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LABELS 2019 Preface

This volume contains the proceedings of the 4th International Workshop on
Large-scale Annotation of Biomedical data and Expert Label Synthesis (LABELS
2019), which was held on October 13, 2019, in conjunction with the 22nd International
Conference on Medical Image Computing and Computer Assisted Intervention
(MICCAI 2019) in Shenzhen, China. The first workshop in the LABELS series was
held in 2016 in Athens, Greece. This was followed by workshops in Quebec City,
Canada in 2017, and Granada, Spain in 2018.

With the widespread use of data-intensive supervised machine learning methods in
medical image computing, a growing pressure has mounted to generate vast quantities
of quality annotations. Unsurprisingly, in response to the need for very large volumes
of training data for deep learning systems, the demand for new methods of gathering
vast amounts of annotations in efficient, coherent, and safe ways has only grown. To
address these issues, LABELS gathers contributions and approaches focused on either
adapting supervised learning methods to learn from external types of labels
(e.g., multiple instance learning, transfer learning) and/or acquiring more, or more
informative, annotations, and thus reducing annotation costs (e.g., active learning,
crowdsourcing). Following the success of the previous three LABELS workshops, and
given the ever-growing need for such methods, the fourth workshop was planned for
2019. The workshop included invited talks by Annika Reinke (German Cancer
Research Center, Germany) and Bjoern Menze (Technical University of Munich,
Germany), as well as several papers and abstracts. After peer review, a total of eight
papers and two abstracts were selected. The papers appear in this volume, and the
abstracts are available on the workshop website: http://miccailabels.org. A variety of
approaches for dealing with a limited number of labels, from semi-supervised learning
to crowdsourcing, are well-represented within the workshop. Unlike many workshops,
the contributions also feature “insightfully unsuccessful” results, which illustrate the
difficulty of collecting annotations in the real world. We would like to thank all the
speakers and authors for joining our workshop, the Program Committee for their
excellent work with the peer reviews, our sponsors – RetinAi Medical and Auris Health –
for their support, and the workshop chairs for their help with the organization of the
fourth LABELS workshop.

September 2019 Nicholas Heller
Raphael Sznitman

Veronika Cheplygina
Diana Mateus

Emanuele Trucco

http://miccailabels.org
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HAL-MICCAI 2019 Preface

With the prevalence of deep neural networks, machine intelligence has recently
demonstrated performance comparable with, and in some cases superior to, that of
human experts in medical imaging and computer assisted intervention. Such
accomplishments can be largely credited to the ever-increasing computing power, as
well as a growing abundance of medical data. As larger clusters of faster computing
nodes become available at lower cost and in smaller form factors, more data can be
used to train deeper neural networks with more layers and neurons, which usually
translate to higher performance and at the same time higher computational complexity.
For example, the widely used 3D U-Net for medical image segmentation has more than
16 million parameters and needs about 4.7 � 1013 floating point operations to process
a 512 � 512 � 200 3D image. The large sizes and high computation complexity of
neural networks have brought about two emerging issues that need to be addressed by
the joint efforts between hardware designers and researchers in the MICCAI society
towards hardware aware learning.

First, when powerful computing resources are easily accessible through network
connection, such large networks may not impose significant challenges. However, for
many medical applications where latency, privacy, or reliability is critical (such as
implantable medical devices or health monitoring), inference has to be done locally,
and such computation is subject to stringent area and power constraints due to limited
resources available. To address the computational demands, hardware designers have
started to explore techniques to compress deep neural networks for efficient local
inference (i.e., edge inference). The ultimate judgment of such techniques is that lower
power and area overhead can be achieved with minimal loss in inference accuracy. As
many researchers in the MICCAI society are focusing on increasing inference accuracy
through designing more complex networks, a correlated race exists between these
researchers and hardware designers. Semiconductor technology scaling based on
Moore’s law has provided hardware designers a relatively easy path towards
accommodating increasing network sizes. However, with the slowdown of the scaling
trends, a clear gap between hardware capacity and computational demand has emerged.
It would therefore be of interest to explore various hardware designs coupled with
algorithm innovations that could help to bridge the gaps.

Second, in many real-time medical applications such as image/VR guided surgery, it
is desirable to further accelerate the inference speed of large neural networks. As
hardware acceleration of deep neural networks is popular today, it would be interesting
to explore customized hardware that utilizes the dedicated structure of a network for
maximal efficiency. On the other hand, for a given hardware platform, it would also be
interesting to see how to design a neural network/algorithm that can work best with it
for a particular medical application. Ultimately, the joint exploration/co-design of
hardware and neural networks can benefit many important problems within the
MICCAI scope.



The HAL-MICCAI 2019 proceedings contain five high-quality papers that were
preselected through a rigorous peer-review process. All submissions were
peer-reviewed through a double-blind process by at least 3 members of the Program
Committee, comprising 11 experts in the field of hardware aware medical applications.
The accepted manuscripts cover a wide set of hardware applications in medical
problems, including medical image segmentation, electron tomography, pneumonia
detection, etc. In addition to the papers presented in this LNCS volume, the workshop
comprised a keynote speech from a world renowned expert Prof. Danny Chen on deep
learning and medical image applications, and an invited talk from Prof. Cheng Zhuo on
pathology image processing.

October 2019 Yiyu Shi
X. Sharon Hu
Danny Chen

xii HAL-MICCAI 2019 Preface
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CuRIOUS 2019 Preface

Early brain tumor resection can effectively improve the patient’s survival rate.
However, resection quality and safety can often be heavily affected by intra-operative
brain tissue shift due to factors, such as gravity, drug administration, intracranial
pressure change, and tissue removal. Such tissue shift can displace the surgical target
and vital structures (e.g., blood vessels) shown in pre-operative images while these
displacements may not be directly visible in the surgeon’s field of view. Intra-operative
ultrasound (iUS) is a robust and relatively inexpensive technique to track
intra-operative tissue shift and surgical tools. However, to help update pre-surgical
plans with this information, accurate and robust image registration algorithms are
needed to relate pre-surgical magnetic resonance imaging (MRI) scans to iUS images at
different stages of the surgery. Despite the great progress so far, medical image
registration techniques still have not made into the surgical room to directly benefit the
patients with brain tumors. This second edition of the CuRIOUS MICCAI challenge
provided a snapshot of the current progress in the field through extended discussions
and provided researchers with an opportunity and common benchmark to characterize
their inter-modal (MRI vs. iUS) and intra-modal image (iUS vs. iUS) registration
methods on standardized datasets of iUS-guided brain tumor resection.

October 2019 Yiming Xiao
Matthieu Chabanas

Hassan Rivaz
Ingerid Reinertsen
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Comparison of Active Learning Strategies
Applied to Lung Nodule Segmentation

in CT Scans

Daria Zotova1,2, Aneta Lisowska1(B), Owen Anderson1,3, Vismantas Dilys1,
and Alison O’Neil1,4

1 Canon Medical Research Europe, Edinburgh, UK
aneta.lisowska@eu.medical.canon

2 Universitat de Girona, Girona, Spain
3 University of Glasgow, Glasgow, UK

4 University of Edinburgh, Edinburgh, UK

Abstract. Supervised machine learning techniques require large amou-
nts of annotated training data to attain good performance. Active learn-
ing aims to ease the data collection process by automatically detecting
which instances an expert should annotate in order to train a model as
quickly and effectively as possible. Such strategies have been previously
reported for medical imaging, but for other tasks than focal patholo-
gies where there is high class imbalance and heterogeneous background
appearance. In this study we evaluate different data selection approaches
(random, uncertain, and representative sampling) and a semi-supervised
model training procedure (pseudo-labelling), in the context of lung nod-
ule segmentation in CT volumes from the publicly available LIDC-IDRI
dataset. We find that active learning strategies allow us to train a model
with equal performance but less than half of the annotation effort; data
selection by uncertainty sampling offers the most gain, with the incor-
poration of representativeness or the addition of pseudo-labelling giving
further small improvements. We conclude that active learning is a valu-
able tool and that further development of these strategies can play a key
role in making diagnostic algorithms viable.

Keywords: Active learning · Lung nodule segmentation ·
Pseudo-labelling

1 Introduction

Data hungry deep learning techniques have become the ‘go to’ approach when
it comes to pathology and organ segmentation in medical images, resulting in
a high demand for annotated data. Usually annotation can only be performed
by medical domain experts who have limited time to give, thus there is an
interest in approaches which can reduce the annotation burden. Active learning
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4 D. Zotova et al.

techniques tackle this by putting the domain expert in the model training loop,
and iteratively selecting subsets of unlabelled instances to annotate in order to
induce the biggest boost in model performance [22]. In recent years there have
been various active learning approaches proposed and applied to the tasks of
melanoma segmentation in optical images [7], gland segmentation in histological
images [22] and lymph node segmentation in ultrasound [22]. In this study we
are interested in their performance in the setting of high class imbalance and
heterogeneous background appearance, as is commonly the case for computer-
aided diagnosis (CAD) tasks with focal pathologies.

Lung cancer is the second most common type of cancer diagnosed in the
United States and the United Kingdom for both men and women [17], and screen-
ing with Computed Tomography (CT) scans is an effective tool for early diagno-
sis [1,4]. Consequently, creation of a robust system that detects lung nodules is
one of the most commonly attempted medical image analysis tasks [6,8,11]. The
contribution of this paper is a comparison of existing active learning approaches
and analysis of their performance for lung nodule segmentation.

2 Related Work

Uncertainty sampling is a simple active learning strategy popularly used with
various types of classifier [18]. In neural networks, uncertainty can be estimated
by incorporating a dropout layer activated at inference time [5]. Gorriz et al. used
this method in the context of melanoma segmentation [7], to obtain pixel-wise
uncertainty maps for selection of the most uncertain samples for annotation.
Further, building on previous work in image classification by Wang et al. [21],
they used the uncertainty estimation to select the most certain samples and used
the predictions as pseudo-labels for training. Pseudo-labelling is not novel; for
instance, in [12] for image classification, the pseudo-label was defined simply as
the class with the highest probability, while in [3] several techniques to obtain
the confidence measure of pseudo-labels were proposed.

Yang et al. introduced a deep active learning framework that combines uncer-
tainty sampling with representativeness estimation [22]. The representativeness
measure was intended to select a set of samples which is representative of the
variation in the unlabelled pool. Representativeness was measured by the mean
cosine similarity between each sample in the unlabelled pool and its closest
match in the candidate set, where matching was performed between the com-
pressed representations learned by the network.

3 Methods

3.1 Data

We used CT scans from the publicly available Lung Image Database Consor-
tium and Image Database Resource Initiative (LIDC-IDRI) collection [2]. The
database consists of 1018 cases, each labelled with the nodule segmentations
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and the estimated malignancy (based on the image). In this study, a subset of
363 patients was used: 262 training (2973 nodules), 81 validation (991 nodules)
and 20 test (239 nodules). We extracted the slices with nodules annotated by
at least one annotator. Where there were multiple annotators per nodule, the
union of the annotations was selected as the nodule mask. From each patient we
also extracted a single random slice without nodules. This reduced dataset (i.e.,
subset of slices chosen for each patient) was pragmatically chosen to keep run
times reasonable, since each active learning experiment run is itself the sum of
many training runs. Images were pre-processed by clamping the pixel intensity
values at −880 and 430 Hounsfield Units and rescaling to lie between 0 and 1.

3.2 Network Architecture and Parameters

We employed a 2D (slice-wise) VGG U-Net [16,19], constructed by using
VGGNet as the encoder part of the U-Net and mirroring this with a similar
decoder architecture, as shown in Fig. 1. There are three input channels to encode
3-D context information; we input the centre slice that contains the nodule and
its neighbouring slices. The network was trained using a focal loss function [13]
and the Adam optimiser [10] with a cyclical learning rate [20] and batches of
16 slices. Training was run for 200 epochs, with early stopping (patience of 20
epochs) and the best network weights on the validation set were retained accord-
ing to a binary cross-entropy loss function (more stable than focal loss).

Fig. 1. Diagram of VGG U-Net. The bottleneck layer is marked in red: this is where
uncertainty dropout is applied and where the compressed representation is derived.
(Color figure online)



6 D. Zotova et al.

3.3 Active Learning Strategies

Our active learning setup is illustrated in Fig. 2. We implemented three active
learning strategies as described below. Each strategy aims to select suitable
annotated patients to add to the labelled set (in lieu of live annotation).

Fig. 2. Active learning setup showing our three active learning strategies in blue (uncer-
tainty sampling), green (representativeness) and purple (pseudo-labelling). (Color
figure online)

Baseline: Random Sampling: At every active learning iteration, four random
patients are chosen from the unlabelled pool, and added to the labelled set.

AL Strategy 1: Uncertainty Sampling: At each iteration, the trained model is
applied to the unlabelled slices to make T different predictions for each pixel,
produced by T random dropout combinations in the bottleneck layer (T = 3,
dropout = 0.9). In order to assign patient-level uncertainty scores, we com-
pute the mean of the pixel-wise prediction variance across all pixels from all
slices belonging to each patient. We add the four most uncertain patients to the
labelled set. An example of a CT slice with associated uncertainty map is shown
in Fig. 3.

AL Strategy 2: Representativeness: At each iteration, rather than simply select-
ing the most uncertain patients, we first designate the candidates as the U most
uncertain patients (U = 8) using uncertainty scoring. For all unlabelled slices,
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Fig. 3. Example scan slice with the corresponding labelling. From left to right: CT slice,
GT annotation, Prediction, Uncertainty map. The prediction is from early training so
the network has not yet learned to predict any part of the image with certainty, but
the uncertainty for the nodule is over twice that of the background.

we then take the output of the U-Net bottleneck layer and apply principal com-
ponent analysis with 10 components to produce a compressed representation.
The R most representative candidates (R = 4) are selected by computing the
mean cosine similarity between every slice in the candidate patient and every
unlabelled slice. We add the R patients to the labelled set.

AL Strategy 3: Pseudo-Labelling: At each iteration, we select the C most certain
patients (C = 4, measured by the lowest uncertainty scores) and add these
patients to the labelled set with the soft probabilistic labels assigned by the
network (pseudo-labels). Note that we require patients to have an uncertainty
value below 0.001 to be considered for pseudo-labelling; this is to prevent low-
quality labels being assigned when the model’s predictions are uniformly poor
for samples in the unlabelled pool (typically early on during training).

Each iteration consists of a training run as described in Sect. 3.2, starting from
the pre-trained weights learned in the previous iteration. For all active learning
experiments, initially the VGG U-Net was trained on all slices from 10 randomly
chosen patients, and the remaining 252 patients were put into the unlabelled
pool of data. For the purpose of the ablation study, we removed uncertainty
scoring and employed representativeness alone (i.e., all unlabelled patients are
candidates, not only the most uncertain), and pseudo-labelling alone (i.e., used
in conjunction with random sampling rather than uncertainty sampling). To
measure the upper bound i.e., the measure of achievable performance when all
training data is used, the network was trained with all 262 patients.

4 Results

Figures 4 and 5 show the results. To capture the variation in the speed of the
convergence, each strategy was run with 8 random seeds, each time randomly
varying the initialisation conditions i.e., using different network weights and a
different subset of 10 labelled patients from the training set (training, validation
and test sets were kept fixed). The seeds were kept the same between approaches.
In order to estimate the network performance at each active learning iteration,
we compute the average precision-recall (PR) score using the test set. In the
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Fig. 4. Graph of the mean PR score (of 8 runs) for every strategy at each iteration.
The full labelled training dataset is shown in red. (Color figure online)

Fig. 5. Graph of the minimum and maximum PR score (of 8 runs) at each iteration
for uncertainty sampling (blue) vs random sampling (grey). The full labelled training
dataset is shown in red. (Color figure online)



Comparison of Active Learning Strategies 9

Fig. 6. Illustration of emergent selection policy for one training run of the uncertainty
sampling strategy. Top: Graph showing a random slice from each of the 4 patients
selected at each iteration. Bottom: Plots of the average number and size of nodules at
each iteration (across the batch of 4 scans).

case of pseudo-labelling, for most runs, the unlabelled data was all added to
the labelled pool as either true labels (through uncertainty selection, with or
without representativeness) or pseudo-labels by around 40 iterations. In Fig. 4,
for ease of visualisation, we extrapolate the final metric for each run up to the
full 63 iterations. We note that dips are evident in the graphs, denoting worse
performance from one iteration to the next, despite the fact that we retain the
best weights on the validation set at each iteration. This occurs because the
binary cross-entropy metric used to judge the best weights is not completely
correlated with our evaluation metric of average precision-recall score (which is
too computationally expensive for use within training). Below we analyse the
results for each active learning method.

Uncertainty Sampling: Whilst there is large variation between the experiment
runs (so performance is highly dependent on the initial random set of training
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patients), the uncertainty-based active learning methods almost always perform
better than random sampling. In fact, these strategies appear on average to
outperform the fully labelled dataset. To gain insight into the selection policy
of the uncertainty sampling, in Fig. 6 we show a random slice from each of the
four patients selected at each iteration for a single run. At the beginning of
the training run, patients with large nodules were selected. By the end of the
training run, patients with smaller nodules, frequently close to the lung border,
were selected. We observe that this behaviour resembles a curriculum learning
strategy, which makes an interesting emergent counterpoint to the hand-designed
curriculum learning strategies such as has been previously demonstrated for
lung nodule detection [9]. It is interesting that uncertainty sampling appears to
outperform training with the fully labelled dataset, and we theorise that a better
minimum may be reached due to sample selection mimicking balanced sampling
i.e., eagerly selecting samples along different axes of variation such as nodule
size, position, and opacity; however, further investigation is required.

Fig. 7. 2D projection of slices within the representation space, using t-SNE [14]. The
colours denote: 0 = Undiagnosed, 1 = Benign or non-malignant disease, 2 = Malignant
primary lung cancer, 3 = Malignant metastatic cancer.

Representativeness: Sampling purely by representativeness is a poor strategy,
however in combination with uncertainty sampling there is a small boost in per-
formance. On visual inspection of the compressed bottleneck representation (see
Fig. 7), we find that anatomical rather than pathological information is being
captured. This is perhaps unsurprising given that the representation is derived
from the U-Net bottleneck, which is bypassed by skip connections at many
higher resolutions more suited to learning representations of small details such as
lung nodules. It is possible that architectures such as proposed by Kohl et al.
[11] would provide a more suitable representation. However, we also note that we
deviated from the method of Yang et al. [22] in order to minimise computation
time; we computed representativeness independently for each candidate patient,
rather than for each set of candidate patients. This potentially means that the
selected candidates will be correlated with one another, rather than representing
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variation across the whole unlabelled group; we reasoned that this effect would
even out over the course of the active learning process as groups of candidates
became certain one by one.

Pseudo-Labelling: Pseudo-labelling appears to be a promising strategy, although
the additional benefit over uncertainty sampling is marginal. The approach here
(following Gorriz et al. [7]) is a simple strategy that could be finessed by updating
the pseudo-labels as the model improves during training, or returning samples
to the unlabelled pool that become uncertain. Interesting alternative approaches
have also recently emerged, such as the reinforcement learning method suggested
by Park et al. [15] which claims substantial reductions in annotation effort for
the task of lung nodule detection in chest X-Rays.

5 Conclusion

Using lung nodule segmentation as an exemplar focal pathology task, we have
evaluated methods reported for other medical imaging tasks, showing that:

– Uncertainty sampling allows a model to be trained with less than half of the
annotation effort but matching performance.

– Representativeness gives a small further improvement in combination with
uncertainty sampling.

– Pseudolabelling gives small further improvements in combination with both
random and uncertainty sampling strategies.

In future work, we plan to investigate better representations for small details
such as the architecture recently proposed in [11] and more sophisticated pseu-
dolabelling strategies such as [15]. However, we conclude that uncertainty sam-
pling already offers significant annotation savings, with the practical feature
that the pixelwise uncertainty maps could guide the annotator straight to the
problematic regions in the scan. As large datasets become available which are
suitable for diagnosis of focal pathologies, active learning techniques will be a
valuable training tool.
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Abstract. We present a method to automatically label pathologies in
volumetric medical data. Our solution makes use of a healthy statistical
shape model to label pathologies in novel targets during model fitting.
We achieve this using an EM algorithm: the E-step classifies surface
points into pathological or healthy classes based on outliers in predicted
correspondences, while the M-step performs probabilistic fitting of the
statistical shape model to the healthy region. Our method is indepen-
dent of pathology type or target anatomy, and can therefore be used for
labeling different types of data. The method is able to detect pathologies
with higher accuracy than standard robust detection algorithms, which
we show using true positive rate and F1 scores. Furthermore, the method
provides an estimate of the uncertainty of the synthesized label. The
detection also directly improves surface reconstruction results, as shown
by a decrease in the average and Hausdorff distances to ground truth.
The method can be used for automated diagnosis or as a pre-processing
step to accurately label large amounts of images.

Keywords: Statistical shape model · Label synthesis · Outlier
detection · Robust non-rigid registration · EM algorithm

1 Introduction

Automatic labeling of biomedical data remains a necessity, whether for diagnosis
in health-care or image annotation in datasets. This is especially the case for
pathology labeling in volumetric data such as CT or MR images, where there are
time, cost, and error constraints on getting expert labels. One main challenge for
automatic labeling is the extreme variation which can be seen across pathologies.
This limits the ability to generalize labeling algorithms across imaging domains
or even within the same pathology type.

Algorithms that rely on generative methods assume there is an underly-
ing model which can be used to analyze an image. One example is a statisti-
cal shape model (SSM), which is a linear parametric model of shape variation.
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SSMs can generalize well to represent novel instances within the same shape fam-
ily. For example, an SSM built from healthy mandibles can be used to extract
information about a novel mandible extracted from CT, such as location of
teeth. However, the extreme variation problem also prevents the direct applica-
tion of SSMs to pathological data, mainly because of unavailable correspondences
needed for model building and fitting. Solutions usually involve disease-specific
models [19] or handcrafted pathology features [12], but this is not always possible
given limited data and intra-disease pathology variations.

We show how SSMs built from healthy anatomies can be exploited to perform
pathology labeling in novel images. We treat pathology labeling as an outlier
detection step in our proposed robust non-rigid registration algorithm. Outliers
are all SSM points without a corresponding point in the target and vice versa.
Our work extends combined fitting and segmentation with the EM-algorithm
[2,5] to outlier detection on surfaces. We avoid pathology-specific modeling of
features by introducing a probabilistic metric which does not depend on imaging
modality or pathology type. The metric evaluates the target reconstruction and
learns to perform unsupervised classification of individual data points into shape
or pathology. The metric we implement is a probabilistic extension of a double-
projection distance used in the iterative closest points (ICP) algorithm [1,16],
explained in detail in Sect. 3.1. Our main contributions are:

1. an unsupervised-learning and probabilistic approach to label surfaces
extracted from biomedical images as healthy or pathological

2. a robust registration algorithm for fitting SSMs to pathological data

Fig. 1. Proposed pipeline for label synthesis and reconstruction. The input is an unla-
beled pathological target surface. The outputs are the reconstruction, the label map
and the estimated distributions. They are obtained by iterating between outlier detec-
tion (E-step) and outlier-aware fitting (M-step). The label map splits the reference
topology into: healthy-region to be used in SSM fitting (blue) and outlier-region to be
ignored by the SSM (red). (Color figure online)
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2 Related Work

Given a dataset, the goal of outlier detection is to distinguish extreme values that
are statistically relevant from those due to measurement errors [7]. A method
can do so robustly if it has a high “breakdown point”, a value which describes
the number of outliers that can be present in a dataset before an algorithm fails
[13]. For SSMs, outliers are model points which do not match their counterparts
in a novel target. Approaches have been implemented to handle outliers:

Registration. In the trimmed ICP method (TrICP) [1], the robust Least
Trimmed Squares algorithm is used in surface alignment. Other approaches for
rigid registration of 3D surfaces with outliers make use of surface feature descrip-
tors to match regions in correspondence [6]. However, we aim at non-rigid reg-
istration with missing or added data, which remains a difficult challenge. Non-
rigid registration of point sets with outliers has been addressed in an extension
to robust point matching [3] and in coherent point drift [15]. Instead of enforcing
regularization on the allowed deformation fields as they do, we obtain deforma-
tion likelihoods directly from the SSM shape prior. In addition, outliers in our
case include highly unlikely points under the shape prior instead of only missing
or additional points in the set.

SSM-Based Approaches. Outlier detection for SSMs is a pre-processing step
for building or fitting. Semantic patches are often introduced to narrow down the
PCA space or reference topology [9,21]. SSMs have also been used for pathology
segmentation from fitting errors [4]. Our method does not rely on a manual
segmentation of the reference topology. We use fitting failures as in the second
approach but go further by accounting for uncertainty in correspondences before
pathology detection and improving reconstruction results.

Other Generative Approaches. Part-based models (PBMs) split SSMs into
parts with a binary occurrence parameter [20], while Gaussian process morphable
models (GPMMs) of shape and intensity [11,17] account for pathologies with
local deformation kernels [10]. Recently, reconstruction errors from generative
adversarial networks (GANs) have been used for pathology detection [18]. Our
approach does not require local definitions of pathologies as PBMs or GPMMs
do, nor does it depend on classification thresholds as GANs do.

3 Method

We extend the standard SSM fitting formulation with an additional segmentation
of outliers. The segmentation takes the form of binary labels: one label for every
point on the reference SSM topology. The labels separate two regions: an outlier-
region and a healthy-region. SSM fitting is then restricted to the healthy-region.
We formulate the detection and reconstruction steps together as a maximum a
posteriori (MAP) estimation problem. The goal is to find the SSM shape and
pose parameters θ and the point-level label map z that maximize the posterior
distribution function given a target surface Γ :
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P (θ,z | Γ ) ∝ L(Γ | θ,z)P (θ,z) (1)

The likelihood evaluates the similarity of the SSM reconstruction M(θ) to
the target Γ given a specific combination of θ and z, formulated as follows:

L(Γ | θ,z) =
∏

iεn

lh(M(θ)i, Γi)zi lo(M(θ)i, Γi)1−zi (2)

The likelihood factors over the n reference topology points, since they are
assumed to be independent. Every point i is evaluated by either the healthy-
region distribution lh or the outlier-region distribution lo. The point label zi

indicates which of the two distributions should be used for the point i: if zi = 1,
then lh is used, else zi = 0 and lo is used. The Euclidean distance is used to
compare point i on the model surface M(θ)i and its corresponding point on the
target Γi.

Starting with a surface, the shape parameters θ, label map z, and distribu-
tions lh and lo are unknown, making optimization intractable. We use an EM
algorithm to solve this problem. In the E-step, we fix θ, learn the distributions lh
and lo, then infer z. In the M-step, we fix z and infer θ. The novel segmentation
algorithm and the reconstruction strategy are presented in this section. Details
on how to build SSMs can be found in Sect. 3 of [8] and Sect. 2 of [14].

3.1 Outlier Detection: Inferring the Label Map z

We want to infer the binary label map z defined on the domain of the SSM ref-
erence topology. Each of the n points has a label for one of two classes: healthy-
region or outlier-region. In our examples, we consider the mandible with teeth
as the healthy shape. Outliers could be holes from missing teeth, shape defor-
mations from injuries or surgery, or artifacts.

Starting from Eq. 1, we fix the values of θ. We can then infer the labels
which give the MAP solution. The unknown variables in the likelihood function
are the distributions and the label map, both of which depend on the accu-
racy of the corresponding pairs. We propose a probabilistic interpretation of the
distances between corresponding points to account for correspondence uncer-
tainties, accomplished in the three steps below.

Determine Correspondences. A simple double-projection method proposed
in an ICP-based alignment [16] is used. For every point of the SSM reference
topology, we first find its closest point on the target, then project from this point
back to the SSM. The output is a set of bidirectional correspondence pairs.
Incorrect pairs are expected, not only because of this rough correspondence
estimation approach, but also because in the beginning the fixed parameters θ
are far from the MAP solution.

Estimate Distributions. If the ground truth θ and perfect correspondences
were used, then we could expect lh to be a univariate Gaussian with zero mean
and standard deviation from reconstruction noise. However, since neither are
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available for pathological targets, lh is a Gaussian distribution learned from the
current double-projection distances. We assume a uniform distribution for lo
since the method is independent of pathology type. The likelihood is fixed at the
value three standard deviations away from the mean of a healthy distribution,
which we learn by fitting to 100 healthy shapes sampled from the SSM.

Infer Label Map. A point is considered an outlier if its double-projection
distance has a higher likelihood of belonging to the outlier-region distribution
than to the healthy-region distribution. We infer every zi by choosing the label
corresponding to the larger likelihood value. This is equivalent to maximizing
the likelihood function in Eq. 2 with respect to z.

3.2 Outlier-Aware SSM Fitting: Inferring the SSM Parameters θ

To fit the SSM to the target, we need to maximize Eq. 1 with respect to the SSM
parameters θ. To do so, we first fix the values of z obtained from the E-step. This
leaves θ as the only remaining unknown in the likelihood Eq. 2. The prior on the
shape parameters P (θ) is provided by the SSM. With this information, we can
find θ by maximizing Eq. 1 using the approach in [14], which approximates the
posterior distribution then takes the MAP solution as the best reconstruction.

4 Evaluation

We evaluate our method on a mandible SSM built from eight surfaces extracted
from healthy CT scans. The meshes are registered with Gaussian process mor-
phable models [11]. The healthy mandible SSM is built from the registered
meshes using PCA. We generate pathological targets with known ground truth
label maps and SSM parameters. For this, we sample shapes from the healthy
model and deform or clip away parts of their surfaces. This ensures that the
model is able to represent the target shape without pathologies and allows us to
evaluate the effect of the labeling algorithm, instead of the SSM generalization
ability, on the registration. This results in 25 test cases, two of which are shown
in Fig. 2. We then apply the method on real data, with target surfaces extracted
from CT images. Visualization is performed using Scalismo1.

Fig. 2. Mandible shape with example pathologies circled in red. (Color figure online)

1 https://scalismo.org.

https://scalismo.org
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Model fitting is performed for shape and pose parameters after rigid landmark
alignment. Three approaches are compared: (1) standard SSM, which only per-
forms reconstruction without segmentation, (2) robust SSM, which diminishes
the effect of outliers based on the Huber Loss function with a 5 mm thresh-
old, and (3) outlier-aware SSM. The threshold for the robust SSM is manually
assigned because the learned threshold proved to be too large. For every outlier
detection step, 1,000 iterations are taken in the fitting step. The entire pro-
cess is repeated ten times as this empirically showed convergence by a constant
healthy-region distribution. For comparison, 10,000 iterations are performed for
the standard and robust SSMs.

Labeling Evaluation. Label maps are evaluated by the true positive rate
(TPR) and the F1 scores compared to the ground truth labels. The TPR is
the ratio of the number of true detected outlier points to the number of ground
truth outlier points. It is used to give an idea of how much of the outlier region
is detected. The F1 score is the harmonic mean of TPR and precision, where
precision is the ratio of true detected outlier points to all detected outlier points.
The F1 score is used to evaluate binary classification tasks with class imbalance.
Figure 3 shows examples of the label maps for a missing data case. TPR and
F1 scores in Table 1 reveal that the outlier-aware SSM outperforms the robust
SSM.

Fig. 3. Visual comparison of label maps projected onto the reference SSM topology:
healthy-region (blue) and outlier-region (red). Pathology detection is not a feature of
the standard SSM, which is why the entire topology is labeled as healthy. (Color figure
online)

Reconstruction Evaluation. Reconstructions are evaluated by their Hausdorff
and average distances to the ground truth healthy surface, seen in Table 1. There
is a strong decrease in both distances when the outlier-aware SSM is used instead
of the standard and robust SSMs. This is accredited to a closer reconstruction
of the ground truth healthy surface in both the healthy and outlier regions.

Breakdown Point Evaluation. The breakdown point is defined as the fraction
of points that can be outliers before the algorithm fails. We generate pathologies
that cover an increasing fraction of the reference surface. The fitting degrades
strongly if more than a third of the observed surface is pathological. Just before
the breakdown point, we still reach an F1 score of 0.74 and an average distance
of 1.08 mm.
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Table 1. Labeling and fitting evaluations: mean values followed by standard deviations
in parentheses. The mean values of the true positive rates (TPR) and F1 scores are
best at 1, while those of the Hausdorff and Average distances (HD and AD) at 0mm.

Standard SSM
(no labeling)

Robust SSM
(thresholded labeling)

Outlier-aware SSM
(probabilistic labeling)

TPR – 0.39 (0.22) 0.56 (0.22)

F1 – 0.51 (0.27) 0.68 (0.22)

HD 4.48 (5.46) 6.07 (5.37) 1.98 (0.89)

AD 1.14 (0.51) 1.52 (0.49) 0.88 (0.23)

Label Uncertainty. We apply the algorithm to radius and mandible surfaces
extracted from pathological CT images. Pathologies are regions of overgrowth
for the radius and regions of missing teeth for the mandible, as seen in the targets
in Fig. 4. We use a radius SSM built from 37 surfaces and mandible SSM from
8 surfaces as the models, all built from healthy CT images.

We use our proposed outlier-aware SSM to register and label the target sur-
faces and their reconstructions. Unlike the synthetic data case, surfaces extracted
from real CT images by simple thresholding are not as clean. This can be seen
for the mandible example in Fig. 4, where the cranium and the spine are parts
of the input target surface. The proposed method can be applied on the surface
with irrelevant data, without requiring user input other than the initial rigid
alignment. We accomplish this by including both the model and target surfaces
into the likelihood function, in Eq. 2. Using the distributions learned from step
2 of the E-step (Fig. 1) and the distances between the target and reconstruction,
we can compute the uncertainty for the synthesized labels. The target and fitting

Fig. 4. Uncertainty in generated labels for target radius and skull surfaces, both
extracted from pathological CT images. Pathology labels with high certainty are in
red. Note that for the mandible example, we crop the target for computational pur-
poses with a box from six landmarks. Given the remaining surface, the method is able
to correctly locate irrelevant regions, as indicated by red labels on the cranium and
spine. (Color figure online)
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labels in Fig. 4 show the certainty levels for the generated pathology labels. Red
indicates high certainty for the pathological label and blue for the healthy label.

5 Conclusion

Supervised pathology detection algorithms depend on expert labels or pathology
thresholds. However, our proposed outlier-aware SSM is able to perform the
detection given only a target surface without any further assumptions or user
annotations. Pathology detection with our approach accomplishes higher true
positive rates and F1 scores than classical robust statistics methods do. This
results in a closer approximation of the ground truth healthy target, seen with
reduction in the average distances, and also an uncertainty estimate on the
synthesized labels. Our pipeline is non-specific to pathology type or imaging
domain. This implies it can be used to point out regions of interest to clinicians
or as a pre-processing step for training end-to-end classifiers. Future work will
investigate other probabilistic metrics that can work alongside the distance-
based one, as well as further testing of the method on current biomedical image
segmentation challenges.
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10. Lüthi, M., Forster, A., Gerig, T., Vetter, T.: Shape modeling using Gaussian pro-
cess morphable models. In: Statistical Shape and Deformation Analysis, pp. 165–
191. Elsevier (2017)
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Abstract. Skin disease is a quite common disease of human beings, which has
been found in all races and ages. It seriously affects people’s quality of life or
even endangers people’s lives. In this paper, we propose a large-scale, Asian-
dominated dataset of skin diseases with bounding box labels, namely Xian-
gyaDerm. It contains 107,565 clinical images, covering 541 types of skin dis-
eases. Each image in this dataset is labeled by professional doctors. As far as we
know, this dataset is the largest clinical image dataset of Asian skin diseases
used in Computer Aided Diagnosis (CAD) system worldwide. We compare the
classification results of several advanced Convolutional Neural Networks
(CNNs) on this dataset. InceptionResNetV2 is the best one for 80 skin disease
classification whose Top-1 and Top-3 accuracies can reach 0.588 and 0.764,
which proves the usefulness of the proposed benchmark dataset, and gives the
baseline performance on it. The cross-test experiment with Derm101 shows us
that the CNN model has a very different test effect on different ethnic datasets.
Therefore, to build a skin disease CAD system with high performance and
stability, we recommend to establish a specific dataset of skin diseases for
different regions and races.

Keywords: Skin disease � Clinical image dataset � Computer Aided Diagnosis

1 Introduction

Skin disease is a very common disease of human beings, which has been found in all
races and ages [1]. Skin diseases can bring many troubles to patients, such as itching,
bleeding and so on, which seriously affect people’s quality of life or even endanger lives.
Early diagnosis of skin diseases is very important, which can make patients get correct
treatment as soon as possible and arrest the growth of the disease. However, due to the
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limited medical knowledge of patients and the disparity of medical resources, such case
of delaying the timing of diagnosis occurs from time to time. The emergence of the CAD
system can help us solve these problems to a certain extent. Early studies on skin
diseases CAD system are mostly focused on dermoscopic images [2, 3]. This is because
they focus more on lesions than clinical images with uniform illumination and less
noise. In fact, dermoscopic-based diagnosis of skin diseases has some limitations in
promotion, such as high fees and less convenience. In recent years, some researchers
begin to pay more attention to clinical images [4–7]. Their works’ datasets were mainly
collected in Europe and America. The lack of a specific Asian skin disease dataset has
become a major hindrance to the study of skin disease diagnostic system.

Convolution neural network is very popular in the field of feature learning and
object recognition in recent years. Many studies from ImageNet’s large-scale visual
challenge [8–11] (ILSVRC) [12] show that the most advanced CNN has exceeded
human level in object classification tasks. However, the classification performance of
CNN sometimes depends too much on the dataset. We designed cross-test experiments
to study this problem.

The contributions of this paper are summarized below. Firstly, a large-scale, Asian-
dominated dataset of skin diseases is proposed. Secondly, in order to evaluate the
usefulness of our dataset, we give the baseline performance on this dataset. Finally,
through cross-test experiments between different datasets, we draw the conclusion that
the skin disease diagnosis systems should be setup on specific datasets. We have good
reason to believe that the dataset proposed in this paper is very urgent and meaningful
for the research of skin disease diagnosis.

2 Related Work

Esteva et al. [13] achieved good recognition rate between keratinocytic carcinoma and
benign seborrheic keratosis, malignant melanoma and benign nevus using Incep-
tionV3 CNN architecture on Dermofit and ISIC datasets., reaching the level of human
dermatologists. This landmark research has attracted wide attention, especially in the
field of AI in skin diseases.

Sun et al. [4] introduced datasets SD-198 and SD-128 based on DermQuest (now
DermQuest is merged into Derm101). Several kinds of manual features extraction
methods and deep learning methods are compared on these two datasets. SD-198 con-
tains 198 different diseases, a total of 6,584 images. SD-128 is a subset of SD-198,
ensuring that each class has more than 20 images. This benchmark dataset encourages
many studies about visual skin disease classification. However, they classify 198 or 128
categories of skin diseases using a dataset of 6,584 images, which seems too small for
CNN because the average number of training sets and test sets for per category is only 50.

Liao et al. [7] collected their dataset from 6 public dermatology atlas websites:
AtlasDerm, Danderm, Derma, DermIS, Dermnet and DermQuest. They use CNNs for
disease-targeted and lesion-targeted classifications and draw a conclusion that the
classification method with lesion tags can get better performance. Their work is very
meaningful both in methods and datasets. Next, we will briefly introduce the datasets
mentioned above.
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Dermofit dataset is provided by researchers at the University of Edinburgh in the
United Kingdom. This dataset is of high quality and widely used by researchers, but it
is not free available. Dermofit includes 10 types of skin diseases: actinic keratosis,
basal cell carcinoma, melanocytic nevus, seborrheic keratosis, squamous cell carci-
noma, intraepithelial carcinoma, pyogenic granuloma, hemangioma, dermatofibroma
and malignant melanoma., but the total number of images is only about 1,300.

ISIC dataset comes from the International Skin Imaging Collaboration (ISIC),
which aims to promote the diagnostic ability of skin image data. The dataset contains
23,906 images of 16 types of skin diseases, including both dermoscopic images and
clinical images, with high quality and no watermarks. Each image in this dataset
contains the tags of patient’s age, gender, and lesion size. However, there are only 100
clinical images in the dataset, including 37 melanomas, 40 basal cell carcinomas and 23
squamous cell carcinomas, which is too small for the training of deep learning methods.

Derm101 is a website for providing clinicians with high-caliber and up-to-date
content. It also provides a clinical dataset of 22,979 images of 525 types of skin
diseases, containing labels both for disease diagnosis and lesion location, without
watermarks on the image too. Fortunately, we have obtained permission from the
Derm101 team to use their images for research purposes. Later, we organized exper-
iments related to this dataset.

Dermnet is called to be the largest independent photo dermatology source dedicated
to online medical education. The image library of Dermnet is nearly 18,974 images,
626 types of skin diseases. However, each image in this dataset has only the label of the
disease diagnosis, without any other labels.

DermIS is a free dataset website built by the University of Heidelberg, Germany.
There are 7,172 images in this database, which are divided into 735 categories. Each
image in this dataset has regular disease diagnosis labels as well as the text descriptions
of lesion location, race and age. The drawback of this dataset is that the number of
images in each class is not large and the image is watermarked.

AtlasDerm is a Brazilian dataset website. There are 9,503 images and 534 cate-
gories of skin diseases. Most of the data are mainly about Brazilians in South America.
Each image in this dataset has only the label of disease diagnosis, and the image is
watermarked.

Danderm is a clinical image data collection website of skin diseases from Denmark.
There are 1,110 images and 91 types of skin diseases. Most of the patients collected in
this dataset are white races, only have the label of disease diagnosis, and contain the
watermarking occlusion.

In a conclusion, we summarize the above datasets into Table 1. It can be seen from
Table 1 that there are some obvious defects in the existing skin disease datasets:

(1) The current datasets are mainly based on Caucasian and Black races in Europe
and America, and the large-scale standardized dataset of Asian has not been
reported before. Obviously, there are differences in the incidence of skin diseases,
disease characteristics, and the background of skin color among different races.

(2) Most of the images currently available in the dataset are watermarked, which may
cause interference in the identification and analysis of skin lesions.
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In this paper, we establish a large-scale, Asian-dominated clinical image dataset of
skin diseases, and carries out researches on it. The statistical data of XiangyaDerm is
also presented in Table 1 for comparison with other public datasets. Our dataset will be
publicly released for research purposes to the internet soon after, and the future update
information could be found in this URL, http://airl.csu.edu.cn/xiangyaderm.

Table 1. Comparisons of clinical skin disease datasets.

Dataset Classes Amount Region Watermarking? Available?

Dermofit 10 1,300 The UK No No
ISIC 16 23,906 Europe No Yes
Derm101 525 22,979 The US No Yes
Dermnet 626 18,974 Europe Yes Yes
DermIS 735 7,172 Germany Yes Yes
AtlasDerm 534 9,503 Brazil Yes Yes
Danderm 91 1,110 Denmark Yes Yes
Ours 541 107,565 China No Yes

Fig. 1. Some sample images in XiangyaDerm. Each line from top to bottom are clinical images
of basal cell carcinoma (BCC), pigmented nevus (PN), eczema (ECZ), lupus erythematosus (LE),
lichen planus (LP), pemphigoid (PD), pemphigus (PS), psoriasis (PSO), squamous cell
carcinoma (SCC), and seborrheic keratosis (SK).
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3 Dataset

3.1 Data Acquisition and Cleaning

The collection of XiangyaDerm was approved by the Ethics Committee of Xiangya
Hospital of Central South University, and informed consent was obtained from all
participants. All clinical images were taken by dermatologists from Xiangya Hospital
under standard illumination using four different cameras: SONY DSC-HX50 (350dpi),
CANON IXUS 50 (180dpi), NIKON D40 (300dpi), NIKON COOLPIX L340
(300dpi), corresponding resolution of 3,888 � 5,184, 1,944 � 2,592, 2,000 � 3,008,
3,864 � 5,152. Finally, a total dataset of 47,075 images was obtained, covering 541
skin diseases, accounted for almost 99% of the incidence of skin diseases. The diag-
nostic labels for each image are validated by the gold standard of pathology and are
supported by the patient’s full medical history. We show some sample images in Fig. 1.
We can see that these images are with high image quality, simple background, and
focus mainly on the typical skin lesions. For example, we chose the images of pem-
phigus with bullae instead of papules and plaques.

The data cleaning process is also accomplished by dermatologists from Xiangya
Hospital. Five categories of images are removed in this process to obtain a clean
dataset: Case 1: Images with low-quality due to improper shooting. Case 2: Images
incorrectly labeled which confirmed to be inconsistent with the patient’s medical his-
tory. Case 3: Skin lesion areas are covered by obvious local treatment or any other
colored residues, which may have serious adverse effects on the training process. Case
4: Images contains obvious information about human body parts, such as nose, eyes,
hair and so on, which can also interfere with the subsequent recognition. Case 5:
Excessive exudate, which leads to the loss of the surface appearance and texture of the
disease.

Fig. 2. The data annotation and cropping process for XiangyaDerm.
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3.2 Data Annotation and Cropping

The annotation process is completed by 20 professional dermatologists, with more than 5
years of clinical work experience. These doctors were divided into two separate groups,
each labeled half of the images and then cross-checked the other half. The task of
annotation is to use labeling, an open source image annotation software, to mark the
typical lesion areas on the picture, that is, to represent the lesion area with a bounding box.

The cropping process uses the coordinates of the bounding box on the image to
save that part of the image. As shown in Fig. 2, after the cropping operation, not only
the complex background of the skin image is removed, but also the amount of dataset is
increased, since a picture may have several typical isolated skin lesions.

Eventually, the data volume of our dataset increased from 44,108 to 107,565,
covering 541 categories of skin diseases, and the images were more concentrated on
skin lesions. The largest amount of data in our dataset is psoriasis, 67,066 images,
accounting for 62% of the total dataset. This is mainly because the dermatology
department of Xiangya Hospital is a special outpatient department of psoriasis, and
there are many patients with psoriasis every year. In addition to psoriasis, the data
distribution of the remaining 540 skin diseases is shown in Fig. 3, with the horizontal
and vertical axes representing the disease and its corresponding data volume.

4 Experiment

4.1 80-Classification Experiment on XiangyaDerm

In order to evaluate the performances of different CNNs on this dataset and prove the
usefulness of it, we select 4 mainstream CNN architectures, including InceptionV3
[14], InceptionResNetV2 [15], DenseNet121 [16] and Xception [17] to classify 80
common skin diseases. We select 80 kinds of skin diseases in our dataset whose
amount of data is more than 100, and remove the parts whose amount of data is more
than 1,000 in order to balance the chose 80 skin disease. The specific number of these
80 diseases in this experiment can be seen in the submitted supplementary files, which
name is “appendix.pdf”.

Fig. 3. The distribution of the final proposed dataset except psoriasis.
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In this experiment, our dataset is randomly divided into training set and test set in a
ratio of 3:1. The whole training process was completed on 3 graphic cards of
NVIDIA TITAN Xp. The image input size for InceptionV3, InceptionResNetV2 and
Xception are both 299 � 299 � 3 and for Densenet121 is 224 � 224 � 3. We kept
the rest of the experimental conditions consistent, for example, setting the same pre-
trained weights on ImageNet dataset, max training epochs 5000, basic learning rates
0.001, batch size 25, optimizer Adam, and the loss function categorical cross entropy.
By organizing 4-fold cross validation experiments, we summarize the average values of
the experimental results as shown in Table 2 and Fig. 4.

From the confusion matrix shown in Fig. 4, we can see these 4 CNNs all have good
performances. We can see that the dark green area of the confusion matrix is mainly
distributed on the diagonal line, while the color of other areas is relatively light. It
shows that most of the 80 skin diseases can be effectively distinguished by the adopted
CNNs, except for a few indistinguishable diseases. However, it does not mean that
there are problems with our dataset or CNNs, which just shows that the diagnosis of
these skin diseases based only on clinical images still faces challenges.

Table 2. Recognition rate of 80-classification experiment.

Method InceptionV3 DenseNet121 Xception InceptionResNetV2

Top1 ACC 0.470 0.494 0.523 0.588
Top3 ACC 0.671 0.696 0.707 0.764

Fig. 4. Confusion matrices of 80-classification experiments: (a), (b), (c) and (d) represent test
results for InceptionV3, DenseNet121, Xception, and InceptionResNetV2, respectively.

28 B. Xie et al.



As we can see from Table 2, we can draw a preliminary conclusion that Incep-
tionResNetV2 could get better performance over other 3 networks in the 80-
classification experiment on XiangyaDerm. Note that our goal is not to find the best
network for recognition, but to verify the usefulness of our proposed datasets and give
a baseline performance on it.

4.2 6-Classification Cross-Test of Derm101 and XiangyaDerm

As mentioned earlier in this paper, we have been successfully approved by the Der-
m101 team to use their images for research purposes. The objective of this experiment
is to obtain the cross-test performance of datasets between different races. We chose 6
common diseases witch high incidence and both occurred in Derm101 and Xiangya-
Derm whose amount is more than 100, including Basal Cell Carcinoma, Epidermoid
Cyst, Psoriasis, Rosacea, Seborrheic Keratosis and Stasis Dermatitis. To balance each
category in the datasets we took 100 images from each category and formed two sub-
databases, namely Derm101-6 and Xiangya-6. Another dataset is Mix-6, which is a
dataset composed of Derm101-6 and Xiangya-6.

As for the experimental settings, we used InceptionResNetV2, which is the best
performing CNN in 80-classification experiment, to do cross-test on Derm101-6,
Xiangya-6, and Mix-6. The loss function, batch size and other parameter settings are
kept the same as the previous experiment. The cross-test here means that the model
trained on one dataset is tested on the other two datasets. The test results obtained in
this experiment are shown in Table 3 and Fig. 5.

As we can see from (a) and (d) of Fig. 5, the dark squares are concentrated on the
diagonal lines which shows that the classification of each disease is also good, while
the accuracy is much worse when we exchange the test sets. From Table 3, from the
comparison between (a) (d) and (b) (c), we can see that the model trained and test on
the same dataset has a better performance than the cross-test ones. As we can see from
(a) and (d) of Fig. 5. Comparing (e) (a) (c) and (f) (b) (d), we can easily find that the
model trained on the mixed training dataset reached a better performance than training
and test on a totally different dataset but worse than training and test on a same dataset.

From this, we can see that the cross-test performance of classification models
between different races is not good. Through communication with professional der-
matologists, we understand that there are differences in the incidence of skin diseases,
disease manifestations, and skin color among different races, which can lead to the
failure of classification models. Therefore, to build a skin disease CAD system with
high performance and stability, we recommend to establish a specific dataset of skin
diseases for different regions and races.

Table 3. Recognition rate of 6-classification experiment.

Test on Derm101-6 Test on Xiangya-6

Train on Derm101-6 0.800 0.193
Train on Xiangya-6 0.213 0.720
Train on Mix-6 0.671 0.621
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5 Conclusion

In this paper, we propose a clinical image dataset for Asian race’s skin disease diag-
nosis system. It contains 107,565 images, ranging from 541 categories. Each image is
confirmed by a disease label and is marked by a specialist with bounding boxes. Our
experiments demonstrate the classification performances of the current state-of-the-art
CNN architectures and demonstrate its usability as a benchmark dataset for the diag-
nosis of skin diseases. Moreover, we have also proved that it is necessary to construct a
specific dataset of skin diseases for different regions and races through the cross-test
experiments. The XiangyaDerm proposed in this paper can effectively promote the
research and application of Asian skin disease diagnosis, and is also a useful supple-
ment to global skin data.
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Abstract. Due to difficulties in collecting sufficient training data, recent
advances in neural-network-based methods have not been fully explored
in the analysis of brain Magnetic Resonance Imaging (MRI). A possible
solution to the limited-data issue is to augment the training set with
synthetically generated data. In this paper, we propose a data augmen-
tation strategy based on regional feature substitution. We demonstrate
the advantages of this strategy with respect to training a simple neural-
network-based classifier in predicting when individual youth transition
from no-to-low to medium-to-heavy alcohol drinkers solely based on their
volumetric MRI measurements. Based on 20-fold cross-validation, we
generate more than one million synthetic samples from less than 500
subjects for each training run. The classifier achieves an accuracy of
74.1% in correctly distinguishing non-drinkers from drinkers at baseline
and a 43.2% weighted accuracy in predicting the transition over a three
year period (5-group classification task). Both accuracy scores are sig-
nificantly better than training the classifier on the original dataset.

1 Introduction

In neuroimaging studies, structural Magnetic Resonance Imaging (MRI) is often
used to examine the influence of neuropsychological diseases and disorders on
brain structures [1–3]. These neuroscience studies frequently first extract mor-
phometric measurements associated with regions-of-interest (ROI) from the
brain MRI of each subject. Then statistical group analysis aims to identify
disease-specific biomarkers by comparing these measurements between healthy
and diseased subjects [4,5]. An alternative group analysis is to first train a clas-
sifier to accurately differentiate healthy subjects from diseased ones based on
the measurements [6–8]. Then the subset of measurements highly influencing
the classification outcome are identified as disease-specific imaging biomarkers.

The most advanced classification frameworks nowadays are arguably based
on neural networks [7,8]. Despite their successful use in the computer vision
c© Springer Nature Switzerland AG 2019
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community, it is well-known that the training of neural networks on medical
imaging data suffers from the “high-dimension low-sample-size” problem [9]; that
is, the number of subjects in each group is significantly lower than the dimension
of measurements rendering the network easily overfitted. One way of alleviating
this issue is to perform data augmentation, i.e., generating synthetic training
data using information only from the existing training set, thereby reducing
overfitting during training.

While affine transformations (including translation, flipping, and rotation)
are commonly used for creating synthetic 3D MR images from existing ones
[10], these operations are not meaningful for ROI-based measurements. Another
commonly used augmentation strategy is based on adding Gaussian noise to the
training data [10]. However, the noise level has to be manually chosen, which
is not an intuitive procedure. For non-image data augmentation, approaches
based on feature-space warping [11] have been proposed. These approaches aim
to create synthetic data by warping the measurements of existing samples. For
example, the Synthetic Minority Over-Sampling Technique (SMOTE) [12] com-
putes the weighted average of measurements of two existing training subjects.
Instead of synthesizing all measurements of a subject, we propose here a regional-
feature-substitution strategy to incorporate the assumption commonly used in
many neuroimaging studies [13] that brain morphometric measurements are only
locally dependent and the fact that many neurological disorders only affect local
brain regions [14]. Specifically, to create a new training sample, we substitute
regional ROI measurements of an existing sample by those from another sample
of the same cohort. We do so by arranging the ROI measurements as a matrix
and substituting within sub-matrices, which we call “kernel” matrices. The ker-
nel is constructed in compliance with the cortical parcellation of the brain to
ensure that the warping only affects nearby brain regions.

In this study, we tested the augmentation strategy on the National Con-
sortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) dataset
[15], which consists of longitudinal structural MRI scans of 505 subjects. The
subjects were categorized into 5 groups according to their drinking behavior
in the 4-year study period. We built a neural-network classifier to predict the
group label based on the longitudinal measures of ROI cortical thickness. We
show that by performing augmentation within each group separately to produce
a well-balanced augmented dataset, our neural-network achieved a significant
improvement on classification accuracy. Finally, we identify ROIs that highly
influence the decision of the classifier through a visualization technique named
layer-wise relevance propagation (LPR) [16].

2 Data Augmentation via Local Feature Warping

Suppose we have structural MRI images from S subjects that can be cate-
gorized into C groups. We further assume that morphometric measurements
(e.g., gray-matter thickness) associated with V brain regions-of-interest (ROI)
can be derived from each MRI image. We generalize the scenario to a longi-
tudinal design, where these measurements are repeatedly measured T times,
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such that the measurements of each subject form a T × V matrix. Now, the V
brain regions can be grouped into L major lobes, which we encode in the T × V
matrix by arranging the columns so that neighboring ones are associated with
ROIs belonging to the same lobe (see Fig. 1)

Fig. 1. Exemplar dynamic kernels within a toy measurement matrix. Columns are
ordered such that ROIs of the same lobe (indicated by color) are adjacent. The location
of a kernel is confined within a specific lobe.

To augment the training set, our approach is to “substitute” selective entries
in the measurement matrices across subjects. To achieve this, we construct lobe-
specific kernel matrices Kl ∈ R

αl×βl , where l ∈ {1, 2, · · · , L} indicates the lobe
and (αl, βl) indicates the size of the kernel. For instance, in the example of Fig. 1,
α1 = 4, β1 = 4 for K1, and α2 = 2, β2 = 2 for K2. We then create a new synthetic
subject by first randomly selecting a kernel and substituting the measurements
inside the kernel of an existing subject by the ones from a different randomly-
chosen subject in the same group (Fig. 2). As suggested by Fig. 1, the location of
a kernel is confined within its specific lobe, so that the warping does not affect
measurements of distant regions that are unlikely to correlate. Note that instead
of using the weighted average strategy as in SMOTE that would generate unseen
(thereby potentially unrealistic) measurements, our substitution strategy always
uses existing measurements to synthesize new subjects.

Now let Sc denote the number of subjects in the cth group and Vl the number
of ROIs in the lth lobe. Given the sizes {αl, βl} of the L kernels, the maximum
number of subjects N that can be generated for a group is the product of the
number of subject pairs (i.e., (Sc − 1) · Sc) and the number of possible kernel
matrices in all lobes:

N :=
C∑

c=1

Sc(Sc − 1)
L∑

l=1

(T − αl + 1)(Vl − βl + 1) (1)
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Fig. 2. Measurements of subject i within the kernel (blue) are substituted by the ones
of subject j (green) to yield the measurements a new synthetic subject. (Color figure
online)

3 Experimental Setup

3.1 Dataset

The experiments were based on data from the NCANDA study [15] comprised of
4-visit longitudinal data of 505 adolescents (S = 505, ages 12–22, 250 boys/255
girls; the data release NCANDA PUBLIC Y3 STRUCTURAL V01 is made pub-
lic according to the NCANDA Data Distribution agreement1). Each subject had
4 T1-weighted MRI scans (T = 4) that were acquired annually. They were cate-
gorized into 5 groups according to the specific year the subject transitioned from
a no-to-low to medium-to-heavy alcohol drinker [15]. As shown in our previous
studies [17], initiation of binge drinking alters normal development of brain mor-
phometric patterns, so we hypothesize that subjects from different groups can
be classified based on their brain morphometric measurements. In doing so, we
have S1 = 265 subjects who met the no-to-low drinking criteria of the NCANDA
study [15] at baseline and throughout the study, S2 = 49 subjects who met the
criteria for the first 3 visits but transitioned to exceed-criteria drinkers at visit
4, S3 = 56 transitioned at visit 3, S4 = 58 transitioned at visit 2, S5 = 77
subjects who remained exceeds-criteria drinkers throughout the study. Struc-
tural MRIs were processed using the publicly available NCANDA pipeline [17].
FreeSurfer (V 5.3.0) was applied to the skull-stripped MR images yielding the
measurements of average thickness associated with 34 bilateral cortical ROIs
(V = 34). Then confounders including age, sex, race and supratentorial volume
were removed from the raw thickness measurements by general linear model
analysis [14], which resulted in a 4 × 34 residual score matrix for each subject.
Based on these score matrices, our goal was to apply data augmentation to train
a classifier that could accurately predict the group label of each subject.

3.2 Data Augmentation for Classification

We tested whether the proposed data augmentation strategy could boost classi-
fication accuracy in two scenarios: 5-group classification and binary classification
1 https://www.niaaa.nih.gov/research/major-initiatives/national-consortium-

alcohol-and-neurodevelopment-adolescence.

https://www.niaaa.nih.gov/research/major-initiatives/national-consortium-alcohol-and-neurodevelopment-adolescence
https://www.niaaa.nih.gov/research/major-initiatives/national-consortium-alcohol-and-neurodevelopment-adolescence
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between Group 1 and 5 (subjects remained non-heavy or heavy drinking through
the 4-year study period) as these two groups were most distinguishable with
respect to their drinking history across the 5 groups. For either scenario, the
accuracy of classifiers in correctly labelling individuals was derived based on a
20-fold cross validation. The training data was enriched with the synthetic sam-
ples produced by our augmentation strategy, and the normalized classification
accuracy (i.e., the accuracy of correctly labeling samples while accounting for
differences in sample size among groups) was measured on the testing fold. Next,
we detail the setup of kernel matrices used in our augmentation strategy and
describe the up-sampling strategy as a benchmark approach in our experiments.

Table 1. Kernel dimension setup of 5-group (upper) and binary (lower) classification

Group Temporal Frontal Occipital Parietal Cingulate Insula

1 (4,9) (4,11) (4,4) (4,5) (4,4) (4,1)

2 (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)

3 (1,4) (1,1) (1,1) (1,1) (1,1) (1,1)

4 (1,5) (1,1) (1,1) (1,1) (1,1) (1,1)

5 (1,8) (2,6) (2,1) (2,1) (2,1) (2,1)

Group Temporal Frontal Occipital Parietal Cingulate Insula

1 (4,9) (4,11) (4,4) (4,5) (4,4) (4,1)

2 (4,9) (4,11) (4,4) (4,5) (4,4) (4,1)

Kernel Setup. Kernels were constructed with respect to the lobe parcellation
of the brain. Adopting the Freesurfer parcellation, the brain was segmented into
6 major lobes: temporal lobe (9 ROIs), frontal lobe (11 ROIs), occipital lobe
(4 ROIs), parietal lobe (5 ROIs), cingulate (4 ROIs) and insula. Given these
dimensions, we set up kernel sizes ({αl, βl}) such that the resulting augmented
training set was as balanced as possible for the 5-group and binary classification
(Table 1). Based on Eq. 1 and our kernel settings, the maximum number of syn-
thetic samples generated from the training folds was 1,655,888, which was the
sum of

N1 = 260 ∗ (1 + 1 + 1 + 1 + 1 + 1) ∗ 259 = 404040,
N2 = 44 ∗ (36 + 44 + 16 + 20 + 16 + 4) ∗ 43 = 257312,
N3 = 51 ∗ (24 + 44 + 16 + 20 + 16 + 4) ∗ 50 = 316200,
N4 = 53 ∗ (20 + 44 + 16 + 20 + 16 + 4) ∗ 52 = 330720,
N5 = 72 ∗ (8 + 18 + 12 + 15 + 12 + 3) ∗ 71 = 347616.

(2)

Similarly, the maximum size of augmentation for the binary classification task
was N = 344160 + 276060 = 620220.

To relate the accuracy of classification with the size of the augmented training
set, we also performed classification on subsets of the augmented dataset with
different sizes (500, 2.5k, 50k, 250k, 500k). For each setting, the subset was



Data Augmentation Based on Substituting Regional MRI Volume Scores 37

randomly selected from the maximumly augmented training set while keeping
the size of each group balanced.

Up-sampling. We also measured the classification accuracy when training was
performed on balanced datasets generated by up-sampling (sample with replace-
ment). Specifically, the raw training set was up-sampled to 2500 for 5-group and
430 for binary classification. Note that the size of these up-sampled datasets was
determined to create a balanced training set rather than to perform data aug-
mentation; Extensive up-sampling will only produce repeated training samples,
so it does not improve the accuracy of the classifier.

3.3 Classifiers

The above data augmentation was independent of the choice of the classifier.
Here, we tested the data-augmentation strategies on three different approaches:
a simple, fully connected neural network called SmallNet as well as Random
Forest (RF) and Supporting Vector Machine (SVM), two approaches that have
been shown to be able to work reasonably on small training datasets. SmallNet
only contained 3 hidden layers with each layer having 50 neurons. The activation
function of each hidden layers was Relu, and the final output was the softmax
functional for a general multi-group classification. To train our SmallNet classi-
fier, the Kaiming’s method [18] was used and initialized with a batch size of 128.
Learning strategy of SmallNet was SGD with momentum of 0.1. All experiments
were ran for 10 epochs at 0.0001 learning rate. During training, batch normaliza-
tion and early stopping method were used for lowering the impact of overfitting.
Note, we used SmallNet for simplification to illustrate the power of our augmen-
tation strategy, and more sophisticated network structures might produce more
accurate results. Our implementation of RF consisted of 100 decision trees. Each
decision tree had the depth of up to 5, and the feature number for each split was
10. The weighted accuracy was obtained by averaging 100 training sessions. SVM
was setup with a relaxation coefficient of 2.0, a maximum number of iterations
of 5000, and an average of 50 out of 5000 cross-training. After 100 cross-training,
the average was taken as the final results.

Table 2. Accuracy of 5-group and binary classification produced by random forest
(RF), support vector machine (SVM) and SmallNet on different training sets.

Task Training set Size RF SVM SmallNet

5-group classification Raw data 405 19.9% 23.3% 19.2%

Up-sampling 2500 27.5% 28.7% 23.1%

Augmentation 1.6M 27.9% 29.3% 44.1%

Binary classification Raw data 405 54.7% 57.7% 53.7%

Up-sampling 430 55.6% 58.1% 56.1%

Augmentation 600K 55.5% 58.2% 73.8%
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4 Results

Here we analyze the accuracy of the 3 classifiers trained with and without data
augmentation. We can see from Table 2 that all 3 classifiers performed poorly
on the raw datasets for both 5-group and binary classification. When trained
on the up-sampled dataset, the accuracy of RF and SVM slightly improved in
the 5-group classification setting to approximately 28% (randomly labeling sam-
ples would produce an accuracy of 20%). However, these two methods showed
little further improvement when the training set was augmented by the pro-
posed strategy. On the other hand, even though SmallNet was often less accurate
than RF and SVM on small training sets, it achieved significantly more accu-
rate 5-group and binary classification results when trained on the augmented
set. These results support the fact that RF and SVM are suitable for small to
moderate datasets, so extensive data augmentation provides little merit. On the
other hand, the implementation of neural networks requires a large-scale train-
ing dataset. In our specific application, training SmallNet benefited from the
proposed data augmentation strategy resulting in the most accurate prediction
for both classification settings. The above claims are further supported by Fig. 3.
As the size of the augmented set increased, the accuracy of RF and SVM only
increased marginally, whereas SmallNet showed a significant improvement. The
performance of SmallNet converged approximately at 250k training samples for
5-group and 50k for the binary classification task.

Fig. 3. Accuracy of RF, SVM and SmallNet based on different sizes of training dataset.

Visualization via LRP. As mentioned, another critical goal of most neu-
roimaging studies is to identify critical ROI biomarkers associated with spe-
cific cohorts, so we analyzed the subset of measurements that highly impacted
the classification decision based on the Layer-wise relevance propagation (LRP)
technique [16]. Given a feature matrix and a classifier, the aim of LRP is to
assign each entry of the measurement matrix a relevance score such that nega-
tive scores contain evidence against the presence of a class, while positive scores
contain evidence for the presence of a class. These pixel-wise relevance scores can
be visualized as an image called heatmap. Here we focused the analysis on the
binary classification as it highlighted the difference between normal adolescents
(Group 1) and youth that had already initiated medium-to-heavy drinking at
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baseline (Group 5). Figure 4-left shows the heatmaps (relevance scores) associ-
ated with the input matrix. Yellow blocks in the upper figure correspond to the
matrix entries that strongly indicate the presence of Group 1, whereas the yellow
blocks below correspond to Group 5. The general agreement between the two
heatmaps suggests that the binary classification was mainly based on several
key measurements (in yellow). To relate those measurements to specific brain
regions, these scores were averaged in the longitudinal dimension and then aver-
aged between the two groups. The resulting 34-D vector was then color-coded
on the cortical surface (Fig. 4 right). Yellow regions correspond to ROIs that
contributed more to the prediction. We can see that brain regions in the tempo-
ral lobe (specifically superior temporal, fusiform, and inferior temporal regions)
are more salient than others. The impact of alcoholism that leads to signifi-
cant volume deficits in cortical gray/white matter in the temporal lobe has been
frequently suggested in the alcohol literature [19].

Fig. 4. Heat-map of relevance scores on the binary classification task

5 Conclusion

While data augmentation has been shown to be effective in increasing the per-
formance of many image-based classifiers, our proposed augmentation strategy
designed for ROI-measurements not only provided us sufficient data for training
simple neural networks, but also showed a significant improvement on prediction
results when applied to the NCANDA dataset. We showed that progression of
drinking behaviors could be differentiated based on longitudinal brain morpho-
metric measurements. Furthermore, by applying the LRP method, we were able
to derive the relevance scores for the input measurement matrix, from which we
could interpret and visualize the importance of ROIs in the decision process of
the classifier.

In this work, however, we only explored kernel construction with respect to
the spatial properties of the brain. We will further consider temporal correlation
of the longitudinal measurements in constructing kernels. Moreover, we aim to
extend the usage of our augmentation strategy in the context of image-based
classification by applying regional warping to either raw images or intermedi-
ate features. This could potentially complement current image augmentation
strategies based on global affine/deformable transformation.
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Abstract. Annotation of medical images has been a major bottleneck
for the development of accurate and robust machine learning models.
Annotation is costly and time-consuming and typically requires expert
knowledge, especially in the medical domain. Here, we propose to use
minimal user interaction in the form of extreme point clicks in order to
train a segmentation model that can, in turn, be used to speed up the
annotation of medical images. We use extreme points in each dimension
of a 3D medical image to constrain an initial segmentation based on
the random walker algorithm. This segmentation is then used as a weak
supervisory signal to train a fully convolutional network that can segment
the organ of interest based on the provided user clicks. We show that the
network’s predictions can be refined through several iterations of training
and prediction using the same weakly annotated data. Ultimately, our
method has the potential to speed up the generation process of new
training datasets for the development of new machine learning and deep
learning-based models for, but not exclusively, medical image analysis.

1 Introduction

The growing number of medical images taken in routine clinical practice increases
the demand for machine learning (ML) methods to improve image analysis work-
flows. However, a major bottleneck for the development of novel ML-based mod-
els to integrate and increase the productivity of clinical workflows is the anno-
tation of datasets that are useful to train such models. At the same time, volu-
metric analysis has shown several advantages over 2D measurements for clinical
applications [1], which further increases the amount of data (a typical CT scan
contains hundreds of slices) needing to be annotated in order to train accurate
3D models. However, the majority of annotation tools available today for med-
ical imaging are constrained to annotation in multiplanar reformatted views.
The annotator needs to either brush paint or draw boundaries around organs of
interest, often on a slice-by-slice basis. Classical techniques like 3D region grow-
ing or interpolation tools can speed up the annotation process by starting from
seed points or allowing the user to skip certain slices. However, their usability is
often limited to certain types of structures and might not work well in general.
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Here, we propose to use minimal user interaction in form of extreme point
clicks, together with iterative training and refinement. Starting from user-defined
extreme points in each dimension of a 3D medical image, an initial segmentation
is produced based on the random walker algorithm. This segmentation is then
used as a weak supervisory signal to train a fully convolutional network that can
segment the organ of interest based on the provided user clicks. We show that
the network’s predictions can be iteratively refined by using several iterations of
training and prediction using the same weakly annotated data.

Related Work: Fully convolutional networks (FCNs) [2] have established them-
selves as the state-of-the-art methods for medical image segmentation in recent
years [3–5]. However, a major drawback is that they are very data hungry, lim-
iting their application in healthcare where data annotation is very expensive.
In order to reduce the cost of labeling, semi-automated/interactive and weakly
supervised methods have been proposed in the literature.

Building on recent advances in deep learning (DL), several methods have been
proposed to integrate it with interactive segmentation schemes. DL has been used
in [6] for the DeepIGeoS algorithms, which leverages geodesic distance transforms
and user scribbles to allow interactive segmentation. Such a method does not
exhibit robust performance when seeking segmentation for unseen object classes.
An alternative method [7] uses image-specific fine-tuning and leveraging both
bounding boxes and scribble-based interaction. In [8], the authors utilize point
clicks that are modeled as Gaussian kernels in a separate input channel to a
segmentation FCN in order to model user interactions via seed-point placing.
Finally [9] proposes to use user-provided scribbles with random walks [10] and
FCN predictions to achieve semi-automated segmentation of cardiac CT images.
This method differs from our proposed method in that we only expect the user
to provide extreme points rather than scribbles as initial input to the random
walker algorithm and uses a different approach when iteratively refining the
segmentations.

One of the first approaches using bounding box based weakly supervised
training of deep neural networks in medical imaging was by [11]. They used
a patch-based classification CNN to segment brain and lung regions using an
initial GrabCut segmentation. After several rounds of predictions using CNN
plus Dense CRF post-processing, the network’s segmentation performance could
be improved. Weakly-supervised or self-learning in medical image analysis can
also make use of measurements readily available in the hospital picture archiv-
ing and communication system (PACS) such as measurements acquired during
evaluation of the RECIST criteria [12]. However, these measurements are typ-
ically constraint to 2D and might miss adequate constraints for more complex
three-dimensional shapes. In [13], unsupervised segmentation results are used to
train a deep segmentation network on cystic lung regions, again in a slice-by-
slice fashion. This approach might work well for certain organs, like the lungs,
where an unsupervised technique can have good enough initial performance due
to the good image contrast. However, completely unsupervised techniques might
fail to generalize to organs where the boundary information is not as clear.
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More recently, [14] introduced inequality constraints based on target-region size
and image tags in the loss function of a CNN in order to train the network for
weakly supervised segmentation.

2 Method

In this work, we approach initial interactive segmentation using user-provided
clicks on the extreme points of the organ of interest. The overall proposed algo-
rithm for weakly supervised segmentation from extreme points can be divided
into the following steps which are detailed below:

1. Extreme point selection
2. Initial segmentation from scribbles via random walker algorithm
3. Segmentation via deep fully convolutional network
4. Regularization using random walker algorithm

Steps 2, 3, and 4 will be iterated until convergence. Here, convergence is defined
based on the differences between two consecutive rounds of predictions as in [13].

1. Extreme point selection: Defining extreme points on the organ surface will
allow the extraction of a bounding box around the organ (plus some padding
p = 20 mm in all our experiment). Bounding box selection significantly reduces
the image content that the 3D FCN has to analyze and simplifies the machine
learning problem, as previous work on cascaded approaches has shown [15].
Bounding boxes and extreme points on objects have been widely studied in the
computer vision literature [16]. Bounding boxes have a practical disadvantage
in that the user often has to select the corners of bounding boxes that lie out-
side the object of interest. This is especially tricky to do for three-dimensional
objects where the user typically has to navigate three multi-planar reformat-
ted views (axial, coronal, sagittal) in order to achieve the task. Recent studies
have also shown the time savings using extreme point selection brings for 2D
object selection instead of traditional bounding box selection [16,17]. At the
same time, extreme points provide additional information to the segmentation
model (which can be observed in our experimental section, Table 1. They lie on
the object surface and we model them as an additional input channel together
with the image intensities. This extra channel includes 3D Gaussians G centered
on each point location clicked by the user. This approach is similar to [16] but
here we extended it to 3D medical imaging problems.

Figure 1 illustrates our approach. We ask the user to click on six extreme
points (here four are shown in axial view) that describe the largest extent of the
organ. These points are then used to compute a bounding box B automatically,
including some padding p.

2. Initial segmentation from scribbles via random walker algorithm:
In order to make use of extreme point clicks as a weak supervision signal, we
turn them into a probability map Ŷ than can act as a pseudo dense label map
for driving a 3D FCN to learn the segmentation task. Based on the initial set
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(a) (b)
(c)

(d)

Fig. 1. Our weakly supervised segmentation framework. (a) The user selects extreme
points that define the organ of interest (here the liver) in 3D space. (b) Extreme
points are modeled as Gaussians in an extra image channel which is fed to a 3D
segmentation model. (c) Foreground scribbles are generated automatically to initialize
random walker (the ground truth surface is shown in red for reference). (d) Model
returns the segmentation results.

of extreme points, we compute a set of foreground and background scribbles
that act as the input seeds for the random walker algorithm [10]. We compute
Dijkstra’s shortest path [18] between each extreme point pair along each image
dimension, where we model the distance between neighboring voxels by their
gradient magnitude D =

√(
∂f
∂x

)2
+

(
∂f
∂y

)2
+

(
∂f
∂z

)2. Here, the shortest path result
can be seen as an approximation of the geodesic distance [6] between the two
extreme points in each dimension. Figure 1 shows the foreground scribbles used
as input seeds to the random walker algorithm. In order to increase the number
of foreground seeds, each path is also dilated with a 3D ball structure element
of rforeground = 2. The background seeds are defined as the dilated and inverted
version of the input scribbles. While the amount of dilation does depend on the
size of the organ of interest, we typically dilate with a ball structure element of
radius rbackground = 30 which achieves good initial seeds for organs like spleen,
and liver.

Next, the random walker algorithm [10] is used to generate an initial predic-
tion map Ŷ based on the background s0 and foreground s1 scribbles described
above. The random walker basically solves the diffusion equation between voxels
defined as source and sink as defined by the scribbles S. Here, the 3D volume
is defined as a graph G(E, V ) with edges e ∈ E and vertices v ∈ V . The edge
between two vertices vi and vj is denoted as eij and can be assigned a weight
wij based on the image intensities gradients. Furthermore, the degree of a given
vertex is defined by di =

∑
wij . We solve the diffusion equation in order to get

a probability p(ω|x) = xω
j for each vertex vi to belong to the foreground class

ω1. Here, L is the Laplacian of the weighted image graph G with each element
of the matrix defined as:

Lij =

⎧
⎪⎨

⎪⎩

di, if i = j,

−wij , if i and j are adjacent voxels,
0, otherwise

(1)
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The weights between adjacent voxels are defined as wij = e−β|zj−zi|2 to make
diffusion between similar voxel intensities zi and zj easier. While β is a tunable
hyperparameter that controls the amount of diffusion, we keep it fixed at β = 130
in all our experiments.

3. Segmentation via deep fully convolutional network: Next, given all
pairs of images X and pseudo labels Ŷ , we can train a fully convolutional neu-
ral network to segment the given foreground class, with P (X) = f(X). Our
network architecture of choice follows the encoder-decoder network proposed in
[19], utilizing an-isotropic (3 × 3 × 1) kernels in the encoder path in order to
make use of pretrained weights from 2D computer vision tasks. As in [19], we
initialize from ImageNet pretrained weights using a ResNet-18 encoder branch.
While the initial weights are learned from 2D, all convolutions are still applied
in a full 3D fashion throughout the network, allowing it to efficiently learn 3D
features from the image. The Dice loss [4] has been established as the objective
function of choice for medical image segmentation tasks. Its properties allow
automatic scaling to unbalanced labeling problems. At the same time, it also
naturally adapts to the comparing probability maps without any modifications
to the original formulation:

LDice = 1 − 2
∑N

i=1 yiŷi
∑N

i=1 y2
i +

∑N
i=1 ŷ2

i

(2)

Here, yi is the predicted probability from our network f and ŷi is the weak label
probability from our pseudo label map Ŷ at voxel i.

4. Regularization using random walker algorithm: We could stop our
learning after the segmentation network f above is trained on the pseudo labels
Ŷ . However, we notice that an additional regularization step by an additional
random walker segmentation as described above can be very beneficial to the
convergence of our weakly-supervised segmentation approach. This finding is
similar in spirit to [11], where a DenseCRF is utilized after each round of CNN
training in order to introduce regularization to the segmentation output. In order
to increase the amount of regularization the random walker can bring to the
network’s predictions, we add an area of uncertainty by eroding the foreground
prediction P (X) >= 0.5 and eroding the background P (X) < 0.5 both with a
ball structure element of radius rrandomwalker = 4 in all our experiments. This
allows the random walker to produce new predictions around the boundary of
the foreground object that differ from the previous 3D FCN predictions and in
turn, help the next iteration to learn new features from the same set of training
images, and not to get stuck in a local optimum. In fact, we notice that without
this step, our weakly supervised segmentation framework becomes unstable and
does not easily converge to a satisfying performance.

3 Experiments and Results

Datasets: We utilize the training datasets (as they include ground truth anno-
tations) from public challenges, specifically, from the Medical Segmentation
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Decathlon1 and the Challenge on Endocardial Three-dimensional Ultrasound Seg-
mentation2. All numbers are reported on 1 mm isotropic images that were gen-
erated from the original images using linear interpolation for both CT and MRI
images. For ultrasound images, we keep their original resolution as they are close
to isotropic. We employ random splits for training and validation for all datasets,
resulting 32/9 cases for spleen (CT), 104/27 cases for liver (CT), 26/6 cases for
prostate (MRI), and 24/6 cases for left ventricle (LV) in ultrasound (US).

(a) (b) (c) (d)

Fig. 2. Our results. We show (a) the image, (b) overlaid (full) ground truth (used for
evaluation only), (c) initial random walker prediction, and (d) our final segmentation
result produced by the weakly supervised FCN. We show qualitative results for top to
bottom: spleen (CT), liver (CT), prostate (MRI), and left ventricle (US) segmentation.

Experiments: In all cases, we iterate our algorithm until convergence on the
validation data. We compare both training with and without employing random
walker (RW) regularization after each round of 3D FCN training. Furthermore,

1 http://medicaldecathlon.com.
2 https://www.creatis.insa-lyon.fr/Challenge/CETUS/.

http://medicaldecathlon.com
https://www.creatis.insa-lyon.fr/Challenge/CETUS/
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we quantify the benefit of modelling the extreme points as an extra input channel
to the network by running the framework with RW regularization but without
the extreme points channel. The results are summarized in Table 1 for all seg-
mentation tasks. It can be observed that the biggest improvements happen in
the first round FCN learning after initial random walker segmentation. While
random walker regularization does not always improve the average Dice score,
it does help to introduce enough “novelty” into our learning framework in order
to drive the overall Dice score up in later iterations as shown in Fig. 3. Visual
examples of the improvement between from initial random walker to the final
FCN prediction is shown in Fig. 2.

Implementation: The training and evaluation of the deep neural networks used
in the proposed framework were implemented based on the NVIDIA Clara Train
SDK 3 using NVIDIA Tesla V100 GPUs with 16 GB memory.

Fig. 3. Weakly supervised training from scribble based initialization. Each segmenta-
tion task is shown with (w) and without (w/o) random walker regularization after each
round of FCN training.

Table 1. Summary of our weakly supervised segmentation results. This table com-
pares the random walker initialization with weakly supervised training from extreme
points with (w) and without (w/o) random walker (RW) regularization, and with RW
regularization but without the extra extreme points channel as input to the network
(w RW; no extr.). For reference, the performance on the same task under fully super-
vised training is shown.

Dice Spleen (CT) Liver (CT) Prostate (MRI) LV (US)

Rnd. walk. init. 0.852 0.822 0.709 0.808

Weak. sup. (w/o RW) 0.905 0.918 0.758 0.876

Weak. sup. (w RW; no extr.) 0.924 0.935 0.779 0.860

Weak. sup. (w RW) 0.926 0.936 0.830 0.880

Fully supervised 0.963 0.958 0.923 0.903

3 https://devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-
sdk.

https://devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-sdk
https://devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-sdk
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4 Discussion and Conclusions

We presented a method for weakly supervised 3D segmentation from extreme
points. Asking the user to select the organ of interest using simple point clicks on
the organ’s surface in each spatial dimension can reduce the amount of labeling
cost drastically. At the same time, the point clicks can describe the region of
interest and simplify the machine learning task in 3D. Furthermore, the extreme
points can be utilized to generate an initial weak pseudo label based on the
extreme points utilizing the random walker algorithm. We found our initial label
to be relatively robust to three diverse medical image segmentation tasks involv-
ing three different image modalities (CT, MRI, and ultrasound). Occasionally,
the random walker can lack robustness for organs showing very diverse interior
textures, like some advanced cancer patients in the prostate dataset. Here, a
boundary search algorithm could potentially provide a better initial segmenta-
tion. Still, our FCN training in is able to markedly improve upon the initial seg-
mentation. Previous work mainly utilized bounding box annotations for weakly
supervised learning, e.g. [11]. However, we consider selecting extreme points on
the organ’s surface to be more natural then selecting corners of a bounding box
outside the organ of interest and more efficient than adding scribbles inside and
around the organ [6,9]. This is consistent to findings in the computer vision
literature [17]. In the future, the region of interest and extreme point selection
could be replaced by an automatic proposal network in order to further reduce
the manual burden of medical image annotation.
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Abstract. Medical image segmentation is an essential tool for clinical
decision making and treatment planning. Automation of this process led
to significant improvements in diagnostics and patient care, especially
after recent breakthroughs that have been triggered by deep learning.
However, when integrating automatic tools into patient care, it is crucial
to understand their limitations and to have means to assess their con-
fidence for individual cases. Aleatoric and epistemic uncertainties have
been subject of recent research. Methods have been developed to calcu-
late these quantities automatically during segmentation inference. How-
ever, it is still unclear how much human factors affect these metrics. Vary-
ing image quality and different levels of human annotator expertise are an
integral part of aleatoric uncertainty. It is unknown how much this vari-
ability affects uncertainty in the final segmentation. Thus, in this work we
explore potential links between deep network segmentation uncertainties
with inter-observer variance and segmentation performance. We show
how the area of disagreement between different ground-truth annotators
can be developed into model confidence metrics and evaluate them on
the LIDC-IDRI dataset, which contains multiple expert annotations for
each subject. Our results indicate that a probabilistic 3D U-Net and a 3D
U-Net using Monte-Carlo dropout during inference both show a similar
correlation between our segmentation uncertainty metrics, segmentation
performance and human expert variability.

1 Introduction

Segmentation, i.e., delineation of anatomical structures in 2D/3D, is a core
necessity in medical imaging analysis. In most cases, segmentation is carried out
manually by an expert. It is well known that manual segmentation suffers from
inter-observer variability and that segmentation quality is influenced by factors
such as fatigue, different domain knowledge, level of expertise, and image reso-
lution. As a result, manual segmentations contain aleatoric uncertainty and can
thus be ambiguous for diagnosis or confusing for supervised learning methods.
Nevertheless, annotator confidence can be an important source of information for
c© Springer Nature Switzerland AG 2019
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clinical decision making. Varying annotator confidence can be a trigger for addi-
tional imaging tests and an indicator for quality control and treatment options.
Confidence is an important factor to weigh individual test result but it is only
qualitatively assessed in the clinical practice. Recent successes of deep learning
for image segmentation [2,8] promise to reduce clinical annotation workload.
Currently, the majority of these methods lack the ability to communicate anno-
tator confidence.

Quantitative assessment of uncertainties is key to guarantee quality of care,
increases trust and can have great impact on therapeutic decisions. Thus, in this
work we explore whether human inter-observer variability can be correlated with
the distribution of two different probabilistic neural networks and investigate
the impact of this variability on the estimation of segmentation uncertainty and
segmentation performance. To achieve this, we

(1) discuss an extension of a probabilistic U-Net [10] to 3D,
(2) compare the properties of a 3D probabilistic U-Net with a Monte-Carlo

dropout extension of a standard 3D U-Net [2] on the proof-of-concept task
of lung nodule segmentation,

(3) examine and present both qualitatively and quantitatively at which extent
automatically predicted confidence and uncertainty metrics, disagreement
aware metric (which is proposed) and segmentation performance metrics
are correlated.

Related Work: Estimation of uncertainty in the medical imaging domain has
been attempted in works such as [11,12,14]. In [14] authors use Monte Carlo
samples from the posterior distribution of a Bayesian fully Convolutional neural
network which are derived using dropout at test phase. Based on these sam-
ples, they compute structure-wise and voxel-wise uncertainties metrics, which as
they prove, are highly correlated with segmentation accuracy. Application field is
infant brain segmentation. In another work [12] Monte Carlo dropout is used for
uncertainty estimation in Multiple Sclerosis lesion detection and segmentation.
Four different voxel-wise uncertainties were utilised including prediction vari-
ance, Monte Carlo sample variance, predictive Entropy and Mutual Information.
As it was proved by the results, filtering based on uncertainty leads to improve-
ment on the lesion detection accuracy. In [11] authors propose a framework to
approximate Bayesian inference in deep neural networks by imposing Bernoulli
distribution directly on the weights of the deep model. Then Monte Carlo sam-
ples from posterior distribution are utilised to compute Mutual Information as
metric for uncertainty in CT-organ semantic segmentation. Furthermore, the
effect of inter-observer variability for estimation of uncertainty in segmenta-
tion is studied in [7]. Authors, in MRI images from brain tumors, explore the
impact of different label fusion techniques (e.g. no fusion, staples, union, intersec-
tion, majority) in estimation of segmentation uncertainty. As it is proved, there
is a link between uncertainty estimation and inter-observer variability. Monte
Carlo dropout is also used in this work for estimation of uncertainty (entropy).
Finally, an alternative way to produce plausible segmentation hypotheses is pro-
posed in [10] where authors use generative segmentation model, a combination
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of U-Net and conditional variational autoencoder, in order to produce plausible
segmentation hypotheses (diverse samples) for lung abnormalities segmentation
task.

2 Background

Two different probabilistic networks are utilised in our work: a 3D probabilistic
U-Net (PUNet) and a 3D U-Net using Monte Carlo Dropout during infer-
ence (DUNet).

PUNet: We extend a 2D probabilistic U-Net [10], which is a combination of a
U-Net [2,13] and a conditional variational autoencoder [17] to 3D. The whole
architecture consists of three networks, which is shown in Fig. 1.

Fig. 1. PUNet [10] as we use it for our method.

Let x be an input volume, M the segmentation map, ŷ the predicted seg-
mentation, y the ground truth segmentation as it is produced by several experts
(n = 4 for LIDC), C the number of classes and N number of voxels per volume
similar as proposed by [10]. The Prior net is conditioned on the input volume
x. It computes the distribution over the (low-dimensional) latent space RK .
At inference stage samples that are produced by this distribution are concate-
nated with the last layer’s feature maps of the segmentation network, which
produces a segmentation map for each sample. More precisely the prior proba-
bility distribution P is modelled as an axis-aligned Gaussian distribution with
mean μprior(x;wprior) ∈ RK and variance σprior(x;wprior) ∈ RK . To sample T
segmentations we apply the network T times to the same input volume. In each
iteration a sample zt, t = {1, 2, ...., T} is drawn from the distribution:

z ∼ P (.|x) = N (μprior(x;wprior), diag(σprior(x;wprior))) (1)

Each sample is reshaped to a K-channel feature map with the same shape as
the segmentation map. This feature map is concatenated to the last activation
map of a U-Net. Then, a segmentation map, which corresponds to sample t,
is produced by Mt = f(g(x,w), zi, ψ) where w is the U-Net parameters and ψ
weights of the last layer of U-Net.
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The posterior net is conditioned on the volume x as well as the ground truth
y. It learns to recognize (embeds) segmentation variants μpost(x, y; ν) ∈ RK with
some uncertainty σpost(x, y; ν) ∈ RK in the low dimensional latent space. The
output is denoted as posterior distribution Q. A sample z from this distribution

z ∼ Q(.|x, y) = N (μpost(x, y; ν), diag(σpost(x, y; ν)) (2)

combined with the activation map of the U-Net will result in a predicted seg-
mentation ŷ.

The loss function is composed by two terms. The first is the cross entropy
loss Ez∼Q(.|y,x)[− log Pc(y|M(x, z))], which penalizes the difference between the
ground truth and the segmentation map. The second one is the Kullback-Leibler
(KL) divergence DKL(Q(z|y, x)||P (z|x)) which penalizes differences between the
posterior distribution Q and the prior distribution P . Both terms are combined
as a weighted sum with a weighting factor β as proposed by [10]. Thus, the total
loss function is defined as:

L(y, x) = Ez∼Q(.|y,x)[− log Pc(y|M(x, z))] + β ∗ DKL(Q(z|y, x)||P (z|x)) (3)

In our experiments we use β = 0.2. Differences between training and inference
are outlined in Fig. 1.

DUNet: We utilise a U-Net where dropout layers are activated during inference.
During test phase, dropout is similar to Bayesian approximation [4]. In this way,
we can take Monte Carlo samples over the posterior distribution p(w|x, y) of
the models’ weight w and volume x and labels y. Cross entropy between ground
truth and predicted segmentation is utilised as loss function.

3 Method

To produce plausible segmentation samples, we utilise PUNet and DUNet. In
order to exploit volumetric information, 3D versions of the above models are
trained using 3D convolutions. The U-Nets consist of 3 layers. Each layer consists
of 3D convolution blocks followed by Rectified Linear Unit (ReLU) activation,
batch normalization and max pooling. Filter size is 3×3×3. We start the number
of feature maps at 32 and double it after each block. For the prior net as well
as for the posterior net in the PUNet, we utilize the encoder part of the U-
Net. We train the networks using exponential decay learning rate and the Adam
optimizer. For the DUNet, dropout is used after each layer in the encoding part
of U-Net. We use a dropout probability of 0.2. We generate an equal number of
samples T for both 3D networks. All networks are implemented in Python using
Tensorflow, on a workstation with NVIDIA Titan X GPU.

In order to estimate model uncertainty we compute two uncertainty scores:
Zvar and ZS using variance [9,16] and predictive entropy [5] of samples
respectively.
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We define mean variance across all classes C as:

σ2(x∗) =
1
C

C∑

c=1

1
T

T∑

t=1

(pt(y = c|x∗, w) − p̂(y = c|x∗, w))2, (4)

where p̂(y|x∗, w) is the average of softmax probabilities of T samples for each
c ∈ [1, ..., C] and pt the output of the network for sample t. Subsequently we
define Zvar as

Zvar =
1
N

N∑

v=1

σ2(x∗(v)), (5)

and predictive entropy S as

S(x∗) = −
C∑

c=1

p̂(y = c|x∗, w) × log(p̂(y = c|x∗, w)). (6)

Thus, for each subject x∗, ZS is computed as:

ZS =
1
N

N∑

v=1

S(x∗(v)) (7)

We utilise the Sørensen–Dice coefficient (Dice score) to characterise segmenta-
tion performance. To examine possible linear correlation between segmentation
performance and model uncertainty, we compute the Pearson correlation coeffi-
cient (ρ) between ZS and Zvar and the Dice score.

To investigate the relationship between ZS and Zvar and the variability
among human experts we define the area of human disagreement (Γ ) as an
XOR (⊕) of the different annotations for each subject. For each voxel the ⊕
operation will result 1 indicating that at least one annotator disagrees (disagree-
ment) while 0 is used where all annotators agree (agreement). For a fair com-
parison with ZS and Zvar we utilize the same schemes for deriving quantitative
uncertainty: predictive Entropy(S) Eq. 6 and variance σ2 Eq. 4. For qualitative
analysis we imply Mutual Information (MI) and a map of softmax output prob-
abilities for the predominant class (Softmax). MI is defined using Eq. 6 as the
entropy of the average of samples minus the mean of the sum of the entropy of
each sample, i.e.,

MI(x∗) = S(x∗) +
C∑

c=1

1
T

T∑

t=1

pt(y = c|x∗, w) log(pt(y = c|x∗, w)), (8)

where pt(y = c|x∗, w) is the softmax output of the network for each sample. We
then characterise a voxel v of a new sample x∗ as certain/uncertain using

x∗(v) =

{
uncertain, if S(x∗(v)) >= θ,

certain, otherwise,
(9)
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where θ is a threshold and v a voxel. Alternatively, we can replace S(x∗) in
Eq. 9 with variance σ2 for estimation of uncertainty. We use a threshold since
we assume that human perception of uncertainty is more accurate when inter-
preted binary than continuous. Evidence for this is given in behavioural sciences
literature, e.g. [3,6].

We compute the ROC curve between True Positive Rate (TPR) and False
Positive Rate (FPR) for the binary case. This allows us to correlate model uncer-
tainty with aleatoric expert uncertainty. With Γ and Eq. 9 we define TPR and
FPR as

TPR = p(uncertain|disagreement) =
p(uncertain,disagreement)

p(disagreement)
, (10)

and

FPR = p(uncertain|agreement) =
p(uncertain, agreement)

p(agreement)
. (11)

To evaluate segmentation uncertainty with respect to Γ we use disagreement
accuracy (DisAcc) as metric [11,15]. DisAcc correlates positively with expert
variability. It requires the definition of true invalid predictions, TI, as the voxels
that are uncertain within in the area of disagreement (uncertain and disagree-
ment) and true non-invalid predicitons, TU , as the voxels that are certain in the
area of agreement (certain and agreement). Similarly to conventional accuracy,
DisAcc can be written as DisAcc = TI+TU

N , normalised by the total number of
voxels N .

4 Evaluation and Results

Data. We use the LIDC-IDRI [1,18] dataset for training and testing. This CT
dataset contains images of lung nodules and their delineations from four inde-
pendent expert observers. We resample data to an isotropic volume resolution
of 1 × 1 × 1mm3. We use 700 patients as a training dataset and 175 patients as
a test set for performance evaluation. We crop each volume at the center of the
nodule position and produce volumes of 128 × 128 × 128. For the evaluation of
the method we use the Dice score as a metric of volume overlap.

Correlation of ZS and Zvar and Dice Score: We analyze correlation between
Zvar and ZS (Sect. 3) and the actual Dice score in Fig. 2. Dice score is com-
puted between the absolute ground truth (average of 4 annotators) and the pre-
dicted segmentation. In Fig. 2(a, b, e, f) we observe linear negative correlation
(p < 0.001) between Zvar, ZS and the segmentation performance for both net-
works. Higher negative correlation is observed for DUNet between Zvar and Dice
score (Fig. 2e, ρ = −0.75) and between ZS and Dice score (Fig. 2f, ρ = −0.67).

There are some cases (10 cases) in both methods that produce uncertainty
scores that are not representative for the segmentation quality. Although these
nodules do not have any special visual characteristics, the model produces high
Dice scores with high uncertainty scores. In Fig. 2c, d and g, h the distribu-
tions of uncertainty scores are plotted for two different groups of segmentations.
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Successful segmentations have been empirically defined as those where the Dice
score is ≥0.80 and unsuccessful segmentations with Dice scores ≤0.65. Thus, a
threshold for the uncertainty score, which divides the two groups of segmenta-
tions can be defined as the intersection of the two distributions, which is close
to 0.25.

Fig. 2. Scatter plots of correlation between Dice score and uncertainty scores and
probability density function (pdf) plots for both networks. Top row: PUNet. Bottom
row: DUNet. Correlation between Dice score and Zvar and ZS respectively: (a–b)
PUNet and (e–f) for DUNet. Probability density function (PDF) for values of Zvar

(and ZS) of samples whose Dice scores is between 0.80 and 0.95 (blue) and the samples
that their Dice scores is lower than 0.65 (red). (c–d) for PUNet and (g–h) for DUNet.
(Color figure online)

Inter-observer Variability vs. Segmentation Uncertainty: As a näıve
baseline we evaluate a convolutional regressor network to predict the annotator
variance directly from the volumes. The regressor consists of 5 (convolution-max
pooling) layers which are followed by a global average pooling (GAP) layer to
predict Zvar ∈ [0, 1] directly. Mean square error between prediction and ground
truth of variance among annotators is minimised during training. The perfor-
mance of this approach is limited with a mean square error of 0.22 ± 0.0012.
To evaluate TPR (Eq. 10) and FPR (Eq. 11) we compute ROC curves for each
network as shown in Fig. 3 and evaluate DisAcc for a range of thresholds. The
ROC curves of FPR and TPR (a–b) of both networks are quite similar with the
best result for predictive entropy (Eq. 6) as uncertainty metric and PUNet with
AUC = 0.98. Comparing DisAcc (c–d) for 5 different thresholds θ ∈ [0, 1] for
both networks and DisAcc reaches 0.99 for θ = 0.2 and then remains stable.

Qualitative Analysis of Inter-observer Variability and Segmentation
Uncertainty. Finally, we present a qualitative comparison between segmenta-
tion uncertainty and human uncertainty. Here, human uncertainty is expressed
as human annotator entropy. We present and compare the result among all the
different uncertainty metrics for both networks in Fig. 4.
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(a) Variance (b) Entropy (c) Variance (d) Entropy

Fig. 3. ROC curves and DisAcc plots using predictive Entropy and σ2 for both prob-
abilistic networks

Fig. 4. Uncertainty maps using maximum Softmax (max(M)), Predictive Entropy
(Eq. 6), Variance (Eq. 4) and Mutual Information (Eq. 8) using both networks (darker
colour, larger value).

5 Discussion

A limitation of our evaluation is that for a few cases the evaluated uncertainty
scores are not a representative metric for how good or bad is a segmentation
and it is likely dependant on the used data set. Furthermore, the impact of
added parameter capacity in the probabilistic U-Net architecture compared to
the dropout-only architecture will need to be carefully investigated in future
work. Also, uncertainty as perceived by humans might be fundamentally different
from model confidence. Although there is evidence that model uncertainty could
capture/include also human disagreement area, it is not clear yet at which extend
this happens. Finally, the impact of the different label fusion techniques in the
estimation of ground truth and segmentation uncertainty will need to be further
examined.

6 Conclusion

Using probabilistic 3D segmentation networks, we examine the relationship
between segmentation uncertainty and segmentation performance. We explore
to which extent human expert inter-observer variability can effect and correlate
with model segmentation uncertainty. Our results show that both, a U-Net using
MC dropout during inference as well as a 3D probabilistic U-Net architecture
can quantitatively correlate the posterior segmentation distribution with true
uncertainties. We present results that show a relationship between segmentation
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uncertainty and the area of annotator disagreement. Thus, in most cases model
segmentation uncertainty indicates also likely human disagreement. The inte-
gration of the evaluated metrics into clinical quality control or for example into
an active learning framework, where ‘uncertain’ parts of segmentations will be
re-processed by a human, might show benefit in future work.
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Abstract. Accurate segmentation of organs-at-risks (OARs) from Com-
puted Tomography (CT) image is a key step for efficient planning of
radiation therapy for nasopharyngeal carcinoma (NPC) treatment. Con-
volutional Neural Networks (CNN) have recently become the state-of-
the-art automated OARs image segmentation method. However, due to
the low contrast of head and neck organism tissues in CT, the fully auto-
matic segmentation may still need to be refined to become accurate and
robust enough for clinical use. We propose a deep learning-based multi-
organ interactive segmentation method to improve the results obtained
by an automatic CNN and to reduce user interactions during refinement
for higher accuracy. We use one CNN to obtain an initial automatic
segmentation, on which user interactions are added to indicate mis-
segmentation. Another CNN takes as input the user interactions with
the initial segmentation and gives a refined result. We propose a dimen-
sion separate lightweight network that gives a faster and better dense
predictions. In addition, we propose a mis-segmentation-based weighting
strategy combined with loss functions to achieve more accurate segmen-
tation. We validated the proposed framework in the context of 3D head
and neck organism segmentation from CT images. Experimental results
show our method achieves a large improvement from automatic CNNs,
and obtains higher accuracy with fewer user interventions and less time
compared with traditional interactive segmentation method.

1 Introduction

Nasopharyngeal carcinoma (NPC) is a malignant tumor prevalent globally [5].
Radiotherapy is one of the main treatments for NPC. Segmentation of organs-
at-risks (OARs) from Computed Tomography (CT) images is a key step for
efficient planning of radiotherapy, which is usually undertaken by radiation
c© Springer Nature Switzerland AG 2019
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therapists with laborious manual delineation. Recently, deep learning with convo-
lutional neural networks (CNNs) has achieved state-of-the-art performance for
automated OARs image segmentation [3,4]. However, they can rarely achieve
sufficiently accurate and robust results to be useful for accurate planning of
radiotherapy due to CT images’ low contrast of soft tissues, variations among
patients, and the tiny sizes of organs like optic nerve and optic chaism. Alter-
natively, interactive segmentation methods can integrate the human experts’
knowledge with machine intelligence to improve segmentation accuracy and effi-
ciency [11].

Traditional interactive segmentation methods such as Graph Cut [1] and
ITK-SNAP [10] are usually applicable for segmentation of well-circumscribed
objects. However, since they are low-level feature-based, these methods require
a large number of user interactions to obtain good results when dealing with a
stack of medical images, which will increase the burden on the user. Motivated
by these observations, we investigate combining CNNs with user interactions for
multi-organ segmentation from medical images to achieve higher segmentation
accuracy and robustness with fewer user interactions and less user time. However,
there have been very few studies on using CNNs for interactive segmentation
[7,8] and they are all proposed for a single object segmentation rather than
multiple organs. DeepIGeoS [8], for example, combines user interactions with
CNNs via geodesic distance transforms to obtain higher accuracy for medical
image segmentation but it was not designed for multi-organ segmentation.

This paper aims to integrate user interactions into CNN frameworks for effi-
cient segmentation of multiple OARs (brain stem, parotid gland, optic nerve
and optic chaism) from 3D CT images. We aim to make the interactive frame-
work more efficient with a minimal number of user interactions by using CNNs.
In addition, to achieve fast response to user interactions, the CNN frameworks
should be small and fast enough for clinical applications with high accuracy and
efficiency.

The contributions of this work are three-fold. (1) We propose a deep CNN-
based interactive framework for multiple OARs segmentation from 3D CT
images. Compared with previous works [7,8] that use CNNs for binary interactive
segmentation, our method can obtain segmentation of multiple organs simulta-
neously; (2) For efficient interactive segmentation, we propose a lightweight CNN
structure based on 3D-Unet [2], which could achieve accurate segmentation in
real-time; (3) We present a new mis-segmentation-based weighting strategy com-
bined with loss functions to get more room for network improvement and focus
more on the mis-segmented regions. We show that this new weighting strategy
can lead to improved segmentation accuracy. Experimental results show that
our proposed method outperforms existing interactive tools for segmentation of
multiple organs at risk from CT images.

2 Methodology

DeepIGeoS [8] was an efficient framework for interactive segmentation of binary
objects. However, it cannot deal with multiple organs and uses a dense network
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Fig. 1. Proposed lightweight network architecture optimized for 3D segmentation.

structure that may limit its response speed. To address these problems, we extend
DeepIGeoS [8] by dealing with multi-organ segmentation with a lightweight net-
work (L-Net) that improves response speed and a mis-segmentation-aware loss
function. The framework consists of two main stages. First, an initial segmenta-
tion proposal network (L-Net1) takes as input a raw image with one channel and
gives an initial segmentation of N classes (N = 5 in our case). Then the inter-
actions (clicks or scribbles) are provided by the users to indicate mis-segmented
regions of one or more classes. Second, a refine network (L-Net2) takes as input
the original image, the initial segmentation and user interactions to provide a
refined segmentation. Based on the initial automatic segmentation obtained by
L-Net1, the user could give clicks/scribbles to refine the result more than one
time through L-Net2.

Proposed Lightweight Network Architecture. Considering that user inter-
actions are required for multiple organs and the segmentation may be refined for
multiple times, real-time response to user interactions is highly required. There-
fore we explore lightweight CNNs that can obtain accurate segmentation with
high speed. Our network is a variant of 3D-Unet [2], and composed of 11 convo-
lutional blocks. Our CT images have an in-plane resolution of around 1.0 mm ×
1.0 mm with slice-spacing 3.0 mm. We separate 3D convolutions into 3 × 3 × 1
intra-slice convolutions and 1 × 1 × 3 inter-slice convolutions. Each block com-
prises 3/1 cascading 1×3×3/3×1×1 convolutional layers of n channels associated
with instance normalization (IN) [6] and rectified linear units (ReLU). A skip
connection with a 1 × 1 × 1 convolutional layer is used in each block for better
convergence. The number of channels (n) is doubled after each max pooling and
is halved after each upsampling. We concatenate feature maps from the encod-
ing path with the corresponding feature maps in the decoding path for better
convergence. A final layer of 1 × 1 × 1 convolution with the softmax function
provides the segmentation probabilities, as shown in Fig. 1. L-Net1 and L-Net2
share the same structure except the difference in the number of input channels.

Encoding User Interactions Through Distance Transformation. In our
method, the users provide scribbles to refine the initial automatic segmentation
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Fig. 2. The Euclidean distance transforms of user interactions. (a) The user provides
clicks/scribbles to correct background(red) and organisms(others) on the initial auto-
matic segmentation.(b), (c), (d), (e) and (f) are Euclidean distance map for the back-
ground and brain stem, parotid, optic nerve, optic chaism respectively. (Color figure
online)

obtained by L-Net1. A scribble labels a set of pixels as background or one of
the 4 organisms, with 5 classes totally. Interactions with the same label are con-
verted into a distance map, 5 maps totally. In [8], the geodesic distance was used
due to it helps to better differentiate neighboring pixels with different appear-
ances, and improve label consistency in homogeneous regions. However, in our
case, some of the head-neck organisms have a low contrast to the neighbouring
tissues, e.g. brain stem. Their geodesic distance maps could help little to tell
the difference between a target organ and neighboring tissues. For simplicity,
we propose to encode user interactions via Euclidean distance transforms for
CNN-based segmentation.

Suppose Sc represents the set of pixels labeled by scribbles for class c ∈ [0, 4],
respectively. Let x be a pixel position in an image I, then the unsigned Euclidean
distance from x to the scribble set Sc is:

Deuc(x,y, I) = min(

√
√
√
√

n∑

i

d2i (xi − yi)2, Tc) (1)

E(x, Sc, I) = 1 − min
y∈Sc

Deuc(x,y, I)/Tc (2)

where n is the dimension of image I. di is the pixel spacing along the i-th
dimension. Tc represents the upper bound of Euclidean distance of class c, and we
set [T0, T1, T3, T3, T4] = [4, 4, 4, 2, 2] pixels for background, brain stem, parotid,
optic nerve and optic chaism. As shown in Eq. 2, we use a normalized Euclidean
distance E in the range of [0, 1], and a higher value of E represents a higher
possibility of pixel x belonging to class c.

Figure 2 shows an example of Euclidean distance transforms of user interac-
tions. The Euclidean distance maps of user interactions and the initial automatic
segmentation have the same size as I. They are concatenated with the raw channels
of I and the automatic segmentation, which is a single-channel image where the
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pixel value representing the class predicted by L-Net1. Therefore the refinement
network L-Net2 accepts a concatenated image with 7 channels as the input.

Attention to Mis-Segmentation. Mis-segmentation information is important
for guiding the network where to pay more attention to. It’s meaningful to weight
the mis-segmented regions in loss functions, forcing the network to focus on the
hard regions. More formally, we propose to multiply the prediction result by a
weight function, with tunable attentional parameter α > 0. We define the weight
function as:

wc(x) = e
pc(x )−gc(x )

α (3)

and the weighted prediction is represented as:

pwc (x) = pc(x)wc(x) (4)

where x is the pixel position and c is the label. pc(x) is the softmax probabil-
ity representing the probability of pixel x belonging to class c. gc(x) ∈ 0, 1
is the ground truth probability for pixel x being class c. The pwc (x) is the
weighted prediction, and a higher value of pwc (x) represents a higher possibility
of pixel x belonging to class c. It is visualized for several values of α ∈ [0, 2]
in Fig. 3. We notice the pwc (x) is lower than pc(x) for gc(x) = 1 and higher
for gc(x) = 0, meaning the weighted prediction is further away from the ground
truth. As a result, the weighted mis-segmented region will have a larger impact on
backpropagation as they have larger gradient values than correctly predicted
voxels. Generally, it can get more room for improvement and have the network
focus more on the mis-segmented regions. It should be noticed that this weighted
function needs to be combined with a loss function in training progress and we
combine it with exponential logarithmic loss [9] in our case, named ATM−LExp.

Training Strategy. For pre-processing, all images were normalized by the mean
value and standard variation. Random cropping was used for data augmentation.
We implemented L-Net1 and L-Net2 using our proposed lightweight structure
in PyTorch, and trained them on two NVIDIA 1080ti GPUs. Batch size was set
to be 16. The optimizer Adam was used with the learning rate as 10−3, weight
decay 10−8, and 200 epochs. The learning rate was decayed by 0.9 every 10
epochs for L-Net1 and 0.7 for L-Net2.

After the training of L-Net1, we automatically simulated user interactions
to train L-Net2. The automatic segmentation of training images was compared
with the ground truth to find mis-segmented regions. Then the user interactions
on each under-segmented region of class c were simulated by randomly sampling
a pixels in that region. Note that an over-segmentation of one certain class can
be regarded as an under-segmentation of another class. Suppose the size of one
connected under-segmented region for class c was Nm, we set a for that region to
0 if Nm < 30 and Nm/100 otherwise based on experience. These sampled pixels
for class c were converted to the distance map for class c via Euclidean distance
transforms.
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Fig. 3. Weighted prediction with different α and gc.

3 Experiments

Experimental Data and Evaluation Method. We collected HaN CT images
from 73 patients with nasopharyngeal carcinoma before radiotherapy treatment
with slice dimension 512 × 512, voxel spacing 0.9766 mm × 0.9766 mm, slice
thickness 3 mm. They were manually segmented by a experienced Radiologist.
Each segmentation contained brain stem, parotid, optic nerve and optic chaism,
thus 5 labels with background included. We removed the chest region from CT
images and cropped a box of size 256× 256 containing the cerebrum to focus on
head and neck anatomies. The dataset was randomly split to 70% for training,
10% for validation and 20% for test. We used Dice coefficient (DSC) and Average
Symmetric Surface Distance (ASSD) for quantitative evalution.

Automatic Segmentation by L-Net1. We compare our proposed lightweight
network with 3D-Unet for automatic segmentation in the first stage, and also
compare the performance of different loss functions: Dice loss, exponential loga-
rithmic loss (LExp) [9], and our proposed attention to mis-segmentation(ATM)
with LExp, which is refered to as ATM −LExp. The results are shown in Table 1.
It can be observed that L-Net1 trained with ATM −LExp with α = 0.5 achieves
better results than the other loss functions. We also used the same types of loss
functions to train the 3D-Unet [2], whose parameter number is three times larger



DeepIGeoS-V2: Deep Interactive Segmentation of Multiple Organs 67

than that of L-Net1, and its performance is only slightly better than that of L-
Net1. It shows L-Net1 could obtain accurate segmentation with a lightweight
structure. For each patient in the experiment, it takes less than 0.26 s to get
the result averagely, with a 3-time speedup compared with 3D-Unet. However,
there are still some obvious mis-segmented regions by L-Net1 as shown in Fig. 4.
Therefore we use L-Net2 to refine the segmentation interactively in the following.

Table 1. Quantitative comparison of different network structures and loss functions
for automatic segmentation in stage 1 of our method, evaluated with Dice coefficients
and ASSD (format: mean± std%, mean± std pixels).

Fig. 4. Visual comparison of automatic and refined segmentation. The first row shows
the initial automatic segmentation obtained by L-Net1 and user interactions added for
refinement. The second row shows refined results by L-Net2.

Refined Segmentation by L-Net2. Figure 4 shows examples of auto and
refined segmentation based on L-Net1 and L-Net2 trained with ATM − LExp

with α = 0.5. The first row in Fig. 4 shows initial segmentation results obtained
by L-Net1. The user provides clicks/scribbles to indicate the background or the
organisms. The second row in Fig. 4 shows the results refined by L-Net2. We
measured the segmentation accuracy after iterations of user refinement (giving
user interactions to mark the main mis-segmented regions and applying refine-
ment). The results are presented in Table 2, showing the L-Net2 leads to more
accurate segmentation with user interactions.
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Comparison with ITK-SNAP. Currently traditional multi-class interactive
segmentation methods mainly based on low level features may not be appropri-
ate to segmentation of head and neck organism tissues in CT due to their low
contrast and we choose one of the most famous method to show it. We compared
our proposed DeepIGeoS-V2 with the widely used interactive segmentation tool
ITK-SNAP [10]. A user was asked to use these two tools to segment all the
testing images respectively. For ITK-SNAP, the OARs were segmented one after
another as it only supports binary segmentation. We evaluate the effectiveness
of these methods in terms of user time and final accuracy that are the two most
straightforward metrics for interactive methods [8]. The results are demonstrated
in Fig. 5, which shows that DeepIGeoS-V2 achieve higher accuracy with about
half of user time compared with ITK-SNAP.

Table 2. The results of refined segmentation, evaluated with Dice coefficients and
ASSD (format: mean± std%, mean± std pixels). L-Net1 and L-Net2 in two stages
were trained with ATM(α = 0.5) − LExp.

Fig. 5. Accuracy and user time comparison between our proposed DeepIGeoS-V2 and
ITK-SNAP for interactive segmentation of OARs from HaN CT images.

4 Conclusions

In this work, we proposed a novel 3D interactive framework for 3D segmenta-
tion of multiple organs from head and neck CT images. We extend the two-stage
pipeline of DeepIGeoS [8] to deal with multiple organs. We also proposed a
lightweight CNN and a mis-segmentation-based weighting strategy combined
with loss functions to focus on the mis-segment regions and to get more room
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for performance improvement. Segmentation results of the head and neck organ-
isms CT images show that our proposed method achieves better results than
automatic CNNs. It requires far less user time and achieves higher accuracy for
3D head and neck organisms segmentation compared with traditional interactive
methods. This work has the potential to facilitate more efficient and accurate
segmentation of OARs from CT images for radiotherapy planning of NPC. In
the future, it is of interest to apply our framework to some other multi-organ seg-
mentation tasks, such as interactive segmentation of multiple abdominal organs.
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Abstract. Widely-used public benchmarks are of huge importance to
computer vision and machine learning research, especially with the com-
putational resources required to reproduce state of the art results quickly
becoming untenable. In medical image computing, the wide variety of
image modalities and problem formulations yields a huge task-space for
benchmarks to cover, and thus the widespread adoption of standard
benchmarks has been slow, and barriers to releasing medical data exacer-
bate this issue. In this paper, we examine the role that publicly available
data has played in MICCAI papers from the past five years. We find
that more than half of these papers are based on private data alone,
although this proportion seems to be decreasing over time. Additionally,
we observed that after controlling for open access publication and the
release of code, papers based on public data were cited over 60% more
per year than their private-data counterparts. Further, we found that
more than 20% of papers using public data did not provide a citation
to the dataset or associated manuscript, highlighting the “second-rate”
status that data contributions often take compared to theoretical ones.
We conclude by making recommendations for MICCAI policies which
could help to better incentivise data sharing and move the field toward
more efficient and reproducible science.

1 Introduction

With the proliferation of Deep Learning (DL) methods in medical image com-
puting, a large proportion of papers presented at the International Conference
on Medical Image Computing and Computer Assisted Interventions (MICCAI)
are now based on large-scale medical imaging datasets which are often expensive
and time-consuming to collect. In the broader computer vision community, there
is a trend toward the use of standardized benchmarks such as CIFAR [11], Ima-
geNet [4], and MSCOCO [12] which allows for researchers to objectively compare
their methods to the state of the art without having to repeat the experiments
of others–a time-consuming and expensive endeavor on its own. At MICCAI,
this has seen only modest adoption, possibly due to the exceptional diversity
of imaging modalities and target variables [8], and the corresponding dearth of
publicly available benchmarks.
c© Springer Nature Switzerland AG 2019
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The practice of publicly releasing research data, especially in a recognized
archive accompanied by a detailed data descriptor, is a promising avenue for
expanding the number and variety of medical imaging benchmarks. Medical data
inherently has more barriers to publication (e.g. ethics standards in human sub-
jects research, risks of leaking protected health information) than other scientific
data, but these are typically not insurmountable, especially with organizations
such as The Cancer Imaging Archive [2] now offering support in this area. Public
datasets free machine learning researchers to focus their attention and resources
on methods, and it frees their peers from having to replicate both the dataset
and analysis when conducting reproducibility studies or building on their work.

In this paper, we explore the evolution of this practice at each MICCAI
conferences of the past five years. In particular, we report the prevalence of
papers based on public data vs. those based on only private data. We found that
more than half of all MICCAI papers about machine learning for computer vision
are based on private data alone, which is anomalously high for ML/CV literature.
We also use each paper’s citation count per year elapsed as a surrogate for its
impact on the field and show that papers using public data are cited roughly 60%
more than their private data counterparts, even when controlling for open access
publication and release of code. We conclude with recommendations for how
these data can inform policies to increase the impact of the MICCAI conference
and the field of medical image computing as a whole.

2 Related Work

There is a large and diverse body of literature that shows the benefit of sharing
research data. In a 2013 article, Piwowar and Vision [13] succinctly articulated
the many benefits to publishing your data in the biomedical field:

... sharing data encourages multiple perspectives, helps to identify errors,
discourages fraud, is useful for training new researchers, and increases effi-
cient use of funding and patient population resources by avoiding duplicate
data collection.

They then went on to provide the results of a thorough and well-controlled exper-
iment which showed that papers that released their associated gene expression
microarray data were cited nearly 10% more than their counterparts that kept
the same data private.

In 2016, Drachen et al. [6] conducted a similar bibliometric analysis for three
astrophysics journals between 2000 and 2014. They found that papers which
linked to a dataset were cited 25% more than those that did not, and interest-
ingly, when they restricted their analysis to only papers from 2009 to 2014, the
effect size increased to 40%, which suggests that this issue is becoming more
pronounced over time.

Very recently, Colavizza et al. [3] conducted a text mining and citation anal-
ysis of more than half a million papers published by PLOS and BMC that were
also part of the PubMed Open Access Collection. These journals are interesting
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cases because they each recently enacted policies requiring authors to include
a Data Availability Statement (DAS) belonging to one of three categories: (1)
“data is available on request”, (2) “data is contained within the article or sup-
plementary material”, and (3) “data is in a public repository and here is the
link”. Their results showed that papers with a category 3 DAS were cited over
25% more than those with categories 1, 2 or no DAS at all. Their work also
showed that such DAS statements can very quickly be made commonplace by a
change in journal policy.

These works paint a clear picture that data publication is strongly associated
with receiving a higher number of citations, but what about simply using public
data? To our knowledge, there are no published studies looking at the citation
advantage to using publicly available data rather than private data.

3 Methods

3.1 Data Collection

For each of the five MICCAI events from 2014 to 2018, we randomly ordered all
accepted papers, manually iterated through them and selected all papers that
made use of machine learning for a computer vision task until we had accrued
100 papers from each year. We henceforth refer to such papers as “MICCAI
CV/ML papers”. We then manually collected the following information about
each paper:

– Citation count according to Google Scholar
– Whether they used public data, and if so, which public dataset(s) they used
– How they referenced the public data they used, if applicable (e.g. citation,

footnote URL, or just a name in the text)
– Whether they released the private data they used, if applicable
– Whether they released their source code
– Whether the paper is available open access (e.g. through a preprinting server,

through a funding agency, or on an author’s homepage)

The release of code [17] and making the paper open access [9] are known to inde-
pendently associate with high citation counts, so we collected these attributes
to control for potential confounding effects.

At the start of this study, we originally did not collect the manner in which
data was referenced. It was only after we noticed a surprising number of non-
citation references that we decided to go back and record this for our sample.

3.2 Statistical Analysis

In order to make our study of citation counts robust to the very few papers
with an exceptionally high number of citations, we used Winsorization [5]. In
particular, we trimmed each paper’s citation rate to 50 per year. Two papers
were affected by this [1,14] and the Winsorization affected neither the direction
nor the significance of the results.
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We are interested in estimating the mean citation advantage to using public
data vs using only private data, after controlling for release of code and open
access publication. Regression is not suitable in this case since the prerequisite
of normal residuals fails badly. Prior works [16] have used OLS to predict the
log of citations/year plus one, but this dramatically underestimates effect sizes
when there is a high prevalence of low-citation papers, as there is in our case.
Luckily, since we are controlling only for two binary variables, we can stratify
papers into four groups without loss of precision: (1) no code release and no open
access, (2) code release but not open access, (3) no code release but open access,
and (4) code release and open access. Within each stratum, we compute a ratio
of the mean citations per year of papers using public data to that of papers that
used only private data. We then aggregate these ratios with a weighted sum
according to their prevalence. In order to estimate a confidence interval for this
ratio, we use the bootstrap [7].

4 Results and Discussion

4.1 More Than Half of Papers Used Only Private Data

Of the 500 papers we reviewed, 271 (54.2%) used only privately available data.
It does appear, however, that even within our short study period, this practice
has become less common, down from 64.0% in 2014 to 44% in 2018. See Fig. 1
for a depiction of this trend.

Fig. 1. The various modes of data used by MICCAI CV/ML papers from 2014 through
2018. The lightest region (top) represents papers that used at least one existing public
dataset, the middle region represents papers that used their own data but publicly
released it with their paper, and the darkest region (bottom) represents papers using
only private data that was not released with publication.
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We have no explanation for the anomalously high proportion of papers using
private data at MICCAI 2017. We surmise that this is a much higher proportion
than at other computer vision conferences such as CVPR and ICCV (although
we have not collected the data to confirm this), which highlights the unique
position of the medical image computing field where, in addition to the steep
barriers to data release, the ratio of effort required in data collection to that
in method development often seems much higher than in other applications of
computer vision.

4.2 Few Papers Released Their Data or Code

Of the 500 papers we reviewed, only 36 (7.2%) released their code. While this
is a discouragingly small proportion, it appears that steady progress has been
made from 6% in 2014 to 9% in 2018. See Fig. 2 for a depiction of this trend.
It’s important to note, however, that with such small proportions each year, we
are unable to reject the null hypothesis that this is just random variation over
time.

Fig. 2. The prevalence of MICCAI CV/ML papers releasing code over time. The lighter
region (top) represents papers that did release their code with publications, and the
darker region represents papers than did not (bottom).

Even rarer was the practice of releasing one’s data. Of the 309 papers that
used their own data, only 15 (4.9%) released this data by the time of publication.
We believe that this illustrates the high barriers and perceived low incentives to
releasing medical imaging data.

4.3 Papers Using Public Data Were Cited More Than 60% More

Among the four strata corresponding to open access or not and code release or
not, the use of a public dataset (i.e. existing public or released with publication)



The Role of Publicly Available Data in MICCAI Papers from 2014 to 2018 75

was associated with 60.8% more citations per year than their private-data-only
counterparts (95% CI: 28.1%–110.2%). Such a large effect is highly surprising,
considering that prior studies in other fields [3,6,13] have found that releasing
one’s data is associated with only a 10%–30% increase in citations, where our
study found a much larger effect from simply using public data. In our view,
this illustrates the outsized importance of data in machine learning research, and
suggests that the medical image computing field is highly catalyzed by the public
release of imaging data. Of important note, however, is that due to limitations
with our experimental design, we were unable to control for author reputation,
which is also known to associate with citations [15]. We leave this to future work,
and we thus stop short of making a causal claim about the association between
public data use and citation count. However, we still believe that this association
is of interest and warrants future study, especially due to its size.

4.4 More Than Quarter of Data References Were Not Citations

It follows from Sects. 4.1–4.3 that the medical image computing community
stands to benefit considerably from widespread data release practices. Unfortu-
nately, as seen in Sect. 4.2, this has yet to take hold. One potential contributing
factor to this is that many seem to believe that data is not a standalone scientific
contribution. In our sample, of the 218 papers that used at least one existing
public dataset, 47 (21.6%) referenced a dataset in some way other than a cita-
tion (e.g. with a footnote or simply a mention of its name). This is not always
the fault of the MICCAI authors, since in 11 instances (5.0%), the datasets did
not have an indexed entity available to cite! If the medical image computing
community is to effectively capitalize on the many benefits of public data, the
following two things must happen:

1. Dataset creators must do better at archiving research data in such a way that
they can receive due academic credit. Publicly funded archives such as The
Cancer Imaging Archive [2] and PhysioNet [10] are ideal for indexing and
serving this data. Additionally, peer reviewed journals for data description
manuscripts such as Nature’s Scientific Data and MPDI’s Data are a great
avenue for incentivizing high-quality, detailed descriptions of data, in addition
to enforcing that the data be added to a suitable archive. These are all in
line with the wider initiative to make more research data FAIR (Findable,
Accessible, Interoperable, and Re-usable) [18].

2. Data users must do better to properly reference datasets and/or data descrip-
tion manuscripts such that the creators do receive academic credit. Con-
cretely, naming a benchmark should be accompanied by a formal reference,
and footnotes should be accompanied by citations whenever possible. To
ensure this, reviewers and editors must be vigilant for–and stringent about–
inadequate data references.

We return now to Colavizza et al. and their study of Data Availability State-
ments. In PLOS One, where most of the articles in their study came from, a
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policy was enacted in 2014 to require a DAS from each accepted paper, even if
it was simply category 1 (“data is available on request”). In the course of two
years, PLOS One articles went from virtually no articles with a DAS (2013) to
more than half of articles (2015) having a DAS of category 2 or 3, (those are
“data within the article” and “data in a repository” respectively). We posit that
the MICCAI Proceedings would benefit from a similar policy, possibly not as
dramatically nor as quickly due to the unique barriers we face, but it is likely to
accelerate our progress toward more efficient and reproducible science.

5 Conclusion

In our study of a sample of MICCAI papers that used machine learning for
computer vision from 2014 through 2018, we found that a large proportion of
papers (54.2%) made use of privately available data alone. In addition, we showed
that even after controlling for release of code and open access publishing, the
use of publicly available data was associated with receiving more than 60%
more citations per year than the use of private data alone. We noted also that a
surprising proportion (21.6%) of papers using public data referenced that data
in some way other than a citation, for instance a footnote with a URL, or just a
name. We noticed that this was due in part to the fact that in several instances
(5.0%), no entity for the dataset in question was available to cite.

Based on these findings, we recommend that measures be taken to encourage
the sharing of data and to ensure that the adequate credit is awarded to those
who release data that is then reused. In particular, we recommend that reviewers
be instructed to inspect data references and call out instances where the reference
is inadequate. We also recommend that MICCAI enact a policy requiring authors
to make a short statement about the availability of their data (DAS), even if that
statement is “our data cannot be made available due to [legitimate reason]”.

The code and data for this study has been made available at https://github.
com/neheller/labels19.
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Abstract. As a powerful tool for topological data analysis, persistent
homology captures topological structures of data in a robust manner. Its
pertinent information is summarized in a persistence diagram, which
records topological structures, as well as their saliency. Recent years
have witnessed an increased interest of persistent homology in vari-
ous domains. In biomedical image analysis, persistent homology has
been applied to brain images, neuron images, cardiac images and cancer
pathology images. Meanwhile, the computation of persistent homology
could be time-consuming due to column operations over a large matrix,
called the boundary matrix. This paper seeks to accelerate persistent
homology computation with a hardware implementation of the column
operations of the boundary matrix. By designing a dedicated hardware to
process fast matrix reduction, the proposed hardware accelerator could
potentially achieve up to 20k–30k times speed-up.

Keywords: Topology data analysis · Persistent homology · Matrix
operation · Hardware acceleration

1 Introduction

Topological Data Analysis studies topological structures such as connected com-
ponents, handles and voids, which characterize data in a global, intuitive, and
robust manner. In particular, the theory of persistent homology [8,10] captures
topological properties of data through the view of a filter function, i.e., a scalar
function such as image intensity, density function, etc. One may threshold the
domain with certain threshold and inspect the sublevel set, namely, regions whose
filter value is below the threshold. Persistent homology inspects a series of nested
sublevel sets induced by different thresholds, called a filtration, and tracks the
birth and death of different topological structures. The information is summa-
rized in a persistence diagram, which is a set of points on a 2D plane whose x
and y coordinates are topological structures’ birth and death time respectively.
See Fig. 1 for an example in which persistent homology is computed on a sample
image from the MNIST dataset [13]. The sublevel sets corresponding to differ-
ent function values (t0 to t6) are displayed with black pixels in the top row.
c© Springer Nature Switzerland AG 2019
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Fig. 1. Example of a persistence diagram (lower right) computed on an image (lower
left) taken from the MNIST dataset. We use the inverse of the original image as input.
The sublevel sets and the filtration are shown in the top row.

The upper cycle of digit 8 is created at t1 while the lower cycle forms at t2. Both
cycles are eventually filled in with black pixels (and thus disappear) at t5 and t6
respectively.

Numerous topology inspired methods have been proposed in recent years
and they have been successfully applied to different problems, including molec-
ular biology [4,12], signal analysis [18], sensor networks [11], robotics [19], shape
recognition [15], graphics [7], geometric modeling [9] and many more. In biomed-
ical image analysis, topological methods have been used but not limited to ana-
lyze global structures of sMRI and functional MRI images [1,2,14]. Topological
invariant is by design robust to deformation and to noise. Without any tearing or
gluing, topological structures will be preserved regardless of the deformations. A
desirable property of persistence diagrams is that they are Lipschitz with respect
to the underlying filter function [3].

An essential component involved in the computation of persistent homology is
the reduction of a boundary matrix whose columns and rows represent elements
of a discretization of a domain. Simplicies of zero, one, two and three dimensions
are vertices, edges, triangles and tetrahedra (Fig. 2). A boundary matrix ∂ is a
binary matrix with entry ∂(u, v) = 1 when simplex σu corresponding to row u
belongs to boundary of σv corresponding to column v. A reduction of the bound-
ary matrix reduces it into a canonical form through column addition operations
over binary field. The number of column operations required by the reduction
process is usually huge, because the boundary matrices can be prohibitively
large even with input images of small sizes. As an example, digit images of reso-
lution 28× 28 from MNIST have 1D boundary matrix of size 784× 1512 and 2D
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boundary matrix of size 1512 × 729. Boundary matrix reduction has become a
major bottleneck for persistent homology computation, and impedes its further
applications. Therefore, it is imperative to accelerate the reduction process by
dedicated hardware. Some hardware accelerators can speedup the computation
process hundreds or even thousands of times compared to general purpose CPU
and GPU [5,6]. By designing dedicated hardware to implement boundary matrix
reduction, we can accelerate it up to 20000 times. To the best of our knowledge,
this is the first paper proposing hardware accelerations for persistent homology
computation.

Fig. 2. Top left: a simplicial complex with filter function values marked in the parenthe-
ses beside corresponding vertices, edges, and faces; Top right: simplicies of dimension 0,
1, 2, and 3; Bottom row: examples of boundary operators on 1-, 2-, and 3-dimensional
simplicies.

The remainder of the paper is organized as follows. We briefly explain the
basics of the theory of persistent homology in Sect. 2. Details concerning bound-
ary matrix and boundary matrix reduction are provided in Sect. 3. Lastly, Sect. 4
presents a hardware implementation which considerably accelerates the reduc-
tion process. Potential speedups from proposed hardware implementation are
evaluated on two datasets, namely, MNIST and The Mammographic Image Anal-
ysis Society (MIAS) [20]. For illustration purpose, MIAS dataset is downsized
from 1024 × 1024 to 32 × 32 with aspect ratio intact.
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Fig. 3. ∂1 is the 1−dimensional boundary matrix computed from the simplicial complex
(with a filter function defined on it) illustrated in top left of Fig. 2. Rows and columns
of ∂1 correspond to vertices (0-simplicies) and edges (1-simplicies) respectively. First
few steps of boundary matrix reduction are shown. The reduction process stops at R1

which is the reduced result of ∂1.

2 Persistent Homology

We review some of the basic concepts necessary to understand the idea of this
paper, including simplex, simplicial complex, boundary operator, and filtration.
Due to space limitations, some theories as important, such as cycle, chain group,
homology group, etc., are intentionally skipped. Interested readers may refer to
[10,16,17] for more details.

Simplicial Complex. A d-dimensional simplex σ is the convex hull of d + 1
affinely independent vertices. In case of 3D data, the 0-, 1-, 2-, and 3-simplex
are vertex, edge, triangle and tetrahedron respectively (top right of Fig. 2). A
simplicial complex K is a finite set of simplicies satisfying two conditions: (1)
any face of a simplex in K is also in K; (2) intersection of any two simplicies in
K is either empty or is a face for both simplicies.

Boundary Operator. The boundary of a d-simplex is the formal sum of the
(d − 1)-simplicies which are faces of the d-simplex. In the second row of Fig. 2,
the boundary of an edge (1-simplex) is the sum of its two endpoints (0-simplex).
The edges constituting the triangle form the boundary of that triangle. And
similarly, the formal sum of the four triangles is the boundary of the tetrahedron.
The boundary operator is defined on individual simplicies as an operator that
decomposes a d-simplex into its boundary comprising of a set of (d−1)-simplicies.

Filtration. Given a topology space X and a real-valued function f defined on
X, we can construct a sublevel set Xt = {x ∈ X : f(x) ≤ t} where t is a



Hardware Acceleration of Persistent Homology Computation 85

threshold controlling the “progress” of sublevel sets. As t increases from −∞ to
+∞, a sequence of sublevel sets is produced in which the first is an empty set
while the last covers the whole topology space X. This increasing sequence of
sets is called a filtration induced by function f .

Algorithm 1. Boundary matrix reduction
1: procedure Initialization
2: R ← boundary matrix ∂
3: lowR() ← −1
4: for i = 1 to n do
5: if column i has 1 then
6: lowR(i) ← row index of the last 1 in column i of R

7: endif
8: endfor
9: for i = 1 to n do

10: while ∃i
′
< i with lowR(i

′
) = lowR(i) do

11: add column i
′

to column i
12: update lowR(i)
13: endwhile
14: endfor

3 Boundary Matrix Reduction

Computation of persistence diagram requires a filter function defined on simpli-
cies. As can be seen from top left of Fig. 2, filtration function values are marked
beside corresponding simplicies (vertices, edges, and faces). With the simplicies
sorted usually in increasing order according to their function values, a bound-
ary matrix ∂ can be computed by encoding the boundary operator in a binary
matrix. An entry ∂(u, v) = 1 when simplex σu corresponding to column u is part
of the boundary of simplex σv corresponding to column v.

Boundary matrix reduction reduces ∂ to another binary matrix R through
column operations performed on ∂ from left to right. During each operation, a
new column is reduced by addition with a potentially already reduced column
from its left. The reduction process finishes when the rightmost column of R has
index of nonzero entry as small as possible (or as high as possible in terms of
matrix position) or the rightmost column is zero. To better explain the reduction,
we define lowR(i) to be the row index of the last 1 in column i of R or −1 in case
that column i is zero. To reduce column i, we keep searching for another column
j satisfying condition lowR(i) = lowR(j), j < i and adding column j to column
i until i is zero or no column j satisfying above condition can be found. It is
important to note that these column additions use Z2 (i.e. mod 2) arithmetic so
that 1 + 1 = 0.

As an example, the 1−dimensional boundary matrix ∂1 computed from
the simplicial complex defined in top left of Fig. 2 is reduced with first few
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Fig. 4. Left: architecture of the proposed hardware implementation of boundary matrix
reduction. Right: example Col SRAM updates of the first reduction step in Fig. 3.

steps of reduction process shown in Fig. 3. The reduced result is R1 where
lowR1(i) �= lowR1(j), i �= j where column i and j specify two nonzero columns
(see lower right of Fig. 3). Pseucodes for boundary matrix reduction is provided
in Algorithm 1 where the boundary matrix is first scanned to initialize lowR()
with correct indices (the first for-loop) after which the algorithm follows what
we have described previously.

4 Hardware Implementation

As described in Sect. 3, boundary matrix reduction entails a lot of column opera-
tions, which make it time-consuming to compute persistence diagram. Provided
a large boundary matrix, the excessive number of cache misses caused by afore-
mentioned column operations involved in reduction process inevitably become a
major challenge in memory operations. Moreover, finding two columns i and j
satisfying lowR(i) = lowR(j) proves to be difficult due to the time and power
consumption incurred from the perspective of both software and hardware. A
novel hardware accelerator for boundary matrix reduction is proposed in this
section, which can potentially achieve up to 20k–30k times speedups on MNIST
and MIAS dataset.

A full description of the functionality for each hardware module illustrated
in Fig. 4 is as follows:

1. Memory: the memory module stores boundary matrix. Currently, only on-
chip SRAM is considered. The architecture can be easily extended to DRAM
when applied to a larger dataset.

2. Col SRAM1: Col SRAM1 stores the index of the lowest 1 in each column (i.e.
lowR()).

3. Col SRAM2: Col SRAM2 stores the number columns which share the same
lowR().

4. Main Controller: the main controller module is responsible for the control of
the entire hardware including reading and writing of the SRAMs.
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An example hardware flow of the first boundary matrix reduction step in
Fig. 3 is shown in Fig. 4. Col SRAM1 indicates the index of the lowest 1 in column
i (i.e. lowR(i)) while Col SRAM2 records the number of columns with the same
lowR(). As the process of boundary matrix reduction progresses, the SRAMs are
updated concurrently. With the information readily stored in SRAMs, the time
to search for a new pair of qualifying columns can be greatly reduced.

Specifically, the Memory module is configured to have 24 SRAMs, each with
depth of 1536 and width of 32−bit in our implementation. The circuit is syn-
thesized with 28 nm CMOS technology. The circuit is designed to have an area
of 0.5 mm2 and to consume 20 mW power at 1 Ghz clock frequency.

10 samples were randomly drawn from both MNIST and MIAS dataset, and
we measured their software and hardware reduction time on 1− and 2− dimen-
sional boundary matrices separately for clarity purpose. Our software implemen-
tation of boundary matrix reduction (abbreviated as SW in Table 1 for clarity)
was coded in C++ and compiled on a 64−bit Windows with Visual Studio
2015 as baseline approach. It took in filtration matrices as inputs and produced
reduced boundary matrices as outputs. Additionally, software metrics reported
in Table 1 were produced from a machine with an Intel Core i7-9700K 3.6 GHz
CPU, and 8GB DDR4 memory. Table 1 gives averaged running time over 10
samples for both dataset, and we can observe considerable speedups from our
proposed hardware accelerator especially for 1-dimensional boundary matrices.

Table 1. Comparisons of processing time between software and hardware
implementations.

Dataset Dimensions SW runtime HW runtime HW/SW speedups

MNIST 2-dim 2224 ms 1.10 ms 2022x

1-dim 2639 ms 0.13 ms 20300x

MIAS 2-dim 4087 ms 1.51 ms 2706x

1-dim 4816 ms 0.22 ms 21891x
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Abstract. Deep neural networks (DNNs) have been expanded into med-
ical fields and triggered the revolution of some medical applications by
extracting complex features and achieving high accuracy and perfor-
mance, etc. On the contrast, the large-scale network brings high require-
ments of both memory storage and computation resource, especially for
portable medical devices and other embedded systems. In this work, we
first train a DNN for pneumonia detection using the dataset provided by
RSNA Pneumonia Detection Challenge [4]. To overcome hardware lim-
itation for implementing large-scale networks, we develop a systematic
structured weight pruning method with filter sparsity, column sparsity
and combined sparsity. Experiments show that we can achieve up to 36x
compression ratio compared to the original model with 106 layers, while
maintaining no accuracy degradation. We evaluate the proposed methods
on an embedded low-power device, Jetson TX2, and achieve low power
usage and high energy efficiency.

Keywords: Pneumonia detection · YOLO · Structured weight pruning

1 Introduction

There are approximately 450 million people globally (about 7% of the population
in the world) suffering from pneumonia, and results in about 4 million deaths
per year [9,14]. In the United States, pneumonia accounts for over 500,000 visits
to emergency departments [3] and over 50,000 deaths in 2015 [1], keeping the
ailment on the list of top 10 causes of death in the country. To accurately diagnose
and localize pneumonia, a general diagnostic process requires review of a chest
radiograph (CXR) by highly trained specialists and confirmation through clinical
history, blood exams and vital symptoms.

To improve the efficiency and reach of diagnostic services, many researchers
have extensively studied from medical fields and also computer aided design. In
the past years, DNNs have been experiencing a rapid and tremendous progress
thanks to the new era of big data. Especially for computer vision problems, deep
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learning and large-scale annotated image datasets drastically improved the per-
formances of object recognition, detection and segmentation. Through the train-
ing processing based on large-scale datasets, DNNs can rapidly learn the complex
features and provide helpful functions of diagnose and localization. Many recent
works have discussed medical image detection using large-scale neural networks.
Based on Chest X-ray dataset [16], recurrent neural cascade model proposed by
[15], CheXNet developed by [10], and Text-Image Embedding network (TieNet)
introduced by [17]. Despite the promising results obtained by these works, one
of the biggest challenges is that all these networks adopted a deep architec-
ture with multiple layers, leading to a large memory storage and computation
resource requirement. These make it difficult to implement large DNN models
in portable medical devices and embedded systems [7,8].

In order to deploy DNNs on these embedded devices, DNN model compres-
sion techniques such as weight pruning, have been proposed for storage reduction
and computation acceleration. Recently, works such as [5,20] have made break-
through on the weight pruning methods for DNNs while maintaining the net-
work accuracy. However, the network structure and weight storage after pruning
become highly irregular and therefore the storage of indexing is non-negligible,
which undermines the compression ratio and the performance. Therefore, the
structured pruning is proposed to incorporate structured sparsity into the weight
pruning algorithm [6,18]. The structured sparsity of DNN introduced by pruning
methods is hardware-friendly, and it efficiently improves the evaluation of DNNs
on embedded devices.

Fig. 1. Examples of pre-processed data. The boxes showed in figure denotes the
detected pneumonia.

In this work, we develop a pneumonia detector based on you only look once
(YOLO) [11]. We select a dataset provided by RSNA Pneumonia Detection Chal-
lenge [4]. In the pre-processing stage, the labeled images are resized to 320×320,
along with the corresponding coordinates of bounding boxes, as shown in Fig. 1.
YOLOv3 [13] is adopted as the base feature detector with our costumed anchor
box priors, due to the speed boost and high average precision. It can achieve
detection accuracy of 71.23 mAP. Moreover, in order to enhance the network
performance, we utilize training optimizations including learning rate warmup,
cosine learning rate decay and mixup training. To further maintain the precision
obtained by the 106-layer network, we apply the ADMM-based unified model
pruning algorithm on the original model, incorporated with structured sparsity
(filter-wise sparsity and column-wise sparsity). Experimental result shows that
without accuracy loss, our YOLOv3-based network can be pruned up to 36x.
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The number of parameters is reduced from 61.5 M to 1.7 M, which undoubtedly
reduces the memory storage and computation resource requirement for embed-
ded systems. To validate our proposed method, we implement our model on
Jetson TX2 [2], and it achieves low power usage and high energy efficiency.
Therefore, it verifies that our proposed method is very suitable for pneumonia
detection with the characteristics of real-time and low-power on portable medical
devices.

2 Model Design

2.1 YOLOv3

YOLO is an unified, real-time object detection framework. Compared with other
object detection classifiers, YOLO frames object detection as a regression prob-
lem to spatially separated bounding boxes and associated class probabilities
[11]. Recently, two improved versions of YOLO have been developed, namely
YOLO9000 [12] and YOLOv3 [13]. In this work, we adopt YOLOv3 based detec-
tor due to its speed boost and high average precision.

YOLOv3 is a fully convolutional network, containing 75 convolutional layers,
with skip connections and upsampling layers. The YOLOv3 adopts a convolu-
tional layer with stride 2 as downsampling layer instead of pooling layer. A
custom deep architecture Darknet-53 is utilized as the feature extractor since it
can achieve a promising performance while with fewer floating point operations
and more speedup [13]. In our work, we initialize the weights using a pretrained
DarkNet-53 weights based on ImageNet.

YOLOv3 predicts boxes at 3 different scales. For each scale, detection layers
that comprised of convolutional layers are constructed, respectively. The last
layer predicts a 3D tensor containing bounding box coordinates, object predic-
tion, and class predictions. In our work, the class number is 1 and the number of
predicted boxes at each scale is 3, thus the tensor is N ×N × [3 ∗ (4 + 1 + 1)] for
the 4 bounding box offsets, 1 object prediction, and 1 class predictions. YOLOv3
predicts bounding boxes using dimension clusters as anchor boxes. The network
predicts 4 coordinates for each bounding box. K-means clustering is adopted to
determine our anchor boxes. Same as YOLOv3, we choose 9 clusters and 3 scales.
On our data, we modify the 9 clusters as following: (40 × 39), (63 × 49), (48 ×
69), (75 × 74), (58 × 102), (83 × 108), (67 × 148), (89 × 154), (94 × 202).

2.2 Training Optimization

Inspired by [19], we absorb several training optimization methods to enhance
the network performance. Learning rate warmup: Instead of using a too large
learning rate directly at the beginning, we use a small learning rate and then
smooth back to the initial learning rate. To be specific, we use a gradual warmup
strategy, which increases the learning rate from 0 to the original initial learning
rate linearly. Cosine learning rate decay: For the learning rate decay, a cosine
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annealing strategy is applied, in which the learning rate gets decreased from
the initial value to 0 by the following function: lrt = 0.5 ∗ (1 + cos(tπ/T ))lr0,
where t denotes the current batch and T denotes the total number of batches,
and lr0 is the initial learning rate. Mixup: For data augmentation, we adopt
mixup method, in which each time we randomly sample two examples (xi, yi)
and (xj .yj). Then a new example is obtained by a weighted linear interpolation
of these two examples: x′ = λxi +(1−λ)xj , y′ = λyi +(1−λ)yj , where λ ∈ [0, 1]
is a random number drawn from the Beta(α, α) distribution. The new example
(x′, y′) will be used as our training data.

3 Model Compression

3.1 Unified Weight Pruning Algorithm

We develop an unified systematic framework containing three phases: pre-
pruning, masked mapping and retraining. The objective of the weight pruning is
to minimize the loss function while satisfying the weight constraints, the whole
problem is defined as:

minimize fLoss

({Wi}Ni=1, {bi}Ni=1

)
, subject to Wi ∈ Si, i = 1, . . . , N. (1)

where Wi and bi denotes the sets of weights and biases of the i-th (CONV or
FC) layer in an N -layer DNN, respectively. The set Si =

{
Wi

∣
∣card(Wi) ≤ αi

}

denotes the constraint for weight pruning, and ‘card’ refers to cardinality. It
meets the goal that the number of non-zero elements in Wi is limited by αi in
layer i.

In the pre-pruning phase, we add the ADMM-based regularization on an
original DNN model. The regularization is operated by introducing auxiliary
variables Zi’s, and dual variables Ui’s. In each iteration, while keeping on mini-
mizing network regularized loss, we also reduce the error of Euclidean projection
from W k+1

i + Uk
i onto the set Si. Because under the constraint that αi is the

desired number of weights after pruning in the i-th layer, the Euclidean projec-
tion can keep αi elements in W k+1

i +Uk
i with the largest magnitudes and set the

remaining weights to zeros. Then the dual variables Ui is updated as following:
Uk+1
i = Uk

i +W k+1
i −Zk+1

i . In the second phase, with the obtained intermediate
Wi solutions, we first perform the Euclidean projection (mapping) to satisfy that
at most αi weights in each layer are non-zero. And then in the retraining phase,
the zero weights are gradient masked and non-zero weights are retrained using
training sets to restore partial accuracy.

3.2 Structured Pruning

As mentioned before, irregular pruning methods introduce extra storage for index
and undermines the compression ratio and the performance. In order to develop
an algorithm more friendly on hardware implementation, we incorporate struc-
tured pruning with the unified weight pruning algorithm.
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Fig. 2. Examples of GEMM in CONV layer and effect of structured sparsities.

In a typical convolutional layer, there are two structured sparsities: filter-wise
sparsity, channel-wise sparsity, and shape-wise sparsity. For fully-connected lay-
ers, there are two types: row-wise sparsity and column-wise sparsity. We mainly
focus on compressing convolutional layer in our design, since it is the most
computationally intensive layer in current DNNs and our model is a fully con-
volutional network.

During the convolutional computation, the feature map tensor and weights
tensor are converted to 2D matrices and performed the general matrix multi-
plication (GEMM), as shown in Fig. 2. Filter-wise sparsity corresponds to row-
wise sparsity, while channel-wise sparsity and shape-wise sparsity correspond to
column-wise sparsity. Therefore, filter pruning leads to reducing the number of
rows of matrix, and correspondingly, channel and shape pruning result in the
reduction of column number. The process of our structured pruning method can
be explained as follows.

Filter Pruning. As we mentioned in Eq. 1, the constraint set Si here indicates
the number of nonzero filters in Wi that is less than a predefined value αi. To
determine the limited number of nonzero filters, we perform l2 norm on each
filter and select the αi filters with most magnitude and set the remaining as
zero.

Column Pruning. In the pre-pruning phase, we prune the convolutional weight
by first converting 4D weight tensor into a 2D matrix. Therefore, the constraint
set Si for column pruning indicates the number of nonzero column in converted
Wi that is less than a threshold value. The largest αi columns evaluated by
l2 norm are kept and the remaining column values are set to zero.

Combined Pruning. To take advantage of utilization in structured pruning
on hardware implementation, we propose a approach by combination of these
two structured pruning, which decreases the dimension in GEMM while still
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maintaining a full matrix. We first perform either one type pruning, filter for
example. With the filter-pruned model, we first mask the zero filters and then
perform the column pruning. In this way, we can keep the desired number of
nonzero filter and obtain a higher sparsity on the column-wise.

4 Experimental Results

In this section, we evaluate the proposed model compression technique, starting
from original model training, systematic structured weight pruning, and the
hardware implementation on embedded device.

4.1 Data Preprocessing

In our project, we use the dataset provided by RSNA Pneumonia Detection
Challenge [4]. The dataset is derived from National Institutes of Health Clinical
Center for publicly providing the Chest X-Ray dataset [16]. In our experiments,
only the labeled images are selected, loaded from Digital Imaging and Commu-
nications in Medicine (DICOM) image format and resized into 320 × 320 from
the original 1024 × 1024. The corresponding coordinates are also re-calculated
from the original size. The whole dataset contains 6,002 images, of which 5,400
are considered as our training dataset and the remaining 602 are test dataset.

4.2 Model Training

We apply the weight pruning method and train the pneumonia detector on
Nvidia GeForce GTX2080 using Pytorch. During the training, we warmup our
learning rate from 10−5 to our initial learning rate 10−3 during the first epoch.
In the rest epochs, the learning rate decreased from 10−3 to 4−8 using the cosine
function. The α for the Beta distribution in data mixup is 0.2.

4.3 Model Evaluation

To evaluate the performance of the model, we use mean average precision (mAP)
at different intersection over union (IoU) thresholds. The metric sweeps over a
range of IoU thresholds, at each point calculating an average precision value. The
threshold values range from 0.4 to 0.75 with a step size of 0.05: (0.4, 0.45, 0.5,
0.55, 0.6, 0.65, 0.7, 0.75). To be specific, if we use 0.5 as the threshold, only when
IoU is greater than 0.5 the object can be considered as detected. The result of
original model is listed on the first row in Table 1 under different IoU thresholds.
When IoU threshold is 0.5, we can achieve detection accuracy of 71.23 mAP.

Next, the unified structured weight pruning method is applied on filter prun-
ing, column pruning and combined pruning, respectively. The detailed evaluation
results of models with various prune ratio are shown in Table 1. Without accu-
racy loss, the prune ratio can be increased up to 36x. For this model, we prune
3.56x filters and 9.68x columns. The size of model parameters is reduced from
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61.5 M to 1.7 M, which results the model storage saved from 246.4 MB to 6.84
MB. The original floating point operations (FLOPs) is 38.63 Bn. In total, the
FLOPs can be significantly reduced to 1.32 Bn. In this way, not only the require-
ment of memory storage and computation resource decreased, but also facilitate
acceleration on embedded devices.

Table 1. Localization accuracy (mAP) using IoU where T(IoU) = 0.4, 0.45, 0.5, 0.55,
0.6, 0.65, 0.7, 0.75.

T(IoU) 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Original model 81.2 76.3 71.2 63.4 54.7 42.3 30.7 19.1

Filter pruned 11.55x 81.4 75.9 71.5 63.8 53.0 40.9 29.7 17.9

16.26x 80.6 76.2 71.2 62.5 53.6 42.3 30.0 18.7

19.33x 80.7 76.1 71.1 62.3 52.9 41.2 30.0 18.6

Column pruned 11.60x 81.2 76.9 71.9 64.5 53.3 41.8 29.8 18.4

16.36x 80.7 76.0 71.3 64.1 55.9 41.5 28.4 19.1

19.55x 80.6 76.1 71.0 63.7 53.5 42.3 29.7 18.7

Combined pruned 36.02x 81.2 76.3 71.0 63.5 53.4 42.8 31.2 19.3

51.97x 81.0 76.0 70.6 62.8 53.0 41.7 29.0 18.3

4.4 Hardware Implementation

To validate our method on the embedded low-power devices, we implement our
pruned model on Jetson TX2, which is considered as the fastest, most power-
efficient embedded AI computing device [2]. It’s built by a 256-core NVIDIA
Pascal-family GPU and the memory is 8 GB with 59.7 GB/s bandwidth. The
power consumption of our model is 7.3 W and the energy efficiency is 0.69
IPS/W. The low power usage and high energy efficiency show a high feasibility
and compatibility of our weight pruning method on DNN for low-power real-
world devices.

5 Conclusion

In this work, we developed a YOLOv3-based detector for pneumonia detection
with 71.23 mAP. In order to reduce the storage memory and computational
resource requirement by the 106-layer fully convolution network, we applied a
systematic structured weight pruning method on filter sparsity, column sparsity
and combined sparsity. Without accuracy loss, the prune ratio can achieve up to
36x, which reduce the model size from 61.5 M to 1.7 M. To validate our method
on the real-world low-power device, we implemented and evaluated our model
on Jetson TX2, which resulted a low power usage and high energy efficiency.
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Abstract. Artificial intelligence (AI)-driven medical devices have cre-
ated a new excitement in healthcare sector. While deeper and wider
neural networks are designed for complex healthcare applications, model
compression can be an effective way to deploy networks on medical
devices that often have hardware and speed constraints. Most state-of-
the-art model compression techniques require a resource centric manual
process that explores a large model architecture space to find a trade-
off solution between model size and accuracy. Recently, reinforcement
learning (RL) approaches are proposed to automate such a hand-crafted
process. However, most RL model compression algorithms are model-free
that require longer time with no assumptions of the model. On the con-
trary, model-based (MB) approaches are data driven; have faster con-
vergence but are sensitive to the bias in the model. In this paper, we
develop data-driven dyna model compression (D3MC) algorithm that
integrates model-based and model-free RL approaches. We evaluate our
algorithm on a variety of imaging data from dermoscopy to X-ray on dif-
ferent popular and public model architectures. Compared to model-free
RL approaches, our approach achieves faster convergence; exhibits bet-
ter generalization across different data sets; and preserves comparable
model performance.

Keywords: Model compression · Reinforcement learning · Dyna ·
Automation

1 Introduction

Medical devices such as X-ray, MR, CT and Ultrasound need deep neural net-
works (DNN) to bring down operational costs and improve performance. Reduc-
ing the size of DNNs is pivotal for maximizing the benefits of medical devices
with limited computational resources. Model compression techniques, to reduce
the size of DNNs, comes with a trade-off between compression and performance.
Randomly reducing a network may adversely affect the model performance.
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Over the past years, researchers have developed techniques that utilize a
hand-designed smaller network that can achieve similar performance as the orig-
inal network. Hand-designed approaches require extensive manual effort from
a domain expert and might not be the optimal solution. Recently there has
been a considerable amount of work towards automation of model compression
using reinforcement learning (RL). Most of these RL techniques are model-free
(MF), without any assumptions of the model or samples. Such approaches are
often flexible and learn complex policies effectively, but their global convergence
requires large number of trials. On the contrary, model-based (MB) techniques
have strong theoretical basis; generalize better; and, usually converge faster [2].
Though practically efficient, MB approaches suffer from bias sensitivity and
model selection difficulty.

In this paper, we propose a data-driven dyna model compression (D3MC)
framework to bridge the gap between MB and MF approaches. Compared to MF
methods, our hybrid approach significantly reduces the training time. We use a
greedy α weight between MF and MB, that can be parametrized to decrease over
time. The reward prediction from the MB component can be generalized across
different data sets for any given network architecture. To the best of our knowl-
edge, this is the first hybrid reinforcement learning (RL) based neural network
compression method applied in medical imaging domain. We benchmarked our
methods on public health data sets. Our experimental results show that D3MC
requires much less training time while maintaining similar model performance.

Related Work: There are several conventional approaches to compress a neural
network to a hand-crafted model such as pruning [6], quantization [7] and knowl-
edge distillation [4]. Pruning-based approaches remove redundant weights and
only keep weights that contributes to the final output. Quantization approach
constrains the inputs resulting in reduced networks. Knowledge distillation app-
roach requires training a given smaller network with respect to the input teacher
network so that the performance of two models are comparable [4]. However, all
of those methods require non-trivial manual selections. Recently, RL approaches
have been developed to automate the network compression. Ashok et al. [1] pro-
posed N2N learning and He et al. [3] used AMC engine to reduce neural network
sizes. However, most of them are MF approaches, which are time-consuming
requiring RL agent to explore a large architecture space.

Compared to MF methods, MB approaches require much less training time
but underlying dynamics is difficult to estimate. Dyna architecture [8] combines
MF and MB by integrating planning, acting and learning. However, the original
paper on dyna structure uses Q-table, which is inefficient for large problem space
[8]. Instead, we use a functional approximation approach that is more robust.

The main contributions of the paper include (1) proposing a new model
compression algorithm that combines MB and MF approaches, (2) the first of
its kind in the applications on medical imaging, (3) applying RL compression
methods on complex network architectures such as Inception-v3 that are most
commonly used in imaging classification and (4) layer removal pattern analysis
across different datasets for similar network architectures.
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Fig. 1. The workflow of reinforcement learning training process of D3MC.

2 Methods

Our proposed D3MC is analogous to dyna architecture where the MB component
is built from the data generated from the MF component as sown in Fig. 1.
We consider the standard RL setting in our D3MC pipeline, that is, an agent
interacts with an environment over a number of time steps or trials. At each
time step t, the agent receives a state st, which is a reduced student network,
and selects an action at based on its policy π. The policy π is a mapping from
st to at. at is a list of binary actions (0 to keep, 1 to remove) corresponding to
each layer in the network. The agent then receives the next state st+1 as well
as a reward rt. This iterative process continues for N time steps, where N is
sufficiently large that the reward converges (Algorithm 1). The detailed setting
of RL framework is as follows:

Environment: Teacher network architectures. The environment accepts a
list of layers to be removed from the RL agent.

State: All possible reduced student network architectures derived from the
teacher model.

Action: Remove layer or not.
Agent: Actor-Critic based agent.
Optimization: Under actor-critic architecture, the policy is directly param-

eterized π(a|s; θ). To optimize θ, we use REINFORCE family of policy gradient
algorithm [11] that updates θ at each time step t with respect to its gradi-
ent ascent on E[Rt]. Given that ∇θ log π(at|st; θ)Rt is an unbiased estimator
of ∇θE(Rt) and subtracting a baseline can reduce its variances, we update the
policy parameters θ in the direction of

∇θJ(θ) = ∇θ log π(at|st; θ)(Rt − bt(st)) (1)
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Algorithm 1. Algorithm of D3MC
1: s0 ← Teacher model
2: for i = 1, ...N do
3: for t = 1, ..L1 do
4: at ∼ πremove(st−1; θremove,i−1)
5: st ← T (st−1, at)
6: Sample u∗ ∼ Unifom(0, 1)
7: if u∗ > α then � Model-Free
8: R ← r(sL1)
9: else � Model-Based

10: R ← f(at, l, k, ks, s, p, n)

11: θremove,i ← ∇θremove,i−1J(θremove,i−1)

12: Output: Student model.

We use a learned estimate of the value function V π(st), which is the critic,
as the baseline bt.

The MB component is a dense neural network to predict the reward (Fig. 1).
We use α to weigh MF and MB components (where α ∈ [0, 1]). As MB component
generalizes, we decay α to reduce MF dependency.

Model-Free Reward: MF component learns an effective policy from rewards
alone. Reward is a combination of compression and accuracy ratio. In this paper,

we define MF reward [1] as: R = C(2 − C) · Accstudent
Accteacher

.

where C ∈ [0, 1) is the compression ratio defined as C = 1 − #paramstudent

#paramteacher

.

Acc is the accuracy produced by the model.

Model-Based Reward: MB reward value is computed as a function of layer
description as shown in Eq. 2 using a six-layer dense deep neural network.

R = f(xt) (2)

where xt = (at, l, k, ks, s, p, n). at ∈ {0, 1}(L1−1)×1 is the action list, l is the layer
type, k is the number of kernels, ks is the kernel size, s is stride, p is padding and
n is trainable parameters. The MB training loss is mean squared error (MSE)
and we use cross-validation to evaluate the model. Since there are no assumed
distributions such as Gaussian, this function f is driven by the data, which is
more representative of the heuristic data structure.

3 Experiments and Results

Datasets: We demonstrated our D3MC algorithm on general images CIFAR-10,
chest X-ray Pneumothorax (PTX), chest X-ray NLM Frontal, and dermatoscopis
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images Ham10k for classification problems. The CIFAR-10 dataset [5] consists
of 10 classes of objects and is divided into 50,000 train and 10,000 test images
(32×32 pixels). The datasets of PTX are chest X-ray images with pneumothorax
disease that were released by NIH Clinical Center [10]. The scanned images con-
sist more than 30,000 patients. The National Library of Medicine (NLM) frontal
dataset were used as a binary classification to group chest X-ray images into
frontal or non-frontal position views [12]. There are approximately 8300 images
of size 256 × 256. We also evaluated Human Against Machine with 10000 train-
ing images (Ham10k) [9] that contains 10015 dermatoscopic images to classify
pigmented skin lesions.

Fig. 2. Training time comparison and α exploration. (a) Training time in hours. (b)
D3MC rewards of different values of α. Decreasing α gives faster convergence.

Training Time Comparison: We evaluated our method with automated
model compression techniques for fair comparison. All the experiments were
trained on Tesla V100 GPUs. We benchmarked our D3MC to MF RL on ResNet-
18 and Inception-v3. In the RL training, we used ADAM optimizer with a learn-
ing rate 0.001. Based on our experiments, α of 0.3 for ResNet-18 and 0.5 for
Inception-v3 gave the best performance. We set the same training steps for MF
RL and D3MC to avoid any biases.

The training time comparison is visualized in Fig. 2(a). The training time
of D3MC is significantly less on both ResNet-18 and Inception-v3 architectures
compared to MF RL. For example, it took over 120 h (5 days) to train Inception-
v3 using MF only approach while our D3MC shortened it approximately by 60%
of the time to 2 days. It is clear that our D3MC is more efficient than MF RL
approaches.

Model Compression Performance: Our experimental results show compa-
rable model performance. Table 1 illustrates the network compression ratio and
model accuracy of the optimal compressed networks. Both MF RL and D3MC
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Table 1. Summary of top reward models’ results.

Architecture Training
data

Method MB
training
data

Training
time
(hrs)

Compression
ratio

Teacher
Acc.

Δ Acc.

ResNet - 18 Cifar10 Model-Free − 48 47.68% 86.4% 2.94%

D3MC Cifar10 17 50.0% 84.4% 2.75%

Frontal Model-Free − 53 94.3% 99.5% 0.3%

D3MC Cifar10 16 78.0% 99.0% 0.4%

Ham10k Model-Free − 52 65.41% 82.55% 3.29%

D3MC Cifar10
+Frontal

14.8 76.27% 81.47% 2.073%

Inception - v3 Frontal Model-Free − 120 60.7% 99.6% 0.28%

D3MC Frontal 48 58.96% 99.59% 0.21%

PTX Model-Free − 120 36.4% 82.2% 1.96%

D3MC Frontal 52 52.3% 81.99% 2.85%

Ham10k Model-Free − 83 47.42% 83.69% 3.16%

D3MC Frontal
+PTX

27 46.26% 81.99% 3.042%

heavily reduced the size of ResNet-18 and Inception-v3, with minimal impact to
model performance. The differences between MF RL and D3MC are very small
compared to the teacher accuracy. With slight loss of compression ratio and
model accuracy, D3MC provides a significant gain of training time (shown in
the last column in Table 1) and better generalization across different data sets.

Analysis of α: To better understand the impact of α, we analyzed the reward
with different values of α in Fig. 2(b). After fitting the rewards with B-spline,
we observed that decreasing α resulted in faster convergence.

Layer Removal Pattern: We investigated the layer removal patterns and their
variations among different datasets. In Fig. 3, the two layers with highest number
of parameters (almost 1.5 million) have been removed in all three students with
almost negligible reduction in performance. The common removed layers across
datasets weigh approximately 36% of original Inception-v3 teacher network. We
further conducted paired Wilcoxon rank significance test of the layer removal
across the data sets. We fail to reject the null hypothesis that the paired three
groups are identical with p-values 0.72 (PTX vs Ham10k), 0.93 (Frontal vs PTX)
and 0.74 (Frontal vs Ham10k). This observation suggests that there is a common
layer removal pattern across the tested healthcare datasets.
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Fig. 3. The layer removal pattern of Inception-v3 on frontal, ham10k and PTX
datasets. The layers with non-zero parameters of the top student network (green) are
overlaid on the teacher network (red). (Color figure online)

4 Discussion and Conclusion

In this paper, we introduced D3MC framework that integrates the model-based
and model-free approaches to significantly reduce RL training time and output
optimally compressed models. We show that our method performs well on a
variety of healthcare data sets and model architectures. D3MC framework has
improved our compression pipeline efficiency and cutdown the training time
by over 65%. We demonstrated that our RL agent generalizes across differ-
ent datasets for a given architecture and compresses InceptionV3 network over
55% while maintaining comparable model performance. The optimal compressed
model can further be fine-tuned as part of post-processing to achieve even better
performance.

In order to avoid potential overfitting, we plan to incorporate early stopping
in our RL algorithm. One idea is to adopt a compression ratio and/or accuracy
constraint. Because healthcare projects have different requirements in terms of
model sizes and accuracies, such constraints can be used as a terminal state for
early stopping. Additionally, we will explore further individual network compo-
nents that drive compression factors to improve the efficiency and generalization
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of the RL agent across different network architectures. We are in the process of
exploring compression techniques for segmentation and other machine learning
patterns.

In conclusion, to build smart medical devices there is a need for efficient
model compression techniques. In order to address this need, we have introduced
D3MC framework to simultaneously reduce training time and improve compres-
sion while maintaining performance across healthcare datasets. Our experiments
have shown promising results on two standard networks used for classification.

Acknowledgments. We thank Amazon Sagemaker RL team for collaborating with
us and providing the network model compression example.
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8. Sutton, R.S., Szepesvári, C., Geramifard, A., Bowling, M.P.: Dyna-style plan-
ning with linear function approximation and prioritized sweeping. arXiv preprint
arXiv:1206.3285 (2012)

9. Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection
of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data
5, 180161 (2018)

10. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8:
hospital-scale chest x-ray database and benchmarks on weakly-supervised classifi-
cation and localization of common thorax diseases. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 3462–3471. IEEE (2017)

11. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)

12. Xue, Z., et al.: Chest x-ray image view classification. In: 2015 IEEE 28th Interna-
tional Symposium on Computer-Based Medical Systems (CBMS), pp. 66–71. IEEE
(2015)

http://arxiv.org/abs/1709.06030
http://arxiv.org/abs/1709.03153
https://doi.org/10.1007/978-3-030-01234-2_48
http://arxiv.org/abs/1503.02531
https://doi.org/10.1007/978-3-319-46493-0_32
http://arxiv.org/abs/1206.3285


An Analytical Method of Automatic
Alignment for Electron Tomography

Shuang Wen(B) and Guojie Luo(B)

Center for Energy-efficient Computing and Applications,
Peking University, Beijing 100871, China

{wenshuang,gluo}@pku.edu.cn
http://ceca.pku.edu.cn

Abstract. In the imaging process for nanometer-scale electron tomog-
raphy, misalignment between the actual projection parameters and the
theoretical ones is inevitable due to mechanical precision of the instru-
ment. Effective alignment remains a challenge. Currently, marker-based
alignment approaches complicate the sample preparation process and
worsen the sample shrinking issue. Marker-free approaches suffer from
either low accuracy or long computation time.

In this paper, we formulate an analytical problem for marker-free
alignment by minimizing the reprojection error. The reprojection error
involves the projection operator, which is a complicated functional with
the projection parameters as the variables. To solve this optimization
problem, we derive a gradient-based approach by decomposing the orig-
inal problem with auxiliary parameters and by linearizing a subproblem
with Taylor expansion. The approach is computational friendly, espe-
cially when comparing to an exhaustively parameter tuning approach in
previous practice. The results show that our method is capable of accu-
rate alignment without fiducial markers and obtains a 16.7× speedup
over the existing exhaustive approach, which makes fine reconstruction
of ROI almost instantly ready after data collection. A preliminary FPGA
design for the method’s bottleneck process shows 6.6× speed-up over
well-optimized GPU program.

Keywords: Electron tomography · Automatic alignment · Functional
optimization

1 Introduction

Electron tomography (ET), a technique combining transmission electron
microscopy (TEM) and computed tomography, is now widely used for acquiring
high-resolution 3D structures of biological samples. To obtain the 3D structures,
it is critical to reconstruct the region of interest (ROI) from projection images
provided by the TEM microscope. These projection images are usually collected
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according to specific regulations called tilt geometries. A tilt geometry decides
the position and attitude of a series of projection images (tilt series) for ET
reconstruction.

We perform ET reconstruction given the theoretical tilt geometry and the
tilt series. However, due to high magnification and low mechanical accuracy,
unexpected drift and rotation of ROI happen during the image collection process.
Therefore, alignment is needed for high-quality reconstruction results.

There are mainly two types of alignment methods, marker-based alignment
and marker-free alignment. Fiducial marker-based alignment approaches [8,10]
use high-contrast markers, such as gold beads, embedded in a sample to deter-
mine the position and attitude of the tilt series. However, this type of method is
not always available, since it is difficult or impossible to embed enough fiducial
markers in the ROI sometimes. Besides, the selection of marker detection algo-
rithms is data-dependent [11], which also limits the usability of the marker-based
approaches.

Marker-free alignment approaches require no embedded fiducial markers. And
these methods can be further categorized into cross-correlation and feature-based
methods. Guckenberger [2] brought up cross-correlation alignment method which
determines the common origin of tilt series by comparing the cross-correlation
coefficient. But this method is bothered by errors accumulating along with align-
ment going on. For this problem, Winkler and Taylor [13] proposed a method
combining cross-correlation and reconstruction-reprojection to compensate accu-
mulated errors, which is still widely used. This method will be mention below as
naive exhaustive search (NES) method On the other hand, feature-based meth-
ods make use of image features as markers to do the alignment. Feature-based
methods is often less time-consuming [3] but need specific detectors for different
kind of datasets [11], which damages its universality.

To overcome these problems, the method presented in this paper is devel-
oped for reconstructing specimens without fiducial markers and apparent local
features. Inspired by Houben and Sadan [5], method is mainly composed of a
coarse alignment process by cross-correlation and a refinement process based
on minimization of reprojection error. The former coarse alignment is used to
provide the latter process with an initial value. The following refinement process
further improves the alignment accuracy. With both procedures, we grantee the
algorithm with both efficiency and accuracy. Compared with other methods, our
method does not depend on fiducial markers or image features. Through recon-
struction and reprojection process, both projection space and real space infor-
mation are made full use of, which makes our method free from accumulated cor-
relation errors that happen in the cross-correlation method. Compared with the
iterative reconstruction-reprojection method brought up by Winkler and Tay-
lor [13], as experimental results show, less iteration number needed and fewer
operations within one iteration make our method much efficient. The experiment
on a conical-tilt dataset shows our method’s comparable accuracy and 16.7× effi-
ciency compared with similar marker-free method. For the method’s bottleneck
process, a preliminary FPGA design shows 6.6× speed-up over a well-optimized
GPU program.
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2 Automatic Alignment Problem

We reconstruct the 3-D image of a specimen from a collection of 2-D TEM images
(projections) using electron tomography. The process is determined by a set of
parameters in θ. For a fixed tilt angle, we collect N projections of the specimen
at configuration θ = (θ1, θ2, · · · , θN ). The i-th projection is determined by a
5-tuple θi = (αi, βi, γi, xi, yi), where the ROI center of the specimen is projected
at coordinate (xi, yi), and αi, βi and γi are the yaw, pitch, and roll angles of the
specimen, respectively.

Ideally, the 5-tuple of each projection is known at prior. Using an automatic,
a semi-automatic, or a manual controller, we take TEM images at certain angles
by rotating the specimen along its normal with a fixed tilt. The specimen’s ideal
posture at certain configuration is as shown in Fig. 1.

Fig. 1. (a) Original specimen. (b) Tilt specimen with a fixed pitch. (c) A series of tilt
specimen with various roll angles.

At each angle, we obtain the corresponding yaw, pitch, and roll angles, and
we shift, align, and refocus the ROI center before taking a TEM image.

However, due to the intrinsic random and system errors of the instrument
(e.g., the controller, the motor, and the tray), the actual configuration θ∗

i = (α∗
i +

εαi
, β∗

i + εβi
, γ∗

i + εγi
, x∗

i + εxi
, y∗

i + εyi
) is different from the ideal configuration

θ̃i = (α∗
i , β

∗
i , γ∗

i , x∗
i , y

∗
i ).

Assuming f∗ is the unobservable 3-D image, the TEM imaging process can
be described using the projection operator R(θ∗) = (R(θ∗

1),R(θ∗
2), · · · ,R(θ∗

N )).
And the projection data g = R(θ∗)f∗ = (g1, g2, · · · , gN ) consists of a set of 2-D
TEM images, the i-th of which is gi = R(θ∗

i ).
If we use the mistakenly-believed ideal configuration θ̃ to reconstruct the

3-D image by solving for argminf ||R(θ̃)f − g||2, it will always generate inaccu-
rate results, since R(θ̃)f∗ �= g = R(θ∗)f∗. Therefore, we propose the automatic
correction problem to recover the actual configuration θ∗ for a high-quality elec-
tron tomography, so that we can avoid the quality degradation due to using
the mistakenly-believed ideal configuration θ̃ during image reconstruction. For
convenience consideration, we mark argminf ||R(θ̃)f − g||2 with S(θ, g).

We formulate automatic correction as a functional optimization problem,

min
θ

‖R(θ)f(θ) − g‖2

where f(θ) = argmin
f

‖R(θ)f − g‖2 .
(1)
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The parameterized operator (functional) R(θ) models how the projection data
g is acquired, and the image f(θ) is reconstructed at the guess of projection
configuration θ.

Apparently, the actual configuration θ∗ is an exact solution to this prob-
lem, such that ||R(θ∗)f(θ∗) − g|| = ||R(θ∗)f∗ − g|| = 0. By solving the auto-
matic correction problem to recover an estimate of the actual configuration θ̂,
we expect to “correct” the mistakenly-believed ideal θ̃, so that ||R(θ̂)f(θ̂)−g|| <

||R(θ̃)f(θ̃) − g||, if not ||R(θ̂)f(θ̂) − g|| = 0.

3 Automatic Alignment Methods

3.1 Naive Exhaustive Search

The basic idea of naive exhaustive search is to examine the neighborhood of
known parameters in the solution space and find the best solution in this neigh-
borhood by comparing the values of the objective function. Taking a projection
series with 72 projections and each projection with 5 configuration parameters
for example, the solution space dimension is 72 × 5 = 360. A search in 360-
dimension space requires objective function S and R calculated large amount of
times.

3.2 Analytical Optimization

The key of our method is the optimize of Eq. (1) using gradient descent method.
This process involves computing the gradients ∇θR(θ) and ∇θf(θ). The latter
one is relatively difficult to write down the analytical form. To use the gradient
descent method, we reformulate Eq. (1) into the following problem by introducing
the auxilary varaible θ̄,

min
θ,θ̄

∥
∥R(θ)f(θ̄) − g

∥
∥
2 s.t.θ̄ = θ

where f(θ̄) = argminf

∥
∥R(θ̄)f − g

∥
∥
2
.

(2)

And we apply a hybrid approach of block descent and gradient projection to
solve this reformulated problem. And our algorithm is outlined as below,

Step 0. Start from k = 0 with initial guess θ(0) = θ̄(0) = θ̃;
Step 1. Solve f (k) = argminf ||R(θ̄(k))f − g||2;
Step 2. Solve θ(k+1) = argminθ ||R(θ)f (k) − g||2;
Step 3. Update θ̄(k+1) = θ(k+1);
Step 4. If not converged, Set k = k + 1 and Goto Step 1.

The subproblem in Step 1 is the conventional image reconstruction problem
for electron tomography. Weighted back-projection is one of the feasible methods.

We solve the subproblem in Step 2 using linearization. It is natural
to start with the initial solution θ(k). We then perform a Taylor expan-
sion at θ(k) and derive R(θ(k) + Δθ)f (k) = (Rf (k))(θ(k) + Δθ) ≈ (Rf (k))
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(θ(k)) + ∇θ(Rf (k))(θ(k))Δθ. After solving Δθ(k) = argminΔθ ||(Rf (k))(θ(k)) +
∇θ(Rf (k))(θ(k))Δθ − g||2 by least squares, we update θ(k+1) = θ(k) + Δθ(k).

According to the definition of operator R, integration form of ∇θ(Rf (k))
(θ(k)) can be expressed by

∇θ(Rf (k))(θ(k)) = ∇θ(
∫

L
θ(k)

f(r)d|r|), (3)

where Lθ(k) is the integration path determined by projection configuration θ(k).
We call each path of integration a ray.

With all ∇θ(Rf (k))(θ(k)) calculated and the precondition that the minimum
of Eq. (2) is 0, the minimization turns out solving Δθ in a linear equation set
||(∇θ(Rf (k))(θ(k))f) · Δθ|| = 0. Each equation in this set corresponds to a dif-
ferent θ. Noticing the fact that the electron microscope collects all g data with
same angular parameters simultaneously, data points with same (θα, θβ , θγ) share
the same Δθ. With the reduction of variables, the equation set is now over-
determined and its least-squares solution is what we are looking for. For every
iteration, the reconstruction and corresponding Taylor expansions are recalcu-
lated to make sure the error caused by Δθ is always much more significant than
error from minimization.

3.3 Time Complexity and Hardware-Based Improvements

According to the algorithm outline, the basic calculation unit of optimization is
the solving of operator R, ∇θR, and S. Compared with naive exhaustive search
(NES) method, our method significantly decreases the amount of calculation.
The NES method goes through the solution space to find the best configuration
match. To eliminate influence by other configuration parameters, each param-
eter must be searched separately and one R and one S operator is carried out
during every single trial. Instead, for the sake of gradient descent, our method
accomplishes correcting for all configuration parameters in one descent made up
with one R calculation, one ∇θ(R) calculation, and one S. In addition, in order
to reduce further, we find that during one descent process, the data usage and
calculation structure in calculations of R and ∇θ(R) have much in common. We
also find that during one calculation, one data point in f is used only 1–5 times
for multiplication before it’s discarded. All these features inspire us to an idea
of heterogeneous computing and data reuse. So we firstly input data f and cur-
rent configuration into an OpenCL kernel. Rf and ∇θ(R)f are then calculated
simultaneously to make full use of GPU bandwidth. The rough estimation of
theoretical calculation amount is shown in Table 1. In this table, Np represents
the value number of trial for one configuration parameter. Namely, when 3 val-
ues in both sides of a given value with fixed interval are tried, Np is 7. The 4th
column in Table 1 shows a specific comparison among methods when Np = 7
and the cost of R and S considered to be comparable.

For the reprojection Rf process, which is the most expensive, we make use
of Vivado High Level Synthesis (HLS) for acceleration. This tool enables acceler-
ating Clang-base design and exporting RTL as a Vivado’s IP core. To adapt for
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Fig. 2. (a) Ray-based: ray track in data f . (b) Ray-based: data output in data Rf . (c)
Voxel-based: sequential data read from f . (d) Voxel-based: data output in data Rf .

hardware features of FPGA, we rearrange data flow of reprojection process from
ray-based to voxel-based to ensure data independency of inner loop. As shown
in Fig. 2(a) and (b), ray-based orienting calculate the path of rays in f and load
corresponding data. The loaded data is process and then output in Rf accord-
ingly. However The load sections of different rays overlap a lot, which causes
huge load conflicts. Those conflicts are unpredictable and make initial interval
(II) unbearable. To solve this problem, we read voxel data from f sequentially
and find out the rays that contain voxel data as Fig. 2(c) and (d) shows. We
find that adjacent voxels always belong to adjacent rays. So we cache the output
data instead of saving it until the current voxel is irrelevant to it. In this way
pipeline among voxels and be carried out and the II could be reduced.

Table 1. Time complexity comparison. The value 1.4 at row.4 & col.2 is an experimen-
tal result of data reuse. The value 5 at row.2 & col.3 is the size of tuple that describe
a projection.

Method Trial cost Trial per iter. Specific case

NES 1 ×R + 1 × S Np × 5 70 ×R
Proposed (w/o data reuse) 6 ×R + 1 × S 1 7 ×R
Proposed (w/ data reuse) 1.4 ×R + 1 × S 1 2.4 ×R

4 Experiments and Result

The dataset we use for experiment is a conical-tilt projection series collected by
FEI Tecnai 12 and 2048×2048 CCD Gatan camera. The sample were tilt to 55◦

and then rotated by 5◦ interval (72 projections in total). One of its projection is
displayed in Fig. 3(a). And the test is carried out on a linux platform with 2×E5-
2650 v3, 64 GB Memory and Tesla K80. The synthesis tool is Vivado 2019.1 and
synthesis configuration is based on Xilinx ZCU102.

Using this dataset as input, we run both proposed method and NES method
for alignment. Popular feature-based method [3] does not provide a solution for
conical tilt datasets, so it is temporarily excluded. For NES method, we col-
lect the total time cost and the final alignment result. For proposed method,
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Table 2. Similarity indicators comparison of different alignment methods.

Method Avg MSE Avg RAE Avg NCC

Raw 92.8 0.991 0.449

NES 18.3 0.188 0.873

Proposed (one iter) 18.3 0.191 0.871

Proposed (two iters) 18.2 0.189 0.870

alignment results and detailed time costs after every iteration are recorded. For
every alignment result, we reproject corresponding reconstruction image using
configuration determined by the result to obtain reprojection images. Then the
similarity between reprojection images and input conical-tilt dataset is evaluated
using indicators like mean squared error (MSE), relative average error (RAE),
and normalized cross correlation (NCC). The similarity indicators reveal the
accuracy of the alignment. Specially, When accuracy is higher, the MSE value
is lower, RAE value is lower and NCC value is higher. Table 2 shows the aver-
age indicators value of different projections. The projection process, which is
the bottleneck, is C-synthesised on Vivado HLS with target ap clk = 10ns and
resource limited by Xilinx ZCU102.

Table 3. Time cost details of methods.

Method OpenCL init (s) Reproj (s) Recon (s) IO (s) Total (s)

NES – – – – 5520

Prop (one iter) 4.5 56.2 50.6 67.0 178.3

Prop (two iters) 9.0 112.4 75.9 134.0 331.3

HLS (reproj only) II= 1 Latency=10.6E8 ∼9.2

Except for quantitative evaluation, for visual observation, cross section of
reconstruction results by proposed method and NES method is shown in Fig. 3(b)
and (c). The sharpness and clarity of images by both methods is comparable.

The time cost information of methods is listed in Table 3. The result shows
a significant speed-up of 16.7× between NES method and proposed method.
The HLS simulation for reprojection process also has a 6.6× speed-up over our
well-optimized OpenCL program on Tesla K80.
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Fig. 3. Experimental data and reconstruction results comparison of different alignment
methods.

5 Conclusion

Effective alignment for nanometer-scale electron is currently a challenge. Using
the gradient-based approach, we have derived a descent method which decom-
poses the problem into a computational friendly optimization problem. This
method is capable of accurate alignment for datasets with no fiducial markers.
The experiment results show the reliability and efficiency. Compared with the
NES method, our method manage to achieve comparable accuracy with 16.7×
efficiency, which enables operators or researchers to get fine reconstruction of
ROI almost instantly after data collection. For reprojection related process in
our method, a preliminary design based on Xilinx ZCU102 shows a 6.6× accel-
eration compared with a well-optimized OpenCL program on GPU.
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Abstract. Model quantization is leveraged to reduce the memory con-
sumption and the computation time of deep neural networks. This is
achieved by representing weights and activations with a lower bit res-
olution when compared to their high precision floating point counter-
parts. The suitable level of quantization is directly related to the model
performance. Lowering the quantization precision (e.g. 2 bits), reduces
the amount of memory required to store model parameters and the
amount of logic required to implement computational blocks, which
contributes to reducing the power consumption of the entire system.
These benefits typically come at the cost of reduced accuracy. The main
challenge is to quantize a network as much as possible, while main-
taining the performance accuracy. In this work, we present a quanti-
zation method for the U-Net architecture, a popular model in medi-
cal image segmentation. We then apply our quantization algorithm to
three datasets: (1) the Spinal Cord Gray Matter Segmentation (GM),
(2) the ISBI challenge for segmentation of neuronal structures in Elec-
tron Microscopic (EM), and (3) the public National Institute of Health
(NIH) dataset for pancreas segmentation in abdominal CT scans. The
reported results demonstrate that with only 4 bits for weights and 6
bits for activations, we obtain 8 fold reduction in memory requirements
while loosing only 2.21%, 0.57% and 2.09% dice overlap score for EM,
GM and NIH datasets respectively. Our fixed point quantization pro-
vides a flexible trade-off between accuracy and memory requirement,
which is not provided by previous quantization methods for U-Net (Our
code is released at https://github.com/hossein1387/U-Net-Fixed-Point-
Quantization-for-Medical-Image-Segmentation).
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1 Introduction

Image segmentation, the task of specifying the class of each pixel in an image,
is one of the active research areas in the medical imaging domain. In particular,
image segmentation for biomedical imaging allows identifying different tissues,
biomedical structures, and organs from images to help medical doctors diagnose
diseases. However, manual image segmentation is a laborious task. Deep learning
methods have been used to automate the process and alleviate the burden of
segmenting images manually.

The rise of Deep Learning has enabled patients to have direct access to
personal health analysis [1]. Health monitoring apps on smartphones are now
capable of monitoring medical risk factors. Medical health centers and hospitals
are equipped with pre-trained models used in medical CADs to analyse MRI
images [2]. However, developing a high precision model often comes with vari-
ous costs, such as a higher computational burden and a large model size. The
latter requires many parameters to be stored in floating point precision, which
demands high hardware resources to store and process images at test time. In
medical domains, images typically have high resolution and can also be volumet-
ric (the data has a depth in addition to width and height). Quantizing the neural
networks can reduce the feedforward computation time and most importantly
the memory burden at inference. After quantization, a high precision (floating
point) model is approximated with a lower bit resolution model. The goal is to
leverage the advantages of the quantization techniques while maintaining the
accuracy of the full precision floating point models. Quantized models can then
be deployed on devices with limited memory such as cell-phones, or facilitate
processing higher resolution images or bigger volumes of 3D data with the same
memory budget. Developing such methods can reduce the required memory to
save model parameters potentially up to 32x in memory footprint. In addition,
the amount of hardware resources (the number of logic gates) required to per-
form low precision computing, is much less than a full precision model [3]. In this
paper, we propose a fixed point quantization of U-Net [4], a popular segmen-
tation architecture in the medical imaging domain. We provide comprehensive
quantization results on the Spinal Cord Gray Matter Segmentation Challenge
[5], the ISBI challenge for segmentation of neuronal structures in electron micro-
scopic stacks [6], and the public National Institute of Health (NIH) dataset for
pancreas segmentation in abdominal CT scans [7]. In summary, this work makes
the following contributions:

– We report the first fixed point quantization results on the U-Net architecture
for the medical image segmentation task and show that the current quantiza-
tion methods available for U-Net are not efficient for the hardware commonly
available in the industry.

– We quantify the impact of quantizing the weights and activations on the
performance of the U-Net model on three different medical imaging datasets.
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– We report results comparable to a full precision segmentation model by using
only 6 bits for activation and 4 bits for weights, effectively reducing the
weights size by a factor of 8× and the activation size by a factor of 5×.

2 Related Works

2.1 Image Segmentation

Image segmentation is one of the central problems in medical imaging [8], com-
monly used to detect regions of interest such as tumors. Deep learning approaches
have obtained the state-of-the-art results in medical image segmentation [9,10].
One of the favorite architectures used for image segmentation is U-Net [4] or
its equivalent architectures proposed around the same time; ReCombinator Net-
works [11], SegNet [12], and DeconvNet [13], all proposed to maintain pixel
level information that is usually lost due to pooling layers. These models use
an encoder-decoder architecture with skip connections, where the information
in the encoder path is reintroduced by skip connections in the decoder path.
This architecture has proved to be quite successful for many applications that
require full image reconstruction while changing the modality of the data, as
in the image-to-image translation [14], semantic segmentation [4,12,13] or land-
mark localization [11,15]. While all the aforementioned models propose the same
architecture, for simplicity we refer to them as U-Net models. U-Net type mod-
els have been very popular in the medical imaging domain and have been also
applied to the 3 dimensional (3D) segmentation task [16]. One problem with
U-Net is its high usage of memory due to full image reconstruction. All encoded
features are required to be kept in memory and then used while reconstruct-
ing the final output. This approach can be quite demanding, especially for high
resolution or 3D images. Quantization of weights and activations can reduce
the required memory for this model, allowing to process images with a higher
resolution or with a bigger 3D volume at test time.

2.2 Quantization for Medical Imaging Segmentation

There are two approaches to quantize a neural network, namely determinis-
tic quantization and stochastic quantization [3]. Although DNN quantization
has been thoroughly studied [3,17,18], little effort has been done on develop-
ing quantization methods for medical image segmentation. In the following, we
review recent works in this field.

Quantization in Fully Convolutional Networks: Quantization has been
applied to Fully Convolutional Networks (FCN) in biomedical image segmen-
tation [19]. First, a quantization module was added to the suggestive annota-
tion in FCN. In suggestive annotation, instead of using the original dataset,
a representative training dataset was used, which in turn increased the accu-
racy. Next, FCN segmentations were quantized using Incremental Quantization
(INQ). Authors report that suggestive annotation with INQ using 7 bits results
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in accuracy close to or better than those obtained with a full precision model. In
FCN, features of different resolutions are upsampled back to the image resolution
and merged together right before the final output predictions. This approach is
sub-optimal compared to the U-Net which upsamples features only to one higher
resolution, allowing the model to process them before they are passed to higher
resolution layers. This gradual resolution increase in reconstruction acts as a
conditional computation, where the features of higher resolution are computed
using the lower resolution features. As reported in [11], this process of condi-
tional computation results in faster convergence time and increased accuracy
in the U-Net type architectures compared to the FCN type architectures. Con-
sidering the aforementioned advantages of U-Net, in this paper we pursue the
quantization of this model.

U-Net Quantization: In [20], the authors propose the first quantization for U-
Net. They introduce (1) a parameterized ternary hyperbolic tangent to be used
as the activation function, (2) a ternary convolutional method that calculates
matrix multiplication very efficiently in the hamming space. They report 15-
fold decrease in the memory requirement as well as 10x speed-up at inference
compared to the full precision model. Although this method shows significant
performance boost, in Sect. 4 we demonstrate that this is not an efficient method
for the currently available CPUs and GPUs.

3 Proposed Quantization

We propose fixed point quantization for U-Net. We start with a full precision
(32 bit floating point) model as our baseline. We then use the following fixed
point quantization function to quantize the parameters (weights and activation)
in the inference path:

quantize(x, n) = (round(clamp(x, n) << n)) >> n (1)

where the round function projects its input to the nearest integer, << and >>
are shift left and right operators, respectively. In our simulation, shift left and
right are implemented by multiplication and division in powers of 2. The clamp
function is defined as:

clamp(x, n) =

⎧
⎪⎨

⎪⎩

2n − 1 when x ≥ 2n − 1
x when 0 < x < 2n − 1
0 when x ≤ 0

(2)

Equation (1) quantizes an input x ∈ R to the closest value that can be rep-
resented by n bits. To map any given number x to its fixed point value we first
split the number into its fractional and integer parts using:

xf = abs(x) − floor(abs(x)), xi = floor(abs(x)) (3)
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and then use the following equation to convert x to its fixed point representation
using the specified number of bits for the integer (ibits) and fractional (fbits)
parts:

to fixed point(x, ibits, fbits) = sign(x) ∗ quantize(xi, ibits)
+ sign(x) ∗ quantize(xf , fbits) (4)

Equation (4) is a fixed point quantization function that maps a floating point
number x to the closest fixed point value with ibits integer and fbits fractional
bits. Throughout this paper, we use Qpi.f notation to denote that we are using
a fixed point quantization of parameter p by using i bits to represent the integer
part and f bits to represent the fractional part. Based on our experiments, we
did not benefit from an incremental quantization (INQ) as explained in [17].
Although this method could work for higher precision models, for instance when
using fixed point Qw8.8 (Quantizing weights with 8-bit integer and 8-bit frac-
tional parts), for extreme quantization as in Qw0.4, learning from scratch gave
us the best accuracy with the shortest learning time. As shown in Figure S1, in
the full precision case, the weights of all U-Net layers are in [−1, 1] range, hence
the integer part for the weight quantization is not required.

3.1 Training

For numerical stability and to verify the gradients can propagate in training, we
demonstrate that our quantization is differentiable. Starting from Eq. (2), the
derivative is:

∀x ∈ R,∀n ∈ Z
+,

∂

∂x
clamp(x, n) =

⎧
⎪⎨

⎪⎩

0 when x ≥ 2n − 1
1 when 0 < x < 2n − 1
0 when x ≤ 0

(5)

which is differentiable except on the thresholds. To make it completely differen-
tiable, a straight-through estimator (STE), introduced in [21], is used. The STE
passes gradients over the thresholds and also over the round function in Eq. (1).

3.2 Observations on U-Net Quantization

Dropout. Dropout [22] is a regularization technique to prevent over-fitting of
DNNs. Although it is used in the original implementation of U-Net, we found
that when this technique is applied along with quantization, the accuracy drops
a lot. Hence, in our implementation, we removed dropout from all layers. This is
due to the fact that quantization acts as a strong regularizer, as reported in [3],
hence further regularization with dropout is not required. As shown in Figure S2,
for each quantized precision, dropout reduces the accuracy, with the gap being
even higher for lower precision quantizations.
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Full Precision Layers. It is well accepted to keep the first and the last layers
in full precision, when applying quantization [3,23]. However, we found that in
the segmentation task, keeping the last layer in full precision has much more
impact than keeping the first layer in full precision.

Batch Normalization. Batch normalization is a technique that improves the
training speed and accuracy of DNN. We used the Pytorch implementation of
batchnorm. In training, we use the quantization block after the batchnorm block
in each layer such that the batchnorm is first applied using the floating point
calculations and then the quantized value is sent to the next layer (hence not
quantizing the batchnorm block during training). However, at inference, Pytorch
folds the batchnorm parameters into the weights, effectively including batchnorm
parameters in the quantized model as part of the quantized weights.

4 Results and Discussion

We implemented the U-Net model and our fixed-point quantizer in Pytorch. We
trained our model over 200 epochs with a batch size of 4. We applied our fixed
point quantization along with TernaryNet [20] and Binary [18] quantization on
three different datasets: GM [5], EM [6], and NIH [7]. For GM and EM datasets,
we used an initial learning rate of 1e−3, and for NIH we used initial learning
rate of 0.0025. For all datasets we used Glorot for weight initialization and
cosine annealing scheduler to reduce learning rate in training. Please check our
repository for the model and training details1.

Fig. 1. Sample prediction versus ground truth segmentation results for NIH Pancreas
(top), EM (middle) and GM (bottom) datasets. From left to right, the result of different
quantization methods and precisions are reported. Segments in show false positive,
segments in show false negative and segments in show true positive. (Color figure
online)

1 https://github.com/hossein1387/U-Net-Fixed-Point-Quantization-for-Medical-
Image-Segmentation.

https://github.com/hossein1387/U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation
https://github.com/hossein1387/U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation
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The NIH pancreas [7] dataset is composed of 82 3D abdominal CT scan
and their corresponding pancreas segmentation images. Unfortunately, we did
not have access to the pre-processed dataset described in [20], nevertheless, we
extracted 512 × 512 2-D slices from the original dataset and applied a region of
interest cropping to get 7059 images of size 176×112. The final dataset contains
7059 176×112 2-D images which are separated into training and testing dataset
(respectively 80% and 20%). For GM and EM datasets, we used the provided
dataset as described in [5] and [6] respectively. For both EM and GM datasets,
we did not used any region of interest cropping and we used images of size
200 × 200.

The task of image segmentation for GM and NIH pancreas datasets is imbal-
anced. As suggested in [5], instead of weighted cross-entropy, we used a surrogate
loss for the dice similarity coefficient. This loss is referred to as the dice loss and
is formulated as Ldice = 2

∑N
n=1 pnrn+ε

∑N
n=1 pn+

∑N
n=1 rn+ε

, where pn ∈ [0, 1] and rn ∈ {0, 1} are
prediction and ground truth pixels respectively (with 0 indicating not-belonging
and 1 indicating belonging to the class of interest) and ε is the noise added for
numerical stability. For the EM dataset, using a weighted sum of cross entropy
and dice loss produced the best results.

Figure 1 along with Table 1 show the impact of different quantization meth-
ods on the aforementioned datasets. Considering the NIH dataset, Fig. 1(top)
and Table 1 show that despite using only 1 and 2 bits to represent network
parameters, Binary and TernaryNet quantizations produce results that are close
to the full precision model. However, for other datasets, our fixed point Qa6.0,
Qw0.4 quantization surpasses Binary and TernaryNet quantization. The other
important factor here is how efficient these quantization techniques can be imple-
mented using the current CPUs and GPUs hardware. At the time of writing
this paper, there is no commercially available CPU or GPU that can efficiently
store and load sub-8-bit parameters of a neural network, which leaves us to use
custom functions to do bit manipulation to make sub-8-bit quantization more
efficient. Moreover, in the case of TernaryNet, to apply floating point scaling
factors after ternary convolutions, floating point operations are required. Our
fixed point quantization uses only integer operations, which requires less hard-
ware footprint and use less power compared to floating point operations. Finally,
TernaryNet uses Tanh instead of ReLU for the activations. Using hyperbolic tan-
gent as an activation function increases training time [24] and execution time
at inference. To verify it, we evaluated the performance of ReLU and Tanh in a
simple neural network with 3 fully connected layers. We used the Intel’s Open-
Vino [25] inference engine together with high performance gemm blas and avx2
instructions. Table 2 reports the results obtained when ReLU is used instead
of Tanh at training and it shows that inference time can decrease by up to 8
times. These results can be extended to U-Net, since activation inference time
is a direct function of the input size. To compensate for the computation time,
TernaryNet implements an efficient ternary convolution that can decrease pro-
cessing time by up to 8 times. At inference, an efficient Tanh function that uses
only two comparators can be implemented to perform Tanh for ternary values.
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Considering accuracy, when Tanh is used as an activation function, the full pre-
cision accuracy is lower compared to ReLU [20]. We observe similar behavior
in the results reported in Table 1. Our fixed point quantizer provides a flexi-
ble trade-off between accuracy and memory, which makes it a practical solution
for the current CPUs and GPUs, as it does not require floating-point opera-
tions, and leverages the more efficient ReLU function. As opposed to BNN and
TernaryNet quantizations, Table 1 shows that our approach for quantization of
U-Net provides consistent results over 3 different datasets.

Table 1. Dice scores of the quantized U-Net models on EM (left) GM (middle) and
NIH (right) datasets. The last two rows show results for Binary and TernaryNet quan-
tizations. Other rows report results obtained for different weights and activations quan-
tization precisions. For the GM and EM datasets, we also report results when Tanh is
used instead of ReLU as the activation function.

Quantization EM dataset GM dataset NIH
panceas

Activation Weight Parameter
size

Dice
score
ReLU

Dice
score
Tanh

Dice
score
ReLU

Dice
score
Tanh

Dice
score

Full Precision 18.48
MBytes

94.05 93.02 56.32 56.26 75.69

Q8.8 Q8.8 9.23
MBytes

92.02 91.08 56.11 56.01 74.61

Q8.0 Q0.8 4.61
MBytes

92.21 88.42 56.10 53.78 73.05

Q6.0 Q0.4 2.31
MBytes

91.03 90.93 55.85 52.34 73.48

Q4.0 Q0.2 1.15
MBytes

79.80 54.23 51.80 48.23 71.77

BNN [18] 0.56
MBytes

78.53 – 31.44 – 72.56

TernaryNet [20] 1.15
MBytes

– 82.66 – 43.02 73.9

Table 2. Comparing ReLU and Tanh run time using Intel’s OpenVino [25]. Each
row illustrates the execution time for a layer of a neural network in micro seconds. It
demonstrates that using Tanh as activation can increase execution time by up to 8
times compared to ReLU.

Layer type Instruction type Execution

time in μs

Tanh

Execution time

in μs ReLU

Performance

Gain of using

ReLU over Tanh

Tensor

dimension

Activation jit avx2 FP32 30 5 6 [100, 100]

FullyConnected gemm blas FP32 20 19 - -

FullyConnected gemm blas FP32 860 527 - -

Activation jit avx2 FP32 77 9 8.6 [100, 300]
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5 Conclusion

In this work, we proposed a fixed point quantization method for the U-Net archi-
tecture and evaluated it on the medical image segmentation task. We reported
quantization results on three different segmentation datasets and showed that
our fixed point quantization produces more accurate and also more consistent
results over all these datasets compared to other quantization techniques. We also
demonstrated that Tanh, as the activation function, reduces the base-line accu-
racy and also adds a computational complexity in both training and inference.
Our proposed fixed-point quantization technique provides a trade-off between
accuracy and the required memory. It does not require floating-point computa-
tion and it is more suitable for the currently available CPUs and GPUs hardware.
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Abstract. During neurosurgical operations, surgeons can decide to
acquire intraoperative data to better proceed with the removal of a
tumor. A valid option is given by ultrasound (US) imaging, which can be
easily obtained at subsequent surgical stages, giving therefore multiple
updates of the resection cavity. To improve the efficacy of the intraopera-
tive guidance, neurosurgeons may benefit from having a direct correspon-
dence between anatomical structures identified at different US acquisi-
tions. In this context, the commonly available neuronavigation systems
already provide registration methods, which however are not enough
accurate to overcome the anatomical changes happening during resec-
tion. Therefore, our aim with this work is to improve the registration of
intraoperative US volumes. In the proposed methodology, first a distance
mapping of automatically segmented anatomical structures is computed
and then the transformed images are utilized in the registration step.
Our solution is tested on a public dataset of 17 cases, where the average
landmark registration error between volumes acquired at the beginning
and at the end of neurosurgical procedures is reduced from 3.55 mm to
1.27 mm.

Keywords: Ultrasound · Registration · Distance transform

1 Introduction

Before starting a neurosurgical procedure for tumor removal, preoperative data
is usually acquired to better plan the successive resection. The most common
option is given by magnetic resonance imaging, which can also be accessed during
the ongoing surgical procedure to have a better understanding of the resection.
In fact, neuronavigation systems can be used to link an intracranial pin-pointed
location to the corresponding position in the preoperative data. However, the
resection of the tumor and the related anatomical modifications in the sur-
rounding tissues alter the initial configuration of the brain. As consequence,
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the anatomical structures will be in another conformation with respect to the
one observed in the preplanning data [1], which soon becomes unreliable during
neurosurgery. To obtain an updated view of the resection cavity, neurosurgeons
can collect intraoperative US data during the resection itself [2,3]. These images
can be acquired at different stages of the procedure, for example at the beginning
of the surgery, just before opening the dura mater, in order to have an initial
estimation of which tissues have to be removed. Moreover, a further acquisition
can be done at the end of the resection, to detect possible tumor residual. How-
ever, the quality of US images decreases in subsequent acquisitions [4]. Thus, for
a better comprehension of the US data obtained at the end of the resection, it
would be useful to establish a direct mapping between these images and those
acquired at the beginning of the surgery, which have a higher quality. A common
solution is provided by neuronavigation systems, which can track the US probe
locations and compute a registration between the different acquisitions. How-
ever, the generally available systems provide a registration solution which is not
enough accurate to model the anatomical deformations happening at subsequent
stages. Thus, we propose here an automatic method to improve the registration
of US volumes acquired at the beginning and at the end of the surgical operation.

In the context of US-US registration for neurosurgical procedures, some solu-
tions have been already proposed to align volumes acquired before and after
resection. For example, the authors in [5] utilized an intensity-based registration
method to improve the visualization of volumetric US images. The authors in [6]
developed a non-rigid registration approach, in which they proposed a method-
ology to discard non-corresponding regions between subsequent US acquisitions.
The same method has been used in [7]. In another solution [8], the authors
aimed to improve the previous algorithm by introducing a symmetric deforma-
tion field and an efficient second-order minimization for a better convergence
of the method. Then, another method to register pre- and post-resection US
volumes was proposed by [9], in which the authors presented a landmark-based
registration method. More recently, we provided a segmentation-based method
to register US volumes: corresponding structures in US volumes are segmented
and then used to guide the registration task [10].

We introduce here a solution which in the first step utilizes the segmentation
results obtained in our previous work. Furthermore, it subsequently applies a
Euclidean distance operator on automatically segmented anatomical structures
and then uses the transformed masks to guide the registration task.

2 Method

Our experiments are conducted by using MeVisLab, on a computer equipped
with an Intel Core i7 and a GeForce GTX 1080 (8 GB).

2.1 Euclidean Distance Transform

The first step of our method includes the generation of a distance mapping
of automatically segmented brain structures. Regarding the segmentation step,

https://www.mevislab.de/
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the same methodology has been proposed in our previous solution [10], where
a more detailed description is also available. The anatomical elements utilized
in our method are the main sulci and falx cerebri. In fact, they clearly appear
in US acquisitions due to their hyperechogenicity and, moreover, remain visible
in subsequent stages, representing valid elements to guide the registration task.
To perform the segmentation step, we utilized a convolutional neural network
(CNN) model based on the 3D U-Net [11]. With respect to the original architec-
ture, the original depth is reduced to two levels, and a dropout with a value of
0.4 is introduced in order to prevent the network from overfitting. For training,
we manually segment the main hyperechogenic structures of interest in 17 US
volumes acquired before resection from [12]. A patch size of (30,30,30), padding
of (8,8,8) and a batch size of 15 samples have been utilized, and the learning rate
has been set to 0.001. The best-trained model was saved according to the highest
Jaccard index reached during training and then it was used to segment anatom-
ical structures in volumes acquired in the before- and after-resection stages [12].

Differently from our previous work, a distance mapping is then applied to the
automatically generated masks. Regarding this, we can think of a binary image
as composed of two different classes, pixels with 0-value in the background (Bg)
and pixels with 1-value in the foreground (Fg)

I(x, y, z) = {Fg,Bg} (1)

The distance of each pixel of the foreground from the nearest pixel of the back-
ground can be computed. The distance mapping Id(x, y, z) of the whole image
can be expressed as

Id =

{
0 I(x, y, z) ∈ {Bg}
min(||x − x0, y − y0, z − z0||, ∀I(x0, y0, z0) ∈ Bg) I(x, y, z) ∈ {Fg} (2)

Different distance metrics ||x, y, z|| can be used to compute the transformation,
and one of the most common is the Euclidean distance which computes the L2
norm

||x, y, z|| =
√
x2 + y2 + z2 (3)

In the proposed methodology, we applied the Euclidean distance transform on
the automatically generated masks.

2.2 Registration

The transformed masks are utilized to guide the registration task, which has
been modified with respect to our previous solution. The proposed method is
a variational image registration approach based on [13], in which the correct
registration of two volumes corresponds to the global minimum of a discretized
objective function. This function is composed of a distance measure, defining the
similarity between the deformed template image and the reference image, and
a regularizer, limiting the range of possible transformations in the deformable
step. In the proposed solution, we respectively chose the normalized gradient field
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distance (NGF) measure and the curvature regularizer. Moreover, the choice of
the optimal transformation parameters has been conducted by using the quasi-
Newton l-BGFS [14], due to its speed and memory efficiency. For the registration
of the US volumes acquired before and after resection, a solution able to compen-
sate the complex anatomical modifications happening in the resection should be
proposed. Thus, our methodology includes an initial parametric step, followed
by a non-parametric one. First, the parametric approach utilizes the informa-
tion provided by the optical tracking systems as an initial guess and then a rigid
transformation is performed. In this stage, to speed the optimization process, the
images are registered at a resolution one-level coarser compared to the original
one. Secondly, the transformation obtained during the parametric registration
is used to initialize the non-parametric step. In this stage, to reduce the chance
to reach a local minimum, a multilevel technique is introduced: the images are
sequentially registered at three different scales. As output of the registration
step, the deformed template image is provided.

3 Evaluation

Our method is tested on 17 cases of the RESECT dataset [12]. Each case includes
two volumes, the first one acquired after craniotomy but before opening the dura
mater, the second one at the end of the resection. The corresponding surgical
procedures include only resections of low-grade gliomas (tumor of grade II) in
adult patients. Corresponding anatomical landmarks are acquired among the
two stages and an initial target registration error (TRE) is provided for each
patient, together with a mean target registration error (mTRE) and the cor-
responding standard deviation (sd). In our methodology, the template and ref-
erence entries are respectively the volumes acquired before and after resection.
The generated deformation field is directly applied to the landmarks acquired
after removal, which are therefore registered to the corresponding ones in the
pre-section stage. Regarding the chosen hyperechogenic structures, the first two
images of Fig. 1 show the same sulcus segmented in the volumes acquired before
and after resection (Fig. 1a and b). In Fig. 1c a 3D section of the same struc-
ture visualized in Fig. 1b is provided. Regarding the registration step, TREs
computed before and after applying our registration are available in Table 1. By
taking as example the same structure of Fig. 1, Fig. 2b shows the registered land-
marks in comparison to the original disposition in Fig. 2a. Moreover, in Fig. 3 the
first row displays a section of the volume obtained after resection. Furthermore,
Fig. 3a displays the initial displacement between the segmented structure in the
pre- and post-resection stages. On the contrary, Fig. 3b shows a better overlay
between the segmented elements registered with our methodology. In the sec-
ond row, a section of the same structures is visualized in 3D. Yellow arrows in
Fig. 3c indicate the correct direction in which the template image should move
(Fig. 3d). The last row of Fig. 3 shows the overlay of the two volumes before and
after registration. The whole procedure, including all steps previously described,
takes a mean of 38.34 s per each volume.
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Fig. 1. The same sulcus segmented in corresponding volumes acquired before and after
resection stages (Fig. 1a and b). Figure 1c shows a partial view of the 3D segmentation
of the same structure of Fig. 1b

Table 1. Registration results in millimeter.

Volume Landmarks Before registration After registration

1 13 5.80 (3.62–7.22) 1.05 (0.28–2.48)

2 10 3.65 (1.71–6.72) 2.32 (0.42–4.16)

3 11 2.91 (1.53–4.30) 1.39 (0.55–2.24)

4 12 2.22 (1.25–2.94) 0.81 (0.25–1.80)

6 11 2.12 (0.75–3.82) 1.62 (0.39–4.65)

7 18 3.62 (1.19–5.93) 1.25 (0.25–3.15)

12 11 3.97 (2.58–6.35) 0.87 (0.20–1.82)

14 17 0.63 (0.17–1.76) 0.62 (0.32–1.10)

15 15 1.63 (0.62–2.69) 0.80 (0.27–1.81)

16 17 3.13 (0.82–5.41) 1.26 (0.22–3.91)

17 11 5.71 (4.25–8.03) 1.51 (0.47–5.59)

18 13 5.29 (2.94–9.26) 1.53 (0.30–3.61))

19 13 2.05 (0.43–3.24) 1.60 (0.39–3.45))

21 9 3.35 (2.34–5.64) 1.82 (0.25–5.12)

24 14 2.61 (1.96–3.41) 0.90 (0.24–2.33)

25 12 7.61 (6.40–10.25) 1.00 (0.30–2.44)

27 12 3.98 (3.09–4.82) 1.24 (0.35–2.74))

Mean ± sd 12.9 ± 2.6 3.55 ± 1.76 1.27 ± 0.44
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Fig. 2. Registration results for landmarks. In both images, a 3D section of the volume
acquired before resection is provided, with a subset of related landmarks (green). The
positions of the landmarks acquired after resection (purple) are provided before and
after registration. (Color figure online)

4 Discussion

The hyperechogenic structures of interest are correctly identified in both stages,
as shown for the segmented sulcus in Fig. 1. Moreover, the chosen structures are
useful elements to guide the further registration step. In fact, Table 1 shows that
the initial mTRE is reduced from 3.55 mm to 1.27 mm and the TRE of each
case decreases. For the dataset of interest, the proposed method gives proof to
correctly register US volumes acquired before and after resection. Visual results
related to the registration of the structures of interest in Fig. 3 confirm the
numerical findings. Moreover, when the deformation field is applied to the land-
marks (Fig. 2), we can notice how the updated position of the landmarks acquired
after resection is closer to the corresponding landmarks acquired in the volume
before resection.
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Fig. 3. Registration results for the same sulcus segmented in the before resection (pur-
ple) and in the after resection (green) stages. In the first row, a section of the volume
acquired after section is displayed, together with 2D views of the segmented struc-
ture from both stages. Figure 3a shows how extended is the original displacement of
the masks before registration, which is reduced after applying the proposed method
(Fig. 3b. In the second row, the same evidence is provided with 3D visualization of the
same structure. Then, in the last row an overlay of the original volumes before (Fig. 3e)
and after (Fig. 3f) registration is shown. (Color figure online)
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5 Conclusion

Our method performs well on the volumes of the RESECT dataset acquired
before and after resection. The proposed solution improves the registration
results with respect to our previous work [10], which however has been tested on
a larger number of cases. Therefore, to better verify the efficacy of the solution,
as future work we could decide to apply the proposed solution on a larger set of
data.
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Abstract. In this paper, we describe the application of an established
block-matching based registration method to the CuRIOUS 2019 MIC-
CAI registration challenge. Directional and symmetric approaches with
different parameters are evaluated to select the most suitable setting of
this fully automatic and general registration method. The results can be
used as a baseline, for example when evaluating methods specialised in
ultrasound (US) to MRI registration or registration of different interven-
tional US (iUS) data. This work is a continuation of our contribution to
the CuRIOUS 2018 challenge. We provide a more extensive analysis of
main parameters as well as add pre- to post-resection iUS registration to
the previous MRI-iUS registration. The proposed approach achieves an
average target registration error of 2.68 mm and 1.92 mm for the MR-iUS
and the iUS-iUS task respectively.

Keywords: Block-matching · Symmetric registration · Resection ·
Brain shift · Fully automatic · MRI · iUS

1 Introduction

Brain tumour resection procedures can benefit from navigated surgery systems
which allow displaying tumour segmentations, surgery plans, or regions of inter-
est. The accuracy of the displayed information can be impaired by changes in
the soft brain tissue. Intra-operative imaging techniques such as interventional
ultrasound (iUS) can provide data of the current anatomy which can be used
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to update pre-operative images. However accurate image registration is required
to establish meaningful correspondences of the pre- and intra-operative images.
The CuRIOUS 2019 MICCAI challenge aims at comparing state of the art regis-
tration methods in two tasks: aligning pre-operative MR images with iUS images
before tumour resection (in continuation of the 2018 challenge [7]) and aligning
iUS images before and after resection.

In this work, we evaluate a method which uses a block-matching approach
to fully automatically solve both registration tasks. This registration method is
well established and yields good results in different applications [2,3]. As this
approach is not specialised to the registration challenge at hand, the results can
provide a baseline when comparing to domain-specific approaches. We provide
an analysis of important parameters of the registration framework and insight
into its limitations. We finally demonstrate registration results for this data set
that can be achieved by an out of the box approach.

2 Methods

Registration algorithms that align one image to a fixed reference image can
introduce a directional bias, i.e. results and derived metrics can vary depending
on which image is kept fixed and which is transformed. This has been shown, for
example, in brain atrophy evaluation [9]. Symmetric approaches overcome this
bias by generating a transformation that can be applied in both directions. Other
desirable properties like improved capture range, higher accuracy and robustness
of the symmetric approach were shown in [4]. The registration framework used
for this application is published as part of the NiftyReg open-source software
package (version 1.5.61) [5].

2.1 Block-Matching Based Registration

In the block-matching algorithm, first a set of correspondences of reference
image and warped floating image blocks are established independently and then
simultaneously used to determine the global transformation parameters by least
trimmed squares (LTS) regression [6]. The blocks are determined by splitting the
floating image into uniform blocks of four voxel edge length (default value). To
improve robustness, only a percentage v of blocks with the highest variance of
intensity values is kept in this step. Each of those blocks is compared to all refer-
ence image blocks that overlap with at least one voxel. The block with the highest
absolute normalised cross-correlation (NCC) is selected as correspondence. The
block matching approach is embedded in a multi-resolution scheme with ln lev-
els. The registration is first computed on the (ln−1)-times down-sampled image.
These results are used as an initialisation of the next finer resolution level. This
procedure is repeated until the full resolution images are registered. The coarse-
to-fine approach helps to avoid local minima and increases the capture range of
the registration while enabling a speed-up of the computation.
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2.2 Symmetric Registration

Symmetric registration approaches avoid the need to choose which image to
select as reference and floating image. Also, it avoids bias, introduced by non-
symmetric methods otherwise. Performing both directions of registration at each
iteration allows the resulting transformations to be averaged in log-space [4].
This averaged transformation can be used in one direction and its inverse in the
opposite direction and can thus be considered bias-free.

2.3 Experimental Set-Up

The dataset used for this work was published as the RESECT database [8]. It
contains 23 cases with pre-operative T2 FLAIR and T1-weighted MR images as
well as intra-operative ultrasounds images at three time points of the procedure:
after craniotomy and before opening the dura, during the tumour resection,
and after resection. Each case is provided with landmark pairs, indicating the
correspondence of anatomical landmarks in certain image pairs. Based on those
landmarks, the mean target registration error (mTRE) provides a useful metric
to describe the quality of the registration result.

In the context of the CuRIOUS 2018 challenge, we showed that the FLAIR
MR images are more suitable for the multi-modal registration task compared to
the T1-weighted MR images [1]. Accordingly, the experiments of this work focus
on the FLAIR MR images as well. The possibility of combining information of
both MR images is not being investigated, as the registration framework works
on image pairs only. This year’s challenge extends the pre-operative MR to intra-
operative US registration task by before and after resection iUS image registra-
tion. For both tasks of the challenge, the following three registration settings are
investigated: either image used as reference image and the symmetric approach.
For each setting, both rigid and affine transformations are evaluated. Further-
more, two important parameters of the registration algorithm—the number of
levels of the pyramidal approach, ln, and the percentage of matched blocks, v—
are varied. The values used for ln are 2, 3, and 4 and the values for v are 10, 25,
and 100. All other parameters are kept as the default values. This totals in 54
configurations per registration task. Based on thresholding each US image with
the background value, a mask is generated. Dilating this mask of the iUS image
before resection by 20 mm provides an estimate of the search space in the MR
image and is used as the MR image mask. The MR image is also cropped to the
bounding box of the mask to reduce the image size. No further pre-processing
or resampling of the image volumes was applied. The initial alignment of the
images was derived from the image header information which was generated by
tracking the US probe.

3 Results

The comparison of various registration settings for MR-iUS alignment is shown
in Fig. 1. This shows that the choice of reference image has a significant impact
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on accuracy. Using the MR image as reference leads to much larger mean tar-
get registration errors (mTREs) than the iUS image. The symmetric approach,
which combines the two directed registrations, yields results close to the better
directional one although almost always worse. The best results have a trimmed
mean (i.e. ignoring outliers) around 2 mm while the worst result goes up to
60 mm.

In the comparison of the rigid and affine results of each experiment, the rigid
transformation outperforms the affine approach in most cases. Only in the set-
ting with the iUS image taken as reference and combined with low values of ln
does the affine transformation provide better registration results than the rigid
approach. Increasing the percentage of matched blocks moderately improves the
average mTRE and reduces the standard deviation over all the experiments, at
the expense of increased computational load. When increasing the number of
pyramidal levels, ln, poor results become worse, especially for the affine regis-
trations. This creates a bigger difference between rigid and affine registration for
higher levels of ln, making the rigid ones more consistent.

The mTREs of the iUS-iUS registration task (Fig. 2) show a consistent pat-
tern across all parameter settings of ln and v. Using the iUS image after tumour
resection as reference leads to the best results with an average mTRE around
2 mm, while the other direction and the symmetric approach show very similar
results around 5 mm to 6 mm. In this registration task, affine transformations
increase the mTRE in most cases. Similarly to MR-iUS results, higher values
of ln increase the impairment of using the affine transformation. Increasing v
shows only negligible effects on the mTRE, except for the experiment with the
highest ln: Here the lowest value of v significantly increases the mTRE of the
affine registration using the iUS after resection as reference, while higher values
of v yield results in the same magnitude of all other parameter settings.

Following the evaluation criteria of the CuRIOUS challenge, we select the
setting that provides the lowest average mTRE across all available test subjects.
Based on the results at hand, we chose the following parameters for both regis-
tration tasks: v = 25, ln = 2. While, for the multi-modal registration task, the
affine transformation model yields better results, for the iUS-iUS task the rigid
one is chosen instead. Examples of the registration results are visualised in Fig. 3
and show good alignment of structures in both registration tasks. To generate
a reference registration which provides the best possible registration given the
evaluation metric of mTRE, we computed the affine transformation that min-
imises the mean landmark distance. The mean TRE of this transformation is
referred to as oracle. For both registration tasks, the mTRE of each test case for
the rigid and affine registration with the selected parameters is displayed along
with the initial landmark distance and the oracle result in Tables 1 and 2.

The average run time of the affine registration for the MR-iUS registration
task is 72 s with GPU utilisation (201 s on CPU only) and 23 s (89 s) for the rigid
registration of the iUS-iUS task on a computer with AMD Ryzen Threadripper
1950X CPU and NVIDIA Quadro P6000 GPU.
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Fig. 1. Boxplots of the mean TREs of all experiments of the MR-iUS registration task.
The mTRE of each case is displayed as a dot on top of the boxplot.

Fig. 2. Boxplots of the mean TREs of all experiments of the iUS-iUS registration task.
The mTRE of each case is displayed as a dot on top of the boxplot.
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Fig. 3. Axial and sagittal views of the registration results in both tasks—MRI-iUS (left)
and iUS-iUS (right)—for case 27. The top row is the initial alignment, the bottom row
after registration. The MR FLAIR image is depicted in grey scale, the pre-resection
iUS image in magenta, and the post-resection iUS image in green. (Color figure online)

4 Discussion

In the two registration tasks of the CuRIOUS 2019 challenge, we observe a
directional bias of the results, i.e. one direction outperforms the other one. As
a consequence the symmetric approach which combines both directions under-
performs. At the same time, the symmetric approach has the lowest standard
deviation for the MR-iUS task and has a lower maximum TRE, i.e. the worst
case is handled better.

One challenge of the multi-modal registration task is that iUS and MR images
have fundamentally different image characteristics: voxel shape and size as well
as the field of view are very different. Furthermore, the iUS images are affected
by speckles and appear quite noisy. Those factors could explain the performance
difference of the directional approaches. On the other hand, the mono-modal
registration task shows similar directional bias. Here, the challenge lies in the
tissue resection. In the pre-resection image, the tumour tissue is visible, but
it has no correspondence in the post-resection image. When the pre-resection
image is used as reference, blocks of the post-resection image with high vari-
ance are matched to it. The borders of the resected tissue are quite distinct in
the post-resection images and are likely chosen for the block-matching. Those
blocks do not have a correspondence in the pre-resection image and can thus
impair the overall transformation estimation. This conclusion suggests that sim-
ilar effects could take place in the mono-modal setting as well. Trying to finding
correspondences of US speckles in the MR image will most likely not provide
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a constructive match. The MR image is less noisy with clearer structures and
is thus more suitable to determine the blocks to be matched. Noise reduction,
specifically speckle reduction in the ultrasound images might reduce those effects.
Different similarity measures than the used NCC might also improve the regis-
tration further. Improving the discrepancy between the directional approaches
could yield an even better symmetric result whose advantages are currently held
back by the bad performance of one directional registration in both tasks. The
initial landmark distance is 5.37 mm for the MR-iUS task and 3.55 mm for the

Table 1. Mean TRE in mm per case
for the MR-iUS registration task eval-
uated on all cases with landmark pairs
provided for this task. The chosen set-
ting is: reference US, affine, ln = 2, and
v = 25.

Case Initial Rigid Affine Oracle

1 1.82 1.70 1.72 1.07

2 5.68 5.32 2.90 1.13

3 9.58 3.40 1.48 0.77

4 2.99 1.52 1.56 0.98

5 12.02 9.90 3.47 0.94

6 3.27 1.87 1.87 0.78

7 1.82 1.42 2.45 1.26

8 2.63 2.51 2.59 1.08

12 19.68 19.16 16.37 0.94

13 4.57 3.54 2.18 0.96

14 3.03 1.50 2.11 1.00

15 3.21 2.39 2.46 1.30

16 3.39 1.95 1.61 0.91

17 6.39 1.90 2.11 1.04

18 3.56 1.28 1.45 0.76

19 3.28 2.22 2.99 0.83

21 4.55 1.78 2.00 0.75

23 7.01 4.04 1.66 0.71

24 1.10 1.63 1.32 0.75

25 10.06 6.91 1.34 0.90

26 2.83 1.33 1.50 0.98

27 5.76 2.09 1.80 1.03

mean 5.37 3.61 2.68 0.95

stddev 4.17 3.97 3.04 0.16

Table 2. Mean TRE in mm per case
for the iUS-iUS registration task eval-
uated on all cases with landmark pairs
provided for this task. The chosen set-
ting is: reference US-after, rigid, ln =
2, and v = 25.

Case Initial Rigid Affine Oracle

1 5.80 1.34 2.04 0.97

2 3.65 4.63 5.44 1.62

3 2.91 1.34 7.81 0.68

4 2.22 0.91 2.13 0.56

6 2.12 3.07 4.06 1.25

7 3.62 2.61 3.20 1.47

12 3.97 1.65 1.63 1.10

14 0.63 0.60 0.61 0.45

15 1.63 0.90 0.87 0.72

16 3.13 3.12 2.87 1.09

17 5.71 1.83 2.29 0.97

18 5.29 2.29 2.32 1.16

19 2.05 1.81 3.90 0.89

21 3.35 1.87 1.20 0.81

24 2.61 1.06 1.93 0.64

25 7.61 2.84 5.76 0.92

27 3.98 0.71 0.62 0.47

mean 3.55 1.92 2.86 0.93

stddev 1.70 1.04 1.93 0.32
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iUS-iUS task. Only a few cases have clearly higher mean distance and for these,
two levels of the pyramidal approach have a sufficient capture range. Higher
values of ln show little effect in the mono-modal task. For the multi-modal task,
higher ln even worsen the alignment of many registration settings. If there are
already difficulties in finding correct correspondences in the finer levels, coarser
levels will not improve this. Increasing the percentage of matched blocks from
10% to 25% improves the mTRE over all settings. Increasing it further to match
all floating image blocks does not show a clear advantage but increases the com-
putational time. A value of 25% for v thus seems a good choice. Despite these
limitations, overall good registration results can be achieved by using this regis-
tration framework with mostly default parameters. The initial average landmark
distance of 5.37 mm and 3.55 mm was reduced to 2.68 mm and 1.92 mm for the
MR-iUS and the iUS-iUS task respectively.
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Abstract. In medical imaging, deep learning has been applied to seg-
mentation and classification tasks successfully, whereas its use for image
registration tasks is still limited. The use of discrete registration can
alleviate the problems limiting the use of CNN based registration for
large displacements by helping to capture more complex deformations.
We evaluate different building blocks of learning based discrete registra-
tion for the CuRIOUS multimodal image registration challenge. We also
propose a new attention module, which estimates information contents of
a grid point, compare different loss functions and evaluate the influence
of self-supervised pre-training of feature extraction step.

Keywords: Deep learning · Discrete registration · Multimodal
registration · CuRIOUS challenge

1 Introduction and Related Work

The CuRIOUS challenge evaluates algorithms for the multimodal registration of
intra-operative ultrasound scans to pre-operative MRI diagnostic scans to guide
image-based interventions of tumour resection [9]. While deep learning has been
successfully applied to many segmentation and classification tasks in medical
imaging, its use for image registration appears to be more challenging. This is
evident in the first challenge in 2018, where only few deep learning based method
participated, and the only one applied to the test dataset achieved comparatively
poor results [9]. Yet the use of deep convolutional networks in image-guided
interventions would be very relevant given their immense potential for speed-up
at inference time. The most recent work for learning based registration often
required both self-supervised and weakly-supervised cost functions and fairly
large annotated training datasets [1,7] to reach the accuracy of conventional
methods or still required many iterative steps [2]. In [5], we argue that the use
of discrete registration can alleviate the problems presently limiting the use of
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CNN based registration for large displacements. The key insight is that using
a discrete displacement search similar to classical block-matching can help to
capture more complex deformations as also demonstrated in 2D optical flow
estimation in [3], where this step without trainable weights was coined correlation
layer. In discrete registration, a dense 3D displacement map is predicted for
each control point of the fixed image that measures the dissimilarity for all
potential deformations with respect to the moving image (in our case a map
of size 11× 11× 11 capturing a spatial region of +− 20 voxels or 10 mm). Two
important challenges specific to intra-operative ultrasound to MRI registration
currently prevail:

(1) the definition of similarity and extraction of modality-invariant features is
difficult,

(2) the large differences in field of view necessitate a strategy to detect poten-
tially uninformative regions that may deteriorate the transformation and
focus the attention to areas of good structural content.

1.1 Contributions

In this work, we compare the most relevant building blocks of learning based
discrete registration and propose a number of new strategies that deal with
the above mentioned challenges. First, we introduce a new attention module
that estimates the information content of a grid point based on its spatial dis-
placement map. Second, we compare different loss functions, including CNN-
based heatmaps, for the definition of errors in predicted displacement maps
used for backpropagation. Third, we evaluate the influence of self-supervised
pre-training of the feature extraction step based on hand-crafted self-similarity
context descriptors [6].

2 Methods

Our method builds upon the discrete block-matching strategy presented in [4].
In this work we, however, restrict ourselves to a one-step single-level registration
(yet an extension would likely yield more accurate results). The general overview
of our method is shown in Figs. 1 and 2. First, a feature network is used to
extract slightly downsampled 24-channel representations of the original input
images (that have been resampled to 0.5 mm isotropic resolution). 2. Second, a
3D displacement map of size 11× 11× 11 is computed for a number of coarse
control points on a regular grid using the sum of squared difference metric of
the extracted features (similar to [3] and [5]). 3. Third, the final (regularised)
displacement probabilities and thus the correspondences are obtained either by
directly applying a softmax operator to the negative scaled dissimilarity values
or using another small CNN network that works on the displacement dimensions.
Optionally, an attention weight is computed for each grid location to discard or
down-weigh unreliable correspondences. Finally, a least squares regression is used
to compute a rigid or affine transformation based to the found correspondences.
The individual steps are explained in more detail in Table 1.
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Fig. 1. An Overview of the proposed framework with learned features (feature network
in Table 2). (The baseline method uses a handcrafted MIND-SSC descriptor for fea-
ture extraction.) The part with gray background can be replaced with a convolutional
network, which learns the attention weights (see Fig. 2).

Fig. 2. An Overview of the proposed frameworks, which use attention network (left)
and heatmap loss (right). For the heatmap loss ground truth heatmaps are generated
based on the landmark coordinates.

2.1 Feature Network

We compare the use of fixed handcrafted MIND-SSC self-similarity context
descriptors [6] to a trainable CNN network to extract modality-invariant rep-
resentations. The networks weights are shared between MRI and US and the
network architecture consists of the blocks as described in Table 1.

Since our initial tests indicated that learning these features from scratch
could be challenging due to the limited supervision and strong appearance dif-
ferences, we also conducted experiments in which a self-supervised learning of
CNN features with a mean-squared error (MSE) loss against the handcrafted
SSC features (12 channels each for 4 neighbouring locations = 48 features per
voxel).

2.2 3D Dense Displacement (correlation) Layer

Next, a 3D displacement map of size 11× 11× 11 is computed for a number of
coarse control points on a regular grid (every seventh voxel in all 3 dimensions)
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using the SSD metric of the 48-dimensional features that measures the dissim-
ilarity between a fixed location in the fixed image and a displaced voxel in the
moving image. There are no trainable weights in this layer, but in order to reduce
memory overhead (the loss needs to be back propagated through this layer) we
use checkpointing and a loop over a subset of displacements. As done in [4] and
[5] the dissimilarities are spatially smoothed with a small kernel.

2.3 Displacement Probabilities and Correspondences

To convert the dissimilarity maps into displacement probabilities the FlowNet
approach used a very parameter-intensive fully-connected architecture for the
respective channels (441 in their case of a 21× 21 displacement map). We argue
that a 3D convolutional network is much more appropriate and can substan-
tially reduce the number of required parameters and subsequently the necessary
training dataset. The proposed network architecture is a fully-convolutional 3D
network that takes a 1× 11× 11× 11 Tensor as input and produces a same-
sized output. The number of channels in kernel sizes of the network (Heatmap
Network) are as given in Table 1.

2.4 Attention Module

In the conventional discrete registration of [4] a number of heuristics are
employed to filter out unreliable correspondences. The 50th percentile of the
minimum displacement map value is used to discard potentially poor matches.
In addition a trimmed least squares optimisation is performed to filter out fur-
ther correspondences that do not follow a rigid or affine transformation model.
Here, we take inspiration of [8] and train an attention module that takes the
11× 11× 11 displacement map as input and uses a small 3D convolutional net-
work followed by a sigmoid to predict a scalar attention value. It consists of the
blocks as described in Table 1 in our experiments.

3 Experiments

3.1 Loss Functions

We either use an MSE-Loss on the predicted displacement probabilities in com-
parison to ground truth heatmaps generated from the known correspondences in
the training data (assuming a rigid transformation of the landmarks) or directly
minimise the target registration error after least-squares fitting. The latter could
have the disadvantage of losing gradient strength through many iterations of
solving a linear system of equations, while the former requires the empirical
setting of a suitable Gauss kernel to define ground truth heatmaps.
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Table 1. Details of network architectures. For each convolutional layer, number of
input/output channels (first/second argument), kernel size (k), padding (p), stride (s)
and dilation (d) values are given. * indicates that a Normalization layer (for Feature
Network InstanceNorm3d and for rest BatchNorm3d) and a ReLU Unit (ReLU for
Feature Network, PReLU for the other networks) is followed after the convolutional
layer.

Feature Network Attention Network Heatmap Network

Conv3d(1,16, k=5, p=4, d=2)* Conv3d(1,16, k=5, s=1)* Conv3d(1,8,k=3,p=1)*

Conv3d(16,32, k=3, s=1, p=1)* Conv3d(16,16,k=3)* Conv3d(8,16,k=3,s=2,p=1)*

Conv3d(32,64, k=3, s=1, p=1)* Conv3d(16,16, k=3)* Conv3d(16,32,k=1)*

Conv3d(64,48, k=3, s=1, p=1) Conv3d(16,16,k=3)* Upsample(size=(11,11,11)

Sigmoid() Conv3d(16,1,k=1) Conv3d(32,16,k=3,p=1)*

Sigmoid() Conv3d(16,8,k=3,p=1)*

Conv3d(8,1,k=3,p=1)

3.2 Ablation Study

To determine the effectiveness of each module, we performed an ablation study
based on different combination of the modules. For all experiments we use nine
pairs from the CuRIOUS training dataset, case 1–9 and 12, learning rate of 0.005
and the networks are trained for 100 epochs.

As for the baseline framework, we use a hand-crafted MIND-SSC descriptor
to extract features from the images. From the features we then determine control
points using a coarse regular grid and compute the correlation of the fixed and
moving patches within the 20 voxel range (displacement from −20 voxels to
20 voxels). The cost map obtained from the correlation layer is then smoothed
and regularized (softmax), which is then multiplied with the displacement grid
to obtain best displacement vectors for the control points. As mentioned in
Sect. 2.4, only the 50th percentile of the minimum displacement map values is
used to select control points with good correspondences. The selected control
points are then given as input to a trimmed least square optimization function,
from which we obtain a transformation matrix. From this baseline framework, we
substitute the MIND-SSC descriptor with a pre-trained feature network, which
is trained weakly-supervised based on the TRE loss. The feature network
(Sect. 2.1) shows comparable results as the baseline method, while being slightly
faster.

The goal of the attention network is to filter out unreliable correspon-
dences by assigning appropriate weights to the control points with poor corre-
spondences. For the training of this network, the sum of weighted TRE is used.

In addition to different networks, the framework is also trained using dif-
ferent loss functions, where we use a heatmap instead of directly comparing
the distance between landmarks. A ground truth heatmap is required for this
part and it can be generated as described in Sect. 2.3. Based on the output
of this heatmap network, the best displacement vectors are determined and
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using attention module, control points with poor correspondences are filtered
out before computing a transformation between landmark vectors of US and
MRI images.

Finally, we train the feature network and the attention network simulta-
neously (end-to-end), with the feature network initialized with good weights
(fine-tuning) and random initialization (from scratch).

4 Results and Discussion

The result of the experiments are presented in Table 2. Although the feature
network can simulate the MIND descriptor sufficiently and reach similar result as
baseline method, learning attention weights for optimal cost seems to be difficult,
especially when large displacement values are present. The use of heatmap loss
led to poor result in our experiment setting and took longer to compute. The
possible reason for this result can be the sub-optimal selection of the size of the
Gauss Kernel.

The end-to-end training of feature network and attention network was per-
formed in two different variations; with a good initialization and with a random
initialization. As expected, the network reaches better accuracy when initialized
with a good weights.

Table 2. Quantitative comparative evaluation of CuRIOUS dataset (TREs in mm).
We demonstrate advantages of (1) using learned features vs. handcrafted self-similarity
MIND-SSC descriptors, (2) using attention module, (3) computing loss based on the
ground truth heatmap vs based on target registration error after least-squares fitting.

Method (1) (2) (3) 2 5 7 13 17 23 Mean Duration

No registration 5.75 12.20 1.88 4.71 6.41 7.05 5.29 –

Baseline ✘ ✘ ✘ 3.62 2.49 2.27 1.67 1.62 1.37 2.35 0.33 s

Feat-net ✔ ✘ ✘ 3.80 2.40 2.44 1.78 1.79 1.33 2.50 0.24 s

Attention-net ✘ ✔ ✘ 6.08 14.19 2.58 3.60 5.42 2.11 4.50 0.35 s

Feat + Attention-net ✔ ✔ ✘ 5.45 12.77 2.52 4.47 4.36 2.07 4.30 0.25 s

Heatmap loss ✘ ✔ ✔ 5.82 11.67 3.85 3.50 4.77 4.32 5.11 0.61 s

End-to-end (fine-tuning) ✔ ✔ ✘ 4.38 9.07 3.24 6.62 4.33 4.64 4.47 0.25 s

End-to-end (from scratch) ✔ ✔ ✘ 4.36 8.06 4.06 6.93 7.04 5.36 5.02 0.25 s

5 Outlook

In this paper, we have presented a comparison between different building blocks
of learning based discrete registration. Learned features are as good as hand-
crafted features, whereas the learned attention weights for out-filtering poor
correspondence keypoints does not seem to work as we expected. As future
work, we plan to perform further experiments, which include optimisation of
hyperparameters, use of augmentation, multi-level registration and estimation
of symmetric transformation.
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