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Abstract. Designing programs that do not leak confidential informa-
tion continues to be a challenge. Part of the difficulty arises when partial
information leaks are inevitable, implying that design interventions can
only limit rather than eliminate their impact.

We show, by example, how to gain a better understanding of the con-
sequences of information leaks by modelling what adversaries might be
able to do with any leaked information.

Our presentation is based on the theory of Quantitative Information
Flow, but takes an experimental approach to explore potential vulnera-
bilities in program designs. We make use of the tool Kuifje [12] to inter-
pret a small programming language in a probabilistic semantics that
supports quantitative information flow analysis.

Keywords: Quantitative Information Flow · Probabilistic program
semantics · Security · Confidentiality

1 Introduction

Consider the following scenarios:

(I) Paris needs a secretary and intends to pick the best candidate from a list
of N applicants. His father King Priam knows Paris to be extremely impul-
sive making it highly likely that he will hire someone immediately after
interviewing them, thereby running the risk that he might miss the best
candidate. Knowing that he will not be able to suppress entirely Paris’
impetuous nature, Priam persuades Paris to interview first a certain num-
ber n, and only then to select the next best from the remaining candidates.
In that way Priam hopes to improve Paris’ chance of hiring the best sec-
retary. “But father, what value of n should I choose so that this strategy
increases the prospect of my finding the best candidate overall? Wouldn’t
I be better off just relying on my instinct?”
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(II) Remus wants to hack into Romulus’ account. Romulus knows this and won-
ders whether he should upgrade his system to include the latest password
checking software. He has lately been reading about a worrying “side chan-
nel” that could reveal prefixes of his real password. However he is not sure
whether the new software (which sounds quite complicated, and is very
expensive) is worth it or not. How does the claimed defence against the
side channel actually protect his password? What will be the impact on
useability?

Both these scenarios share the same basic ingredients: there is a player/ad-
versary who wants to make a decision within a context of partial information.
In order to answer the questions posed by Paris and Romulus, we need to deter-
mine whether the information available is actually useful given their respective
objectives. The result of such a determination for Paris might be that he would
be able to form some judgement about the circumstances under which his pro-
posed strategy could yield the best outcome for him. For Romulus he might be
better able to decide whether his brother could marshal the resources required to
breach the security defences in whichever password checking software he decides
to install.

The aim of this paper is to illustrate, by example, how to analyse the conse-
quences of any information leaks in program designs. The analysis is supported
by the theory of Quantitative Information Flow (QIF). In particular QIF for-
malises how adversaries stand to benefit from any information leaks, allowing
alternative designs to be compared in terms of specific adversarial scenarios. The
presentation takes an experimental approach with the goal of understanding the
impact and extent of partial information leaks. In so doing we acknowledge that
this form analysis is almost certain to be incomplete, however its strength is
to highlight relative strengths and weaknesses of program designs that handle
confidential information.

In Sect. 2 we summarise the main ideas of QIF and show in Sects. 3 and 4
how they can be applied to the scenarios outlined above. We also touch on some
logical features of modelling information flow in Sect. 5. In Sect. 6 we describe
briefly the features of a recent QIF analysis tool Kuifje [12], and sketch how it
can be used to describe the scenarios above and to carry out experiments to
assess their information leaks.

2 Review of Quantitative Information Flow

The informal idea of a secret is that it is something about which there is some
uncertainty, and the greater the uncertainty the more difficult it is to discover
exactly what the secret is. For example, one’s mother’s maiden name might not
be generally known, but if the nationality of one’s mother is leaked, then it might
rule out some possible names and make others more likely. Similarly, when some
information about a secret becomes available to an observer (often referred to
as an adversary) the uncertainty is reduced, and it becomes easier to guess its
value. If that happens, we say that information (about the secret) has leaked.
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Quantitative Information Flow (QIF) makes this intuition mathematically
precise. Given a range of possible secret values of (finite) type X , we model a
secret as a probability distribution of type DX , because it ascribes “probabilis-
tic uncertainty” to the secret’s exact value. Given π:DX , we write πx for the
probability that π assigns to x: X , with the idea that the more likely it is that
the real value is some specific x, then the closer πx will be to 1. Normally the
uniform distribution over X models a secret which could equally take any one
of the possible values drawn from its type and we might say that, beyond the
existence of the secret, nothing else is known. There could, of course, be many
reasons for using some other distribution, for example if the secret was the height
of an individual then a normal distribution might be more realistic. In any case,
once we have a secret, we are interested in analysing whether an algorithm, or
protocol, that uses it might leak some information about it. To do this we define
a measure for uncertainty, and use it to compare the uncertainty of the secret
before and after executing the algorithm. If we find that the two measurements
are different then we can say that there has been an information leak.

The original QIF analyses of information leaks in computer systems [3,4] used
Shannon entropy [17] to measure uncertainty because it captures the idea that
more uncertainty implies “more secrecy”, and indeed the uniform distribution
corresponds to maximum Shannon entropy (corresponding to maximum “Shan-
non uncertainty”). More recent treatments have shown that Shannon entropy is
not the best way to measure uncertainty in security contexts because it does not
model scenarios relevant to the goals of the adversary. In particular there are
some circumstances where a Shannon analysis actually gives a more favourable
assessment of security than is actually warranted if the adversary’s motivation
is taken into account [18].

Alvim et al. [2] proposed a more general notion of uncertainty based on
“gain functions”. This is the notion we will use. A gain function measures a
secret’s uncertainty according to how it affects an adversary’s actions within
a given scenario. We write W for a (usually finite) set of actions available to
an adversary corresponding to an “attack scenario” where the adversary tries to
guess something (e.g. some property) about the secret. For a given secret x: X , an
adversary’s choice of w: W results in the adversary gaining something beneficial
to his objective. This gain can vary depending on the adversary’s choice (w) and
the exact value of the secret (x). The more effective is the adversary’s choice
in how to act, the more he is able to overcome any uncertainty concerning the
secret’s value.

Definition 1. Given a type X of secrets, a gain function g: W×X → R is a
real-valued function such that g(w, x) determines the gain to an adversary if he
chooses w and the secret is x.

A simple example of a gain function is bv, where W:= X , and

bv(x, x′) := 1 if x = x′ else 0. (1)
For this scenario, the adversary’s goal is to determine the exact value of the

secret, so he receives a gain of 1 if he correctly guesses the value of a secret,
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and zero otherwise. Assuming that he knows the range of possible secrets X , he
therefore has W:= X for his set of possible guesses.

Elsewhere the utility and expressivity of gain functions for measuring vari-
ous attack scenarios relevant to security have been explored [1,2]. Given a gain
function we define the vulnerability of a secret in DX relative to the scenario
it describes: it is the maximum average gain to an adversary. More explicitly,
for each guess w, the adversary’s average gain relative to π is

∑
x∈X g(w, x)×πx;

thus his maximum average gain is the guess that yields the greatest average gain.

Definition 2. Let g:W×X →R be a gain function, and π:DX be a secret. The
vulnerability Vg[π] of the secret wrt. g is:

Vg[π] := max
w∈W

∑

x∈X
g(w, x)×πx.

For a secret π:DX , the vulnerability wrt. bv is Vbv[π]:= maxx:X πx, i.e. the
maximum probability assigned by π to possible values of x. The adversary’s best
strategy for optimising his gain would therefore be to choose the value x that
corresponds to the maximum probability under π. This vulnerability Vbv is called
Bayes Vulnerability.

A mechanism is an abstract model of a protocol or algorithm that uses
secrets. As the mechanism executes we assume that there are a number of observ-
ables that can depend on the actual value of the secret. We define Y to be the
type for observables. The model of a mechanism now assigns a probability that
y:Y can be observed given that the secret is x. Such observables could be sample
timings in a timing analysis in cryptography, for example.

Definition 3. A mechanism is a stochastic channel1 C: X×Y→[0, 1]. The value
Cxy is the probability that y is observed given that the secret is x.

Given a (prior) secret π:DX and mechanism C we write π〉C for the joint
distribution in X×Y defined

(π〉C)xy := πx×Cxy.

For each y: Y, the marginal probability that y is observed is py:=
∑

x:X (π〉C)xy.
For each observable y, the corresponding posterior probability of the secret is the
conditional π|y:DX defined (π|y)x:= (π〉C)xy/py.2

Intuitively, given a prior secret π and mechanism C, the entry πx×Cxy of the
joint distribution π〉C is the probability that the actual secret value is x and the
observation is y. This joint distribution contains two pieces of information: the
probability py of observing y and the corresponding posterior π|y which repre-
sents the adversary’s updated view about the uncertainty of the secret’s value.
1 Stochastic means that the rows sum to 1, i.e.

∑
y∈Y Cxy = 1.

2 We assume for convenience that when we write py the terms C, π and y are under-
stood from the context. Notation suited for formal calculation would need to incor-
porate C and π explicitly.



Experiments in Information Flow Analysis 5

If the vulnerability of the posterior increases, then information about the secret
has leaked and the adversary can use it to increase his gain by changing how he
chooses to act. The adversary’s average overall gain, taking the observations into
account, is defined to be the average posterior vulnerability (i.e. the average gain
of each posterior distribution, weighted according to their respective marginals):

Vg[π〉C] :=
∑

y∈Y
py×Vg[π|y] , where py, π|y are defined at Definition 3. (2)

Now that we have Definitions 2 and 3 we can start to investigate whether the
information leaked through observations Y actually have an impact in terms of
whether it is useful to an adversary. It is easy to see that for any gain function g,
prior π and mechanism C we have that Vg[π] ≤ Vg[π〉C]. In fact the greater the
difference between the prior and posterior vulnerability, the more the adversary
is able to use the leaked information within the scenario defined by g. In our
investigations of problems (I) and (II) we use the following implications of this
idea.

(A) The adversary is able to use information leaked through mechanism C only
when Vg[π] < Vg[π〉C]. In the case that the prior and posterior vulnerability
are the same then, although information has leaked, the adversary acting
within a scenario defined by g is not able to use the information in any
way that benefits him. Of course there could be other scenarios where the
information could prove to be advantageous, but those scenarios would cor-
respond to a different gain function. If Vg[π] = Vg[π〉C] for all gain functions
g then in fact the channel has leaked no information at all that can be used
by any adversary.

(B) For each observation y there is an action w that an adversary can pick to
optimise his overall gain. This corresponds roughly to a strategy that an
adversary might follow in “attacking” a mechanism C. Where here “attack”
is a passive attack in the sense that the adversary observes the outputs
of the mechanism C and then revises his opinion about the uncertainty of
the secret to be that of the relevant posterior. This might mean that he
can benefit by changing his mind about how to act, after he observes the
mechanism.

(C) If P,Q are two different mechanisms corresponding to different designs of
say a system, we can compare the information leaks as follows. If Vg[π〉P ] >
Vg[π〉Q] then we can say that P leaks more than Q for the scenario defined
by g in the context of prior π. If it turns out that Vg[π〉P ] ≥ Vg[π〉Q] for all g
and π then we can say that Q is more secure than P , written P � Q, because
in every scenario Q leaks less useful information than does P . Indeed any
mechanism that only has a single observable leaks nothing at all and so it
is maximal wrt. �. We explore some aspects of � in Sect. 5.

In the remainder of the paper we illustrate these ideas by showing how adver-
saries can reason about leaked information, and how defenders can understand
potential vulnerabilities of programs that partially leak information. We note
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that some of our examples are described using a small programming language,
and therefore a fully formal treatment needs a model that can account for both
state updates and information leaks. This can be done using a generalisation of
Hidden Markov Models [15]; however the principal focus in all our examples is
information flows concerning secrets that are initialised and never subsequently
updated, and therefore any variable updates are incidental. In these cases a sim-
ple channel model, as summarised here, is sufficient to understand the informa-
tion flow properties. We do however touch on some features of the programming
language which, although illustrated only on very simple programs, nevertheless
apply more generally in the more detailed Hidden Markov Model.

3 Experiment (I): When Is a Leak Not a (Useful) Leak?

The secretary problem and its variations [6] have a long history having been orig-
inally posed around 1955 although the earliest published accounts seem to date
back to the 1960’s [7–9]. They are classic problems in reasoning with incomplete
information. Here we revisit the basic problem in order to illustrate the relation-
ship between gain functions and adversarial scenarios and how gain functions can
be used to model what an adversary can usefully do with partial information.

We assume that there are N candidates who have applied to be Paris’ secre-
tary and that they are numbered 1, . . . , N in order of their interview schedule.
However their ability rank in terms of their fitness for the position is modelled as
a permutation σ : {1, . . . , N}→{1, . . . , N}, and we assume that the precise σ is
unknown to Paris, who is therefore the adversary. The best candidate scheduled
in time slot i will have ability rank σ[i] = N , and the worst, interviewed at slot
j will have σ[j] = 1. We write Σ for the set of all such permutations. We model
Paris’ prior knowledge of σ as the uniform probability distribution u:DΣ—i.e.
uσ = 1/N ! for each σ:Σ reflecting the idea that initially Paris cannot distinguish
the candidates on suitability for the position.

When Paris interviews candidate i, he does not learn σ[i], but he does learn
how that candidate ranks in comparison to the others he has already seen. This
implies that after the first interview all he can do is establish an initial baseline
for subsequent comparison. For instance, after the second interview he will learn
either that σ[1]<σ[2] or that σ[2]<σ[1]. We write Cn for the channel that has
as observables the relative rankings of the first n candidates. This means that
C1 has one observation (and so leaks nothing), C2 has two observations (as
above), C3 has six observations, and in general Cn has n! observations. Thus
when n = N , CN leaks the precise rankings of all candidates (and in so doing
identifies σ). In Fig. 1 we illustrate the channel C2 in the situation where there
are only 3 candidates.

But what exactly can Paris do with these observations to help him select the
best candidate, i.e. to enable him to offer the position to the candidate i that
satisfies σ[i] = N? Since he makes an offer directly to candidate i at the end
of the i’th interview, the risk is that he offers the job too early (he hasn’t yet
interviewed the best candidate) or too late (the best candidate has already been
let go).



Experiments in Information Flow Analysis 7

Fig. 1. Information flow channel C2 after interviewing 2 candidates from a total of 3

In any information flow problem, there is little point in measuring how much
information is released if that measurement does not pertain to the actual deci-
sion making mechanism that an adversary uses. For example suppose that N = 6.
A traditional information flow analysis might concentrate on measuring Shannon
entropy as a way to get a handle on Paris’ uncertainty and how it changes as he
interviews more candidates. At the beginning, Paris knows nothing, and so his
uncertainty as measured by Shannon entropy over the uniform distribution of
6! orderings is log2(6!)≈ 9.5. He doesn’t know about 9 bits of hidden informa-
tion. After two interviews, his uncertainty has dropped to log2(360)≈ 8.5, and
after three interviews it becomes log2(120)≈ 7. The question is, how do these
numbers help Paris make his decision? If candidate 2 is better than candidate 1
should he make the appointment? If he waits, should he make the appointment
if candidate 3 is the best so far? With as much as 7 bits from a total of 9 still
uncertain, maybe it would be better to wait?

Of course a detailed mathematical analysis [6] shows that if Paris’ objective is
to maximise his probability of selecting the best candidate using only the actions
he has available (i.e. “appoint now” or “wait”) then it would indeed be best for
him not to wait but rather to appoint candidate 3 immediately if they present as
the best so far. In fact the numbers taken from a Shannon analysis do not appear
to help Paris at all to decide what he should do because Shannon entropy is not
designed for analysing his objective when faced with his particular scenario and
the set of actions he has available.

A more helpful analysis is to use a gain function designed to describe exactly
Paris’ possible actions so that his ability to use any information leaks –by
enabling the capability to favour one action over another– can be evaluated.
Recall that after interviewing each candidate Paris can choose to perform two
actions: either to “appoint immediately” (a) or to “wait” (w) until the next best.
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We let W:= {a,w} represent the set of those actions after the n’th interview.
Next we need to define the associated gains. For action a, the gain is 1 if he man-
ages to appoint the overall maximum, i.e. gn(a, σ) = 1 exactly if σ[n] = N . For
w Paris does not appoint the n’th candidate but instead continues to interview
candidates and will appoint the next best candidate he has seen thus far. His
gain is 1 if that appointment is best overall, thus gn(w, σ) = 1 if and only if the
first k>n which is strictly better than all candidates seen so far turns out to be
the maximum overall.3 We write σ[i, j] for the subsequence of σ consisting of the
interval between i and j inclusive, and σ(i, j) for the subsequence consisting of
the interval strictly between i and j (i.e. exclusive of σ[i] and σ[j]). Furthermore
we write �ρ for the maximum item in a given subsequence ρ. We can now define
Paris’ gain function as follows:

gn(a, σ) := 1 iff σ[n] = N (3)
gn(w, σ) := 1 iff ∃(N≥k>n) s.t. � σ(n, k)< � σ[1, n]<N = σ[k]. (4)

Given uniform prior u (over the possible N ! permutations), we can approxi-
mate Paris’ residual uncertainty after interviewing n candidates by considering
the posterior vulnerability Vgn

[u 〉 Cn]. Using (A) from Sect. 2 we can evaluate
whether the information leaked is useful by comparing Vgn

[u 〉Cn] with the prior
vulnerability Vgn

[u]; next we can use (B) from Sect. 2 to examine, for each pos-
terior which of a or w is Paris’ best action relative to each observation. In the
case that N is 6, we can show that:

Vg2 [u] = Vg2 [u 〉 C2] , but Vg3 [u] < Vg3 [u 〉 C3],

i.e. there is no leakage wrt. the question “should the candidate just interviewed
be selected?” after two interviews because the prior and posterior vulnerabilities
wrt. g2 are the same. On the other hand the information leaked after interviewing
three candidates is sufficient to help him decide whether to appoint the third
candidate—he should do so if that third candidate is the best so far.

To see how this reasoning works, consider the situation after interviewing two
candidates as described above. Note that both outcomes occur with probability
1/2 (since the prior is uniform). If we look at the two possible actions available
in g2 we can compare whether the probability of the second candidate being best
overall actually changes from its initial value of 1/6 with this new information.
In fact it does not—the probability that the second candidate is the best overall
remains at 1/6, and the probability that the next best candidate is best overall
also does not change, remaining at 0.427 = Vg2 [u 〉C2]. This tells us that although
some uncertainty has been resolved, it can’t be used by Paris to help him with
his objective—he will still not appoint candidate 2 even when they rank more
highly than candidate 1.

3 In the traditional analysis Paris only employs this strategy after interviewing approx-
imately N/e candidates. Here we are interested in studying this strategy at each stage
of the interviewing procedure.
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On the other hand if we compare the case where Paris interviews three can-
didates, and observes that the best candidate so far is σ[3], then there is a good
chance that this is the best candidate overall. Indeed his best strategy is to
appoint that candidate immediately—and he should only continue interviewing
if σ[3] rates lower than either the other two. Overall this gives him the greatest
chance of appointing the best candidate which is 0.428 = Vg3 [u 〉 C3]. 4

A similar analysis applies to other Cn’s but when N = 6 his overall best
strategy is to start appointing after n = 3.

We note that the analysis presented above relates only to the original formu-
lation of the Secretary problem; the aim is to explain the well-known solution
(to the Secretary problem) in terms of how an adversary acts in a context of
partial information. More realistic variations of the Secretary problem have been
proposed. For example the original formulation only speaks of hiring the best,
whereas in reality hiring the second best might not be so bad. Analysing such
alternative adversarial goals (such as choosing either the best or the second best)
would require designing a gain function that specifically matches those alterna-
tive requirements.

4 Experiment (II): Comparing Designs

Consider now the scenario of Romulus who does not trust his brother Remus.
Romulus decides to password protect his computer but has read that the pass-
word checker, depicted in Fig. 2, suffers from a security flaw which allows an
adversary to identify prefixes of his real password. Observe that the program
in Fig. 2 iteratively checks each character of an input password with the real
password, so that the time it takes to finish checking depends on how many
characters have been matched. Romulus wonders why anyone would design a
password checker with such an obvious flaw since an easy fix would be to report
whether the guess succeeds only after waiting until all the characters have been
checked. But then Romulus remembers that he often mistypes his password and
would not want to wait a long time between retries.

In Fig. 2 we assume that pw is Romulus’ secret password, and that gs is an
adversary’s input when prompted by the system for an input. To carry out a
QIF analysis of a timing attack, as described in Sect. 2, we would first create
an information flow channel with observations describing the possible outcomes
after executing the loop to termination, and then we would use it to determine
a joint distribution wrt. a prior distribution. In this case the observations in the
channel would be: “does not enter the loop”, “iterates once”, “iterates twice”

4 Interestingly the two Vg2 [u 〉 C2] = Vg3 [u 〉 C3]—although the actions wrt. g2 and
g3 are different, in the case they are interpreted over the scenario of 6 candidates
they dictate the same behaviour. Under the g2 strategy which becomes operational
after interviewing 2 candidates, it is never to appoint candidate 2, but take the very
next best. Under the g3 case (which becomes operational after interviewing three
candidates) it is to take candidate 3 if she is the best so far, or if not select the next
best.
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Fig. 2. Basic password checker, with early exit

etc. There is however an alternative approach which leads to the same (logical)
outcome, but offers an opportunity for QIF tool support summarised in Sect. 6.
Instead of creating the channel in one hit, we interpret each program fragment
as a mini-channel with its own observations. At each stage of the computation
the joint distribution described at Definition 3 is determined “on the go”, by
amalgamating all subsequent information leaks from new mini-channels with
those already accounted for. The situation is a little more complicated because
state updates also have to be included. But in the examples described here,
we can concentrate on the program fragments that explicitly release information
about the secret pw, and assume that the additional state updates (to the counter
i for example) have no impact on the information leaks.

To enable this approach we introduce a “Print” statement into the program-
ming language which is interpreted as a mini-channel—“Print” statements have
no effect on the computations except to transmit information to an observer
during program execution. In Fig. 2 the statement Print(ans && i<N) occur-
ring each time the loop body is entered transmits that fact to the adversary
by emitting the observation “condition (ans && i<N) is true”. Similarly a sec-
ond statement Print ans transmits whether the loop terminated with ans true
or false. To determine the overall information flow of the loop, we interpret
Print(ans && i<N) and Print ans separately as channels, and use “channel
sequential composition” [14] to rationalise the various sequences of observations
with what the adversary already knows. It is easy to see that this use of “Print”
statements logically (at least) accounts for the timing attack because it simu-
lates an adversary’s ability to determine the number of iterations of the loop,
and therefore to deduce the prefix of the pw of length the number of iterations,
because it must be the same as the corresponding prefix of the known gs.
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Fig. 3. Password checker, with early exit and random checking order

With this facility, Romulus can now compare various designs for password
checking programs. Figure 3 models the system upgrade that Romulus is consid-
ering. Just as in Fig. 2, an early exit is permitted, but the information flow is
now different because rather than checking the characters in order of index, the
checking order is randomised uniformly over all possible orders. For example if
Fig. 2 terminates after checking a single character of input password gs, then the
adversary knows to begin subsequent guesses with gs[0]. But if Fig. 3 similarly
terminates after trying a single character, all the adversary knows is that one of
gs[0], . . . gs[n-1] is correct, but he does not know which one.

At first sight, this appears to offer a good trade-off between Romulus’ aim
of making it difficult for Remus to guess his password and his desire not to wait
too long before he can try again in case he mistypes his own password. To gain
better insight however we can look at some specific instances of information flow
with respect to these password checking algorithms.

We assume a prior uniform distribution over all permutations of a three
character password "abc", i.e. we assume the adversary knows that pw is one
of those permutations, but nothing else. Next we consider the information leaks
when the various algorithms are run with input gs = "abc". Since the adversary’s
intention is to figure out the exact value of pw, we use Bayes Vulnerability Vbv

(recall 1 for definition of bv) to measure the uncertainty, where X is the set of
permutations of "abc" and W:= X is the set of possible guesses. 5

Consider first the basic password checker depicted at Fig. 2. There are three
amalgamated observations: the loop can terminate after 1, 2 or 3 iterations. For
each observation, we compute the marginal probability and the posterior prob-
abilities associated with the residual uncertainty (recall Definition 3). For this
example the marginal, corresponding posterior and observations are as follows:

5 In this case, we imagine that an adversary uses an input gs in order to extract some
information. His actions described by W are related to what he is able to do in the
face of his current uncertainty.
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marginal {posterior}
1 ÷ 6 {1 ÷ 1 "abc"} ← termination after 3 iterations
1 ÷ 6 {1 ÷ 1 "acb"} ← termination after 2 iterations
2 ÷ 3 {1 ÷ 4 "bac" ← termination after 1 iteration

1 ÷ 4 "bca"
1 ÷ 4 "cab"
1 ÷ 4 "cba"}

The first observation with marginal probability 1/6, is the case where gs and
pw are the same: only then will the loop run to completion. The associated poste-
rior probability is the point distribution over "abc". For the second observation
–termination after 2 iterations– the marginal is also 1/6 and the associated pos-
terior is also a point distribution over "acb". That is because if gs[0] matches
pw[0] but gs[1] does not match pw[1] it must be that the second and third
characters in gs are swapped.

The third observation is the case where the loop terminates after one iteration
and it occurs with marginal probability 2/3. This can only happen when gs[0] is
not equal to pw[0] (2 possibilities), and the second and third characters can be
in either order (2 more possibilities), giving 1/2×2 for each posterior probability.

Overall the (posterior) Bayes Vulnerability has increased (from 1/6 initially
relative to the uniform prior) to 1/2 because the chance of guessing the password,
taking the observations into account, is now 1/2.

Comparing now with the obfuscation of the checking order Fig. 3, we again
have the situation of three possible observations, but now the uncertainty is
completely reduced only in the case of 3 iterations. The resulting marginal,
corresponding posterior and observations are as follows:

marginal {posterior}
1 ÷ 6 {1 ÷ 1 "abc"} ← termination after 3 iterations
2 ÷ 3 {1 ÷ 6 "acb" ← termination after 2 iterations

1 ÷ 6 "bac"
1 ÷ 4 "bca"
1 ÷ 4 "cab"
1 ÷ 6 "cba"}

1 ÷ 6 {1 ÷ 3 "acb" ← termination after 1 iteration
1 ÷ 3 "bac"
1 ÷ 3 "cba"}

In spite of the residual uncertainty in the case of an incorrect input, the
overall posterior vulnerability of 7/18 is only slightly lower than the 1/2 for the
original early exit Fig. 2.

For longer passwords, displaying the list of marginals and posteriors is not
so informative; but still we can give the posterior Bayes vulnerability. We find
for example that for Fig. 3, even with its early exit, only reduces the probability
of guessing the password by half when compared with Fig. 2. For a 5 character
password, Fig. 2 gives a posterior vulnerability of 1/24, but Fig. 3 reduces it only
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to about half as much at 13/600. Perhaps Romulus’ upgrade is not really worth
it after all.

5 Experiment (III): Properties of the Modelling
Language

Fig. 4. A hidden if . . . then . . . else

Thus far we have considered information flows in specific scenarios. In this section
we look more generally at the process of formalisation, in particular the infor-
mation flow properties of the programming language itself. In standard program
semantics, the idea of refinement is important because it provides a sound tech-
nique for simplifying a verification exercise. If an “abstract” description of a
program can be shown to satisfy some property, then refinement can be used to
show that if the actual program only exhibits consistent behaviours relative to
its abstract counterpart, then it too must satisfy the property. To make all of
this work in practice, the abstraction/refinement technique normally demands
that program constructs are “monotonic” in the sense that applying abstraction
to a component leads to an abstraction of the whole program.

In Sect. 2(C) we described an information flow refinement relative to the
QIF semantics so that if P � P ′ then program P leaks more information than
does program P ′ in all possible scenarios. In the examples we have seen above,
the sequence operator used to input the results of one program P into another
Q is written P ;Q. It is an important fact that sequence is monotonic, i.e. if
P � P ′ then P ;Q � P ′;Q. Elsewhere [14,16] define a QIF semantics for a
programming language in which all operators are “monotonic” wrt. information
flow—this means that improving the security of any component in a program
implies that the security of the overall program is also improved. The experiment
in this section investigates monotonicity for conditional branching in a context
of information flow.

Consider programs at Figs. 4 and 5 which assume two secrets h, k. Each
program is the same except for the information transmitted in the case that
the secret h is 1—in this circumstance Fig. 4 Prints the exclusive OR of h and k
whereas Fig. 5 always Prints 1. In this experiment we imagine that the adversary
can only observe information transmitted via the “Print” statements, and can-
not (for example) observe the branching itself. This is a “hidden if statement”
denoted by “hif . . . fih”, and we investigate whether it can be monotonic as a
(binary) program construct.
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Fig. 5. A program which emits 0’s and 1’s

To study this question, we first observe that the statement Print 1 is more
secure than Print (h XOR k); that is because Print 1 transmits no information
at all because its observable does not depend on the value of the secret, and so
is an example of the most secure program (recall (C) in Sect. 2). This means if
“hif . . . fih” has a semantics which is monotonic, it must be the case that Fig. 5
is more secure than Fig. 4.

In these simple cases, we can give a QIF semantics for the two programs
directly, taking into account the assumption that only the “Print” statements
transmit observations. Assume that the variables h, k are initialised uniformly
and independently. In the case of Fig. 4 the adversary reasons that if 1 is printed
then this is either because the lower branch was executed (h == 0) or the upper
branch is executed (h == 1) and h XOR k evaluates to 1. When he observes 0
however that can only happen if (h == 1). We can summarise the relative marginal
and posterior probabilities for these cases as follows. We write the values of the
variables as a pair, with h as the left component and k the right component.
For example the pair (1, 0) means that h has value 1 and k has value 0. In
the scenario just described, there is a 1/4 marginal probability that the pair is
(1, 1), and in this case the adversary knows the value of h and k. But with
probability 3/4 a 1 is printed, and in this case the adversary does not know
which of the remaining pairs it can be. The following marginal and posterior
probabilities summarise this behaviour:

marginal {posterior}
1 ÷ 4 {1 ÷ 1 "(1,1)"} ← Prints 0
3 ÷ 4 {1 ÷ 3 "(0,0)" ← Prints 1

1 ÷ 3 "(0,1)"
1 ÷ 3 "(1,0)"}

For Fig. 5 the situation is a little simpler—when h is 0 a 1 is printed and vice
versa. This leads to the following result.

marginal {posterior}
1 ÷ 2 {1 ÷ 2 "(1,1)" ← Prints 0

1 ÷ 2 "(1,0)"}
1 ÷ 2 {1 ÷ 2 "(0,0)" ← Prints 1

1 ÷ 2 "(0,1)"}
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Comparing these two probabilistic results we see now that “hif . . . fih”
cannot be monotonic, because if we replace Print(h XOR k) by the more secure
Print 1 more information (not less) is leaked. For instance, under Bayes Vul-
nerability for h, the adversary can guess the value of h exactly under Fig. 5 but
only with probability 3/4 under Fig. 4.

This experiment tells us that a hidden “hif . . . fih” construct cannot be
defined in a way that respects monotonicity of information flow, and could there-
fore be too risky to use.

6 Experiments with Kuifje

The experiments described above were carried out using the tool Kuifje [12]
which interprets a small programming language in terms of the QIF semantics,
but extended to the Hidden Markov Model alluded to in Sect. 2. It supports
the usual programming constructs (assignment, sequencing, conditionals and
loops) but crucially it takes into account information flows consistent with the
channel model outlined in Sect. 2. In particular the “Print” statements used in
our examples correspond exactly to the observations that an adversary could
make during program execution. This allows a direct model for eg. known side
channels that potentially expose partially computation traces during program
execution.

The basic assumption built into the semantics of Kuifje is that all variables
cannot be observed unless revealed fully or partially through a “Print” state-
ment. For example Print x would print the value of variable x and so reveal it
completely at that point of execution, but Print(x>0) would only reveal whether
x is strictly positive or not. As usual, we also assume that the adversary knows
the program code.

Kuifje is implemented in Haskell and makes extensive use of the Giry monad
[10] for managing the prior, posterior and marginal probabilities in the form
of “hyperdistributions”. A hyperdistribution is a distribution of distributions
and is based on the principle that the names of observations are redundant
in terms of the analysis of information flow. Hyperdistributions therefore only
summarise the posterior and marginal probabilities, because these quantities are
the only ones that play a role in computing posterior vulnerabilities (recall 2).
Hyperdistributions satisfy a number of useful properties relevant to QIF [15],
and provide the basis for algebraic reasoning of source level code.

7 Related Work

Classical approaches to measuring insecurities in programs are based on deter-
mining a “change in uncertainty” of some “prior” value of the secret—although
how to measure the uncertainty differs in each approach. For example Clark
et al. [3] use Shannon entropy to estimate the number of bits being leaked; and
Clarkson et al. [5] model a change in belief. Smith [18] demonstrated the impor-
tance of using measures that have some operational significance, and the idea was
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developed further [2] by introducing the notion of g-leakage to express such signif-
icance in a very general way. The partial order used here on programs is the same
as the g-leakage order introduced by Alvim et al. [2], but it appeared also in even
earlier work [14]. Its properties have been studied extensively [1].

Jacobs and Zanasi [11] use ideas based on the Giry Monad to present an
abstract state transformer framework for Bayesian reasoning. Our use of hyper-
distributions means that the conditioning needed for the Bayesian update has
taken place in the construction of the posteriors.

8 Conclusions and Discussion

Understanding the impact of information flow is hard. The conceptual tools
presented here summarise the ideas of capturing the adversary’s ability to use
the information released, together with a modelling language that enables the
study of risks associated with information leaks in complicated algorithms and
protocols. The language itself is based on the Probability Monad which has
enabled its interpretation in Kuifje.

It is hoped that the ability to describe scenarios in terms of adversarial
gains/losses together with Kuifje that enables detailed numerical calculation of
the impact of flows will lead to a better understanding of security vulnerabilities
in programs.

Acknowledgements. I thank Tom Schrijvers for having the idea of embedding these
ideas in Haskell, based on Carroll Morgan’s talk at IFIP WG2.1 in Vermont, and for
carrying it out to produce the tool Kuifje. Together with Jeremy Gibbons all four of
us wrote the first paper devoted to it [12]. (It was Jeremy who suggested the name
“Kuifje”, the Dutch name for TinTin—and hence his “QIF”.) Carroll Morgan trans-
lated the example programs into Kuifje.
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