
Verified Self-Explaining Computation

Jan Stolarek1,2(B) and James Cheney1,3

1 University of Edinburgh, Edinburgh, UK
jan.stolarek@ed.ac.uk, jcheney@inf.ed.ac.uk
2 Lodz University of Technology, �Lódź, Poland

3 The Alan Turing Institute, London, UK

Abstract. Common programming tools, like compilers, debuggers, and
IDEs, crucially rely on the ability to analyse program code to reason
about its behaviour and properties. There has been a great deal of
work on verifying compilers and static analyses, but far less on verifying
dynamic analyses such as program slicing. Recently, a new mathematical
framework for slicing was introduced in which forward and backward slic-
ing are dual in the sense that they constitute a Galois connection. This
paper formalises forward and backward dynamic slicing algorithms for
a simple imperative programming language, and formally verifies their
duality using the Coq proof assistant.

1 Introduction

The aim of mathematical program construction is to proceed from (formal) spec-
ifications to (correct) implementations. For example, critical components such
as compilers, and various static analyses they perform, have been investigated
extensively in a formal setting [10]. However, we unfortunately do not yet live
in a world where all programs are constructed in this way; indeed, since some
aspects of programming (e.g. exploratory data analysis) appear resistant to a pri-
ori specification, one could debate whether such a world is even possible. In any
case, today programs “in the wild” are not always mathematically constructed.
What do we do then?

One answer is provided by a class of techniques aimed at explanation, com-
prehension or debugging, often based on run-time monitoring, and sometimes
with a pragmatic or even ad hoc flavour. In our view, the mathematics of
constructing well-founded (meta)programs for explanation are wanting [4]. For
example, dynamic analyses such as program slicing have many applications in
comprehending and restructuring programs, but their mathematical basis and
construction are far less explored compared to compiler verification [2,3].

Dynamic program slicing is a runtime analysis that identifies fragments of a
program’s input and source code – known together as a program slice – that were
relevant to producing a chosen fragment of the output (a slicing criterion) [8,21].
Slicing has a very large literature, and there are a wide variety of dynamic slicing
algorithms. Most work on slicing has focused on imperative or object-oriented
programs.
c© Springer Nature Switzerland AG 2019
G. Hutton (Ed.): MPC 2019, LNCS 11825, pp. 76–102, 2019.
https://doi.org/10.1007/978-3-030-33636-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33636-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-33636-3_4

Verified Self-Explaining Computation 77

One common application of dynamic slicing is program debugging. Assume
we have a program with variables x, y, and z and a programmer expects that after
the program has finished running these variables will have respective values 1, 2,
and 3. If a programmer unfamiliar with the program finds that after execution,
variable y contains 1 where she was expecting another value, she may designate
y as a slicing criterion, and dynamic slicing will highlight fragments of the source
code that could have contributed to producing the incorrect result. This narrows
down the amount of code that the programmer needs to inspect to correct a
program. In this tiny example, of course, there is not much to throw away and
the programmer can just inspect the program—the real benefit of slicing is for
understanding larger programs with multiple authors. Slicing can also be used for
program comprehension, i.e. to understand the behaviour of an already existing
program in order to re-engineer its specification, possibly non-existent or not
up-to-date.

In recent years a new semantic basis for dynamic slicing has been pro-
posed [15,17]. It is based on the concept of Galois connections as known from
order and lattice theory. Given lattices X and Y , a Galois connection is a pair
of functions g : Y → X and f : X → Y such that g(y) ≤ x ⇐⇒ y ≤ f(x);
then g is the lower adjoint and f is the upper adjoint. Galois connections have
been advocated as a basis for mathematical program construction already, for
example by Backhouse [1] and Mu and Oliveira [12]. They showed that if one can
specify a problem space and show that it is one of the component functions of a
Galois connection (the “easy” part), then optimal solutions to the problem (the
“hard” part) are uniquely determined by the dual adjoint. A simple example
arises from the duality between integer multiplication and division: the Galois
connection x · y ≤ z ⇐⇒ x ≤ z/y expresses that z/y is the greatest integer
such that (z/y) · y ≤ z.

Whereas Galois connections have been used previously for constructing pro-
grams (as well as other applications such as program analysis), here we consider
using Galois connections to construct programs for program slicing. In our set-
ting, we consider lattices of partial inputs and partial outputs of a computation
corresponding to possible input and output slicing criteria, as well as partial
programs corresponding to possible slices—these are regarded as part of the
input. We then define a forward semantics (corresponding to forward slicing)
that expresses how much of the output of a program can be computed from a
given partial input. Provided the forward semantics is monotone and preserves
greatest lower bounds, it is the upper adjoint of a Galois connection, whose
lower adjoint computes for each partial output the smallest partial input needed
to compute it—which we consider an explanation. In other words, forward and
backward slicing are dual in the sense that forward slicing computes “as much as
possible” of the output given a partial input, while backward slicing computes
“as little as needed” of the input to recover a partial output.

Figure 1 illustrates the idea for a small example where the “program” is an
expression (x + y, 2x), the input is an initial store containing [x = 1, y = 2] and
the output is the pair (3, 2). Partial inputs, outputs, and programs are obtained

78 J. Stolarek and J. Cheney

([x= ,y=],(,))

([x=1,y=],(,2·x))

([x=1,y=2], (x+y,2·x))

(,)

(,2)

(3,2)

([x=1,y=],(x+y,)) (3,)

Fig. 1. Input and output lattices and Galois connection corresponding to expression
(x + y, 2 · x) evaluated with input [x = 1, y = 2] and output (3, 2). Dotted lines with
arrows pointing left calculate the lower adjoint, those pointing right calculate the upper
adjoint, and lines with both arrows correspond to the induced isomorphism between
the minimal inputs and maximal outputs. Several additional elements of the input
lattice are omitted.

by replacing subexpressions by “holes” (�), as illustrated via (partial) lattice
diagrams to the left and right. In the forward direction, computing the first
component succeeds if both x and y are available while the second component
succeeds if x is available; the backward direction computes the least input and
program slice required for each partial output. Any Galois connection induces
two isomorphic sublattices of the input and output, and in Fig. 1 the elements
of these sublattices are enclosed in boxes with thicker lines. In the input, these
elements correspond to minimal explanations: partial inputs and slices in which
every part is needed to explain the corresponding output. The corresponding
outputs are maximal in a sense that their minimal explanations do not explain
anything else in the output.

The Galois connection approach to slicing has been originally developed for
functional programming languages [15] and then extended to functional lan-
guages with imperative features [17]. So far it has not been applied to con-
ventional imperative languages, so it is hard to compare directly with conven-
tional slicing techniques. Also, the properties of the Galois connection framework
in [15,17] have only been studied in pen-and-paper fashion. Such proofs are noto-
riously tricky in general and these are no exception; therefore, fully validating
the metatheory of slicing based on Galois connections appears to be an open
problem.

In this paper we present forward and backward slicing algorithms for a simple
imperative language Imp and formally verify the correctness of these algorithms
in Coq. Although Imp seems like a small and simple language, there are nontrivial
technical challenges associated with slicing in the presence of mutable state, so
our formalisation provides strong assurance of the correctness of our solution.
To the best of our knowledge, this paper presents the first formalisation of a
Galois connection slicing algorithm for an imperative language. Compared with
Ricciotti et al. [17], Imp is a much simpler language than they consider, but
their results are not formalised; compared with Léchenet et al. [9], we formalise
dynamic rather than static slicing.

Verified Self-Explaining Computation 79

In Sect. 2 we begin by reviewing the syntax of Imp, giving illustrative exam-
ples of slicing, and then reviewing the theory of slicing using the Galois con-
nection framework, including the properties of minimality and consistency. In
Sect. 3 we introduce an instrumented, tracing semantics for Imp and present the
forward and backward slicing algorithms. We formalise all of the theory from
Sect. 3 in Coq and prove their duality. Section 4 highlights key elements of our
Coq development, with full code available online [19]. Section 5 provides pointers
to other related work.

2 Overview

2.1 Imp Slicing by Example

Arithmetic expressions a ::= n | x | a1 + a2

Boolean expressions b ::= true | false | a1 = a2 | ¬b | b1 ∧ b2
Imperative commands c ::= skip | x := a | c1 ; c2

| while b do { c } | if b then { c1 } else { c2 }
Values v ::= va | vb
State µ ::= ∅ | µ, x va (x fresh)

Fig. 2. Imp syntax

For the purpose of our analysis we use a minimal imperative programming lan-
guage Imp used in some textbooks on programming languages, e.g. [13,16,22]1.
Imp contains arithmetic and logical expressions, mutable state (a list of map-
pings from variable names to numeric values) and a small core of imperative
commands: empty instruction (skip), variable assignments, instruction sequenc-
ing, conditional if instructions, and while loops. An Imp program is a series
of commands combined using a sequencing operator. Imp lacks more advanced
features, such as functions or pointers.

Figure 2 shows Imp syntax. We use letter n to denote natural number con-
stants and x to denote program variables. In this presentation we have omitted
subtraction (−) and multiplication (·) from the list of arithmetic operators, and
less-or-equal comparison (≤) from the list of boolean operators. All these opera-
tors are present in our Coq development and we omit them here only to make the
presentation in the paper more compact. Otherwise the treatment of subtraction
and multiplication is analogous to the treatment of addition, and treatment of
≤ is analogous to =.

Dynamic slicing is a program simplification technique that determines which
parts of the source code contributed to a particular program output. For exam-
ple, a programmer might write this simple program in Imp:

1 In the literature Imp is also referred to as WHILE.

80 J. Stolarek and J. Cheney

if (y = 1) then { y := x + 1 }
else { y := y + 1 } ;

z := z + 1

and after running it with an input state [x �→ 1, y �→ 0, z �→ 2] might (wrongly)
expect to obtain output state [x �→ 1, y �→ 2, z �→ 3]. However, after running the
program the actual output state will be [x �→ 1, y �→ 1, z �→ 3] with value of y
differing from the expectation.

We can use dynamic slicing to debug this program by asking for an expla-
nation which parts of the source code and the initial input state contributed to
incorrect output value of y. We do this by formulating a slicing criterion, where
we replace all values that we consider irrelevant in the output state (i.e. don’t
need an explanation for them) with holes (denoted with �):

[x �→ �, y �→ 1, z �→ �]

and a slicing algorithm might produce a program slice:

if (y = 1) then { � }
else { y := y + 1 } ; �

with a sliced input state [x �→ �, y �→ 0, z �→ �]. This result indicates which parts
of the original source code and input state could be ignored when looking for
a fault (indicated by replacing them with holes), and which ones were relevant
in producing the output indicated in the slicing criterion. The result of slicing
narrows down the amount of code a programmer has to inspect to locate a
bug. Here we can see that only the input variable y was relevant in producing
the result; x and z are replaced with a � in the input state, indicating their
irrelevance. We can also see that the first branch of the conditional was not taken
(unexpectedly!) and that in the second branch y was incremented to become 1.
With irrelevant parts of the program hidden away it is now easier to spot that
the problem comes from a mistake in the initial state. The initial value of y
should be changed to 1 so that the first branch of the conditional is taken and
then y obtains an output value of 2 as expected.

Consider the same example, but a different output slicing criterion [x �→
�, y �→ �, z �→ 3]. In this case, a correctly sliced program is as follows:

� ; z := z + 1

with the corresponding sliced input [x �→ �, y �→ �, z �→ 2], illustrating that the
entire first conditional statement is irrelevant. However, while the conclusion
seems intuitively obvious, actually calculating this correctly takes some work:
we need to ensure that none of the assignments inside the taken conditional
branch affected z, and conclude from this that the value of the conditional test
y = 1 is also irrelevant to the final value of z.

Verified Self-Explaining Computation 81

2.2 A Galois Connection Approach to Program Slicing

Example in Sect. 2.1 relies on an intuitive feel of how backward slicing should
behave. We now address the question of how to make that intuition precise and
show that slicing using the Galois connection framework introduced by Perera
et al. [15] offers an answer.

Consider these two extreme cases of backward slicing behaviour:

1. For any slicing criterion backward slicing always returns a full program with
no holes inserted;

2. For any slicing criterion backward slicing always returns a �, i.e. it discards
all the program code.

Neither of these two specifications is practically useful since they don’t fulfil our
intuitive expectation of “discarding program fragments irrelevant to producing
a given fragment of program output”. The first specification does not discard
anything, bringing us no closer to understanding which code fragments are irrel-
evant. The second specification discards everything, including the code necessary
to produce the output we want to understand. We thus want a backward slicing
algorithm to have two properties:

– Consistency: backward slicing retains code required to produce output we
are interested in.

– Minimality: backward slicing produces the smallest partial program and
partial input state that suffice to achieve consistency.

Our first specification above does not have the minimality property; the second
one does not have the consistency property. To achieve these properties we turn
to order and lattice theory.

We begin with defining partial Imp programs (Fig. 3) by extending Imp syn-
tax presented in Fig. 2 with holes (denoted using � in the semantic rules). A
hole can appear in place of any arithmetic expression, boolean expression, or
command. In the same way we allow values stored inside a state to be mapped
to holes. For example:

μ = [x �→ 1, y �→ �]

is a partial state that maps variable x to 1 and variable y to a hole. We also
introduce operation ∅µ that takes a state μ and creates a partial state with
the same domain as μ but all variables mapped to �. For example if μ = [x �→
1, y �→ 2] then ∅µ = [x �→ �, y �→ �]. A partial state that maps all its variables
to holes is referred to as an empty partial state.

Having extended Imp syntax with holes, we define partial ordering relations
on partial programs and partial states that consider holes to be syntactically
smaller than any other subexpression. Figure 4 shows the partial ordering rela-
tion for arithmetic expressions. Definitions for ordering of partial boolean expres-
sions and partial commands are analogous. Ordering for partial states is defined

82 J. Stolarek and J. Cheney

Partial arithmetic expr. a ::= . . . | �
Partial boolean expr. b ::= . . . | �
Partial commands c ::= . . . | �
Partial state µ ::= ∅ | µ, x va | µ, x �

Fig. 3. Partial Imp syntax. All elements of syntax from Fig. 2 remain unchanged, only
� are added.

� � a n � n x � x

a1 � a′
1 a2 � a′

2

a1 + a2 � a′
1 + a′

2

Fig. 4. Ordering relation for partial arithmetic expressions.

element-wise, thus requiring that two states in the ordering relation have iden-
tical domains, i.e. store the same variables in the same order.

For every Imp program p, a set of all partial programs smaller than p forms a
complete finite lattice, written ↓p with p being the top and � the bottom element
of this lattice. Partial states, arithmetic expressions, and boolean expressions
form lattices in the same way. Moreover, a pair of lattices forms a (product)
lattice, with the ordering relation defined component-wise:

(a1, b1) � (a2, b2) ⇐⇒ a1 � a2 ∧ b1 � b2

Figure 5 shows definition of the join (least upper bound,
) operation for
arithmetic expressions. Definitions for boolean expressions and imperative com-
mands are analogous. A join exists for every two elements from a complete lattice
formed by a program p or state μ [6, Theorem 2.31].

Assume we have a program p paired with an input state μ that evaluates to
an output state μ′. We can now formulate slicing as a pair of functions between
lattices:

– Forward slicing: Forward slicing can be thought of as evaluation of partial
programs. A function fwd(p,µ) takes as its input a partial program and a
partial state from a lattice formed by pairing a program p and state μ. fwd(p,µ)
outputs a partial state belonging to a lattice formed by μ′. The input to the
forward slicing function is referred to as a forward slicing criterion and output
as a forward slice.

– Backward slicing: Backward slicing can be thought of as “rewinding” a
program’s execution. A function bwdµ′ takes as its input a partial state from
the lattice formed by the output state μ′. bwdµ′ outputs a pair consisting of
a partial program and a partial state, both belonging to a lattice formed by
program p and state μ. Input to a backward slicing function is referred to as
a backward slicing criterion and output as a backward slice.

A key point above (discussed in detail elsewhere [17]) is that for imperative
programs, both fwd(p,µ) and bwdµ′ depend not only on p, μ, μ′ but also on the

Verified Self-Explaining Computation 83

a � � = a � � a = a n � n = n x � x = x

(a1 + a2) � (a′
1 + a′

2) = (a1 � a′
1) + (a2 � a′

2)

Fig. 5. Join operation for arithmetic expressions.

particular execution path taken while evaluating p on μ. (In earlier work on
slicing pure functional programs [15], traces are helpful for implementing slicing
efficiently but not required for defining it.) We make this information explicit in
Sect. 3 by introducing traces T that capture the choices made during execution.
We will define the slicing algorithms inductively as relations indexed by T , but in
our Coq formalisation fwdT(p,µ) and bwdTµ′ are represented as dependently-typed
functions where T is a proof term witnessing an operational derivation.

A pair of forward and backward slicing functions is guaranteed to have both
the minimality and consistency properties when they form a Galois connection [6,
Lemmas 7.26 and 7.33].

Definition 1 (Galois connection). Given lattices P , Q and two functions
f : P → Q, g : Q → P , we say f and g form a Galois connection (written f � g)
when ∀p∈P,q∈Qf(p) �Q q ⇐⇒ p �P g(q). We call f a lower adjoint and g an
upper adjoint.

Importantly, for a given Galois connection f � g, function f uniquely determines
g and vice versa [6, Lemma 7.33]. This means that our choice of fwd (i.e. definition
of how to evaluate partial programs on partial inputs) uniquely determines the
backward slicing function bwd that will be minimal and consistent with respect
to fwd, provided we can show that fwd and bwd form a Galois connection. There
are many strategies to show that two functions f : P → Q and g : Q → P
form a Galois connection, or to show that f or g in isolation has an upper or
respectively lower adjoint. One attractive approach is to show that f preserves
least upper bounds, or dually that g preserves greatest lower bounds (in either
case, monotonicity follows as well). This approach is indeed attractive because
it allows us to analyse just one of f or g and know that its dual adjoint exists,
without even having to write it down. Indeed, in previous studies of Galois
slicing [15,17], this characterisation was the one used: fwd was shown to preserve
greatest lower bounds to establish the existence of its lower adjoint bwd, and then
efficient versions of bwd were defined and proved correct.

For our constructive formalisation, however, we really want to give com-
putable definitions for both fwd and bwd and prove they form a Galois connec-
tion, so while preservation of greatest lower bounds by fwd is a useful design
constraint, proving it does not really save us any work. Instead, we will use the
following equivalent characterisation of Galois connections [6, Lemma 7.26]:

1. f and g are monotone
2. deflation property holds:

∀q∈Q f(g(q)) �Q q

84 J. Stolarek and J. Cheney

Arithmetic traces Ta ::= n | x(va) | Ta1 + Ta2

Boolean traces Tb ::= true | false | Ta1 = Ta2 | ¬Tb | Tb1 ∧ Tb2

Command traces Tc ::= skip | x := Ta | T1 ; T2

| iftrue Tb then { T1 } | iffalse Tb else { T2 }
| whilefalse Tb | whiletrue Tb do { Tc }; Tw

Fig. 6. Trace syntax

3. inflation property holds:

∀p∈P p �P g(f(p))

We use this approach in our Coq mechanisation. We will first prove a general
theorem that any pair of functions that fulfils properties (1)–(3) above forms a
Galois connection. We will then define forward and backward slicing functions
for Imp programs and prove that they are monotone, deflationary, and inflation-
ary. Once this is done we will instantiate the general theorem with our specific
definitions of forward and backward slicing to arrive at the proof that our slicing
functions form a Galois connection. This is the crucial correctness property that
we aim to prove. We also prove that existence of a Galois connection between
forward and backward slicing functions implies consistency and minimality prop-
erties. Note that consistency is equivalent to the inflation property.

3 Dynamic Program Slicing

3.1 Tracing Semantics

Following previous work [15,17], we employ a tracing semantics to define
the slicing algorithms. Since dynamic slicing takes account of the actual exe-
cution path followed by a run of a program, we represent the execution path
taken using an explicit trace data structure. Traces are then traversed as part of
both the forward and backward slicing algorithms. That is, unlike tracing eval-
uation, forward and backward slicing follow the structure of traces, rather than
the program. Note that we are not really inventing anything new here: in our
formalisation, the trace is simply a proof term witnessing the derivability of the
operational semantics judgement. The syntax of traces is shown in Fig. 6. The
structure of traces follows the structure of language syntax with the following
exceptions:

– The expression trace x(va) records both the variable name x and a value va
that was read from program state μ;

– For conditional instructions, traces record which branch was actually taken.
When the if condition evaluates to true we store traces of evaluating the
condition and the then branch; if it evaluates to false we store traces of
evaluating the condition and the else branch.

Verified Self-Explaining Computation 85

– For while loops, if the condition evaluates to false (i.e. loop body does not
execute) we record only a trace for the condition. If the condition evaluates
to true we record traces for the condition (Tb), a single execution of the loop
body (Tc) and the remaining iterations of the loop (Tw).

µ, n ⇒ n :: vn
µ(x) = va

µ, x ⇒ x(va) :: va
µ, a1 ⇒ T1 :: v1 µ, a2 ⇒ T2 :: v2
µ, a1 + a2 ⇒ T1 + T2 :: v1 +N v2

Fig. 7. Imp arithmetic expressions evaluation

µ, true ⇒ true :: true µ, false ⇒ false :: false

µ, a1 ⇒ T1 :: v1 µ, a2 ⇒ T2 :: v2
µ, a1 = a2 ⇒ T1 = T2 :: v1 =B v2

µ, b ⇒ T :: v
µ,¬b ⇒ ¬T :: ¬Bv

µ, b1 ⇒ T1 :: v1 µ, b2 ⇒ T2 :: v2
µ, b1 ∧ b2 ⇒ T1 ∧ T2 :: v1 ∧B v2

Fig. 8. Imp boolean expressions evaluation

Figures 7, 8, and 9 show evaluation rules for arithmetic expressions, boolean
expressions, and imperative commands, respectively2. Traces are written in grey
colour and separated with a double colon (::) from the evaluation result. Arith-
metic expressions evaluate to numbers (denoted va). Boolean expressions eval-
uate to either true or false (jointly denoted as vb). Operators with N or B sub-
scripts should be evaluated as mathematical and logical operators respectively
to arrive at an actual value; this is to distinguish them from the language syn-
tax. Commands evaluate by side-effecting on the input state, producing a new
state as output (Fig. 9). Only arithmetic values can be assigned to variables and
stored inside a state. Assignments to variables absent from the program state
are treated as no-ops. This means all variables that we want to write and read
must be included (initialised) in the initial program state. We explain reasons
behind this decision later in Sect. 4.3.

3.2 Forward Slicing

In this and the next section we present concrete definitions of forward and back-
ward slicing for Imp programs. Readers may prefer to skip ahead to Sect. 3.4
for an extended example of these systems at work first. Our slicing algorithms
are based on the ideas first presented in [17]. Presentation in Sect. 2.2 views the
2 We overload the ⇒ notation to mean one of three evaluation relations. It is always

clear from the arguments which relation we are referring to.

86 J. Stolarek and J. Cheney

µ, skip ⇒ skip :: µ
µ, a ⇒a Ta :: va

µ, x := a ⇒ x := Ta :: µ[x va]

µ, c1 ⇒ T1 :: µ′ µ′, c2 ⇒ T2 :: µ′′

µ, c1 ; c2 ⇒ T1 ; T2 :: µ′′

µ, b ⇒ Tb :: true µ, c1 ⇒ T1 :: µ′

µ, if b then { c1 } else { c2 } ⇒ iftrue Tb then { T1 } :: µ′

µ, b ⇒ Tb :: false µ, c2 ⇒ T2 :: µ′

µ, if b then { c1 } else { c2 } ⇒ iffalse Tb else { T2 } :: µ′

µ, b ⇒ Tb :: false
µ, while b do { c } ⇒ whilefalse Tb :: µ

µ, b ⇒ Tb :: true µ, c ⇒ Tc :: µ′ µ′, while b do { c } ⇒ Tw :: µ′′

µ, while b do { c } ⇒ whiletrue Tb do { Tc }; Tw :: µ′′

Fig. 9. Imp command evaluation.

T :: µ,� � n :: µ, n n x(va) :: µ, x µ(x)

T1 :: µ, a1 �
T1 + T2 :: µ, a1 + a2 �

T2 :: µ, a2 �
T1 + T2 :: µ, a1 + a2 �

T1 :: µ, a1 v1 T2 :: µ, a2 v2
T1 + T2 :: µ, a1 + a2 v1 +N v2

v1, v2 �= �

Fig. 10. Forward slicing rules for Imp arithmetic expressions.

slicing algorithms as computable functions and we will implement them in code
as such. However for the purpose of writing down the formal definitions of our
algorithms we will use a relational notation. It is more concise and allows easier
comparisons with previous work.

Figures 10, 11 and 12 present forward slicing rules for the Imp language3. As
mentioned in Sect. 2.2, forward slicing can be thought of as evaluation of partial
programs. Thus the forward slicing relations ↗ take a partial program, a partial
state, and an execution trace as an input and return a partial value, either a
partial number (for partial arithmetic expressions), a partial boolean (for partial
logical expressions) or a partial state (for partial commands). For example, we
can read T :: μ, c ↗ μ′ as “Given trace T , in partial environment μ the partial
command c forward slices to partial output μ′.”

A general principle in the forward slicing rules for arithmetic expressions
(Fig. 10) and logical expressions (Fig. 11) is that “holes propagate”. This means

3 We again overload ↗ and ↘ arrows in the notation to denote one of three for-
ward/backward slicing relations. This is important in the rules for boolean slicing,
whose premises refer to the slicing relation for arithmetic expressions, and command
slicing, whose premises refer to slicing relation for boolean expressions.

Verified Self-Explaining Computation 87

T :: µ,� �

true :: µ, true true false :: µ, false false

T1 :: a1 �
T1 = T2 :: µ, a1 = a2 �

T2 :: a2 �
T1 = T2 :: µ, a1 = a2 �

T1 :: a1 v1 T2 :: a2 v2
T1 = T2 :: µ, a1 = a2 v1 =B v2

v1, v2 �= �

T :: b �
¬T :: µ,¬b �

T :: b vb
¬T :: µ,¬b ¬Bv

vb �= �

T1 :: b1 �
T1 ∧ T2 :: µ, b1 ∧ b2 �

T2 :: b2 �
T1 ∧ T2 :: µ, b1 ∧ b2 �

T1 :: b1 v1 T2 :: b2 v2
T1 ∧ T2 :: µ, b1 ∧ b2 v1 ∧B v2

v1, v2 �= �

Fig. 11. Forward slicing rules for Imp boolean expressions.

that whenever � appears as an argument of an operator, application of that
operator forward slices to a �. For example, 1 + � forward slices to a � and
so does ¬�. In other words, if an arithmetic or logical expression contains at
least one hole it will reduce to a �; if it contains no holes it will reduce to a
proper value. This is not the case for commands though. For example, command
if true then 1 else � forward slices to 1, even though it contains a hole in the
(not taken) else branch.

A rule worth attention is one for forward slicing of variable reads:

x(va) :: μ, x ↗ μ(x)

It is important here that we read the return value from μ and not va recorded
in a trace. This is because μ is a partial state and also part of a forward slicing
criterion. It might be that μ maps x to �, in which case we must forward slice
to � and not to va. Otherwise minimality would not hold.

Forward slicing rules for arithmetic and logical expressions both have a uni-
versal rule for forward slicing of holes that applies regardless of what the exact
trace value is:

T :: μ,� ↗ �

There is no such rule for forward slicing of commands (Fig. 12). There we have
separate rules for forward slicing of holes for each possible trace. This is due
to the side-effecting nature of commands, which can mutate the state through
variable assignments. Consider this rule for forward slicing of assignments w.r.t.

88 J. Stolarek and J. Cheney

Fig. 12. Forward slicing rules for Imp commands.

a � as a slicing criterion4:

x := Ta :: μ,� ↗ μ[x �→ �]

When forward slicing an assignment w.r.t. a � we need to erase (i.e. change to a
�) variable x in the state μ, which follows the principle of “propagating holes”.
Here having a trace is crucial to know which variable was actually assigned
during the execution. Rules for forward slicing of other commands w.r.t. a �
traverse the trace recursively to make sure that all variable assignments within
a trace are reached. For example:

T1 :: μ,� ↗ μ′

iftrue Tb then { T1 } :: μ,� ↗ μ′

4 When some partial value v is used as a slicing criterion we say that we “slice w.r.t. v”.

Verified Self-Explaining Computation 89

In this rule, trace T1 is traversed recursively to arrive at a state μ′ that is then
returned as the final product of the rule. Notice how trace Tb is not traversed.
This is because boolean expressions (and arithmetic ones as well) do not have
side effects on the state and so there is no need to traverse them.

The problem of traversing the trace recursively to handle side-effects to the
state can be approached differently. Authors of [17] have formulated a single
rule, which we could adapt to our setting like this:

L = writes(T)
T :: μ,� ↗ μ � L

In this rule writes(T) means “all state locations written to inside trace T” and
μ � L means erasing (i.e. mapping to a �) all locations in μ that are mentioned
in L. Semantically this is equivalent to our rules – both approaches achieve the
same effect. However, we have found having separate rules easier to formalise in
a proof assistant.

3.3 Backward Slicing

Backward slicing rules are given in Figs. 13, 14 and 15. These judgements should
be read left-to-right, for example, T :: μ ↘ μ′, c should be read as “Given trace
T and partial output state μ, backward slicing yields partial input μ′ and partial
command c.” Their intent is to reconstruct the smallest program code and initial
state that suffice to produce, after forward slicing, a result that is at least as
large as the backward slicing criterion. To this end, backward slicing crucially
relies on execution traces as part of input, since slicing effectively runs a program
backwards (from final result to source code).

Figures 13 and 14 share a universal rule for backward slicing w.r.t. a hole.

T :: μ,� ↘ ∅µ,�

This rule means that to obtain an empty result it always suffices to have an
empty state and no program code. This rule always applies preferentially over
other rules, which means that whenever a value, such as va or vb, appears as a
backward slicing criterion we know it is not a �. Similarly, Fig. 15 has a rule:

T :: ∅ ↘ ∅∅,�

T :: µ,� ∅µ,� n :: µ, va ∅µ, n

x(va) :: µ, va ∅µ[x va], x

T1 :: µ, v1 µ1, a1 T2 :: µ, v2 µ2, a2

T1 + T2 :: µ, va µ1 � µ2, a1 + a2

Fig. 13. Backward slicing rules for Imp arithmetic expressions.

90 J. Stolarek and J. Cheney

T :: µ,� ∅µ,�

true :: µ, true ∅µ, true false :: µ, false ∅µ, false

T1 :: µ, v1 µ1, a1 T2 :: µ, v2 µ2, a2

T1 = T2 :: µ, vb µ1 � µ2, a1 = a2

T :: µ, vb µ′, b
¬T :: µ, vb µ′,¬b

T1 :: µ, v1 µ1, b1 T2 :: µ, v2 µ2, b2
T1 ∧ T2 :: µ, vb µ1 � µ2, b1 ∧ b2

Fig. 14. Backward slicing rules for Imp boolean expressions.

It means that backward slicing w.r.t. a state with an empty domain (i.e. con-
taining no variables) returns an empty partial state and an empty program.
Of course having a program operating over a state with no variables would be
completely useless – since a state cannot be extended with new variables during
execution we wouldn’t observe any effects of such a program. However, in the
Coq formalisation, it is necessary to handle this case because otherwise Coq will
not accept that the definition of backward slicing is a total function.

In the rule for backward slicing of variable reads (third rule in Fig. 13) it
might seem that va stored inside a trace is redundant because we know what va
is from the slicing criterion. This is a way of showing that variables can only be
sliced w.r.t. values they have evaluated to during execution. So for example if x
evaluated to 17 it is not valid to backward slice it w.r.t. 42.

The rule for backward slicing of addition in Fig. 13 might be a bit surprising.
Each of the subexpressions is sliced w.r.t. a value that this expression has eval-
uated to (v1, v2), and not w.r.t. va. It might seem we are getting v1 and v2 out
of thin air, since they are not directly recorded in a trace. Note however that
knowing T1 and T2 allows to recover v1 and v2 at the expense of additional com-
putations. In the actual implementation we perform induction on the structure
of evaluation derivations, which record values of v1 and v2, thus allowing us to
avoid extra computations. We show v1 and v2 in our rules but avoid showing
the evaluation relation as part of slicing notation. This is elaborated further in
Sect. 4.4.

Recursive backward slicing rules also rely crucially on the join (
) operation,
which combines smaller slices from slicing subexpressions into one slice for the
whole expression.

There are two separate rules for backward slicing of variable assignments
(rules 3 and 4 in Fig. 15). If a variable is mapped to a � it means it is irrelevant.
We therefore maintain mapping to a � and do not reconstruct variable assign-
ment instructions. If a variable is relevant though, i.e. it is mapped to a concrete
value in a slicing criterion, we reconstruct the assignment instruction together
with an arithmetic expression in the RHS. We also join state μa required to

Verified Self-Explaining Computation 91

Fig. 15. Backward slicing rules for Imp commands.

evaluate the RHS with μ[x �→ �]. It is crucial that we erase x in μ prior to join-
ing. Firstly, if x is assigned, its value becomes irrelevant prior to the assignment,
unless x is read during evaluation of the RHS (e.g. we are slicing an assignment
x := x + 1). In this case x will be included in μa but its value can be different
than the one in μ. It is thus necessary to erase x in μ to make a join operation
possible.

At this point, it may be helpful to review the forward rules for assignment
and compare with the backward rules, illustrated via a small example. Suppose
we have an assignment z := x + y, initially evaluated on [w �→ 0, x �→ 1, y �→
2, z �→ 42], and yielding result state [w �→ 0, x �→ 1, y �→ 2, z �→ 3]. The induced
lattice of minimal inputs and maximal outputs consists of the following pairs:

[w �→ v, x �→ 1, y �→ 2, z �→ �] ←→ [w �→ v, x �→ 1, y �→ 2, z �→ 3]
[w �→ v, x �→ 1, y �→ �, z �→ �] ←→ [w �→ v, x �→ 1, y �→ �, z �→ �]
[w �→ v, x �→ �, y �→ 2, z �→ �] ←→ [w �→ v, x �→ �, y �→ 2, z �→ �]
[w �→ v, x �→ �, y �→ �, z �→ �] ←→ [w �→ v, x �→ �, y �→ �, z �→ �]

92 J. Stolarek and J. Cheney

where v ∈ {�, 0} so that each line above abbreviates two concrete relationships;
the lattice has the shape of a cube. Because w is not read or written by z
:= x + y, it is preserved if present in the forward direction or if required in
the backward direction. Because z is written but not read, its initial value is
always irrelevant. To obtain the backward slice of any other partial output, such
as [w �→ �, x �→ 1, y �→ �, z �→ 3], find the smallest maximal partial output
containing it, and take its backward slice, e.g. [w �→ �, x �→ 1, y �→ 1, z �→ �].

In the backward slicing rules for if instructions, we only reconstruct a branch
of the conditional that was actually taken during execution, leaving a second
branch as a �. Importantly in these rules state μb is a minimal state sufficient
for an if condition to evaluate to a true or false value. That state is joined
with state μ′, which is a state sufficient to evaluate the reconstructed branch of
an if.

Rules for while slicing follow a similar approach. It might seem that the
second rule for slicing whiletrue is redundant because it is a special case of the
third whiletrue rule if we allowed cw = �. Indeed, that is the case on paper.
However, for the purpose of a mechanised formalisation we require that these
two rules are separate. This shows that formalising systems designed on paper
can indeed be tricky and require modifications tailored to solve mechanisation-
specific issues.

Readers might have noticed that whenever a backward slicing rule from
Fig. 15 returns � as an output program, the state returned by the rule will
be identical to the input state. One could then argue that we should reflect this
in our rules by explicitly denoting that input and output states are the same,
e.g.

T1 :: μ ↘ μ,�
iftrue Tb then { T1 } :: μ ↘ μ,�

While it is true that in such a case states will be equal, this approach would
not be directly reflected in the implementation, where slicing is implemented as
a function and a result is always assigned to a new variable. However, it would
be possible to prove a lemma about equality of input and output states for �
output programs, should we need this fact.

3.4 An Extended Example of Backward Slicing

We now turn to an extended example that combines all the programming con-
structs of Imp5: assignments, sequencing, conditionals, and loops. Figure 16
shows a program that divides integer a by b, and produces a quotient q, remain-
der r, and result res that is set to 1 if b divides a and to 0 otherwise.

To test whether 2 divides 4 we set a �→ 4, b �→ 2 in the input state. The
remaining variables q, r and res are initialised to 0 (Fig. 16a). The while loop
body is executed twice; the loop condition is evaluated three times. Once the loop
has stopped, variable q is set to 2 and variable r to 0. Since the if condition is
5 This example is adapted from [9].

Verified Self-Explaining Computation 93

[q 0, r 0, res 0, a 4, b 2]

r := a;

while (b <= r) do {
q := q + 1;

r := r - b

};
if (! (r = 0))

then { res := 0 }
else { res := 1 }
[q 2, r 0, res 1, a 4, b 2]

(a) Original program.

[q �, r �, res �, a 4, b 2]

r := a;

while (b <= r) do {
�;

r := r - b

};
if (! (r = 0))

then { � }
else { res := 1 }
[q �, r �, res 1, a �, b �]

(b) Backward slice w.r.t. res 1.

Fig. 16. Slicing a program that computes whether b divides a.

false we execute the else branch and set res to 1. Figure 17 shows the execution
trace.

(1) r := a(4);

(2) whiletrue (b(2) <= r(4)) do {
(3) q := q(0) + 1; r := r(4) − b(2)

(4) };
(5) whiletrue (b(2) <= r(2)) do {
(6) q := q(1) + 1; r := r(2) − b(2)

(7) };

(8) whilefalse (b(2) <= r(0));

(9) iffalse (¬(r(0) = 0)) else {
(10) res := 1

(11) }

Fig. 17. Trace of executing an example program for a �→ 4 and b �→ 2.

We now want to obtain an explanation of res. We form a slicing criterion
by setting res �→ 1 (this is the value at the end of execution); all other variables
are set to �.

We begin by reconstructing the if conditional. We apply the second rule for
iffalse slicing (Fig. 16b). This is because c2, i.e. the body of this branch, backward
slices to an assignment res := 1, and not to a � (in which case the first rule for
iffalse slicing would apply). Assignment in the else branch is reconstructed by
applying the second rule for assignment slicing. Since the value assigned to res
is a constant it does not require presence of any variables in the state. Therefore
state μa is empty. Moreover, variable res is erased in state μ; joining of μa and
μ[res �→ �] results in an empty state, which indicates that the code inside the
else branch does not rely on the program state. However, to reconstruct the
condition of the if we need a state μb that contains variable r. From the trace
we read that r �→ 0, and so after reconstructing the conditional we have a state
where r �→ 0 and all other variables, including res, map to �.

94 J. Stolarek and J. Cheney

We now apply the third rule for sequence slicing and proceed with reconstruc-
tion of the while loop. First we apply a trivial whilefalse rule. The rule basically
says that there is no need to reconstruct a while loop that does not execute –
it might as well not be in a program. Since the final iteration of the while loop
was reconstructed as a �, we reconstruct the second iteration using the second
whiletrue backward slicing rule, i.e. the one where we have Tw :: μ ↘ μw,� as
the first premise. We begin reconstruction of the body with the second assign-
ment r := r(2) − b(2). Recall that the current state assigns 0 to r. The RHS
is reconstructed using the second rule for backward slicing of assignments we
have already applied when reconstructing else branch of the conditional. An
important difference here is that r appears both in the LHS and RHS. Recon-
struction of RHS yields a state where r �→ 2 and b �→ 2 (both values read from a
trace), whereas the current state contains r �→ 0. Here it is crucial that we erase
r in the current state before joining. We apply third rule of sequence slicing and
proceed to reconstruct the assignment to q using the first rule for assignment
slicing (since q �→ � in the slicing criterion). This reconstructs the assignment as
a �. We then reconstruct the first iteration of the loop using the third whiletrue
slicing rule, since it is the case that cw �= �. Assignments inside the first iteration
are reconstructed following the same logic as in the second iteration, yielding a
state where r �→ 4, b �→ 2, and other variables map to �.

Finally, we reconstruct the initial assignment r := a. Since r is present in
the slicing criterion, we yet again apply the second rule for assignment slicing,
arriving at a partial input state [q �→ 0, r �→ 0, res �→ 0, a �→ 4, b �→ 2] and a
partial program shown in Fig. 16b.

4 Formalisation

In the previous sections we defined the syntax and semantics of the Imp language,
and provided definitions of slicing in a Galois connection framework. We have
implemented all these definitions in the Coq proof assistant [20] and proved their
correctness as formal theorems. The following subsections outline the structure
of our Coq development. We provide references to the source code by provid-
ing the name of file and theorem or definition as (filename.v: theorem name,
definition name). We will use * in abbreviations like * monotone to point
to several functions ending with monotone suffix. The whole formalisation is
around 5.2k lines of Coq code (not counting the comments). Full code is avail-
able online [19].

4.1 Lattices and Galois Connections

Our formalisation is built around a core set of definitions and theorems about
lattices and Galois connections. Most importantly we define:

– That a relation that is reflexive, antisymmetric and transitive is a partial order
(Lattice.v: order). When we implement concrete definitions of ordering
relations we require a proof that these implementations indeed have these
three properties, e.g. (ImpPartial.v: order aexpPO).

Verified Self-Explaining Computation 95

– What it means for a function f : P → Q to be monotone (Lattice.v:
monotone):

∀x,y x �P y =⇒ f(x) �Q f(y)

– Consistency properties as given in Sect. 2.2 (Lattice.v: inflation, def-
lation).

– A Galois connection of two functions between lattices P and Q (see Defini-
tion 1 in Sect. 2.2) (Lattice.v: galoisConnection).

We then prove that:

– Existence of a Galois connection between two functions implies their consis-
tency and minimality (Lattice.v: gc implies consistency, gc implies
minimality).

– Two monotone functions with deflation and inflation properties form a Galois
connection (Lattice.v: cons mono gc).

Throughout the formalisation we operate on elements inside lattices of partial
expressions (↓a, ↓b, commands (↓c) or states (↓μ). We represent values in a lattice
with an inductive data type prefix6 (PrefixSets.v: prefix) indexed by the
top element of the lattice and the ordering relation7. Values of prefix data
type store an element from a lattice together with the evidence that it is in
the ordering relation with the top element. Similarly we define an inductive
data type prefixO (PrefixSets.v: prefixO) for representing ordering of two
elements from the same lattice. This data type stores the said two elements
together with proofs that one is smaller than another and that both are smaller
than the top element of a lattice.

4.2 Imp Syntax and Semantics

All definitions given in Figs. 2, 3, 4 and 5 are directly implemented in our Coq
formalisation.

Syntax trees for Imp (Fig. 2), traces (Fig. 6) and partial Imp (Fig. 3)
are defined as ordinary inductive data types in (Imp.v: aexp, bexp, cmd),
(Imp.v: aexpT, bexpT, cmdT) and (ImpPartial.v: aexpP, bexpP, cmdP),
respectively. We also define functions to convert Imp expressions to partial Imp
expressions by rewriting from normal syntax tree to a partial one (ImpPartial.v:
aexpPartialize, bexpPartialize, cmdPartialize).

Evaluation relations for Imp (Figs. 7, 8 and 9) and ordering relations for par-
tial Imp (Fig. 4) are defined as inductive data types with constructors indexed by
elements in the relation (Imp.v: aevalR, bevalR, cevalR and ImpPartial.v:

6 Name comes from a term “prefix set” introduced in [17] to refer to a set of all partial
values smaller than a given value. So a prefix set of a top element of a lattice denotes
a set of all elements in that (complete) lattice.

7 In order to make the code snippets in the paper easier to read we omit the ordering
relation when indexing prefix.

96 J. Stolarek and J. Cheney

aexpPO, bexpPO, comPO), respectively. For each ordering relation we construct
a proof of its reflexivity, transitivity, and antisymmetry, which together proves
that a given relation is a partial order (ImpPartial.v: order aexpPO, order
bexpPO, order comPO).

Join operations (Fig. 5) are implemented as functions (ImpPartial.v:
aexpLUB, bexpLUB, comLUB). Their implementation is particularly tricky. Coq
requires that all functions are total. We know that for two elements from the
same lattice a join always exists, and so a join function is a total one. However,
we must guarantee that a join function only takes as arguments elements from
the same lattice. To this end a function takes three arguments: top element e
of a lattice and two prefix values e1, e2 indexed by the top element e. So for
example if e is a variable name x, we know that each of e1 and e2 is either also
a variable name x or a �. However, Coq does not have a built-in dependent
pattern match and this leads to complications. In our example above, even if we
know that e is a variable name x we still have to consider cases for e1 and e2
being a constant or an arithmetic operator. These cases are of course impossible,
but it is the programmer’s responsibility to dismiss them explicitly. This causes
further complications when we prove lemmas about properties of join, e.g.:

e1 � e ∧ e2 � e =⇒ (e1
 e2) � e

This proof is done by induction on the top element of a lattice, where e, e1, and
e2 are all smaller than that element. The top element limits the possible values
of e, e1, and e2 but we still have to consider the impossible cases and dismiss
them explicitly.

4.3 Program State

Imp programs operate by side-effecting on a program state. Handling of the state
was one of the most tedious parts of the formalisation.

State is defined as a data type isomorphic to an association list that maps
variables to natural number values (ImpState.v: state). Partial state is defined
in the same way, except that it permits partial values, i.e. variables can be
mapped to a hole or a numeric value (ImpState.v: stateP). We assume that
no key appears more than once in a partial state. This is not enforced in the
definition of stateP itself, but rather defined as a separate inductive predicate
(ImpState.v: statePWellFormed) that is explicitly passed as an assumption to
any theorem that needs it. We also have a statePartialize function that turns
a state into a partial state. This only changes representation from one data type
to another, with no change in the state contents.

For partial states we define an ordering relation as a component-wise order-
ing of partial values inside a state (ImpState.v: statePO). This assumes that
domains of states in ordering relation are identical (same elements in the same
order), which allows us to formulate lemmas such as:

[] ≤ μ =⇒ μ = []

Verified Self-Explaining Computation 97

This lemma says that if a partial state μ is larger than an state with empty
domain then μ itself must have an empty domain.

We also define a join operation on partial states, which operates element-wise
on two partial states from the same lattice (ImpState.v: stateLUB).

As already mentioned in Sect. 3.1, the domain of the state is fixed throughout
the execution. This means that updating a variable that does not exist in a
state is a no-op, i.e. it returns the original state without any modifications. This
behaviour is required to allow comparison of states before and after an update.
Consider this lemma:

(μ1 ≤ μ2) ∧ (v1 ≤ μ2(k)) =⇒ μ1[k �→ v1] ≤ μ2

It says that if a partial state μ1 is smaller than μ2 and the value stored in state
μ2 under key k is greater than v1 then we can assign v1 to key k in μ1 and the
ordering between states will be maintained. A corner-case for this theorem is
when the key k is absent from the states μ1 and μ2. Looking up a non-existing
key in a partial state returns a �. If k did not exist in μ2 (and thus μ1 as well)
then μ2(k) would return � and so v1 could only be a � (per second assumption of
the theorem). However, if we defined semantics of update to insert a non-existing
key into the state, rather than be a no-op, the conclusion of the theorem would
not hold because domain of μ1[k �→ v1] would contain k and domain of μ2 would
not, thus making it impossible to define the ordering between the two states.

The approach described above is one of several possible design choices. One
alternative approach would be to require evidence that the key being updated
exists in the state, making it impossible to attempt update of non-existent keys.
We have experimented with this approach but found explicit handling of evidence
that a key is present in a state very tedious and seriously complicating many of
the proofs. In the end we decided for the approach outlined above, as it allowed
us to prove all the required lemmas, with only some of them relying on an explicit
assumption that a key is present in a state. An example of such a lemma is:

μ[k �→ v](k) = v

which says that if we update key k in a partial state μ with value v and then
immediately lookup k in the updated state we will get back the v value we just
wrote to μ. However, this statement only holds if k is present in μ. If it was
absent the update would return μ without any changes and then lookup would
return �, which makes the theorem statement false. Thus this theorem requires
passing explicit evidence that k ∈ dom(μ) in order for the conclusion to hold.

Formalising program state was a tedious task, requiring us to prove over sixty
lemmas about the properties of operations on state, totalling over 800 lines of
code.

4.4 Slicing Functions

Slicing functions implement rules given in Figs. 10, 11, 12, 13, 14 and 15. We
have three separate forward slicing functions, one for arithmetic expressions,

98 J. Stolarek and J. Cheney

one for logical expressions and one for imperative commands (ImpSlicing.v:
aexpFwd, bexpFwd, comFwd). Similarly for backward slicing (ImpSlicing.v:
aexpBwd, bexpBwd, comBwd).

In Sect. 2.2 we said that forward and backward slicing functions operate
between two lattices. If we have an input p (an arithmetic or logical expression
or a command) with initial state μ that evaluates to output p′ (a number, a
boolean, a state) and records a trace T then fwdT(p,µ) is a forward slicing func-
tion parametrized by T that takes values from lattice generated by (p, μ) to
values in lattice generated by p′. Similarly bwdTp′ is a backward slicing function
parametrized by T that takes values from lattice generated by p′ to values in lat-
tice generated by (p, μ). Therefore our implementation of forward and backward
slicing functions has to enforce that:

1. (p, μ) evaluates to p′ and records trace T
2. Forward slicing function takes values from lattice generated by (p, μ) to lattice

generated by p′

3. Fackward slicing function takes values from lattice generated by p′ to lattice
generated by (p, μ)

To enforce the first condition we require that each slicing function is
parametrized by inductive evidence that a given input (p, μ) evaluates to p′

and records trace T . We then define input and output types of such slicing func-
tions as belonging to relevant lattices, which is achieved using the prefix data
type described in Sect. 4.1. This enforces the conditions above. For example, the
type signature of the forward slicing function for arithmetic expressions looks
like this:

Fixpoint aexpFwd {st : state} {a : aexp}

{v : nat} {t : aexpT}

(ev : t :: a, st \\ v):

(prefix a * prefix st) -> prefix v.

Here ev is evidence that arithmetic expression a with input state st evaluates
to a natural number v and records an execution trace t. The t :: a, st \\ v
syntax is a notation for the evaluation relation. The first four arguments to
aexpFwd are in curly braces, denoting they are implicit and can be inferred from
the type of ev. The function then takes values from the lattice generated by (a,
st) and returns values in the lattice generated by v.

In the body of a slicing function we first decompose the evaluation evidence
with pattern matching. In each branch we implement logic corresponding to
relevant slicing rules defined in Figs. 10, 11, 12, 13, 14 and 15. Premises appearing
in the rules are turned into recursive calls. If necessary, results of these calls are
analysed to decide which rule should apply. For example, when backward slicing
sequences we analyse whether the recursive calls return holes or expressions to
decide which of the rules should apply.

The implementation of the slicing functions faces similar problems as the
implementation of joins described in Sect. 4.2. When we pattern match on the

Verified Self-Explaining Computation 99

evaluation evidence, in each branch we are restricted to concrete values of the
expression being evaluated. For example, if the last step in the evaluation was
an addition, then we know the slicing criterion is a partial expression from a
lattice formed by expression a1 + a2. Yet we have to consider the impossible
cases, e.g. having an expression that is a constant, and dismiss them explicitly.
Moreover, operating inside a lattice requires us not to simply return a result,
but also provide a proof that this result is inside the required lattice. We rely
on Coq’s refine tactic to construct the required proof terms. All of this makes
the definitions of slicing functions very verbose. For example, forward slicing
of arithmetic expressions requires over 80 lines of code with over 60 lines of
additional boilerplate lemmas to dismiss the impossible cases.

For each slicing function we state and prove a theorem that it is monotone
(ImpSlicing.v: * monotone). For each pair of forward and backward slicing
functions we state theorems that these pairs of functions have deflation and
inflation properties (ImpSlicing.v: * deflating, * inflating), as defined in
Sect. 2.2. Once these theorems are proven we create instances of a general theo-
rem cons mono gc, described in Sect. 4.1, which proves that our definitions form
a Galois connection and are thus a correctly defined pair of slicing functions. We
also create instances of the gc implies minimality theorem, one instance for
each slicing function. This provides us with a formalisation of all the correctness
properties, proving our main result:

Theorem 1. Suppose μ1, c ⇒ T :: μ2. Then there exist total, monotone func-
tions fwdT(c,µ1) : ↓c × ↓μ1 → ↓μ2 and bwdTµ2

: ↓μ2 → ↓c × ↓μ1. Moreover,
bwdTµ2

� fwdT(c,µ1) form a Galois connection and in particular satisfy the mini-
mality, inflation (consistency), and deflation properties.

Here, the forward and backward slicing judgements are implemented as functions
fwdT(c,µ1) and bwdTµ2

.

5 Related and Future Work

During the past few decades a plethora of slicing algorithms has been presented
in the literature. See [18] for a good, although now slightly out of date, survey.
Most of these algorithms have been analysed in a formal setting of some sort
using pen and paper. However, work on formalising slicing in a machine checked
way has been scarce. One example of such a development is [14], which formalises
dynamic slicing for π-calculus in Agda using a Galois connection framework iden-
tical to the one used in this paper. The high-level outline of the formalisation is
thus similar to ours. However, details differ substantially, since [14] formalises a
completely different slicing algorithm for concurrent processes using a different
proof assistant. Another example of formalising slicing in a proof assistant is
[3], where Coq is used to perform an a posteriori validation of a slice obtained
using an unverified program slicer. This differs from our approach of verifying
correctness of a slicing algorithm itself. We see our approach of verifying cor-
rectness of the whole algorithm as a significant improvement over the validation

100 J. Stolarek and J. Cheney

approach. In a more recent work Léchenet et al. [9] introduce a variant of static
slicing known as relaxed slicing and use Coq to formalise the slicing algorithm.
Their work is identical in spirit to ours and focuses on the Imp language8 with
an extra assert statement.

Galois connections have been investigated previously as a tool in the mathe-
matics of program construction, for example by Backhouse [1] and more recently
by Mu and Oliveira [12]. As discussed in Sect. 1, Galois connections capture a
common pattern in which one first specifies a space of possible solutions to a
problem, the “easy” part, via one adjoint, and defines the mapping from problem
instances to optimal solutions, the “hard” part, as the Galois dual. In the case of
slicing, we have used the goal of obtaining a verifiable Galois connection, along
with intuition, to motivate choices in the design of the forward semantics, and
it has turned out to be easier for our correctness proof to define both directions
directly.

Mechanised proofs of correctness of calculational reasoning has been consid-
ered in the Algebra of Programming in Agda (AOPA) system [11], and subse-
quently extended to include derivation of greedy algorithms using Galois connec-
tions [5]. Another interesting, complementary approach to program comprehen-
sion is Gibbons’ program fission [7], in which the fusion law is applied “in reverse”
to an optimized, existing program in order to attempt to discover a rationale for
its behavior: for example by decomposing an optimized word-counting program
into a “reforested” version that decomposes its behavior into “construct a list of
all the words” and “take the length of the list”. We conjecture that the traces
that seem to arise as a natural intermediate structure in program slicing might
be viewed as an extreme example of fission.

An important line of work on slicing theory focuses on formalising differ-
ent slicing algorithms within a unified theoretical framework of program projec-
tion [2]. Authors of that approach develop a precise definition of what it means
that one form of slicing is weaker than another. However, our dynamic slicing
algorithm does not fit the framework as presented in [2]. We believe that it
should be possible to extend the program projection framework so that it can
encompass slicing based on Galois connections but this is left as future work.

6 Summary

Program slicing is an important tool for aiding software development. It is useful
when creating new programs as well as maintaining existing ones. In this paper
we have developed and formalised an algorithm for dynamic slicing of imperative
programs. Our work extends the line of research on slicing based on the Galois
connection framework. In the presented approach slicing consists of two compo-
nents: forward slicing, that allows to execute partial programs, and backward
slicing, that allows to “rewind” program execution to explain the output.

Studying slicing in a formal setting ensures the reliability of this technique.
We have formalised all of the theory presented in this paper using the Coq proof
8 Authors of [9] use the name WHILE, but the language is the same.

Verified Self-Explaining Computation 101

assistant. Most importantly, we have shown that our slicing algorithms form
a Galois connection, and thus have the crucial properties of consistency and
minimality. One interesting challenge in our mechanisation of the proofs was the
need to modify some of the theoretical developments so that they are easier to
formalise in a proof assistant – c.f. overlapping rules for backward slicing of while
loops described in Sect. 3.3.

Our focus in this paper was on a simple programming language Imp. This
work should be seen as a stepping stone towards more complicated formalisations
of languages with features like (higher-order) functions, arrays, and pointers.
Though previous work [17] has investigated slicing based on Galois connections
for functional programs with imperative features, our experience formalising
slicing for the much simpler Imp language suggests that formalising a full-scale
language would be a considerable effort. We leave this as future work.

Acknowledgements. We gratefully acknowledge help received from Wilmer Ricciotti
during our work on the Coq formalisation, and Jeremy Gibbons for comments on
a draft. This work was supported by ERC Consolidator Grant Skye (grant number
682315).

References

1. Backhouse, R.: Galois connections and fixed point calculus. In: Backhouse, R.,
Crole, R., Gibbons, J. (eds.) Algebraic and Coalgebraic Methods in the Mathemat-
ics of Program Construction. LNCS, vol. 2297, pp. 89–150. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-47797-7 4

2. Binkley, D., Danicic, S., Gyimóthy, T., Harman, M., Kiss, A., Korel, B.: A formali-
sation of the relationship between forms of program slicing. Sci. Comput. Program.
62(3), 228–252 (2006). Special issue on Source code analysis and manipulation
(SCAM 2005)

3. Blazy, S., Maroneze, A., Pichardie, D.: Verified validation of program slicing. In:
Proceedings of the 2015 Conference on Certified Programs and Proofs, CPP 2015,
pp. 109–117. ACM, New York (2015)

4. Cheney, J., Acar, U.A., Perera, R.: Toward a theory of self-explaining computation.
In: Tannen, V., Wong, L., Libkin, L., Fan, W., Tan, W.-C., Fourman, M. (eds.)
In Search of Elegance in the Theory and Practice of Computation. LNCS, vol.
8000, pp. 193–216. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-41660-6 9

5. Chiang, Y., Mu, S.: Formal derivation of greedy algorithms from relational specifi-
cations: a tutorial. J. Log. Algebr. Meth. Program. 85(5), 879–905 (2016). https://
doi.org/10.1016/j.jlamp.2015.12.003

6. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press, Cambridge (2002)

7. Gibbons, J.: Fission for program comprehension. In: Proceedings of Mathematics
of Program Construction, 8th International Conference, MPC 2006, Kuressaare,
Estonia, 3–5 July 2006, pp. 162–179 (2006). https://doi.org/10.1007/11783596 12

8. Korel, B., Laski, J.: Dynamic program slicing. Inf. Process. Lett. 29(3), 155–163
(1988)

https://doi.org/10.1007/3-540-47797-7_4
https://doi.org/10.1007/978-3-642-41660-6_9
https://doi.org/10.1007/978-3-642-41660-6_9
https://doi.org/10.1016/j.jlamp.2015.12.003
https://doi.org/10.1016/j.jlamp.2015.12.003
https://doi.org/10.1007/11783596_12

102 J. Stolarek and J. Cheney

9. Léchenet, J., Kosmatov, N., Gall, P.L.: Cut branches before looking for bugs: certi-
fiably sound verification on relaxed slices. Formal Aspects Comput. 30(1), 107–131
(2018)

10. Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., Ferdinand, C.: Com-
pcert - a formally verified optimizing compiler. In: ERTS 2016: Embedded Real
Time Software and Systems. SEE (2016)

11. Mu, S., Ko, H., Jansson, P.: Algebra of programming in Agda: dependent types for
relational program derivation. J. Funct. Program. 19(5), 545–579 (2009). https://
doi.org/10.1017/S0956796809007345

12. Mu, S., Oliveira, J.N.: Programming from Galois connections. J. Log. Algebr. Pro-
gram. 81(6), 680–704 (2012). https://doi.org/10.1016/j.jlap.2012.05.003

13. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

14. Perera, R., Garg, D., Cheney, J.: Causally consistent dynamic slicing. In: CON-
CUR, pp. 18:1–18:15 (2016)

15. Perera, R., Acar, U.A., Cheney, J., Levy, P.B.: Functional programs that explain
their work. In: ICFP, pp. 365–376. ACM (2012)

16. Pierce, B.C., et al.: Software Foundations. Electronic textbook (2017), version 5.0.
http://www.cis.upenn.edu/∼bcpierce/sf

17. Ricciotti, W., Stolarek, J., Perera, R., Cheney, J.: Imperative functional programs
that explain their work. In: Proceedings of the ACM on Programming Languages
(PACMPL) 1(ICFP), September 2017

18. Silva, J.: An analysis of the current program slicing and algorithmic debugging
based techniques. Technical University of Valencia, Tech. rep. (2008)

19. Stolarek, J.: Verified self-explaining computation, May 2019. https://bitbucket.
org/jstolarek/gc imp slicing/src/mpc 2019 submission/

20. The Coq Development Team: The Coq proof assistant, version 8.7.0, October 2017.
https://doi.org/10.5281/zenodo.1028037

21. Weiser, M.: Program slicing. In: ICSE, pp. 439–449. IEEE Press, Piscataway (1981)
22. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.

MIT Press, Cambridge (1993)

https://doi.org/10.1017/S0956796809007345
https://doi.org/10.1017/S0956796809007345
https://doi.org/10.1016/j.jlap.2012.05.003
https://doi.org/10.1007/978-3-662-03811-6
http://www.cis.upenn.edu/~bcpierce/sf
https://bitbucket.org/jstolarek/gc_imp_slicing/src/mpc_2019_submission/
https://bitbucket.org/jstolarek/gc_imp_slicing/src/mpc_2019_submission/
https://doi.org/10.5281/zenodo.1028037

	Verified Self-Explaining Computation
	1 Introduction
	2 Overview
	2.1 Imp Slicing by Example
	2.2 A Galois Connection Approach to Program Slicing

	3 Dynamic Program Slicing
	3.1 Tracing Semantics
	3.2 Forward Slicing
	3.3 Backward Slicing
	3.4 An Extended Example of Backward Slicing

	4 Formalisation
	4.1 Lattices and Galois Connections
	4.2 Imp Syntax and Semantics
	4.3 Program State
	4.4 Slicing Functions

	5 Related and Future Work
	6 Summary
	References

