introductory probability is assumed. In particular, we assume knowl-
edge of the definitions of random variable and conditional probability as well as
familiarity with common probability distributions (e.g., exponential and Poisson
distributions). For a review of these basics, see [39].

Definition 17 A stochastic process is a sequence of random variables {X(t) : t ∈
T }, where T is an index set typically thought of as time. In particular, for each t ∈ T ,
X(t) is a random variable and we refer to X(t) as the state of the process at time t .

The set of possible values that the random variable X(t) can take on is called the
state space, S. The time index set T can be discrete or continuous, and the same goes
for the state space S. However, here we focus on discrete-state processes since we
are talking about processes evolving on the nodes of a finite size network. Often, the
set of nodes is the state space S, as in the examples below, but this does not have to
be the case. We could, for instance, define a stochastic process to occur on each node
of the network; see the neuronal spiking example in Sect. 5.3 and other examples in
Sect. 5. We will consider both discrete-time and continuous-time processes in this
chapter.
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As an example of a discrete-time stochastic process on a finite state space, let
T = {0, 1, 2, . . . } and S = {1, 2, 3}. Then the process {X(t) : t = 0, 1, . . . }
starts out in state 1, 2, or 3 and moves around on these three states according to the
following rules:

• If the process is in state 1 at time t (for t ∈ T ), mathematically this is denoted by
X(t) = 1, then the process moves to state 2 (with probability 1) in the next time
step, or X(t + 1) = 2. We can denote this transition by the following conditional
probability:

P(X(t + 1) = 2 | X(t) = 1) = 1. (29)

• If X(t) = 2, then the process has two choices for where to move in the next time
step: move to state 3 with probability 1

2 or move back to state 1 with probability
1
2 . Using conditional probabilities, we have

P(X(t + 1) = 3 | X(t) = 2) = 1

2
(30)

P(X(t + 1) = 1 | X(t) = 2) = 1

2
. (31)

• Finally, if X(t) = 3, then the process must move back to state 2 in the next time
step. Again, we represent this state transition using a conditional probability.

P(X(t + 1) = 2 | X(t) = 3) = 1. (32)

In general, these conditional probabilities are called transition probabilities
which describe the probability of a transition from the current state i to next state j

in one discrete-time step. This general notation is given by

P(X(t + 1) = j | X(t) = i) = pij , (33)

where each pij is the (i, j)th entry in the transition probability matrix, P . For this
example,

P =
⎛

⎝

0 1 0
1
2 0 1

2
0 1 0

⎞

⎠. (34)

Note that each row of P sums to 1. This is true in general since the sum over all
possible one-step transition probabilities from a given state i to any other state j ∈ S

must be 1.
The diagram in Fig. 13 is another way of illustrating this example process: the

states are the nodes, the directed edges denote the possibility of a transition from
one node to another, and the numbers above the edges denote the probability of such
transitions. A sample path or realization of this process up through time t = 7 is
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1 3
1

1/2 1

1/2
2

Fig. 13 An illustration of the transition state diagram corresponding to the discrete-time stochastic
process example described above. The state space S = {1, 2, 3} is described by the nodes in
this 3-state network, and the possible transitions between states are given by directed edges with
associated (one time step) transition probabilities

-1 1
p

1-p 1-p

p
0 2

1-p

p

1-p

p

1-p

p
……

Fig. 14 An illustration of the transition state diagram corresponding to the simple random walk
on Z. The nodes are the integers and the only possible state transitions (in one time step) are to
move by ±1, also given by the directed edges with associated transition probabilities p or 1 − p

for some p ∈ [0, 1]

X(0)=1, X(1)=2, X(2)=1, X(3)=2, X(4)=3, X(5)=2, X(6)=1, X(7)=2, . . . .

If we just list the sequence of states starting in state 1 and moving forward in time,
this sample path looks like

1 → 2 → 1 → 2 → 3 → 2 → 1 → 2 . . . .

Another interesting stochastic process called a random walk is defined below.
We define the discrete-time random walk on a discrete state space only (such
as the integers Z); see [40] for further reading on other varieties of random
walks. Additionally, we focus on the simple random walk which can only move
in increments of ±1.

Definition 18 A discrete-time simple random walk on state space S = Z is a
stochastic process {Y (t) : t = 0, 1, 2, . . . } such that the state of the process
increases or decreases by 1 at each time step with probabilities p and 1 − p,
respectively. These transition probabilities are given by

P(Y (t + 1) = i + 1 | Y (t) = i) = p (35)

P(Y (t + 1) = i − 1 | Y (t) = i) = 1 − p (36)

for some p ∈ [0, 1].
See Fig. 14 for a graphical representation of the simple random walk process on

Z. Suppose the simple random walk {Y (t) : t = 0, 1, 2, . . . } starts in state 0 at time
0. Then a sample path of the process is

Y (0)=0, Y (1)= − 1, Y (2)=0, Y (3)=1, Y (4)=2, Y (5)=3, Y (6)=2, Y (7)=1, . . . .

We provide R code at the end of the Appendix to generate a simple random walk.
Using this code, we generate and plot five sample paths of the symmetric simple
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Fig. 15 Sample realizations from the simple random walk simulation on the integers, symmetric
case p = 1

2 . Initial state is 0 in all cases

random walk in Fig. 15 below. The symmetric case means that the parameter p =
1/2 = 1 − p.

Note that due to the random nature of a stochastic process such as this random
walk, each simulation run will be different. In general, in order to draw meaningful
conclusions about a given stochastic process, one needs to run multiple simulations
with the same parameter settings and look at the distribution of outcomes.

Lastly, we define a Poisson process which is a continuous-time stochastic process
that takes values in the discrete state space S = Z∗, the non-negative integers.
This process is used in the neuronal spiking process described in Sect. 5.3. Poisson
processes are commonly used to model a variety of biological processes.

Definition 19 A Poisson process on state space S = Z∗ (non-negative integers)
is a continuous-time stochastic process {N(t) : t ≥ 0} that counts events that have
occurred up to and including time t . Specifically, {N(t) : t ≥ 0} is a Poisson process
with rate λ > 0 if

• N(0) = 0.
• {N(t) : t ≥ 0} has independent increments, meaning that for any 0 ≤ t0 < t1 <

· · · < tn < ∞, N(t0), N(t1) − N(t0), . . . , N(tn) − N(tn−1) are all independent
random variables.
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• N(s + t) − N(s) ∼ Poisson(λt) for any s, t ≥ 0, meaning that the number of
events in any interval of length t follows a Poisson distribution with rate λt .

For instance, let λ = 1. Then the expected number of events that will occur by time
t is λt = t since λ = 1 in this case. In other words, on average, one event will
occur per unit time. This follows because N(t) = N(t) − N(0) ∼ Poisson(λt) and
E[N(t)] = λt , a property of the Poisson distribution [40].

Now let us describe a sample path for a Poisson process {N(t) : t ≥ 0} with rate
λ = 1. We assume that at time t = 0 no events have occurred (since N(0) = 0),
so the first event will occur after an exponentially distributed amount of time with
rate (parameter) λ. Starting at the time of the first event, the amount of time we have
to wait until the second even occurs follows an exponential distribution with rate λ.
It follows that the length of time between any two successive events in the Poisson
process also follows an exponential distribution with rate λ. The times between
events are called interarrival times, and a key property of the Poisson process is that
the interarrival times follow an exponential distribution. Hence, the average length
of the interarrival times is given by 1/λ, or the mean of an exponential distribution
with rate λ.

A sample path of a Poisson process {N(t) : t ≥ 0} with rate λ = 1 is given
below.

N(0) = 0, N(0.062) = 1, N(0.88) = 2, N(1.02)=3, N(2.38)=4, N(3.09)=5,

N(5.94) = 6, N(8.04) = 7, N(8.92) = 8, N(9.65) = 9, N(10.10) = 10, . . . .

Note that the state of the process increases by 1 at each time step, and the time
increments are given by random draws from the exponential distribution with rate
λ = 1. The expected number of events by time t = 10 is 10, and in this sample path
we have 9 events that occurred by time t = 10 since N(9.65) = 9 and N(10.10) =
10. The tenth event occurred slightly after time t = 10, specifically at t = 10.10 in
this case. See Fig. 16 for a plot of this sample path, and see R code used to generate
this plot below. In general, a widely used method for simulating continuous-time
discrete-state stochastic processes is known as the Gillespie Stochastic Simulation
Algorithm (SSA) [24]; see also the GillespieSSA package in R.

For more reading on introductory stochastic processes, random walks, and
Poisson processes, see [19, 40].

R Code for Selected Stochastic Processes

###################################################################
# Simulate a random walk
###################################################################

# Simple random walk on the integer line with probability p of
# moving +1 step (right), probability 1-p of moving -1 step (left)
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Fig. 16 A plot of the sample path detailed above from a Poisson process with rate λ = 1

# Parameters: n=number of time steps, p=prob increase state by 1,
# x1=initial state

RW.sim <- function(n,p,x1) {
sim <- as.numeric(n)
if (missing(x1)) {
sim[1] <- 0 # initial condition: start at state 0
}
else {
sim[1] <- x1
}
for (i in 2:n) {
newstate <- sample(c(-1,1),1,prob=c(1-p,p)) + x1
sim[i] <- newstate
x1 = newstate
}
sim
}

# Generate 5 sample paths and plot all on the same figure
p = 0.5 # symmetric case

run <- RW.sim(100,p,0)
plot(run, type="l", col="blue", ylim=c(-18,18), xlab="Time step",
ylab="State", main = "Simple Random Walk")

run <- RW.sim(100,p,0)
points(run, type="l", col="red")

run <- RW.sim(100,p,0)
points(run, type="l", col="darkgreen")
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run <- RW.sim(100,p,0)
points(run, type="l", col="orange")

run <- RW.sim(100,p,0)
points(run, type="l", col="magenta")

###################################################################
# Simulate a Poisson process
###################################################################

# Install poisson package and load library
library(poisson)

# Simulate a homogeneous Poisson process with a given rate

# Parameters: rate=rate of Poisson process, num.events=number
# of events to simulate, num.sims=number of times to run the
# simulation (default is 1)

PP.sim <- function (rate, num.events, num.sims = 1, t0 = 0)
{
if (num.sims == 1) {
x = t0 + cumsum(rexp(n = num.events, rate = rate))
return(c(t0,x))
}
else {
xtemp = matrix(rexp(n=num.events*num.sims, rate=rate), num.events)
x = t0 + apply(xtemp, 2, cumsum)
return(rbind(rep(t0, num.sims), x))
}
}

# Run the function PP.sim
rate = 1
PP.sim(rate, num.events = 10)
PP.sim(rate, num.events = 10, num.sims = 5)

# Run the function and plot the time series for 1 simulation
rate = 1
num.events = 10
run1 <- PP.sim(rate, num.events)
plot(run1, 0:num.events, xlab="Time", ylab="Number of Events",
main = "Poisson Process Sample Path", pch = 19, col="blue")
run1
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What Are the Chances?—Hidden
Markov Models

Angela B. Shiflet, George W. Shiflet, Mario Cannataro, Pietro Hiram Guzzi,
Chiara Zucco, and Dmitriy A. Kaplun

Abstract Hidden Markov Models (HMMs) can be used to solve a variety of
problems from facial recognition and language translation to animal movement
characterization and gene discovery. With such problems, we have a sequence of
observations that we are not certain is correct—we are not sure our observations
accurately reveal the corresponding sequence of actual states, which are hidden—
but we do know some important probabilities that will help us. In this chapter,
we will develop the probability theory and algorithms for two types of problems
that HMMs can solve—calculate the probability that a particular sequence of
observations occurs and determine the most likely corresponding sequence of
hidden states. The chapter will end with a collection of research projects appropriate
for undergraduates.

Suggested Prerequisites Previous programming experience; a basic understanding of probabil-
ity; knowledge of Markov models, such as in Module 13.4, “Probable Cause: Modeling with
Markov Chains,” from [19]; understanding of parallel programming for optional Sect. 9, “Parallel
Forward Algorithm,” and optional Sect. 10.3, “Parallel Viterbi Algorithm” and the corresponding
projects.

1 Introduction

We can employ Hidden Markov Models (HMMs) to solve a variety of problems
from facial recognition and language translation to animal movement characteriza-
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tion and gene discovery (see “Further Reading”). In such a problem, we know a
sequence of observations, but we are not certain that our observations are accurate;
the actual sequence of states is hidden, or unknown. However, we often know for
each state the probability that it is the initial one, the probabilities of transitioning
from any one state to every other state, and the probabilities of a state resulting
in each type of observation. Hidden Markov Models can attack three types of
problems:

• Likelihood problem: Calculate the probability of a particular sequence of
observations

• Decoding problem: For a particular sequence of observations, determine the most
likely underlying sequence of states

• Training problem: For a sequence of observations and a sequence of hidden
states, discover the most likely HMM parameters

In this article, we cover the basics of Hidden Markov Models, algorithms, and
applications involving the first two types of problems. We begin with an example of
how HMMs are used to advance our understanding of genetics and the workings of
the human body.

1.1 Case in Point

Nina was 15 years old and 50 inches tall. Her mother was concerned that her
daughter was so short. The Centers for Disease Control and Prevention growth
charts indicate a range for normal height for 15-year-old females to be between
60 and 68 inches [2]. Testing done from her physical examination indicated that
Nina has growth hormone deficiency. Children diagnosed with this deficiency have
inadequate secretion of growth hormone (GH), a hormone produced and stored by
somatotropic cells of the pituitary gland at the base of the brain. Growth hormone
molecules are stored in the pituitary until growth hormone-releasing hormone
(GHRH) is secreted by the brain. The secreted GHRH binds specifically to growth
hormone-releasing hormone receptors, found within the cell membranes that
form the surface of the somatotropic cells. The receptor is associated with a protein,
called a G-protein, which transduces the external signal into internal chemical
signals (second messengers). The second messengers induce the cell to release GH.

Because Nina’s brother was given the same diagnosis, both patients were referred
for genetic evaluation. The results of these tests indicated that both children had a
genetic mutation in the gene that codes for the GHRH receptor. This mutation may
alter the receptor enough that it no longer binds to the signal as well, and therefore
there is less internal response to the signal. Hence, less GH is released into the
bloodstream. Children with growth hormone deficiency are generally treated with
periodic injections of GH.

The mechanism for the release of growth hormone from the pituitary is very
complex. Much is still unknown about G-proteins and their receptors, so scientists
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are working to unravel these mysteries. So, how do G-proteins and receptors relate
to hidden Markov models? One example is found in experiments conducted at
the University of Birmingham, UK [22]. Using sophisticated imaging studies of
individual G-proteins and receptors, researchers could track and map the diffusion of
particles (proteins) along the membrane. Using HMM, they assumed that particles
shift among discrete diffusive states that follow a randomly determined course.
They found that G-proteins and receptors move through four discernable, diffusive
states, varying from immobile to fast diffusing, and have association with four
different diffusion coefficients, which are the possible observations. Their results
were consistent with results of the imaging studies. From these experiments and
analyses, the scientists concluded that G-proteins and their receptors are sequestered
into small membrane compartments. Such restriction of diffusion allows the two
particles to bind more easily, although the binding is very short-lived.

From these results we understand more about how these important components
in cell signaling work. As we figure out the intricacies of cell signaling, we may
discover ways to modify or correct defects in the components.

2 Example Model

Although the studies of human growth factor are quite interesting, there are many
other more approachable problems. Moreover, we will consider other genetic
applications of HMMs later in this chapter. Thus, we begin our study of the
mathematics of HMMs with a simpler hypothetical example involving animal
behavior.

With a primary diet of leaves, which are not very nutritional and are hard to
digest, red howler monkeys spend most of their time eating and resting. Suppose
scientists in a simplified appraisal considered the monkey to be in two primary
states, eating ( E ) or resting/sleeping ( R ), so that the set of possible states is
S = {E, R}. Moreover, suppose the biologists observe that, on average, the monkeys
spend 30% of their time eating and 70% sleeping or resting. In this case, where u0
is the state at time 0 and P indicates probability, the initial state probability, π ,
for E is π(E) = P(u0 = E ) = 0.30, and the initial state probability for R is
π(R) = P (u0 = R ) = 0.70. (As we will see later, the choice of variable, u,
represents the “underlying,” or hidden, state.)

Suppose also the biologists determined that if a monkey is eating at hour k, so
that its state is uk = E, then there is a 60% chance that the animal will be eating
the next hour (k + 1), or uk+1 = E. Thus, in terms of conditional probability,
P(uk+1 = E | uk = E) = 0.6 and P(uk+1 = R | uk = E) = 1 − 0.6 = 0.4; that is,
given uk = E, the probability of uk+1 = E is 0.6, and the probability of uk+1 = R
is 0.4. Suppose the scientists also discovered that P(uk+1 = E | uk = R) = 0.2,
so that P(uk+1 = R | uk = R) = 1 − 0.2 = 0.8. If resting at hour k, the animal
has a 20% chance of eating and an 80% chance of resting the next hour. Figure 1
presents a state diagram of the findings, with probabilities of transitioning from one



356 A. B. Shiflet et al.

R E0.8 0.6
0.4

0.2

Fig. 1 State diagram for hypothetical study on red howler monkeys

state to another on the arrows. Thus, the following transition matrix summarizes
their findings:

T =

uk/uk+1 E R

E
R

[

0.6 0.4
0.2 0.8

]
.

We can also denote these transition probabilities, t , as t (previous state, next state),
so t (E, E) = 0.6, t (E, R) = 0.4, t (R, E) = 0.2, and t (R, R) = 0.8. The transition
probabilities (or, comparably, matrix T) form a Markov model with each state,
uk+1, only depending on its previous state, uk , and no other states.

Suppose, however, scientists want to study the behavior of a red howler monkey
in a more remote area. Knowing they will have limited opportunities of making
visual observations, they attach a small microphone to one of the monkeys, whom
they name Holly. The biologists discern that when hearing munching (M), the
monkey is probably eating; but when hearing breathing (B) noises, the animal
is likely to be at rest. Thus, the set of possible observations is O = {M, B}.
These hypothetical researchers have developed a computer program to analyze the
sounds and record B or M once an hour. However, the microphone/computational
results are not completely accurate. Besides background noises, such as from rain
or other monkeys, a sleeping Holly might be moving her mouth, perhaps dreaming
of luscious leaves. For a while, the scientists are able to observe Holly personally
and with their computer-enhanced microphone. In doing so, they discover that there
is a 90% chance that if Holly is resting (uk = R), then their monitoring system
indicates breathing noises (vk = B). (We select the symbol v to represent the
“visible,” or observed, symbol obtained from the monitoring system). Thus, the
emission probability, e, of B at state R is e(B | R) = P(vk = B | uk = R) = 0.9,
so that e(M | R) = P(vk = M | uk = R) = 1 − 0.9 = 0.1. However, the scientists
discover that the system is only 80% accurate in detecting eating; given that Holly
is eating (uk = E), their computer program interprets the audio signal as munching
noises (vk = M) 80% of the time. Thus, the emission probability of M given state
E is e(M | E) = P(vk = M | uk = E) = 0.8 and e(B | E) = P(vk = B | uk =
E) = 1 − 0.8 = 0.2. The HMM property of output independence states that
regardless of the situation, the probability of an observation, vk , only depends on the
corresponding underlying state, uk , that leads to the observation and no other states
or observations. For example, the probability of the system displaying an output of
munching (M) depends exclusively on underlying state of Holly eating (E).
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After Holly scampers into the jungle, where the scientists cannot make visual
observations, their monitoring system records an observation of B or M each
hour. Using this sequence of observations, or observed symbol sequence (v =
v1, v2, v3, . . . , vn, abbreviated v1v2v3 . . . vn), and the measures for initial, transi-
tion, and emission probabilities, (π, t, e), the scientists can answer a number of
questions. Such problems generally fall in one of three categories: likelihood, decod-
ing, and learning problems. For example, the scientists might want to determine
the probability, or likelihood, of obtaining an observed symbol sequence, P(v), to
discern if v is an unusual sequence of observations or not. As another likelihood-
type problem, the scientists might want to determine the probability that a particular
sequence of states, or underlying state sequence (u = u1u2u3 . . . un) would
generate a particular v; so that they need to evaluate P(v | u). Additionally, given a
particular observation, vk , the scientists might want to know the probability of an
underlying state, uk , written P(uk | vk). Determining P(uk 
= uk+1 | v) represents a
change-detection problem. In this case, given a sequence of monitoring system
readings, we are determining the probability of Holly eating 1 h but resting the
next, or vice versa. Perhaps in earlier studies we observed that usually the monkeys
eat for exactly two time periods before sleeping deeply for at least 3 h, and we
might want to use our system to estimate Holly’s sleeping habits. In a decoding-
type problem, they might be interested in finding the most likely u to generate
a particular observed sequence, v. In a learning-type problem or training-type
problem, for an observation sequence, v, and a set of states, we would be interested
in determining the parameters for the system. For example, suppose we do not
know the numbers for the initial state probabilities and in the transition and output
matrices of the HMM associated with Holly. Given a long sequence of observations,
such as v = MMMBBBBBBMM. . . BB, a learning-type problem is to derive those
numbers for the HMM that maximize the likelihood of observing the sequence, v.
Determination of these parameters is called training the HMM.

In all cases, we are using observations and probabilities, which include a Markov
model, to estimate something that is hidden. Hence, the name of this system is
Hidden Markov Model (HMM). The HMM for Holly consists in the following
parameters, which Fig. 2, an expansion of Fig. 1, diagrams:

Holly’s HMM
State space, or set of possible states, S = {E, R}, with elements representing
eating and resting/sleeping, respectively.

Observation space, or set of possible observations, O = {M, B}, with
elements representing munching and breathing noises, respectively.

Initial state probabilities, π(E) = 0.30 and π(R) = 0.70
Transition probabilities, t (E, E) = 0.6, t (E, R) = 0.4, t (R, E) =

0.2, and t (R, R) = 0.8, summarized by the following transition matrix:

(continued)
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T =

uk/uk+1 E R

E
R

[

0.6 0.4
0.2 0.8

]

Emission probabilities, e(M | E) = 0.8, e(B | E) = 0.2, e(M | R) =
0.1, and e(B | R) = 0.9, summarized by the following output, or emission,
matrix:

hidden/observable M B

E
R

[

0.8 0.2
0.1 0.9

]

B M

0.1 0.2

Hidden

Observed

R E0.8 0.6
0.4

0.2

0.9 0.8

Fig. 2 Diagram of HMM for hypothetical study on red howler monkeys

Answers to Quick Review Questions appear at the end of the module, after
“Projects.”

Quick Review Question 1
Consider the HMM diagram in Fig. 3 where the initial state probability for A is 0.2
and for B is 0.1. Determine each of the following:

a. The set of possible states, S

b. The set of possible observations, O

c. t(B, C)
d. t(B, A)
e. The transition matrix with column headings being uk+1
f. π(A)

g. π(C)

h. e(G | B)
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Fig. 3 HMM diagram for Quick Review Question 1

i. e(H | C)

j. The output (emission) matrix with column headings being observable values

3 Probability Equalities

Before we can start solving some of the problems with the HMM, we need to
consider several probability equalities.

3.1 Joint Probability

Joint probability evaluates the probability of the simultaneous occurrence of two
events, A and B, which are not necessarily independent as follows:

P(A and B) = P(A, B) = P(A |B) ·P(B) (1)

and

P(A and B) = P(A, B) = P(B |A) ·P(A), (2)

where the comma means “and,” or “intersection.”
For example, consider Holly’s HMM. Specifically, P(E) = π(E) =

0.30, P (R) = π(R) = 0.70, and the output, or emission, matrix is
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hidden/observable M B

E
R

[

0.8 0.2
0.1 0.9

]
.

Knowing their probabilities, we can condition on the hidden states, E or R. For
example, P(hidden =E and observable =M) = P(E, M) = P(M | E) · P(E) =
0.8 · 0.3 = 0.24.

Quick Review Question 2
Calculate each of the following:

a. P(E, B)

b. P(R, M)

c. P(R, B)

d. P(E, M) + P(E, B) + P(R, M) + P(R, B)

e.
∑

x∈{M, B}
P(E, x) = P(E, M) + P(E, B)

f.
∑

x∈{M, B}
P(R, x)

g. The sum of the answers to Parts e and f
h.

∑

x∈{E, R}
P(x, M)

i.
∑

x∈{E, R}
P(x, B)

j. The sum of the answers to Parts h and i

To obtain an intuition for why the joint probability relationship Eq. (1) is true,
consider the Venn diagram in Fig. 4, where the area for A consists in the areas a

and c, while B contains areas B and c. Let us evaluate each term and verify that the
left-hand side equals the right-hand side in Eq. (1). P(A, B), the probability that an
item is simultaneously in A and B, is the area of the intersection, c, divided by the
diagram’s entire area, (a + b + c + d), or

P(A, B) = c

a + b + c + d
.

Fig. 4 Venn diagram
A B

a bc

d



What Are the Chances?—Hidden Markov Models 361

Asking for P(A | B) means, “Given that an item is in B, what is the probability that
the item is also in A?” B’s area is b + c, while the part of A that is simultaneously
in B is c, so

P(A | B) = c

b + c
.

The probability that an item is in B considers the area of B, (b + c), in relationship
to the whole diagram, whose area is (a + b + c + d), so that

P(B) = b + c

a + b + c + d
.

Substituting in Eq. (1) and simplifying, as follows, we verify that the left-hand side
does indeed equal the right-hand side:

P(A, B)
?= P(A|B) · P(B)

c

a + b + c + d

?= c
����(b + c)

·
���b + c

a + b + c + d

c

a + b + c + d
= c

a + b + c + d
.

This argument is not a proof of Eq. (1) but does provide intuition into the equality.

Quick Review Question 3
Using a similar argument as for Eq. (1), provide an intuitive argument for Eq. (2).

If A and B are independent, so that A does not depend on B and vice versa,
P(A | B) = P(A) and P(B | A) = P(B). Thus, for independent events, the
equality reduces to the following:

P(A and B) = P(A, B) = P(A) ·P(B) for independent A and B. (3)

3.2 Marginal Probability

We can summarize the calculations from the last section, particularly Quick Review
Question 2, for the joint probabilities in a matrix as follows:

M B

E
R

[

0.24 0.06
0.07 0.63

]

0.30
0.70

0.31 0.69 1.00

. (4)
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Each matrix element gives a joint probability. For example, the probability that
the monkey is eating (E) while the monitoring system simultaneously indicates
munching (M) is P(E, M) = 0.24.

As developed in the quick review question, the sum of the probabilities in each
row is to the right, and the sums of the column probabilities are below. When the
monkey is eating (E), the equipment will either record munching (M) or breathing
(B) with probabilities P(E, M) = 0.24 and P(E, B) = 0.06, respectively. Thus, the
probability that the monkey is eating is 0.24 + 0.06 = 0.30, a value indicated in
Holly’s HMM by π(E) = 0.30 and calculated in Quick Review Question 2 e for
∑

x∈{M, B}
P(E, x) = P(E, M) + P(E, B). That is, the probability of E is the sum of

the probabilities of hidden value E with each of the possible observable values, M
and B; or P(E) =

∑

x∈{M, B}
P(E, x).

Additionally, the values below Matrix (4) are the sums of the probabilities in
the columns. Here, we have new information. The probability of the equipment
recording munching is 0.31; Holly is either eating (with probability 0.24) or
resting/sleeping (with probability 0.07). Quick Review Question 2 h determined
this value for

∑

x∈{E, R}
P(x, M) = P(E, M)+P(R, M), which is P(M). We see that

the probability of observable value M is equal to the sum of the joint probabilities
of M and every possible hidden state, E and R; or P(M) =

∑

x∈{E, R}
P(x, M).

These row and column sums are called marginal probabilities because they
are written in the “margins” of the matrix. For example, the marginal probability
of M is P(M) =

∑

x∈{E, R}
P(x, M) = P(E, M) + P(R, M) = 0.31, and we are

marginalizing over {E, R}. Notice also that the sum of the marginal probabilities on
the right (or below) is 1.00, which is the sum of all the probabilities in the matrix.
In general, the marginal probability of y is as follows:

P(y) =
∑

x∈X

P(x, y) =
∑

x∈X

P(y, x). (5)

Quick Review Question 4
Consider the following matrix of joint probabilities:

F G H

J
K

[

0.05 0.18 0.20
0.36 0.11 0.10

]

a. Determine P(J).
b. Determine the marginal probability of K.
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c. For Part b, give the set over which we are marginalizing.
d. Using the matrix of joint probabilities, the answer for P(J) in Part a, and joint

probability formula (1) or (2), determine the conditional probability P(G | J).
e. Using the answer for Part b, determine P(G | K).
f. Write P(K) using sigma notation.
g. Determine P(F).
h. Using the answer for Part g, determine P(J | F).
i. Using the answer for Part g, determine P(K | F).
j. Determine the marginal probability of G.
k. For Part j, give the set over which we are marginalizing.
l. Write P(G) using sigma notation.

m. Determine P(H).

3.3 Bayes’ Theorem

Bayes’ Theorem, or Bayes’ Law, which follows, is useful in manipulating
conditional probabilities:

P(A |B) = P(B |A) ·P(A)

P (B)
. (6)

Sometimes, we do not know P(A | B) directly, but we do have values for each of
the probability terms on the right. In this case, using Bayes’ Theorem we can easily
evaluate P(A | B). For example, suppose we need to evaluate the probability of
Holly eating (E) given that the equipment registers munching (M), P(E | M). From
Holly’s HMM, we know P(M | E) = e(M | E) = 0.8 and P(E) = π(E) = 0.30.
Moreover, in the “Marginal Probability” section, we calculated P(M) = 0.31. Thus,
we can calculate P(E | M) using Bayes’ Law as follows:

P(E | M) = P(M | E) · P(E)

P (M)
= 0.8 · 0.3

0.31
≈ 0.77.

Exercise 1 provides an intuitive justification for Bayes’ Law.
Another version of Bayes’ Theorem in which the comma means “and,” or

“intersection,” is as follows:

P(A |B, C) = P(B |A,C) ·P(A |C)

P (B |C)
. (7)

Notice that this form is the same as the original version, except C is always in the
condition. Using a Venn diagram, Exercise 2 provides intuition into Eq. (7).
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Quick Review Question 5
Evaluate each of the following using P(J) = 0.43, P (K) = 0.57, P (F) =
0.41, P (G) = 0.29, P (H) = 0.30, P (G | J) = 0.42, P (G | K) = 0.35, P (J | F) =
0.12, P (K | F) = 0.88, and the matrix of joint probabilities from Quick Review
Question 4:

F G H

J
K

[

0.05 0.18 0.20
0.36 0.11 0.10

]

a. P(J | G)

b. P(K | G)

c. P(F | J)
d. P(F | K)

4 Probability of a State Given an Observation

Using Bayes’ Theorem, other probability equalities, and HMM, we can determine
the probabilities of a variety of situations. For example, suppose after Holly
scampers off into the jungle, at hour k the monitoring equipment registers vk = M,
munching. The scientists might wonder if she really is eating, or, symbolically, if it
is true that uk = E. They are asking, “For this single munching reading and without
reference to earlier readings, what is the likelihood, or probability, that Holly is
eating?” This question falls in the category of an HMM likelihood problem. In
notation, they want to discover P(uk = E | vk = M), abbreviated P(E | M); that
is, given a reading of M, what is the probability that Holly is in state E.

Examining the HMM model, we do not find the answer directly. However, using
Bayes’ Theorem, we can rewrite the question as follows:

P(uk = E | vk = M) = P(vk = M | uk = E) · P(uk = E)

P (vk = M)

or, alternatively,

P(E | M) = P(M | E) · P(E)

P (M)
.

The advantage of this equality is that we can evaluate each of the terms on the right.
Consulting Holly’s HMM, P(M | E) = e(M | E) = 0.8, and P(E) = π(E) = 0.30.
The denominator, P(M) does take a bit more thought. If the monitoring system
records vk = M, Holly could either be eating (uk = E, vk = M) or resting (uk =
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R, vk = M). Thus, marginalizing over E, R, we have

P(vk = M) = P(uk = E, vk = M) + P(uk = R, vk = M)

or

P(M) = P(E, M) + P(R, M).

Using a joint probability to determine the first summand, we have

P(E, M) = P(M, E) = P(M | E) · P(E).

That is, the probability of Holly eating leaves and the system recording munching
is the same as the probability that the equipment correctly records munching when
Holly is eating and Holly really is enjoying her dinner. Similarly,

P(R, M) = P(M | R) · P(R).

The probability of Holly resting and the system indicating munching is identical
to the probability of an incorrect recording of munching when she is resting and
Holly is actually inactive. Thus, putting the pieces together determined from joint
and marginal probabilities, we have

P(M) = P(E, M) + P(R, M)

= P(M | E) · P(E) + P(M | R) · P(R).

Fortunately, from Holly’s HMM, we know each of the terms on the right:
P(M | E) = e(M | E) = 0.8, P (E) = π(E) = 0.30, P (M | R) = e(M | R) =
0.1, and P(R) = π(R) = 0.70. Incorporating all calculations, we have the
following:

P(E | M) = P(M | E) · P(E)

P (M)
= P(M | E) · P(E)

P (M | E) · P(E) + P(M | R) · P(R)

P (E | M) = 0.8 · 0.3

0.8 · 0.3 + 0.1 · 0.7
≈ 0.77.

There is a 77% chance of Holly eating when the system records munching.
In general, for Holly’s situation, the following equation determines the probabil-

ity of an underlying state, uk , given an observation, vk:

P(uk | vk) = P(vk | uk) · P(uk)

P (vk)
= P(vk | uk) · P(uk)

P (vk | E) · P(E) + P(vk | R) · P(R)

or, using sigma notation,
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P(uk | vk) = P(vk | uk) · P(uk)
∑

x∈{E, R} P(vk | x) · P(x)
.

However, most systems have more than two states. Thus, for other HMMs with S

being the set of all (hidden) states, we have the following:

P(uk | vk) = P(vk |uk) ·P(uk)∑
x∈S P (vk | x) ·P(x)

. (8)

Quick Review Question 6
For Holly’s HMM, determine the following:

a. P(R | M)

b. P(R | B)

c. P(E | B)

Quick Review Question 7
Suppose P(F) = 0.41, P (G) = 0.29, P (H) = 0.30, P (J | F) = 0.12, P (J | G) =
0.62, P (J | H) = 0.26. Determine P(F | J).

5 Probability of a Sequence of States Generating a Sequence
of Observations

In this section, we consider a problem that would usually not occur but whose
answer will help us in the solution of other more realistic problems: Knowing a
sequence of states, u, what is the probability of a particular sequence of observa-
tions, v, or P(v | u). For example, suppose we could spy on Holly in the jungle
and discover that initially she rested (u1 = R), but in the next 2 h she ate (u2 =
E and u3 = E), so that u = REE. Also, suppose we want to discover the probability
that the monitoring equipment registers breathing (v1 = B) followed by munching
and then breathing noises in the next two readings (v2 = M and v3 = B), or
v = BMB. Thus, we are interested in P(v = BMB | u = REE) = P(BMB | REE).
Figure 5 presents a trellis diagram of the situation, with state circles unshaded,
observation circles shaded, and arrows denoting conditional dependencies.

Fig. 5 Trellis diagram with
state circles unshaded,
observation circles shaded,
and arrows denoting
conditional dependencies

u2= E u3 = E

v1= B v2= M v3= B

u1= R
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Because of the HMM property of output independence, the probability of each
observation, vi , only depends on the corresponding state, ui . For example, the
probability that the equipment’s third reading is B, given that Holly is eating the
third hour, P(v3 = B | u3 = E), is the emission probability, e(B | E) = 0.2.
Because of independence, to evaluate P(BMB | REE), we take the product of the
three corresponding emission probabilities as follows:

P(BMB | REE) = P(B | R) · P(M | E) · P(B | E)

= e(B | R) · e(M | E) · e(B | E)

= 0.9 · 0.8 · 0.2

= 0.144.

In general, for sequences of length n, u = u1u2 . . . un and v = v1v2 . . . vn, we have

P(v|u) = e(v1|u1) · e(v2|u2) . . . e(vn|un).

We can abbreviate the product with pi notation to yield the following equality for
the probability of an observation sequence given a hidden sequence:

P(v |u) =
n∏

i=1

e(vi |ui). (9)

Quick Review Question 8

a. Evaluate P(MMMB | ERER)

b. Suppose a team catches up with Holly in the jungle and finds her sleeping for 6 h.
Calculate the probability that the equipment in the base camp registers correctly
records breathing over that period.

6 Probability of a State Sequence and an Observation
Sequence

Another likelihood problem considers the probability of a particular observation
sequence and a particular state sequence. There is an important difference between
this and the problem in the previous section. For the previous problem, given
a hidden sequence, u, we wanted to determine the conditional probability of a
particular visible sequence, v, namely P(v | u). In the current problem, we desire
the joint probability that both a hidden sequence, u, and a visible sequence, v, occur,
or P(v, u).
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For example, in the case of Holly, we might want to know the chance of the
equipment registering a sequence of breathing (B), munching (M), and breathing
(B), while she is actually resting (R), eating (E), and eating (E). By the joint
probability equality (1), we can calculate this probability, P(BMB, REE), as
follows:

P(BMB, REE) = P(BMB | REE) · P(REE). (10)

That is, the joint probability of both BMB and REE is the probability of BMB given
REE and that REE really does occur.

We determined the conditional probability P(BMB | REE) in the previous
section as 0.144, while Holly’s Markov model enables us to calculate the chance
of the hidden state sequence REE. As the trellis diagram in Fig. 5 illustrates, REE
involves three independent events: Holly is initially resting; given that she is resting
the first hour, she is eating the next hour; and she continues eating from the second
hour to the next. Thus, the probability of the state sequence REE is as follows:

P(REE) = P(u1 = R) · P(u2 = E | u1 = R) · P(u3 = E | u2 = E).

From Holly’s HMM, we know P(u1 = R) = π(R) = 0.70 and the transition
probabilities P(u2 = E | u1 = R) = t (R, E) = 0.2 and P(u3 = E | u2 = E) =
t (E, E) = 0.6. Thus, the probability of the state sequence REE is as follows:

P(REE) = π(R) · t (R, E) · t (E, E) = 0.70 · 0.2 · 0.6 = 0.084.

Substituting values into Eq. (10), we have the following:

P(BMB, REE) = P(BMB | REE) · P(REE) = 0.144 · 0.084 ≈ 0.012.

Although given hidden sequence REE, there is approximately a 14% chance of
observable sequence BMB, there is only about a 1% chance of BMB and REE
simultaneously occurring.

Quick Review Question 9
Use the answers from Quick Review Question 8 as needed.

a. Evaluate P(MMMB,ERER)

b. Find the probability that Holly sleeps for 6 h and the monitoring equipment
registers breathing over that same time period.

Generalizing, based on the Markov property, the probability of a sequence of
observations, u, is as follows:

P(u) = π(u1) ·
n∏

i=2

t (ui−1, ui). (11)
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Moreover, considering individual sequence elements, we have the following:

P(v |u) =
n∏

i=1

P(vi |ui) =
n∏

i=1

e(vi |ui). (12)

Thus, using Eqs. (11) and (12), the generalized formula for the joint probability of
particular observable and hidden sequences is as follows:

P(v, u) = P(v |u) ·P(u) =
(

n∏

i=1

e(vi |ui)

) (
π(u1) ·

n∏

i=2

t (ui−1, ui)

)
.

(13)
A useful reorganization of Eq. (13), which follows, is evocative of the trellis

diagram in Fig. 5:

P(v, u) = π(u1) · e(v1 | u1) ·
(

n
∏

i=2

[t (ui−1, ui) · e(vi | ui)]

)

= π(u1) · e(v1 | u1) · t (u1, u2) · e(v2 | u2) · t (u2, u3) ·
e(v3 | u3) · · · t (un−1, un) · e(vn | un).

Regrouping this expression, as follows, is revealing for the joint probability
P(v, u) = P(u, v):

P(v, u) =
[

. . .
[[

[π(u1) · e(v1 | u1)]· t (u1, u2) · e(v2 | u2)
]· t (u2, u3) · e(v3 | u3)

]

· · ·
]

·t (un−1, un) · e(vn | un).

Notice that the product of the first two terms, which are in the inner brackets,
[π(u1) · e(v1 | u1)], is P(u1, v1), or P(u, v), when u and v are one-element
sequences. Moreover, the product of the terms in the next set of brackets is
P(u1,2, v1,2), which is P(u, v) when u and v are two-element sequences. The
expression in the next set of brackets calculates P(u1,3, v1,3); and the expression in
the outermost set of brackets is P(u1,n−1, v1,n−1), which is P(u, v) for sequences
of n − 1 elements. Thus, we can use recursion to define P(u, v). A recursive
task is one that calls itself. In this example, we employ the joint probability
P(u1,n−1, v1,n−1) in the definition of the joint probability P(u, v). The following
recursive formula for P(u, v) will be useful in further algorithms:

P(u, v) = P(u1,n, v1,n) =
{

π(u1) · e(v1 |u1), if n = 1
P(u1,n−1, v1,n−1 · t (un−1, un) · e(vn |un), if n > 1

.

(14)
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7 Probability of a Sequence of Observations: The Forward
Algorithm

A more realistic likelihood problem is to determine the probability of an observed
sequence, P(v). For example, we might want to calculate the probability that the
monitoring equipment registers breathing sounds and then munching noises the next
2 h, P(v = BMM).

7.1 Obvious Solution

In the last section, we determined the simultaneous probability of a visible and a
hidden sequence. Thus, the obvious solution for this short sequence is to marginalize
over all the possible three-element hidden state sequences. For S = {E, R}, there
are two choices, E and R, for each of the three positions, yielding 23 = 8 possible
hidden sequences. Thus, marginalizing over this set of eight underlying sequences,
U = {RRR, RRE, RER, REE, ERR, ERE, EER, EEE}, we can calculate P(BMM)

as follows:

P(BMM) =
∑

u∈U

P (BMM, u) =
∑

u∈U

[P(BMM |u) · P(u)] .

Expanding the first sum, we have the following:

P(BMM) = P(BMM, RRR) + P(BMM, RRE) + P(BMM, RER)

+P(BMM, REE) + P(BMM, ERR) + P(BMM, ERE)

+P(BMM, EER) + P(BMM, EEE).

We can calculate each of these joint probabilities using Eqs. (12) or (13) from the
last section. Such a solution seems feasible, although tedious. However, consider
the situation where we have sequences of 10 elements. The number of 10-element
sequences formed from {E, R} is 210 = 1024, so that we would have 1024
summands. Doubling to 20 observations, the number of possible sequences, and,
hence, the number of summands, is over a million, 220 = 1, 048, 576. Astoundingly,
the number sequences of length 100 is over 1030. As these calculations illustrate,
for h hidden states and n observations, there are hn number of possible hidden
sequences; as n gets larger, hn grows exponentially. Thus, this solution has an
exponential growth rate on the order of hn, written O(hn).

Quick Review Question 10
For each string length, find the number of strings formed from the bases
A, C, T, and G.
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a. 3
b. 10
c. 20
d. 21

7.2 Forward Algorithm

For realistic problems, often the number of states (h) and certainly the number of
observations (n) are large, so that hn is enormous, too great to compute by hand,
and, in fact, intractable even for a computer. Clearly, we must find a better way to
calculate P(v), the probability of an observed sequence. Fortunately, the forward
algorithm is much faster. The algorithm employs dynamic programming, which
divides a problem into a collection of smaller problems and uses the solutions to
these smaller problems to solve the larger problem. For the forward algorithm, we
store answers to the smallest problems in the first column of a matrix. Repeatedly,
we solve progressively larger problems, employing the answers in the previous
column and storing the answers in a new column. Finally, the answer to the overall
problem, the probability of an observed sequence, is the sum of the elements in the
last column.

For P(BMM), we employ a matrix with the same number of rows as the
number of states, h, and the same number of columns as the length of the
observation sequence, n. For Holly’s HMM, with S = {E, R} and observed sequence
v =BMM, h = 2 and n = 3, so we store values in a 2 × 3 matrix, F , with row and
column headings from S and v, respectively:

B M M

F = E
R

[

� � �
� � �

]

.

7.3 Forward Algorithm Initialization

Initially, we solve the smaller problem of P(B), which by marginalizing Eq. (5) is
as follows:

P(B) =
∑

x∈S

P (B, x) = P(B, E) + P(B, R).

We will place the calculation of P(B, E) in fE1 , the element in the E row and first
column of F, while fR1 will be P(B, R). The probability of u1 = B is the sum
of these two values in the first column. For the calculation of the summands, we
employ the step for n = 1 of the recursive formula (14) as follows:
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E

R

start

E( ) e B | E( ) = 0.3 0.2 = 0.06

R( ) e B | R( ) = 0.7 0.9 = 0.63

fE1 = 0.06

fR1 = 0.63

Fig. 6 Initialization step of the forward algorithm

P(B, E) = π(E) · e(B | E)

and

P(B, R) = π(R) · e(B | R).

The initial probabilities are π(E) = 0.30 and π(R) = 0.70, and the emission
probabilities are e(B | E) = 0.2, e(B | R) = 0.9. Thus, as Fig. 6 illustrates,
P(B, E) = 0.06 and P(B, R) = 0.63. Thus, placing these values from the
initialization step in the first column, the matrix F is as follows:

B M M

F = E
R

[

0.06 � �
0.63 � �

]

.

Quick Review Question 11
The HMM in Quick Review Question 1 and Fig. 3 contains the following informa-
tion:
S = {A, B, C} and O = {G, H}
π(A) = 0.2, π(B) = 0.1, π(C) = 0.7

uk/uk+1 A B C

T =
A
B
C

⎡

⎣

0.1 0.4 0.5
0.2 0.2 0.6
0.3 0.2 0.5

⎤

⎦
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hidden/observable G H

A
B
C

⎡

⎣

0.9 0.1
0.6 0.4
0.1 0.9

⎤

⎦
.

Suppose we wish to use the forward algorithm to calculate P(HHGH).

a. Give the size of F , the forward algorithm matrix.
b. Calculate f

A1 .
c. Write the conditional probability for fA1 symbolically; that is, write fA1 as

P(x | y) with the symbols for x and y for this example.
d. Calculate fB1 .
e. Write the conditional probability for fB1 symbolically.
f. Calculate fC1 .
g. Write the conditional probability for fC1 symbolically.
h. Calculate P(H).

7.4 Forward Algorithm Step 2

In the calculation of P(BMM), after initialization, which calculates the summands
of P(B), we approach a little bit larger problem, P(BM). Fortunately, as we will
see, we can use the values in the first column in the solution of this probability. As
we did in the initialization step, we employ marginality to split the problem into a
sum of joint probabilities. With marginality, we have

P(BM) =
∑

x∈S2

P(BM, x), (15)

where S2 represents the set of all two-element sequences with elements from S =
{E, R}, S2 = {EE, ER, RE, RR}; and, in general, Sn denotes the set of all n-element
sequences over S. Thus, expanding Eq. (15) symbolically, we have the following
sum:

P(BM) = P(BM, EE) + P(BM, ER) + P(BM, RE) + P(BM, RR). (16)

Let us calculate one of these summands, P(BM, ER). Applying the second line
of the recursive definition of P(u, v), Eq. (14), we have the following:

P(BM, ER) = P(B, E) · t (E, R) · e(M | R).
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Fortunately, we calculated P(B,E) in the initialization step, and its value is matrix
element f

E1 = 0.06. Moreover, Holly’s HMM gives t (E, R) and e(M | R) as 0.4 and
0.1, respectively. Thus, P(BM, ER) = 0.06 · 0.4 · 0.1 = 0.0024.

Quick Review Question 12
Calculate P(BM, RR).

For fE2 we add the elements of Eq. (16) with sequences that end in E. Similarly,
fR2 is the sum of elements with sequences that end in R. Rewriting Eq. (16)
illustrates the process:

P(BM) = [P(BM, EE) + P(BM, RE)] + [P(BM, ER) + P(BM, RR)]
= fE2 + fR2 .

(17)

With sigma notation, we have the following equations for the second-column
elements:

fE2 =
∑

x∈S

P (BM, xE)

and

fR2 =
∑

x∈S

P (BM, xR).

From the calculations above and in Quick Review Question 12, we know that
P(BM, ER) = 0.0024 and P(BM, RR) = 0.0504. Thus, fR2 = P(BM, ER) +
P(BM, RR) = 0.0024 + 0.0504 = 0.0528.

Quick Review Question 13
Using P(BM, EE) = 0.0288 and P(BM, RE) = 0.1008, calculate fR2 .

Figure 7 illustrates the calculation of the second column of matrix F with
P(BM, EE) + P(BM, RE) = fE2 and P(BM, ER) + P(BM, RR) = fR2 . Thus,
the developing F now is as follows:

B M M

F = E
R

[

0.06 0.1296 �
0.63 0.0528 �

]

.

Moreover, the sum of the elements in the second column, 0.1824, is P(BM); that
is, for sequences of length two, there is an 18.24% chance of BM being an output
sequence.
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E

R

E

R

fE1 t(E, E) e(M | E) =
0.06 0.6 0.8 = 0.0288

fR1 t(R, R) e(M | R) =
0.63 0.8 0.1= 0.0504

fE1 t(E, R) e(M | R) =
0.06 0.4 0.1= 0.0024

fR1 t(R, E) e(M | E) =
0.63 0.2 0.8 = 0.1008

fR1 = 0.63

fE1 = 0.06

fE2 =
0.0288 + 0.1008 =

0.1296

fR2 =
0.0024 + 0.0504 =

0.0528

Fig. 7 Calculation of the second column of forward matrix, F

Quick Review Question 14
The HMM in Quick Review Questions 1 and 11 and Fig. 3 contains the following
information:
S = {A, B, C} and O = {G, H}
π(A) = 0.2, π(B) = 0.1, π(C) = 0.7

uk/uk+1 A B C

T =
A
B
C

⎡

⎣

0.1 0.4 0.5
0.2 0.2 0.6
0.3 0.2 0.5

⎤

⎦

hidden/observable G H

A
B
C

⎡

⎣

0.9 0.1
0.6 0.4
0.1 0.9

⎤

⎦ .

Suppose we wish to use the forward algorithm to calculate P(HHGH). As calculated
in Quick Review Question 11, the first column of the forward algorithm matrix F

contains fA1 = 0.02, fB1 = 0.04, and fC1 = 0.63.

a. Give the number of summands in the calculation of fB2 .
b. For fB2 , calculate the first summand, which employs fA1 as a factor.
c. For fB2 , calculate the second summand, which employs fB1 as a factor.
d. For fB2 , calculate the third summand.
e. Calculate fB2 .
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7.5 Forward Algorithm Completion

The calculation of the third column of F for P(BMM) proceeds in a similar manner
to that of the second column. We use the small-problem answers in the previous
column to calculate the values for the new column. Quick Review Question 15 steps
through the process.

Quick Review Question 15
This question completes the forward algorithm for P(BMM).

a. Write P(BMM) using sigma notation similar to that in Eq. (15).
b. Write out S3.
c. Enumerate P(BMM) symbolically as in Eq. (17), grouping together the ele-

ments of fE3 and fR3.
d. Notice in the calculation of fE3 that two probabilities have sequences that end

in EE, P(BMM, EEE) and P(BMM, REE). Moreover, by Eq. (14), we have the
following:

P(BMM, EEE) = P(BM, EE) · t (E, E) · e(M | E)

P(BMM, REE) = P(BM, RE) · t (E, E) · e(M | E).

With the last two factors being identical, we can group the sum of the
probabilities as follows:

P(BMM, EEE)+P(BMM, REE)=[P(BM, EE)+P(BM, RE)]·t (E, E) · e(M|E).

In a similar manner, show the development to write the sum of the remaining
two terms of fE3 using fR2 .

e. As in Part d, write the sum of two terms of fE3 using fE2 .
f. As in Part d, write the sum of two terms of fR3 using fE2 .
g. Evaluate P(BMM, EEE) + P(BMM, REE), developed symbolically in Part d.
h. Referring to the answer to Part d, evaluate P(BMM, ERE) + P(BMM, RRE).
i. Referring to the answer to Part e, evaluate P(BMM, EER) + P(BMM, RER).
j. Referring to the answer to Part f, evaluate P(BMM, ERR) + P(BMM, RRR).
k. Using the answers to Parts g and i, calculate fE3.
l. Using the answers to Parts h and j, calculate fR3.

m. Calculate P(BMM)

Figure 8 illustrates the development of the last column of the forward matrix,
which Quick Review Question (15) solved. Moreover, with this and previous
calculations, we can complete the forward matrix as follows:
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E

R

E

R

fE2 = 0.1296

fR2 = 0.0528

fE 3 =
0.062208 + 0.008448 =

0.070656

fR 3 =
0.005184 + 0.004224 =

0.009408

fE2 t E, E( ) e M | E( ) =
0.1296 0.6 0.8 = 0.062208

fR2 t R, R( ) e M | R( ) =
0.0528 0.8 0.1= 0.004224

fE2 t E, R( ) e M | R( ) =
0.1296 0.4 0.1= 0.005184

fR2 t R, E( ) e M | E( ) =
0.0528 0.2 0.8 = 0.008448

Fig. 8 Step 3 of forward algorithm in calculation of P(BMM)

B M M

F = E
R

[

0.06 0.1296 0.070656
0.63 0.0528 0.094080

] (18)

Then, we can calculate P(BMM) as the sum of the elements in the last column,
or P(BMM) = 0.080064. There is approximately an 8% chance of the output
sequence BMM.

As the work for Quick Review Question 15 indicates, we can iterate through the
matrix, using one column in the evaluation of the next. For S = {E, R} and ith
output symbol, vi , we have:

fEi
= fE(i−1)

· t (E, E) · e(vi | E) + fR(i−1)
· t (R, E) · e(vi | E)

=
∑

y∈S

[

f
y(i−1)

· t (y, E) · e(vi | E)
]

and

fRi
= fE(i−1)

· t (E, R) · e(vi | R) + fR(i−1)
· t (R, R) · e(vi | R)

=
∑

y∈S

[

f
y(i−1)

· t (y, R) · e(vi | R)
]

.

In general, for state x,

f
xi

=
∑

y∈S

[

f
y(i−1)

· t (y, x) · e(vi | x)
]

.
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Moreover, the sum of the elements in column i is the probability of the sequence
of the first i observations, P(v1,i ). For example, in (18), we completed the forward
matrix for P(BMM) to be the following:

B M M

F = E
R

[

0.06 0.1296 0.070656
0.63 0.0528 0.094080

]
.

The sum of the elements in the first column is P(B) = 0.69, while the sum of the
second-column elements is P(BM) = 0.1824. The answer we desire, P(BMM), is
the sum of the elements in the final column, 0.080064; the probability of BMM is
approximately 8%. To summarize,

P(v) =
∑

x∈S

fxn, (19)

where v is a sequence of n observations and fxn is the element in row x and column
n of the forward matrix F . The following quick review question considers the total
number of calculations for such a probability using the forward algorithm.

Quick Review Question 16
This question analyzes the complexity of the forward algorithm.

a. Suppose a HMM has 5 hidden states. Give the number of rows in the forward
matrix, F .

b. In Holly’s HMM with 2 hidden states, the calculation of each of the two
elements in the first column involved one product, for a total of 2 products.
For 5 hidden states, give the total number of products in the evaluation of the
first column.

c. For h states, give the total number of products in the evaluation of the first
column.

d. Suppose x is one of these 5 hidden states. Not including the initialization step,
give the number of terms having fx(i−1) as a factor, where fx(i−1) is the forward
matrix value in row x and column (i−1). This value is the same number of lines
emanating from an f -value. For example, in Fig. 8, two terms had f2E (or f2R)
as a factor and two lines emanating from f2E (or f2R).

e. For 2 hidden states, each of these terms involves two products. Give the number
of products when we have 5 hidden states.

f. Give the number of these products when we have h hidden states. Note that the
number of products does not depend on the number of hidden states.

g. Give the number of elements in the forward matrix for 5 hidden states and 20
observations, not including those in the first column.

h. Give the number of elements in the forward matrix for h hidden states and n

observations, not including those in the first column.
i. Using your answers from Parts b, e, and g, for 5 hidden states and 20

observations, give the total number of products.
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j. Using your answers from Parts c, f, and h, for h hidden states and n observations,
give the total number of products. Simplify the result.

k. Give the total number of sums used in the calculations of the elements in the
first column of a forward matrix, F .

l. For 5 hidden states and not including the initialization step, give the number of
sums used in the calculation of f

xi
, where x is a hidden state and i is a column.

For example, in Fig. 8, f3E (or f3R) has two summands and, thus, one sum.
m. For h hidden states, give the number of sums used in the calculation of f

xi
,

where x is a hidden state and i is a column greater than 1.
n. For h hidden states and n observations, give the total number of sums used in

the calculations of the elements of the forward matrix. Use answers from Parts
h, k, and m. Simplify the result.

o. For h hidden states and n observations, give the total number of sums and
products in the calculation of the elements of F . Use answers from Parts j and n.

p. Give the complexity of the forward algorithm.

As indicated in Quick Review Question 16, for h states and n observations, the
forward matrix, F , has h rows and n columns, yielding hn number of elements. Most
of these elements employ h summands of three factors each, although elements in
the first column have fewer terms. Thus, the approximate amount of work involved
in creating the forward matrix is on the order of nh2. Moreover, to calculate the
probability of the observed sequence, we add the h elements in the last column. In
comparison to nh2, h is inconsequential, so the forward algorithm is on the order
of nh2, written O(nh2). The complexity O(nh2) is a dramatic improvement over
the exponential complexity, O(hn), for our original solution. For example, suppose
our HMM has h = 10 hidden states and we wish to know the probability of a
sequence of n = 9 observations. The original approach to the solution would involve
hn = 109 = 1,000,000,000, a billion calculations, while the forward algorithm
would employ only about nh2 = 9 · 102 = 900 calculations.

8 Probability of a Genomics Sequence

In this section, we employ the forward algorithm to solving an important biological
problem—locating genes.

8.1 Biology Background

Proteins, which are the basic molecules of life, perform many essential functions,
such as forming the structural components of cells and, in the case of protein
enzymes, catalyzing chemical reactions. Simple proteins are chains formed from
20 amino acids.
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In the cell, the nucleic acid DNA (deoxyribonucleic acid) contains the encoded
information for the building of all the proteins needed by a cell. DNA acts through an
intermediary nucleic acid, RNA (ribonucleic acid), to synthesize proteins. RNA has
one long chain of molecules, called nucleotides, while two strands of nucleotides
compose DNA. Each nucleotide is made up of a sugar, a phosphate, and a nitrogen
base, which can be adenine (A), guanine (G), cytosine (C), or thymine (T) in
DNA or uracil (U) in RNA. In DNA, A in one strand bonds with T in the other
strand, while C and G bond together. Each of these pairs of complementary bases
is referred to as a base pair (bp).

Virtually every cell (except red blood cells) in the human body contains
chromosomes, or sequences of very long DNA molecules. The genome is the
complete set of chromosomes in a cell and contains the organism’s hereditary
information. For example, a human genome has 23 pairs of chromosomes (46 total)
with each pair having one chromosome from each parent. A gene is a subsequence
of a chromosome that contains information for building a protein. Although lengths
vary greatly, an average gene contains about 28,000 base pairs [1]. Some contiguous
sections of each chromosome are not part of any gene, but some are important for
the regulation of gene expression.

8.2 Locations of Genes

We can employ the forward algorithm to solve an important problem in genomics—
the locations of genes—by helping us find areas of high CG concentration. In
mammalian DNA, the sequence of bases CG appears more frequently upstream of,
or before, a gene than in other parts of a DNA sequence, where CG occurs much
less than expected from random occurrences of C and G. We call an area of greater
concentration of CG a CpG island, where “p” in “CpG” represents a phosphate
linking the bases C and G. The reason that CG occurs infrequently in much of a
sequence of DNA is that often CG transforms to (methyl-C)G before mutating to
TG. However, the transformation from CG to TG is suppressed in the CpG islands.
A DNA segment of 200 bases is a CpG island if CG occurs at least 50% of the time
and the ratio of observed-to-expected number of CpGs is greater than 0.6 [7].

Figure 9a and b contains transition matrices for sequences in and not in CpG
islands, respectively. The matrices were derived from a database of human DNA

a bxi xi
+ A    C    G  T + A    C    G T
A 0.180 .0274 0.426 0.120 A 0.300 0.205 0.285 0.210
C 0.171 0.368 0.188 C 0.322 0.298 0.302

xi1 G 0.161 0.339 0.375 0.125 xi1 G 0.248 0.246 0.298 0.208
T 0.079 0.355 0.384 0.182 T 0.177 0.239 0.292 0.292

0.274 0.078 

Fig. 9 Possible transition matrix for (a) samples within CpG islands and for (b) samples not within
CpG islands [4]
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sequences using 48 accepted CpG islands. In the matrix for CpG islands, the
probability of the pair CG (or the probability that G occurs, given that C has just
appeared) is 0.274, written as P(xi = G | xi−1 = C) = P(G | C) = 0.274, while in
the CpG negative matrix (Fig. 9b), the probability of the sequence CG is much lower,
P(G | C) = 0.078. Stanke [21] uses π = (0.148, 0.334, 0.365, 0.154) as the initial
state probability vector for CpG islands and π = (0.260, 0.249, 0.241, 0.251) for
non-CpG islands. For each situation, we assume the emission matrix is as follows:

hidden/observable A C G T

A
C
G
T

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

.

Project 5 employs these hidden Markov models in accessing the probabilities of
output sequences inside and outside CpG islands.

9 Parallel Forward Algorithm (Optional)

Although the forward algorithm has a big improvement in speed over the brute-force
technique discussed initially, for a large number of observations and states, such as
often encountered in genetics problems, the sequential forward algorithm can take
a long time. To speed the task, we can employ parallel programming.

9.1 Communication

One obvious way to parallelize is to have different processes calculate different
initial values for the first column and to have different processes compute separate
summands, such as those in the middle sections of Figs. 7 and 8. In Holly’s HMM
with s = 2 states, we employ 2 processes for the initialization step; and in general,
for s states, each of s processes could compute a different first-column element.
In subsequent steps for Holly’s HMM as in Figs. 7 and 8, each new state is a linear
combination of the previous states, so each process calculates the new state by using
the inputs from the arrows that point to that state. In theory, s processes are needed
for s states to calculate the summands simultaneously. In reality, communication of
appropriate forward matrix elements must occur for evaluation of the next column
elements, and such communication limits the speedup of the parallel algorithm.
Thus, it can often be more efficient to have less processes, so that each process
does more work and less communication.



382 A. B. Shiflet et al.

The heart of the forward algorithm is the matrix that holds the probabilities for
the sequence of observations. From the perspective of the parallel program, each
process could have its own copy of the matrix and would have to communicate
the value of its calculated cell to all the other processes. Alternatively, the
processes could share the same matrix, which would reduce the amount of needed
communication. Such consideration of communication is important in deciding how
to implement the parallel algorithm.

9.2 Implementation of the Parallel Forward Algorithm

The parallel forward algorithm, available to professors by request, is implemented
using the OpenMP library. OpenMP (OMP) uses threads, which are like processes
except that the threads share the same memory. Thus, threads communicate by
reading and writing to the same matrix.

Communication limits speedup of the algorithm because when multiple threads
have to use the same matrix cell, these lightweight processes must take turns—two
threads cannot access a cell simultaneously. Thus, increasing the number of threads
for any parallel program comes with a tradeoff: Each thread has less work to do, so
the work can be done faster; but a thread must wait longer when multiple threads
need to access the same matrix cell. Speedup of a parallel program depends on the
number of threads used, and increasing the number of threads to its theoretical limit
does not always improve speedup.

To illustrate, Table 1 gives timings and speedups and Fig. 10 depicts these
timings for serial and parallel OMP implementations of the forward algorithm. One
definition of speedup using n threads (or processes) is the length of time to execute
the serial algorithm divided by the length of time to execute the corresponding
parallel algorithm. Notice that the speedup of the parallel algorithm is a function
of the number of states and the number of threads. For example, for 2048 states, the
speedup is the greatest at about 4 threads:

speedup = 9.9255 s/ 4.0269 s = 2.4648.

However, with 4096 states, 8 threads are better:

speedup = 43.6465 s/ 11.9184 s = 3.6621.

Even with more states, the use of more threads eventually suppresses speedup
because of the need for additional communication.
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Table 1 Timings and speedup for forward algorithm

Time in seconds

1 2 3 4 8 16 32
# States Serial thread threads threads threads threads threads threads

512 0.214 0.2490 0.1696 0.1722 0.2473 0.7697 1.3663 2.4829

1024 2.6585 2.7506 1.7230 1.1925 1.0848 1.8645 2.8908 4.9911

2048 9.9255 10.0194 7.2314 5.6453 4.0269 4.1924 5.9881 10.0612

4096 43.6465 44.2792 27.9575 20.2691 16.7255 11.9184 13.4140 20.6784

Speedup

1 2 3 4 8 16 32
# States thread threads threads threads threads threads threads

512 0.8593 1.2619 1.2424 0.8653 0.2780 0.1566 0.0862

1024 0.9665 1.5429 2.2293 2.4507 1.4258 0.9196 0.5326

2048 0.9906 1.3726 1.7582 2.4648 2.3675 1.6575 0.9865

4096 0.9857 1.5612 2.1534 2.6096 3.6621 3.2538 2.1107
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1 thread 2 threads 3 threads 4 threads 8 threads 16 threads 32 threads

512 states 1024 states 2048 states 4096 states

Fig. 10 Timings for forward algorithm
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10 Decoding Problem

We employ the HMM forward algorithm to solve likelihood problems, such as
the likelihood of monitoring equipment registering breathing sounds (B) and then
munching noises (M) the next 2 h for Holly Howler, P(v = BMM). We use the
Viterbi algorithm to solve another type of HMM problem, decoding. In this case,
given a sequence of observations, such as v = BMM, we determine the most
probable sequence of underlying states, u, to yield v. Thus, we wish to determine
the u with maximum P(u | v), such as the sequence of three states, u, that yields
max(P (u | v = BMM)).

10.1 Obvious Solution

In the development above, we learned by joint probability that P(u, BMM) =
P(u | BMM) · P(BMM). Thus, the problem of determining the state sequence u

that maximizes P(u | BMM) is equivalent to the problem of determining the u that
maximizes P(u, BMM)/P (BMM). However, because P(BMM) is a constant, the
problem simplifies to finding u where P(u, BMM) is maximum. The most obvious
method to solve the problem is to determine P(u, BMM) for every possible three-
element state sequence, S3 = {RRR, RRE, RER, REE, ERR, ERE, EER, EEE},
using a version of the forward algorithm, and then to select the u with the largest
probability. However, this solution is exponentially large because for a sequence of
n observations with h = 2 states, the number of possible n-element state sequences,
or the number of elements in Sn, is hn = 2n. In general, for h number of states,
the number of n-element state sequences is hn. The much faster Viterbi algorithm
is another dynamic programming algorithm, which has the forward algorithm as its
base.

10.2 Viterbi Algorithm

The key to the Viterbi algorithm is Eq. (14), repeated below, for calculating a joint
probability:

P(u, v) = P(u1,n, v1,n) =
{

π(u1) · e(v1|u1), if n = 1
P(u1,n−1, v1,n−1 · t (un−1, un) · e(vn|un), if n > 1

((14))
Beginning the Viterbi algorithm in the same way as the forward algorithm for
observation sequence BMM in Holly’s HMM, we employ a 2 × 3 matrix, G, with
first-column elements being gE1 = P(B, E) = π(E) · e(B | E) and gR1 = P(B, R) =
π(R) · e(B | R). The initialization step is identical to that of the forward algorithm
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(see Fig. 6), resulting in the following initial Viterbi matrix, G:

B M M

G = E
R

[

0.06 � �
0.63 � �

]
.

Quick Review Question 17
Calculate the first-column elements of the Viterbi matrix to calculate u for
max(P (u | HHGH)) using the HMM in Fig. 11, which contains the following
information:

S = {A, B, C} and O = {G, H}

π(A) = 0.2, π(B) = 0.1, π(C) = 0.7

uk/uk+1 A B C

T =
A
B
C

⎡

⎣

0.1 0.4 0.5
0.2 0.2 0.6
0.3 0.2 0.5

⎤

⎦

hidden/observable G H

A
B
C

⎡

⎣

0.9 0.1
0.6 0.4
0.1 0.9

⎤

⎦
.

Computations of the second column of the Viterbi and the forward matrices also
begin in the same way with calculating the product of a first-column element, a
transition value, and an emission value. As in Fig. 7 for the forward algorithm,
Fig. 12 of the current module for the Viterbi algorithm makes the following

Fig. 11 HMM diagram for
Quick Review Question 17 Hidden

A B

G H

C

0.2

0.3

0.5

0.2 0.2

0.4 0.6
5.01.0

0.9 0.1 0.6 0.4 0.1 0.9

Observed
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gR2 =
max(0.0024, 0.0504) =

0.0504

gE2 =
max( 0.0288, 0.1008) =

0.1008

gE1 t(E, E) e(M | E)=
0.06  0.6  0.8 = 0.0288

gE1 t(E, R) e(M | R)=
0.06  0.4 - 0.1 = 0.0024

gR1 t(R, E) e(M | E)=
0.63  0.2  0.8 = 0.1008

fR1 t(R, R) e(M | R)=
0.63  0.8  0.1 = 0.0504

gR1 = 0.63

gE1 = 0.06

R R

E E

Fig. 12 Calculation of the second column of Viterbi matrix, G

computations using first-column values, gE1 and gR1 , that correspond to fE1 and
fR1 , respectively, of the forward matrix:

gE1 · t (E, E) · e(M | E)

gE1 · t (E, R) · e(M | R)

gR1 · t (R, E) · e(M | E)

gR1 · t (R, R) · e(M | R)

However, instead of taking the sum of pairs of expressions (first and third transition-
ing to E, second and fourth transitioning to R) as we did with the forward algorithm,
we take the maxima as follows:

gE2 = max(gE1 · t (E, E) · e(M | E), gR1 · t (R, E) · e(M | E))

gR2 = max(gE1 · t (E, R) · e(M | R), gR1 · t (R, R) · e(M | R)).

Figure 12 details these computations with boldface arrows indicating the maxima.
The following displays the developing Viterbi matrix, G:

B M M

G = E
R

[

0.06 0.1008 �
0.63 0.0504 �

]

.

Quick Review Question 18
Suppose we wish to use the Viterbi algorithm to find the state sequence, u, with
maximum P(u, HHGH) for the HMM in Quick Review Question 17. As calculated
in that question, the first column of the Viterbi algorithm matrix G contains gA1 =
0.2, gB1 = 0.4, and gC1 = 0.63.
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max( 0.004032, 0.004032 ) =
0.004032

gR3=

max( 0.048384, 0.008064 ) =
0.048384

gE3=
gE2 t(E, E) e(M | E)=

0.1008  0.6  0.8 = 0.048384

gE2 t(E, R) e(M | R)=
0.1008 - 0.4 - 0.1 = 0.004032

gR2 t(R, E) e(M | R)=
0.0504 - 0.2 - 0.8 = 0.008064

gR2 t(R, R) e(M | R)=
0.0504  0.8  0.1 = 0.004032

gE2 = 0.1008

gR2 = 0.0504 R R

E E

Fig. 13 Step 3 of Viterbi algorithm in calculation of P(BMM)

a. The calculation of gB2 involves three expressions whose values are
0.0032, 0.0032, and 0.0504. Calculate gB2 .

b. Calculate g
A2 .

Calculations of subsequent Viterbi matrix elements for this example proceed in
a similar fashion. With observation vi , we employ the following evaluations for the
elements of column i:

gEi
= max(gE(i−1)

· t (E, E) · e(vi | E), gR(i−1)
· t (R, E) · e(vi | E))

gRi
= max(gE(i−1)

· t (E, R) · e(vi | R), gR(i−1)
· t (R, R) · e(vi | R))

.

With boldface arrows indicating maximum values, Fig. 13 illustrates the calculation
of the final column of the Viterbi matrix. Note that there are two paths to R that
yield the maximum, 0.004032. The completed Viterbi matrix is as follows:

B M M

G = E
R

[

0.06 0.1008 0.048384
0.63 0.0504 0.004032

]
.

In general, using Viterbi’s algorithm for any HMM; for state, x; observation, vi ;
and set of states, S, we have the following calculation for a Viterbi matrix element
in row x and column i:

g
xi

= max
y∈S

(
g

y(i−1)
· (y, x) · e(vi | x)

)
.

Quick Review Question 19
Suppose we wish to use the Viterbi algorithm to find the state sequence, u, with
maximum P(u, HHGH) for the HMM in Quick Review Question 17. Suppose, also,
that the third column of the Viterbi matrix G contains gA3 = 0.0765, gB3 = 0.0340,
and gC3 = 0.0142. Calculate gC4 to four decimal places.
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To calculate the probability of the visible sequence with the forward algorithm,
we added the probabilities in the final column. However, to calculate the maximum
joint probability of a hidden sequence and a given visible sequence using the Viterbi
algorithm, we find the maximum of the values in the final column. Thus, for Holly’s
HMM, we have the following:

max
u∈S3

(u, BMM) = max(0.048384, 0.004032) = 0.048384.

However, we would like to calculate max(P (u| BMM)) for this u. Recall that

P(u, BMM) = P(u | BMM) · P(BMM).

Dividing both sides by the factor P(BMM), we have

P(u | BMM) = P(u, BMM)/P (BMM).

Moreover, using the forward algorithm, we discovered P(BMM) = 0.080064.
Thus, over all three-element hidden sequences, u,

max(P (u | BMM)) = 0.048384/0.080064 = 0.604317.

More important than finding this maximum probability, we would like to discover
the particular state sequence that yields this maximum. Fortunately, by backtracking
through the Viterbi matrix, we can determine this hidden sequence. Figure 14 sum-
marizes results of Figs. 9 and 10 with arrows indicating the expressions generating
the maxima. To calculate the state sequence, u, that results in max(P (u | BMM)) =
0.604317, we start by finding the maximum in the final column, 0.048384, which
is in row E. Backtracking through the path indicated by the arrows, we then go to
column 2, row E and finally to column 1, row R. Reading the row values from left to
right, we obtain the state sequence u = REE. Thus, given observed sequence BMM,
REE is the most likely state sequence, and P(REE | BMM) = 0.604317, which is
over 60%.

Quick Review Question 20
Suppose we wish to use the Viterbi algorithm to find the state sequence, u, with
maximum P(u | HHGH) for the HMM in Quick Review Question 17. Suppose,
also, that P(HHGH) = 0.1028 and the Viterbi matrix, G, is in Fig. 15, with arrows
indicating the direction from which maxima came.

Fig. 14 Final Viterbi matrix
with arrows indicating the
paths 0.06

0.63

0.1008

0.0504

0.048384

0.004032

B M M

E

R
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Fig. 15 Viterbi matrix for
Quick Review Question 20
with arrows indicating the
direction from which maxima
came

a. Calculate the maximum P(u, HHGH) for hidden state sequence u.
b. Calculate the maximum P(u | HHGH) for hidden state sequence u.
c. Give the u that achieves these maxima.

10.3 Parallel Viterbi Algorithm (Optional)

As with the forward algorithm, we can use high performance computing to achieve
faster results when a decoding problem involves a large number of states and/or
observations. Moreover, we can parallelize the Viterbi algorithm similarly to the
forward algorithm with OpenMP and threads communicating by reading and writing
to the same matrix. Project 6 calculates the speedup that can be achieved using HPC
with this algorithm.

11 Detecting CpG Islands

One example of an HMM decoding problem with a solution employing the Viterbi
algorithm involves detecting genes. As discussed in section “Probability of a
Genomics Sequence,” an area of greater frequency of the base sequence CG can
be an indicator that a gene is to follow. The section presented initial probabilities,
emission matrices, and possible transition matrices for samples within and not
within such CpG islands, called positive and negative areas, respectively [4].
Suppose we also have transition probabilities from bases in positive areas (A+,
C+, T+, G+) to bases in negative areas (A−, C−, T−, G−, respectively) and vice
versa. Then, using the Viterbi algorithm, for a given observed sequence of bases
from {A, C, T, G}, we can compute the most likely hidden sequence from the
set of states, S = {begin/end, A+, C+, T+, G+, A−, C−, T−, G−}, where the sign
indicates whether the base is probably in a CpG island or not. Project 7 considers
such a decoding problem, where we can decode areas of high CpG concentration,
containing bases A+, C+, T+, and G+.
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Exercises

1 As we did in Quick Review Question 3 using the Venn diagram in Fig. 4, provide
an intuitive justification for the first version of Bayes’ Theorem in Eq. (6).

2 Use a Venn diagram to justify the second version of Bayes’ Theorem in Eq. (7).
3 This exercise relates to the HMM in Quick Review Question 14.

a. Calculate fA2 .
b. Calculate fC2 .
c. Calculate P(HH).
d. Calculate P(HHG).

Projects

1 Write a sequential program to calculate the probability of a state given an
observation using Eq. (8).

2 a. Develop a sequential program to calculate the probability of a sequence of
states generating a sequence of observations using Eq. (9).

b. Develop a parallel version of this program, having each thread responsible
for a portion of the factors and gather the results into a final product.

c. For large sequence length, time the parallel version for increasing numbers of
threads. Produce a graph of the speedup versus the number of threads similar
to Fig. 10.

3 a. Develop a sequential program to calculate the probability of a state sequence
and an observation sequence using Eq. (13).

b. Develop a parallel version of this program, having each thread responsible
for a portion of the factors and gather the results into a final product.

c. For large sequence length, time the parallel version for increasing numbers of
threads. Produce a graph of the speedup versus the number of threads similar
to Fig. 10.

4 a. Using the forward algorithm, develop a sequential program to calculate the
probability of a sequence of observations.

b. Develop a parallel version of this program.
c. For large sequence length, time the parallel version for increasing numbers of

threads. Produce a graph of the speedup versus the number of threads similar
to Fig. 10.

5 Download ProbabilitiesHumanPN.txt [15], which stores the transition matrices
from Fig. 9, and “Accessing Chromosome 19 Data” (AccessingChr19Data.pdf )
[14], which describes how to access gene locations and subsequences from
chromosome 19 of the human genome. Using the UCSC Genome Browser [23],
select several subsequences of about 50 bases that occur in a CpG island and
several that do not. Using a sequential or parallel forward algorithm program
that you develop, determine the probability of each subsequence twice, once for
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each hidden Markov model in section “Probability of a Genomics Sequence,”
and calculate how many more times likely the subsequence is to be in a CpG
island than not. Do your results concur with those of the UCSC Genome
Browser?

6 a. Using the Viterbi algorithm, develop a sequential program to determine
the most likely sequence of hidden states corresponding to a sequence of
observations.

b. Develop a parallel version of this program.
c. For a large sequence length, time the parallel version for increasing numbers

of threads. Produce a graph of the speedup versus the number of threads
similar to Fig. 10.

7 Download ProbabilitiesHumanV.txt [16], which contains the transition matrix
and other data described in the section “Detecting CpG Islands” from [8],
and “Accessing Chromosome 19 Data” (AccessingChr19Data.pdf ) [14], which
describes how to access gene locations and subsequences from chromosome 19
of the human genome. Using the UCSC Genome Browser [23], select several
subsequences of about 50 bases that overlap CpG islands. Using a sequential
or parallel Viterbi algorithm program that you develop, for each downloaded
sequence, determine the most likely hidden sequence of states from

S = {begin/end, A+, C+, T+, G+, A−, C−, T−, G−}

and its probability. Do your results concur with those of the UCSC Genome
Browser?

8 Scientists have used telemetry data, such as from radio tags or collars, to monitor
wildlife movement and HMMs to infer an animal’s hidden behavior [9, 11].
Download telemetry.nlogo [17], a NetLogo program to simulate using telemetry
to follow an animal and interpret its actions, and “Using a NetLogo Program”
(UsingNetLogo.pdf ) [18], a brief description of how to interact with a NetLogo
simulation [12]. With NetLogo, which is free to download, we can generate
agent-based models that have autonomous, decision-making agents, which have
states and behaviors. In the simulation telemetry.nlogo, an animal wanders at
random unless thirsty. When thirsty, the animal moves to water, in the center of
the world, and stays in the water until satiated. The user can observe, through
this simulated telemetry, if the animal is in water (W), facing water but not in
water (F), or not facing water and not in water (A). The state of the animal is
thirsty, either on way to water or in water (T); or not thirsty, not on way to water
and not in water (N).

a. Read the description of the model under the Info tab for the program.
Estimate the parameters for an HMM to model the scenario as described
in the section “Things to Try.”

b. Using this HMM, take part of an observation sequence from file output,
say of about 50 observations; and with your forward algorithm program,
determine the probability of that subsequence.
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c. Using your Viterbi algorithm program and the subsequence of observations
from Part b, determine the most likely corresponding state sequence. Calcu-
late the percentage of the sequence derived using the Viterbi algorithm that
agrees with the actual state sequence generated by the NetLogo program.

d. Revise the NetLogo program, telemetry.nlogo, to save to a file at least
100 observation sequences of length 50 and to store in another file the
corresponding hidden state sequences. Revise your Viterbi program to read
the file of observation sequences and to produce another file of derived state
sequences. Write another program to read the latter output file of derived
state sequences and the file of state sequences from your NetLogo program
and to calculate the fraction of time the two files agree. That is, what is the
probability that your Viterbi program will accurately generate the underlying
state sequence.

e. Extend the model in telemetry.nlogo as suggested under the Info tab in the
section “Extending the Model.” Tutorials on programming with NetLogo can
be obtained from [20] and [12].

9 [9] described using telemetry to obtain movement data of bison, which could
be in underlying, hidden states of “encamped” or “exploratory.” Their paper
discussed several types of HMMs to use observations to infer a bison’s states.
Observations were bivariant, involving step length and turning angles, or
directions. In an encamped state, the animals were observed to have numerous
long steps and few turns; while in an exploratory state, bison were seen having
short steps with more frequent reversals.

a. Similar to telemetry.nlogo, available on the website containing this module
and discussed in the previous project, develop a NetLogo simulation of bison
movement that outputs important totals and writes to one file a sequence of
hidden states and to another file the corresponding sequence of observations
[17]. In Part b of this project, we will use the output data to estimate an HMM.
Then, using this HMM, we will take a sequence of observations and attempt
to derive the underlying state sequence. We can compare our derivation
with the state sequence from the NetLogo simulation. “Using a NetLogo
Program” and tutorials on programming with NetLogo can be obtained from
[18] and [20], respectively. Note that we could model the step lengths as
being random numbers taken from different exponential distributions, each
with step lengths ranging from 0.0 to 0.6 km/d. The turning angles for an
exploring and for an encamping animal can be modeled as random numbers
from normal distributions with means of 0 and 180 degrees/d, respectively.
([9] employed Weibull distributions for step lengths and wrapped Cauchy
distributions for turning angles.)

b. Estimate the parameters for an HMM to model the scenario.
c. Using this HMM, take part of an observation sequence from file output,

say of about 50 observations; and with your forward algorithm program,
determine the probability of that subsequence.
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d. Using this HMM, take part of an observation sequence from file output, say
of about 50 observations; and with your Viterbi algorithm program, derive
the most likely corresponding subsequence of observations. Calculate the
percentage of the sequence derived using the Viterbi algorithm that agrees
with the actual state sequence generated by the NetLogo program.

e. Revise your NetLogo program to save to a file at least 100 observation
sequences of length 50 and to store in another file the corresponding hidden
state sequences. Revise your Viterbi program to read the file of observation
sequences and to produce a file of derived state sequences. Develop another
program to take the latter output file of derived state sequences and the file
of state sequences from your NetLogo program and to calculate the fraction
of time the two files agree. That is, what is the probability that your Viterbi
program will accurately generate the underlying state sequence.

10 a. In the programming language of your choice (such as Python, R, MAT-
LAB, Mathematica, or C++), develop a program that uses the probabilities
from Holly’s HMM of this module to generate a given number of states
and corresponding observations. Save the sequences to separate files. For
example, the initial state should be selected at random using the initial
state probabilities. Have the program select the corresponding observation
at random with probabilities indicted by the emission matrix. The next state
should be picked at random using probabilities from the transition (Markov)
matrix, and so forth.

b. Repeat Parts c–e from Project 9 using this program.
11 a. Repeat Project 10 a for a generalized situation. That is, develop a procedure

with input of a vector of state names or their abbreviations, a vector of
observation names or their abbreviations, an HMM (initial vector, transition
matrix, and emission matrix), and a number ( n ) of states/observations for an
output sequence. Then, using the HMM’s probabilities, have the procedure
generate and return a sequence of n states and corresponding sequence of n

observations.
b. Develop the two HMMs from Project 5. Using your procedure from Part

a, generate subsequences of length 50 for the positive and the negative
models. Using a forward algorithm program that you develop, determine the
probability of each subsequence twice, once for each hidden Markov model.
For the positive subsequence, calculate how many more times likely the
subsequence is to be in a CpG island than not. For the negative subsequence,
calculate how many more times likely the subsequence is not to be in a CpG
island than to be in a CpG island.

c. A gene in DNA and the corresponding subsequence of RNA have exons,
which contain part of the encoding information, such as for proteins,
separated by introns, or non-coding segments. RNA splicing removes the
introns and reassembles the exons so that translation to the protein can
eventually occur, and a splice is the location of a cut between an intron
and an exon. In DNA and RNA, each non-terminal nucleotide attaches to



394 A. B. Shiflet et al.

the #5 carbon, written 5’ carbon, of a sugar at one end and the #3 carbon,
3’ carbon, of its neighbor at the other end. Thus, we consider a nucleotide
chain to have a specific 5’-3’ orientation. Develop the “Toy HMM” for a
5’ splice recognition problem in [5], and using your procedure from Part a,
repeat Project 9, Parts c–e.
For each of the following HMMs, using your procedure from Part a, repeat

Project 9, Parts c–e:

d. Project 7
e. The unfair-casino HMM in Fig. 1 of [3] or other sources
f. The weather HMM on the fourth slide of [10]
g. The weather HMM in Sections 1 and 2 of [6]
h. The light-dark chocolate candy HMM in Section 5, “Exercises,” of [6]
i. The tree-growth rings HMM in Section 1, “A Simple Example,” of [13].

12 a. Study the Baum-Welch (or forward-backward) algorithm for solving the
training (or learning) problem mentioned in sections “Introduction” and
“Example Model,” and develop a program to solve the problem.

b. Using the NetLogo program telemetry.nlogo, available on the website con-
taining this module and discussed in Project 9, generate a collection of
state and corresponding observation sequences [17]. Using these and your
program from Part a, determine the parameters for an HMM.

c. With your procedure from Project 10 a, generate a collection of state and
corresponding observation sequences. Using these and your program from
Part a, determine the parameters for a trained HMM. Compare this HMM to
Holly’s HMM.

Do the same process as described in Part c for the following HMMs:
d. The two HMMs of Project 11 b
e. Project 11 c
f. Project 11 d
g. Project 11 e
h. Project 11 f
i. Project 11 g
j. Project 11 h
k. Project 11 i

Answers to Quick Review Questions

1 a. {A, B, C}
b. {G, H}
c. 0.6
d. 0.2
e.
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uk/uk+1 A B C

T =
A
B
C

⎡

⎣

0.1 0.4 0.5
0.2 0.2 0.6
0.3 0.2 0.5

⎤

⎦

f. 0.2
g. 0.7 = 1 − π(A) − π(B)

h. 0.6
i. 0.9
j.

hidden/observable G H

A
B
C

⎡

⎣

0.9 0.1
0.6 0.4
0.1 0.9

⎤

⎦

2 a. P(E, B) = P(B | E) · P(E) = 0.2 · 0.3 = 0.06
b. P(R, M) = P(M | R) · P(R) = 0.1 · 0.7 = 0.07
c. P(R, B) = P(B | R) · P(R) = 0.9 · 0.7 = 0.63
d. 1.00 = 0.24 + 0.06 + 0.07 + 0.63
e. 0.30 = 0.24 + 0.06
f. 0.70 = P(E,M) + P(R,B) = 0.07 + 0.63
g. 1.00
h. 0.31 = P(E, M) + P(R, M) = 0.24 + 0.07
i. 0.69 = P(E, B) + P(R, B) = 0.06 + 0.63
j. 1.00

3

P(A,B)
?= P(B|A) · P(A)

c

a + b + c + d

?= c
����(a + c)

·
����(a + c)

a + b + c + d

c

a + b + c + d
= c

a + b + c + d

4 a. 0.43 = 0.05 + 0.18 + 0.20
b. 0.57 = 0.36 + 0.11 + 0.10
c. {F, G, H}
d. 0.42 because

P(G, J) = P(G | J)·P(J), so P(G | J) = P(G, J)/P (J) = 0.18/0.43 ≈ 0.42

e. 0.19 because
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P(G, K)=P(G | K)·P(K), so P(G | K)=P(G, K)/P (K)=0.11/0.57≈0.19

f.
∑

x∈{E, G, H}
P(K, x) or

∑

x∈{E, G, H}
P(x, K)

g. 0.41 = 0.05 + 0.36
h. 0.12 because

P(J, F) = P(J | F) ·P(F), so P(J | F) = P(J, F)/P (F) = 0.05/0.41 ≈ 0.12

i. 0.88 because

P(K, F)=P(J | F) · P(F), so P(K | F)=P(K, F)/P (F)=0.36/0.41 ≈ 0.88

j. 0.29 = 0.18 + 0.11
k. {J,K}
l.

∑

x∈{J, K}
P(G, x) or

∑

x∈{J, K}
P(x, G)

m. 0.30 = 0.20 + 0.10
5 a. 0.62 because P(J | G) = P(G | J) · P(J)/P (G) = 0.42 · 0.43/0.29 ≈ 0.62

b. 0.69 because P(K | G) = P(G | K) · P(K)/P (G) = 0.35 · 0.57/0.29 ≈ 0.69
c. 0.11 because P(F | J) = P(J | F) · P(F)/P (J) = 0.12 · 0.41/0.43 ≈ 0.11
d. 0.63 because P(F | K) = P(K | F) · P(F)/P (K) = 0.88 · 0.41/0.57 ≈ 0.63

6 a. 0.23 ≈ 1 − P(E | M) ≈ 1 − 0.77
b. 0.91 because P(R | B) = P(B | R) · P(R)/(P (B | E) · P(E) + P(B | R) ·

P(R)) = 0.9 · 0.7/(0.2 · 0.3 + 0.9 · 0.7) = 0.9 · 0.7/0.69 ≈ 0.91
c. 0.09 ≈ 1 − P(R | B) ≈ 1 − 0.91; alternatively, P(E | B) = P(B | E) ·

P(E)/(P (B | E) · P(E) + P(B | R) · P(R)) = 0.2 · 0.3/0.69 ≈ 0.09
7 0.16 ≈ P(F | J) = P(J | F) ·P(F)/[P(J | F) ·P(F)+P(J | G) ·P(G)+P(J | H) ·

P(H)] = 0.12 · 0.41/[0.12 · 0.41 + 0.62 · 0.29 + 0.26 · 0.30]
8 a. 0.0576 = P(MMMB | ERER) = e(M | E) · e(M | R) · e(M | E) · e(B | R) =

0.8 · 0.1 · 0.8 · 0.9
b. 0.53144 ≈ P(BBBBBB | RRRRRR) = e(B | R)6 = 0.96

9 a. 0.00055 ≈ P(MMMB,ERER) = P(MMMB | ERER)·P(ERER) = 0.0576·
π(E) · t (E, R) · t (R, E) · t (E, R) = 0.0576 · 0.3 · 0.4 · 0.2 · 0.4, where
P(MMMB | ERER) = 0.0576 is from Quick Review Question 8 a.

b. 0.1219 ≈ P(BBBBBB, RRRRRR) = P(BBBBBB | RRRRRR) ·
P(RRRRRR) = 0.53144 · π(R) · t (R, R)5 = 0.53144 · 0.70 · 0.85 where
P(BBBBBB | RRRRRR) ≈ 0.53144 is from Quick Review Question 8 b.

10 a. 64 = 43

b. 1,048,576 = 410

c. 1,099,511,627,776 = 420

d. 4,398,046,511,104 = 421

11 a. 3 × 4
b. 0.02 = π(H) · e(H | A) = 0.2 · 0.1
c. P(A, H)



What Are the Chances?—Hidden Markov Models 397

d. 0.04 = π(H) · e(H | B) = 0.1 · 0.4
e. P(B, H)

f. 0.63 = π(H) · e(H | C) = 0.7 · 0.9
g. P(C, H)

h. 0.69 = P(A, H)+P(B, H)+P(C, H) = fA1 +fB1 +fC1 = 0.02+0.04+0.63
12 0.0504 = P(BM, RR) = P(B, R)·t (R, R)·e(M | R) = fR1 ·t (R, R)·e(M | R) =

0.63 · 0.8 · 0.1
13 0.1296 = P(BM, EE) + P(BM, RE) = 0.0288 + 0.1008
14 a. 3

b. 0.0032 = fA1 · t (A, B) · e(H | B) = 0.02 · 0.4 · 0.4
c. 0.0032 = fB1 · t (B, B) · e(H | B) = 0.04 · 0.2 · 0.4
d. 0.0504 = fC1 · t (C, B) · e(H | B) = 0.63 · 0.2 · 0.4
e. 0.0568 = 0.0032 + 0.0032 + 0.0504

15 a. P(BMM) = ∑

x∈S3 P(BMM, x)

b. {EEE, EER, ERE, ERR, REE, RER, RRE, RRR}
c. P(BMM) = [P(BMM, EEE) + P(BMM, ERE) + P(BMM, REE) +

P(BMM, RRE)]+ [P(BMM, EER)+P(BMM, ERR)+P(BMM, RER)+
P(BMM, RRR)] = fE3 + fR3

d. P(BMM, ERE) + P(BMM, RRE) = P(BM, ER) · t (R, E) · e(M | E) +
P(BM, RR) · t (R, E) · e(M | E) = [P(BM, ER) + P(BM, RR)] · t (R, E) ·
e(M | E) = fR2 · t (R, E) · e(M | E)

e. P(BMM, EER) + P(BMM, RER) = fE2 · t (E, R) · e(M | R)

f. P(BMM, ERR) + P(BMM, RRR) = fR2 · t (R, R) · e(M | R)

g. 0.062208 = 0.1296 · 0.6 · 0.8
h. 0.005184 = 0.1296 · 0.4 · 0.1
i. 0.008448 = 0.0528 · 0.2 · 0.8
j. 0.004224 = 0.0528 · 0.8 · 0.1
k. 0.70656 = 0.062208 + 0.008448
l. 0.009408 = 0.005184 + 0.004224

m. 0.080064 = 0.070656 + 0.009408
16 a. 5

b. 5
c. h

d. 5
e. 2
f. 2
g. 95 = 5 · 19
h. h · (n − 1)

i. 195 = 5 + 95 · 2
j. 2hn − h because h + h · (n − 1) · 2 = h + 2hn − 2h = −h + 2hn

k. 0
l. 4

m. h − 1
n. h2(n − 1) − hn − h or h2n − h2 − hn − h because 0 + (h − 1) · h · (n − 1) =

(h2 − h)(n − 1) = h2n − hn − h2 − h = h2(n − 1) − hn − h
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o. h2n − h2 + hn − 2h because (2hn − h) + (h2n − h2 − hn − h) = h2n −
h2 + hn − 2h

p. O(h2n)

17 gA1 = 0.2, gB1 = 0.4, and gC1 = 0.63
18 a. 0.0504 =max(0.0032, 0.0032, 0.0504)

b. 0.0189 =max(0.0002, 0.0008, 0.0189)

19 0.0344 because of the following: gA3 ·t (A, C)·e(H | C) = 0.034425; gB3 ·t (B, C)·
e(H | C) = 0.01836; gC3 · t (C, C) · e(H | C) = 0.00639; and the maximum of
these expressions is 0.034425.

20 a. 0.0344, the maximum in the final column
b. 0.33463 = 0.0344/0.1028
c. CCAC
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Using Neural Networks to Identify Bird
Species from Birdsong Samples

Russell Houpt, Mark Pearson, Paul Pearson, Taylor Rink, Sarah Seckler,
Darin Stephenson, and Allison VanderStoep

Abstract Modern data analysis techniques include the use of artificial neural
networks for classification, estimation, and prediction. An area in which data science
can be helpful is in species identification and enumeration from images or sound
recordings. In this chapter, we develop the necessary tools for using machine
learning to identify bird species from recordings of bird calls. This includes a
basic introduction to wavelet transforms and scalograms and the construction of
convolutional neural networks for solving classification problems. We give some
ideas for extending our results on bird species classification, as well as ideas
for using related neural networks for broader application to image and audio
classification.

Suggested Prerequisites Second year college mathematics including linear algebra and multi-
variate calculus. Programming experience in Python is helpful, but can be developed as needed
through various online tutorials and examples.

1 Introduction

Recent developments in the areas of machine learning and data science have given
rise to new tools and processes to improve computer-aided recognition of images
and sounds. While there are many highly sophisticated networks already in use,
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many interesting data models can be developed and understood with a minimal list
of mathematical prerequisites. The wide-open nature of data science research and
the multitude of important applications make this an ideal area in which to pursue
research with undergraduate students.

This article describes undergraduate research projects that used signal processing
and machine learning to identify bird species from recordings of birdsong. These
projects were conducted at Hope College with four undergraduate students and
three faculty supervisors during the summers of 2016 and 2017. Over the last
several years, the faculty mentors have worked to educate themselves about data
analytics and machine learning, but none of them had any prior training in those
areas. The students who participated in these projects had mathematics backgrounds
that included at least second year linear algebra and multivariate calculus, but they
typically had little (or no) prior computer programming experience. Consequently,
a considerable amount of time was devoted to teaching students how to program
in Python. We found that good math students who had no prior programming
experience could learn programming well enough in the time allotted for summer
research as long as we provided them plenty of support.

During each summer research project, two students worked for 8 weeks learning
to write code in Python and associated packages (NumPy, SciPy, pandas, Keras,
. . . ), learning about sound signal processing using wavelets, constructing neural
networks, and training neural networks to solve species classification problems.
Students began learning Python through the tutorials at After Hours Programming
[1], and then followed this by learning about the NumPy and pandas Python
packages [16, 22]. Students were introduced to neural networks through several
specific examples, such as constructing a network for handwriting analysis based
on the MNIST dataset [10]. For reference, the students used online textbooks by
Goodfellow et al., Hagan et al., and Nielsen [15, 19, 35], Stanford University’s
Online CS 231n notes [24], and an article by Zeiler and Fergus [55]. Early on,
students were led through a construction of a basic neural network, and they
computed a few iterations of back-propagation by hand using the chain rule and
the appropriate gradients.

This article describes the signal processing and machine learning tools we used
to analyze recordings of birdsong and identify the species of bird present. Our
analysis of the recordings proceeded in two steps. The first step was to convert audio
recordings (or signals) into grayscale images called scalograms via a process called
the wavelet transform. In Sect. 2, we describe the wavelet transform we used to
produce a scalogram that shows the pitch, time, and power information contained in
a time signal. The second step in our analysis was to use artificial neural networks
to assign to each scalogram a probability that it represents a particular species of
bird. In Sect. 3, we describe several types of artificial neural networks, how they
are constructed, and how they can be used to analyze scalograms. Together, Sects. 2
and 3 provide the mathematical framework for our analysis of birdsong. In Sects. 4
and 5, we provide some additional details about our dataset and the techniques
we employed to pre-process the data. We highlight the results of our analyses in
Sects. 6, and 7 offers some suggestions for further inquiry.
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2 Creating Scalograms

We first describe WAV files and the signals arising from them. We introduce the
Morlet wavelet and the continuous wavelet transform, and give details about their
use in basic signal analysis. The overall goal is to turn each signal into a grayscale
image called a scalogram containing time, pitch, and power information about the
recorded sound.

2.1 Time Signals, the WAV Audio Format, and Scalograms

A continuous (or discrete) time signal is a function f : R → R (or f : Z → R).
In our research, we analyzed digital audio recordings (i.e., discrete time signals) in
WAV file format consisting of amplitude measurements of birdsong taken at equally
spaced time intervals. The WAV format is an uncompressed audio format which
represents sound as a sequence of numbers. Because our samples were recorded
using 16-bit mono recording, a WAV file is essentially a vector of integers between
−32,768 and 32,767. The recording was done at a sample rate of 44.1 kHz, which
means that there will be 44,100 integers in the vector per second of recording
time. This allows us to analyze sounds in the human-audible range 0–22.05 kHz.
The Python package SciPy has both a scipy.signal module and a scipy.io.wavfile
module that are helpful in working with WAV files [6].

Plotting the list of integers in a given WAV file as a time series will give us a
graphical representation of the sound recording. For example, a WAV recording of
a cuckoo bird’s (Cuculus canorus) song might produce the graph in Fig. 1.

In Fig. 1, the four amplitude bursts show the times at which each of the four
“notes” of the birdsong begins and ends, but the pitch of each note is not clear by
visual inspection. One method of turning a sound recording into a more revealing

Fig. 1 A plot of 2.5 s of the WAV file of a cuckoo bird’s (Cuculus canorus) song. Notice the
four amplitude bursts of birdsong amid low-level background noise. Audio source: http://www.
birdsongs.it/songs/cuculus_canorus/call1.wav

http://www.birdsongs.it/songs/cuculus_canorus/call1.wav
http://www.birdsongs.it/songs/cuculus_canorus/call1.wav
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Fig. 2 A scalogram of 2.5 s of the cuckoo bird’s song showing two repetitions of “cuckoo” with
“cu-” at a higher frequency and shorter time duration than “ckoo.” Grayscale shading shows the
power values from lowest (white) to highest (black). On a standard piano keyboard the “cu-” is
approximately the E� above middle C, and the “ckoo” is approximately the B below middle C

image is to use wavelet analysis to change the picture from a time-amplitude
representation to a time-pitch-power representation called a scalogram. Figure 2
gives a scalogram for the cuckoo WAV file graphed in Fig. 1.

The scalogram gives a representation of the sound recording involving time
(horizontal axis), pitch (vertical axis), and power (darkness of a pixel). In these
regards, a scalogram is very similar to sheet music with dynamics markings.
The notion of a wavelet and the process for producing the scalogram are detailed
in the following subsections.

2.2 Wavelets

Roughly, a wavelet is a small wave-like function ψ that can be used to represent
a part of another function, such as a time signal. The wavelet, along with certain
scaled and translated versions of itself, should ideally form a basis of a certain space
of functions, allowing for useful representations of a function in terms of the wavelet
at various resolutions.

For our purposes, a wavelet is a function ψ : R → R (or ψ : R → C) with the
zero-average property

∫ ∞

−∞
ψ(t) dt = 0

and the unit energy property
∫ ∞

−∞
|ψ(t)|2 dt = 1.



Using Neural Networks to Identify Bird Species 405

There is also an admissibility condition for wavelet functions that is more compli-
cated.1

Wavelets can be used to determine when certain frequencies occur in the
oscillations of a signal f by means of comparing scaled and shifted wavelets to
the signal. A wavelet ψ can be scaled (i.e., stretched or compressed) to produce
another wavelet of a different frequency (or pitch). By comparing wavelets of
different scales to a signal f , we can determine which wavelet scales “match”
the oscillations of a signal well, thereby identifying frequencies that are present in
the signal. Further, a wavelet can be shifted in time to produce another wavelet of the
same frequency. By comparing a time-shifted wavelet to a signal, we can determine
which time-shifted wavelets “match” the oscillations of a signal well, thereby
identifying when a signal has a particular frequency. The details of how to measure
the “match” between a wavelet and a signal are given below in the discussion of
the cross-correlation and the power (which is the square of the magnitude of the
cross-correlation). We chose to use wavelets because they have advantages over the
classical Fourier series methods for extracting frequencies. In particular, standard
Fourier analysis does not account for variability in the signal f over time, but
wavelets do.

Our main examples are wavelets that arise from a basic sine wave multiplied by
a Gaussian term that makes the amplitude very small outside of a narrow range of
values of t . Figure 3 shows the graph of a basic wavelet formed from a sine wave

Fig. 3 A wavelet ψ(t) = ke−t2
sin(10πt) based on damping a sinusoidal oscillation of

frequency 5

1This condition amounts to
∫ ∞

−∞
|ψ̂(ω)|2

|ω| dω < ∞, where ψ̂(ω) =
∫ ∞

−∞
ψ(t)e−2πiωt dt is the

Fourier transform of ψ . Full details can be found in many texts that cover continuous wavelet
transforms, such as [23].
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of frequency 5 that has been damped by a Gaussian so that the amplitude of the
wave becomes very small outside of [−2, 2] and decays toward 0 as t → ±∞. The
formula for this function is

ψ(t) = ke−t2
sin(10πt),

where k is chosen so that
∫ ∞

−∞
|ψ(t)|2 dt = 1.

This ensures that the wavelet has unit energy (i.e., L2 norm of 1). We note also that

∫ ∞

−∞
ψ(t) dt = 0,

which means that the wavelet’s average value is zero.
The wavelet ψ can then be compared with a signal f to see at which times f

matches well with a frequency 5 oscillation. The overall process involves scaling
and shifting the wavelet ψ and comparing it with f at many different scales
(frequencies) and shifts (locations in time). By comparing the signal f to scaled
and shifted versions of the wavelet ψ , we can discover the frequencies and times at
which f oscillates like the scaled wavelet.

A signal f can be compared to a wavelet ψ through a process called cross-
correlation. We will first describe the cross-correlation process in general, as if the
functions f and ψ were both continuous functions. In practice, our signal f coming
from a WAV file is discrete, and later we will discuss the discrete version of the
cross-correlation for implementation on a computer.

The cross-correlation of two functions f and ψ is defined as the number

f ∗ ψ =
∫ ∞

−∞
f (t)ψ∗(t) dt,

where ψ∗(t) represents the complex conjugate of ψ(t). The magnitude of this
integral will typically be large if f has behavior in common with ψ , and small
if not.

To see this, suppose ψ(t) is defined as above, and g is a function giving rise to a
basic wave of frequency 5 that is in phase with ψ . For example, take

g(t) = sin(10πt).

Then g ∗ ψ ≈ 1.12. In contrast, the function

h(t) = sin(14πt)



Using Neural Networks to Identify Bird Species 407

Fig. 4 (Top) Signals g and h of frequencies 5 and 7, respectively. (Middle) Wavelet ψ of
frequency 5. (Bottom) Product of the signal with the wavelet. For the shaded regions in the bottom
row, notice that the signed area g ∗ ψ ≈ 1.12 is large in comparison to h ∗ ψ ≈ 10−17. This is
because the frequency of oscillation for g matches that of ψ , but the frequency of h does not

oscillates at a frequency different from ψ , and consequently h ∗ ψ is much smaller;
indeed, h ∗ ψ ≈ 10−17. These results for g ∗ ψ and h ∗ ψ can be interpreted
graphically as shown in Fig. 4.

In fact, if

jn(t) = sin(nπt),

and we plot jn ∗ ψ for n ∈ [0, 15], we obtain the response curve plotted in Fig. 5.
This response curve compares the wavelet ψ to signals jn of different frequencies
to see which values of the frequency parameter n produce the largest values of the
cross-correlation jn∗ψ . Notice that jn∗ψ becomes large only when the frequency of
the wave defined by jn is nearly the same as that determined by ψ and is otherwise
close to zero.

One issue that we have to confront when using a wavelet such as ψ to determine
the frequency (or frequencies) present in a signal f is that ψ needs to be not only
the same frequency as f but also in phase with f to give good results. For example,
with ψ as defined above and g2(t) = cos(10πt), we find that g2 ∗ ψ = 0, even
though g2 has the same underlying frequency as ψ .

Often, the cross-correlation is developed to be a function of a translation τ . For
τ ∈ R, define

f ∗ ψ(τ) =
∫ ∞

−∞
f (t)ψ∗(t − τ) dt.
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Fig. 5 Values of the cross-correlation jn∗ψ for n ∈ [0, 15]. Notice that jn∗ψ is largest at n = 10
and small or near zero away from n = 10

Fig. 6 The values of g2 ∗ ψ(τ) for τ ∈ [−1, 1]. Notice that g2 ∗ ψ(τ) is small when g2 and ψ(τ)

are out of phase (e.g., τ = 0), and large when they are in phase (e.g., τ = 0.15)

For g2 and ψ as defined above, a graph of g2 ∗ ψ(τ) vs. τ is given in Fig. 6.
Here, we see that g2 ∗ ψ(τ) gets large in absolute value when the wavelet moves
into phase with g2, and becomes small in absolute value when the wavelet moves
out of phase with g2. We overcome this difficulty through the use of a complex-
valued Morlet wavelet, described below, in which the real and imaginary parts both
resemble the wavelet ψ defined above, but where one part is a phase shift of the
other.

For more information on wavelets and their use in signal and image processing,
the reader may see [23, 30, 52].
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2.3 The Continuous Wavelet Transform

As seen in the previous subsection, the wavelet ψ can be shifted by the time-shift
parameter τ ∈ R to determine when it is in phase with a signal f . The wavelet ψ

can also be scaled by a frequency-adjustment (or scale-adjustment) parameter s > 0
to determine which frequencies are present in the signal f . The scale parameter
s ∈ R

+ compresses (when 0 < s < 1) or stretches (when s > 1) the wavelength
of ψ , thereby increasing or decreasing its frequency. This leads to functions of the
form

ψs,τ (t) = 1√
s
ψ

(
t − τ

s

)

.

The factor 1/
√

s occurs in this definition to ensure that

∫ ∞

−∞
|ψs,τ (t)|2 dt = 1,

regardless of the values of s and τ , so that ψs,τ has unit energy.
In order to compare the shifted, translated wavelet with our signal f (t), we

compute the cross-correlation

Cf (s, τ ) = f ∗ ψs,τ =
∫ ∞

−∞
f (t)ψ∗

s,τ (t) dt.

The function Cf (s, τ ) is called the continuous wavelet transform of f with respect

to the wavelet ψ . For a signal f : R → R with
∫ ∞

−∞
|f |2 dt < ∞ and a function

ψ satisfying the admissibility condition, the function f can be recovered from its
continuous wavelet transform Cf (s, τ ). See, for example, [23, Section 3.2].

To ensure that a constant-amplitude, periodic signal f does not appear as if it
has periodic amplitude (as in the graph of g2 ∗ ψ(τ) vs. τ in Fig. 6), we employ
a complex-valued wavelet when computing the continuous wavelet transform. This
will provide better information about the frequencies that occur in the signal, the
times at which they occur, and effectively deal with phase issues.

The basic Morlet wavelet, which we will use from this point forward, is a
function ψ : R → C with formula

ψ(t) = Keitω0−t2/2

= Ke−t2/2(cos(ω0t) + i sin(ω0t)),
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where K and ω0 are positive real constants. Here, K is chosen so that
∫ ∞

−∞
|ψ(t)|2 dt = 1,

again ensuring that the wavelet has unit energy. The term “wavelet” is typically
used for the Morlet wavelet, which performs well in practice even though ψ only
approximately satisfies the admissibility condition. See [17, 29] for further details.

The real and imaginary parts of ψ(t) are

Re ψ(t) = Ke−t2/2 cos(ω0t), Im ψ(t) = Ke−t2/2 sin(ω0t).

Therefore, the Morlet wavelet encompasses two real oscillatory wavelets of the same
frequency, each of which is similar to the real wavelet introduced at the start of
Sect. 2.2. The real and imaginary parts of ψ are out of phase with one another,
allowing us to do a better job of determining the amplitude and duration of a periodic
signal. A basic plot of the real and imaginary components of the Morlet wavelet is
given in Fig. 7.

Because the signal f is real-valued, we have

Re(f ∗ ψs,τ ) = f ∗ (Re ψs,τ )

and

Im(f ∗ ψs,τ ) = −f ∗ (Im ψs,τ ).

We determine the strength of similarity between the scaled wavelet and the signal f

by the computing the power, defined as

|Cf (s, τ )|2 = [f ∗ (Re ψs,τ )]2 + [f ∗ (Im ψs,τ )]2.

Fig. 7 (Left) A graph of the real (black solid) and imaginary (gray dashed) components of the
Morlet wavelet for ω0 = 8. Notice that the real and imaginary components are out of phase with
each other by π/16 radians. (Right) A graph of the Morlet wavelet for ω0 = 8 in R × C. Viewed
from above it is Re(ψ), and viewed from the side it is Im(ψ)
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Morlet wavelets are used to determine parts of an audio signal oscillating at a
particular pitch, as well as to locate the beginning time and ending time of a pitch.
To see an example of this, we consider a signal that is defined by a sine wave of
frequency 5 over the interval [0, 2] and is zero elsewhere:

f (t) =
{

sin(10πt) if 0 ≤ t ≤ 2,

0 otherwise.

Suppose that ψ(t) is a Morlet wavelet with ω0 = 2π , so that ψ is based on a wave
with underlying frequency 1. We plot |Cf (s, τ )|2 vs. τ for a variety of scales s in
Fig. 8. The scales are chosen from the set

S =
{

2n

5
: n = −2,−1, 0, 1, 2, 3

}

.

The cross-correlation is largest when the underlying frequency of the Morlet
components matches that of the signal. In this example, the cross-correlation is
largest when s = 1/5. The magnitudes of the cross-correlations with the wavelet
at other scales are negligible compared to the one for which the frequencies match.

Fig. 8 Graphs of the phase-shift parameter τ versus power |Cf (s, τ )|2 for scales s = 1/20 (top
left), s = 1/10 (top right), s = 1/5 (middle left), s = 2/5 (middle right), s = 4/5 (bottom left),
and s = 8/5 (bottom right). Notice that s = 1/5 produces a graph with the largest power response
for a broad range of τ values. This is because the signal has frequency 5. When s = 1/5, notice
the “edge effects” near τ = 0 and τ = 2 that occur because near these values the wavelet overlaps
with the part of the signal that is zero, whereas when τ ∈ [0.5, 1.5] the wavelet overlaps with the
nonzero part of the signal
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Figure 8 gives plots of power for only six scales. If we were interested in a large
number of scales, then the graphical approach in Fig. 8 would become unwieldy
because of the sheer number of plots to interpret. To simplify interpreting a large
number of plots, we introduce a scalogram matrix to give an easily understood
representation of the values |Cf (s, τ )|2 at many different times τ and scales s.

Scalograms are matrices containing the values of
1

s
|Cf (s, τ )|2 for a finite set of

values of s and τ . The factor 1/s here is needed to assure comparability of the
power across different scales. This is discussed in more detail in Sect. 2.5. Under
these assumptions, scalograms are viewable as grayscale images, and are also ideal
for using as matrix inputs for a neural network.

2.4 Transforms on Discrete Signals

Before we get down to the business of explaining the scalogram generation process,
we first need to understand how relevant scales can be chosen and how cross-
correlations can be approximated using a computer. In general, it is helpful to
assume that units on the t axis are 1/44,100 s, so that our discrete signal f , which
was sampled every 1/44,100 s, can be evaluated at every integer time t . We continue
to assume that the Morlet wavelet has formula

ψ(t) = Keitω0−t2/2,

but we note that, with this change to the t axis, the underlying frequencies of the
wavelets ψ(t) and ψs,τ (t) are, respectively, in cycles per second,

44,100ω0

2π
and

44,100ω0

2πs
.

We chose a Morlet wavelet with ω0 = 8 and a list of 64 scales from the set

S = {2(j+11)/8 : 0 ≤ j ≤ 63}.
This gives 8 scales per octave with an overall frequency range of about 92 Hz to
about 21,650 Hz, which covers much of the human-audible range (20–20,000 Hz).

For a given discrete signal f , we are estimating the magnitude of the integral

f ∗ ψs,τ =
∫ ∞

−∞
1√
s
f (t)ψ∗

(
t − τ

s

)

dt.

Using a basic linear substitution which replaces t by st + τ , we find

f ∗ ψs,τ =
∫ ∞

−∞
√

sf (st + τ)ψ∗(t) dt.
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Because ψ is a continuous function, we can evaluate ψ∗ wherever we like. As stated
above, f can be evaluated at any integer time. We can think of f as a vector x =
〈x0, x1, . . . , xN−1〉, where each xj = f (j) is an integer.

Choose a real number B such that the values of ψ(t) are of negligible magnitude
outside of the interval [−B,B]. (The value B = 5 works well for the Morlet wavelet
as defined above.) We approximate the integral over the whole real number line
by the integral over an interval slightly larger than [−B,B], and we estimate this
integral using the midpoint rule.

Given a scale s, we define M to be the first odd integer larger than 2Bs. We

approximate the integral on the interval

[

−M

2s
,
M

2s

]

. The midpoints tj needed for

the midpoint rule with Δt = 1/s are

T =
{

tk = −M + 2k + 1

2s
: k = 0, . . . , M − 1

}

.

Let τ be an integer with 0 ≤ τ ≤ N − 1. Assume that f is zero before the
signal starts and after it ends; that is, f (j) = 0 if j < 0 or j > N − 1. In order to
approximate the integral for a given s and τ , we create a vector by evaluating ψ∗
at all of the points in T . We create a second vector by evaluating f at points in the
following set of consecutive integers

{stk + τ : k = 0, . . . , M − 1} .

Then
∫ ∞

−∞
√

sf (st + τ)ψ∗(t) dt

≈ √
s〈xst0+τ , xst1+τ , . . . xstM−1+τ 〉 · 〈ψ∗(t0), ψ∗(t1), . . . , ψ∗(tM−1)〉1

s

= 1√
s
〈xst0+τ , xst1+τ , . . . xstM−1+τ 〉 · 〈ψ∗(t0), ψ∗(t1), . . . , ψ∗(tM−1)〉.

There are NumPy and SciPy routines to compute a “vector cross-correlation”
like the one above. We used scipy.signal.fftconvolve due to its speed advantages
over other routines. One must take care because the fftconvolve routine does not
automatically conjugate and also has a time reversal in the second vector. Therefore,
to be precise, we need to call fftconvolve with the signal 〈x0, x1, . . . , xN−1〉 in the
first entry and the vector 〈ψ∗(tM−1), . . . , ψ

∗(t1), ψ∗(t0)〉 in the second.2

We used the Morlet wavelet transform in our work for several reasons. First, the
Morlet wavelet transform is a continuous wavelet transform which, unlike a discrete

2Ultimately, neither the reversal nor the conjugation makes a difference in practice, due to the
essential symmetry of the Morlet wavelet and the fact that we are eventually only interested in the
square of the magnitude of the integral.
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wavelet transform, allows a signal to be resolved into as many different scales
(or pitches) as desired. Fine pitch resolution allows us to capture small variations
of pitch commonly found in birdsongs. Second, because the real and imaginary
parts of the Morlet wavelet are out of phase with each other, the complex Morlet
wavelet transform measures all of the important phase information in a signal. Third,
Morlet wavelets and windowed Fourier transforms are conceptually similar, except
that the former uses damping and the latter uses periodic extension, so it would
be possible to compare the results of one to the other. For more details about the
Morlet wavelet transform and a comparison to the windowed Fourier transform,
see the article by Torrence and Compo [52]. To learn more about discrete wavelet
transforms, see the book by Van Fleet [54], or the articles by Bénéteau and Van
Fleet [9] and Mulcahy [32]. One avenue for future birdsong research could be to use
mel-frequency cepstral coefficients, which have been used successfully for speech
recognition, or a windowed Fourier transform instead of a Morlet wavelet transform.

2.5 Creating Scalograms

Using a Morlet wavelet ψ with ω0 = 8 and scale factors s ∈ S and τ ∈
{0, 1, . . . , N − 1} as outlined above, we can use the technique of the last subsection
to approximate the power |Cf (s, τ )|2 of a discrete signal f at each scale and time-
shift. We store the values

1

s
|Cf (s, τ )|2

in a matrix, where the rows indicate increasing scales and each column indicates
a time-shift. Because frequency and scale are inversely proportional, as the scale
index j increases from 0 (top row) to 63 (bottom row) in the power matrix, the
frequency decreases. The presence of the extra factor 1/s here is due to the fact that
we would like the output defined by signals of the same amplitude at different scales
to give comparable power.

To explain the reason for this extra factor of 1/s, we give the following example.
The basic Morlet wavelet with ω0 = 8 has formula

ψ(t) = Ke−t2/2(cos 8t + i sin 8t).

Suppose f (t) = A sin 8t is a wave of the same frequency. Then

|Cf (1, 0)|2 =
∣
∣
∣
∣

∫ ∞

−∞
f (t)ψ∗(t) dt

∣
∣
∣
∣

2

.

Given a scale s 
= 0, 1, the wave g(t) = f (t/s) has the same amplitude as f (t) but
a different frequency. In order for power values in the scalogram to be comparable,
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we would like the entry for ψs,0 with g(t) to be the same as that for ψ(t) with f (t).
However

|Cg(s, 0)|2 =
∣
∣
∣
∣

∫ ∞
−∞

f (t/s)
1√
s
ψ∗(t/s) dt

∣
∣
∣
∣

2
=
∣
∣
∣
∣

∫ ∞
−∞

√
sf (u)ψ∗(u) du

∣
∣
∣
∣

2
= s|Cf (1, 0)|2.

For more on the necessity of 1/s, see [52, Section 3.c.] for further details.

The matrix consisting of the power values
1

s
|Cf (s, τ )|2 for specified values of s

and τ is called a scalogram. In processing the WAV files, we chose ω0 = 8 for the
underlying Morlet wavelet. Because we used the 64 scales in S = {s0, s1, . . . s63}
and the integer time-shifts 0 ≤ τ ≤ N − 1 in creating the scalogram, it turns out to
be a 64 × N matrix of the form:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
s0

|Cf (s0, 0)|2 1
s0

|Cf (s0, 1)|2 1
s0

|Cf (s0, 2)|2 · · · 1
s0

|Cf (s0, N − 1)|2

1
s1

|Cf (s1, 0)|2 1
s1

|Cf (s1, 1)|2 1
s1

|Cf (s1, 2)|2 · · · 1
s1

|Cf (s1, N − 1)|2

...
...

...
. . .

...

1
s63

|Cf (s63, 0)|2 1
s63

|Cf (s63, 1)|2 1
s63

|Cf (s63, 2)|2 · · · 1
s63

|Cf (s63, N − 1)|2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Because the entries of the scalogram are non-negative real numbers, the scalogram
can be viewed as a 64×N grayscale image where values near 0 give white pixels and
values near the maximum value in the entire matrix give black pixels as in Fig. 9.
This allows us to use neural networks that work well for image classification to help
classify bird species from scalograms. The process of constructing convolutional
neural networks to accomplish this task is described in the next section.

3 Neural Networks

We now introduce artificial neural networks and the process of training them to
accomplish a classification task. We then go on to define convolutional neural
networks which are particularly useful for image classification.

3.1 Densely Connected Neural Networks

Roughly, an artificial neural network is a function with many parameters that is
constructed to perform a classification or regression task with minimal error. The
parameters are usually “learned” from a set of data, which provide a set of known
input and target output value pairs for the function to try to associate with each other.
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Fig. 9 Scalogram of a Roadside Hawk call (Rupornis magnirostris) recording from xeno-
canto [2]. Each scale s on the scalogram was converted to a frequency for labeling the vertical
axis using the formula 44,100ω0/(2πs). Audio source: https://www.xeno-canto.org/428440

A densely connected neural network is a composition of functions that alternate
between affine functions and activation functions. A layer in a neural network is an
affine function followed by an activation function.

An example of a densely connected neural network with one layer is the function
f : R2 → R

3 defined by

f (x1, x2) = softmax(−3x1 − 2x2 + 6, −x1 + 3x2 − 6, 3x1 − x2 − 3),

where the activation function softmax : R3 → R
3 is defined by

softmax(u1, u2, u3) =
(

eu1

eu1 + eu2 + eu3
,

eu2

eu1 + eu2 + eu3
,

eu3

eu1 + eu2 + eu3

)

.

This neural network can be written as f (x) = softmax(W1x + b1), where the affine
function x �→ W1x + b1 has weight matrix W1 and bias vector b1 given by

W1 =
⎛

⎝

−3 −2
−1 3

3 −1

⎞

⎠ , b1 =
⎛

⎝

6
−6
−3

⎞

⎠.

Notice that each component of the output of the softmax function is a number
between 0 and 1, and that the sum of the output components is always 1. This allows

https://www.xeno-canto.org/428440
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Fig. 10 Regions defined by the very simple neural network defined by f . The 3-tuples of positive
and negative signs show the signs of (u1, u2, u3) in each of the seven regions, where u = W1x+b1

each component of the softmax output to be interpreted as a probability that an input
point belongs to a particular output class.

The neural network f partitions the input space R
2 into regions that have

signature output values. For instance, the equation u = W1x + b1 = 0 yields
equations for three lines 3x1 + 2x2 = 6 (or u1 = 0), x1 − 3x2 = −6 (or u2 = 0),
and 3x1 − x2 = 3 (or u3 = 0) that divide R

2 into seven disjoint regions, three of
which are labeled R1, R2, and R3 in Fig. 10. Specifically,

R1 = {(x1, x2) : −3x1 − 2x2 + 6 > 0, −x1 + 3x2 − 6 < 0, 3x1 − x2 − 3 < 0},
R2 = {(x1, x2) : −3x1 − 2x2 + 6 < 0, −x1 + 3x2 − 6 > 0, 3x1 − x2 − 3 < 0},
R3 = {(x1, x2) : −3x1 − 2x2 + 6 < 0, −x1 + 3x2 − 6 < 0, 3x1 − x2 − 3 > 0}.

Under the function f defining the neural network, points in R1 map to output
values near (1, 0, 0), points in R2 map to outputs near (0, 1, 0), and points in
R3 map to outputs near (0, 0, 1). For example, f (1, 3) = softmax(−3, 2,−3) ≈
(0.0066, 0.9867, 0.0066), which is near (0, 1, 0). Even if we did not know what
the input point was, we could still interpret the output as saying that there is a very
high probability (98.67%) the input point comes from region R2, and a very low
probability (0.66% + 0.66%) the input comes from either region R1 or R3. Thus,
the output values of the neural network can tell us how to classify input points.

We can also use this network to classify points outside of the regions Rj

depending on their proximity to the regions in question. For example, f (−1, 3) ≈
(0.268941, 0.731057, 0.000002), indicating that the point (−1, 3) is nearest to R2
(and quite far from R3). Obviously, the point (−1, 3) is not in any Rj here, and
so the probabilities should really be thought of heuristically; in practice, they give
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Fig. 11 Partition of the plane given by the neural network f . An x, filled circle, or filled triangle
at a point (a, b) in the plane indicates that the output value of the neural network, f (a, b), was
closest to (1, 0, 0), (0, 1, 0), or (0, 0, 1), respectively

a way to interpret the output of a softmax activation function in cases where the
regions are defined by data and thus may be “fuzzy.” This allows the network to
classify each point in the plane as “most likely” nearest to one of the three regions
(see Fig. 11).

A layer of a neural network is often depicted as consisting of nodes (neurons)
with connections corresponding to the weights. The network above might be
depicted as in Fig. 12. The diagram in Fig. 12 represents the composition f :
R

2 W1x+b1−→ R
3 softmax−→ R

3. Each dot (•) represents a node, which corresponds to
a standard unit vector in R

2 or R3. The “densely connected” nature of the network
is seen in the arrows connecting the input layer to the middle column of nodes. Each
arrow in that part of the diagram is labeled with a weight from the matrix W , and
each node in the middle layer is labeled with the appropriate bias from the vector
b1. In neural network parlance, we think of each node as a neuron. The incoming
weights and the bias determine the strength of the effect of input from the previous
layer on that neuron, and the activation function determines the extent to which
that neuron “fires” (i.e., passes information on to the next layer) based on its value
relative to the other neurons in its layer.

In general, a densely connected neural network is a function f : Rm → R
n, with

f = (fk ◦ Lk) ◦ (fk−1 ◦ Lk−1) ◦ · · · ◦ (f2 ◦ L2) ◦ (f1 ◦ L1),

where each Lj is an affine function of the form Lj (x) = Wjx + bj for some
weight matrix Wj and bias vector bj , and each fj is an activation function. Each
composition of the form fj ◦ Lj is called layer j in this network. The functions
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Fig. 12 Visual depiction of
the 1-layer neural network f .
Note: we consider the
composition of an affine
function followed by an
activation function in a
densely connected neural
network to be one layer, not
two

•

Input

•

•

6

•

−6

•

−3

•

Output

•

•

−3

−1

3

−2

3

−1

f1 = softmax

fj do not all have to be softmax functions; there are a number of functions that are
typically used to achieve the desired network behavior. Another common activation
function, which we will use later in our neural network construction, is the rectified
linear unit (often abbreviated as ReLU). The basic ReLU function relu : R → R is

relu(x) =
{

x if x ≥ 0,

0 otherwise.

Like the softmax function, this function introduces non-linearity into the neural
network. As an activation function in a network, the ReLU function is applied
element-wise to vectors, matrices, or higher-rank tensors. In a neural network such
as the one in Fig. 13, it is common to use ReLU activation functions everywhere
except for the last layer, where the softmax is used. Note that if f1 = relu in Fig. 13,
then only the horizontal arrows between nodes in columns two and three would be
needed because ReLU is a function from R to R that is applied entry-wise to vectors.

The diagram in Fig. 13 is a relatively simple 2-layer network. In practice, each
layer can have hundreds or thousands of nodes, which leads to a huge number of
weights in a densely connected layer. For some purposes, it is helpful to define
some layers of the network to be certain kinds of sparsely connected layers. Later,
we will define the convolutional layer, a kind of sparsely connected layer that is
often helpful in image classification problems.
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•

Input
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•

•

•
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Layer 1 Output

•

•

•

•

•

•

•

Layer 2 Output

•

•

L1

f1 = activation

L2

f2 = activation

Fig. 13 A 2-layer densely connected neural network. The input layer has 2 nodes, layer 1 consists
of f1 ◦ L1 and has 4 nodes, while layer 3 (the output layer) consists of f2 ◦ L2 and has 3 nodes.
The affine function L1 divides the input space (R2) into regions defined by 4 lines. Similarly, the
affine function L2 divides the output space of layer 1 (R4) into regions defined by 3 hyperplanes

3.2 Training Network Parameters

The 1-layer example f in the previous subsection could be somewhat misleading,
in that we define the specific weights and biases of the neural network at the start.
In general, the weights and biases of a neural network are the parameters of the
model and are unknown values at the start. The basic shape (“architecture”) of the
network is predefined, but the values of the weights and biases must be determined
(“learned”) by training on the available data.

In order to illustrate the idea of training, we will look at a network similar to the
one in the previous example from the perspective of training with data. Suppose we
know that points in the plane are divided into three types (Type 1, Type 2, and
Type 3), but we do not know which points are of which type. Suppose we have,
however, gathered some data (in Table 1) that tells us the types of 21 points in
the plane. The 1-hot encoding of Type j is just the standard unit vector ej ∈ R

3.
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Table 1 Data categorizing
some points in the plane into
one of three types

Point x Type Type 1-Hot encoding T (x)

(0, 0) 1 (1, 0, 0)

(2, 2) 3 (0, 0, 1)

(1, 3) 2 (0, 1, 0)

(2, 4) 2 (0, 1, 0)

(0, 1) 1 (1, 0, 0)

(3, 1) 3 (0, 0, 1)

(0, 4) 2 (0, 1, 0)

(1, 1) 1 (1, 0, 0)

(3, 2) 3 (0, 0, 1)

(2, 1) 1 (1, 0, 0)

(0, 2) 1 (1, 0, 0)

(3, 3) 2 (0, 1, 0)

(2, 0) 1 (1, 0, 0)

(3, 0) 1 (1, 0, 0)

(1, 4) 2 (0, 1, 0)

(1, 0) 1 (1, 0, 0)

(0, 3) 1 (1, 0, 0)

(4, 2) 3 (0, 0, 1)

(4, 0) 1 (1, 0, 0)

(4, 1) 3 (0, 0, 1)

(1, 2) 3 (0, 0, 1)

The association of points to the type of 1-
hot encoding defines the “target” function T :
X → Y , where X ⊂ R

2 is the set of
all 21 points in the point column and Y =
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊂ R

3

Suppose we want to construct a single-layer neural network model f : R2 → R
3 of

the form f = f1 ◦ L, where f1 : R3 → R
3 is the softmax function. We assume that

L : R2 → R
3 is defined by L(x) = Wx + b, where

W =
⎛

⎝

w11 w12

w21 w22

w31 w32

⎞

⎠, and b =
⎛

⎝

b1

b2

b3

⎞

⎠

are unknown matrices.
Now, we only know the general shape of the affine part of the model, the

activation function being used, and the data from Table 1 (depicted in Fig. 14).
The main task is choosing the weight matrix W and the bias vector b in order to
accurately model this data.

We begin by defining an error function. Ideally, we would like a model that would
take each of our data points in R

2 as input and produce the 1-hot encoded version
of the associated type as output. Thus, in an ideal world, our model f would map
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Fig. 14 A scatter plot of the training data given in Table 1. An x is class 1, a filled circle is class
2, and a filled triangle is class 3

(0, 0) to (1, 0, 0), (2, 2) to (0, 0, 1), (1, 3) to (0, 1, 0), and so forth. Such an exact
correspondence is generally not feasible given the model constraints, and so we
would instead like to choose the weights and biases to minimize the error function.

Here, we will use the standard sum of squares error. Given a data point x, we will
use T (x) to represent the 1-hot encoded type of x. We define the error function E

as the sum of the squares of the entries of the vector T (x) − f (x):

E(x,W, b) = ||T (x) − f (x)||2 = ||T (x) − f1(Wx + b)||2.

Finding matrices of W and b for which the average error over all 21 data points
is minimized is now a multivariate calculus problem. Ideally, we would like to
minimize the average overall error, which we can think of as a function of the
matrices W and b:

E(W, b) = 1

21

∑

x

E(x,W, b) = 1

21

∑

x

||T (x) − f (x)||2.

In practice, we typically find approximate solutions to this minimization problem
via a method such as gradient descent. We will illustrate this method here. The
simplest form of gradient descent involves incremental training; that is, we consider
randomly chosen input data points x, one at a time, and take small steps in the
parameter space that reduce the associated component of the error.

We begin by initializing the weights and biases to some randomly chosen values.
Then, we use the data to train the network by gradient descent by the process
described below.
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First, we compute the relevant gradients. Given a fixed data point x, let E =
E(x,W, b). We need to find

∇E =
〈

∂E

∂w11
,

∂E

∂w12
,

∂E

∂w21
,

∂E

∂w22
,

∂E

∂w31
,

∂E

∂w32
,

∂E

∂b1
,

∂E

∂b2
,

∂E

∂b3

〉

.

In order to do this, let u = L(x) = Wx + b and y = f1(u), where f1 is the softmax
function defined above. Here, L : R9 → R

3 is a function of nine variables (the six
weights in W and the three biases in b are “variables,” but x is a fixed data point and
not a variable), and its derivative matrix is

D(L) =
⎛

⎝

x1 x2 0 0 0 0 1 0 0
0 0 x1 x2 0 0 0 1 0
0 0 0 0 x1 x2 0 0 1

⎞

⎠.

The derivative matrix of the softmax function f1 : R3 → R
3 has a nice structure if

we write it in terms of the dependent variable y:

D(f1) =
⎛

⎝

y1 − y2
1 −y1y2 −y1y3

−y1y2 y2 − y2
2 −y2y3

−y1y3 −y2y3 y3 − y2
3

⎞

⎠.

Finally, the derivative matrix for E as a function of (y1, y2, y3) is

D(E) = (

2(y1 − t1) 2(y2 − t2) 2(y3 − t3)
)

,

where T (x) = (t1, t2, t3). We can now use the chain rule to compute

∇E = D(E)D(f1)D(L)

given any input point x, its target output T (x), and current parameter choices W

and b.
We will perform a number of steps, each of which runs as follows:

1. Choose a learning rate α. (This value can vary with the step, but we will choose
α = 0.05 for each step for simplicity.)

2. Randomly choose one of the inputs x and find its target T (x).
3. Compute ∇E based on the chain rule computations above. Reshape the first 6

entries of ∇E into a 3×2 matrix dW , and the final 3 entries of ∇E into a vector db.
4. Compute Wnew = W − αdW and bnew = b − αdb.

After one step has been completed, we begin the next set with a new random data
point, and with Wnew and Bnew in place of W and B.
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We now illustrate one step of this process. Other steps will be similar, but with
different starting data. For the purposes of this example, let us suppose the initial
random weights and biases are

W =
⎛

⎝

0.5 −0.5
−0.5 −0.5

0.5 0.5

⎞

⎠ , b =
⎛

⎝

0
0
1

⎞

⎠.

Suppose that our first randomly chosen training point is x = (2, 4) with T (2, 4) =
(t1, t2, t3) = (0, 1, 0). Then, we compute

⎛

⎝

u1

u2

u3

⎞

⎠ = L(2, 4) =
⎛

⎝

0.5 −0.5
−0.5 −0.5

0.5 0.5

⎞

⎠

(

2
4

)

+
⎛

⎝

0
0
1

⎞

⎠ =
⎛

⎝

−1
−3

4

⎞

⎠.

⎛

⎝

y1

y2

y3

⎞

⎠ = f1

⎛

⎝

u1

u2

u3

⎞

⎠ ≈
⎛

⎝

0.00668679
0.00090496
0.99240825

⎞

⎠.

The associated derivative matrices are

D(L) =
⎛

⎝

2 4 0 0 0 0 1 0 0
0 0 2 4 0 0 0 1 0
0 0 0 0 2 4 0 0 1

⎞

⎠ ,

D(f1) ≈
⎛

⎝

0.00664208 −0.00000605 −0.00663603
−0.00000605 0.00090414 −0.00089809
−0.00663603 −0.00089809 0.00753412

⎞

⎠,

D(E) ≈ (

0.01337359 −1.99819008 1.98481649
)

.

Then, the chain rule yields

∇E ≈

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.02614076
−0.05228152
−0.00717853
−0.01435706

0.03331929
0.06663859

−0.01307038
−0.00358926

0.01665964

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

.
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This yields

dW =
⎛

⎝

−0.02614076 −0.05228152
−0.00717853 −0.01435706

0.03331929 0.06663859

⎞

⎠ , db =
⎛

⎝

−0.01307038
−0.00358926

0.01665964

⎞

⎠ ,

which gives

Wnew =
⎛

⎝

0.50130703 −0.49738592
−0.49964107 −0.49928214

0.49833403 0.49666807

⎞

⎠ , bnew =
⎛

⎝

0.00065351
0.00017946
0.99916701

⎞

⎠ .

If we continue to train the model by repeatedly choosing a random point and
updating the weights W and bias vector b, the model will often converge to a
point of minimum error, resulting in a partition of points in the plane as shown
in Fig. 15. Because the network in this case only has one affine layer, the resulting
model is essentially a simple linear regression model followed by a normalization.
Therefore, we should not be surprised that this 1-layer model resulted in linear
decision boundaries for the three types.

With more layers, one can train in the same manner to obtain more complicated
decision boundaries. The result of the trained 2-layer model given in Fig. 13 with
activation functions f1 = relu and f2 = softmax on the data from Table 1 is shown

Fig. 15 Partition of the plane given by training the 1-layer network on the data from Table 1.
Shading of the plane indicates whether the neural network output is largest in the first component
(class 1 = light gray), second component (class 2 = medium gray), or third component (class 3 =
dark gray). Training data are displayed with an x for class 1, a filled circle for class 2, and a filled
triangle for class 3. Notice that some of the training data are misclassified by the neural network
(e.g., the point (0, 3)) while others are quite close to the decision boundaries (e.g., the point (3, 1))
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Fig. 16 Partition of the plane given by training a 2-layer network on the data from Table 1. Notice
that this 2-layer neural network partitions the plane via non-linear decision boundaries and makes
fewer classification errors on the training data than the 1-layer neural network in Fig. 15

in Fig. 16. The non-linear decision boundaries in Fig. 16 are the result of composing
two non-linear functions f1 ◦ L1 and f2 ◦ L2 that divide R

2, which is the input to
layer 1, into regions defined by 4 lines and R

4, which is the input to layer 2, into
regions defined by 3 hyperplanes, respectively.

3.3 Other Types of Layers (Convolutional, Pooling,
and Reshaping)

Networks with only dense layers have some disadvantages for image analysis. In
particular, a dense layer in a network with n inputs and m outputs has (n + 1)m

parameters, which can be a very large number. As a result, a densely connected
network with L layers, vector inputs of length n0, and nk nodes at layer k will have

L−1
∑

k=0

(nk + 1)nk+1

parameters to be determined. For instance, analyzing medium-sized 200×200 pixel
images via a densely connected network with 50 nodes in layer 1 and 3 nodes in
layer 2 yields a total of (2002 + 1) · 50 + (50 + 1) · 3 = 2,000,203 parameters in the
neural network! The large number of parameters and the size of vector inputs into
each layer of the network can cause the network to train very slowly and even have



Using Neural Networks to Identify Bird Species 427

unrealistically large training times. Also, networks with too many parameters can
overtrain to match the data in the sample, rather than building a model that correctly
classifies key characteristics and patterns that may be present in out-of-sample data.
Moreover, the fact that each vector input is a “flat” vector fails to take advantage of
the fact that the original inputs are images, and therefore have a rectangular array
structure. For all of these reasons, densely connected neural networks might not be
the ideal tool for image classification.

One way to overcome these difficulties is to insert certain types of sparsely
connected layers at the start of the network. The sparse nature of these layers will
reduce the total number of parameters to be determined, and the layers will also
be structured in order to take advantage of the rectangular array structure of the
inputs. In this subsection, we introduce a few of the types of layers available. One
of the main types, the convolutional layers, will be based on a rectangular kernel
of parameters which will sweep across the entire input image and train themselves
to extract key features from the images. For a full description of the layer types
discussed here and how they fit into a network designed for image analysis, see [24,
Module 2].

2-Dimensional Convolutional Layers We first describe the basic 2-dimensional
convolution operation, which is a 2-dimensional analogue of the 1-dimensional
cross-correlation we used in the wavelet transform. A 2-dimensional convolution
can be thought of as a process for identifying regions within a larger matrix (M)
that are similar to features in a smaller matrix (K). This is done by moving the
smaller matrix over contiguous regions of the larger one and measuring similarity
at each step via a weighted sum of entries from the larger matrix with weights from
the smaller matrix. For the purposes of giving a manageable example, we will work
with a fairly small input matrix M . Suppose, for example, that the input to a layer is
the 6 × 8 matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 3 −1 −3 0 4 1 2
1 −1 −2 2 3 0 −1 3

−2 1 0 −2 3 1 −1 0
−1 3 −1 1 2 2 −4 1

4 −2 1 0 −3 1 0 1
1 2 −1 −1 3 −1 2 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Convolution kernels are smaller matrices which are typically trained based on the
data. For this example, suppose that the kernel is

K =
⎛

⎝

1 0 −1
0 2 0

−1 0 1

⎞

⎠ ,
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which will be used to identify features parallel to the main diagonal because the
entries on the main diagonal are positive weights, the sub- and super-diagonal
entries are neutral (zero), and the remaining entries are negative. The result of
applying the convolution CK defined by K to the matrix M is the 4 × 6 matrix
given by passing K over each contiguous 3 × 3 submatrix of M and then recording
the sum of the resulting products of elements. (This corresponds to the dot product
of the two vectors obtained by reshaping K and the 3 × 3 submatrix of M into row
vectors of length 9.) In the following diagram, the kernel K is dotted with the first
3 × 3 submatrix of M

K =
⎛

⎝

1 0 −1
0 2 0

−1 0 1

⎞

⎠ , M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 3 −1 −3 0 4 1 2
1 −1 −2 2 3 0 −1 3

−2 1 0 −2 3 1 −1 0
−1 3 −1 1 2 2 −4 1

4 −2 1 0 −3 1 0 1
1 2 −1 −1 3 −1 2 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

to produce the first entry of CK(M):

1 ·2+0 ·3+ (−1) · (−1)+0 ·1+2 · (−1)+0 · (−2)+ (−1) · (−2)+0 ·1+1 ·0 = 3.

Next, we would move the kernel one column to the right to compute the next entry
of CK(M).

K =
⎛

⎝

1 0 −1
0 2 0

−1 0 1

⎞

⎠ , M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 3 −1 −3 0 4 1 2
1 −1 −2 2 3 0 −1 3

−2 1 0 −2 3 1 −1 0
−1 3 −1 1 2 2 −4 1

4 −2 1 0 −3 1 0 1
1 2 −1 −1 3 −1 2 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The next entry of CK(M) is therefore

1·3+0·(−1)+(−1)·(−3)+0·(−1)+2·(−2)+0·2+(−1)·1+0·0+1·(−2) = −1.

We continue this process over all 3 × 3 contiguous submatrices of M to produce

CK(M) =

⎛

⎜
⎜
⎝

3 −1 6 2 −5 −1
5 −5 −6 9 0 −6
1 3 −5 2 11 −7

−6 1 1 −7 7 4

⎞

⎟
⎟
⎠

.

It is possible to pad the matrix M with rows and columns of zeros around the outside
edges so that M and CK(M) have the same dimensions. It is also possible to move
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the kernel K across M with a stride length of more than one cell. For more details
on padding and striding with 2d-convolution, please see [19, 35].

Given the basic operation of 2-d convolution, we now describe how to use this to
make a layer in a neural network. We choose a certain size for our convolution kernel
(say 3 × 3) and also a number of kernels to use in the layer (say 16). This number
is sometimes called the number of channels. Using more than one channel allows
us to apply several different kernels of the same size to the input at the same time.
In this situation, K1, K2,. . . , K16 would each represent 3 × 3 convolution kernels
which start off as unknown parameters (i.e., they are initialized to random values in
some way). The training of the model determines the entries in each of these kernels
in order to extract key features from the data. If the input to this convolutional layer
is a m × n array, the output would consist of 16 different (m − 1) × (n − 1)

arrays, which is usually considered as a single (m − 1) × (n − 1) × 16 array.
Such a multidimensional array is called a rank-3 tensor, where standard matrices
are examples of rank-2 tensors. Modern data modeling software such as Google’s
TensorFlow takes advantage of training data using tensors of rank higher than 2. We
would refer to the convolutional layer described above as a “3 × 3 convolutional
layer with 16 channels.”

2-Dimensional Pooling Layers A convolutional layer is likely to generate several
large matrices based on a single matrix as input. In order to simplify and shrink
this data while retaining its dominant features, we can use pooling layers. These
layers have no parameters to be trained. Instead, we divide the input matrix into
rectangular arrays of the same size, and retain only some information (for example,
the maximum value or the average value). In our networks, we used max-pooling,
which keeps only the maximum value in each submatrix.

For example, a 2 × 2 max-pooling layer with input given by the output matrix
CK(M) from above would yield the following breakdown:

CK(M) =

⎛

⎜
⎜
⎝

3 −1 6 2 − 5 −1
5 −5 −6 9 0 −6
1 3 − 5 2 11 −7

−6 1 1 −7 7 4

⎞

⎟
⎟
⎠

leading to the following output matrix

maxpool2×2(CK(M)) =
(

5 9 0
3 2 11

)

.

Reshaping Layers Sometimes layers that reshape inputs are also helpful. For
example, a common type of layer is the flatten layer, which will take a rank-k tensor
as input (where k > 1) and flatten it into a vector (a rank-1 tensor). For example,
if the input to a flatten layer is an m × n matrix, the output would have the same
entries, but would be reshaped to a vector of length mn.
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3.4 Convolutional Neural Networks

In constructing a convolutional neural network (CNN) to solve the bird species
classification problem, we explored several different network architecture types
common in image recognition applications (see [24], for example). The top perform-
ing models that we created for our data were arranged as in the diagram in Fig. 17.
The example in Fig. 17 has 4 kernels that pass over the scalogram to produce each of
the 4 channels of the first convolutional layer. Shading in the scalogram shows one
place where convolution with a kernel is used to produce a number in one channel
of the convolutional layer. Similarly, the shading in the lower-left corner of one of
the channels of the first convolutional layer shows one place where max-pooling is
used to produce a number in the max-pool layer. The flatten operation rearranges all

Scalogram Convolutional Maxpool Convolutional Maxpool

Flatten

Affine
Activation

Affine

Softmax Output

Species 1 probability
Species 2 probability
Species 3 probability
Species 4 probability

Fig. 17 Example of a schematic diagram of a convolutional neural network where the input
is a scalogram of a birdsong and the output is vector of probabilities for four different types
of bird species. The top row shows convolutional and max-pooling layers, which are rank-3
tensors. The convolutional and max-pooling layers on the left have 4 channels, while the ones
on the right have 7 channels. Each convolutional layer scans the previous layer for features that
are similar to the kernels. Each max-pooling layer compresses the previous layer while retaining
the dominant features. The top row produces an abstract feature vector from the scalogram. The
densely connected network in the bottom row decides which of these abstract features are important
for classifying which bird species is singing. Note: The densely connected network is intentionally
drawn with too few inputs and only two layers to save space
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of the numerical entries from the last max-pool layer (a rank-3 tensor) into a vector
(a rank-1 tensor). The bottom row is a densely connected neural network that takes
this vector as input and returns a vector of probabilities as output.

4 Data Description

Each year since 2014, ImageCLEF has conducted a machine learning competition
specifically dedicated to understanding more about biodiversity and habitats of
living species [4]. It is hoped that increased knowledge in these areas will lead
to better policies relating to sustainability and conservation. One task within this
“LifeCLEF” contest is known as “BirdCLEF,” which focuses on the identification
of bird species from birdsong samples.

The BirdCLEF dataset is an annually updated, curated set of WAV files con-
taining birdsong. The data for this task comes from the collection of birdsong data
maintained by the xeno-canto Foundation [2]. Each WAV file is associated with an
XML file which gives the date and location at which the recording was made, the
name of the person who made the recording, and the bird species represented in the
recording. This labeled and curated dataset provides an ideal framework for learning
about audio signal processing and machine learning classification protocols.

For this project, we worked with the BirdCLEF 2016 dataset. This is a set of
24,607 WAV files, each of which is labeled with one of 999 different bird species
native to South America. The files range from under 1 s to over 45 min in length,
with a median length of around 25 s. The number of WAV files per species ranges
from a minimum of 10 (for 7 different species) to a maximum of 160. On average,
a species has around 25 associated WAV files.

In most cases, only short parts of a longer WAV file contain birdsong. Therefore,
once we have generated a scalogram, we need to select appropriate short sections
from each scalogram, called “snippets,” to use as input for the neural network.
Ideally, the selected snippets will contain clear examples of birdsong and be
reasonably free of other noise. For entry into the neural network, each of the snippets
must have the same size. The process of programming the computer to choose
relevant snippets is detailed in the following section.

5 Pre-processing and Snippet Selection

In this section, we will describe the pre-processing steps involved in preparing
the scalograms for a neural network. All of us started this project as novices at
audio signal processing. Therefore, the procedures outlined in this section are not
intended to be put forth as “best possible” pre-processing steps, but only as the
most successful of the many different things we have tried. The following should
be considered as a rough guide as to the sorts of processes that can be attempted.
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Interested undergraduate students can easily get into this area by altering existing
processes in various ways to see if greater classification accuracy can be attained.

We began our work with just 4 of the 999 species in the overall BirdCLEF
dataset: Bananaquit (Coereba flaveola), Roadside Hawk (Rupornis magnirostris),
Green Violetear (Colibri cyanotus), and Buff-breasted Wren (Cantorchilus leuco-
tis). Using a small number of species dramatically reduced the computation time
when trying different pre-processing steps and neural network model configurations,
which helped us to quickly discover what works well and what does not. Once we
had achieved some success in classification, we worked to extend our results to
larger collections of species. We give details of our processes and results for four
species in this section and the next.

5.1 Making Scalograms

We began by making a scalogram for every WAV file labeled with one of the four
chosen species. Each scalogram was stored in a dataset together with its WAV file
identifier and species label. Each scalogram was essentially a 64×(44100·T ) matrix
of non-negative real numbers, where T is the length of the recording in seconds.

5.2 Max-Pooling

Because the time dimension of the scalogram arrays was typically very large, we
found that it was difficult to store and process data from all of the complete scalo-
grams. However, having 44,100 observations of the continuous wavelet transform
per second was not entirely necessary, because there was quite a bit of redundant
information. We therefore chose to “max-pool” the scalograms along the time
dimension. Each scalogram was broken into disjoint 1 × 50 sections, and only
the maximum value from each section was retained. This maximum value became
a single entry in the max-pooled scalogram. The new scalograms had smaller
dimensions of 64 × (882 · T ), and still contained the relevant information from
the original scalograms.

5.3 Training–Validation–Testing Split

We split the collection of WAV files into three sets: a training set on which we
trained our neural network model, a validation set on which we frequently evaluated
our model, and a testing set on which we performed one final evaluation of our
model. We opted for a small validation set that is separate from the testing set in
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Table 2 Distribution of snippets and WAV files in the training, validation, and testing sets

Training set Validation set Testing set All three sets

Snippets WAVs Snippets WAVs Snippets WAVs Snippets WAVs

Bananaquit 3322 62 615 9 2024 36 5961 107

Roadside Hawk 6792 61 1134 11 1558 28 9484 100

Green Violetear 8382 57 1139 11 2641 33 12,162 101

Buff-breasted Wren 4298 66 558 10 2044 26 6900 102

All four species 22,794 246 3446 41 8267 123 34,507 410

order to help us choose the best network architecture from among all the networks
we constructed. The validation set also helped us evaluate how well the network
performs on data it has not learned, thereby giving us a means to evaluate how
well the neural network model generalizes from the sample (training data) to the
population (data outside the training set). A network generalizes well when it
performs well on the training and the validation sets, and poorly when it does
significantly better on training data than on validation data. There were a total of 410
WAV files, and each of the 4 bird species was represented almost equally. Among
the WAV files, we randomly took 60% (246 files) for the training set, 10% (41 files)
for the validation set, and used the remaining 30% (123 files) for testing. Because
the four bird species were almost equally represented in each of these three sets,
we say that the split is stratified. The distribution of WAV files among the four bird
species within each of the training, validation, and testing sets is given in Table 2.

5.4 Selecting Snippets from Scalograms

Our next step was to select short “snippets” from each scalogram to use as input
to our neural network. This was necessary because our neural network requires
every input matrix to have the same size. Snippets were created by sliding a window
across each scalogram, keeping pieces that likely have birdsong and discarding ones
that likely do not have birdsong. In particular, starting from the beginning of each
scalogram we created one 1.5 s long snippet every quarter of a second. Each of these
snippets, some of which overlap each other, was a 64 × 1323 contiguous submatrix
of non-negative real numbers from the scalogram. For each snippet, we computed
the total power, which is the sum of all the entries in the snippet. If the total power
of a snippet was greater than the median of the total power for all the snippets from
a WAV file, we kept the snippet as it likely had birdsong or other high-amplitude
sounds in it. Otherwise, we discarded the snippet because it likely had no discernible
signal in it and was mostly low-amplitude background noise.

The snippets that we kept from each scalogram became inputs to the convolu-
tional neural network. For the 4 species under consideration, this resulted in 22,794
snippets from 246 WAV files in the training set, 3446 snippets from 41 WAV files
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in the validation set, and 8267 snippets from 123 WAV files in the testing set.
The distribution of these snippets among the four bird species in each of the training,
validation, and testing sets is given in Table 2. Note that although the number
of WAV files for each of the four bird species is approximately equal within the
training, validation, and testing sets, the number of snippets is not close to being
equal within each set. This is largely the result of some bird species having more
snippets because of longer recordings.

5.5 Denoising

One issue we struggled with was removing noise from the recordings. Here, “noise”
means any sound in the recording that is not birdsong from the primary species.
Some of the noise was due to low-volume noise, which we could typically remove
from the scalogram via a thresholding technique. In fact, during the first summer of
this project we denoised scalograms using wavelet-based thresholding techniques
such as VisuShrink and SureShrink, which are good at removing low-power
background noise from scalograms [54]. In the second summer of research, we
discontinued wavelet-based thresholding and instead tried other means to remove
noise due to human voices, other birdsongs or animal noises, and weather-related
effects. The volume of this noise often was on par with or higher than the volume
of the birdsong that we were extracting, and we had some difficulty getting the
computer to distinguish between actual birdsong and these other sorts of noise. Our
efforts to separate birdsong from noise, which focused on identifying noisy snippets
and then throwing them away, were largely unsuccessful because they failed to
automatically identify and discard high-amplitude noise. Interested readers could
almost certainly improve upon our results by implementing effective denoising
techniques, such as wavelet-based methods or band-pass filtering.

6 Results

Once we had developed some working pre-processing steps for our audio data,
we worked to design convolutional neural networks to address the bird species
classification problem. The neural network takes 64 × 1323 matrices S (snippets)
as input, and the target output is equal to the one-hot encoded species identifier
for that species. This means that snippets from a Bananaquit have a target output
of (1, 0, 0, 0), snippets from a Roadside Hawk have a target output of (0, 1, 0, 0),
snippets from a Green Violetear have a target output of (0, 0, 1, 0), and snippets
from a Buff-breasted Wren have a target output of (0, 0, 0, 1). The output f (S)

of our network should be a vector in R
4 with positive entries that sum to 1. To

measure the error between the target output T (S) = (t1, t2, t3, t4) and the neural
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Input:
Scalogram

9 × 9 Conv2D,
16 Channels,

ReLU

4 × 4
Max-pooling

3 × 3 Conv2D,
16 Channels,

ReLU

4 × 4
Max-pooling

Dense Layer,
100 Nodes,

ReLU

Dense Layer,
100 Nodes,

ReLU

Output:
Dense Layer,

4 Nodes,
Softmax

flatten

Fig. 18 The structure of the primary convolutional neural network used to address the species
classification problem

network output f (S) = (a1, a2, a3, a4), we used the “categorical cross-entropy”
loss function

Lossf (S) = −
4
∑

i=1

ti log ai.

This cross-entropy sum is only nonzero on the term corresponding to the correct
species. Notice that it is built to penalize a low probability ai in that position with a
high positive loss.

Our most successful networks thus far have been structured as in Fig. 18. Each
convolutional or dense layer in Fig. 18 is followed by an activation function. For
the output layer, the activation function is the softmax function defined earlier. The
other convolutional and dense layers use a rectified linear unit activation function.
Using the ReLU activation function tends to speed up network training.

Each WAV file has many snippets associated with it. For each snippet, the neural
network output is a probability vector with four entries whose largest entry indicates
which bird species is most likely singing in the snippet. Thus, the bird species
predicted to be in the WAV file by the neural network is the one that receives the
most votes from among all of its snippets.

We trained our networks on snippets chosen from training set WAV files
associated with the four species. Once acceptable training accuracy was reached,
we validated our model on snippets chosen from the validation WAV files. This led
to two sorts of accuracy: the percentage of chosen validation snippets for which the
species is correctly identified, and the percentage of validation WAV files for which
the species is correctly identified by combining the results of the associated snippets.
The training process was stochastic, and so different training runs produced different
levels of accuracy.

The results in Table 3 show that the ten neural networks constructed had average
accuracy of 84.5% with standard deviation of 4.2% when all four bird species are
considered. Table 3 also shows that the accuracy on WAV files was significantly
higher for the training set than on the validation and testing sets. This may indicate
that the model is overfitting, which means that it has learned the detailed features
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Table 3 Average accuracy across ten neural network classifiers

Training set Validation set Testing set

Accuracy Accuracy Accuracy

Snippets WAVs Snippets WAVs Snippets WAVs

Bananaquit 92.6% 98.4% 90.8% 90.0% 69.1% 86.9%

Roadside Hawk 94.6% 99.5% 84.4% 89.1% 71.5% 83.6%

Green Violetear 97.0% 99.7% 67.3% 75.5% 79.2% 85.5%

Buff-breasted Wren 84.0% 97.1% 83.9% 98.0% 68.4% 80.8%

All four species 93.2% 98.6% 79.8% 87.8% 72.6% 84.5%

Standard deviation 2.1% 2.1% 4.1% 4.2% 4.2% 4.2%

Table 4 Some neural network classification results for the WAV files in the testing set

Predicted

Actual BQ RH GV BW

BQ 32 1 3 0

RH 1 22 2 3

GV 0 3 30 0

BW 0 5 1 20

Predicted

Actual BQ RH GV BW

BQ 31.3 1.1 2.6 1.0

RH 1.8 23.4 0.7 2.1

GV 2.6 2.1 28.2 0.1

BW 0.1 4.3 0.6 21.0

Predicted

Actual BQ RH GV BW

BQ 86.9% 3.1% 7.2% 2.7%

RH 6.4% 83.6% 2.5% 7.5%

GV 7.9% 6.4% 85.5% 0.3%

BW 0.4% 16.5% 2.3% 80.8%

BQ Bannanaquit, RH Roadside Hawk, GV Green Violetear, BW Buff-Breasted Wren. (Left) A
typical confusion matrix for one neural network. The entry in row i and column j is the number
of WAV files for which the birdsong was actually species i but was predicted to be species j in
the testing set. Each row sum is the number of WAV files for the bird species in that row. (Center)
Average confusion matrix for all ten neural networks. (Right) Average confusion matrix for all ten
neural networks converted to percentages (i.e., each row entry of the average confusion matrix is
divided by the row sum and then converted to a percent)

of the training data too well, resulting in a model that performs sub-optimally on
data that does not have features identical to those in the training set. Overfitting can
be prevented by doing fewer weight updates or by techniques such as regularization
and dropout [19]. We reduced overfitting by only learning from the training data by
cycling through it three times (i.e., three epochs). We also tried regularization and
dropout, but did not see significant improvements from them, so we omitted them
from our neural network model.

The results in Table 4 highlight some classification results for our ten neural
networks for the WAV files in the testing set. Each matrix in this table is called
a confusion matrix, in which diagonal entries indicate correct classification and
entries not on the main diagonal indicate incorrect classification.

7 Suggested Future Research Projects

Experiments in signal processing, neural network design, and data modeling provide
great opportunities to engage students in statistical research projects. In addition
to learning about neural network design and implementation, students develop
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useful skills in data processing, computer programming, and computer-aided data
modeling. In this section, we discuss potential research avenues that might be
undertaken by interested groups of undergraduate faculty and students.

Students who are interested in studying bird species classification can start from
scratch or extend our work in this area.3 Ideas for extending or improving bird
species classification using birdsong include:

Research Project 1: Optimizing Signal Processing Explore different types
of signal transforms for making power spectra, such as scalograms, and
identify their best parameter values for birdsong analysis.

For this research project you may want to:

(a) Modify the Morlet wavelet transform by adjusting its parameters, changing
the number of frequency bands and their widths to yield better results when
analyzing birdsong. To speed up processing, try to find the minimal number of
frequency bands that yield good results when analyzing birdsong.

(b) Instead of using a Morlet wavelet transform, create scalograms via a
Daubechies, discrete Meyer, or another discrete wavelet transform.

(c) Instead of using a Morlet wavelet transform, create spectrograms via short-term
or windowed Fourier transform methods.

(d) Instead of using a Morlet wavelet transform, create a short-term power spectrum
representation using mel-frequency cepstral coefficients.

Research Project 2: Denoising Explore methods of denoising birdsong in
order to improve the signal-to-noise ratio.

For this research project you may want to:

(a) Reduce low-power background noise in scalograms by applying wavelet-based
thresholding techniques such as VisuShrink and SureShrink, and BayesShrink,
which typically apply a single, universal threshold to all wavelet coefficients.

(b) Reduce high-power foreground noise in scalograms by applying band-pass
filtering that leaves wavelet coefficients in some frequency bands alone while
reducing some wavelet coefficients in other bands (possibly to zero). Such
filtering could be particularly useful for reducing noise due to human voices,
other birds or animals, and weather. It is challenging to reduce this kind of
noise without reducing the birdsong signal, and to do so in a systematic way
that is effective, universally applicable, and not ad hoc.

3Our Python computer code is available at https://github.com/paultpearson/BirdsongPaper.

https://github.com/paultpearson/BirdsongPaper
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Research Project 3: Selecting Relevant Snippets Explore methods for
selecting the most relevant short segments (snippets) of birdsong from a long
recording.

For this research project you may want to:

(a) Examine the scalograms for many bird species closely and develop your own
criteria for snippet generation and selection. (In other words, get to know
your data well and then devise a method for snippet selection that is tailored
to your data and will generalize well to data you have not seen yet.) For
snippet generation from scalograms, we used a sliding window approach with
an arbitrarily chosen fixed window width and stride length, and we retained only
the snippets that had above median power. Our snippet generation and selection
methods could be improved upon. You may want to explore the birdsong
literature for other ideas for effective detection and segmentation practices.

(b) Use object detection (or recognition) methods from machine learning to create
a more effective method for generating and choosing segments (snippets) of
birdsong in a scalogram from a long recording. Sliding window approaches that
use machine learning to select snippets might perform better than those that use
statistics, like our approach did.

Research Project 4: Design a Better Neural Network Create a neural
network that achieves greater classification accuracy for birdsong scalograms.

For this research project, you may want to:

(a) Modify the existing neural network architecture (e.g., the number and size of
convolutional layers, max-pooling layers, dense layers, etc.) or add dropout
layers to improve classification accuracy.

(b) Use normalization on scalograms to make them have the same power relative
to the other scalograms. In the neural network, batch normalization layers for
the CNN or regularization for the dense neural network may also help improve
performance, especially on testing and out-of-sample data.

(c) Explore other types of neural networks (e.g., recurrent neural networks, radial
basis function neural networks, capsule networks, etc.).

(d) Explore ensemble methods, which combine the results of several different
networks into a single classifier, to improve overall classification accuracy.
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Research Project 5 Scale up the project by building a classifier that works
for more bird species with a high degree of accuracy, and works on devices
deployable where birds live.

For this research project, you may want to:

(a) Take what you learned from analyzing a small number of bird species and try
to build a classifier that can correctly classify thousands of bird species and
work well on new recordings. This may involve optimizing code for improved
speed and data compression, and running the code on computers with sufficient
hardware resources (e.g., memory, hard drive space, and graphical processing
units).

(b) Build a remote sensing device (e.g., Arduino or Raspberry Pi) that can gather
audio recordings, analyze the data in near real time using a pre-built classifier,
and then report which bird species are present in a region either by transmitting
them via the internet or allowing results to be downloaded directly from the
device.

The research projects listed above build upon and extend a growing body of
research in birdsong classification. Students interested in learning more about
birdsong classification have many resources to draw on because in recent years
Kaggle, NIPS, and BirdCLEF competitions have popularized birdsong analysis and
resulted in much research. A recent review of the field of birdsong classification can
be found in Priyadarshani et al. [37], and a thorough and recent literature review in
appendix 1 of Knight et al. [25]. Many birdsong recognition contestants have also
written about their work for the Kaggle 2013 contest (winner) [28], NIPS4B [48],
BirdCLEF2014 [27], and BirdCLEF2016 (winner) [47]. Birdsong classification has
recently been the subject of several undergraduate, masters, and Ph.D. theses [7,
31, 36, 46]. A non-exhaustive list of techniques employed in birdsong classification
research includes wavelets [36, 38, 50], mel-frequency cepstral coefficients [7, 13,
14, 18, 20, 31, 48, 49], Fourier transform based methods [8, 12, 28, 41, 42, 44, 47],
convolutional neural networks [25, 26, 31, 33, 43, 47, 53], densely connected neural
networks [8, 27, 45], extreme learning machine [40], sparse-instance-based active
learning [39], Gaussian mixture models [7], hidden Markov models [7, 14, 25],
Bayes risk-minimizing classifier [13], multi-instance multi-label learning [11, 12],
random forests [11, 28, 48, 49], support vector machines [14, 18, 20, 34, 51], and
linear predictive coefficients [14, 21]. We encourage students to contact researchers
and competition contestants in birdsong recognition as they dig into the literature.

Learning wavelet transforms and neural networks through birdsong research
develops many skills that can be applied to analyze other types of data. For instance,
interested students can also use scalograms and neural networks to classify other
kinds of sound files. This could include sound-based recognition of other species
types or more general sound recognition (e.g., human voice recognition). Students
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could also explore the idea of automated music recognition or transcription using
wavelets such as the Morlet wavelet. Convolutional neural networks have a wide
variety of important applications to image recognition and classification problems.
Machine learning competitions on websites such as Kaggle [5], ImageCLEF [4], and
BirdCLEF [3] regularly post large datasets, and are a great way to develop skills and
learn from the other competitors. The availability of a vast number of large datasets
online gives a wide range of approachable data modeling opportunities for students
with diverse mathematical and statistical backgrounds.
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Stokes Flow: A Study of Fluid Dynamics
Induced by Metachronal Ciliary Waves
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Abstract Pulmonary cilia are instrumental in the mucociliary clearance process
that propels contaminants and bacteria out of the lungs. Cilia are small, slender
fibers found in dense, carpet-like patches that impart a force on the surrounding fluid
through coordinated motion. The motion of a single cilium in the lung is comprised
of an upright power stroke relative to the cell surface from which it protrudes
and an out-of-plane recovery stroke relative to the power stroke. A phase delay
between neighboring cilia creates a metachronal wave that moves across the top of
the cilia. Due to the small size of the cilia in this situation, simplifications to the
governing fluid dynamics equations (the incompressible Navier–Stokes equations)
allow us to use the linear, time-independent quasi-steady Stokes equations to model
this scenario. We utilize the method of regularized Stokeslets to discretize the
continuous body of each cilium and compute resulting fluid flow. In addition to
introducing this problem, we also include results from a recent undergraduate
project studying the effects of metachronal waves on fluid transport and provide
possible future project directions this work can lead.
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1 Biological Introduction

Cilia are generally small, slender fibers that serve a variety of biological functions.
In some instances, cilia are immotile, fairly rigid, and may serve a sensory role. In
others, cilia move and their primary function is to create fluid flow. For example,
primary nodal cilia are rigid cilia that move in a conical fashion about a tilted
axis. Primary nodal cilia are fairly sparsely packed and are critical in developing
asymmetry in embryos before organ development [7, 8, 20]. Put another way, the
conical motion of primary nodal cilia starts the biological signaling that puts your
heart on the left side of your body rather than the right. When primary nodal cilia do
not function properly, there is a chance that the signaling will get mixed up and the
heart will form on the right side of the body in a condition known as situs inversus.

The pulmonary cilia that we are studying in this project are much more flexible
and move in a different way than the previously described primary nodal cilia.
Their primary function is fluid transport. Pulmonary cilia are flexible, densely
packed, hair-like fibers that move with a coordinated whip-like motion that propels
contaminants out of the lungs. The surface of the lung is lined with cells called
epithelial cells. Patches of pulmonary cilia extend out from these epithelial cells into
the airway surface liquid (ASL). The ASL is composed of two fluids: a periciliary
liquid layer (PCL) and a mucus layer. The PCL is a water-like substance adjacent
to the epithelial cells. The mucus layer is a thick, sticky fluid that sits on top of the
PCL. The depth of the PCL is approximately the length of a cilium, but the thickness
of the mucus layer can vary dramatically within a lung [9]. The mucus layer is
responsible for trapping harmful contaminants from the airway above [19]. A sketch
of the fluid surrounding the lung is shown in Fig. 1 (not to scale). Pulmonary cilia
form a densely packed carpet on the surface of the lungs and the bulk effect of
the cilia’s coordinated motion is a metachronal wave that travels along the carpet’s
surface [19]. Recent studies have explored the formation of such metachronal waves
[15, 18] as well as the efficiency of different wave configurations [9, 10, 24].
The metachronal wave helps propel the PCL and the contaminants trapped in the

Fig. 1 Fluid layers above the pulmonary surface with cilia shown in red
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adjacent mucus layer above it out of the lungs. This process is known as mucociliary
clearance, clearing contaminants and protecting the lungs from the effects of these
pollutants [19].

Our research draws motivation from a current subject of study in the biological
community. Cystic fibrosis and primary ciliary dyskinesia (PCD) are two diseases
with connections to the movement of cilia in the airway surface liquid in the
lungs. Abnormalities caused by the cystic fibrosis gene lead to the depletion of the
periciliary liquid and a thicker layer of mucus adhering to the airway surface [3].
Therefore, the coordinated beating of the cilia is inhibited in patients with cystic
fibrosis because of the presence of unusually sticky mucus and the lack of periciliary
liquid. This provides a favorable environment for infection [3]. A patient with
primary ciliary dyskinesia suffers from impaired movement and possible immotility
of the cilia, characterized by abnormalities in the beat, stroke, or coordination
of cilia. This ultimately leads to reduced or absent mucociliary clearance [22].
Similar to the consequences of cystic fibrosis, without properly functioning cilia, the
bacteria and contaminants remain in the mucus, leaving the lungs more susceptible
to infection. Investigating the transport and activity of fluid tracers as a result
of their interaction with healthy cilia will help further the biological study of
cystic fibrosis, PCD, and other pulmonary or cilia-related diseases [4]. Research
concerning properties of the PCL and mucus layers and their interaction with cilia
is a subject of intense research because the mechanism by which the cilia cause
clearance of the infected mucus remains uncertain.

There are competing theories as to the interaction between the cilia and the
mucus layer. It is not known for certain whether or not the tips of the cilia penetrate
the mucus layer during their beat cycle [16]. Given the variety and nature of
questions regarding this physical scenario, creating a mathematical model of this
fluid–structure interaction can provide insight into questions that might be difficult
to explore with biological experiments. In our model, we choose to focus on the
effects of a metachronal wave traveling through a patch of cilia on the surrounding
periciliary liquid. As such, we make a simplifying assumption that there is no
mucus layer for the cilia to directly interact with, which is consistent with the
assumption that the cilia do not penetrate into the mucus and the entire length of
the cilia is covered by the PCL. This decision is supported in [28]. Some models in
the literature consider both the mucus and the PCL using different fluid modeling
techniques and assumptions [9, 10].

The beat form of a single cilium is divided into two basic motions, shown
in Fig. 2. The first is the power or effective stroke, where the cilium is nearly
straight and in a plane perpendicular to the cell surface. Let us assume for discussion
purposes in R

3 that the cilium is moving in the xz-plane during its power stroke, so
in the view of Fig. 2, consider the plane of the page to be the xz-plane where y = 0
and the power stroke is in the positive x-direction when moving to the right. During
the power stroke the cilium will move quickly, in an attempt to propel the mucus
and PCL. This is followed by the recovery stroke, which propagates a bend from the
base to the tip of the cilium, returning it to its original form and starting position [4].
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Fig. 2 Side view of the
power stroke (black) and
recovery stroke (gray) of a
pulmonary cilium.
Reproduced with permission
of the ©ERS 2019: European
Respiratory Journal 44 (6)
1579–1588; DOI:
10.1183/09031936.00052014
Published 30 November
2014 [27]

For the recovery stroke, the cilium moves out of the xz-plane and has position
values with y < 0 (out of the page) when the cilium is moving in the negative
x-direction (to the left) as it returns to its original position. Different descriptions of
the cilium beat form exist in the literature. Some are parameterizations of a flexible
cilium [16] while others make simplifications by making the cilium more rigid [17].
As discussed further in Sect. 2.3, our model uses the latter approach.

During a full beat cycle, the cilium quickly moves through its power stroke,
propelling fluid forward and then makes a whip-like motion as it moves through
its recovery stroke, back to the beginning of the next power stroke. The ratio of the
recovery stroke duration to the power stroke duration is referred to as the temporal
asymmetry, Rt . In pulmonary cilia, Rt > 1 because the power stroke is always
faster than the recovery stroke [17]. Much research concerning pulmonary cilia has
included a recovery stroke that is in the same plane as the effective stroke [14]. Our
research introduces a model with an out-of-plane recovery stroke, which appears in
biological studies [17], but is not present in all cilia instances [11].

Each cilium in a patch moves in coordination with the others, with neighboring
cilia having a slight phase difference. The delay between beating cilia creates
a metachronal wave affecting the propulsion of the PCL and mucus above.
A metachronal wave is defined by its direction of movement relative to the power
stroke direction. In our model, if a cilium’s power stroke is in the positive x-
direction, the metachronal wave travels generally in the negative x-direction. A
wave that is propagating somewhat parallel or antiparallel to the power stroke
direction is labeled as symplectic or antiplectic, respectively [28]. In fact, our
antiplectic metachronal wave travels backwards and to the left of the effective stroke
direction, which is similar to Gheber and Priel’s model [17]. Sanderson and Sleigh
observe an antiplectic wave in patches of rabbit tracheal cilia [28], so we implement
various antiplectic metachronal waves in our model. Recent works explore the
formation of the metachronal wave and explore properties of various configurations
[9, 10, 24]. We are not exploring the formation of the metachronal waves in this
project, rather focusing on the effects of the coordinated motion.

In the remainder of this chapter, we will introduce some mathematical foun-
dations of computational fluid dynamics, specifically the method of regularized
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Stokeslets, that can be used to model biological fluids. We will also include an
undergraduate project completed on this topic as well as suggestions for future
studies.

2 Mathematical Model

We are interested in the factors influencing fluid flow of the PCL in healthy lungs,
especially in the presence of a ciliary metachronal wave. To study this, we will
focus on a technique in computational fluid dynamics referred to as the method of
regularized Stokeslets (MRS). Our model approximates the body of a pulmonary
cilium by placing a collection of 30 regularized Stokeslets along the centerline
of that cilium, discretizing the continuous body. As will be discussed further in
Sect. 2.2, a regularized Stokeslet is a regularized singularity that mathematically
converts a force exerted on the fluid to a resulting velocity anywhere in the fluid. We
then prescribe a beat form by specifying the location of the cilium at discrete time
steps and implement that beat form for a patch of cilia representative of patches in
the lungs. The MRS provides a linear relationship between velocities and forces that
can be used to both calculate the forces the cilia are exerting on the fluid necessary to
maintain the prescribed velocities of the beat form as well as the velocity anywhere
in the fluid resulting from the ciliary motion. The regularization is necessary to
ensure finite fluid velocities at the location of the forces, which is not the case when
using singular, non-regularized Stokeslets.

Other studies of metachronal waves use adaptations of the immersed boundary
method to model a one- or two-phase fluid flow, where both the mucus and PCL are
considered [9, 10]. The MRS used in this work is a Lagrangian method, meaning
that we calculate the fluid velocities only at the points in the fluid we are interested in
studying and follow those points along their trajectories. Eulerian methods such as
the immersed boundary method require the calculation of the fluid velocity at a grid
that spans the entire fluid domain, which could be quite computationally expensive
depending on the desired resolution. Imagine having one particular location that you
want to watch evolve over time. The Lagrangian approach would take the fluid at
the initial location of interest and follow it through its motion as it likely moves
away from its initial position. The Eulerian approach would keep the initial position
fixed and explore the fluid that flows past its fixed location. In this approach, to get a
sense of the global behavior of the fluid, one would need to calculate fluid velocities
at many locations throughout the fluid whereas with the Lagrangian approach, one
would only need to calculate the velocity at one point at each time step.

The Lagrangian nature of the MRS saves in computational time when only
interested in a few points in the fluid domain. The MRS also has flexibility in
modeling problems with complicated geometries whereas some other methods
struggle with that. For instance, boundary integral methods require integration over
a closed surface, so the time-varying geometry of a beating cilium is unlikely
to produce integrable surface integrals because there is no simple mathematical
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description of the surface. Section 2.1 provides an introduction to the Navier–Stokes
equations, the governing equations of fluid dynamics. Section 2.2 introduces the
method of regularized Stokeslets while Sects. 2.3 and 2.4 further describe the cilium
beat form and patches, respectively.

2.1 Fluid Dynamics

While fluids in general encompass a variety of substances including liquids, gases,
and plasmas, we will be focusing on the behavior of liquids in this project. The
Navier–Stokes equations are a collection of nonlinear partial differential equations
that describe the relationship between a fluid’s velocity, pressure, density, and
viscosity. Viscosity is a fluid’s resistance to flow, or its thickness in the sense that
honey is “thicker” and more resistant to flow than water, hence honey has a higher
viscosity than water. Liquids are often categorized as Newtonian or non-Newtonian,
depending on the relationship between the shear stress and local strain rate. The
shear stress describes internal forces within the fluid while the local strain rate
described the rate of deformation of the fluid. For Newtonian fluids, this relationship
is linear while non-Newtonian fluids have a nonlinear relationship. Non-Newtonian
fluids are often referred to as viscoelastic fluids because the nonlinear dependence
between stress and strain rates provides some memory to the fluid, creating an elastic
effect. Non-Newtonian fluids can also have shear-thinning or shear-thickening
properties as a result of the nonlinearity. For instance, ketchup is shear-thinning
in that it does not flow very readily unless the shear force of a knife is applied
when spreading it on a hamburger bun. On the other hand, silly putty is shear-
thickening. If you leave it in its storage container overnight, it will take the shape of
its container indicating that it is indeed a fluid. However, if you roll it into a ball and
bounce it on the ground, it will act like a solid. During the impact with the ground,
the instantaneous forces from the collision cause a quick change in the properties
of the fluid. The water-like PCL in the lung is considered a Newtonian fluid, so
modeling Newtonian fluids will be the focus of this chapter. If one wants to expand
consideration to include the mucus layer, then non-Newtonian effects would need
to be taken into consideration.

While more general forms exist, the incompressible Navier–Stokes equations
describe Newtonian fluids:

ρ
∂u
∂t

+ ρu · ∇u = −∇p + μ∇2u + F (1)

∇ · u = 0, (2)

where u represents the fluid velocity, ρ fluid density, p pressure, μ dynamic
viscosity, and F external force. Note that bold variables represent vector quantities
in R

3. When modeling fluid flow in three dimensions as we are here, Eq. (1)
represents three equations due to the vector nature of velocity and these equations



Using Regularized Singularities to Model Stokes Flow 449

account for conservation of momentum in the system. Sometimes the left-hand
side of Eq. (1) is represented as ρ Du

Dt
, where Du

Dt
is a material derivative and

encapsulates both the local acceleration term ∂u
∂t

and the convective acceleration
term u · ∇u that accounts for the fact that the fluid of interest is flowing to other
areas of the fluid domain. The right-hand side of Eq. (1) brings in the effects of
pressure, viscosity, and external forces. Equation (2) is sometimes referred to as the
continuity equation and represents conservation of mass for an incompressible fluid
whose density remains constant, which often means there are no large temperature
variations within the fluid domain. Textbooks exploring fluid dynamics principles
at the advanced undergraduate level or graduate school level include [2, 23, 25]
and provide more detailed derivations and analysis of the incompressible Navier–
Stokes equations, including further discussion of the physical interpretations of
these equations as well as extensions to other fluid scenarios and models.

It is worth noting that while the Navier–Stokes equations are used to model
many fluids, the proofs of existence and uniqueness of solutions are open math-
ematical problems, and are among the set of Millennium Prizes offered by the
Clay Mathematics Institute [1]. Solving the Navier–Stokes equations exactly is
challenging, so scholars often resort to either making simplifying assumptions that
change the nature of the PDEs or using numerical methods to approximate solutions
to Eqs. (1) and (2). In this work, we recognize that we can use characteristics of
the biological system to make assumptions that will simplify the nonlinear time-
dependent Navier–Stokes equations into the linear quasi-steady Stokes equations
(namely the small length scale of cilia and low fluid velocities contribute to a
low Reynolds number). The Reynolds number provides insight into the balance of
inertial and viscous forces in a fluid and is given by

Re = ULρ

μ
, (3)

where U is a characteristic velocity, L is a characteristic length scale, ρ is the fluid
density, and μ is the dynamic viscosity. The Reynolds number gives a sense of how
the inertial forces and viscous forces balance in a given fluid flow. Notice that the
Reynolds number is not a property of the fluid alone, but also includes information
about the length scales and speed of the motion as well. Fluid flow that has very
high speeds, large length scales, and low densities would have a high Reynolds
number and inertial forces would dominate viscous forces. Flow in this regime is
turbulent, so the flow around a flying airplane or water rushing out of a fire hydrant
would be examples of high Reynolds number flow. In our case, the small size of
the cilium coupled with the density and viscosity of water contributes to a low
Reynolds number situation where flow is laminar rather than turbulent and inertial
forces are negligible relative to viscous forces. You can often see the transition from
high Reynolds number to low Reynolds number intuitively at some kitchen sink
faucets. If you turn the water all the way on, the water flow often looks turbulent
and bumpy, however if you reduce the amount of water coming out, there is often
a point where the water becomes calm, smooth, and transparent, a sign of laminar
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flow. Note that the low Reynolds number assumption in this work (Re � 1) is at a
much smaller Reynolds number than the onset of laminar flow (on the order of 103).

The average velocity of our cilium over its beat cycle is U = 0.122µm/s and
the length scale we use is the length of a cilium, L = 6µm. Discussion on cilia
parameters can be found in [16, 29, 30]. We assume the density and viscosity of
the PCL are the same as water [16], so ρ = 917 kg/m2 and μ = 1 kg/ms. This
gives us a Reynolds number of Re = 6.75 × 10−5, which is sufficiently small so
that the incompressible Navier–Stokes equations (1) and (2) can be simplified to the
quasi-steady Stokes equations after nondimensionalization

− ∇p + μ∇2u + F = 0 (4)

∇ · u = 0. (5)

Notice the terms in the left-hand side of Eq. (1) become negligible in a low
Reynolds number regime. Those terms represent acceleration terms in the Navier–
Stokes equation, providing evidence that the inertial terms are no longer present
in the quasi-steady Stokes equations. An example of the nondimensionalization
and transition from the incompressible Navier–Stokes equations to the quasi-steady
Stokes equations in low Reynolds flow can be found in [4].

Notice that the Navier–Stokes equations (1) and (2) are nonlinear PDEs with
a time derivative (inertial term). The quasi-steady Stokes equations remove both
the nonlinearity and the inertial term, meaning solutions to Eqs. (4) and (5) can
be computed as a result of only considering the current force configuration since
inertial effects are negligible. The previous force configuration is not needed to
calculate fluid velocities. Since time is not immediately visible in Eqs. (4) and (5),
any fluid flow in a low Reynolds number regime is reversible. That is, if one imposes
a force on a fluid and calculates the resulting fluid flow at that instant in time, its
motion will not persist to the next moment in time (because inertial effects have been
ignored in the equations). Additionally, the fluid flow can be reversed by applying an
equal and opposite force in the same location at another instant in time. Thus, small
organisms that either want to generate fluid flow or to move themselves in a fluid
environment need to move with motions that are not symmetric in the sense that
if a cilium moves forward in a certain way and returns to its initial position in the
same way but in the reverse direction, the fluid would have moved from the original
motion, but would move back to its original state when the cilium returns to its
original position. This is an instance of the scallop theorem introduced by Purcell
[26] in reference to the idea that a scallop can open its shell slowly but close it
quickly to move by forcing water out of it, but this does not occur in a low Reynolds
number fluid regime. If the scallop were in a low Reynolds regime, the opening and
closing of the shell (regardless of speed as long as the motion was low Reynolds
number) will result in the scallop ending up where it started because the motion of
the shell opening and closing have reciprocal motions. For cilia to generate fluid
transport in a low Reynolds number regime, they must undergo a motion, described
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previously in this section, that breaks symmetry. The lack of time information in
Eqs. (4) and (5) does not restrict our study only to steady flows, just flows whose
parameters fall in a low Reynolds number regime.

2.2 Method of Regularized Stokeslets

Fundamental solutions play a role in solving linear partial differential equations.
A fundamental solution or Green’s function F satisfies L F = δ(x), where
L is a linear differential operator and δ(x) is the Dirac delta function, whose
value is 0 everywhere except when x = 0 where it is undefined. Solutions
to a non-homogeneous differential equation L f = g(x) can then be found
through convolutions of F and g. Further discussions of fundamental solutions and
convolutions can be found in various textbooks discussing differential equations,
e.g., [21, 25]. When solving a linear differential equation, we can take advantage
of superposition of solutions to find new solutions. In the case of solving the
quasi-steady Stokes equations (4) and (5), boundary integral techniques rely on
superimposing fundamental solutions. However, the fundamental solutions, or
Stokeslets, are singular, meaning that they are not defined everywhere in the fluid
domain. For some boundary integral calculations where you are integrating around
a closed boundary and the singularities are separated from the fluid domain by
the boundary, the singularity does not cause much concern. However, when using
fundamental solutions to communicate forces directly on a fluid, there is not always
a separation between the fluid domain and where the singularities exist, causing
computational issues. This motivates the modification of the singular fundamental
solutions (Stokeslets) to become regularized fundamental solutions (regularized
Stokeslets).

The method of regularized Stokeslets (MRS), as developed by Cortez et al. [12,
13], uses Green’s functions to produce solutions to the quasi-steady Stokes equa-
tions (4) and (5) in free-space. The MRS computes the fluid velocity u at a location
x resulting from a force F exerted on the fluid at a location x0. We define the distance
r between where the velocity is being calculated and a force is being exerted as
r = ‖x̂‖, where x̂ = x − x0 and ‖ · ‖ represents the L2-norm. A Stokeslet
is a fundamental solution to the singularly forced Stokes equations (4) and (5),
where F = δ(x̂)f (e.g., see [25]). Alternatively, a regularized Stokeslet is a Green’s
function to the Stokes equations when F = φε(x̂)f. Here φε is a cutoff function that
approximates a delta distribution as the regularization parameter ε → 0 and f ∈ R

3

controls the direction and magnitude of the force. The Dirac delta function is radially
symmetric and integrates to 1, so we typically use cutoff functions that have the
same properties. In building an intuitive difference between these two fundamental
solutions, imagine exerting a localized force by pushing on a fluid with a pencil.
In the singular case, you are using the sharp point of the pencil to push the fluid
and calculate the resulting flow. In the regularized case, you use the rounded eraser
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of the pencil to push the fluid and calculate the resulting flow. You might imagine
that the flow locally will be different near the site of the force, but away from the
site of the force, the difference will be negligible. The flow will be most different
at the location of the force because in the regularized case, you can calculate the
velocity there, but in the singular case you cannot. This feature is quite important in
establishing the usefulness of the MRS.

In general, the choice of cutoff function is not unique, but rather is often
motivated by the calculation details needed in a given problem. For instance,

φε(r) = 15ε4

8π(r2 + ε2)3/2 (6)

works well for our purposes [13]. This cutoff function produces the regularized
Stokeslet Sφε :

S
φε

ij (x̂) = δij

r2 + 2ε2

(r2 + ε2)3/2 + x̂i x̂j

(r2 + ε2)3/2 . (7)

As ε → 0, we recover the singular Stokeslet [25],

Sij (x̂) = δij

r
+ x̂i x̂j

r3 , (8)

which is undefined when r = 0 (when evaluating the velocity at the location of
a force). Notice that S

φε

ij in Eq. (7) does not have the same property when ε > 0.
Velocities due to a regularized Stokeslet are found by

uφε (x̂) = 1

8πμ
Sφε (x̂)f, (9)

which is sometimes helpful to express in terms of the ith component of the velocity

u
φε

i (x̂) =
3n
∑

j=1

1

8πμ
S

φε

ij (x̂)fj , (10)

where n is the number of forces exerted on the fluid. Notice Eqs. (9) and (10) display
a linear relationship between forces exerted on a fluid and resulting velocities
calculated anywhere in the fluid. Similar relationships hold when replacing the
regularized Stokeslet Sφε with the singular Stokeslet S:

u(x̂) = 1

8πμ
S(x̂)f. (11)

With this comes a natural question of the errors associated with calculating the same
quantity with two different methods. There are errors due to regularization and
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quadrature (numerical approximation of integrals in both space and time), which
are discussed in more detail in sources such as [4–6, 13], but will not be the focus
of this discussion.

We use regularized Stokeslets to model a solid body (cilium) and do so by placing
a collection of regularized Stokeslets along the centerline of the cilium. We select
a value for the spreading parameter ε that spreads the force to approximately the
radius of a pulmonary cilium [6, 29]. In our models we use the value ε = 0.1µm.
Using this value, we also calculate the number of regularized Stokeslets necessary
to discretize the body of our cilia. Since each regularized Stokeslet has a diameter
of 0.2µm, it takes 30 to model a cilium at a length L = 6µm.

The regularized Stokeslets we are considering here are free-space solutions to
the quasi-steady Stokes equations in three dimensions. However, the pulmonary
cilia protrude from epithelial cells, and we are interested in modeling the PCL in
three dimensions above the cell surface. To model the epithelial cells we implement
a system of regularized image singularities that create a zero-velocity plane that
emulates the no-slip cell surface. This creates a no-slip plane at z = 0 in R

3, and
we only consider the fluid motion in R

3 where z > 0. To create a zero-velocity
plane mathematically, we place a regularized Stokeslet as well as a collection of
other regularized singularities (doublet, dipole, and two rotlets) at the image point
reflected from the original regularized Stokeslet across the desired zero-velocity
plane. These particular singularities were chosen because their net effect cancels
that of the original regularized Stokeslet to create a plane within the fluid domain
with no velocity that simulates the presence of a physical stationary boundary as
the epithelial cells (at z = 0). The specific cutoff functions and form of the other
singularities can be found in [4, 14] and a discussion of the singular (ε = 0) versions
of these can be found in [25]. Matlab code for the regularized singularities in both
the free-space case and semi-infinite case (image singularities) can be found at
https://github.com/ELBou21/FURM.

Figure 3 shows an example resulting from this combination of regularized
singularities. Imagine two forces exerted in the xz-plane (shown in red). The
resulting fluid flow is shown at a variety of tracking points, or tracer points, chosen
in a grid pattern for velocity visualization purposes here. These are infinitesimally
small, massless particles that move with the fluid, but do not affect the fluid itself.
The blue arrows represent the fluid velocity in the xz-plane at the given locations
resulting from the two red forces. Notice in the free-space solution on the left in
Fig. 3a, there are visible blue velocity vectors where z = 0 indicating that there is
fluid flow in that plane (the xy-plane that is perpendicular to the page). Contrast
this with the velocity field shown in Fig. 3b that implements the system of image
singularities. Notice that the net effect provides similar flow near the red forces, but
now there are no visible blue arrows where z = 0, indicating that the velocities in
the xy-plane are zero vectors. Since we are creating this zero-velocity plane with
the intent of mimicking a no-slip plane that represents the cell surface, we would
only consider the fluid domain above the no-slip plane where z > 0. Notice there
is fluid flow generated below the plane in Fig. 3b, however, we disregard this in

https://github.com/ELBou21/FURM
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Fig. 3 Fluid flow resulting from two regularized forces (shown in red) (a) in free-space and (b)
with image singularities (not shown) to create a no-slip plane at z = 0 where the velocities vanish.
In practice, only the fluid above the cell surface (where z > 0) would be studied

practice. It is shown here for the purposes of demonstrating the effects of the system
of image singularities, but when using the MRS, one would only put tracking points
at desired locations (not necessarily in a grid) in the feasible fluid domain where
z > 0.

The MRS provides a linear way to relate external forces exerted on the fluid
into velocities anywhere in the fluid. Since the motion of the cilia is providing
these external forces on the fluid, we must translate the beat form information into
external forces exerted on the fluid. Often the beat form is known as a series of
snapshots of the cilium’s position, which we use to calculate velocity. While the
specifics of the beat form we use will be discussed in Sect. 2.3, consider xk to be
the location of a regularized Stokeslet on a cilium’s centerline at time k. Using
the discretized position information from the beat form in time intervals of length
h, we implement a second order finite difference scheme with respect to time to
calculate the velocity of each regularized Stokeslet at time k using information about
the discretized position at four different (known) instances in time:

uk = xk−2h − 8xk−h + 8xk+h − xk+2h

12h
. (12)

Note that because the cilium beat form is repeated and the position is known at
each instance in time, there is no concern regarding how to initialize this velocity
calculation. We arrange the information from each regularized singularity into
a system of linear equations for each point of interest. We exploit the linear,
homogeneous properties of the quasi-steady Stokes equations to create the system
u = Af, where u is a 3m × 1 vector of velocities, f is a 3n × 1 vector of forces, and
A is a 3m × 3n matrix containing the information of each regularized Stokeslet as
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well as the collection of regularized image singularities.1 Here m is the number of
velocity calculation points and n is the number of regularized Stokeslets or forcing
points. Thus, the full solution superimposes solutions for each individual regularized
Stokeslet and the collection of image singularities. To find the forces f that would
recreate the desired ciliary motion, we iteratively solve the linear system created by
imposing the velocities at each regularized Stokeslet given by the beat cycle using
the generalized minimum residual method (GMRES) in MATLAB. In this case,
we have the same number of tracking points, m, and forcing points, n, so A is a
square matrix that we invert to solve. Note that this matrix becomes singular for
large enough values of ε given a fixed spatial distribution [6].

After calculating the forces required to impose a cilium’s beat form, we can move
on to calculating velocities at other points of interest anywhere in the fluid. We
again use u = Af, but now m 
= n and A is no longer a square matrix. The forces
are already known from the previous calculation, but A and u are different in size
because of the change in where the velocity is being calculated. Thus, we can solve
for the fluid velocity at a given point through matrix multiplication as the net effect
of each force we place in the fluid domain in the semi-infinite system. Once we have
the velocity, we use Euler’s method to update the tracer’s new position.

2.3 Cilium Beat Form

Literature on modeling pulmonary cilia shows different approaches to modeling
cilia and defining the beat form. Fulford and Blake parameterized a curved cilium
that features a recovery stroke in the same plane as the power stroke [16]. The length
of the cilium in their model’s recovery stroke is shorter than in the power stroke and
patches of cilia are synchronized [16]. Gheber and Priel simplify a cilium into a
straight line in the power stroke that sweeps out an arc of a circle and two lines
connected at a bend point in an out-of-plane recovery stroke [17]. This model was
created to study the transmission of light through a field of cilia. Consequently, their
model’s recovery stroke does not build a full cilium, only the projection of the out-
of-plane stroke onto the cell surface. Smith, Gaffney, and Blake model a line of
cilia using the Fulford and Blake parameterization to represent each step in the beat
form, but do not model the patches with metachronal waves we are interested in or
an out-of-plane recovery stroke [30].

1If one wanted to modify the system of regularized singularities included in the model, this change
would affect the matrix A, but the bigger picture of utilizing this framework remains the same.
For instance, if you did not want to implement the system of regularized image singularities to
create a no-slip plane, your matrix A would only consist of the regularized Stokeslet information
in creating the free-space solution, so A = S

φε

ij . When incorporating other regularized singularities,
A is formed by taking a cleverly weighted sum of a regularize Stokeslet, doublet, dipole, and two
rotlets as discussed previously in this section.
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Fig. 4 Stages of the (a, b) power and (c, d) recovery strokes. The power stroke moves from left
to right while the recovery stroke moves from right to left. The same time step is used in all plots
showing faster speeds during power stroke than during recovery stroke. (a) Top view of our cilium’s
power stroke. (b) Side view of the power stroke beginning at θi and ending at θf . The effective
stroke angle, θe, is the angle between the most extreme cilium locations so that θi +θe+θf = 180◦.
(c) Top view of our cilium’s recovery stroke. (d) Side view of the recovery stroke

Taking beat parameters and inspiration for how to build a cilium in its recovery
stroke from the model created by Gheber and Priel [17], we create and test a cilium
beat cycle featuring an out-of-plane recovery stroke with a motile bend, motile bend
angle, and a varying recovery angle. Top and side views of our power stroke are
shown in Fig. 4a, b and the same views of our recovery stroke are shown in Fig. 4c, d.
These features were selected to mimic the description of cilia in rabbit trachea given
by Sanderson and Sleigh [28]. Our cilium’s beat cycle closely resembles Gheber
and Priel’s [17], but we are concerned with more than the projection of the cilium
onto the epithelial cells. We define a recovery stroke that has a similar projection
to Gheber and Priel’s model but is comprised of the full length cilium moving in a
three-dimensional fluid domain.

To model a cilium of length L, we utilize parameters of a cilium’s temporal
asymmetry and the arc of radius L of the power stroke from Gheber and Priel’s
model [17]. They model the power stroke of a cilium by sweeping out an arc of
radius L that begins at angle θi and ends at angle θf , both of which are measured
from the cell surface, as shown in Fig. 4b. These angles can be calculated from the
effective stroke angle θe
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θi = θf = (180◦ − θe)/2, (13)

as seen in [28]. We use θe = 110◦, which makes θi = θf = 35◦. We define temporal
asymmetry in the same manner as Gheber and Priel and choose the ratio of the
recovery stroke to effective stroke to be Rt = 3 [17].

During the recovery stroke, we model the cilium as two lines connected at a bend
point. This bend point propagates from L/4 to L over the entire duration of the
recovery stroke. The minimum bend angle of 135◦ is achieved halfway through the
recovery stroke, where the angle is measured between the two lines of regularized
Stokeslets. Thus, a smaller angle corresponds to a larger bend. The angle of the
bend necessarily starts and ends at 180◦ to match the straight cilium at the beginning
and end of the power stroke.

To match the projection described by Gheber and Priel [17], we instituted a
parameter of the recovery stroke defining the elevation angle at the midpoint of
the recovery stroke. This angle dictates how close the cilium gets to the xy-plane.
An elevation angle of 0◦ corresponds to the recovery stroke sweeping through the
xy- plane and an elevation angle of 90◦ would be completely vertical. To maintain
the length of our cilium and match the projection given by Gheber and Priel [17],
we elevate the cilium in the recovery stroke. Measured up from the xy-plane, our
cilium progresses from the elevation angle of 35◦ at the end of the power stroke
up to 55◦ at the midpoint of the recovery stroke when it is tilted over the negative
y-axis (out of the page in Fig. 4d) and back down to 35◦ for the beginning of the
next power stroke.

2.4 Patches of Cilia

After modeling a single cilium that includes characteristics that mimic the behavior
of realistic cilia noted by Gheber and Priel [17], we copy an individual cilium to
build a patch of cilia, spaced 1µm apart in both the x- and y-directions. The power
stroke moves in the positive x-direction and the recovery stroke circulates out in the
negative y-direction, as shown in Fig. 4. To implement a phase difference as outlined
by Gheber and Priel [17], we varied the starting stages of each cilium in the patch.
While we refer to the phase difference as a delay, we actually implement the phase
changes as a forward phase difference. Thus, the leading cilium that is farthest away
from the initial cilium (located at the origin) is ahead of the initial cilium, as shown
in Fig. 5. The initial cilium began at the first step of the power stroke, with each
subsequent cilium in the x- or y-direction starting one step ahead of the previous
one. Thus, in a 30 × 5 patch, with one time step “delay” in both the x- and y-
directions, the leading cilium starts 33 steps ahead of the initial cilium. In our model,
we use a time step of 50 steps per stroke with a temporal asymmetry of Rt = 3,
meaning that the effective stroke completes in 13 steps and the recovery stroke
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Fig. 5 Starting stages of the initial cilium and the leading cilium

completes in 37 steps. Therefore, the leading cilium and much of the surrounding
cilia begin in a recovery stroke step. This observation will resurface when we begin
our fluid flow analysis as it is central to the explanation of the trajectories of tracer
points.

3 Results

With a focus on fluid transport as a result of the metachronal wave, our research
looked at the trajectories of a specific set of tracer points subject to different
metachronal waves. Tracer points have no impact on the fluid and are only used
for visualizing flow. They are massless infinitely small particles that move with the
local fluid velocity. By following their position over a sequence of time snapshots,
we can visualize their trajectories. We chose a set of 42 points to serve as our
basis for comparison across the different cilia patches. Points were placed at a
variety of locations with respect to the cilia. Locations below the cilia tips were
less desirable to analyze because of near-field interactions with the cilia. However,
points at z = 7µm provided a good basis for analysis as they sat right above the tips
of the cilia and did not experience the interactions with other cilia as significantly.
As tracer points approached the edge of the patch, their motion changed as a result of
moving away from the patch. For this project, we focused on the behavior due to the
metachronal wave and were mainly interested in the behavior over the patch itself
when edge effects were negligible. For future work, patches could be constructed
with different dimensions depending on the scope of the problem of interest, but
this does increase computational cost. Realistically, a patch in the lungs would be
neighbored by other patches, but our model only focuses on a single patch.

We focused on several patches with different wave characteristics, including a
synchronized patch, a patch with a “regular” metachronal wave, and two patches
with compressed metachronal waves, outlined in Sect. 3.2. The size of the patches
varies from a rectangular patch of 150 cilia (30 × 5) to a square patch of 100 cilia
(10×10). These choices were made to balance computational cost and the ability to
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see the effects of the metachronal wave on particle trajectories before encountering
edge effects. Modeling larger patches of cilia increases computational time, but
depending on a particular project’s goals, this may be worth implementing.

3.1 No Metachronal Wave

As a first step in analyzing the effects of a metachronal wave, we modeled a
synchronized patch of cilia without any phase delay, as seen in Fig. 6a, b. This
facilitates analysis by emphasizing the influence of a delay on the trajectories of
tracer points and ultimately the transport of fluid. Regardless of the tracer points’
starting positions, our synchronized patch, of size 30 × 5, caused only slight
movement in the effective stroke direction, as shown by the blue paths in Fig. 7.
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Fig. 6 Synchronized (a, b), regular wave (c, d), and compressed wave (e, f) at the initial time step
on a 30×5 patch. (a) Synchronized 30×5 patch of cilia. (b) Synchronized 30×5 patch of cilia. (c)
Regular wave on a 30×5 patch of cilia. (d) Regular wave on a 30×5 patch of cilia. (e) Compressed
wave on a 30 × 5 patch of cilia. (f) Compressed wave on a 30 × 5 patch of cilia
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3.2 Various Metachronal Waves

Using the same tracer points discussed above, we examine the effects of a regular
metachronal wave, beginning with a delay of one time step in both the x- and y-
directions as discussed in Sect. 2.4 with the goal of finding the characteristics of a
wave that influence fluid transport. This wave is shown in Fig. 6c, d. In comparison
to the synchronized patch, the tracer points have much larger transport in the
effective stroke direction. Looking at Fig. 7, we see that in the synchronized 30 × 5
patch the tracer point (blue) makes very little forward progress in the positive x-
direction and instead loops back nearly to its starting location. In contrast, the tracer
point from a patch with a one time-step delay in both directions (magenta) makes
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Fig. 7 Two views of trajectory comparisons between a synchronized patch of cilia and two
metachronal waves for the tracer point beginning at (0,−2, 7). A single cilium is shown for
perspective, but the red rectangular region shows the footprint of the 30 × 5 cilia patch. The
implementation of a metachronal wave increases transport (magenta) over the synchronized case
(blue) and the compressed wave (green) greatly reduces the loops caused by the recovery stroke,
increasing transport. (a) Synchronized 30 × 5 patch of cilia with fluid trajectories shown. (b) Top
view
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significant forward progress in the same time interval. From the top view in Fig. 7b,
we see that the tracer’s path during the recovery stroke sweeps out a smaller arc
in the metachronal wave case than in the synchronized case. Our interpretation of
this movement is that the wave mitigates the backward motion of the cilia in the
recovery stroke and increases the forward transport of the PCL.

The next patch of cilia we examine is a 30 × 5 field with a metachronal wave
with a delay of one time step in the y-direction and two time steps in the x-direction.
We will refer to this metachronal wave as a compressed wave because it decreases
the wavelength of the metachronal wave as seen in Fig. 6e, f. The ability of the
compressed wave to mitigate the effects of the recovery stroke is evident when
viewing the trajectory of fluid tracers over the compressed wave in Fig. 7 (green).
Since we have shortened the wavelength of the metachronal wave, we have more
cilia in their power stroke in the same 30 × 5 patch in our model. Therefore, as
the recovery stroke passes tracer points in the compressed patch, tracers are closer
to the previous and upcoming power strokes than they were in the patch with the
regular wave.

We also investigate compressing the wave in the y-direction by testing our model
on a 10 × 10 patch with a delay of one time step in the x-direction and two in the
y-direction. We chose to use a 10 × 10 patch to investigate y-compression so that
there was a sufficient number of cilia in that direction to demonstrate the effects of
that compression. Comparing tracer points over a synchronized patch, patch with a
regular wave, and patches with compressed waves in the x- and y-directions shows
that compression in either direction works to remove the effects of the recovery
stroke, as shown in Fig. 8b. In the 10 × 10 patch we see that compression has
less of an impact on transport in the x-direction, but this may be a factor of patch
length. However, loops seen in the tracer trajectories are greatly reduced in size
with both implementations of a compressed wave relative to the synchronized and
regular wave patches, demonstrating its effectiveness at decreasing motion due to
the recovery stroke.

4 Conclusion

We sought to create a model of the carpet-like patches of pulmonary cilia found
on the surface of the lungs, essential to the mucociliary clearance process. Using
the method of regularized Stokeslets, we developed a model for pulmonary cilia
that features an out-of-plane recovery stroke. By instituting a system of regularized
singularities, we modeled the effects of the epithelial cells which act as a no-slip
boundary for our fluid.

Our model uses many of the beat form parameters defined by Gheber and Priel.
We also use their recovery stroke’s projection on the epithelial cells as a reference
from which we develop our full length, out-of-plane recovery stroke [17]. In our
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Fig. 8 Two views of trajectory comparisons between a synchronized patch of cilia and three
metachronal waves for the tracer point beginning at (0,−4, 7). A single cilium is shown for
perspective, but the rectangular region shows the footprint of the 10 × 10 cilia patch. The imple-
mentation of a metachronal wave increases transport and a compression in the x-direction reduces
the loops caused by the recovery stroke, thus increasing transport. (a) Trajectory comparisons over
a 10 × 10 patch of cilia with various metachronal waves. (b) Top view



Using Regularized Singularities to Model Stokes Flow 463

models, we look at patches of pulmonary cilia and institute a metachronal wave
moving in an antiplectic direction relative to the power stroke. We impose the beat
form rather than letting it evolve from hydrodynamic interactions as other studies
do to study the effects of the metachronal wave [15, 18]. By varying the time-step
delay used to create these waves, we are able to investigate various compressions of
the wave. These variations serve to shorten the wavelength of the metachronal wave
and we show that this has a substantial effect on fluid transport over the patch of
cilia. Tracer points over a 30 × 5 patch with a metachronal wave compressed in the
x-direction travel farther than tracer points starting at the same location travel over
a patch with a regular wave or the synchronized patch.

In the case where we compressed the wave in the y-direction, we observe less
contribution by the recovery stroke, demonstrated through smaller loops in the tracer
point trajectories over the 10 × 10 patches than in the synchronized and regular
wave patches. The tracer points do not demonstrate a large difference in x-transport,
however, we believe this is due to a smaller patch size in the x-direction.

5 Suggested Projects

There are many extensions of ideas in this project that can be investigated by
undergraduates. The interests and experiences of a particular student might make
some of these projects more suitable than others. As with the nature of academic
research, this topic of biologically inspired computational fluid dynamics is a current
topic of research and the scope of cutting edge papers is often larger and more
involved than would be appropriate for an undergraduate project, however, the tools
presented here are very valuable to use in a creative way to find new problems that
are appropriate relative to the experiences and interests of a student.

Future research ideas from the project described here focus on improvements
upon our current model. While we currently use two lines connected at a bend point
to model the body of the cilium during the recovery stroke, our model would benefit
from the creation of a smooth cilium body that includes the same, current out-of-
plane recovery stroke.
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Research Project 1 Create a model of a cilium that more accurately captures
the features of the pulmonary cilium beat form. That is, create a smooth
curve that has an out-of-plane recovery stroke and matches the physiological
properties of the beat form [16, 27]. This may involve using parametric curves,
interpolation, and/or splines in both time and space. Does the new beat form
produce significantly different results in terms of transport when modeled
with the method of regularized Stokeslets?

Since a regularized Stokeslet is a way to transmit local forces onto a fluid, we
used collections of regularized Stokeslets to model slender solid objects (cilia)
here, but that can be expanded to model objects or boundaries of any shape.
The flexibility of the method allows a user to customize the regularized Stokeslet
placement to model any desired geometry, as long as the flow conditions fall
into the low Reynolds number regime. We used the idea of regularized image
singularities to create a no-slip (zero-velocity) plane that emulates the epithelial
cell surface, however other fluid geometries, either in biological contexts or in a
laboratory setting, could use other techniques to model the flow. The flexibility of
the MRS being able to adapt to irregular geometries is one of its main strengths over
other computational methods, some of which require a mathematical formulation
of the potentially complicated boundary. The fundamental idea here is that you can
enforce a velocity condition anywhere you place a regularized Stokeslet (and use the
linear relationship to translate that to the appropriate external forces as discussed in
Sect. 2.2). In modeling our pulmonary cilia, we were enforcing non-zero velocities,
but regularized Stokeslets can also be used to enforce stationary objects with zero
velocity, like no-slip boundaries of irregular geometries.

Research Project 2 Use the method of regularized Stokeslets to model the
geometry of primary nodal cilia. These cilia are more rigid, less densely
spaced, and have a different motion than pulmonary cilia. The geometry of
the biological setting is also different in that the cilia sit in a more enclosed
region. Sources in the literature such as [7, 8, 20, 30] give more details about
the flow induced by primary nodal cilia.

The system of regularized image singularities mentioned in Sect. 2.2 creates a
no-slip plane at z = 0 in a three-dimensional fluid domain to create a semi-infinite
fluid domain as shown in Fig. 3. In a laboratory setting, one may be interested in
studying fluid flow in a tank where wall effects are not negligible. The tank floor
would be modeled by the existing system of image singularities, but what if other
tank walls need to be taken into account?
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Research Project 3 Modify the system of image singularities to create the
walls of a fluid tank. That is, for each regularized Stokeslet you place in
the fluid domain, what collection of regularized singularities do you need to
place outside the fluid domain to create five no-slip walls (the floor and four
vertical sides)? Where do these singularities need to be placed?

Research Project 4 Can you attempt to achieve the same effect of creating
a fluid tank with five walls without using a system of image singularities?
Perhaps utilize the fact that regularized Stokeslets can be used to implement
velocity conditions on the fluid. In the aforementioned work in this chapter,
we used the known velocity of the cilium to solve for the forces needed to
mimic that effect. Could you use the known velocity of a tank wall to mimic
those wall effects without image singularities?

There are other boundary conditions that people are interested in beyond no-slip
where velocity vanishes on the boundary (particularly a solid boundary). However,
if you were looking at a multi-fluid model, you might have an interface between two
fluids with different properties.

Research Project 5 Can you formulate conditions that would be appropriate
to create a no-stress boundary condition that might appear at the interface of
two fluids?

The model described in this work assumes the cilia are immersed in a semi-
infinite water-like fluid to model the PCL. However, the biological system has a
mucus layer sitting atop the PCL. Can you modify the MRS to incorporate more
than one fluid? One step would be to explore adding a second Newtonian fluid layer.
If you make the assumption that the second layer is non-Newtonian, the MRS may
no longer be helpful because the linearity of the Stokes equations that we rely on
breaks down.

Research Project 6 Explore the idea of implementing a two-phase fluid with
the MRS. What challenges do you face? Can you come up with a creative way
to approximate the effects of the second fluid that rests atop the first?
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The literature involving metachronal waves includes work on the formation
of the metachronal waves. Our discussion here imposes the waves and studies
resulting flow, but modifications could be made to the technique to create the wave
formation.

Research Project 7 Modify the techniques in this chapter to explore the
formation of the metachronal waves instead of imposing them. Perhaps this
involves treating different segments of the cilia differently so that adjacent
regularized Stokeslets react to each other and the fluid instead of having their
positions all enforced through the beat form. Since regularized Stokeslets
transmit forces to the fluid, one might consider using external spring forces
between nearby Stokeslets to create a flexible cilium that responds to the
surrounding fluid.

When studying the motion of “particles” in the fluid in this project, the particles
are actually infinitesimal passive fluid tracers that have no impact on the fluid.
However, in the real world, the contaminants trapped in the mucus have physical
dimensions and their presence affects the fluid around them. Their density affects
their buoyancy; their size affects their drag forces. In mucociliary clearance, their
size may impact their transport. In a different application, if one is trying to deliver
drugs through an inhaled medication (like an asthma inhaler), the drug particles need
to penetrate the fluid flow and get absorbed by the epithelial cells. Different drugs
have different particle sizes that may present challenges to transport and absorption.

Research Project 8 Do the properties of the particles affect flow induced by
a metachronal wave in a significant way? Can you model individual particles
of a given radius or density to explore the effects of the particle’s physical
presence on the flow? What particle properties are desirable for the case of
contaminant transport out of the lung? What about in the case of a drug
delivery system?

Since turbulence is not present in low Reynolds number systems, mixing can be
an interesting topic. Some organisms use their motion to create mixing opportunities
to find nutrients.

Research Project 9 Can you modify the cilia model presented here to study
questions related to mixing of tracer particles in the fluid? If your goal was

(continued)
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Research Project 9 (continued)
to create a low Reynolds fluid environment that is favorable to mixing near
cilia, would you propose the cilia move in a metachronal wave or would you
propose a different motion to enhance mixing? Can you find evidence that
different motions are more adept at mixing the surrounding fluids?

The sizes of the cilia patches in this project were chosen to reduce computational
time while still observing desired metachronal wave effects on fluid trajectories.

Research Project 10 Explore properties of the matrices involved in this
system u = Af (both when A is square and when it is not). Do you have
the same matrix characterization if A only contains regularized Stokeslets
(in a free-space model) or if it also contains the systems of regularized
image singularities (in a semi-infinite model)? Can you leverage any of these
properties to explore ways of more efficiently calculating the forces when
velocities are known or increasing computational speed when calculating
velocities are calculated at tracer points from known forces?

While cilia are the foundation of the biological application focused on in this
work, there is much research interest in biological fluid flows relating to transport
of small flagellated organisms like bacteria and spermatozoa. Like cilia, flagella are
slender objects immersed in a fluid, but they often serve the role of propelling a
microorganism through a fluid.

Research Project 11 Explore other biological fluid flow scenarios to find an
application of the MRS to suit your interests.
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