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Abstract. Annotation of medical images has been a major bottleneck
for the development of accurate and robust machine learning models.
Annotation is costly and time-consuming and typically requires expert
knowledge, especially in the medical domain. Here, we propose to use
minimal user interaction in the form of extreme point clicks in order to
train a segmentation model that can, in turn, be used to speed up the
annotation of medical images. We use extreme points in each dimension
of a 3D medical image to constrain an initial segmentation based on
the random walker algorithm. This segmentation is then used as a weak
supervisory signal to train a fully convolutional network that can segment
the organ of interest based on the provided user clicks. We show that the
network’s predictions can be refined through several iterations of training
and prediction using the same weakly annotated data. Ultimately, our
method has the potential to speed up the generation process of new
training datasets for the development of new machine learning and deep
learning-based models for, but not exclusively, medical image analysis.

1 Introduction

The growing number of medical images taken in routine clinical practice increases
the demand for machine learning (ML) methods to improve image analysis work-
flows. However, a major bottleneck for the development of novel ML-based mod-
els to integrate and increase the productivity of clinical workflows is the anno-
tation of datasets that are useful to train such models. At the same time, volu-
metric analysis has shown several advantages over 2D measurements for clinical
applications [1], which further increases the amount of data (a typical CT scan
contains hundreds of slices) needing to be annotated in order to train accurate
3D models. However, the majority of annotation tools available today for med-
ical imaging are constrained to annotation in multiplanar reformatted views.
The annotator needs to either brush paint or draw boundaries around organs of
interest, often on a slice-by-slice basis. Classical techniques like 3D region grow-
ing or interpolation tools can speed up the annotation process by starting from
seed points or allowing the user to skip certain slices. However, their usability is
often limited to certain types of structures and might not work well in general.
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Here, we propose to use minimal user interaction in form of extreme point
clicks, together with iterative training and refinement. Starting from user-defined
extreme points in each dimension of a 3D medical image, an initial segmentation
is produced based on the random walker algorithm. This segmentation is then
used as a weak supervisory signal to train a fully convolutional network that can
segment the organ of interest based on the provided user clicks. We show that
the network’s predictions can be iteratively refined by using several iterations of
training and prediction using the same weakly annotated data.

Related Work: Fully convolutional networks (FCNs) [2] have established them-
selves as the state-of-the-art methods for medical image segmentation in recent
years [3–5]. However, a major drawback is that they are very data hungry, lim-
iting their application in healthcare where data annotation is very expensive.
In order to reduce the cost of labeling, semi-automated/interactive and weakly
supervised methods have been proposed in the literature.

Building on recent advances in deep learning (DL), several methods have been
proposed to integrate it with interactive segmentation schemes. DL has been used
in [6] for the DeepIGeoS algorithms, which leverages geodesic distance transforms
and user scribbles to allow interactive segmentation. Such a method does not
exhibit robust performance when seeking segmentation for unseen object classes.
An alternative method [7] uses image-specific fine-tuning and leveraging both
bounding boxes and scribble-based interaction. In [8], the authors utilize point
clicks that are modeled as Gaussian kernels in a separate input channel to a
segmentation FCN in order to model user interactions via seed-point placing.
Finally [9] proposes to use user-provided scribbles with random walks [10] and
FCN predictions to achieve semi-automated segmentation of cardiac CT images.
This method differs from our proposed method in that we only expect the user
to provide extreme points rather than scribbles as initial input to the random
walker algorithm and uses a different approach when iteratively refining the
segmentations.

One of the first approaches using bounding box based weakly supervised
training of deep neural networks in medical imaging was by [11]. They used
a patch-based classification CNN to segment brain and lung regions using an
initial GrabCut segmentation. After several rounds of predictions using CNN
plus Dense CRF post-processing, the network’s segmentation performance could
be improved. Weakly-supervised or self-learning in medical image analysis can
also make use of measurements readily available in the hospital picture archiv-
ing and communication system (PACS) such as measurements acquired during
evaluation of the RECIST criteria [12]. However, these measurements are typ-
ically constraint to 2D and might miss adequate constraints for more complex
three-dimensional shapes. In [13], unsupervised segmentation results are used to
train a deep segmentation network on cystic lung regions, again in a slice-by-
slice fashion. This approach might work well for certain organs, like the lungs,
where an unsupervised technique can have good enough initial performance due
to the good image contrast. However, completely unsupervised techniques might
fail to generalize to organs where the boundary information is not as clear.



44 H. Roth et al.

More recently, [14] introduced inequality constraints based on target-region size
and image tags in the loss function of a CNN in order to train the network for
weakly supervised segmentation.

2 Method

In this work, we approach initial interactive segmentation using user-provided
clicks on the extreme points of the organ of interest. The overall proposed algo-
rithm for weakly supervised segmentation from extreme points can be divided
into the following steps which are detailed below:

1. Extreme point selection
2. Initial segmentation from scribbles via random walker algorithm
3. Segmentation via deep fully convolutional network
4. Regularization using random walker algorithm

Steps 2, 3, and 4 will be iterated until convergence. Here, convergence is defined
based on the differences between two consecutive rounds of predictions as in [13].

1. Extreme point selection: Defining extreme points on the organ surface will
allow the extraction of a bounding box around the organ (plus some padding
p = 20 mm in all our experiment). Bounding box selection significantly reduces
the image content that the 3D FCN has to analyze and simplifies the machine
learning problem, as previous work on cascaded approaches has shown [15].
Bounding boxes and extreme points on objects have been widely studied in the
computer vision literature [16]. Bounding boxes have a practical disadvantage
in that the user often has to select the corners of bounding boxes that lie out-
side the object of interest. This is especially tricky to do for three-dimensional
objects where the user typically has to navigate three multi-planar reformat-
ted views (axial, coronal, sagittal) in order to achieve the task. Recent studies
have also shown the time savings using extreme point selection brings for 2D
object selection instead of traditional bounding box selection [16,17]. At the
same time, extreme points provide additional information to the segmentation
model (which can be observed in our experimental section, Table 1. They lie on
the object surface and we model them as an additional input channel together
with the image intensities. This extra channel includes 3D Gaussians G centered
on each point location clicked by the user. This approach is similar to [16] but
here we extended it to 3D medical imaging problems.

Figure 1 illustrates our approach. We ask the user to click on six extreme
points (here four are shown in axial view) that describe the largest extent of the
organ. These points are then used to compute a bounding box B automatically,
including some padding p.

2. Initial segmentation from scribbles via random walker algorithm:
In order to make use of extreme point clicks as a weak supervision signal, we
turn them into a probability map Ŷ than can act as a pseudo dense label map
for driving a 3D FCN to learn the segmentation task. Based on the initial set
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(a) (b)
(c)
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Fig. 1. Our weakly supervised segmentation framework. (a) The user selects extreme
points that define the organ of interest (here the liver) in 3D space. (b) Extreme
points are modeled as Gaussians in an extra image channel which is fed to a 3D
segmentation model. (c) Foreground scribbles are generated automatically to initialize
random walker (the ground truth surface is shown in red for reference). (d) Model
returns the segmentation results.

of extreme points, we compute a set of foreground and background scribbles
that act as the input seeds for the random walker algorithm [10]. We compute
Dijkstra’s shortest path [18] between each extreme point pair along each image
dimension, where we model the distance between neighboring voxels by their
gradient magnitude D =
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+
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+

(
∂f
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)2. Here, the shortest path result
can be seen as an approximation of the geodesic distance [6] between the two
extreme points in each dimension. Figure 1 shows the foreground scribbles used
as input seeds to the random walker algorithm. In order to increase the number
of foreground seeds, each path is also dilated with a 3D ball structure element
of rforeground = 2. The background seeds are defined as the dilated and inverted
version of the input scribbles. While the amount of dilation does depend on the
size of the organ of interest, we typically dilate with a ball structure element of
radius rbackground = 30 which achieves good initial seeds for organs like spleen,
and liver.

Next, the random walker algorithm [10] is used to generate an initial predic-
tion map Ŷ based on the background s0 and foreground s1 scribbles described
above. The random walker basically solves the diffusion equation between voxels
defined as source and sink as defined by the scribbles S. Here, the 3D volume
is defined as a graph G(E, V ) with edges e ∈ E and vertices v ∈ V . The edge
between two vertices vi and vj is denoted as eij and can be assigned a weight
wij based on the image intensities gradients. Furthermore, the degree of a given
vertex is defined by di =

∑
wij . We solve the diffusion equation in order to get

a probability p(ω|x) = xω
j for each vertex vi to belong to the foreground class

ω1. Here, L is the Laplacian of the weighted image graph G with each element
of the matrix defined as:

Lij =

⎧
⎪⎨

⎪⎩

di, if i = j,

−wij , if i and j are adjacent voxels,
0, otherwise

(1)
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The weights between adjacent voxels are defined as wij = e−β|zj−zi|2 to make
diffusion between similar voxel intensities zi and zj easier. While β is a tunable
hyperparameter that controls the amount of diffusion, we keep it fixed at β = 130
in all our experiments.

3. Segmentation via deep fully convolutional network: Next, given all
pairs of images X and pseudo labels Ŷ , we can train a fully convolutional neu-
ral network to segment the given foreground class, with P (X) = f(X). Our
network architecture of choice follows the encoder-decoder network proposed in
[19], utilizing an-isotropic (3 × 3 × 1) kernels in the encoder path in order to
make use of pretrained weights from 2D computer vision tasks. As in [19], we
initialize from ImageNet pretrained weights using a ResNet-18 encoder branch.
While the initial weights are learned from 2D, all convolutions are still applied
in a full 3D fashion throughout the network, allowing it to efficiently learn 3D
features from the image. The Dice loss [4] has been established as the objective
function of choice for medical image segmentation tasks. Its properties allow
automatic scaling to unbalanced labeling problems. At the same time, it also
naturally adapts to the comparing probability maps without any modifications
to the original formulation:

LDice = 1 − 2
∑N

i=1 yiŷi
∑N

i=1 y2
i +

∑N
i=1 ŷ2

i

(2)

Here, yi is the predicted probability from our network f and ŷi is the weak label
probability from our pseudo label map Ŷ at voxel i.

4. Regularization using random walker algorithm: We could stop our
learning after the segmentation network f above is trained on the pseudo labels
Ŷ . However, we notice that an additional regularization step by an additional
random walker segmentation as described above can be very beneficial to the
convergence of our weakly-supervised segmentation approach. This finding is
similar in spirit to [11], where a DenseCRF is utilized after each round of CNN
training in order to introduce regularization to the segmentation output. In order
to increase the amount of regularization the random walker can bring to the
network’s predictions, we add an area of uncertainty by eroding the foreground
prediction P (X) >= 0.5 and eroding the background P (X) < 0.5 both with a
ball structure element of radius rrandomwalker = 4 in all our experiments. This
allows the random walker to produce new predictions around the boundary of
the foreground object that differ from the previous 3D FCN predictions and in
turn, help the next iteration to learn new features from the same set of training
images, and not to get stuck in a local optimum. In fact, we notice that without
this step, our weakly supervised segmentation framework becomes unstable and
does not easily converge to a satisfying performance.

3 Experiments and Results

Datasets: We utilize the training datasets (as they include ground truth anno-
tations) from public challenges, specifically, from the Medical Segmentation



Weakly Supervised Segmentation from Extreme Points 47

Decathlon1 and the Challenge on Endocardial Three-dimensional Ultrasound Seg-
mentation2. All numbers are reported on 1 mm isotropic images that were gen-
erated from the original images using linear interpolation for both CT and MRI
images. For ultrasound images, we keep their original resolution as they are close
to isotropic. We employ random splits for training and validation for all datasets,
resulting 32/9 cases for spleen (CT), 104/27 cases for liver (CT), 26/6 cases for
prostate (MRI), and 24/6 cases for left ventricle (LV) in ultrasound (US).

(a) (b) (c) (d)

Fig. 2. Our results. We show (a) the image, (b) overlaid (full) ground truth (used for
evaluation only), (c) initial random walker prediction, and (d) our final segmentation
result produced by the weakly supervised FCN. We show qualitative results for top to
bottom: spleen (CT), liver (CT), prostate (MRI), and left ventricle (US) segmentation.

Experiments: In all cases, we iterate our algorithm until convergence on the
validation data. We compare both training with and without employing random
walker (RW) regularization after each round of 3D FCN training. Furthermore,

1 http://medicaldecathlon.com.
2 https://www.creatis.insa-lyon.fr/Challenge/CETUS/.

http://medicaldecathlon.com
https://www.creatis.insa-lyon.fr/Challenge/CETUS/
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we quantify the benefit of modelling the extreme points as an extra input channel
to the network by running the framework with RW regularization but without
the extreme points channel. The results are summarized in Table 1 for all seg-
mentation tasks. It can be observed that the biggest improvements happen in
the first round FCN learning after initial random walker segmentation. While
random walker regularization does not always improve the average Dice score,
it does help to introduce enough “novelty” into our learning framework in order
to drive the overall Dice score up in later iterations as shown in Fig. 3. Visual
examples of the improvement between from initial random walker to the final
FCN prediction is shown in Fig. 2.

Implementation: The training and evaluation of the deep neural networks used
in the proposed framework were implemented based on the NVIDIA Clara Train
SDK 3 using NVIDIA Tesla V100 GPUs with 16 GB memory.

Fig. 3. Weakly supervised training from scribble based initialization. Each segmenta-
tion task is shown with (w) and without (w/o) random walker regularization after each
round of FCN training.

Table 1. Summary of our weakly supervised segmentation results. This table com-
pares the random walker initialization with weakly supervised training from extreme
points with (w) and without (w/o) random walker (RW) regularization, and with RW
regularization but without the extra extreme points channel as input to the network
(w RW; no extr.). For reference, the performance on the same task under fully super-
vised training is shown.

Dice Spleen (CT) Liver (CT) Prostate (MRI) LV (US)

Rnd. walk. init. 0.852 0.822 0.709 0.808

Weak. sup. (w/o RW) 0.905 0.918 0.758 0.876

Weak. sup. (w RW; no extr.) 0.924 0.935 0.779 0.860

Weak. sup. (w RW) 0.926 0.936 0.830 0.880

Fully supervised 0.963 0.958 0.923 0.903

3 https://devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-
sdk.

https://devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-sdk
https://devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-sdk
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4 Discussion and Conclusions

We presented a method for weakly supervised 3D segmentation from extreme
points. Asking the user to select the organ of interest using simple point clicks on
the organ’s surface in each spatial dimension can reduce the amount of labeling
cost drastically. At the same time, the point clicks can describe the region of
interest and simplify the machine learning task in 3D. Furthermore, the extreme
points can be utilized to generate an initial weak pseudo label based on the
extreme points utilizing the random walker algorithm. We found our initial label
to be relatively robust to three diverse medical image segmentation tasks involv-
ing three different image modalities (CT, MRI, and ultrasound). Occasionally,
the random walker can lack robustness for organs showing very diverse interior
textures, like some advanced cancer patients in the prostate dataset. Here, a
boundary search algorithm could potentially provide a better initial segmenta-
tion. Still, our FCN training in is able to markedly improve upon the initial seg-
mentation. Previous work mainly utilized bounding box annotations for weakly
supervised learning, e.g. [11]. However, we consider selecting extreme points on
the organ’s surface to be more natural then selecting corners of a bounding box
outside the organ of interest and more efficient than adding scribbles inside and
around the organ [6,9]. This is consistent to findings in the computer vision
literature [17]. In the future, the region of interest and extreme point selection
could be replaced by an automatic proposal network in order to further reduce
the manual burden of medical image annotation.
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