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Abstract. Medical image segmentation is an essential tool for clinical
decision making and treatment planning. Automation of this process led
to significant improvements in diagnostics and patient care, especially
after recent breakthroughs that have been triggered by deep learning.
However, when integrating automatic tools into patient care, it is crucial
to understand their limitations and to have means to assess their con-
fidence for individual cases. Aleatoric and epistemic uncertainties have
been subject of recent research. Methods have been developed to calcu-
late these quantities automatically during segmentation inference. How-
ever, it is still unclear how much human factors affect these metrics. Vary-
ing image quality and different levels of human annotator expertise are an
integral part of aleatoric uncertainty. It is unknown how much this vari-
ability affects uncertainty in the final segmentation. Thus, in this work we
explore potential links between deep network segmentation uncertainties
with inter-observer variance and segmentation performance. We show
how the area of disagreement between different ground-truth annotators
can be developed into model confidence metrics and evaluate them on
the LIDC-IDRI dataset, which contains multiple expert annotations for
each subject. Our results indicate that a probabilistic 3D U-Net and a 3D
U-Net using Monte-Carlo dropout during inference both show a similar
correlation between our segmentation uncertainty metrics, segmentation
performance and human expert variability.

1 Introduction

Segmentation, i.e., delineation of anatomical structures in 2D/3D, is a core
necessity in medical imaging analysis. In most cases, segmentation is carried out
manually by an expert. It is well known that manual segmentation suffers from
inter-observer variability and that segmentation quality is influenced by factors
such as fatigue, different domain knowledge, level of expertise, and image reso-
lution. As a result, manual segmentations contain aleatoric uncertainty and can
thus be ambiguous for diagnosis or confusing for supervised learning methods.
Nevertheless, annotator confidence can be an important source of information for
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clinical decision making. Varying annotator confidence can be a trigger for addi-
tional imaging tests and an indicator for quality control and treatment options.
Confidence is an important factor to weigh individual test result but it is only
qualitatively assessed in the clinical practice. Recent successes of deep learning
for image segmentation [2,8] promise to reduce clinical annotation workload.
Currently, the majority of these methods lack the ability to communicate anno-
tator confidence.

Quantitative assessment of uncertainties is key to guarantee quality of care,
increases trust and can have great impact on therapeutic decisions. Thus, in this
work we explore whether human inter-observer variability can be correlated with
the distribution of two different probabilistic neural networks and investigate
the impact of this variability on the estimation of segmentation uncertainty and
segmentation performance. To achieve this, we

(1) discuss an extension of a probabilistic U-Net [10] to 3D,
(2) compare the properties of a 3D probabilistic U-Net with a Monte-Carlo

dropout extension of a standard 3D U-Net [2] on the proof-of-concept task
of lung nodule segmentation,

(3) examine and present both qualitatively and quantitatively at which extent
automatically predicted confidence and uncertainty metrics, disagreement
aware metric (which is proposed) and segmentation performance metrics
are correlated.

Related Work: Estimation of uncertainty in the medical imaging domain has
been attempted in works such as [11,12,14]. In [14] authors use Monte Carlo
samples from the posterior distribution of a Bayesian fully Convolutional neural
network which are derived using dropout at test phase. Based on these sam-
ples, they compute structure-wise and voxel-wise uncertainties metrics, which as
they prove, are highly correlated with segmentation accuracy. Application field is
infant brain segmentation. In another work [12] Monte Carlo dropout is used for
uncertainty estimation in Multiple Sclerosis lesion detection and segmentation.
Four different voxel-wise uncertainties were utilised including prediction vari-
ance, Monte Carlo sample variance, predictive Entropy and Mutual Information.
As it was proved by the results, filtering based on uncertainty leads to improve-
ment on the lesion detection accuracy. In [11] authors propose a framework to
approximate Bayesian inference in deep neural networks by imposing Bernoulli
distribution directly on the weights of the deep model. Then Monte Carlo sam-
ples from posterior distribution are utilised to compute Mutual Information as
metric for uncertainty in CT-organ semantic segmentation. Furthermore, the
effect of inter-observer variability for estimation of uncertainty in segmenta-
tion is studied in [7]. Authors, in MRI images from brain tumors, explore the
impact of different label fusion techniques (e.g. no fusion, staples, union, intersec-
tion, majority) in estimation of segmentation uncertainty. As it is proved, there
is a link between uncertainty estimation and inter-observer variability. Monte
Carlo dropout is also used in this work for estimation of uncertainty (entropy).
Finally, an alternative way to produce plausible segmentation hypotheses is pro-
posed in [10] where authors use generative segmentation model, a combination
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of U-Net and conditional variational autoencoder, in order to produce plausible
segmentation hypotheses (diverse samples) for lung abnormalities segmentation
task.

2 Background

Two different probabilistic networks are utilised in our work: a 3D probabilistic
U-Net (PUNet) and a 3D U-Net using Monte Carlo Dropout during infer-
ence (DUNet).

PUNet: We extend a 2D probabilistic U-Net [10], which is a combination of a
U-Net [2,13] and a conditional variational autoencoder [17] to 3D. The whole
architecture consists of three networks, which is shown in Fig. 1.

Fig. 1. PUNet [10] as we use it for our method.

Let x be an input volume, M the segmentation map, ŷ the predicted seg-
mentation, y the ground truth segmentation as it is produced by several experts
(n = 4 for LIDC), C the number of classes and N number of voxels per volume
similar as proposed by [10]. The Prior net is conditioned on the input volume
x. It computes the distribution over the (low-dimensional) latent space RK .
At inference stage samples that are produced by this distribution are concate-
nated with the last layer’s feature maps of the segmentation network, which
produces a segmentation map for each sample. More precisely the prior proba-
bility distribution P is modelled as an axis-aligned Gaussian distribution with
mean μprior(x;wprior) ∈ RK and variance σprior(x;wprior) ∈ RK . To sample T
segmentations we apply the network T times to the same input volume. In each
iteration a sample zt, t = {1, 2, ...., T} is drawn from the distribution:

z ∼ P (.|x) = N (μprior(x;wprior), diag(σprior(x;wprior))) (1)

Each sample is reshaped to a K-channel feature map with the same shape as
the segmentation map. This feature map is concatenated to the last activation
map of a U-Net. Then, a segmentation map, which corresponds to sample t,
is produced by Mt = f(g(x,w), zi, ψ) where w is the U-Net parameters and ψ
weights of the last layer of U-Net.
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The posterior net is conditioned on the volume x as well as the ground truth
y. It learns to recognize (embeds) segmentation variants μpost(x, y; ν) ∈ RK with
some uncertainty σpost(x, y; ν) ∈ RK in the low dimensional latent space. The
output is denoted as posterior distribution Q. A sample z from this distribution

z ∼ Q(.|x, y) = N (μpost(x, y; ν), diag(σpost(x, y; ν)) (2)

combined with the activation map of the U-Net will result in a predicted seg-
mentation ŷ.

The loss function is composed by two terms. The first is the cross entropy
loss Ez∼Q(.|y,x)[− log Pc(y|M(x, z))], which penalizes the difference between the
ground truth and the segmentation map. The second one is the Kullback-Leibler
(KL) divergence DKL(Q(z|y, x)||P (z|x)) which penalizes differences between the
posterior distribution Q and the prior distribution P . Both terms are combined
as a weighted sum with a weighting factor β as proposed by [10]. Thus, the total
loss function is defined as:

L(y, x) = Ez∼Q(.|y,x)[− log Pc(y|M(x, z))] + β ∗ DKL(Q(z|y, x)||P (z|x)) (3)

In our experiments we use β = 0.2. Differences between training and inference
are outlined in Fig. 1.

DUNet: We utilise a U-Net where dropout layers are activated during inference.
During test phase, dropout is similar to Bayesian approximation [4]. In this way,
we can take Monte Carlo samples over the posterior distribution p(w|x, y) of
the models’ weight w and volume x and labels y. Cross entropy between ground
truth and predicted segmentation is utilised as loss function.

3 Method

To produce plausible segmentation samples, we utilise PUNet and DUNet. In
order to exploit volumetric information, 3D versions of the above models are
trained using 3D convolutions. The U-Nets consist of 3 layers. Each layer consists
of 3D convolution blocks followed by Rectified Linear Unit (ReLU) activation,
batch normalization and max pooling. Filter size is 3×3×3. We start the number
of feature maps at 32 and double it after each block. For the prior net as well
as for the posterior net in the PUNet, we utilize the encoder part of the U-
Net. We train the networks using exponential decay learning rate and the Adam
optimizer. For the DUNet, dropout is used after each layer in the encoding part
of U-Net. We use a dropout probability of 0.2. We generate an equal number of
samples T for both 3D networks. All networks are implemented in Python using
Tensorflow, on a workstation with NVIDIA Titan X GPU.

In order to estimate model uncertainty we compute two uncertainty scores:
Zvar and ZS using variance [9,16] and predictive entropy [5] of samples
respectively.



Exploring the Relationship 55

We define mean variance across all classes C as:

σ2(x∗) =
1
C

C∑

c=1

1
T

T∑

t=1

(pt(y = c|x∗, w) − p̂(y = c|x∗, w))2, (4)

where p̂(y|x∗, w) is the average of softmax probabilities of T samples for each
c ∈ [1, ..., C] and pt the output of the network for sample t. Subsequently we
define Zvar as

Zvar =
1
N

N∑

v=1

σ2(x∗(v)), (5)

and predictive entropy S as

S(x∗) = −
C∑

c=1

p̂(y = c|x∗, w) × log(p̂(y = c|x∗, w)). (6)

Thus, for each subject x∗, ZS is computed as:

ZS =
1
N

N∑

v=1

S(x∗(v)) (7)

We utilise the Sørensen–Dice coefficient (Dice score) to characterise segmenta-
tion performance. To examine possible linear correlation between segmentation
performance and model uncertainty, we compute the Pearson correlation coeffi-
cient (ρ) between ZS and Zvar and the Dice score.

To investigate the relationship between ZS and Zvar and the variability
among human experts we define the area of human disagreement (Γ ) as an
XOR (⊕) of the different annotations for each subject. For each voxel the ⊕
operation will result 1 indicating that at least one annotator disagrees (disagree-
ment) while 0 is used where all annotators agree (agreement). For a fair com-
parison with ZS and Zvar we utilize the same schemes for deriving quantitative
uncertainty: predictive Entropy(S) Eq. 6 and variance σ2 Eq. 4. For qualitative
analysis we imply Mutual Information (MI) and a map of softmax output prob-
abilities for the predominant class (Softmax). MI is defined using Eq. 6 as the
entropy of the average of samples minus the mean of the sum of the entropy of
each sample, i.e.,

MI(x∗) = S(x∗) +
C∑

c=1

1
T

T∑

t=1

pt(y = c|x∗, w) log(pt(y = c|x∗, w)), (8)

where pt(y = c|x∗, w) is the softmax output of the network for each sample. We
then characterise a voxel v of a new sample x∗ as certain/uncertain using

x∗(v) =

{
uncertain, if S(x∗(v)) >= θ,

certain, otherwise,
(9)
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where θ is a threshold and v a voxel. Alternatively, we can replace S(x∗) in
Eq. 9 with variance σ2 for estimation of uncertainty. We use a threshold since
we assume that human perception of uncertainty is more accurate when inter-
preted binary than continuous. Evidence for this is given in behavioural sciences
literature, e.g. [3,6].

We compute the ROC curve between True Positive Rate (TPR) and False
Positive Rate (FPR) for the binary case. This allows us to correlate model uncer-
tainty with aleatoric expert uncertainty. With Γ and Eq. 9 we define TPR and
FPR as

TPR = p(uncertain|disagreement) =
p(uncertain,disagreement)

p(disagreement)
, (10)

and

FPR = p(uncertain|agreement) =
p(uncertain, agreement)

p(agreement)
. (11)

To evaluate segmentation uncertainty with respect to Γ we use disagreement
accuracy (DisAcc) as metric [11,15]. DisAcc correlates positively with expert
variability. It requires the definition of true invalid predictions, TI, as the voxels
that are uncertain within in the area of disagreement (uncertain and disagree-
ment) and true non-invalid predicitons, TU , as the voxels that are certain in the
area of agreement (certain and agreement). Similarly to conventional accuracy,
DisAcc can be written as DisAcc = TI+TU

N , normalised by the total number of
voxels N .

4 Evaluation and Results

Data. We use the LIDC-IDRI [1,18] dataset for training and testing. This CT
dataset contains images of lung nodules and their delineations from four inde-
pendent expert observers. We resample data to an isotropic volume resolution
of 1 × 1 × 1mm3. We use 700 patients as a training dataset and 175 patients as
a test set for performance evaluation. We crop each volume at the center of the
nodule position and produce volumes of 128 × 128 × 128. For the evaluation of
the method we use the Dice score as a metric of volume overlap.

Correlation of ZS and Zvar and Dice Score: We analyze correlation between
Zvar and ZS (Sect. 3) and the actual Dice score in Fig. 2. Dice score is com-
puted between the absolute ground truth (average of 4 annotators) and the pre-
dicted segmentation. In Fig. 2(a, b, e, f) we observe linear negative correlation
(p < 0.001) between Zvar, ZS and the segmentation performance for both net-
works. Higher negative correlation is observed for DUNet between Zvar and Dice
score (Fig. 2e, ρ = −0.75) and between ZS and Dice score (Fig. 2f, ρ = −0.67).

There are some cases (10 cases) in both methods that produce uncertainty
scores that are not representative for the segmentation quality. Although these
nodules do not have any special visual characteristics, the model produces high
Dice scores with high uncertainty scores. In Fig. 2c, d and g, h the distribu-
tions of uncertainty scores are plotted for two different groups of segmentations.
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Successful segmentations have been empirically defined as those where the Dice
score is ≥0.80 and unsuccessful segmentations with Dice scores ≤0.65. Thus, a
threshold for the uncertainty score, which divides the two groups of segmenta-
tions can be defined as the intersection of the two distributions, which is close
to 0.25.

Fig. 2. Scatter plots of correlation between Dice score and uncertainty scores and
probability density function (pdf) plots for both networks. Top row: PUNet. Bottom
row: DUNet. Correlation between Dice score and Zvar and ZS respectively: (a–b)
PUNet and (e–f) for DUNet. Probability density function (PDF) for values of Zvar

(and ZS) of samples whose Dice scores is between 0.80 and 0.95 (blue) and the samples
that their Dice scores is lower than 0.65 (red). (c–d) for PUNet and (g–h) for DUNet.
(Color figure online)

Inter-observer Variability vs. Segmentation Uncertainty: As a näıve
baseline we evaluate a convolutional regressor network to predict the annotator
variance directly from the volumes. The regressor consists of 5 (convolution-max
pooling) layers which are followed by a global average pooling (GAP) layer to
predict Zvar ∈ [0, 1] directly. Mean square error between prediction and ground
truth of variance among annotators is minimised during training. The perfor-
mance of this approach is limited with a mean square error of 0.22 ± 0.0012.
To evaluate TPR (Eq. 10) and FPR (Eq. 11) we compute ROC curves for each
network as shown in Fig. 3 and evaluate DisAcc for a range of thresholds. The
ROC curves of FPR and TPR (a–b) of both networks are quite similar with the
best result for predictive entropy (Eq. 6) as uncertainty metric and PUNet with
AUC = 0.98. Comparing DisAcc (c–d) for 5 different thresholds θ ∈ [0, 1] for
both networks and DisAcc reaches 0.99 for θ = 0.2 and then remains stable.

Qualitative Analysis of Inter-observer Variability and Segmentation
Uncertainty. Finally, we present a qualitative comparison between segmenta-
tion uncertainty and human uncertainty. Here, human uncertainty is expressed
as human annotator entropy. We present and compare the result among all the
different uncertainty metrics for both networks in Fig. 4.
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(a) Variance (b) Entropy (c) Variance (d) Entropy

Fig. 3. ROC curves and DisAcc plots using predictive Entropy and σ2 for both prob-
abilistic networks

Fig. 4. Uncertainty maps using maximum Softmax (max(M)), Predictive Entropy
(Eq. 6), Variance (Eq. 4) and Mutual Information (Eq. 8) using both networks (darker
colour, larger value).

5 Discussion

A limitation of our evaluation is that for a few cases the evaluated uncertainty
scores are not a representative metric for how good or bad is a segmentation
and it is likely dependant on the used data set. Furthermore, the impact of
added parameter capacity in the probabilistic U-Net architecture compared to
the dropout-only architecture will need to be carefully investigated in future
work. Also, uncertainty as perceived by humans might be fundamentally different
from model confidence. Although there is evidence that model uncertainty could
capture/include also human disagreement area, it is not clear yet at which extend
this happens. Finally, the impact of the different label fusion techniques in the
estimation of ground truth and segmentation uncertainty will need to be further
examined.

6 Conclusion

Using probabilistic 3D segmentation networks, we examine the relationship
between segmentation uncertainty and segmentation performance. We explore
to which extent human expert inter-observer variability can effect and correlate
with model segmentation uncertainty. Our results show that both, a U-Net using
MC dropout during inference as well as a 3D probabilistic U-Net architecture
can quantitatively correlate the posterior segmentation distribution with true
uncertainties. We present results that show a relationship between segmentation
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uncertainty and the area of annotator disagreement. Thus, in most cases model
segmentation uncertainty indicates also likely human disagreement. The inte-
gration of the evaluated metrics into clinical quality control or for example into
an active learning framework, where ‘uncertain’ parts of segmentations will be
re-processed by a human, might show benefit in future work.
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