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Preface

This volume contains the proceedings of MPC 2019, the 13th International Conference
on Mathematics of Program Construction.

This conference series aims to promote the development of mathematical principles
and techniques that are demonstrably practical and effective in the process of
constructing computer programs. Topics of interest range from algorithmics to support
for program construction in programming languages and systems. Typical areas include
type systems, program analysis and transformation, programming language semantics,
security, and program logics. The notion of a ‘program’ is interpreted broadly, ranging
from algorithms to hardware.

The conference was held in Porto, Portugal, from October 7–9, 2019, and was
co-located with FM 2019, the Third World Congress on Formal Methods. The previous
12 conferences were held in 2015 in Königswinter, Germany (with proceedings
published as LNCS 9129); in 2012 in Madrid, Spain (LNCS 7342); in 2010 in Québec
City, Canada (LNCS 6120); in 2008 in Marseille, France (LNCS 5133); in 2006 in
Kuressaare, Estonia (LNCS 4014); in 2004 in Stirling, UK (LNCS 3125); in 2002 in
Dagstuhl, Germany (LNCS 2386); in 2000 in Ponte de Lima, Portugal (LNCS 1837);
in 1998 in Marstrand, Sweden (LNCS 1422); in 1995 in Kloster Irsee, Germany (LNCS
947); in 1992 in Oxford, UK (LNCS 669); and in 1989 in Twente, The Netherlands
(LNCS 375).

This volume contains one invited paper and 15 papers selected for presentation by
the Program Committee from 22 submissions. Each paper was refereed by three
reviewers, and the review process was conducted online using the EasyChair system.
I would like to thank the Program Committee and the external reviewers for their care
and diligence in reviewing the submissions, José Nuno Oliveira and his team for their
excellent local arrangements, and Assia Mahboubi and Annabelle McIver for their
inspiring invited talks.

October 2019 Graham Hutton
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Experiments in Information
Flow Analysis

Annabelle McIver(B)

Department of Computing, Macquarie University, Sydney, Australia
annabelle.mciver@mq.edu.au

Abstract. Designing programs that do not leak confidential informa-
tion continues to be a challenge. Part of the difficulty arises when partial
information leaks are inevitable, implying that design interventions can
only limit rather than eliminate their impact.

We show, by example, how to gain a better understanding of the con-
sequences of information leaks by modelling what adversaries might be
able to do with any leaked information.

Our presentation is based on the theory of Quantitative Information
Flow, but takes an experimental approach to explore potential vulnera-
bilities in program designs. We make use of the tool Kuifje [12] to inter-
pret a small programming language in a probabilistic semantics that
supports quantitative information flow analysis.

Keywords: Quantitative Information Flow · Probabilistic program
semantics · Security · Confidentiality

1 Introduction

Consider the following scenarios:

(I) Paris needs a secretary and intends to pick the best candidate from a list
of N applicants. His father King Priam knows Paris to be extremely impul-
sive making it highly likely that he will hire someone immediately after
interviewing them, thereby running the risk that he might miss the best
candidate. Knowing that he will not be able to suppress entirely Paris’
impetuous nature, Priam persuades Paris to interview first a certain num-
ber n, and only then to select the next best from the remaining candidates.
In that way Priam hopes to improve Paris’ chance of hiring the best sec-
retary. “But father, what value of n should I choose so that this strategy
increases the prospect of my finding the best candidate overall? Wouldn’t
I be better off just relying on my instinct?”

This research was supported by the Australian Research Council Grant DP140101119.

c© Springer Nature Switzerland AG 2019
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2 A. McIver

(II) Remus wants to hack into Romulus’ account. Romulus knows this and won-
ders whether he should upgrade his system to include the latest password
checking software. He has lately been reading about a worrying “side chan-
nel” that could reveal prefixes of his real password. However he is not sure
whether the new software (which sounds quite complicated, and is very
expensive) is worth it or not. How does the claimed defence against the
side channel actually protect his password? What will be the impact on
useability?

Both these scenarios share the same basic ingredients: there is a player/ad-
versary who wants to make a decision within a context of partial information.
In order to answer the questions posed by Paris and Romulus, we need to deter-
mine whether the information available is actually useful given their respective
objectives. The result of such a determination for Paris might be that he would
be able to form some judgement about the circumstances under which his pro-
posed strategy could yield the best outcome for him. For Romulus he might be
better able to decide whether his brother could marshal the resources required to
breach the security defences in whichever password checking software he decides
to install.

The aim of this paper is to illustrate, by example, how to analyse the conse-
quences of any information leaks in program designs. The analysis is supported
by the theory of Quantitative Information Flow (QIF). In particular QIF for-
malises how adversaries stand to benefit from any information leaks, allowing
alternative designs to be compared in terms of specific adversarial scenarios. The
presentation takes an experimental approach with the goal of understanding the
impact and extent of partial information leaks. In so doing we acknowledge that
this form analysis is almost certain to be incomplete, however its strength is
to highlight relative strengths and weaknesses of program designs that handle
confidential information.

In Sect. 2 we summarise the main ideas of QIF and show in Sects. 3 and 4
how they can be applied to the scenarios outlined above. We also touch on some
logical features of modelling information flow in Sect. 5. In Sect. 6 we describe
briefly the features of a recent QIF analysis tool Kuifje [12], and sketch how it
can be used to describe the scenarios above and to carry out experiments to
assess their information leaks.

2 Review of Quantitative Information Flow

The informal idea of a secret is that it is something about which there is some
uncertainty, and the greater the uncertainty the more difficult it is to discover
exactly what the secret is. For example, one’s mother’s maiden name might not
be generally known, but if the nationality of one’s mother is leaked, then it might
rule out some possible names and make others more likely. Similarly, when some
information about a secret becomes available to an observer (often referred to
as an adversary) the uncertainty is reduced, and it becomes easier to guess its
value. If that happens, we say that information (about the secret) has leaked.
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Quantitative Information Flow (QIF) makes this intuition mathematically
precise. Given a range of possible secret values of (finite) type X , we model a
secret as a probability distribution of type DX , because it ascribes “probabilis-
tic uncertainty” to the secret’s exact value. Given π:DX , we write πx for the
probability that π assigns to x: X , with the idea that the more likely it is that
the real value is some specific x, then the closer πx will be to 1. Normally the
uniform distribution over X models a secret which could equally take any one
of the possible values drawn from its type and we might say that, beyond the
existence of the secret, nothing else is known. There could, of course, be many
reasons for using some other distribution, for example if the secret was the height
of an individual then a normal distribution might be more realistic. In any case,
once we have a secret, we are interested in analysing whether an algorithm, or
protocol, that uses it might leak some information about it. To do this we define
a measure for uncertainty, and use it to compare the uncertainty of the secret
before and after executing the algorithm. If we find that the two measurements
are different then we can say that there has been an information leak.

The original QIF analyses of information leaks in computer systems [3,4] used
Shannon entropy [17] to measure uncertainty because it captures the idea that
more uncertainty implies “more secrecy”, and indeed the uniform distribution
corresponds to maximum Shannon entropy (corresponding to maximum “Shan-
non uncertainty”). More recent treatments have shown that Shannon entropy is
not the best way to measure uncertainty in security contexts because it does not
model scenarios relevant to the goals of the adversary. In particular there are
some circumstances where a Shannon analysis actually gives a more favourable
assessment of security than is actually warranted if the adversary’s motivation
is taken into account [18].

Alvim et al. [2] proposed a more general notion of uncertainty based on
“gain functions”. This is the notion we will use. A gain function measures a
secret’s uncertainty according to how it affects an adversary’s actions within
a given scenario. We write W for a (usually finite) set of actions available to
an adversary corresponding to an “attack scenario” where the adversary tries to
guess something (e.g. some property) about the secret. For a given secret x: X , an
adversary’s choice of w: W results in the adversary gaining something beneficial
to his objective. This gain can vary depending on the adversary’s choice (w) and
the exact value of the secret (x). The more effective is the adversary’s choice
in how to act, the more he is able to overcome any uncertainty concerning the
secret’s value.

Definition 1. Given a type X of secrets, a gain function g: W×X → R is a
real-valued function such that g(w, x) determines the gain to an adversary if he
chooses w and the secret is x.

A simple example of a gain function is bv, where W:= X , and

bv(x, x′) := 1 if x = x′ else 0. (1)
For this scenario, the adversary’s goal is to determine the exact value of the

secret, so he receives a gain of 1 if he correctly guesses the value of a secret,
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and zero otherwise. Assuming that he knows the range of possible secrets X , he
therefore has W:= X for his set of possible guesses.

Elsewhere the utility and expressivity of gain functions for measuring vari-
ous attack scenarios relevant to security have been explored [1,2]. Given a gain
function we define the vulnerability of a secret in DX relative to the scenario
it describes: it is the maximum average gain to an adversary. More explicitly,
for each guess w, the adversary’s average gain relative to π is

∑
x∈X g(w, x)×πx;

thus his maximum average gain is the guess that yields the greatest average gain.

Definition 2. Let g:W×X →R be a gain function, and π:DX be a secret. The
vulnerability Vg[π] of the secret wrt. g is:

Vg[π] := max
w∈W

∑

x∈X
g(w, x)×πx.

For a secret π:DX , the vulnerability wrt. bv is Vbv[π]:= maxx:X πx, i.e. the
maximum probability assigned by π to possible values of x. The adversary’s best
strategy for optimising his gain would therefore be to choose the value x that
corresponds to the maximum probability under π. This vulnerability Vbv is called
Bayes Vulnerability.

A mechanism is an abstract model of a protocol or algorithm that uses
secrets. As the mechanism executes we assume that there are a number of observ-
ables that can depend on the actual value of the secret. We define Y to be the
type for observables. The model of a mechanism now assigns a probability that
y:Y can be observed given that the secret is x. Such observables could be sample
timings in a timing analysis in cryptography, for example.

Definition 3. A mechanism is a stochastic channel1 C: X×Y→[0, 1]. The value
Cxy is the probability that y is observed given that the secret is x.

Given a (prior) secret π:DX and mechanism C we write π〉C for the joint
distribution in X×Y defined

(π〉C)xy := πx×Cxy.

For each y: Y, the marginal probability that y is observed is py:=
∑

x:X (π〉C)xy.
For each observable y, the corresponding posterior probability of the secret is the
conditional π|y:DX defined (π|y)x:= (π〉C)xy/py.2

Intuitively, given a prior secret π and mechanism C, the entry πx×Cxy of the
joint distribution π〉C is the probability that the actual secret value is x and the
observation is y. This joint distribution contains two pieces of information: the
probability py of observing y and the corresponding posterior π|y which repre-
sents the adversary’s updated view about the uncertainty of the secret’s value.
1 Stochastic means that the rows sum to 1, i.e.

∑
y∈Y Cxy = 1.

2 We assume for convenience that when we write py the terms C, π and y are under-
stood from the context. Notation suited for formal calculation would need to incor-
porate C and π explicitly.
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If the vulnerability of the posterior increases, then information about the secret
has leaked and the adversary can use it to increase his gain by changing how he
chooses to act. The adversary’s average overall gain, taking the observations into
account, is defined to be the average posterior vulnerability (i.e. the average gain
of each posterior distribution, weighted according to their respective marginals):

Vg[π〉C] :=
∑

y∈Y
py×Vg[π|y] , where py, π|y are defined at Definition 3. (2)

Now that we have Definitions 2 and 3 we can start to investigate whether the
information leaked through observations Y actually have an impact in terms of
whether it is useful to an adversary. It is easy to see that for any gain function g,
prior π and mechanism C we have that Vg[π] ≤ Vg[π〉C]. In fact the greater the
difference between the prior and posterior vulnerability, the more the adversary
is able to use the leaked information within the scenario defined by g. In our
investigations of problems (I) and (II) we use the following implications of this
idea.

(A) The adversary is able to use information leaked through mechanism C only
when Vg[π] < Vg[π〉C]. In the case that the prior and posterior vulnerability
are the same then, although information has leaked, the adversary acting
within a scenario defined by g is not able to use the information in any
way that benefits him. Of course there could be other scenarios where the
information could prove to be advantageous, but those scenarios would cor-
respond to a different gain function. If Vg[π] = Vg[π〉C] for all gain functions
g then in fact the channel has leaked no information at all that can be used
by any adversary.

(B) For each observation y there is an action w that an adversary can pick to
optimise his overall gain. This corresponds roughly to a strategy that an
adversary might follow in “attacking” a mechanism C. Where here “attack”
is a passive attack in the sense that the adversary observes the outputs
of the mechanism C and then revises his opinion about the uncertainty of
the secret to be that of the relevant posterior. This might mean that he
can benefit by changing his mind about how to act, after he observes the
mechanism.

(C) If P,Q are two different mechanisms corresponding to different designs of
say a system, we can compare the information leaks as follows. If Vg[π〉P ] >
Vg[π〉Q] then we can say that P leaks more than Q for the scenario defined
by g in the context of prior π. If it turns out that Vg[π〉P ] ≥ Vg[π〉Q] for all g
and π then we can say that Q is more secure than P , written P � Q, because
in every scenario Q leaks less useful information than does P . Indeed any
mechanism that only has a single observable leaks nothing at all and so it
is maximal wrt. �. We explore some aspects of � in Sect. 5.

In the remainder of the paper we illustrate these ideas by showing how adver-
saries can reason about leaked information, and how defenders can understand
potential vulnerabilities of programs that partially leak information. We note
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that some of our examples are described using a small programming language,
and therefore a fully formal treatment needs a model that can account for both
state updates and information leaks. This can be done using a generalisation of
Hidden Markov Models [15]; however the principal focus in all our examples is
information flows concerning secrets that are initialised and never subsequently
updated, and therefore any variable updates are incidental. In these cases a sim-
ple channel model, as summarised here, is sufficient to understand the informa-
tion flow properties. We do however touch on some features of the programming
language which, although illustrated only on very simple programs, nevertheless
apply more generally in the more detailed Hidden Markov Model.

3 Experiment (I): When Is a Leak Not a (Useful) Leak?

The secretary problem and its variations [6] have a long history having been orig-
inally posed around 1955 although the earliest published accounts seem to date
back to the 1960’s [7–9]. They are classic problems in reasoning with incomplete
information. Here we revisit the basic problem in order to illustrate the relation-
ship between gain functions and adversarial scenarios and how gain functions can
be used to model what an adversary can usefully do with partial information.

We assume that there are N candidates who have applied to be Paris’ secre-
tary and that they are numbered 1, . . . , N in order of their interview schedule.
However their ability rank in terms of their fitness for the position is modelled as
a permutation σ : {1, . . . , N}→{1, . . . , N}, and we assume that the precise σ is
unknown to Paris, who is therefore the adversary. The best candidate scheduled
in time slot i will have ability rank σ[i] = N , and the worst, interviewed at slot
j will have σ[j] = 1. We write Σ for the set of all such permutations. We model
Paris’ prior knowledge of σ as the uniform probability distribution u:DΣ—i.e.
uσ = 1/N ! for each σ:Σ reflecting the idea that initially Paris cannot distinguish
the candidates on suitability for the position.

When Paris interviews candidate i, he does not learn σ[i], but he does learn
how that candidate ranks in comparison to the others he has already seen. This
implies that after the first interview all he can do is establish an initial baseline
for subsequent comparison. For instance, after the second interview he will learn
either that σ[1]<σ[2] or that σ[2]<σ[1]. We write Cn for the channel that has
as observables the relative rankings of the first n candidates. This means that
C1 has one observation (and so leaks nothing), C2 has two observations (as
above), C3 has six observations, and in general Cn has n! observations. Thus
when n = N , CN leaks the precise rankings of all candidates (and in so doing
identifies σ). In Fig. 1 we illustrate the channel C2 in the situation where there
are only 3 candidates.

But what exactly can Paris do with these observations to help him select the
best candidate, i.e. to enable him to offer the position to the candidate i that
satisfies σ[i] = N? Since he makes an offer directly to candidate i at the end
of the i’th interview, the risk is that he offers the job too early (he hasn’t yet
interviewed the best candidate) or too late (the best candidate has already been
let go).
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Fig. 1. Information flow channel C2 after interviewing 2 candidates from a total of 3

In any information flow problem, there is little point in measuring how much
information is released if that measurement does not pertain to the actual deci-
sion making mechanism that an adversary uses. For example suppose that N = 6.
A traditional information flow analysis might concentrate on measuring Shannon
entropy as a way to get a handle on Paris’ uncertainty and how it changes as he
interviews more candidates. At the beginning, Paris knows nothing, and so his
uncertainty as measured by Shannon entropy over the uniform distribution of
6! orderings is log2(6!)≈ 9.5. He doesn’t know about 9 bits of hidden informa-
tion. After two interviews, his uncertainty has dropped to log2(360)≈ 8.5, and
after three interviews it becomes log2(120)≈ 7. The question is, how do these
numbers help Paris make his decision? If candidate 2 is better than candidate 1
should he make the appointment? If he waits, should he make the appointment
if candidate 3 is the best so far? With as much as 7 bits from a total of 9 still
uncertain, maybe it would be better to wait?

Of course a detailed mathematical analysis [6] shows that if Paris’ objective is
to maximise his probability of selecting the best candidate using only the actions
he has available (i.e. “appoint now” or “wait”) then it would indeed be best for
him not to wait but rather to appoint candidate 3 immediately if they present as
the best so far. In fact the numbers taken from a Shannon analysis do not appear
to help Paris at all to decide what he should do because Shannon entropy is not
designed for analysing his objective when faced with his particular scenario and
the set of actions he has available.

A more helpful analysis is to use a gain function designed to describe exactly
Paris’ possible actions so that his ability to use any information leaks –by
enabling the capability to favour one action over another– can be evaluated.
Recall that after interviewing each candidate Paris can choose to perform two
actions: either to “appoint immediately” (a) or to “wait” (w) until the next best.
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We let W:= {a,w} represent the set of those actions after the n’th interview.
Next we need to define the associated gains. For action a, the gain is 1 if he man-
ages to appoint the overall maximum, i.e. gn(a, σ) = 1 exactly if σ[n] = N . For
w Paris does not appoint the n’th candidate but instead continues to interview
candidates and will appoint the next best candidate he has seen thus far. His
gain is 1 if that appointment is best overall, thus gn(w, σ) = 1 if and only if the
first k>n which is strictly better than all candidates seen so far turns out to be
the maximum overall.3 We write σ[i, j] for the subsequence of σ consisting of the
interval between i and j inclusive, and σ(i, j) for the subsequence consisting of
the interval strictly between i and j (i.e. exclusive of σ[i] and σ[j]). Furthermore
we write �ρ for the maximum item in a given subsequence ρ. We can now define
Paris’ gain function as follows:

gn(a, σ) := 1 iff σ[n] = N (3)
gn(w, σ) := 1 iff ∃(N≥k>n) s.t. � σ(n, k)< � σ[1, n]<N = σ[k]. (4)

Given uniform prior u (over the possible N ! permutations), we can approxi-
mate Paris’ residual uncertainty after interviewing n candidates by considering
the posterior vulnerability Vgn

[u 〉 Cn]. Using (A) from Sect. 2 we can evaluate
whether the information leaked is useful by comparing Vgn

[u 〉Cn] with the prior
vulnerability Vgn

[u]; next we can use (B) from Sect. 2 to examine, for each pos-
terior which of a or w is Paris’ best action relative to each observation. In the
case that N is 6, we can show that:

Vg2 [u] = Vg2 [u 〉 C2] , but Vg3 [u] < Vg3 [u 〉 C3],

i.e. there is no leakage wrt. the question “should the candidate just interviewed
be selected?” after two interviews because the prior and posterior vulnerabilities
wrt. g2 are the same. On the other hand the information leaked after interviewing
three candidates is sufficient to help him decide whether to appoint the third
candidate—he should do so if that third candidate is the best so far.

To see how this reasoning works, consider the situation after interviewing two
candidates as described above. Note that both outcomes occur with probability
1/2 (since the prior is uniform). If we look at the two possible actions available
in g2 we can compare whether the probability of the second candidate being best
overall actually changes from its initial value of 1/6 with this new information.
In fact it does not—the probability that the second candidate is the best overall
remains at 1/6, and the probability that the next best candidate is best overall
also does not change, remaining at 0.427 = Vg2 [u 〉C2]. This tells us that although
some uncertainty has been resolved, it can’t be used by Paris to help him with
his objective—he will still not appoint candidate 2 even when they rank more
highly than candidate 1.

3 In the traditional analysis Paris only employs this strategy after interviewing approx-
imately N/e candidates. Here we are interested in studying this strategy at each stage
of the interviewing procedure.



Experiments in Information Flow Analysis 9

On the other hand if we compare the case where Paris interviews three can-
didates, and observes that the best candidate so far is σ[3], then there is a good
chance that this is the best candidate overall. Indeed his best strategy is to
appoint that candidate immediately—and he should only continue interviewing
if σ[3] rates lower than either the other two. Overall this gives him the greatest
chance of appointing the best candidate which is 0.428 = Vg3 [u 〉 C3]. 4

A similar analysis applies to other Cn’s but when N = 6 his overall best
strategy is to start appointing after n = 3.

We note that the analysis presented above relates only to the original formu-
lation of the Secretary problem; the aim is to explain the well-known solution
(to the Secretary problem) in terms of how an adversary acts in a context of
partial information. More realistic variations of the Secretary problem have been
proposed. For example the original formulation only speaks of hiring the best,
whereas in reality hiring the second best might not be so bad. Analysing such
alternative adversarial goals (such as choosing either the best or the second best)
would require designing a gain function that specifically matches those alterna-
tive requirements.

4 Experiment (II): Comparing Designs

Consider now the scenario of Romulus who does not trust his brother Remus.
Romulus decides to password protect his computer but has read that the pass-
word checker, depicted in Fig. 2, suffers from a security flaw which allows an
adversary to identify prefixes of his real password. Observe that the program
in Fig. 2 iteratively checks each character of an input password with the real
password, so that the time it takes to finish checking depends on how many
characters have been matched. Romulus wonders why anyone would design a
password checker with such an obvious flaw since an easy fix would be to report
whether the guess succeeds only after waiting until all the characters have been
checked. But then Romulus remembers that he often mistypes his password and
would not want to wait a long time between retries.

In Fig. 2 we assume that pw is Romulus’ secret password, and that gs is an
adversary’s input when prompted by the system for an input. To carry out a
QIF analysis of a timing attack, as described in Sect. 2, we would first create
an information flow channel with observations describing the possible outcomes
after executing the loop to termination, and then we would use it to determine
a joint distribution wrt. a prior distribution. In this case the observations in the
channel would be: “does not enter the loop”, “iterates once”, “iterates twice”

4 Interestingly the two Vg2 [u 〉 C2] = Vg3 [u 〉 C3]—although the actions wrt. g2 and
g3 are different, in the case they are interpreted over the scenario of 6 candidates
they dictate the same behaviour. Under the g2 strategy which becomes operational
after interviewing 2 candidates, it is never to appoint candidate 2, but take the very
next best. Under the g3 case (which becomes operational after interviewing three
candidates) it is to take candidate 3 if she is the best so far, or if not select the next
best.
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Fig. 2. Basic password checker, with early exit

etc. There is however an alternative approach which leads to the same (logical)
outcome, but offers an opportunity for QIF tool support summarised in Sect. 6.
Instead of creating the channel in one hit, we interpret each program fragment
as a mini-channel with its own observations. At each stage of the computation
the joint distribution described at Definition 3 is determined “on the go”, by
amalgamating all subsequent information leaks from new mini-channels with
those already accounted for. The situation is a little more complicated because
state updates also have to be included. But in the examples described here,
we can concentrate on the program fragments that explicitly release information
about the secret pw, and assume that the additional state updates (to the counter
i for example) have no impact on the information leaks.

To enable this approach we introduce a “Print” statement into the program-
ming language which is interpreted as a mini-channel—“Print” statements have
no effect on the computations except to transmit information to an observer
during program execution. In Fig. 2 the statement Print(ans && i<N) occur-
ring each time the loop body is entered transmits that fact to the adversary
by emitting the observation “condition (ans && i<N) is true”. Similarly a sec-
ond statement Print ans transmits whether the loop terminated with ans true
or false. To determine the overall information flow of the loop, we interpret
Print(ans && i<N) and Print ans separately as channels, and use “channel
sequential composition” [14] to rationalise the various sequences of observations
with what the adversary already knows. It is easy to see that this use of “Print”
statements logically (at least) accounts for the timing attack because it simu-
lates an adversary’s ability to determine the number of iterations of the loop,
and therefore to deduce the prefix of the pw of length the number of iterations,
because it must be the same as the corresponding prefix of the known gs.
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Fig. 3. Password checker, with early exit and random checking order

With this facility, Romulus can now compare various designs for password
checking programs. Figure 3 models the system upgrade that Romulus is consid-
ering. Just as in Fig. 2, an early exit is permitted, but the information flow is
now different because rather than checking the characters in order of index, the
checking order is randomised uniformly over all possible orders. For example if
Fig. 2 terminates after checking a single character of input password gs, then the
adversary knows to begin subsequent guesses with gs[0]. But if Fig. 3 similarly
terminates after trying a single character, all the adversary knows is that one of
gs[0], . . . gs[n-1] is correct, but he does not know which one.

At first sight, this appears to offer a good trade-off between Romulus’ aim
of making it difficult for Remus to guess his password and his desire not to wait
too long before he can try again in case he mistypes his own password. To gain
better insight however we can look at some specific instances of information flow
with respect to these password checking algorithms.

We assume a prior uniform distribution over all permutations of a three
character password "abc", i.e. we assume the adversary knows that pw is one
of those permutations, but nothing else. Next we consider the information leaks
when the various algorithms are run with input gs = "abc". Since the adversary’s
intention is to figure out the exact value of pw, we use Bayes Vulnerability Vbv

(recall 1 for definition of bv) to measure the uncertainty, where X is the set of
permutations of "abc" and W:= X is the set of possible guesses. 5

Consider first the basic password checker depicted at Fig. 2. There are three
amalgamated observations: the loop can terminate after 1, 2 or 3 iterations. For
each observation, we compute the marginal probability and the posterior prob-
abilities associated with the residual uncertainty (recall Definition 3). For this
example the marginal, corresponding posterior and observations are as follows:

5 In this case, we imagine that an adversary uses an input gs in order to extract some
information. His actions described by W are related to what he is able to do in the
face of his current uncertainty.
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marginal {posterior}
1 ÷ 6 {1 ÷ 1 "abc"} ← termination after 3 iterations
1 ÷ 6 {1 ÷ 1 "acb"} ← termination after 2 iterations
2 ÷ 3 {1 ÷ 4 "bac" ← termination after 1 iteration

1 ÷ 4 "bca"
1 ÷ 4 "cab"
1 ÷ 4 "cba"}

The first observation with marginal probability 1/6, is the case where gs and
pw are the same: only then will the loop run to completion. The associated poste-
rior probability is the point distribution over "abc". For the second observation
–termination after 2 iterations– the marginal is also 1/6 and the associated pos-
terior is also a point distribution over "acb". That is because if gs[0] matches
pw[0] but gs[1] does not match pw[1] it must be that the second and third
characters in gs are swapped.

The third observation is the case where the loop terminates after one iteration
and it occurs with marginal probability 2/3. This can only happen when gs[0] is
not equal to pw[0] (2 possibilities), and the second and third characters can be
in either order (2 more possibilities), giving 1/2×2 for each posterior probability.

Overall the (posterior) Bayes Vulnerability has increased (from 1/6 initially
relative to the uniform prior) to 1/2 because the chance of guessing the password,
taking the observations into account, is now 1/2.

Comparing now with the obfuscation of the checking order Fig. 3, we again
have the situation of three possible observations, but now the uncertainty is
completely reduced only in the case of 3 iterations. The resulting marginal,
corresponding posterior and observations are as follows:

marginal {posterior}
1 ÷ 6 {1 ÷ 1 "abc"} ← termination after 3 iterations
2 ÷ 3 {1 ÷ 6 "acb" ← termination after 2 iterations

1 ÷ 6 "bac"
1 ÷ 4 "bca"
1 ÷ 4 "cab"
1 ÷ 6 "cba"}

1 ÷ 6 {1 ÷ 3 "acb" ← termination after 1 iteration
1 ÷ 3 "bac"
1 ÷ 3 "cba"}

In spite of the residual uncertainty in the case of an incorrect input, the
overall posterior vulnerability of 7/18 is only slightly lower than the 1/2 for the
original early exit Fig. 2.

For longer passwords, displaying the list of marginals and posteriors is not
so informative; but still we can give the posterior Bayes vulnerability. We find
for example that for Fig. 3, even with its early exit, only reduces the probability
of guessing the password by half when compared with Fig. 2. For a 5 character
password, Fig. 2 gives a posterior vulnerability of 1/24, but Fig. 3 reduces it only
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to about half as much at 13/600. Perhaps Romulus’ upgrade is not really worth
it after all.

5 Experiment (III): Properties of the Modelling
Language

Fig. 4. A hidden if . . . then . . . else

Thus far we have considered information flows in specific scenarios. In this section
we look more generally at the process of formalisation, in particular the infor-
mation flow properties of the programming language itself. In standard program
semantics, the idea of refinement is important because it provides a sound tech-
nique for simplifying a verification exercise. If an “abstract” description of a
program can be shown to satisfy some property, then refinement can be used to
show that if the actual program only exhibits consistent behaviours relative to
its abstract counterpart, then it too must satisfy the property. To make all of
this work in practice, the abstraction/refinement technique normally demands
that program constructs are “monotonic” in the sense that applying abstraction
to a component leads to an abstraction of the whole program.

In Sect. 2(C) we described an information flow refinement relative to the
QIF semantics so that if P � P ′ then program P leaks more information than
does program P ′ in all possible scenarios. In the examples we have seen above,
the sequence operator used to input the results of one program P into another
Q is written P ;Q. It is an important fact that sequence is monotonic, i.e. if
P � P ′ then P ;Q � P ′;Q. Elsewhere [14,16] define a QIF semantics for a
programming language in which all operators are “monotonic” wrt. information
flow—this means that improving the security of any component in a program
implies that the security of the overall program is also improved. The experiment
in this section investigates monotonicity for conditional branching in a context
of information flow.

Consider programs at Figs. 4 and 5 which assume two secrets h, k. Each
program is the same except for the information transmitted in the case that
the secret h is 1—in this circumstance Fig. 4 Prints the exclusive OR of h and k
whereas Fig. 5 always Prints 1. In this experiment we imagine that the adversary
can only observe information transmitted via the “Print” statements, and can-
not (for example) observe the branching itself. This is a “hidden if statement”
denoted by “hif . . . fih”, and we investigate whether it can be monotonic as a
(binary) program construct.
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Fig. 5. A program which emits 0’s and 1’s

To study this question, we first observe that the statement Print 1 is more
secure than Print (h XOR k); that is because Print 1 transmits no information
at all because its observable does not depend on the value of the secret, and so
is an example of the most secure program (recall (C) in Sect. 2). This means if
“hif . . . fih” has a semantics which is monotonic, it must be the case that Fig. 5
is more secure than Fig. 4.

In these simple cases, we can give a QIF semantics for the two programs
directly, taking into account the assumption that only the “Print” statements
transmit observations. Assume that the variables h, k are initialised uniformly
and independently. In the case of Fig. 4 the adversary reasons that if 1 is printed
then this is either because the lower branch was executed (h == 0) or the upper
branch is executed (h == 1) and h XOR k evaluates to 1. When he observes 0
however that can only happen if (h == 1). We can summarise the relative marginal
and posterior probabilities for these cases as follows. We write the values of the
variables as a pair, with h as the left component and k the right component.
For example the pair (1, 0) means that h has value 1 and k has value 0. In
the scenario just described, there is a 1/4 marginal probability that the pair is
(1, 1), and in this case the adversary knows the value of h and k. But with
probability 3/4 a 1 is printed, and in this case the adversary does not know
which of the remaining pairs it can be. The following marginal and posterior
probabilities summarise this behaviour:

marginal {posterior}
1 ÷ 4 {1 ÷ 1 "(1,1)"} ← Prints 0
3 ÷ 4 {1 ÷ 3 "(0,0)" ← Prints 1

1 ÷ 3 "(0,1)"
1 ÷ 3 "(1,0)"}

For Fig. 5 the situation is a little simpler—when h is 0 a 1 is printed and vice
versa. This leads to the following result.

marginal {posterior}
1 ÷ 2 {1 ÷ 2 "(1,1)" ← Prints 0

1 ÷ 2 "(1,0)"}
1 ÷ 2 {1 ÷ 2 "(0,0)" ← Prints 1

1 ÷ 2 "(0,1)"}
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Comparing these two probabilistic results we see now that “hif . . . fih”
cannot be monotonic, because if we replace Print(h XOR k) by the more secure
Print 1 more information (not less) is leaked. For instance, under Bayes Vul-
nerability for h, the adversary can guess the value of h exactly under Fig. 5 but
only with probability 3/4 under Fig. 4.

This experiment tells us that a hidden “hif . . . fih” construct cannot be
defined in a way that respects monotonicity of information flow, and could there-
fore be too risky to use.

6 Experiments with Kuifje

The experiments described above were carried out using the tool Kuifje [12]
which interprets a small programming language in terms of the QIF semantics,
but extended to the Hidden Markov Model alluded to in Sect. 2. It supports
the usual programming constructs (assignment, sequencing, conditionals and
loops) but crucially it takes into account information flows consistent with the
channel model outlined in Sect. 2. In particular the “Print” statements used in
our examples correspond exactly to the observations that an adversary could
make during program execution. This allows a direct model for eg. known side
channels that potentially expose partially computation traces during program
execution.

The basic assumption built into the semantics of Kuifje is that all variables
cannot be observed unless revealed fully or partially through a “Print” state-
ment. For example Print x would print the value of variable x and so reveal it
completely at that point of execution, but Print(x>0) would only reveal whether
x is strictly positive or not. As usual, we also assume that the adversary knows
the program code.

Kuifje is implemented in Haskell and makes extensive use of the Giry monad
[10] for managing the prior, posterior and marginal probabilities in the form
of “hyperdistributions”. A hyperdistribution is a distribution of distributions
and is based on the principle that the names of observations are redundant
in terms of the analysis of information flow. Hyperdistributions therefore only
summarise the posterior and marginal probabilities, because these quantities are
the only ones that play a role in computing posterior vulnerabilities (recall 2).
Hyperdistributions satisfy a number of useful properties relevant to QIF [15],
and provide the basis for algebraic reasoning of source level code.

7 Related Work

Classical approaches to measuring insecurities in programs are based on deter-
mining a “change in uncertainty” of some “prior” value of the secret—although
how to measure the uncertainty differs in each approach. For example Clark
et al. [3] use Shannon entropy to estimate the number of bits being leaked; and
Clarkson et al. [5] model a change in belief. Smith [18] demonstrated the impor-
tance of using measures that have some operational significance, and the idea was
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developed further [2] by introducing the notion of g-leakage to express such signif-
icance in a very general way. The partial order used here on programs is the same
as the g-leakage order introduced by Alvim et al. [2], but it appeared also in even
earlier work [14]. Its properties have been studied extensively [1].

Jacobs and Zanasi [11] use ideas based on the Giry Monad to present an
abstract state transformer framework for Bayesian reasoning. Our use of hyper-
distributions means that the conditioning needed for the Bayesian update has
taken place in the construction of the posteriors.

8 Conclusions and Discussion

Understanding the impact of information flow is hard. The conceptual tools
presented here summarise the ideas of capturing the adversary’s ability to use
the information released, together with a modelling language that enables the
study of risks associated with information leaks in complicated algorithms and
protocols. The language itself is based on the Probability Monad which has
enabled its interpretation in Kuifje.

It is hoped that the ability to describe scenarios in terms of adversarial
gains/losses together with Kuifje that enables detailed numerical calculation of
the impact of flows will lead to a better understanding of security vulnerabilities
in programs.

Acknowledgements. I thank Tom Schrijvers for having the idea of embedding these
ideas in Haskell, based on Carroll Morgan’s talk at IFIP WG2.1 in Vermont, and for
carrying it out to produce the tool Kuifje. Together with Jeremy Gibbons all four of
us wrote the first paper devoted to it [12]. (It was Jeremy who suggested the name
“Kuifje”, the Dutch name for TinTin—and hence his “QIF”.) Carroll Morgan trans-
lated the example programs into Kuifje.
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Abstract. Equational reasoning is one of the most important tools of
functional programming. To facilitate its application to monadic pro-
grams, Gibbons and Hinze have proposed a simple axiomatic approach
using laws that characterise the computational effects without exposing
their implementation details. At the same time Plotkin and Pretnar have
proposed algebraic effects and handlers, a mechanism of layered abstrac-
tions by which effects can be implemented in terms of other effects.

This paper performs a case study that connects these two strands of
research. We consider two ways in which the nondeterminism and state
effects can interact: the high-level semantics where every nondetermin-
istic branch has a local copy of the state, and the low-level semantics
where a single sequentially threaded state is global to all branches.

We give a monadic account of the folklore technique of handling local
state in terms of global state, provide a novel axiomatic characterisation
of global state and prove that the handler satisfies Gibbons and Hinze’s
local state axioms by means of a novel combination of free monads and
contextual equivalence. We also provide a model for global state that is
necessarily non-monadic.

Keywords: Monads · Effect handlers · Equational reasoning ·
Nondeterminism · State · Contextual equivalence

1 Introduction

Monads have been introduced to functional programming to support side effects
in a rigorous, mathematically manageable manner [11,14]. Over time they have
become the main framework in which effects are modelled. Various monads
were developed for different effects, from general ones such as IO, state, non-
determinism, exception, continuation, environment passing, to specific purposes
such as parsing. Much research was also devoted to producing practical monadic
programs.

Equational reasoning about pure functional programs is particularly simple
and powerful. Yet, Hutton and Fulger [7] noted that a lot less attention has been
paid to reasoning about monadic programs in that style. Gibbons and Hinze [4]
argue that equational reasoning about monadic programs becomes particularly
c© Springer Nature Switzerland AG 2019
G. Hutton (Ed.): MPC 2019, LNCS 11825, pp. 18–44, 2019.
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convenient and elegant when one respects the abstraction boundaries of the
monad. This is possible by reasoning in terms of axioms or laws that characterise
the monad’s behavior without fixing its implementation.

This paper is a case study of equational reasoning with monadic programs.
Following the approach of algebraic effects and handlers [12], we consider how
one monad can be implemented in terms of another—or, in other words, how one
can be simulated in by another using a careful discipline. Our core contribution
is a novel approach for proving the correctness of such a simulation. The proof
approach is a convenient hybrid between equational reasoning based on axioms
and inductive reasoning on the structure of programs. To capture the simulation
we apply the algebraic effects technique of handling a free monad representa-
tion [15]. The latter provides a syntax tree on which to perform induction. To
capture the careful discipline of the simulation we use contextual equivalence
and perform inductive reasoning about program contexts. This allows us to deal
with a heterogeneous axiom set where different axioms may make use of different
notions of equality for programs.

We apply this proof technique to a situation where each “monad” (both the
simulating monad and the simulated monad) is in fact a combination of two
monads, with differing laws on how these effects interact: non-determinism and
state.

In the monad we want to implement, each non-deterministic branch has
its own ‘local’ copy of the state. This is a convenient effect interaction which
is provided by many systems that solve search problems, including Prolog. A
characterisation of this ‘local state’ monad was given by Gibbons and Hinze [4].

We realise this local state semantics in terms of a more primitive monad where
a single state is sequentially threaded through the non-deterministic branches.
Because this state is shared among the branches, we call this the ‘global state’
semantics. The appearance of local state is obtained by following a discipline of
undoing changes to the state when backtracking to the next branch. This folk-
lore backtracking technique is implemented by most sequential search systems
because of its relative efficiency: remembering what to undo often requires less
memory than creating multiple copies of the state, and undoing changes often
takes less time than recomputing the state from scratch. To the best of our
knowledge, our axiomatic characterisation of the global state monad is novel.

In brief, our contributions can be summarized as follows:

– We provide an axiomatic characterisation for the interaction between the
monadic effects of non-determinism and state where the state is persistent
(i.e., does not backtrack), together with a model that satisfies this character-
isation.

– We prove that—with a careful discipline—our characterisation of persistent
state can correctly simulate Gibbons and Hinze’s monadic characterisation of
backtrackable state [4]. We use our novel proof approach (the core contribu-
tion of this paper) to do so.

– Our proof also comes with a mechanization in Coq.1

1 The proof can be found at https://github.com/KoenP/LocalAsGlobal.

https://github.com/KoenP/LocalAsGlobal
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The rest of the paper is structured as follows. First, Sect. 2 gives an overview
of the main concepts used in the paper and defines our terminology. Then, Sect. 3
informally explores the differences between local and global state semantics.
Next, Sect. 4 explains how to handle local state in terms of global state. Section 5
formalizes this approach and proves it correct. Finally, Sects. 6 and 7 respectively
discuss related work and conclude.

2 Background

This section briefly summarises the main concepts we need for equational rea-
soning about effects. For a more extensive treatment we refer to the work of
Gibbons and Hinze [4].

2.1 Monads, Nondeterminism and State

Monads. A monad consists of a type constructor M :: ∗ → ∗ and two operators
return :: a → M a and “bind” (>>=) :: M a → (a → M b) → M b that satisfy the
following monad laws:

return x >>= f = f x , (1)

m >>= return = m , (2)

(m >>= f ) >>= g = m >>= (λx → f x >>= g) . (3)

Nondeterminism. The first effect we introduce is nondeterminism. Following
the trail of Hutton and Fulger [7] and Gibbons and Hinze, we introduce effects
based on an axiomatic characterisation rather than a specific implementation.
We define a type class to capture this interface as follows:

class Monad m ⇒ MNondet m where
∅ :: m a
(�) :: m a → m a → m a .

In this interface, ∅ denotes failure, while m � n denotes that the computation
may yield either m or n. Precisely what laws these operators should satisfy,
however, can be a tricky issue. As discussed by Kiselyov [8], it eventually comes
down to what we use the monad for.

It is usually expected that (�) and ∅ form a monoid. That is, (�) is associative,
with ∅ as its zero:

(m � n) � k = m � (n � k) , (4)

∅ � m = m = m � ∅ . (5)
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It is also assumed that monadic bind distributes into (�) from the end, while
∅ is a left zero for (>>=):

left-distributivity: (m1 � m2) >>= f = (m1 >>= f ) � (m2 >>= f ) , (6)
left-zero: ∅ >>= f = ∅ . (7)

We will refer to the laws (4), (5), (6), (7) collectively as the nondeterminism
laws.

One might intuitively expect some additional laws from a set of non-
determinism operators, such as idempotence (p � p = p) or commutativity
(p � q = q � p). However, our primary interest lies in the study of combinations
of effects and – as we shall see very soon – in particular the combination of non-
determinism with state. One of our characterisations of this interaction would
be incompatible with both idempotence and commutativity, at least if they are
stated as strongly as we have done here. We will eventually introduce a weaker
notion of commutativity, but it would not be instructive to do so here (as its
properties would be difficult to motivate at this point).

State. The state effect provides two operators:

class Monad m ⇒ MState s m | m → s where
get :: m s
put :: s → m () .

The get operator retrieves the state, while put overwrites the state by the given
value. They satisfy the state laws:

put-put: put st >> put st ′ = put st ′ , (8)
put-get: put st >> get = put st >> return st , (9)
get-put: get >>= put = return () , (10)
get-get : get >>= (λst → get >>= k st) = get >>= (λst → k st st) , (11)

where m1 >> m2 = m1 >>= λ → m2, which has type (>>) :: m a → m b → m b.

2.2 Combining Effects

As Gibbons and Hinze already noted, an advantage of defining our effects
axiomatically, rather than by providing some concrete implementation, is that
it is straightforward to reason about combinations of effects. In this paper, we
are interested in the interaction between nondeterminism and state, specifically.

class (MState s m,MNondet m) ⇒ MStateNondet s m | m → s .

The type class MStateNondet s m simply inherits the operators of its superclasses
MState s m and MNondet m without adding new operators, and implementa-
tions of this class should comply with all laws of both superclasses.
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However, this is not the entire story. Without additional ‘interaction laws’,
the design space for implementations of this type class is left wide-open with
respect to questions about how these effects interact. In particular, it seems
hard to imagine that one could write nontrivial programs which are agnostic
towards the question of what happens to the state of the program when the
program backtracks. We discuss two possible approaches.

Local State Semantics. One is what Gibbons and Hinze call “backtrackable
state”, that is, when a branch of the nondeterministic computation runs into
a dead end and the continuation of the computation is picked up at the most
recent branching point, any alterations made to the state by our terminated
branch are invisible to the continuation. Because in this scheme state is local to
a branch, we will refer to these semantics as local state semantics. We charac-
terise local state semantics with the following laws:

right-zero: m >> ∅ = ∅ , (12)
right-distributivity: m >>= (λx → f1 x � f2 x ) = (m >>= f1) � (m >>= f2). (13)

With some implementations of the monad, it is likely that in the lefthand side of
(13), the effect of m happens once, while in the righthand side it happens twice.
In (12), the m on the lefthand side may incur some effects that do not happen
in the righthand side.

Having (12) and (13) leads to profound consequences on the seman-
tics and implementation of monadic programs. To begin with, (13) implies
that for (�) we have some limited notion of commutativity. For instance,
both the left and right distributivity rules can be applied to the term
(return x � return y) >>= λz → return z � return z . It is then easy to show that
this term must be equal to both return x � return x � return y � return y and
return x � return y � return x � return y .2

In fact, having (12) and (13) gives us very strong and useful commutative
properties. To be clear what we mean, we give a formal definition:

Definition 1. Let m and n be two monadic programs such that x does not occur
free in m, and y does not occur free in n. We say m and n commute if

m >>= λx → n >>= λy → f x y =
n >>= λy → m >>= λx → f x y .

(14)

We say that effects ε and δ commute if any m and n commute as long as their
only effects are respectively ε and δ.

One important result is that, in local state semantics, non-determinism com-
mutes with any effect:
2 Gibbons and Hinze [4] were mistaken in their claim that the type s → [(a, s)]

constitutes a model of their backtrackable state laws; it is not a model because its
(�) does not commute with itself. One could consider a relaxed semantics that admits
s → [(a, s)], but that is not the focus of this paper.



Handling Local State with Global State 23

Theorem 1. If right-zero (12) and right-distributivity (13) hold in addition to
the other laws, non-determinism commutes with any effect.

Implementation-wise, (12) and (13) imply that each nondeterministic branch
has its own copy of the state. To see that, let m = put 1, f1 () = put 2, and
f2 () = get in (13)—the state we get in the second branch does not change,
despite the put 2 in the first branch. One implementation satisfying the laws
is M s a = s → Bag (a, s), where Bag a is an implementation of a multiset or
“bag” data structure. If we ignore the unordered nature of the Bag type, this
implementation is similar to StateT s (ListT Identity) in the Monad Transformer
Library [5]. With effect handling [9,15], the monad behaves similarly (except for
the limited commutativity implied by law (13)) if we run the handler for state
before that for list.

Global State Semantics. Alternatively, we can choose a semantics where state
reigns over nondeterminism. In this case of non-backtrackable state, alterations
to the state persist over backtracks. Because only a single state is shared over all
the branches of the nondeterministic computation, we call this semantics global
state semantics. We will return later to the question of how to define laws that
capture our intuition for this kind of semantics, because (to the best of our
knowledge) this constitutes a novel contribution.

Even just figuring out an implementation of a global state monad
that matches our intuition is already tricky. One might believe that
M s a = s → ([a ], s) is a natural implementation of such a monad. The usual,
naive implementation of (>>=) using this representation, however, does not satisfy
left-distributivity (6), violates monad laws, and is therefore not even a monad.
The type ListT (State s) generated using the Monad Transformer Library [5]
expands to essentially the same implementation, and is flawed in the same way.
More careful implementations of ListT, which do satisfy (6) and the monad
laws, have been proposed [3,13]. Effect handlers (e.g. Wu [15] and Kiselyov
and Ishii [9]) do produce implementations which match our intuition of a non-
backtracking computation if we run the handler for non-determinism before that
of state.

We provide a direct implementation to aid the intuition of the reader. Essen-
tially the same implementation is obtained by using the type ListT (State s)
where ListT is implemented as a correct monad transformer. This implementa-
tion has a non-commutative (�).

M s a = s → (Maybe (a,M s a), s) .

The Maybe in this type indicates that a computation might fail to produce a
result. But note that the s is outside of the Maybe: even if the computation fails
to produce any result, a modified state may be returned (this is different from
local state semantics). ∅, of course, returns an empty continuation (Nothing)
and an unmodified state. (�) first exhausts the left branch (always collecting
any state modifications it performs), before switching to the right branch.
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∅ = λs → (Nothing, s) ,
p � q = λs → case p s of (Nothing, t) → q t

(Just (x , r), t) → (Just (x , r � q), t) .

The state operators are implemented in a straightforward manner.

get = λs → (Just (s , ∅), s) ,
put s = λt → (Just ((), ∅), s) .

And this implementation is also a monad. The implementation of p >>= k extends
every branch within p with k , threading the state through this entire process.

return x = λs → (Just (x , ∅), s) ,
p >>= k = λs → case p s of (Nothing, t) → (Nothing, t)

(Just (x , q), t) → (k x � (q >>= k)) t .

0 1 2 3 4 5 6 7
0 . . . . . Q . .
1 . . . Q . . . .
2 . . . . . . Q .
3 Q . . . . . . .
4 . . . . . . . Q
5 . Q . . . . . .
6 . . . . Q . . .
7 . . Q . . . . .

(a)

0 1 2 3 4 5 6 7
0 0 1 2 3 4 . . .
1 1 2 3 4 . . . .
2 2 3 4 . . . . .
3 3 4 . . . . . .
4 4 . . . . . . .
5 . . . . . . . 12
6 . . . . . . 12 13
7 . . . . . 12 13 14

(b)

0 1 2 3 4 5 6 7
0 0 −1 . . . −5 −6 −7
1 . 0 −1 . . . −5 −6
2 . . 0 −1 . . . −5
3 3 . . 0 . . . .
4 4 3 . . 0 . . .
5 5 4 3 . . 0 . .
6 6 5 4 3 . . 0 .
7 7 6 5 4 3 . . 0

(c)

Fig. 1. (a) This placement can be represented by [3, 5, 7, 1, 6, 0, 2, 4]. (b) Up diagonals.
(c) Down diagonals.

3 Motivation

In the previous section we discussed two possible semantics for the interaction of
state and nondeterminism: global and local state semantics. In this section, we
will further explore the differences between these two interpretations. Using the
classic n-queens puzzle as an example, we show that sometimes we end up in a
situation where we want to write our program according to local state semantics
(which is generally speaking easier to reason about), but desire the space usage
characteristics of global state semantics.

3.1 Example: The n-Queens Problem

The n-queens puzzle presented in this section is adapted and simplified from
that of Gibbons and Hinze [4]. The aim of the puzzle is to place n queens on a
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n by n chess board such that no two queens can attack each other. Given n, we
number the rows and columns by [0 . . n − 1]. Since all queens should be placed
on distinct rows and distinct columns, a potential solution can be represented
by a permutation xs of the list [0 . . n − 1], such that xs !! i = j denotes that the
queen on the ith column is placed on the jth row (see Fig. 1(a)). The specification
can be written as a non-deterministic program:

queens :: MNondet m ⇒ Int → m [Int ]
queens n = perm [0 . . n − 1] >>= filt safe ,

where perm non-deterministically computes a permutation of its input, and the
pure function safe :: [Int ] → Bool, to be defined later, determines whether a solu-
tion is valid. The function filt p x returns x if p x holds, and fails otherwise. It
can be defined in terms of a standard monadic function guard :

filt :: MNondet m ⇒ (a → Bool) → a → m a
filt p x = guard (p x ) >> return x ,

guard :: MNondet m ⇒ Bool → m ()
guard b = if b then return () else ∅ .

The function perm can be written either as a fold or an unfold. For this problem
we choose the latter, using a function select , which non-deterministically splits
a list into a pair containing one chosen element and the rest. For example,
select [1, 2, 3] yields one of (1, [2, 3]), (2, [1, 3]) and (3, [1, 2]).

select :: MNondet m ⇒ [a ] → m (a, [a ])
select [ ] = ∅
select (x : xs) = return (x , xs) � ((id × (x :)) 〈$〉 select xs) ,

perm :: MNondet m ⇒ [a ] → m [a ]
perm [ ] = return [ ]
perm xs = select xs >>= λ(x , ys) → (x :) 〈$〉 perm ys ,

where f 〈$〉 m = m >> (return · f ) which applies a pure function to a monadic
value, and (f × g) (x , y) = (f x , g y).

This specification of queens generates all the permutations, before checking
them one by one, in two separate phases. We wish to fuse the two phases, which
allows branches generates a non-safe placement to be pruned earlier, and thus
produce a faster implementation.

A Backtracking Algorithm. In our representation, queens cannot be put on the
same row or column. Therefore, safe only needs to make sure that no two queens
are put on the same diagonal. An 8 by 8 chess board has 15 up diagonals (those
running between bottom-left and top-right). Let them be indexed by [0 . . 14]
(see Fig. 1(b)). Similarly, there are 15 down diagonals (running between top-left
and bottom right, indexed by [−7 . . 7] in Fig. 1(c)). We can show, by routine
program calculation, that whether a placement is safe can be checked in one
left-to-right traversal—define safe xs = safeAcc (0, [ ], [ ]) xs, where
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safeAcc :: (Int, [Int ], [Int ]) → [Int ] → Bool
safeAcc (i , us, ds) [ ] = True
safeAcc (i , us, ds) (x : xs) = ok (i ′, us ′, ds ′) ∧ safeAcc (i ′, us ′, ds ′) xs ,

where (i ′, us ′, ds ′) = (i + 1, (i + x : us), (i − x : ds)) ,

ok (i , (x : us), (y : ds)) = x 	∈ us ∧ y 	∈ ds .

Operationally, (i , us , ds) is a “state” kept by safeAcc, where i is the current
column, while us and ds are respectively the up and down diagonals encountered
so far. Function safeAcc behaves like a fold-left. Indeed, it can be defined using
scanl and all (where all p = foldr (∧) True · map p):

safeAcc (i , us, ds) = all ok · tail · scanl (⊕) (i , us, ds) ,
where (i , us, ds) ⊕ x = (i + 1, (i + x : us), (i − x : ds)) .

One might wonder whether the “state” can be implemented using an actual
state monad. Indeed, the following is among the theorems we have proved:

Theorem 2. If state and non-determinism commute, we have that for all xs,
st, (⊕), and ok,

filt (all ok · tail · scanl (⊕) st) xs =
protect (put st >> foldr (�) (return [ ]) xs) ,
where x � m = get >>= λst → guard (ok (st ⊕ x )) >>

put (st ⊕ x ) >> ((x :) 〈$〉 m) .

The function protect m = get >>= λini → m >>= λx → put ini >> return x saves
the initial state and restores it after the computation. As for (�), it assumes
that the “state” passed around by scanl is stored in a monadic state, checks
whether the new state st ⊕ x satisfies ok , and updates the state with the new
value.

For Theorem 2 to hold, however, we need state and non-determinism to
commute. It is so in the local state semantics, which can be proved using the
non-determinism laws, (12), and (13).

Now that the safety check can be performed in a foldr , recalling that
perm is an unfold, it is natural to try to fuse them into one. Indeed,
it can be proved that, with (⊕), ok , and (�) defined above, we have
perm xs >>= foldr (�) (return [ ]) = qBody xs, where

qBody :: MStateNondet (Int, [Int ], [Int ]) m ⇒ [Int ] → m [Int ]
qBody [ ] = return [ ]
qBody xs = select xs >>= λ(x , ys) →

get >>= λst → guard (ok (st ⊕ x )) >>
put (st ⊕ x ) >> ((x :) 〈$〉 qBody ys) .

The proof also heavily relies on the commutativity between non-determinism
and state.
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To wrap up, having fused perm and safety checking into one phase, we may
compute queens by:

queens :: MStateNondet (Int, [Int ], [Int ]) m ⇒ Int → m [Int ]
queens n = protect (put (0, [ ], [ ]) >> qBody [0 . . n − 1]) .

This is a backtracking algorithm that attempts to place queens column-by-
column, proceeds to the next column if ok holds, and backtracks otherwise. The
derivation from the specification to this program relies on a number of properties
that hold in the local state semantics.

3.2 Transforming Between Local State and Global State

For a monad with both non-determinism and state, the local state laws imply
that each non-deterministic branch has its own state. This is not costly for states
consisting of linked data structures, for example the state (Int, [Int ], [Int ]) in the
n-queens problem. In some applications, however, the state might be represented
by data structures, e.g. arrays, that are costly to duplicate: When each new state
is only slightly different from the previous (say, the array is updated in one place
each time), we have a wasteful duplication of information. Although this is not
expected to be an issue for realistic sizes of the n-queens problem due to the
relatively small state, one can imagine that for some problems where the state
is very large, this can be a problem.

Global state semantics, on the other hand, has a more “low-level” feel to it.
Because a single state is threaded through the entire computation without mak-
ing any implicit copies, it is easier to reason about resource usage in this setting.
So we might write our programs directly in the global state style. However, if we
do this to a program that would be more naturally expressed in the local state
style (such as our n-queens example), this will come at a great loss of clarity.
Furthermore, as we shall see, although it is easier to reason about resource usage
of programs in the global state setting, it is significantly more difficult to reason
about their semantics. We could also write our program first in a local state
style and then translate it to global state style. Doing this manually is a tedious
and error-prone process that leaves us with code that is hard to maintain. A
more attractive proposition is to design a systematic program transformation
that takes a program written for local state semantics as input, and outputs a
program that, when interpreted under global state semantics, behaves exactly
the same as the original program interpreted under local state semantics.

In the remainder of the paper we define this program transformation and
prove it correct. We believe that, in particular, the proof technique is of interest.

4 Non-determinism with Global State

So far, we have evaded giving a precise axiomatic characterisation of global
state semantics: although in Sect. 2 we provided an example implementation
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that matches our intuition of global state semantics, we haven’t provided a
clear formulation of that intuition. We begin this section by finally stating the
“global state law”, which characterises exactly the property that sets apart non-
backtrackable state from backtrackable state.

In the rest of the section, we appeal to intuition and see what happens when
we work with a global state monad: what pitfalls we may encounter, and what
programming pattern we may use, to motivate the more formal treatment in
Sect. 5.

4.1 The Global State Law

We have already discussed general laws for nondeterministic monads (laws (4)
through (7)), as well as laws which govern the interaction between state and
nondeterminism in a local state setting (laws (13) and (12)). For global state
semantics, an alternative law is required to govern the interactions between non-
determinism and state. We call this the global state law.

put-or: (put s >> m) � n = put s >> (m � n) , (15)

This law allows the lifting of a put operation from the left branch of a nondeter-
ministic choice, an operation which does not preserve meaning under local state
semantics. Suppose for example that m = ∅, then by (12) and (5), the left-hand
side of the equation is equal to n, whereas by (5), the right-hand side of the
equation is equal to put s >> n.

By itself, this law leaves us free to choose from a large space of imple-
mentations with different properties. For example, in any given implementa-
tion, the programs return x � return y and return y � return x may be consid-
ered semantically identical, or they may be considered semantically distinct.
The same goes for the programs return x � return x and return x , or the pro-
grams (put s >> return x ) � m and (put s >> return x ) � (put s >> m). Additional
axioms will be introduced as needed to cover these properties in Sect. 5.2.

4.2 Chaining Using Non-deterministic Choice

In backtracking algorithms that keep a global state, it is a common pattern to
1. update the current state to its next step, 2. recursively search for solutions,
and 3. roll back the state to the previous step (regardless of whether a solution
is found). To implement such pattern as a monadic program, one might come
up with something like the code below:

modify next >> search >>= modReturn prev ,

where next advances the state, prev undoes the modification of next
(prev · next = id), and modify and modReturn are defined by:

modify f = get >>= (put · f ) ,
modReturn f v = modify f >> return v .
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Let the initial state be st and assume that search found three choices
m1 � m2 � m3. We wish that m1, m2, and m3 all start running with state next st ,
and the state is restored to prev (next st) = st afterwards. Due to (6), however,
it expands to

modify next >> (m1 � m2 � m3) >>= modReturn prev =
modify next >> ((m1 >>= modReturn prev) �

(m2 >>= modReturn prev) �
(m3 >>= modReturn prev)) .

With a global state, it means that m2 starts with state st , after which the
state is rolled back further to prev st . The computation m3 starts with prev st ,
after which the state is rolled too far to prev (prev st). In fact, one cannot
guarantee that modReturn prev is always executed—if search fails and reduces
to ∅, modReturn prev is not run at all, due to (7).

We need a way to say that “modify next and modReturn prev are run exactly
once, respectively before and after all non-deterministic branches in solve.” For-
tunately, we have discovered a curious technique. Define

side :: MNondet m ⇒ m a → m b
side m = m >> ∅ .

Since non-deterministic branches are executed sequentially, the program

side (modify next) � m1 � m2 � m3 � side (modify prev)

executes modify next and modify prev once, respectively before and after all the
non-deterministic branches, even if they fail. Note that side m does not generate
a result. Its presence is merely for the side-effect of m, hence the name.

The reader might wonder: now that we are using (�) as a sequencing operator,
does it simply coincide with (>>)? Recall that we still have left-distributivity (6)
and, therefore, (m1 � m2) >> n equals (m1 >> n) � (m2 >> n). That is, (�) acts as
“insertion points”, where future code followed by (>>) can be inserted into! This
is certainly a dangerous feature, whose undisciplined use can lead to chaos.
However, we will exploit this feature and develop a safer programming pattern
in the next section.

4.3 State-Restoring Operations

The discussion above suggests that one can implement backtracking, in a global-
state setting, by using (�) and side appropriately. We can even go a bit further
by defining the following variation of put , which restores the original state when
it is backtracked over:

putR :: MStateNondet s m ⇒ s → m ()
putR s = get >>= λs0 → put s � side (put s0) .
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Fig. 2. Illustration of state-restoring put

To help build understanding for putR, Fig. 2 shows the flow of execution for
the expression (putR t >> ret x ) � ret y . Initially, the state is s; it gets modified
to t at the put t node after which the value x is output with the working state
t . Then, because we found a result, we backtrack (since we’re using global-state
semantics, the state modification caused by put t is not reversed), arriving in
the side operation branch. The put s operation is executed, which resets the
state to s, and then the branch immediately fails, so we backtrack to the right
branch of the topmost (�). There the value y is output with working state s.

For some further intuition about putR, consider putR s >> comp where comp
is some arbitrary computation:

putR s >> comp
= (get >>= λs0 → put s � side (put s0)) >> comp
= { monad law, left-distributivity (6) }

get >>= λs0 → (put s >> comp) � (side (put s0) >> comp)
= { by (7) ∅ >> comp = ∅, monad laws }

get >>= λs0 → (put s >> comp) � side (put s0) .

Thanks to left-distributivity (6), (>>comp) is promoted into (�). Further-
more, the (>>comp) after side (put s0) is discarded by (7). In words,
putR s >> comp saves the current state, computes comp using state s, and
restores the saved state! The subscript R stands for “restore.” Note also that
(putR s >> m1) >> m2 = putR s >> (m1 >> m2)—the state restoration happens in the
end.

The behaviour of putR is rather tricky. It is instructive comparing

(a) return x ,
(b) put s >> return x ,
(c) putR s >> return x .

When run in initial state s0, they all yield x as the result. The final states after
running (a), (b) and (c) are s0, s and s0, respectively. However, (c) does not
behave identically to (a) in all contexts! For example, in the context (>>get),
we can tell them apart: return x >> get returns s0, while putR s >> return x >> get
returns s, even though the program yields final state s0.
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We wish that putR, when run with a global state, satisfies laws (8) through
(13)—the state laws and the local state laws. If so, one could take a program
written for a local state monad, replace all occurrences of put by putR, and run
the program with a global state. Unfortunately this is not the case: putR does
satisfy put-put (8) and put-get (10), but get-put (9) fails—get >>= putR and
return () can be differentiated by some contexts, for example (>>put t). To see
that, we calculate:

(get >>= putR) >> put t
= (get >>= λs → get >>= λs0 → put s � side (put s0)) >> put t
= { get-get }

(get >>= λs → put s � side (put s)) >> put t
= { monad laws, left-distributivity }

get >>= λs → (put s >> put t) � side (put s)
= { put-put }

get >>= λs → put t � side (put s) .

Meanwhile, return () >> put t = put t , which does not behave in the same way
as get >>= λs → put t � side (put s) when s 	= t.

In a global-state setting, the left-distributivity law (6) makes it tricky to rea-
son about combinations of (�) and (>>=) operators. Suppose we have a program
(m � n), and we construct an extended program by binding a continuation f to it
such that we get (m � n) >>= f (where f might modify the state). Under global-
state semantics, the evaluation of the right branch is influenced by the state
modifications performed by evaluating the left branch. So by (6), this means
that when we get to evaluating the n subprogram in the extended program, it
will do so with a different initial state (the one obtained after running m >>= f )
compared to the initial state in the original program (the one obtained by run-
ning m). In other words, placing our program in a different context changed the
meaning of one of its subprograms. So it is difficult to reason about programs
compositionally in this setting—some properties hold only when we take the
entire program into consideration.

It turns out that all properties we need do hold, provided that all occurrences
of put are replaced by putR—problematic contexts such as put t above are thus
ruled out. However, that “all put are replaced by putR” is a global property, and
to properly talk about it we have to formally define contexts, which is what we
will do in Sect. 5. Notice though, that simulation of local state semantics by judi-
cious use of putR does not avoid the unnecessary copying mentioned in Sect. 3.2,
it merely makes it explicit in the program. We will address this shortcoming in
Sect. 5.6.

5 Laws and Translation for Global State Monad

In this section we give a more formal treatment of the non-deterministic global
state monad. Not every implementation of the global state law allows us to
accurately simulate local state semantics though, so we propose additional laws
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that the implementation must respect. These laws turn out to be rather intricate.
To make sure that there exists a model, an implementation is proposed, and it
is verified in Coq that the laws and some additional theorems are satisfied.

The ultimate goal, however, is to show the following property: given a pro-
gram written for a local-state monad, if we replace all occurrences of put by
putR, the resulting program yields the same result when run with a global-state
monad. This allows us to painlessly port our previous algorithm to work with
a global state. To show this we first introduce a syntax for nondeterministic
and stateful monadic programs and contexts. Then we imbue these programs
with global-state semantics. Finally we define the function that performs the
translation just described, and prove that this translation is correct.

5.1 Programs and Contexts

data Prog a where
Return :: a Prog a
∅ :: Prog a
( ) :: Prog a Prog a Prog a
Get :: (S Prog a) Prog a
Put :: S Prog a Prog a

(a)

run :: Prog a Dom a
ret :: a Dom a
∅ :: Dom a
( ) :: Dom a Dom a Dom a
get :: (S Dom a) Dom a
put :: S Dom a Dom a

(b)

Fig. 3. (a) Syntax for programs. (b) Semantic domain.

In the previous sections we have been mixing syntax and semantics, which we
avoid in this section by defining the program syntax as a free monad. This
way we avoid the need for a type-level distinction between programs with local-
state semantics and programs with global-state semantics. Figure 3(a) defines
a syntax for nondeterministic, stateful, closed programs Prog, where the Get
and Put constructors take continuations as arguments, and the (>>=) operator is
defined as follows:

(>>=) :: Prog a → (a → Prog b) → Prog b
Return x >>= f = f x
∅ >>= f = ∅
(m � n) >>= f = (m >>= f ) � (n >>= f )
Get k >>= f = Get (λs → k s >>= f )
Put s m >>= f = Put s (m >>= k) .

One can see that (>>=) is defined as a purely syntactical manipulation, and its
definition has laws (6) and (7) built-in.
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The meaning of such a monadic program is determined by a semantic domain
of our choosing, which we denote with Dom, and its corresponding domain oper-
ators ret , ∅, get , put and ([]) (see Fig. 3(b)). The run :: Prog a → Dom a function
“runs” a program Prog a into a value in the semantic domain Dom a:

run (Return x ) = ret x
run ∅ = ∅

run (m1 � m2) = run m1 [] run m2

run (Get k) = get (λs → run (k s))
run (Put s m) = put s (run m) .

Note that no >>= operator is required to define run; in other words, Dom need
not be a monad. In fact, as we will see later, we will choose our implementation
in such a way that there does not exist a bind operator for run.

5.2 Laws for Global State Semantics

We impose the laws upon Dom and the domain operators to ensure the semantics
of a non-backtracking (global-state), nondeterministic, stateful computation for
our programs. Naturally, we need laws analogous to the state laws and nondeter-
minism laws to hold for our semantic domain. As it is not required that a bind
operator ((>>=) :: Dom a → (a → Dom b) → Dom b) be defined for the semantic
domain (and we will later argue that it cannot be defined for the domain, given
the laws we impose on it), the state laws ((8) through (11)) must be reformulated
to fit the continuation-passing style of the semantic domain operators.

put s (put t p) = put t p , (16)
put s (get k) = put s (k s) , (17)

get (λs → put s m) = m , (18)
get (λs → get (λt → k s t)) = get (λs → k s s) . (19)

Two of the nondeterminism laws—(6) and (7)—also mention the bind operator.
As we have seen earlier, they are trivially implied by the definition of (>>=) for
Prog. Therefore, we need not impose equivalent laws for the semantic domain
(and in fact, we cannot formulate them given the representation we have chosen).
Only the two remaining nondeterminism laws—(4) and (5)—need to be stated:

(m [] n) [] p = m [] (n [] p) , (20)

∅ [] m = m [] ∅ = m . (21)

We also reformulate the global-state law (15):

put s p [] q = put s (p [] q) . (22)

It turns out that, apart from the put-or law, our proofs require certain additional
properties regarding commutativity and distributivity which we introduce here:

get (λs → put (t s) p [] put (u s) q [] put s ∅) =

get (λs → put (u s) q [] put (t s) p [] put s ∅) ,
(23)



34 K. Pauwels et al.

put s (ret x [] p) = put s (ret x ) [] put s p . (24)

These laws are not considered general “global state” laws, because it is possible
to define reasonable implementations of global state semantics that violate these
laws, and because they are not exclusive to global state semantics.

The ([]) operator is not, in general, commutative in a global state setting.
However, we will require that the order in which results are computed does
not matter. This might seem contradictory at first glance. To be more pre-
cise, we do not require the property p [] q = q [] p because the subprograms
p and q might perform non-commuting edits to the global state. But we do
expect that programs without side-effects commute freely; for instance, we
expect return x [] return y = return y [] return x . In other words, collecting all
the results of a nondeterministic computation is done with a set-based seman-
tics in mind rather than a list-based semantics, but this does not imply that the
order of state effects does not matter.

In fact, the notion of commutativity we wish to impose is still somewhat
stronger than just the fact that results commute: we want the ([]) operator to
commute with respect to any pair of subprograms whose modifications of the
state are ignored—that is, immediately overwritten—by the surrounding pro-
gram. This property is expressed by law (23). An example of an implementation
which does not respect this law is one that records the history of state changes.

In global-state semantics, put operations cannot, in general, distribute over
([]). However, an implementation may permit distributivity if certain conditions
are met. Law (24) states that a put operation distributes over a nondeterministic
choice if the left branch of that choice simply returns a value. This law has a par-
ticularly striking implication: it disqualifies any implementation for which a bind
operator ( >>= ) :: Dom a → (a → Dom b) → Dom b can be defined! Consider for
instance the following program:

put x (ret w [] get ret) >>= λz → put y (ret z ) .

If (24) holds, this program should be equal to

(put x (ret w) [] put x (get ret)) >>= λz → put y (ret z ) .

However, it is proved in Fig. 4 that the first program can be reduced
to put y (ret w [] ret y), whereas the second program is equal to
put y (ret w [] ret x ), which clearly does not always have the same result.

To gain some intuition about why law (24) prohibits a bind operator, con-
sider that the presence or absence of a bind operator influences what equality of
programs means. Our first intuition might be that we consider two programs
equal if they produce the same outputs given the same inputs. But this is
too narrow a view: for two programs to be considered equal, they must also
behave the same under composition; that is, we must be able to replace one for
the other within a larger whole, without changing the meaning of the whole.
The bind operator allows us to compose programs sequentially, and therefore
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its existence implies that, for two programs to be considered equal, they must
also behave identically under sequential composition. Under local-state seman-
tics, this additional requirement coincides with other notions of equality: we
can’t come up with a pair of programs which both produce the same outputs
given the same inputs, but behave differently under sequential composition. But
under global-state semantics, we can come up with such counterexamples: con-
sider the subprograms of our previous example put x (ret w [] get ret) and
(put x (ret w) [] put x (get ret)). Clearly we expect these two programs to
produce the exact same results in isolation, yet when they are sequentially com-
posed with the program λz → put y (ret z ), their different nature is revealed
(by (6)).

It is worth remarking that introducing either one of these additional laws
disqualify the example implementation given in Sect. 2.2 (even if it is adapted
for the continuation-passing style of these laws). As the given implementation
records the order in which results are yielded by the computation, law (23)
cannot be satisfied. And the example implementation also forms a monad, which
means it is incompatible with law (24).

Machine-Verified Proofs. From this point forward, we provide proofs mechanized
in Coq for many theorems. When we do, we mark the proven statement with a
check mark (�).

put x (ret w [] get ret) >>= λz put y (ret z)
= { definition of ( >>= ) }
put x (put y (ret w) [] get (λs put y (ret s)))
= { by (22) and (16) }
put y (ret w [] get (λs → put y (ret s)))
= { by (24) }
put y (ret w) [] put y (get (λs put y (ret s)))
= { by (17) and (16) }
put y (ret w) [] put y (ret y)
= { by (24) }
put y (ret w [] ret y)

(a)

(put x (ret w) [] put x (get ret))
>>= λz put y (ret z)

= { definition of ( >>= ) }
put x (put y (ret w))

[] put x (get (λs put y (ret s)))
= { by (16) and (17) }
put y (ret w) [] put x (put y (ret x))
= { by (16) }
put y (ret w) [] put y (ret x)
= { by (24) }
put y (ret w [] ret x)

(b)

Fig. 4. Proof that law (24) implies that a bind operator cannot exist for the semantic
domain.

5.3 An Implementation of the Semantic Domain

We present an implementation of Dom that satisfies the laws of Sect. 5.2, and we
provide machine-verified proofs to that effect. In the following implementation,
we let Dom be the union of M s a for all a and for a given s.

The implementation is based on a multiset or Bag data structure. In the
mechanization, we implement Bag a as a function a → Nat.
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type Bag a
singleton :: a → Bag a
emptyBag :: Bag a
sum :: Bag a → Bag a → Bag a

We model a stateful, nondeterministic computation with global state semantics
as a function that maps an initial state onto a bag of results, and a final state.
Each result is a pair of the value returned, as well as the state at that point in
the computation. The use of an unordered data structure to return the results
of the computation is needed to comply with law (23).

In Sect. 5.2 we mentioned that, as a consequence of law (24) we must design
the implementation of our semantic domain in such a way that it is impossible to
define a bind operator >>= :: Dom a → (a → Dom b) → Dom b for it. This is the
case for our implementation: we only retain the final result of the branch without
any information on how to continue the branch, which makes it impossible to
define the bind operator.

type M s a = s → (Bag (a, s), s)

∅ does not modify the state and produces no results. ret does not modify the
state and produces a single result.

∅ :: M s a
∅ = λs → (emptyBag , s)
ret :: a → M s a
ret x = λs → (singleton (x , s), s)

get simply passes along the initial state to its continuation. put ignores the initial
state and calls its continuation with the given parameter instead.

get :: (s → M s a) → M s a
get k = λs → k s s
put :: s → M s a → M s a
put s k = λ → k s

The [] operator runs the left computation with the initial state, then runs the
right computation with the final state of the left computation, and obtains the
final result by merging the two bags of results.

([]) :: M s a → M s a → M s a
(xs [] ys) s = let (ansx , s ′) = xs s

(ansy , s ′′) = ys s ′

in (sum ansx ansy , s ′′)

Lemma 1. This implementation conforms to every law introduced in
Sect. 5.2. �
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5.4 Contextual Equivalence

With our semantic domain sufficiently specified, we can prove analogous prop-
erties for programs interpreted through this domain. We must take care in how
we reformulate these properties however. It is certainly not sufficient to merely
copy the laws as formulated for the semantic domain, substituting Prog data
constructors for semantic domain operators as needed; we must keep in mind
that a term in Prog a describes a syntactical structure without ascribing mean-
ing to it. For example, one cannot simply assert that Put x (Put y p) is equal
to Put y p, because although these two programs have the same semantics,
they are not structurally identical. It is clear that we must define a notion of
“semantic equivalence” between programs. We can map the syntactical struc-
tures in Prog a onto the semantic domain Dom a using run to achieve that.
Yet wrapping both sides of an equation in run applications is not enough as
such statements only apply at the top-level of a program. For instance, while
run (Put x (Put y p)) = run (Put y p) is a correct statement, we cannot prove
run (Return w � Put x (Put y p)) = run (Return w � Put y p) from such a law.

data Ctx e1 a e2 b where
� :: Ctx e a e a
COr1 :: Ctx e1 a e2 b OProg e2 b

Ctx e1 a e2 b
COr2 :: OProg e2 b Ctx e1 a e2 b

Ctx e1 a e2 b
CPut :: (Env e2 S) Ctx e1 a e2 b

Ctx e1 a e2 b
CGet :: (S Bool) Ctx e1 a (S : e2) b

(S OProg e2 b) Ctx e1 a e2 b
CBind1 :: Ctx e1 a e2 b (b OProg e2 c)

Ctx e1 a e2 c
CBind2 :: OProg e2 a Ctx e1 b (a : e2) c

Ctx e1 b e2 c

(a)

data Env (l :: [∗ ]) where
Nil :: Env ‘[]
Cons :: a Env l Env (a : l)

type OProg e a = Env e Prog a

(b)

Fig. 5. (a) Environments and open programs. (b) Syntax for contexts.

So the concept of semantic equivalence in itself is not sufficient; we require
a notion of “contextual semantic equivalence” of programs which allows us to
formulate properties about semantic equivalence which hold in any surrounding
context. Figure 5(a) provides the definition for single-hole contexts Ctx. A context
C of type Ctx e1 a e2 b can be interpreted as a function that, given a program
that returns a value of type a under environment e1 (in other words: the type
and environment of the hole), produces a program that returns a value of type b
under environment e2 (the type and environment of the whole program). Filling
the hole with p is denoted by C[p]. The type of environments, Env is defined
using heterogeneous lists (Fig. 5(b)). When we consider the notion of programs in
contexts, we must take into account that these contexts may introduce variables
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which are referenced by the program. The Prog datatype however represents
only closed programs. Figure 5(b) introduces the OProg type to represent “open”
programs, and the Env type to represent environments. OProg e a is defined as
the type of functions that construct a closed program of type Prog a, given an
environment of type Env e. Environments, in turn, are defined as heterogeneous
lists. We also define a function for mapping open programs onto the semantic
domain.

orun :: OProg e a → Env e → Dom a
orun p env = run (p env) .

We can then assert that two programs are contextually equivalent if, for any
context, running both programs wrapped in that context will yield the same
result:

m1 =GS m2 � ∀C.orun (C[m1]) = orun (C[m2]) .

We can then straightforwardly formulate variants of the state laws, the non-
determinism laws and the put-or law for this global state monad as lemmas. For
example, we reformulate law (16) as

Put s (Put t p) =GS Put t p .

Proofs for the state laws, the nondeterminism laws and the put-or law then
easily follow from the analogous semantic domain laws.

More care is required when we want to adapt law (24) into the Prog set-
ting. At the end of Sect. 5.2, we saw that this law precludes the existence of a
bind operator in the semantic domain. Since a bind operator for Progs exists,
it might seem we’re out of luck when we want to adapt law (24) to Progs. But
because Progs are merely syntax, we have much more fine-grained control over
what equality of programs means. When talking about the semantic domain,
we only had one notion of equality: two programs are equal only when one can
be substituted for the other in any context. So if, in that setting, we want to
introduce a law that does not hold under a particular composition (in this case,
sequential composition), the only way we can express that is to say that com-
position is impossible in the domain. But the fact that Prog is defined purely
syntactically opens up the possibility of defining multiple notions of equality
which may exist at the same time. In fact, we have already introduced syntactic
equality, semantic equality, and contextual equality. It is precisely this choice
of granularity that allows us to introduce laws which only hold in programs of
a certain form (non-contextual laws), while other laws are much more general
(contextual laws). A direct adaptation of law (24) would look something like
this:

∀C. C is bind-free ⇒orun (C[Put s (Return x � p)])
=orun (C[Put s (Return x ) � Put s p]) .
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In other words, the two sides of the equation can be substituted for one another,
but only in contexts which do not contain any binds. However, in our mech-
anization, we only prove a more restricted version where the context must be
empty (in other words, what we called semantic equivalence), which turns out
to be enough for our purposes.

run (Put s (Return x � p)) = run (Put s (Return x ) � Put s p) .� (25)

5.5 Simulating Local-State Semantics

We simulate local-state semantics by replacing each occurrence of Put by a
variant that restores the state, as described in Sect. 4.3. This transformation
is implemented by the function trans for closed programs, and otrans for open
programs:

trans :: Prog a → Prog a
trans (Return x ) = Return x
trans (p � q) = trans p � trans q
trans ∅ = ∅
trans (Get p) = Get (λs → trans (p s))
trans (Put s p) = Get (λs ′ → Put s (trans p) � Put s ′ ∅) ,

otrans :: OProg e a → OProg e a
otrans p = λenv → trans (p env) .

We then define the function eval , which runs a transformed program (in other
words, it runs a program with local-state semantics).

eval :: Prog a → Dom a
eval = run · trans .

We show that the transformation works by proving that our free monad equipped
with eval is a correct implementation for a nondeterministic, stateful monad with
local-state semantics. We introduce notation for “contextual equivalence under
simulated backtracking semantics”:

m1 =LS m2 � ∀C.eval (C[m1]) = eval (C[m2]) .

For example, we formulate the statement that the put-put law (16) holds for our
monad as interpreted by eval as

Put s (Put t p) =LS Put t p .�

Proofs for the nondeterminism laws follow trivially from the nondeterminism
laws for global state. The state laws are proven by promoting trans inside, then
applying global-state laws. For the proof of the get-put law, we require the
property that in global-state semantics, Put distributes over (�) if the left branch
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has been transformed (in which case the left branch leaves the state unmodified).
This property only holds at the top-level.

run (Put x (trans m1 � m2)) = run (Put x (trans m1) � Put x m2) .� (26)

Proof of this lemma depends on law (24).
Finally, we arrive at the core of our proof: to show that the interaction of state

and nondeterminism in this implementation produces backtracking semantics.
To this end we prove laws analogous to the local state laws (13) and (12)

m >> ∅ =LS ∅ ,� (27)

m >>= (λx → f1 x � f2 x ) =LS (m >>= f1) � (m >>= f2) .� (28)

We provide machine-verified proofs for these theorems. The proof for (27) follows
by straightforward induction. The inductive proof (with induction on m) of
law (28) requires some additional lemmas.

For the case m = m1 � m2, we require the property that, at the top-level of a
global-state program, (�) is commutative if both its operands are state-restoring.
Formally:

run (trans p � trans q) = run (trans q � trans p) .� (29)

The proof of this property motivated the introduction of law (23).
The proof for both the m = Get k and m = Put s m ′ cases requires that Get

distributes over (�) at the top-level of a global-state program if the left branch
is state restoring.

run (Get (λs → trans (m1 s) � (m2 s))) = (30)

run (Get (λs → trans (m1 s)) � Get m2) .� (31)

And finally, we require that the trans function is, semantically speaking,
idempotent, to prove the case m = Put s m ′.

run (trans (trans p)) = run (trans p) .� (32)

5.6 Backtracking with a Global State Monad

Although we can now interpret a local state program through translation to a
global state program, we have not quite yet delivered on our promise to address
the space usage issue of local state semantics. From the definition of putR it
is clear that we simply make the implicit copying of the local state semantics
explicit in the global state semantics. As mentioned in Sect. 4.2, rather than
using put , some algorithms typically use a pair of commands modify next and
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modify prev , with prev · next = id , to respectively update and roll back the state.
This is especially true when the state is implemented using an array or other
data structure that is usually not overwritten in its entirety. Following a style
similar to putR, this can be modelled by:

modifyR :: MStateNondet s m ⇒ (s → s) → (s → s) → m ()
modifyR next prev = modify next � side (modify prev) .

Unlike putR, modifyR does not keep any copies of the old state alive, as
it does not introduce a branching point where the right branch refers to
a variable introduced outside the branching point. Is it safe to use an
alternative translation, where the pattern get >>= (λs → put (next s) >> m) is
not translated into get >>= (λs → putR (next s) >> trans m), but rather into
modifyR next prev >> trans m? We explore this question by extending our Prog
syntax with an additional ModifyR construct, thus obtaining a new ProgM syntax:

data ProgM a where
...
ModifyR :: (S → S) → (S → S) → ProgM a → ProgM a

We assume that prev · next = id for every ModifyR next prev p in a ProgM a
program.

We then define two translation functions from ProgM a to Prog a, which both
replace Puts with putRs along the way, like the regular trans function. The first
replaces each ModifyR in the program by a direct analogue of the definition given
above, while the second replaces it by Get (λs → Put (next s) (trans2 p)):

trans1 :: ProgM a → Prog a
...
trans1 (ModifyR next prev p) = Get (λs → Put (next s) (trans1 p)

� Get (λt → Put (prev t) ∅))
trans2 :: ProgM a → Prog a
...
trans2 (ModifyR next prev p) = Get (λs → putR (next s) (trans2 p))

where putR s p = Get (λt → Put s p � Put t ∅)

It is clear that trans2 p is the exact same program as trans p′, where p′ is p
but with each ModifyR next prev p replaced by Get (λs → Put (next s) p).

We then prove that these two transformations lead to semantically identical
instances of Prog a.

Lemma 2. run (trans1 p) = run (trans2 p). �
This means that, if we make some effort to rewrite parts of our program to use

the ModifyR construct rather than Put, we can use the more efficient translation
scheme trans1 to avoid introducing unnecessary copies.

n-Queens using a global state. To wrap up, we revisit the n-queens puzzle. Recall
that, for the puzzle, the operator that alters the state (to check whether a chess
placement is safe) is defined by
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(i , us, ds) ⊕ x = (1 + i , (i + x ) : us, (i − x ) : ds) .

By defining (i , us, ds) � x = (i − 1, tail us, tail ds), we have (�x ) · (⊕x ) = id .
One may thus compute all solutions to the puzzle, in a scenario with a shared
global state, by run (queensR n), where

queensR n = put (0, [ ], [ ]) >> qBody [0 . . n − 1] ,

qBody [ ] = return [ ]
qBody xs = select xs >>= λ(x , ys) →

(get >>= (guard · ok · (⊕x ))) >>
modifyR (⊕x ) (�x ) >> ((x :) 〈$〉 qBody ys) ,

where (i , us, ds) ⊕ x = (1 + i , (i + x ) : us, (i − x ) : ds)
(i , us, ds) � x = (i − 1, tail us, tail ds)
ok ( , u : us, d : ds) = (u /∈ us) ∧ (d /∈ ds) .

6 Related Work

6.1 Prolog

Prolog is a prominent example of a system that exposes nondeterminism with
local state to the user, but is itself implemented in terms of a single global state.

Warren Abstract Machine. The folklore idea of undoing modifications upon
backtracking is a key feature of many Prolog implementations, in particular
those based on the Warren Abstract Machine (WAM) [1]. The WAM’s global
state is the program heap and Prolog programs modify this heap during unifi-
cation only in a very specific manner: following the union-find algorithm, they
overwrite cells that contain self-references with pointers to other cells. Undo-
ing these modifications only requires knowledge of the modified cell’s address,
which can be written back in that cell during backtracking. The WAM has a
special stack, called the trail stack, for storing theses addresses, and the process
of restoring those cells is called untrailing.

The 4-Port Box Model. While trailing happens under the hood, there is a folklore
Prolog programming pattern for observing and intervening at different points in
the control flow of a procedure call, known as the 4-port box model. In this
model, upon the first entrance of a Prolog procedure it is called; it may yield
a result and exits; when the subsequent procedure fails and backtracks, it is
asked to redo its computation, possibly yielding the next result; finally it may
fail. Given a Prolog procedure p implemented in Haskell, the following program
prints debugging messages when each of the four ports are used:

(putStr "call" � side (putStr "fail")) >>
p >>= λx →
(putStr "exit" � side (putStr "redo")) >> return x .

This technique was applied in the monadic setting by Hinze [6], and it has been
our inspiration for expressing the state restoration with global state.
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6.2 Reasoning About Side Effects

There are many works on reasoning and modelling side effects. Here we cover
those that have most directly inspired this paper.

Axiomatic Reasoning. Our work was directly inspired by Gibbons and Hinze’s
proposal to reason axiomatically about programs with side effects, and their
axiomatic characterisation of local state in particular [4]. We have extended
their work with an axiomatic characterisation of global state and on handling
the former in terms of the latter. We also provide models that satisfy the axioms,
whereas their paper mistakenly claims that one model satisfies the local state
axioms and that another model is monadic.

Algebraic Effects. Our formulation of implementing local state with global state
is directly inspired by the effect handlers approach of Plotkin and Pretnar [12].
By making the free monad explicit our proofs benefit directly from the induction
principle that Bauer and Pretnar establish for effect handler programs [2].

While Lawvere theories were originally Plotkin’s inspiration for studying
algebraic effects, the effect handlers community has for a long time paid lit-
tle attention to them. Yet, recently Lukšič and Pretnar [10] have investigated
a framework for encoding axioms (or “effect theories”) in the type system: the
type of an effectful function declares the operators used in the function, as well
as the equalities that handlers for these operators should comply with. The type
of a handler indicates which operators it handles and which equations it com-
plies with. This type system would allow us to express at the type-level that our
handler interprets local state in terms of global state.

7 Conclusions

Starting from Gibbons and Hinze’s observation [4] that the interaction between
state and nondeterminism can be characterized axiomatically in multiple ways,
we explored the differences between local state semantics (as characterised by
Gibbons and Hinze) and global state semantics (for which we gave our own
non-monadic characterisation).

In global state semantics, we find that we may use (�) to simulate sequenc-
ing, and that the idea can be elegantly packaged into commands like putR and
modifyR. The interaction between global state and non-determinism turns out to
be rather tricky. For a more rigorous treatment, we enforce a more precise sep-
aration between syntax and semantics and, as a side contribution of this paper,
propose a global state law, plus some additional laws, which the semantics should
satisfy. We verified (with the help of the Coq proof assistant) that there is an
implementation satisfying these laws.

Using the n-queens puzzle as an example, we showed that one can end up in
a situation where a problem is naturally expressed with local state semantics,
but the greater degree of control over resources that global state semantics offers
is desired. We then describe a technique to systematically transform a monadic
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program written against the local state laws into one that, when interpreted
under global state laws, produces the same results as the original program. This
transformation can be viewed as a handler (in the algebraic effects sense): it
implements the interface of one effect in terms of the interface of another. We
also verified the correctness of this transformation in Coq.
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Abstract. By using pointers, breadth-first algorithms are very easy to
implement efficiently in imperative languages. Implementing them with
the same bounds on execution time in purely functional style can be chal-
lenging, as explained in Okasaki’s paper at ICFP 2000 that even restricts
the problem to binary trees but considers numbering instead of just
traversal. Okasaki’s solution is modular and factors out the problem of
implementing queues (FIFOs) with worst-case constant time operations.
We certify those FIFO-based breadth-first algorithms on binary trees
by extracting them from fully specified Coq terms, given an axiomatic
description of FIFOs. In addition, we axiomatically characterize the
strict and total order on branches that captures the nature of breadth-
first traversal and propose alternative characterizations of breadth-first
traversal of forests. We also propose efficient certified implementations
of FIFOs by extraction, either with pairs of lists (with amortized con-
stant time operations) or triples of lazy lists (with worst-case constant
time operations), thus getting from extraction certified breadth-first algo-
rithms with the optimal bounds on execution time.

Keywords: Breadth-first algorithms · Queues in functional
programming · Correctness by extraction · Coq

1 Introduction

Breadth-first algorithms form an important class of algorithms with many appli-
cations. The distinguishing feature is that the recursive process tries to be “equi-
table” in the sense that all nodes in the graph with “distance” k from the
starting point are treated before those at distance k + 1. In particular, with
infinite (but finitely branching) structures, this ensures “fairness” in that all
possible branches are eventually pursued to arbitrary depth, in other words, the
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recursion does not get “trapped” in an infinite branch.1 This phenomenon that
breadth-first algorithms avoid is different from a computation that gets “stuck”:
even when “trapped”, there may be still steady “progress” in the sense of pro-
ducing more and more units of output in finite time. In this paper, we will not
specify or certify algorithms to work on infinite structures although we expect
the lazy reading of our extracted programs (e. g., if we choose to extract towards
the Haskell language) to work properly for infinite input as well and thus be
fair—however without any guarantees from the extraction process. Anyway, as
mentioned above, breadth-first algorithms impose a stronger, quantitative notion
of “equity” than just abstract fairness to address the order of traversal of the
structure.

When looking out for problems to solve with breadth-first algorithms, plain
traversal of a given structure is the easiest task; to make this traversal “ob-
servable,” one simply prints the visited node labels (following the imperative
programming style), or one collects them in a list, in the functional program-
ming paradigm, as we will do in this paper (leaving filtering of search “hits”
aside). However, in the interest of efficiency, it is important to use a first-in,
first-out queue (FIFO) to organize the waiting sub-problems (see, e. g., Paulson’s
book [15] on the ML language). Here, we are also concerned with functional lan-
guages, and for them, constant-time (in the worst case) implementations of the
FIFO operations were a scientific challenge, solved very elegantly by Okasaki [13].

Breadth-first traversal is commonly [4] used to identify all nodes that are
reachable in a graph from a given start node, and this allows creating a tree
that captures the subgraph of reachable nodes, the “breadth-first tree” (for a
given start node). In Okasaki’s landmark paper at ICFP 2000 [14], the author
proposes to revisit the problem of breadth-first numbering : the traversal task is
further simplified to start at the root of a (binary) tree, but the new challenge
is to rebuild the tree in a functional programming language, where the labels
of the nodes have been replaced by the value n if the node has been visited as
the n-th one in the traversal. The progress achieved by Okasaki consists in sep-
arating the concerns of implementing breadth-first numbering from an efficient
implementation of FIFOs: his algorithm works for any given FIFO and inherits
optimal bounds on execution time from the given FIFO implementation. Thus,
breadth-first numbering can be solved as efficiently with FIFOs as traversal,2

and Okasaki reports in his paper that quite some of his colleagues did not come
up with a FIFO-based solution when asked to find any solution.

In the present paper, using the Coq proof assistant,3 we formalize and solve
the breadth-first traversal problem for finite binary trees with a rich specification
in the sense of certified programming, i. e., when the output of an algorithm is a

1 Meaning that recursion would be pursued solely in that branch.
2 Jones and Gibbons [7] solved a variant of the problem with a “hard-wired” FIFO

implementation—the one we review in Sect. 7.1—and thus do not profit from the
theoretically most pleasing FIFO implementation by Okasaki [13].

3 https://coq.inria.fr, we have been using the current version 8.9.0, and the authori-
tative reference on Coq is https://coq.inria.fr/distrib/current/refman/.

https://coq.inria.fr
https://coq.inria.fr/distrib/current/refman/
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dependent pair (v, Cv) composed of a value v together with a proof Cv certifying
that v satisfies some (partial correctness) property.4 The key ingredient for its
functional correctness are two equations already studied by Okasaki [14], but
there as definitional device. Using the very same equations, we formalize and
solve the breadth-first numbering problem, out of which the Coq extraction5

mechanism [9] can extract the same algorithm as Okasaki’s (however, we extract
code in the OCaml6 language), but here with all guarantees concerning the
non-functional property of termination and the functional/partial correctness,
both aspects together constituting its total correctness, i. e., the algorithm indeed
provides such a breadth-first numbering of the input tree.

As did Okasaki (and Gibbons and Jones for their solution [7]), we motivate
the solution by first considering the natural extension to the problem of travers-
ing or numbering a forest, i. e., a finite list of trees. The forests are subsequently
replaced by an abstract FIFO structure, which is finally instantiated for several
implementations, including the worst-case constant-time implementation follow-
ing Okasaki’s paper [13] that is based on three lazy lists (to be extracted from
coinductive lists in Coq for which we require as invariant that they are finite).

The breadth-first numbering problem can be slightly generalized to breadth-
first reconstruction: the labels of the output tree are not necessarily natural
numbers but come from a list of length equal to the number of labels of the
input tree, and the n-th list element replaces the n-th node in the traversal, i. e.,
a minor variant of “breadth-first labelling” considered by Jones and Gibbons [7].
A slight advantage of this problem formulation is that a FIFO-based solution is
possible by structural recursion on that list argument while the other algorithms
were obtained by recursion over a measure (this is not too surprising since the
length of that list coincides with the previously used measure).

In Sect. 2, we give background type theoretical material, mostly on list nota-
tion. Then we review existing tools for reasoning or defining terms by recur-
sion/induction on a decreasing measure which combines more than one argu-
ment. We proceed to the short example of a simple interleaving algorithm that
swaps its arguments when recurring on itself. In particular, we focus on how
existing tools like Program Fixpoint or Equations behave in the context of
extraction. Then we describe an alternative of our own—a tailored induction-
on tactic—and we argue that it is more transparent to extraction than, e. g.,
Equations. Section 3 concentrates on background material concerning breadth-
first traversal (specification, naive algorithm), including original material on a
characterization of the breadth-first order, while Sect. 4 revolves around the
mathematics of breadth-first traversal of forests that motivates the FIFO-based
breadth-first algorithms. In Sect. 5, we use an abstractly specified datatype
of FIFOs and deal with the different problems mentioned above: traversal,

4 For Coq, this method of rich specifications has been very much advocated in the
Coq’Art, the first book on Coq [3].

5 The authors of the current version are Filliâtre and Letouzey, see https://coq.inria.
fr/refman/addendum/extraction.html.

6 http://ocaml.org.

https://coq.inria.fr/refman/addendum/extraction.html
https://coq.inria.fr/refman/addendum/extraction.html
http://ocaml.org
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numbering, reconstruction. In Sect. 6, we elaborate on a level-based approach
to numbering that thus is in the spirit of the naive traversal algorithm. Section 7
reports on the instantiation of the FIFO-based algorithms to two particular effi-
cient FIFO implementations. Section 8 concludes.

The full Coq development, that also formalizes the theoretical results (the
characterizations) in addition to the certification of the extracted algorithms in
the OCaml language, is available on GitHub:

https://github.com/DmxLarchey/BFE

In Appendix A, we give a brief presentation of these Coq vernacular7 files.

2 Preliminaries

We introduce some compact notations to represent the language of constructive
type theory used in the proof assistant Coq. We describe the method called
“certification by extraction” and illustrate how it challenges existing tools like
Program Fixpoint or even Equations on the example of a simple interleav-
ing algorithm. Then we introduce a tailored method to justify termination of
fixpoints (or inductive proofs) using measures over, e. g., two arguments. This
method is encapsulated into an induction-on tactic that is more transparent to
extraction than the above-mentioned tools.

The type of propositions is denoted Prop while the type (family) of types is
denoted Type. We use the inductive types of Booleans (b : B := 0 | 1), of natural
numbers (n : N := 0 | Sn), of lists (l : LX := [] | x :: l with x : X) over a type
parameter X. When l = x1 :: · · · :: xn :: [], we define |l| := n as the length of
l and we may write l = [x1; . . . ;xn] as well. We use ++ for the concatenation
of two lists (called the “append” function). The function rev : ∀X, LX → LX
implements list reversal and satisfies rev [] = [] and rev(x :: l) = rev l ++x :: [].

For a (heterogeneous) binary relation R : X → Y → Prop, we define the
lifting of R over lists ∀2R : LX → LY → Prop by the following inductive rules,
corresponding to the Coq standard library Forall2 predicate:

∀2R [] []

R x y ∀2R l m

∀2R (x :: l) (y :: m)

Thus ∀2R is the smallest predicate closed under the two above rules.8 Intuitively,
when l = [x1; . . . ;xn] and m = [y1; . . . ; yp], the predicate ∀2R l m means n =
p ∧ R x1 y1 ∧ · · · ∧ R xn yn.

7 Vernacular is a Coq idiom for syntactic sugar, i. e., a human-friendly syntax for type
theoretical notation—the “Gallina” language.

8 This is implemented in Coq by two constructors for the two rules together with an
induction (or elimination) principle that ensures its smallestness.

https://github.com/DmxLarchey/BFE
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2.1 Certification by Extraction

Certification by extraction is a particular way of establishing the correctness of
a given implementation of an algorithm. In this paper, algorithms are given as
programs in the OCaml language.

Hence, let us consider an OCaml program t of type X → Y . The way to
certify such a program by extraction is to implement a Coq term

ft : ∀x : Xt, pret x → {y : Yt | postt x y}

where pret : Xt → Prop is the precondition (i. e., the domain of use of the
function) and postt : Xt → Yt → Prop is the (dependent) postcondition which
(possibly) relates the input with the output. The precondition could be tighter
than the actual domain of the program t and the postcondition may characterize
some aspects of the functional behavior of t, up to its full correctness, i. e., when
pret/postt satisfy the following: for any given x such that pret x, the value ft x
is the unique y such that postt x y holds.

We consider that t is certified when the postcondition faithfully represents
the intended behavior of t and when ft extracts to t: the extracted term
extract(ft) but also the extracted types extract(Xt) and extract(Yt) have
to match “exactly” their respectively given OCaml definitions, i. e., we want
t ≡ extract(ft), X ≡ extract(Xt) and Y ≡ extract(Yt). The above identity
sign “≡” should be read as syntactic identity. This does not mean character
by character equality between source codes but between the abstract syntax
representations. Hence some slight differences are allowed, typically the name
of bound variables which cannot always be controlled during extraction. Notice
that pret x and postt x y being of sort Prop, they carry only logical content and
no computational content. Thus they are erased by extraction.

As a method towards certified development, extraction can also be used with-
out having a particular output program in mind, in which case it becomes a tool
for writing programs that are correct by construction. Of course, getting a clean
output might also be a goal and thus, the ability to finely control the compu-
tational content is important. But when we proceed from an already written
program t, this fine control becomes critical and this has a significant impact on
the tools which we can use to implement ft (see upcoming Sect. 2.3).

2.2 Verification, Certification and the Trusted Computing Base

“Certification” encompasses “verification” in the following way: it aims at pro-
ducing a certificate that can be checked independently of the software which is
used to do the certification—at least in theory. While verification implies trusting
the verifying software, certification implies only trusting the software that is used
to verify the certificate, hence in the case of Coq, possibly an alternative type-
checker. Notice that one of the goals of the MetaCoq9 project [1] is precisely to

9 https://github.com/MetaCoq/metacoq.

https://github.com/MetaCoq/metacoq
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produce a type-checker for (a significant fragment of) Coq, a type-checker which
will itself be certified by Coq.

Extraction in Coq is very straightforward once the term has been fully spec-
ified and type-checked. Calling the command

Recursive Extraction some coq term

outputs the extracted OCaml program and this part is fully automatic, although
it is very likely that the output is not of the intended shape on the first attempt.
So there may be a back-and-forth process to fine-tune the computational con-
tent of Coq terms until their extraction is satisfactory. The method can scale
to larger developments because of the principle of compositionality. Indeed, pro-
vided a development can be divided into manageable pieces, Coq contains the
tools that help at composing small certified bricks into bigger ones. Verifying
or certifying large monolithic projects is generally hard—whatever tools are
involved—because guessing the proper invariants becomes humanly unfeasible.

Considering the Trusted Computing Base (TCB) of certified extraction in
Coq, besides trusting a type-checker, it also requires trusting the extraction
process. In his thesis [10], P. Letouzey gave a mathematical proof of correct-
ness (w. r. t. syntactic and semantic desiderata) of the extraction principles that
guide the currently implemented Extraction command. Arguably, there is a
difference between principles and an actual implementation. The above-cited
MetaCoq project also aims at producing a certified “extraction procedure to
untyped lambda-calculus accomplishing the same as the Extraction plugin of
Coq.” Hence, for the moment, our work includes Extraction in its TCB but so
do many other projects such as, e. g., the CompCert compiler.10 Still concerning
verifying Coq extraction in Coq, we also mention the Œuf11 project [12], but
there is work of similar nature also in the Isabelle community [6]. Notice that
we expect no or little change in the resulting extracted OCaml programs (once
MetaCoq or one of its competitors reaches its goal) since these must respect the
computational content of Coq terms. As the principle of “certification by extrac-
tion” is to obtain programs which are correct by construction directly from Coq
code, we consider certifying extraction itself to be largely orthogonal to the goal
pursued here.

2.3 Extraction of Simple Interleaving with Existing Tools

This section explains some shortcomings of the standard tools that can be
used to implement recursive schemes in Coq when the scheme is more com-
plicated than just structural recursion. We specifically study the Function,
Program Fixpoint, and Equations commands. After discussing their versatility,
we focus on how they interact with the Extraction mechanism of Coq.

10 http://compcert.inria.fr.
11 http://oeuf.uwplse.org.

http://compcert.inria.fr
http://oeuf.uwplse.org
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As a way to get a glimpse of the difficulty of the method, we begin with the
case of the following simple interleaving function of type LX → LX → LX
that merges two lists into one

[l1; . . . ; ln], [m1; . . . ;mn] �→ [l1;m1; l2;m2; . . . ; ln;mn]

by alternating the elements of both input lists. The algorithm we want to certify
is the following one:

let rec itl l m = match l with [] → m | x :: l → x :: itl ml (1)

where l and m switch roles in the second equation/match case for itl. Hence
neither of these two arguments decreases structurally12 in the recursive call and
so, this definition cannot be used as such in a Coq Fixpoint definition. Notice
that this algorithm has been identified as a challenge for program extraction in
work by McCarthy et al. [11, p. 58], where they discuss an OCaml program of a
function cinterleave that corresponds to our itl.

We insist on that specific algorithm—it is however trivial to define a function
with the same functional behavior in Coq by the following equations:

itltriv [] m = m itltriv l [] = l itltriv (x :: l) (y :: m) = x :: y :: itltriv l m

Indeed, these equations correspond to a structurally decreasing Fixpoint which
is accepted nearly as is by Coq.13 However, the algorithm we want to certify
proceeds through the two following equations itl [] m = m and itl (x :: l) m =
x :: itl m l. While it is not difficult to show that itltriv satisfies this specification,
in particular by showing

Fact itl triv fix 1 : ∀x l m, itltriv (x :: l)m = x :: itltriv ml

by nested induction on l and then m, extraction of itltriv, however, does not
respect the expected code of itl, see Eq. (1).

While there is no structural decrease in Eq. (1), there is nevertheless an
obvious decreasing measure in the recursive call of itl, i. e., l,m �→ |l| + |m|.
We investigate several ways to proceed using that measure and discuss their
respective advantages and drawbacks. The comments below are backed up by
the file interleave.v corresponding to the following attempts. The use of Coq 8.9
is required for a recent version of the Equations package described below.
12 Structural recursion is the built-in mechanism for recursion in Coq. It means that

Fixpoints are type-checked only when Coq can determine that at least one of the
arguments of the defined fixpoint (e. g., the first, the second...) decreases structurally
on each recursive call, i. e., it must be a strict sub-term in an inductive type; and this
must be the same argument that decreases for each recursive sub-call. This is called
the guard condition for recursion and it ensures termination. On the other hand, it
is a very restrictive form a recursion and we study more powerful alternatives here.

13 As a general rule in this paper, when equations can be straightforwardly implemented
by structural induction on one of the arguments, we expect the reader to be able to
implement the corresponding Fixpoint and so we do not further comment on this.

https://github.com/DmxLarchey/BFE/blob/master/coq/interleave.v
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– Let us first consider the case of the Function command which extends the
primitive Fixpoint command. It allows the definition of fixpoints on decreas-
ing arguments that may not be structurally decreasing. However the Function
method fails very quickly because it only allows for the decrease of one of the
arguments, and with itl, only the decrease of a combination of both arguments
can be used to show termination. We could of course pack the two arguments
in a pair but then, this will modify the code of the given algorithm, a modi-
fication which will undoubtedly impact the extracted code;

– Let us now consider the case of the Program Fixpoint command [17]. We can
define itlpfix via a fully specified term:

Program Fixpoint itlfullpfix l m {measure (|l|+|m|)} : {r | r = itltriv l m} := . . .

basically by giving the right-hand side of Eq. (1) in Coq syntax, and
then apply first and second projections to get the result as itlpfix l m :=
π1(itlfullpfix l m) and the proof that it meets its specification itlpfix l m = itltriv l m

as π2(itlfullpfix l m). The Program Fixpoint command generates proof obliga-
tions that are easy to solve in this case. Notice that defining itlpfix without
going through the fully specified term is possible but then it is not possible
to establish the postcondition itlpfix l m = itltriv l m;

– Alternatively, we can use the Equations package [18] which could be viewed
as an extension/generalization of Program Fixpoint. In that case, we can
proceed with a weakly specified term:

Equations itleqs l m : LX by wf (|l| + |m|) < := . . .

then derive the two equations that are used to define itleqs, i. e., itleqs [] m = m
and itleqs (x :: l) m := x :: itleqs m l. These equations are directly obtained by
making use of the handy simp tactic provided with Equations. With these
two equations, it is then easy to show the identity itleqs l m = itltriv l m.

To sum up, considering the Coq implementation side only: Function fails
because no single argument decreases; Program Fixpoint succeeds but via a
fully specified term to get the postcondition; and Equations succeeds directly
and generates the defining equations that are accessible through the simp tactic.

However, when we consider the extraction side of the problem, both Program
Fixpoint and Equations do not give us the intended OCaml term of Eq. (1).
On the left side of Fig. 1, we display the extracted code for itlpfix that was
developed using Program Fixpoint, and on the right side the extracted code for
itleqs implemented using Equations.14 Both present two drawbacks in our eyes.
First, because “full” (resp. “eqs0”) are not made globally visible, it is impossible
to inline their definitions with the Extraction Inline directive although this
would be an obvious optimization. But then, also more problematic from an
algorithmic point of view, there is the packing of the two arguments into a pair
14 The actual extracted codes for both itlpfix and itleqs are not that clean but we sim-

plified them a bit to single out two specific problems.

https://coq.inria.fr/refman/language/gallina-extensions.html?highlight=function#coq:cmd.function
https://coq.inria.fr/refman/addendum/program.html?highlight=program
http://mattam82.github.io/Coq-Equations
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let itlpfix l m =
let rec loop p =

let l0 = fst p in

let m0 = snd p in

let full = fun l2 m2

loop (l2,m2)
in match l0 with

| [] m0

| x :: l1 x :: full m0 l1
in loop (l,m)

let itleqs l m =
let rec loop p =

let m0 = snd p in

let eqs0 = fun l2 m2

loop (l2,m2)
in match fst p with

| [] m0

| x :: l1 x :: eqs0 m0 l1
in loop (l,m)

Fig. 1. Extraction of itlpfix (Program Fixpoint) and itleqs (Equations).

(l,m) prior to the call to the “loop” function that implements itlpfix (resp. itleqs).
As a last remark, the two extracted codes look similar except that for itleqs, there
is the slight complication of an extra dummy parameter added to the above
definition of “eqs0” that is then instantiated with a dummy argument .

To sum up our above attempts, while the Function commands fails to handle
itl because of the swap between arguments in Eq. (1), both Program Fixpoint
and Equations succeed when considering the specification side, i. e., defining the
function (which implicitly ensures termination) and proving its postcondition.
However, extraction-wise, both generate artifacts, e. g., the pairing of arguments
in this case, and which are difficult or impossible to control making the “certifi-
cation by extraction” approach defined in Sect. 2.1 fail.

In the previously cited work by McCarthy et al. [11], the authors report that
they successfully avoided “verification residues” as far as their generation of
obligations for the certification of running time was concerned. We are heading
for the absence of such residues from the extracted code. Let us hence now
consider a last approach based on a finely tuned tactic which is both user-
friendly and inlines inner fixpoints making it transparent to extraction. This is
the approach we will be using for the breadth-first algorithms considered in here.

2.4 Recursion on Measures

We describe how to implement definitions of terms by induction on a measure
of, e. g., two arguments. Let us consider two types X,Y : Type, a doubly indexed
family P : X → Y → Type of types and a measure ‖·, ·‖ : X → Y → N.
We explain how to build terms or proofs of type t : P x y by induction on the
measure ‖x, y‖. Hence, to build the term t, we are allowed to use instances of
the induction hypothesis:

IH : ∀x′ y′, ‖x′, y′‖ < ‖x, y‖ → P x′ y′

i. e., the types P x′ y′ with smaller x′/y′ arguments are (recursively) inhabited.
The measures we use here are limited to N viewed as well-founded under the
“strictly less” order. Any other type with a well-founded order would work as well.
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To go beyond measures and implement a substantial fragment of general recur-
sion, we invite the reader to consult work by the first author and Monin [8].

In the file wf utils.v, we prove the following theorem while carefully craft-
ing the computational content of the proof term, so that extraction yields an
algorithm that is clean of spurious elements:

Theorem measure double rect (P : X → Y → Type) :
(∀x y, (∀x′ y′, ‖x′, y′‖ < ‖x, y‖ → P x′ y′) → P x y) → ∀x y, P x y.

It allows building a term of type P x y by simultaneous induction on x and
y using the decreasing measure ‖x, y‖ to ensure termination. To ease the use
of theorem measure double rect we define a tactic notation that is deployed as
follows:

induction on x y as IH with measure ‖x, y‖
However, if the induction-on tactic was just about applying an instance of the
term measure double rect, it would still leave artifacts in the extracted code much
like the (resp. ) dummy parameter (resp. argument) in the itleqs example of
Fig. 1. So, to be precise in our description, the induction-on tactic actually
builds the needed instance of the proof term measure double rect on a per-use
basis, i. e., the proof term is inlined by the tactic itself. This ensures perfect
extraction in the sense of the result being free of any artifacts. We refer to the
file wf utils.v for detailed explanations on how the inlining works.

From the point of view of specification, our induction-on tactic gives the
same level of flexibility when compared to Program Fixpoint or Equations, at
least when termination is grounded on a decreasing measure. However, when con-
sidering extraction, we think that it offers a finer control over the computational
content of Coq terms, a feature which can be critical when doing certification
by extraction. We now illustrate how to use the induction-on tactic from the
user’s point of view, on the example of the simple interleaving algorithm.

2.5 Back to Simple Interleaving

To define and specify itlon using the induction-on tactic, we first implement a
fully specified version of itlon as the functional equivalent of itltriv.15 We proceed
with the following script, whose first line reads as: we want to define the list r
together with a proof that r is equal to itltriv l m—a typical rich specification.

15 Of course, it is not operationally equivalent.

https://github.com/DmxLarchey/BFE/blob/master/coq/wf_utils.v
https://github.com/DmxLarchey/BFE/blob/master/coq/wf_utils.v
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Definition itlfullon l m : {r : LX | r = itltriv l m}.

Proof.
induction on l m as loop with measure (|l| + |m|).
revert loop; refine (match l with

| nil �→ fun �→ exist m O
?
1

| x :: l′ �→ fun loop �→ let (r, Hr) := loop m l′ O?
2

in exist (x :: r) O?
3 end).

� trivial. (* proof of O?
1 *)

� simpl; omega. (* proof of O?
2 *)

� subst; rewrite itl triv fix 1; trivial. (* proof of O?
3 *)

Defined.

The code inside the refine(. . .) tactic outputs terms like exist s O
?
s where

is recovered by unification, and O
?
s is left open to be solved later by the user.16

The constructor exist packs the pair (s,O?
s) as a term of dependent type {r :

LX | r = itltriv l m} and thus O
?
s remains to be realized in the type s =

itltriv l m. This particular use of refine generates three proof obligations (also
denoted PO)

O
?
1 // . . . � m = itltriv [] m

O
?
2 // . . . � |m| + |l′| < |x :: l′| + |m|

O
?
3 // . . . ,Hr : r = itltriv ml′ � x :: r = itltriv (x :: l′) m

later proved with their respective short proof scripts. Notice that our newly intro-
duced induction-on tactic could alternatively be used to give another proof of
itl triv fix 1 by measure induction on |l| + |m|. We remark that PO O

?
2 is of

different nature than O
?
1 and O

?
3. Indeed, O?

2 is a precondition, in this case a
termination certificate ensuring that the recursive call occurs on smaller inputs.
On the other hand, O?

1 and O
?
3 are postconditions ensuring the functional cor-

rectness by type-checking (of the logical part of the rich specification). As a
general rule in this paper, providing termination certificates will always be rela-
tively easy because they reduce to proofs of strict inequations between arithmetic
expressions, usually solved by the omega tactic.17

Considering POs O
?
2 and O

?
3, they contain the following hypothesis (hidden

in the dots) which witnesses the induction on the measure |l| + |m|. It is called
loop as indicated in the induction-on tactic used at the beginning of the script:

loop : ∀ l0 m0, |l0| + |m0| < |x :: l′| + |m| → {r | r = itltriv l0 m0}
It could also appear in O

?
1 but since we do not need it to prove O

?
1, we inten-

tionally cleared it using fun �→ . . . Actually, loop is not used in the proofs
16 In the Coq code, O?

s is simply another hole left for the refine tactic to either fill it
by unification or postpone it. Because O

?
1, O

?
2 and O

?
3 are postponed in this example,

we give them names for better explanations.
17 Because termination certificates have a purely logical content, we do not care whether

omega produces an “optimal” proof (b. t. w., it never does), but we appreciate its
efficiency in solving those kinds of goals which we do not want to spend much time
on, thus the gain is in time spent on developing the certified code. Efficiency of code
execution is not touched since these proofs leave no traces in the extracted code.
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of O?
2 or O

?
3 either but it is necessary for the recursive call implemented in the

let . . . := loop . . . in . . . construct.
This peculiar way of writing terms as a combination of programming style

and combination of proof tactics is possible in Coq by the use of the “swiss-army
knife” tactic refine18 that, via unification, allows the user to specify only parts
of a term leaving holes to be filled later if unification fails to solve them. It is
a major tool to finely control computational content while allowing great tactic
flexibility on purely logical content.

We continue the definition of itlon as the first projection

Definition itlon l m := π1(itlfullon l m).

and its specification using the projection π2 on the dependent pair itlfullon l m.

Fact itl on spec l m : itlon l m = itltriv l m.

Notice that by asking the extraction mechanism to inline the definition of
itlfullon , we get the following extracted OCaml code for itlon, the one that optimally
reflects the original specification of Eq. (1):

let rec itlon l m = match l with [] → m | x :: l → x :: itlon ml

Of course, this outcome of the (automatic) code extraction had to be targeted
when doing the proof of itlfullon : a trivial proof would have been to choose as r just
itltriv l m, and the extracted code would have been just that. Instead, we did
pattern-matching on l and chose in the first case m and in the second case x :: r,
with r obtained as first component of the recursive call loop m l′. The outer
induction took care that loop stood for the function we were defining there.

Henceforth, we will take induction or recursion on measures for granted,
assuming they correspond to the use of the tactic induction-on.

3 Traversal of Binary Trees

We present mostly standard material on traversal of binary trees that will lay
the ground for the original contributions in the later sections of the paper.
After defining binary trees and basic notions for them including their branches
(Sect. 3.1), we describe mathematically what constitutes breadth-first traver-
sal by considering an order on the branches (Sect. 3.2) that we characterize
axiomatically (our Theorem 1). We then look at breadth-first traversal in its
most elementary form (Sect. 3.3), by paying attention that it indeed meets its
specification in terms of the order of the visited branches.

18 The refine tactic was originally implemented by J.-C. Filliâtre.
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3.1 Binary Trees

We use the type of binary trees (a, b : TX := 〈x〉 | 〈a, x, b〉) where x is of
the argument type X.19 We define the root : TX → X of a tree, the subtrees
subt : TX → L (TX) of a tree, and the size ‖·‖ : TX → N of a tree by:

root 〈x〉 := x subt 〈x〉 := [] ‖〈x〉‖ := 1
root 〈 , x, 〉 := x subt 〈a, , b〉 := [a; b] ‖〈a, x, b〉‖ := 1 + ‖a‖ + ‖b‖
and we extend the measure to lists of trees by ‖[t1; . . . ; tn]‖ := ‖t1‖ + · · · + ‖tn‖,
hence ‖[]‖ = 0, ‖[t]‖ = ‖t‖ and ‖l ++m‖ = ‖l‖ + ‖m‖. We will not need more
complicated measures than ‖·‖ to justify the termination of the breadth-first
algorithms to come.

A branch in a binary tree is described as a list of Booleans in LB representing
a list of left/right choices (0 for left and 1 for right).20 We define the predicate
btb : TX → LB → Prop inductively by the rules below where t // l ↓ denotes
btb t l and tells whether l is a branch in t:

t // [] ↓
a // l ↓

〈a, x, b〉 // 0 :: l ↓
b // l ↓

〈a, x, b〉 // 1 :: l ↓
We define the predicate bpn : TX → LB → X → Prop inductively as well.

The term bpn t l x, also denoted t // l � x, tells whether the node identified by l
in t is decorated with x:

t // [] � root t

a // l � r

〈a, x, b〉 // 0 :: l � r

b // l � r

〈a, x, b〉 // 1 :: l � r

We show the result that l is a branch of t if and only if it is decorated in t:

Fact btb spec (t : TX) (l : LB) : t // l ↓ ↔ ∃x, t // l � x.

By two inductive rules, we define ∼T : TX → TY → Prop, structural equiv-
alence of binary trees, and we lift it to structural equivalence of lists of binary
trees ∼LT : L (TX) → L (TY ) → Prop

〈x〉 ∼T 〈y〉
a ∼T a′ b ∼T b′

〈a, x, b〉 ∼T 〈a′, y, b′〉
l ∼LT m := ∀2(∼T) l m

i. e., when l = [a1; . . . ; an] and m = [b1; . . . ; bp], the equivalence l ∼LT m means
n = p ∧ a1 ∼T b1 ∧ · · · ∧ an ∼T bn (see Sect. 2).

Both ∼T and ∼LT are equivalence relations, and if a ∼T b then ‖a‖ = ‖b‖, i. e.,
structurally equivalent trees have the same size, and this holds for structurally
equivalent lists of trees as well.
19 In his paper [14], Okasaki considered unlabeled leaves. When we compare with his

findings, we always tacitly adapt his definitions to cope with leaf labels, which adds
only a small notational overhead.

20 We here intend to model branches from the root to nodes, rather than from nodes
to leaves. It might have been better to call the concept paths instead of branches.



58 D. Larchey-Wendling and R. Matthes

3.2 Ordering Branches of Trees

A strict order <R is an irreflexive and transitive (binary) relation. We say it is
total if the associated partial order <R ∪ = is total in the usual sense of being
connex, or equivalently, if ∀x y, {x <R y} ∨ {x = y} ∨ {y <R x}. It is decidable
and total if:

∀x y, {x <R y} + {x = y} + {y <R x}
where, as usual in type theory, a proof of the sum A + B + C requires either a
proof of A, of B or of C together with the information whether the first, second
or third summand has been proven.

The dictionary order of type ≺dic : LB → LB → Prop is the lexicographic
product on lists of 0’s or 1’s defined by

[] ≺dic b :: l 0 :: l ≺dic 1 :: m

l ≺dic m

b :: l ≺dic b :: m

The breadth-first order on LB of type ≺bf : LB → LB → Prop is defined by

|l| < |m|
l ≺bf m

|l| = |m| l ≺dic m

l ≺bf m

i. e., the lexicographic product of shorter and dictionary order (if equal length).

Lemma 1. ≺dic and ≺bf are decidable and total strict orders.

We characterize ≺bf with the following four axioms:

Theorem 1. Let <R : LB → LB → Prop be a relation s. t.

(A1) <R is a strict order (irreflexive and transitive)
(A2) ∀x l m, l <R m ↔ x :: l <R x :: m
(A3) ∀ l m, |l| < |m| → l <R m
(A4) ∀ l m, |l| = |m| → 0 :: l <R 1 :: m

Then <R is equivalent to ≺bf , i. e., ∀ l m, l <R m ↔ l ≺bf m. Moreover the
relation ≺bf satisfies (A1)–(A4).

3.3 Breadth-First Traversal, a Naive Approach

The zipping function zip : L (LX) → L (LX) → L (LX) is defined by

zip [] m := m zip l [] := l zip (x :: l) (y :: m) := (x++ y) :: zip l m

The level-wise function niv : TX → L (LX) — niv refers to the French word
“niveaux” — is defined by21

niv 〈x〉 := [x] :: [] niv 〈a, x, b〉 := [x] :: zip (niv a) (niv b)

21 The function niv is called “levelorder traversal” by Jones and Gibbons [7].
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The (n + 1)-th element of niv t contains the labels of t in left-to-right order that
have distance n to the root. We can then define bftstd t := concat(niv t).22 We lift
breadth-first traversal to branches instead of decorations, defining nivbr : TX →
L (L (LB)) by

nivbr 〈x〉 := [[]] :: []
nivbr 〈a, x, b〉 := [[]] :: zip

(
map (map (0 :: ·)) (nivbr a)

)(
map (map (1 :: ·)) (nivbr b)

)

and then bftbr t := concat(nivbr t), and we show the two following results:

Theorem niveaux br niveaux t : ∀2 (∀2 (bpn t)) (nivbr t) (niv t).

Theorem bft br std t : ∀2(bpn t) (bftbr t) (bftstd t).

Hence bftbr t and bftstd t traverse the tree t in the same order, except that bftstd
outputs decorating values and bftbr outputs branches.23 We moreover show that
bftbr t lists the branches of t in ≺bf -ascending order.

Theorem 2. The list bftbr t is strictly sorted w. r. t. ≺bf .

4 Breadth-First Traversal of a Forest

We lift root and subt to lists of trees and define roots : L (TX) → LX and
subtrees : L (TX) → L (TX) by

roots := map root subtrees := flat map subt

where flat map is the standard list operation given by flat map f [x1; . . . ;xn] :=
f x1 ++ · · · ++ f xn. To justify the upcoming fixpoints/inductive proofs where
recursive sub-calls occur on subtrees l, we show the following

Lemma subtrees dec l : l = [] ∨ ‖subtrees l‖ < ‖l‖.

Hence we can justify termination of a recursive algorithm f l with formal argu-
ment l : L (TX) that is calling itself on f(subtrees l), as soon as the case f []
is computed without using recursive calls (to f). For this, we use, for instance,
recursion on the measure l �→ ‖l‖ but we may also use the binary measure
l,m �→ ‖l ++m‖ when f has two arguments instead of just one.

4.1 Equational Characterization of Breadth-First Traversal

We first characterize bftf—breadth-first traversal of a forest—with four equiva-
lent equations:

22 Where concat := fold (· ++ ·) [], i. e., concat [l1; . . . ; ln] = l1 ++ · · · ++ ln.
23 The bpn t relation, also denoted l, x �→ t // l � x, relates branches and decorations.
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Theorem 3 (Characterization of breadth-first traversal of forests –
recursive part). Let bftf be any term of type L (TX) → LX and consider the
following equations:

(1) ∀ l, bftf l = roots l ++ bftf (subtrees l);
(2) ∀ l m, bftf (l ++m) = roots l ++ bftf (m ++ subtrees l);
(3) ∀ t l, bftf (t :: l) = root t :: bftf (l ++ subt t);
(Oka1) ∀x l, bftf (〈x〉 :: l) = x :: bftf l;
(Oka2) ∀ a b x l, bftf (〈a, x, b〉 :: l) = x :: bftf (l ++[a; b]).

We have the equivalence: (1) ↔ (2) ↔ (3) ↔ (Oka1 ∧ Oka2).

Proof. Equations (1) and (3) are clear instances of Eq. (2). Then (Oka1∧Oka2)
is equivalent to (3) because they just represent a case analysis on t. So the only
difficulty is to show (1) → (2) and (3) → (2). Both inductive proofs alternate
the roles of l and m. So proving (2) from e. g. (1) by induction on either l or
m is not possible. Following the example of the simple interleaving algorithm of
Sect. 2.5, we proceed by induction on the measure ‖l ++m‖. ��
Equations (Oka1) and (Oka2) are used by Okasaki [14] as defining equations,
while (3) is calculated from the specification by Jones and Gibbons [7]. We single
out Eq. (2) above as a smooth gateway between subtrees-based breadth-first
algorithms and FIFO-based breadth-first algorithms. Unlocking that “latch bolt”
enabled us to show correctness properties of refined breadth-first algorithms.

Theorem 4 (Full characterization of breadth-first traversal of forests).
Adding equation bftf [] = [] to any one of the equations of Theorem 3 determines
the function bftf uniquely.

Proof. For any bft1 and bft2 satisfying both bft1 [] = [], bft2 [] = [] and e. g.
bft1 l = roots l ++ bft1 (subtrees l) and bft2 l = roots l ++ bft2 (subtrees l), we show
bft1 l = bft2 l by induction on ‖l‖. ��

Notice that one should not confuse the uniqueness of the function—which is
an extensional notion—with the uniqueness of an algorithm implementing such
a function, because there are hopefully numerous possibilities.24

4.2 Direct Implementation of Breadth-First Traversal

We give a definition of forestdec : L (TX) → LX × L (TX) such that, provably,
forestdec l = (roots l, subtrees l), but using a simultaneous computation:

forestdec [] := ([], []) forestdec (〈x〉 :: l) := (x :: α, β)

forestdec (〈a, x, b〉 :: l) := (x :: α, a :: b :: β)
where (α, β) := forestdec l.

24 Let us stress that extensionality is not very meaningful for algorithms anyway.
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Then we show one way to realize the equations of Theorem 3 into a Coq term:

Theorem 5 (Existence of breadth-first traversal of forests). One can
define a Coq term bftf of type L (TX) → LX s. t.

1. bftf [] = []
2. ∀l, bftf l = roots l ++ bftf (subtrees l)

and s. t. bftf extracts to the following OCaml code:25

let rec bftf l = match l with [] → [] | → let α, β = forestdec l in α @ bftf β.

Proof. We define the graph �bft of the algorithm bftf as binary relation of type
L (TX) → LX → Prop with the two following inductive rules:

[] �bft []

l �= [] subtrees l �bft r

l �bft roots l ++ r

These rules follow the intended algorithm. We show that the graph �bft is
functional/deterministic, i. e.

Fact bft f fun : ∀ l r1 r2, l �bft r1 → l �bft r2 → r1 = r2.

By induction on the measure ‖l‖ we define a term bft f full l : {r | l �bft r}
where we proceed as in Sect. 2.5. We get bftf by the first projection bftf l :=
π1(bft f full l) and derive the specification

Fact bft f spec : ∀l, l �bft bftf l.

with the second projection π2. Equations 1 and 2 follow straightforwardly from
bft f fun and bft f spec. ��

Hence we see that we can use the specifying Eqs. 1 and 2 of Theorem 5 to
define the term bftf . In the case of breadth-first algorithms, termination is not
very complicated because one can use induction on a measure to ensure it. In
the proof, we just need to check that recursive calls occur on smaller arguments
according to the given measure, and this follows from Lemma subtrees dec.

Theorem 6 (Correctness of breadth-first traversal of forests). For all
t : TX, we have bftf [t] = bftstd t.

Proof. We define �niv : L (TX) → L (LX) → Prop by

[] �niv []

l �= [] subtrees l �niv ll

l �niv roots l :: ll

and we show that l �niv ll → m �niv mm → l ++m �niv zip ll mm holds,
a property from which we deduce [t] �niv niv t. We show l �niv ll → l �bft

concat ll and we deduce [t] �bft concat (niv t) hence [t] �bft bftstd t. By bft f spec
we have [t] �bft bftf [t] and we conclude with bft f fun. ��
25 Notice that list append is denoted @ in OCaml and ++ in Coq.
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4.3 Properties of Breadth-First Traversal

The shape of a tree (resp. forest) is the structure that remains when removing
the values on the nodes and leaves, e. g., by mapping the base type X to the
singleton type unit. Alternatively, one can use the ∼T (resp. ∼LT) equivalence
relation (introduced in Sect. 3.1) to characterize trees (resp. forests) which have
identical shapes. We show that on a given forest shape, breadth-first traversal is
an injective map:

Lemma bft f inj l m : l ∼LT m → bftf l = bftf m → l = m.

Proof. By induction on the measure l,m �→ ‖l ++m‖ and then case analysis on l
and m. We use (Oka1&Oka2) from Theorem 3 to rewrite bftf terms. The shape
constraint l ∼LT m ensures that the same equation is used for l and m. ��

Hence, on a given tree shape, bftstd is also injective:

Corollary 1. If t1 ∼T t2 are two trees of type TX (of the same shape) and
bftstd t1 = bftstd t2 then t1 = t2.

Proof. From Lemma bft f inj and Theorem 6. ��

4.4 Discussion

The algorithm described in Theorem 5 can be used to compute breadth-first
traversal as a replacement for the naive bftstd algorithm. We could also use
other equations of Theorem 3, for instance using bftf [] = [], (Oka1) and (Oka2)
to define another algorithm. The problem with equation

(Oka2) bftf (〈a, x, b〉 :: l) = x :: bftf (l ++[a; b])

is that it implies the use of ++ to append two elements at the tail of l, which
is a well-known culprit that transforms an otherwise linear-time algorithm into
a quadratic one. But Equation (Oka2) hints at replacing the list data-structure
with a first-in, first-out queue (FIFO) for the argument of bftf which brings us
to the central section of this paper.

5 FIFO-Based Breadth-First Algorithms

Here come the certified algorithms in the spirit of Okasaki’s paper [14]. They
have the potential to be efficient, but this depends on the later implementation
of the axiomatic datatype of FIFOs considered here (Sect. 5.1). We deal with
traversal, numbering, reconstruction—in breadth-first order.
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fifo : Type Type

f2l : ∀X, fifo X LX
emp : ∀X, {q | f2l q = []}
enq : ∀X q x, {q′ | f2l q′ = f2l q++[x]}
deq : ∀X q, f2l q �= [] {(x, q′) | f2l q = x :: f2l q′}
void : ∀X q, {b : B | b = 1 f2l q = []}

Fig. 2. An axiomatization of first-in first-out queues.

5.1 Axiomatization of FIFOs

In Fig. 2, we give an axiomatic description of polymorphic first-in, first-out
queues (a. k. a. FIFOs) by projecting them to lists with f2l {X} : fifoX → LX
where the notation {X} marks X as an implicit argument26 of f2l. Each axiom
is fully specified using f2l: emp is the empty queue, enq the queuing function, deq
the dequeuing function which assumes a non-empty queue as input, and void a
Boolean test of emptiness. Notice that when q is non-empty, deq q returns a pair
(x, q′) where x is the dequeued value and q′ the remaining queue.

A clean way of introducing such an abstraction in Coq that generates little
overhead for program extraction towards OCaml is the use of a module type that
collects the data of Fig. 2. Coq developments based on a hypothetical implemen-
tation of the module type are then organized as functors (i. e., modules depend-
ing on typed module parameters). Thus, all the Coq developments described in
this section are such functors, and the extracted OCaml code is again a func-
tor, now for the module system of OCaml, and with the module parameter that
consists of the operations of Fig. 2 after stripping off the logical part. In other
words, the parameter is nothing but a hypothetical implementation of a FIFO
signature, viewed as a module type of OCaml.

Of course, the FIFO axioms have several realizations (or refinements), includ-
ing a trivial and inefficient one where f2l is the identity function (and the ineffi-
ciency comes from appending the new elements at the end of the list with enq).
In Sect. 7, we refine these axioms with more efficient implementations following
Okasaki’s insights [13] that worst-case O(1) FIFO operations are even possible
in an elegant way with functional programming languages.

5.2 Breadth-First Traversal

We use the equations which come from Theorem 3 and Theorem 5:

bftf [] = [] bftf (〈x〉 :: l) = x :: bftf l bftf (〈a, x, b〉 :: l) = x :: bftf (l++[a; b])

26 When a parameter X is marked implicit using the {X} notation, it usually means
that Coq is going to be able to infer the value of the argument by unification from the
constraints in the context. In the case of f2l l, it means X will be deduced from the
type of l which should unify with fifo X. While not strictly necessary, the mechanism
of implicit arguments greatly simplifies the readability of Coq terms. In particular,
it avoids an excessive use of dummy arguments .
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They suggest the definition of an algorithm for breadth-first traversal where
lists are replaced with queues (FIFOs) so that (linear-time) append at the end
(. . . ++[a; b]) is turned into two primitive queue operations (enq (enq . . . a) b).
Hence, we implement FIFO-based breadth-first traversal.

Theorem 7. There exists a fully specified Coq term

bft fifof : ∀q : fifo (TX), {l : LX | l = bftf (f2l q)}
s. t. bft fifof extracts to the following OCaml code:

let rec bft fifof q =
if void q then []
else let t, q′ = deq q

in match t with
| 〈x〉 → x :: bft fifof q′

| 〈a, x, b〉 → x :: bft fifof (enq (enq q′ a) b).

Proof. We proceed by induction on the measure q �→ ‖f2l q‖ following the
method exposed in the interleave example of Sect. 2.5. The proof is structured
around the computational content of the above OCaml code. Termination POs
are easily solved by omega. Postconditions for correctness are proved using the
above equations. ��
Corollary 2. There is a Coq term bftfifo : TX → LX s.t. bftfifo t = bftstd t
holds for any t : TX. Moreover, bftfifo extracts to the following OCaml code:

let bftfifo t = bft fifof (enq emp t).

Proof. From a tree t, we instantiate bft fifof on the one-element FIFO (enq emp t)
and thus derive the term bft fifo full (t : TX) : {l : LX | l = bftf [t]}. The first
projection bftfifo t := π1(bft fifo full t) gives us bftfifo and we derive bftfifo t =
bftstd t from the combination of the second projection bftfifo t = bftf [t] with
Theorem 6. ��

5.3 Breadth-First Numbering

Breadth-first numbering was the challenge proposed by Okasaki to the commu-
nity and which led him to write his paper [14]. It consists in redecorating a tree
with numbers in breadth-first order. The difficulty was writing an efficient algo-
rithm in purely functional style. We choose the easy way to specify the result of
breadth-first numbering of a tree: the output of the algorithm should be a tree
t : TN preserving the input shape and of which the breadth-first traversal of
bftstd t is of the form [1; 2; 3 . . .].

As usual with those breadth-first algorithms, we generalize the notions to
lists of trees.

Definition is bfn n l := ∃k, bftf l = [n; . . . ;n + k[.
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Lemma 2. Given a fixed shape, the breadth-first numbering of a forest is unique,
i. e., for any n : N and any l,m : L (TN),

l ∼LT m → is bfn n l → is bfn n m → l = m.

Proof. By Lemma bft f inj in Sect. 4.3. ��
We give an equational characterization of breadth-first numbering of forests

combined with list reversal. In the equations below, we intentionally consider a
bfnf function that outputs the reverse of the numbering of the input forest, so
that, when viewed as FIFOs of trees (instead of lists of trees), both the input
FIFO over TX and the output FIFO over type TN correspond to left dequeuing
and right enqueuing.27 That said, Eqs. (E2) and (E3) correspond to (Oka1)
and (Oka2) respectively, augmented with an extra argument used for keeping
track of the numbering.

Lemma 3. Let bfnf : N → L (TX) → L (TN) be a term. Considering the
following conditions:

(E1) ∀n, bfnf n [] = [];
(E2) ∀nx l, bfnf n (〈x〉 :: l) = bfnf (1 + n) l ++[〈n〉];
(E3) ∀nax b l, ∃ a′ b′ l′,

bfnf (1 + n) (l ++[a; b]) = b′ :: a′ :: l′ ∧ bfnf n (〈a, x, b〉 :: l) = l′ ++[〈a′, n, b′〉];
(Bfn1) ∀n l, l ∼LT rev(bfnf n l);
(Bfn2) ∀n l, is bfn n (rev(bfnf n l)).

We have the equivalence: (E1 ∧ E2 ∧ E3) ↔ (Bfn1 ∧ Bfn2).

Proof. From right to left, we essentially use Lemma 2. For the reverse direc-
tion, we proceed by induction on the measure i, l �→ ‖l‖ in combination with
Theorem 5 and Theorem 3—Equations (Oka1) and (Oka2). ��

Although not explicitly written in Okasaki’s paper [14], these equations hint
at the use of FIFOs as a replacement for lists for both the input and output of
bfnf . Let’s see this informally for (E3): bfnf n is to be computed on a non-empty
list viewed as a FIFO, and left dequeuing gives a composite tree 〈a, x, b〉 and the
remaining list/FIFO l. The subtrees a and b are enqueued to the right of l and
bfnf (1+n) called on the resulting list/FIFO. (E3) guarantees that a′ and b′ can
be dequeued to the left from the output list/FIFO. Finally, 〈a′, n, b′〉 is enqueued
to the right to give the correct result, thanks to (E3). This construction will be
formalized in Theorem 8.

We define the specification bfn fifo f spec corresponding to breadth-first num-
bering of FIFOs of trees

Definition bfn fifo f spec n q q′ := f2l q ∼LT rev (f2l q′) ∧ is bfn n (rev(f2l q′))

and we show the inhabitation of this specification.
27 The fact that input and output FIFOs operate in mirror to each other was already

pointed out by Okasaki in [14]. Using reversal avoids defining two types of FIFOs or
bi-directional FIFOs to solve the issue.
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Theorem 8. There exists a fully specified Coq term

bfn fifof : ∀(n : N) (q : fifo X), {q′ | bfn fifo f spec n q q′}
which extracts to the following OCaml code:

let rec bfn fifof n q =
if void q then emp
else let t, q0 = deq q in match t with

| 〈 〉 → enq (bfn fifof (1 + n) q0) 〈n〉
| 〈a, , b〉 → let b′, q1 = deq

(
bfn fifof (1 + n) (enq (enq q0 a) b)

)
in

let a′, q2 = deq q1
in enq q2 〈a′, n, b′〉.

Proof. To define bfn fifof , we proceed by induction on the measure n, q �→ ‖f2l q‖
where the first parameter does not participate in the measure. As in Sect. 2.5,
we implement a proof script which mixes tactics and programming style using
the refine tactic. We strictly follow the above algorithm to design bfn fifof .
Of course, proof obligations like termination certificates or postconditions are
generated by Coq and need to be addressed. As usual for these breadth-first
algorithms, termination certificates are easy to solve thanks to the omega tactic.
The only difficulties lie in the postcondition POs but these correspond to the
(proofs of the) equations of Lemma 3. ��
Corollary 3. There is a Coq term bfnfifo : TX → TN s. t. for any tree t : TX:

t ∼T bfnfifo t and bftstd (bfnfifo t) = [1; . . . ; ‖t‖]

and bfnfifo extracts to the following OCaml code:

let bfnfifo t = let t′, = deq
(
bfn fifof 1 (enq emp t)

)
in t′.

Proof. Obvious consequence of Theorem 8 in conjunction with Theorem 6. ��

5.4 Breadth-First Reconstruction

Breadth-first reconstruction is a generalization of breadth-first numbering—see
the introduction for its description. For simplicity (since all our structures are
finite), we ask that the list of labels that serves as extra argument has to be
of the right length, i. e., has as many elements as there are labels in the input
data-structure, while the “breadth-first labelling” function considered by Jones
and Gibbons [7] just required it to be long enough so that the algorithm does
not get stuck.

We define the specification of the breadth-first reconstruction of a FIFO q of
trees in TX using a list l : LY of labels

Definition bfr fifo f spec q l q′ := f2l q ∼LT rev (f2l q′) ∧ bftf (rev (f2l q′)) = l.
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We can then define breadth-first reconstruction by structural induction on
the list l of labels:

Fixpoint bfr fifof q l {struct l} : ‖f2l q‖ = |l| → {q′ | bfr fifo f spec q l q′}.

Notice the precondition ‖f2l q‖ = |l| stating that l contains as many labels as the
total number of nodes in the FIFO q.28 Since we use structural induction, there
are no termination POs. There is however a precondition PO (easily proved) and
postcondition POs are similar to those of the proof of Theorem 8. Extraction to
OCaml outputs the following:

let rec bfr fifof q = function
| [] → emp
| y :: l →
let t, q0 = deq q in match t with

| 〈 〉 → enq (bfr fifof q0 l) 〈y〉
| 〈a, , b〉 → let b′, q1 = deq

(
bfr fifof (enq (enq q0 a) b) l

)
in

let a′, q2 = deq q1
in enq q2 〈a′, y, b′〉.

Notice the similarity with the code of bfn fifof of Theorem 8.

Theorem 9. There is a Coq term bfrfifo : ∀ (t : TX) (l : LY ), ‖t‖ = |l| → TY
such that for any tree t : TX, l : LY and H : ‖t‖ = |l| we have:

t ∼T bfrfifo t l H and bftstd (bfrfifo t l H) = l.

Moreover, bfrfifo extracts to the following OCaml code:

let bfrfifo t l = let t′, = deq
(
bfr fifof (enq emp t) l

)
in t′.

Proof. Direct application of bfr fifof (enq emp t) l. ��

6 Numbering by Levels

Okasaki reports in his paper [14] on his colleagues’ attempts to solve the breadth-
first numbering problem and mentions that most of them were level-oriented, as
is the original traversal function bftstd. In his Sect. 4, he describes the “cleanest”
of all those solutions, and this small section is devoted to get it by extraction
(and thus with certification through the method followed in this paper).

We define childrenf : ∀{K}, L (TK) → N × L (TK) such that, provably,
childrenf l = (|l|, subtrees l) but using a more efficient simultaneous computation:

childrenf [] := (0, [])
childrenf (〈 〉 :: l) := (1 + n,m)

childrenf (〈a, , b〉 :: l) := (1 + n, a :: b :: m)
where (n,m) := childrenf l

28 This condition could easily be weakened to ‖f2l q‖ ≤ |l| but in that case, the speci-
fication bfr fifo f spec should be changed as well.
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and rebuildf : ∀{K}, N → L (TK) → L (TN) → L (TN)

rebuildf n [] := []
rebuildf n (〈 〉 :: ts) cs := 〈n〉 :: rebuildf (1 + n) ts cs
rebuildf n (〈 , , 〉 :: ts) (a :: b :: cs) := 〈a, n, b〉 :: rebuildf (1 + n) ts cs
and otherwise rebuildf := [].

Since we will need to use both childrenf and rebuildf for varying values of the type
parameter K, we define them as fully polymorphic here.29 We then fix X : Type
for the remainder of this section.

The algorithms childrenf and rebuildf are (nearly) those defined in [14, Figure
5] but that paper does not provide a specification for rebuildf and thus cannot
show the correctness result which follows. Instead of a specification, Okasaki
offers an intuitive explanation of rebuildf [14, p. 134]. Here, we will first rephrase
the following lemma in natural language: the task is to obtain the breadth-first
numbering of list ts, starting with index n. We consider the list subtrees ts of
all immediate subtrees, hence of all that is “at the next level” (speaking in
Okasaki’s terms), and assume that cs is the result of breadth-first numbering of
those, but starting with index |ts| + n, so as to skip all the roots in ts whose
number is |ts|. Then, rebuildf n ts cs is the breadth-first numbering of ts. In view
of this description, the first three definition clauses of rebuildf are unavoidable,
and the last one gives a dummy result for a case that never occurs when running
algorithm bfn levelf in Theorem 10 below.

Lemma 4. The function rebuildf satisfies the following specification: for any n,
ts : L (TX) and cs : L (TN), if both subtrees ts ∼LT cs and is bfn (|ts| + n) cs
hold then ts ∼LT rebuildf n ts cs and is bfn n (rebuildf n ts cs).

Proof. First we show by structural induction on ts that for any n : N and
ts : L (TN), if roots ts = [n;n + 1; . . .] then rebuildf n ts (subtrees ts) = ts. Then
we show that for any Y,Z : Type, n : N, ts : L (TY ), t′s : L (TZ) and any
cs : L (TN), if ts ∼LT t′s then rebuildf n ts cs = rebuildf n t′s cs. This second
proof is by structural induction on proofs of the ts ∼LT t′s predicate. The result
follows using Lemma 2. ��

The lemma suggests the recursive algorithm contained in the following the-
orem: in place of cs as argument to rebuildf , it uses the result of the recursive
call on bfn levelf with the index shifted by the number of terms in ts (hence the
number of roots in ts—which is different from Okasaki’s setting with labels only
at inner nodes) and the second component of childrenf ts.

Theorem 10. There is a fully specified Coq term

bfn levelf : ∀ (i : N) (l : L (TX)), {m | l ∼LT m ∧ is bfn i m}

29 Hence the ∀{K} where K is declared as implicit.
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which extracts to the following OCaml code:

let rec bfn levelf i ts = match ts with
| [] → []
| → let n, ss = childrenf ts in rebuildf i ts (bfn levelf (n + i) ss).

Proof. By induction on the measure i, l �→ ‖l‖. The non-trivial correctness PO
is a consequence of Lemma 4. ��
Corollary 4. There is a Coq term bfnlevel : TX → TN s. t. for any tree t : TX:

t ∼T bfnlevel t and bftstd (bfnlevel t) = [1; . . . ; ‖t‖]

and bfnlevel extracts to the following OCaml code:

let bfnlevel t = match bfn levelf 1 [t] with t′ :: → t′.

Proof. Direct application of Theorems 6 and 10. ��

7 Efficient Functional FIFOs

We discuss the use of our breadth-first algorithms that are parameterized over
the abstract FIFO datatype with the implementations of efficient and purely
functional FIFOs. As described in Sect. 5.1, the Coq developments of Sects. 5.2,
5.3 and 5.4 take the form of (Coq module) functors and their extracted code is
structured as (OCaml module) functors. Using these functors means instantiat-
ing them with an implementation of the parameter, i. e., a module of the given
module type. Formally, this is just application of the functor to the argument
module. In our case, we implement Coq modules of the module type correspond-
ing to Fig. 2 and then apply our (Coq module) functors to those modules. The
extraction process yields the application of the extracted (OCaml module) func-
tors to the extracted FIFO implementations. This implies a certification that
the application is justified logically, i. e., that the FIFO implementation indeed
satisfies the axioms of Fig. 2.

7.1 FIFOs Based on Two Lists

It is an easy exercise to implement our abstract interface for FIFOs based on pairs
(l, r) of lists, with list representation f2l (l, r) := l ++ rev r. The enq operation
adds the new element to the front of r (seen as the tail of the second part),
while the deq operation “prefers” to take the elements from the front of l, but
if l is empty, then r has to be carried over to l, which requires reversal. It is
well-known that this implementation still guarantees amortized constant-time
operations if list reversal is done efficiently (in linear time). As before, we obtain
the implementation by automatic code extraction from constructions with the
rich specifications that use measure induction for deq.
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We can then instantiate our algorithms to this specific implementation, while
Jones and Gibbons [7] calculated a dedicated breadth-first traversal algorithm
for this implementation from the specification.

We have the advantage of a more modular approach and tool support for
the code generation (once the mathematical argument in form of the rich spec-
ification is formalized in Coq). Moreover, we can benefit from a theoretically
yet more efficient and still elegant implementation of FIFOs, the one devised by
Okasaki [13], to be discussed next.

7.2 FIFOs Based on Three Lazy Lists

While amortized constant-time operations for FIFOs seem acceptable—although
imperative programming languages can do better—Okasaki showed that also
functional programming languages allow an elegant implementation of worst-
case constant time FIFO operations [13].

The technique he describes relies on lazy evaluation. To access those data
structures in terms extracted from Coq code, we use coinductive types, in par-
ticular finite or infinite streams (also called “colists”):

CoInductive SX := 〈〉 : SX | # : X → SX → SX.

However, this type is problematic just because of the infinite streams it contains:
since our inductive arguments are based on measures, we cannot afford that such
infinite streams occur in the course of execution of our algorithms. Hence we need
to guard our lazy lists with a purely logical finiteness predicate which is erased
by the extraction process.

Inductive lfin : SX → Prop :=
| lfin nil : lfin 〈〉
| lfin cons : ∀x s, lfin s → lfin (x # s).

We can then define the type of (finite) lazy lists as:

Definition Ll X := {s : SX | lfin s}.

Compared to regular lists LX, for a lazy list (s,Hs) : Ll X, on the one hand,
we can also do pattern-matching on s but on the other hand, we cannot define
Fixpoints by structural induction on s. We replace it with structural induction
on the proof of the predicate Hs : lfin s. Although a bit cumbersome, this allows
working with such lazy lists as if they were regular lists, and this practice is fully
compatible with extraction because the guards of type lfin s : Prop, being purely
logical, are erased at extraction time. Here is the extraction of the type Ll in
OCaml:

type α llist = α llist Lazy.t
and α llist = Lnil | Lcons of α ∗ α llist
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Here, we see the outcome of the effort: the (automatic) extraction process
instructs OCaml to use lazy lists instead of standard lists (a distinction that
does not even exist in the lazy language Haskell).

Okasaki [13] found a simple way to implement simple FIFOs30 efficiently
using triples of lazy lists. By efficiently, he means where enqueue and dequeue
operations take constant time (in the worst case). We follow the proposed imple-
mentation using our own lazy lists Ll X. Of course, his proposed code, being of
beautiful simplicity, does not provide the full specifications for a correctness
proof. Some important invariants are present, though. The main difficulty we
faced was to give a correct specification for his intermediate rotate and make
functions.

We do not enter more into the details of this implementation which is com-
pletely orthogonal to breadth-first algorithms. We invite the reader to check that
we do get the exact intended extraction of FIFOs as triples of lazy lists; see the
files llists.v, fifo 3llists.v and extraction.v described in Appendix A.

7.3 Some Remarks About Practical Complexity

However, our experience with the extracted algorithms for breadth-first number-
ing in OCaml indicate for smaller (with size below 2k nodes) randomly generated
input trees that the FIFOs based on three lazy lists are responsible for a factor
of approximately 5 in execution time in comparison with the 2-list-based imple-
mentation. For large trees (with size over 64k nodes), garbage collection severely
hampers the theoretic linear-time behaviour. A precise analysis is out of scope
for this paper.

8 Final Remarks

This paper shows that, despite their simplicity, breadth-first algorithms for finite
binary trees present an interesting case for algorithm certification, in particu-
lar when it comes to obtain certified versions of efficient implementations in
functional programming languages, as those considered by Okasaki [14].

Contributions. For this, we used the automatic extraction mechanism of the Coq
system, whence we call this “breadth-first extraction.” Fine-tuning the proof
constructions so that the extraction process could generate the desired code—
without any need for subsequent code polishing—was an engineering challenge,
and the format of our proof scripts based on a hand-crafted measure induction
tactic (expressed in the Ltac language for Coq [5] that is fully usable as user of
Coq—as opposed to Coq developers only) should be reusable for a wide range
of algorithmic problems and thus allow their solution with formal certification
by program extraction.

30 He also found a simple solution for double-ended FIFOs.
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We also considered variations on the algorithms that are not optimized for
efficiency but illustrate the design space and also motivate the FIFO-based solu-
tions. And we used the Coq system as theorem prover to formally verify some
more abstract properties in relation with our breadth-first algorithms. This com-
prises as original contributions an axiomatic characterization of relations on
paths in binary trees to be the breadth-first order (Theorem 1) in which the paths
are visited by the breadth-first traversal algorithm. (Sect. 3.3). This also includes
the identification of four different but logically equivalent ways to express the
recursive behaviour of breadth-first traversal on forests (Theorem 3) and an
equational characterization of breadth-first numbering of forests (Lemma 3).
Among the variations, we mention that breadth-first reconstruction (Sect. 5.4)
is amenable to a proof by structural recursion on the list of labels that is used
for the relabeling while all the other proofs needed induction w. r. t. measures.

Perspectives. As mentioned in the introduction, code extraction of our con-
structions towards lazy languages such as Haskell would yield algorithms that
we expect to work properly on infinite binary trees (the forests and FIFOs would
still contain only finitely many elements, but those could then be infinite). The
breadth-first nature of the algorithms would ensure fairness (hinted at also in
the introduction). However, our present method does not certify in any way that
use outside the specified domain of application (in particular, the non-functional
correctness criterion of productivity is not guaranteed). We would have to give
coinductive specifications and corecursively create their proofs, which would be a
major challenge in Coq (cf. the experience of the second author with coinductive
rose trees in Coq [16] where the restrictive guardedness criterion of Coq had to
be circumvented in particular for corecursive constructions).

As further related work, we mention a yet different linear-time breadth-first
traversal algorithm by Jones and Gibbons [7] that, as the other algorithms of
their paper, is calculated from the specification, hence falls under the “algebra
of programming” paradigm. Our methods should apply for that algorithm, too.
And there is also their breadth-first reconstruction algorithm that relies on lazy
evaluation of streams—a version of it which is reduced to breadth-first number-
ing has been discussed by Okasaki [14] to relate his work to theirs. To obtain
such kind of algorithms would be a major challenge for the research in certified
program extraction.

Another Related Research Direction. We mentioned directly related work
throughout the paper, and we discussed certification of the program extrac-
tion procedure in Sect. 2.2. Let’s briefly indicate a complementary approach. We
state in our Theorems 5, 7, 8, 9 and 10 the OCaml code we wanted to obtain
by extraction (and that we then got), but there is no tool support to start with
that code and to work towards the (fully specified) Coq terms. The hs-to-coq31

tool [19] transforms Haskell code (in place of OCaml that we chose to use) into
Coq code and provides means to subsequent verification provided the Haskell
code does not exploit non-termination.
31 https://github.com/antalsz/hs-to-coq.

https://github.com/antalsz/hs-to-coq
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A Code Correspondence

Here, we briefly describe the Coq vernacular files behind our paper that is hosted
at https://github.com/DmxLarchey/BFE. Besides giving formal evidence for the
more theoretical characterizations, it directly allows doing program extraction,
see the README section on the given web page.
We are here presenting 24 Coq vernacular files in useful order:

– list utils.v: One of the biggest files, all concerning list operations, list
permutations, the lifting of relations to lists (Sect. 2) and segments of the
natural numbers – auxiliary material with use at many places.

– wf utils.v: The subtle tactics for measure recursion in one or two argu-
ments with a N-valued measure function (Sect. 2.4) – this is crucial for smooth
extraction throughout the paper.

– llist.v: Some general material on coinductive lists, in particular proven
finite ones (including append for those), but also the rotate operation of
Okasaki [13], relevant in Sect. 7.2.

– interleave.v: The example of interleaving with three different methods in
Sects. 2.3 (with existing tools—needs Coq v8.9 with package Equations) and
Sect. 2.5 (with our method).

– zip.v: Zipping with a rich specification and relations with concatenation –
just auxiliary material.

– sorted.v: Consequences of a list being sorted, in particular absence of dupli-
cates in case of strict orders – auxiliary material for Sect. 3.2.

– increase.v: Small auxiliary file for full specification of breadth-first traversal
(Sect. 3.3).

– bt.v: The largest file in this library, describing binary trees (Sect. 3.1), their
branches and orders on those (Sect. 3.2) in relation with breadth-first traversal
and structural relations on trees and forests (again Sect. 3.1).

– fifo.v: the module type for abstract FIFOs (Sect. 5.1).
– fifo triv.v: The trivial implementation of FIFOs through lists, mentioned

in Sect. 5.1.
– fifo 2lists.v: An efficient implementation that has amortized O(1) opera-

tions (see, e. g., the paper by Okasaki [13]), described in Sect. 7.1.
– fifo 3llists.v: The much more complicated FIFO implementation that

is slower but has worst-case O(1) operations, invented by Okasaki [13]; see
Sect. 7.2.

– bft std.v: Breadth-first traversal naively with levels (specified with the
traversal of branches in suitable order), presented in Sect. 3.3.

– bft forest.v: Breadth-first traversal for forests of trees, paying much atten-
tion to the recursive equations that can guide the definition and/or verifica-
tion (Sect. 4.1).

https://github.com/DmxLarchey/BFE
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– bft inj.v: Structurally equal forests with the same outcome of breadth-first
traversal are equal, shown in Sect. 4.3.

– bft fifo.v: Breadth-first traversal given an abstract FIFO, described in
Sect. 5.2.

– bfn spec rev.v: Characterization of breadth-first numbering, see Lemma 3.
– bfn fifo.v: The certified analogue of Okasaki’s algorithm for breadth-first

numbering [14], in Sect. 5.3.
– bfn trivial.v: Just the instance of the previous with the trivial implemen-

tation of FIFOs.
– bfn level.v: A certified reconstruction of bfnum on page 134 (Sect. 4 and

Fig. 5) of Okasaki’s article [14]. For its full specification, we allow ourselves
to use breadth-first numbering obtained in bfn trivial.v.

– bfr fifo.v: Breadth-first reconstruction, a slightly more general task (see
next file) than breadth-first numbering, presented in Sect. 5.4.

– bfr bfn fifo.v: Shows the claim that breadth-first numbering is an instance
of breadth-first reconstruction (although they have been obtained with dif-
ferent induction principles).

– extraction.v: This operates extraction on-the-fly.
– benchmarks.v: Extraction towards .ml files.
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Abstract. Common programming tools, like compilers, debuggers, and
IDEs, crucially rely on the ability to analyse program code to reason
about its behaviour and properties. There has been a great deal of
work on verifying compilers and static analyses, but far less on verifying
dynamic analyses such as program slicing. Recently, a new mathematical
framework for slicing was introduced in which forward and backward slic-
ing are dual in the sense that they constitute a Galois connection. This
paper formalises forward and backward dynamic slicing algorithms for
a simple imperative programming language, and formally verifies their
duality using the Coq proof assistant.

1 Introduction

The aim of mathematical program construction is to proceed from (formal) spec-
ifications to (correct) implementations. For example, critical components such
as compilers, and various static analyses they perform, have been investigated
extensively in a formal setting [10]. However, we unfortunately do not yet live
in a world where all programs are constructed in this way; indeed, since some
aspects of programming (e.g. exploratory data analysis) appear resistant to a pri-
ori specification, one could debate whether such a world is even possible. In any
case, today programs “in the wild” are not always mathematically constructed.
What do we do then?

One answer is provided by a class of techniques aimed at explanation, com-
prehension or debugging, often based on run-time monitoring, and sometimes
with a pragmatic or even ad hoc flavour. In our view, the mathematics of
constructing well-founded (meta)programs for explanation are wanting [4]. For
example, dynamic analyses such as program slicing have many applications in
comprehending and restructuring programs, but their mathematical basis and
construction are far less explored compared to compiler verification [2,3].

Dynamic program slicing is a runtime analysis that identifies fragments of a
program’s input and source code – known together as a program slice – that were
relevant to producing a chosen fragment of the output (a slicing criterion) [8,21].
Slicing has a very large literature, and there are a wide variety of dynamic slicing
algorithms. Most work on slicing has focused on imperative or object-oriented
programs.
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One common application of dynamic slicing is program debugging. Assume
we have a program with variables x, y, and z and a programmer expects that after
the program has finished running these variables will have respective values 1, 2,
and 3. If a programmer unfamiliar with the program finds that after execution,
variable y contains 1 where she was expecting another value, she may designate
y as a slicing criterion, and dynamic slicing will highlight fragments of the source
code that could have contributed to producing the incorrect result. This narrows
down the amount of code that the programmer needs to inspect to correct a
program. In this tiny example, of course, there is not much to throw away and
the programmer can just inspect the program—the real benefit of slicing is for
understanding larger programs with multiple authors. Slicing can also be used for
program comprehension, i.e. to understand the behaviour of an already existing
program in order to re-engineer its specification, possibly non-existent or not
up-to-date.

In recent years a new semantic basis for dynamic slicing has been pro-
posed [15,17]. It is based on the concept of Galois connections as known from
order and lattice theory. Given lattices X and Y , a Galois connection is a pair
of functions g : Y → X and f : X → Y such that g(y) ≤ x ⇐⇒ y ≤ f(x);
then g is the lower adjoint and f is the upper adjoint. Galois connections have
been advocated as a basis for mathematical program construction already, for
example by Backhouse [1] and Mu and Oliveira [12]. They showed that if one can
specify a problem space and show that it is one of the component functions of a
Galois connection (the “easy” part), then optimal solutions to the problem (the
“hard” part) are uniquely determined by the dual adjoint. A simple example
arises from the duality between integer multiplication and division: the Galois
connection x · y ≤ z ⇐⇒ x ≤ z/y expresses that z/y is the greatest integer
such that (z/y) · y ≤ z.

Whereas Galois connections have been used previously for constructing pro-
grams (as well as other applications such as program analysis), here we consider
using Galois connections to construct programs for program slicing. In our set-
ting, we consider lattices of partial inputs and partial outputs of a computation
corresponding to possible input and output slicing criteria, as well as partial
programs corresponding to possible slices—these are regarded as part of the
input. We then define a forward semantics (corresponding to forward slicing)
that expresses how much of the output of a program can be computed from a
given partial input. Provided the forward semantics is monotone and preserves
greatest lower bounds, it is the upper adjoint of a Galois connection, whose
lower adjoint computes for each partial output the smallest partial input needed
to compute it—which we consider an explanation. In other words, forward and
backward slicing are dual in the sense that forward slicing computes “as much as
possible” of the output given a partial input, while backward slicing computes
“as little as needed” of the input to recover a partial output.

Figure 1 illustrates the idea for a small example where the “program” is an
expression (x + y, 2x), the input is an initial store containing [x = 1, y = 2] and
the output is the pair (3, 2). Partial inputs, outputs, and programs are obtained
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([x= ,y= ],( , ))

([x=1,y= ],( ,2·x))

([x=1,y=2], (x+y,2·x))

( , )

( ,2)

(3,2)

([x=1,y= ],(x+y, )) (3, )

Fig. 1. Input and output lattices and Galois connection corresponding to expression
(x + y, 2 · x) evaluated with input [x = 1, y = 2] and output (3, 2). Dotted lines with
arrows pointing left calculate the lower adjoint, those pointing right calculate the upper
adjoint, and lines with both arrows correspond to the induced isomorphism between
the minimal inputs and maximal outputs. Several additional elements of the input
lattice are omitted.

by replacing subexpressions by “holes” (�), as illustrated via (partial) lattice
diagrams to the left and right. In the forward direction, computing the first
component succeeds if both x and y are available while the second component
succeeds if x is available; the backward direction computes the least input and
program slice required for each partial output. Any Galois connection induces
two isomorphic sublattices of the input and output, and in Fig. 1 the elements
of these sublattices are enclosed in boxes with thicker lines. In the input, these
elements correspond to minimal explanations: partial inputs and slices in which
every part is needed to explain the corresponding output. The corresponding
outputs are maximal in a sense that their minimal explanations do not explain
anything else in the output.

The Galois connection approach to slicing has been originally developed for
functional programming languages [15] and then extended to functional lan-
guages with imperative features [17]. So far it has not been applied to con-
ventional imperative languages, so it is hard to compare directly with conven-
tional slicing techniques. Also, the properties of the Galois connection framework
in [15,17] have only been studied in pen-and-paper fashion. Such proofs are noto-
riously tricky in general and these are no exception; therefore, fully validating
the metatheory of slicing based on Galois connections appears to be an open
problem.

In this paper we present forward and backward slicing algorithms for a simple
imperative language Imp and formally verify the correctness of these algorithms
in Coq. Although Imp seems like a small and simple language, there are nontrivial
technical challenges associated with slicing in the presence of mutable state, so
our formalisation provides strong assurance of the correctness of our solution.
To the best of our knowledge, this paper presents the first formalisation of a
Galois connection slicing algorithm for an imperative language. Compared with
Ricciotti et al. [17], Imp is a much simpler language than they consider, but
their results are not formalised; compared with Léchenet et al. [9], we formalise
dynamic rather than static slicing.
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In Sect. 2 we begin by reviewing the syntax of Imp, giving illustrative exam-
ples of slicing, and then reviewing the theory of slicing using the Galois con-
nection framework, including the properties of minimality and consistency. In
Sect. 3 we introduce an instrumented, tracing semantics for Imp and present the
forward and backward slicing algorithms. We formalise all of the theory from
Sect. 3 in Coq and prove their duality. Section 4 highlights key elements of our
Coq development, with full code available online [19]. Section 5 provides pointers
to other related work.

2 Overview

2.1 Imp Slicing by Example

Arithmetic expressions a ::= n | x | a1 + a2

Boolean expressions b ::= true | false | a1 = a2 | ¬b | b1 ∧ b2
Imperative commands c ::= skip | x := a | c1 ; c2

| while b do { c } | if b then { c1 } else { c2 }
Values v ::= va | vb
State µ ::= ∅ | µ, x va (x fresh)

Fig. 2. Imp syntax

For the purpose of our analysis we use a minimal imperative programming lan-
guage Imp used in some textbooks on programming languages, e.g. [13,16,22]1.
Imp contains arithmetic and logical expressions, mutable state (a list of map-
pings from variable names to numeric values) and a small core of imperative
commands: empty instruction (skip), variable assignments, instruction sequenc-
ing, conditional if instructions, and while loops. An Imp program is a series
of commands combined using a sequencing operator. Imp lacks more advanced
features, such as functions or pointers.

Figure 2 shows Imp syntax. We use letter n to denote natural number con-
stants and x to denote program variables. In this presentation we have omitted
subtraction (−) and multiplication (·) from the list of arithmetic operators, and
less-or-equal comparison (≤) from the list of boolean operators. All these opera-
tors are present in our Coq development and we omit them here only to make the
presentation in the paper more compact. Otherwise the treatment of subtraction
and multiplication is analogous to the treatment of addition, and treatment of
≤ is analogous to =.

Dynamic slicing is a program simplification technique that determines which
parts of the source code contributed to a particular program output. For exam-
ple, a programmer might write this simple program in Imp:

1 In the literature Imp is also referred to as WHILE.
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if (y = 1) then { y := x + 1 }
else { y := y + 1 } ;

z := z + 1

and after running it with an input state [x �→ 1, y �→ 0, z �→ 2] might (wrongly)
expect to obtain output state [x �→ 1, y �→ 2, z �→ 3]. However, after running the
program the actual output state will be [x �→ 1, y �→ 1, z �→ 3] with value of y
differing from the expectation.

We can use dynamic slicing to debug this program by asking for an expla-
nation which parts of the source code and the initial input state contributed to
incorrect output value of y. We do this by formulating a slicing criterion, where
we replace all values that we consider irrelevant in the output state (i.e. don’t
need an explanation for them) with holes (denoted with �):

[x �→ �, y �→ 1, z �→ �]

and a slicing algorithm might produce a program slice:

if (y = 1) then { � }
else { y := y + 1 } ; �

with a sliced input state [x �→ �, y �→ 0, z �→ �]. This result indicates which parts
of the original source code and input state could be ignored when looking for
a fault (indicated by replacing them with holes), and which ones were relevant
in producing the output indicated in the slicing criterion. The result of slicing
narrows down the amount of code a programmer has to inspect to locate a
bug. Here we can see that only the input variable y was relevant in producing
the result; x and z are replaced with a � in the input state, indicating their
irrelevance. We can also see that the first branch of the conditional was not taken
(unexpectedly!) and that in the second branch y was incremented to become 1.
With irrelevant parts of the program hidden away it is now easier to spot that
the problem comes from a mistake in the initial state. The initial value of y
should be changed to 1 so that the first branch of the conditional is taken and
then y obtains an output value of 2 as expected.

Consider the same example, but a different output slicing criterion [x �→
�, y �→ �, z �→ 3]. In this case, a correctly sliced program is as follows:

� ; z := z + 1

with the corresponding sliced input [x �→ �, y �→ �, z �→ 2], illustrating that the
entire first conditional statement is irrelevant. However, while the conclusion
seems intuitively obvious, actually calculating this correctly takes some work:
we need to ensure that none of the assignments inside the taken conditional
branch affected z, and conclude from this that the value of the conditional test
y = 1 is also irrelevant to the final value of z.
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2.2 A Galois Connection Approach to Program Slicing

Example in Sect. 2.1 relies on an intuitive feel of how backward slicing should
behave. We now address the question of how to make that intuition precise and
show that slicing using the Galois connection framework introduced by Perera
et al. [15] offers an answer.

Consider these two extreme cases of backward slicing behaviour:

1. For any slicing criterion backward slicing always returns a full program with
no holes inserted;

2. For any slicing criterion backward slicing always returns a �, i.e. it discards
all the program code.

Neither of these two specifications is practically useful since they don’t fulfil our
intuitive expectation of “discarding program fragments irrelevant to producing
a given fragment of program output”. The first specification does not discard
anything, bringing us no closer to understanding which code fragments are irrel-
evant. The second specification discards everything, including the code necessary
to produce the output we want to understand. We thus want a backward slicing
algorithm to have two properties:

– Consistency: backward slicing retains code required to produce output we
are interested in.

– Minimality: backward slicing produces the smallest partial program and
partial input state that suffice to achieve consistency.

Our first specification above does not have the minimality property; the second
one does not have the consistency property. To achieve these properties we turn
to order and lattice theory.

We begin with defining partial Imp programs (Fig. 3) by extending Imp syn-
tax presented in Fig. 2 with holes (denoted using � in the semantic rules). A
hole can appear in place of any arithmetic expression, boolean expression, or
command. In the same way we allow values stored inside a state to be mapped
to holes. For example:

μ = [x �→ 1, y �→ �]

is a partial state that maps variable x to 1 and variable y to a hole. We also
introduce operation ∅µ that takes a state μ and creates a partial state with
the same domain as μ but all variables mapped to �. For example if μ = [x �→
1, y �→ 2] then ∅µ = [x �→ �, y �→ �]. A partial state that maps all its variables
to holes is referred to as an empty partial state.

Having extended Imp syntax with holes, we define partial ordering relations
on partial programs and partial states that consider holes to be syntactically
smaller than any other subexpression. Figure 4 shows the partial ordering rela-
tion for arithmetic expressions. Definitions for ordering of partial boolean expres-
sions and partial commands are analogous. Ordering for partial states is defined
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Partial arithmetic expr. a ::= . . . | �
Partial boolean expr. b ::= . . . | �
Partial commands c ::= . . . | �
Partial state µ ::= ∅ | µ, x va | µ, x �

Fig. 3. Partial Imp syntax. All elements of syntax from Fig. 2 remain unchanged, only
� are added.

� � a n � n x � x

a1 � a′
1 a2 � a′

2

a1 + a2 � a′
1 + a′

2

Fig. 4. Ordering relation for partial arithmetic expressions.

element-wise, thus requiring that two states in the ordering relation have iden-
tical domains, i.e. store the same variables in the same order.

For every Imp program p, a set of all partial programs smaller than p forms a
complete finite lattice, written ↓p with p being the top and � the bottom element
of this lattice. Partial states, arithmetic expressions, and boolean expressions
form lattices in the same way. Moreover, a pair of lattices forms a (product)
lattice, with the ordering relation defined component-wise:

(a1, b1) � (a2, b2) ⇐⇒ a1 � a2 ∧ b1 � b2

Figure 5 shows definition of the join (least upper bound, 
) operation for
arithmetic expressions. Definitions for boolean expressions and imperative com-
mands are analogous. A join exists for every two elements from a complete lattice
formed by a program p or state μ [6, Theorem 2.31].

Assume we have a program p paired with an input state μ that evaluates to
an output state μ′. We can now formulate slicing as a pair of functions between
lattices:

– Forward slicing: Forward slicing can be thought of as evaluation of partial
programs. A function fwd(p,µ) takes as its input a partial program and a
partial state from a lattice formed by pairing a program p and state μ. fwd(p,µ)
outputs a partial state belonging to a lattice formed by μ′. The input to the
forward slicing function is referred to as a forward slicing criterion and output
as a forward slice.

– Backward slicing: Backward slicing can be thought of as “rewinding” a
program’s execution. A function bwdµ′ takes as its input a partial state from
the lattice formed by the output state μ′. bwdµ′ outputs a pair consisting of
a partial program and a partial state, both belonging to a lattice formed by
program p and state μ. Input to a backward slicing function is referred to as
a backward slicing criterion and output as a backward slice.

A key point above (discussed in detail elsewhere [17]) is that for imperative
programs, both fwd(p,µ) and bwdµ′ depend not only on p, μ, μ′ but also on the
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a � � = a � � a = a n � n = n x � x = x

(a1 + a2) � (a′
1 + a′

2) = (a1 � a′
1) + (a2 � a′

2)

Fig. 5. Join operation for arithmetic expressions.

particular execution path taken while evaluating p on μ. (In earlier work on
slicing pure functional programs [15], traces are helpful for implementing slicing
efficiently but not required for defining it.) We make this information explicit in
Sect. 3 by introducing traces T that capture the choices made during execution.
We will define the slicing algorithms inductively as relations indexed by T , but in
our Coq formalisation fwdT(p,µ) and bwdTµ′ are represented as dependently-typed
functions where T is a proof term witnessing an operational derivation.

A pair of forward and backward slicing functions is guaranteed to have both
the minimality and consistency properties when they form a Galois connection [6,
Lemmas 7.26 and 7.33].

Definition 1 (Galois connection). Given lattices P , Q and two functions
f : P → Q, g : Q → P , we say f and g form a Galois connection (written f � g)
when ∀p∈P,q∈Qf(p) �Q q ⇐⇒ p �P g(q). We call f a lower adjoint and g an
upper adjoint.

Importantly, for a given Galois connection f � g, function f uniquely determines
g and vice versa [6, Lemma 7.33]. This means that our choice of fwd (i.e. definition
of how to evaluate partial programs on partial inputs) uniquely determines the
backward slicing function bwd that will be minimal and consistent with respect
to fwd, provided we can show that fwd and bwd form a Galois connection. There
are many strategies to show that two functions f : P → Q and g : Q → P
form a Galois connection, or to show that f or g in isolation has an upper or
respectively lower adjoint. One attractive approach is to show that f preserves
least upper bounds, or dually that g preserves greatest lower bounds (in either
case, monotonicity follows as well). This approach is indeed attractive because
it allows us to analyse just one of f or g and know that its dual adjoint exists,
without even having to write it down. Indeed, in previous studies of Galois
slicing [15,17], this characterisation was the one used: fwd was shown to preserve
greatest lower bounds to establish the existence of its lower adjoint bwd, and then
efficient versions of bwd were defined and proved correct.

For our constructive formalisation, however, we really want to give com-
putable definitions for both fwd and bwd and prove they form a Galois connec-
tion, so while preservation of greatest lower bounds by fwd is a useful design
constraint, proving it does not really save us any work. Instead, we will use the
following equivalent characterisation of Galois connections [6, Lemma 7.26]:

1. f and g are monotone
2. deflation property holds:

∀q∈Q f(g(q)) �Q q
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Arithmetic traces Ta ::= n | x(va) | Ta1 + Ta2

Boolean traces Tb ::= true | false | Ta1 = Ta2 | ¬Tb | Tb1 ∧ Tb2

Command traces Tc ::= skip | x := Ta | T1 ; T2

| iftrue Tb then { T1 } | iffalse Tb else { T2 }
| whilefalse Tb | whiletrue Tb do { Tc }; Tw

Fig. 6. Trace syntax

3. inflation property holds:

∀p∈P p �P g(f(p))

We use this approach in our Coq mechanisation. We will first prove a general
theorem that any pair of functions that fulfils properties (1)–(3) above forms a
Galois connection. We will then define forward and backward slicing functions
for Imp programs and prove that they are monotone, deflationary, and inflation-
ary. Once this is done we will instantiate the general theorem with our specific
definitions of forward and backward slicing to arrive at the proof that our slicing
functions form a Galois connection. This is the crucial correctness property that
we aim to prove. We also prove that existence of a Galois connection between
forward and backward slicing functions implies consistency and minimality prop-
erties. Note that consistency is equivalent to the inflation property.

3 Dynamic Program Slicing

3.1 Tracing Semantics

Following previous work [15,17], we employ a tracing semantics to define
the slicing algorithms. Since dynamic slicing takes account of the actual exe-
cution path followed by a run of a program, we represent the execution path
taken using an explicit trace data structure. Traces are then traversed as part of
both the forward and backward slicing algorithms. That is, unlike tracing eval-
uation, forward and backward slicing follow the structure of traces, rather than
the program. Note that we are not really inventing anything new here: in our
formalisation, the trace is simply a proof term witnessing the derivability of the
operational semantics judgement. The syntax of traces is shown in Fig. 6. The
structure of traces follows the structure of language syntax with the following
exceptions:

– The expression trace x(va) records both the variable name x and a value va
that was read from program state μ;

– For conditional instructions, traces record which branch was actually taken.
When the if condition evaluates to true we store traces of evaluating the
condition and the then branch; if it evaluates to false we store traces of
evaluating the condition and the else branch.
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– For while loops, if the condition evaluates to false (i.e. loop body does not
execute) we record only a trace for the condition. If the condition evaluates
to true we record traces for the condition (Tb), a single execution of the loop
body (Tc) and the remaining iterations of the loop (Tw).

µ, n ⇒ n :: vn
µ(x) = va

µ, x ⇒ x(va) :: va
µ, a1 ⇒ T1 :: v1 µ, a2 ⇒ T2 :: v2
µ, a1 + a2 ⇒ T1 + T2 :: v1 +N v2

Fig. 7. Imp arithmetic expressions evaluation

µ, true ⇒ true :: true µ, false ⇒ false :: false

µ, a1 ⇒ T1 :: v1 µ, a2 ⇒ T2 :: v2
µ, a1 = a2 ⇒ T1 = T2 :: v1 =B v2

µ, b ⇒ T :: v
µ,¬b ⇒ ¬T :: ¬Bv

µ, b1 ⇒ T1 :: v1 µ, b2 ⇒ T2 :: v2
µ, b1 ∧ b2 ⇒ T1 ∧ T2 :: v1 ∧B v2

Fig. 8. Imp boolean expressions evaluation

Figures 7, 8, and 9 show evaluation rules for arithmetic expressions, boolean
expressions, and imperative commands, respectively2. Traces are written in grey
colour and separated with a double colon (::) from the evaluation result. Arith-
metic expressions evaluate to numbers (denoted va). Boolean expressions eval-
uate to either true or false (jointly denoted as vb). Operators with N or B sub-
scripts should be evaluated as mathematical and logical operators respectively
to arrive at an actual value; this is to distinguish them from the language syn-
tax. Commands evaluate by side-effecting on the input state, producing a new
state as output (Fig. 9). Only arithmetic values can be assigned to variables and
stored inside a state. Assignments to variables absent from the program state
are treated as no-ops. This means all variables that we want to write and read
must be included (initialised) in the initial program state. We explain reasons
behind this decision later in Sect. 4.3.

3.2 Forward Slicing

In this and the next section we present concrete definitions of forward and back-
ward slicing for Imp programs. Readers may prefer to skip ahead to Sect. 3.4
for an extended example of these systems at work first. Our slicing algorithms
are based on the ideas first presented in [17]. Presentation in Sect. 2.2 views the
2 We overload the ⇒ notation to mean one of three evaluation relations. It is always

clear from the arguments which relation we are referring to.
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µ, skip ⇒ skip :: µ
µ, a ⇒a Ta :: va

µ, x := a ⇒ x := Ta :: µ[x va]

µ, c1 ⇒ T1 :: µ′ µ′, c2 ⇒ T2 :: µ′′

µ, c1 ; c2 ⇒ T1 ; T2 :: µ′′

µ, b ⇒ Tb :: true µ, c1 ⇒ T1 :: µ′

µ, if b then { c1 } else { c2 } ⇒ iftrue Tb then { T1 } :: µ′

µ, b ⇒ Tb :: false µ, c2 ⇒ T2 :: µ′

µ, if b then { c1 } else { c2 } ⇒ iffalse Tb else { T2 } :: µ′

µ, b ⇒ Tb :: false
µ, while b do { c } ⇒ whilefalse Tb :: µ

µ, b ⇒ Tb :: true µ, c ⇒ Tc :: µ′ µ′, while b do { c } ⇒ Tw :: µ′′

µ, while b do { c } ⇒ whiletrue Tb do { Tc }; Tw :: µ′′

Fig. 9. Imp command evaluation.

T :: µ,� � n :: µ, n n x(va) :: µ, x µ(x)

T1 :: µ, a1 �
T1 + T2 :: µ, a1 + a2 �

T2 :: µ, a2 �
T1 + T2 :: µ, a1 + a2 �

T1 :: µ, a1 v1 T2 :: µ, a2 v2
T1 + T2 :: µ, a1 + a2 v1 +N v2

v1, v2 �= �

Fig. 10. Forward slicing rules for Imp arithmetic expressions.

slicing algorithms as computable functions and we will implement them in code
as such. However for the purpose of writing down the formal definitions of our
algorithms we will use a relational notation. It is more concise and allows easier
comparisons with previous work.

Figures 10, 11 and 12 present forward slicing rules for the Imp language3. As
mentioned in Sect. 2.2, forward slicing can be thought of as evaluation of partial
programs. Thus the forward slicing relations ↗ take a partial program, a partial
state, and an execution trace as an input and return a partial value, either a
partial number (for partial arithmetic expressions), a partial boolean (for partial
logical expressions) or a partial state (for partial commands). For example, we
can read T :: μ, c ↗ μ′ as “Given trace T , in partial environment μ the partial
command c forward slices to partial output μ′.”

A general principle in the forward slicing rules for arithmetic expressions
(Fig. 10) and logical expressions (Fig. 11) is that “holes propagate”. This means

3 We again overload ↗ and ↘ arrows in the notation to denote one of three for-
ward/backward slicing relations. This is important in the rules for boolean slicing,
whose premises refer to the slicing relation for arithmetic expressions, and command
slicing, whose premises refer to slicing relation for boolean expressions.
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T :: µ,� �

true :: µ, true true false :: µ, false false

T1 :: a1 �
T1 = T2 :: µ, a1 = a2 �

T2 :: a2 �
T1 = T2 :: µ, a1 = a2 �

T1 :: a1 v1 T2 :: a2 v2
T1 = T2 :: µ, a1 = a2 v1 =B v2

v1, v2 �= �

T :: b �
¬T :: µ,¬b �

T :: b vb
¬T :: µ,¬b ¬Bv

vb �= �

T1 :: b1 �
T1 ∧ T2 :: µ, b1 ∧ b2 �

T2 :: b2 �
T1 ∧ T2 :: µ, b1 ∧ b2 �

T1 :: b1 v1 T2 :: b2 v2
T1 ∧ T2 :: µ, b1 ∧ b2 v1 ∧B v2

v1, v2 �= �

Fig. 11. Forward slicing rules for Imp boolean expressions.

that whenever � appears as an argument of an operator, application of that
operator forward slices to a �. For example, 1 + � forward slices to a � and
so does ¬�. In other words, if an arithmetic or logical expression contains at
least one hole it will reduce to a �; if it contains no holes it will reduce to a
proper value. This is not the case for commands though. For example, command
if true then 1 else � forward slices to 1, even though it contains a hole in the
(not taken) else branch.

A rule worth attention is one for forward slicing of variable reads:

x(va) :: μ, x ↗ μ(x)

It is important here that we read the return value from μ and not va recorded
in a trace. This is because μ is a partial state and also part of a forward slicing
criterion. It might be that μ maps x to �, in which case we must forward slice
to � and not to va. Otherwise minimality would not hold.

Forward slicing rules for arithmetic and logical expressions both have a uni-
versal rule for forward slicing of holes that applies regardless of what the exact
trace value is:

T :: μ,� ↗ �

There is no such rule for forward slicing of commands (Fig. 12). There we have
separate rules for forward slicing of holes for each possible trace. This is due
to the side-effecting nature of commands, which can mutate the state through
variable assignments. Consider this rule for forward slicing of assignments w.r.t.
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Fig. 12. Forward slicing rules for Imp commands.

a � as a slicing criterion4:

x := Ta :: μ,� ↗ μ[x �→ �]

When forward slicing an assignment w.r.t. a � we need to erase (i.e. change to a
�) variable x in the state μ, which follows the principle of “propagating holes”.
Here having a trace is crucial to know which variable was actually assigned
during the execution. Rules for forward slicing of other commands w.r.t. a �
traverse the trace recursively to make sure that all variable assignments within
a trace are reached. For example:

T1 :: μ,� ↗ μ′

iftrue Tb then { T1 } :: μ,� ↗ μ′

4 When some partial value v is used as a slicing criterion we say that we “slice w.r.t. v”.
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In this rule, trace T1 is traversed recursively to arrive at a state μ′ that is then
returned as the final product of the rule. Notice how trace Tb is not traversed.
This is because boolean expressions (and arithmetic ones as well) do not have
side effects on the state and so there is no need to traverse them.

The problem of traversing the trace recursively to handle side-effects to the
state can be approached differently. Authors of [17] have formulated a single
rule, which we could adapt to our setting like this:

L = writes(T )
T :: μ,� ↗ μ � L

In this rule writes(T ) means “all state locations written to inside trace T” and
μ � L means erasing (i.e. mapping to a �) all locations in μ that are mentioned
in L. Semantically this is equivalent to our rules – both approaches achieve the
same effect. However, we have found having separate rules easier to formalise in
a proof assistant.

3.3 Backward Slicing

Backward slicing rules are given in Figs. 13, 14 and 15. These judgements should
be read left-to-right, for example, T :: μ ↘ μ′, c should be read as “Given trace
T and partial output state μ, backward slicing yields partial input μ′ and partial
command c.” Their intent is to reconstruct the smallest program code and initial
state that suffice to produce, after forward slicing, a result that is at least as
large as the backward slicing criterion. To this end, backward slicing crucially
relies on execution traces as part of input, since slicing effectively runs a program
backwards (from final result to source code).

Figures 13 and 14 share a universal rule for backward slicing w.r.t. a hole.

T :: μ,� ↘ ∅µ,�

This rule means that to obtain an empty result it always suffices to have an
empty state and no program code. This rule always applies preferentially over
other rules, which means that whenever a value, such as va or vb, appears as a
backward slicing criterion we know it is not a �. Similarly, Fig. 15 has a rule:

T :: ∅ ↘ ∅∅,�

T :: µ,� ∅µ,� n :: µ, va ∅µ, n

x(va) :: µ, va ∅µ[x va], x

T1 :: µ, v1 µ1, a1 T2 :: µ, v2 µ2, a2

T1 + T2 :: µ, va µ1 � µ2, a1 + a2

Fig. 13. Backward slicing rules for Imp arithmetic expressions.
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T :: µ,� ∅µ,�

true :: µ, true ∅µ, true false :: µ, false ∅µ, false

T1 :: µ, v1 µ1, a1 T2 :: µ, v2 µ2, a2

T1 = T2 :: µ, vb µ1 � µ2, a1 = a2

T :: µ, vb µ′, b
¬T :: µ, vb µ′,¬b

T1 :: µ, v1 µ1, b1 T2 :: µ, v2 µ2, b2
T1 ∧ T2 :: µ, vb µ1 � µ2, b1 ∧ b2

Fig. 14. Backward slicing rules for Imp boolean expressions.

It means that backward slicing w.r.t. a state with an empty domain (i.e. con-
taining no variables) returns an empty partial state and an empty program.
Of course having a program operating over a state with no variables would be
completely useless – since a state cannot be extended with new variables during
execution we wouldn’t observe any effects of such a program. However, in the
Coq formalisation, it is necessary to handle this case because otherwise Coq will
not accept that the definition of backward slicing is a total function.

In the rule for backward slicing of variable reads (third rule in Fig. 13) it
might seem that va stored inside a trace is redundant because we know what va
is from the slicing criterion. This is a way of showing that variables can only be
sliced w.r.t. values they have evaluated to during execution. So for example if x
evaluated to 17 it is not valid to backward slice it w.r.t. 42.

The rule for backward slicing of addition in Fig. 13 might be a bit surprising.
Each of the subexpressions is sliced w.r.t. a value that this expression has eval-
uated to (v1, v2), and not w.r.t. va. It might seem we are getting v1 and v2 out
of thin air, since they are not directly recorded in a trace. Note however that
knowing T1 and T2 allows to recover v1 and v2 at the expense of additional com-
putations. In the actual implementation we perform induction on the structure
of evaluation derivations, which record values of v1 and v2, thus allowing us to
avoid extra computations. We show v1 and v2 in our rules but avoid showing
the evaluation relation as part of slicing notation. This is elaborated further in
Sect. 4.4.

Recursive backward slicing rules also rely crucially on the join (
) operation,
which combines smaller slices from slicing subexpressions into one slice for the
whole expression.

There are two separate rules for backward slicing of variable assignments
(rules 3 and 4 in Fig. 15). If a variable is mapped to a � it means it is irrelevant.
We therefore maintain mapping to a � and do not reconstruct variable assign-
ment instructions. If a variable is relevant though, i.e. it is mapped to a concrete
value in a slicing criterion, we reconstruct the assignment instruction together
with an arithmetic expression in the RHS. We also join state μa required to
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Fig. 15. Backward slicing rules for Imp commands.

evaluate the RHS with μ[x �→ �]. It is crucial that we erase x in μ prior to join-
ing. Firstly, if x is assigned, its value becomes irrelevant prior to the assignment,
unless x is read during evaluation of the RHS (e.g. we are slicing an assignment
x := x + 1). In this case x will be included in μa but its value can be different
than the one in μ. It is thus necessary to erase x in μ to make a join operation
possible.

At this point, it may be helpful to review the forward rules for assignment
and compare with the backward rules, illustrated via a small example. Suppose
we have an assignment z := x + y, initially evaluated on [w �→ 0, x �→ 1, y �→
2, z �→ 42], and yielding result state [w �→ 0, x �→ 1, y �→ 2, z �→ 3]. The induced
lattice of minimal inputs and maximal outputs consists of the following pairs:

[w �→ v, x �→ 1, y �→ 2, z �→ �] ←→ [w �→ v, x �→ 1, y �→ 2, z �→ 3]
[w �→ v, x �→ 1, y �→ �, z �→ �] ←→ [w �→ v, x �→ 1, y �→ �, z �→ �]
[w �→ v, x �→ �, y �→ 2, z �→ �] ←→ [w �→ v, x �→ �, y �→ 2, z �→ �]
[w �→ v, x �→ �, y �→ �, z �→ �] ←→ [w �→ v, x �→ �, y �→ �, z �→ �]
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where v ∈ {�, 0} so that each line above abbreviates two concrete relationships;
the lattice has the shape of a cube. Because w is not read or written by z
:= x + y, it is preserved if present in the forward direction or if required in
the backward direction. Because z is written but not read, its initial value is
always irrelevant. To obtain the backward slice of any other partial output, such
as [w �→ �, x �→ 1, y �→ �, z �→ 3], find the smallest maximal partial output
containing it, and take its backward slice, e.g. [w �→ �, x �→ 1, y �→ 1, z �→ �].

In the backward slicing rules for if instructions, we only reconstruct a branch
of the conditional that was actually taken during execution, leaving a second
branch as a �. Importantly in these rules state μb is a minimal state sufficient
for an if condition to evaluate to a true or false value. That state is joined
with state μ′, which is a state sufficient to evaluate the reconstructed branch of
an if.

Rules for while slicing follow a similar approach. It might seem that the
second rule for slicing whiletrue is redundant because it is a special case of the
third whiletrue rule if we allowed cw = �. Indeed, that is the case on paper.
However, for the purpose of a mechanised formalisation we require that these
two rules are separate. This shows that formalising systems designed on paper
can indeed be tricky and require modifications tailored to solve mechanisation-
specific issues.

Readers might have noticed that whenever a backward slicing rule from
Fig. 15 returns � as an output program, the state returned by the rule will
be identical to the input state. One could then argue that we should reflect this
in our rules by explicitly denoting that input and output states are the same,
e.g.

T1 :: μ ↘ μ,�
iftrue Tb then { T1 } :: μ ↘ μ,�

While it is true that in such a case states will be equal, this approach would
not be directly reflected in the implementation, where slicing is implemented as
a function and a result is always assigned to a new variable. However, it would
be possible to prove a lemma about equality of input and output states for �
output programs, should we need this fact.

3.4 An Extended Example of Backward Slicing

We now turn to an extended example that combines all the programming con-
structs of Imp5: assignments, sequencing, conditionals, and loops. Figure 16
shows a program that divides integer a by b, and produces a quotient q, remain-
der r, and result res that is set to 1 if b divides a and to 0 otherwise.

To test whether 2 divides 4 we set a �→ 4, b �→ 2 in the input state. The
remaining variables q, r and res are initialised to 0 (Fig. 16a). The while loop
body is executed twice; the loop condition is evaluated three times. Once the loop
has stopped, variable q is set to 2 and variable r to 0. Since the if condition is
5 This example is adapted from [9].
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[q 0, r 0, res 0, a 4, b 2]

r := a;

while ( b <= r ) do {
q := q + 1;

r := r - b

};
if ( ! (r = 0) )

then { res := 0 }
else { res := 1 }
[q 2, r 0, res 1, a 4, b 2]

(a) Original program.

[q �, r �, res �, a 4, b 2]

r := a;

while ( b <= r ) do {
�;

r := r - b

};
if ( ! (r = 0) )

then { � }
else { res := 1 }
[q �, r �, res 1, a �, b �]

(b) Backward slice w.r.t. res 1.

Fig. 16. Slicing a program that computes whether b divides a.

false we execute the else branch and set res to 1. Figure 17 shows the execution
trace.

(1) r := a(4);

(2) whiletrue (b(2) <= r(4)) do {
(3) q := q(0) + 1; r := r(4) − b(2)

(4) };
(5) whiletrue (b(2) <= r(2)) do {
(6) q := q(1) + 1; r := r(2) − b(2)

(7) };

(8) whilefalse (b(2) <= r(0));

(9) iffalse (¬(r(0) = 0)) else {
(10) res := 1

(11) }

Fig. 17. Trace of executing an example program for a �→ 4 and b �→ 2.

We now want to obtain an explanation of res. We form a slicing criterion
by setting res �→ 1 (this is the value at the end of execution); all other variables
are set to �.

We begin by reconstructing the if conditional. We apply the second rule for
iffalse slicing (Fig. 16b). This is because c2, i.e. the body of this branch, backward
slices to an assignment res := 1, and not to a � (in which case the first rule for
iffalse slicing would apply). Assignment in the else branch is reconstructed by
applying the second rule for assignment slicing. Since the value assigned to res
is a constant it does not require presence of any variables in the state. Therefore
state μa is empty. Moreover, variable res is erased in state μ; joining of μa and
μ[res �→ �] results in an empty state, which indicates that the code inside the
else branch does not rely on the program state. However, to reconstruct the
condition of the if we need a state μb that contains variable r. From the trace
we read that r �→ 0, and so after reconstructing the conditional we have a state
where r �→ 0 and all other variables, including res, map to �.
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We now apply the third rule for sequence slicing and proceed with reconstruc-
tion of the while loop. First we apply a trivial whilefalse rule. The rule basically
says that there is no need to reconstruct a while loop that does not execute –
it might as well not be in a program. Since the final iteration of the while loop
was reconstructed as a �, we reconstruct the second iteration using the second
whiletrue backward slicing rule, i.e. the one where we have Tw :: μ ↘ μw,� as
the first premise. We begin reconstruction of the body with the second assign-
ment r := r(2) − b(2). Recall that the current state assigns 0 to r. The RHS
is reconstructed using the second rule for backward slicing of assignments we
have already applied when reconstructing else branch of the conditional. An
important difference here is that r appears both in the LHS and RHS. Recon-
struction of RHS yields a state where r �→ 2 and b �→ 2 (both values read from a
trace), whereas the current state contains r �→ 0. Here it is crucial that we erase
r in the current state before joining. We apply third rule of sequence slicing and
proceed to reconstruct the assignment to q using the first rule for assignment
slicing (since q �→ � in the slicing criterion). This reconstructs the assignment as
a �. We then reconstruct the first iteration of the loop using the third whiletrue
slicing rule, since it is the case that cw �= �. Assignments inside the first iteration
are reconstructed following the same logic as in the second iteration, yielding a
state where r �→ 4, b �→ 2, and other variables map to �.

Finally, we reconstruct the initial assignment r := a. Since r is present in
the slicing criterion, we yet again apply the second rule for assignment slicing,
arriving at a partial input state [q �→ 0, r �→ 0, res �→ 0, a �→ 4, b �→ 2] and a
partial program shown in Fig. 16b.

4 Formalisation

In the previous sections we defined the syntax and semantics of the Imp language,
and provided definitions of slicing in a Galois connection framework. We have
implemented all these definitions in the Coq proof assistant [20] and proved their
correctness as formal theorems. The following subsections outline the structure
of our Coq development. We provide references to the source code by provid-
ing the name of file and theorem or definition as (filename.v: theorem name,
definition name). We will use * in abbreviations like * monotone to point
to several functions ending with monotone suffix. The whole formalisation is
around 5.2k lines of Coq code (not counting the comments). Full code is avail-
able online [19].

4.1 Lattices and Galois Connections

Our formalisation is built around a core set of definitions and theorems about
lattices and Galois connections. Most importantly we define:

– That a relation that is reflexive, antisymmetric and transitive is a partial order
(Lattice.v: order). When we implement concrete definitions of ordering
relations we require a proof that these implementations indeed have these
three properties, e.g. (ImpPartial.v: order aexpPO).
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– What it means for a function f : P → Q to be monotone (Lattice.v:
monotone):

∀x,y x �P y =⇒ f(x) �Q f(y)

– Consistency properties as given in Sect. 2.2 (Lattice.v: inflation, def-
lation).

– A Galois connection of two functions between lattices P and Q (see Defini-
tion 1 in Sect. 2.2) (Lattice.v: galoisConnection).

We then prove that:

– Existence of a Galois connection between two functions implies their consis-
tency and minimality (Lattice.v: gc implies consistency, gc implies
minimality).

– Two monotone functions with deflation and inflation properties form a Galois
connection (Lattice.v: cons mono gc).

Throughout the formalisation we operate on elements inside lattices of partial
expressions (↓a, ↓b, commands (↓c) or states (↓μ). We represent values in a lattice
with an inductive data type prefix6 (PrefixSets.v: prefix) indexed by the
top element of the lattice and the ordering relation7. Values of prefix data
type store an element from a lattice together with the evidence that it is in
the ordering relation with the top element. Similarly we define an inductive
data type prefixO (PrefixSets.v: prefixO) for representing ordering of two
elements from the same lattice. This data type stores the said two elements
together with proofs that one is smaller than another and that both are smaller
than the top element of a lattice.

4.2 Imp Syntax and Semantics

All definitions given in Figs. 2, 3, 4 and 5 are directly implemented in our Coq
formalisation.

Syntax trees for Imp (Fig. 2), traces (Fig. 6) and partial Imp (Fig. 3)
are defined as ordinary inductive data types in (Imp.v: aexp, bexp, cmd),
(Imp.v: aexpT, bexpT, cmdT) and (ImpPartial.v: aexpP, bexpP, cmdP),
respectively. We also define functions to convert Imp expressions to partial Imp
expressions by rewriting from normal syntax tree to a partial one (ImpPartial.v:
aexpPartialize, bexpPartialize, cmdPartialize).

Evaluation relations for Imp (Figs. 7, 8 and 9) and ordering relations for par-
tial Imp (Fig. 4) are defined as inductive data types with constructors indexed by
elements in the relation (Imp.v: aevalR, bevalR, cevalR and ImpPartial.v:

6 Name comes from a term “prefix set” introduced in [17] to refer to a set of all partial
values smaller than a given value. So a prefix set of a top element of a lattice denotes
a set of all elements in that (complete) lattice.

7 In order to make the code snippets in the paper easier to read we omit the ordering
relation when indexing prefix.
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aexpPO, bexpPO, comPO), respectively. For each ordering relation we construct
a proof of its reflexivity, transitivity, and antisymmetry, which together proves
that a given relation is a partial order (ImpPartial.v: order aexpPO, order
bexpPO, order comPO).

Join operations (Fig. 5) are implemented as functions (ImpPartial.v:
aexpLUB, bexpLUB, comLUB). Their implementation is particularly tricky. Coq
requires that all functions are total. We know that for two elements from the
same lattice a join always exists, and so a join function is a total one. However,
we must guarantee that a join function only takes as arguments elements from
the same lattice. To this end a function takes three arguments: top element e
of a lattice and two prefix values e1, e2 indexed by the top element e. So for
example if e is a variable name x, we know that each of e1 and e2 is either also
a variable name x or a �. However, Coq does not have a built-in dependent
pattern match and this leads to complications. In our example above, even if we
know that e is a variable name x we still have to consider cases for e1 and e2
being a constant or an arithmetic operator. These cases are of course impossible,
but it is the programmer’s responsibility to dismiss them explicitly. This causes
further complications when we prove lemmas about properties of join, e.g.:

e1 � e ∧ e2 � e =⇒ (e1 
 e2) � e

This proof is done by induction on the top element of a lattice, where e, e1, and
e2 are all smaller than that element. The top element limits the possible values
of e, e1, and e2 but we still have to consider the impossible cases and dismiss
them explicitly.

4.3 Program State

Imp programs operate by side-effecting on a program state. Handling of the state
was one of the most tedious parts of the formalisation.

State is defined as a data type isomorphic to an association list that maps
variables to natural number values (ImpState.v: state). Partial state is defined
in the same way, except that it permits partial values, i.e. variables can be
mapped to a hole or a numeric value (ImpState.v: stateP). We assume that
no key appears more than once in a partial state. This is not enforced in the
definition of stateP itself, but rather defined as a separate inductive predicate
(ImpState.v: statePWellFormed) that is explicitly passed as an assumption to
any theorem that needs it. We also have a statePartialize function that turns
a state into a partial state. This only changes representation from one data type
to another, with no change in the state contents.

For partial states we define an ordering relation as a component-wise order-
ing of partial values inside a state (ImpState.v: statePO). This assumes that
domains of states in ordering relation are identical (same elements in the same
order), which allows us to formulate lemmas such as:

[ ] ≤ μ =⇒ μ = [ ]
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This lemma says that if a partial state μ is larger than an state with empty
domain then μ itself must have an empty domain.

We also define a join operation on partial states, which operates element-wise
on two partial states from the same lattice (ImpState.v: stateLUB).

As already mentioned in Sect. 3.1, the domain of the state is fixed throughout
the execution. This means that updating a variable that does not exist in a
state is a no-op, i.e. it returns the original state without any modifications. This
behaviour is required to allow comparison of states before and after an update.
Consider this lemma:

(μ1 ≤ μ2) ∧ (v1 ≤ μ2(k)) =⇒ μ1[k �→ v1] ≤ μ2

It says that if a partial state μ1 is smaller than μ2 and the value stored in state
μ2 under key k is greater than v1 then we can assign v1 to key k in μ1 and the
ordering between states will be maintained. A corner-case for this theorem is
when the key k is absent from the states μ1 and μ2. Looking up a non-existing
key in a partial state returns a �. If k did not exist in μ2 (and thus μ1 as well)
then μ2(k) would return � and so v1 could only be a � (per second assumption of
the theorem). However, if we defined semantics of update to insert a non-existing
key into the state, rather than be a no-op, the conclusion of the theorem would
not hold because domain of μ1[k �→ v1] would contain k and domain of μ2 would
not, thus making it impossible to define the ordering between the two states.

The approach described above is one of several possible design choices. One
alternative approach would be to require evidence that the key being updated
exists in the state, making it impossible to attempt update of non-existent keys.
We have experimented with this approach but found explicit handling of evidence
that a key is present in a state very tedious and seriously complicating many of
the proofs. In the end we decided for the approach outlined above, as it allowed
us to prove all the required lemmas, with only some of them relying on an explicit
assumption that a key is present in a state. An example of such a lemma is:

μ[k �→ v](k) = v

which says that if we update key k in a partial state μ with value v and then
immediately lookup k in the updated state we will get back the v value we just
wrote to μ. However, this statement only holds if k is present in μ. If it was
absent the update would return μ without any changes and then lookup would
return �, which makes the theorem statement false. Thus this theorem requires
passing explicit evidence that k ∈ dom(μ) in order for the conclusion to hold.

Formalising program state was a tedious task, requiring us to prove over sixty
lemmas about the properties of operations on state, totalling over 800 lines of
code.

4.4 Slicing Functions

Slicing functions implement rules given in Figs. 10, 11, 12, 13, 14 and 15. We
have three separate forward slicing functions, one for arithmetic expressions,
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one for logical expressions and one for imperative commands (ImpSlicing.v:
aexpFwd, bexpFwd, comFwd). Similarly for backward slicing (ImpSlicing.v:
aexpBwd, bexpBwd, comBwd).

In Sect. 2.2 we said that forward and backward slicing functions operate
between two lattices. If we have an input p (an arithmetic or logical expression
or a command) with initial state μ that evaluates to output p′ (a number, a
boolean, a state) and records a trace T then fwdT(p,µ) is a forward slicing func-
tion parametrized by T that takes values from lattice generated by (p, μ) to
values in lattice generated by p′. Similarly bwdTp′ is a backward slicing function
parametrized by T that takes values from lattice generated by p′ to values in lat-
tice generated by (p, μ). Therefore our implementation of forward and backward
slicing functions has to enforce that:

1. (p, μ) evaluates to p′ and records trace T
2. Forward slicing function takes values from lattice generated by (p, μ) to lattice

generated by p′

3. Fackward slicing function takes values from lattice generated by p′ to lattice
generated by (p, μ)

To enforce the first condition we require that each slicing function is
parametrized by inductive evidence that a given input (p, μ) evaluates to p′

and records trace T . We then define input and output types of such slicing func-
tions as belonging to relevant lattices, which is achieved using the prefix data
type described in Sect. 4.1. This enforces the conditions above. For example, the
type signature of the forward slicing function for arithmetic expressions looks
like this:

Fixpoint aexpFwd {st : state} {a : aexp}

{v : nat} {t : aexpT}

(ev : t :: a, st \\ v):

(prefix a * prefix st) -> prefix v.

Here ev is evidence that arithmetic expression a with input state st evaluates
to a natural number v and records an execution trace t. The t :: a, st \\ v
syntax is a notation for the evaluation relation. The first four arguments to
aexpFwd are in curly braces, denoting they are implicit and can be inferred from
the type of ev. The function then takes values from the lattice generated by (a,
st) and returns values in the lattice generated by v.

In the body of a slicing function we first decompose the evaluation evidence
with pattern matching. In each branch we implement logic corresponding to
relevant slicing rules defined in Figs. 10, 11, 12, 13, 14 and 15. Premises appearing
in the rules are turned into recursive calls. If necessary, results of these calls are
analysed to decide which rule should apply. For example, when backward slicing
sequences we analyse whether the recursive calls return holes or expressions to
decide which of the rules should apply.

The implementation of the slicing functions faces similar problems as the
implementation of joins described in Sect. 4.2. When we pattern match on the
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evaluation evidence, in each branch we are restricted to concrete values of the
expression being evaluated. For example, if the last step in the evaluation was
an addition, then we know the slicing criterion is a partial expression from a
lattice formed by expression a1 + a2. Yet we have to consider the impossible
cases, e.g. having an expression that is a constant, and dismiss them explicitly.
Moreover, operating inside a lattice requires us not to simply return a result,
but also provide a proof that this result is inside the required lattice. We rely
on Coq’s refine tactic to construct the required proof terms. All of this makes
the definitions of slicing functions very verbose. For example, forward slicing
of arithmetic expressions requires over 80 lines of code with over 60 lines of
additional boilerplate lemmas to dismiss the impossible cases.

For each slicing function we state and prove a theorem that it is monotone
(ImpSlicing.v: * monotone). For each pair of forward and backward slicing
functions we state theorems that these pairs of functions have deflation and
inflation properties (ImpSlicing.v: * deflating, * inflating), as defined in
Sect. 2.2. Once these theorems are proven we create instances of a general theo-
rem cons mono gc, described in Sect. 4.1, which proves that our definitions form
a Galois connection and are thus a correctly defined pair of slicing functions. We
also create instances of the gc implies minimality theorem, one instance for
each slicing function. This provides us with a formalisation of all the correctness
properties, proving our main result:

Theorem 1. Suppose μ1, c ⇒ T :: μ2. Then there exist total, monotone func-
tions fwdT(c,µ1) : ↓c × ↓μ1 → ↓μ2 and bwdTµ2

: ↓μ2 → ↓c × ↓μ1. Moreover,
bwdTµ2

� fwdT(c,µ1) form a Galois connection and in particular satisfy the mini-
mality, inflation (consistency), and deflation properties.

Here, the forward and backward slicing judgements are implemented as functions
fwdT(c,µ1) and bwdTµ2

.

5 Related and Future Work

During the past few decades a plethora of slicing algorithms has been presented
in the literature. See [18] for a good, although now slightly out of date, survey.
Most of these algorithms have been analysed in a formal setting of some sort
using pen and paper. However, work on formalising slicing in a machine checked
way has been scarce. One example of such a development is [14], which formalises
dynamic slicing for π-calculus in Agda using a Galois connection framework iden-
tical to the one used in this paper. The high-level outline of the formalisation is
thus similar to ours. However, details differ substantially, since [14] formalises a
completely different slicing algorithm for concurrent processes using a different
proof assistant. Another example of formalising slicing in a proof assistant is
[3], where Coq is used to perform an a posteriori validation of a slice obtained
using an unverified program slicer. This differs from our approach of verifying
correctness of a slicing algorithm itself. We see our approach of verifying cor-
rectness of the whole algorithm as a significant improvement over the validation
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approach. In a more recent work Léchenet et al. [9] introduce a variant of static
slicing known as relaxed slicing and use Coq to formalise the slicing algorithm.
Their work is identical in spirit to ours and focuses on the Imp language8 with
an extra assert statement.

Galois connections have been investigated previously as a tool in the mathe-
matics of program construction, for example by Backhouse [1] and more recently
by Mu and Oliveira [12]. As discussed in Sect. 1, Galois connections capture a
common pattern in which one first specifies a space of possible solutions to a
problem, the “easy” part, via one adjoint, and defines the mapping from problem
instances to optimal solutions, the “hard” part, as the Galois dual. In the case of
slicing, we have used the goal of obtaining a verifiable Galois connection, along
with intuition, to motivate choices in the design of the forward semantics, and
it has turned out to be easier for our correctness proof to define both directions
directly.

Mechanised proofs of correctness of calculational reasoning has been consid-
ered in the Algebra of Programming in Agda (AOPA) system [11], and subse-
quently extended to include derivation of greedy algorithms using Galois connec-
tions [5]. Another interesting, complementary approach to program comprehen-
sion is Gibbons’ program fission [7], in which the fusion law is applied “in reverse”
to an optimized, existing program in order to attempt to discover a rationale for
its behavior: for example by decomposing an optimized word-counting program
into a “reforested” version that decomposes its behavior into “construct a list of
all the words” and “take the length of the list”. We conjecture that the traces
that seem to arise as a natural intermediate structure in program slicing might
be viewed as an extreme example of fission.

An important line of work on slicing theory focuses on formalising differ-
ent slicing algorithms within a unified theoretical framework of program projec-
tion [2]. Authors of that approach develop a precise definition of what it means
that one form of slicing is weaker than another. However, our dynamic slicing
algorithm does not fit the framework as presented in [2]. We believe that it
should be possible to extend the program projection framework so that it can
encompass slicing based on Galois connections but this is left as future work.

6 Summary

Program slicing is an important tool for aiding software development. It is useful
when creating new programs as well as maintaining existing ones. In this paper
we have developed and formalised an algorithm for dynamic slicing of imperative
programs. Our work extends the line of research on slicing based on the Galois
connection framework. In the presented approach slicing consists of two compo-
nents: forward slicing, that allows to execute partial programs, and backward
slicing, that allows to “rewind” program execution to explain the output.

Studying slicing in a formal setting ensures the reliability of this technique.
We have formalised all of the theory presented in this paper using the Coq proof
8 Authors of [9] use the name WHILE, but the language is the same.
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assistant. Most importantly, we have shown that our slicing algorithms form
a Galois connection, and thus have the crucial properties of consistency and
minimality. One interesting challenge in our mechanisation of the proofs was the
need to modify some of the theoretical developments so that they are easier to
formalise in a proof assistant – c.f. overlapping rules for backward slicing of while
loops described in Sect. 3.3.

Our focus in this paper was on a simple programming language Imp. This
work should be seen as a stepping stone towards more complicated formalisations
of languages with features like (higher-order) functions, arrays, and pointers.
Though previous work [17] has investigated slicing based on Galois connections
for functional programs with imperative features, our experience formalising
slicing for the much simpler Imp language suggests that formalising a full-scale
language would be a considerable effort. We leave this as future work.

Acknowledgements. We gratefully acknowledge help received from Wilmer Ricciotti
during our work on the Coq formalisation, and Jeremy Gibbons for comments on
a draft. This work was supported by ERC Consolidator Grant Skye (grant number
682315).
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Abstract. Regular expressions can be visualized using railroad or syn-
tax diagrams. The construction does not depend on fancy artistic skills.
Rather, a diagram can be systematically constructed through simple,
local transformations due to Manna. We argue that the result can be
seen as a nondeterministic finite automaton with ε-transitions. Despite
its simplicity, the construction has a number of pleasing characteristics:
the number of states and the number of edges is linear in the size of the
regular expression; due to sharing of sub-automata and auto-merging of
states the resulting automaton is often surprisingly small. The proof of
correctness relies on the notion of a subfactor. In fact, Antimirov’s sub-
factors (partial derivatives) appear as target states of non-ε-transitions,
suggesting a smooth path to nondeterministic finite automata without
ε-transitions. Antimirov’s subfactors, in turn, provide a fine-grained anal-
ysis of Brzozowski’s factors (derivatives), suggesting a smooth path to
deterministic finite automata. We believe that this makes a good story
line for introducing regular expressions and automata.

1 Introduction

Everything should be as simple as it can be, but not simpler.

Albert Einstein

Regular expressions and finite automata have a long and interesting history, see
Fig. 1. Kleene introduced regular expressions in the 1950’s to represent events
in nerve nets [10]. In the early 60’s, Brzozowski [6] presented an elegant method
for translating a regular expression to a deterministic finite automaton (DFA).
His algorithm is based on two general properties of languages, sets of words. A
language can be partitioned into a set of non-empty words and the remainder
(ε is the set containing the empty word, + is set union).

L = (L − ε) + (L ∩ ε)

If L is given by a regular expression, the remainder L ∩ ε can be readily computed
(is L “nullable”?). A non-nullable language can be further factored:

L − ε = a1 · (a1\L) + · · · + an · (an\L) (1)
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dual ε-closure subset
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Fig. 1. A brief history of regular expressions and finite automata.

where a1, . . . , an are distinct symbols of the alphabet and a1\L, . . . , an\L are
so-called right factors of L, see Sect. 3. The right factor of a regular language is
again a regular language; iterating the two steps above yields a DFA. However,
some care has to be exercised when implementing the algorithm: while there is
only a finite number of semantically different right factors, they have infinitely
many syntactic representations.

Thirty years later, Antimirov [3] ameliorated the problem, providing a fine-
grained analysis of Brzozowski’s approach. The central idea is to loosen the
requirement that the symbols in (1) are distinct. In his linear form

L − ε = a1 · L1 + · · · + an · Ln (2)

the a1, . . . , an are arbitrary symbols of the alphabet, not necessarily distinct.
Each of the languages Li is a right subfactor of the left-hand side: L − ε ⊇
ai ·Li. Because the requirement of distinctness is dropped, Antimirov’s approach
yields a nondeterministic finite automaton without ε-transitions. (Brzozowski’s
automaton can be recovered via the subset construction, basically grouping the
subfactors by symbol.) Antimirov’s representation of subfactors ensures that
there is only a finite number of syntactically different right subfactors. Unfortu-
nately, the argument is still somewhat involved.

An alternative advocated in this paper is to approach the problem from
the other side, see Fig. 1. Regular expressions can be visualized using railroad
or syntax diagrams. (I have first encountered syntax diagrams in Jensen and
Wirth’s “Pascal: User Manual and Report” [9].) Adapting a construction due to
Manna [12], we show that a diagram can be systematically constructed through
simple, local transformations. We argue that the result can be seen as a nondeter-
ministic finite automaton with ε-transitions. Moreover, the automaton contains
all Antimirov subfactors as target states of non-ε-transitions.

The remainder of the paper is organized in two strands, which are only loosely
coupled:

– Sections 2, 4, and 6 introduce railroad diagrams and prove Manna’s construc-
tion correct. The material is targeted at first-year students; an attempt is
made to explain the construction in basic terms without, however, compro-
mising on precision and concision. Central to the undertaking is the consistent
use of inequalities and reasoning using Galois connections.
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– Sections 3 and 5 highlight the theoretical background, which is based on reg-
ular algebra. The “student material” is revised providing shorter, but slightly
more advanced accounts. Section 7 links railroad diagrams to Antimirov’s
subfactors.

The paper makes the following contributions:

– We suggest a story line for introducing regular expressions and automata,
using a visual representation of regular expressions as the starting point.

– We show that diagrams form a regular algebra and we identify a sub-algebra,
self-certifying diagrams, which supports simple correctness proofs.

– We show that Manna’s construction can be implemented in eight lines of
Haskell and highlight some of its salient features: sharing of sub-automata
and auto-merging of states.

– We prove that a Manna automaton contains the subfactors of an Antimirov
automaton as target states of non-ε-transitions.

2 Railroad Diagrams

Regular expressions can be nicely visualized using so-called railroad or syntax
diagrams. Consider the regular expression (a � b)∗ · a · (a � b) over the alphabet
Σ = {a, b}, which captures the language of all words whose penultimate symbol
is an a. Its railroad diagram is shown below.

a a

a

b

b

The diagram has one entry on the left, the starting point, and one exit on
the right, the rail destination. Each train journey from the starting point to
the destination generates a word of the language, obtained by concatenating the
symbols encountered on the trip.

In the example above, the “stations” contain symbols of the alphabet. We
also admit arbitrary languages (or representations of languages) as labels, so
that we can visualize a regular expression or, more generally, a language at an
appropriate level of detail. In the diagram below, which captures the lexical syn-
tax of identifiers in some programming language, we have chosen not to expand
the languages of letters and digits.

letter

letter

digit
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∅ r � s ε r · s r∗

remove fork&join connect split loop

r

s

r s
r

Fig. 2. Manna’s rules for constructing a railroad diagram (the diagrams in the first
row are translated into the corresponding diagrams in the second row).

In this more general setting, a single train journey visiting the stations

L1 L2 Ln

generates the language L1 · L2 · . . . · Ln.
The generalization to languages has the added benefit that we can construct

a railroad diagram for a given regular expression in a piecemeal fashion using
simple local transformations. The point of departure is a diagram that consists
of a single station, containing the given expression. To illustrate, for our running
example we have:

(a � b)∗ · a · (a � b)

Then we apply the transformations shown in Fig. 2 until we are happy with
the result. Each rule replaces a single station by a smallish railroad diagram
that generates the same language. Observe that there is no rule for a single
symbol—stations containing a single symbol cannot be refined. We refer to the
transformation rules as Manna’s construction. The diagrams below show two
intermediate stages of the construction for our running example.

(a � b)∗ a a � b a a � b

a � b

The transformations emphasize the close correspondence between regular
expressions and railroad diagrams: composition is visualized by chaining two
tracks; choice by forking and joining a track; iteration by constructing a loop.
Each rule in Fig. 2 is compositional, for example, a station for r � s is transformed
into a diagram composed of one station for r and a second station for s. Quite
attractively, the rules guarantee that the resulting diagram is planar so it can
be easily drawn without crossing tracks.

When drawing diagrams by hand we typically exercise some artistic licence.
For example, there are various ways to draw loops. The diagram for r∗ in Fig. 2
has the undesirable feature that the sub-diagram for r is drawn from right to left.
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Alternative drawings that avoid this unfortunate change of direction include:

r
r

Railroad diagrams are visually appealing, but there is more to them. If we
apply the transformations of Fig. 2 until all stations either contain ε or a single
symbol, then we obtain an NFA, a nondeterministic finite automaton with ε-
transitions. Before we make this observation precise in Sect. 4, we first introduce
some background.

Exercise 1. Devise diagrams for non-zero repetitions r+ = r ·r∗ and for optional
occurrences ε � r.

3 Interlude: Regular Algebras and Regular Expressions

This section details the syntax and semantics of regular expressions. It is heav-
ily based on Backhouse’s axiomatization of regular algebras [4], which, while
equivalent to Conway’s “Standard Kleene Algebra” or S-algebra [8], stresses the
importance of factors.1 I suggest that you skip the section on first reading, except
perhaps for notation.

Regular Algebras. A regular algebra (R,�,
∑

, 1, ·) is a blend of a complete lattice
and a monoid, interfaced by two Galois connections:

1. (R,�) is a complete lattice with join
∑

,
2. (R, 1, ·) is a monoid,
3. for all p ∈ R, the partially applied functions (p · ) and ( · p) are both left

adjoints in Galois connections between (R,�) and itself.

We use 0 =
∑ ∅ and a1 + a2 =

∑{a1, a2} as short cuts for the least element
(nullary join) and binary joins. The right adjoints of (p · ) and ( · p) are written
(p \ ) and ( / p).

Calculationally speaking, it is most useful to capture the first and the third
requirement as equivalences. Join or least upper bound is defined by the following
equivalence, which incidentally also establishes a Galois connection.

∑
A � b ⇐⇒ ∀a ∈ A . a � b (3a)

Instantiated to nullary and binary joins, (3a) specializes to 0 � b ⇐⇒ true (that
is, 0 is indeed the least element) and a1 + a2 � b ⇐⇒ a1 � b ∧ a2 � b.

1 Actually, Conway’s axiomatization is incomplete as pointed out by Abramsky and
Vickers [1]: only if the axiom

∑{a} = a is added, his S-algebras are equivalent to
regular algebras.
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The interface between the lattice and the monoid structure is given by the
following two equivalences.

p · a � b ⇐⇒ a � p \ b (3b)

a · p � b ⇐⇒ a � b / p (3c)

The element p \b is called a right factor of b (or left quotient or left derivative).
The axioms have a wealth of consequences. Adjoint functions are order-

preserving; left adjoints preserve joins; right adjoints preserve meets. Conse-
quently, the axioms imply:

∑
A · b =

∑
{ a · b | a ∈ A } (4a)

a ·
∑

B =
∑

{ a · b | b ∈ B } (4b)

Instantiated to nullary and binary joins, property (4a) specializes to 0 · b = 0
and (a1 + a2) · b = (a1 · b) + (a2 · b). So, composition distributes over choice.

Truth values ordered by implication form a regular algebra: (B,⇒,∃, true,∧),
where ∃B = (true ∈ B). Note that the right adjoint of (p ∧ ) is (p ⇒ ).

Languages, sets of words over some alphabet Σ, are probably the most promi-
nent example of a regular algebra. The example is actually an instance of a more
general construction. Let (R, 1, ·) be some monoid. We can lift the monoid to a
monoid on sets, setting 1 = {1} and A · B = { a · b | a ∈ A, b ∈ B }. (Note that
here and elsewhere we happily overload symbols: in 1 = {1}, the first occurrence
of 1 denotes the unit of the lifted monoid, whereas the second occurrence is the
unit of the underlying monoid.) It remains to show that (P · ) and ( · P ) are left
adjoints. We show the former; the calculation for the latter proceeds completely
analogously.

P · A ⊆ B

⇐⇒ { definition of composition }
{ p · a | p ∈ P, a ∈ A } ⊆ B

⇐⇒ { set inclusion }
∀p ∈ R, a ∈ R . p ∈ P ∧ a ∈ A =⇒ p · a ∈ B

⇐⇒ { (x ∧ ) is a left adjoint, (x ⇒ ) preserves universal quantification }
∀a ∈ R . a ∈ A =⇒ (∀p ∈ R . p ∈ P =⇒ p · a ∈ B)

⇐⇒ { set inclusion }
A ⊆ { a ∈ R | ∀p ∈ R . p ∈ P =⇒ p · a ∈ B }

The right adjoint P \B is given by the formula on the right. Consequently,
(P(R),⊆,

⋃
, 1, ·) is a regular algebra. In the case of languages, the underlying

monoid is the free monoid (Σ∗, ε, ·), where ε is the empty word and composition
is concatenation of words.

Occasionally, it is useful to make stronger assumptions, for example, to
require that the underlying lattice is Boolean. In this case, ( + p) has a left
adjoint, which we write ( − p).
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Iteration. The axioms of regular algebra explicitly introduce choice and compo-
sition. Iteration is a derived concept: a∗ is defined as the least solution of the
inequality 1 + a · x � x in the unknown x (which is guaranteed to exist because
of completeness).

1 + a · a∗ � a∗ (5a)

∀x . a∗ � x ⇐= 1 + a · x � x (5b)

Property (5a) states that a∗ is indeed a solution; the so-called fixed-point induc-
tion principle (5b) captures that a∗ is the least among all solutions. The two
formulas have a number of important consequences,

1 � a∗ a∗ · a∗ � a∗ a � a∗ (a∗)∗ = a∗

which suggest why a∗ is sometimes called the reflexive, transitive closure of a.

Exercise 2. Show that iteration is order-preserving: a � b =⇒ a∗ � b∗.

Exercise 3. Assuming a Boolean lattice, show a∗ = (a − 1)∗.

Regular Expressions. Regular expressions introduce syntax for choice, composi-
tion, and iteration. Expressed as a Haskell datatype, they read:

type Alphabet = Char
data Reg

= Empty -- the empty language
| Alt Reg Reg -- choice
| Eps -- the empty word
| Sym Alphabet -- a single symbol
| Cat Reg Reg -- composition
| Rep Reg -- iteration

We use the term basic symbol to refer to the empty word or a single symbol
of the alphabet.

A regular expression denotes a language. However, there is only one con-
structor specific to languages: Sym, which turns an element of the underlying
alphabet into a regular expression. The other constructors can be interpreted
generically in any regular algebra.

� Empty � = � ∅ � = 0
� Alt r s � = � r � s � = � r � + � s �
� Eps � = � ε � = 1
� Sym a � = � a � = {a}
� Cat r s � = � r · s � = � r � · � s �
� Rep r � = � r∗ � = � r �

∗
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The second column of the semantic equations introduces alternative notation
for the Haskell constructors. They serve the sole purpose of improving the read-
ability of examples. (Occasionally, we also omit the semantic brackets, mixing
syntax and semantics.)

We additionally introduce “smart” versions of the constructors that incorpo-
rate basic algebraic identities.

cat :: Reg → Reg → Reg
cat Empty s = Empty
cat r Empty = Empty
cat Eps s = s
cat r Eps = r
cat r s = Cat r s

alt :: Reg → Reg → Reg
alt Empty s = s
alt r Empty = r
alt r s = Alt r s

rep :: Reg → Reg
rep Empty = Eps
rep Eps = Eps
rep r = Rep r

They ensure, in particular, that Empty never occurs as a sub-expression. More
sophisticated identities such as (r∗)∗ = r∗ are not captured, however, to guar-
antee constant running time.

Regular Homomorphisms. Whenever a new class of structures is introduced,
the definition of structure-preserving maps follows hard on its heels. Regular
algebras are no exception. A regular homomorphism is a monoid homomorphism
that preserves joins.2 (Or equivalently, a monoid homomorphism that is a left
adjoint). For example, the test whether a language contains the empty word (“is
nullable”) is a regular homomorphism from languages (P(Σ∗),⊆,

⋃
, {ε}, ·) to

Booleans (B,⇒,∃, true,∧). Since membership (x ∈ ) is a left adjoint, it remains
to check that (ε ∈ ) preserves composition and its unit,

ε ∈ {ε} = true
ε ∈ A · B = ε ∈ A ∧ ε ∈ B

which is indeed the case.
The nullability check can be readily implemented for regular expressions.

nullable :: Reg → Bool
nullable (Empty) = False
nullable (Alt r s) = nullable r ∨ nullable s
nullable (Eps) = True
nullable (Sym a) = False
nullable (Cat r s) = nullable r ∧ nullable s
nullable (Rep r) = True

The call nullable r yields True if and only if ε ∈ �r�.

Exercise 4. Let (R,�,
∑

, 1, ·) be a regular algebra. Prove that
∑

: P(R) → R
is a regular homomorphism from the algebra of lifted monoids to R.
2 A regular algebra is really a blend of a complete join-semilattice and a monoid. It is a
standard result of lattice theory that a complete join-semilattice is a complete lattice.
However, a complete join-semilattice homomorphism is not necessarily a complete
lattice homomorphism, as there is no guarantee that it also preserves meets.
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4 Finite Automata with ε-Transitions

To be able to give railroad diagrams a formal treatment, we make fork and join
points of tracks explicit. Our running example, the diagram for (a � b)∗ ·a ·(a � b),
consists of six tracks, where a track is given by a source point, a labelled station,
and a target point, see Fig. 3. In the example, points are natural numbers; labels
are either the empty word, omitted in the pictorial representation, or symbols
of the underlying alphabet.

a a

a

b

b

1 2 3 4

{(1, ε, 2), (2, a, 1), (2, b, 1), (2, a, 3), (3, a, 4), (3, b, 4)}

Fig. 3. Railroad diagram for (a � b)∗ · a · (a � b).

In general, the points of a diagram are drawn from some fixed set V ; its
labels are elements of some monoid (R, 1, ·). A diagram G is a set of arrows:
G ⊆ V × R × V . For the application at hand, labels are given by languages:
R := P(Σ∗) for some fixed alphabet Σ. An arrow (q, a, z) is sometimes written
a : q → z for clarity.

Diagrams as Generators. A diagram generates a language for each pair of
points q and z: we concatenate the labels along each path from q to z; the
union of these languages is the language generated, in symbols q⟜⊸z.

The diagram in Fig. 3 is now called 1⟜⊸4 (from entry to exit), and we have
just said that it represents our running example, so we now want to formally
prove that 1⟜⊸4 = (a � b)∗ · a · (a � b)—and by the way, the sub-diagrams also
equal sub-languages, so, for example, we claim that 1⟜⊸2 = (a � b)∗.

A path is a finite, possibly empty sequence of arrows with matching end-
points. To reason about languages generated by a diagram, we make use of the
following three properties.

1 ⊆ i⟜⊸i (6a)

L ⊆ i⟜⊸j ⇐= (i, L, j) ∈ G (6b)

(i⟜⊸j) · (j⟜⊸k) ⊆ i⟜⊸k (6c)
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Properties (6a) and (6c) imply that we can go around in a loop a finite number
of times.

(i⟜⊸i)∗ ⊆ i⟜⊸i (6d)

The proof is a straightforward application of the fixed-point induction
principle.

(i⟜⊸i)∗ ⊆ i⟜⊸i

⇐= {fixed-point induction (5b) }
1 + (i⟜⊸i) · (i⟜⊸i) ⊆ i⟜⊸i

⇐⇒ { join (3a) }
1 ⊆ i⟜⊸i ∧ (i⟜⊸i) · (i⟜⊸i) ⊆ i⟜⊸i

Using these inequalities we can, for example, show that the language gener-
ated by the diagram in Fig. 3 contains at least (a � b)∗ · a · (a � b).

(a � b)∗ · a · (a � b)
= { unit of composition }

ε · ((a � b) · ε)∗ · a · (a � b)
⊆ { arrows (6b) and monotonicity of operators }

(1⟜⊸2) · ((2⟜⊸1) · (1⟜⊸2))∗ · (2⟜⊸3) · (3⟜⊸4)
⊆ { composition (6c) and iteration (6d) }

(1⟜⊸2) · (2⟜⊸2) · (2⟜⊸3) · (3⟜⊸4)
⊆ { composition (6c) }

1⟜⊸4

Of course, we would actually like to show that 1⟜⊸4 is equal to (a � b)∗ ·a·(a � b).
We could argue that there are no other paths that contribute to the language
generated. While this is certainly true, the statement does not seem to lend itself
to a nice calculational argument. Fortunately, there is an attractive alternative,
which we dub self-certifying diagrams.

Self-certifying Diagrams. The central idea is to record our expectations about the
languages generated in the diagram itself, using languages as points: V := P(Σ∗).
Continuing our running example, we replace the natural numbers of Fig. 3 by
languages, see Fig. 4. The arrow (r, a, a � b), for example, records that we can
generate the language r if we start at the source point of the arrow; if we start
at its end point, we can only generate a or b. In general, a point is identified
with the language of all paths from the position to the unique exit. (As an aside,
note that the point r is drawn twice in Fig. 4. Our mathematical model does not
distinguish between these two visual copies. So the arrow (r, ε, r) is actually a
self-loop, which could be safely removed.)
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a a

a

b

b

r r a � b ε

{(r, ε, r), (r, a, r), (r, b, r), (r, a, a � b), (a � b, a, ε), (a � b, b, ε)}

Fig. 4. Annotated railroad diagram for r = (a � b)∗ · a · (a � b).

Of course, not every combination of languages makes sense. We require that
the target is a subfactor of the source:

Lα β is admissible :⇐⇒ α ⊇ L · β (7)

Observe the use of inequalities: we require α ⊇ L · β, not α = L · β. Equality
is too strong as there may be further arrows with the same source. The source
point only provides an upper bound on the language generated from this point
onward.

Theorem 1. If all arrows of a diagram are admissible, then

α ⊇ (α⟜⊸β) · β (8)

for all points α ∈ V and β ∈ V .

Returning briefly to our running example, it is not too hard to check that all
arrows in Fig. 4 are admissible. We can therefore conclude that r ⊇ (r⟜⊸ε) · ε.
Since we already know that the diagram generates at least r, we have r⟜⊸ε = r,
as desired.

Proof (Theorem 1). First, we show that a single path is admissible if all of its
arrows are. The empty path is admissible as α ⊇ ε · α. The concatenation of two
admissible paths again gives an admissible path:

α ⊇ K · β ∧ β ⊇ L · γ

=⇒ { monotonicity of composition }
α ⊇ K · (L · γ)

⇐⇒ { associativity of composition }
α ⊇ (K · L) · γ

The language Q⟜⊸Z is the join of all languages generated by paths from Q
to Z. To establish the theorem it suffices to show that admissibility is closed
under arbitrary joins.
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∀L ∈ L . α ⊇ L · β

⇐⇒ { join (3a) }
α ⊇

⋃
{L · β | L ∈ L}

⇐⇒ { composition distributes over join (4a) }
α ⊇ (

⋃
L) · β

Diagrams as Acceptors. So far we have emphasized the generative nature of dia-
grams. However, if a diagram is simple enough, it can also be seen as an acceptor.
Indeed, if all the stations contain a basic symbol, then the diagram amounts to an
NFA. The difference is merely one of terminology and presentation. In automata
theory, points are called states and arrows are called transitions. Furthermore,
transitions are typically drawn as labelled edges, as on the right below.

Lq z q z
L

(I prefer railroad diagrams over standard drawings of automata, as the latter
seem to put the visual emphasis on the wrong entity but, perhaps, this is a
matter of personal taste.)

You may want to skim through the next section on first reading and proceed
swiftly to Sect. 6, which justifies Manna’s construction.

5 Interlude: The Regular Algebra of Diagrams

The purpose of this section is to investigate the algebraic structure of diagrams.
We show that diagrams also form a regular algebra, provided the labels are
drawn from a monoid, and we identify an important sub-algebra: self-certifying
diagrams.

If R is a monoid, then diagrams (P(V × R × V ),⊆,
⋃

, 1, ·) form a regular
algebra where

1 = { (i, 1, i) | i ∈ V } (9a)

F · G = { (i, a · b, k) | ∃j ∈ V . (i, a, j) ∈ F, (j, b, k) ∈ G } (9b)

The unit is the diagram of self-loops 1 : i → i; composition takes an arrow
a : i → j in F and an arrow b : j → k in G to form an arrow a · b : i → k in F ·G.
Diagrams are a blend of lifted monoids and relations: for V := 1 we obtain the
regular algebra of lifted monoids; for R := 1 we obtain the regular algebra of
(untyped) relations. (Here 1 is a singleton set.)

The lattice underlying diagrams is a powerset lattice and hence complete.
It is not too hard to show that composition is associative with 1 as its unit. It
remains to prove that (P ·) and ( ·P ) are left adjoints. As before, we only provide
one calculation.
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P · A ⊆ B

⇐⇒ { definition of composition (9b) }
{ (i, p · a, k) | ∃j ∈ V . (i, p, j) ∈ P, (j, a, k) ∈ A } ⊆ B

⇐⇒ { set inclusion }
∀i ∈ V, p ∈ R, a ∈ R, k ∈ V .

(∃j ∈ V . (i, p, j) ∈ P ∧ (j, a, k) ∈ A) =⇒ (i, p · a, k) ∈ B

⇐⇒ { existential quantification is the join in the lattice of predicates }
∀i ∈ V, p ∈ R, j ∈ V, a ∈ R, k ∈ V .

(i, p, j) ∈ P ∧ (j, a, k) ∈ A =⇒ (i, p · a, k) ∈ B

⇐⇒ { (x ∧ ) is a left adjoint }
∀i ∈ V, p ∈ R, j ∈ V, a ∈ R, k ∈ V .

(j, a, k) ∈ A =⇒ ((i, p, j) ∈ P =⇒ (i, p · a, k) ∈ B)
⇐⇒ { (x ⇒ ) preserves universal quantification }

∀j ∈ V, a ∈ R, k ∈ V .

(j, a, k) ∈ A =⇒ (∀i ∈ V, p ∈ R . (i, p, j) ∈ P =⇒ (i, p · a, k) ∈ B)
⇐⇒ { set inclusion }

A ⊆ { (j, a, k) | ∀i ∈ V, p ∈ R . (i, p, j) ∈ P =⇒ (i, p · a, k) ∈ B }

The right adjoint P \B is given by the formula on the right.
For the remainder of the section we assume that R is a regular algebra. The

translation of regular expressions to diagrams reduces the word problem (is a
given word w an element of the language denoted by the regular expression r?) to
a path-finding problem (is there a w-labelled path in the diagram corresponding
to r?). Now, a directed path in the diagram G is an arrow in G∗, the reflexive,
transitive closure of G. Using the closure of a diagram, we can provide a more
manageable definition of q⟜⊸z , the language generated by paths from q to z
in G: we set q⟜⊸z := q⟜(G∗)⊸ z where

q⟜(F )⊸ z =
∑

{ a ∈ R | (q, a, z) ∈ F } (10)

is the language generated by all arrows from q to z in F .
It is appealing that we can use regular algebra to reason about the seman-

tics of regular expressions, their visualization using diagrams, as well as their
“implementation” in terms of nondeterministic finite automata. For example, in
Sect. 4 we have mentioned in passing that we can safely remove ε-labelled self-
loops from a diagram. This simple optimization is justified by G∗ = (G − 1)∗, a
general property of iteration, see Exercise 3.

Exercise 5. Let D = {(0, ε, 1), (0, L, 0)}. Calculate D∗ using the so-called star
decomposition rule (F + G)∗ = F ∗ · G · F ∗ · G · . . . · G · F ∗ = F ∗ · (G · F ∗)∗.
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Admissibility Revisited. In Sect. 4 we have introduced the concept of an admissi-
ble arrow. (Section 6, which proves Manna’s construction correct, relies heavily
on this concept.) Let us call a diagram admissible if all its arrows are admissible.
An alternative, but equivalent definition builds on ⟜(G)⊸ :

G admissible :⇐⇒ ∀α ∈ V, β ∈ V . α ⊇ (α⟜(G)⊸ β) · β

The proof that the two definitions are indeed equivalent is straightforward.

∀α ∈ V, β ∈ V . α ⊇ (α⟜(G)⊸ β) · β

⇐⇒ { definition of ⟜(G)⊸ (10) }
∀α ∈ V, β ∈ V . α ⊇

(∑
{L | (α, L, β) ∈ G }

)
· β

⇐⇒ { composition distributes over join (4a) }
∀α ∈ V, β ∈ V . α ⊇

∑
{L · β | (α, L, β) ∈ G }

⇐⇒ { join (3a) }
∀(α, L, β) ∈ G . α ⊇ L · β

Admissible (or self-certifying) diagrams form a sub-algebra of the algebra of
diagrams (P(V × R × V ),⊆,

⋃
, 1, ·): the unit 1 is admissible, F · G is admissible

if both F and G are,
∑G is admissible if every diagram G ∈ G is. (The proof of

Theorem 1 shows exactly that.) As a consequence,

G∗ admissible ⇐= G admissible

which is the import of Theorem 1.

Mathematical Models of Diagrams. There are many options for modelling dia-
grams or graphs. One important consideration is whether edges have an identity.
A common definition of a labelled graph introduces two sets, a set of nodes and
a set of edges with mappings from edges to source node, label, and target node.
While our definition admits multiple directed edges between two nodes, it cannot
capture multiple edges with the same label, a feature that we do not consider
important for the application at hand. Backhouse’s notion of a matrix [4] sim-
plifies further by not allowing multiple edges at all. In his model a graph3 is a
function V × V → R that maps a pair of nodes, source and target, to an ele-
ment of the underlying regular algebra.4 Matrices ordered pointwise also form a
regular algebra, provided R is one.

3 Backhouse uses the terms matrix and graph interchangeably.
4 Backhouse’s definition is actually more general: a matrix is given by a function r → R
where r ⊆ V × V is a fixed relation, the dimension of the matrix. This allows him
to distinguish between non-existent edges and edges that are labelled with 0.
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We haven chosen to allow multiple edges as we wish to model Manna’s trans-
formation for choice, which replaces a single edge by two edges with the same
source and target, see Fig. 2. In some sense, the operation q ⟜(G)⊸ z undoes
this step by joining the labels of all arrows from q to z. In fact, the operation
is a regular homomorphism from diagrams to matrices, mapping a diagram G
to a matrix ⟜(G)⊸ , where application to source and target points is written
q⟜(G)⊸ z. We need to establish the following three properties (the right-hand
sides of the formulas implicitly define join, unit, and composition of matrices).

q⟜(
⋃

G)⊸ z =
∑

{ q⟜(G)⊸ z | G ∈ G } (11a)

q⟜(1)⊸ z = (1 � q = z � 0) (11b)

q⟜(F · G)⊸ z =
∑

{ (q⟜(F )⊸ i) · (i⟜(G)⊸ z) | i ∈ V } (11c)

Here a�c�b is shorthand for if c then a else b, known as the Hoare conditional
choice operator. The proof of (11a) relies on properties of set comprehensions.

q⟜(
⋃

G)⊸ z

= { definition (10) }
∑ {

a ∈ R | (q, a, z) ∈
⋃

G
}

= { set comprehension }
∑

{ a ∈ R | G ∈ G, (q, a, z) ∈ G }
= { book-keeping law, see below }

∑ {∑
{ a ∈ R | (q, a, z) ∈ G } | G ∈ G

}

= { definition (10) }
∑

{ q⟜(G)⊸ z | G ∈ G }

The penultimate step of the proof uses the identity∑ { ∑{ ai | i ∈ I } | I ∈ I } =
∑{ ai | I ∈ I, i ∈ I }. Written in a point-free style

the formula is known as the book-keeping law:
∑ ◦P ∑

=
∑ ◦⋃

. (Categorically
speaking, the identity follows from the fact that every complete join-semilattice
is an algebra for the powerset monad, see Ex. VI.2.1 in [11].)
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For (11b) we reason,

q⟜(1)⊸ z

= { definition (10) }
∑

{ a ∈ R | (q, a, z) ∈ 1 }
= { definition of unit (9a) }

∑
{ a ∈ R | (q, a, z) ∈ { (i, 1, i) | i ∈ V } }

= { membership }
∑

{ 1 | q = z }
= { set comprehension }

1 � q = z � 0

The proof of (11c) relies again on the book-keeping law. The calculation is
most perspicuous if read from bottom to top.

q⟜(F · G)⊸ z

= { definition (10) }
∑

{x ∈ R | (q, x, z) ∈ F · G }
= { definition of composition (9b) }

∑
{x ∈ R | (q, x, z) ∈ { (q, a · b, z) | ∃i ∈ V . (q, a, i) ∈ F, (i, b, z) ∈ G } }

= { membership }
∑

{ a · b | ∃i ∈ V . (q, a, i) ∈ F, (i, b, z) ∈ G }
= { book-keeping law, see above }

∑ {∑
{ a · b | (q, a, i) ∈ F, (i, b, z) ∈ G } | i ∈ V

}

= { composition preserves joins (4a) }
∑ {(∑

{ a ∈ R | (q, a, i) ∈ F }
)

·
(∑

{ b ∈ R | (i, b, z) ∈ G }
)

| i ∈ V
}

= { definition (10) }
∑

{ (q⟜(F )⊸ i) · (i⟜(G)⊸ z) | i ∈ V }

Exercise 6. Show that properties (6a)–(6c) are consequences of (11a)–(11c).

6 Construction of Finite Automata with ε-Transitions

We now have the necessary prerequisites in place to formalize and justify
Manna’s construction of diagrams. Recall that the construction works by repeat-
edly replacing a single arrow by a small diagram until all labels are basic symbols.
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The point of departure is the diagram below that consists of a single, admis-
sible arrow,

G0 : rr ε

where r is the given regular expression. Clearly, we have r⟜(G∗
0)⊸ ε = r, where

q⟜(F )⊸ z is the language generated by all arrows from q to z in F (10).
For each of the following transformations we show that (1) admissibility

of arrows is preserved (correctness); and (2) for each path in the original dia-
gram, there is a corresponding path in the transformed diagram (completeness).
Correctness implies that for each graph Gi generated in the process we have
r ⊇ r⟜(G∗

i )⊸ε. Completeness ensures that Q⟜(G∗
i )⊸Z ⊆ Q⟜(G∗

i+1)⊸Z, which
implies r ⊆ r⟜(G∗

i )⊸ ε.5

We consider each of the transformations of Fig. 2 in turn.
Case ∅: there is nothing to prove.

∅α β remove

Case r � s: we replace the single arrow by two arrows sharing source and target.

r � sα β fork&join rα β

s

To establish correctness and completeness, we reason:

Case ε: we keep ε-arrows (we may choose to omit ε-labels in diagrams though),

εα β keep εα β or connect α β

so there is nothing to prove.
Case r · s: we split the composition introducing an intermediate point.

r · sα β split r sα
s · β

β

5 We use “correctness” and “completeness” only in this very narrow sense.
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We have to show that the two arrows on the right are admissible and that they
generate r · s.

Case r∗: we introduce an intermediate point, i = r∗ · β, which serves as source
and target of a looping arrow.

We have to show that the three arrows are admissible and that they generate r∗.
The arrow α⟜(ε)⊸ r∗ · β is trivially admissible since α⟜(r∗)⊸ β is. It remains to
show

i ⊇ i

⇐⇒ { r∗ = ε � r · r∗ }
i ⊇ (ε � r · r∗) · β

⇐⇒ { distributivity (4a) }
i ⊇ (ε · β) � (r · i)

⇐⇒ { join (3a) }
i ⊇ ε · β ∧ i ⊇ r · i

ε · r∗ · ε

⊆ { arrows (6b) and monotonicity }
(α⟜⊸i) · (i⟜⊸i)∗ · (i⟜⊸β)

⊆ { iteration (6d) }
(α⟜⊸i) · (i⟜⊸i) · (i⟜⊸β)

⊆ { composition (6c) }
α⟜⊸β

A few remarks are in order.
The calculations are entirely straightforward. The calculations on the left

rely on basic properties of regular algebra; the calculations on the right capture
visual arguments—it is quite obvious that for each path in the original diagram
there is a corresponding path in the transformed diagram. That’s the point—the
calculations should be simple as the material is targeted at first-year students.

Quite interestingly, we need not make any assumptions about disjointness of
states, which is central to the McNaughton-Yamada-Thompson algorithm [2].
For example, there is no guarantee that the intermediate state for composition,
s · β, is not used elsewhere in the diagram. Admissibility of arrows ensures that
sharing of sub-diagrams is benign. We will get back to this point shortly.

It is perhaps tempting to leave out the intermediate point i for iteration:
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While the diagram on the right is complete, it is not correct: the arrow (α, r, α)
is not admissible, consider, for example, α = a � b∗ and r = b∗. Since the arrow
(α, r, α) is generally part of a larger diagram, it might contribute to other edges
emerging from α. A simple case analysis shows that the intermediate point i is
necessary—there is no diagram involving only α and β that will do the trick.

Exercise 7. Do the transformations work in both directions?

Implementation in Haskell. Manna’s transformation rules can be seen as the
specification of a non-deterministic algorithm as the rules can be applied in any
order. However, they serve equally well as the basis for an inductive construction.
We represent arrows by triples.

The worker function diagram ′ maps a single arrow to a diagram, a set of arrows.
(We assume the existence of a suitable library for manipulating finite sets.)
Basic symbols are represented by elements of Basic Alphabet : Eps ′ represents
the empty word ε, Sym ′ a represents a singleton word, the symbol a.

Voilà. A regular expression compiler in eight lines.
The following session shows the algorithm in action (a is shorthand for

Sym ’a’, b for Sym ’b’, and ab for Alt a b).
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The diagram produced for our running example is almost the same as before:
compared to the one in Fig. 4 we have one additional vertex, labelled a · (a � b).

The algorithm has a number of pleasing characteristics. First of all, the num-
ber of points and arrows is linear in the size of the given regular expression: the
number of intermediate points (states) is bounded by the number of compo-
sitions and iterations; the number of arrows (transitions) is bounded by the
number of basic symbols plus twice the number of iterations. In practice, the
actual size may be significantly smaller through sharing of sub-diagrams. Con-
sider the regular expressions Alt (Cat r t) (Cat s t) and Cat (Alt r s) t , which
are syntactically different but semantically equal by distributivity. Due to the
use of sets, the generated diagrams are equal, as well. The sub-diagram for the
replicated sub-expression t is automagically shared, as the following calculation
demonstrates.

As another example, Alt r r and r are mapped to the same diagram. The
examples demonstrate that it is undesirable that diagrams for sub-expressions
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have disjoint states. Sharing of sub-diagrams is a feature, not a bug. Sharing
comes at a small cost though: due to the use of sets (rather than lists), the
running-time of diagram is Θ(n log n) rather than linear.

In Sect. 5 we have noted that ε-labelled self-loops can be safely removed from
a diagram. (Recall that this optimization is justified by G∗ = (G − 1)∗.)

Arrows of the form (r, ε, r) are actually not that rare. Our running example
features one. More generally, expressions of the form Cat r (Rep s) generate a
self-loop.

The intermediate states for composition and iteration are identified, i, further
reducing the total number of states.

r ε εα β
i i

s

7 Finite Automata Without ε-Transitions

It is advisable to eliminate ε-transitions before translating a nondeterministic
finite automaton into an executable program as ε-loops might cause termination
problems. (Incidentally, Thompson [16] reports that his compilation scheme does
not work for (a∗)∗ as the code goes into an infinite loop—he also proposes a fix.)
There are at least two ways forward.

One option is to apply a graph transformation. Quite pleasingly, the trans-
formation is based on a general property of iteration: (a + b)∗ = (a∗ · b)∗ · a∗,
see Exercise 5. Let E = {(v, ε, w) | v, w ∈ V } be the complete, ε-labelled dia-
gram and let G be the diagram generated for r. We can massage the reflexive,
transitive closure of G as follows.

G∗ = ((G ∩ E) + (G − E))∗ = ((G ∩ E)∗ · (G − E))∗ · (G ∩ E)∗ (12)
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The sub-diagram C = (G ∩ E)∗ is the so-called ε-closure of G. The path-finding
problem in G can be reduced to a path-finding problem in C · (G − E):

w ∈ r⟜(G∗)⊸ ε

⇐⇒ { see above (12) }
w ∈ r⟜((C · (G − E))∗ · C)⊸ ε

⇐⇒ { composition (11c) }
w ∈

∑
{ (r⟜((C · (G − E))∗)⊸ f) · (f ⟜(C)⊸ ε) | f ∈ V }

⇐⇒ { membership }
∃f ∈ V . w ∈ (r⟜((C · (G − E))∗)⊸ f) · (f ⟜(C)⊸ ε)

⇐⇒ { q⟜(C)⊸ z ⊆ ε and property of free monoid }
∃f ∈ V . w ∈ r⟜((C · (G − E))∗)⊸ f ∧ ε ∈ f ⟜(C)⊸ ε

Let us call a point f with ε ∈ f ⟜(C)⊸ ε an accepting or final state. The
calculation demonstrates that we can reduce the word problem, w ∈ �r�, to the
problem of finding an w-labelled path from the start state r to an accepting
state f in C · (G − E). The final formula explains in a sense why NFAs without
ε-transitions need to have a set of final states, whereas a railroad diagram has
exactly one entry and one exit.

Another option is to integrate the computation of the ε-closure into the con-
struction of the automaton itself. This is exactly what Antimirov’s scheme does,
which we review next. (The purpose of the following is to show that a railroad
diagram contains all of Antimirov’s subfactors.)

Antimirov’s Linear Forms. To avoid the problems of Brzozowski’s construction
outlined in Sect. 1, Antimirov devised a special representation of regular expres-
sions based on the notion of a linear form.

L − ε = a1 · L1 + · · · + an · Ln

We represent a linear form by a set of pairs, consisting of a symbol and a regular
expression.

type Lin = Set (Alphabet ,Reg)

Observe that the type is non-recursive; the subfactors are still given by regular
expressions. Antimirov’s insight was that in order to guarantee a finite number
of syntactically different subfactors, it is sufficient to apply the ACI-properties
of choice to the top-level of an expression.

Turning a regular expression into a linear form is straightforward except,
perhaps, for composition and iteration. It is not the case that the linear form of
r · s − ε is given by the composition of the forms for r − ε and s − ε. (Do you see
why?) The following calculation points us into the right direction.

r · s − ε = (r − ε) · s + (r ∩ ε) · s − ε = (r − ε) · s + (r ∩ ε) · (s − ε)
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The final formula suggests that we need to compose a linear form, the represen-
tation of r − ε, with a standard regular expression, namely s.

infixr 7 •
(•) :: Lin → Reg → Lin
lf • Empty = ∅
lf • Eps = lf
lf • s = [(a, cat r s) | (a, r) ← lf ]

Thus, lf • s composes every subfactor of lf with s. (Just in case you wonder,
[e | q ] above is a monad, not a list comprehension.) The calculation for iteration
makes use of a∗ = (a − 1)∗, see Exercise 3.

r∗ − ε = (r − ε)∗ − ε = (r − ε) · (r − ε)∗ = (r − ε) · r∗

Again, we need to compose a linear form, the representation of r − ε, with a
standard regular expression, namely r∗ itself.

Given these prerequisites, Antimirov’s function lf [3], which maps r to the
linear form of r − ε, can be readily implemented in Haskell.

For our running example, we obtain

〉〉〉 linear-form (Cat (Rep ab) (Cat a ab))
{(’a’, ab), (’a’,Cat (Rep ab) (Cat a ab)), (’b’,Cat (Rep ab) (Cat a ab))}

Antimirov’s Subfactors. Putting the automata glasses on, linear-form r com-
putes the outgoing edges of r . The successor states of r are given by the imme-
diate subfactors.

subfactors r = [β | (a, β) ← linear-form r ] (13)

In order to easily compare Antimirov’s construction to Manna’s, it is useful to
concentrate on subfactors. To this end, we unfold the specification (13) to obtain
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The operator “◦” is a version of “•” that works on sets of states, rather than
sets of edges.

infixr 7 ◦
(◦) :: Set Reg → Reg → Set Reg
rs ◦ Empty = ∅
rs ◦ Eps = rs
rs ◦ s = [cat r s | r ← rs ]

The reflexive, transitive closure of subfactors applied to the given regular
expression r then yields the states of the Antimirov automaton: starting with
{r} we iterate subfactors† until a fixed-point is reached, where f † is the so-called
Kleisli extension of f , defined f † X =

⋃{ f x | x ∈ X } . That is easy enough—
however, it is, perhaps, not immediately clear that the set of all subfactors,
immediate and transitive ones, is finite.

Manna’s Construction Revisited. We claim that Antimirov’s subfactors appear
as target states of non-ε-transitions in the corresponding railroad diagram. Given
the specification,

targets r = [β | (α,Sym ′ a, β) ← diagram r ]

it is a straightforward exercise to derive targets r = targets ′ (r ,Eps) where
targets ′ is defined

This is basically the definition of diagram ′, only that we ignore source points
and labels and discard ε-labelled arrows.

The definition of targets ′ is tantalizingly close to subfactors, except that the
former makes use of an accumulating parameter, whereas the latter does not.
Removing the accumulating parameter is, of course, a matter of routine.
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(The transformation is only meaning-preserving if the accumulation is based on
a monoid. Alas, concatenation of regular expressions is not associative, so targets
and targets ′ produce sets of syntactically different regular expressions that are,
however, semantically equivalent: �targets ′ (r , β)� = �targets r ◦ β�. We choose
to ignore this technicality.)

Theorem 2. Antimirov’s subfactors are contained in Manna’s automaton.

subfactors r ⊆ targets r (14a)

targets† (targets r) ⊆ targets r (14b)

Recall that f † is the Kleisli extension of f to sets.
We first establish the following properties of targets.

targets (cat r s) ⊆ targets r ◦ s ∪ targets s (14c)

targets† (rs ◦ s) ⊆ targets† rs ◦ s ∪ targets s (14d)

The proof of (14c) is straightforward and omitted. (If r is non-null, the inequality
can be strengthened to an equality.) For (14d) we reason,
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Proof (Theorem 2). It is fairly obvious that subfactors r is a subset of targets r
as only the clause for concatenation is different. The proof of (14b) proceeds by
induction of the structure of r .

Case Empty and Eps:

targets† (targets Empty)
= { definition of targets }

targets† ∅
= { definition of f † }

∅

Case Alt r s:

Case Sym a:

targets† (targets (Sym a))
= { definition of targets }

targets† {Eps}
= { definition of f † }

⋃
{targets Eps}

= { definition targets and
⋃{∅} = ∅ }

∅
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Case Cat r s:

Case Rep r :

We may conclude that a regular expression r has only a finite number of
syntactically different right subfactors, as each subfactor appears as a target
state in the corresponding railroad diagram. Moreover, subfactors have a very
simple structure: they are compositions of sub-expressions of r .

Just in case you wonder, the converse is not true—not every target is also
an Antimirov subfactor. If the regular expression contains Empty as a sub-
expression, then Manna’s automaton may contain unreachable states. Consider,
for example, Cat (Cat Empty a) b.

8 Related Work

Manna’s Generalized Transition Graphs. Our diagrams are modelled after
Manna’s generalized transition graphs, directed graphs labelled with regular
expressions. For the discussion, it is useful to remind us of the different ways of
defining labelled graphs.
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The isomorphisms are based on the one-to-one correspondence between relations
and set-valued functions, P(A×B) ∼= A → P(B). Each “view” is in use. Manna
models deterministic finite automata as labelled graphs with certain restrictions
on the edges to ensure determinacy. The standard definition of nondeterministic
finite automata is based on state-transition functions [15]. The adjacency list rep-
resentation underlies Antimirov’s linear forms where V := P(Σ), see Sect. 7. The
adjacency matrix representation emphasizes the generative nature of automata,
see Sect. 5. (Actually, there is also a fifth alternative, Σ → P(V × V ), which,
however, does not seem to be popular.)

The design space has a further dimension: we can equip the type of labels
with structure. Manna first generalizes DFAs to transition graphs by allowing
words as labels and then to generalized transition graphs, where arrows are
labelled with regular expressions.

Generalizing Σ∗ to an arbitrary monoid, we obtain the diagrams of Sect. 5, which
form a regular algebra. They are isomorphic to Backhouse’s matrices [4], where
the underlying regular algebra is given by a lifted monoid.

diagram matrix
P(V × M × V ) ∼= V × V → P(M)

(i, w, j) ∈ G i⟜⊸j � w

The isomorphism is also a regular homomorphism.

The McNaughton-Yamada-Thompson Algorithm. One of the first algorithms for
converting a regular expression to a DFA is due to McNaughton and Yamada [13].
Though not spelled out explicitly, their algorithm first constructs an NFA with-
out ε-transitions, which is subsequently converted to a DFA using the subset
construction. In the first phase, they annotate each symbol of the regular expres-
sion with a position, which corresponds roughly to a station and its target point
in our setting. The NFA is obtained by suitably connecting “terminal” and “ini-
tial” positions of sub-expressions for composition and iteration. Nonetheless, the
idea of using an NFA as an intermediary is usually attributed to Thompson [16].

A standard textbook algorithm, the McNaughton-Yamada-Thompson algo-
rithm [2], is based on their ideas. The algorithm proceeds by induction over the
structure of the regular expression, as illustrated in Fig. 5. Each automaton has
one start state (with no outgoing transitions) and one accepting state (with no
incoming transitions). To avoid interference, states must be suitably renamed
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when sub-automata are combined. (The exact nature of the states is actually
somewhat unclear—in the illustration they are not even named.) The resulting
automata feature quite a few ε-transitions, not all of which are present in the
original articles.

It is instructive to scrutinize Thompson’s algorithm for “regular expression
search” [16]. He explains the workings of his compiler using a · (b � c) · d as a
running example, illustrating the steps with diagrams. Interestingly, the illus-
trations are quite close to railway diagrams. Consequently, his algorithm can be
easily recast in our framework, see Fig. 6. Thompson uses ε-transitions only for
choice (and iteration which involves choice). Renaming of states is necessary for
sub-automata that do not end in ε.

automaton for rr · β β

In this case, β must be appended to each state. Turning to an implementation
in Haskell, the renaming operation has a familiar ring.

infixr 7 �
(�) :: Set (Arrow a) → Reg → Set (Arrow a)
g � Empty = ∅
g � Eps = g
g � s = [(cat α s, r , cat β s) | (α, r , β) ← g ]

We have introduced similar operations for Antimirov’s linear forms and subfac-
tors. Observe that the diagram G � β is admissible if G is.

Thompson’s translation is then captured by the following Haskell program
(ignoring the fact that his compiler actually produces IBM 7094 machine code).

Even though similar in appearance, Thompson’s compiler is quite different from
Manna’s construction. Manna’s algorithm is iterative or top-down: diagram iter-
atively replaces a single arrow by a smallish diagram. Thompson’s algorithm is
recursive or bottom-up: thompson recursively combines sub-automata for sub-
expressions. For composition (and iteration which involves composition), this
requires explicit renaming of states. In Manna’s construction renaming is, in
some sense, implicit through the use of an accumulating parameter. (As an aside,
thompson also enables sharing of sub-automata as renaming does not operate
on anonymous states, but on subfactors, which are semantically meaningful;
consider, for example, Alt (Cat r t) (Cat s t) and Cat (Alt r s) t .)
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automaton for ∅ automaton for ε automaton for a

ε a

automaton for r � s

automaton for r

automaton for s

ε

ε

ε

ε

automaton for r · s

automaton for r automaton for s

automaton for r∗

automaton for r
ε

ε

ε

ε

Fig. 5. McNaughton-Yamada-Thompson construction of an NFA with ε-transitions.
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automaton for ∅ automaton for ε automaton for a

〈〈empty diagram〉〉 εε ε aa ε

automaton for r � s

r � s

ε automaton for r
r

ε automaton for s
s

ε

automaton for r · s

automaton for r automaton for sr · s
s

ε

automaton for r∗

r∗

ε
ε

ε automaton for r
r · r∗

Fig. 6. Thompson’s “original” construction of an NFA with ε-transitions.

Conways’s Linear Mechanisms. A related construction is given by Conway [8].
In his seminal book on “Regular Algebra and Finite Machines” he defines a
linear mechanism, which amounts to a nondeterministic finite automaton with
ε-transitions. Interestingly, his automata feature both multiple final states and
multiple start states, which allows for a very symmetric treatment.

He represents an automaton by an n × n matrix, where n is the number of
vertices. To illustrate, the automaton of Fig. 3 is captured by

S =
(
1 0 0 0

)
M =

⎛

⎜
⎜
⎝

0 1 0 0
a + b 0 a 0

0 0 0 a + b
0 0 0 0

⎞

⎟
⎟
⎠ F =

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠
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The Boolean row vector S determines the start states; the Boolean column vec-
tor F determines the final states; the transitions are represented by the square
matrix M . The language generated by the automaton is then given by SM∗F ,
where M∗ is the reflexive, transitive closure of M . On a historical note, Con-
way [8] mentions that the matrix formula was already known to P. J. Cleave in
1961. The fact that matrices form a regular algebra was probably apparent to
Conway, even though he did not spell out the details. Nonetheless, Conway’s
work had a major influence on Backhouse’s treatment of regular algebra (per-
sonal communication).

Like Thompson’s algorithm, the translation of regular expressions proceeds
recursively or inductively.

0 = 0
(
0
)∗ 0

1 = 1
(
1
)∗ 1

a =
(
1 0

)
(

0 a
0 0

)∗ (
0
1

)

SM∗F + TN∗G =
(
S T

)
(

M 0
0 N

)∗ (
F
G

)

SM∗F · TN∗G =
(
S 0

)
(

M FT
0 N

)∗ (
0
G

)

(SM∗F )∗ =
(
0 1

)
(

M F
S 0

)∗ (
0
1

)

The automata for the empty language and the empty word feature a single state;
the automaton for a symbol has two states. For composition, choice, and iteration
we assume that the sub-expressions are already translated into automata. The
combined automata are then expressed by suitable block matrices that detail
the interaction of the component automata. For example, the automaton for
iteration r∗ adds one state to the automaton for r; this state is both a start and
a final state; there is an ε-transition from the new state to each start state of r
and from each final state of r to the new state.

Like the McNaughton-Yamada-Thompson construction, Conway’s automata
feature quite a few ε-transitions as there is no sharing of sub-automata. For
example, the automaton for composition adds an ε-transition from each final
state of the first to each initial state of the second automaton (represented by
the matrix FT ). On the positive side, the correctness of the translation can be
readily established using the following characterization of iteration [8].

(
A B
C D

)∗
=

(
X∗ A∗BY ∗

D∗CX∗ Y ∗

)

where

{
X = A + BD∗C
Y = D + CA∗B

The block matrix consists of two square matrices A and D, which represent
sub-automata, and two rectangular matrices B and C, which record transitions
between the sub-automata. The entries on the right specify the possible paths in
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the combined automaton, for example, A∗BY ∗ contains all paths from A to D:
a path in A (ie A∗), followed by an edge from A to D (ie B), followed by a path
from D to D (ie Y ∗). Given this decomposition, the correctness of the translation
can be shown using straightforward equational reasoning.

Brzozowski’s Factors and Antimirov’s Subfactors. Brzozowski [6] showed that a
regular expression has only a finite number of syntactically different factors, if
expressions are compared modulo associativity, commutativity, and idempotence
of choice. Antimirov [3] pointed out that some care has to be exercised when
computing the factors. Brzozowski uses the following formula for composition:
a \ (r · s) = (a \ r) · s + δ r · (a \ s), where δ r = 1 if r is nullable and δ r = 0
otherwise. To ensure finiteness, the definition of δ must actually be unfolded:
a \ (r · s) = if nullable r then (a \ r) · s + (a \ s) else (a \ r) · s.

Antimirov further realized that it is sufficient to apply the ACI-properties
of choice only to the top-level of a term, see his definition of linear form. His
approach essentially derives a system of equations of the form (2) from a regular
expression. Based on the same idea, Mirkin [14] gave an algorithm for con-
structing an NFA, predating Antimirov’s work by almost two decades. Cham-
parnaud and Ziadi [7] pointed out the similarity, attempting to show that the
two approaches actually yield the same automata. Unfortunately, their proof
contains an error, which was later corrected by Broda et al. [5]. In more detail,
Champarnaud and Ziadi claim that the function subfactors, which they call π,
computes the immediate and transitive subfactors, whereas it only determines
the former. Broda et al. pointed out that subfactors must be replaced by targets.
(Contrary to their claim, even then the two constructions are not identical as
pointed out in Sect. 7: targets may include unreachable states not present in
Antimirov’s construction. A minor technicality, which can be fixed by excluding
Empty as a constructor.) The corrected definition of π seems to fall out of thin
air though—it is pleasing to see that it is obtained as a projection of Manna’s
automaton.

9 Conclusion

Regular algebra is the algebra of three operators central to
programming: composition, choice, and iteration. As such, it is

perhaps the most fundamental algebraic structure in computing science.

Roland Backhouse

I could not agree more. We have used regular algebra to reason both about
languages and diagrams. Students of computing science should see at least a
glimpse of regular algebra in their first term. Regular expressions and railroad
diagrams provide an ideal starting point. Manna’s construction, which ties the
two concepts together, is both charming and challenging. It is charming because
the transformations are local, supporting an iterative, step by step refinement
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of diagrams. It is challenging for the same reason: one has to ensure that dif-
ferent parts of the diagram do not interfere. This is where subfactors (called
partial derivatives elsewhere) enter the scene. Standard textbook proofs of the
equivalence of regular expressions and nondeterministic finite automata often
involve verbose arguments, making implicit assumptions about disjointness of
state sets (“Here, i is a new state, . . . ”). By contrast, subfactors facilitate sim-
ple, calculational correctness proofs, based on fundamental properties of Galois
connections. What equational reasoning with factors is for DFAs, inequational
reasoning with subfactors is for NFAs.

(On a personal note, I think that it is a mistake to introduce a finite automa-
ton in this particular context as a quintuple (Σ, S, s0, F, δ) where S is some
anonymous, unstructured set of states. Subfactors as states serve as important
scaffolding that should only be removed in a final abstraction step—once Kleene’s
Theorem is established or other uses for finite automata have been introduced.)

Despite its simplicity, Manna’s construction has a number of pleasing charac-
teristics: the number of states and the number of edges is linear in the size of the
regular expression; due to sharing of sub-automata and auto-merging of states
the resulting automaton is often surprisingly small. This demonstrates that dis-
jointness of state sets is undesirable or, put differently, “renaming” should be
semantically meaningful: “•” and “�” can be seen as incarnations of the dis-
tributive law.

Finally, it has been satisfying to be able to relate Manna’s construction to
Antimirov’s subfactors through simple program transformations, based on accu-
mulating parameters.
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Abstract. While simple equational reasoning is adequate for the calcu-
lation of many algorithms from their functional specifications, it is not
up to the task of dealing with others, particularly those specified as opti-
misation problems. One approach is to replace functions by relations,
and equational reasoning by reasoning about relational inclusion. But
such a wholesale approach means one has to adopt a new and sometimes
subtle language to argue about the properties of relational expressions.
A more modest proposal is to generalise our powers of specification by
allowing certain nondeterministic, or multi-valued functions, and to rea-
son about refinement instead. Such functions will not appear in any final
code. Refinement calculi have been studied extensively over the years
and our aim in this article is just to explore the issues in a simple setting
and to justify the axioms of refinement using the semantics suggested by
Morris and Bunkenburg.

1 Introduction

We set the scene by considering the following Haskell definition for an archetypal
optimisation problem:

mcc :: [Item ] → Candidate
mcc = minWith cost · candidates

The function mcc computes a candidate with minimum cost. The function
minWith can be defined by

minWith :: Ord b ⇒ (a → b) → [a ] → a
minWith f = foldr1 smaller

where smaller x y = if f x � f y then x else y

Applied to a finite, nonempty list of candidates, minWith cost returns the first
candidate with minimum cost. The function candidates takes a finite list of
items and returns a finite, nonempty list of candidates. We will suppose that the
construction uses foldr :
c© Springer Nature Switzerland AG 2019
G. Hutton (Ed.): MPC 2019, LNCS 11825, pp. 138–154, 2019.
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candidates :: [Item ] → [Candidate ]
candidates xs = foldr step [c0 ] xs

where step x cs = concatMap (additions x ) cs

The value c0 is some default candidate for an empty list of items. The function
concatMap is defined by

concatMap f = concat · map f

and additions :: Item → Candidate → [Candidate ] takes a new item and a
candidate and constructs a nonempty list of extended candidates. For example,
if the candidates were the permutations of a list, then c0 would be the empty
list and additions x would be a list of all the ways x can be inserted into a given
permutation. For example,

additions 1 [2, 4, 3] = [[1, 2, 4, 3], [2, 1, 4, 3], [2, 4, 1, 3], [2, 4, 3, 1]]

A greedy algorithm for mcc arises as the result of successfully fusing the function
minWith cost with candidates. Operationally speaking, instead of building the
complete list of candidates and then selecting a best one, we construct a single
best candidate at each step. The usual formulation of the fusion rule for foldr
states that

foldr f (h e) xs = h (foldr g e xs)

for all finite lists xs provided the fusion condition

h (g x y) = f x (h y)

holds for all x and y . In fact the fusion condition is required to hold only for all
y of the form y = foldr g e xs; this version is called context-sensitive fusion.

For our problem, h = minWith cost and g = step but f is unknown. Abbre-
viating candidates xs to cs, the context-sensitive fusion condition reads

minWith cost (step x cs) = add x (minWith cost cs)

for some function add . To see if it holds, and to discover add in the process, we
can reason:

minWith cost (step x cs)
= { definition of step }

minWith cost (concatMap (additions x ) cs)
= { distributive law (see below) }

minWith cost (map (minWith cost · additions x ) cs)
= { define add x = minWith cost · additions x }

minWith cost (map (add x ) cs)
= { greedy condition (see below) }

add x (minWith cost cs)
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The distributive law used in the second step is the fact that

minWith f (concat xss) = minWith f (map (minWith f ) xss)

provided xss is a finite list of finite, nonempty lists. Equivalently,

minWith f (concatMap g xs) = minWith f (map (minWith f · g) xs)

provided xs is a finite list and g returns finite, nonempty lists. The proof of the
distributivity law is straightforward but we omit details.

Summarising this short calculation, we have shown that

mcc = foldr add c0 where add x = minWith cost · additions x

provided the following greedy condition holds for all x and xs:

minWith cost (map (add x ) cs) = add x (minWith cost cs)

where cs = candidates xs.
That all seems simple enough. However, the fly in the ointment is that,

in order to establish the greedy condition when there may be more than one
candidate in cs with minimum cost, we need to prove the very strong fact that

cost c � cost c′ ⇔ cost (add x c) � cost (add x c′) (1)

for all candidates c and c′ in cs. To see why, observe that if c is the first candidate
with minimum cost in a list of candidates, then add x c has to be the first
candidate with minimum cost in the list of extended candidates. This follows
from our definition of minWith which selects the first element with minimum
cost in a list of candidates. To ensure that the extension of a candidate c′ earlier
in the list has a larger cost we have to show that

cost c′ > cost c ⇒ cost (add x c′) > cost (add x c) (2)

for all c and c′ in cs. To ensure that the extension of a candidate c′ later in the
list does not have a smaller cost we have to show that

cost c � cost c′ ⇒ cost (add x c) � cost (add x c′) (3)

for all c and c′ in cs. The conjunction of (2) and (3) is (1). The problem is that
(1) is so strong that it rarely holds in practice. As evidence for this assertion,
the appendix briefly discusses one example. A similar condition is needed if, say,
minWith returned the last element in a list with minimum cost, so the problem
is not to do with the specific definition of minWith. What we really need is a
form of reasoning that allows us to establish the necessary fusion condition from
the simple monotonicity condition (3) alone, and the plain fact of the matter is
that equational reasoning with any definition of minWith is simply not adequate
to provide it.
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It follows that we have to abandon equational reasoning. One approach is to
replace our functional framework with a relational one, and to reason instead
about the inclusion of one relation in another. Such an approach has been sug-
gested in a number of places, including our own [1]. But, for the purposes of
presenting a simple introduction to the subject of greedy algorithms in Haskell,
this solution is way too drastic, more akin to a heart transplant than a tube of
solvent for occasional use. The alternative, if it can be made to work smoothly,
is to introduce nondeterministic functions, also called multi-valued functions in
mathematics, and to reason about refinement.

The necessary intuitions and syntax are introduced in Sect. 2. Section 3 gives
a formal calculus and Sect. 4 a denotational semantics for our language. The
soundness of the semantics establishes the consistency of the calculus. We have
formalised syntax, calculus, and semantics in the logical framework LF [2] and
are in the process of also formalizing the soundness proof; the formalisation is
not given in this paper but is available online1.

2 Nondeterminism and Refinement

Suppose we introduce MinWith as a nondeterministic function, specified only
by the condition that if x is a possible value of MinWith f xs, where xs is a
finite nonempty list, then x is an element of xs and for all elements y of xs we
have f x � f y . Note the initial capital letter: MinWith is not part of Haskell. It
is not our intention to extend Haskell with nondeterministic functions; instead
nondeterminism is simply there to extend our powers of specification and cannot
appear in any final algorithm.

Suppose we define y ← F x to mean that y is one possible output of
the nondeterministic function F applied to a value x . In words, y is a pos-
sible refinement of the nondeterministic expression F x . For example, 1 ←
MinWith (const 0) [1, 2] and 2 ← MinWith (const 0) [1, 2]. More generally,
if E1 and E2 are possibly nondeterministic expressions of the same type T , we
will write E1 ← E2 to mean that for all values v of T we have

v ← E1 ⇒ v ← E2

We define two nondeterministic expressions of the same type to be equal if they
both have the same set of refinements: E1 = E2 if

v ← E1 ⇔ v ← E2

for all v . Equivalently,

E1 = E2 ⇔ E1 ← E2 ∧ E2 ← E1

which just says that ← is anti-symmetric. Our task is to make precise the exact
rules allowed for reasoning about ← and to prove that these rules do not lead
to contradictions.
1 https://github.com/florian-rabe/nondet.

https://github.com/florian-rabe/nondet
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To illustrate some of the pitfalls that have to be avoided, we consider three
examples. First, here is the distributive law again in which minWith is replaced
by MinWith:

MinWith f (concat xss) = MinWith f (map (MinWith f ) xss)

If this equation is to hold for all finite, nonempty lists xss of finite, nonempty
lists, and we do indeed want it to, then it has to mean there is no refinement of
one side that is not also a refinement of the other side. It does not mean that
the equation should hold for all possible implementations of MinWith, and it
cannot mean that because it is false. Suppose we define minWith to return the
second best candidate in a list of candidates, or the only best candidate if there
is only one. In particular,

minWith (const 0) (concat [[a ], [b, c ]]) = b
minWith (const 0) (map (minWith (const 0)) [[a ], [b, c ]]) = c

The results are different so the distributive law fails. What the distributive law
has to mean is the conjunction of the following two assertions, in which M
abbreviates MinWith cost :

x ← M (concat xss) ⇒ (∃xs : xs ← map M xss ∧ x ← M xs)
(xs ← map M xss ∧ x ← M xs) ⇒ x ← M (concat xss)

It is easy enough to show that these two assertions do hold though we omit
details.

For the remaining two examples, define

Choose x y = MinWith (const 0) [x , y ]

so x ← Choose x y and y ← Choose x y . Do we have

double (Choose 1 2) = Choose 1 2 + Choose 1 2

where double x = x + x? The answer is no, because

x ← double (Choose 1 2)
⇔ ∃y : y ← Choose 1 2 ∧ x = double y
⇔ x = 2 ∨ x = 4

while

x ← Choose 1 2 + Choose 1 2
⇔ ∃y , z : y ← Choose 1 2 ∧ z ← Choose 1 2 ∧ x = y + z
⇔ x = 2 ∨ x = 3 ∨ x == 4

We have only that double (Choose x y) ← Choose x y + Choose x y .
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For the third example, it is easy enough to show, for all f1, f2 and x that

Choose (f1 x ) (f2 x ) = Choose f1 f2 x

but it would be wrong to conclude by η conversion that

λx .Choose (f1 x ) (f2 x ) = Choose f1 f2

We have

f ← λx .Choose (f1 x ) (f2 x ) ⇔ ∀x : f x = f1 x ∨ f x = f2 x

However,

f ← Choose f1 f2 ⇔ (∀x : f x = f1 x ) ∨ (∀x : f x = f2 x )

The results are different. The η rule, namely f = λx . f x , does not hold if f is a
nondeterministic function such as Choose f1 f2.

What else do we want? Certainly, we want a refinement version of the fusion
law for foldr , namely that over finite lists we have

foldr f e ′ xs ← H (foldr g e xs)

for all finite lists xs provided that e ′ ← H e and f x (H y) ← H (g x y). Here is
the proof of the fusion law. The base case is immediate and the induction step
is as follows:

foldr f e ′ (x : xs)
= { definition of foldr }

f x (foldr f e ′ xs)
← { induction, and monotonicity of refinement (see below) }

f x (H (foldr g e xs))
← { fusion condition, and monotonicity of refinement }

H (g x (foldr g e xs))
= { definition of foldr }

H (foldr g e (x : xs))

The appeal to the monotonicity of refinement is the assertion

E1 ← E2 ⇒ F E1 ← F E2

So this condition is also required to hold.
Let us see what else we might need by redoing the calculation of the greedy

algorithm for mcc. This time we start with the specification

mcc ← MinWith cost · candidates



144 R. Bird and F. Rabe

For the fusion condition we reason:

MinWith cost (step x cs)
= { definition of step }

MinWith cost (concatMap (additions x ) cs)
= { distributive law }

MinWith cost (map (MinWith cost · additions x ) cs)
→ { suppose add x ← MinWith cost · additions x }

MinWith cost (map (add x ) cs)
→ { greedy condition (see below) }

add x (MinWith cost cs)

We write E1 → E2 as an alternative to E2 ← E1. The second step makes use
of the distributive law, and the third step is an instance of the monotonicity of
refinement.

Let us now revisit the greedy condition. This time we only have to show

add x (MinWith cost cs) ← MinWith cost (map (add x ) cs)

where add x ← MinWith cost · additions x . Unlike the previous version, this
claim follows from the monotonicity condition (3). To spell out the details, sup-
pose c is a candidate in cs with minimum cost. We have only to show that

add x c ← MinWith cost (map (add x ) cs)

Equivalently, that

cost (add x c) � cost (add x c′)

for all candidates c′ on cs. But this follows from (3) and the fact that cost c �
cost c′.

Summarising, we can now define mcc = foldr add c0 provided (3) holds
for a suitable refinement of add . Unlike the previous calculation, the new one
is sufficient to deal with most examples of greedy algorithms, at least when
candidate generation is expressed in terms of foldr .

We have concentrated on greedy algorithms and the function MinWith, but
there is another nondeterministic function ThinBy , which is needed in the study
of thinning algorithms. Not every optimisation problem can be solved by a greedy
algorithm, and between the extremes of maintaining just one candidate at each
step and maintaining all possible candidates, there is the option of keeping only
a subset of candidates in play. That is where ThinBy comes in. It is a function
with type

ThinBy :: (a → a → Bool) → [a ] → [a ]

Thus ThinBy (
) xs takes a comparison function 
 and a list xs as arguments
and returns a subsequence ys of xs such that for all x in xs there is a y in ys
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with y 
 x . The subsequence is not specified further, so ThinBy is nondetermin-
istic. We mention ThinBy to show that there is more than one nondeterministic
function of interest in the study of deriving algorithms from specifications.

The task now before us is to find a suitable axiomatisation for a theory of
refinement and to give a model to show the soundness and consistency of the
axioms. Essentially, this axiomatisation is the one proposed in [3,4] but simplified
by leaving out some details inessential for our purposes.

3 An Axiomatic Basis

Rather than deal with specific nondeterministic functions such as MinWith and
ThinBy , we can phrase the required rules in terms of a binary choice operator
(�). Thus,

E1 � E2 = MinWith (const 0) [E1,E2 ]

We also have

MinWith f xs = foldr1 (�) [x | x ← xs, and [f x � f y | y ← xs ]]

so MinWith can be defined in terms of (�). Below we write �/ for foldr1 (�).
Thus �/ takes a finite, nonempty list of arguments and returns an arbitrary
element of the list.

To formulate the axioms we need a language of types and expressions, and
we choose the simply-typed lambda calculus. Types are given by the grammar

T ::= B | T → T

B consists of the base types, such as Int and Bool . We could have included pair
types explicitly, as is done in [3], but for present purposes it is simpler to omit
them. Expressions are given by the grammar

E ::= C | V | � / [E1,E2, ...,En ] | E E | λV : T .E

where n >0 and each of E1,E2, ...,En are expressions of the same type. We omit
the type of the bound variable in a λ-abstraction if it can be inferred, and we
write E1�E2 for �/ [E1,E2 ]. Included in the constants C are constant functions
such as the addition function + on integers (written infix as usual) and integer lit-
erals 0, 1,−1, .... The typing rules are standard; in particular, �/ [E1,E2, ...,En ],
has type T if all Ei do.

Boolean formulas are formed using equality E1 = E2 and refinement E1 ← E2

of expressions as well as universal and existential quantification and the propo-
sitional connectives in the usual way. We use the same type of Booleans both
for programs and for formulas about them, but only some Boolean expressions
are practical in programs (e.g., propositional connectives and equality at base
types). Additionally, in order to state the axioms, we need a predicate pure(E)
to distinguish a subclass of expressions, called pure expressions. The intention is
to define a semantics in which a pure expression denotes a single value, except
for lambda abstractions with impure bodies, which denote a set of functions. We
add rules such that pure(E) holds if E is
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– a constant C applied to any number of pure arguments (including C itself if
there are no arguments),

– a lambda abstraction (independent of whether its body is pure).

Like any predicate symbol, purity is closed under equality, i.e., if E1 is pure and
we can prove E1 = E2, then so is E2. For example, 2 and E1 + E2 for pure E1

and E2 are pure because 2 and + are constants. Also λy . 1 � y is pure because
it is a lambda abstraction, and (λx . λy . x � y) 1 is pure because it is equal by
β-reduction (see below) to the former. Furthermore, 2 � 2 is pure because it
is equal to 2 (using the axioms given below), but (λy . 1 � y) 2 and 1 � 2 are
both impure. In what follows we use lowercase letters for pure expressions and
uppercase letters for possibly impure expressions.

The reason for introducing pure expressions is in the statement of our first
two axioms, the rules of β and η conversion. The β rule is that if e is a pure
expression, then

(λx .E ) e = E (x := e) (4)

where E (x :=e) denotes the expression E with all free occurrences of x replaced
by e. Intuitively, the purity restriction to β-reduction makes sense because the
bound variable of the lambda abstraction only ranges over values and therefore
may only be substituted with pure expressions.

The η rule asserts that if f is a pure function, then

f = λx . f x (5)

The purity restriction to η-expansion makes sense because lambda-abstractions
are always pure and thus can never equal an impure function.

Our notion of purity corresponds to the proper expressions of [3] except that
we avoid the axiom that variables are pure. Our first draft used that axiom,
but we were unable to formalise the calculus until we modified that aspect.
The reason why the axiom is problematic is that it forces a distinction between
meta-variables (which may be impure) and object variables (which must be
pure). That precludes using higher-order abstract syntax when representing and
reasoning about the language, e.g., in a logical framework like [2], and highly
complicates the substitution properties of the language. However, just like in [3],
our binders will range only over values, which our calculus captures by adding a
purity assumption for the bound variable whenever traversing into the body of a
binder. For example, the ξ rule for equality reasoning under a lambda becomes:

pure(x) � E = F

� λx.E = λx.F
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As we will see below, without the above purity restrictions we could derive
a contradiction with the remaining five axioms, which are as follows:

E1 ← E2 ⇔ ∀x : x ← E1 ⇒ x ← E2 (6)
E1 = E2 ⇔ ∀x : x ← E1 ⇔ x ← E2 (7)

x ← �/ [E1,E2, ...,En ] ⇔ x ← E1 ∨ x ← E2 ∨ ... ∨ x ← En (8)
x ← F E ⇔ ∃f , e : f ← F ∧ e ← E ∧ x ← f e (9)
f ← λx .E ⇔ ∀x : f x ← E (10)

Recall that free lower case variables range over pure expressions only, i.e., the
free variables x and f are assumed pure.

From (6) and (7) we obtain that (←) is reflexive, transitive and anti-
symmetric. From (8) we obtain that (�) is associative, commutative and idem-
potent. Axioms (8) and (9) are sufficient to establish

F (�/ [E1,E2, ...,En ]) = �/ [F E1,F E2, ...,F En ] (11)

Here is the proof:

x ← F (�/ [E1,E2, ...,En ])
⇔ { (9) }

∃f , e : f ← F ∧ e ← � / [E1,E2, ...,En ] ∧ x ← f e
⇔ { (8) }

∃i , f , e : f ← F ∧ e ← Ei ∧ x ← f e
⇔ { (9) }

∃i : x ← F Ei

⇔ { (8) }
x ← � / [F E1,F E2, ...,F En ]

It follows from (11) and (4) that

(λx . x + x ) (1 � 2) = (λx . x + x ) 1 � (λx . x + x ) 2 = 2 � 4

If, however, (4) was allowed to hold for arbitrary expressions, then we would
have

(λx . x + x ) (1 � 2) = (1 � 2) + (1 � 2) = 2 � 3 � 4

which is a contradiction.
We can also show, for example, that λx . x � 3 and id � const 3 are different

functions even though they are extensionally the same:

(λx . x � 3) x = x � 3 = (id � const 3) x

Consider the function h = λf . f 1 + f 2. We have by β reduction that

h (λx . x � 3) = (λx . x � 3) 1 + (λx . x � 3) 2 = (1 � 3) + (2 � 3) = 3 � 4 � 5 � 6
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while, on account of (11), we have

h (id � const 3) = h id � h (const 3) = (1 + 2) � (3 + 3) = 3 � 6

Thus two nondeterministic functions can be extensionally equal without being
the same function. That explains the restriction of the η rule to pure functions.
Finally, (9) gives us that

G1 ← G2 ⇒ F · G1 ← F · G2

F1 ← F2 ⇒ F1 · G ← F2 · G
where (·) = (λf . λg . λx . f (g x )).

To complete the presentation of the calculus, we need to give the rules for the
logical operators used in the axioms. The rule for the propositional connectives
are the standard ones and are omitted. But the rules for the quantifies are subtle
because we have to ensure the quantifiers range over pure expressions only. In
single-conclusion natural deduction style, these are

pure(x) � F
� ∀x:F

� ∀x:F � pure(e)
� F (x:=e)

� F (x:=e) � pure(e)
� ∃x:F

� ∃x:F pure(x), F � G
� G

Here pure(e) is the purity predicate, whose axioms are described above.

4 A Denotational Semantics

To establish the consistency of the axiomatisation we give a denotational seman-
tics for nondeterministic expressions. As the target language of our semantics,
we use standard set theory, with the notations A → B and λx ∈ A.b for functions
(with ∈ A omitted if clear).

Overview. The basic intuition of the interpretation function �−� is given in the
following table where we write P

∗ A for the set of non-empty subsets of A:

Syntax Semantics

type T set �T �

context declaring x : T environment mapping ρ : x �→ �T �

expression E : T non-empty subset �E� ∈ P
∗�T �

refinement E1 ← E2 subset �E1�ρ ⊆ �E2�ρ

function type S → T set–valued functions �S� → P
∗�T �

choice E1 � E2 union �E1�ρ ∪ �E2�ρ

purity pure(E) for E : T �E�ρ is generated by a single v ∈ �T �
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Thus, types denotes sets, and non-deterministic expressions denote sets of
values. Functions are set-valued, and choice is simply union.

Additionally, for each type T , we will define the operation

�T � � v �→ v← ∈ P
∗�T �,

which embeds the single (deterministic) values into the power set. We call it
refinement closure because v← is the set of all values that we want to allow as
a refinement of v. This allows defining the refinement ordering �T on �T � by
v �T w iff v← ⊆ w←. While we will not need it in the sequel, it is helpful to define
because for every expression E : T , the set �E� will be downward closed with
respect to �T . One could add an expression ⊥ as a value with no refinements
other than itself, which denotes the empty set. But doing so would mean that ⊥
would be a refinement of every expression, which we choose not to have. That
explains the restriction to non-empty sets in our semantics. Note that �T is not
the same as the usual approximation ordering on Haskell expressions of a given
type with ⊥ as the least element.

Choice and Refinement. We define

��/[E1, ..., En]�ρ = �E1�ρ ∪ . . . ∪ �En�ρ

This captures our intuition that a choice refines to any of its arguments, i.e., it
denotes all values denoted by any argument. This is tied to the intuition that
the refinement property corresponds to the subset condition on denotations. For
example, E1 ← E1 � E2 corresponds to �E1�ρ ⊆ �E1 � E2�ρ.

Pure expressions e : T cannot be properly refined. At base types, they are
interpreted as singletons. For the general case, we have to relax this idea some-
what and require only �e�ρ = v← for some v ∈ �T �.

Variables. As usual, expressions with free variables are interpreted relative to
an environment ρ. Analogously to variables ranging over pure expressions, the
environment maps every variable x : T to a value v ∈ �T � (but not to a subset of
�T � as one might expect). Consequently, the denotation of a variable is defined
by applying the refinement closure

�x�ρ = ρ(x)←

Base Types and Constants. The interpretation of base types is straightforward,
and we define

�Int � = Z

�Bool � = B

Moreover, we define v← = {v} for v ∈ �B� for every base type B. In particular,
we have v �B w iff v = w. In other words, the refinement ordering on base types
is flat.
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We would like to interpret all constants C in this straightforward way as
well, but that is not as easy. In general, we assume that for every user-declared
constant C : T , a denotation C ∈ �T � is provided. Then we define

�C�ρ = C
←

.

However, we cannot simply assume that C is the standard denotation that we
would use to interpret a deterministic type theory. For example, for + :Int →
Int → Int , we cannot define + as the usual addition +Z : Z → Z → Z because
we need a value + : Z → P

∗(Z → P
∗
Z).

For first-order constants, i.e., constants C : B1 → . . . → Bn → B where B
and all Bi are base types (e.g., the constant +), we can still lift the standard
interpretation relatively easily: If f : �B1� → . . . → �Bn� → �B� is the intended
interpretation for C, we define

C : �B1� → P
∗(�B2� → . . . → P

∗(�Bn� → P
∗�B�) . . .)

by
C = λx1.{λx2. . . . {λxn.{f x1 . . . , xn}} . . .}

Because all Bi are base types, this yields we have �C�ρ = C
←

= {C}. For n = 0,
this includes constants C : B, e.g., �1�ρ = {1} and accordingly for all integer
literals.

But we cannot systematically lift standard interpretations of higher-order
constants C accordingly. Instead, we must provide C individually for each higher-
order constant. But for the purposes of program calculation, this is acceptable
because we only have to do it once for the primitive constants of the language.
In [3], this subtlety is handled by restricting attention to first-order constants.

Functions. We define the interpretation of function types as follows:

�S → T � = �S� → P
∗�T �

and for f ∈ �S → T � we define

f← = {g : �S → T � | g(v) ⊆ f(v) for all v ∈ �S�}

Thus, the refinement ordering on functions acts point-wise: g �S→T f iff g(v) ⊆
f(v) for all v ∈ �S�.

For example, there are nine functions of type �Bool → Bool � with B = {0, 1}
whose tables are as follows:

f0 f1 f2 f3 f4 f5 f6 f7 f8
0 {0, 1} {0, 1} {0} {1} {0, 1} {0} {0} {1} {1}
1 {0, 1} {0} {0, 1} {0, 1} {1} {0} {1} {0} {1}

For example, f7 = ¬ is the lifting of the usual negation function. The ordering
�Bool→Bool has top element f0 and the four bottom elements f5, f6, f7 and f8.
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Finally, the clauses for the denotation of λ and application terms are

�λx : S.E�ρ = (λv ∈ �S�.�E�ρ(x:=v))← (12)

�F E�ρ =
⋃

{f(e) | f ∈ �F �ρ, e ∈ �E�ρ} (13)

Here the notation ρ(x := v) means the environment ρ extended with the binding
of v to x. Because every expression in already interpreted as a set and function
expressions must be interpreted as set-valued functions, a λ-abstraction can be
interpreted essentially as the corresponding semantic function. We only need to
apply the refinement closure. Equivalently, we could rewrite (12) using

(λv ∈ �S�.�E�ρ(x:=v))← = {f | f(v) ⊆ �E�ρ(x:=v) for all v ∈ �S�}

The clause for application captures our intuition of monotonicity of refinement:
F E is interpreted by applying all possible denotations f of F to all possible
denotations e of E; each such application returns a set, and we take the union
of all these sets.

Formulas. Because formulas are a special case of expressions, they are inter-
preted as non-empty subsets of �Bool� = {0, 1}. We write � for the truth value
{1} denoting truth. The truth value {0, 1} will never occur (unless the user
wilfully interprets a constant in a way that returns it).

The denotation of all Boolean constants and expressions is as usual. The
denotation of the quantifiers and the special predicates is defined by:

�E1 ← E2�ρ = � iff �E1�ρ ⊆ �E2�ρ (14)
�pure(E)�ρ = � iff �E�ρ = v← for some v ∈ �S� (15)
�∀Sx : F �ρ = � iff �F �ρ(x:=v) = � for all v ∈ �S� (16)
�∃Sx : F �ρ = � iff �F �ρ(x:=v) = � for some v ∈ �S� (17)

Note that the quantified variables seamlessly range only over values.

Soundness and Consistency. We can now state the soundness of our calculus as
follows:

Theorem 1 (Soundness). If F is provable, then �F �ρ = � for every environ-
ment ρ for the free variables of F . In particular, if E1 ← E2 is provable, then
�E1�ρ ⊆ �E2�ρ for all environments ρ.

Proof. As usual, the proof proceeds by induction on derivations.
In particular, we must justify the axioms (4)–(10). We concentrate on (4),

which requires us to show

�(λx : S.E) e�ρ = �E(x := e)�ρ
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for all expressions E , all pure expressions e and all environments ρ. The proof
divides into two cases according to the two axioms for purity: either e is an
application of a constant to pure arguments, in which case �e�ρ is a singleton
set, or e is a lambda abstraction. For the former we will need the fact that
if e is single-valued, then �E(x := e)�ρ = �E�ρ(x:=!�e�ρ) where !{v} = v. This
substitution lemma can be proved by structural induction on E . That means we
can argue:

�(λx : S.E) e�ρ

= {13}⋃{f(v) | f ∈ �λx.E�ρ, v ∈ �e�ρ}
= {12}⋃{f(v) | f(w) ⊆ �E�ρ(x:=w) for all w ∈ �S�, v ∈ �e�ρ}
= {subsumed sets can be removed from a union}⋃{f(v) | f(w) = �E�ρ(x:=w) for all w ∈ �S�, v ∈ �e�ρ}
= {�e�ρ ⊆ �S�}⋃{�E�ρ(x:=v) | v ∈ �e�ρ}
= {e is single-valued}
�E�ρ(x:=!�e�ρ)

= {substitution lemma}
�E(x := e)�ρ

For the second case, where e is a lambda abstraction λy : T .F , we need the
fact that

�(λx.E) (λy.F )�ρ = �E�ρ(x:=λv.�F �ρ(y:=v))

This fact can be established as a corollary to the monotonicity lemma which
asserts �E�ρ(x:=f) ⊆ �E�ρ(x:=g) whenever f(v) ⊆ g(v) holds for all v ∈ �S�. for
all expressions E and environments ρ. The monotonicity lemma can be proved
by structural induction on E . The corollary above is now proved by reasoning

�(λx.E) (λy.F )�ρ

= {13}⋃{h(f) | h ∈ �λx.E�ρ, f ∈ �λy.F �ρ}
= {as in previous calculation}⋃{�E�ρ(x:=f) | f ∈ �λy.F �ρ}
= {12}⋃{�E�ρ(x:=f) | f(v) ⊆ �F �ρ(y:=v) for all v ∈ �T �}
= {⊆-direction: monotonicity lemma; ⊇-direction: X ⊆ ⋃

Y if X ∈ Y }
�E�ρ(x:=λv.�F �ρ(y:=v))

It remains to show that the latter is equal to �E(x := λy.F )�ρ. Here we proceed
by structural induction on E . We omit the details. The other axioms are proved
by similar reasoning.

As a straightforward consequence of soundness, we have

Theorem 2 (Consistency). Our calculus is consistent, i.e., we cannot derive
a contradiction.
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Proof. If we could derive a contradiction, then soundness would yield a contra-
diction in set theory.

Technically, our calculus is only consistent under the assumption that set theory
is consistent. We can strengthen that result by using a much weaker target
language than set theory for our semantics. Indeed, standard higher-order logic
(using an appropriate definition of power set) is sufficient.

5 Summary

The need for nondeterministic functions arose while the first author was prepar-
ing a text on an introduction to Algorithm Design using Haskell. The book,
which is co-authored by Jeremy Gibbons, will be published by Cambridge Uni-
versity Press next year. Two of the six parts of the book are devoted to greedy
algorithms and thinning algorithms. To make the material as accessible as possi-
ble, we wanted to stay close to Haskell and that meant we did not want to make
the move from functions to relations, as proposed for instance in [1]. Instead,
we made use of just two nondeterministic functions, MinWith and ThinBy (or
three if you count MaxWith), and reasoned about refinement rather than equal-
ity when the need arose. The legitimacy of the calculus, as propounded above,
is not given in the book. The problems associated with reasoning about nonde-
terminism were discussed at the Glasgow meeting of WG2.1 in 2016, when the
second author came on board. Our aim has been to write a short and hopefully
sufficient introduction to the subject of nondeterminism for functional program-
mers rather than logicians. In this enterprise we made much use of the very
readable papers by Joe Morris and Alexander Bunkenberg.

Appendix

Here is the example, known as the paragraph problem. Consider the task of
dividing a list of words into a list of lines so that each line is subject to a
maximum line width of w . Each line is a list of words and its width is the sum
of the length of the words plus the number of inter-word spaces. There is an
obvious greedy algorithm for this problem, namely to add the next word to the
current line if it will fit, otherwise to start a newline with the word. For what
cost function does the greedy algorithm produce a division with minimum cost?

The obvious answer is that such a division has the minimum possible number
of lines. So it has, but we cannot calculate this algorithm from a specification
involving minWith length. To see why, consider a list of words whose lengths are
[3, 6, 1, 8, 1, 8] (the words are not important, only their lengths matter). Taking
w = 12, there are four shortest possible layouts, of which two are

p1 = [[3, 6, 1], [8], [1, 8]]
p2 = [[3, 6], [1, 8, 1], [8]]
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Let add x p be the function that adds the next word x to the end of the last
line if the result will still fit into a width of 12, or else begins a new line. In
particular

q1 = add 2 p1 = [[3, 6, 1], [8], [1, 8], [2]]
q2 = add 2 p2 = [[3, 6], [1, 8, 1], [8, 2]]

We have

length p1 � length p2 ∧ length q1 > length q2

so the monotonicity condition fails. The situation can be redeemed by strength-
ening the cost function to read

cost p = (length p,width (last p))

In words one paragraph costs less than another if its length is shorter, or if the
lengths are equal and the width of the last line is shorter. Minimising cost will
also minimise length. This time we do have

cost p � cost p′ ⇒ cost (add x p) � cost (add x p′)

as can be checked by considering the various cases, so the monotonicity condition
holds. However, we also have

cost (add 5 p1) = cost (add 5 p2) = (4, 5)

and cost p2 < cost p1, so the strong monotonicity condition (1) fails.
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1 Introduction

Extensional type theory (ETT [23]) is a convenient setting for formalising math-
ematics: equality reflection allows replacing provably equal objects with each
other without the need for any clutter. On paper this works well, however com-
puter checking ETT preterms is hard because they don’t contain enough infor-
mation to reconstruct their derivation. From Hofmann [16] and later work [26,32]
we know that any ETT derivation can be rewritten in intensional type theory
(ITT) extended with two axioms: function extensionality and uniqueness of iden-
tity proofs (UIP). ITT preterms contain enough information to allow computer
checking, but the extra axioms1 introduce an inconvenience: they prevent certain
computations. The axioms act like new neutral terms which even appear in the
empty context: a boolean in the empty context is now either true or false or a
1 The problem is only with the axiom of function extensionality as adding UIP using
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neutral term coming from the axiom. This is a practical problem: for computer
formalisation one main advantage of type theory over to set theory is that cer-
tain equalities are trivially true by computation, and the additional axioms limit
this computational power.

In general, the usage of an axiom is justified by a model [18] in which the
axiom holds. For example, the cubical set model [8] justifies the univalence axiom,
the reflexive graph model [6] justifies parametricity, the groupoid model [19] jus-
tifies the negation of UIP, the setoid model [1,17] justifies function extensionality.
A model can help designing a new type theory in which the axiom holds and
which has full computational power, i.e. normalisation. Examples are cubical
type theory [12] inspired by the cubical set model [8] and observational type
theory [4] inspired by the setoid model [1].

In this paper we revisit the problem of designing a type theory based on
the setoid model. We derive setoid type theory from the setoid model using an
intermediate syntactic translation.

Most models interpret syntactic objects by metatheoretic structures, usually
the ones they are named after. In the cubical model, a context (or a closed
type) is a cubical set, in the groupoid model a context is a groupoid, and so on.
Syntactic models [10] are special kinds of models: they interpret syntax by the
syntax of another (or the same) theory. We call the interpretation function into
such a model a syntactic translation. Equal (convertible) terms are equal objects
in a model, which means that convertible terms are translated to convertible
terms in the case of a syntactic model. This restricts the number of models that
can be turned into syntactic models. A sufficient (but not necessary) criterion
to turn a model into a syntactic model is the strictness of the model which
means that all the equality proofs in the model are given by reflexivity (i.e.
they are definitional equalities of the metatheory). Giving the metatheory an
explicit syntax and renaming it target theory, a strict model can be turned into
a syntactic translation from the source theory to the target theory. We will give
examples of this process later on.

The setoid model given by Altenkirch [1] is a strict model, hence it can be
phrased as a syntactic translation. A closed type in the setoid model is a set
together with an equivalence relation. There are several ways to turn this model
into a syntactic model, but in one of these a closed type is given by (1) a type,
(2) a binary relation on terms of that type and (3) terms expressing that the
relation (2) is reflexive, symmetric and transitive. We will define the syntax for
setoid type theory by reifying parts of this model: we add the definitions of the
relation (2) and its properties (3) as new term formers to type theory. The new
equality type (identity type) will be the relation (2). The equalities describing
the translation will be turned into new definitional equality rules of the syntax.
Thus the new equality type will satisfy function extensionality and propositional
extensionality by definition.

We also extend the setoid translation with a new rule making the elimination
principle of equality compute definitionally.
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In this paper we do not aim to give a precise definition of the notion of
syntactic model or the relationship between different kinds of models. Our main
goal is to obtain a convenient syntax for setoid type theory.

Structure of the Paper. After summarising related work, in Sect. 2 we introduce
MLTTProp, Martin-Löf type theory extended with a definitionally proof irrelevant
universe of propositions [14]. In Sect. 3, we illustrate how to turn models into
syntactic translations by the examples of the standard (set) model and the graph
model. One of the syntactic translation variants of the graph model turns out to
be Bernardy et al.’s parametricity translation [7]. The model corresponding to
this translation is not strict, showing that strictness is not a necessary condition
for a model to have a syntactic variant. In Sect. 4 we define the setoid model
as a syntactic translation. We also show that this translation can be extended
with a new component saying that transport (the eliminator of equality) com-
putes definitionally. In Sect. 5, we reflect the setoid translation into the syntax
of MLTTProp obtaining a new definition of a heterogeneous equality type. We
also show that the translation of Sect. 4 extends to this new equality type and
we compare it to the old-style inductive definition of equality. We conclude in
Sect. 6.

Contributions. Our main contribution is the new heterogeneous equality type
which, as opposed to John Major equality [4], is not limited to proof-irrelevant
equality and is much simpler than cubical equality types [12,28]. As opposed to
[4,28] we do not need to go through extensional type theory to justify our syntax
but we do this by a direct translation into a pure intensional type theory. In
addition to function extensionality, our setoid type theory supports propositional
extensionality and a definitional computation rule for transport, which is also a
new addition to the setoid model. The results were formalised in Agda.

Formalisation. The model variant (|– |0 variant in Sect. 3) of the setoid trans-
lation has been formalised [21] in Agda using the built-in definitionally proof
irrelevant Prop universe of Agda. The formalisation includes the definitional com-
putation rule for transport and does not use any axioms. In addition to what is
described in this paper, we show that this model supports quotient types and
universes of sets where equality is given by equality of codes.

1.1 Related Work

A general description of syntactic translations for type theory is given in [10].
In contrast with this work, our translations are defined on intrinsic (well-typed)
terms. A translation inspired by [7] for deriving computation rules from univa-
lence is given in [30]. This work does not define a new type theory but recovers
some computational power lost by adding the univalence axiom. A syntactic
translation for the presheaf model is given in [20].

The setoid model was first described by [17] in order to add extensionality
principles to type theory such as function extensionality and equality of logically
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equivalent propositions. A strict variant of the setoid model was given by [1] using
a definitionally proof-irrelevant universe of propositions. Recently, support for
such a universe was added to Agda and Coq [14] allowing a full formalisation
of Altenkirch’s setoid model. Observational type theory (OTT) [4] is a syntax
for the setoid model differing from our setoid type theory by using a different
notion of heterogeneous equality type, McBride’s John Major equality [25]. We
show the consistency of our theory using the setoid translation, while OTT is
translated to extensional type theory for this purpose [4]. XTT [28] is a cubical
variant of observational type theory where the equality type is defined using an
interval pretype. Supporting this pretype needs much more infrastructure than
our new rules for setoid type theory.

A very powerful extensionality principle is Voevodsky’s univalence axiom [27].
The cubical set model of type theory [8] is a constructive model justifying this
axiom. A type theory extracted from this model is cubical type theory [12]. The
relationship between the cubical set model and cubical type theory is similar to
the relationship between the setoid model and setoid type theory.

Previously we attempted to use a heterogeneous equality type similar to the
one coming from the setoid translation to define a cubical type theory [3]. This
work however is unfinished: the combinatorial complexity arising from equalities
between equalities so far prevents us from writing down all the computation
rules for that theory. In the setoid case, this blow up is avoided by forcing the
equality to be a proposition.

Compared to cubical type theories [12,28], our setoid type theory has the
advantage that the equality type satisfies more definitional equalities: while in
cubical type theory equality of pairs is isomorphic2 to the pointwise equalities of
the first and second components, in our case the isomorphism is replaced by a
definitional equality. The situation is similar for other type formers. These addi-
tional definitional equalities are the main motivation for Herbelin’s proposal for
a cubical type theory [15]. As setoid type theory supports UIP (Streicher’s axiom
K, [29]), it is incompatible with full univalence. The universe of propositions in
setoid type theory satisfies propositional extensionality, which is the version of
univalence for mere propositions. However, this is not a subobject classifier in
the sense of Topos Theory since it doesn’t classify propositions in the sense of
HoTT (it seems to be a quasi topos though).

Setoid type theory is not homotopy type theory restricted to homotopy level
0 (the level of sets, or h-sets). This is because the universe of propositions we
have is static: we don’t have that for any type, if any two elements of it are
equal, then it is a proposition. The situation is similar for the groupoid model
[19] which features a static universe of sets (h-sets).

2 This is a definitional isomorphism: A and B are definitionally isomorphic, if there
is an f : A → B, a g : B → A and λx.f (g x) = λx.x and vice versa where = is
definitional equality.
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2 MLTTProp

MLTTProp is an intensional Martin-Löf type theory with Π, Σ, Bool types and
a static universe of strict propositions. We present MLTTProp using an algebraic
(intrinsic) syntax [2], that is, there are only well-typed terms so preterms or
typing relations are never mentioned. Conversion (definitional equality) rules are
given by equality constructors (using the metatheoretic equality =), so the whole
syntax is quotiented by conversion. As a consequence, all of the constructions in
this paper have to preserve typing and definitional equality. In this section we
explain the syntax for this type theory listing the most important rules. The full
signature of the algebraic theory MLTTProp is given in Appendix A.

There are four sorts: contexts, types, substitutions and terms. Contexts and
types are stratified into separate (predicative, cumulative) levels, as indicated
by the indices i, j. In the Agda formalisation we use explicit lifting operations
instead of cumulativity.

Coni : Set
Γ : Coni

Tyj Γ : Set
Γ : Coni Δ : Conj

SubΓ Δ : Set
Γ : Coni A : Tyj Γ

TmΓ A : Set

We use the following naming conventions for metavariables: universe levels
i, j; contexts Γ,Δ,Θ,Ω; types A,B,C; terms t, u, v, w, a, b, c, e; substitutions
δ, ν, τ, ρ. Constructors of the syntax are written in red to help distinguish from
definitions. Most constructors have implicit arguments, e.g. type substitution
below –[–] takes the two contexts Γ and Δ as implicit arguments.

The syntax for the substitution calculus is the following. It can also be seen
as an unfolding of category with families (CwF, [13]) with the difference that we
write variable names and implicit weakenings instead of De Bruijn indices.

· : Con0

Γ : Coni A : Tyj Γ

(Γ , x : A) : Coni�j

A : Tyi Δ δ : SubΓ Δ

A[δ] : Tyi Γ

Γ : Coni

idΓ : SubΓ Γ
δ : SubΘ Δ ν : SubΓ Θ

δ ◦ ν : SubΓ Δ
Γ : Coni

εΓ : SubΓ ·
δ : SubΓ Δ t : TmΓ (A[δ])

(δ , x �→ t) : SubΓ (Δ, x : A)
δ : SubΓ (Δ, x : A)

δ : SubΓ Δ

δ : SubΓ (Δ, x : A)
x[δ] : TmΓ (A[δ])

t : TmΔA δ : SubΓ Δ
t[δ] : TmΓ (A[δ]) [Id] : A[id] = A [◦] : A[δ ◦ ν] = A[δ][ν]

id◦ : id ◦ δ = δ ◦id : δ ◦ id = δ ◦◦ : (δ ◦ ν) ◦ τ = δ ◦ (ν ◦ τ)

·η : (δ : SubΓ ·) = ε , β0 : (δ , x �→ t) = δ , β1 : x[(δ , x �→ t)] = t

, η : (δ , x �→ x[δ]) = δ , ◦ : (δ , x �→ t) ◦ ν = (δ ◦ ν , x �→ t[ν])

There are two ways of forming a context: the empty context and context exten-
sion (or comprehension; here i � j denotes the maximum of i and j). In context
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extension, the : after the variable x is just notation, it differs from the metathe-
oretic colon. A substitution SubΓ Δ can be thought of as a list of terms, one
for each type in Δ, all given in context Γ . Such a substitution δ acts on a type
A : Tyi Δ by A[δ] : Tyi Γ . Note that –[–] is a constructor, not an operation, that
is, we are defining an explicit substitution calculus. There are five ways to form
substitutions: identity id, composition –◦–, the empty substitution ε, extending
a substitution with a term and forgetting the last term in the substitution (this
is an implicit constructor). Terms can be formed using a variable (projecting out
the last component from a substitution) and by action of a substitution.

We use variable names for readability, however these should be understood
formally as the well-typed De Bruijn indices of CwFs, hence we consider α-
equivalent terms equal. In the formalisation we use De Bruijn indices. We denote
variables by x, y, z, f , γ, α.

The equalities of the substitution calculus can be summarised as follows:
type substitution is functorial, contexts and substitutions form a category with
a terminal object · and substitutions SubΓ (Δ, x : A) are in a natural one-to-one
correspondence with substitutions δ : SubΓ Δ and terms TmΓ (A[δ]). Ordinary
variables can be recovered by x := x[id]. Weakenings are implicit.

In equation ·η, a type annotation is added on δ to show that this equation is
only valid for δs with codomain ·. Implicit weakenings are present in equations
, β0 and , η. Note that equation , ◦ is only well-typed because of a previous
equation: t[ν] has type A[δ][ν], but it needs type A[δ ◦ ν] to be used in an
extended substitution. In our informal notation, we use extensional type theory
[23] as metatheory, hence we do not write such transports explicitly.3 However all
of our constructions can be translated to an intensional metatheory with function
extensionality and uniqueness of identity proofs (UIP) following [16,26,32].

We sometimes omit the arguments written in subscript as e.g. we write id
instead of idΓ . We write t[x �→ u] for t[(id , x �→ u)].

Dependent function space is given by the following syntax.

A : Tyi Γ B : Tyj (Γ , x : A)
Π(x : A).B : Tyi�j Γ

t : Tm (Γ , x : A)B

λx.t : TmΓ (Π(x : A).B)

t : TmΓ (Π(x : A).B)
t@x : Tm (Γ , x : A)B

Πβ : (λx.t)@x = t Πη : λx.t@x = t

Π[] : (Π(x : A).B)[ν] = Π(x : A[ν]).B[ν] λ[] : (λx.t)[ν] = λx.t[ν]

We write A ⇒ B for Π(x : A).B when x does not appear in B. The usual appli-
cation can be recovered from the categorical application @ using a substitution
and we use the same @ notation: t@u := (t@x)[x �→ u]. Π[] and λ[] are the sub-
stitution laws for Π and λ, respectively. A substitution law for @ can be derived
using λ[], Πβ and Πη.

3 Note that this does not mean that when defining our setoid model we rely on exten-
sionality of the metatheory: our models will be given as syntactic translations as
described in Sect. 3.



Setoid Type Theory—A Syntactic Translation 161

The syntax of dependent pairs and booleans follows the same principles and
is given in Appendix A for the completeness of the presentation.

We have a hierarchy of universes of strict propositions. Any two elements of
a proposition are definitionally equal: this is expressed by the rule irra (recall
that = is the equality of the metatheory).

Propi : Tyi+1 Γ

a : TmΓ Propi

a : Tyi Γ

u : TmΓ a v : TmΓ a

irra : u = v

This universe is closed under dependent function space, dependent sum, unit and
empty types. Decoding an element of Prop is written using underline instead of
the usual El. We use a, b, c as metavariables of type Prop and lowercase π and
σ for the proposition constructors. The domain of the function space needs not
be a proposition however needs to have the same universe level. For π and σ the
constructors and destructors are overloaded. We also write ⇒ and × for the non-
dependent versions of π and σ. The syntax is given below (for the substitution
laws see Appendix A).

A : Tyi Γ b : Tm (Γ , x : A)Propj

π(x : A).b : TmΓ Propi�j

t : Tm (Γ , x : A) b

λx.t : TmΓ π(x : A).b

t : TmΓ π(x : A).b

t@x : Tm (Γ , x : A) b

a : TmΓ Propi b : Tm (Γ , x : a)Propj

σ(x : a).b : TmΓ Propi�j

u : TmΓ a v : TmΓ b[x �→u]

(u , v) : TmΓ σ(x : a).b

t : TmΓ σ(x : a).b

pr0 t : TmΓ a

t : TmΓ σ(x : a).b

pr1 t : TmΓ a[x �→ pr0 t]

� : TmΓ Prop0 tt : TmΓ � ⊥ : TmΓ Prop0

C : Tyi Γ t : TmΓ ⊥
exfalso t : TmΓ C

Note that we do not need to state definitional equalities of proofs of propositions
such as β for function space, as they are true by irr. Definitional proof-irrelevance
also has the consequence that for any two pairs (t , u) and (t′ , u′) which both
have type Σ(x : A).b, whenever t = t′ we have (t , u) = (t′ , u′). We will use this
fact later.

3 From Model to Translation

In this section, as a warm-up for the setoid translation, we illustrate the differ-
ences between models and syntactic translations by defining three different syn-
tactic translation variants of the standard model (Subsect. 3.1) and then showing
what the corresponding translations for the graph model are (Subsect. 3.2). One
of these will be the parametricity translation of Bernardy et al. [7].

A model of MLTTProp is an algebra of the signature given in Sect. 2 and fully
in Appendix A. In categorical terms, a model is a CwF with extra structure but
informally expressed with named variables. The syntax is the initial model which
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means that for every model M there is an unique interpretation function from
the syntax to M (usually called the recursor or eliminator). Below we define
models by their interpretation functions: we first provide the specification of the
functions (what contexts, types, substitutions and terms are mapped to), then
provide the implementation of the functions by listing how they act on each
constructor of the syntax. This includes the equality constructors (conversion
rules) that the interpretation needs to preserve. For a formal definition of how
to derive the notion of model, interpretation function and related notions from
a signature, see [22].

As opposed to the notion of model, the notion syntactic model (or its inter-
pretation function, syntactic translation) is informal. Contexts in a model are
usually given by some metatheoretic structure (e.g. sets, graphs, cubical sets,
setoids, etc.) and similarly for types, substitutions and terms. In a syntactic
model, contexts are given by syntax of another type theory called the target
theory (this syntax could be contexts of the target theory, terms of the tar-
get theory, or a combination of both and also some equalities, etc.). We will
illustrate the possibilities with several examples below. It is usually harder to
define syntactic models than models, because of the equalities (conversion rules)
the model has to satisfy. In a model these equalities are propositional equalities
of the metatheory, while in a syntactic model equalities are definitional equal-
ities (conversion rules) of the target theory. A basic example to illustrate this
difference is given by extensional type theory (ETT). ETT has a model in an
intensional metatheory with function extensionality (the standard interpreta-
tion |– |0 below works: equality reflection is mapped to function extensionality).
However there is no syntactic translation from extensional type theory to inten-
sional type theory with function extensionality (the [16,26,32] translations do
not preserve definitional equalities).

In the following, |– |0 is a model and |– |1, |– |2 and |– |3 are variants which
are syntactic translations.

3.1 Standard Model

The standard interpretation |– |0 (aka set interpretation, or metacircular inter-
pretation) is specified as follows.

Γ : Coni

|Γ |0 : Seti

A : Tyj Γ

|A|0 : |Γ |0 → Setj

δ : SubΓ Δ
|δ|0 : |Γ |0 → |Δ|0

t : TmΓ A
|t|0 : (γ : |Γ |0) → |A|0 γ

Contexts are mapped to metatheoretic types, types to families of types over the
interpretation of the context, substitutions become functions and terms depen-
dent functions. We illustrate the implementation by listing some components for
contexts and function space.

|·|0 := �
|Γ , x : A|0 := (γ : |Γ |0) × |A|0 γ

|Π(x : A).B|0 γ := (α : |A|0 γ) → |B|0 (γ, α)
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|λx.t|0 γ α := |t|0 (γ, α)
|t@x|0 (γ, α) := |t|0 γ α

|Πβ|0 : |(λx.t)@x|0 (γ, α) = |λx.t|0 γ α = |t|0 (γ, α)

The empty context is interpreted by the unit type (note that it is written in
black, this is just the metatheoretic unit). Extended contexts are interpreted by
metatheoretic Σ types, Π types are interpreted by function space, λ becomes
metatheoretic abstraction, @ becomes function application, Πβ and Πη hold by
definition.

The Standard Interpretation |– |1. If we make the metatheory explicit, the pre-
vious set interpretation can be seen as a syntactic translation from MLTTProp

to MLTTProp extended with a hierarchy of Coquand universes. The latter is no
longer called metatheory because the metatheory is now the one in which we
talk about both the source and the target theory.

The syntax for Coquand universes4 is the following.

Ui : Tyi+1 Γ

A : Tyi Γ

cA : TmΓ Ui

a : TmΓ Ui

El a : Tyi Γ
El (cA) = A c (El a) = a

The specification of this interpretation is as follows (we don’t distinguish the
source and the target theory in our notation).

Γ : Coni

|Γ |1 : Tm ·Ui

A : Tyj Γ

|A|1 : Tm · (El |Γ |1 ⇒ Uj)

δ : SubΓ Δ
|δ|1 : Tm · (El |Γ |1 ⇒ El |Δ|1)

t : TmΓ A
|t|1 : Tm · (Π(γ :El |Γ |1).El (|A|1 @ γ))

A context becomes a term of type U in the empty target context. A type becomes
a term of a function type with codomain U. Note the difference between the
arrows → and ⇒. A substitution becomes a term of function type and a term
becomes a term of a dependent function type where we use target theory appli-
cation @ in the codomain.

The difference between |– |0 and |– |1 is that the latter uses an explicit syntax,
otherwise the constructions are the same. They both interpret contexts, types,
substitutions and terms all as terms. Type dependency is modelled by Π types
and comprehension is modelled by Σ types. The interpretation of Πβ illustrates
this nicely: apart from the target theory Πβ, Πη is needed for dealing with type
dependency and Ση for a comprehension law.

|·|1 := c�
|Γ , x : A|1 := c

(
Σ(γ :El |Γ |1).El (|A|1 @ γ)

)

|Π(x : A).B|1 := λγ.c
(
Π(α :El (|A|1 @ γ)).El (|B|1 @ (γ , α))

)

4 We learnt this representation of Russell universes from Thierry Coquand.
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|λx.t|1 := λγ.λα.|t|1 @ (γ , α)
|t@x|1 := λγ.|t|1 @ pr0 γ @ pr1 γ

|Πβ|1 : |(λx.t)@x|1 = λγ.|λx.t|1 @ pr0 γ @ pr1 γ =

λγ.(λγ.λα.|t|1 @ (γ , α))@ pr0 γ @ pr1 γ
Πβ
=

λγ.|t|1 @ (pr0 γ , pr1 γ)
Ση
= λγ.|t|1 @ γ

Πη
= |t|1

|– |1 can be seen as |– |0 composed with a quoting operation returning the syntax
of a metatheoretic term (see [5,31]).

Strict vs Non-strict Models. It is easy to implement the |– |0 interpretation in
Agda as it supports all the constructors and equalities of MLTTProp, it has Π and
Σ types with definitional η laws, and has the required hierarchy of universes.
Because all the equalities hold as definitional equalities in Agda, the proofs of
these equalities are just reflexivity. We call such a model a strict model. A strict
model can be always turned into a syntactic translation (to the metatheory as
target theory) the same way as we turned |– |0 into |– |1. A non-strict model is
one where some of the interpretations of equalities need a proof, that is, they
cannot be given by reflexivity.

Note that the notion of strict model is relative to the metatheory. The same
model can be strict in one metatheory and not in another one. For example, all
models are strict in a metatheory with extensional equality. The standard model
|– |0 is strict in Agda, however if we turn off definitional η for Σ types using the
pragma --no-eta5, it becomes non-strict as the definitional η law is needed to
interpret the syntactic equality (δ , x �→ x[δ]) = δ. The model can be still defined
because a propositional η law can be proven (the equalities of the model are
given by propositional equalities of the metatheory). However this model cannot
be turned into a syntactic translation into a target theory with no definitional
η for Σ types.

There are models which are not strict, but can be still turned into a syn-
tactic translation. An example is the 0a variant of the graph model defined in
Subsect. 3.2.

We can define two more variants of the standard model by changing what
models type dependency and comprehension. |– |2 models type dependency of
the source theory with type dependency in the target theory, but still models
comprehension using Σ types. |– |3 models type dependency by type dependency
and comprehension by comprehension.

The standard interpretation |– |2 does not need a universe in the target theory. In
general, this translation works for any source theory once the target theory has
� and Σ types (in addition to all the constructors that the source theory has).

5 Agda version 2.6.0.



Setoid Type Theory—A Syntactic Translation 165

Γ : Coni

|Γ |2 : Tyi ·
A : Tyj Γ

|A|2 : Tyj (· , γ : |Γ |2)
δ : SubΓ Δ

|δ|2 : Tm (· , γ : |Γ |2) |Δ|2
t : TmΓ A

|t|2 : Tm (· , γ : |Γ |2) |A|2
The interpretation of Πβ still needs Ση because comprehension is given by Σ
types, however the type dependency parts are dealt with by substitution laws.
For example, we use substitution to write |B|2[γ �→(γ , α)] in the interpretation
of Π while in the |– |1 variant we used application |B|1 @ (γ, α).

|·|2 := �
|Γ , x : A|2 := Σ(γ : |Γ |2).|A|2
|Π(x : A).B|2 := Π(α : |A|2).|B|2[γ �→(γ , α)]
|λx.t|2 := λα.|t|2[γ �→(γ , α)]

|t@x|2 :=
(|t|2[γ �→ pr0 γ]

)
@ pr1 γ

|Πβ|2 : |(λx.t)@x|2 =
(|λx.t|2[γ �→ pr0 γ]

)
@ pr1 γ =

(
(λα.|t|2[γ �→(γ , α)])[γ �→ pr0 γ]

)
@ pr1 γ =

(
λα.|t|2[γ �→(pr0 γ , α)]

)
@ pr1 γ

Πβ
=

|t|2[γ �→(pr0 γ , pr1 γ)]
Ση
= |t|2[γ �→ γ] = |t|2

The standard interpretation |– |3 The last variant of the standard interpretation
is simply the identity translation: everything is mapped to itself. The source and
the target theory can be exactly the same.

Γ : Coni

|Γ |3 : Coni

A : Tyj Γ

|A|3 : Tyj |Γ |3
δ : SubΓ Δ

|δ|3 : Sub |Γ |3 |Δ|3
t : TmΓ A

|t|3 : Tm |Γ |3 |A|3
Here the interpretation of Πβ obviously only needs Πβ.

|·|3 := ·
|Γ , x : A|3 := |Γ |3 , x : |A|3
|Π(x : A).B|3 := Π(x : |A|3).|B|3
|λx.t|3 := λx.|t|3
|t@x|3 := |t|3 @x

|Πβ|3 : |(λx.t)@x|3 = (λx.|t|3)@x
Πβ
= |t|3
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3.2 Graph Model

In this subsection we define variants of the graph model corresponding to the 0,
1, 2, 3 variants of the standard model. Here each syntactic component is mapped
to two components |– | and –∼ . The |– | components are the same as in the case
of the standard model.

The metatheoretic 0 variant of the graph interpretation is specified as follows.

Γ : Coni

|Γ |0 : Seti
Γ∼0 : |Γ |0 → |Γ |0 → Seti

A : Tyj Γ

|A|0 : |Γ |0 → Setj
A∼0 : Γ∼0 γ0 γ1 →

|A|0 γ0 → |A|0 γ1 → Setj

δ : SubΓ Δ

|δ|0 : |Γ |0 → |Δ|0
δ∼0 : Γ∼0 γ0 γ1 → Δ∼0 (|δ|0 γ0) (|δ|0 γ1)

t : TmΓ A

|t|0 : (γ : |Γ |0) → |A|0 γ
t∼0 : (γ01 : Γ∼0 γ0 γ1) →

A∼0 γ01 (|t|0 γ0) (|t|0 γ1)

Models of type theory are usually named after what contexts are mapped to (a
set for the set model, a setoid for the setoid model, etc.). In the graph model a
context is mapped to a graph: a set of vertices and for every two vertex, a set of
arrows between those. In short, a set and a proof-relevant binary relation over
it. Types are interpreted as displayed graphs over a base graph: a family over
each vertex and a heterogeneous binary relation over each arrow. Substitutions
become graph homomorphisms and terms their displayed variants. Note that in
the types of A∼0 , δ∼0 and t∼0 , we implicitly quantified over γ0 and γ1.

Variant 1 of the graph interpretation is specified as follows. Again, we need a
Coquand universe U in the target.

Γ : Coni

|Γ |1 : Tm ·Ui

Γ∼1 : Tm · (El |Γ |1 ⇒ El |Γ |1 ⇒ Ui)

A : Tyi Γ

|A|1 : Tm · (El |Γ |1 ⇒ El |Δ|1)
A∼1 : Tm · (El (Γ∼1 @ γ0 @ γ1) ⇒ El (|A|1 @ γ0) ⇒ El (|A|1 @ γ1) ⇒ Ui

)

δ : SubΓ Δ

|δ|1 : Tm · (El |Γ |1 ⇒ Ui)
δ∼1 : Tm ·

(
El (Γ∼1 @ γ0 @ γ1) ⇒ El

(
Δ∼1 @ (|δ|1 @ γ0)@ (|δ|1 @ γ1)

))

t : TmΓ A

|t|1 : Tm · (Π(γ :El |Γ |1).El (|A|1 @ γ))
t∼1 : Tm ·

(
Π(γ01 :El (Γ∼1 @ γ0 @ γ1)).El

(
A∼1 @ γ01 @ (|t|1 @ γ0)@ (|t|1 @ γ1)

))
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The relations become target theory terms which have function types with
codomain U. We used implicit quantification in the target theory for ease of
reading. For example, the type of δ∼1 should be understood as

Tm · (Π(γ0 : |Γ |1).Π(γ0 : |Γ |1).El (Γ∼1 @ γ0 @ γ1) ⇒ Δ∼1 @ (|δ|1 @ γ0)@ (|δ|1 @ γ1)
)
.

Variant 2 of the graph interpretation is specified as follows.

Γ : Coni

|Γ |2 : Tyi ·
Γ∼2 : Tyi (· , γ0 : |Γ |2 , γ1 : |Γ |2)

A : Tyi Γ

|A|2 : Tyi (· , γ : |Γ |2)
A∼2 : Tyi

(· , γ01 : Γ∼2 , α0 : |A|2[γ �→ γ0] , α1 : |A|2[γ �→ γ1]
)

δ : SubΓ Δ

|δ|2 : Tm (· , γ : |Γ |2) |Δ|2
δ∼2 : Tm (· , γ01 : Γ∼2 )

(
Δ∼2

[
γ0 �→ |δ|2[γ �→ γ0] , γ1 �→ |δ|2[γ �→ γ1]

])

t : TmΓ A

|t|2 : Tm (· , γ : |Γ |2) |A|2
t∼2 : Tm (· , γ01 : Γ∼2 )

(
A∼2

[
α0 �→ |t|2[γ �→ γ0] , α1 �→ |t|2[γ �→ γ1]

])

This variant shows that the extra ∼2 components in the model can be expressed
without using Π or a universe: type dependency is enough to express e.g. that
Γ∼2 is indexed over two copies of |Γ |2. Here, analogously to the usage of implicit
Πs in variant 1, we use implicit context extensions in the target theory. For
example, the type of δ∼2 should be understood as

Tm (· , γ0 : |Γ |2 , γ1 : |Γ |2 , γ01 : Γ∼2 )
(
Δ∼2

[
γ0 �→ |δ|2[γ �→ γ0] , γ1 �→ |δ|2[γ �→ γ1]

])
.

Defining variant 3 of the graph interpretation is not as straightforward as the
previous ones. As |Γ |3 : Con, we need a notion of binary relation over a context.
One solution is going back to the |– |0 model and using the equivalence between
indexed families and fibrations [11, p. 221]:

A → Set 	 (A′ : Set) × (A′ → A).

This means that we replace Γ∼0 : |Γ |0 → |Γ |0 → Set with a set Γ∼0a and two
projections 00a , 10a which give the domain and codomain of the arrow. This
interpretation is specified as follows (the |– | components are the same as in the
0 model, so they don’t have the a subscript).

Γ : Coni

|Γ |0 : Seti
Γ∼0a : Seti
00a Γ : Γ∼0a → |Γ |0
10a Γ : Γ∼0a → |Γ |0
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A : Tyi Γ

|A|0 : |Γ |0 → Seti
A∼0a : (γ01 : Γ∼0a) → |A|0 (00a Γ γ01) → |A|0 (10a Γ γ01) → Seti

δ : SubΓ Δ

|δ|0 : |Γ |0 → |Δ|0
δ∼0a : Γ∼0a → Δ∼0a

00a δ : (γ01 : Γ∼0a) → 00a Δ (δ∼0a γ01) = |δ|0 (00a Γ γ01)
10a δ : (γ01 : Γ∼0a) → 10a Δ (δ∼0a γ01) = |δ|0 (10a Γ γ01)

t : TmΓ A

|t|0 : (γ : |Γ |0) → |A|0 γ
t∼0a : (γ01 : Γ∼0a) → A∼0a γ01

(|t|0 (00a Γ γ01)
) (|t|0 (10a Γ γ01)

)

The fact that contexts are given as fibrations forces substitutions to include
some equalities, while types are still indexed. This is an example of a model
which can be turned into a syntactic translation, but is not strict in Agda. The
reason is that equalities are needed to interpret substitutions and in turn we use
these equalities to interpret some conversion rules. For example, the 00a and 10a

components in the interpretation of – ◦ – are given by transitivity of equality,
so associativity of substitutions needs associativity of transitivity (or UIP). We
believe however that this model would be strict in a setoid type theory (Sect. 5).

In the corresponding 3a variant a context is interpreted by two contexts and
two projection substitutions. This is the same as the parametricity translation
of Bernardy et al. [7]. We list the |– |3 part separately because we will reuse it
in ∼3b .

Γ : Coni

|Γ |3 : Coni

A : Tyi Γ

|A|3 : Tyi |Γ |3
δ : SubΓ Δ

|δ|3 : Sub |Γ |3 |Δ|3
t : TmΓ A

|t|3 : Tm |Γ |3 |A|3

Γ : Coni

Γ∼3a : Coni

03a Γ : SubΓ∼3a |Γ |3
13a Γ : SubΓ∼3a |Γ |3

δ : SubΓ Δ

δ∼3a : SubΓ∼3a Δ∼3a

03a δ : 03a Δ ◦ δ∼3a = |δ|3 ◦ 03a Γ
13a δ : 13a Δ ◦ δ∼3a = |δ|3 ◦ 13a Γ

A : Tyi Γ

A∼3a : Tyi

(
Γ∼3a , α0 : |A|3[03a Γ ] , α1 : |A|3[13a Γ ]

)

t : TmΓ A

t∼3a : TmΓ∼3a
(
A∼3a

[
α0 �→ |t|3[03a Γ ] , α1 �→ |t|3[13a Γ ]

])
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The 3b Variant of the Graph Interpretation. Another solution is to define Γ∼3

in an indexed way by referring to substitutions into |Γ |3. This is how we define
∼3b . The |– |3 parts are the same as in 3a.

Γ : Coni ρ0, ρ1 : SubΩ |Γ |3
Γ∼3b ρ0 ρ1 : Tyi Ω
(Γ∼3b ρ0 ρ1)[ν] = Γ∼3b (ρ0 ◦ ν) (ρ1 ◦ ν)

A : Tyi Γ ρ01 : Γ∼3b ρ0 ρ1 t0 : TmΩ (|A|3[ρ0]) t1 : TmΩ (|A|3[ρ1])
A∼3b ρ01 t0 t1 : Tyi Ω
(A∼3b ρ01 t0 t1)[ν] = A∼3b (ρ01[ν]) (t0[ν]) (t1[ν])

δ : SubΓ Δ ρ01 : TmΩ (Γ∼3b ρ0 ρ1)

δ∼3b ρ01 : TmΩ (Δ∼3b (|δ|3 ◦ ρ0) (|δ|3 ◦ ρ1))
(δ∼3b ρ01)[ν] = δ∼3b (ρ01[ν])

t : TmΓ A ρ01 : TmΩ (Γ∼3b ρ0 ρ1)

t∼3b ρ01 : TmΩ
(
A∼3b ρ01 (|t|3[ρ0]) (|t|3[ρ1])

)

(t∼3b ρ01)[ν] = t∼3b (ρ01[ν])

Ω, ρ0 and ρ1 are implicit parameters of A∼3b , δ∼3b and t∼3b . The advantage of
the ∼3b compared to the ∼3a is that we don’t need the projection substitutions
for contexts and the naturality conditions for substitutions, the disadvantage is
that we need the extra equalities expressing substitution laws.

4 The Setoid Model as a Translation

In this section, after recalling the setoid model, we turn it into a syntactic trans-
lation from MLTTProp to MLTTProp. We follow the approach of graph model
variant 3b (Sect. 3.2) and extend it into a setoid syntactic translation where a
context is modelled not only by a set and a relation, but a set and an equivalence
relation.

4.1 The Setoid Model

In the setoid model [1], a context is given by a set together with an equivalence
relation which, in contrast with the graph model, is proof-irrelevant. We think
about this relation as the explicit equality relation for the set. A type is inter-
preted by a displayed setoid together with a coercion and coherence operation.
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Coercion transports between families at related objects and coherence says that
this coercion respects the displayed relation.

Γ : Coni

|Γ |0 : Seti
Γ∼0 : |Γ |0 → |Γ |0 → Propi

R0
Γ : (γ : |Γ |0) → Γ∼0 γ γ

S0Γ : Γ∼0 γ0 γ1 → Γ∼0 γ1 γ0
T0

Γ : Γ∼0 γ0 γ1 →
Γ∼0 γ1 γ2 →
Γ∼0 γ0 γ2

A : Tyj Γ

|A|0 : |Γ |0 → Setj
A∼0 : Γ∼0 γ0 γ1 → |A|0 γ0 → |A|0 γ1 → Propj

R0
A : (α : |A|0 γ) → A∼0 (R0

Γ γ)α α
S0A : A∼0 γ01 α0 α1 → A∼0 (S0Γ γ01)α1 α0

T0
A : A∼0 γ01 α0 α1 → A∼0 γ12 α1 α2 →

A∼0 (T0
Γ γ01 γ12)α0 α2

coe0A : Γ∼0 γ0 γ1 → |A|0 γ0 → |A|0 γ1
coh0A : (γ01 : Γ∼0 γ0 γ1) → (α0 : |A|0 γ0) →

A∼0 γ01 α0 (coe0A γ01 α0)

This notion of family of setoids is different from Altenkirch’s original one [1]
but is equivalent to it [9, Sect. 1.6.1]. Substitutions and terms are specified the
same as in the graph model (see |– |0 in Sect. 3.2). There is no need for R, S,
T components because these are provable by proof irrelevance (unlike in the
groupoid model [19,24]).

4.2 Specification of the Translation

In the following we turn the setoid interpretation 0 into a setoid syntactic trans-
lation following the 3b variant of the graph translation. We drop the 3b indices
to ease the reading. We expect the other variants to be definable as well.

An MLTTProp context is mapped to six components: a context, a binary
propositional relation over substitutions into that context, reflexivity, symmetry
and transitivity of this relation and a substitution law for –∼. Note that we use
implicit arguments, e.g. Γ∼ takes an Ω : Con implicitly and SΓ takes Ω : Con,
ρ0, ρ1 : SubΩ |Γ | implicitly.

Γ : Coni

|Γ | : Coni

Γ∼ : SubΩ |Γ | → SubΩ |Γ | → TmΩ Propi

Γ∼[] : (Γ∼ ρ0 ρ1)[ν] = Γ∼ (ρ0 ◦ ν) (ρ1 ◦ ν)
RΓ : (ρ : SubΩ |Γ |) → TmΩ Γ∼ ρ ρ
SΓ : TmΩ Γ∼ ρ0 ρ1 → TmΩ Γ∼ ρ1 ρ0
TΓ : TmΩ Γ∼ ρ0 ρ1 → TmΩ Γ∼ ρ1 ρ2 → TmΩ Γ∼ ρ0 ρ2

A type is interpreted by a type over the interpretation of the context, a het-
erogeneous relation over the relation for contexts which is reflexive, symmetric
and transitive (over the corresponding proofs for the contexts). Moreover, there
is a coercion function which relates types substituted by related substitutions.
Coherence expresses that coercion respects the relation (coh). The ∼ relation
and coe come with substitution laws.
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A : Tyj Γ

|A| : Tyj |Γ |
A∼ : TmΩ Γ∼ ρ0 ρ1 → TmΩ (|A|[ρ0]) → TmΩ (|A|[ρ1]) → TmΩ Propj

A∼[] : (A∼ ρ01 t0 t1)[ν] = A∼ (ρ01[ν]) (t0[ν]) (t1[ν])
RA : (t : TmΩ (|A|[ρ])) → TmΩ A∼ (RΓ ρ) t t

SA : TmΩ A∼ ρ01 t0 t1 → TmΩ A∼ (SΓ ρ01) t1 t0
TA : TmΩ A∼ ρ01 t0 t1 → TmΩ A∼ ρ12 t1 t2 → TmΩ A∼ (TΓ ρ01 ρ12) t0 t2
coeA : TmΩ Γ∼ ρ0 ρ1 → TmΩ (|A|[ρ0]) → TmΩ (|A|[ρ1])
coe[]A : (coeA ρ01 t0)[ν] = coeA (ρ01[ν]) (t0[ν])
cohA : (ρ01 : TmΩ Γ∼ ρ0 ρ1)(t0 : TmΩ (|A|[ρ0])) →

TmΩ A∼ ρ01 t0 (coeA ρ01 t0)

A substitution is interpreted by a substitution which respects the relations.

δ : SubΓ Δ

|δ| : Sub |Γ | |Δ|
δ∼ : TmΩ Γ∼ ρ0 ρ1 → TmΩ Δ∼ (|δ| ◦ ρ0) (|δ| ◦ ρ1)

A term is interpreted by a term which respects the relations.

t : TmΓ A

|t| : Tm |Γ | |A|
t∼ : (ρ01 : TmΩ Γ∼ ρ0 ρ1) → TmΩ A∼ ρ01 (|t|[ρ0]) (|t|[ρ1])

Note that we do not need substitution laws for those components which don’t
have any parameters (the |– | ones) and those which result in a term of an
underlined type. The laws for the latter ones hold by proof irrelevance.

4.3 Implementation of the Translation

We implement this specification by explaining what the different components of
MLTTProp are mapped to. All details can be found in Appendix B. As in the case
of the |– |3 standard and graph interpretations, the |– | components in the setoid
translation are almost always identity functions. The only exception is the case
of Π where a function is interpreted by a function which preserves equality:

|Π(x : A).B| := Σ(f : Π(x : |A|).|B|).π(x0 : |A|).π(x1 : |A|).
π(x01 : A∼ (RΓ id)x0 x1).B∼ (RΓ id , x01) (f @x0) (f @x1)

Equality of functions is defined by saying that the first component (pr0) of the
interpretation of the function preserves equality:

(Π(x : A).B)∼ ρ01 t0 t1 := π(x0 : |A|[ρ0]).π(x1 : |A|[ρ1]).π(x01 : A∼ ρ01 x0 x1).

B∼ (ρ01 , x01) (pr0 t0 @x0) (pr0 t1 @x1),
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We need the second component to implement reflexivity for the function space:
RΠ(x :A).B t := pr1 t. Equality for extended contexts and Σ types is pointwise,
equality of booleans is given by a decision procedure, equality of propositions is
logical equivalence and equality of proofs of propositions is trivial:

(Γ , x : A)∼ (ρ0 , x �→ t0) (ρ1 , x �→ t1):= σ(ρ01 : Γ∼ ρ0 ρ1).A∼ ρ01 t0 t1

(Σ(x : A).B)∼ ρ01 (u0 , v0) (u1 , v1) := σ(x01 : A∼ ρ01 u0 u1).B∼ (ρ01 , x01) v0 v1

Bool∼ ρ01 t0 t1 := if t0 then (if t1 then� else⊥)
else (if t1 then⊥ else�)

Propi
∼ ρ01 a0 a1 := (a0 ⇒ a1) × (a1 ⇒ a0)

a∼ ρ01 t0 t1 := �

Symmetry for Π types takes as input an equality proof x01, applies symmetry
on it at the domain type, then applies the proof of equality, then applies symme-
try at the codomain type: SΠ(x :A).B t01 := λx0 x1 x01.SB (t01 @x1 @x0 @SA x01).
Coercion needs to produce a function t0 : TmΩ (|Π(x : A).B|[ρ0]) and has to
produce one of type |Π(x : A).B|[ρ1]. The first component is given by

λx1.coeB (ρ01 , cohA (SΓ ρ01)x1) (pr0 t0 @ coeA (SΓ ρ01)x1).

First the input is coerced backwards by coe∗
A (from |A|[ρ1] to |A|[ρ0]), then

the function is applied, then the output is coerced forwards by coeB . Backwards
coercion coe∗

A is defined using coeA and SΓ . Backwards coherence is defined in
a similar way, see Appendix B.2 for details.

Reflexivity, symmetry and transitivity are pointwise for Σ types. For Bool,
they are defined using if –then–else–, e.g. RBool t := if t then tt else tt. As Bool is
a closed type, coercion is the identity function and coherence is trivial.

Reflexivity for propositions is given by two identity functions: RPropi
a :=

(λx.x, λx.x). Symmetry swaps the functions: SPropi
(a01,a10) := (a10,a01). Coer-

cion is the identity, and hence coherence is given by two identity functions. For a
types, reflexivity, symmetry, transitivity and coherence are all trivial (tt). Coer-
cion is a is more interesting: it uses a function from the logical equivalence given
by a∼ ρ01.

coea ρ01 t0 := pr0 (a∼ ρ01)@ t0

The rest of the setoid translation follows that of the setoid model [1], see
Appendix B for all the details.

4.4 Extensions

The Identity Type. We extend the signature of MLTTProp given in Sect. 2 with
Martin-Löf’s inductive identity type with a propositional computation rule, func-
tion extensionality and propositional extensionality by the following rules.

A : Tyi Γ u, v : TmΓ A

IdA u v : TmΓ Propi
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P : Tyi (Γ , x : A) e : TmΓ IdA u v t : TmΓ (P [x �→ u])

transportx.P e t : TmΓ (P [x �→ v])

u : TmΓ A
reflu : TmΓ IdA uu

P : Tyi (Γ , x : A) t : TmΓ (P [x �→ u])
Idβ t : TmΓ IdP [x �→ u] (transportx.P reflu t) t

t0, t1 : TmΓ (Π(x : A).B) e : TmΓ
(
Π(x : A).IdB (t0 @x) (t1 @x)

)

funext e : TmΓ IdΠ(x :A).B t0 t1

a0, a1 : TmΓ Prop t : TmΓ (a0 ⇒ a1) × (a1 ⇒ a0)

propext t : TmΓ IdProp a0 a1

Id[] : (IdA u v)[ν] = IdA[ν] (u[ν]) (v[ν])
transport[] : (transportx.P e t)[ν] = transportx.P [ν] (e[ν]) (t[ν])

Note that the dependent eliminator for Id (usually called J) can be derived from
transport in the presence of UIP (as in our setting).

The setoid translation given in Subsects. 4.2–4.3 translates from MLTTProp

to MLTTProp. However it extends to a translation from MLTTProp +identity type
to MLTTProp. |IdA u v| is defined as A∼ (RΓ id) |u| |v|, |transportx.P e t| is given by
coeP (RΓ id , |e|) |t|. Function extensionality and propositional extensionality are
also justified. See Appendix B.3 for the translation of all the rules of the identity
type.

Definitional Computation Rule for transport. We can extend the setoid transla-
tion with the following new component for types:

A : Tyi Γ

coeRA : (ρ : SubΩ |Γ |)(t : TmΩ (|A|[ρ])) → coeA (RΓ ρ) t = t

This expresses that coercion along reflexivity is the identity. Once we have this,
the propositional computation rule of transport becomes definitional:

|transportx.P reflu t| =

coeP (RΓ id|Γ |, |reflu|) |t| irr=

coeP (RΓ , x :A id|Γ , x :A|) |t| coeRP id |t|
=

|t|
Adding this rule to the setoid translation amounts to checking whether this
equality holds for all type formers, we do this in Appendix B.3. Our Agda for-
malisation of the setoid model [21] also includes this rule and no axioms are
required to justify it.
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5 Setoid Type Theory

In this section we extend the signature of MLTTProp given in Sect. 2 with a new
heterogeneous equality type. This extended algebraic theory is called setoid type
theory. The heterogeneous equality type is inspired by the setoid translation
of the previous section. The idea is that we simply add the rules of the setoid
translation as new term formers to MLTTProp. If we did this naively, this would
mean adding the operations |– |, ∼, R, S, T, coe, coh as new syntax and all the
:= definitions of Sect. 4.3 as definitional equalities to the syntax. However this
would not result in a usable type theory: A∼ would not be a relation between
terms of type A, but terms of type |A|, so we wouldn’t even have a general
identity type. Our solution is to not add |– | as new syntax (as it is mostly the
identity anyway), but only the other components. Moreover, we only add those
equalities from the translation which are not derivable by irr.

Thus we extend MLTTProp with the following new constructors which explain
equality of contexts. This is a homogeneous equivalence relation on substitutions
into the context. These new constructors follow the components Γ∼, RΓ , SΓ , TΓ

in the setoid translation (Sect. 4.2) except that they do not refer to |– |.
Γ : Coni ρ0, ρ1 : SubΩ Γ

Γ∼ ρ0 ρ1 : TmΩ Propi

Γ : Coni ρ : SubΩ Γ

RΓ ρ : TmΩ Γ∼ ρ ρ

Γ : Coni ρ01 : TmΩ Γ∼ ρ0 ρ1

SΓ ρ01 : TmΩ Γ∼ ρ1 ρ0

Γ : Coni ρ01 : TmΩ Γ∼ ρ0 ρ1 ρ12 : TmΩ Γ∼ ρ1 ρ2

TΓ ρ01 ρ12 : TmΩ Γ∼ ρ0 ρ2

Note that while ∼ was an operation defined by induction on the syntax, ∼ is a
constructor of the syntax. On types, ∼ is heterogeneous: it is a relation between
two terms of the same type but substituted by substitutions which are related
by Γ∼. It is reflexive, symmetric and transitive and comes with coercion and
coherence operators.

A : Tyj Γ ρ01 : TmΩ Γ∼ ρ0 ρ1 t0 : TmΩ (A[ρ0]) t1 : TmΩ (A[ρ1])

A∼ ρ01 t0 t1 : TmΩ Propj

A : Tyj Γ t : TmΩ (A[ρ])
RA t : TmΩ A∼ (RΓ ρ) t t

A : Tyj Γ t01 : TmΩ A∼ ρ01 t0 t1

SA t01 : TmΩ A∼ (SΓ ρ01) t0 t1

A : Tyj Γ t01 : TmΩ A∼ ρ01 t0 t1 t12 : TmΩ A∼ ρ12 t1 t2

TA t01 t12 : TmΩ A∼ (TΓ ρ01 ρ12) t0 t2
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A : Tyj Γ ρ01 : TmΩ Γ∼ ρ0 ρ1 t0 : TmΩ A[ρ0]

coeA ρ01 t0 : TmΩ (A[ρ1]) cohA ρ01 t0 : TmΩ A∼ ρ01 t0 (coeA ρ01 t0)

On substitutions and terms ∼ expresses congruence.

δ : SubΓ Δ ρ01 : TmΩ Γ∼ ρ0 ρ1

δ∼ ρ01 : TmΩ Δ∼ (δ ◦ ρ0) (δ ◦ ρ1)

t : TmΓ A ρ01 : TmΩ Γ∼ ρ0 ρ1

t∼ ρ01 : TmΩ A∼ ρ01 (t[ρ0]) (t[ρ1])

We state the following definitional equalities on how the equality types and
coercions compute.

·∼ ε ε = �
(Γ , x : A)∼ (ρ0 , x �→ t0) (ρ1 , x �→ t1) = σ(ρ01 : Γ∼ ρ0 ρ1).A∼ ρ01 t0 t1

(A[δ])∼ ρ01 t0 t1 = A∼ (δ∼ ρ01) t0 t1

(Π(x : A).B)∼ ρ01 t0 t1 = π(x0 : A[ρ0]).π(x1 : A[ρ1]).π(x01 : A∼ ρ01 x0 x1).

B∼ (ρ01 , x01) (t0 @x0) (t1 @x1)
(Σ(x : A).B)∼ ρ01 (u0 , v0) (u1 , v1) = σ(u01 : A∼ ρ01 u0 u1).B∼ (ρ01 , u01) v0 v1

Bool∼ ρ01 t0 t1 = if t0 then (if t1 then� else⊥) else (if t1 then⊥ else�)
Prop∼ ρ01 a0 a1 = (a0 ⇒ a1) × (a1 ⇒ a0)
a∼ ρ01 t0 t1 = �
coeA[δ] ρ01 t0 = coeA (δ∼ ρ01) t0

coeΠ(x :A).B ρ01 t0 = λx1.coeB

(
ρ01 ,SA (cohA (SΓ ρ01)x1)

)

(
t0 @ coeA (SΓ ρ01)x1

)

coeΣ(x :A).B ρ01 (u0 , v0) =
(
coeA ρ01 u0 , coeB (ρ01 , cohA ρ01 u0) v0

)

coeBool ρ01 t0 = t0

coeProp ρ01 a0 = a0

coea ρ01 t0 = pr0 (a∼ ρ01)@ t0

In addition, we have the following substitution laws.

(Γ∼ ρ0 ρ1)[ν] = Γ∼ (ρ0 ◦ ν) (ρ1 ◦ ν)
(A∼ ρ01 t0 t1)[ν] = A∼ (ρ01[ν]) (t0[ν]) (t1[ν])
(coeA ρ01 t0)[ν] = coeA (ρ01[ν]) (t0[ν])

We only need to state these for Γ∼, A∼ and coeA as all the other rules coming
from the translation are true by irr. Note that e.g. the equality for (Π(x : A).B)∼

is not merely a convenience, but this is the rule which adds function extension-
ality.

We conclude the definition of setoid type theory by adding the definitional
equality for coercing along reflexivity.

coeA (RΓ ρ) t = t
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Justification. The setoid translation extends to all the extra rules of setoid type
theory. As all the new syntactic components are terms, we have to implement the
|– | and the –∼ operations for terms as specified in Sect. 4.2. Most components
are modelled by their black counterparts because the purpose of the new rules is
precisely to reflect the extra structure of the setoid translation. All the equalities
are justified (T3 is three steps transitivity, see Appendix C for all the details).

|Γ∼ ρ0 ρ1| := Γ∼ |ρ0| |ρ1|
|A∼ ρ01 t0 t1| := A∼ |ρ01| |t0| |t1|
(Γ∼ ρ0 ρ1)∼ τ01 :=

(
λρ01.T

3
Γ (SΓ (ρ0∼ τ01)) ρ01 (ρ1∼ τ01) ,

λρ01.T
3
Γ (ρ∼

0 τ01) ρ01 (SΓ (ρ∼
1 τ01))

)

(A∼ ρ01 t0 t1)∼ τ01 :=
(
λt01.T

3
A (SA (t0∼ τ01)) t01 (t1∼ τ01) ,

λt01.T
3
A (t0∼ τ01) t01 (SA (t1∼ τ01))

)

|RΓ ρ| := RΓ |ρ| |RA t| := RA |t|
|SΓ ρ01| := SΓ |ρ01| |SA t01| := SA |t01|
|TΓ ρ01 ρ12| := TΓ |ρ01| |ρ12| |TA t01 t12| := TA |t01| |t12|
|coeA ρ01 t0| := coeA |ρ01| |t0| |δ∼ ρ01| := δ∼ |ρ01|
|cohA ρ01 t0| := cohA |ρ01| |t0| |t∼ ρ01| := t∼ |ρ01|

Relationship to Martin-Löf ’s identity type (as given in Sect. 4.4). The rules of
the traditional identity are admissible in setoid type theory. The translation is
the following.

IdA u v := A∼ (RΓ id)u v

reflu := RA u

transportx.P e t := coeP (RΓ id , e) t

Idβ t := SP [x �→ u]

(
cohP (RΓ id ,RA u) t

)

funext e := λx0 x1 x01.TB (e@x0) (t1∼ (RΓ id)@x0 @x1 @x01)
propext t := t

Id[] : (IdA u v)[ν] = (A∼ (RΓ id)u v)[ν] =

A∼ ((RΓ id)[ν]) (u[ν]) (v[ν]) irr= A∼ (ν∼ (RΘ id)) (u[ν]) (v[ν]) =
(A[ν])∼ (RΘ id) (u[ν]) (v[ν]) = IdA[ν] (u[ν]) (v[ν])

transport[] : (transportx.P e t)[ν] = (coeP (RΓ id , e) t)[ν]
coe[]P=

coeP ((RΓ id , e)[ν]) (t[ν]) irr= coeP (ν∼ (RΘ id) , e[ν]) (t[ν]) =
coeP [ν] (RΘ id , e[ν]) (t[ν]) = transportx.P [ν] (e[ν]) (t[ν])
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The other direction does not work. For example, the following definitional equal-
ities do not hold in MLTTProp extended with Martin-Löf’s identity type, however
they hold in setoid type theory where transport is translated as above:

“constant predicate”: transportx.Bool e t = t

“funext computes”: transportf.P [y �→ f @u] (funext e) t = transporty.P (e@u) t

As setoid type theory reflects the setoid translation, we conjecture that it
is complete, that is, if |t| = |t′| for any two terms t, t′ : TmΓ A of setoid type
theory, then t = t′.

6 Conclusions and Further Work

We have presented a type theory which justifies both function extensionality and
propositional extensionality. Compared with [1], it adds propositional extension-
ality and a definitional computation rule for transport, presents an equational
theory and the results are checked formally. Compared with [4], it provides a
translation into intensional type theory without requiring extensional type the-
ory as a reference.

It is clear that the theory follows the setoid translation, hence we conjecture
completeness with respect to this model. A corollary would be canonicity for our
theory.

We expect that the translation can be extended with a universe of setoids
where equality is equality of codes and quotient inductive types. Our Agda for-
malisation of the setoid model already supports such a universe and quotient
types.

The theory is less powerful than cubical type theory [12] but the semantic
justification is much more straightforward and for many practical applications,
this type theory is sufficient. It also supports some definitional equalities which
do not hold in cubical type theory. We believe that our programme can be
extended, first of all to obtain a syntax for a groupoid type theory using our
informal method to derive a theory from a translation. We also expect that we
could derive an alternative explanation and implementation of homotopy type
theory.

A Full Syntax of MLTTProp

Sorts:

Coni : Set
Γ : Coni

Tyj Γ : Set
Γ : Coni Δ : Conj

SubΓ Δ : Set
Γ : Coni A : Tyj Γ

TmΓ A : Set
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Substitution calculus:

· : Con0

Γ : Coni A : Tyj Γ

(Γ , x : A) : Coni�j

A : Tyi Δ δ : SubΓ Δ

A[δ] : Tyi Γ

Γ : Coni

idΓ : SubΓ Γ
δ : SubΘ Δ ν : SubΓ Θ

δ ◦ ν : SubΓ Δ
Γ : Coni

εΓ : SubΓ ·
δ : SubΓ Δ t : TmΓ (A[δ])

(δ , x �→ t) : SubΓ (Δ, x : A)
δ : SubΓ (Δ, x : A)

δ : SubΓ Δ

δ : SubΓ (Δ, x : A)
x[δ] : TmΓ (A[δ])

t : TmΔA δ : SubΓ Δ
t[δ] : TmΓ (A[δ]) [Id] : A[id] = A [◦] : A[δ ◦ ν] = A[δ][ν]

id◦ : id ◦ δ = δ ◦id : δ ◦ id = δ ◦◦ : (δ ◦ ν) ◦ τ = δ ◦ (ν ◦ τ)

·η : (δ : SubΓ ·) = ε , β0 : (δ , x �→ t) = δ , β1 : x[(δ , x �→ t)] = t

, η : (δ , x �→ x[δ]) = δ , ◦ : (δ , x �→ t) ◦ ν = (δ ◦ ν , x �→ t[ν])

Π types:

A : Tyi Γ B : Tyj (Γ , x : A)
Π(x : A).B : Tyi�j Γ

t : Tm (Γ , x : A)B

λx.t : TmΓ (Π(x : A).B)

t : TmΓ (Π(x : A).B)
t@x : Tm (Γ , x : A)B

Πβ : (λx.t)@x = t Πη : λx.t@x = t

Π[] : (Π(x : A).B)[ν] = Π(x : A[ν]).B[ν] λ[] : (λx.t)[ν] = λx.t[ν]

Σ types (we write A × B for Σ(x : A).B when x does not appear in B):

A : Tyi Γ B : Tyj (Γ , x : A)
Σ(x : A).B : Tyi�j Γ

u : TmΓ A v : TmΓ (B[x �→ u])
(u , v) : TmΓ (Σ(x : A).B)

t : TmΓ (Σ(x : A).B)
pr0 t : TmΓ A

t : TmΓ (Σ(x : A).B)
pr1 t : TmΓ (B[x �→ pr0 t])

Σβ0 : pr0 (u , v) = u Σβ1 : pr1 (u , v) = v Ση : (pr0 t , pr1 t) = t

Σ[] : (Σ(x : A).B)[ν] = Σ(x : A[ν]).B[ν] , [] : (u , v)[ν] = (u[ν] , v[ν])

Booleans:

Bool : Ty0 Γ true : TmΓ Bool false : TmΓ Bool

C : Tyi (Γ , x :Bool)
t : TmΓ Bool
u : TmΓ (C[x �→ true])
v : TmΓ (C[x �→ false])

if t thenu else v : TmΓ (C[x �→ t])
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Boolβtrue : if true thenu else v = u

Boolβfalse : if false thenu else v = v

Bool[] : Bool[ν] = Bool

true[] : true[ν] = true

false[] : false[ν] = false

if[] : (if t thenu else v)[ν] = if t[ν] thenu[ν] else v[ν]

Propositions:

Propi : Tyi+1 Γ

a : TmΓ Propi

a : Tyi Γ

u : TmΓ a v : TmΓ a

irra : u = v

A : Tyi Γ b : Tm (Γ , x : A)Propj

π(x : A).b : TmΓ Propi�j

t : Tm (Γ , x : A) b

λx.t : TmΓ π(x : A).b

t : TmΓ π(x : A).b

t@x : Tm (Γ , x : A) b

a : TmΓ Propi b : Tm (Γ , x : a)Propj

σ(x : a).b : TmΓ Propi�j

u : TmΓ a v : TmΓ b[x �→u]

(u , v) : TmΓ σ(x : a).b

t : TmΓ σ(x : a).b

pr0 t : TmΓ a

t : TmΓ σ(x : a).b

pr1 t : TmΓ a[x �→ pr0 t]

� : TmΓ Prop0 tt : TmΓ � ⊥ : TmΓ Prop0

C : Tyi Γ t : TmΓ ⊥
exfalso t : TmΓ C

Prop[] : Propi[ν] = Propi

[] : a[ν] = a[ν]

π[] : (π(x : A).b)[ν] = π(x : A[ν]).b[ν]
σ[] : (σ(x : a).b)[ν] = σ(x : a[ν]).b[ν]
[] : (u , v)[ν] = (u[ν] , v[ν])
�[] : �[ν] = �
⊥[] : ⊥[ν] = ⊥
exfalso[] : (exfalso t)[ν] = exfalso (t[ν])
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B Complete Implementation of the Setoid Translation

B.1 Specification

Γ : Coni

|Γ | : Coni

Γ∼ : SubΩ |Γ | → SubΩ |Γ | → TmΩ Propi

Γ∼[] : (Γ∼ ρ0 ρ1)[ν] = Γ∼ (ρ0 ◦ ν) (ρ1 ◦ ν)
RΓ : (ρ : SubΩ |Γ |) → TmΩ Γ∼ ρ ρ
SΓ : TmΩ Γ∼ ρ0 ρ1 → TmΩ Γ∼ ρ1 ρ0
TΓ : TmΩ Γ∼ ρ0 ρ1 → TmΩ Γ∼ ρ1 ρ2 → TmΩ Γ∼ ρ0 ρ2

A : Tyj Γ

|A| : Tyj |Γ |
A∼ : TmΩ Γ∼ ρ0 ρ1 → TmΩ (|A|[ρ0]) → TmΩ (|A|[ρ1]) → TmΩ Propj

A∼[] : (A∼ ρ01 t0 t1)[ν] = A∼ (ρ01[ν]) (t0[ν]) (t1[ν])
RA : (t : TmΩ (|A|[ρ])) → TmΩ A∼ (RΓ ρ) t t

SA : TmΩ A∼ ρ01 t0 t1 → TmΩ A∼ (SΓ ρ01) t1 t0
TA : TmΩ A∼ ρ01 t0 t1 → TmΩ A∼ ρ12 t1 t2 → TmΩ A∼ (TΓ ρ01 ρ12) t0 t2
coeA : TmΩ Γ∼ ρ0 ρ1 → TmΩ (|A|[ρ0]) → TmΩ (|A|[ρ1])
coe[]A : (coeA ρ01 t0)[ν] = coeA (ρ01[ν]) (t0[ν])
cohA : (ρ01 : TmΩ Γ∼ ρ0 ρ1)(t0 : TmΩ (|A|[ρ0])) →

TmΩ A∼ ρ01 t0 (coeA ρ01 t0)

δ : SubΓ Δ

|δ| : Sub |Γ | |Δ|
δ∼ : TmΩ Γ∼ ρ0 ρ1 → TmΩ Δ∼ (|δ| ◦ ρ0) (|δ| ◦ ρ1)

t : TmΓ A

|t| : Tm |Γ | |A|
t∼ : (ρ01 : TmΩ Γ∼ ρ0 ρ1) → TmΩ A∼ ρ01 (|t|[ρ0]) (|t|[ρ1])

Abbreviations. The operations coe∗ and coh∗ are the counterparts of coe∗

and coh∗ in the symmetric direction. The two T3 operations are “three steps”
transitivity.

coe∗
A (ρ01 : TmΩ Γ∼ ρ0 ρ1)(t1 : TmΩ (|A|[ρ1])) : TmΩ (|A|[ρ0])
:= coeA (SΓ ρ01) t1

coh∗
A (ρ01 : TmΩ Γ∼ ρ0 ρ1)(t1 : TmΩ (|A|[ρ1])) : TmΩ A∼ ρ01 (coe∗

A ρ01 t1) t1

:= SA

(
cohA (SΓ ρ01) t1

)
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T3
Γ (ρ01 : TmΩ Γ∼ ρ0 ρ1)(ρ12 : TmΩ Γ∼ ρ1 ρ2)(ρ12 : TmΩ Γ∼ ρ2 ρ3)

: TmΩ Γ∼ ρ0 ρ3 := TΓ ρ01 (TΓ ρ12 ρ23)

T3
A (t01 : TmΩ A∼ ρ01 t0 t1)(t12 : TmΩ A∼ ρ12 t1 t2)(t23 : TmΩ A∼ ρ23 t2 t3)

: TmΩ A∼ (T3
Γ ρ01 ρ12 ρ23) t0 t3 := TA t01 (TA t12 t23)

B.2 Implementation

We implement this specification by listing what the different components of
MLTTProp are mapped to. We follow the order of the presentation of MLTTProp

in Sect. 2.
The |– | part of the model is almost the same as the identity translation

(variant 3 in Sect. 3.1). The only difference is for Π types which are interpreted
by a subset of all Π types: they need to also respect the relation.

Substitution Calculus. The |– |, –∼, R– , etc. components can be given one
after the other as there is no interdependency for the substitution calculus. For
the substitution calculus, |– | is the same as the set interpretation, –∼ is the
same as in the graph model.

Set (identity) interpretation for the substitution calculus.

|·| := ·
|Γ , x : A| := |Γ | , x : |A|
|A[δ]| := |A|[|δ|]
|idΓ | := id|Γ |
|δ ◦ ν| := |δ| ◦ |ν|
|εΓ | := εΓ

|(δ , x �→ t)| := (|δ| , x �→ |t|)
|δ| := |δ|
|x[δ]| := x[|δ|]
|t[δ]| := |t|[|δ|]
|[id]| : |A[id]| = |A|[id] [id]

= |A|
|[◦]| : |A[δ ◦ ν]| = |A|[|δ| ◦ |ν|] [◦]

= |A|[|δ|][|ν|] = |A[δ][ν]|
|id◦| : |id ◦ δ| = id ◦ |δ| id◦= |δ|
|◦id| : |δ ◦ id| = |δ| ◦ id

◦id= |δ|
|◦◦| : |(δ ◦ ν) ◦ τ | = (|δ| ◦ |ν|) ◦ |τ | ◦◦= |δ| ◦ (|ν| ◦ |τ |) = |δ ◦ (ν ◦ τ)|
|εη| : (|δ| : Sub |Γ | |·|) = (|δ| : Sub |Γ | ·) εη

= ε = |ε|
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|, β0| : |(δ , x �→ t)| = (|δ| , x �→ |t|) ,β0= |δ|
|, β1| : |x[(δ , x �→ t)]| = x[(|δ| , x �→ |t|)] ,β1= |t|
|, η| : |(δ , x �→x[δ])| = (|δ| , x �→ x[|δ|]) ,η

= |δ|
|, ◦| : |(δ , x �→ t) ◦ ν| = (|δ| , x �→ |t|) ◦ |ν| ,◦

= (|δ| ◦ |ν| , x �→ |t|[|ν|]) =
|(δ ◦ ν , x �→ t[ν])|

Note that |δ| := |δ| means that implicit weakening inside |– | was interpreted by
implicit weakening outside the |– | operation.

Logical predicates.

·∼ ε ε := �
(Γ , x : A)∼ (ρ0 , x �→ t0) (ρ1 , x �→ t1) := σ(ρ01 : Γ∼ ρ0 ρ1).A∼ ρ01 t0 t1

(A[δ])∼ ρ01 t0 t1 := A∼ (δ∼ ρ01) t0 t1

idΓ
∼ ρ01 := ρ01

(δ ◦ ν)∼ ρ01 := δ∼ (ν∼ ρ01)
ε∼ ρ01 := tt

(δ , x �→ t)∼ ρ01 := (δ∼ ρ01 , t∼ ρ01)
δ∼ ρ01 := pr0 (δ∼ ρ01)
(x[δ])∼ ρ01 := pr1 (δ∼ ρ01)
(t[δ])∼ ρ01 := t∼ (δ∼ ρ01)
[id]∼ : (A[id])∼ ρ01 t0 t1 = A∼ (id∼ ρ01) t0 t1 = A∼ ρ01 t0 t1

[◦]∼ : (A[δ ◦ ν])∼ ρ01 t0 t1 = A∼ ((δ ◦ ν)∼ ρ01) t0 t1 =
A∼ (δ∼ (ν∼ ρ01)) t0 t1 = (A[δ][ν])∼ ρ01 t0 t1

id◦∼ : (id ◦ δ)∼ ρ01
irr= δ∼ ρ01

◦id∼ : (δ ◦ id)∼ ρ01
irr= δ∼ ρ01

◦◦∼ : ((δ ◦ ν) ◦ τ)∼ ρ01
irr= (δ ◦ (ν ◦ τ))∼ ρ01

εη∼ : δ∼ ρ01
irr= ε∼ ρ01

, β0
∼ : (δ , x �→ t)∼ ρ01

irr= δ∼ ρ01

, β1
∼ : (x[(δ , x �→ t)])∼ ρ01

irr= t∼ ρ01

, η∼ : (δ , x �→ x[δ])∼ ρ01
irr= δ∼ ρ01

, ◦∼ : ((δ , x �→ t) ◦ ν)∼ ρ01
irr= (δ ◦ ν , x �→ t[ν])∼ ρ01

Substitution laws for logical predicates.

·∼[] : (·∼ ε ε)[ν] = �[ν]

[]
= � = ·∼ (ε[ν]) (ε[ν])

(Γ , x : A)∼[] :
(
(Γ , x : A)∼ (ρ0 , x �→ t0) (ρ1 , x �→ t1)

)
[ν] =
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σ(ρ01 :(Γ∼ ρ0 ρ1)[ν]).(A∼ ρ01 t0 t1)[ν]
Γ ∼[],A∼[]

=
σ(ρ01 : Γ∼ (ρ0 ◦ ν) (ρ1 ◦ ν)).A∼ (ρ01[ν]) (t0[ν]) (t1[ν]) =

(Γ , x : A)∼ (ρ0 ◦ ν , x �→ t0[ν]) (ρ1 ◦ ν , x �→ t1[ν])
,◦
=

(Γ , x : A)∼ ((ρ0 , x �→ t0) ◦ ν) ((ρ1 , x �→ t1) ◦ ν)

(A[δ])∼[] : ((A[δ])∼ ρ01 t0 t1)[ν] = (A∼ (δ∼ ρ01) t0 t1)[ν]
A∼[]
=

A∼ ((δ∼ ρ01)[ν]) (t0[ν]) (t1[ν]) irr=
A∼ (δ∼ (ρ01[ν])) (t0[ν]) (t1[ν]) =
(A[δ])∼ (ρ01[ν]) (t0[ν]) (t1[ν])

Reflexivity, symmetry and transitivity.

R· ε := tt

RΓ , x :A (ρ , x �→ t) := (RΓ ρ ,RA t)
RA[δ] t := RA t

R[id] : RA[id] t = RA t

R[◦] : RA[δ◦ν] t = RA t = RA[δ][ν] t

S· tt := tt

SΓ , x :A (ρ01 , t01) := (SΓ ρ01 ,SA t01)
SA[δ] t01 := SA t01

S[id] : SA[id] t01 = SA t01

S[◦] : SA[δ◦ν] t01 = SA t01 = SA[δ][ν] t01

T· tt tt := tt

TΓ , x :A (ρ01 , t01) (ρ12 , t12) := (TΓ ρ01 ρ12 ,TA t01 t12)
TA[δ] t01 t12 := TA t01 t12

T[id] : TA[id] t01 t12 = TA t01 t12

T[◦] : TA[δ◦ν] t01 t12 = TA t01 t12 = TA[δ][ν] t01 t12

Coercion and coherence.

coeA[δ] ρ01 t0 := coeA (δ∼ ρ01) t0

coe[id] : coeA[id] ρ01 t0 = coeA (id∼ ρ01) t0 = coeA ρ01 t0

coe[◦] : coeA[δ◦ν] ρ01 t0 = coeA (δ∼ (ν∼ ρ01)) t0 = coeA[δ][ν] ρ01 t0

coe[]A[δ] : (coeA[δ] ρ01 t0)[ν] = (coeA (δ∼ ρ01) t0)[ν]
coe[]A=

coeA ((δ∼ ρ01)[ν]) (t0[ν]) irr= coeA (δ∼ (ρ01[ν])) (t0[ν]) = coeA[]

cohA[δ] ρ01 t0 := cohA (δ∼ ρ01) t0

coh[id] : cohA[id] ρ01 t0
irr= cohA ρ01 t0
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coh[◦] : cohA[δ◦ν] ρ01 t0
irr= cohA[δ][ν] ρ01 t0

Π

|Π(x : A).B| := Σ(f : Π(x : |A|).|B|).π(x0 : |A|).π(x1 : |A|).
π(x01 : A∼ (RΓ id)x0 x1).B∼ (RΓ id , x01) (f @x0) (f @x1)

(Π(x : A).B)∼ ρ01 t0 t1 := π(x0 : |A|[ρ0]).π(x1 : |A|[ρ1]).π(x01 : A∼ ρ01 x0 x1).
B∼ (ρ01 , x01) (pr0 t0 @x0) (pr0 t1 @x1)

(Π(x : A).B)∼[] :
(
(Π(x : A).B)∼ ρ01 t0 t1

)
[ν] =

π(x0 : A[ρ0 ◦ ν]).π(x1 : A[ρ1 ◦ ν]).π(x01 : A∼ (ρ01[ν])x0 x1).

B∼ (ρ01[ν] , x01) (pr0 (t0[ν])@x0) (pr0 (t1[ν])@x1) =
(Π(x : A).B)∼ (ρ01[ν]) (t0[ν]) (t1[ν])

RΠ(x :A).B t := pr1 t

SΠ(x :A).B t01 := λx0 x1 x01.SB (t01 @x1 @x0 @SA x01)
TΠ(x :A).B t01 t12 :=

λx0 x2 x02.TB (t01 @x0 @ coeA ρ01 x0 @ cohA ρ01 x0)(
t12 @ coeA ρ01 x0 @x2 @TA (SA (cohA ρ01 x0))x02

)

coeΠ(x :A).B ρ01 t0 :=
(

λx1.coeB (ρ01 , coh∗
A ρ01 x1) (pr0 t0 @ coe∗

A ρ01 x1) ,

λx1 x2 x12.
(
T3

B

(
SB

(
cohB (ρ01 , x10) (pr0 t0 @x0)

))

(
pr1 t0 @x0 @x3 @T3

A (SA x10)x12 x23

)

(
cohB (ρ01 , x23) (pr0 t0 @x3)

))

[x0 �→ coe∗
A ρ01 x1 , x10 �→ coh∗

A ρ01 x1,

x3 �→ coe∗
A ρ01 x2 , x23 �→ coh∗

A ρ01 x2]
)

coe[]Π(x :A).B :

(coeΠ(x :A).B ρ01 t0)[ν] =
(
λx1.(coeB (ρ01 , coh∗

A ρ01 x1) (pr0 t0 @ coe∗
A ρ01 x1))[ν] , . . .

) coe[]B=
(
λx1.coeB (ρ01[ν] ,(coh∗

A ρ01 x1)[ν]) (pr0 (t0[ν]) @ (coe∗
A ρ01 x1)[ν]) , . . .

) coe[]A=
(
λx1.coeB (ρ01[ν] ,(coh∗

A (ρ01[ν])x1)) (pr0 (t0[ν])@ coe∗
A (ρ01[ν])x1), . . .

) irr=
coeΠ(x :A).B (ρ01[ν]) (t0[ν])

cohΠ(x :A).B ρ01 t0 :=

λx0 x1 x01.TB

(
pr1 t0 @x0 @ coe∗

A ρ01 x1 @TA x01 (SA (coh∗
A ρ01 x1))

)

(
cohB (ρ01 , coh∗

A ρ01 x1) (pr0 t0 @ coe∗
A ρ01 x1)

)

|λx.t| := (λx.|t|, λx0 x1 x01.t
∼ (RΓ id , x01))
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(λx.t)∼ ρ01 := λx0 x1 x01.t
∼ (ρ01 , x01)

|t@x| := pr0 |t|@x

(t@x)∼ (ρ01 , x01) := t∼ ρ01 @x0 @x1 @x01

|Πβ| : |(λx.t)@x| = pr0 |λx.t|@x = (λx.|t|)@x
Πβ
= |t|

|Πη| : |λx.t@x| =
(
λx.|t@x| , λx0 x1 x01.(t@x)∼ (RΓ id , x01)

)
=

(
λx.pr0 |t|@x , λx0 x1 x01.t

∼ (RΓ id)@x0 @x1 @x01

) Πη
=

(pr0 |t| , t∼ (RΓ id)) irr= (pr0 |t| , pr1 |t|) Ση
= |t|

Πβ∼ : ((λx.t)@x)∼ ρ01
irr= t∼ ρ01

Πη∼ : (λx.t@x)∼ ρ01
irr= t∼ ρ01

|Π[]| :

|(Π(x : A).B)[ν]| = |Π(x : A).B|[|ν|] Π[],π[],A∼[],B∼[]
=

Σ(f : Π(x : |A|[|ν|]).|B|[|ν|]).π(x0 : |A|[|ν|]).π(x1 : |A|[|ν|]).
π(x01 : A∼ ((RΓ id)[|ν|])x0 x1).B∼ ((RΓ id)[|ν|] , x01) (f @x0) (f @x1)

irr=

|Π(x : A[ν]).B[ν]|
Π[]∼ :

((Π(x : A).B)[ν])∼ ρ01 t0 t1 = (Π(x : A).B)∼ (ν∼ ρ01) t0 t1 =
π(x0 : A[ν ◦ ρ0]).π(x1 : A[ν ◦ ρ1]).π(x01 : A∼ (ν∼ ρ01)x0 x1).

B∼ (ν∼ ρ01 , x01) (pr0 t0 @x0) (pr0 t1 @x1) = (Π(x : A[ν]).B[ν])∼ ρ01 t0 t1

RΠ[] : R(Π(x :A).B)[ν] t
irr= RΠ(x :A[ν]).B[ν] t

SΠ[] : S(Π(x :A).B)[ν] t01
irr= SΠ(x :A[ν]).B[ν] t01

TΠ[] : T(Π(x :A).B)[ν] t01 t12
irr= TΠ(x :A[ν]).B[ν] t01 t12

coeΠ[] :
coe(Π(x :A).B)[ν] ρ01 t0 = coeΠ(x :A).B (ν∼ ρ01) t0 =
(
λx1.coeB (ν∼ ρ01 , coh∗

A (ν∼ ρ01)x1) (pr0 t0 @ coe∗
A (ν∼ ρ01)x1) , . . .

) irr=
(
λx1.coeB[ν] (ρ01 , coh∗

A[ν] ρ01 x1) (pr0 t0 @ coe∗
A[ν] ρ01 x1) , . . .

)
=

coeΠ(x :A[ν]).B[ν] ρ01 t0

cohΠ[] : coh(Π(x :A).B)[ν] ρ01 t0
irr= cohΠ(x :A[ν]).B[ν] ρ01 t0

|λ[]| : |(λx.t)[ν]| = |λx.t|[|ν|] λ[]
= λx.|t|[|ν|] = |λx.t[ν]|

λ[]∼ : ((λx.t)[ν])∼ ρ01
irr= (λx.t[ν])∼ ρ01
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Σ

|Σ(x : A).B| := Σ(x : |A|).|B|
(Σ(x : A).B)∼ ρ01 (u0 , v0) (u1 , v1) := σ(x01 : A∼ ρ01 u0 u1).B∼ (ρ01 , x01) v0 v1

(Σ(x : A).B)∼[] :
(
(Σ(x : A).B)∼ ρ01 (u0 , v0) (u1 , v1)

)
[ν] =

σ(x01 :(A∼ ρ01 u0 u1)[ν]).(B∼ (ρ01 , x01) v0 v1)[ν]
A∼[],B∼[]

=
σ(x01 : A∼ (ρ01[ν]) (u0[ν]) (u1[ν])).B∼ (ρ01[ν] , x01) (v0[ν]) (v1[ν]) =
(Σ(x : A).B)∼ (ρ01[ν]) ((u0 , v0)[ν]) ((u1 , v1)[ν])

RΣ(x :A).B (u , v) := (RA u ,RB v)
SΣ(x :A).B (u01 , v01) := (SA u01 ,SB v01)
TΣ(x :A).B (u01 , v01) (u12 , v12) := (TA u01 u12 ,TmB v01 v12)
coeΣ(x :A).B ρ01 (u0 , v0) := (coeA ρ01 u0 , coeB (ρ01 , cohA ρ01 u0) v0)
coe[]Σ(x :A).B :

(
coeΣ(x :A).B ρ01 (u0 , v0)

)
[ν] =

(
(coeA ρ01 u0)[ν] ,(coeB (ρ01 , cohA ρ01 u0) v0)[ν]

) coe[]A,coe[]B=
(
coeA (ρ01[ν]) (u0[ν]) , coeB (ρ01[ν] , cohA (ρ01[ν]) (u0[ν])) (v0[ν])

)
=

coeΣ(x :A).B (ρ01[ν]) ((u0 , v0)[ν])
cohΣ(x :A).B ρ01 (u0 , v0) := (cohA ρ01 u0 , cohB (ρ01 , cohA ρ01 u0) v0)
|(u , v)| := (|u| , |v|)
(u , v)∼ ρ01 := (u∼ ρ01 , v∼ ρ01)
|pr0 t| := pr0 |t|
(pr0 t)∼ ρ01 := pr0 (t∼ ρ01)
|pr1 t| := pr1 |t|
(pr1 t)∼ ρ01 := pr1 (t∼ ρ01)

|Σβ0| : |pr0 (u , v)| = pr0 (|u| , |v|) Σβ0= |u|
Σβ0

∼ : (pr0 (u , v))∼ ρ01
irr= u∼ ρ01

|Σβ1| : |pr1 (u , v)| = pr1 (|u| , |v|) Σβ1= |v|
Σβ1

∼ : (pr1 (u , v))∼ ρ01
irr= v∼ ρ01

|Ση| : |(pr0 t , pr1 t)| = (pr0 |t| , pr1 |t|) Ση
= |t|

Ση∼ : (pr0 t , pr1 t)∼ ρ01
irr= t∼ ρ01

|Σ[]| : |(Σ(x : A).B)[ν]| = |Σ(x : A).B|[|ν|] Σ[]
=

Σ(x : |A|[|ν|]).|B|[|ν|] = |Σ(x : A[ν]).B[ν]|
Σ[]∼ : ((Σ(x : A).B)[ν])∼ ρ01 (u0 , v0) (u1 , v1) =
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(Σ(x : A).B)∼ (ν∼ ρ01) (u0 , v0) (u1 , v1) =
σ(x01 : A∼ (ν∼ ρ01)u0 u1).B∼ (ν∼ ρ01 , x01) v0 v1 =
(Σ(x : A[ν]).B[ν])∼ ρ01 (u0 , v0) (u1 , v1)

RΣ[] : R(Σ(x :A).B)[ν] t
irr= RΣ(x :A[ν]).B[ν] t

SΣ[] : S(Σ(x :A).B)[ν] t01
irr= SΣ(x :A[ν]).B[ν] t01

TΣ[] : T(Σ(x :A).B)[ν] t01 t12
irr= TΣ(x :A[ν]).B[ν] t01 t12

coeΣ[] : coe(Σ(x :A).B)[ν] ρ01 (u0 , v0) =
coeΣ(x :A).B (ν∼ ρ01) (u0 , v0) =
(
coeA (ν∼ ρ01)u0 , coeB (ν∼ ρ01 , cohA (ν∼ ρ01)u0) v0

)
=

(
coeA[ν] ρ01 u0 , coeB[ν] (ρ01 , cohA[ν] ρ01 u0) v0

)
=

coeΣ(x :A[ν]).B[ν] ρ01 (u0 , v0)

cohΣ[] : coh(Σ(x :A).B)[ν] ρ01 t0
irr= cohΣ(x :A[ν]).B[ν] ρ01 t0

|, []| : |(u , v)[ν]| = |(u , v)|[|ν|] = (|u| , |v|)[|ν|] ,[]
=

(|u|[|ν|] , |v|[|ν|]) = |(u[ν] , v[ν])|
, []∼ : ((u , v)[ν])∼ ρ01

irr= (u[ν] , v[ν])∼ ρ01

Bool

|Bool| := Bool

Bool∼ ρ01 t0 t1 := if t0 then (if t1 then� else⊥) else (if t1 then⊥ else�)
Bool∼[] :

(Bool∼ ρ01 t0 t1)[ν] =
if t0[ν] then (if t1[ν] then� else⊥) else (if t1[ν] then⊥ else�) =
Bool∼ (ρ01[ν]) (t0[ν]) (t1[ν])

RBool t := if t then tt else tt

SBool t01 := if t0 then (if t1 then tt else exfalso t01)
else (if t1 then exfalso t01 else tt)

TBool t01 t12 := if t0 then
(
if t1 then (if t2 then tt else exfalso t12) else exfalso t01

)

else
(
if t1 then exfalso t01 else (if t2 then exfalso t12 else tt)

)

coeBool ρ01 t0 := t0

coe[]Bool : (coeBool ρ01 t0)[ν] = t0[ν] = coeBool ρ01 (t0[ν])
cohBool ρ01 t0 := if t0 then tt else tt

|true| := true

true∼ ρ01 := tt

|false| := false
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false∼ ρ01 := tt

|if t thenu else v| := if |t| then |u| else |v|
(if t thenu else v)∼ ρ01 := if t[ρ0] then (if t[ρ1] thenu∼ ρ01 else exfalso (u∼ ρ01))

else (if t[ρ1] then exfalso (v∼ ρ01) else v∼ ρ01)

|Boolβtrue| : |if true thenu else v| = if true then |u| else |v| Boolβtrue= |u|
|Boolβfalse| : |if false thenu else v| = if false then |u| else |v| Boolβfalse= |v|
|Bool[]| : |Bool[ν]| = |Bool|[|ν|] Bool[]

= Bool = |Bool|
Bool[]∼ : (Bool[ν])∼ ρ01 t0 t1 = Bool∼ (ν∼ ρ01) t0 t1 =

if t0 then (if t1 then� else⊥) else (if t1 then⊥ else�) =
Bool∼ ρ01 t0 t1

RBool[] : RBool[ν] t
irr= RBool t

SBool[] : SBool[ν] t01
irr= SBool t01

TBool[] : TBool[ν] t01 t12
irr= TBool t01 t12

coeBool[] : coeBool[ν] ρ01 t0 = coeBool (ν∼ ρ01) t0 = t0 = coeBool ρ01 t0

cohBool[] : cohBool[ν] ρ01 t0
irr= cohBool ρ01 t0

|true[]| : |true[ν]| = true[|ν|] true[]
= true = |true|

true[]∼ : (true[ν])∼ ρ01
irr= true∼ ρ01

|false[]| : |false[ν]| = false[|ν|] false[]
= false = |false|

false[]∼ : (false[ν])∼ ρ01
irr= false∼ ρ01

|if[]| : |(if t thenu else v)[ν]| = (if |t| then |u| else |v|)[|ν|] if[]
=

if |t|[|ν|]| then |u|[|ν|] else |v|[|ν|] = |if t[ν] thenu[ν] else v[ν]|
if[]∼ : ((if t thenu else v)[ν])∼ ρ01

irr= (if t[ν] thenu[ν] else v[ν])∼ ρ01

Prop

|Propi| := Propi

Propi
∼ ρ01 a0 a1 := (a0 ⇒ a1) × (a1 ⇒ a0)

Propi
∼[] : (Propi

∼ ρ01 a0 a1)[ν]
π[],σ[],[]

=
(a0[ν] ⇒ a1[ν]) × (a1[ν] ⇒ a0[ν]) =

Propi
∼ (ρ01[ν]) (a0[ν]) (a1[ν])

RPropi
a := (λx.x , λx.x)

SPropi
(a01 , a10) := (a10 , a01)

TPropi
(a01 , a10) (a12 , a21) := (λx0.a12 @ (a01 @x0) , λx2.a10 @ (a21 @x2))
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coePropi
ρ01 a0 := a0

coe[]Propi
: (coePropi

ρ01 a0)[ν] = a0[ν] = coePropi
ρ01 (a0[ν])

cohPropi
ρ01 a0 := (λx.x , λx.x)

|a| := |a|
a∼ ρ01 t0 t1 := �
a∼[] : (a∼ ρ01 t0 t1)[ν] = �[ν]


[]
= � = a∼ (ρ01[ν]) (t0[ν]) (t1[ν])

Ra t := tt

Sa t01 := tt

Ta t01 t12 := tt

coea ρ01 t0 := pr0 (a∼ ρ01)@ t0

coe[]a : (coea ρ01 t0)[ν] = pr0 ((a∼ ρ01)[ν])@ t0[ν] irr=

pr0 (a∼ (ρ01[ν]))@ t0[ν] = coea (ρ01[ν]) (t0[ν])
coha ρ01 t0 := tt

|irra| : |u : TmΓ a| = (|u| : Tm |Γ | |a|) irr|a|= (|v| : Tm |Γ | |a|) =

|v : TmΓ a|
|π(x : A).b| := π(x : |A|).|b|
(π(x : A).b)∼ ρ01 :=

(
λf0 x1.pr0 (b∼ (ρ01 , coh∗

A ρ01 x1))@ (f0 @ coe∗
A ρ01 x1) ,

λf1 x0.pr1 (b∼ (ρ01 , cohA ρ01 x0))@ (f1 @ coeA ρ01 x0)
)

|λx.t| := λx.|t|
(λx.t)∼ ρ01 := tt

|t@x| := |t|@x

(t@x)∼ ρ01 := tt

|σ(x : a).b| := σ(x : |a|).|b|
(σ(x : a).b)∼ ρ01 :=

(
λz0.(pr0 (a∼ ρ01)@ pr0 z0 , pr0 (b∼ (ρ01 , tt))@ pr1 z0),

λz1.(pr1 (a∼ ρ01)@ pr0 z1 , pr1 (b∼ (ρ01 , tt))@ pr1 z1)
)

|(u , v)| :=(|u| , |v|)
(u , v)∼ ρ01 :=tt

|pr0 t| :=pr0 |t|
(pr0 t)∼ ρ01 :=tt

|pr1 t| :=pr1 |t|
(pr1 t)∼ ρ01 :=tt

|�| :=�
�∼ ρ01 :=(λx.x , λx.x)
|tt| :=tt
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tt∼ ρ01 :=tt

|⊥| :=⊥
⊥∼ ρ01 :=(λx.x , λx.x)
|exfalso t| :=exfalso |t|
(exfalso t)∼ ρ01 :=exfalso (|t|[ρ0])
|Prop[]| : |Prop[ν]| = |Prop|[|ν|] Prop[]

= Prop = |Prop|
Prop[]∼ : (Prop[ν])∼ ρ01 a0 a1 = Prop∼ (ν∼ ρ01) a0 a1 =

(a0 ⇒ a1) × (a1 ⇒ a0) = Prop∼ ρ01 a0 a1

RProp[] : RProp[ν] a
irr= RProp a

SProp[] : SProp[ν] a01
irr= SProp a01

TProp[] : TProp[ν] a01 a12
irr= TProp a01 a12

coeProp[] : coeProp[ν] ρ01 a0 = coeProp (ν∼ ρ01) a0 = a0 = coeProp ρ01 a0

cohProp[] : cohProp[ν] ρ01 a0
irr= cohProp ρ01 a0

|[]| : |a[ν]| = |a|[|ν|] a[]
= |a|[|ν|] = |a[ν]|

[]∼ : (a[ν])∼ ρ01 a0 a1 = a∼ (ν∼ ρ01) a0 a1 = � = a[ν]∼ ρ01 a0 a1

R[] : Ra[ν] t
irr= Ra[ν] t

S[] : Sa[ν] t01
irr= Sa[ν] t01

T[] : Ta[ν] t01 t12
irr= Ta[ν] t01 t12

coe[] : coea[ν] ρ01 t0 = coea (ν∼ ρ01) t0 = pr0 (a∼ (ν∼ ρ01))@ t0 =

pr0 ((a[ν])∼ ρ01)@ t0 = coea[ν] ρ01 t0

coh[] : coha[ν] ρ01 t0
irr= coha[ν] ρ01 t0

|π[]| : |(π(x : A).b)[ν]| = (π(x : |A|).|b|)[|ν|] π[]
=

π(x : |A|[|ν|]).|b|[|ν|] = |π(x : A[ν]).b[ν]|
π[]∼ : ((π(x : A).b)[ν])∼ ρ01

irr= (π(x : A[ν]).b[ν])∼ ρ01

|σ[]| : |(σ(x : a).b)[ν]| = (σ(x : |a|).|b|)[|ν|] σ[]
=

σ(x : |a|[|ν|]).|b|[|ν|] = |σ(x : a[ν]).b[ν]|
σ[]∼ : ((σ(x : a).b)[ν])∼ ρ01

irr= (σ(x : a[ν]).b[ν])∼ ρ01

|�[]| : |�[ν]| = |�|[|ν|] 
[]
= � = |�|

�[]∼ : (�[ν])∼ ρ01 = �∼ (ν∼ ρ01) = (λx.x, λx.x) = �∼ ρ01

|⊥[]| : |⊥[ν]| = |⊥|[|ν|] ⊥[]
= ⊥ = |⊥|

⊥[]∼ : (⊥[ν])∼ ρ01 = ⊥∼ (ν∼ ρ01) = (λx.x , λx.x) = ⊥∼ ρ01
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|exfalso[]| : |(exfalso t)[ν]| = (exfalso |t|)[|ν|] exfalso[]
= exfalso (|t|[|ν|]) =

|exfalso (t[ν])|
exfalso[]∼ : ((exfalso t)[ν])∼ ρ01 = (exfalso t)∼ (ν∼ ρ01) =

exfalso (|t|[|ν| ◦ ρ0]) =
exfalso (|t[ν]|[ρ0]) = (exfalso (t[ν])∼ ρ01

B.3 Extensions

Identity Type

|IdA u v| := A∼ (RΓ id) |u| |v|
(IdA t0 t1)∼ ρ01 :=

(
λx01.T

3
A (SA (t0∼ ρ01))x01 (t1∼ ρ01) ,

λx01.T
3
A (t0∼ ρ01)x01 (SA (t1∼ ρ01))

)

|reflu| := RA |u|
reflt

∼ ρ01 := tt

|transportx.P e t| := coeP (RΓ id , |e|) |t|
(transportx.P e t)∼ ρ01 := T3

P

(
SP (cohP ((RΓ Id , |e|)[ρ0]) (|t|[ρ0]))

)
(t∼ ρ01)

(
cohP ((RΓ Id , |e|)[ρ1]) (|t|[ρ1])

)

|Idβ| := SP [x �→ |u|]
(
cohP (RΓ id ,RA |u|) |t|)

(Idβ t)∼ ρ01 := tt

|funext e| := λx0 x1 x01.TB (|e|@x0) (t1∼ (RΓ id)@x0 @x1 @x01)
(funext e)∼ ρ01 := tt

|propext t| := |t|
(propext t)∼ ρ01 := tt

|Id[]| : |(IdA u v)[ν]| = (A∼ (RΓ id) |u| |v|)[|ν|] A
∼[]

=

A∼ ((RΓ id)[|ν|]) (|u|[|ν|]) (|v|[|ν|]) irr=
A∼ (ν∼ (RΘ id)) (|u|[|ν|]) (|v|[|ν|]) =
(A[ν])∼ (RΘ id) (|u|[|ν|]) (|v|[|ν|]) = |IdA[ν] (u[ν]) (v[ν])|

Id[]∼ : ((IdA u v)[ν])∼ ρ01
irr= (IdA[ν] (u[ν]) (v[ν]))∼ ρ01

|transport[]| : |(transportx.P e t)[ν]| = (coeP (RΓ id , |e|) |t|)[|ν|] coe[]P=

coeP ((RΓ id , |e|)[|ν|]) (|t|[|ν|]) irr=
coeP (ν∼ (RΘ id) , |e|[|ν|]) (|t|[|ν|]) =
coeP [ν] (RΘ id , |e|[|ν|]) (|t|[|ν|]) =
|transportx.P [ν] (e[ν]) (t[ν])|

transport[]∼ : ((transportx.P e t)[ν])∼ ρ01
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Definitional Computation Rule.

coeRA[δ] ρ t : coeA[δ] (RΓ ρ) t = coeA (δ∼ (RΓ ρ)) t
irr=

coeA (RΔ (|δ| ◦ ρ)) t
coeRA (|δ|◦ρ) t

= t

coeRΠ(x :A).B ρ t :
coeΠ(x :A).B (RΓ ρ) t =
(
λx.coeB (RΓ ρ , coh∗

A (RΓ ρ)x) (pr0 t@ coe∗
A (RΓ ρ)x) , . . .

)
=

(
λx.coeB (RΓ ρ , SA (cohA (SΓ (RΓ ρ)) x)) (pr0 t @ coeA (SΓ (RΓ ρ)) x) , . . .

) irr
=

(
λx.coeB (RΓ ρ , SA (cohA (RΓ ρ)x)) (pr0 t@ coeA (RΓ ρ)x) , . . .

) coeRA ρ x
=

(
λx.coeB (RΓ ρ , SA (cohA (RΓ ρ)x)) (pr0 t@x) , . . .

) irr=
(
λx.coeB (RΓ , x :A (ρ , x �→ x)) (pr0 t@x) , . . .

) coeRB (ρ , x �→ x) (pr0 t@x)
=

(
λx.pr0 t@x , . . .

) Πη
= (pr0 t , . . . ) irr= (pr0 t , . . . ) = t

coeRΣ(x :A).B ρ (u , v) : coeΣ(x :A).B (RΓ ρ) (u , v) =

(coeA (RΓ ρ)u , coeB (RΓ ρ , cohA (RΓ ρ)u) v)
coeRA ρ u

=

(u , coeB (RΓ ρ , cohA (RΓ ρ)u) v) irr=

(u , coeB (RΓ , x :A (ρ , x �→ u)) v)
coeRB (ρ , x �→ u) v

= (u , v)
coeRBool ρ t : coeBool (RΓ ρ) t = t

coeRProp ρ a : coeProp (RΓ ρ) a = a

coeRa ρ t : coea (RΓ ρ) t = pr0 (a∼ (RΓ ρ))@ t
irra[ρ]= t

C Justification of the Rules of Setoid Type Theory

The setoid model justifies all the extra rules of setoid type theory. As all the
new syntactic components are terms, we have to implement the |– | and the –∼

operations for terms as specified in Sect. 4.2. Most components are modelled by
their black counterparts.

|Γ∼ ρ0 ρ1| := Γ∼ |ρ0| |ρ1|
(Γ∼ ρ0 ρ1)∼ τ01 :=

(
λρ01.T

3
Γ (SΓ (ρ0∼ τ01)) ρ01 (ρ1∼ τ01) ,

λρ01.T
3
Γ (ρ∼

0 τ01) ρ01 (SΓ (ρ∼
1 τ01))

)

|RΓ ρ| := RΓ |ρ|
(RΓ ρ)∼ τ01 := tt

|SΓ ρ01| := SΓ |ρ01|
(SΓ ρ01)∼ τ01 := tt
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|TΓ ρ01 ρ12| := TΓ |ρ01| |ρ12|
(TΓ ρ01 ρ12)∼ γ01 := tt

|A∼ ρ01 t0 t1| := A∼ |ρ01| |t0| |t1|
(A∼ ρ01 t0 t1)∼ τ01 :=

(
λt01.T

3
A (SA (t0∼ τ01)) t01 (t1∼ τ01) ,

λt01.T
3
A (t0∼ τ01) t01 (SA (t1∼ τ01))

)

|RA t| := RA |t|
(RA t)∼ τ01 := tt

|SA t01| := SA |t01|
(SA t01)∼ τ01 := tt

|TA t01 t12| := TA |t01| |t12|
(TA t01 t12)∼ τ01 := tt

|coeA ρ01 t0| := coeA |ρ01| |t0|
(coeA ρ01 t0)∼ τ01 := T3

A

(
SA (cohA (|ρ01| τ0) (|t0| τ0))

)
(t0∼ τ01)

(
cohA (|ρ01| τ1) (|t0| τ1)

)

|cohA ρ01 t0| := cohA |ρ01| |t0|
(cohA ρ01 t0)∼ τ01 := tt

|δ∼ ρ01| := δ∼ |ρ01|
(δ∼ ρ01)∼ τ01 := tt

|t∼ ρ01| := t∼ |ρ01|
(t∼ ρ01)∼ τ01 := tt

All the equalities are justified. Here we only list how the |– | part of the trans-
lation justifies the equalities, –∼ justifies everything automatically by irr, as all
the new syntax are terms and –∼ on a term returns a proof of a proposition.

• |·∼ ε ε| = ·∼ |ε| |ε| = � = |�|
• |(Γ , x : A)∼ (ρ0 , x �→ t0) (ρ1 , x �→ t1)| =

(Γ , x : A)∼ |(ρ0 , x �→ t0)| |(ρ1 , x �→ t1)| =
(Γ , x : A)∼ (|ρ0| , x �→ |t0|) (|ρ1| , x �→ |t1|) =
σ(ρ01 : Γ∼ |ρ0| |ρ1|).A∼ ρ01 |t0| |t1| =
|σ(ρ01 : Γ∼ ρ0 ρ1).A∼ ρ01 t0 t1|

• |(A[δ])∼ ρ01 t0 t1| = (A[δ])∼ |ρ01| |t0| |t1| = A∼ (δ∼ |ρ01|) |t0| |t1| =
|A∼ (δ∼ ρ01) t0 t1|

• |(Π(x : A).B)∼ ρ01 t0 t1| = (Π(x : A).B)∼ |ρ01| |t0| |t1| =
π(x0 : |A|[|ρ0|]).π(x1 : |A|[|ρ1|]).π(x01 : A∼ |ρ01|x0 x1).

B∼ (|ρ01| , x01) (pr0 |t0|@x0) (pr0 |t1|@x1) =
π(x0 : |A|[|ρ0|]).π(x1 : |A|[|ρ1|]).π(x01 : A∼ |ρ01|x0 x1).

B∼ (|ρ01| , x01) |t0 @x0| |t1 @x1| =
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|π(x0 : A[ρ0]).π(x1 : A[ρ1]).π(x01 : A∼ ρ01 x0 x1).

B∼ (ρ01 , x01) (t0 @x0) (t1 @x1)|
• |(Σ(x : A).B)∼ ρ01 (u0 , v0) (u1 , v1)| =

(Σ(x : A).B)∼ |ρ01| (|u0| , |v0|) (|u1| , |v1|) =
σ(x01 : A∼ |ρ01| |u0| |u1|).B∼ (|ρ01| , x01) |v0| |v1| =
|σ(u01 : A∼ ρ01 u0 u1).B∼ (ρ01 , u01) v0 v1|

• |Bool∼ ρ01 t0 t1| = Bool∼ |ρ01| |t0| |t1| =
if |t0| then (if |t1| then� else⊥) else (if |t1| then⊥ else�) =
|if t0 then (if t1 then� else⊥) else (if t1 then⊥ else�)|

• |Prop∼ ρ01 a0 a1| = Prop∼ |ρ01| |a0| |a1| = (|a0| ⇒ |a1|) × (|a1| ⇒ |a0|) =

|(a0 ⇒ a1) × (a1 ⇒ a0)|
• |a∼ ρ01 t0 t1| = a∼ |ρ01| |t0| |t1| = � = |�|
• |coeA[δ] ρ01 t0| = coeA[δ] |ρ01| |t0| = coeA (δ∼ |ρ01|) |t0| = |coeA (δ∼ ρ01) t0|
• |coeΠ(x :A).B ρ01 t0| = coeΠ(x :A).B |ρ01| |t0| =

(
λx1.coeB (|ρ01| , coh∗

A |ρ01|x1) (pr0 |t0|@ coe∗
A |ρ01|x1) , . . .

)
=

(
λx1.coeB (|ρ01| , coh∗

A |ρ01|x1) (|t0 @ coe∗
A ρ01 x1|) , . . .

)
=

|λx1.coeB (ρ01 , coh∗
A ρ01 x1) (t0 @ coe∗

A ρ01 x1)|
• |coeΣ(x :A).B ρ01 (u0 , v0)| = coeΣ(x :A).B |ρ01| (|u0| , |v0|) =

(
coeA |ρ01| |u0| , coeB (|ρ01| , cohA |ρ01| |u0|) |v0|

)
=

|(coeA ρ01 u0 , coeB (ρ01 , cohA ρ01 u0) v0
)|

• |coeBool ρ01 t0| = coeBool |ρ01| |t0| = |t0|
• |coePropi

ρ01 a0| = coePropi
|ρ01| |a0| = |a0|

• |coea ρ01 t0| = coea |ρ01| |t0| = pr0 (a∼ |ρ01|)@ |t0| = |pr0 (a∼ ρ01)@ t0|
• |(Γ∼ ρ0 ρ1)[ν]| = (Γ∼ |ρ0| |ρ1|)[|ν|] Γ ∼[]

= Γ∼ (|ρ0| ◦ |ν|) (|ρ1| ◦ |ν|) =
|Γ∼ (ρ0 ◦ ν) (ρ1 ◦ ν)|

• |(A∼ ρ01 t0 t1)[ν]| = (A∼ |ρ01| |t0| |t1|)[|ν|] A∼[]
=

A∼ (|ρ01|[|ν|]) (|t0|[|ν|]) (|t1|[|ν|]) = |A∼ (ρ01[ν]) (t0[ν]) (t1[ν])|
• |(coeA ρ01 t0)[ν]| = (coeA |ρ01| |t0|)[|ν|] coe[]A= coeA (|ρ01|[|ν|]) (|t0|[|ν|]) =

|coeA (ρ01[ν]) (t0[ν])|
• |coeA (RΓ ρ) t| = coeA (RΓ |ρ|) |t| coeRA= |t|
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23. Martin-Löf, P.: Intuitionistic type theory, Studies in Proof Theory, vol. 1. Bibliopo-
lis (1984)

24. Matthieu Sozeau, N.T.: Univalence for free (2013). http://hal.inria.fr/hal-
00786589/en

25. McBride, C.: Elimination with a motive. In: Callaghan, P., Luo, Z., McKinna,
J., Pollack, R., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 197–216.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45842-5 13

26. Oury, N.: Extensionality in the calculus of constructions. In: Hurd, J., Melham, T.
(eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 278–293. Springer, Heidelberg (2005).
https://doi.org/10.1007/11541868 18

27. Program, T.U.F.: Homotopy type theory: univalent foundations of mathematics.
Technical report, Institute for Advanced Study (2013)

28. Sterling, J., Angiuli, C., Gratzer, D.: Cubical syntax for reflection-free extensional
equality. In: Geuvers, H. (ed.) Proceedings of the 4th International Conference on
Formal Structures for Computation and Deduction (FSCD 2019), vol. 131 (2019).
https://doi.org/10.4230/LIPIcs.FSCD.2019.32

29. Streicher, T.: Investigations into intensional type theory. Habilitation thesis (1993)
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Abstract. Cylindric algebras have been developed as an algebraisation
of equational first order logic. We adapt them to cylindric Kleene lattices
and their variants and present relational and relational fault models for
these. This allows us to encode frames and local variable blocks, and to
derive Morgan’s refinement calculus as well as an algebraic Hoare logic
for while programs with assignment laws. Our approach thus opens the
door for algebraic calculations with program and logical variables instead
of domain-specific reasoning over concrete models of the program store.
A refinement proof for a small program is presented as an example.

1 Introduction

Kleene algebras and similar formalisms have found their place in program con-
struction and verification. Kleene algebras with tests [19] have been used for cal-
culating complex program equivalences; the rules of propositional Hoare logic—
Hoare logic without assignments laws—can be derived from their axioms [20].
Demonic refinement algebras [29] have been applied to non-trivial program trans-
formations in the refinement calculus [3]. Modal Kleene algebras [7,8] have been
linked with predicate transformer semantics and found applications in program
correctness. More recently, links between Kleene algebras and Morgan-style
refinement calculi [23] have been established; program construction and veri-
fication components based on Kleene algebras have been formalised in proof
assistants such as Coq [9,25] or Isabelle/HOL [2,15,28].

The Isabelle components are based on shallow embeddings of while programs,
Hoare logic and refinement calculi. Programs, assertions and correctness specifi-
cations are modelled as semantic objects directly within Isabelle’s higher-order
logic. Explicit data types for the syntax of programs, assertions or logics of pro-
grams, and explicit semantic maps for their interpretation can thus be avoided.
Kleene algebras, as abstract semantics for while programs, propositional Hoare
logics or propositional refinement calculi, fit very naturally into this approach.
Yet assignments and their laws are currently formalised in concrete program
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store semantics that form models of the algebras. With a shallow embedding,
program construction and verification is thus performed in these concrete seman-
tics. Other familiar features of refinement calculi, such as variable frames or local
variable blocks, cannot be expressed in Kleene algebras either. How algebra could
handle such important features remains open.

Yet algebra can deal with bindings, scopes and variables. Nominal Kleene
algebras [13] can model the first two features, and cylindric algebras of Henkin,
Monk and Tarski [17] the third, albeit in the setting of boolean algebras, where
notions of variables and quantification are added in an algebratisation of first-
order equational logic. They introduce a family of cylindrification operators cκ x
that abstract existential quantification ∃κx of first-order formulas.

Henkin, Monk and Tarski give a standard interpretation of cκ in cylindric
set algebras [17, p. 166]. In this setting, cylindrification is defined over P Xα

for some set X and ordinal α.1 Elements of a cylindric set algebra are therefore
functions of type α → X, or sequences x = (x0, x1, . . . ) of “length” α. In logic,
if α is a set of logical variables and X the carrier set of a structure, these
correspond to valuations. Geometrically, Xα corresponds to an α-dimensional
Cartesian space with base X where xκ represents the κth coordinate. Apart
from the usual boolean operations on sets, cylindric set algebras use a family
of cylindrification operators Cc

κ : P Xα → P Xα for κ < α—the superscript c
stands for “classical”. For each A ⊆ Xα,

Cc
κA = {y ∈ Xα | ∃x ∈ A. x ≈κ y},

where x ≈κ y if x and y are equal, except at κ, (i.e. ∀λ �= κ. xλ = yλ).
Geometrically, Cc

κA thus translates A along the κ-axis and constructs a cylinder
in some hyperspace.

Our main idea is to generalise cylindrification from boolean algebras to
Kleene lattices (thus foregoing the complement operator of boolean algebra,
while adding a monoidal composition and a star). We explain it through rela-
tional cylindrification Cκ, which acts on programs modelled by relations in
P (Xα×Xα), where Xα represents program stores as functions from variables in
α to values in X. Cylindrifying relation R in variable κ by Cκ R means adding
any combination of values for κ to elements of R. We therefore say that Cκ

liberates variable κ in program R,

CκR = {(a, b) ∈ Xα × Xα | ∃(c, d) ∈ R. a ≈κ c ∧ b ≈κ d}.

Note that κ is liberated (can take on any value) independently in both the first
and second coordinates of R.2

1 In applying Henkin, Monk and Tarski’s work to program algebra we do not rely
much on the use of ordinals; sets usually suffice.

2 Expressing the relation as a predicate in the Z style [16,27], i.e. representing before
values of a variable by x and after values by x′, relational cylindrification corresponds
to the predicate ∃x,x′R.
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The cylindrification of the identity relation, Cκ IdXα , in particular, liberates
variable κ while constraining all other variables to satisfy the identity relation
on Xα. Henkin, Monk and Tarski [17, §1.7] have generalised cylindrification
to finite sets of variables so that c({κ0,...,κn−1})x = cκ0 . . . cκn−1x, where the
parentheses on the left are part of their syntax. For a set of variables Γ , a program
R may be restricted to only change variables in Γ by conjoining it with C(Γ )IdXα ,
i.e. R ∩ C(Γ )IdXα , which we abbreviate to Γ :x to match the syntax of frames
in Morgan’s refinement calculus [24]. A local variable κ with a scope over some
program R is obtained by first liberating the local κ over the program and then
constraining any non-local κ to not change, i.e. (CκR) ∩ C

({κ})IdXα , which we
abbreviate as (varκ.R). Finally, assignment statements are encoded by framed
specification statements, where tests are used to abstract from expressions, and
variable substitutions are handled using another concept from cylindric algebras,
namely diagonal elements.

Our main contribution lies in the formal development of this new extension
and application of cylindrification. This opens the door to algebraic calculations
with variables in imperative programs where set-theoretic reasoning in concrete
store semantics is so far required. Our technical contributions are as follows.

– We extend Kleene algebras (Sect. 2) to cylindric Kleene lattices (Sect. 4),
explore their basic properties and prove their soundness with respect to a
relational (fault) semantics for imperative programs (Sects. 3 and 5).

– Generalised cylindrification liberates a set of variables, rather than a single
variable (Sect. 6). It is used to show that the frames of Morgan’s refinement
calculus (Sect. 8) and local variable blocks (Sect. 9) can be expressed in cylin-
dric Kleene lattices. Based on these encodings we derive the laws of Morgan’s
refinement calculus with frames and those of Hoare logic (Sect. 7), both with
assignment laws.

– Synchronous cylindrification (Sect. 10) supports the cylindrification of tests
in the relational model. It is used in combination with diagonal elements
(representing equality in equational logic) to define substitutions algebraically
(Sect. 11). These are then used to define variable assignments (Sect. 12).

– We explain how simple refinement proofs can be performed in our framework
by purely algebraic and symbolic reasoning.

– We propose liberation Kleene lattices (Sect. 13) as a conceptually simpler
and more fine-grained variant, and prove that the axioms of cylindric Kleene
lattices are derivable from those of liberation Kleene lattices.

Many of our results have been verified with Isabelle/HOL, but verification
and refinement components based on cylindric Kleene algebras remain work in
progress. All Isabelle proofs are accessible online3.

Overall, many of the concepts needed for our development could be readily
adapted from cylindric algebra. Henkin, Monk and Tarski’s textbook [17] has
been a surprising source of insights from a seemingly unrelated area. We follow
their notational conventions closely.
3 https://github.com/gstruth/liberation.

https://github.com/gstruth/liberation
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2 L-Monoids and Kleene Lattices

This section briefly recalls the basic algebraic structures used in this article.
Cylindric variants are presented in Sect. 4, liberation algebras are introduced in
Sect. 13. We work with l-monoids instead of dioids and Kleene lattices instead
of Kleene algebras because a meet operation is crucial for defining the concepts
we care about: frames, local variables and variable assignments.

Definition 1 (l-monoid). A lattice-ordered monoid ( l-monoid) [4] is a struc-
ture (L,+, ·, ;, 0, 1) such that (L,+, ·, 0) is a lattice with join operation +, meet
operation ·, and least element 0; (L, ;, 1) is a monoid and the distributivity axioms
x ; (y + z) = x ; y + x ; z and (x + y) ; z = x ; y + x ; z and annihilation axioms
0 ; x = 0 and x ; 0 = 0 hold for all x, y, z ∈ L. An l-monoid is weak if the axiom
x ; 0 = 0 is absent.

Definition 2 (Kleene lattice). A (weak) Kleene lattice [1,18] is a (weak) l-
monoid, K, equipped with a star operation ∗ : K → K, that satisfies the unfold
and induction axioms

1 + x ; x∗ ≤ x∗, z + x ; y ≤ y ⇒ x∗ ; z ≤ y,

1 + x∗ ; x ≤ x∗, z + y ; x ≤ y ⇒ z ; x∗ ≤ y.

The unfold and induction laws in the first line and those in the second line above
are opposites: the order of composition has been swapped.

Forgetting the meet operation in l-monoids yields dioids (i.e., semirings with
idempotent addition); forgetting meet in Kleene lattices yields Kleene algebras.

Definition 3 (l-monoid with tests). A (weak) l-monoid with tests is a struc-
ture (L,B,+, ·, ;, 0, 1,¬) where B ⊆ L, ¬ is a partial operation defined on B
such that (B,+, ·, 0, 1,¬) is a boolean algebra in which ; and · coincide and
(L,+, ·, ;, 0, 1) is a (weak) l-monoid. In addition, for all p ∈ B and x, y ∈ K,

p ; (x · y) = (p ; x) · (p ; y), and (x · y) ; p = (x ; p) · (y ; p).

Definition 4 (Kleene lattice with tests). A (weak) Kleene lattice with tests
is a (weak) l-monoid with tests that is also a (weak) Kleene lattice.

Alternatively, Kleene lattices can be based on the operation + : K → K that
satisfies the following unfold and induction axioms

x + x ; x+ = x+, z + x ; y ≤ y ⇒ z + x+ ; z ≤ y,

and their opposites x + x+ ; x = x+ and z + y ; x ≤ y ⇒ z + z ; x+ ≤ y, even
when the unit 1 is absent. In the presence of this unit, the identities x+ = x ; x∗

and x∗ = 1 + x+ make the two variants interderivable.
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3 Relation Kleene Lattices

Before cylindrifying l-monoids and Kleene lattices in the next section, we sketch
the relational model and the relational fault model of these algebras. First of
all, these form the basis of the standard relational program semantics to which
we restrict our attention. Secondly, they are used in the soundness proofs of the
cylindric and liberation algebras that we axiomatise. Last, but not least, they
provide valuable intuitions for the algebraic development.

A standard model of Kleene algebra with tests is formed by the algebra of
binary relations over a set X. In this model, + is interpreted as union, ; as
relational composition ((a, b) ∈ R ; S ⇔ ∃c ∈ X. (a, c) ∈ R ∧ (c, b) ∈ S), 0
as ∅, 1 as the identity relation on X, ((a, b) ∈ IdX ⇔ a = b), and ∗ as the
reflexive-transitive closure operation (R∗ =

⋃
i<ω Ri, for R0 = IdX and Ri+1 =

R ; Ri). As our basis is a lattice, · is interpreted as intersection. Finally, tests
are subidentities, that is, elements of PIdX = {R ⊆ X × X | R ⊆ IdX}. These
distribute over infs in both arguments with respect to sequential composition.
Test complementation is defined by IdX − ( ). The test algebra PIdX forms a
subalgebra of any algebra P (X × X) of binary relations—in fact a complete
atomic boolean algebra. The following result is therefore routine.

Proposition 1. Let X be a set. Then (P(X × X),PIdX ,∪,∩, ;, ∅, IdX ,−,∗ ) is
a Kleene lattice with tests—the full relation Kleene lattice with tests over X.

Weak Kleene lattices with tests are formed by relations that model faults or
nontermination over X×X⊥, where X⊥ = X∪{⊥} and ⊥ �∈ X is an element that
represents a fault or non-termination. We refer to this model as the relational
fault model. We partition each R ⊆ X ×X⊥ into its proper part Rp ⊆ X ×X and
its faulting part Rf ⊆ X×{⊥}, that is, R = Rp∪Rf and Rp∩Rf = ∅. Redefining
R ; S = Rf ∪ Rp;S then makes faults override compositions, representing R as
(Rp, Rf ) and S by (Sp, Sf ) yields a semidirect product, which is well known in
semigroup theory:

(Rp, Rf ) ; (Sp, Sf ) = (Rp ; Sp, Rf ∪ Rp ; Sf ). (1)

With (Rp, Rf )0 = (IdX , ∅) and (Rp, Rf )i+1 = (Rp, Rf ) ; (Rp, Rf )i we define

(Rp, Rf )∗ =
⋃

i<ω

(Rp, Rf )i. (2)

An inductive argument shows that ∗ satisfies the Kleene algebra axioms and that

(Rp, Rf )∗ = (R∗
p, R

∗
p ; Rf ).

Proposition 2. Let X be a set. Then (P(X × X⊥),PIdX ,∪,∩, ;, ∅, IdX ,−,∗ ),
with composition (1) and star (2), forms a weak Kleene lattice with tests—the
full weak relation Kleene lattice with tests over X.

The identity of the pair representation with respect to ; is (IdX , ∅); its left
zero is (∅, ∅). All tests are proper and test complementation is restricted to
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the proper part. Right annihilation fails because (Rp, Rf ) ; (∅, ∅) = (∅, Rf ) �=
(∅, ∅) whenever Rf �= ∅. Algebraic proofs for this development can be found in
Appendix A; it has been formalised with Isabelle.

Each subalgebra (K,B), with K ⊆ P (X×X) and B ⊆ PIdX , of a full (weak)
relation Kleene lattice with tests over X is a (weak) relation Kleene lattice with
tests over X.

The relation algebras described in this section have of course a much richer
structure. Firstly, we ignore the fact that relations have converses and can be
complemented, yet this only means that we focus on the programming concepts
that matter. Secondly, relational composition preserves sups in both arguments,
whereas the redefined composition (1) preserves sups in its first and non-empty
sups in its second argument. Non-preservation of empty sups in the second argu-
ment is of course due to the absence of right annihilation.

4 Cylindric L-Monoids and Kleene Lattices

This section extends l-monoids and Kleene lattices from Sect. 2 by a family of
cylindrification operators. In other words, we generalise the classical cylindric
algebras of Henkin, Monk and Tarski [17] from boolean algebras to Kleene alge-
bras. The axiomatisations have been developed, minimised and proved to be
independent using Isabelle/HOL. Apart from the axioms, we present some sim-
ple algebraic properties, all of which have been verified with Isabelle. The rela-
tional models from Sect. 3 are extended to models for cylindric l-monoids and
Kleene lattices in Sect. 5. In reading the following definition a suitable intuition
is that cκx represents an abstraction of existential quantification ∃κx.

Definition 5 (cylindric l-monoid). Let α be an ordinal. A (weak) cylindric
l-monoid (CLM) of dimension α is a structure (L,+, ·, ;, 0, 1, cκ)κ<α such that
(L,+, ·, ;, 0, 1) is a (weak) l-monoid and each cκ : L → L satisfies:

cκ 0 = 0, (C1)
x ≤ cκ x, (C2)

cκ (x · cκ y) = cκ x · cκ y, (C3)
cκcλ x = cλcκ x, (C4)

cκ (x + y) = cκ x + cκ y, (C5)
cκ (x ; cκ y) = cκ x ; cκ y, (C6)
cκ (cκ x ; y) = cκ x ; cκ y, (C7)

κ �= λ ⇒ cκ 1 · cλ 1 = 1, (C8)
(cκ 1 ; cλ 1) · (cκ 1 ; cμ 1) = cκ (cλ 1 · cμ 1), (C9)

cκ (cλ 1) = cκ 1 ; cλ 1. (C10)

Classical cylindric algebra is axiomatised over a boolean algebra instead of a
Kleene lattice; a monoidal structure is absent. Cylindric algebras usually consider
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diagonal elements dκλ as well [17]. In this sense CLM is diagonal free. CLMs with
diagonals are introduced in Sect. 11.

Axioms (C1), (C2), (C3) and (C4) are those of classical cylindric algebra [17,
p.162]; (C5) is derivable in that context because it is based on a boolean algebra.
The axioms (C6) and (C7) appear in a previous abelian-semiring-based approach
to cylindrification by Giacobazzi, Debray and Levi [14]. Axioms (C8)–(C10) are
new. In axioms (C1), (C5), (C9) and (C10), = could have been weakened to ≤.
Isabelle’s counterexample generators show that the axioms are independent. We
write 1κ instead of cκ 1. Intuitively, such elements are identities of ; except for
κ. The next lemmas establish basic facts about cylindrification. The properties
in the first one are known from classical cylindric algebras.

Lemma 1. [17, §1.2] In every weak CLM,

1. cκ cκ x = cκ x, (HMT1.2.3)
2. cκ x = 0 ⇔ x = 0, (HMT1.2.1)
3. cκ x = x ⇔ ∃y. cκ y = x, (HMT1.2.4)
4. x · cκ y = 0 ⇔ y · cκ x = 0, (HMT1.2.5)
5. x ≤ y ⇒ cκ x ≤ cκ y, (HMT1.2.7)
6. x ≤ cκ y ⇔ cκ x ≤ cκ y, (HMT1.2.9)
7. cκ x · cλ y = 0 ⇔ cλ x · cκ y = 0. (HMT1.2.15)

Axiom (C2) and Lemma 1(1) and (5) can be summarised as follows.

Lemma 2. In every weak CLM, cκ is a closure operator.

The next lemma collects properties beyond classical cylindrical algebra.

Lemma 3. In every weak CLM,

1. cκ (x ; y) ≤ cκ x ; cκ y,
2. 1κ ; x ; 1κ ≤ cκ x,
3. 1 ≤ 1κ,
4. 1κ ; 0 = 0,
5. 1κ ; 1κ = 1κ,
6. 1κ ; 1λ = 1λ ; 1κ,
7. cκ (1λ · 1μ) = 1κ ; (1λ · 1μ),
8. 1κ + 1λ ≤ 1κ ; 1λ.

Lemma 3(2) may be strengthened to an equality in the relational model of
CLM, but neither in trace models [21] nor in the algebra; the following lemma
gives a counterexample.

Lemma 4. There is a CLM in which cκ x �≤ 1κ ; x ; 1κ.

Proof. Consider the CLM with L = {0, 1, a}, join and meet defined by 0 < a < 1
and composition by a; a = a. It can be checked that cκ : 0 �→ 0, a �→ 1, 1 �→ 1
satisfies (C1)–(C7). Yet cκ a = 1 �= a = 1 ; a ; a = 1κ ; a ; 1κ. ��
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In any (weak) CLM L, let

Lcκ
= {x ∈ L | cκ x = x}

denote the set of cylindrified elements in dimension κ. Similarly, we define Ll
1κ

,
Lr
1κ

and L1κ
as the sets of fixpoints of 1κ ; ( ), ( ) ;1κ and 1κ ; ( ) ;1κ, respectively.

Lemma 1(3) implies that Lcκ
is equal to the image of L under cκ. Analogous

facts hold for the other three functions.

Proposition 3. Let L be a (weak) CLM and let κ < α. Then

1. (Ll
1κ

,+, ·, ;, 0, 1κ) forms a (weak) sub-l-semigroup of L with left unit 1κ,
2. (Lr

1κ
,+, ·, ;, 0, 1κ) forms a sub-l-semigroup of L with right unit 1κ and if L is

a strong CLM, then Ll
1κ

and Lr
1κ

are isomorphic,
3. (L1κ

,+, ·, ;, 0, 1κ) forms a sub-l-monoid of Ll
1κ

and Lr
1κ
,

4. (Lcκ
,+, ·, ;, 0, 1κ) forms a (weak) sub-l-monoid of L1κ

.

Proof.

1. For Ll
1κ

, it is well known that any principal right-ideal of an idempotent
in a monoid forms a subsemigroup with the idempotent as left unit. By
Lemma 3(5), 1κ is an idempotent; Ll

1κ
is the principal right-ideal generated

by 1κ by definition. Closure with respect to sups follows from the dioid axioms
in L and idempotence of 1κ; inf-closure from 1κ ; (1κ ;x · 1κ ; y) = 1κ ;x · 1κ ; y,
which has been checked with Isabelle.

2. The proof for Lr
1κ

follows from that of Ll
1κ

by opposition, using the dual
identity (x ; 1κ · y ; 1κ) ; 1κ = x ; 1κ · y ; 1κ for inf-closure. Right annihilation in
Lr
1κ

follows from Lemma 3(4). In the strong case, the isomorphism is given
by opposition.

3. The subalgebra proof for L1κ
follows from (1) and (2). Checking that L1κ

is
a subalgebra of both Ll

1κ
and Lr

1κ
is straightforward: by idempotence of 1κ,

every fixpoint of L1κ
is a fixpoint of Ll

1κ
and Lr

1κ
.

4. For Lcκ
, closure with respect to +, · and ; is immediate from the axioms.

Sup-closure, for instance, means checking that cκ (cκ x + cκ y) = cκ x + cκ y.
Finally, 1κ is the unit in the subalgebra because 1κ ; cκ x = cκ x = cκ x ; 1κ.
This property, which also establishes that Lcκ

is a subalgebra of L1κ
, has

been confirmed by Isabelle. ��
By Lemma 4, the sets of fixpoints of Lcκ

and L1κ
need not coincide. Separating

the remaining sets of fixpoints with Isabelle’s counterexample generators is a
simple exercise and need not be expanded.

Definition 6 (cylindric Kleene lattice). A (weak) cylindric Kleene lattice
(CKL) of dimension α is a (weak) cylindric l-monoid of dimension α that is also
a (weak) Kleene lattice, and in which

cκ x+ ≤ (cκ x)+. (C11)
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Isabelle’s counterexample generators show that 1 need not be in Kcκ
for any

κ, in particular not in the relational models described in Sect. 5. Together with
Proposition 3 this explains why a +-axiom appears in CKL, and not a ∗-axiom.
Next we list properties of cylindric Kleene lattices.

Lemma 5. In every weak CKL,

1. cκ x∗ ≤ 1κ ; (cκ x)∗,
2. cκ (cκ x)+ = (cκ x)+,
3. 1κ ; (cκ x)+ = (cκ x)+,
4. 1κ ; (cκ x)+ = (cκ x)+ ; 1κ,
5. cκ (cκ x)∗ = 1κ ; (cκ x)∗,
6. 1κ ; (cκ x)∗ = (cκ x)∗ ; 1κ,
7. (1κ + 1λ)+ = 1κ ; 1λ = (1κ + 1λ)∗,
8. 1+κ = 1κ = 1∗

κ.

Finally, Proposition 3 extends to CKL.

Proposition 4. (Kcκ
,+, ·, ;, 0, 1κ, ( )+) is a (weak) sub-Kleene lattice of the

(weak) CKL K for each κ < α.

The cases of Kl
1κ

, Kr
1κ

and K1κ
are analogous. The first two benefit from the

fact that ( )+ can be used to define sub-Kleene lattices (Kl
1κ

,+, ·, ;, 0, 1κ, ( )+)
and its opposite (Kr

1κ
,+, ·, ;, 0, 1κ, ( )+) that do not require 1κ.

5 Relational Cylindrification

In constructions of cylindric algebras of formulas of predicate logic, sequences in
Xα correspond to valuations [17]. They associate variables of first-order formulas
with values in their models. In imperative programming languages, functions
from variables in α to values in X form the standard model of program stores, and
the standard denotational semantics interprets programs as relations between
these. Our aim is to model cylindrifications over such relations.

Hence we consider relations R ⊆ Xα × Xα and relational cylindrifications
Cκ : P (Xα × Xα) → P (Xα × Xα) that liberate the value of variable κ in both
coordinates of ordered pairs. Formally, we therefore define

Cκ R = {(a, b) ∈ Xα × Xα | ∃c, d ∈ Xα. (a, b) ≈κ (c, d) ∧ (c, d) ∈ R},

where ≈κ has been extended pointwise to an equivalence on pairs: (a, b) ≈κ (c, d)
if and only if a ≈κ c and b ≈κ d.

Operationally, therefore, Cκ R is constructed from R by adding all those pairs
to R that are equal to some element of R, except at κ, in both their first and
their second coordinate. In particular,

(a, b) ∈ (IdXα)κ ⇔ a ≈κ b.
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On pairs, (a, b) ≈κ (c, d) ⇔ ∃e, f. (a, b) = (c[κ ← e], d[κ ← f ]). Thus

Cκ R = {(a, b) | ∃e, f. (a[κ ← e], b[κ ← f ]) ∈ R}
presents relational cylindrification in a way that is particularly suggestive for
programming: Cκ R is obtained from R by updating variable κ “asynchronously”
in the pre-state and post-state of R in all possible ways.

We henceforth write Id and Idκ when the underlying set Xα is obvious. An
important property is that the relational cylindrification of Id suffices to express
all other relational cylindrifications.

Lemma 6. Let R ⊆ Xα × Xα. Then

Cκ R = Idκ ; R ; Idκ.

We have proved this fact with Isabelle. By Lemma 4, CKL is too weak to capture
this property, but we expect it to fail, for instance, in trace models for which
cylindrification by κ liberates κ in every state in the trace [21], not just the first
and last states, i.e. ≈κ is lifted to apply to every state in the traces.

Some rewriting may be helpful to understand the actions of Idκ ; ( ) and
( ) ; Idκ on relations: Idκ ; R = {(a, b) | ∃c ∈ X. (a[κ ← c], b) ∈ R} and R ; Idκ

acts similarly on second coordinates. Thus Idκ ;R models a left-handed relational
cylindrification of first coordinates and R ; Idκ its right-handed opposite.

For faulting relations, Cκ : P (Xα × Xα
⊥) → P (Xα × Xα

⊥) is determined by
Lemma 6 as (Idκ, ∅) ; (Rp, Rf ); (Idκ, ∅), which yields

Cκ R = (Cκ Rp, Idκ ; Rf ).

Hence we cylindrify the proper part of R and the first coordinate of its faulting
part. This prevents the leakage of faults into proper parts of relations. We recall
that PIdXα is the set of subidentities over Xα.

Proposition 5. For every ordinal α and set X,

1. (P (Xα × Xα),P IdXα ,∪,∩, ;, ∅, IdXα ,−,∗ , Cκ)κ<α is a CKL with tests;
2. (P(Xα ×Xα

⊥),P IdXα ,∪,∩, ;, ∅, IdXα ,−,∗ , Cκ)κ<α, with composition (1) and
star (2), is a weak CKL with tests.

Proof. Liberation Kleene lattices and their weak variants are introduced in
Sect. 13. Proposition 12 in that section shows that every (weak) liberation Kleene
lattice is a (weak) CKL. Lemma 13 in the same section shows that the liberation
Kleene lattice axioms hold in P (Xα ×Xα) while P (Xα ×Xα

⊥) satisfies the weak
liberation Kleene lattice axioms. ��
We call P (Xα×Xα) the (full) relation CKL with tests over Xα and P (Xα×Xα

⊥)
the (full) weak relation CKL with tests over Xα.

Henkin, Monk and Tarski show that classical cylindric algebras are closed
under direct products. Yet P Xα × P Xα and P (Xα × Xα) are not isomorphic
and thus our axiomatisation of CKL cannot be explained in terms of a simple
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pair construction on classical cylindric algebras. Nevertheless, many properties,
for instance in Lemmas 1 and 5, translate from their setting into ours, and
relations in P (Xα × Xα) can of course be encoded as predicates in P X2α or
higher dimensions.4 As the elementary theory of binary relations is captured by
classical cylindric algebra, it can be expected that at least relation CLM can be
expressed in this setting, yet rather indirectly.5

6 Generalised Cylindrification

Modelling frames in Morgan’s refinement calculus through cylindrification
requires the consideration of sets of variables, at least finite ones, and the lib-
eration of these. Henkin, Monk and Tarski [17, §1.7] have already generalised
cylindrification from single variables to finite sets. We merely need to translate
their approach into CKL, and this is the purpose of this section. Once again, all
properties in this section have been verified with Isabelle.

For a finite subset Γ of an ordinal α, we follow Henkin, Monk and Tarski in
defining

c(∅) = id and c(κ,Γ ) = cκ ◦ c(Γ ),

where id is the identity function on Xα, ◦ is function composition, and c(κ,Γ )

abbreviates c({κ}∪Γ ). A simple proof by induction shows that

c(Γ ) ◦ c(Δ) = c(Γ∪Δ) (HMT1.7.3)

holds for all finite subsets Γ and Δ of α.
Henkin, Monk and Tarski call an element x of a CKL rectangular if

c(Γ ) x · c(Δ) x = c(Γ∩Δ) x (HMT1.10.6)

holds for all finite sets Γ and Δ. They show in the classical setting that x is
rectangular if and only if c(κ,Γ ) x · c(λ,Γ ) x = c(Γ ) x holds for all κ, λ and finite
Γ , such that κ �= λ. By defining rectangular elements of a CKL in the same way,
their proof transfers to CKL. We henceforth abbreviate c(Γ ) 1 as 1(Γ ). Our main
interest in rectangularity lies in the following inf-closure property.

Lemma 7. In every relation CKL, Id is rectangular; for all finite Γ and Δ,

Id (Γ ) ∩ Id (Δ) = Id (Γ∩Δ).

4 This is similar to the predicative encoding of relations in the Z style [16,27], in
which the value of a variable κ in the initial state is represented by κ and its value
in the final state is represented by κ′; relational cylindrification in Z is represented
by ∃κ,κ′R, i.e. CκCκ′R in the relational model. That is, relations are encoded using
a set of variables, which for each program variable κ also contains κ′.

5 We are grateful to an anonymous referee for pointing out an encoding.
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Proof. Defining the equivalence a ≈Γ b as ∀λ /∈ Γ. aλ = bλ, it is easy to check
that (a, b) ∈ Id (Γ ) ⇔ a ≈Γ b. Hence

(a, b) ∈ Id (Γ ) ∩ Id (Δ) ⇔ a ≈Γ b ∧ a ≈Δ b

⇔ ∀λ. (λ /∈ Γ ⇒ aλ = bλ) ∧ (λ /∈ Δ ⇒ aλ = bλ)
⇔ ∀λ. λ /∈ (Γ ∩ Δ) ⇒ aλ = bλ

⇔ a ≈Γ∩Δ b

⇔ (a, b) ∈ Id (Γ∪Δ).

��
At the moment, we are nevertheless neither able to derive rectangularity of 1
from the CKL axioms nor to refute its derivability.

Question 1. Do the CKL axioms imply that 1 is rectangular? Otherwise, is there
any finitary extension of these axioms that implies this fact?

We henceforth indicate explicitly, whenever rectangularity of 1 is assumed.
Henkin, Monk and Tarski have also shown that the axioms of classical cylin-

dric algebras generalise to finite sets. This fact extends to CKL as well.

Lemma 8. In every CKL the following generalisations of axioms (C1)–(C11)
hold. For all finite Γ,Δ,E ⊆ α,

1. c(Γ ) 0 = 0,
2. x ≤ c(Γ ) x,
3. c(Γ ) (x · c(Γ ) y) = c(Γ ) x · c(Γ ) y,
4. c(Γ )c(Δ) x = c(Δ)c(Γ ) x,
5. c(Γ ) (x + y) = c(Γ ) x + c(Γ ) y,
6. c(Γ ) (x ; c(Γ ) y) = c(Γ ) x ; c(Γ ) y,
7. c(Γ ) (c(Γ ) x ; y) = c(Γ ) x ; c(Γ ) y,
8. Γ ∩ Δ = ∅ ⇒ 1(Γ ) · 1(Δ) = 1, assuming 1 is rectangular,
9. (1(Γ ) ; 1(Δ)) · (1(Γ ) ; 1(E)) = 1(Γ ); (1(Δ) · 1(E)), assuming 1 is rectangular,

10. c(Γ ) 1(Δ) = 1(Γ ) ; 1(Δ),
11. c(Γ ) x+ ≤ (c(Γ ) x)+.

In addition,

12. Γ ⊆ Δ ⇒ c(Γ ) x ≤ c(Δ)x,
13. 1(Γ ) ; 1(Δ) = 1(Γ∪Δ),
14. (1(Γ ))∗ = 1(Γ ) = (1(Γ ))+.

These properties, plus rectangularity of 1, could be used for a set-based axioma-
tisation of cylindrification, in which the ck appear as special cases.

At the end of this section we study the algebra of generalised cylindrified
units 1(Γ ). First of all, these units need not be closed under sups.

Lemma 9. In some (relation) CKL, generalised cylindrified units need not be
closed under sups.
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Proof. Let X = {a, b} and α = 2. Then, for κ < α,

Idκ =
{((

x0

x1

)

,

(
y0
y1

))

∈ X2 × X2
∣
∣
∣ x1−κ = y1−κ

}

.

It is easy to check that Id �= Idk �= Id0 ∪ Id1. In addition,
((

a
b

)

,

(
b
a

))

/∈ Id0 ∪ Id1

and hence Id0 ∪ Id1 �= Id0 ; Id1 = Id ({0,1}) = X2 × X2. Therefore Id0 ∪ Id1 is
none of the generalised cylindrified units Id , Id0, Id1, Id ({0,1}) in X2 × X2. ��
Proposition 6. Let K be a (weak) CKL and suppose that 1 is rectangular. Let

1 = {1(Γ ) | Γ is a finite subset of α}.

1. Then (1, ;, ·) forms a distributive lattice with sup ;, inf · and least element 1;
2. if α is finite, then 1 forms a finite boolean algebra with greatest element 1(α);
3. the map 1( ) from the set of finite subsets of α into 1 is a surjective lattice

morphism that preserves minimal and (existing) maximal elements.

Proof.

1. Composition in 1 is clearly associative, commutative and idempotent by
Lemma 8. The distributivity laws between ; and · follow from Lemma 8(9),
(10) and identity (HMT1.7.3). The absorption laws 1(Γ ) ; (1(Γ ) · 1(Δ)) = 1(Γ )

and 1(Γ ) · (1(Γ ) ; 1(Δ)) = 1(Γ ) have been verified with Isabelle. By rectan-
gularity, 1 is closed under infs; by Lemma 8(13), the set is closed under
composition. By definition, 1(0) = 1.

2. For finite α, Lemma 8(12) implies that 1(α) is the greatest element in 1.
3. The map 1( ) preserves sups by Lemma 8(13), infs by rectangularity of 1, least

elements by (1) and greatest elements by (2), whenever α is finite. Surjectivity
is obvious.

��
Isabelle’s counterexample generators show that 1( ) need not be injective in CKL.
Hence the lattice of these finite sets need not to be isomorphic to the lattice 1.

Lemma 10. Let P (Xα × Xα) by a relation CKL with |X| > 1. Then Id ( ) is a
lattice isomorphism.

Proof. Relative to Proposition 6, it remains to show that Id ( ) is injective. First
we consider singleton sets. For |X| > 1, Id is obviously a strict subset of any
Idκ. Hence κ �= λ implies Idκ ∩ Idλ �= Idκ by (C8) and therefore Idκ �= Idλ.

Next, suppose Γ �= Δ = {λ1, . . . , λn} and, without loss of generality, that
κ ∈ Γ , but κ /∈ Δ. Then Id (Δ) = Idλ1 ; . . . ; Idλn

by Lemma 8(13) and Idκ �= Idλi

for all λi ∈ Δ by injectivity on singleton sets. Thus Idκ �≤ Id (Δ), because Idκ

and the Idλi
are all atoms, and therefore 1(Γ ) �= 1(Δ). ��

Injectivity of 1( ) can therefore be assumed safely for relation CKL, but other
models require additional investigations. Whether this property should be turned
into another CKL axiom is left for future work.
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7 Propositional Refinement Calculus

Armstrong, Gomes and Struth have extended Kleene algebras with tests to
refinement Kleene algebras with tests and derived the rules of a propositional
variant of Morgan’s refinement calculus—no frames, no local variables, no assign-
ment laws—in this setting [2]. In the next section we show how the rules of
a propositional refinement calculus with frames can be derived from the CKL
axioms. Assignment laws are derived from the axioms of CKL with diagonals
in Sect. 12. In this section we merely adapt the definition of refinement Kleene
algebras with tests to our purposes.

Kleene algebra with tests captures propositional Hoare logic in a partial
correctness setting. For a program x ∈ K and tests p, q ∈ B, validity of the
Hoare triple can be encoded as

{p}x{q} ⇔ p ; x ≤ x ; q ⇔ p ; x ; ¬q = 0.

By the right-hand identity, the Hoare triple for precondition p, program x and
postcondition q holds if it is impossible to execute x from states where p holds
and, if the program terminates, end up in states where q does not hold. This
intuition for partial correctness is easily backed up by the relational model.

In a refinement Kleene algebra [2], a specification statement [p, q], where
p, q ∈ B, is modelled as the largest program that satisfies {p}( ){q}. We adapt
this definition to CKL.

Definition 7. A refinement cylindric Kleene lattice with tests is a distributive
CKL with tests expanded by an operation [ , ] : B × B → K that satisfies

p ; x ; ¬q = 0 ⇔ x ≤ [p, q]. (3)

It follows that [p, q] satisfies {p}[p, q]{q} and that it is indeed the greatest pro-
gram that does so. It is also easy to check that in relation CKL,

[P,Q] =
⋃

{R ⊆ Xα × Xα | {P}R{Q}},

which further confirms this programming intuition.
In addition, CKL with tests—like Kleene algebra with tests—provides an

algebraic semantics of conditionals and while-loops that is consistent with the
relational one.

if b then x else y = b ; x + ¬b ; y, (4)
while b do x = (b;x)∗;¬b. (5)

8 Variable Frames

Our first application to program construction shows that CKL is expressive
enough to capture the variable frames of Morgan’s refinement calculus [23]. For
the sake of simplicity, we restrict our attention to a partial correctness setting.



Cylindric Kleene Lattices for Program Construction 211

In contrast to standard notations for the refinement calculus [3,23], our lattice
is the dual of the refinement lattice; the standard refinement ordering � is the
opposite of ≤. Hence y is a refinement of x, denoted x � y if and only if x ≥ y.

In this context, we fix a CKL K with tests. We call elements of K programs
and finite subsets of α frames. A frame represents the set of variables a program
may modify. The program x ·1(Γ ) restricts x so that it may only modify variables
in Γ . Using Morgan’s refinement calculus notation, we define

Γ :x = x · 1(Γ ) (6)

for a program x restricted to frame Γ . This is consistent with relation CKL,
where for a relation R and variable κ,

κ :R = {(a, b) | (a, b) ∈ R ∧ ∃c. a = b[κ ← c]}.

This constrains the values of all variables other than κ to remain unchanged
by R, while κ is liberated and may be modified ad libitum. The generalisation
to finite sets is straightforward. The following framing laws are helpful for the
derivation of the laws of Morgan’s refinement calculus in Proposition 7 below.
They have been verified with Isabelle.

Lemma 11. In any CKL,

1. Γ :x ≤ x,
2. Γ ⊆ Δ ⇒ Γ :x ≤ Δ :x,
3. x ≤ y ⇒ Γ :x ≤ Γ :y,
4. (Γ :x); (Γ :y) ≤ Γ : (x; y),
5. (Γ :x)∗ ≤ Γ : (x∗),
6. Γ :x = x, if x ≤ 1.

By Lemma 11, it is a refinement to add or restrict a frame by (1) and (2).
By (3), framing is isotone with respect to refinement. Equivalently to frame
isotonicity, (Γ : x) + (Γ : y) ≤ Γ : (x + y). Framing distributes over sequential
composition and iteration by (4) and (5). A frame has no effect on a test by (6).
The distribution over sequential composition in (4) is only a refinement because
the left-hand side constrains variables outside Γ to be unchanged from the initial
state to the middle state and the middle state to the final state, whereas the
right-hand side only has an initial-to-final constraint.

This prepares us for the main result of this section, which adapts the refine-
ment laws derived by Armstrong, Gomes and Struth [2] to framed specifications.

Proposition 7. The following refinement laws are derivable in any refinement
CKL with tests.

1. Γ : [p, p] ≥ 1,
2. Γ : [p, q] ≥ Γ : [p′, q′] if p′ ≥ p ∧ q ≥ q′,
3. Γ : [0, 1] ≥ Γ :x,
4. x ≥ Γ : [1, 0],
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5. Γ : [p, q] ≥ Γ : [p, r];Γ : [r, q],
6. Γ : [p, q] ≥ if b then Γ : [b · p, q] else Γ : [¬b · p, q],
7. Γ : [p,¬b · p] ≥ while b do Γ : [b · p, p].

We have verified this result with Isabelle relative to Armstrong, Gomes and
Struth’s proof. Assuming that the refinement laws obtained by deleting all
occurrences of frames from (1)–(7) hold, we have shown that the correspond-
ing laws with frames are derivable using a simple formalisation within CKL
without tests and refinement statements. For (1), we have shown that 1 ≤ x
implies Γ :1 ≤ Γ :x, which is an instance of Lemma 11(3). Similarly, (2) and (3)
are instances of frame isotonicity. For (4), we have verified that x ≤ y implies
Γ :x ≤ y, for (5) that x;y ≤ z implies Γ :x;Γ :y ≤ Γ :z, for (6) that v ;x+w;y ≤ z
implies v ;Γ :x+w ;Γ :y ≤ Γ :z whenever v, w ≤ 1, and for (7) that (v ;x)∗ ;w ≤ y
implies (v ; Γ :x)∗ ; w ≤ Γ :y whenever v, w ≤ 1. All proofs use properties from
Lemma 11. None of them depends on rectangularity of generalised cylindrified
units.

9 Local Variable Blocks

Next we show how local variable blocks can be expressed in CKL for which 1
is rectangular. Intuitively, a local variable block introduces a variable κ having
as scope a program x. The definition allows for the fact that outside the local
variable block κ may (or may not) be in use as a program variable. The outer κ
is unmodified by the local variable block (as represented in the definition by the
conjunction of 1(κ)) but the body of the block is free to update the local κ as it
sees fit (as represented by the cylindrification cκ x). We define a local variable
block (var κ. x) that introduces a local variable κ with scope x as

var κ. x = (cκ x) · 1(κ). (7)

It requires α to be a finite ordinal, so that the set κ = α−{κ} is finite and hence
1(κ) well defined. The following law allows a local variable κ to be introduced so
that κ can be used to hold intermediate results of a computation.

Lemma 12. Let K be a CKL for a finite ordinal α and in which 1 is rectangular.
For all κ < α and Γ ⊆ α, if κ �∈ Γ and x ∈ Kκ, that is, cκx = x, then

Γ :x = var κ. (κ, Γ ) :x.

Proof.

var κ. (κ, Γ ) :x = (cκ (x · cκ 1(Γ )) · 1(κ) by definitions (6) and (7)
= x · 1(κ,Γ ) · 1(κ) by (C3) and cκx = x

= x · 1((κ,Γ )∩κ) as 1 is rectangular

= x · 1(Γ ) as κ �∈ Γ , ({κ} ∪ Γ ) ∩ {κ} = Γ

= Γ :x.

��
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Because both cylindrification and meet are isotone so is a local variable block.

Lemma 13. For any κ < α, if x ≤ y, then var κ. x ≤ var κ.y.

Introducing a local variable in a refinement is facilitated by Morgan’s law
(6.1) [23]. An algebraic variant of this refinement can be derived as follows.

Lemma 14. Let (K,B) be a CKL for a finite ordinal α and in which 1 is rect-
angular. For all κ < α and Γ ⊆ α, if κ �∈ Γ and p, q ∈ Bκ, i.e. cκp = p and
cκq = q,

Γ : [p, q] = var κ. (κ, Γ ) : [p, q].

Proof. From Lemma 12 it suffices to show [p, q] ∈ Kκ given that p, q ∈ Bκ, hence
cκ[p, q] = [p, q]. From (C2) it then suffices to show cκ[p, q] ≤ [p, q].

cκ[p, q] ≤ [p, q] ⇔ p; cκ[p, q];¬q = 0 by (3)
⇔ cκp; cκ[p, q]; cκ¬q = 0 as p, q ∈ Bκ

⇔ cκ(p; [p, q];¬q) = 0 by (C6) and (C7)
⇐ p; [p, q];¬q = 0 by (C1)
⇔ [p, q] ≤ [p, q]. by (3)

��
This law extends the refinement laws from Proposition 7 to local variable blocks.

10 Synchronous Cylindrification

Next we turn to the definition of variable assignments in CKL. This, however
requires some preparation. In this section, we set up the link between CKL-style
cylindrification and the classical one, which we need to apply to the tests in
specification statements to model assignments. Section 11 introduces diagonal
elements and substitutions as additional ingredients that are definable in CKL
and needed for assignments, which are finally discussed in Sect. 12.

We have already emphasised in Sect. 5 that relational cylindrification liber-
ates the variables in the first and second coordinates of pairs asynchronously, and
this is in particular the case for subidentities, which correspond to predicates or
sets. As an undesirable side effect, by Lemma 1(3), tests in CKL are not closed
with respect to cylindrification: an element x of a (weak) CKL is a fixpoint of
cκ if and only if x itself has already been cylindrified by cκ. In relational CKL,
therefore, no test except ∅ is a fixpoint of any Cκ, no cylindrification of any test
except ∅ is a test and Cκ[PIdX ] ∩ PIdX = {∅}.

Hence if � � denotes the bijection from sets into relational subidentities, and
Cc

κ denotes classical cylindrification, then �Cc
κ P � �= Cκ �P � except when predi-

cate P is ∅.
Equality of �Cc

κ P � and Cκ �P � requires “synchronising” relational cylindri-
fications to ensure that the values of the cylindrified variable κ match in the
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first and the second coordinate. Synchronised relational cylindrification can be
expressed in CKL as

ĉκx = cκx · 1,

so that ĈκR = CκR ∩ IdX and therefore, for any set P ,

Ĉκ�P � = {(a, a) | ∃c ∈ X. (a[κ ← c], a[κ ← c]) ∈ �P �}.

It is then easy to check that

�ĈκP � = Ĉκ�P �

for any set P and hence �ĈκP � = Cc
κ�P � for any relational subidentity P and

the inverse bijection � �.
The definition of ĉκ and its relational instance Ĉκ implies that Ĉκ[PIdX ] ⊆

PIdX . Thus relational subidentities are closed under Ĉκ. Yet, for a general CKL
with tests B �= 1↓= {x ∈ K | x ≤ 1} it cannot be guaranteed that ĉκ[B] ⊆ B.
Nevertheless we may require that B = 1↓, which is consistent with relational
models and many others. In fact, all applications of ĉκ in this article are restricted
to tests that satisfy this property.

The current axiomatisation of the relationship between tests and the cylin-
drifications is not sufficient to prove some properties that we know to be true
for the relational model. For example, for relations, we must add the following
additional axiom relating the two notions of cylindrification for p ∈ B, where
B = 1↓:

cκ p = 1κ ; ĉκ p = ĉκ p ; 1κ. (8)

From this assumption, we have that test ĉκ p commutes over 1κ for any test
p ∈ B, i.e. ĉκ p ; 1κ = ĉκ p ; 1κ ; ĉκ p, giving us the following lemma, which
is an important property used in Sect. 12 to derive properties of assignment
statements.

Lemma 15. If p = ĉ(Γ )p then, Γ : [p · q, r] = Γ : [p · q, p · r].

Proof. Refinement from left to right follows from Proposition 7(2). For the
reverse direction we begin the proof by expanding using the definition of a frame.

[p · q, r] · 1(Γ ) ≤ [p · q, p · r] · 1(Γ )

⇔ [p · q, r] · 1(Γ ) ≤ [p · q, p · r] property of meet
⇔ (p · q); [p · q, r] · 1(Γ ); (¬p + ¬r) = 0 by (3) and De Morgan
⇐ (p; 1(Γ );¬p = 0) ∧ ((p · q); [p · q, r];¬r = 0) distributing and simplifying
⇔ ĉ(Γ )p; 1(Γ );¬p = 0 assumption p = ĉ(Γ )p and (3)
⇔ ĉ(Γ )p; 1(Γ ); ĉ(Γ )p;¬p = 0 commutativity assumption
⇔ p; 1(Γ ); 0 = 0 assumption and p;¬p = 0

The later holds because 0 is an annihilator for tests.
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Lemma 16. If p = ĉ(Γ )p and p · r2 ≤ r1 then, Γ : [p · q, r1] ≥ Γ : [p · q, r2].

Proof.

Γ : [p · q, r2] = Γ : [p · q, p · r2] by Lemma 15
≤ Γ : [p · q, r1]. by Proposition 7(2)

��

11 Diagonals and Substitution

Our next step toward modelling assignments algebraically requires capturing
substitutions algebraically. Once again, Henkin Monk and Tarski have paved
the way for us [17, §1.5]. Yet their concept of variable substitution in classical
cylindric algebra depends on another concept, which is integral to their approach,
and we have so far neglected: that of diagonal elements, which abstract equality
in equational logic.

In standard cylindric set algebras, diagonal elements [17] are defined, for each
κ, λ < α, as

Dκλ = {x ∈ Xα | xκ = xλ}.

Henkin, Monk and Tarski [17] give a geometric interpretation of Dκλ as a hyper-
plane in Xα that is described by the equation xκ = xλ. For instance, for α = 2,
D01 corresponds to the diagonal line between the coordinate axes 0 and 1; for
α = 3, D01 is the plane spanned by that diagonal and 3-axis.

While diagonalisation could be generalised to relational diagonalisation, we
only require diagonal elements on the boolean subalgebra of tests, which is cap-
tured by the standard approach, in combination with synchronised cylindri-
fication ĉκ. Henkin, Monk and Tarski’s axioms for classical cylindric algebra
therefore lead us to the following definition.

Definition 8. A cylindric Kleene lattice with enriched tests is a CKL equipped
with a family of elements (dκλ)κ,λ<α ⊆ B = 1↓ that satisfy

dκκ = 1, (D1)
dλμ = ĉκ(dλκ · dκμ), if κ /∈ {λ, μ}, (D2)

ĉκ(dκλ · p) · ĉκ(dκλ · ¬p) = 0, if κ �= λ. (D3)

The axioms (D1)–(D3) are precisely the diagonal axioms of classical cylindric
algebras [17]. They are applied to tests only and use ĉκ instead of cκ. Axiom
(D3) captures a notion of variable substitution. In fact, Henkin, Monk and Tarski
define

sκ
λ p =

{
p, if κ = λ,

ĉκ(dκλ · p), if κ �= λ
(9)
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to indicate that λ is substituted for κ in p. Axiom (D3) can then be rewritten as
sκ

λ p · sκ
λ ¬p = 0. The substitution operator sκ

λ satisfies the following properties,
which have been verified with Isabelle, and turn out to be useful in the following
sections.

Lemma 17. Let (K,B) be a CKL with enriched tests. If p, q ∈ B and κ, λ, μ <
α, then

1. sκ
λ (p + q) = sκ

λ p + sκ
λ q, (HMT1.5.3(i))

2. ¬sκ
λ p = sκ

λ ¬p, (HMT1.5.3(ii))
3. sκ

λ 1 = 1,
4. sκ

λ (p · q) = sκ
λ p · sκ

λ q,
5. sκ

λ (dκμ) = dλμ if κ �= μ, (HMT1.5.4(i))
6. sκ

λ (dμν) = dμν if κ /∈ {μ, ν}, (HMT1.5.4(ii))
7. sκ

τ (dκλ · dμν) = dτλ · dμν for distinct κ, λ, μ, ν, τ .

12 Assignments

Assignment statements are usually of the form κ := e, where e is an expres-
sion on the programming variables. Expressions are not available in CKL with
enriched tests, however we can use framed specification statements to abstract
the behaviour of assignments. For any p ∈ B we write κ :∈ p to denote a non-
deterministic assignment of variable κ to a value such that the final state of the
command satisfies test p. It is defined as

κ :∈ p = κ : [1, p].

A special case of this is the direct assignment of one variable to another, written
κ := λ, which is defined by taking predicate p to be the diagonal dκλ:

κ := λ = κ : [1, dκλ]

For example, if κ is fresh in expression e, the assignment κ := e can be encoded
using the non-deterministic assignment command as κ :∈(κ = e), where (κ = e)
is abstracted to a test in the algebra. For the more general case we can choose
a variable λ different from κ that is fresh in e and write

(var λ. λ := κ ; κ :∈(κ = e[κ\λ]))

where, in the program model, e[κ\λ] is the expression e with λ substituted for
κ, but in the algebra (κ = e[κ\λ]) is simply abstracted as a test.

The following propositions are used to verify the algebraic equivalent of the
assignment law defined by Morgan [23, p.8]. In order to more simply represent
the precondition, we introduce two notations on tests: the inner cylindrification
c∂
κp is the De Morgan dual of ĉκ and corresponds to universal quantification
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in first order logic [17, §1.4]; and p → q is a shorthand for implication in the
boolean algebra of tests.

c∂
κp = ¬ĉκ¬p, (10)

p → q = ¬p + q. (11)

In the proposition below the test c∂
κ(r → q) can be interpreted as saying that for

all values of κ, test r implies q, i.e. it is a test describing the states from which
substituting κ for any value satisfying r will certainly result in a post-state q.

Proposition 8. Suppose B is the test subalgebra of a CKL with enriched tests.
If q, r ∈ B and κ < α and p ≤ c∂

κ(r → q), then

κ : [p, q] ≥ κ :∈ r. (12)

Proof. The application of Lemma 16 requires c∂
κ(r → q) · r ≤ q, which can be

shown as follows.

ĉκ(r · ¬q) ≥ r · ¬q by (C2)
⇔ ¬ĉκ(r · ¬q) ≤ ¬(r · ¬q) negating both sides and reversing the order

⇒ c∂
κ(r → q) · r ≤ (¬r + q) · r by definition of c∂ and conjoin r to both sides

⇔ c∂
κ(r → q) · r ≤ q · r boolean simplification

⇒ c∂
κ(r → q) · r ≤ q as q · r ≤ q.

It also requires that ĉ(Γ )c
∂
(Γ )p = c∂

(Γ )p, which has been shown in [17, Theorem
1.4.4(ii)].

κ : [p, q] ≥ κ : [c∂
κ(r → q), q] by Lemma 7(2)

≥ κ : [c∂
κ(r → q), r] by Lemma 16 as c∂

κ(r → q) · r ≤ q

≥ κ : [1, r] by Lemma 7(2)
= κ :∈ r From (12).

��
When r is dκλ, the test c∂

κ(r → q) simplifies to sκ
λ q, the substitution of λ for

κ in test q.

Proposition 9. Suppose B is the test subalgebra of a CKL with enriched tests.
If q ∈ B and κ, λ < α and p ≤ sκ

λ q, then

κ : [p, q] ≥ κ := λ.

Proof. We have c∂
κ(dκλ → q) = ¬cκ(dκλ · ¬q) = ¬sκ

λ ¬q = sκ
λ q by Lemma 17(2).

κ : [p, q] ≥ κ : [sκ
λ q, q] by Proposition 7(2)

= κ : [c∂
κ(dκλ → q), q] by above reasoning

≥ κ :∈ dκλ taking r to be dκλ in Proposition 8
= κ := λ by definition (12).
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Propositions 8 and 9 encode the assignment law defined by Morgan [23, p.8]
for our non-deterministic assignment statement, and for the special case where
we assign one variable directly to another. These propositions can be equivalently
expressed in Hoare logic using the specification statement definition (3) and the
Hoare logic encoding.

Proposition 10. Suppose B is the test subalgebra of a CKL with enriched tests.
If p ∈ B and κ, λ < α, then

{p} κ :∈ r {q}, if p ≤ c∂
κ(r → q),

{p} κ := λ {q}, if p ≤ sκ
λ q.

Frames and diagonals together allow one to make use of logical variables and
constants (e.g., natural numbers) within a specification. In Example 1, we con-
sider a derivation of a program that swaps the values of variables λ and κ. This
example is given by Morgan [23]; the difference here is that the derivation is
purely algebraic. The example uses Morgan’s following assignment law, in which
a specification statement is refined to another specification statement followed
by an assignment command. The next lemma derives this in the algebra.

Lemma 18. Suppose B is the test subalgebra of a CKL with enriched tests. If
p, q ∈ B and κ, λ, μ < α, then

λ, κ : [p, q] ≥ λ, κ : [p, sκ
μ q];κ := μ.

Proof.

λ, κ : [p, q] ≥ λ, κ : [p, sκ
μ q];λ, κ : [sκ

μ q, q] by Proposition 7(5)

≥ λ, κ : [p, sκ
μ q];κ : [sκ

μ q, q] by Lemma 11(2)

≥ λ, κ : [p, sκ
μ q];κ := μ by Proposition 9.

��
Example 1. The swapping variables example can be handled entirely within the
algebra. Suppose κ1, κ2, λ1, λ2, τ < α are distinct. As in many refinement proofs
(see [23]), λ1 and λ2 are logical variables used to specify the initial values of
program variables κ1 and κ2. The first step uses Lemma 12 to introduce local
variable τ that we use to temporarily store the value of κ2:

κ1, κ2 : [dκ1λ1 · dκ2λ2 , dκ1λ2 · dκ2λ1 ]
=var τ. τ, κ1, κ2 : [dκ1λ1 · dκ2λ2 , dκ1λ2 · dκ2λ1 ].

Using Lemma 13 this can be refined by refining the body of the local variable
block as follows.

τ, κ1, κ2 : [dκ1λ1 · dκ2λ2 , dκ1λ2 · dκ2λ1 ]
≥ τ, κ1, κ2 : [dκ1λ1 · dκ2λ2 , s

κ1
τ (dκ1λ2 · dκ2λ1)];κ1 := τ by Lemma 18

≥ τ, κ1, κ2 : [dκ1λ1 · dκ2λ2 , dτλ2 · dκ2λ1 ];κ1 := τ by Lemma 17(7).
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Applying this pattern twice yields

τ, κ1, κ2 : [dκ1λ1 · dκ2λ2 , dτλ2 · dκ2λ1 ];κ1 := τ

≥ τ, κ1, κ2 : [dκ1λ1 · dκ2λ2 , dτλ2 · dκ1λ1 ];κ2 := κ1;κ1 := τ

≥ τ, κ1, κ2 : [dκ1λ1 · dκ2λ2 , dκ2λ2 · dκ1λ1 ]; τ := κ2;κ2 := κ1;κ1 := τ

≥ 1; τ := κ2;κ2 := κ1;κ1 := τ by Proposition 7(1).

Eliminating the identity 1 and substituting the refined body back in the local
variable block, the final code is

var τ. (τ := κ2;κ2 := κ1;κ1 := τ).

13 Beyond Cylindrification: Liberation Algebras

An interesting axiomatic question arises from the fact that, by Lemmas 6 and
21, the identity

cκ x = 1κ ; x ; 1κ

holds in (weak) relational CKL, whereas, by Lemma 4, it is not derivable in
CKL. On the one hand, non-derivability is desirable, because the identity fails in
program trace models of CKL [21]. On the other hand, it shifts the focus from
cylindrification to identities 1κ and raises the question of axiomatising elements
1κ for κ < α directly over (weak) Kleene lattices and defining the cylindrification
operators cκ explicitly via the identity above. This section describes the initial
steps for such an approach. The elements 1κ are now written more simply as κ
for κ < α.

Definition 9 (LLM). A (weak) liberation l-monoid is a (weak) l-monoid L that
is equipped with a family (κ)κ<α of elements that satisfy

κ ; 0 = 0, (L1)
1 ≤ κ, (L2)

κ ; (x · (κ ; y)) = (κ ; x) · (κ ; y), (L3)
(x · (y ; κ)) ; κ = (x ; κ) · (y ; κ), (L4)

κ ; λ = λ ; κ, (L5)
κ �= λ ⇒ κ · λ = 1, (L6)
(κ ; λ) · (κ ; μ) = κ ; (λ · μ), (L7)
(κ ; μ) · (λ ; μ) = (κ · λ) ; μ. (L8)

As expected, there is a close correspondence between these axioms and axioms
(C1)–(C10), although analogues of (C5)–(C7) and (C10) are derivable in this
context, and therefore redundant.

Definition 10 (LKL). A (weak) liberation Kleene lattice is a (weak) Kleene
lattice with a family (κ)κ<α of elements that satisfy (L1)–(L8).
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We have checked independence of these axioms in Isabelle. Extensions to (weak)
liberation Kleene lattices with tests are straightforward.

Proposition 11. Every weak LLM is a weak CLM with cκx = κ ; x ; κ.

Rewriting the CLM axioms with cκx = κ ; x ; κ and deriving the results from the
LLM axioms is straightforward with Isabelle. Axiom (C6), for instance, becomes
κ ;x ;κ ; y ;κ ;κ = κ ;x ;κ ;κ ; y ;κ, which is derivable because any κ can be shown
to be an idempotent with respect to ; in LLM by taking x and y to both be 1 in
(L3). Axiom (C3) becomes κ ; (x · (κ ; y ; κ)) ; κ = (κ ; x ; κ) · (κ ; y ; κ), which can
be obtained from (L3) and (L4).

Unlike for CKL, a special star axiom is not needed for liberation algebras.
The following lemma has been obtained with Isabelle.

Lemma 19. In every weak LKL,

1. x+ ; κ ≤ (x ; κ)+,
2. κ ; x+ ≤ (κ ; x)+,
3. κ ; x+ ; κ ≤ (κ ; x ; κ)+.

The proof of (1) is very simple: x+ ; κ = x∗ ; x ; κ ≤ (x ; κ)∗ ; x ; κ = (x ; κ)+.
Using the last identity then yields the following result.

Proposition 12. Every weak LKL is a weak CKL with cκx = κ ; x ; κ.

In addition, the LKL axioms are sound with respect to relational models.

Proposition 13. The (weak) LKL axioms hold in the relational (fault) model
with κ interpreted as Idκ for all κ < α.

Proof. The relational variants of the LKL axioms have been verified with Isabelle.
An algebraic proof for the weak case is given in Proposition 16, Appendix B. It
has been checked with Isabelle. ��

The next two facts generalise Lemma 2 and Proposition 4 from Sect. 4.

Lemma 20. In every weak LLM, κ ; ( ) and ( ) ; κ are closure operators.

Writing Kl
κ for the set of fixpoints of κ ; ( ), Kr

κ for those of ( ) ; κ and Kκ for
those of κ ; ( ) ; κ yields the following result.

Proposition 14. Let K be a (weak) LKL and let κ < α. Then

1. (Kl
κ,+, ·, ;, 0, κ, ( )+) is a (weak) sub-Kleene lattice of K with left unit κ,

2. (Kr
κ,+, ·, ;, 0, κ, ( )+) is a sub-Kleene lattice of L with right unit κ and if K

is a strong LKL, then Kl
κ and Kr

κ are isomorphic,
3. (Kκ,+, ·, ;, 0, κ, ( )+) is a sub-Kleene lattice of Kl

κ and Kr
κ.

The proofs are very similar to those for cκ.
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The results for κ ; ( ) and ( ) ; κ reveal a duality in relational cylindrifica-
tion without faults that is not present in the traditional approach. We already
pointed out in Sect. 5 that, in the relational model, Idκ ; R corresponds to a
left-handed cylidrification of R and R ; Idκ to its right-handed opposite. One can
therefore introduce handedness via opposition to cylindrification over l-monoids
by axiomatising left-handed cylindrification cl

κ and right-handed cylindrification
cr
κ and split the axioms (C6) and (C7) accordingly. This yields a more fine-

grained view on cylindrification in models with opposition duality. In addition,
left-handed and right-handed cylindrifications commute (i.e. cl

κ ◦ cr
λ = cr

λ ◦ cl
κ)

and cκ = cl
κ ◦ cr

κ holds in the relational model but not in general. Details have
been worked out in a companion article [21]. The handed cylindrifications are
akin to forward and backward modal operators, yet defined over Kleene lattices
instead of boolean algebras.

14 Conclusion

We have shown that cylindrification can be adapted to Kleene lattices and their
relational models in such a way that variable assignments, frames and local
variable blocks can be modelled. Based on this, we have derived the laws of
Morgan’s refinement calculus and the rules of Hoare logic, including those for
assignments. The scope of algebraic approaches to program construction has
therefore been extended, with the potential of fully algebraic reasoning about
imperative programs.

Nevertheless, many questions about cylindric Kleene lattices and their rel-
atives remain open and deserve further investigation. Instead of the obvious
questions on completeness or decidability, we focus on conceptual ones.

First, it is easy to check that relational cylindrifications preserves arbitrary
sups and hence have upper adjoints. This situation is well known from classical
cylindric algebra, where the standard outer cylindrifications cκ are accompanied
by inner cylindrifications c∂

κ that are related by De Morgan duality. Geomet-
rically, these describe greatest cylinders with respect to κ that are contained
in a given set. In cylindric algebras of formulas, inner cylindrification gives the
algebra of universal quantification. In an extension of CKL, where lattices need
not be complemented, dual cylindrifications can be axiomatised by adjunction.
In extensions of LKL, they can be defined explicitly as c∂

κ x = 1κ\x/1κ, where \
and / are residuals, as they appear in action algebras [18] and action logic [26].
Our Isabelle components already contain axiomatisations for these structures,
but so far we do not have any use for them.

Second, our refinement calculus and Hoare logic are restricted to partial
program correctness for the sake of simplicity; yet the relational fault model
is relevant to total correctness and our Isabelle components are based on weak
cylindric Conway lattices and weak liberation Conway lattices, in which iteration
is weak enough to be either finite, as in Kleene lattices, or possibly infinite, as
in demonic refinement algebra [29]. Almost all properties presented in our paper
hold in fact in this more general setting, and our relational models are a fortiori
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models of these generalisations. The relevance of these algebras to models with
finite or possibly infinite traces, and the derivation of while rules and refinement
laws for total program correctness remains to be explored.

For concurrent programs with a semantics based on a set of traces, cylindri-
fication can be applied to liberate a variable κ in every state of each trace, in
the same way that liberation of a relation liberates κ in both the initial and final
states. In that setting liberation can be used in the definition of a local variable
block in a similar fashion to the way it is used here [21]. A trace-based semantics
for the liberation operator was given in [5, §4.6 and §5.6].6 The generalisation
of cylindric algebra presented in this paper applies directly to the trace-based
model used for concurrency. That model also uses sets, binary relations, a subset
of commands that form instantaneous tests (isomorphic to sets of states), subsets
of commands representing program steps and environment steps (each of which
is isomorphic to binary relations on states). Factoring out the cylindric algebra
and applying it in each of these contexts allows one to reuse the properties of
cylindric algebra in each of these contexts, thus simplifying the mechanisation
of the theory.

Finally, while part of the theory and many of the proofs in this article have
been formalised with Isabelle/HOL, the question whether our approach may lead
to program construction and verification components that support an algebraic
treatment of variable assignments requires further exploration. This seems a
particularly promising avenue for future research.

Acknowledgements. We thank Simon Doherty for discussions on earlier versions of
this work.

A Construction of Weak Kleene Lattices

Instead of proving Proposition 2, we show that it is a corollary to a standard
semidirect product construction, which is well known from semigroup theory. All
proofs in this appendix have been verified with Isabelle.

An l-monoid module of an l-monoid L and a semilattice S with least element
0 is an action ◦ : L → S → S that satisfies

(p ; q) ◦ x = p ◦ (q ◦ x),
(p + q) ◦ x = p ◦ x + q ◦ x,

p ◦ (x + y) = p ◦ x + p ◦ y,

1 ◦ x = x,

0 ◦ x = 0.

It follows that p ◦ 0 = 0.
The semidirect product L � S on L × S is defined by

(p, x) � (q, y) = (p ; q, x + p ◦ y).
6 In that paper cκx is written x\κ.
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The relational redefinition of composition in Sect. 3 is a simple instance of this
standard algebraic concept. It is easy to check that (1, 0) is the unit of � and
(0, 0) a left annihilator. In addition, we define join and meet pointwise on pairs
as (p, x) + (q, y) = (p + q, x + y) and (p, x) · (q, y) = (p · q, x · y). The following
fact is routine. Most axioms have already been checked elsewhere [6,11].

Proposition 15. Let L be an l-monoid and S a semilattice with 0. Then L � S
forms a weak l-monoid.

If K is a Kleene lattice, we define a Kleene lattice module by adding the axiom

x + p ◦ y ≤ y ⇒ p∗ ◦ x ≤ y.

Hence the action axioms for Kleene lattice modules are essentially those for
Kleene modules [12]. Finally, we define the star on products as

(p, x)∗ = (p∗, p∗ ◦ x).

It follows that (p, x)+ = (p+, p∗ ◦ x).
Proposition 15 then extends as follows.

Theorem 1. Let K be a Kleene lattice and S a semilattice with 0. Then K � S
forms a weak Kleene lattice.

Dongol, Hayes and Struth [11] present a similar result in the less general setting
of quantale modules, which however captures the relational fault model in Sect. 3.
A formalisation with Isabelle can be found in the Archive of Formal Proofs [10],
including a verification of the properties of the relational star presented in Sect. 3.
Cranch, Laurence and Struth [6] present a second proof in the more general
setting of regular algebras that satisfy strictly weaker induction axioms. It gives
a good impression of the manipulations needed in our present proof. Möller and
Struth [22] present a third proof for total correctness in the setting of modal
Kleene algebras. Instead of semidirect products, it is based on wreath products
(cf. [30]).

B Construction of Weak Liberation Kleene Lattices

Instead of proving Proposition 13 for relational cylindrification we give an alge-
braic proof based on a new algebraic definition. This proof also supports an
indirect proof of Proposition 2. All proofs in this appendix have once again been
checked with Isabelle.

A cylindric Kleene lattice module is a Kleene lattice module over a cylindric
Kleene lattice with cylindrification defined by

c̃κ (p, x) = (cκ p, 1κ ◦ x).

By this definition, c̃κ (1, 0) = (1κ, 0) and (p, x) � (1κ, 0) = (p ; 1κ, x).
First we derive an algebraic variant of Lemma 6 that is suitable for the

relational fault model.
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Lemma 21. Let L be a CKL and S a semilattice with 0. Then

cκ p = 1κ ◦ p ◦ 1κ ⇒ c̃κ (p, x) = c̃κ (1, 0) � (p, x) � c̃κ (1, 0).

Next we turn to the algebraic proof that subsumes Proposition 13.
A Liberation Kleene lattice module is a Kleene lattice module defined over a

liberation Kleene lattice.

Proposition 16. Let K be a LKL and S a semilattice with 0, such that

1κ ◦ (x · (1κ ◦ y)) = (1κ ◦ x) · (1κ ◦ y)

holds for all x, y ∈ S. Then K � S forms a weak LKL.
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B., Struth, G. (eds.) RelMiCS 2003. LNCS, vol. 3051, pp. 112–123. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24771-5 10

13. Gabbay, M.J., Ciancia, V.: Freshness and name-restriction in sets of traces with
names. In: Hofmann, M. (ed.) FoSSaCS 2011. LNCS, vol. 6604, pp. 365–380.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19805-2 25

14. Giacobazzi, R., Debray, S.K., Levi, G.: A generalized semantics for constraint logic
programs. In: FGCS, pp. 581–591 (1992)

15. Gomes, V.B.F., Struth, G.: Modal Kleene algebra applied to program correctness.
In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS,
vol. 9995, pp. 310–325. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48989-6 19

https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-3-540-24771-5_10
https://doi.org/10.1007/978-3-642-19805-2_25
https://doi.org/10.1007/978-3-319-48989-6_19
https://doi.org/10.1007/978-3-319-48989-6_19


Cylindric Kleene Lattices for Program Construction 225

16. Hayes, I. (ed.): Specification Case Studies, 2nd edn. Prentice Hall International,
Englewood Cliffs (1993)

17. Henkin, L., Donald Monk, J., Tarski, A.: Cylindric Algebras, Part I., volume 64
of Studies in logic and the foundations of mathematics. North-Holland Pub. Co.
(1971)

18. Kozen, D.: On action algebras. In: van Eijk, J., Visser, A. (eds.) Logic and Infor-
mation Flow, pp. 78–88. MIT Press, Cambridge (1994)

19. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (1997)

20. Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Trans. Comput.
Log. 1(1), 60–76 (2000)

21. Meinicke, L.A., Hayes, I.J.: Handling localisation in rely/guarantee concurrency:
an algebraic approach. arXiv:1907.04005 [cs.LO] (2019)
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Abstract. One can perform equational reasoning about computational
effects with a purely functional programming language thanks to mon-
ads. Even though equational reasoning for effectful programs is desirable,
it is not yet mainstream. This is partly because it is difficult to maintain
pencil-and-paper proofs of large examples. We propose a formalization of
a hierarchy of effects using monads in the Coq proof assistant that makes
equational reasoning practical. Our main idea is to formalize the hierar-
chy of effects and algebraic laws like it is done when formalizing hierarchy
of traditional algebras. We can then take advantage of the sophisticated
rewriting capabilities of Coq to achieve concise proofs of programs. We
also show how to ensure the consistency of our hierarchy by providing
rigorous models. We explain the various techniques we use to formal-
ize a rich hierarchy of effects (with nondeterminism, state, probability,
and more), to mechanize numerous examples from the literature, and we
furthermore discuss extensions and new applications.

1 Introduction

Our goal is to provide a framework to produce formal proofs of semantical cor-
rectness for programs with effects. To formalize effects, we use monads. The
notion of monad is one of the category-theoretic frameworks that are used to
formalize effects in programming languages and reason about them. It is not
the only available option for this purpose (for example, algebraic effects pro-
vide an alternative [36, § 5]), but monads comparatively have a longer history in
proving themselves useful for the study of semantics [28] as well as for actual pro-
gramming languages like Haskell as a construct to represent effects [40]. Though
there exist a few formalizations of monads in proof assistants, they do not sup-
port well our interest in proving programs. Existing formalizations often focus
on category theory [17,39] or on meta-theory of programming languages [9]. In
contrast, proving programs raises specific practical challenges, among which the
generic problem of combining monads is a central issue.
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In the practical use-cases of monads in programming, a programmer often has
to combine two or more monads in order to deal with several effects in the same
context. The combination of monads can be carried out in an ad-hoc way [22].
There exist more generic ways to combine monads under specific conditions [21]
including the distributive law between monads, which are unfortunately not
always satisfied [38] and therefore do not provide a practical solution.

In this paper, we propose a formalization of monads in the Coq proof assis-
tant that addresses monad combination in a practical way. The main idea is to
favor a good representation of the hierarchy of effects and their equational theory
in terms of interfaces. In other words, monads are composed as in Haskell. We
insist on interfaces but this does not preclude the formal construction of models:
they just come afterwards. It happens that this corresponds to the presenta-
tion of monads as used in monadic equational reasoning [13], so that a direct
consequence of our approach is that we can reproduce formally and faithfully
pencil-and-paper proofs from the literature.

When it comes to proving properties of effectful programs, there is more
than the hierarchy of effects: one also needs to provide practical tools to per-
form equational reasoning. With this respect, the second aspect of our approach
is to leverage the rewriting capabilities of Coq by favoring a shallow embed-
ding. Shallow embedding is a well-known encoding technique through which one
can reuse the native language of the proof assistant at hand. This bears the
promise of a reduced formalization effort and it indeed experimentally met some
success [16,20] (formal verification using a shallow embedding often relies on a
combination of monads and Hoare logic, e.g., [19]). However, most formal verifi-
cation frameworks proceeds via a deep embedding of the target language, which
requires substantial instrumentations of syntax and semantics, resulting in tech-
nical lemmas that are difficult to use, which in turn call for meta-programming.
Though this paper favors shallow embedding, it does not prevent syntactical
reasoning, as we will demonstrate.

Our main contribution in this paper is to demonstrate a combination of
formalization techniques that make formal reasoning about effectful programs
in Coq practical:

– We formalize a rich hierarchy of effects (failure, exception, nondetermin-
ism, state, probability, and more) whose heart is the theory by Gibbons
and Hinze [13] that we extend with more monads and formal models. The
key technique is packed classes [11], a methodology used in the MathComp
library [26] to formalize the hierarchy of mathematical structures. We do not
know of another mechanization with that many monads.

– We provide many definitions and lemmas that allow for the mechanization of
several examples. Because we use a shallow embedding, we can leverage Coq
native rewriting capabilities, in particular SSReflect’s rewrite tactic [15].

– The proof scripts we obtain are faithful to the original proofs. We bench-
mark our library against numerous examples of the literature (most examples
from [12,13,30,31]) and observe that formal proofs closely match their pencil-
and-paper counterparts and that they can actually be shorter thanks to the
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terseness of SSReflect’s tactic language. We also apply our framework to
new examples such as the formalization of the semantics of an imperative
language.

Outline. In Sects. 2 and 3, we show how we build a hierarchy of algebraic laws on
top of the theory of monads. In Sect. 4, we illustrate its usability for mechanizing
pencil-and-paper proofs. We then deal with syntactic properties in Sect. 5. In
Sect. 6, we show how we can give models to our algebraic laws, thus ensuring their
consistency. In Sect. 7, we discuss some technical aspects of our formalization of
monads that are specific to Coq. We finally discuss related work in Sect. 8 before
concluding in Sect. 9.

2 Build a Hierarchy of Algebraic Laws on Top of the
Theory of Monads

The heart of our formalization is a hierarchy of effects. Each effect is represented
by a monad with some additional algebraic structure that defines the effect,
providing effect operators and equations that capture the properties of operators.
These effects form a hierarchy in the sense that each effect is the result of a series
of extensions starting from the theory of functors, each step extending an existing
one in such a way that it shares operators and properties with its parents. We
use the methodology of packed classes, which was originally used to formalize
mathematical structures [11]. We explain how we use packed classes to formalize
monads in Sect. 2.1 and to combine monads in Sect. 2.2. The next section makes
a thorough presentation of the complete hierarchy (depicted in Fig. 1).

2.1 Basic Layers: Theories of Functors and Monads

Our formalization of monads starts with a formal definition of functors. This is
in contrast to the hierarchy from Gibbons and Hinze [13], where the monad’s
functor action on morphisms (fmap) is defined using bind (hereafter, we use the
infix notation �= for bind); starting with functors simplifies the organization
of lemmas used in monadic equational reasoning and results in a more robust
hierarchy.

Functors as the Base Packed Class. The class of functors is defined in
the module Functor below. The definition follows the usual one in category the-
ory [25] except that the domain and codomain of functors are fixed to Type.
In set-theoretical semantics, Type is interpreted as the universe of sets, thus
rendering our functors to be the endofunctors on the category Set of sets and
functions.

We use Coq modules only to get a namespace. Inside this namespace, func-
tors are defined by the dependent record class_of with one field f satisfying the
functor laws (the naming should be self-explanatory, see Table 2, Appendix B in
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case of doubt). The type of functors t is a dependent record1 with a function m

of type Type -> Type, which is the object part of the functor, that satisfies the
class_of interface. The morphism part appears as f in the record. We define Fun

to refer to it, but the purpose of the definition is essentially technical. It does
not reduce (thanks to the simpl never declaration) and can therefore be used to
provide a stable notation: F # g denotes the action of a functor F on a function g.
Last, we provide a notation functor that denotes the type Functor.t outside of
the module and a coercion so that functors can be used as if they were functions
(by taking the first projection m of the dependent record that represents their
type).

Module Functor.

Record class_of (m : Type -> Type) : Type := Class {

f : forall A B, (A -> B) -> m A -> m B ;

_ : FunctorLaws.id f ;

_ : FunctorLaws.comp f }.

Structure t : Type := Pack { m : Type -> Type ; class : class_of m }.

Module Exports.

Definition Fun (F : t) : forall A B, (A -> B) -> m F A -> m F B :=

let: Pack _ (Class f _ _) := F

return forall A B, (A -> B) -> m F A -> m F B in f.

Arguments Fun _ [A] [B] : simpl never.

Notation functor := t.

Coercion m : functor >-> Funclass.

End Exports.

End Functor.

Export Functor.Exports.

Notation "F # g" := (Fun F g).

Monads as a Packed Class Extension. A monad in category theory is
defined as an endofunctor M with two natural transformations η : Id → M
(where Id is the identity endofunctor) and μ : M2 → M satisfying some laws [25].
Following the above definition, our class of monads is defined as an extension of
the class of functors.

Inside the module Monad below, the interface of monads is captured by the
dependent record mixin_of with two fields ret and join, that correspond to
η and μ respectively, satisfying the monad laws (Table 2, Appendix B). The
type of monads Monad.t is a dependent record with a function Monad.m of type
Type -> Type that satisfies a class_of interface; the latter extends the class of
functors (its base) with the mixin of monads. Thanks to the definition baseType,
a monad can also be seen as a functor. This fact is handled transparently by the
type system of Coq thanks to the Canonical command.

Module Monad.

Record mixin_of (M : functor) : Type := Mixin {

1 Record and Structure are synonymous but the latter is used to emphasize that it
is to be made Canonical.
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ret : forall A, A -> M A ;

join : forall A, M (M A) -> M A ;

_ : JoinLaws.ret_naturality ret ;

_ : JoinLaws.join_naturality join ;

_ : JoinLaws.left_unit ret join ;

_ : JoinLaws.right_unit ret join ;

_ : JoinLaws.associativity join }.

Record class_of (M : Type -> Type) := Class {

base : Functor.class_of M ; mixin : mixin_of (Functor.Pack base) }.

Structure t : Type := Pack { m : Type -> Type ; class : class_of m }.

Definition baseType (M : t) := Functor.Pack (base (class M)).

Module Exports.

(* intermediate definitions of Ret and Join omitted *)

Notation monad := t.

Coercion baseType : monad >-> functor.

Canonical baseType.

End Exports.

End Monad.

Export Monad.Exports.

The monad above is defined in terms of ret and join. In programming, the
operator bind is more common. Using Coq notation, its type can be written
forall A B, M A -> (A -> M B) -> M B. The second argument of type A -> M B

is a Coq function that represents a piece of effectful program. This concretely
shows that we are heading for a framework using a shallow embedding. We
provide an alternative way to define monads using ret and bind. Let us assume
that we are given ret and bind functions that satisfy the monad laws:

Variable M : Type -> Type.

Variable bind : forall A B, M A -> (A -> M B) -> M B.

Variable ret : forall A, A -> M A.

Hypothesis bindretf : BindLaws.left_neutral bind ret.

Hypothesis bindmret : BindLaws.right_neutral bind ret.

Hypothesis bindA : BindLaws.associative bind.

We can then define fmap that satisfies the functor laws:

Definition fmap A B (f : A -> B) (m : M A) := bind m (ret (A:=B) \o f).

Lemma fmap_id : FunctorLaws.id fmap.

Lemma fmap_o : FunctorLaws.comp fmap.

We can use these lemmas to build M' of type functor and use M' to define join:

Definition join A (pp : M' (M' A)) := bind pp id.

It is now an exercise to prove that ret and join satisfy the monad laws, using
which we eventually build M of type monad. We call Monad_of_ret_bind this con-
struction that we use in the rest of this paper.
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2.2 Extensions: Specific Monads as Combined Theories

In the previous section, we explained the case of a simple extension: one struc-
ture that extends another. In this section we explain how a structure extends
two structures. Here, we just explain how we combine theories, how we provide
concrete models for combined theories is the topic of Sect. 6.

For the sake of illustration, we use the nondeterminism monad that extends
both the failure monad and the choice monad. The failure monad failMonad

extends the class of monads (Sect. 2.1) with a failure operator fail that is a
left-zero of bind. Since the extension methodology is the same as in Sect. 2.1, we
provide the code with little explanations2:

Module MonadFail.

Record mixin_of (M : monad) : Type := Mixin {

fail : forall A, M A ;

_ : BindLaws.left_zero (@Bind M) fail }.

Record class_of (m : Type -> Type) := Class {

base : Monad.class_of m ; mixin : mixin_of (Monad.Pack base) }.

Structure t := Pack { m : Type -> Type ; class : class_of m }.

Definition baseType (M : t) := Monad.Pack (base (class M)).

Module Exports.

(* intermediate definition of Fail omitted *)

Notation failMonad := t.

Coercion baseType : failMonad >-> monad.

Canonical baseType.

End Exports.

End MonadFail.

Export MonadFail.Exports.

The choice monad altMonad extends the class of monads with a choice oper-
ator alt (infix notation: [~]; prefix: [~p]) that is associative and such that bind
distributes leftwards over choice (the complete code is displayed in Appendix A).

The nondeterminism monad nondetMonad defined below extends both the fail-
ure monad and the choice monad. This extension is performed by first selecting
the failure monad as the base whose base itself is further required to satisfy the
mixin of the choice monad (see base2 below). As a result, a nondeterminism
monad can be regarded both as a failure monad (definition baseType) or as a
choice monad (definition alt_of_nondet): both views are declared as Canonical.

Module MonadNondet.

Record mixin_of (M : failMonad) (a : forall A, M A -> M A -> M A) : Type :=

Mixin { _ : BindLaws.left_id (@Fail M) a ;

_ : BindLaws.right_id (@Fail M) a }.

Record class_of (m : Type -> Type) : Type := Class {

base : MonadFail.class_of m ;

base2 : MonadAlt.mixin_of (Monad.Pack (MonadFail.base base)) ;

mixin : @mixin_of (MonadFail.Pack base) (MonadAlt.alt base2) }.

2 Just note that the prefix @ turns off implicit arguments in Coq.
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exceptProb nondetCI nondetStatealtProb

altCI

prob fail alt

monad

functor

stateTraceRun

base
mixin
extension

nondetexceptfailFreshprobDr

fresh state trace stateTrace array run

stateRun traceRun

Fig. 1. Hierarchy of effects formalized. See Table 3 for the algebraic laws. In the Coq
scripts [3], the monad xyz appears as xyzMonad.

Structure t : Type := Pack { m : Type -> Type ; class : class_of m }.

Definition baseType (M : t) := MonadFail.Pack (base (class M)).

Module Exports.

Notation nondetMonad := t.

Coercion baseType : nondetMonad >-> failMonad.

Canonical baseType.

Definition alt_of_nondet (M : nondetMonad) : altMonad :=

MonadAlt.Pack (MonadAlt.Class (base2 (class M))).

Canonical alt_of_nondet.

End Exports.

End MonadNondet.

Export MonadNondet.Exports.

3 More Monads from Our Hierarchy of Effects

This section complements the previous one by explaining more monads from
our hierarchy of effects (Fig. 1). We explain these monads in particular because
they are used later in the paper3 They are all obtained using the combination
technique previously explained in Sect. 2.2.

3.1 The Exception Monad

The exception monad exceptMonad extends the failure monad (Sect. 2.2) with a
Catch operator with monoidal properties (the Fail operator being the neutral)
and the property that unexceptional bodies need no handler [13, §5]:

3 The exception monad is used in the motivating example of Sect. 4.1, state-related
monads are used in particular to discuss the relation with deep embedding in
Sect. 5.1, the state-trace monad is used in the application of Sect. 5.2, and a model
of the probability monad is provided in Sect. 6.2.
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Record mixin_of (M : failMonad) : Type := Mixin {

catch : forall A, M A -> M A -> M A ;

_ : forall A, right_id Fail (@catch A) ;

_ : forall A, left_id Fail (@catch A) ;

_ : forall A, associative (@catch A) ;

_ : forall A x, left_zero (Ret x) (@catch A) }.

The algebraic laws are given self-explanatory names; see Table 1, Appendix B
in case of doubt.

3.2 The State Monad and Derived Structures

The state monad is certainly the first monad that comes to mind when speaking
of effects. It denotes computations that transform a state (type S below). It
comes with a Get operator to yield a copy of the state and a Put operator to
overwrite it. These functions are constrained by four laws [13]:

Record mixin_of (M : monad) (S : Type) : Type := Mixin {

get : M S ;

put : S -> M unit ;

_ : forall s s', put s >> put s' = put s' ;

_ : forall s, put s >> get = put s >> Ret s ;

_ : get >>= put = skip ;

_ : forall k : S -> S -> M S,

get >>= (fun s => get >>= k s) = get >>= fun s => k s s }.

Reification of State Monads. We introduce a Run operator to reify state-
related monads (this topic is briefly exposed in [13, §6.2], we use reification in
Sect. 3.3). First, the operator run defines the semantics of Ret and Bind according
to the following equations:

Record mixin_of S (M : monad) : Type := Mixin {

run : forall A, M A -> S -> A * S ;

_ : forall A (a : A) s, run (Ret a) s = (a, s) ;

_ : forall A B (m : M A) (f : A -> M B) s,

run (do a <- m ; f a) s = let: (a', s') := run m s in run (f a') s' }.

The type of run shows that it turns a state into a pair of a value and a state. We
call the monad that extends monad with such an operator a runMonad. Second,
we combine stateMonad with runMonad and extend it with Run equations for Get

and Put; this forms the stateRunMonad:

Record mixin_of S (M : runMonad S)

(get : M S) (put : S -> M unit) : Type := Mixin {

_ : forall s, Run get s = (s, s) ;

_ : forall s s', Run (put s') s = (tt, s') }.

Monads with the Run operator appear shaded in Fig. 1, they can be given
concrete models so as to run sample programs inside Coq (there are toy examples
in [3, file smallstep_examples.v]).
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The Backtrackable-State Monad. The monad nondetStateMonad combines
state with nondeterminism (recall that the nondeterminism monad is itself
already the result of such a combination) and extends their properties with
the properties of backtrackable-state ([13, §6], [30, §4]):

Record mixin_of (M : nondetMonad) : Type := Mixin {

_ : BindLaws.right_zero (@Bind M) (@Fail _) ;

_ : BindLaws.right_distributive (@Bind M) [~p] }.

Failure is a right zero of composition to discard any accumulated stateful effects
and composition distributes over choice.

3.3 The State-Trace Monad

The state-trace monad is the result of combining a state monad with a trace
monad. Our trace monad extends monads with a Mark operator to record events:

Record mixin_of T (m : Type -> Type) : Type :=

Mixin { mark : T -> m unit }.

We call the operators of the state-trace monad st_get, st_put, and st_mark

(notations: stGet, stPut, stMark). stGet and stPut fulfill laws similar to the ones
of Get and Put, but their interactions with stMark call for two more laws:

Record mixin_of S T (M : monad) : Type := Mixin {

st_get : M S ;

st_put : S -> M unit ;

st_mark : T -> M unit ;

_ : forall s s', st_put s >> st_put s' = st_put s' ;

_ : forall s, st_put s >> st_get = st_put s >> Ret s ;

_ : st_get >>= st_put = skip ;

_ : forall k : S -> S -> M S,

st_get >>= (fun s => st_get >>= k s) = st_get >>= fun s => k s s ;

_ : forall s e, st_put s >> st_mark e = st_mark e >> st_put s ;

_ : forall e (k : _ -> _ S),

st_get >>= (fun v => st_mark e >> k v) = st_mark e >> st_get >>= k }

3.4 The Probability Monad

First, we define a type prob of probabilities [4] as reals of type R between 0 and 1:

(* Module Prob *)

Record t := mk { p :> R ; pO1 : 0 <= p <= 1 }.

Definition O1 (p : t) := pO1 p.

Arguments O1 : simpl never.

Notation prob := t.

Notation "'`Pr' q" := (@mk q (@O1 _)).
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This definition is interesting because the notation makes it possible to write
concrete probabilities succinctly: the proof that the real is between 0 and 1 is
hidden and can be inferred automatically. For example, the probability 1

2 is
written `Pr /2, the probability p̄ = 1 − p (where p is a probability) is written
`Pr p.~, etc. This is under the condition that we equip Coq with appropriate
canonical structures. For example, here follows the registration of the proof 0 ≤
1
p ≤ 1 that makes it possible to write `Pr /2 (IZR injects integers into reals):

Lemma prob_IZR (p : positive) : 0 <= / IZR (Zpos p) <= 1.

Canonical probIZR (p : positive) := @Prob.mk _ (prob_IZR p).

The above type and notation for probabilities lead us to the following mixin
for the probability monad [13, § 8]:

1 Record mixin_of (M : monad) : Type := Mixin {

2 choice : forall (p : prob) A, M A -> M A -> M A

3 where "mx <| p |> my" := (choice p mx my) ;

4 _ : forall A (mx my : M A), mx <| `Pr 0 |> my = my ;

5 _ : forall A (mx my : M A), mx <| `Pr 1 |> my = mx ;

6 _ : forall A p (mx my : M A), mx <| p |> my = my <| `Pr p.~ |> mx ;

7 _ : forall A p, idempotent (@choice p A) ;

8 _ : forall A (p q r s : prob) (mx my mz : M A),

9 p = r * s /\ s.~ = p.~ * q.~ ->

10 mx <| p |> (my <| q |> mz) = (mx <| r |> my) <| s |> mz ;

11 _ : forall p, BindLaws.left_distributive (@Bind M) (choice p) }.

mx <p> my behaves as mx with probability p and as my with probability p̄.
Lines 6 and 7 are a skewed commutativity law and idempotence. Lines 8–10 is
a quasi associativity law. Above laws are the same as convex spaces [18, Def 3].
Line 11 says that bind left-distributes over probabilistic choice.

3.5 Other Monads in the Hierarchy of Effects

Figure 1 pictures the hierarchy of effects that we have formalized; Table 3
(Appendix C) lists the corresponding algebraic laws. The starting point is the
hierarchy of [13]. It needed to be adjusted to fit other papers [1,12,30,31]:

– As explained in Sect. 2.1, we put functors at the top to simplify formal proofs.
– The examples of [13] relying on nondeterministic choice use altMonad. How-

ever, the combination of nondeterminism and probability in altProbMonad

requires idempotence and commutativity of nondeterministic choice [12].
Idempotence and commutativity are also required in the first part of [31].
We therefore insert the monad altCIMonad with those properties in the hier-
archy, and also the monad nondetCIMonad to deal more specifically with the
second part of [31].

– The probability monad probMonad is explained in Sect. 3.4. The probability
monad probDrMonad is explained in [13, §8]. The main difference with [13]
is that we extract probMonad from probDrMonad as an intermediate step.
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probDrMonad extends probMonad with right distributivity of bind (· �= ·) over
probabilistic choice (· � · � ·). The reason is that this property is not compat-
ible with distributivity of probabilistic choice over nondeterministic choice
(·� ·) and therefore needs to be put aside to be able to form altProbMonad by
combining probMonad and altMonad (the issue is explained in [1]).

There are two more monads that we have not explained. exceptProbMonad com-
bines probability and exception [12, §7.1]. freshMonad and failFreshMonad are
explained in [13, §9.1]; freshMonad provides an operator to generate fresh labels.

We have furthermore extended the hierarchy of [13] with reification
(Sect. 3.2), the trace and state-trace monads (Sect. 3.3), and the array monad
[35].

4 Monadic Equational Reasoning

The faithful mechanization of pencil-and-paper proofs by monadic equational
reasoning is the main benefit of a hierarchy of effects built with packed classes.
After a motivating example in Sect. 4.1, we explain how the Coq rewrite tactics
copes with notation and lemma overloading in Sect. 4.2. Section 4.3 explains the
technical issue of rewriting under function abstractions. Section 4.4 provides an
overview of the existing proofs that we have mechanized.

4.1 Motivating Example: The Fast Product

This example shows the equivalence between a functional implementation of the
product of integers with a monadic version (fastprod) [13]. On the left of Fig. 2
we (faithfully) reproduce the series of rewritings that constitute the original
proof. On the right, we display the equivalent series of Coq goals and tactics.

The product of natural numbers is simply defined as foldr muln 1. A “faster”
product can be implemented using the failure monad (Sect. 2.2) and the excep-
tion monad (Sect. 3.1):

Definition work (M : failMonad) s : M nat :=

if O \in s then Fail else Ret (product s).

Definition fastprod (M : exceptMonad) s : M nat := Catch (work s) (Ret O).

We observe that the user can write a monadic program with one monad and
use a notation from a monad below in the hierarchy. Concretely, here, work is
written with failMonad but still uses the unit operator Ret of the base monad. The
same can be said of fastprod. This is one consequence of packed classes. What
happens is that Coq inserts appropriate calls to canonical structures so that the
program type-checks. In fact, the program work and fastprod are actually equal
to the following (more verbose) ones:

Let Work (M : failMonad) s := if O \in s

then @Fail M nat else @Ret (MonadFail.baseType M) nat (product s).

Let Fastprod (M : exceptMonad) s := @Catch M nat

(@work (MonadExcept.baseType M) s) (@Ret (MonadExcept.monadType M) nat O).
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Pencil-and-paper proof [13, §5.1] Coq intermediate goals and tactics

fastprod xs fastprod s

=� definition of fastprod � =� rewrite /fastprod �
catch (work xs) (ret 0) Catch (work s) (Ret 0)

=� specification of work � =� rewrite /work �
catch (if 0 in xs then fail Catch (if 0 \in s then Fail

else ret (product xs)) (ret 0) else Ret (product s)) (Ret 0)

=� lift out the conditional � =� rewrite lift_if if_ext �
if 0 in xs then catch fail (ret 0) if 0 \in s then Catch Fail (Ret 0)

else catch (ret (product xs)) (ret 0) else Catch (Ret (product s)) (Ret 0)

=� laws of catch, fail, and ret � =� rewrite catchfailm catchret �
if 0 in xs then ret 0 if 0 \in s then Ret 0

else ret (product xs) else Ret (product s)

=� arithmetic: 0 in xs ⇒ product xs = 0 � =� case: ifPn => // /product0 �

if 0 in xs then ret (product xs) (product0
def
= ∀s. 0 ∈ s → product s = 0)

else ret (product xs) Ret 0

=� redundant conditional � =� move <- �
ret (product xs) Ret (product s)

Fig. 2. Comparison between an existing proof and our Coq formalization

The Coq proof that fastprod is pure, i.e., that it never throws an unhan-
dled exception, can be compared to its pencil-and-paper counterpart in Fig. 2.
Both proofs are essentially the same, though in practice the Coq proof will be
streamlined in two lines (of less than 80 characters) of script:

Lemma fastprodE s : fastprod s = Ret (product s).

Proof.

rewrite /fastprod /work lift_if if_ext catchfailm.

by rewrite catchret; case: ifPn => // /product0 <-.

Qed.

The fact that we achieve the same conciseness as the pencil-and-paper proof is
not because the example is simple: the same can be said of all the examples we
mechanized (see Sect. 4.4).

4.2 Basics of Equational Reasoning with Packed Classes

Packed classes not only allow sharing of notations but also sharing of lemmas:
one can rewrite a monadic program with any algebraic law from structures below
in the hierarchy of effects. SSReflect’s advanced rewrite tactic4 becomes avail-
able to faithfully reproduce monadic equational reasoning.

4 SSReflect extends Coq’s rewrite with contextual patterns, unfolding, etc. [15].
The main benefit is that semantically-close actions can be performed on the same
line of script, instead of having to interleave with other Coq tactics such as pattern
or unfold.
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For illustration, let us consider a function that nondeterministically builds a
subsequence of a list using the choice monad [12, §3.1]:

Variables (M : altMonad) (A : Type).

Fixpoint subs (s : seq A) : M (seq A) :=

if s isn't h :: t then Ret [::]

else let t' := subs t in fmap (cons h) t' [~] t'.

The mixed use of algebraic laws from various monads can be observed when
proving that subsequences of concatenation are concatenations of subsequences:

1 Lemma subs_cat (xs ys : seq A) :

2 subs (xs ++ ys) = do us <- subs xs; do vs <- subs ys; Ret (us ++ vs).

3 Proof.

4 elim: xs ys => [ys |x xs IH ys].

5 rewrite /= bindretf. (* Ret is left neutral *)

6 by rewrite bindmret. (* Ret is right neutral *)

7 rewrite [in RHS]/=. (* beta-reduction of the rhs *)

8 rewrite alt_bindDl. (* left-distribution of Bind over Alt *)

9 rewrite bindA. (* associativity of Bind *)

10 rewrite [in RHS]/=. (* to be continued in Sect. 4.3 *)

The proof is by induction on the sequence xs (line 4). While the lemma
alt_bindDl (line 8) belongs to the interface of the altMonad interface, the lemma
bindA (line 9) comes from the monad interface.

4.3 Rewriting Under Function Abstractions

In pencil-and-paper proofs of monadic equational reasoning, whether rewriting
occurs under a function abstraction or not does not make any difference. We
need custom automation to support this feature in Coq which does not natively
perform rewriting in this situation.

The proof from the previous section led us to the following subgoal:

subs ((x :: xs) ++ ys) =

do x0 <- subs xs; do us <- Ret (x :: x0); do vs <- subs ys; Ret (us ++ vs)

[~] (do us <- subs xs; do vs <- subs ys; Ret (us ++ vs))

We want to turn the first branch of the nondeterministic choice

do x0 <- subs xs; do us <- Ret (x :: x0); do vs <- subs ys; Ret (us ++ vs)

into

do x0 <- subs xs; do vs <- subs ys; Ret (x :: x0 ++ vs)

but since the occurrence of Ret of interest is under the binder “do x0 <-”,
rewrite bindretf fails. Instead, we “open” the continuation with a custom tactic
Open (X in subs xs >>= X) to get a new subgoal

do us <- Ret (x :: x0); do vs <- subs ys; Ret (us ++ vs) = ?g x0
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where ?g is an existential variable. Now, rewrite bindretf succeeds:

do vs <- subs ys; Ret ((x :: x0) ++ vs) = ?g x0

Yet, the last Ret is still under a binder. We could again “open” the continuation
but instead we use a custom “rewrite under” tactic rewrite_ cat_cons to get:

do x1 <- subs ys; Ret (x :: x0 ++ x1) = ?g x0

Now we can trigger unification to instantiate the existential variable and thus
complete the intended rewriting.

In practice, there is little need for Open and most situations can be handled
directly without revealing the existential variable using rewrite_. We chose to
explain Open here because it shows how rewrite_ is implemented.

4.4 Mechanization of Existing Pencil-and-Paper Proofs

We used our framework to mechanize the definitions, lemmas, and examples
from [13] (except Sect. 10.2), from [12] (up to Sect. 7.2, which overlaps and com-
plements [13]), examples from [30,31], and examples from [21] (up to Sect. 3).
This includes in particular:

– Spark aggregation: Spark is a platform for distributed computing, in which
the aggregation of data is therefore nondeterministic. Monadic equational
reasoning can be used to sort out the conditions under which aggregation is
actually deterministic [31, §4.2] as well as other properties. We have mech-
anized these results ([3], file example_spark.v), which are part of a larger
specification [6].

– The n-queens puzzle: This puzzle is used to illustrate the combination of state
and nondeterminism. We have mechanized the relations between functional
and stateful implementations [13, §6–7] ([3], file example_nqueens.v), as well
as the derivation of a version of the algorithm using monadic hylo-fusion [30,
§5]. This example demonstrates the importance of commutativity lemmas,
calling for syntax reflection (see Sect. 5).

– The Monty Hall problem: We have mechanized the probability calculations
for several variants of the Monty Hall problem [12,13] using probMonad,
altProbMonad, and exceptProbMonad ([3], file example_monty.v).

– The tree relabeling example: This example originally motivated monadic
equational reasoning [13]. It amounts to show that the labels of a binary tree
are distinct when the latter has been relabeled with fresh (see freshMonad)
labels. We have mechanized this result ([3], file example_relabeling.v).

– The swap construction: This is an example of monad composition [21]. Strictly
speaking, this is not monadic equational reasoning: formalization does not
require a mechanism such as canonical structures. Yet, our framework proved
adequate because it allows to mix in a single equation different ret’s and
join’s without explicit mention of which monad they belong to; inference is
automatic thanks to coercions.
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The level of details provided by the authors using monadic equational rea-
soning is helpful and provides a way to check that our mechanization is faith-
ful. Among the differences between pencil-and-paper and mechanized proofs,
the main one is maybe function termination. Pencil-and-paper proofs assume
Haskell and do not require particular care about function termination, whereas
Coq functions must terminate, so that formalization requires an extra effort.
See for example the formalization of unfoldM and hyloM [3] which are not struc-
turally terminating. These difficulties are known [32] and can be addressed using
standard techniques. Another difference is that Coq functions must be total, so
that some Haskell functions cannot be formalized as such (e.g., foldr1).

We discovered a few problems in the work we have formalized. The main
one was an error in a proof of monadic hylo-fusion for the n-queens puzzle
from a draft paper [29] which has been reported to the author and fixed [30].
In short5, the functional specification of the n-queens puzzle can be rewritten
using nondetStateMonad as

Get >>= (fun ini => Put (0, [::], [::]) >>

queensBody (map Z_of_nat (iota 0 n)) >>= overwrite ini)

in which queensBody can be rewritten as

hyloM (@opdot_queens M) [::] (@nilp _)

select seed_select (@well_founded_size _)

The heart of this last step was a theorem [29, Thm 4.2] (now [30, Thm 5.1])
whose hypotheses did not properly match the ones available in the course of
the proof. However, we were able to complete the proof with a variant of the
theorem in question. Other problems were at the level of typos (they could be
easily caught by type-checking): almost none in [13], a few in the appendices
of [6] (whose mechanization has not been completed yet).

5 Properties Proved Using Syntax

Our formalization is a shallow embedding: a monadic program is a Coq function
of return-type M A for some monad M and some type A. This is practical because
we can use the Coq language to write, execute, and prove programs. However,
it happens that some properties require an explicit syntax to be proved. In this
section, we show how to handle such situations. The basic idea is to locally
restrict programs to a subset characterized by a deep embedding. Section 5.1
is an example of property of backtrackable-states. Section 5.2 is an example of
equivalence between an operational and a denotational semantics, the latter
being given by a monad.

5 We just show the main steps of the derivation, we cannot reproduce all the definitions
for lack of space, see the source code [3] for all the details.
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5.1 The Commutativity of State and Nondeterminism

The commutativity of state and nondeterminism is an important aspect of
backtrackable-states [30]. Such a property can be proved directly on specific
programs using their semantics but it can also be proved more generally using
syntax.

The following predicate [30, Def 4.2] defines the commutativity of two com-
putations m and n (in the same monad M):

Definition commute {M : monad} A B

(m : M A) (n : M B) C (f : A -> B -> M C) : Prop :=

m >>= (fun x => n >>= (fun y => f x y)) =

n >>= (fun y => m >>= (fun x => f x y)).

In order to state a generic property of commutativity between nondeter-
minism and state monads, we first define a predicate that captures syntacti-
cally nondeterminism monads. They are written with the following (higher-order
abstract [33]) syntax:

(* Module SyntaxNondet *)

Inductive t : Type -> Type :=

| ret : forall A, A -> t A

| bind : forall B A, t B -> (B -> t A) -> t A

| fail : forall A, t A

| alt : forall A, t A -> t A -> t A.

Let denote be a function that turns the above syntax into the corresponding
monadic computation:

Fixpoint denote (M : nondetMonad) A (m : t A) : M A :=

match m with

| ret A a => Ret a

| bind A B m f => denote m >>= (fun x => denote (f x))

| fail A => Fail

| alt A m1 m2 => denote m1 [~] denote m2

end.

Using above definitions, we can write a predicate that captures computations in
a nondetStateMonad that are actually just computations in a nondetMonad:

Definition nondetState_sub S (M : nondetStateMonad S) A (n : M A) :=

{m | denote m = n}.

Eventually, it becomes possible to prove by induction on the syntax that two
computations m and n using both state and choice commute when m actually does
not use the state effects:

Lemma commute_nondetState S (M : nondetStateMonad S)

A (m : M A) B (n : M B) C (f : A -> B -> M C) :

nondetState_sub m -> commute m n f.
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5.2 Equivalence Between Operational and Denotation Semantics

We consider a small imperative language with a state and an operator to generate
events. We equip this language with a small-step semantics and a denotational
semantics using stateTraceMonad (Sect. 3.3), and prove that both semantics are
equivalent. We will see that we need an induction on the syntax to prove this
equivalence.

Here follows the (higher-order abstract) syntax of our imperative language:

Inductive program : Type -> Type :=

| p_ret : forall {A}, A -> program A

| p_bind : forall {A B}, program A -> (A -> program B) -> program B

| p_cond : forall {A}, bool -> program A -> program A -> program A

| p_get : program S

| p_put : S -> program unit

| p_mark : T -> program unit | ... (* see Appendix D *)

We give our language a small-step semantics specified with continuations in
the style of CompCert [5]. We distinguish two kinds of continuations: stop for
halting and cont (notation: ·;·) for sequencing:

Inductive continuation : Type :=

| stop : forall A, A -> continuation

| cont : forall A, program A -> (A -> continuation) -> continuation.

We can then define the ternary relation step that relates a state to the next one
and optionally an event:

Definition state : Type := S * @continuation T S.

Inductive step : state -> option T -> state -> Prop :=

| s_ret : forall s A a (k : A -> _), step (s, p_ret a `; k) None (s, k a)

| s_bind : forall s A B p (f : A -> program B) k,

step (s, p_bind p f `; k) None (s, p `; fun a => f a `; k)

| s_cond_true : forall s A p1 p2 (k : A -> _),

step (s, p_cond true p1 p2 `; k) None (s, p1 `; k)

| s_cond_false : forall s A p1 p2 (k : A -> _),

step (s, p_cond false p1 p2 `; k) None (s, p2 `; k)

| s_get : forall s k, step (s, p_get `; k) None (s, k s)

| s_put : forall s s' k, step (s, p_put s' `; k) None (s', k tt)

| s_mark : forall s t k, step (s, p_mark t `; k) (Some t) (s, k tt)

| ... (* see Appendix D *)

Its reflexive and transitive closure step_star of type
state -> seq T -> state -> Prop is defined as one expects. We prove that step is
deterministic and that step_star is confluent and deterministic.

We also give our language a denotational semantics using the
stateTraceMonad:
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Variable M : stateTraceMonad S T.

Fixpoint denote A (p : program A) : M A :=

match p with

| p_ret _ v => Ret v

| p_bind _ _ m f => do a <- denote m; denote (f a)

| p_cond _ b p1 p2 => if b then denote p1 else denote p2

| p_get => stGet

| p_put s' => stPut s'

| p_mark t => stMark t | ... (* see Appendix D *) end.

It is important to note here that the operators stGet and stPut can only read
and update the state (of type S) but not the log of emitted events (of type
seq T). Only the operator stMark has access to the list of emitted events but it
can neither read nor overwrite it: it can only log a new event to the list.

We proved the correctness and completeness of the small-step semantics
step_star w.r.t. the denotational semantics denote [3, file smallstep monad.v].
For that we use only the equations of the run interface of the state-trace monad
(Sect. 3.3). We now come to those parts of the proofs of correctness and complete-
ness that require induction on the syntax. They take the form of two lemmas.
Like in the previous section, we introduce a predicate to distinguish the monadic
computations that can be written with the syntax of the programming language:

Definition stateTrace_sub A (m : M A) := { p | denote p = m }.

The first lemma states that once an event is emitted it cannot be deleted:

Lemma denote_prefix_preserved A (m : M A) : stateTrace_sub m ->

forall s s' l1 l a, Run m (s, l1) = (a, (s', l)) ->

exists l2, l = l1 ++ l2.

The second lemma states that the remaining execution of a program does not
depend on the previously emitted events:

Lemma denote_prefix_independent A (m : M A) : stateTrace_sub m ->

forall s l1 l2, Run m (s, l1 ++ l2) =

let res := Run m (s, l2) in (res.1, (res.2.1, l1 ++ res.2.2)).

Those are natural properties that ought to be true for any monadic code, and not
only the monadic code that results from the denotation of a program. But this is
not the case with our monad. Indeed, the interface specifies those operators that
should be implemented but does not prevent one to add other operators that
might break the above properties of emitted events. This is why we restrict those
properties to monadic code using the stateTrace_sub predicate, thus allowing us
to prove the two above lemmas by induction on the syntax.

6 Models of Monads

Sections 2 and 3 explained how to build a hierarchy of effects. In this section, we
complete this formalization by explaining how to provide models, i.e., concrete
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objects that validate the equational theories. Providing a model amounts to
define a function of type Type -> Type for the base monad and instantiate all
the interfaces up to the monad of interest. For illustration, we explain models
of state monads and of the probability monad; see ([3], file monad_model.v) for
simpler models.

6.1 Models of State Monads

State-Trace Monad. A model for stateTraceMonad (Sect. 3.3) is a function
fun A => S * seq T -> A * (S * seq T). We start by providing the ret and bind
operators of the base monad using the constructor Monad_of_ret_bind (Sect. 2.1):

1 (* Module ModelMonad *)

2 Variables S : Type.

3 Let m := fun A => S -> A * S.

4 Definition state : monad.

5 refine (@Monad_of_ret_bind m

6 (fun A a => fun s => (a, s)) (* ret *)

7 (fun A B m f => fun s => uncurry f (m s)) (* bind *) _ _ _).

One needs to prove the monad laws to complete this definition. This gives a
monad ModelMonad.state upon which we define the get, put, and mark operators:

(* Module ModelStateTrace *)

Variables (S T : Type).

Program Definition mk : stateTraceMonad S T :=

let m := Monad.class (@ModelMonad.state (S * seq T)) in

let stm := @MonadStateTrace.Class S T _ m

(@MonadStateTrace.Mixin _ _ (Monad.Pack m)

(fun s => (s.1, s)) (* st_get *)

(fun s' s => (tt, (s', s.2))) (* st_put *)

(fun t s => (tt, (s.1, rcons s.2 t))) (* st_mark *) _ _ _ _ _ _) in

@MonadStateTrace.Pack S T _ stm.

The laws of the state-trace monad are proved automatically by Coq.

Backtrackable-State. A possible model for nondetStateMonad (Sect. 3.2) is
fun A => S -> {fset (A * S)}, where {fset X} is the type of finite sets over X

provided by the Finmap library. This formalization of finite sets is based on
list representations of finite predicates. The canonical representation is chosen
uniquely among its permutations. This choice requires the base type X of {fset X}

to be a choiceType, i.e., a type equipped with a choice function, thus satisfying a
form of the axiom of choice. To be able to use the Finmap library, we use a con-
struct (gen_choiceMixin) from the MathComp-Analysis library that can turn
any type into a choiceType. We use it to define a model for nondetStateMonad as
follows:
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Let choice_of_Type (T : Type) : choiceType :=

Choice.Pack (Choice.Class (equality_mixin_of_Type T) gen_choiceMixin).

Definition _m : Type -> Type :=

fun A => S -> {fset (choice_of_Type A * choice_of_Type S)}.

It remains to prove all the algebraic laws of the interfaces up to nondetStateMonad;
see ([3], file monad_model.v) for details.

6.2 A Model of the Probability Monad

A theory of probability distributions provides a model for the probability monad
(Sect. 3.4). For this paper, we propose the following definition of probability
distribution [4]:

(* Module Dist *)

Record t := mk {

f :> {fsfun A -> R with 0} ;

f01 : all (fun x => 0 < f x) (finsupp f) &&

\sum_(a <- finsupp f) f a == 1}.

The first field is a finitely-supported function f: it evaluates to 0 outside its
support finsupp f. The second field contains proofs that (1) the probability
function outputs positive reals and that (2) its outputs sum to 1. Let Dist be a
notation for Dist.t. It has type choiceType -> choiceType and can therefore be
used to build a monad (thanks to choice_of_Type from the previous section).

The bind operator is well-known: given p : Dist A and g : A -> Dist B, it
returns a distribution with probability mass function b �→ ∑

a∈supp(p) p(a)·g(a, b).
This is implemented by the following combinator:

(* Module DistBind *)

Variables (A B : choiceType) (p : Dist A) (g : A -> Dist B).

Let D := ... (* definition of the support omitted *)

Definition f : {fsfun B -> R with 0} :=

[fsfun b in D => \sum_(a <- finsupp p) p a * (g a) b | 0].

Definition d : Dist B := ... (* packaging of f omitted *)

The resulting combinator DistBind.d can be proved to satisfy the monad laws,
for example, associativity:

Lemma DistBindA A B C (m : Dist A) (f : A -> Dist B) (g : B -> Dist C) :

DistBind.d (DistBind.d m f) g =

DistBind.d m (fun x => DistBind.d (f x) g).

Completing the model with a distribution for the ret operator and the other
properties of monads is an exercise.

The last step is to provide an implementation for the interface of the proba-
bility monad. The probabilistic choice operator corresponds to the construction
of a distribution d from two distributions d1 and d2 biased by a probability p:
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(* Module Conv2Dist *)

Variables (A : choiceType) (d1 d2 : Dist A) (p : prob).

Definition d : Dist A := locked

(ConvDist.d (I2Dist.d p) (fun i => if i == ord0 then d1 else d2)).

The combinator ConvDist.d is a generalization that handles the combination of
any distribution of distributions: it is instantiated here with the binary distri-
bution I2Dist.d p [4]. We finally prove that the probabilistic choice d have the
expected properties, for example, skewed commutativity:

Notation "x <| p |> y" := (d x y p). (* probabilistic choice *)

Lemma convC (p : prob) (a b : Dist A) : a <| p |> b = b <| `Pr p.~ |> a.

7 Technical Aspects of Formalization in Coq

About Coq Commands and Tactics. There are several Coq commands and tac-
tics that are instrumental in our formalization. Most importantly, we use Coq
canonical structures (as implemented by the command Canonical) to implement
packed classes (Sect. 2), but also to implement other theories such as probabili-
ties (Sect. 3.4). We already mentioned that the rewrite tactic from SSReflect
is important to obtain short proof scripts (Sect. 4). We take advantage of the
reals of the Coq standard library which come with automation: the field and
lra (linear real/rational arithmetic) tactics are important in practice to compute
probabilities (for example in the Monty Hall problem).

About Useful Coq Libraries. We use the SSReflect library for lists because
it is closer to the Haskell library than the Coq standard library. It provides
Haskell-like notations (e.g., notation for comprehension) and more functions
(e.g., allpairs, a.k.a. cp in Haskell). We use the Finmap library of MathComp
for its finite sets (see Sect. 6.1). We also benefit from other libraries compatible
with MathComp to formalize the model of the probability monad [4].

About the Use of Extra Axioms. We use axioms inherited from the MathComp-
Analysis library (they are explained in [2, §5]). More precisely, we use functional
extensionality in particular to identify the Coq functions that appear in the
bind operator. We use gen_choiceMixin to turn Types into choiceTypes when
constructing models (see Sect. 6). To provide a model for the probability monad
(Sect. 6.2), we proposed a type of probability distributions that requires reals
to also enjoy an axiom of choice. We also have a localized use of the axiom
of proof irrelevance to prove properties of functors [3, file monad.v]. All these
axioms make our Coq environment resemble classical set theory. We choose to
go with these axioms because it does not restrict the applicability of our work:
equational reasoning does not forbid a classical meta-theory with the axiom of
choice.
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8 Related Work

Formalization of Monads in Coq. Monads are widely used for modeling pro-
gramming languages with effects. For instance, Delaware et al. formalize several
monads and monad transformers, each one associated with a feature theorem [9].
When monads are combined, those feature theorems can then be combined to
prove type soundness. In comparison, the work we formalize here contains more
monads and focuses on equational reasoning about concrete programs instead of
meta-theory about programming languages.

Monads have been used in Coq to verify low-level systems [19,20] or for
their modular verification [23] based on free monads. Our motivation is similar:
enable formal reasoning for effectful programs using monads.

There are more formalizations of monads in other proof assistants. To pick
one example that can be easily compared to our mechanization, one can find
a formalization of the Monty Hall problem in Isabelle [8] (but using the pGCL
programming language).

About Monadic Equational Reasoning. Although enabling equational reasoning
for reasoning about monadic programs seems to be a natural idea, there does not
seem to be much related work. Gibbons and Hinze seem to be the first to syn-
thesize monadic equational reasoning as an approach [1,12,13]. This viewpoint
is also adopted by other authors [6,30,31,37].

Applicative functor is an alternative approach to represent effectful compu-
tations. It has been formalized in Isabelle/HOL together with the tree relabeling
example [24]. This work focuses on the lifting of equations to allow for automa-
tion, while our approach is rather the one of small-scale reflection [14]: the con-
struction of a hierarchy backed up by a rich library of definitions and lemmas to
make the most out of the rewriting facilities of Coq.

We extended the hierarchy of Gibbons and Hinze with a state-trace monad
with the intent of performing formal verification about programs written with
the syntax and semantics of Sect. 5.2. There are actually more topics to explore
about the formalization of tracing and monads [34].

About Formalization Techniques. We use packed classes [11] to formalize the
hierarchy of effects. It should be possible to use other techniques. In fact, a
preliminary version of our formalization was using a combination of telescopes
and canonical structures. It did not suffer major problems but packed classes
are more disciplined and are known to scale up to deep hierarchies. Coq’s type
classes have been reported to replace canonical structures in many situations,
but we have not tested them here.

The problem of rewriting under function abstraction (Sect. 4.3) is not specific
to monadic equational reasoning. For example, it also occurs when dealing with
the big operators of the MathComp library, a situation for which a forthcoming
version of Coq provides automation [27].
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9 Conclusions and Future Work

We reported on the formalization in the Coq proof assistant of an extensive hier-
archy of effects with their algebraic laws, and its application to monadic equa-
tional reasoning. The key technique is the one of packed classes, which allows for
the sharing of notations and properties of various monads, enforces modularity
by insisting on interfaces, while preserving the ability to provide rigorous models.
We also discussed other techniques of practical interest for monadic equational
reasoning such as reasoning on the syntax despite dealing with a shallow embed-
ding. As a benchmark, we applied our formalization to several pencil-and-paper
proofs and furthermore formalized and proved properties of the semantics of an
imperative programming language. Our approach is successful in the sense that
our proof scripts closely match their paper-and-pencil counterparts. Our work
also led us to revisit existing proofs and extend the hierarchy of effects originally
proposed by Gibbons and Hinze. We believe that our experiments demonstrate
that the formalization of monadic equational reasoning with packed classes and
a shallow embedding provides a practical tool for formal verification of effectful
programs.

Future Work. We have started the formalization of more examples of monadic
equational reasoning [3, branch experiments]: [6] is underway, [10] proposes a
sharing monad whose equations seems to call for more syntax reflection and
brings to the table the issue of infinite data structures.

In its current state the rewrite_ tactic (Sect. 4.3) is not completely satisfac-
tory. Its main defect is practical: it cannot be chained with the standard rewrite

tactic. We defer the design of a better solution to future work because the topic
is actually more general (as discussed in Sect. 8).

The main task that we are now addressing is the formalization of the model
of the monad that combines probability and nondeterminism. Though well-
understood [7], its formalization requires a careful formalization of convexity,
which is work in progress.

It remains to check whether we can improve the modularity of model con-
struction (or even the extension of the hierarchy) through formalizing other
generic methods for combining effects, such as algebraic effects and distributive
laws between monads.

Acknowledgements. We acknowledge the support of the JSPS-CNRS bilateral pro-
gram “FoRmal tools for IoT sEcurity” (PRC2199) and the JSPS KAKENHI Grant
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thank Cyril Cohen and Shinya Katsumata for comments about the formalization of
monads.
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A The Choice Monad

The following excerpt from the source code [3] corresponds to the choice monad
first mentioned in Sect. 2.2:

Module MonadAlt.

Record mixin_of (M : monad) : Type := Mixin {

alt : forall A, M A -> M A -> M A ;

_ : forall A, associative (@alt A) ;

_ : BindLaws.left_distributive (@Bind M) alt }.

Record class_of (m : Type -> Type) : Type := Class {

base : Monad.class_of m ; mixin : mixin_of (Monad.Pack base) }.

Structure t := Pack { m : Type -> Type ; class : class_of m }.

Definition baseType (M : t) := Monad.Pack (base (class M)).

Module Exports.

Definition Alt M : forall A, m M A -> m M A -> m M A :=

let: Pack _ (Class _ (Mixin x _ _)) := M

return forall A, m M A -> m M A -> m M A in x.

Arguments Alt {M A} : simpl never.

Notation "'[~p]'" := (@Alt _). (* prefix notation *)

Notation "x '[~]' y" := (Alt x y). (* infix notation *)

Notation altMonad := t.

Coercion baseType : altMonad >-> monad.

Canonical baseType.

End Exports.

End MonadAlt.

Export MonadAlt.Exports.

B Generic Algebraic Laws

The algebraic laws used in this paper are instances of generic definitions with
self-explanatory names. Table 1 summarizes the laws defined in SSReflect (file
ssrfun.v from the standard distribution of Coq). Table 2 summarizes the laws
introduced in this paper. The Coq definitions are available online [3].

Table 1. Algebraic laws defined in SSReflect

associative op ∀x, y, z. x op (y op z) = (x op y) op z

left_id e op ∀x. e opx = x

right_id e op ∀x. x op e = x

left_zero z op ∀x. z opx = z

idempotent op ∀x. x opx = x
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Table 2. Algebraic laws defined in this paper

Module FunctorLaws.

id f f id = id

comp f ∀g, h. f (g ◦ h) = f g ◦ fh

Module JoinLaws.

ret_naturality ret ∀h. fmap h ◦ ret = ret ◦ h

join_naturality join ∀h. fmap h ◦ join = join ◦ fmap (fmap h)

left_unit ret join join ◦ ret = id

right_unit ret join join ◦ fmap ret = id

associativity join join ◦ fmap join = join ◦ join

Module BindLaws.

associative bind ∀m, f, g. (m �= f) �= g = m �= λx.(f(x) �= g)

left_id op ret ∀m. ret opm = m

right_id op ret ∀m. m op ret = m

left_neutral bind ret ∀f. ret �= f = f

right_neutral bind ret ∀m. m �= ret = m

left_zero bind z ∀f. z �= f = z

right_zero bind z ∀m. m �= z = z

left_distributive bind op ∀m, n, f. m opn �= f = (m �= f) op (n �= f)

right_distributive bind op ∀m, f, g. m �= λx.(f x) op (g x) = (m �= f) op (m �= g)

C Summary of Monads and Their Algebraic Laws

Table 3 summarizes the structures and the algebraic laws that we formalize and
explain in this paper. Precise Coq definitions are available online [3].

D Details About the Imperative Language from Sect. 5.2

For the sake of completeness, we provide the definition of the syntax (program)
and semantics (operational step and denotational denote) of the imperative lan-
guage of Sect. 5.2 where we omitted looping constructs to help reading:

Inductive program : Type -> Type :=

| p_ret : forall {A}, A -> program A

| p_bind : forall {A B}, program A -> (A -> program B) -> program B

| p_cond : forall {A}, bool -> program A -> program A -> program A

| p_get : program S

| p_put : S -> program unit

| p_mark : T -> program unit.

| p_repeat : nat -> program unit -> program unit

| p_while : nat -> (S -> bool) -> program unit -> program unit

Variables T S : Type.

Definition state : Type := S * @continuation T S.

Inductive step : state -> option T -> state -> Prop :=

| s_ret : forall s A a (k : A -> _), step (s, p_ret a `; k) None (s, k a)
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Table 3. Monads Defined in this Paper and the Algebraic Laws They Introduce

Structure Operators Equations

functor (§2.1) Fun/# functor_id, functor_o
monad (§2.1) Ret ret_naturality

Join join_naturality, joinretM (left unit),

joinMret (right unit), joinA (associativity)

Bind/>>=/>> bindretf (left neutral), bindmret (right neutral),

bindA (associativity)

failMonad (§2.2) Fail bindfailf (fail left-zero of bind)

altMonad (§A) Alt/[~]/[~p] alt_bindDl (bind left-distributes over choice),

altA (associativity)

nondetMonad (§2.2) altmfail (right-id), altfailm (left-id)

exceptMonad (§3.1) Catch catchfailm (left-id), catchmfail (right-id),

catchA (associativity), catchret (left-zero)

stateMonad (§3.2) Get, Put putget, getputskip, putput, getget
runMonad (§3.2) Run runret, runbind
stateRunMonad (§3.2) runget, runput
nondetStateMonad
(§3.2)

bindmfail (right-zero),

alt_bindDr (bind right-distributes over choice)

traceMonad (§3.3) Mark
stateTraceMonad
(§3.3)

stGet st_getget
stPut st_putput, st_putget, st_getputskip
stMark st_putmark, st_getmark

traceRunMonad (§3.3) runmark
stateTraceRunMonad
(§3.3)

runstget, runstput, runstmark

probMonad (§3.4) Choice choicemm (idempotence),

choice0, choice1 (identity laws),

choiceA (quasi associativity),

choiceC (skewed commutativity),

prob_bindDl (bind left-distributes over choice)

altCIMonad (§3.5) altmm (idempotence), altC (commutativity)

nondetCIMonad (§3.5)
freshMonad (§3.5) Fresh
failFreshMonad (§3.5) Distinct failfresh_bindmfail (fail right-zero of bind)

bassert (Distinct M) \o Symbols = Symbols
arrayMonad (§3.5) aGet i, aputput, aputget, agetputskip, agetget,

aPut i s agetC, aputC, aputgetC
probDrMonad (§3.5) prob_bindDr (bind right-distributes over choice)

altProbMonad (§3.5) choiceDr (probabilistic choice right-distributes

over nondeterministic choice)

exceptProbMonad
(§3.5)

catchDl (catch left-distributes over choice)

| s_bind : forall s A B p (f : A -> program B) k,

step (s, p_bind p f `; k) None (s, p `; fun a => f a `; k)

| s_cond_true : forall s A p1 p2 (k : A -> _),

step (s, p_cond true p1 p2 `; k) None (s, p1 `; k)

| s_cond_false : forall s A p1 p2 (k : A -> _),

step (s, p_cond false p1 p2 `; k) None (s, p2 `; k)

| s_get : forall s k, step (s, p_get `; k) None (s, k s)

| s_put : forall s s' k, step (s, p_put s' `; k) None (s', k tt)
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| s_mark : forall s t k, step (s, p_mark t `; k) (Some t) (s, k tt).

| s_repeat_O : forall s p k, step (s, p_repeat O p `; k) None (s, k tt)

| s_repeat_S : forall s n p k,

step (s, p_repeat n.+1 p `; k) None

(s, p `; fun _ => p_repeat n p `; k)

| s_while_true : forall fuel s c p k, c s = true ->

step (s, p_while fuel.+1 c p `; k) None

(s, p `; fun _ => p_while fuel c p `; k)

| s_while_false : forall fuel s c p k, c s = false ->

step (s, p_while fuel.+1 c p `; k) None (s, k tt)

| s_while_broke : forall s c p k,

step (s, p_while O c p `; k) None (s, k tt)

Variables S T : Type.

Variable M : stateTraceMonad S T.

Fixpoint denote A (p : program A) : M A :=

match p with

| p_ret _ v => Ret v

| p_bind _ _ m f => do a <- denote m; denote (f a)

| p_cond _ b p1 p2 => if b then denote p1 else denote p2

| p_get => stGet

| p_put s' => stPut s'

| p_mark t => stMark t

| p_repeat n p => (fix loop m : M unit :=

if m is m'.+1 then denote p >> loop m' else Ret tt) n

| p_while fuel c p => (fix loop m : M unit :=

if m is m'.+1

then (do s <- stGet ; if c s then denote p >> loop m' else Ret tt)

else Ret tt) fuel

end.
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Abstract. System F, also known as the polymorphic λ-calculus, is a typed λ-
calculus independently discovered by the logician Jean-Yves Girard and the com-
puter scientist John Reynolds. We consider Fωμ, which adds higher-order kinds
and iso-recursive types. We present the first complete, intrinsically typed, exe-
cutable, formalisation of System Fωμ that we are aware of. The work is motivated
by verifying the core language of a smart contract system based on System Fωμ.
The paper is a literate Agda script [14].

1 Introduction

System F, also known as the polymorphic λ-calculus, is a typed λ-calculus indepen-
dently discovered by the logician Jean-Yves Girard and the computer scientist John
Reynolds. System F extends the simply-typed λ-calculus (STLC). Under the princi-
ple of Propositions as Types, the → type of STLC corresponds to implication; to this
System F adds a ∀ type that corresponds to universal quantification over propositions.
Formalisation of System F is tricky: it, when extended with subtyping, formed the basis
for the POPLmark challenge [8], a set of formalisation problems widely attempted as a
basis for comparing different systems.

System F is small but powerful. By a standard technique known as Church encod-
ing, it can represent a wide variety of datatypes, including natural numbers, lists, and
trees. However, while System F can encode the type “list of A” for any type A that can
also be encoded, it cannot encode “list” as a function from types to types. For that one
requires System F with higher-kinded types, known as System Fω. Girard’s original
work also considered this variant, though Reynolds did not.

The basic idea of System Fω is simple. Not only does each term have a type, but
also each type level object has a kind. Notably, type families are classified by higher
kinds. The first level, relating terms and types, includes an embedding of STLC (plus
quantification); while the second level, relating types and kinds, is an isomorphic image
of STLC.

Church encodings can represent any algebraic datatype recursive only in positive
positions; though extracting a component of a structure, such as finding the tail of a
list, takes time proportional to the size of the structure. Another standard technique,
known as Scott encoding, can represent any algebraic type whatsoever; and extract-
ing a component now takes constant time. However, Scott encoding requires a second
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extension to System F, to represent arbitrary recursive types, known as System Fμ. The
system with both extensions is known as System Fωμ, and will be the subject of our
formalisation.

Terms in Systems F and Fω are strongly normalising. Recursive types with recur-
sion in a negative position permit encoding arbitrary recursive functions, so normalisa-
tion of terms in Systems Fμ and Fωμ may not terminate. However, constructs at the type
level of Systems Fω and Fωμ are also strongly normalising.

There are two approaches to recursive types, equi-recursive and iso-recursive [33].
In an equi-recursive formulation, the types μα.A[α] and A[μα.A[α]] are considered
equal, while in an iso-recursive formulation they are considered isomorphic, with an
unfold term to convert the former to the latter, and a fold term to convert the other way.
Equi-recursive formulation makes coding easier, as it doesn’t require extra term forms.
But it makes type checking more difficult, and it is not known whether equi-recursive
types for System Fωμ are decidable [11,19]. Accordingly, we use iso-recursive types,
which are also used by Dreyer [18] and Brown and Palsberg [10].

There are also two approaches to formalising a typed calculus, extrinsic and intrin-
sic [35]. In an extrinsic formulation, terms come first and are assigned types later, while
in an intrinsic formulation, types come first and a term can be formed only at a given
type. The two approaches are sometimes associated with Curry and Church, respec-
tively [23]. There is also the dichotomy between named variables and de Bruijn indices.
De Bruijn indices ease formalisation, but require error-prone arithmetic to move a term
underneath a lambda expression. An intrinsic formulation catches such errors, because
they would lead to incorrect types. Accordingly, we use an intrinsic formulation with
de Bruijn indices. The approach we follow was introduced by Altenkirch and Reus [6],
and used by Chapman [13] and Allais et al. [2] among others.

1.1 For Fun and Profit

Our interest in System Fωμ is far frommerely theoretical. Input Output HK Ltd. (IOHK)
is developing the Cardano blockchain, which features a smart contract language known
as Plutus [12]. The part of the contract that runs off-chain is written in Haskell with
an appropriate library, while the part of the contract that runs on-chain is written using
Template Haskell and compiled to a language called Plutus Core. Any change to the
core language would require all participants of the blockchain to update their software,
an event referred to as a hard fork. Hard forks are best avoided, so the goal with Plutus
Core was to make it so simple that it is unlikely to need revision. The design settled
on is System Fωμ with suitable primitives, using Scott encoding to represent data struc-
tures. Supported primitives include integers, bytestrings, and a few cryptographic and
blockchain-specific operations.

The blockchain community puts a high premium on rigorous specification of smart
contract languages. Simplicity, a proposed smart contract language for Bitcoin, has been
formalised in Coq [31]. The smart contract language Michelson, used by Tezos, has
also been formalised in Coq [30]. EVM, the virtual machine of Ethereum, has been
formalised in K [32], in Isabelle/HOL [7,24], and in F∗ [21]. For a more complete
account of blockchain projects involving formal methods see [22].
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IOHK funded the development of our formalisation of System Fωμ because of the
correspondence to Plutus Core. The formal model in Agda and associated proofs give
us high assurance that our specification is correct. Further, we plan to use the evaluator
that falls out from our proof of progress for testing against the evaluator for Plutus Core
that is used in Cardano.

1.2 Contributions

This paper represents the first complete intrinsically typed, executable, formalisation
of System Fωμ that we are aware of. There are other intrinsically typed formalisations
of fragments of System Fωμ. But, as far as we are aware none are complete. András
Kovács has formalised System Fω [27] using hereditary substitutions [38] at the type
level. Kovács’ formalisation does not cover iso-recursive types and also does not have
the two different presentations of the syntax and the metatheory relating them that are
present here.

Intrinsically typed formalisations of arguably more challenging languages exist
such as those of Chapman [13] and Danielsson [16] for dependently typed languages.
However, they are not complete and do not consider features such as recursive types.
This paper represents a more complete treatment of a different point in the design space
which is interesting in its own right and has computation at the type level but stops short
of allowing dependent types. We believe that techniques described here will be useful
when scaling up to greater degrees of dependency.

A key challenge with the intrinsically typed approach for System Fω is that due
to computation at the type level, it is necessary to make use of the implementations
of type level operations and even proofs of their correctness properties when defining
the term level syntax and term level operations. Also, if we want to run term level
programs, rather than just formalise them, it is vital that these proofs of type level oper-
ations compute, which means that we cannot assume any properties or rely on axioms
in the metatheory such as functional extensionality. Achieving this level of complete-
ness is a contribution of this paper as is the fact that this formalisation is executable.
We do not need extensionality despite using higher order representations of renam-
ings, substitutions, and (the semantics of) type functions. First order variants of these
concepts are more cumbersome and long winded to work with. As the type level lan-
guage is a strongly normalising extension of the simply-typed λ-calculus we were able
to leverage work about renaming, substitution and normalisation from simply-typed λ-
calculus. Albeit with the greater emphasis that proofs must compute. We learnt how
to avoid using extensionality when reasoning about higher order/functional representa-
tions of renamings and substitutions from Conor McBride. The normalisation algorithm
is derived from work by Allais et al. and McBride [3,29]. The normalisation proof also
builds on their work, and in our opinion, simplifies and improves it as the uniformity
property in the completeness proof becomes simply a type synonym required only at
function type (kind in our case) rather than needing to be mutually defined with the
logical relation at every type (kind), simplifying the construction and the proofs con-
siderably. In addition we work with β-equality not βη-equality which, in the context of
NBE makes things a little more challenging. The reason for this choice is that our smart
contract core language Plutus Core has only β-equality.
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Another challenge with the intrinsically typed approach for System Fω, where typ-
ing derivations and syntax coincide, is that the presence of the conversion rule in the
syntax makes computation problematic as it can block β-reduction. Solving/avoiding
this problem is a contribution of this paper.

The approach to the term level and the notation borrow heavily from PLFA [37]
where the chapters on STLC form essentially a blueprint for and a very relevant intro-
duction to this work. The idea of deriving an evaluator from a proof of progress appears
in PLFA, and appears to be not widely known [36].

1.3 Overview

This paper is a literate Agda program that is machine checked and executable either
via Agda’s interpreter or compiled to Haskell. The code (i.e. the source code of the
paper) is available as a supporting artefact. In addition the complete formalisation of
the extended system (Plutus Core) on which this paper is based is also available as a
supporting artefact.

In the paper we aim to show the highlights of the formalisation: we show as much
code as possible and the statements of significant lemmas and theorems. We hide many
proofs and minor auxiliary lemmas.

Dealing with the computation in types and the conversion rule was the main
challenge in this work for us. The approaches taken to variable binding, renam-
ing/substitution and normalisation lifted relatively easily to this setting. In addition to
the two versions of syntax where types are (1) not normalised and (2) completely nor-
malised we also experimented with a version where types are in weak head normal form
(3). In (1) the conversion rule takes an inductive witness of type equality relation as an
argument. In (2) conversion is derivable as type equality is replaced by identity. In (3),
the type equality relation in conversion can be replaced by a witness of a logical relation
that computes, indeed it is the same logical relation as described in the completeness of
type normalisation proof. We did not pursue this further in this work so far as this app-
roach is not used in Plutus Core but this is something that we would like to investigate
further in future.

In Sect. 2 we introduce intrinsically typed syntax (kinds, types and terms) and the
dynamics of types (type equality). We also introduce the necessary syntactic operations
for these definitions: type weakening and substitution (and their correctness proper-
ties) are necessary to define terms. In Sect. 3 we introduce an alternative version of
the syntax where the types are β-normal forms. We also introduce the type level nor-
malisation algorithm, its correctness proof and a normalising substitution operation on
normal types. In Sect. 4 we reconcile the two versions of the syntax, prove soundness
and completeness results and also demonstrate that normalising the types preserves the
semantics of terms where semantics refers to corresponding untyped terms. In Sect. 5
we introduce the dynamics of the algorithmic system (type preserving small-step reduc-
tion) and we prove progress in Sect. 3. Preservation holds intrinsically. In Sect. 6 we
provide a step-indexed evaluator that we can use to execute programs for a given num-
ber of reduction steps. In Sect. 7 we show examples of Church and Scott Numerals. In
Sect. 8 we discuss extensions of the formalisation to higher kinded recursive types and
intrinsically sized integers and bytestrings.
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2 Intrinsically Typed Syntax of System Fωμ

We take the view that when writing a program such as an interpreter we want to spec-
ify very precisely how the program behaves on meaningful input and we want to rule
out meaningless input as early and as conclusively as possible. Many of the operations
we define in this paper, including substitution, evaluation, and normalisation, are only
intended to work on well-typed input. In a programming language with a less precise
type system we might need to work under the informal assumption that we will only
ever feed meaningful inputs to our programs and otherwise their behaviour is unspeci-
fied, and all bets are off. Working in Agda we can guarantee that our programs will only
accept meaningful input by narrowing the definition of valid input. This is the motiva-
tion for using intrinsic syntax as the meaningful inputs are those that are guaranteed to
be type correct and in Agda we can build this property right into the definition of the
syntax.

In practice, in our setting, before receiving the input (some source code in a file) it
would have been run through a lexing, parsing, scope checking and most importantly
type checking phase before reaching our starting point in this paper: intrinsically typed
syntax. Formalising the type checker is future work.

One can say that in intrinsically typed syntax, terms carry their types. But, we can
go further, the terms are actually typing derivations. Hence, the definition of the syntax
and the type system, as we present it, coincide: each syntactic constructor corresponds
to one typing rule and vice versa. As such we dispense with presenting them separately
and instead present them in one go.

There are three levels in this syntax:

1. kinds, which classify types;
2. types, which classify terms;
3. terms, the level of ordinary programs.

The kind level is needed as there are functions at the type level. Types appear in terms,
but terms do not appear in types.

2.1 Kinds

The kinds consist of a base kind *, which is the kind of types, and a function kind.1

data Kind : Set where
* : Kind -- type

⇒ : Kind→ Kind→ Kind -- function kind

Let K and J range over kinds.

1 The code in this paper is typeset in colour.
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2.2 Type Contexts

To manage the types of variables and their scopes we introduce contexts. Our choice of
how to deal with variables is already visible in the representation of contexts. We will
use de Bruijn indices to represent variables. While this makes terms harder to write, it
makes the syntactic properties of the language clear and any potential off-by-one errors
etc. are mitigated by working with intrinsically scoped terms and the fact that syntactic
properties are proven correct. We intend to use the language as a compilation target so
ease of manually writing programs in this language is not a high priority.

We refer to type contexts as Ctx� and reserve the name Ctx for term level contexts.
Indeed, when a concept occurs at both type and term level we often suffix the name of
the type level version with �.

Type contexts are essentially lists of types written in reverse. No names are required.

data Ctx� : Set where
∅ : Ctx� -- empty context

,� : Ctx� → Kind→ Ctx� -- context extension

Let Φ and Ψ range over contexts.

2.3 Type Variables

We use de Bruijn indices for variables. They are natural numbers augmented with addi-
tional kind and context information. The kind index tells us the kind of the variable and
the context index ensures that the variable is in scope. It is impossible to write a variable
that isn’t in the context. Z refers to the last variable introduced on the right hand end of
the context. Adding one to a variable via S moves one position to the left in the context.
Note that there is no way to construct a variable in the empty context as it would be out
of scope. Indeed, there is no way at all to construct a variable that is out of scope.

data �� : Ctx� → Kind→ Set where
Z : ∀ {Φ J} → Φ ,� J �� J
S : ∀ {Φ J K} → Φ �� J→ Φ ,� K �� J

Let α and β range over type variables.

2.4 Types

Types, like type variables, are indexed by context and kind, ensuring well-scopedness
and well-kindedness. The first three constructors ‘ � and · are analogous to the terms of
STLC. This is extended with the Π type to classify type abstractions at the type level,
function type ⇒ to classify functions, and μ to classify recursive terms. Note that Π ,
⇒, and μ are effectively base types as they live at kind *.
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data 	� Φ : Kind→ Set where
‘ : ∀{J} → Φ �� J → Φ 	� J -- type variable

� : ∀{K J} → Φ ,� K 	� J → Φ 	� K⇒ J -- type lambda

· : ∀{K J} → Φ 	� K⇒ J→ Φ 	� K→ Φ 	� J -- type application

⇒ : Φ 	� * → Φ 	� * → Φ 	� * -- function type

Π : ∀{K} → Φ ,� K 	� * → Φ 	� * -- Pi/forall type

μ : Φ ,� * 	� * → Φ 	� * -- recursive type

Let A and B range over types.

2.5 Type Renaming

Types can contain functions and as such are subject to a nontrivial equality relation.
To explain the computation equation (the β-rule) we need to define substitution for a
single type variable in a type. Later, when we define terms that are indexed by their
type we will need to be able to weaken types by an extra kind (Sect. 2.9) and also,
again, substitute for a single type variable in a type (Sect. 2.10). There are various dif-
ferent ways to define the required weakening and substitution operations. We choose to
define so-called parallel renaming and substitution i.e. renaming/substitution of several
variables at once. Weakening and single variable substitution are special cases of these
operations.

We follow Altenkirch and Reus [6] and implement renaming first and then substitu-
tion using renaming. In our opinion the biggest advantage of this approach is that it has
a very clear mathematical theory. The necessary correctness properties of renaming are
identified with the notion of a functor and the correctness properties of substitution are
identified with the notion of a relative monad. For the purposes of reading this paper
it is not necessary to understand relative monads in detail. The important thing is that,
like ordinary monads, they have a return and bind and the rules that govern them are
the same. It is only the types of the operations involved that are different. The inter-
ested reader may consult [5] for a detailed investigation of relative monads and [4] for
a directly applicable investigation of substitution of STLC as a relative monad.

A type renaming is a function from type variables in one context to type variables
in another. This is much more flexibility than we need. We only need the ability to
introduce new variable on the right hand side of the context. The simplicity of the
definition makes it easy to work with and we get some properties for free that we would
have to pay for with a first order representation, such as not needing to define a lookup
function, and we inherit the properties of functions provided by η-equality, such as
associativity of composition, for free. Note that even though renamings are functions we
do not require our metatheory (Agda’s type system) to support functional extensionality.
As pointed out to us by Conor McBride we only ever need to make use of an equation
between renamings on a point (a variable) and therefore need only a pointwise version
of equality on functions to work with equality of renamings and substitutions.

Ren� : Ctx� → Ctx� → Set
Ren� Φ Ψ = ∀ {J} → Φ �� J→ Ψ �� J
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Let ρ range over type renamings.
As we are going to push renamings through types we need to be able to push them

under a binder. To do this safely the newly bound variable should remain untouched and
other renamings should be shifted by one to accommodate this. This is exactly what the
lift� function does and it is defined by recursion on variables:

lift� : ∀ {Φ Ψ } → Ren� Φ Ψ → ∀ {K} → Ren� (Φ ,� K) (Ψ ,� K)
lift� ρ Z = Z -- leave newly bound variable untouched

lift� ρ (S α) = S (ρ α) -- apply renaming to other variables and add 1

Next we define the action of renaming on types. This is defined by recursion on the
type. Observe that we lift the renaming when we go under a binder and actually apply
the renaming when we hit a variable:

ren� : ∀ {Φ Ψ } → Ren� Φ Ψ → ∀ {J} → Φ 	� J→ Ψ 	� J
ren� ρ (‘ α) = ‘ (ρ α)
ren� ρ (� B) = � (ren� (lift� ρ) B)
ren� ρ (A · B) = ren� ρ A · ren� ρ B
ren� ρ (A⇒ B) = ren� ρ A⇒ ren� ρ B
ren� ρ (Π B) = Π (ren� (lift� ρ) B)
ren� ρ (μ B) = μ (ren� (lift� ρ) B)

Weakening is a special case of renaming. We apply the renaming S which does double
duty as the variable constructor, if we check the type of S we see that it is a renaming.

Weakening shifts all the existing variables one place to the left in the context:

weaken� : ∀ {Φ J K} → Φ 	� J→ Φ ,� K 	� J
weaken� = ren� S

2.6 Type Substitution

Having defined renaming we are now ready to define substitution for types. Substitu-
tions are defined as functions from type variables to types:

Sub� : Ctx� → Ctx� → Set
Sub� Φ Ψ = ∀ {J} → Φ �� J→ Ψ 	� J

Let σ range over substitutions.
We must be able to lift substitutions when we push them under binders. Notice that

we leave the newly bound variable intact and make use of weaken� to weaken a term
that is substituted.

lifts� : ∀ {Φ Ψ } → Sub� Φ Ψ → ∀ {K} → Sub� (Φ ,� K) (Ψ ,� K)
lifts� σ Z = ‘ Z -- leave newly bound variable untouched

lifts� σ (S α) = weaken� (σ α) -- apply substitution and weaken
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Analogously to renaming, we define the action of substitutions on types:

sub� : ∀ {Φ Ψ } → Sub� Φ Ψ → ∀ {J} → Φ 	� J→ Ψ 	� J
sub� σ (‘ α) = σ α
sub� σ (� B) = � (sub� (lifts� σ) B)
sub� σ (A · B) = sub� σ A · sub� σ B
sub� σ (A⇒ B) = sub� σ A⇒ sub� σ B
sub� σ (Π B) = Π (sub� (lifts� σ) B)
sub� σ (μ B) = μ (sub� (lifts� σ) B)

Substitutions could be implemented as lists of types and then the cons constructor would
extend a substitution by an additional term. Using our functional representation for
substitutions it is convenient to define an operation for this. This effectively defines a
new function that, if it is applied to the Z variable, returns our additional terms and
otherwise invokes the original substitution.

extend� : ∀{Φ Ψ } → Sub� Φ Ψ → ∀{J}(A : Ψ 	� J)→ Sub� (Φ ,� J) Ψ
extend� σ A Z = A -- project out additional term

extend� σ A (S α) = σ α -- apply original substitution

Substitution of a single type variable is a special case of parallel substitution sub�.
Note we make use of extend� to define the appropriate substitution by extending the
substitution ‘ with the type A. Notice that the variable constructor ‘ serves double duty
as the identity substitution:

[ ]� : ∀ {Φ J K} → Φ ,� K 	� J→ Φ 	� K→ Φ 	� J
B [ A ]� = sub� (extend� ‘ A) B

At this point the reader may well ask how we know that our substitution and renaming
operations are the right ones. One indication that we have the right definitions is that
renaming defines a functor, and that substitution forms a relative monad. Further, eval-
uation (eval defined in Sect. 3.2) can be seen as an algebra of this relative monad. This
categorical structure results in clean proofs.

Additionally, without some sort of compositional structure to our renaming and
substitution, we would be unable to define coherent type level operations. For example,
we must have that performing two substitutions in sequence results in the same type as
performing the composite of the two substitutions. We assert that these are necessary
functional correctness properties and structure our proofs accordingly.

Back in our development we show that lifting a renaming and the action of renaming
satisfy the functor laws where lift� and ren� are both functorial actions.

lift�-id : ∀ {Φ J K}(α : Φ ,� K �� J)→ lift� id α ≡ α
lift�-comp : ∀{Φ Ψ Θ}{ρ : Ren� Φ Ψ }{ρ’ : Ren� Ψ Θ}{J K}(α : Φ ,� K �� J)
→ lift� (ρ’ ◦ ρ) α ≡ lift� ρ’ (lift� ρ α)
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ren�-id : ∀{Φ J}(A : Φ 	� J)→ ren� id A ≡ A
ren�-comp : ∀{Φ Ψ Θ}{ρ : Ren� Φ Ψ }{ρ’ : Ren� Ψ Θ}{J}(A : Φ 	� J)
→ ren� (ρ’ ◦ ρ) A ≡ ren� ρ’ (ren� ρ A)

Lifting a substitution satisfies the functor laws where lift� is a functorial action:

lifts�-id : ∀ {Φ J K}(x : Φ ,� K �� J) → lifts� ‘ x ≡ ‘ x
lifts�-comp : ∀{Φ Ψ Θ}{σ : Sub� Φ Ψ }{σ’ : Sub� Ψ Θ}{J K}(α : Φ ,� K �� J)
→ lifts� (sub� σ’ ◦ σ) α ≡ sub� (lifts� σ’) (lifts� σ α)

The action of substitution satisfies the relative monad laws where ‘ is return and sub�

is bind:

sub�-id : ∀ {Φ J}(A : Φ 	� J) → sub� ‘ A ≡ A
sub�-var : ∀ {Φ Ψ }{σ : Sub� Φ Ψ }{J}(α : Φ �� J) → sub� σ (‘ α) ≡ σ α
sub�-comp : ∀{Φ Ψ Θ}{σ : Sub� Φ Ψ }{σ’ : Sub� Ψ Θ}{J}(A : Φ 	� J)
→ sub� (sub� σ’ ◦ σ) A ≡ sub� σ’ (sub� σ A)

Note that the second law holds definitionally, it is the first line of the definition of sub�.

2.7 Type Equality

We define type equality as an intrinsically scoped and kinded relation. In particular,
this means it is impossible to state an equation between types in different contexts, or of
different kinds. The only interesting rule is the β-rule from the lambda calculus. We omit
the η-rule as Plutus Core does not have it. The formalisation could be easily modified
to include it and it would slightly simplify the type normalisation proof. The additional
types (⇒, ∀, and μ) do not have any computational behaviour, and are essentially inert.
In particular, the fixed point operator μ does not complicate the equational theory.

data ≡β {Φ} : ∀{J} → Φ 	� J → Φ 	� J → Set where
β≡β : ∀{K J}(B : Φ ,� J 	� K)(A : Φ 	� J) → � B · A ≡β B [ A ]�

-- remaining rules hidden

We omit the rules for reflexivity, symmetry, transitivity, and congruence rules for type
constructors.

2.8 Term Contexts

Having dealt with the type level, we turn our attention to the term level.
Terms may contain types, and so the term level contexts must also track information

about type variables in addition to term variables. We would like to avoid having the
extra syntactic baggage of multiple contexts. We do so by defining term contexts which
contain both (the kinds of) type variables and (the types of) term variables. Term con-
texts are indexed over type contexts. In an earlier version of this formalisation instead
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of indexing by type contexts we defined inductive term contexts simultaneously with a
recursive erasure operation that converts a term level context to a type level context by
dropping the term variables but keeping the type variables. Defining an inductive data
type simultaneously with a recursive function is referred to as induction recursion [20].
This proved to be too cumbersome in later proofs as it can introduce a situation where
there can be multiple provably equal ways to recover the same type context and expres-
sions become cluttered with proofs of such equations. In addition to the difficulty of
working with this version, it also made type checking the examples in our formalisation
much slower. In the version presented here neither of these problems arise.

A context is either empty, or it extends an existing context by a type variable of a
given kind, or by a term variable of a given type.

data Ctx : Ctx� → Set where
∅ : Ctx ∅
-- empty term context

,� : ∀{Φ} → Ctx Φ → ∀ J → Ctx (Φ ,� J)
-- extension by (the kind of) a type variable

, : ∀ {Φ} → Ctx Φ → Φ 	� * → Ctx Φ
-- extension by (the type of) a term variable

Let Γ, Δ, range over contexts. Note that in the last rule , , the type we are extending by
may only refer to variables in the type context, a term that inhabits that type may refer
to any variable in its context.

2.9 Term Variables

A variable is indexed by its context and type. While type variables can appear in types,
and those types can appear in terms, the variables defined here are term level variables
only.

Notice that there is only one base constructor Z. This gives us exactly what we want:
we can only construct term variables. We have two ways to shift these variables to the
left, we use S to shift over a type and T to shift over a kind in the context.

data � : ∀{Φ} → Ctx Φ → Φ 	� * → Set where
Z : ∀{Φ Γ} {A : Φ 	� *} → Γ , A � A
S : ∀{Φ Γ} {A : Φ 	� *} {B : Φ 	� *} → Γ � A→ Γ , B � A
T : ∀{Φ Γ} {A : Φ 	� *} {K} → Γ � A→ Γ ,� K � weaken� A

Let x, y range over variables. Notice that we need weakening of (System F) types in the
(Agda) type of T. We must weaken A to shift it from context Γ to context Γ ,� K. Indeed,
weaken� is a function and it appears in a type. This is possible due to the rich support
for dependent types and in particular inductive families in Agda. It is however a feature
that must be used with care and while it often seems to be the most natural option it can
be more trouble than it is worth. We have learnt from experience, for example, that it is
easier to work with renamings (morphisms between contexts) ρ : Ren Γ Δ rather than
context extensions Γ + Δ where the contexts are built from concatenation. The function
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+, whose associativity holds only propositionally, is awkward to work with when it
appears in type indices. Renamings do not suffer from this problem as no additional
operations on contexts are needed as we commonly refer to a renaming into an arbitrary
new context (e.g., Δ) rather than, precisely, an extension of an existing one (e.g., Γ +
Δ). In this formalisation we could have chosen to work with explicit renamings and
substitutions turning operations like weaken� into more benign constructors but this
would have been overall more cumbersome and in this case we are able to work with
executable renaming and substitution cleanly. Doing so cleanly is a contribution of this
work.

2.10 Terms

A term is indexed by its context and type. A term is a variable, an abstraction, an appli-
cation, a type abstraction, a type application, a wrapped term, an unwrapped term, or a
term whose type is cast to another equal type.

Let L, M range over terms. The last rule conv is required as we have computation in
types. So, a type which has a β-redex in it is equal, via type equality, to the type where
that redex is reduced. We want a term which is typed by the original unreduced type to
also be typed by the reduced type. This is a standard typing rule but it looks strange as
a syntactic constructor. See [17] for a discussion of syntax with explicit conversions.

We could give a dynamics for this syntax as a small-step reduction relation but the
conv case is problematic. It is not enough to say that a conversion reduces if the under-
lying term reduces. If a conversion is in the function position (also called head position)
in an application it would block β-reduction. We cannot prove progress directly for such
a relation. One could try to construct a dynamics for this system where during reduction
both terms and also types can make reduction steps and we could modify progress and
explicitly prove preservation. We do not pursue this here. In the system we present here
we have the advantage that the type level language is strongly normalising. In Sect. 3
we are able to make use of this advantage quite directly to solve the conversion problem
in a different way. An additional motivation for us to choose the normalisation oriented
approach is that in Plutus, contracts are stored and executed on chain with types nor-
malised and this mode of operation is therefore needed anyway.

If we forget intrinsically typed syntax for a moment and consider these rules as
a type system then we observe that it is not syntax directed, we cannot use it as the
algorithmic specification of a type checker as we can apply the conversion rule at any
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point. This is why we refer to this version of the rules as declarative and the version
presented in Sect. 3, which is (in this specific sense) syntax directed, as algorithmic.

3 Algorithmic Rules

In this section we remove the conversion rule from our system. Two promising
approaches to achieving this are (1) to push traces of the conversion rule into the other
rules which is difficult to prove complete [34] and (2) to normalise the types which
collapses all the conversion proofs to reflexivity. In this paper we will pursue the latter.

In the pursuit of (2) we have another important design decision to make: which
approach to take to normalisation. Indeed, another additional aspect to this is that we
need not only a normaliser but a normal form respecting substitution operation. We
choose to implement a Normalisation-by-Evaluation (NBE) style normaliser and use
that to implement a substitution operation on normal forms.

We chose NBE as we are experienced with it and it has a clear mathematical struc-
ture (e.g., evaluation is a relative algebra for the relative monad given by substitution)
which gave us confidence that we could construct a well structured normalisation proof
that would compute. The NBE approach is also centred around a normalisation algo-
rithm: something that we want to use. Other approaches would also work we expect.
One option would be to try hereditary substitutions where the substitution operation is
primary and use that to define a normaliser.

Sections 3.1–3.6 describe the normal types, the normalisation algorithm, its correct-
ness proof, and a normalising substitution operation. Readers not interested in these
details may skip to Sect. 3.7.

3.1 Normal Types

We define a data type of β-normal types which are either in constructor form or neutral.
Neutral types, which are defined mutually with normal types, are either variables or
(possibly nested) applications that are stuck on a variable in a function position, so cannot
reduce. In this syntax, it is impossible to define an expression containing a β-redex.

data 	Nf� Φ : Kind → Set

data 	Ne� Φ J : Set where
‘ : Φ �� J → Φ 	Ne� J -- type var

· : ∀{K} → Φ 	Ne� (K ⇒ J) → Φ 	Nf� K→ Φ 	Ne� J -- neutral app

data 	Nf� Φ where
� : ∀{K J} → Φ ,� K 	Nf� J → Φ 	Nf� (K ⇒ J) -- type lambda

ne : ∀{K} → Φ 	Ne� K → Φ 	Nf� K -- neutral type

⇒ : Φ 	Nf� *→ Φ 	Nf� *→ Φ 	Nf� * -- function type

Π : ∀{K} → Φ ,� K 	Nf� * → Φ 	Nf� * -- pi/forall type

μ : Φ ,� * 	Nf� * → Φ 	Nf� * -- recursive type

Let A, B range over neutral and normal types.
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As before, we need weakening at the type level in the definition of term level vari-
ables. As before, we define it as a special case of renaming whose correctness we verify
by proving the functor laws.

renNf� : ∀{Φ Ψ } → Ren� Φ Ψ → ∀ {J} → Φ 	Nf� J → Ψ 	Nf� J
renNe� : ∀{Φ Ψ } → Ren� Φ Ψ → ∀ {J} → Φ 	Ne� J → Ψ 	Ne� J
weakenNf� : ∀{Φ J K} → Φ 	Nf� J → Φ ,� K 	Nf� J

Renaming of normal and neutral types satisfies the functor laws where renNf� and
renNe� are both functorial actions:

renNf�-id : ∀{Φ J}(A : Φ 	Nf� J) → renNf� id A ≡ A
renNf�-comp : ∀{Φ Ψ Θ}{ρ : Ren� Φ Ψ }{ρ’ : Ren� Ψ Θ}{J}(A : Φ 	Nf� J)
→ renNf� (ρ’ ◦ ρ) A ≡ renNf� ρ’ (renNf� ρ A)

renNe�-id : ∀{Φ J}(A : Φ 	Ne� J) → renNe� id A ≡ A
renNe�-comp : ∀{Φ Ψ Θ}{ρ : Ren� Φ Ψ }{ρ’ : Ren� Ψ Θ}{J}(A : Φ 	Ne� J)
→ renNe� (ρ’ ◦ ρ) A ≡ renNe� ρ’ (renNe� ρ A)

3.2 Type Normalisation Algorithm

We use the NBE approach introduced by [9]. This is a two stage process, first we evalu-
ate into a semantic domain that supports open terms, then we reify these semantic terms
back into normal forms.

The semantic domain |=, our notion of semantic value is defined below. Like syn-
tactic types and normal types it is indexed by context and kind. However, it is not a type
defined as an inductive data type. Instead, it is function that returns a type. More pre-
cisely, it is a function that takes a context and, by recursion on kinds, defines a new type.
At base kind it is defined to be the type of normal types. At function kind it is either a
neutral type at function kind or a semantic function. If it is a semantic function then we
are essentially interpreting object level (type) functions as meta level (Agda) functions.
The additional renaming argument means we have a so-called Kripke function space
([25]). This is essential for our purposes as it allows us to introduce new free variables
into the context and then apply functions to them. Without this feature we would not be
able to reify from semantic values to normal forms.

|= : Ctx� → Kind → Set
Φ |= * = Φ 	Nf� *
Φ |= (K ⇒ J) = Φ 	Ne� (K ⇒ J) � ∀ {Ψ } → Ren� Φ Ψ → Ψ |= K → Ψ |= J

Let V, W range over values. Let F, G range over meta-level (Agda) functions. The def-
inition |= is a Kripke Logical Predicate. It is also a so-called large elimination, as it is
a function which returns a new type (a Set in Agda terminology). This definition is
inspired by Allais et al. [3]. Their normalisation proof, which we also took inspiration
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from, is, in turn, based on the work of C. Coquand [15]. The coproduct at the function
kind is present in McBride [29]. Our motivation for following these three approaches
was to be careful not to perturb neutral terms where possible as we want to use our nor-
maliser in substitution and we want the identity substitution for example not to modify
variables. We also learned from [3] how to move the uniformity condition out of the
definition of values into the completeness relation.

We will define an evaluator to interpret syntactic types into this semantic domain
but first we need to explain how to reify from semantics to normal forms. This is needed
first as, at base type, our semantic values are normal forms, so we need a way to convert
from values to normal forms during evaluation. Note that usual NBE operations of reify
and reflect are not mutually defined here as they commonly are in βη-NBE. This is a
characteristic of the coproduct style definition above.

Reflection takes a neutral type and embeds it into a semantic type. How we do this
depends on what kind we are at. At base kind *, semantic values are normal forms, so
we embed our neutral term using the ne constructor. At function kind, semantic values
are a coproduct of either a neutral term or a function, so we embed our neutral term
using the inl constructor.

reflect : ∀{K Φ} → Φ 	Ne� K → Φ |= K
reflect {*} A = ne A
reflect {K ⇒ J} A = inl A

Reification is the process of converting from a semantic type to a normal syntactic type.
At base kind and for neutral functions it is trivial, either we already have a normal
form or we have a neutral term which can be embedded. The last line, where we have
a semantic function is where the action happens. We create a fresh variable of kind K
using reflect and apply f to it making use of the Kripke function space by supplying f
with the weakening renaming S. This creates a semantic value of kind J in context Φ ,
K which we can call reify recursively on. This, in turn, gives us a normal form in Φ , K
	Nf� J. We can then wrap this normal form in a �.

reify : ∀ {K Φ} → Φ |= K → Φ 	Nf� K
reify {*} A = A
reify {K ⇒ J} (inl A) = ne A
reify {K ⇒ J} (inr F) = � (reify (F S (reflect (‘ Z))))

We define renaming for semantic values. In the semantic function case, the new renam-
ing is composed with the existing one.

ren|= : ∀ {σ Φ Ψ } → Ren� Φ Ψ → Φ |= σ → Ψ |= σ
ren|= {*} ρ A = renNf� ρ A
ren|= {K ⇒ J} ρ (inl A) = inl (renNe� ρ A)
ren|= {K ⇒ J} ρ (inr F) = inr (λ ρ’ → F (ρ’ ◦ ρ))
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Weakening for semantic values is a special case of renaming:

weaken|= : ∀ {σ Φ K} → Φ |= σ → (Φ ,� K) |= σ
weaken|= = ren|= S

Our evaluator will take an environment giving semantic values to syntactic variables,
which we represent as a function from variables to values:

Env : Ctx� → Ctx� → Set
Env Ψ Φ = ∀{J} → Ψ �� J → Φ |= J

Let η, η’ range over environments.
It is convenient to extend an environment with an additional semantic type:

extende : ∀{Ψ Φ} → (η : Env Φ Ψ ) → ∀{K}(A : Ψ |= K) → Env (Φ ,� K) Ψ
extende η V Z = V
extende η V (S α) = η α

Lifting of environments to push them under binders can be defined as follows. One
could also define it analogously to the lifting of renamings and substitutions defined in
Sect. 2.

lifte : ∀ {Φ Ψ } → Env Φ Ψ → ∀ {K} → Env (Φ ,� K) (Ψ ,� K)
lifte η = extende (weaken|= ◦ η) (reflect (‘ Z))

We define a semantic version of application called ·V which applies semantic functions
to semantic arguments. As semantic values at function kind can either be neutral terms
or genuine semantic functions we need to pattern match on them to see how to apply
them. Notice that the identity renaming id is used in the case of a semantic function.
This is because, as we can read of from the type of ·V , the function and the argument
are in the same context.

·V : ∀{Φ K J} → Φ |= (K ⇒ J) → Φ |= K → Φ |= J
inl A ·V V = reflect (A · reify V)
inr F ·V V = F id V

Evaluation is defined by recursion on types:

eval : ∀{Φ Ψ K} → Ψ 	� K → Env Ψ Φ → Φ |= K
eval (‘ α) η = η α
eval (� B) η = inr λ ρ v → eval B (extende (ren|= ρ ◦ η) v)
eval (A · B) η = eval A η ·V eval B η
eval (A ⇒ B) η = reify (eval A η) ⇒ reify (eval B η)
eval (Π B) η = Π (reify (eval B (lifte η)))
eval (μ B) η = μ (reify (eval B (lifte η)))
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We can define the identity environment as a function that embeds variables into neutral
terms with ‘ and then reflects them into values:

idEnv : ∀ Φ → Env Φ Φ
idEnv Φ = reflect ◦ ‘

We combine reify with eval in the identity environment idEnv to yield a normalisation
function that takes types in a given context and kind and returns normal forms in the
same context and kind:

nf : ∀{Φ K} → Φ 	� K → Φ 	Nf� K
nf A = reify (eval A (idEnv ))

In the next three sections we prove the three correctness properties about this normali-
sation algorithm: completeness; soundness; and stability.

3.3 Completeness of Type Normalisation

Completeness states that normalising two β-equal types yields the same normal form.
This is an important correctness property for normalisation: it ensures that normalisa-
tion picks out unique representatives for normal forms. In a similar way to how we
defined the semantic domain by recursion on kinds, we define a Kripke Logical Rela-
tion on kinds which is a sort of equality on values. At different kinds and for differ-
ent semantic values it means different things: at base type and for neutral functions it
means equality of normal forms; for semantic functions it means that in a new context
and given a suitable renaming into that context, we take related arguments to related
results. We also require an additional condition on semantic functions, which we call
uniformity, following Allais et al. [3]. However, our definition is, we believe, simpler as
uniformity is just a type synonym (rather than being mutually defined with the logical
relation) and we do not need to prove any auxiliary lemmas about it throughout the
completeness proof. Uniformity states that if we receive a renaming and related argu-
ments in the target context of the renaming, and then a further renaming, we can apply
the function at the same context as the arguments and then rename the result or rename
the arguments first and then apply the function in the later context.

It should not be possible that a semantic function can become equal to a neutral
term so we rule out these cases by defining them to be ⊥. This would not be necessary
if we were doing βη-normalisation.

CR : ∀{Φ} K → Φ |= K → Φ |= K → Set
CR * A A’ = A ≡ A’
CR (K ⇒ J) (inl A) (inl A’) = A ≡ A’
CR (K ⇒ J) (inr F) (inl A’) = ⊥
CR (K ⇒ J) (inl A) (inr F’) = ⊥
CR (K ⇒ J) (inr F) (inr F’) = Unif F × Unif F’ ×
∀ {Ψ }(ρ : Ren� Ψ ){V V’ : Ψ |= K} → CR K V V’ → CR J (F ρ V) (F’ ρ V’)
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where
-- Uniformity

Unif : ∀{Φ K J} → (∀ {Ψ } → Ren� Φ Ψ → Ψ |= K → Ψ |= J) → Set
Unif {Φ}{K}{J} F = ∀{Ψ Ψ ’}(ρ : Ren� Φ Ψ )(ρ’ : Ren� Ψ Ψ ’)(V V’ : Ψ |= K)
→ CR K V V’ → CR J (ren|= ρ’ (F ρ V)) (F (ρ’ ◦ ρ) (ren|= ρ’ V’))

The relation CR is not an equivalence relation, it is only a partial equivalence relation
(PER) as reflexivity does not hold. However, as is always the case for PERs there is a
limited version of reflexivity for elements that are related to some other element.

symCR : ∀{Φ K}{V V’ : Φ |= K} → CR K V V’ → CR K V’ V
transCR : ∀{Φ K}{V V’ V” : Φ |= K} → CR K V V’ → CR K V’ V” → CR K V V”
reflCR : ∀{Φ K}{V V’ : Φ |= K} → CR K V V’ → CR K V V

We think of CR as equality of semantic values. Renaming of semantic values ren|=
(defined in the Sect. 3.2) is a functorial action and we can prove the functor laws. The
laws hold up to CR not up to propositional equality ≡:
ren|=-id : ∀{K Φ}{V V’ : Φ |= K} → CR K V V’ → CR K (ren|= id V) V’
ren|=-comp : ∀{K Φ Ψ Θ}(ρ : Ren� Φ Ψ )(ρ’ : Ren� Ψ Θ){V V’ : Φ |= K}
→ CR K V V’ → CR K (ren|= (ρ’ ◦ ρ) V) (ren|= ρ’ (ren|= ρ V’))

The completeness proof follows a similar structure as the normalisation algorithm. We
define reflectCR and reifyCR analogously to the reflect and reify of the algorithm.

reflectCR : ∀{Φ K}{A A’ : Φ 	Ne� K} → A ≡ A’ → CR K (reflect A) (reflect A’)
reifyCR : ∀{Φ K}{V V’ : Φ |= K} → CR K V V’→ reify V ≡ reify V’

We define a pointwise partial equivalence for environments analogously to the definition
of environments themselves:

EnvCR : ∀ {Φ Ψ } → (η η’ : Env Φ Ψ ) → Set
EnvCR η η’ = ∀{K}(α : �� K) → CR K (η α) (η’ α)

Before defining the fundamental theorem of logical relations which is analogous to
eval we define an identity extension lemma which is used to bootstrap the fundamental
theorem. It states that if we evaluate a single term in related environments we get related
results. Semantic renaming commutes with eval, and we prove this simultaneously with
identity extension:

idext : ∀{Φ Ψ K}{η η’ : Env Φ Ψ } → EnvCR η η’ → (A : Φ 	� K)
→ CR K (eval A η) (eval A η’)

ren|=-eval : ∀{Φ Ψ Θ K}(A : Ψ 	� K){η η’ : Env Ψ Φ}(p : EnvCR η η’)
→ (ρ : Ren� Φ Θ ) → CR K (ren|= ρ (eval A η)) (eval A (ren|= ρ ◦ η’))
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We have proved that semantic renaming commutes with evaluation. We also require
that syntactic renaming commutes with evaluation: that we can either rename before
evaluation or evaluate in a renamed environment:

ren-eval : ∀{Φ Ψ Θ K}(A : Θ 	� K){η η’ : Env Ψ Φ}(p : EnvCR η η’)(ρ : Ren� Θ Ψ )
→ CR K (eval (ren� ρ A) η) (eval A (η’ ◦ ρ))

As in our previous renaming lemma we require that we can either substitute and then
evaluate or, equivalently, evaluate the underlying term in an environment constructed
by evaluating everything in the substitution. This is the usual substitution lemma from
denotational semantics and also one of the laws of an algebra for a relative monad (the
other one holds definitionally):

subst-eval : ∀{Φ Ψ Θ K}(A : Θ 	� K){η η’ : Env Ψ Φ}
→ (p : EnvCR η η’)(σ : Sub� Θ Ψ )
→ CR K (eval (sub� σ A) η) (eval A (λ α → eval (σ α) η’))

We can now prove the fundamental theorem of logical relations for CR. It is defined by
recursion on the β-equality proof:

fund : ∀{Φ Ψ K}{η η’ : Env Φ Ψ }{A A’ : Φ 	� K}
→ EnvCR η η’ → A ≡β A’ → CR K (eval A η) (eval A’ η’)

As for the ordinary identity environment, the proof that the identity environment is
related to itself relies on reflection:

idCR : ∀{Φ} → EnvCR (idEnv Φ) (idEnv Φ)
idCR x = reflectCR refl

Given all these components we can prove the completeness result by running the
fundamental theorem in the identity environment and then applying reification. Thus,
our normalisation algorithm takes β-equal types to identical normal forms.

completeness : ∀ {K Φ} {A B : Φ 	� K} → A ≡β B → nf A ≡ nf B
completeness p = reifyCR (fund idCR p)

Complications due to omitting the η-rule and the requirement to avoid extensionality
were the main challenges in this section.

3.4 Soundness of Type Normalisation

The soundness property states that terms are β-equal to their normal forms which means
that normalisation has preserved the meaning. i.e. that the unique representatives chosen
by normalisation are actually in the equivalence class.
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We proceed in a similar fashion to the completeness proof by defining a logical
relation, reify/reflect, fundamental theorem, identity environment, and then plugging it
all together to get the required result.

To state the soundness property which relates syntactic types to normal forms we
need to convert normal forms back into syntactic types:

embNf : ∀{Γ K} → Γ 	Nf� K → Γ 	� K
embNe : ∀{Γ K} → Γ 	Ne� K→ Γ 	� K

The soundness property is a Kripke Logical relation as before, defined as a Set-valued
function by recursion on kinds. But this time it relates syntactic types and semantic
values. In the first two cases the semantic values are normal or neutral forms and we
can state the property we require easily. In the last case where we have a semantic
function, we would like to state that sound functions take sound arguments to sound
results (modulo the usual Kripke extension). Indeed, when doing this proof for a version
of the system with βη-equality this was what we needed. Here, we have only β-equality
for types and we were unable to get the proof to go through with the same definition. To
solve this problem we added an additional requirement to the semantic function case:
we require that our syntactic type of function kind A is β-equal to a λ-expression. Note
this holds trivially if we have the η-rule.

SR : ∀{Φ} K → Φ 	� K → Φ |= K → Set
SR * A V = A ≡β embNf V
SR (K ⇒ J) A (inl A’) = A ≡β embNe A’
SR (K ⇒ J) A (inr F) = Σ ( ,� K 	� J) λ A’ → (A ≡β � A’) ×
∀{Ψ }(ρ : Ren� Ψ ){B V}
→ SR K B V → SR J (ren� ρ (� A’) · B) (ren|= ρ (inr F) ·V V)

As before we have a notion of reify and reflect for soundness. Reflect takes soundness
results about neutral terms to soundness results about semantic values and reify takes
soundness results about semantic values to soundness results about normal forms:

reflectSR : ∀{K Φ}{A : Φ 	� K}{A’ : Φ 	Ne� K}
→ A ≡β embNe A’ → SR K A (reflect A’)

reifySR : ∀{K Φ}{A : Φ 	� K}{V : Φ |= K}
→ SR K A V → A ≡β embNf (reify V)

We need a notion of environment for soundness, which will be used in the fundamental
theorem. Here it is a lifting of the relation SR which relates syntactic types to semantic
values to a relation which relates type substitutions to type environments:

SREnv : ∀{Φ Ψ } → Sub� Φ Ψ → Env Φ Ψ → Set
SREnv {Φ} σ η = ∀{K}(α : Φ �� K) → SR K (σ α) (η α)

The fundamental Theorem of Logical Relations for SR states that, for any type, if we
have a related substitution and environment then the action of the substitution and envi-
ronment on the type will also be related.
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evalSR : ∀{Φ Ψ K}(A : Φ 	� K){σ : Sub� Φ Ψ }{η : Env Φ Ψ }
→ SREnv σ η → SR K (sub� σ A) (eval A η)

The identity substitution is related to the identity environment:

idSR : ∀{Φ} → SREnv ‘ (idEnv Φ)
idSR = reflectSR ◦ refl≡β ◦ ‘

Soundness result: all types are β-equal to their normal forms.

soundness : ∀ {Φ J} → (A : Φ 	� J) → A ≡β embNf (nf A)
soundness A = subst ( ≡β embNf (nf A)) (sub�-id A) (reifySR (evalSR A idSR))

Complications in the definition of SR due to omitting the η-rule were the biggest
challenge in this section.

3.5 Stability of Type Normalisation

The normalisation algorithm is stable: renormalising a normal form will not change it.
This property is often omitted from treatments of normalisation. For us it is crucial

as in the substitution algorithm we define in the next section and in term level definitions
we renormalise types.

Stability for normal forms is defined mutually with an auxiliary property for neutral
types:

stability : ∀{K Φ}(A : Φ 	Nf� K) → nf (embNf A) ≡ A
stabilityNe : ∀{K Φ}(A : Φ 	Ne� K) → eval (embNe A) (idEnv Φ) ≡ reflect A

We omit the proofs which are a simple simultaneous induction on normal forms and
neutral terms. The most challenging part for us was getting the right statement of the
stability property for neutral terms.

Stability is quite a strong property. It guarantees both that embNf ◦ nf is idempotent
and that nf is surjective:

idempotent : ∀{Φ K}(A : Φ 	� K)
→ (embNf ◦ nf ◦ embNf ◦ nf) A ≡ (embNf ◦ nf) A

idempotent A = cong embNf (stability (nf A))

surjective : ∀{Φ K}(A : Φ 	Nf� K) → Σ (Φ 	� K) λ B → nf B ≡ A
surjective A = embNf A ,, stability A

Note we use double comma ,, for Agda pairs as we used single comma for contexts.
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3.6 Normality Preserving Type Substitution

In the previous subsections we defined a normaliser. In this subsection we will combine
the normaliser with our syntactic substitution operation on types to yield a normality
preserving substitution. This will be used in later sections to define intrinsically typed
terms with normal types. We proceed by working with similar interface as we did for
ordinary substitutions.

Normality preserving substitutions are functions from type variables to normal
forms:

SubNf� : Ctx� → Ctx� → Set
SubNf� Φ Ψ = ∀ {J} → Φ �� J → Ψ 	Nf� J

We can lift a substitution over a new bound variable as before. This is needed for going
under binders.

liftsNf� : ∀ {Φ Ψ }→ SubNf� Φ Ψ → ∀{K} → SubNf� (Φ ,� K) (Ψ ,� K)
liftsNf� σ Z = ne (‘ Z)
liftsNf� σ (S α) = weakenNf� (σ α)

We can extend a substitution by an additional normal type analogously to ‘cons’ for
lists:

extendNf� : ∀{Φ Ψ } → SubNf� Φ Ψ → ∀{J}(A : Ψ 	Nf� J) → SubNf� (Φ ,� J) Ψ
extendNf� σ A Z = A
extendNf� σ A (S α) = σ α

We define the action of substitutions on normal types as follows: first we embed the
normal type to be acted on into a syntactic type, and compose the normalising substi-
tution with embedding into syntactic types to turn it into an ordinary substitution, and
then use our syntactic substitution operation from Sect. 2.6. This gives us a syntactic
type which we normalise using the normalisation algorithm from Sect. 3.2. This is not
efficient. It has to traverse the normal type to convert it back to a syntactic type and it
may run the normalisation algorithm on things that contain no redexes. However as this
is a formalisation primarily, efficiency is not a priority, correctness is.

subNf� : ∀{Φ Ψ } → SubNf� Φ Ψ → ∀ {J} → Φ 	Nf� J → Ψ 	Nf� J
subNf� ρ n = nf (sub� (embNf ◦ ρ) (embNf n))

We verify the same correctness properties of normalising substitution as we did for ordi-
nary substitution: namely the relative monad laws. Note that the second law subNf�-�
doesn’t hold definitionally this time.

subNf�-id : ∀{Φ J}(A : Φ 	Nf� J) → subNf� (ne ◦ ‘) A ≡ A
subNf�-var : ∀{Φ Ψ J}(σ : SubNf� Φ Ψ )(α : Φ �� J)
→ subNf� σ (ne (‘ α)) ≡ σ α
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subNf�-comp : ∀{Φ Ψ Θ}(σ : SubNf� Φ Ψ )(σ’ : SubNf� Ψ Θ){J}(A : Φ 	Nf� J)
→ subNf� (subNf� σ’ ◦ σ) A ≡ subNf� σ’ (subNf� σ A)

These properties and the definitions that follow rely on properties of normalisation and
often corresponding properties of ordinary substitution. E.g. the first law subNf�-id fol-
lows from stability and sub�-id, the second law follows directly from stability (the cor-
responding property holds definitionally in the ordinary case), and the third law follows
from soundness, various components of completeness and sub�-comp.

Finally, we define the special case for single type variable substitution that will be
needed in the definition of terms in the next section:

[ ]Nf� : ∀{Φ J K} → Φ ,� K 	Nf� J → Φ 	Nf� K → Φ 	Nf� J
A [ B ]Nf� = subNf� (extendNf� (ne ◦ ‘) B) A

The development in this section was straightforward. The most significant hurdle was
that we require a complete normalisation proof and correctness properties of ordinary
substitution to prove correctness properties of substitution on normal forms. The substi-
tution algorithm in this section is essentially a rather indirect implementation of hered-
itary substitution.

Before moving on we list special case auxiliary lemmas that we will need when
defining renaming and substitution for terms with normal types in Sect. 5.

3.7 Terms with Normal Types

We are now ready to define the algorithmic syntax where terms have normal types and
the problematic conversion rule is not needed.

The definition is largely identical except wherever a syntactic type appeared before,
we have a normal type, wherever an operation on syntactic types appeared before we
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have the corresponding operation on normal types. Note that the kind level remains the
same, so we reuse Ctx� for example.

Term Contexts. Term level contexts are indexed by their type level contexts.

data CtxNf : Ctx� → Set where
∅ : CtxNf ∅
,� : ∀{Φ} → CtxNf Φ→ ∀ J → CtxNf (Φ ,� J)
, : ∀{Φ} → CtxNf Φ→ Φ 	Nf� *→ CtxNf Φ

Let Γ, Δ range over contexts.

Term Variables. Note that in the T case, we are required to weaken (normal) types.

data �Nf : ∀ {Φ} → CtxNf Φ → Φ 	Nf� * → Set where
Z : ∀{Φ Γ}{A : Φ 	Nf� *} → Γ , A �Nf A
S : ∀{Φ Γ}{A : Φ 	Nf� *}{B : Φ 	Nf� *} → Γ �Nf A→ Γ , B �Nf A
T : ∀{Φ Γ}{A : Φ 	Nf� *}{K} → Γ �Nf A→ Γ ,� K �Nf weakenNf� A

Let x, y range over variables.

Terms. Note the absence of the conversion rule. The types of terms are unique so it is
not possible to coerce a term into a different type.

data 	Nf {Φ} Γ : Φ 	Nf� * → Set where
‘ : ∀{A} → Γ �Nf A → Γ 	Nf A
� : ∀{A B} → Γ , A 	Nf B → Γ 	Nf A ⇒ B
· : ∀{A B} → Γ 	Nf A ⇒ B→ Γ 	Nf A → Γ 	Nf B
Λ : ∀{K B} → Γ ,� K 	Nf B → Γ 	Nf Π B
·� : ∀{K B} → Γ 	Nf Π B → (A : Φ 	Nf� K)→ Γ 	Nf B [ A ]Nf�

wrap : ∀ A → Γ 	Nf A [ μ A ]Nf� → Γ 	Nf μ A
unwrap : ∀{A} → Γ 	Nf μ A → Γ 	Nf A [ μ A ]Nf�

Let L, M range over terms.
We now have an intrinsically typed definition of terms with types that are guaranteed

to be normal. By side-stepping the conversion problem we can define an operational
semantics for this syntax which we will do in Sect. 5. In the next section we will reflect
on the correspondence between this syntax and the syntax with conversion presented in
Sect. 2.

We define two special cases of subst which allow us to substitute the types of vari-
ables or terms by propositionally equal types. While it is the case that types are now
represented uniquely we still want or need to prove that two types are equal, especially
in the presence of (Agda) variables, cf., while the natural number 7 has a unique repre-
sentation in Agda we still might want to prove that for any natural numbers m and n, m
+ n ≡ n + m.
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We see these operations in use in Sect. 5.

4 Correspondence Between Declarative and Algorithmic
Type Systems

We now have two versions of the syntax/typing rules. Should we just throw away the old
one and use the new one? No. The first version is the standard textbook version and the
second version is an algorithmic version suitable for implementation. To reconcile the
two we prove the second version is sound and complete with respect to the first. This
is analogous to proving that a typechecker is sound and complete with respect to the
typing rules. Additionally, we prove that before and after normalising the type, terms
erase to the same untyped terms. The constructions in this section became significantly
simpler and easier after switching from inductive-recursive term contexts to indexed
term contexts.

There is an interesting parallel here with the metatheory of Twelf2. In Twelf, hered-
itary substitution are central to the metatheory and the semantics is defined on a version
of the syntax where both types and terms are canonical (i.e. they are normalised). In our
setting only the types are normalised (viz. canonical). But, the situation is similar: there
are two versions of the syntax, one with a semantics (the canonical system), and one
without (the ordinary system). Martens and Crary [28] make the case that the ordinary
version is the programmer’s interface, or the external language in compiler terminol-
ogy, and the canonical version is the internal language in compiler terminology. In their
setting the payoff is also the same: by moving from a language with type equivalence to
one where types are uniquely represented, the semantics and metatheory become much
simpler.

There is also a parallel with how type checking algorithms are described in the
literature: they are often presented an alternative set of typing rules and then they are
proved sound and complete with respect to the original typing rules. We will draw on
this analogy in the rest of this section as our syntaxes are also type systems.

4.1 Soundness of Typing

From a typing point of view, soundness states that anything typeable in the new type
system is also typeable in the old one. From our syntactic point of view this corresponds
to taking an algorithmic term and embedding it back into a declarative term.

We have already defined an operation to embed normal types into syntactic types.
But, we need an additional operation here: term contexts contain types so we must
embed term contexts with normal type into term contexts with syntactic types.

2 We thank an anonymous reviewer for bringing this to our attention.
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embCtx : ∀{Φ} → CtxNf Φ → Ctx Φ
embCtx ∅ = ∅
embCtx (Γ ,� K) = embCtx Γ ,� K
embCtx (Γ , A) = embCtx Γ , embNf A

Embedding for terms takes a term with a normal type and produces a term with a syn-
tactic type.

embTy : ∀{Φ Γ}{A : Φ 	Nf� *} → Γ 	Nf A → embCtx Γ 	 embNf A

Soundness of typing is a direct corollary of embTy:

soundnessT : ∀{Φ Γ}{A : Φ 	Nf� *} → Γ 	Nf A → embCtx Γ 	 embNf A
soundnessT = embTy

Soundness gives us one direction of the correspondence between systems. The other
direction is given by completeness.

4.2 Completeness of Typing

Completeness of typing states that anything typeable by the original declarative system
is typeable by the new system, i.e. we do not lose any well typed programs by moving
to the new system. From our syntactic point of view, it states that we can take any
declarative term of a given type and normalise its type to produce an algorithmic term
with a type that is β-equal to the type we started with.

We have already defined normalisation for types. Again, we must provide an oper-
ation that normalises a context:

nfCtx : ∀{Φ} → Ctx Φ → CtxNf Φ
nfCtx ∅ = ∅
nfCtx (Γ ,� K) = nfCtx Γ ,� K
nfCtx (Γ , A) = nfCtx Γ , nf A

We observe at this point (just before we use it) that conversion is derivable for the
algorithmic syntax. It computes:

conv	Nf : ∀ {Φ Γ}{A A’ : Φ 	Nf� *} → A ≡ A’ → Γ 	Nf A → Γ 	Nf A’
conv	Nf refl L = L

The operation that normalises the types of terms takes a declarative term and produces
an algorithmic term. We omit the majority of the definition, but include the case for a
conversion. In this case we have a term t of type Γ 	 A and a proof p that A ≡β B. We
require a term of type Γ 	Nf nf B. By inductive hypothesis/recursive call AgdaFunction-
nfType t : Γ 	Nf nf A. But, via completeness of normalisation we know that if A ≡β B
then nf B ≡ nf A, so we invoke the conversion function conv	Nf with the completeness
proof and the recursive call as arguments:
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The operation nfType is not quite the same as completeness. Additionally we need
that the original type is β-equal to the new type. This follows from soundness of
normalisation.

completenessT : ∀{Φ Γ}{A : Φ 	� *} → Γ 	 A
→ nfCtx Γ 	Nf nf A × (A ≡β embNf (nf A))

completenessT {A = A} t = nfType t ,, soundness A

4.3 Erasure

We have two version of terms, and we can convert from one to the other. But, how do
we know that after conversion, we still have the same term? One answer is to show that
the term before conversion and the term after conversion both erase to the same untyped
term. First, we define untyped (but intrinsically scoped) λ-terms:

data 	 : N → Set where
‘ : ∀{n} → Fin n → n 	
� : ∀{n} → suc n 	 → n 	
· : ∀{n} → n 	 → n 	 → n 	

Following the pattern of the soundness and completeness proofs we deal in turn with
contexts, variables, and then terms. In this case erasing a context corresponds to count-
ing the number of term variables in the context:

len : ∀{Φ} → Ctx Φ → N

len ∅ = 0
len (Γ ,� K) = len Γ
len (Γ , A) = suc (len Γ)

Erasure for variables converts them to elements of Fin:

eraseVar : ∀{Φ Γ}{A : Φ 	� *} → Γ � A → Fin (len Γ)
eraseVar Z = zero
eraseVar (S α) = suc (eraseVar α)
eraseVar (T α) = eraseVar α

Erasure for terms is straightforward:

erase : ∀{Φ Γ}{A : Φ 	� *} → Γ 	 A → len Γ 	
erase (‘ α) = ‘ (eraseVar α)
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erase (� L) = � (erase L)
erase (L · M) = erase L · erase M
erase (Λ L) = erase L
erase (L ·� A) = erase L
erase (wrap A L) = erase L
erase (unwrap L) = erase L
erase (conv p L) = erase L

Note that we drop wrap and unwrap when erasing as these special type casts merely
indicate at which isomorphic type we want the term to considered. Without types wrap
and unwrap serve no purpose.

Erasure from algorithmic terms proceeds in the same way as declarative terms. The
only difference is the that there is no case for conv:

lenNf : ∀{Φ} → CtxNf Φ → N

eraseVarNf : ∀{Φ Γ}{A : Φ 	Nf� *} → Γ �Nf A → Fin (lenNf Γ)
eraseNf : ∀{Φ Γ}{A : Φ 	Nf� *} → Γ 	Nf A → lenNf Γ 	

Having defined erasure for both term representations we proceed with the proof that
normalising types preserves meaning of terms. We deal with contexts first, then vari-
ables, and then terms. Normalising types in the context preserves the number of term
variables in the context:

sameLen : ∀ {Φ}(Γ : Ctx Φ) → lenNf (nfCtx Γ) ≡ len Γ

The main complication in the proofs about variables and terms below is that sameLen
appears in the types. It complicates each case as the subst prevents things from com-
puting when its proof argument is not refl. This can be worked around using Agda’s
with feature which allows us to abstract over additional arguments such as those which
are stuck. However in this case we would need to abstract over so many arguments that
the proof becomes unreadable. Instead we prove a simple lemma for each case which
achieves the same as using with. We show the simplest instance lemzero for the Z vari-
able which abstracts over proof of sameLen and replaces it with an arbitrary proof p
that we can pattern match on.
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This result indicates that when normalising the type of a term we preserve the meaning
of the term where the meaning of a term is taken to be the underlying untyped term.

A similar result holds for embedding terms with normal types back into terms with
ordinary type but we omit it here.

5 Operational Semantics

We will define the operational semantics on the algorithmic syntax. Indeed, this was
the motivation for introducing the algorithmic syntax: to provide a straightforward way
to define the semantics without having to deal with type equality coercions. The opera-
tional semantics is defined as a call-by-value small-step reduction relation. The relation
is typed so it is not necessary to prove preservation as it holds intrinsically. We prove
progress for this relation which shows that programs cannot get stuck. As the reduc-
tion relation contains β-rules we need to implement substitution for algorithmic terms
before proceeding. As we did for types, we define renaming first and then use it to
define substitution.

5.1 Renaming for Terms

We index term level renamings/substitutions by their type level counter parts.
Renamings are functions from term variables to terms. The type of the output vari-

able is the type of the input variable renamed by the type level renaming.

RenNf : ∀ {Φ Ψ } Γ Δ → Ren� Φ Ψ → Set
RenNf Γ Δ ρ = {A : 	Nf� *} → Γ �Nf A → Δ �Nf renNf� ρ A

We can lift a renaming both over a new term variable and over a new type variable.
These operations are needed to push renamings under binders (λ and Λ respectively).

liftNf : ∀{Φ Ψ Γ Δ}{ρ� : Ren� Φ Ψ } → RenNf Γ Δ ρ�

→ {B : Φ 	Nf� *} → RenNf (Γ , B) (Δ , renNf� ρ� B) ρ�

liftNf ρ Z = Z
liftNf ρ (S x) = S (ρ x)

�liftNf : ∀{Φ Ψ Γ Δ}{ρ� : Ren� Φ Ψ } → RenNf Γ Δ ρ�

→ (∀ {K} → RenNf (Γ ,� K) (Δ ,� K) (lift� ρ�))
�liftNf ρ (T x) = conv�Nf (trans (sym (renNf�-comp )) (renNf�-comp )) (T (ρ x))

Next we define the functorial action of renaming on terms. In the type instantiation,
wrap, unwrap cases we need a proof as this is where substitutions appear in types.

renNf : ∀ {Φ Ψ Γ Δ}{ρ� : Ren� Φ Ψ } → RenNf Γ Δ ρ�

→ ({A : Φ 	Nf� *} → Γ 	Nf A → Δ 	Nf renNf� ρ� A )
renNf ρ (‘ x) = ‘ (ρ x)
renNf ρ (� N) = � (renNf (liftNf ρ) N)
renNf ρ (L · M) = renNf ρ L · renNf ρ M
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renNf ρ (Λ N) = Λ (renNf (�liftNf ρ) N)
renNf ρ ( ·� {B = B} t A) =

conv	Nf (sym (ren[]Nf� B A)) (renNf ρ t ·� renNf� A)
renNf ρ (wrap A L) =

wrap (conv	Nf (ren[]Nf� A (μ A)) (renNf ρ L))
renNf ρ (unwrap {A = A} L) =

conv	Nf (sym (ren[]Nf� A (μ A))) (unwrap (renNf ρ L))

Weakening by a type is a special case. Another proof is needed here.

weakenNf : ∀ {Φ Γ}{A : Φ 	Nf� *}{B : Φ 	Nf� *} → Γ 	Nf A → Γ , B 	Nf A
weakenNf {A = A} x =

conv	Nf (renNf�-id A) (renNf (conv�Nf (sym (renNf�-id )) ◦ S) x)

We can also weaken by a kind:

�weakenNf : ∀ {Φ Γ}{A : Φ 	Nf� *}{K} → Γ 	Nf A → Γ ,� K 	Nf weakenNf� A
�weakenNf x = renNf T x

5.2 Substitution

Substitutions are defined as functions from type variables to terms. Like renamings they
are indexed by their type level counterpart, which is used in the return type.

SubNf : ∀ {Φ Ψ } Γ Δ → SubNf� Φ Ψ → Set
SubNf Γ Δ ρ = {A : 	Nf� *} → Γ �Nf A → Δ 	Nf subNf� ρ A

We define lifting of a substitution over a type and a kind so that we can push substitu-
tions under binders. Agda is not able to infer the type level normalising substitution in
many cases so we include it explicitly.

liftsNf : ∀{Φ Ψ Γ Δ}(σ� : SubNf� Φ Ψ ) → SubNf Γ Δ σ�

→ {B : 	Nf� *} → SubNf (Γ , B) (Δ , subNf� σ� B) σ�

liftsNf σ Z = ‘ Z
liftsNf σ (S x) = weakenNf (σ x)

�liftsNf : ∀{Φ Ψ Γ Δ}(σ� : SubNf� Φ Ψ ) → SubNf Γ Δ σ�

→ ∀ {K} → SubNf (Γ ,� K) (Δ ,� K) (liftsNf� σ�)
�liftsNf σ� σ (T {A = A} x) =

conv	Nf (weakenNf�-subNf� σ� A) (�weakenNf (σ x))

Having defined lifting we are now ready to define substitution on terms:

subNf : ∀{Φ Ψ Γ Δ}(σ� : SubNf� Φ Ψ ) → SubNf Γ Δ σ�

→ ({A : Φ 	Nf� *} → Γ 	Nf A → Δ 	Nf subNf� σ� A)
subNf σ� σ (‘ k) = σ k
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subNf σ� σ (� N) = � (subNf σ� (liftsNf σ� σ) N)
subNf σ� σ (L · M) = subNf σ� σ L · subNf σ� σ M
subNf σ� σ (Λ {B = B} N) =
Λ (conv	Nf (subNf�-liftNf� σ� B) (subNf (liftsNf� σ�) (�liftsNf σ� σ) N))

subNf σ� σ ( ·� {B = B} L M) =
conv	Nf (sym (subNf�-[]Nf� σ� M B)) (subNf σ� σ L ·� subNf� σ� M)

subNf σ� σ (wrap A L) =
wrap (conv	Nf (subNf�-[]Nf� σ� (μ A) A) (subNf σ� σ L))

subNf σ� σ (unwrap {A = A} L) =
conv	Nf (sym (subNf�-[]Nf� σ� (μ A) A)) (unwrap (subNf σ� σ L))

We define special cases for single type and term variable substitution into a term, but
omit their long winded and not very informative definitions.

[ ]Nf : ∀{Φ Γ}{A B : Φ 	Nf� *} → Γ , B 	Nf A → Γ 	Nf B → Γ 	Nf A
�[ ]Nf : ∀{Φ Γ K}{B : Φ ,� K 	Nf� *}
→ Γ ,� K 	Nf B → (A : Φ 	Nf� K) → Γ 	Nf B [ A ]Nf�

We now have all the equipment we need to specify small-step reduction.

5.3 Reduction

Before defining the reduction relation we define a value predicate on terms that captures
which terms cannot be reduced any further. We do not wish to perform unnecessary
computation so we do not compute under the binder in the � case. However, we do
want to have the property that when you erase a value it remains a value. A typed value,
after erasure, should not require any further reduction to become an untyped value. This
gives us a close correspondence between the typed and untyped operational semantics.
So, it is essential in the Λ and wrap cases that the bodies are values as both of these
constructors are removed by erasure.

data Value {Φ}{Γ} : {A : Φ 	Nf� *} → Γ 	Nf A → Set where
V-� : ∀{A B}(L : Γ , A 	Nf B) → Value (� L)
V-Λ : ∀{K B}{L : Γ ,� K 	Nf B} → Value L→ Value (Λ L)
V-wrap : ∀{A}{L : Γ 	Nf A [ μ A ]Nf�} → Value L→ Value (wrap A L)

We give the dynamics of the term language as a small-step reduction relation. The
relation is typed and terms on the left and right hand side have the same type so it is
impossible to violate preservation. We have two congruence (xi) rules for application
and only one for type application, types are unique so the type argument cannot reduce.
Indeed, no reduction of types is either possible or needed. There are three computation
(beta) rules, one for application, one for type application and one for recursive types. We
allow reduction in almost any term argument in the xi rules except under a �. Allowing
reduction under Λ and wrap is required to ensure that their bodies become values. The
value condition on the function term in rule ξ-· 2 ensures that, in an application, we
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reduce the function before the argument. The value condition on the argument in rule
β-� ensures that the our semantics is call-by-value.

data —→ {Φ}{Γ} : {A : Φ 	Nf� *} → (Γ 	Nf A) → (Γ 	Nf A) → Set where
ξ-·1 : ∀{A B}{L L’ : Γ 	Nf A ⇒ B}{M : Γ 	Nf A}
→ L —→ L’ → L · M —→ L’ · M
ξ-· 2 : ∀{A B}{V : Γ 	Nf A ⇒ B}{M M’ : Γ 	Nf A}
→ Value V → M —→ M’ → V · M —→ V · M’
ξ-Λ : ∀{K B}{L L’ : Γ ,� K 	Nf B}
→ L —→ L’ → Λ L —→ Λ L’
ξ-·� : ∀{K B}{L L’ : Γ 	Nf Π B}{A : Φ 	Nf� K}
→ L —→ L’ → L ·� A —→ L’ ·� A
ξ-unwrap : ∀{A}{L L’ : Γ 	Nf μ A}
→ L —→ L’ → unwrap L —→ unwrap L’
ξ-wrap : {A : Φ ,� * 	Nf� *}{L L’ : Γ 	Nf A [ μ A ]Nf�}
→ L —→ L’ → wrap A L —→ wrap A L’
β-� : ∀{A B}{L : Γ , A 	Nf B}{M : Γ 	Nf A}
→ Value M → � L · M —→ L [ M ]Nf
β-Λ : ∀{K B}{L : Γ ,� K 	Nf B}{A : Φ 	Nf� K}
→ Λ L ·� A —→ L �[ A ]Nf
β-wrap : ∀{A}{L : Γ 	Nf A [ μ A ]Nf�}
→ unwrap (wrap A L) —→ L

5.4 Progress and Preservation

The reduction relation is typed. The definition guarantees that the terms before and
after reduction will have the same type. Therefore it is not necessary to prove type
preservation.

Progress captures the property that reduction of terms should not get stuck, either
a term is already a value or it can make a reduction step. Progress requires proof. We
show the proof in complete detail. In an earlier version of this work when we did not
reduce under Λ and we proved progress directly for closed terms, i.e. for terms in the
empty context. Reducing under the Λ binder means that we need to reduce in non-empty
contexts so our previous simple approach no longer works.

There are several approaches to solving this including: (1) modifying term syntax to
ensure that the bodies of Λ-expressions are already in fully reduced form (the so-called
value restriction). This means that we need only make progress in the empty context
as no further progress is necessary when we are in a non-empty context. This has the
downside of changing the language slightly but keeps progress simple; (2) defining
neutral terms (terms whose reduction is blocked by a variable), proving a version of
progress for open terms, observing that there are no neutral terms in the empty context
and deriving progress for closed terms as a corollary. This has the disadvantage of
having to introduce neutral terms only to rule them out and complicating the progress
proof; (3) observe that Λ only binds type variables and not term variables and only term
variables can block progress, prove progress for terms in contexts that contain no term
variables and derive closed progress as a simple corollary. We choose option 3 here as
the language remains the same and the progress proof is relatively unchanged, it just
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requires an extra condition on the context. The only cost is an additional predicate on
contexts and an additional lemma.

Before starting the progress proof we need to capture the property of a context not
containing any term variables. Our term contexts are indexed by type contexts, if we
wanted to rule out type variables we could talk about term contexts indexed by the
empty type context, but we cannot use the same trick for ruling out term variables.
So, we use a recursive predicate on contexts NoVar. The empty context satisfies it, a
context extended by (the kind of) a type variable does if the underlying context does,
and a context containing (the type of) a term variable does not.

NoVar : ∀{Φ} → CtxNf Φ → Set
NoVar ∅ = �
NoVar (Γ ,� J) = NoVar Γ
NoVar (Γ , A) = ⊥

We can prove easily that it is impossible to have term variable in a context containing
no term variables. There is only one case and the property follows by induction on
variables:

noVar : ∀{Φ Γ} → NoVar Γ → {A : Φ 	Nf� *}(x : Γ �Nf A) → ⊥
noVar p (T x) = noVar p x

We can now prove progress. The proof is the same as the one for closed terms, except
for the extra argument p : NoVar Γ.

progress : ∀{Φ}{Γ} → NoVar Γ → {A : Φ 	Nf� *}(L : Γ 	Nf A)
→ Value L � Σ (Γ 	Nf A) λ L’ → L —→ L’

The variable case is impossible.

progress p (‘ x) = ⊥-elim (noVar p x)

Any �-expression is a value as we do not reduce under the binder.

progress p (� L) = inl (V-� L)

In the application case we first examine the result of the recursive call on the function
term, if it is a value, it must be a �-expression, so we examine the recursive call on the
argument term. If this is a value then we perform β-reduction. Otherwise we make the
appropriate ξ-step.

progress p (L · M) with progress p L
progress p (L · M) — inl V with progress p M
progress p (� L · M) — inl (V-� L) — inl V = inr (L [ M ]Nf ,, β-� V)
progress p (L · M) — inl V — inr (M’ ,, q) = inr (L · M’ ,, ξ-· 2 V q)
progress p (L · M) — inr (L’ ,, q) = inr (L’ · M ,, ξ-·1 q)
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As we must reduce under Λ and wrap in both cases we make a recursive call on their
bodies and proceed accordingly. Notice that the argument p is unchanged in the recur-
sive call to the body of a Λ as NoVar (Γ ,� K) = NoVar Γ.

progress p (Λ L) with progress p L
... — inl V = inl (V-Λ V)
... — inr (L’ ,, q) = inr (Λ L’ ,, ξ-Λ q)
progress p (wrap A L) with progress p L
... — inl V = inl (V-wrap V)
... — inr (L’ ,, q) = inr (wrap A L’ ,, ξ-wrap q)

In the type application case we first examine the result of recursive call on the type
function argument. If it is a value it must be a Λ-expression and we perform β-reduction.
Otherwise we perform a ξ-step.

progress p (L ·� A) with progress p L
progress p (Λ L ·� A) — inl (V-Λ V) = inr (L �[ A ]Nf ,, β-Λ)
progress p (L ·� A) — inr (L’ ,, q) = inr (L’ ·� A ,, ξ-·� q)

In the unwrap case we examine the result of the recursive call on the body. If it is a value
it must be a wrap and we perform β-reduction or a ξ-step otherwise. That completes the
proof.

progress p (unwrap L) with progress p L
progress p (unwrap (wrap A L)) — inl (V-wrap V) = inr (L ,, β-wrap)
progress p (unwrap L) — inr (L’ ,, q) = inr (unwrap L’ ,, ξ-unwrap q)

Progress in the empty context progress∅ is a simple corollary. The empty context triv-
ially satisfies NoVar as NoVar ∅ = �:
progress∅ : ∀{A}(L : ∅ 	Nf A) → Value L � Σ (∅ 	Nf A) λ L’ → L —→ L’
progress∅ = progress tt

5.5 Erasure

We can extend our treatment of erasure from syntax to (operational) semantics. Indeed,
when defining values were careful to ensure this was possible.

To define the β-rule we need to be able to perform substitution on one variable only.
As for syntaxes in earlier sections we define parallel renaming and substitution first and
get substitution on one variable as a special case. We omit the details here which are
analogous to earlier sections.

[ ]U : ∀{n} → suc n 	 → n 	 → n 	

When erasing reduction steps below we will require two properties about pushing era-
sure through a normalising single variable substitution. These properties follow from
properties of parallel renaming and substitution:
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eraseNf-�[]Nf : ∀{Φ}{Γ : CtxNf Φ}{K B}(L : Γ ,� K 	Nf B)(A : Φ 	Nf� K)
→ eraseNf L ≡ eraseNf (L �[ A ]Nf)

eraseNf-[]Nf : ∀{Φ}{Γ : CtxNf Φ}{A B}(L : Γ , A 	Nf B)(M : Γ 	Nf A)
→ eraseNf L [ eraseNf M ]U ≡ eraseNf (L [ M ]Nf)

There is only one value in untyped lambda calculus: lambda.

data UValue {n} : n 	 → Set where
V-� : (t : suc n 	) → UValue (� t)

We define a call-by-value small-step reduction relation that is intrinsically scoped.

data U—→ {n} : n 	 → n 	 → Set where
ξ-·1 : {L L’ M : n 	} → L U—→ L’ → L · M U—→ L’ · M
ξ-· 2 : {L M M’ : n 	} → UValue L → M U—→ M’ → L · M U—→ L · M’
β-� : {L : suc n 	}{M : n 	} → UValue M → � L · M U—→ L [ M ]U

Erasing values is straightforward. The only tricky part is to ensure that in values the
subterms of the values for wrap and Λ are also values as discussed earlier. This ensures
that after when we erase a typed value we will always get an untyped value:

eraseVal : ∀{Φ A}{Γ : CtxNf Φ}{t : Γ 	Nf A} → Value t → UValue (eraseNf t)
eraseVal (V-� t) = V-� (eraseNf t)
eraseVal (V-Λ v) = eraseVal v
eraseVal (V-wrap v) = eraseVal v

Erasing a reduction step is more subtle as we may either get a typed reduction step (e.g.,
β-�) or the step may disappear (e.g., β-wrap). In the latter case the erasure of the terms
before and after reduction will be identical:

erase—→ : ∀{Φ A}{Γ : CtxNf Φ}{t t’ : Γ 	Nf A}
→ t —→ t’ → eraseNf t U—→ eraseNf t’ � eraseNf t ≡ eraseNf t’

In the congruence cases for application what we need to do depends on the result of
erasing the underlying reduction step. We make use of map for Sum types for this
purpose, the first argument explains what to do if the underlying step corresponds to a
untyped reduction step (we create an untyped congruence reducing step) and the second
argument explains what to do if the underlying step disappears (we create an equality
proof):

erase—→ (ξ-·1 {M = M} p) =
Sum.map ξ-·1 (cong ( · eraseNf M)) (erase—→ p)

erase—→ (ξ-· 2 {V = V} p q) =
Sum.map (ξ-· 2 (eraseVal p)) (cong (eraseNf V · )) (erase—→ q)
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In the following cases the outer reduction step is removed:

erase—→ (ξ-·� p) = erase—→ p
erase—→ (ξ-Λ p) = erase—→ p
erase—→ (ξ-unwrap p) = erase—→ p
erase—→ (ξ-wrap p) = erase—→ p

In the case of β-reduction for an ordinary application we always produce a correspond-
ing untyped β-reduction step:

erase—→ (β-� {L = L}{M = M} V) = inl (subst
(� (eraseNf L) · eraseNf M U—→ )
(eraseNf-[]Nf L M)
( U—→ .β-� {L = eraseNf L}{M = eraseNf M} (eraseVal V)))

In the other two β-reduction cases the step is always removed, e.g., unwrap (wrap A L)
—→ L becomes L ≡ L :

erase—→ (β-Λ {L = L}{A = A}) = inr (eraseNf-�[]Nf L A)
erase—→ β-wrap = inr refl

That concludes the proof: either a typed reduction step corresponds to an untyped one
or no step at all.

We can combine erasure of values and reduction steps to get a progress like result
for untyped terms via erasure. Via typed progress we either arrive immediately at an
untyped value, or a typed reduction step must exist and it will corr respond to an untyped
step, or the step disappears:

erase-progress∅ : ∀{A : ∅ 	Nf� *}(L : ∅ 	Nf A)
→ UValue (eraseNf L)
� Σ (∅ 	Nf A) λ L’ → (L —→ L’)
× (eraseNf L U—→ eraseNf L’ � eraseNf L ≡ eraseNf L’)

erase-progress∅ L =
Sum.map eraseVal (λ {(L’ ,, p) → L’ ,, p ,, (erase—→ p)}) (progress∅ L)

6 Execution

We can iterate progress an arbitrary number of times to run programs. First, we define
the reflexive transitive closure of reduction. We will use this to represent traces of
execution:

data —→* {Φ Γ} : {A : Φ 	Nf� *} → Γ 	Nf A → Γ 	Nf A → Set where
refl—→ : ∀{A}{M : Γ 	Nf A} → M —→* M
trans—→ : ∀{A}{M M’ M” : Γ 	Nf A}
→ M —→ M’ → M’ —→* M” → M —→* M”
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The run function takes a number of allowed steps and a term. It returns another term, a
proof that the original term reduces to the new term in zero or more steps and possibly
a proof that the new term is a value. If no value proof is returned this indicates that we
did not reach a value in the allowed number of steps.

If we are allowed zero more steps we return failure immediately. If we are allowed
more steps then we call progress to make one. If we get a value back we return straight
away with a value. If we have not yet reached a value we call run recursively having
spent a step. We then prepend our step to the sequence of steps returned by run and
return:

run : ∀ {A : ∅ 	Nf� *} → N → (M : ∅ 	Nf A)
→ Σ (∅ 	Nf A) λ M’ → (M —→* M’) × Maybe (Value M’)

run zero M = M ,, refl—→ ,, nothing
run (suc n) M with progress∅ M
run (suc n) M — inl V = M ,, refl—→ ,, just V
run (suc n) M — inr (M’ ,, p) with run n M’
... — M” ,, q ,, mV = M” ,, trans—→ p q ,, mV

6.1 Erasure

Given that the evaluator run produces a trace of reduction that (if it doesn’t run out
of allowed steps) leads to a value we can erase the trace and value to yield a trace of
untyped execution leading to an untyped value. Note that the untyped trace may be
shorter as some steps may disappear.

We define the reflexive transitive closure of untyped reduction analogously to the
typed version:

data U—→* {n} : n 	 → n 	 → Set where
reflU—→ : {M : n 	} → M U—→* M
transU—→ : {M M’ M” : n 	}
→ M U—→ M’ → M’ U—→* M” → M U—→* M”

We can erase a typed trace to yield an untyped trace. The reflexive case is straightfor-
wards. In the transitive case, we may have a step p that corresponds to an untyped or it
may disappear. We use case [ , ] instead of map this time. It is like map but instead of
producing another sum it (in the non-dependent case that we are in) produces a result of
an the same type in each case (in our case erase M —→ erase M” ). In the first case we
get an untyped step and rest of the trace is handled by the recursive call. In the second
case eq is an equation erase M ≡ erase M’ which we use to coerce the recursive call
of type erase M’ —→ erase M” into type erase M —→ erase M” and the length of
the trace is reduced:

erase—→* : ∀{Φ}{A : Φ 	Nf� *}{Γ : CtxNf Φ}{t t’ : Γ 	Nf A}
→ t —→* t’ → eraseNf t U—→* eraseNf t’

erase—→* refl—→ = reflU—→
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erase—→* (trans—→ {M” = M”} p q) =
[ (λ step → transU—→ step (erase—→* q))
, (λ eq → subst ( U—→* eraseNf M”) (sym eq) (erase—→* q))
] (erase—→ p)

Finally we can use run to get an untyped trace leading to a value, allowed steps
permitting.

erase-run : ∀ {A : ∅ 	Nf� *} → N → (M : ∅ 	Nf A)
→ Σ (0 	) λ M’ → (eraseNf M U—→* M’) × Maybe (UValue M’)

erase-run n M with run n M
... — M’ ,, p ,, mv = eraseNf M’ ,, erase—→* p ,, Maybe.map eraseVal mv

7 Examples

Using only the facilities of System F without the extensions of type functions and recur-
sive types we can define natural numbers as Church Numerals:

N
c : ∀{Φ} → Φ 	Nf� *

N
c = Π ((ne (‘ Z)) ⇒ (ne (‘ Z) ⇒ ne (‘ Z)) ⇒ (ne (‘ Z)))

Zeroc : ∀{Φ}{Γ : CtxNf Φ} → Γ 	Nf N
c

Zeroc = Λ (� (� (‘ (S Z))))

Succc : ∀{Φ}{Γ : CtxNf Φ} → Γ 	Nf N
c ⇒ N

c

Succc = � (Λ (� (� (‘ Z · ((‘ (S (S (T Z)))) ·� (ne (‘ Z)) · (‘ (S Z)) · (‘ Z))))))

Twoc : ∀{Φ}{Γ : CtxNf Φ} → Γ 	Nf N
c

Twoc = Succc · (Succc · Zeroc)

Fourc : ∀{Φ}{Γ : CtxNf Φ} → Γ 	Nf N
c

Fourc = Succc · (Succc · (Succc · (Succc · Zeroc)))

TwoPlusTwoc : ∀{Φ}{Γ : CtxNf Φ} → Γ 	Nf N
c

TwoPlusTwoc = Twoc ·� N
c · Twoc · Succc

Using the full facilities of System Fωμ we can define natural numbers as Scott Numerals
[1]. We the Z combinator instead of the Y combinator as it works for both lazy and strict
languages.

G : ∀{Φ} → Φ ,� * 	Nf� *
G = Π (ne (‘ Z) ⇒ (ne (‘ (S Z)) ⇒ ne (‘ Z)) ⇒ ne (‘ Z))

M : ∀{Φ} → Φ 	Nf� *
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M = μ G

N : ∀{Φ} → Φ 	Nf� *
N = G [ M ]Nf�

Zero : ∀{Φ}{Γ : CtxNf Φ} → Γ 	Nf N
Zero = Λ (� (� (‘ (S (Z )))))

Succ : ∀{Φ}{Γ : CtxNf Φ} → Γ 	Nf N ⇒ N
Succ = � (Λ (� (� (‘ Z · wrap (‘ (S (S (T Z))))))))

Two : ∀{Φ}{Γ : CtxNf Φ} → Γ 	Nf N
Two = Succ · (Succ · Zero)

Four : ∀{Φ}{Γ : CtxNf Φ} → Γ 	Nf N
Four = Succ · (Succ · (Succ · (Succ · Zero)))

case : ∀{Φ}{Γ : CtxNf Φ}
→ Γ 	Nf N ⇒ (Π (ne (‘ Z) ⇒ (N ⇒ ne (‘ Z)) ⇒ ne (‘ Z)))

case = � (Λ (� (� (
(‘ (S (S (T Z)))) ·� ne (‘ Z) · (‘ (S Z)) · (� (‘ (S Z) · unwrap (‘ Z)))))))

Z-comb : ∀{Φ}{Γ : CtxNf Φ} →
Γ 	Nf Π (Π (((ne (‘ (S Z)) ⇒ ne (‘ Z)) ⇒ ne (‘ (S Z)) ⇒ ne (‘ Z))
⇒ ne (‘ (S Z)) ⇒ ne (‘ Z)))

Z-comb = Λ (Λ (� (� (‘ (S Z) · � (unwrap (‘ (S Z)) · ‘ (S Z) · ‘ Z))
· wrap (ne (‘ Z) ⇒ ne (‘ (S (S Z))) ⇒ ne (‘ (S Z)))

(� (‘ (S Z) · � (unwrap (‘ (S Z)) · ‘ (S Z) · ‘ Z))))))

Plus : ∀{Φ}{Γ : CtxNf Φ} → Γ 	Nf N ⇒ N ⇒ N
Plus = � (� ((Z-comb ·� N) ·� N · (� (� ((((case · ‘ Z) ·� N)
· ‘ (S (S (S Z)))) · (� (Succ · (‘ (S (S Z)) · ‘ Z)))))) · ‘ (S Z)))

TwoPlusTwo : ∀{Φ}{Γ : CtxNf Φ} → Γ 	Nf N
TwoPlusTwo = (Plus · Two) · Two

8 Scaling up from System Fωμ to Plutus Core

This formalisation forms the basis of a formalisation of Plutus Core. There are two key
extensions.

8.1 Higher Kinded Recursive Types

In this paper we used μ : (∗ → ∗)→ ∗. This is easy to understand and makes it possible
to express simple examples directly. This corresponds to the version of recursive types
one might use in ordinary System F. In System Fω we have a greater degree of freedom.
We have settled on an indexed version of μ : ((k → ∗)→ k → ∗)→ k → ∗ that supports
the encoding of mutually defined datatypes. This extension is straightforward in iso-
recursive types, in equi-recursive it is not. We chose to present the restricted version in
this paper as it is simpler and sufficient to present our examples. See the accompanying
paper [26] for a more detailed discussion of higher kinded recursive types.
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8.2 Integers, Bytestrings and Cryptographic Operations

In Plutus Core we also extend System Fωμ with integers and bytestrings and some
cryptographic operations such as checking signatures. Before thinking about how to
add these features to our language, there is a choice to be made when modelling inte-
gers and bytestrings and cryptographic operations in Agda about whether we consider
them internal or external to our model. We are modelling the Haskell implementation
of Plutus Core which uses the Haskell bytestring library. We chose to model the Plu-
tus Core implementation alone and consider bytestrings as an external black box. We
assume (i.e. postulate in Agda) an interface given as a type for bytestrings and various
operations such as take, drop, append etc. We can also make clear our expectations of
this interface by assuming (postulating) some properties such as that append is associa-
tive. Using pragmas in Agda we can ensure that when we compile our Agda program
to Haskell these opaque bytestring operations are compiled to the real operations of the
Haskell bytestring library. We have taken a slightly different approach with integers as
Agda and Haskell have native support for integers and Agda integers are already com-
piled to Haskell integers by default so we just make use of this builtin support. Arguably
this brings integers inside our model. One could also treat integers as a blackbox. We
treat cryptographic operations as a blackbox as we do with bytestrings.

To add integers and bytestrings to the System Fωμ we add type constants as types
and term constants as terms. The type of a term constant is a type constant. This ensures
that we can have term variables whose type is type constant but not term constants
whose type is a type variable. To support the operations for integers and bytestrings
we add a builtin constructor to the term language, signatures for each operation, and a
semantics for builtins that applies the appropriate underlying function to its arguments.
The underlying function is postulated in Agda and when compiled to Haskell it runs
the appropriate native Haskell function or library function. Note that the cryptographic
functions are operations on bytestrings.

Adding this functionality did not pose any particular formalisation challenges
except for the fact it was quite a lot of work. However, compiling our implementa-
tion of builtins to Haskell did trigger several bugs in Agda’s GHC backend which were
rapidly diagnosed and fixed by the Agda developers.

8.3 Using Our Implementation for Testing

As we can compile our Agda Plutus Core interpreter to Haskell we can test the produc-
tion Haskell Plutus Core interpreter against it. We make use of the production system’s
parser and pretty printer which we import as a Haskell library and use the same libraries
for bytestrings and cryptographic functions. The parser produces intrinsically typed
terms which we scope check and convert to a representation with de Bruijn indices. We
cannot currently use the intrinsically typed implementation we describe in this paper
directly as we must type check terms first and formalising a type checker is future
work. Instead we have implemented a separate extrinsically typed version that we use
for testing. After evaluation we convert the de Bruijn syntax back to a named syntax
and pretty print the output. We have proven that for any well-typed term the intrinsic
and extrinsic versions give the same results after erasure.
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Abstract. Graph-searching algorithms typically assume that a node is
given from which the search begins but in many applications it is nec-
essary to search a graph repeatedly until all nodes in the graph have
been “visited”. Sometimes a priority function is supplied to guide the
choice of node when restarting the search, and sometimes not. We call
the nodes from which a search of a graph is (re)started the “delegate”
of the nodes found in that repetition of the search and we analyse the
properties of the delegate function. We apply the analysis to establishing
the correctness of the second stage of the Kosaraju-Sharir algorithm for
computing strongly connected components of a graph.
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1 Introduction

Graph-searching algorithms typically assume that a node is given from which
the search begins but in many applications it is necessary to search a graph
repeatedly until all nodes in the graph have been “visited”. Sometimes a priority
function is supplied to guide the choice of node when restarting the search, and
sometimes not.

The determination of the strongly connected components of a (directed)
graph using the two-stage algorithm attributed to R. Kosaraju and M. Sharir
by Aho, Hopcroft and Ullman [1] is an example of both types of repeated graph
search.

In the first stage, a repeated search of the given graph is executed until
all nodes in the graph have been “visited”. In this stage, the choice of node
when restarting the search is arbitrary; it is required, however, that the search
algorithm is depth-first. The output is a numbering of the nodes in order of
completion of the individual searches.

In the second stage, a repeated search of the given graph—but with edges
reversed—is executed; during this stage, the node chosen from which the search is
restarted is the highest numbered node (as computed in the first stage) that has
not been “visited” (during this second stage). Popular accounts of the algorithm
[1,9] require a depth-first search once more but, as is clear from Sharir’s original
formulation of the algorithm [16], this is not necessary: an arbitrary graph-
searching algorithm can be used in the second stage of the algorithm. Each
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individual search identifies a strongly connected component of the graph of which
the node chosen to restart the search is a representative.

The task of constructing a complete, rigorous, calculational proof of the two-
stage Kosaraju-Sharir algorithm is non-trivial. (Glück [13] calls it a “Herculean
Task”.) The task is made simpler by a proper separation of concerns: both stages
use a repeated graph search, the first stage requires depth-first search but the
second does not. So what are the properties of repeated graph search (in general),
and what characterises depth-first search (in particular)?

The current paper is an analysis of repeated graph search in which we
abstract from the details of the Kosaraju-Sharir algorithm. That is, we assume
the existence of a “choice” function from the nodes of the graph to the natural
numbers that is used to determine which node is chosen from which to restart
the search. We call the nodes from which a search of a graph is (re)started the
“delegate” of the nodes found in that repetition of the search and we analyse
the properties of the delegate function assuming, first, that the choice function is
arbitrary (thus allowing different nodes to have the same number) and, second,
that it is injective (i.e. different nodes are have different numbers).

The properties we identify are true irrespective of the searching algorithm
that is used, contrary to popular accounts of graph searching that suggest the
properties are peculiar to depth-first search. For example, all the nodes in a
strongly connected component of a graph are assigned the same delegate (irre-
spective of the graph searching algorithm used) whereas Cormen, Leiserson and
Rivest’s account [9, theorem 23.13, p. 490] suggests that this is a characteristic
property of depth-first search.

The primary contribution of this paper is the subject of Sects. 3 and 4.
The definition of “delegate” (a function from nodes to nodes) “according to a
given choice function” is stated in Sect. 3.1; an algorithm to compute each node’s
delegate is presented in Sect. 3.2 and further refined in Sect. 3.3. The algorithm
is generic in the sense that no ordering is specified for the choice of edges during
the search. (In breadth-first search, edges are queued and the choice is first-
in, first-out; in depth-first search, edges are stacked and the choice is first-in,
last-out. Other orderings are, of course, possible.)

Section 3.4 explores the properties of the delegate function when the choice
function is injective. Section 4 applies the analysis of the delegate function to
establishing the correctness of the second stage of the Kosaraju-Sharir algorithm.
The proof adds insight into the algorithm by identifying clearly and precisely
which elements of the so-called “parenthesis theorem” and the classification of
edges in a depth-first search [9,10] are vital to the identification of strongly
connected components.

With the goal of achieving the combination of concision and precision, our
development exploits so-called “point-free” relation algebra. This is briefly sum-
marised in Sect. 2.
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2 Relation Algebra

For the purposes of this paper, a (directed) graph G is a homogeneous, binary
relation on a finite set of nodes. One way to reason about graphs—so-called
“pointwise” reasoning—is to use predicate calculus with primitive terms the
booleans expressing whether or not the relation G holds between a given pair of
nodes. In other words, a graph is a set of pairs—the edge set of the graph—and
a fundamental primitive is the membership relation expressing whether or not
a given pair is an element of a given graph. In so-called “point-free” relation
algebra, on the other hand, relations are the primitive elements and the focus is
on the algebraic properties of the fundamental operations on relations: converse,
composition, etc. Because our focus here is on paths in graphs—algebraically
the reflexive, transitive closure of a graph—we base our calculations firmly on
point-free relation algebra.

A relation algebra is a combination of three structures with interfaces con-
necting the structures. The first structure is a powerset: the homogeneous binary
relations on a set A are elements of the powerset 2A×A (i.e. subsets of A×A)
and thus form a complete, universally distributive, complemented lattice. We use
familiar notations for, and properties of, set union and set intersection without
further ado. (Formally, set union is the supremum operator of the lattice and
set intersection is the infimum operator.) The complement of a relation R will
be denoted by ¬R; its properties are also assumed known. The symbols ⊥⊥ and
�� are used for the least and greatest elements of the lattice (the empty relation
and the universal relation, respectively).

The second structure is composition: composition of the homogeneous binary
relations on a set A forms a monoid with unit denoted in this paper by IA (or
sometimes just I if there is no doubt about the type of the relations under consid-
eration). The interface with the lattice structure is that their combination forms
a universally distributive regular algebra (called a “standard Kleene algebra” by
Conway [8, p. 27]). Although not a primitive, the star operator is, of course, a
fundamental component of regular algebra. For relation R, the relation R∗ is its
reflexive-transitive closure; in particular, whereas graph G is interpreted as the
edge relation, the graph G∗ is interpreted as the path relation. The star operator
can be defined in several different but equivalent ways (as a sum of powers or as
a fixed-point operator). We assume familiarity with the different definitions as
well as properties vital to (point-free) reasoning about paths in graphs such as
the star-decomposition rule [3,5,7].

The third structure is converse. We denote the converse of relation R by R
∪

(pronounced “R wok”). Converse is an involution (i.e. (R∪)∪ = R, for all R).
Its interface with the lattice structure is that it is its own adjoint in a Galois
connection; its interface with composition is the distributivity property

(R◦S)∪ = S
∪◦ R

∪
.

Finally, the interface connecting all three structures is the so-called modularity
rule: for all relations R, S and T ,

R◦S ∩T ⊆ R ◦ (S ∩R
∪◦T ). (1)
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The (easily derived and equivalent) converse

R◦S ∩T ⊆ (R ∩ T ◦ S
∪) ◦ S (2)

is also used later.
The axioms outlined above are applicable to homogeneous relations. They

can, of course, be extended to heterogeneous relations by including type restric-
tions on the operators. (For example, the monoid structure becomes a category.)
The structure is then sometimes known as an allegory [12]. We use A<∼B to
denote the type of a relation. The set A is called the target and the set B is
called the source of the relation. A homogeneous relation has type A<∼A for
some set A.

Our use of heterogeneous relations in this paper is limited to functions (which
we treat as a subclass of relations). Point-free relation algebra enables concise
formulations of properties usually associated with functions. A relation R of type
A<∼B is functional if

R◦R∪ ⊆ IA,

it is injective if

R
∪◦R ⊆ IB,

it is total if

IB ⊆ R
∪◦R,

and it is surjective if

IA ⊆ R ◦ R
∪
.

We abbreviate “functional relation” to “function” and write A←B for the type.
(The arrowheads in A<∼B and A←B indicate that we interpret relations as

having outputs and inputs, where outputs are on the left and inputs are on
the right. Our terminology reflects the choice we have made: the words “func-
tional” and “injective”, and simultaneously “total” and “surjective”, can be
interchanged to reflect an interpretation in which inputs are on the left and
outputs are on the right.)

An idiom that occurs frequently in point-free relation algebra has the form

f
∪ ◦ R ◦ g

where f and g are functional and—often but not necessarily—total. Pointwise
this expresses the relation on the source of f and the source of g that holds of
x and y when f.x [[R]] g.y. (In words, the value of f at x is related by R to the
value of g at y.) The idiom occurs frequently below. For example,

f
∪ ◦ < ◦ s



302 R. Backhouse

is used later to express a relation between nodes a and b of a graph when f.a<s.b.
This is interpreted as “the search from a finishes before the search from b starts”,
f and s representing finish and start times, respectively.

The “points” in our algebra are typically the nodes of a graph. Inevitably,
we do need to refer to specific nodes from time to time. Points are modelled as
“proper, atomic coreflexives”.

A coreflexive is a relation that is a subset of the identity relation. The core-
flexives, viewed as a subclass of the homogeneous relations of a given type, form
a complete, universally distributive, complemented lattice under the infimum
and supremum operators (which, as we have said, we denote by the symbols
commonly used for set intersection and set union, respectively). We use lower-
case letters p, q etc. to name coreflexives. So, a coreflexive is a relation p such
that p ⊆ I. We use ∼p to denote the complement in the lattice of coreflexives of
the coreflexive p. This is not the same as the complement of p in the lattice of
relations: the relation between them is given by the equation ∼p = I ∩ ¬p.

Elsewhere, with a different application area, we use the word “monotype”
instead of “coreflexive”. (See, for example, [4,11,14].) We now prefer “coreflex-
ive” because it is application-neutral. Others use the word “test” (e.g. [13]).

In general, an atom in a lattice ordered by � and having least element ⊥⊥ is
an element x such that

〈∀y :: y �x ≡ y = x ∨ y = ⊥⊥〉.

Note that ⊥⊥ is an atom according to this definition. If p is an atom that is
different from ⊥⊥ we say that it is a proper atom. A lattice is said to be atomic
if

〈∀y :: y �= ⊥⊥ ≡ 〈∃x : atom.x ∧ x �= ⊥⊥ : x � y〉〉.

In words, a lattice is atomic if every proper element includes a proper atom.
It is necessary to distinguish between atomic coreflexives and atomic rela-

tions. We use lower-case letters a, b to denote atomic coreflexives. Proper, atomic
coreflexives model singleton sets in set theory; so, when applying the theory to
graphs, proper, atomic coreflexive a models {u} for some node u of the graph.
Similarly, coreflexive p models a subset of the nodes, or, in the context of algo-
rithm development, a predicate on nodes (which explains why they are sometimes
called “tests”).

A lattice with top element �� and supremum operator � is saturated (aka
“full”) if �� is the supremum of the identity function on atoms, i.e. if

�� = 〈�x : atom.x : x〉.

A powerset is atomic and saturated; since we assume that both the lattice of
coreflexives and the lattice of relations form powersets, this is the case for both.
The coreflexives are postulated to satisfy the all-or-nothing rule [13]:

〈∀ a,b,R :: a◦R◦b = ⊥⊥ ∨ a◦R◦b = a◦��◦b〉.
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Combined with the postulates about coreflexives, the all-or-nothing rule has the
consequence that the lattice of relations is a saturated, atomic lattice; the proper
atoms are elements of the form a◦��◦b where a and b are proper atoms of the
lattice of coreflexives. In effect, the relation a◦��◦b models the pair (a, b) in a
standard set-theoretic account of relation algebra; the boolean a◦R◦b = a◦��◦b
plays a role equivalent to the boolean (a, b)∈[[R]] (where [[R]] denotes the inter-
pretation of R as a set of pairs).

The “domain” operators play a central role in relation algebra, particularly
in its use in algorithm development. The right domain of a relation R is the core-
flexive R> (read R “right”) defined by R> = I ∩ ��◦R. The left domain R< (read
R “left”) is defined similarly. The interpretation of R> is {x | 〈∃y :: (y, x)∈[[R]]〉}.
The complement of the right domain of R in the lattice of coreflexives is denoted
by R>•; similarly R•< denotes the complement of the left domain of R. The left
and right domains should not be confused with the source and/or target of a
relation (in an algebra of heterogeneous relations).

We assume some familiarity with relation algebra (specifically set calculus,
relational composition and converse, and their interfaces) as well as fixed-point
calculus and Galois connections. For example, monotonicity properties of the
operators, together with transitivity and anti-symmetry of the subset relation,
are frequently used without specific mention. On the other hand, because the
properties of domains are likely to be unfamiliar, we state the properties we use
in the hints accompanying proof steps.

3 Repeated Search and Delegates

In this section, we explore a property of repeated application of graph-searching
starting with an empty set of “seen” nodes until all nodes have been seen.

The algorithm we consider is introduced in Sect. 3.2 and further refined in
Sect. 3.3. Roughly speaking, the algorithm repeatedly searches a given graph
starting from a node chosen from among the nodes not yet seen so as to maximise
a “choice function”; at each iteration, the graph searched is the given graph but
restricted to edges connecting nodes not yet seen. The algorithm records the
chosen nodes in a function that we call a “delegate function”, the “delegate” of
a node a being the node from which the search that “sees” a is initiated.

Rather than begin with the algorithm, we prefer to begin with a specification
of what a repeated search of a graph is intended to implement. The formal
specification of the delegate function is given in Sect. 3.1.

Our formulation of the notion of a “delegate” is inspired by Cormen,
Leiserson and Rivest’s [9, p. 490] discussion of a “forefather” function as used
in depth-first search to compute strongly connected components of a graph.
However, our presentation is more general than theirs. In particular, Cormen,
Leiserson and Rivest assume that the choice function is injective. We establish
some consequences of this assumption in Sect. 3.4; this is followed in Sect. 3.5
by a comparative discussion of our account and that of Cormen, Leiserson and
Rivest.
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Aside on Terminology. I have chosen to use the word “delegate” rather than
“forefather” because it has a similar meaning to the word “representative”, as
used in “a representative of an equivalence class”. Tarjan [17], Sharir [16], Aho,
Hopcroft and Ullman [1] and Cormen, Leiserson, Rivest and Stein [10, p. 619]
call the representative of a strongly connected component of a graph the “root”
of the component. This is a reference to the “forest” of “trees” that is (implic-
itly) constructed during any repeated graph search. In the two-stage algorithm,
however, each stage is a repeated graph search and so to refer to the “root” could
be confusing: which forest is meant? Using the word “representative” might also
be confusing because it might (wrongly) suggest that the “representative” com-
puted by an arbitrary repeated graph search is a representative of the equivalence
class of strongly connected nodes in a graph. The introduction of novel termi-
nology also has the advantage of forcing the reader to study its definition. End
of Aside

3.1 Delegate Function

Suppose f is a total function of type IN←Node, where Node is a finite set of
nodes. Suppose G is a graph with set of nodes Node. That is, G is a relation of
type Node<∼Node. We call f the choice function (because it governs the choice
of delegates).

A delegate function on G according to f is a relation ϕ of type Node<∼Node
with the properties that

ϕ ◦ ϕ
∪ ⊆ INode ⊆ ϕ

∪◦ ϕ, and (3)

ϕ ⊆ (G∪)∗ ∧ G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f. (4)

The property (3) states that ϕ is a total function. Property (4), expressed point-
wise and in words, states that for all nodes a and b, node a is the delegate of
node b equivales the conjunction of (i) there is a path in G from b to a and (ii)
among all nodes c such that there is a path from b to c, node a maximises the
value of the choice function f . (The relation “≥” on the right side of the second
inclusion is the usual at-least ordering on numbers.)

Note that, because our main motivation for studying repeated graph search
is to apply the results to understanding the second stage of the Kosaraju-Sharir
algorithm for computing strongly connected components of a graph, the defini-
tion of the delegate function is that appropriate to a search of G

∪ rather than a
search of G.

Delegate functions have a couple of additional properties that we exploit
later. These are formulated and proved in the lemma below.

Lemma 5. If ϕ is a delegate function on G according to f ,

I ⊆ G∗ ◦ ϕ ∧ G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f◦ ϕ.

In words, there is a path in G from each node to its delegate, and if there is a
path in G from node b to node c, the value of f at the delegate of b is at least
the value of f at the delegate of c.
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Proof. First,

I ⊆ G∗ ◦ ϕ

⇐ { ϕ is total, i.e. I ⊆ ϕ
∪ ◦ ϕ }

ϕ
∪ ⊆ G∗

= { converse }
ϕ ⊆ (G∗)∪

= { (G∗)∪ =(G∪)∗ and definition of delegate: (4) }
true.

Second,

G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ ϕ

⇐ { I ⊆ G∗ ◦ ϕ (see above) }
G∗ ◦ G∗ ◦ ϕ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ ϕ

⇐ { G∗ ◦ G∗ = G∗ and monotonicity }
G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f

= { definition of delegate: (4) }
true. �

Lemma 6. If ϕ is a delegate function on G according to f ,

ϕ ⊆ f
∪◦ ≥ ◦f.

In words, the delegate of a node has f -value that is at least that of the node.

Proof

true

= { definition: (3) and (4) }
ϕ ◦ ϕ

∪ ⊆ I ∧ G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f

⇒ { I ⊆G∗ and transitivity; converse }
ϕ ◦ ϕ

∪ ⊆ I ∧ I ⊆ ϕ
∪ ◦ f

∪ ◦ ≥ ◦ f

⇒ { ϕ◦I =ϕ, monotonicity of composition and transitivity }
ϕ ⊆ f

∪ ◦ ≥ ◦ f. �
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3.2 Assigning Delegates

The basic structure of the algorithm for computing a delegate function is shown
in Fig. 1. It is a simple loop that initialises the coreflexive seen (representing a
set of nodes) to ⊥⊥ (representing the empty set of nodes) and then repeatedly
chooses a node a that has the largest f -value among the nodes that do not have
a delegate and adds to seen the coreflexive ∼seen ◦ (G∗ ◦ a)<; this coreflexive
represents the nodes that do not have a delegate and from which there is a path
to a in the graph. Simultaneous with the assignments to seen, the variable ϕ is
initialised to ⊥⊥ and subsequently updated by setting the ϕ-value of all newly
“delegated” nodes to a.

Fig. 1. Repeated Search. Outer Loop

For brevity in the calculations below, the temporary variable s (short for
“seen”) has been introduced. The sequence of assignments

s := ∼seen ◦ (G∗ ◦ a)<

; ϕ,seen := ϕ ∪ a◦��◦s , seen∪ s

is implemented by a generic graph-searching algorithm. The details of how this
is done are given in Sect. 3.3.

Apart from being a total function, we impose no restrictions on f . If f is
a constant function (for example, if f.a= 0 for all nodes a), the “choice” is
completely arbitrary.

The relation equiv.G in the postcondition of the algorithm is the equivalence
relation defined by

equiv.G = G∗ ∩ (G∗)∪
.
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If G is a graph, two nodes related by equiv.G are said to be in the same strongly
connected component of G. The first clause of the postcondition thus asserts that
the computed delegate relation ϕ is not only a total function, as required by (3),
but also that all nodes in any one strongly connected component are assigned
the same delegate.

The property

ϕ ⊆ (G∪ ∩ϕ
∪ ◦ ϕ)∗

in the postcondition is stronger than the requirement ϕ ⊆ (G∪)∗ in (4). It states
that there is a path from each node to its delegate comprising nodes that all
have the same delegate. (More precisely, it states that there is a path from
each node to its delegate such that successive nodes on the path have the same
delegate. The equivalence of these two informal interpretations is formulated in
Lemma 25.)

Note the property ϕ = ϕ◦ϕ in the postcondition. Cormen, Leiserson and
Rivest [9, p. 490] require that the function f is injective and use this to derive the
property from the definition of a delegate (“forefather” in their terminology). We
don’t impose this requirement but show instead that ϕ = ϕ◦ϕ is a consequence
of the algorithm used to calculate delegates. For completeness, we also show that
the property is a consequence of the definition of delegate under the assumption
that f is injective: see Lemma 18. Similarly, the property equiv.G ⊆ ϕ

∪ ◦ ϕ can be
derived from the definition of a delegate if f is assumed to be injective. Again for
completeness, we also show that the property is a consequence of the definition
of delegate under the assumption that f is injective: see Lemma 19.

Termination of the loop is obvious: the coreflexive seen represents a set of
nodes that increases strictly in size at each iteration. (The chosen node a is added
at each iteration.) The number of iterations of the loop body is thus at most
the number of nodes in the graph, which is assumed to be finite. The principle
task is thus to verify conditional correctness (correctness assuming termination,
often called “partial” correctness).

The invariant properties of the algorithm are as follows:

ϕ> = seen, (7)

ϕ ◦ ϕ
∪ ⊆ seen, (8)

ϕ ⊆ (G∪ ∩ ϕ
∪ ◦ ϕ)∗, (9)

ϕ = ϕ◦ϕ, (10)

seen = (G∗ ◦ seen)<, (11)

seen ◦ �� ◦ ∼seen ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f , (12)

seen ◦ G∗ ◦ seen ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f , (13)

seen ◦ equiv.G ◦ seen ⊆ ϕ
∪ ◦ ϕ. (14)
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The postcondition

ϕ ◦ ϕ
∪ ⊆ INode ⊆ ϕ

∪ ◦ ϕ

expresses the fact that, on termination, ϕ is functional and total; the claimed
invariants (7) and (8) state that intermediate values of ϕ are total on seen
and functional. The invariant (7) also guarantees that seen is a coreflexive. The
invariants (9) and (10) are both conjuncts of the postcondition. The additional
conjunct

equiv.G ⊆ ϕ
∪ ◦ ϕ

in the postcondition states that strongly connected nodes have the same delegate.
The invariant (14) states that this is the case for nodes that have been assigned
a delegate. Like (7) and (8), invariant (13) states that intermediate values of ϕ
maximise f for those nodes for which a delegate has been assigned. It is therefore
obvious that the postcondition is implied by the conjunction of the invariant and
the termination condition. The additional invariants (11) and (12) are needed in
order to establish the invariance of (13). It is straightforward to construct and
check appropriate verification conditions. Full details are given in [6].

3.3 Incremental Computation

The algorithm shown in Fig. 1 assigns to the variable s (the coreflexive repre-
senting) all the nodes that do not yet have a delegate and can reach the node a.
The variable ϕ is also updated so that a becomes the delegate of all the nodes in
the set represented by s. The assignments are implemented by a generic graph-
searching algorithm. Figure 2 shows the details.

The consecutive assignments in the body of the loop in Fig. 1 (to s, and
to ϕ and seen) are implemented by an inner loop together with initialising
assignments. The assertions should enable the reader to verify that the two
algorithms are equivalent: the variables s, seen0 and ϕ0 are auxiliary variables
used to express the property that the inner loop correctly implements the two
assignments that they replace in the outer loop; in an actual implementation the
assignments to these variables may be omitted (or, preferably, included but iden-
tified as auxiliary statements that can be ignored by the computation proper).

It is straightforward to verify the correctness of this algorithm. Because it
involves no new techniques, it is omitted here. Full details are included in [6].

A concrete implementation of the above graph-searching algorithm involves
choosing a suitable data structure in which to store the unexplored edges repre-
sented by ∼seen ◦ (G◦seen)<. Breadth-first search stores the edges in a queue (so
newly added edges are chosen in the order that they are added), whilst depth-
first search stores the edges in a stack (so the most recently added edge is chosen
first). Other variations enable the solution of more specific path-finding prob-
lems. For example, if edges are labelled by distances, shortest paths from a given
source can be found by storing edges in a priority queue. Topological search is
also an instance: edges from each node are grouped together and an edge from
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Fig. 2. Repeated Search. Inner Loop.

a given node is chosen when the node has no unexplored incoming edges. We do
not go into details any further.

For later discussion of the so-called “white-path theorem” [9, pp. 482], we list
below some consequences of the invariant properties. Lemmas 15 and 16 relate
arbitrary paths to paths that are restricted to unseen nodes; Lemma17 similarly
relates arbitrary paths to paths restricted to nodes that have been seen thus far.

Lemma 15. Assuming seen = (G∗ ◦ seen)< (i.e. (11)) and a◦seen= ⊥⊥, the
following properties also hold:

∼seen ◦ G∗ ◦ seen = ⊥⊥ ∧ ∼seen ◦ G∗ ◦ a = (∼seen ◦ G)∗ ◦ a.

(In words, the properties state that there are no paths from an unseen node to a
seen node and, for all unseen nodes b there is a path in G from b to a equivales
there is a path in G comprising unseen nodes from b to a.)

Proof. First,

∼seen ◦ G∗ ◦ seen

= { domains: [ R = R< ◦ R ] with R := G∗ ◦ seen;

seen = (G∗ ◦ seen)< }
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∼seen ◦ seen ◦ G∗ ◦ seen

= { ∼seen ◦ seen = ⊥⊥ }
⊥⊥.

Second,

∼seen ◦ G∗ ◦ a

= { I = seen∪∼seen; distributivity, and star decomposition:

[ (R∪S)∗ = R∗ ◦ (S ◦ R∗)∗ ] with R,S := seen ◦ G , ∼seen ◦ G }
∼seen ◦ (seen ◦ G)∗ ◦ (∼seen ◦ G ◦ (seen ◦ G)∗)∗ ◦ a

= { (seen◦G)∗ = I ∪ seen◦G◦(seen◦G)∗

distributivity and ∼seen ◦ seen = ⊥⊥ }
∼seen ◦ (∼seen ◦ G ◦ (seen ◦ G)∗)∗ ◦ a

= { (seen◦G)∗ = I ∪ seen◦G◦(seen◦G)∗

distributivity and ∼seen ◦ G∗ ◦ seen = ⊥⊥
(whence ∼seen ◦ G ◦ seen = ⊥⊥) }

∼seen ◦ (∼seen ◦ G)∗ ◦ a

= { (∼seen ◦ G)∗ = I ∪ ∼seen ◦ G ◦ (∼seen ◦ G)∗

distributivity }
∼seen ◦ a ∪ ∼seen ◦ ∼seen ◦ G ◦ (∼seen ◦ G)∗ ◦ a

= { ∼seen ◦ a = a and ∼seen ◦ ∼seen = ∼seen ,

(∼seen ◦ G)∗ = I ∪ ∼seen ◦ G ◦ (∼seen ◦ G)∗

distributivity }
(∼seen ◦ G)∗ ◦ a. �

The following two lemmas concern the properties of the variable s which is
assigned the value ∼seen ◦ (G∗ ◦ a)< in Fig. 1.

Lemma 16. Assuming properties (7) thru (14) and a◦seen= ⊥⊥,

s = ((∼seen ◦ G)∗ ◦ a)<.

(In words, the coreflexive s represents the set of all nodes b such that there is a
path in G comprising unseen nodes from b to a.)
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Proof

s

= { definition (see fig. 1) }
∼seen ◦ (G∗ ◦ a)<

= { domains: for all coreflexives p and all relations R,

p ◦ R< = (p◦R)< with p,R := ∼seen , G∗ ◦ a }
(∼seen ◦ G∗ ◦ a)<

= { lemma 15 }
((∼seen ◦ G)∗ ◦ a)<. �

Lemma 17. Assuming properties (7) thru (14) and a◦seen = ⊥⊥,

s = ((s◦G)∗ ◦ a)<.

(In words, the coreflexive s represents the set of all nodes b such that there is a
path in G comprising nodes in s from b to a.)

Proof. Applying Lemma 16, the task is to prove that

((∼seen ◦ G)∗ ◦ a)< = ((s◦G)∗ ◦ a)<.

Clearly, since s⊆ ∼seen, the left side of this equation is at least the right side.
So it suffices to prove the inclusion. This we do as follows.

((∼seen ◦ G)∗ ◦ a)< ⊆ ((s◦G)∗ ◦ a)<

⇐ { fixed-point fusion }
a ⊆ ((s◦G)∗ ◦ a)<

∧ (∼seen ◦ G ◦ ((s◦G)∗ ◦ a)<)< ⊆ ((s◦G)∗ ◦ a)<

= { first conjunct is clearly true;

∼seen

= { case analysis: I = (G∗ ◦ a)< ∪ (G∗ ◦ a)•< }
∼seen ◦ (G∗ ◦ a)< ∪ ∼seen ◦ (G∗ ◦ a)•<

= { definition of s (see fig. 1) }
s ∪ ∼seen ◦ (G∗ ◦ a)•< }

((s ∪ ∼seen ◦ (G∗ ◦ a)•<) ◦ G ◦ ((s◦G)∗ ◦ a)<)< ⊆ ((s◦G)∗ ◦ a)<

= { domains: [ (R ◦ S<)< = (R◦S)< ]

with R,S := (s ∪ ∼seen ◦ (G∗ ◦ a)•<) ◦ G, (s◦G)∗ ◦ a;
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distributivity }
(s ◦ G ◦ (s◦G)∗ ◦ a)< ⊆ ((s◦G)∗ ◦ a)<

∧ (∼seen ◦ (G∗ ◦ a)•< ◦ G ◦ (s◦G)∗ ◦ a)< ⊆ ((s◦G)∗ ◦ a)<

⇐ { first conjunct is true (since [ R◦R∗ ⊆ R∗ ] with R := s◦G);

second conjunct: G ◦ (s◦G)∗ ⊆ G∗ and domains }
(∼seen ◦ (G∗ ◦ a)•< ◦ (G∗ ◦ a)<)< ⊆ ((s◦G)∗ ◦ a)<

= { complements: (G∗ ◦ a)•< ◦ (G∗ ◦ a)< = ⊥⊥ }
true. �

3.4 Injective Choice

This section is a preliminary to the discussion in Sect. 3.5. Throughout the
section, we assume that f has type IN←Node. Also, the symbol I denotes INode:
the identity relation on nodes.

Previous sections have established the existence of a delegate function ϕ
according to choice function f with the only proviso being that f is total and
functional. Moreover, the property ϕ◦ϕ = ϕ is an invariant of the algorithm
for computing delegates. Cormen, Leiserson and Rivest [9] derive it from the
other requirements assuming that f is also injective. For completeness, this is
the point-free rendition of their proof.

Lemma 18. If f is a total, injective function and ϕ is a delegate function
according to f , then

ϕ◦ϕ = ϕ.

Proof

ϕ◦ϕ = ϕ

⇐ { assumption: f is total and injective, i.e. f
∪ ◦ f = I }

f◦ϕ◦ϕ = f◦ϕ

= { antisymmetry of ≥
and distributivity properties of total functions }

I ⊆ (f◦ϕ◦ϕ)∪ ◦ ≤ ◦ f ◦ ϕ ∧ I ⊆ (f◦ϕ◦ϕ)∪ ◦ ≥ ◦ f ◦ ϕ.

We establish the truth of both conjuncts as follows. First,

(f◦ϕ◦ϕ)∪ ◦ ≤ ◦ f ◦ ϕ

= { converse }
ϕ

∪ ◦ (f◦ϕ)∪ ◦ ≤ ◦ f ◦ ϕ
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⊇ { G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ ϕ (lemma 5)

i.e. (G∗)∪ ⊆ (f◦ϕ)∪ ◦ ≤ ◦ f ◦ ϕ

(distributivity properties of converse and ≥∪ = (≤)) }
ϕ

∪ ◦ (G∗)∪

⊇ { I ⊆ G∗ ◦ ϕ (lemma 5) and converse }
I.

Second,

(f◦ϕ◦ϕ)∪ ◦ ≥ ◦ f ◦ ϕ

= { converse }
ϕ

∪ ◦ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ ϕ

⊇ { definition of delegate: (4) and monotonicity }
ϕ

∪ ◦ G∗ ◦ ϕ

⊇ { I ⊆ G∗ }
ϕ

∪ ◦ ϕ

⊇ { ϕ is total (by definition: (3)) }
I. �

As also shown above, the property equiv.G ⊆ ϕ
∪ ◦ ϕ is an invariant of the

algorithm. However, if f is a total, injective function, the property follows from
the definition of a delegate, as we show below.

Lemma 19. If f is a total, injective function and ϕ is a delegate function accord-
ing to f , strongly connected nodes have the same delegate. That is

equiv.G ⊆ ϕ
∪ ◦ ϕ.

Proof

equiv.G

= { definition }
G∗ ∩ (G∗)∪

⊆ { lemma 5 }
(f◦ϕ)∪ ◦ ≥ ◦ f ◦ ϕ ∩ ((f◦ϕ)∪ ◦ ≥ ◦ f ◦ ϕ)∪

= { converse }
(f◦ϕ)∪ ◦ ≥ ◦ f ◦ ϕ ∩ (f◦ϕ)∪ ◦ ≤ ◦ f ◦ ϕ



314 R. Backhouse

= { f and ϕ are total functions, distributivity }
(f◦ϕ)∪ ◦ (≥∩≤) ◦ f ◦ ϕ

= { ≤ is antisymmetric, converse }
ϕ

∪ ◦ f
∪ ◦ f ◦ ϕ

= { f is injective and total, i.e. f
∪ ◦ f = I }

ϕ
∪ ◦ ϕ. �

The relation ϕ ◦ G
∪ ◦ ϕ

∪ is a relation on delegates. Viewed as a graph, it is
a homomorphic image of the graph G

∪ formed by coalescing all the nodes with
the same delegate into one node. Excluding self-loops, this graph is acyclic and
topologically ordered by f , as we now show.

Definition 20 (Topological Order). A topological ordering of a homogeneous
relation R of type A is a total, injective function ord from A to the natural
numbers with the property that

R+ ⊆ ord
∪ ◦ < ◦ ord. �

A straightforward lemma is that the requirement on ord is equivalent to

R ⊆ ord
∪ ◦ < ◦ ord.

Note that the less-than ordering relation on numbers is an implicit parameter
of the definition of topological ordering. Sometimes it is convenient to use the
greater-than ordering instead. In this way, applying basic properties of converse,
it is clearly the case that a topological ordering of R is also a topological ordering
of R

∪.

Lemma 21. If f is a total, injective function and ϕ is a delegate function accord-
ing to f , the graph ϕ ◦ G

∪ ◦ ϕ
∪ ∩ ¬I is acyclic with f as a topological ordering.

Proof. It suffices to show that f is a topological ordering. The function f is, by
assumption, a total, injective function of type IN←Node. Thus, by assumption, f
satisfies the first requirement of being a topological ordering. (See Definition 20.)
Establishing the second requirement is achieved by the following calculation.

ϕ ◦ G
∪ ◦ ϕ

∪ ∩ ¬I ⊆ f
∪ ◦ < ◦ f

= { shunting rule }
ϕ ◦ G

∪ ◦ ϕ
∪ ⊆ f

∪ ◦ < ◦ f ∪ I

= { f is total and injective, i.e. I = f
∪ ◦ f

distributivity and definition of ≤ }
ϕ ◦ G

∪ ◦ ϕ
∪ ⊆ f

∪ ◦ ≤ ◦ f
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⇐ { ϕ is functional, i.e. ϕ ◦ ϕ
∪ ⊆ I

monotonicity, converse and transitivity }
G

∪ ⊆ (f◦ϕ)∪ ◦ ≤ ◦ f ◦ ϕ

= { converse }
G ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ ϕ

⇐ { G⊆G∗, transitivity }
G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ ϕ

= { lemma 5 }
true. �

An important corollary of Lemma 21 is that the finish timestamp of
(repeated) depth-first search is a topological ordering of the strongly connected
components of a graph. (See Sect. 3.5 for further discussion of depth-first-search
timestamps and Lemma 21.)

The algorithm presented in Fig. 1 shows that, viewed as a specification of
the function ϕ, the equation (4) always has at least one solution. However, the
algorithm is non-deterministic, which means that there may be more than one
solution. We now prove that (4) has a unique solution in unknown ϕ if the
function f is total and injective.

Lemma 22. Suppose f of type IN←Node is a total and injective function,
and ϕ and ψ are both total functions of type Node←Node. Then

ϕ=ψ

⇐ (ϕ ⊆ (G∗)∪ ∧ G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f)

∧ (ψ ⊆ (G∗)∪ ∧ G∗ ⊆ (f◦ψ)∪ ◦ ≥ ◦ f).

Proof. Suppose ψ is a total function of type Node←Node. Then

ψ ⊆ (G∗)∪ ∧ G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f

⇒ { converse and transitivity }
ψ

∪ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f

⇒ { ψ is total, i.e. I ⊆ ψ
∪ ◦ ψ;

monotonicity and transitivity }
I ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ ψ.

Interchanging ϕ and ψ, and combining the two properties thus obtained, we get
that, if ϕ and ψ are both total functions of type Node←Node,
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(ϕ ⊆ (G∗)∪ ∧ G∗ ⊆ (f◦ψ)∪ ◦ ≥ ◦ f)

∧ (ψ ⊆ (G∗)∪ ∧ G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f)

⇒ { see above }
I ⊆ (f◦ψ)∪ ◦ ≥ ◦ f ◦ ϕ

∧ I ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ ψ

= { f , ϕ and ψ are all total functions,

converse and distributivity }
I ⊆ (f◦ψ)∪ ◦ ((≤)∩ (≥)) ◦ f ◦ ϕ

∧ I ⊆ (f◦ϕ)∪ ◦ ((≤)∩ (≥)) ◦ f ◦ ψ

= { anti-symmetry of (≤) }
I ⊆ (f◦ψ)∪ ◦ f ◦ ϕ ∧ I ⊆ (f◦ϕ)∪ ◦ f ◦ ψ

⇒ { f , ϕ and ψ are functional;

hence f ◦ ψ ◦ (f◦ψ)∪ ⊆ I and f ◦ ϕ ◦ (f◦ϕ)∪ ⊆ I }
f◦ψ ⊆ f◦ϕ ∧ f◦ϕ ⊆ f◦ψ

= { anti-symmetry }
f◦ψ = f◦ϕ

⇒ { f is an injective, total function, i.e. f
∪ ◦ f = I }

ψ = ϕ.

The lemma follows by symmetry and associativity of conjunction. �

Earlier, we stated that (9) formulates the property that there is a path from
each node to its delegate on which successive nodes have the same delegate.
Combined with (10) and the transitivity of equality, this means that there is a
path from each node to its delegate on which all nodes have the same delegate.
We conclude this section with a point-free proof of this claim. Since the claim
is not specific to the delegate function, we formulate the underlying lemmas
(Lemmas 23 and 24) in general terms. The relevant property of the delegate
function, Lemma 25, is then a simple instance.

For readers wishing to interpret Lemma 23 pointwise, the key is to note that,
for total function h and arbitrary relation S, h

∪ ◦ h ∩ S relates two points x
and y if they are related by S and h.x= h.y. However, it is not necessary to
do so: completion of the calculation in Lemma 24 demands the proof of Lemma
23 and this is best achieved by uninterpreted calculation. In turn, Lemma24
is driven by Lemma 25 which expresses the delegate function ϕ as a least fixed
point; crucially, this enables the use of fixed-point induction to reason about ϕ.

Lemma 23. If h is a total function,

h ∩ R◦(h∪ ◦ h ∩ S) = h ∩ (h∩R)◦S
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for all relations R and S.

Proof. By mutual inclusion:

h ∩ (h∩R)◦S

⊆ { modularity rule: (1) }
(h∩R) ◦ ((h∩R)∪ ◦ h ∩ S)

⊆ { h ∩ R⊆h, monotonicity }
(h ∩ R) ◦ (h∪ ◦ h ∩ S)

⊆ { h is a total function, so h ◦ h
∪ ◦ h = h

h ∩ R⊆h, distributivity and monotonicity }
h ∩ R ◦ (h∪ ◦ h ∩ S)

= { idempotency (preparatory to next step) }
h ∩ h ∩ R ◦ (h∪ ◦ h ∩ S)

⊆ { modularity rule: (2) }
h ∩ (h ◦ (h∪ ◦ h ∩ S)∪ ∩ R) ◦ (h∪ ◦ h ∩ S)

⊆ { h is a total function, so h ◦ h
∪ ◦ h = h

(h∪ ◦ h ∩ S)∪ ⊆ h
∪ ◦ h,

distributivity and monotonicity }
h ∩ (h∩R)◦S. �

Lemma 24. If h is a total function,

h ∩ (h∪ ◦ h ∩ R)∗ = 〈μX :: h ∩ (I ∪ X◦R)〉

for all relations R.

Proof. We derive the right side as follows.

h ∩ (h∪ ◦ h ∩ R)∗ = μg

⇐ { fusion theorem }
〈∀X :: h∩ (I ∪ X◦(h∪ ◦ h ∩ R)) = g.(h∩X)〉

= { distributivity, lemma 23 with R,S :=X,R }
〈∀X :: (h∩ I)∪ (h ∩ (h∩X)◦R) = g.(h∩X)〉

⇐ { strengthening: X :=h∩X }
〈∀X :: (h∩ I)∪ (h ∩ X◦R) = g.X〉
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= { distributivity }
〈∀X :: h∩ (I ∪ X◦R) = g.X〉. �

Lemma 25

ϕ =
〈
μX :: ϕ ∩ (I ∪ X ◦ G

∪)
〉
.

Proof

ϕ

= { (9) (i.e., ϕ ⊆ (G∪ ∩ ϕ
∪ ◦ ϕ)∗) }

ϕ ∩ (G∪ ∩ ϕ
∪ ◦ ϕ)∗

= { lemma 24 }
〈μX :: ϕ∩ (I ∪ X ◦ G

∪)〉. �

The significance of the equality in Lemma25 is the inclusion of the left side
in the right side. (The converse is trivial.) Thus, in words, the lemma states that
there is a path from each node to its delegate on which every node has the same
delegate.

3.5 Summary and Discussion

We summarise the results of this section with the following theorem.

Theorem 26. Suppose f of type IN←Node is a total function and G is a finite
graph. Then the equation

ϕ :: ϕ ◦ ϕ
∪ ⊆ INode ⊆ ϕ

∪ ◦ ϕ ∧ ϕ ⊆ (G∗)∪ ∧ G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f

has a solution with the additional properties that the solution is a closure oper-
ator (i.e. a delegate is its own delegate):

ϕ◦ϕ = ϕ,

strongly connected nodes have the same delegate:

equiv.G ⊆ ϕ
∪ ◦ ϕ

and there is a path from each node to its delegate on which successive nodes
have the same delegate:

ϕ ⊆ (G∪ ∩ ϕ
∪ ◦ ϕ)∗.

More precisely, there is a path from each node to its delegate on which all nodes
have the same delegate:

ϕ =
〈
μX :: ϕ ∩ (I ∪ X ◦ G

∪)
〉
.



An Analysis of Repeated Graph Search 319

Moreover, a delegate has the largest f -value

ϕ ⊆ f
∪ ◦ ≥ ◦ f.

If the function f is injective, the solution is unique; in this case, we call the
unique solution the delegate function on G according to f . Moreover, f is a
topological ordering of the nodes of the graph

ϕ ◦ G
∪ ◦ ϕ

∪ ∩ ¬I

(the graph obtained from G
∪ by coalescing all nodes with the same delegate and

removing self-loops). This graph is therefore acyclic. �

This paper is inspired by Cormen, Leiserson and Rivest’s account of the “fore-
father” function and its use in applying depth-first search to the computation
of strongly connected components [9, pp. 488–494]. However, our presentation
is more general than theirs; in particular, we do not assume that the choice
function is injective.

The motivation for our more general presentation is primarily to kill two
birds with one stone. As do Cormen, Leiserson and Rivest, we apply the results
of this section to computing strongly connected components: see Sect. 4. This is
one of the “birds”. The second “bird” is represented by the case that the choice
function is a constant function (for example, f.a= 0, for all nodes a). In this
case, the choice of node a in the algorithm of Fig. 1 reduces to the one condition
a◦seen= ⊥⊥ (in words, a has not yet been seen) and the function f plays no
role whatsoever. Despite this high level of nondeterminism, the specification of
a delegate (see Sect. 3.1) allows many solutions that are not computed by the
algorithm. (For example, the identity function satisfies the specification.) The
analysis of Sect. 3.2 is therefore about the properties of a function that records
the history of repeated searches of a graph until all nodes have been seen: the
delegate function computed by repeated graph search records for each node b,
the node a from which the search that sees b was initiated.

This analysis reveals many properties of graph searching that other accounts
may suggest are peculiar to depth-first search. Most notable is the property that
strongly connected nodes are assigned the same delegate. As shown in Lemma 19,
this is a necessary property when the choice function is injective; otherwise, it is
not a necessary property but it is a property of the delegate function computed by
repeated graph search, whatever graph-searching algorithm is used. The second
notable property of repeated graph search is that there is a path from each node
to its delegate on which all nodes have the same delegate. This is closely related
to the property that Cormen, Leiserson and Rivest call the “white-path theorem”
[9, pp. 482], which we discuss shortly. Our analysis shows that the property is a
generic property of repeated graph search and not specific to depth-first search.

In order to discuss the so-called “white-path theorem”, it is necessary to
give a preliminary explanation. Operational descriptions of graph-searching algo-
rithms often use the colours white, grey and black to describe nodes. A white
node is a node that has not been seen, a grey node is a node that has been seen
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but not all edges from the node have been “processed”, and a black node is a
node that has been seen and all edges from the node have been “processed”. The
property “white”, “grey” or “black” is, of course, time-dependent since initially
all nodes are white and on termination all nodes are black.

Now Lemmas 16 and 17 express subtley different versions of what is called
the “white-path theorem”. Suppose a search from node a is initiated in the outer
loop of a repeated graph search. The search finds nodes on paths starting from a.
There are three formally different properties of the paths that are found:

(i) The final node on the path is white at the time the search from a is initiated.
(ii) All nodes on the path are white at the time the search from a is initiated.
(iii) All nodes on the path are white at the time the search from their predecessor

on the path is initiated.

In general, if nodes are labelled arbitrarily white or non-white, the sets of
paths described by (i), (ii) and (iii) are different. (They are ordered by the
subset relation, with (i) being the largest and (iii) the smallest.) However, in a
repeated graph search, the sets of paths satisfying (i) and (ii) are equal. This is
the informal meaning of Lemma 15. Moreover, the right side of the assignment
to s in Fig. 1 is the set of nodes reached by paths satisfying (i); Lemma 16 states
that, in a repeated graph search, the nodes that are added by a search initiated
from node a are the nodes that can be reached by a path satisfying (ii).

We claim—without formal proof—that it is also the case that, in a repeated
graph search, all three sets of paths are equal. That is, the set of paths described
by (iii) is also equal to the set of paths described by (i). We don’t give a proof
here because it is impossible to express formally without introducing additional
auxiliary variables. Informally, it is clear from the implementation shown in
Fig. 2, in particular the choice of nodes b and c. The introduction of timestamps
does allow us to prove the claim formally for depth-first search. See Sect. 4.

Cormen, Leiserson and Rivest’s [9, pp. 482] “white-path theorem” states that
it is a property of depth-first search that paths found satisfy (ii). Characteristic
of depth-first search is that the property is true for all nodes, and not just nodes
from which a search is initiated in the outer loop.

Finally, let us briefly remark on Lemma 21. As we see later, not only can
depth-first search be used to calculate the strongly connected components of
a graph, in doing so it also computes a topological ordering of these compo-
nents (more precisely a topological ordering of the homomorphic-image graph
discussed in Sect. 4). Lemma 21 is more general than this. It states that, if the
choice function is injective, it is a topological ordering of the converse of the
graph obtained by coalescing all the nodes with the same delegate and then
omitting self-loops. In fact, this is also true of the delegate function computed as
above. We leave its proof to the reader: remembering that during execution of
the algorithm ϕ is partial with right domain ϕ>, identify and verify an invariant
that states that f is a topological ordering on a subgraph of ϕ ◦ G

∪ ◦ ϕ
∪ ∩ ¬I.
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4 Strongly Connected Components

Recall that if G is a relation, the relation equiv.G defined by

equiv.G = G∗ ∩ (G∗)∪

is an equivalence relation; if G is a graph, two nodes related by equiv.G are said
to be in the same strongly connected component of G.

An equivalence relation R on a set A is typically represented by a so-called
representative function ρ of type A←A with the property that

R = ρ
∪ ◦ ρ.

For each element a of A, the element ρ.a is called the representative of the
equivalence class containing a. In words, two values a and b are equivalent (under
R) iff they have the same representative.

The calculation of (a representative-function representation of the) strongly
connected components of a given graph is best formulated as a two-stage process.
In the first stage, a repeated depth-first search of the graph is executed; the
output of this stage is a function f from nodes to numbers that records the order
in which the search from each node finishes; we call it the finish timestamp. In
the second stage a repeated search of the converse of the graph is executed using
the function f as choice function.

Aside on Sharir’s Algorithm. As mentioned in the introduction, Aho,
Hopcroft and Ullman [1] attribute the algorithm to an unpublished 1978 doc-
ument by Kosaraju and to Sharir [16]. Sharir’s formulation of the algorithm
supposes that a forest of trees is computed in the first stage; the ordering of the
nodes is then given by a reverse postorder traversal of the trees in the forest.
This is non-deterministic since the ordering of the trees is arbitrary. However, a
well-known fact is that the use of the finish timestamp is equivalent to ordering
the trees according to the reverse of the order in which they are constructed in
the first stage; its use is also more efficient and much simpler to implement. Also,
contrary to the suggestion in [1,9,10] and apparently not well-known, Sharir’s
formulation of the algorithm demonstrates that is not necessary to use depth-
first search in the second stage: any graph searching algorithm will do. End of
Aside

In this section, we establish the correctness of the second stage assuming
certain properties of the first stage. Formally, we prove that the delegate function
on G according to the timestamp f is a representative function for the strongly
connected components of G.

The properties that we need involve the use of an additional function s from
nodes to numbers that records the order in which the search in the first stage
from each node starts. More precisely, the combination of the functions s and f
records the order in which searches start and finish; the functions s and f are
thus called the start and finish timestamps, respectively. Unlike f , which is used
as a choice function in the second stage, the role of s is purely as an auxiliary
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variable. That is, the process of recording the start timestamp can be omitted
from the computation proper because it only serves to document the properties
of depth-first search.

The properties of repeated depth-first search that we assume are four-fold.
First, for all nodes a and b, if the search from a starts before the start of the
search from b, and the search from a finishes after the search from b finishes
there is a path from a to b:

s
∪ ◦ ≤ ◦ s ∩ f

∪ ◦ ≥ ◦ f ⊆ G∗. (27)

Second, for all nodes a and b, if the search from a starts strictly before the start
of the search from b and finishes strictly before the finish of the search from b,
the search from a finishes strictly before the search from b starts:

s
∪ ◦ < ◦ s ∩ f

∪ ◦ < ◦ f = f
∪ ◦ < ◦ s. (28)

Thirdly, if there is an edge from node a to node b in the graph, the search from
node a finishes after the search from b starts:

G ⊆ f
∪ ◦ ≥ ◦ s. (29)

Finally, s and f are total, injective functions from the nodes to natural numbers.
Properties (27) and (28) are both consequences of the so-called “parenthe-

sis theorem” [9, p. 480] and [10, p. 606]. (The “parenthesis theorem” bundles
together the so-called “parenthesis structure” of the start and finish times with
properties of paths in the graph.) Property (29) is a consequence of the classifi-
cation of edges into tree/ancestor edges, fronds or vines [17]; see also [9, exercise
23.3-4, p. 484] (after correction to include self-loops as in [10, exercise 22.3-5, p.
611]). (Property (29) is sometimes stated in its contrapositive form: King and
Launchbury [15], for example, formulate it as there being no “left-right cross
edges”.)

It may help to present further details of repeated depth-first search. The
outer loop—the repeated call of depth-first search—takes the following form:

f,s := ⊥⊥,⊥⊥ ;

while s> �= INode do

begin

choose node a such that a ◦ s> = ⊥⊥
; dfs(a)

end

{ (27) ∧ (28) ∧ (29)

∧ s ◦ s
∪ ⊆ IIN ∧ s

∪ ◦ s = INode = f
∪ ◦ f ∧ f ◦ f

∪ ⊆ IIN }
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The implementation of dfs(a) is as follows:

s := s ∪ (MAX.s↑MAX.f)+1 ◦ �� ◦ a

; while a ◦ G ◦ s>• �= ⊥⊥ do

begin

choose node b such that a◦��◦b ⊆ a ◦ G ◦ s>•

; dfs(b)

end

; f := f ∪ (MAX.s↑MAX.f)+1 ◦ �� ◦ a

In the above, the current “time” is given by MAX.s↑MAX.f (assuming that
MAX.⊥⊥ is 0, by definition): the maximum value of the combined functions s and
f ; the overbar denotes the conversion of a number into a coreflexive representing
the singleton set containing that number. The assignment to s thus increments
the time by 1 and assigns to the node a the new time as starting time; similarly,
the assignment to f increments the time by 1 and assigns to the node a the
new time as finish time. The coreflexive s>• is the complement of s>; thus, it
represents the set of nodes from which a search has not yet been started. The
body of the inner loop is repeatedly executed while there remain edges in G from
a to a node from which a search has not been started; the chosen node b is then
one such node.

It is a very substantial exercise to verify the postcondition of repeated depth-
first search since, in order to do so, additional invariant properties must be
identified and verified. We have identified 16 different conjuncts in the invariant
of depth-first search. Given that there are 5 components in its implementation
(two assignments, one test, one choice and one recursive call), this means that
there are at least 64 (sixteen times four) verification conditions that must be
checked in order to verify repeated depth-first search: the recursive call can be
ignored “by induction” but the repeated invocation of depth-first search also
incurs additional verification conditions. Although many of these verification
conditions are straight-forward, and might be taken for granted in an informal
account of the algorithm, there is still much to be done. For more information,
including a detailed comparison with [9], see [6].)

Suppose s and f are the start and finish timestamps computed by a repeated
depth-first search of the graph G as detailed above. Suppose ϕ is the delegate
function on G according to the timestamp f . (Recall that, as remarked imme-
diately following its definition in Sect. 3.1, the function ϕ is the function com-
puted by the repeated search of G

∪ in the second stage of the Kosaraju-Sharir
algorithm.)

From Theorem 26, we know that

equiv.G ⊆ ϕ
∪ ◦ ϕ.

It remains to show that

ϕ
∪ ◦ ϕ ⊆ equiv.G.
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We do this by showing that ϕ⊆equiv.G. That is, we show that the delegate of a
node according to f is strongly connected to the node. The key is to use induc-
tion, the main difficulty being to identify a suitable induction hypothesis. This
is done in the following lemma. Its proof combines two properties of delegates:
(i) for each node, there is a path to its delegate on which all nodes have the same
delegate and (ii) the delegate has the largest f -value.

Lemma 30

ϕ ⊆ 〈
μX :: f

∪ ◦ ≥ ◦ f ∩ (I ∪ X ◦ G
∪)

〉
.

Proof

ϕ

= { lemma 25 }
〈μX :: ϕ∩ (I ∪ X ◦ G

∪)〉
⊆ { theorem 26 (specifically, ϕ ⊆ f

∪ ◦ ≥ ◦ f)

and monotonicity }
〈μX :: f

∪ ◦ ≥ ◦ f ∩ (I ∪ X ◦ G
∪)〉. �

Lemma 30 enables us to use fixed-point induction to establish a key lemma:

Lemma 31

ϕ ⊆ s
∪ ◦ ≤ ◦ s ∩ f

∪ ◦ ≥ ◦ f.

Proof

ϕ ⊆ s
∪ ◦ ≤ ◦ s ∩ f

∪ ◦ ≥ ◦ f

⇐ { lemma 30 }
〈μX :: f

∪ ◦ ≥ ◦ f ∩ (I ∪ X ◦ G
∪)〉 ⊆ s

∪ ◦ ≤ ◦ s ∩ f
∪ ◦ ≥ ◦ f

⇐ { fixed-point induction }
f

∪ ◦ ≥ ◦ f ∩ (I ∪ (s∪ ◦ ≤ ◦ s ∩ f
∪ ◦ ≥ ◦ f) ◦ G

∪) ⊆ s
∪ ◦ ≤ ◦ s ∩ f

∪ ◦ ≥ ◦ f

⇐ { distributivity and [ R∪S = R∪ (¬R∩S) ]

with R,S := I , (s∪ ◦ ≤ ◦ s ∩ f
∪ ◦ ≥ ◦ f) ◦ G

∪ }
f

∪ ◦ ≥ ◦ f ∩ I ⊆ s
∪ ◦ ≤ ◦ s

∧ f
∪ ◦ ≥ ◦ f ∩ ¬I ∩ (s∪ ◦ ≤ ◦ s ∩ f

∪ ◦ ≥ ◦ f) ◦ G
∪ ⊆ s

∪ ◦ ≤ ◦ s

= { ≤ is reflexive and s is total, so I ⊆ s
∪ ◦ ≤ ◦ s

f is injective, so f
∪ ◦ ≥ ◦ f ∩ ¬I = f

∪ ◦ > ◦ f }
f

∪ ◦ > ◦ f ∩ (s∪ ◦ ≤ ◦ s ∩ f
∪ ◦ ≥ ◦ f) ◦ G

∪ ⊆ s
∪ ◦ ≤ ◦ s.

We continue with the left-hand side of the inclusion.
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f
∪ ◦ > ◦ f ∩ (s∪ ◦ ≤ ◦ s ∩ f

∪ ◦ ≥ ◦ f) ◦ G
∪

⊆ { assumption (29) and converse: G
∪ ⊆ s

∪ ◦ ≤ ◦ f }
f

∪ ◦ > ◦ f ∩ (s∪ ◦ ≤ ◦ s ∩ f
∪ ◦ ≥ ◦ f) ◦ (s∪ ◦ ≤ ◦ f)

⊆ { [ R∩S ⊆R ] with R,S := s
∪ ◦ ≤ ◦ s , f

∪ ◦ ≥ ◦ f

and monotonicity }
f

∪ ◦ > ◦ f ∩ s
∪ ◦ ≤ ◦ s ◦ s

∪ ◦ ≤ ◦ f

⊆ { s is functional, so s ◦ s
∪ ⊆ I, ≤ is transitive }

f
∪ ◦ > ◦ f ∩ s

∪ ◦ ≤ ◦ f

= { assumption : (28), i.e. (taking converse and complements)

s
∪ ◦ ≤ ◦ f = s

∪ ◦ ≤ ◦ s ∪ f
∪ ◦ ≤ ◦ f }

f
∪ ◦ > ◦ f ∩ (s∪ ◦ ≤ ◦ s ∪ f

∪ ◦ ≤ ◦ f)

= { f
∪ ◦ > ◦ f ∩ f

∪ ◦ ≤ ◦ f = ⊥⊥ }
f

∪ ◦ > ◦ f ∩ s
∪ ◦ ≤ ◦ s

⊆ { monotonicity }
s

∪ ◦ ≤ ◦ s.

Combining the two calculations, the proof is complete. �

Now we can proceed to show that every node is strongly connected to its
delegate.

Lemma 32. Suppose ϕ is the delegate function on G according to the times-
tamp f . Then

ϕ ⊆ equiv.G.

Proof

ϕ⊆ equiv.G

= { definition of equiv.G, distributivity }
ϕ⊆G∗ ∧ ϕ⊆ (G∗)∪

= { by definition of delegate (see theorem 26), ϕ⊆ (G∗)∪ }
ϕ⊆G∗

⇐ { (27) is a postcondition of repeated depth-first search }
ϕ ⊆ s

∪ ◦ ≤ ◦ s ∩ f
∪ ◦ ≥ ◦ f

⇐ { lemma 31 }
true. �
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Theorem 33. Suppose f is the finish timestamp computed by a repeated
depth-first search of a graph G. Then the delegate function on G according to
f is a representative function for strongly connected components of G. That is,
if ϕ denotes the delegate function,

ϕ
∪ ◦ ϕ = equiv.G.

Proof

ϕ
∪ ◦ ϕ = equiv.G

= { anti-symmetry }
equiv.G ⊆ ϕ

∪ ◦ ϕ ∧ ϕ
∪ ◦ ϕ ⊆ equiv.G

⇐ { theorem 26, lemma 32 }
true ∧ (equiv.G)∪ ◦ equiv.G ⊆ equiv.G

= { equiv.G is symmetric and transitive }
true. �

5 Conclusion

In one sense, this paper offers no new results. Graph-searching algorithms have
been studied extensively for decades and have long been a standard part of the
undergraduate curriculum in computing science. The driving force behind this
work has been to disentangle different elements of the correctness of the two-
stage algorithm for determining the strongly connected components of a graph:
our goal has been to clearly distinguish properties peculiar to depth-first search
that are vital to the first stage of the algorithm from properties of repeated
graph search that are exploited in its second stage. This is important because
an algorithm to determine strongly connected components of a graph does not
operate in a vacuum: the information that is gleaned is used to inform other
computations. For example, Sharir [16] shows how to combine his algorithm
with an iterative algorithm for data-flow analysis.

The primary contribution of the paper is, however, to show how the choice
of an appropriate algebraic framework enables precise, concise calculation of
algorithmic properties of graphs. Although with respect to graph algorithms
(as opposed to relation algebra in general) the distinction between “point-free”
and “pointwise” calculations has only been made relatively recently, this was
the driving force behind the author’s work on applying regular algebra to path-
finding problems [2,3].

The difference between point-free and pointwise calculations can be appreci-
ated by noting that nowhere in our calculations is there an existential quantifica-
tion or a nested universal quantification. Typical accounts of depth-first search
make abundant use of such quantifications; the resulting formal statements are
long and unwieldy, and calculations become (in our view) much harder to check:
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compare, for example, the concision of the three assumptions (27), (28) and (29)
with the three assumptions made by King and Launchbury [15].

Of course, our discussion of the two-stage algorithm is incomplete because we
have not formally established the properties of the first (depth-first search) stage
that we assume hold in the second stage. (The same criticism is true of [15].)
This we have done in [6]. Although the calculations are long—primarily because
there is a large number of verification conditions to be checked—we expect that
they would be substantially shorter and easier to check than formal pointwise
justifications of the properties of depth-first search.

Acknowledgements. Many thanks to the referees for their careful and detailed cri-
tique of the submitted paper. Thanks also for pointing out that explicit mention of the
“forefather” function, studied in detail in [9], has been elided in [10].
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Abstract. There are multiple ways to formalise the metatheory of type
theory. For some purposes, it is enough to consider specific models of a
type theory, but sometimes it is necessary to refer to the syntax, for exam-
ple in proofs of canonicity and normalisation. One option is to embed the
syntax deeply, by using inductive definitions in a proof assistant. How-
ever, in this case the handling of definitional equalities becomes techni-
cally challenging. Alternatively, we can reuse conversion checking in the
metatheory by shallowly embedding the object theory. In this paper, we
consider the standard model of a type theoretic object theory in Agda.
This model has the property that all of its equalities hold definitionally,
and we can use it as a shallow embedding by building expressions from
the components of this model. However, if we are to reason soundly about
the syntax with this setup, we must ensure that distinguishable syntac-
tic constructs do not become provably equal when shallowly embedded.
First, we prove that shallow embedding is injective up to definitional
equality, by modelling the embedding as a syntactic translation target-
ing the metatheory. Second, we use an implementation hiding trick to
disallow illegal propositional equality proofs and constructions which do
not come from the syntax. We showcase our technique with very short
formalisations of canonicity and parametricity for Martin-Löf type the-
ory. Our technique only requires features which are available in all major
proof assistants based on dependent type theory.
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1 Introduction

Martin-Löf type theory [32] (MLTT) is a formal system which can be used for
writing and verifying programs, and also for formalising mathematics. Proof
assistants and dependently typed programming languages such as Agda [43],
Coq [33], Idris [9], and Lean [36] are based on MLTT and its variations.
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Specific versions of MLTT have many interesting properties, such as canon-
icity, normalisation or parametricity. Normalisation in particular is practically
significant, since it enables decidable conversion checking and thus decidable type
checking. These properties are of metatheoretic nature; in other words, they are
answers to questions about type theory, rather than questions inside type theory.
We wish to effectively study these questions in a formal and machine-checked
setting.

1.1 Technical Challenges of Deep Embeddings

We refer to the type theory that we wish to study as the object (type) theory.
If we want to use Agda (or another proof assistant) to study it, the most direct
way is to use native inductive definitions to represent the syntax. This is called
a deep embedding. Such an embedding could be an inductive type representing
syntactic expressions Expr, with a constructor for every kind of term former.
Examples for such constructors are the following:

Pi : Expr → Expr → Expr

lam : Expr → Expr

app : Expr → Expr → Expr

The idea is simple: Pi takes two expressions e1, e2 as arguments, and if these
represent a type A and a type family B over A, then Pi e1 e2 represents the cor-
responding Π-type. Similarly, lam represents λ-abstraction and app application.

Of course, this inductive definition of Expr does not ensure that every expres-
sion “makes sense”; e.g. Pi e1 e2 will not make sense unless e1 and e2 are of the
form described above. We need to additionally define inductive relations which
express well-formedness and typing for specific syntactic constructs. This way of
defining raw terms together with well-formedness relations is called an extrinsic
approach.

Depending on the available notion of inductive types in the metatheory,
we can use more abstract representations. For example, if inductive-inductive
types [37] are available, then we can define a syntax which contains only well-
formed terms [10]. In this case, we have an intrinsic definition for the syntax. We
have the following signature for the type constructors of the embedded syntax,
respectively for contexts, types, substitutions and terms:

Con : Set
Ty : Con → Set

Sub : Con → Con → Set

Tm : (Γ : Con) → TyΓ → Set
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However, with the intrinsic inductive-inductive definitions we also need sep-
arate inductive relations expressing definitional equality. We can avoid these
relations by using a quotient inductive [2,29] syntax instead. This way, defini-
tional equality is given by equality constructors. For example, associativity of
type substitution would be given as the following [◦] equality, where we also
introduce substitution composition and type substitution first, and implicitly
quantify over variables:

· ◦ · : SubΘ Δ → SubΓ Θ → SubΓ Δ
· [ · ] : TyΔ → SubΓ Δ → TyΓ
[◦] : (A [σ]) [δ] = A [σ ◦ δ]

The quotient inductive definition allows higher-level reasoning than the
purely inductive-inductive one. In the former case, every metatheoretic con-
struction automatically respects definitional equality in the syntax, since it is
identified with meta-level propositional equality. In the latter case, object-level
definitional equality is just a relation, and we need to explicitly prove preserva-
tion in many cases.

However, even with quotient induction, there are major technical challenges
in formalising metatheory, and an especially painful issue is the obligation to
explicitly refer to conversion rules even in very simple constructions. For exam-
ple, we might want to take the zeroth de Bruijn index with type Bool in some
extended Γ�Bool typing context. For this, we first need a weakening substitution
declared in the syntax (or admissible from the syntax):

weaken : Sub (Γ � A) Γ

Now, we are able to give a general type for the zeroth de Bruijn index:

vzero : Tm (Γ � A) (A[weaken])

The weakening is necessary because A has type TyΓ, but we also want to mention
it in the Γ � A context.

Now, we might try to use vzero to get a term with type Tm (Γ � Bool)Bool.
However, we only get vzero : Tm (Γ � Bool) (Bool[weaken]). We also need to
refer to the computation rule for substituting Bool which just forgets about the
substitution:

Bool[] : Bool[σ] = Bool

Hence, the desired term needs to involve transporting over the Bool[]
equation:

vzeroBool : Tm (Γ � Bool)Bool
vzeroBool :≡ transport(TmΓ) Bool[] vzero
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This phenomenon arises with extrinsic and purely inductive-inductive syn-
taxes as well; in those cases, instead of transporting along an equation, we need
to invoke a conversion rule for term typing. For extrinsic syntaxes, we addition-
ally have a choice between implicit and explicit substitution, but this choice does
not change the picture either.

Hence, all of the mentioned deeply embedded syntaxes require constructing
explicit derivations of definitional equalities. In more complex examples, this is
a technical burden which is often humanly impossible to handle. Also, proof
assistants are often unable to check formalisations within sensible time because
of the huge size of the involved proof terms.

1.2 Reflecting Definitional Equality

To eliminate explicit derivations of conversion, the most promising approach is
to reflect object-level definitional equality as meta-level definitional equality. If
this is achieved, then all conversion derivations can be essentially replaced by
proofs of reflexivity, and the meta-level typechecker would implicitly construct
all derivations for us.

How can we achieve this? We might consider extensional type theory with
general equality reflection, or proof assistants with limited equality reflection.
In Agda there is support for the latter using rewrite rules [12], which we have
examined in detail for the previously described purposes. In Agda, we can just
postulate the syntax of the object theory, and try to reflect the equations. This
approach does work to some extent, but there are significant limitations:

– Type-directed equalities cannot be reflected, such as η-rules for empty sub-
stitutions and unit types, or definitional proof irrelevance for propositions.
Rewrite rules must be syntax-directed and have a fixed direction of rewriting.

– Rewrite rules yield poor evaluation performance and hence poor type checking
performance, because they are implemented using a general mechanism which
does not know anything about the domain, unlike the meta-level conversion
checker.

– In the current Agda implementation (version 2.6), rewrite rules are not flexible
enough to capture all desired computational behavior. For example, the left
hand side of a rewrite rule is treated as a rigid expression which is not refined
during the matching of the rule. Given an f : Bool → Bool → Bool function,
if we add the rewrite rule ∀x. f x (notx) = true, the expession f true false will
not be rewritten to true, since it does not rigidly match the notx on the
left hand side. In practice, this means that an unbounded number of special-
cased rules are required to reflect equalities for a type theory. Lifting all the
restricting assumptions in the implementation of rewrite rules would require
non-trivial research effort.

It seems to be difficult to capture the equational theory of a dependent object
theory with general-purpose implementations of equality reflection. In the future,
robust equality reflection for conversion rules may become available, but until
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then we have to devise workarounds. If the object theory is similar enough to
the metatheory, we can reuse meta-level conversion checking using a shallow
embedding.

In this paper we describe such a shallow embedding. The idea is that in the
standard model of the object theory equations already hold definitionally, and
so it would be convenient to reason about expressions built from the standard
model as if they came from arbitrary models, e.g. from the syntax.

However, we should only use shallow embeddings in morally correct ways:
only those equations should hold in the shallow embedding that also hold in
the deeply embedded syntax. In other words, we should be able in principle to
translate every formalisation which uses shallow embedding to a formalisation
which uses deeply embedded syntax.

To address this, first we prove that shallow embedding is injective up to
definitional equality : the metatheory can only believe two embedded terms defi-
nitionally equal if they are already equal in the object theory. This requires us
to look at both the object theory and the metatheory from an external point of
view and reason about embedded meta-level terms as pieces of syntax.

Second, we describe a method for hiding implementation details of the stan-
dard model, which prevents constructing terms which do not have syntactic
counterparts and which also disallows morally incorrect propositional equalities.
This hiding is realised with import mechanisms; we do not formally model it,
but it is reasonable to believe that it achieves the intended purposes.

1.3 Contributions

In order to reason about the metatheory of type theory in a proof assistant, we
present a version of shallow embedding which combines the advantage of shallow
embeddings (many definitional equalities) with the advantage of deep embeddings
(no unjustified equalities).
In detail:

1. We formalise in Agda the standard “Set” model (metacircular interpretation
[22]) of a variant of MLTT with a predicative universe hierarchy, Π-types,
Booleans, Σ-types and identity types (Sect. 3). All equalities hold definition-
ally in this model. A variation of this (see below) is the model we propose for
metatheoretic reasoning.

2. For an arbitrary model of the object theory, we construct the termified model
(Sect. 4), where contexts, types, substitutions and terms are all modelled by
closed terms. We formalise the shallow embedding into Agda as the inter-
pretation of the object syntax into its termified model. We prove that this
translation is injective (Sect. 5), thereby showing that definitional equality of
shallowly embedded terms coincides with object-theoretic definitional equal-
ity. This result holds externally to Agda (like parametricity): we need to
step one level up and consider the syntax of Agda as well. Additionally, we
show that internally to Agda, injectivity of the standard interpretation is not
provable.



334 A. Kaposi et al.

3. We describe a way of hiding the implementation of the standard model
(Sect. 6), in order to rule out constructions and equality proofs which are
not available in the object syntax.

4. Using shallowly embedded syntax, we provide a concise formalisation of
canonicity for MLTT (Sect. 7.2), using a proof-relevant logical predicate
model in a manner similar to [14] and [27]. We also provide a formalisation
of a syntactic parametricity translation [6] of MLTT in Sect. 7.1.

The contents of Sects. 3, 4, 6 and 7 were formalised [30] in Agda. Additional
documentation about technicalities is provided alongside the formalisation.

1.4 Related Work

Work on embedding the syntax of type theory in type theory spans a whole
spectrum from fully deep embeddings through partly deep embeddings to fully
shallow ones.

Deep embeddings give maximal flexibility but at the high price of explicit
handling of definitional equality derivations. Extrinsic deep embeddings of type
theory are given in Agda [1,18] and Coq [44]. Meta Coq provides an extrinsic
deep embedding of the syntax of almost all of Coq inside Coq [5]. An intrin-
sic deep embedding with explicit conversion relations using inductive-inductive
types is given in [10] and another one using inductive-recursive types is described
by [16].

Quotient inductive-inductive types are used in [3,4] to formalise type theory
in a bit more shallow way reusing propositional equality of the metatheory to
represent conversion of the object theory.

Higher-order abstract syntax (HOAS) [23,39] uses shallow embedding for the
substitution calculus part of the syntax while the rest (e.g. term formers such as
λ and application) are given deeply, using the function space of the metalanguage
to represent binders. It has been used to embed simpler languages in type theory
[11,17,40], however, to our knowledge, not type theory itself.

McBride [34] uses a mixture of deep and shallow embeddings to embed an
intrinsic syntax of type theory into Agda. In this work, inductively defined types
and terms are given mutually with their standard interpretation, and while there
are deep term and type codes, all indexing in the syntax is over the standard
model. In a sense, this is an extension of inductive-recursive type codes to codes
of terms as well. This gives a usability improvement compared to deep embedding
as equality of indices is decided by the metatheory. However, definitional equality
of terms still has to be represented deeply.

Shallow embedding has been used to formalise constructions on the syntax
of type theory. [8,26,42] formalise the correctness of syntactic translations using
shallow embeddings in Coq. [28,29] formalise syntactic translations and mod-
els of type theory depending on previous shallow models. Our work provides a
framework in which these previous formalisations could be rewritten in a more
principled way.
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Reflection provides an interface between shallow and deep embeddings. Meta
Coq [5] provides a mechanism to reify shallow Coq terms as deeply embedded
syntax. The formalisation happens shallowly, making use of the typechecker of
Coq, and deeply embedded terms are obtained after reification. The motivation
is very similar to ours, but their syntax is extrinsic while we use an intrinsic
syntax.

More generally, using type theory as an internal language of a model can be
seen as working in a shallow embedding. Synthethic homotopy theory (e.g. [24])
can be seen as a shallow embedding in type theory, compared to a deep embed-
ding where homotopy theory is built up from the ground analytically. [38] uses
MLTT extended with some axioms to formalise arguments about a presheaf
model, [15] uses MLTT as the internal language of a cubical set model, [29] uses
MLTT as the internal language of a categories-with-families model.

Our wrapped shallow embedding (Sect. 6) resembles the method by Dan
Licata [31] to add higher inductive types to Agda with eliminators comput-
ing definitionally on point constructors. He also uses implementation hiding to
disallow pattern matching but retain definitional behaviour.

2 The Involved Theories

In this paper, we altogether need to involve three different theories. We give a
quick overview below, then describe them and the used notation in this section.

1. Agda, which we use in two ways: as a metatheory when using shallow embed-
ding, but also as an object theory, when we study embedding from an external
point of view. In the latter case, we only talk about a small subset of Agda’s
syntax which is relevant to the current paper.

2. The external metatheory. We assume that this is a conventional exten-
sional type theory with a universe hierarchy. However, we are largely agnostic
and set theory with a suitable notion of universe hierarchy would be adequate
as well. We primarily use the external metatheory to reason about Agda’s syn-
tax. However, since this metatheory is extensional, we can omit all coercions
and transports when working inside it informally, and thus we also use it to
obtain a readable notation.

3. The object theory, which we wish study by shallow embedding into Agda.
We single out a particular version of MLTT as object theory, and describe it
in detail. However, our shallow embedding should work for a wider range of
object theories; we expand on this in Sect. 8.1.

2.1 Agda

Agda is a proof assistant based on intensional type theory. When we present def-
initions in Agda, we use a monospace font. We describe below the used features
and notation.
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Universes are named Set i. Also, we use universe polymorphism which allows
us to quantify over (i : Level). We use zero and suc for the zero and successor
levels, and for taking least upper bounds of levels.

Dependent functions are notated . There is also an implicit func-
tion space , such that any expression with this type is implicitly
applied to an inferred A argument. In this paper, we also use implicit quan-
tification over variables in type signatures. For example, instead of declaring
a type as , we may write . This shorthand
(although supported in the latest 2.6 version of Agda) is not used in the actual
formalisations.

We also use Σ types, unit types, Booleans and propositional equality. There
are some names which coincide in the object theory and in agda, and we dis-
ambiguate them with a m. prefix (which stands for “meta”). So, we use

for dependent pairs with (t m., u) as constructor and m.fst and m.snd as
projections. We use m.Bool, m.true and m.false for Booleans. We use for
the unit type with constructor m.tt, and use for propositional equality
with m.refl and m.J.

2.2 The External Metatheory

This is an extensional type theory, with predicative universes Seti, dependent
functions (x : A) → B, and dependent pairs as (x : A)×B. Propositional equality
is denoted · = · , with constructor refl. We have equality reflection, which means
that if p : t = u is derivable, then t and u are definitionally equal. We also have
uniqueness of identity proofs, meaning that for any p, q : t = u we also have
p = q.

2.3 The Object Type Theory

We take an algebraic approach to the syntax and models of type theory. There
is an algebraic signature for the object type theory, which can be viewed as a
large record type, listing all syntactic constructions along with the equations
for definitional equality. Models of a type theory are particular inhabitants of
this large record type, and the syntax of a type theory is the initial model
in the category of models, where morphisms are given by structure-preserving
families of functions. The setup can be compared to groups, a more familiar
algebraic structure: there is a signature for groups, models are particular groups,
morphisms are group homomorphisms, and the initial group (“syntax”) is the
trivial group (free group over the empty set). A displayed model over a model
M is a way of encoding a model together with a morphism into M. Displayed
models can be viewed as containing induction motives and methods for a theory
(following the nomenclature of [35]), hence we need this notion to talk about
induction over the syntax. For instance, a displayed model for the theory of
natural numbers contains a family P : N → Set (the induction motive) together
with induction methods showing that P is inhabited at zero and taking successors
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preserves P . A generic method for deriving the notions of model, morphism and
displayed model from a signature is given in [29].

More concretely, our object type theory is given in Figs. 1a and b as a category
with families (CwF) [20] extended with additional type formers. We present the
signature of the object theory in an extensional notation, which allows us to omit
transports along equations. We also implicitly quantify over variables occurring
in types, and leave these parameters implicit when we apply functions as well.
Additionally, we extend the usual notion of CwF with indexing by metatheoretic
natural numbers, which stand for universe levels.

This notion of model yields a syntax with explicit substitutions. The core
structural rules and the theory of substitutions are described by the components
from Con to , ◦. Contexts (Con) and substitutions (Sub) form a category (id to
idr). There is a contravariant, functorial action of substitutions on types and
terms ( · [ · ] to [◦]), thus types (of fixed level) form a presheaf on the category of
contexts and terms form a presheaf on the category of elements of this presheaf.
The empty context (•) is the terminal object.

Contexts can be extended by · � · . Substitutions can be viewed as abstract
lists of terms, with · , · allowing us to extend a substitution with a term. We can
also take the “tail” and the “head” of an extended σ : SubΓ (Δ�A) substitution;
the tail is given by p ◦ σ : SubΓ Δ, and the head is given by q[σ] : TmΓ A[p].
p is usually called a weakening substitution, and q corresponds to the zeroth
de Bruijn index. We denote n-fold composition of the weakening substitution
p by pn (where p0 = id), and we denote De Bruijn indices the following way:
v0 := q, v1 := q[p], . . . , vn := q[pn]. We define lifting of a substitution σ : SubΓ Δ
by σ↑ : Sub (Γ � A[σ]) (Δ � A) := (σ ◦ p, q). We observe that it has the property
↑[] : (σ↑) ◦ (δ, t) = (σ ◦ δ, t).

Π-types are characterised by a natural isomorphism between TmΓ (ΠAB)
and Tm (Γ � A)B, with lam and app being the morphism components. This
notion of application is different from the conventional one, but in our setting
with explicit substitutions, the two applications are inter-derivable, and our app
is simpler to interpret in models. We define conventional application as t $ u :=
(app t)[id, u]. A ⇒ B abbreviates non-dependent functions, and is defined as
ΠA (B[p]).

Σ-types are given by the constructor · , · and projections fst and snd, and we
also support the η-law. There is a unit type � with one constructor tt and an
η-law. We have a hierarchy of universes, given by natural isomorphisms between
Ty iΓ and TmΓ (U i) for every i. The isomorphism consists of a coding morphism
(c) and a decoding morphism, denoted by underlining · . This presentation of uni-
verses is due to Thierry Coquand, and has been used before in [25] for instance.
In the Agda formalisations, where we cannot underline, we write El for the
decoding morphism.

We also have a propositional identity type Id, with usual constructor refl and
elimination J with definitional β-rule.
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(a)

Fig. 1. The object type theory as a generalised algebraic structure. σ↑ abbreviates
(σ ◦ p, q).
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(b)

Fig. 1. (continued)
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Note that terms of Π-, Σ- and U-types are all characterized by natural isomor-
phisms, with substitution laws corresponding to naturality conditions. Hence, we
only need to state naturality in one direction, and the other direction can be
derived. For example, we only state the [] substitution rule, and the other law
for substituting c can be derived.

Remark. It is important that we present the notion of signature in extensional
type theory instead of in Agda. The reason is that many components in the
signature are well-typed only up to previous equations in the signature, and
hence would need to include transports in intensional settings. The simplest
example for this is the �β2 component with type q[σ, t] = t. The left side of the
equation has type TmΓ (A[p][σ, t]), while the right side has type TmΓ (A[σ]),
and the two types can be shown equal by [◦] and �β1, so in intensional type
theory we would need to transport one side.

Writing out the whole signature with explicit transports is difficult. The
number of transports rapidly increases as later equations need to refer to trans-
ported previous types, and we may also need to introduce more transports just
to rearrange previous transports over different equations. In fact, the current
authors have not succeeded at writing out the type of the J[] substitution rule
in intensional style. This illustrates the issue of explicit conversion derivations,
which we previously explained in Sect. 1.1.

3 The Standard Model and Shallow Embedding

Previously, we described the notion of signature for the object theory, but as
we remarked, merely writing down the signature in Agda is already impractical.
Fortunately, we do not necessarily need the full intensional signature to be able
to work with models of the object theory. The reason is that some equations can
hold definitionally in specific models, thereby cutting down on the amount of
transporting required. For example, if [◦] and �β1 hold definitionally in a model,
then the type of �β2 need not include any transports.

The standard model of the object theory in Agda has the property that all of
its equations hold definitionally. It was described previously by Altenkirch and
Kaposi [3] similarly to the current presentation, although for a much smaller
object theory.

Before presenting the model, we explain a departure from the signature
described in Sect. 2.3. In the signature, we used natural numbers as universe
levels, but in Agda, it is more convenient to use universe polymorphism and
native universe levels instead. Hence, the types of the Con,Ty,Tm and Sub com-
ponents become as follows:
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Instead of using level polymorphism, we could have used the types given in
Fig. 1a together with an N-indexed inductive-recursive universe hierarchy, which
can be implemented inside Set0 in Agda [19]. This choice would have added some
boilerplate to the model. We choose now the more convenient version, but we
note that the metatheory of universe polymorphism and universe polymorphic
algebraic signatures should be investigated in future work.

3.1 The Standard Model

We present excerpts from the Agda formalisation, making some quantification
implicit to improve readability. Let us first look at the interpretation of the type
constructors of the object theory:

Contexts are interpreted as types, dependent types as type families, substi-
tutions and terms as functions. Type and term substitution and substitution
composition can be all implemented as (dependent) function composition.

The empty context becomes the unit type, context extension and substitution
extension are interpreted using the meta-level Σ-type.
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We interpret object-level universes with meta-level universes at the same
level. Since Agda implements Russell-style universes, coding and decoding are
trivial, and holds definitionally in the model.

For Π, Σ, Bool and Id, the interpretation likewise maps object-level con-
structions directly to their meta-level counterparts; see the formalisation [30] for
details. We note here only the J[] component: its type and definition are trivial
here thanks to the lack of transports. Below, refers to the lifting of

to .

3.2 Shallow Embedding

Having access in Agda to the standard model of the object theory, we may now
form expressions built out of model components, for example, we may define a
polymorphic identity function as follows. Here, and are shorthands for de
Bruijn indices.
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The basic idea of shallow embedding is to view expressions such as idfun and
its type, which are built from components of the standard model, as standing
for expressions coming from an arbitrary model. This arbitrary model is often
meant to be the syntax, but it does not necessarily have to be.

With idfun, we can enjoy the benefits of reflected equalities: we can write
down without transports, because the types of de Bruijn
indices compute by definition to U zero from .

A larger example for shallow embedding is presented in Sect. 7.2: there we
prove canonicity by induction on the syntax, but represent the syntax shallowly,
so we never have to prove anything about syntactic definitional equalities. Other
examples are syntactic models [8]: this means that we build a model of an object
theory from the syntax of another object theory. Every such model yields, by
initiality of the syntax, a syntactic translation. We also present in Sect. 7.1 a
formalisation of a syntactic parametricity translation in this style, using the
same shallowly embedded theory for both the source and target syntaxes.

However, “pretending” that embedded expressions come from arbitrary mod-
els is only valid if we:

1. Do not construct more contexts, substitutions, terms or types than what are
constructible in the syntax.

2. Do not prove more equations than what are provable about the syntax.

We will expand on the first concern in Sect. 6. With regards to the second
concern, it would be addressed comprehensively with a proof that the standard
model is injective. We define its statement as follows. Assume that we have a
deeply embedded syntax for the object theory in Agda, with components named
as Con, Sub and so on. By initiality of the syntax, there is a model morphism from
the syntax to the standard model, which includes as components the following
interpretation functions:

Injectivity may refer to these functions; for example, injectivity on terms is
stated as follows:

However, we can show by reasoning external to Agda that injectivity of the
standard model is not provable.

Theorem 1. The injectivity of the standard model is not provable in Agda.
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Proof. We note that the object syntax includes functions which are definitionally
inequal but equal extensionally, such as the following two functions:

If function extensionality is available in the metatheory, the and
interpretations of these terms can be proven to be propositionally equal.

Therefore, injectivity of the standard model and function extensionality are
incompatible. But since we know that MLTT is consistent with function exten-
sionality, it follows that injectivity of the standard model is not provable. �	

This shows that the internal statement of injectivity is too strong. We weaken
it by considering injectivity up to Agda’s definitional equality. This requires us
to step outside Agda and reason about its syntax.

3.3 An External View of the Standard Model

Let us consider some computation rules for the interpretation function of the
standard model:

If we consider the results of the interpretation function from the “outside”,
we see that interpreted object-theoretic terms evaluate to closed Agda terms.
For example, if we have a context in the object theory:

Its interpretation evaluates to the following closed Agda term (a left-
nested Σ-type):
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Hence, externally, the interpretation function implements a syntactic trans-
lation which converts any object-theoretic construction to a closed Agda term.
We model shallow embedding as this syntactic translation: whenever we write a
shallowly embedded expression like , there is a cor-
responding expression in the object theory with the same shape, but in Agda this
expression can be evaluated further by unfolding the definitions of the standard
model.

In the next section we formalise this syntactic translation, and in Sect. 5 we
additionally prove that it is injective. From this it follows that shallow embedding
does not introduce new definitional equalities.

4 The Termification of a Model

For any given model M = (Con,Ty,Sub,Tm, . . .) of the object type theory, we
can construct a new model T M = (ConT ,TyT ,SubT ,TmT , . . .). We call T M the
termification of M. The idea is that every context, type, substitution, and term
can be regarded as a very specific term in the empty context; and all operations
can be seen as operations on these terms.

If we take M to be the syntax, by initiality we get a morphism to T M, which
we use to model shallow embedding as a syntactic translation. Note that this
translation formally goes from the object theory to the object theory. This means
that we reuse the object theory to formalise the relevant syntactic fragment
of Agda. This is a fairly strong simplifying assumption, which relies on Agda
conforming to the CwF formulation of type theory. However, it is also necessary,
because formalising the actual implementation of Agda is not feasible.

Although our main interest is the termification of the syntax, the construction
works for arbitrary models, so we present it in this generality.

The four sorts of the new model T M are the following:

ConT i := Tm • (U i)
TyT j Γ := Tm • (Γ ⇒ (U j))
SubT Γ Δ := Tm • (Γ ⇒ Δ)
TmT Γ A := Tm • (ΠΓ appA)

All contexts, types, substitutions, and terms of the new model T M are M-
terms in the empty M-context. It is not hard to see that the definitions above
type-check: for example, if we have Γ : ConT i and A : TyT j Γ, then by definition
Γ : Ty i • and appA : Ty j (• � Γ), which means we can build ΠΓ appA as in the
definition of TmT Γ A.

The object theory, as shown in Figs. 1a and b, has 29 operators. In Fig. 2, we
show how all 29 operators (together with the four sorts) of the model T M are con-
structed from components of M. Finally, it is straightforward albeit tedious to
check the 37 equalities that are required to hold. We have done the calculations
both with pen and paper and in Agda. We do not give explicit paper proofs, but we
refer to our formalisation instead: there, we state all equalities explicitly, and they
are all proved using m.refl. This concludes the construction of the model T M.
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Fig. 2. The termification construction
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5 The Injectivity Result

In this section, we show that we can shallowly embed the syntax without creating
new definitional equalities.

If we apply the termification construction of Sect. 4 on the syntax Syn, we
get a model T Syn. Further, we have a morphism of models � ·� : Syn → T Syn by
the initiality of the syntax which maps • : Con 0 to �•� = •T , and which maps
Γ � A : Con i to �Γ � A� = �Γ��T �A�, and so on.

An interesting property of the morphism � ·� is that it is injective. Before
stating precisely what this means, we need the following definition:

Definition 1. Given two contexts Γ : Con i, Δ : Con j in the object theory [or
any model M], we write Γ 
 Δ for the type in the metatheory whose elements
are quadruples F = (F1, F2, F12, F21) as follows: F1 and F2 are substitutions in
the syntax [more generally, in M] and F12, F21 are equalities,

F1 : SubΓ Δ
F2 : SubΔΓ
F12 : F2 ◦ F1 = idΓ

F21 : F1 ◦ F2 = idΔ.

We call such a quadruple an isomorphism.

Theorem 2. The morphism of models � ·� : Syn → T Syn is injective, in the
following sense:

(T1) If Γ : Con i,Δ : Con j are contexts such that �Γ� = �Δ�, then we have
Γ 
 Δ.

(T2) If A,B : Ty iΓ are types such that �A� = �B�, then we have A = B.
(T3) If σ, τ : SubΓ Δ are substitutions such that �σ� = �τ�, then σ = τ .
(T4) If s, t : TmΓ A are terms such that �s� = �t�, then we have s = t.

Proof. We show the following metatheoretic statements:

(P1) For a context Γ : Con i, we have an element (Γ1,Γ2,Γ12,Γ21) of

Γ 

(
• � �Γ�

)

(P2) For a type A : Ty iΓ, we have an equation

A= : A = app �A�[Γ1]

(P3) For a substitution σ : SubΓ Δ, we have an equation

σ= : σ = Δ2 ◦ (ε, app �σ�) ◦ Γ1
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(P4) For a term t : TmΓ A, we have an equation

t= : t = (app �t�)[Γ1]

Of course, the statement of the theorem follows easily from (P1)–(P4);
for example, if we have �s� = �t� as in (T4), we get s = (app �s�)[Γ1] =
(app �t�)[Γ1] = t from the above.

Before verifying (P1)–(P4), we can first convince ourselves that these expres-
sions type-check in the extensional type theory which we use as metatheory. For
(P1), this is clear. In (P2), the types are as follows:

A : Ty iΓ
thus �A� : Tm • (�Γ� ⇒ U i)

thus app �A� : Tm (• � �Γ�)U i

thus app �A� : Ty i (• � �Γ�)

thus app �A�[Γ1] : Ty iΓ

The case (P4) is almost identical to this, but needs to make use of (P2):

t : TmΓ A

thus �t� : Tm • (Π �Γ� app �A�)

thus app �t� : Tm (• � �Γ�) app �A�

thus (app �t�)[Γ1] : TmΓ (app �A�[Γ1])

by A= (app �t�)[Γ1] : TmΓ A

One checks similarly that (P3) type-checks.
We prove (P1)–(P4) by constructing a displayed model. As described in

Sect. 2.3, this corresponds to “induction over the syntax”.
To construct the displayed model, we need to cover the four sorts, 29 oper-

ators, and 37 equalities in Figs. 1a and b. The components for the four sorts
are given by (P1)–(P4). Two of the 29 operators construct a context, namely
• and �; for these, we need to construct an isomorphism. For the remaining 27
operators, we need to prove an equality. The components for the 37 equalities
are automatic: Since (P2)–(P4) are equalities, all equality components of the
displayed model amount to equalities between equalities, which are trivial in our
extensional metatheory. Note that none of the equalities in Figs. 1a and b are
between contexts.

We start with the two operators that construct contexts. The case for the
empty context is easy: we need to find (•1, •2, •12, •21) showing

• 

(
• � �•�

)
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This is simple:

•1 : Sub • (• � �•�)

•1 := (ε, tt)
•2 : Sub (• � �•�) •

•2 := ε

The equality •12 follows from •η, and the equality •21 follows from �η and
�η.

Next, we have the case Γ�A, where we can already assume the property (P1)
for Γ and (P2) for A. After unfolding the definition of �Γ � A� = �Γ��T �A�, we
see that we have to construct an isomorphism

(Γ � A) 

(
• � Σ �Γ� app �A�

)

The two substitutions are:

(Γ � A)1 : Sub (Γ � A)
(
• � Σ �Γ� app �A�

)

(Γ � A)1 :=
(
ε, (v0[Γ1 ◦ p], v0)

)

(Γ � A)2 : Sub
(
• � Σ �Γ� app �A�

)
(Γ � A)

(Γ � A)2 :=
(
Γ2 ◦ (ε, fst v0), snd v0

)

Quick calculations give us

(Γ � A)1 ◦ (Γ � A)2
=

(
ε, (v0[Γ1 ◦ p], v0)

)
◦

(
Γ2 ◦ (ε, fst v0), snd v0

)

=
(
ε, (v0[Γ1 ◦ Γ2 ◦ (ε, fst v0)], snd v0)

)

=
(
ε, (fst v0, snd v0)

)

=
(
ε, v0

)

= (p, q)
= id

as well as

(Γ � A)2 ◦ (Γ � A)1
=

(
Γ2 ◦ (ε, fst v0), snd v0

)
◦

(
ε, (v0[Γ1 ◦ p], v0)

)

=
(
Γ2 ◦ (ε, v0[Γ1 ◦ p]), v0

)

=
(
Γ2 ◦ ((p, q) ◦ (Γ1 ◦ p)), v0

)

=
(
Γ2 ◦ Γ1 ◦ p, v0

)

= (p, q)
= id
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The first of the remaining 27 operations is the identity substitution id :
SubΓ Γ, where we can already assume property (P1) for Γ. We need to show

id= : id = Γ2 ◦ (ε, app �id�) ◦ Γ1

We unfold �id� = idT = lam v0 and use Πη to simplify the right-hand side of the
equation to

Γ2 ◦ (ε, v0) ◦ Γ1,

which by •η, �η and Γ12 is equal to id as required.
The calculations for the remaining 26 operations are similar, Appendix A

contains all of them in full detail. For completeness, the components discussed
above are included in the figure as well. This completes the proof of the injectivity
result. �	

6 Wrapped Standard Model

In the previous section, we have shown that our specific version of shallow embed-
ding does not introduce new definitional equalities. However, in practice we can
only apply Theorem 2 if there actually exists an object-theoretic expression
which is embedded, but there are many inhabitants in the standard model which
do not arise as interpretations of object-theoretic expressions.

For example, contexts are interpreted as left-nested Σ-types, but since Con
i is defined as Set i in the standard model, we can just inhabit Con zero with
m.Bool or any small Agda type. This would be morally incorrect in a shallow
embedding situation, since we might rely on properties that are not provable
about the object syntax.

Additionally, even if we avoid extraneous inhabitants, some propositional
equalities may be provable in the standard model, which are provable false in
the syntax. In Proof 1 we gave such an example, where function extensionality
yields additional equality proofs. In general, we want the freedom to assume
function extensionality and other extensionality principles (e.g. for propositions
or coinductive types) in the metatheory, so outlawing these principles in the
metatheory is not acceptable as an enforcer of moral conduct.

Our proposed enforcement method is the following: wrap the interpretations
of contexts, terms, substitutions and types in the standard model in unary record
types, whose constructors are private and thus invisible to external modules. For
contexts and types, the wrappers are as follows:
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We define Sub' and Tm' likewise, with mks, and , and put these
four types in a module. In a different module, we define the “wrapped” standard
model. The sorts in the model are defined using the wrapper types:

The rest of the model needs to be annotated with wrapping and unwrapping.
Some examples for definitions, omitting type declarations for brevity:
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Importantly, the wrapped model still supports all equations definitionally.
This is possible because the wrapper record types support η-equality, which
expresses that is definitionally equal to , and likewise for the other
wrappers. In short, unary records in Agda yield isomorphisms of types up to
definitional equality.

The usage of the wrapped standard model for shallow embedding is simply as
follows: we import the wrapped standard model, but do not import the module
containing the wrapper types.

This way, there is no way to refer to the internals of the model. In fact, the
only way to construct any inhabitants of the embedded syntax in this setup is
to explicitly refer to the components of the wrapped model. For instance, Con
zero cannot be anymore inhabited with m.Bool, since m.Bool has type , but
we need a Con’ zero, which we can only inhabit now using the empty context
and context extension.

7 Case Studies

As a demonstration of using the shallowly embedded syntax, in this section
we describe our formalisation of a syntactic parametricity translation and a
canonicity proof for MLTT. These are formalised as displayed models over the
syntax (that is, over the wrapped standard model described in Sect. 6).

7.1 Parametricity

Parametricity was introduced by Reynolds [41] in order to formalise the notion
of representation independence. The unary version of his parametricity theorem
states that terms preserve logical predicates: if a predicate holds for a semantic
context, then it holds for the interpretation of the term at that context. Reynolds
formulated parametricity as a model construction of System F. Bernardy et al.
[6] noticed that type theory is powerful enough to express statements about
its own parametricity and defined parametricity as a syntactic operation. This
operation turns a context into a lifted context which has a witness of the logical
predicate for each type in the original context. There is a projection from this
lifted context back to the original context. A type A is turned into a predicate
over A in the lifted context and a term is turned into a witness of the predicate
for its type in the lifted context. We note that a more indexed version of this
translation can be defined: This turns a context is into a type in the original
context (that is, a predicate over the original context), a type into a predicate
over the original context, a witness of the predicate for the original context and
an element of the type. Substitutions and terms are turned into terms expressing
preservation of the predicates. We define this indexed version of the translation
in Agda.

The sorts are given as follows in our displayed model. We use S. prefixes to
refer to the syntax, and use superscripts on variables coming from the syntax.
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A context over a syntactic context is a syntactic type in . A type over a
syntactic type is a syntactic type in the context extended with two more
components: , that is the logical predicate for and itself (which has to
be weakened using S.p). A substitution over is a term in context
which has a type saying that the predicate holds for . We have the analogous
statement for terms. We refer to the formalisation [30] for the rest of the displayed
model, it follows the original parametricity translation.

All equalities of the displayed model hold definitionally. Compared to a pre-
vious formalisation using a deep embedding [3], it is significantly shorter (322
vs. 1682 lines of code – we only counted the lines of code for the substitution
calculus, Π and the universe because only these were treated in the previous
formalisation). Note that although we implemented the displayed model, we did
not implement the corresponding eliminator function which translates an S-term
into its interpretation; we discuss such eliminators in Sect. 8.2.

7.2 Canonicity

Canoncity for type theory states that a term of type Bool in the empty context
is equal to either true or false. Following [14,27] this can be proven by another
logical predicate argument. We formalise this logical predicate as the following
displayed model. We list the definitions for sorts and Bool for illustration.
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A context over is a proof-relevant predicate over closed substitutions into
. A type over is a proof-relevant predicate over closed terms of type A where

the type is substituted by a closed substitution for which the predicate holds.
A substitution over is a function which says that if the predicate holds for
a closed substitution then holds for composed with . A term over
similarly states that if holds for a , then A holds for .

The predicate Bool holds for a closed term of type S.Bool if there
is a metatheoretic boolean ( ) which when converted to a syntactic
boolean is equal to : in short, it holds if is either S.true or S.false. The
equality is expressed as a metatheoretic equality , which we generally use for
representing conversion for the object syntax.

The formalisation of canonicity consists of roughly 1000 lines of Agda code.
However, out of this, 400 lines are automatically generated type signatures, which
are of no mathematical interest, and are necessary only because of technical prob-
lems in Agda’s inference of implicit parameters. These problems also prevented
us from formalising the J[] component in the displayed model, but otherwise the
formalisation is complete.

7.3 Termification and Injectivity

We also implemented termification (Sect. 4) in Agda as a model and it is also
possible to implement the injectivity proof (Sect. 5) using the shallow embedding,
without postulating an elimination principle of the shallow syntax (the Agda
proof of injectivity is not yet completed). Injectivity is given by a displayed
model over the syntax which contains both the termification model of the syntax
and the (P1)–(P4) components of the injectivity proof as follows. We use TS.
prefix to refer to components of the termified model for the syntax.
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The components are just the termification model while the rest of the
record types implement (P1)–(P4). Compared to the proof presented in this
paper using the extensional metatheory, in Agda the last equation contains an
explicit transport m.tr over the equality proof .

8 Discussion

8.1 Range of Embeddable Object Theories

So far, we focused on a particular object theory, which was described in Sect. 2.3
in detail. However, there is a rather wide range of object theories suitable for
shallow embedding. There are some features which the object theory must pos-
sess. We discuss these in the following in an informal way.

First, object theories must support a “standard model” in the metatheory,
which is injective in the external sense described in our paper. External injec-
tivity is important: for example, for a large class of algebraic theories, terminal
models exist (see e.g. [29]), where every type is interpreted as the unit type. The
motivation of shallow embedding is to get more definitional equalities, but in
terminal models we get too much of it, because all inhabitants are definitionally
equal. Injectivity filters out dubious embeddings like terminal models.

The notion of standard model is itself informal. We may say that a standard
model should interpret object-level constructions with essentially the same meta-
level constructions. This is clearly the case when we model type theories in Agda
which are essentially syntactic fragments of Agda. However, this should not be
taken rigidly, as there might be externally injective shallow embeddings which
do not fall into the standard case of embedding syntactic fragments. Thus far
we have not investigated such theories; this could be a potential line of future
work.

Some language-like theories, although widely studied, do not seem to sup-
port shallow embedding. For example, partial programming languages do not
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admit a standard Set-interpretation; they may have other models, but those are
unlikely to support useful definitional equalities, when implemented in MLTT.
However, a potential future proof assistant for synthetic domain theory [7] could
support useful shallow embedding for partial languages. Likewise, variants of
type theories such as cubical [13] or modal type theories could present further
opportunities for shallow embeddings which are not available in MLTT.

On the other hand, undecidable definitional equality in the object theory
does not necessarily preclude shallow embedding. For example, we could add
equality reflection to the object theory considered in this paper, thereby making
its definitional equality undecidable. Assuming

, we can interpret equality reflection as follows in the standard model:

So, the standard model of an extensional object theory has one equation
which is not definitional anymore: the interpretation of equality reflection. But
we still get all the previous benefits from the other definitional equalities in the
model.

Generally, if the equational theories on the object-level and the meta-level
do not match exactly, shallow embedding is still usable.

If the metatheory has too many definitional equalities, then we can just
modify the standard model in order to eliminate the extra equalities. For exam-
ple, if the object theory does not have η for functions, we can introduce a wrapper
type for functions, with η-equality turned off1:

η can be still proven for propositionally, however using the wrapping trick
(Sect. 6) this equality won’t be exported when using the syntax.

If the metatheory has too few definitional equalities, then shallow embed-
ding might still be possible with some equations holding only propositionally. We
saw such an example with the shallow embedding of equality reflection. How-
ever, if we can reflect some but not all equalities, that can be still very helpful
in practical formalisations.

8.2 Recursors and Eliminators for the Embedded Syntax

Shallow embedding gave us a particular model with strict equalities. The ques-
tion is: assuming that we only did morally correct constructions, is it consistent

1 Or use an inductive type definition instead of a record.
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to assume that the embedded syntax is really the syntax, i.e. it supports recur-
sion and induction principles? For example, for our object theory, initiality (i.e.
unique recursion) for the embedded syntax means that for any other model M
containing , , etc. components, there is a model morphism from the
embedded syntax to M which includes the following functions:

If “morally correct” means that all of our constructions can be in principle
translated to constructions on deeply embedded syntax, then it is clearly con-
sistent to rely on postulated initiality. We note here that the translation from
shallow to deeply embedded syntax is an instance of translating from extensional
type theory to intensional type theory [21,45], which introduces transports and
invocations of function extensionality in order to make up for missing definitional
equalities. However, in this paper we do not investigate moral correctness more
formally.

If we do postulate initiality for the embedded syntax, we should be prepared
that recursors and eliminators are unlikely to compute in any current proof
assistant. In Agda, we attempted to use rewrite rules to make a postulated
recursor compute on shallow syntax; this could be in principle possible, but the
β-rules for the recursor seem to be illegal in Agda as rewrite rules. How great
limitation the lack of computing recursion is? We argue that it is not as bad as
it seems.

First, in the literature for semantics of type theory, it is rare that models of
type theory make essential use of recursors of other models. The only example
we know is in a previous work by two of the current authors and Altenkirch [29].

Second, many apparent uses of recursors in models are not essential, and can
be avoided by reformulating models. We used such a technique in Sect. 7.3. Here
we give a much simpler analogous example: writing a sorting function for lists
of numbers, in two ways:

1. First, we write a sorting function, given by the recursor for a model of the
theory of lists. Then, we prove by induction on lists that the function’s output
is really sorted. The latter step is given by a displayed model over the syntax
of lists, which displayed model refers to the previous recursor.

2. We write a function which returns a Σ-type containing a list together with a
proof that it is sorted.

In the latter case, we only use a single non-displayed model, and there is no
need to refer to any recursor in the model.

8.3 Ergonomics

We consider here the experience of using shallowing embedding in proof assis-
tants, in particular in Agda, where we have considerable experience as users of
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the technique. We focus on issues and annoyances, since the benefits of shallow
embedding have been previously discussed.

Goal types and error messages are not the best, since they all talk about
expressions in the wrapped standard model instead of the deeply embedded
syntax. Hence, working with shallow embedding requires us to mentally trans-
late between syntax and the standard model. It should be possible in principle
to back-translate messages to deep syntax. In Agda, DISPLAY pragmas can be
used to display expressions in user-defined way, but it seems too limited for our
purpose.

Increased universe level of the embedded syntax. Let us assume an object type
theory without a universe hierarchy. In this case the type of contexts can be
given as in an inductive data definition or a postulated quotient
inductive definition. In contrast, the standard model defines Con as Set, hence
Con has type in this case. In Agda, this increase in levels can cause additional
boilerplate and usage of explicit level lifting. A way to remedy this is to define
Con as a custom inductive-recursive universe, which can usually fit into , but
in this case we get additional clutter in system messages arising from inductive-
recursive decoding.

9 Conclusions

In this paper, we investigated the shallow embedding of a type theory into type
theory. We motivated it as an effective technique to reflect definitional equalities
of an object type theory. We showed that shallow embedding of a particular
object theory is really an embedding, since it is injective in an external sense.

We do not suggest that shallow embedding can replace deep embedding in
every use case. For example, when implementing a type checker or compiler, one
has to use deep embeddings. We hope that future proof assistants will be robust
and powerful enough to allow feasible direct formalisations and make shallow
embeddings unnecessary.

A potential line of future work would be to try to use shallow embedding as
presented here for other object theories and formalisations. Subjectively, shal-
low embedding made a huge difference when we formalised our case studies; a
previous formalisation [3] of the parametricity translation took the current first
author months to finish, while the current formalisation took less than a day, for
a much larger object theory. Formalisations which were previously too tedious
to undertake could be within reach now. Also, it could be explored in the future
whether morally correct shallow embedding works for object theories which are
not just syntactic fragments of the metatheory. For instance, structured cate-
gories other than CwFs, such as monoidal categories could be investigated for
shallow embedding.
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A The injectivity displayed model

We list the components of the displayed model for the injectivity proof described
in Sect. 5. We don’t write subscripts for metavariables and operators of the syn-
tax, only for components of the displayed model (1, 2, 12, 21 and =).

Con iΓ := Γ 

(
• � �Γ�

)

Ty j (Γ1,Γ2,Γ12,Γ21)A := A = app �A�[Γ1]

Sub (Γ1,Γ2,Γ12,Γ21) (Δ1,Δ2,Δ12,Δ21)σ := σ = Δ2 ◦ (ε, app �σ�) ◦ Γ1

Tm (Γ1,Γ2,Γ12,Γ21)A= t := t = (app �t�)[Γ1]

id= : id =
Γ2 ◦ Γ1 =

Γ2 ◦ (ε, app (lam v0)) ◦ Γ1 =
Γ2 ◦ (ε, app �id�) ◦ Γ1

σ= ◦= δ= : σ ◦ δ =
Δ2 ◦ (ε, app �σ�) ◦ Θ1 ◦ Θ2 ◦ (ε, app �δ�) ◦ Γ1 =
Δ2 ◦ (ε, app �σ�[ε, app �δ�]) ◦ Γ1 =

Δ2 ◦ (ε, (�σ�[ε] $(�δ�[ε] $ v0))) ◦ Γ1 =
Δ2 ◦ (ε, app �σ ◦ δ�) ◦ Γ1

A=[σ=]= : A[σ] = app�A�[Δ1][Δ2 ◦ (ε, app �σ�) ◦ Γ1] =

(app �A�)[ε, app (�σ�[ε])][Γ1] = app �A[σ]�[Γ1]

t=[σ=]= : t[σ] = (app�t�)[Δ1][Δ2 ◦ (ε, app �σ�) ◦ Γ1] =
(app �t�)[ε, app (�σ�[ε])][Γ1] = app �t[σ]�[Γ1]

•1 := (ε, tt)
•2 := ε

•12 : •1 ◦ •2 = (ε, tt) ◦ ε = (ε, tt) = (p, q) = id

•21 : •2 ◦ •1 = ε ◦ (ε, tt) = ε = id

ε= : ε = ε ◦ · · · = •2 ◦ (ε, app �σ�) ◦ Γ1

(Γ1, . . . ) �1 A= :=
(
ε, (v0[Γ1 ◦ p], v0)

)

(Γ1,Γ2, . . . ) �2 A= :=
(
Γ2 ◦ (ε, fst v0), snd v0

)
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(Γ1,Γ2, . . . ) �12 A= : (Γ1,Γ2, . . . ) �1 A= ◦ (Γ1,Γ2, . . . ) �2 A=
(
ε, (v0[Γ1 ◦ p], v0)

)
◦

(
Γ2 ◦ (ε, fst v0), snd v0

)
=

(
ε, (v0[Γ1 ◦ Γ2 ◦ (ε, fst v0)], snd v0)

)
=

(
ε, (fst v0, snd v0)

)
=

(
ε, v0

)
=

(p, q) =
id

(Γ1,Γ2, . . . ) �21 A= : (Γ1,Γ2, . . . ) �2 A= ◦ (Γ1,Γ2, . . . ) �1 A=
(
Γ2 ◦ (ε, fst v0), snd v0

)
◦

(
ε, (v0[Γ1 ◦ p], v0)

)
=

(
Γ2 ◦ (ε, v0[Γ1 ◦ p]), v0

)
=

(
Γ2 ◦ Γ1 ◦ p, v0

)
=

(p, q) =
id

σ=,= t= : (σ, t) =
(Δ2 ◦ (ε, app �σ�) ◦ Γ1, app �t�[Γ1]) =

(Δ2 ◦ (ε, fst v0), snd v0) ◦ (ε, (app �σ�, app �t�)) ◦ Γ1 =
(Δ1, . . . ) �2 A= ◦ (ε, app �σ, t�) ◦ Γ1

p= : p =
Γ2 ◦ Γ1 =

Γ2 ◦ (ε, fst v0) ◦
(
ε, (v0[Γ1 ◦ p], v0)

)
=

Γ2 ◦ (ε, app �p�) ◦ (Γ1, . . . ) �1 A=

q= : q = v0 =

lam(snd v0) =

(snd v0)[ε, (v0[Γ1 ◦ p], v0)] =
app �q�[(Γ1, . . . ) �1 A=]

Π= A= B= : ΠAB =
Π app �A�[Γ1] app �B�[(Γ1, . . . ) �1 A=] =

Π app �A�[Γ1] app �B�[ε, (v1, v0)][Γ1
↑] =

app �ΠAB�[Γ1]
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lam= t= : lam t =
lam (app �t�[(Γ1, . . . ) �1 A=]) =

lam (app �t�[ε, (v1, v0)][Γ1
↑]) =

lam (app �t�[ε, (v1, v0)])[Γ1] =

app (lam (lam (�t�[ε] $(v1, v0))))[Γ1] =
app �lam t�[Γ1]

app= t= : app t =
app (app �t�[Γ1]) =

app (app �t�)[Γ1
↑] =

app (app �t�)[ε, v1, v0][Γ1
↑] =

app (app �t�)[ε, v0[Γ1 ◦ p], v0] =

app (app �t�)[ε, fst v0, snd v0][ε, (v0[Γ1 ◦ p], v0)] =

app (app �t�)[ε, fst v1, v0][id, snd v0][ε, (v0[Γ1 ◦ p], v0)] =

app (app �t�[ε, fst v0])[id, snd v0][(Γ1, . . . ) �1 A=] =

(�t�[ε] $ fst v0 $ snd v0)[(Γ1, . . . ) �1 A=] =

app (lam (�t�[ε] $ fst v0 $ snd v0))[(Γ1, . . . ) �1 A=] =
app �app t�[(Γ1, . . . ) �1 A=]

Σ= A= B= : ΣAB =
Σ app �A�[Γ1] app �B�[(Γ1, . . . ) �1 A=] =

Σ app �A�[Γ1] app �B�[ε, (v1, v0)][Γ1
↑] =

app �ΣAB�[Γ1]

u=,= v= : (u, v) =
(app �u�[Γ1], app �v�[Γ1]) =
(app �u�, app �v�)[Γ1] =
app �u, v�[Γ1]

fst= t= : fst t =
fst (app �t�[Γ1]) =
(fst (app �t�))[Γ1] =
app �fst t�[Γ1]

snd= t= : snd t =
snd (app �t�[Γ1]) =
(snd (app �t�))[Γ1] =
app �snd t�[Γ1]
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�= : � = �[Γ1] = app (lam (c�))[Γ1] = app ���[Γ1]

tt= : tt = tt[Γ1] = app (lam tt)[Γ1] = app �tt�[Γ1]
U=ı : U i = U i[Γ1] = app (lam (c (U i)))[Γ1] = app �U i�[Γ1]

a==
: a = app �a�[Γ1] = app �a�[Γ1]

c= A= : A = app �A�[Γ1] = app �cA�[Γ1]
Bool= : Bool = cBool[Γ1] = app �Bool�[Γ1]

true= : true = true[Γ1] = app �true�[Γ1]
false= : false = false[Γ1] = app �false�[Γ1]
if= C= u= v= t= : if C uv t =

if app �C�[(Γ � Bool)1] (app �u�[Γ1]) (app �v�[Γ1])

(app �t�[Γ1]) =

if app �C�[ε, (v1, v0)][Γ1
↑] (app �u�[Γ1]) (app �v�[Γ1])

(app �t�[Γ1]) =

if �C�[ε] $(v1, v0) (app �u�) (app �v�) (app �t�)[Γ1] =

app �if C uv t�[Γ1]
Id= A= u= v= : IdAuv =

Id app �A�[Γ1] (app �u�[Γ1]) (app �v�[Γ1])
(
Id app �A� (app �u�) (app �v�)

)
[Γ1]

app �IdAuv�[Γ1]

refl= u= : reflu =
refl (app �u�[Γ1]) =
refl (app �u�)[Γ1] =
app �reflu�[Γ1]

J= C= w= e= : JC w e =
J app �C�[(Γ � A � . . . )1] (app �w�[Γ1]) (app �e�[Γ1]) =

J app �C�[ε, (v2, v1, v0)][Γ1
↑↑

] (app �w�[Γ1]) (app �e�[Γ1]) =
(
J app �C�[ε, (v2, v1, v0)] (app �w�) (app �e�)

)
[Γ1] =

app �JC w e�[Γ1]
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32. Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Rose, H.,
Shepherdson, J. (eds.) Logic Colloquium ’73, Proceedings of the Logic Colloquium,
Studies in Logic and the Foundations of Mathematics, North-Holland, vol. 80, pp.
73–118 (1975)

33. The Coq development team: The Coq proof assistant reference manual. LogiCal
Project (2019). http://coq.inria.fr. version 8.9

34. McBride, C.: Outrageous but meaningful coincidences: dependent type-safe syntax
and evaluation. In: Oliveira, B.C.d.S., Zalewski, M. (eds.) Proceedings of the ACM
SIGPLAN Workshop on Generic Programming, pp. 1–12. ACM (2010). https://
doi.org/10.1145/1863495.1863497

35. McBride, C., McKinna, J.: Functional pearl: I am not a number – I am a free
variable. In: Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell, Haskell

https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1007/3-540-61780-9_66
http://dl.acm.org/citation.cfm?id=788021.788940
http://dl.acm.org/citation.cfm?id=788021.788940
https://doi.org/10.1145/2933575.2934545
https://doi.org/10.1145/2933575.2934545
https://doi.org/10.1145/2933575.2935320
https://doi.org/10.4230/LIPIcs.FSCD.2018.20
https://bitbucket.org/akaposi/shallow/src/master/
http://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
http://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
http://coq.inria.fr
https://doi.org/10.1145/1863495.1863497
https://doi.org/10.1145/1863495.1863497


Shallow Embedding of Type Theory is Morally Correct 365

2004, pp. 1–9. ACM, New York (2004). https://doi.org/10.1145/1017472.1017477.
http://doi.acm.org/10.1145/1017472.1017477

36. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean
theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 26

37. Nordvall Forsberg, F.: Inductive-inductive definitions. Ph.D. thesis, Swansea Uni-
versity (2013)

38. Orton, I., Pitts, A.M.: Axioms for modelling cubical type theory in a topos. In: Tal-
bot, J.M., Regnier, L. (eds.) 25th EACSL Annual Conference on Computer Science
Logic (CSL 2016). Leibniz International Proceedings in Informatics (LIPIcs), vol.
62, pp. 24:1–24:19. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany (2016). https://doi.org/10.4230/LIPIcs.CSL.2016.24

39. Pfenning, F., Elliott, C.: Higher-order abstract syntax. SIGPLAN Not. 23(7), 199–
208 (1988). https://doi.org/10.1145/960116.54010

40. Pientka, B., Dunfield, J.: Beluga: a framework for programming and reasoning
with deductive systems (system description). In: Giesl, J., Hähnle, R. (eds.) IJCAR
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Abstract. Reversible computation studies computations which exhibit
both forward and backward determinism. Among others, it has been
studied for half a century for its applications in low-power computing,
and forms the basis for quantum computing.

Though certified program equivalence is useful for a number of appli-
cations (e.g., certified compilation and optimization), little work on
this topic has been carried out for reversible programming languages.
As a notable exception, Carette and Sabry have studied the equiva-
lences of the finitary fragment of Πo, a reversible combinator calcu-
lus, yielding a two-level calculus of type isomorphisms and equivalences
between them. In this paper, we extend the two-level calculus of fini-
tary Πo to one for full Πo (i.e., with both recursive types and itera-
tion by means of a trace combinator) using the delay monad, which can
be regarded as a “computability-aware” analogue of the usual maybe
monad for partiality. This yields a calculus of iterative (and possibly
non-terminating) reversible programs acting on user-defined dynamic
data structures together with a calculus of certified program equivalences
between these programs.

Keywords: Reversible computation · Iteration · Delay monad

1 Introduction

Reversible computation is an emerging computation paradigm encompassing
computations that are not just deterministic when executed the forward direc-
tion, but also in the backward direction. While this may seem initially obscure,
reversible computation forms the basis for quantum computing, and has seen
applications in a number of different areas such as low-power computing [28],
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robotics [30], discrete event simulation [33], and the simultaneous construc-
tion of parser/pretty printer pairs [32]. Like classical computing, it has its own
automata [4], circuit model [40], machine architectures [35], programming lan-
guages [20–22,34,41], semantic metalanguages [15,24,25], and so on.

Πo is a family of reversible combinator calculi comprising structural iso-
morphisms and combinators corresponding to those found in dagger-traced ω-
continuous rig categories [26] (a kind of dagger category with a trace, monoidal
sums ⊕ and products ⊗ such that they form a rig structure, and fixed points of
the functors formed from the rig structure). Though superficially simple, Πo is
expressive enough as a metalanguage to give semantics to the typed reversible
functional programming language Theseus [22].

In [7], Carette and Sabry studied the equivalences of isomorphisms in the
finitary fragment of Πo (i.e., without recursive types and iteration via the trace
combinator), and showed that these equivalences could be adequately described
by another combinator calculus of equivalences of isomorphisms, in sum yielding
a two-level calculus of isomorphisms and equivalences of isomorphisms. In this
paper, we build on this work to produce a (fully formalized) two-level calculus
for full Πo (supporting both recursive types and iteration) via the delay monad,
using insights gained from the study of its Kleisli category [8,37,39], as well as
of join inverse categories in which reversible iteration may be modelled [25].

The full Πo calculus cannot be modelled in the same framework of [7], since
Martin-Löf type theory is a total language which in particular disallows the
specification of a trace operator on types. Consequently, it is necessary to move
to a setting supporting the existence of partial maps, and in type theory this
can be done by using monads, by considering partiality as an effect. Our choice
fell on the coinductive delay monad, introduced by Capretta [6] as a way of
representing general recursive functions in Martin-Löf type theory. The delay
datatype has been employed in a large number of applications, ranging from
operational semantics of functional languages [11] to formalization of domain
theory in type theory [5] and normalization by evaluation [1]. Here it is used for
giving denotational semantics to Πo. In particular, we show how to endow the
delay datatype with a trace combinator, whose construction factors through the
specification of a uniform iteration operator [16,17].

The uniform iteration operator introduces a notion of feedback, typically used
to model control flow operations such as while loops. In the Kleisli category of the
delay monad, this operation can be intuitively described as follows: We can apply
a function f : A → B +A on an input a : A and either produce an element b : B,
or produce a new element a′ : A which can be fed back to f . This operation can
be iterated, and it either terminates returning a value in B or it goes on forever
without producing any output. This form of iteration is “unguarded” because
it allows the possibility of divergence. The trace operator can then be seen as a
particular form of iteration where, given a function f : A + C → B + C, which
can be decomposed as fL : A → B +C and fR : C → B +C, we first apply fL on
an input a : A, and, if the latter operation produces a value c : C, we continue
by iterating fR on c. Notice that the notion of trace can be generally defined
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in monoidal categories where the monoidal structure is not necessarily given by
coproducts, and it has been used to model other things besides iteration, such
as partial traces in vector spaces [23], though this use falls outside of the scope
of this paper.

Throughout the paper, we reason constructively in Martin-Löf type theory.
Classically, the delay monad (quotiented by weak bisimilarity) is isomorphic to
the maybe monad Maybe X = X + 1, and thus just a complication of something
that can be expressed much simpler. Constructively, however, they are very
different. In particular, it is impossible to define a well-behaved trace combinator
for the maybe monad without assuming classical principles such as the limited
principle of omniscience.

We have fully formalized the development of the paper in the dependently
typed programming language Agda [31]. The code is available online at https://
github.com/niccoloveltri/pi0-agda. The formalization uses Agda 2.6.0.

Overview. In Sect. 2, we present the syntax of Πo as formalized in Agda, with
particular emphasis on recursive types and the trace operator. In Sect. 3, we recall
the definition of Capretta’s delay datatype and weak bisimilarity. We discuss
finite products and coproducts in the Kleisli category of the delay monad and
we introduce the category of partial isomorphisms that serves as the denotational
model of Πo. In Sect. 4, we build a complete Elgot monad structure on the delay
datatype, that allows the encoding of a dagger trace operator in the category
of partial isomorphisms. In Sect. 5, we formally describe the interpretation of
Πo types, terms and terms equivalences. We conclude in Sect. 6 with some final
remarks and discussion on future work.

The Type-Theoretical Framework. Our work is settled in Martin-Löf type theory
with inductive and coinductive types. We write (a : A) → B a for dependent
function spaces and (a : A) × B a for dependent products. We allow dependent
functions to have implicit arguments and indicate implicit argument positions
with curly brackets (as in Agda). We use the symbol = for definitional equality
of terms and ≡ for propositional equality. Given f : A → C and g : B → C,
we write [f, g] : A + B → C for their copairing. The coproduct injections are
denoted inl and inr. Given h : C → A and k : C → B, we write 〈h, k〉 : C → A×B
for their pairing. The product projections are denoted fst and snd. The empty
type is 0 and the unit type is 1. We write Set for the category of types and
functions between them. We also use Set to denote the universe of types. We
define A ↔ B = (A → B) × (B → A).

We do not assume uniqueness of identity proofs (UIP), i.e. we do not consider
two proofs of x ≡ y necessarily equal. Agda natively supports UIP, so we have
to manually switch it off using the without-K option.

In Sect. 3, we will need to quotient a certain type by an equivalence relation.
Martin-Löf type theory does not support quotient types, but quotients can be
simulated using setoids [3]. Alternatively, we can consider extensions of type
theory with quotient types à la Hofmann [19], such as homotopy type theory [36].
Setoids and quotient types à la Hofmann are not generally equivalent approaches,

https://github.com/niccoloveltri/pi0-agda
https://github.com/niccoloveltri/pi0-agda
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but they are indeed equivalent for the constructions we develop in this work.
Therefore, in the rest of the paper we assume the existence of quotient types
and we refrain from technical discussions on their implementation.

2 Syntax of Πo

In this section, we present the syntax of Πo. The 1-structure of Πo, i.e. its types
and terms, has originally been introduced by James and Sabry [21]. In particular,
we include the presence of recursive types and a primitive trace combinator.
Following Carette and Sabry’s formalization of the finitary fragment of Πo, we
consider a collection of equivalences between terms. Our list of axioms notably
differs from theirs in that we do not require each term to be a total isomorphism,
we ask only for the existence of a partial inverse.

Formally, the collection of types of Πo correspond to those naturally inter-
preted in dagger traced ω-continuous rig categories (see [26]).

2.1 Types

The types of Πo are given by the grammar:

A ::= Z |A ⊕ A | I |A ⊗ A |X |μX.A

where X ranges over a set of variables. In Agda, we use de Bruijn indexes
to deal with type variables, so the grammar above is formally realized by the
rules in Fig. 1. The type Ty n represents Πo types containing at most n free
variables. Variables themselves are encoded as elements of Fin n, the type of
natural numbers strictly smaller then n. The type constructor μ binds a variable,
which, for A : Ty (n + 1), we consider to be n + 1.

It is also necessary to define substitutions. In Agda, given types A : Ty (n+1)
and B : Ty n, we construct sub AB : Ty n to represent the substituted type
A[B/X], where X corresponds to the (n + 1)-th variable in context.

Z : Tyn I : Tyn
i : Finn

Var i : Tyn

A : Tyn B : Tyn

A ⊕ B : Tyn

A : Tyn B : Tyn

A ⊗ B : Tyn

A : Ty (n + 1)
μA : Tyn

Fig. 1. Types of Πo, as formalized in Agda
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2.2 Terms

The terms of Πo are inductively generated by the rules in Fig. 2. They include
the identity programs id and sequential composition of programs •. (Z,⊕) is a
symmetric monoidal structure, with terms λ⊕, α⊕ and σ⊕ as structural mor-
phisms. Similarly for (I,⊗). Moreover ⊗ distributes over Z and ⊕ from the right,
as evidenced by κ and δ. Elements of μX.A are built using the term constructor
fold and destructed with unfold. Finally, we find the trace combinator.

Every Πo program is reversible. The (partial) inverse of a program is given
by the function dagger : (A ←→ B) → (B ←→ A), recursively defined as follows:

dagger id = id dagger (g • f) = dagger f • dagger g
dagger (f ⊕ g) = dagger f ⊕ dagger g dagger (f ⊗ g) = dagger f ⊗ dagger g
dagger λ−1

⊕ = λ⊕ dagger λ⊕ = λ−1
⊕

dagger σ⊕ = σ⊕ dagger α⊕ = α−1
⊕

dagger α−1
⊕ = α⊕ dagger λ⊗ = λ−1

⊗
dagger λ−1

⊗ = λ⊗ dagger σ⊗ = σ⊗
dagger α⊗ = α−1

⊗ dagger α−1
⊗ = α⊗

dagger κ = κ−1 dagger κ−1 = κ
dagger δ = δ−1 dagger δ−1 = δ
dagger fold = unfold dagger unfold = fold
dagger (trace f) = trace (dagger f)

The dagger operation is involutive. Notice that this property holds up to
propositional equality. This is proved by induction on the term f .

daggerInvol : (f : A ←→ B) → dagger (dagger f) ≡ f

The right unitor for ⊕ is given by ρ⊕ = λ⊕ • σ⊕ : A ⊕ Z ←→ A, and ρ⊗ is
defined similarly. Analogously, we can derive the left distributors κ′ : A⊗Z ←→ A
and δ′ : A ⊗ (B ⊕ C) ←→ (A ⊗ B) ⊕ (A ⊗ C).

2.3 Term Equivalences

A selection of term equivalences of Πo is given in Fig. 3. We only include the
equivalences that either differ or have not previously considered by Carette and
Sabry in their formalization of the finite fragment of Πo [7]. In particular, we
leave out the long list of Laplaza’s coherence axioms expressing that types and
terms of Πo form a rig category [29]. We also omit the equivalences stating that
λ−1

⊕ is the total inverse of λ⊕, similarly for the other structural morphisms.
The list of term equivalences in Fig. 3 contains the trace axioms, displaying

that the types of Πo form a traced monoidal category wrt. the additive monoidal
structure (Z,⊕) [23]. Next we ask for trace (dagger f) to be the partial inverse of
trace f . Remember that we have defined dagger (trace f) to be trace (dagger f), so
the axiom tracePIso is evidence that the trace combinator of Πo is a dagger trace.
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id : A ←→ A

g : B ←→ C f : A ←→ B

g • f : A ←→ C

f : A ←→ C g : B ←→ D

f ⊕ g : A ⊕ B ←→ C ⊕ D

f : A ←→ C g : B ←→ D

f ⊗ g : A ⊗ B ←→ C ⊗ D

λ⊕ : Z ⊕ A ←→ λA −1
⊕ : A ←→ Z ⊕ A

λ⊗ : I ⊗ A ←→ λA −1
⊗ : A ←→ I ⊗ A

α⊕ : (A ⊕ B) ⊕ C ←→ A ⊕ (B ⊕ C) α−1
⊕ : A ⊕ (B ⊕ C) ←→ (A ⊕ B) ⊕ C

α⊗ : (A ⊗ B) ⊗ C ←→ A ⊗ (B ⊗ C) α−1
⊗ : A ⊗ (B ⊗ C) ←→ (A ⊗ B) ⊗ C

σ⊕ : A ⊕ B ←→ B ⊕ A σ⊗ : A ⊗ B ←→ B ⊗ A

κ : Z ⊗ A ←→ Z δ : (A ⊕ B) ⊗ C ←→ (A ⊗ C) ⊕ (B ⊗ C)

κ−1 : Z ←→ Z ⊗ A δ−1 : (A ⊗ C) ⊕ (B ⊗ C) ←→ (A ⊕ B) ⊗ C

fold : A[μX.A/X] ←→ μX.A unfold : μX.A ←→ A[μX.A/X]

f : A ⊕ C ←→ B ⊕ C

trace f : A ←→ B

Fig. 2. Terms of Πo

Afterwards we have two equivalences stating that unfold is the total inverse of
fold.

It is possible to show that every term f has dagger f as its partial inverse.
The notion of partial inverse used here comes from the study of inverse cate-
gories (see [27]) and amounts to saying that dagger f is the unique map that
undoes everything which f does (unicity of partial inverses follows by the final
equivalence of Fig. 3, see [27]). Note that this is different from requiring that
f is an isomorphism in the usual sense, as dagger f • f is not going to be the
identity when f is only partially defined, though it will behave as the identity
on all points where f is defined.

The proof that every term has dagger f as its partial inverse proceeds by
induction on f .

existsPIso : (f : A ←→ B) → f • dagger f • f ⇐⇒ f

3 Delay Monad

The coinductive delay datatype was first introduce by Capretta for representing
general recursive functions in Martin-Löf type theory [6]. Given a type A, ele-
ments of Delay A are possibly non-terminating “computations” returning a value
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naturalityL : f • trace g ⇐⇒ trace ((f ⊕ id) • g)

naturalityR : trace g • f ⇐⇒ trace (g • (f ⊕ id))

dinaturality : trace ((id ⊕ f) • g) ⇐⇒ trace (g • (id ⊕ f))

superposing : trace (α−1
⊕ • (id ⊕ f) • α⊕) ⇐⇒ id ⊕ trace f

vanishing⊕ : trace f ⇐⇒ trace (trace (α−1
⊕ • f • α⊕))

vanishingZ : f ⇐⇒ ρ−1
⊕ • trace f • ρ⊕ yanking : traceσ⊕ ⇐⇒ id

tracePIso : trace f • trace (dagger f) • trace f ⇐⇒ trace f

foldIso : fold • unfold ⇐⇒ id unfoldIso : unfold • fold ⇐⇒ id

uniquePIso : f • dagger f • g • dagger g ⇐⇒ g • dagger g • f • dagger f

Fig. 3. Selection of term equivalences of Πo

of A whenever they terminate. Formally, Delay A is defined as a coinductive type
with the following introduction rules:

a : A
now a : Delay A

x : Delay A

later x : Delay A

The constructor now embeds A into Delay A, so now a represents the terminat-
ing computation returning the value a. The constructor later adds an additional
unit of time delay to a computation. Double rule lines refer to a coinductive
constructor, which can be employed an infinite number of times in the construc-
tion of a term of type Delay A. E.g., the non-terminating computation never is
corecursively defined as never = later never.

The delay datatype is a monad. The unit is the constructor now, while the
Kleisli extension bind is corecursively defined as follows:

bind : (A → Delay B) → Delay A → Delay B

bind f (now a) = f a

bind f (later x) = later (bind f x)

The delay monad, like any other monad on Set, has a unique strength operation
which we denote by str : A×Delay B → Delay (A×B). Similarly, it has a unique
costrength operation costr : (Delay A) × B → Delay (A × B) definable using str.
Moreover, the delay datatype is a commutative monad.

The Kleisli category of the delay monad, that we call D, has types as objects
and functions f : A → Delay B as morphisms between A and B. In D, the
identity map on an object A is the constructor now, while the composition of
morphisms f : A → Delay B and g : B → Delay C is given by f � g = bind f ◦ g.
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The delay datatype allows us to program with partial functions, but the
introduced notion of partiality is intensional, in the sense that computations
terminating with the same value in a different number of steps are considered
different. To obtain an extensional notion of partiality, which in particular allows
the specification of a well-behaved trace operator, we introduce the notion of
(termination-sensitive) weak bisimilarity.

Weak bisimilarity is defined in terms of convergence. A computation x :
Delay A converges to a : A if it terminates in a finite number of steps returning
the value a. When this happens, we write x ↓ a. The relation ↓ is inductively
defined by the rules:

now a ↓ a

x ↓ a

later x ↓ a

Two computations in Delay A are weakly bisimilar if they differ by a finite num-
ber of applications of the constructor later. Alternatively, we can say that two
computations x and y are weakly bisimilar if, whenever x terminates returning a
value a, then y also terminates returning a, and vice versa. This informal state-
ment can be formalized in several different but logically equivalent ways [8,39].
Here we consider a coinductive formulation employed e.g. in [12].

now≈ : now a ≈ now a

p : x1 ≈ x2

later≈ p : later x1 ≈ later x2

p : x ≈ now a

laterL≈ p : later x ≈ now a

p : now a ≈ x

laterR≈ p : now a ≈ later x

(1)

Notice that the constructor later≈ is coinductive. This allows us to prove never ≈
never. Weak bisimilarity is an equivalence relation and it is a congruence w.r.t.
the later operation. For example, here is a proof that weak bisimilarity is reflexive.

refl≈ : {x : Delay A} → x ≈ x

refl≈ {now a} = now≈
refl≈ {later x} = later≈ (refl≈ {x})

We call D≈ the category D with homsets quotiented by pointwise weak bisim-
ilarity. This means that in D≈ two morphisms f and g are considered equal
whenever f a ≈ g a, for all inputs a. When this is the case, we also write
f ≈ g. The operation bind is compatible with weak bisimilarity, in the sense
that bind f1 x1 ≈ bind f2 x2 whenever f1 ≈ f2 and x1 ≈ x2.

As an alternative to quotienting the homsets of D, we could have quotiented
the delay datatype by weak bisimilarity: Delay≈ A = Delay A/≈. In previous
work [8], we showed that this construction has problematic consequences if we
employ Hofmann’s approach to quotient types [19]. For example, it does not seem
possible to lift the monad structure of Delay to Delay≈ without postulating addi-
tional principles such as the axiom of countable choice. More fundamentally for
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this work, countable choice would be needed for modelling the trace operator
of Πo in the Kleisli category of Delay≈. Notice that, if the setoid approach to
quotienting is employed, the latter constructions go through without the need
for additional assumptions. In order to keep an agnostic perspective on quo-
tient types and avoid the need for disputable semi-classical choice principles, we
decided to quotient the homsets of D by (pointwise) weak bisimilarity instead of
the objects of D.

3.1 Finite Products and Coproducts

Colimits in D≈ are inherited from Set. This means that 0 is also the initial
object of D≈, similarly A + B is the binary coproduct of A and B in D≈. Given
f : A → Delay C and g : B → Delay C, their copairing is [f, g]D = [f, g] : A+B →
Delay C. The operation [−,−]D is compatible with weak bisimilarity, in the sense
that [f1, g1]D ≈ [f2, g2]D whenever f1 ≈ f2 and g1 ≈ g2. The coproduct injections
are given by inlD = now ◦ inl : A → Delay (A + B) and inrD = now ◦ inr : B →
Delay (A + B).

Just as limits in Set do not lift to limits in the category Par of sets and
partial functions, they do not lift to D≈ either. This is not an issue with these
concrete formulations of partiality, but rather with the interaction of partiality
(in the sense of restriction categories, a kind of categories of partial maps) and
limits in general (see [10, Section 4.4]). In particular, 1 is not the terminal object
and A × B is not the binary product of A and B in D≈. In fact, 0 is (also)
the terminal object, with λ . never : A → Delay 0 as the terminal morphism.
Nevertheless, it is possible to prove that 1 and × are partial terminal object
and partial binary products respectively, in the sense of Cockett and Lack’s
restriction categories [9,10]. Here we refrain from making the latter statement
formal. We only show the construction of the partial pairing operation, which we
employ in the interpretation of Πo. Given f : C → Delay A and g : C → Delay B,
we define:

〈f, g〉D : C → Delay (A × B)
〈f, g〉D = costr � (str ◦ 〈f, g〉)

Since the delay monad is commutative, the function 〈f, g〉D is equal to str�(costr◦
〈f, g〉). The operation 〈−,−〉D is compatible with weak bisimilarity.

3.2 Partial Isomorphisms

In order to model the reversible programs of Πo, we need to consider reversible
computations in D≈. Given a morphism f : A → Delay B, we say that it is a
partial isomorphism if the following type is inhabited:

isPartialIso f = (g : B → Delay A) × ((a : A)(b : B) → f a ↓ b ↔ g b ↓ a)

In other words, f is a partial isomorphism if there exists a morphism g : B →
Delay A such that, if f a terminates returning a value b, then g b terminates
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returning a, and vice versa. Given a partial isomorphism f , we denote its partial
inverse by dagger

D
f .

In D≈, our definition of partial isomorphisms is equivalent to the standard
categorical one [27] (see also [9]), which, translated in our type-theoretical set-
ting, is

isPartialIsoCat f = (g : B → Delay A) × f � g � f ≈ f × g � f � g ≈ g

We denote A � B the type of partial isomorphisms between A and B:

A � B = (f : A → Delay B) × isPartialIso f

We call InvD≈ the subcategory of D≈ consisting of (equivalence classes of) partial
isomorphisms. Note that InvD≈ inherits neither partial products nor coproducts
of D≈, as the universal mapping property fails in both cases. However, it can be
shown that in the category InvD≈, 0 is a zero object, A + B is the disjointness
tensor product of A and B (in the sense of Giles [15]) with unit 0, and A × B a
monoidal product of A and B with unit 1 (though it is not an inverse product
in the sense of Giles [15], as that would imply decidable equality on all objects).
In particular, we can derive the following operations, modelling the Πo term
constructors ⊕ and ⊗:

×D� : A � C → B � D → A × B � C × D

+D� : A � C → B � D → A + B � C + D

4 Elgot Iteration

A complete Elgot monad [16,17] is a monad T whose Kleisli category supports
unguarded uniform iteration. More precisely1, a monad T is Elgot if there exists
an operation

iterT : (A → T (B + A)) → A → TB

satisfying the following axioms:

fixpoint : iterT f ≡ [ηT, iterT f ] �T f

naturality : g �T iterT f ≡ iterT ([Tinl ◦ g, η ◦ inr] �T f)

codiagonal : iterT (iterT g) ≡ iterT (T[id, inr] ◦ g)

p : f ◦ h ≡ T(id + h) ◦ g

uniformity p : iterT f ◦ h ≡ iterT g

where ηT is the unit of T and �T denotes morphism composition in the Kleisli
category of T. The standard definition of uniform iteration operator includes the
1 Here we give the definition of complete Elgot monad on Set, but the definition of

complete Elgot monad makes sense in any category with finite coproducts.
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dinaturality axiom, which has recently been discovered to be derivable from the
other laws [14,16].

The delay monad is a complete Elgot monad for which the axioms holds
up to weak bisimilarity, not propositional equality. In other words, the category
D≈ can be endowed with a uniform iteration operator. The specification of the
iteration operator relies on an auxiliary function iter′

D
corecursively defined as

follows:

iter′
D

: (A → Delay (B + A)) → Delay (B + A) → Delay B

iter′
D

f (now (inl b)) = now b

iter′
D

f (now (inr a)) = later (iter′
D

f (f a))
iter′

D
f (later x) = later (iter′

D
f x)

iterD : (A → Delay (B + A)) → A → Delay B

iterD f a = iter′
D

f (f a)

The definition above can be given the following intuitive explanation. If f a
does not terminate, then iterD f a does not terminate either. If f a terminates,
there are two possibilities: either f a converges to inl b, in which case iterD f a
terminates returning the value b; or f a converges to inr a′, in which case we
repeat the procedure by replacing a with a′. Notice that in the latter case we
also add one occurrence of later to the total computation time. This addition is
necessary for ensuring the productivity of the corecursively defined function iter′

D
.

In fact, by changing the second line of its specification to iter′
D

f (now (inr a)) =
iter′

D
f (fa) and taking f = inrD, we would have that iter′

D
f (now (inr a)) unfolds

indefinitely without producing any output. In Agda, such a definition would be
rightfully rejected by the termination checker.

The operation iterD is compatible with weak bisimilarity, which means that
iterD f1 ≈ iterD f2 whenever f1 ≈ f2.

As mentioned above, iterD satisfies the Elgot iteration axioms only up to
weak bisimilarity. Here we show the proof of the fixpoint axiom, which in turns
relies on an auxiliary proof fixpoint′

D
.

fixpoint′
D

: (f : A → Delay (B + A)) → bind [now, iterD f ]D ≈ iter′
D

f

fixpoint′
D

f (now (inl b)) = now≈
fixpoint′

D
f (now (inr a)) = laterR≈ refl≈

fixpoint′
D

f (later x) = later≈ (fixpoint′
D

f x)

fixpoint
D

: (f : A → Delay (B + A)) → [now, iterD f ]D � f ≈ iterD f

fixpoint
D

f x = fixpoint′
D

f (f x)
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4.1 Trace

From the Elgot iteration operator it is possible to derive a trace operator. First,
given f : A+B → C, we introduce fL = f ◦ inl : A → C and fR = f ◦ inr : B → C,
so that f = [fL, fR]. Graphically:

f
C C

A B

fR
C

C
B

fL
C

A
B

C

B=

The trace operator in D≈ is defined in terms of the iterator as follows:

traceD : (A + C → Delay (B + C)) → A → Delay B

traceD f = [now, iterD fR]D � fL

The operation traceD is compatible with weak bisimilarity. Graphically, we
express the iterator on f as a wire looping back on the input, i.e., as

fA

A

B

In this way, the definition of traceD may be expressed graphically as

f
C C

A B

=
fL

C

A

B

fR

C

B

B

Intuitively, the function fL initialises the loop. It either diverges, so that the
trace of f diverges as well, or it terminates. It either terminates with an element
b : B, in which case the loop ends immediately returning b, or it converges to a
value c : C, and in this case we proceed by invoking the iteration of fR on c.

It is well-known that a trace operator is obtainable from an iteration operator,
as shown by Hasegawa [18]. His construction, instantiated to our setting, looks
as follows:

traceHD : (A + C → Delay (B + C)) → A → Delay B

traceHD f = iterD(Delay (id + inr) ◦ f) ◦ inl

or graphically

f
C C

A B

=
f

C C

A B

A
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It is not difficult to prove that the two possible ways of defining a trace oper-
ator from Elgot iteration are equivalent, in the sense that traceD f ≈ traceHD f
for all f : A + C → Delay (B + C).

The trace axioms follow from the Elgot iteration axioms.
We conclude this section by remarking that the construction of a trace opera-

tor in the Kleisli category of the maybe monad is impossible without the assump-
tion of additional classical principles. In fact, given a map f : A+C → B+C+1,
let xs be the possibly infinite sequence of elements of B + C + 1 produced by
the iteration of f on a given input in A. In order to construct the trace of f ,
we need to decide whether xs is a finite sequence terminating with an element
of B + 1, or xs is an infinite stream of elements of C. This decision requires the
limited principle of omniscience, an instance of the law of excluded middle not
provable in Martin-Löf type theory:

LPO = (s : N → 2) → ((n : N) × s n ≡ true) + ((n : N) → s n ≡ false)

where 2 is the type of booleans, with true and false as only inhabitants.

4.2 Dagger Trace

We now move to show that traceD is a dagger trace operator, i.e. if f is a partial
isomorphism, then traceD f is also a partial isomorphism with partial inverse
traceD (dagger

D
f).

This is proved by introducing the notion of orbit of an element x : A+C wrt.
a function f : A+C → Delay (B+C). The orbit of x consists of the terms of type
B + C that are obtained in a finite number of steps from repeated applications
of the function f on x. Formally, a term y belongs to the orbit of f wrt. x if the
type Orb f x y is inhabited, with the latter type inductively defined as:

p : f x ↓ y

done p : Orb f x y

p : f x ↓ inr c q : Orb f (inr c) y

next p q : Orb f x y

The notion of orbit can be used to state when the iteration of a function
f : A → Delay (B + A) on a input a : A terminates with value b : B.

iterD f a ↓ b ↔ Orb [inlD, f ]D (inr a) (inl b)

We refer the interested reader to our Agda formalization for a complete proof of
this logical equivalence. Similarly, the orbit can be used to state when the trace
of a function f : A + C → Delay (B + C) on a input a : A terminates with value
b : B.

traceD f a ↓ b ↔ Orb f (inl a) (inl b) (2)

Showing that traceD is a dagger trace operator requires the construction of
an inhabitant of traceD f a ↓ b ↔ traceD (dagger

D
f) b ↓ a. Thanks to the logical

equivalence in (2), this is equivalent to prove the following statement instead:

Orb f (inl a) (inl b) ↔ Orb (dagger
D

f) (inl b) (inl a)
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We give a detailed proof of the left-to-right direction, the other implication is
derived in an analogous way. Notice that a term p : Orb f (inl a) (inl b) can be seen
as a finite sequence of elements of C, precisely the intermediate values produced
by traceD f a before converging to b. The orbit of b wrt. the partial inverse of f
can therefore be computed by reversing the sequence of elements present in p.
The construction of the reverse of an orbit is very similar to the way the reverse
of a list is typically defined in a functional programming language like Haskell.
We first consider an intermediate value c : C and we assume to have already
reversed the initial section of the orbit between inl a and inr c, that is a term
p′ : Orb (dagger

D
f) (inr c) (inl a).

reverseOrb′ : (i : {a : A}{b : B} → f a ↓ b → dagger
D

f b ↓ a) →
{a : A}{b : B}{c : C} →
Orb f (inr c) (inl b) → Orb (dagger

D
f) (inr c) (inl a) →

Orb (dagger
D

f) (inl b) (inl a)
reverseOrb′ i (done p) p′ = next (i p) p′

reverseOrb′ i (next p q) p′ = reverseOrb′ i q (next (i p) p′)

The proof of reverseOrb′ proceeds by structural induction on the final segment
of the orbit between inr c and inl b that still needs to be reversed, which is the
argument of type Orb f (inr c) (inl b). There are two possibilities.

– We have p : f (inr c) ↓ inl b, in which case i p : dagger
D

f (inl b) ↓ inl c. Then we
return next (i p) p′.

– There exists another value c′ : C such that p : f (inr c) ↓ inr c′ and
q : Orb f (inr c′) (inl b). Then we recursively invoke the function reverseOrb′ i
on arguments q and next (i p) p′ : Orb (dagger

D
f) (inr c′) (inl b).

The reverse of an orbit is derivable using the auxiliary function reverseOrb′.

reverseOrb : (i : {a : A}{b : B} → f a ↓ b → dagger
D

f b ↓ a) →
{a : A}{b : B} →
Orb f (inl a) (inl b) → Orb (dagger

D
f) (inl b) (inl a)

reverseOrb i (done p) = done (i p)
reverseOrb i (next p q) = reverseOrb′ i q (done (i p))

The proof of reverseOrb proceeds by structural induction on the orbit of type
Orb f (inl a) (inl b). There are two possibilities.

– We have p : f (inl a) ↓ inl b, in which case i p : dagger
D

f (inl b) ↓ inl a. Then we
return done (i p).

– There exists a value c : C such that p : f (inl a) ↓ inr c and q :
Orb f (inr c) (inl b). We conclude by invoking the function reverseOrb′ i on argu-
ments q and done (i p) : Orb (dagger

D
f) (inr c) (inl a).

Summing up, in this section we have showed that the traceD operator can be
restricted to act on partial isomorphisms. That is, the following type is inhabited:

traceD� : A + C � B + C → A � B
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5 Soundness

In this section, we provide some details on the interpretation of the syntax of Πo,
presented in Sect. 2, into the category InvD≈. Types of Πo are modelled as objects
of InvD≈, which are types of the metatheory. In Agda, the interpretation of types
�−�Ty takes in input a Πo type A : Ty n and an environment ρ : Fin n → Set giving
semantics to each variable in context. The interpretation is mutually inductively
defined together with the operation �−�µ giving semantics to the μ type former.
Remember that, given A : Ty (n + 1) and B : Ty n, we write sub AB for the
substituted type A[B/X], where X corresponds to the (n + 1)-th variable in
context.

�Z�Ty ρ = 0
�A ⊕ B�Ty ρ = �A�Ty ρ + �B�Ty ρ

�I�Ty ρ = 1
�A ⊗ B�Ty ρ = �A�Ty ρ × �B�Ty ρ

�Var i�Ty ρ = ρ i

�μA�Ty ρ = �A�µ ρ

x : �subA (μA)�Ty ρ

semFold x : �A�µ ρ

By abuse of notation, we use here × (respectively +) to refer to the product
(respectively coproduct) in D≈ even though it fails to be a product (respectively
coproduct) in InvD≈. However, both of these are symmetric monoidal products
in InvD≈, so their use as objects of InvD≈ in the interpretation above is justified.

Terms of Πo are modelled as morphism of InvD≈, i.e. partial isomorphisms.
Here we only display the interpretation of a selection of programs, we refer
the interested reader to our Agda formalization for a complete definition of the
interpretation of terms.

�−�←→ : (A ←→ B) → �A�Ty ρ � �B�Ty ρ

�f ⊕ g�←→ = �f�←→ +D� �g�←→
�f ⊗ g�←→ = �f�←→ ×D� �g�←→
�trace f�←→ = traceD� �f�←→

Term equivalences of Πo are modelled as morphism equalities in InvD≈, i.e.
proofs of weak bisimilarity between two morphisms. Formally, we define an oper-
ation:

�−�⇐⇒ : (f ⇐⇒ g) → �f�←→ ≈ �g�←→
Again we refer the interested reader to our Agda formalization for a complete
definition of the interpretation of term equivalences.
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6 Conclusions

In this paper, we have extended the work of Carette and Sabry [7] to a (fully
formalized) two-level calculus of Πo programs and program equivalences. Key
in this effort was the use of the Kleisli category of the delay monad on Set
under weak bisimilarity, which turned out to support iteration via a trace that
preserves all partial isomorphisms, in this way giving semantics to the dagger
trace of Πo. Further, the work was formalized using Agda 2.6.0.

It is natural to wonder if our work can be ported to other monads of partiality
in Martin-Löf type theory. As already discussed in the end of Sect. 4.1, the maybe
monad is not suitable for modelling a well-behaved trace combinator without
the assumption of classical principles such as LPO. The partial map classifier
[13,38] PMC A = (P : Prop) → P → A, where Prop is the type of propositions
(types with at most one inhabitant), supports the existence of a uniform iteration
operator and therefore a trace. Nevertheless, the specification of iteration is more
complicated then the one presented in Sect. 4 for the delay monad, which is
a simple corecursive definition. The complete Elgot monad structure of PMC
follows from its Kleisli category being a join restriction category, so iteration
is defined in terms of least upper bounds of certain chains of morphisms. The
subcategory of partial isomorphisms of the Kleisli category of PMC supports a
dagger trace combinator, which can be proved following the general strategy in
[25]. The exact same observations apply to the partiality monad in homotopy
type theory [2,8], to which the quotiented delay monad Delay≈ A = Delay A/≈
is isomorphic under the assumption of countable choice.

Though the Kleisli category of the delay monad on Set is well studied, com-
paratively less is known about this monad on other categories. It could be inter-
esting to study under which conditions its iterator exists – e.g., whether this is
still the case when Set is replaced with an arbitrary topos. Another avenue con-
cerns the study of time invertible programming languages: Though not immedi-
ately clear in the current presentation, the trace on InvD≈ is not just reversible (in
the sense that it preserves partial isomorphisms) but in fact time invertible, in the
sense that the number of computation steps needed to perform traceD (dagger

D
f)

is precisely the same as what is needed to perform traceD f on any input. Since
the delay monad conveniently allows the counting of computation steps, we con-
jecture that this is an ideal setting in which to study such intentional semantics
of reversible programming languages.
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14. Ésik, Z., Goncharov, S.: Some remarks on conway and iteration theories. CoRR
abs/1603.00838 (2016). http://arxiv.org/abs/1603.00838

15. Giles, B.: An investigation of some theoretical aspects of reversible computing.
Ph.D. thesis, University of Calgary (2014)

16. Goncharov, S., Milius, S., Rauch, C.: Complete elgot monads and coalgebraic
resumptions. Electr. Notes Theor. Comput. Sci. 325, 147–168 (2016). https://
doi.org/10.1016/j.entcs.2016.09.036
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Abstract. Synchronous Kleene algebra (SKA), an extension of Kleene
algebra (KA), was proposed by Prisacariu as a tool for reasoning about
programs that may execute synchronously, i.e., in lock-step. We provide
a countermodel witnessing that the axioms of SKA are incomplete w.r.t.
its language semantics, by exploiting a lack of interaction between the
synchronous product operator and the Kleene star. We then propose an
alternative set of axioms for SKA, based on Salomaa’s axiomatisation of
regular languages, and show that these provide a sound and complete
characterisation w.r.t. the original language semantics.

1 Introduction

Kleene algebra (KA) is applied in various contexts, such as relational algebra
and automata theory. An important use of KA is as a logic of programs. This is
because the axioms of KA correspond well to properties expected of sequential
program composition, and hence they provide a logic for reasoning about control
flow of sequential programs presented as Kleene algebra expressions. Regular
languages then provide a canonical semantics for programs expressed in Kleene
algebra, due to a tight connection between regular languages and the axioms of
KA: an equation is provable using the Kleene algebra axioms if and only if the
corresponding regular languages coincide [5,18,21].

In [24], Prisacariu proposes an extension of Kleene algebra, called syn-
chronous Kleene algebra (SKA). The aim was to introduce an algebra useful
for studying not only sequential programs but also synchronous concurrent pro-
grams. Here, synchrony is understood as in Milner’s SCCS [23], i.e., each program
executes a single action instantaneously at each discrete time step. Hence, the
synchrony paradigm assumes that basic actions execute in one unit of time and
that at each time step, all components capable of acting will do so. This model
permits a synchronous product operator, which yields a program that, at each

This work was partially supported by ERC Starting Grant ProFoundNet (679127), a
Leverhulme Prize (PLP–2016–129) and a Marie Curie Fellowship (795119). The first
author conducted part of this work at Centrum Wiskunde & Informatica, Amsterdam.

c© Springer Nature Switzerland AG 2019
G. Hutton (Ed.): MPC 2019, LNCS 11825, pp. 385–413, 2019.
https://doi.org/10.1007/978-3-030-33636-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33636-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-33636-3_14


386 J. Wagemaker et al.

time step, executes some combination of the actions put forth by the operand
programs.

This new operator is governed by various expected axioms such as associa-
tivity and commutativity. Another axiom describes the interaction between the
synchronous product and the sequential product, capturing the intended lock-
step behaviour. Crucially, the axioms do not entail certain equations that relate
the Kleene star (used to describe loops) and the synchronous product.

The contributions of this paper are twofold. First, we show that the lack of
connection between the Kleene star and the synchronous product is problem-
atic. In particular, we exploit this fact to devise a countermodel that violates a
semantically valid equation, thus showing that the SKA axioms are incomplete
w.r.t. the language semantics. This invalidates the completeness result in [24].

The second and main contribution of this paper is a sound and complete
characterisation of the equational theory of SKA in terms of a generalisation of
regular languages. The key difference with [24] is the shift from least fixpoint
axioms in the style of Kozen [18] to a unique fixpoint axiom in the style of
Salomaa [26]. In the completeness proof, we give a reduction to the completeness
result of Salomaa via a normal form for SKA expressions. As a by-product, we
get a proof of the correctness of the partial derivatives for SKA provided in [7].

This paper is organised as follows. In Sect. 2 we discuss the necessary pre-
liminaries. In Sect. 3 we discuss SKA as presented in [24]. Next, in Sect. 4, we
demonstrate why SKA is incomplete, and in Sect. 5 go on to provide a new set
of axioms, which we call SF1. The latter section also includes basic results about
the partial derivatives for SKA from [7]. In Sect. 6 we provide an algebraic char-
acterisation of SF1-terms; this characterisation is used in Sect. 7, where we prove
completeness of SF1 w.r.t. to its language model. In Sect. 8 we consider related
work and conclude by discussing directions for future work in Sect. 9. For the
sake of readability, some of the proofs appear in the appendix.

2 Preliminaries

Throughout this paper, we write 2 for the two-element set {0, 1}.

Languages. Throughout the paper we fix a finite alphabet Σ. A word formed
over Σ is a finite sequence of symbols from Σ. The empty word is denoted by ε.
We write Σ∗ for the set of all words over Σ. Concatenation of words u, v ∈ Σ∗

is denoted by uv ∈ Σ∗. A language is a set of words. For K,L ⊆ Σ∗, we define

K · L = {uv : u ∈ K, v ∈ L} K + L = K ∪ L K∗ =
⋃

n∈N

Kn,

where K0 = {ε} and Kn+1 = K · Kn.

Kleene Algebra. We define a Kleene algebra [18] as a tuple (A,+, ·,∗ , 0, 1) where
A is a set, ∗ is a unary operator, + and · are binary operators and 0 and 1 are
constants. Moreover, for all e, f, g ∈ A the following axioms are satisfied:
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e + (f + g) = (e + f) + g e + f = f + e e + 0 = e e + e = e

e · 1 = e = 1 · e e · 0 = 0 = 0 · e e · (f · g) = (e · f) · g

e∗ = 1 + e · e∗ = 1 + e∗ · e (e + f) · g = e · g + f · g e · (f + g) = e · f + e · g

Additionally, we write e ≤ f as a shorthand for e + f = f , and require that
the least fixpoint axioms [18] hold, which stipulate that for e, f, g ∈ A we have

e + f · g ≤ g =⇒ f∗ · e ≤ g e + f · g ≤ f =⇒ e · g∗ ≤ f

The set of regular expressions, denoted TKA, is described by the grammar:

TKA � e, f ::= 0 | 1 | a ∈ Σ | e + f | e · f | e∗

Regular expressions can be interpreted in terms of languages. This is done by
defining �−�KA : TKA → P(Σ∗) inductively, as follows.

�0�KA = ∅ �a�KA = {a} �e · f�KA = �e�KA · �f�KA

�1�KA = {ε} �e + f�KA = �e�KA + �f�KA �e∗�KA = �e�∗
KA

A language L is called regular if and only if L = �e�KA for some e ∈ TKA.
We write ≡KA for the smallest congruence on TKA induced by the Kleene

algebra axioms—e.g., for all e ∈ TKA, we have 1 + e · e∗ ≡KA e∗. Intuitively,
e ≡KA f means that the regular expressions e and f can be proved equivalent
according to the axioms of Kleene algebra. A pivotal result in the study of Kleene
algebras tells us that �−�KA characterises ≡KA, in the following sense:

Theorem 2.1 (Soundness and Completeness of KA [18]). For all e, f ∈
TKA, we have that e ≡KA f if and only if �e�KA = �f�KA.

Remark 2.2. The above can be generalised, as follows. Let K = (A,+, ·,∗ , 0, 1)
be a KA, and let σ : Σ → A. Then for all e, f ∈ TKA such that e ≡KA f ,
interpreting e and f according to σ in K yields the same result. For instance,
since (a∗)∗ ≡KA a∗, we know that for any element e of any KA K, we have that
(e∗)∗ = e.

Linear Systems. Let Q be a finite set. A Q-vector is a function x : Q → TKA. A
Q-matrix is a function M : Q×Q → TKA. Let x and y be Q-vectors. Addition is
defined pointwise, setting (x+y)(q) = x(q)+y(q). Multiplication by a Q-matrix
M is given by

(M · x)(q) =
∑

e∈Q

M(q, e) · x(e)

When x(q) ≡KA y(q) for all q ∈ Q, we write x ≡KA y.

Definition 2.3. A Q-linear system is a pair (M,x) with M a Q-matrix and x a
Q-vector. A solution to (M,x) in KA is a Q-vector y such that M · y + x ≡KA y.
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Non-deterministic Finite Automata. A non-deterministic automaton (NDA)
over an alphabet Σ is a triple (X, o, d) where o : X → 2 is called the termi-
nation function and d : X × Σ → X called the continuation function. If X is
finite, (X, o, d) is referred to as a non-deterministic finite automaton (NFA).

The semantics of an NDA (X, o, d) can be characterised recursively as the
unique map � : X → P(Σ∗) such that

�(x) = {ε : o(x) = 1} ∪
⋃

x′∈d(x,a)

{a} · �(x′) (1)

This coincides with the standard definition of language acceptance.

3 Synchronous Kleene Algebra

Synchronous Kleene algebra extends Kleene algebra with an additional operator
denoted ×, which we refer to as the synchronous product [24].

Definition 3.1 (Synchronous Kleene Algebra). A synchronous KA (SKA)
is a tuple (A,S,+, ·,∗ ,×, 0, 1) such that (A,+, ·,∗ , 0, 1) is a Kleene algebra and ×
is a binary operator on A, with S ⊆ A closed under × and (S,×) a semilattice.
Furthermore, the following hold for all e, f, g ∈ A and α, β ∈ S:

e × (f + g) = e × f + e × g e × (f × g) = (e × f) × g e × 0 = 0
(α · e) × (β · f) = (α × β) · (e × f) e × f = f × e e × 1 = e

Note that 0 and 1 need not be elements of S. The semilattice terms, denoted
TSL, are given by the following grammar.

TSL � e, f ::= a ∈ Σ | e × f

The synchronous regular terms, denoted TSKA, are given by the grammar:

TSKA � e, f ::= 0 | 1 | a ∈ TSL | e + f | e · f | e × f | e∗

Thus we have TSL ⊆ TSKA. We then define ≡SKA as the smallest congruence on
TSKA satisfying the axioms of SKA Ḣere, TSL plays the role of the semilattice; for
instance, for a ∈ TSL we have that a × a ≡SKA a.

Remark 3.2. In [24], × is declared to be idempotent on the generators of the
semilattice, whereas in our definition it holds for semilattice elements in general.
This does not change anything, as the axiom a × a = a for generators together
with commutativity and associativity results in idempotence on the semilattice.
We present SKA as in Definition 3.1 to prevent a meta-definition of a third
sort (namely the semilattice generated by Σ) present in the signature of the
algebra. We have also left out the second distributivity and unit axioms that
follow immediately from the ones presented and commutativity.
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3.1 A Language Model for SKA

Similar to Kleene algebra, there is a language model for SKA [24].
Words over P(Σ) \ {∅} = Pn(Σ) are called synchronous strings, and sets of

synchronous strings are called synchronous languages. The standard language
operations (sum, concatenation, Kleene closure) are also defined on synchronous
languages. The synchronous product of synchronous languages K,L is given by:

K × L = {u × v : u ∈ K, v ∈ L}

where we define × inductively for u, v ∈ (Pn(Σ))∗ and x, y ∈ Pn(Σ), as follows:

u × ε = u = ε × u and (x · u) × (y · v) = (x ∪ y) · (u × v)

To define the language semantics for all elements in TSKA, we first give an
interpretation of elements in TSL in terms of non-empty finite subsets of Σ.

Definition 3.3. For a ∈ Σ and e, f ∈ TSL, define �−�SL : TSL → Pn(Σ) by

�a�SL = {a} �e × f�SL = �e�SL ∪ �f�SL

Denote the smallest congruence on TSL with respect to idempotence, asso-
ciativity and commutativity of × with ≡SL. It is not hard to show that �−�SL

characterises ≡SL, in the following sense.

Lemma 3.4 (Soundness and Completeness of SL). For all e, f ∈ TSL, we
have �e�SL = �f�SL if and only if e ≡SL f .

The semantics of synchronous regular terms is given in terms of a mapping
to synchronous languages: �−�SKA : TSKA → P((Pn(Σ))∗). We have:

�0�SKA = ∅ �1�SKA = {ε} �a�SKA = {�a�SL} ∀a ∈ TSL �e∗�SKA = �e�∗
SKA

�e · f�SKA = �e�SKA · �f�SKA �e + f�SKA = �e�SKA + �f�SKA �e × f�SKA = �e�SKA × �f�SKA
(2)

A synchronous language L is called regular when L = �e�SKA for some e ∈ TSKA.
Let S = {{x} : x ∈ Pn(Σ)}, that is to say, S is the set of synchronous

languages consisting of a single word, whose single letter is in turn a subset
of Σ. Furthermore, let LΣ denote the set of synchronous languages over Σ. It
is straightforward to prove that LΣ together with S is closed under the SKA
operations and satisfies the SKA axioms [24]; more precisely, we have:

Lemma 3.5. The structure (LΣ , S,+, ·,∗ ,×, ∅, {ε}) is an SKA, that is, syn-
chronous languages over Σ form an SKA.

As a consequence of Lemma 3.5, we obtain soundness of the SKA axioms
with respect to the language model based on synchronous regular languages:

Lemma 3.6 (Soundness of SKA). For all e, f ∈ TSKA, we have that e ≡SKA f
implies �e�SKA = �f�SKA.
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Remark 3.7. The above generalises almost analogously to Remark 2.2. Let M
be an SKA with semilattice S, and let σ : Σ → S be a function. Then for all
e, f ∈ TSKA such that e ≡SKA f , if we interpret e in M according to σ, then we
should get the same result as when we interpret f in M according to σ.

In other words, when e ≡SKA f holds, it follows that e = f is a valid equation
in every SKA, provided that the symbols from Σ are interpreted as elements
of the semilattice. It is not hard to show that this claim does not hold when
symbols from Σ can be interpreted as elements of the carrier at large.

4 Incompleteness of SKA

We now prove incompleteness of the SKA axioms as presented in [24]. Fix alpha-
bet A = {a}. First, note that the language model of SKA has the following
property.

Lemma 4.1. For α ∈ TSL, we have �α∗ × α∗�SKA = �α∗�SKA.

If ≡SKA were complete w.r.t. �−�SKA, then the above implies that a∗×a∗ ≡SKA a∗

holds. In this section, we present a countermodel where all the axioms of SKA
are true, but α∗ × α∗ = α∗ does not hold for any α ∈ S. This shows that
a∗ × a∗ �≡SKA a∗; consequently, ≡SKA cannot be complete w.r.t. �−�SKA.

Countermodel for SKA
We define our countermodel as follows. For the semilattice, let S = {{{s}}},
the set containing the synchronous language {{s}}. We denote the set of all
synchronous languages over alphabet {s} with Ls; the carrier of our model is
formed by Ls ∪ {†}, where † is a symbol not found in Ls. The symbol † exists
only in the model, and not in the algebraic theory. It remains to define the SKA
operators on this carrier, which we do as follows.

Definition 4.2. An element of Ls ∪ {†} is said to be infinite when it is an
infinite language. For K,L ∈ Ls ∪ {†}, define the SKA operators as follows:

K + L =
{

†K ∪ L
K = † ∨ L = †
otherwise

K · L =

⎧
⎪⎨

⎪⎩

∅
†
{u · v : u ∈ K, v ∈ L}

K = ∅ ∨ L = ∅
K = † ∨ L = †
otherwise

K × L =

⎧
⎪⎨

⎪⎩

∅
†
{u × v : u ∈ K, v ∈ L}

K = ∅ ∨ L = ∅
K = † ∨ L = † ∨ K,L infinite
otherwise

K∗ =

{
†
⋃

n∈N
Kn

K = †
otherwise

where u×v for u ∈ K and v ∈ L and Kn is as defined in Sect. 3. Here, the cases
are given in order of priority—e.g., if K = ∅ and L = †, then K · L = ∅.
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The intuition behind this model is that SKA has no axioms that relate to the
synchronous execution of starred expressions, such as in α∗ ×α∗, nor can such a
relation be derived from the axioms, meaning that a model has some leeway in
defining the outcome in such cases. Since the language of a starred expression is
generally infinite, we choose × such that it diverges to the extra element † when
given infinite languages as input; for the rest of the operators, the behaviour on
† is chosen to comply with the axioms.

First, we verify that our operators satisfy the SKA axioms.

Lemma 4.3. M = (Ls ∪ {†}, {{{s}}},+, ·,∗ ,×, ∅, {ε}) with the operators as
defined in Definition 4.2 forms an SKA.

Proof. For the sake of brevity, we validate one of the least fixpoint axioms and
the synchrony axiom; the other axioms are treated in the appendix.

Let K,L, J ∈ Ls ∪ {†}. We verify that K + L · J ≤ J =⇒ L∗ · K ≤ J .
Assume that K + L · J ≤ J . If J = †, then the result follows by definition of ≤
and our choice of +. Otherwise, if J ∈ Ls, we distinguish two cases. If L = †,
then J must be ∅ (otherwise J = †); hence K = ∅, and the claim holds. Lastly,
if L ∈ Ls, then K ∈ Ls. In this case, all of the operands are languages, and thus
the proof goes through as it does for KA.

For the synchrony axiom, we need only check

(A · K) × (A · L) = (A × A) · (K × L)

for A = {{s}} as that is the only element in S. Let K,L ∈ Ls ∪ {†}. If either K
or L is ∅, both sides of the equation reduce to ∅. Otherwise, if K or L is †, then
both sides of the equation reduce to †. If K and L are both infinite then A · K
and A · L are infinite and the claim follows. In all the remaining cases where
K and L are elements of Ls and at most one of them is infinite, the proof goes
through as it does for synchronous regular languages (Lemma 3.6). 
�

This leads us to the following theorem:

Theorem 4.4. The axioms of SKA presented in Definition 3.1 are incomplete.
That is, there exist e, f ∈ TSKA such that �e�SKA = �f�SKA but e �≡SKA f .

Proof. Take a ∈ A. We know from Lemma 4.1 that �a∗ × a∗�SKA = �a∗�SKA. Now
suppose a∗×a∗ ≡SKA a∗. As our countermodel is an SKA that means in particular
that {{s}}∗ × {{s}}∗ = {{s}}∗ should hold (c.f. Remark 3.7). However, in this
model we can calculate that {{s}}∗ × {{s}}∗ = † �= {{s}}∗. Hence, we have a
contradiction. Thus a∗ × a∗ �≡SKA a∗, rendering SKA incomplete. 
�
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5 A New Axiomatisation

We now create an alternative algebraic formalism, which we call SF1, and prove
that its axioms are sound and complete w.r.t the model of synchronous regular
languages. Whereas the definition of SKA relies on Kleene algebras (with least
fixpoint axioms) as presented by Kozen [18], the definition of SF1 builds on
F1-algebras (with a unique fixpoint axiom) as presented by Salomaa [26]. The
axioms of Salomaa are strictly stronger than Kozen’s [10], and we will see that the
unique fixpoint axiom allows us to derive a connection between the synchronous
product and the Kleene star, even though this connection is not represented in
an axiom directly (see Remark 5.8).

Definition 5.1. An F1-algebra [26] is a tuple (A,+, ·,∗ , 0, 1,H) where A is a
set, ∗ is a unary operator, + and · are binary operators and 0 and 1 are constants,
and such that for all e, f, g ∈ A the following axioms are satisfied:

e + (f + g) = (e + f) + g e + f = f + e e + 0 = e e + e = e

e · 1 = e = 1 · e e · 0 = 0 = 0 · e e · (f · g) = (e · f) · g

e∗ = 1 + e · e∗ = 1 + e∗ · e (e + f) · g = e · g + f · g e · (f + g) = e · f + e · g

Additionally, the loop tightening and unique fixpoint axiom hold:

(e + 1)∗ = e∗ H(f) = 0 ∧ e + f · g = g =⇒ f∗ · e = g

Lastly, we have the following axioms for H:

H(0) = 0 H(e + f) = H(e) + H(f) H(e∗) = (H(e))∗

H(1) = 1 H(e · f) = H(e) · H(f)

In [26], an e ∈ A with H(e) = 1 is said to have the empty word property, which
will be reflected in the semantic interpretation of H(e) stated below.

The set of F1-expressions, denoted TF1 , is described by:

TF1 � e, f ::= 0 | 1 | a ∈ Σ | e + f | e · f | e∗ | H(e)

We can interpret F1-expressions in terms of languages through �−�F1 : TF1 →
P(Σ∗), defined analogously to �−�KA, where furthermore for e ∈ TF1 we have

�H(e)�F1 = �e�F1 ∩ {ε}

We write ≡F1 for the smallest congruence on TF1 induced by the F1-axioms.
Additionally, we require that for a ∈ Σ, we have H(a) ≡F1 0. A characterisation
similar to Theorem 2.1 can then be established as follows1:
1 Unlike [26], we include H in the syntax; one can prove that for any e ∈ TF1 it holds

that H(e) ≡ 0 or H(e) ≡ 1, and hence any occurence of H can be removed from e.
This is what allows us to apply the completeness result from op. cit. here.
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Theorem 5.2 (Soundness and Completeness of F1 [26]). For all e, f ∈ TF1 ,
we have that e ≡F1 f if and only if �e�F1 = �f�F1 .

Remark 5.3. Kozen [18] noted that the above does not generalise along the same
lines as in Remark 2.2. In particular, the axiom H(a) ≡SKA 0 is not stable under
substitution; for instance, if we interpret H(a) according to the valuation a �→
{ε} in the F1-algebra of languages, then we obtain {ε}, whereas 0 is interpreted
as ∅.

Definition 5.4. A synchronous F1-algebra (SF1-algebra for short) is a tuple
(A,S,+, ·,∗ , 0, 1,H), such that (A,+, ·,∗ , 0, 1,H) is an F1-algebra and × is a
binary operator on A, with S ⊆ A closed under × and (S,×) a semilattice.
Furthermore, the following hold for all e, f, g ∈ A and α, β ∈ S:

e × (f + g) = e × f + e × g e × (f × g) = (e × f) × g e × 0 = 0
(α · e) × (β · f) = (α × β) · (e × f) e × f = f × e e × 1 = e

Moreover, H is compatible with × as well, i.e., for e, f ∈ A we have that
H(e × f) = H(e) × H(f). Lastly, for α ∈ S we require that H(α) = 0.

Remark 5.5. The countermodel from Sect. 4 cannot be extended to a model of
SF1. To see this, note that we have H({{s}}) = 0 and ∅ + {{s}} · † = †, but
{{s}}∗ · ∅ �= †—contradicting the unique fixpoint axiom.

The set of SF1-expressions over Σ, denoted TSF1 , is described by:

TSF1 � e, f ::= 0 | 1 | a ∈ TSL | e + f | e · f | e × f | e∗ | H(e)

We interpret TSF1 in terms of languages via �−�SF1 : TSF1 → LΣ , defined analo-
gously to �−�SKA, where furthermore for e ∈ TSF1 we have

�H(e)�SF1 = �e�SF1 ∩ {ε}

Note that when e ∈ TSKA, then e ∈ TSF1 and �e�SKA = �e�SF1 .
Define ≡SF1 as the smallest congruence on TSF1 induced by the axioms of SF1,

where TSL fulfills the role of the semilattice—e.g., if a ∈ TSL, then a × a ≡SF1 a.
This axiomatisation is sound with respect to the language model.2

Lemma 5.6. Let e, f ∈ TSF1 . If e ≡SF1 f then �e�SF1 = �f�SF1 .

Remark 5.7. The caveat from Remark 5.3 can be transposed to this setting.
However, the condition that for α ∈ S we have that H(α) = 0 allows one to
strengthen the above along the same lines as Remark 3.7, that is, if e ≡SF1 f ,
then interpreting e and f in some SKA according to some valuation of Σ in
terms of semilattice elements will produce the same outcome.
2 Note that for the synchronous language model we know the least fixpoint axioms

are sound as well (Lemma 3.6). However, there might be other SF1-models where
the least fixpoint axioms are not valid.
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Remark 5.8. To demonstrate the use of the new axioms, we give an algebraic
proof of α∗ × α∗ ≡SF1 α∗ for α ∈ TSL:

α∗ × α∗ ≡SF1 (1 + α · α∗) × (1 + α · α∗) ≡SF1 1 + α · α∗ + (α · α∗) × (α · α∗)
≡SF1 1 + α · α∗ + (α × α) · (α∗ × α∗) ≡SF1 α∗ + α · (α∗ × α∗)

Since H(α) = 0, we can apply the unique fixpoint axiom to find α∗ · α∗ ≡SF1

α∗ × α∗. In SF1, it is not hard to show that α∗ · α∗ ≡F1 α∗; hence, we find
α∗ × α∗ ≡SF1 α∗.

Remark 5.9. Adding α∗ × α∗ = α∗ for α ∈ TSL as an axiom to the old
axiomatisation of SKA would not have been sufficient; one can easily find
another semantical truth that does not hold in our countermodel, such as
�(α · β)∗ × (α · β)∗

�SKA = �(α · β)∗
�SKA. Adding e∗ × e∗ = e∗ as an axiom is also

not an option, as this is not sound; for instance, take e = a + b for a, b ∈ Σ. In
order to keep the axiomatisation finitary, a unique fixpoint axiom provided an
outcome.

5.1 Partial Derivatives

In this section we develop the theory of SKA and set up the necessary machinery
for Sect. 6 and the completeness proof in Sect. 7. We start by presenting partial
derivatives, which provide a termination and continuation map on TSF1 . These
derivatives allow us to turn the set of synchronous regular terms into a non-
deterministic automaton structure, such that the language accepted by e ∈ TSF1

as a state in this automaton is the same as the semantics of e. Furthermore,
partial derivatives turn out to provide a way to algebraically characterise a term
by means of acceptance and reachable terms, which is useful in the completeness
proof of SF1.

The termination and continuation map for SF1-expressions presented below
are a trivial extension of the ones from [7]. Intuitively, the termination map is
1 if an expression can immediately terminate, and 0 otherwise; the continuation
map of a term w.r.t. A gives us the set of terms reachable with an A-step.

Definition 5.10 (Termination map). For a ∈ Σ, we define o : TSF1 → 2
inductively, as follows:

o(0) = 0 o(e∗) = 1 o(e + f) = max(o(e), o(f)) o(e × f) = min(o(e), o(f))
o(1) = 1 o(a) = 0 o(e · f) = min(o(e), o(f)) o(H(e)) = o(e)

Definition 5.11 (Continuation map). For a ∈ Σ, we inductively define
δ : TSF1 × Pn(Σ) → P(TSF1) as follows:

δ(0, A) = δ(1, A) = ∅ δ(e × f,A) = Δ(e, f, A) ∪ Δ(f, e, A)
δ(H(e), A) = ∅ ∪ {e′ × f ′ : e′ ∈ δ(e,B1),

δ(a,A) = {1 : A = {a}} f ′ ∈ δ(f,B2), B1 ∪ B2 = A}
δ(e∗, A) = {e′ · e∗ : e′ ∈ δ(e,A)} δ(e · f,A) = {e′ · f : e′ ∈ δ(e,A)}

δ(e + f,A) = δ(e,A) ∪ δ(f,A) ∪ Δ(f, e, A)

where Δ(e, f, A) is defined to be δ(e,A) when o(f) = 1, and ∅ otherwise.
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Definition 5.12 (Syntactic Automaton). We call the NDA (TSF1 , o, δ) the
syntactic automaton of SF1-expressions.

In Sect. 6 we give a proof of correctness of partial derivatives: for e ∈ TSF1

the semantics of e is equivalent to the language accepted by e as a state in
the syntactic automaton. An analogous property holds for (partial) derivatives
in Kleene algebras [1,8], which makes derivatives a powerful tool for reasoning
about language models and deciding equivalences of terms [6].

In the next two sections, we want to use terms reachable from e, that is to
say, terms that are a result of repeatedly applying the continuation map on e.
To this end, we define the following function:

Definition 5.13. For e, f ∈ TSF1 and a ∈ Σ, we inductively define the reach
function ρ : TSF1 → P(TSF1) as follows:

ρ(e + f) = ρ(e) ∪ ρ(f) ρ(0) = ∅
ρ(e · f) = {e′ · f : e′ ∈ ρ(e)} ∪ ρ(f) ρ(1) = {1}
ρ(e∗) = {1} ∪ {e′ · e∗ : e′ ∈ ρ(e)} ρ(a) = {1, a}
ρ(e × f) = {e′ × f ′ : e′ ∈ ρ(e), f ′ ∈ ρ(f)} ∪ ρ(e) ∪ ρ(f) ρ(H(e)) = {1}

Using a straightforward inductive argument, one can prove that for all e ∈ TSF1 ,
ρ(e) is finite. Note that e is not always a member of ρ(e). To see that ρ(e) indeed
contains all terms reachable from e, we record the following.

Lemma 5.14. For all e ∈ TSF1 and A ∈ Pn(Σ), we have δ(e,A) ⊆ ρ(e). Also,
if e′ ∈ ρ(e), then δ(e′, A) ⊆ ρ(e).

5.2 Normal Form

In this section we develop a normal form for expressions in TSL, which we will
use in the completeness proof for SF1. As �−�SL is a surjective function it has at
least one right inverse. Let us pick one and denote it by (−)Π . We thus have
(−)Π : Pn(Σ) → TSL such that �−�SL ◦ (−)Π is the identity on Pn(Σ).

The normal form for expressions in TSL is defined as follows:

Definition 5.15 (Normal form). For all e ∈ TSL the normal form of e,
denoted as e, is defined as (�e�SL)Π . Let TSL = {e : e ∈ TSL}.

Intuitively, an expression in normal form is standardised with respect to
idempotence, associativity and commutativity. For instance, for a term (a×a)×
(c × b) with a, b, c ∈ Σ, the chosen normal form, dictated by the chosen right
inverse, could be (a×b)×c, and all terms provably equivalent to (a×a)× (c×b)
will have this same normal form. Using Lemma 3.4, we can formalise this in the
following two results:

Lemma 5.16. For all e ∈ TSL, we have that e is provably equivalent to its
normal form: e ≡SL e. Moreover, if two expressions e, f ∈ TSL are provably
equivalent, they have the same normal form: if e ≡SL f , then e = f .
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Proof. As (−)Π is a right inverse of �−�SL, we can derive the following:

�e�SL = �(�e�SL)Π�SL = �e�SL

From completeness we get e ≡SL e. For the second part of the statement we
obtain via soundness that �e�SL = �f�SL and subsequently that e = f . 
�

Normalising normalised terms does not change anything.

Lemma 5.17. For all e ∈ TSL we have that e = e.

We extend (−)Π from synchronous strings of length one to words and
synchronous languages in the obvious way. For a synchronous string aw with
a ∈ Pn(Σ) and w ∈ (Pn(Σ))∗, and synchronous language L ∈ LΣ we define:

εΠ = ε (aw)Π = aΠ · (wΠ) LΠ = {wΠ : w ∈ L}

We abuse notation and assume the type of (−)Π is clear from the argument.
Since (−)Π is a homomorphism of languages, we have the following.

Lemma 5.18. For synchronous languages L and K, all of the following hold:
(i) (L ∪ K)Π = LΠ ∪ KΠ , (i) (L · K)Π = LΠ · KΠ , and (iii) (L∗)Π = (LΠ)∗.

6 A Fundamental Theorem for SF1

In this section we shall algebraically capture an expression in terms of its partial
derivatives. This characterisation of an SF1-term will be useful later on in prov-
ing completeness but also provides us with a straightforward method to prove
correctness of the partial derivatives. Following [25,27], we call this characterisa-
tion a fundamental theorem for SF1. Before we state and prove the fundamental
theorem, we prove an intermediary lemma:

Lemma 6.1. For all e, f ∈ TSF1 , we have
∑

e′∈δ(e,A)

(AΠ · e′) ×
∑

e′∈δ(f,A)

(AΠ · e′) ≡SF1

∑

e′∈δ(e,A)
e′′∈δ(f,B)

(A ∪ B)Π · (e′ × e′′)

Proof. First note the following derivation for A,B ∈ Pn(Σ), using Lemma 5.16,
the fact that all axioms of ≡SL are included in ≡SF1 , and that (−)Π is a right
inverse of �−�SL:

AΠ × BΠ ≡SF1 AΠ × BΠ = (�AΠ × BΠ�SL)Π

= (�AΠ�SL ∪ �BΠ�SL)Π = (A ∪ B)Π
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Using distributivity, the synchrony axiom and the equation above, we can derive:
∑

e′∈δ(e,A)

(AΠ · e′) ×
∑

e′∈δ(f,A)

(AΠ · e′) ≡SF1

∑

e′∈δ(e,A)
e′′∈δ(f,B)

(AΠ · e′) × (BΠ · e′′)

≡SF1

∑

e′∈δ(e,A)
e′′∈δ(f,B)

(AΠ × BΠ) · (e′ × e′′) ≡SF1

∑

e′∈δ(e,A)
e′′∈δ(f,B)

(A ∪ B)Π · (e′ × e′′)

The synchrony axiom can be applied because AΠ , BΠ ∈ TSL. 
�

Theorem 6.2 (Fundamental Theorem). For all e ∈ TSF1 , we have

e ≡SF1 o(e) +
∑

e′∈δ(e,A)

AΠ · e′.

Proof. This proof is mostly analogous to the proof of the fundamental theorem
for regular expressions, such as the one that can be found in [27].

We proceed by induction on e. In the base, we have three cases to consider:
e ∈ {0, 1} or e = a for a ∈ Σ. For e ∈ {0, 1}, the result follows immediately. For
e = a, the only non-empty derivative is δ(a, {a}) and the result follows:

o(a) +
∑

e′∈δ(a,A)

AΠ · e′ ≡SF1 o(a) + a · 1 ≡SF1 a ≡SF1 a

In the inductive step, we treat only the case for synchronous composition; the
others can be found in the appendix. If e = e0 × e1, derive as follows:

e0 × e1

≡SF1

(
o(e0) +

∑

e′∈δ(e0,A)

AΠ · e′) ×
(
o(e1) +

∑

e′∈δ(e1,A)

AΠ · e′) (Ind. hyp.)

≡SF1 o(e0) × o(e1) +
∑

e′∈δ(e0,A)

(AΠ · e′) × o(e1) + o(e0) ×
∑

e′∈δ(e1,A)

AΠ · e′

+
∑

e′∈δ(e0,A)

(AΠ · e′) ×
∑

e′∈δ(e1,A)

(AΠ · e′) (Distributivity)

≡SF1 o(e0 × e1) +
∑

e′∈δ(e0,A)

(AΠ · e′) × o(e1) + o(e0) ×
∑

e′∈δ(e1,A)

AΠ · e′

+
∑

e′∈δ(e0,A)
e′′∈δ(e1,B)

(A ∪ B)Π · (e′ × e′′) (Def. o, Lemma 6.1)

≡SF1 o(e0 × e1) +
∑

e′∈Δ(e0,e1,A)

AΠ · e′ +
∑

e′∈Δ(e1,e0,A)

AΠ · e′ +
∑

e′∈{e′
0×e′

1:e
′
0∈δ(e0,A),

e′
1∈δ(e1,B),C=A∪B}

CΠ · e′

≡SF1 o(e0 × e1) +
∑

e′∈δ(e0×e1,A)

AΠ · e′ (Def. δ) 
�
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Correctness of Partial Derivatives for SF1

We now relate the partial derivatives for SF1 to their semantics. Let � : TSF1 →
LΣ be the semantics of the syntactic automaton (TSF1 , o, δ) (Definition 5.12),
uniquely defined by Eq. 1:

�(e) = {ε : o(e) = 1} ∪
⋃

e′∈δ(e,A)

{A} · �(e′) (2)

To prove correctness of derivatives for SF1, we prove that the language seman-
tics of the syntactic automaton and the SF1-expression coincide:

Theorem 6.3 (Soundness of derivatives). For all e ∈ TSF1 we have:

�(e) = �e�SF1

Proof The claim follows almost immediately from the fundamental theorem.
From Lemma 3.6 and Theorem 6.2, we obtain

�e�SF1 = {ε : o(e) = 1} ∪
⋃

e′∈δ(e,A)

{A} · �e′�SF1

Note that �AΠ�SF1 = {�AΠ�SL} = {A} by definition of the SF1 semantics of a
term in TSL and the fact that (−)Π is a right inverse. Because � is the only
function satisfying Eq. 2, we obtain the desired equality between �e�SF1 and the
language �(e) accepted by e as a state of the automaton (TSF1 , o, δ). 
�

7 Completeness of SF1

In this section we prove completeness of the SF1-axioms with respect to the
synchronous language model: we prove that for e, f ∈ TSF1 , if �e�SF1 = �f�SF1 ,
then e ≡SF1 f . We first prove completeness of SF1 for a subset of SF1-expressions,
relying on the completeness result of F1 (Lemma 7.3). Then we demonstrate that
for every SF1-expression we can find an equivalent SF1-expression in this specific
subset (Theorem 7.6). This subset is formed as follows.

Definition 7.1. The set of SF1-expressions in normal form, TNSF, is described
by the grammar

TNSF � e, f ::= 0 | 1 | a ∈ TSL | e + f | e · f | e∗

where TSL is as defined in Definition 5.15.

From this description it is immediate that an SF1-term e ∈ TNSF is formed
from terms of TSL connected via the regular F1-algebra operators. Hence, F1-
expressions formed over the alphabet TSL are the same set of terms as TNSF. We
shall use this observation to prove completeness for TNSF with respect to the
language model by leveraging completeness of F1.

We use the function (−)Π to give a translation between the SF1 semantics
of a term in TNSF and the F1 semantics of that same term:
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Lemma 7.2. For all e ∈ TNSF, we have (�e�SF1)
Π = �e�F1 .

Proof. We proceed by induction on the construction of e. In the base, there are
three cases to consider. If e = 0, then �e�SF1 = ∅ = �e�F1 , and we are done. If
e = 1, then (�e�SF1)

Π = ({ε})Π = {ε} = �1�F1 , and the claim follows. If e = a for
a ∈ TSL, we use Lemma 5.17 to obtain a = a. As a ∈ TSL ⊆ TSL, we know that
(�a�SF1)

Π = ({�a�SL})Π = {(�a�SL)Π} = {a} = {a} = �a�F1 , and the claim follows.
For the inductive step, first consider e = H(e0). (�H(e0)�SF1)

Π = {ε} if
ε ∈ �e0�SF1 and ∅ otherwise. We also have �H(e0)�F1 = {ε} if ε ∈ �e0�F1 and
∅ otherwise. The induction hypothesis states that (�e0�SF1)

Π = �e0�F1 , from
which we obtain that ε ∈ �e0�SF1 ⇔ ε ∈ �e0�F1 . Hence we can conclude that
(�H(e0)�SF1)

Π = �H(e0)�F1 . All other inductive cases follow immediately from
Lemma 5.18. The details can be found in the appendix. 
�

We are now ready to prove completeness of SF1 for terms in normal form.

Lemma 7.3. Let e, f ∈ TNSF. If �e�SF1 = �f�SF1 , then e ≡SF1 f .

Proof. By the premise, we have that (�e�SF1)
Π = (�f�SF1)

Π . From Lemma 7.2 we
get (�e�SF1)

Π = �e�F1 and (�f�SF1)
Π = �f�F1 , which results in �e�F1 = �f�F1 . From

Theorem 5.2 we know that this entails that e ≡F1 f . As SF1 contains all the
axioms of F1, we may then conclude that e ≡SF1 f and the claim follows. 
�

In order to prove completeness with respect to the language model for all
e ∈ TSF1 , we prove that for every e ∈ TSF1 there exists a term ê ∈ TNSF in normal
form such that e ≡SF1 ê. To see this is indeed enough to establish completeness of
SF1, imagine we have such a procedure to transform e into ê in normal form. We
can then conclude that �e�SF1 = �f�SF1 implies �ê�SF1 = �f̂�SF1 , which by Lemma
7.3 implies ê ≡SF1 f̂ , and consequently that e ≡SF1 f .

To obtain ê, we will make use of the “unfolding” of an SF1-expression e in
terms of partial derivatives, given by the fundamental theorem, which will give
rise to a linear system. We will then show that this linear system has a unique
solution that has the properties we require from ê. Since e is also a solution to
this linear system, we can conclude that they are provably equivalent.

Let us start with the following property of linear systems over SF1. A Q-vector
is a function x : Q → TSF1 and a Q-matrix is a function M : Q × Q → TSF1 . We
call a matrix M guarded if H(M(i, j)) = 0 for all i, j ∈ Q. We say a vector p and
matrix M are in normal form if p(i) ∈ TNSF for all i ∈ Q and M(i, j) ∈ TNSF for
all i, j ∈ Q. The following lemma is a variation of [26, Lemma 2] and the proof
is a direct adaptation of the proof found in [17, Lemma 3.12].

Lemma 7.4. Let (M,p) be a Q-linear system such that M and p are guarded.
We can construct Q-vector x that is the unique (up to SF1-equivalence) solution
to (M,p) in SF1. Moreover, if M and p are in normal form, then so is x.

We now define the linear system associated to an SF1-expression e. This linear
system makes use of the partial derivatives for SF1, and essentially represents
an NFA that accepts the language described by e.
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Definition 7.5. Let e ∈ TSF1 , and choose Qe = ρ(e) ∪ {e}, where ρ is the reach
function from Definition 5.13. Define the Qe-vector xe and the Qe-matrix Me

by

xe(e′) = o(e′) Me(e′, e′′) =
∑

e′′∈δ(e′,A)

AΠ

We can now use Lemma 7.4 to obtain the desired normal form ê:

Theorem 7.6. For all e ∈ TSF1 , there exists an ê ∈ TNSF such that ê ≡SF1 e.

Proof. It is clear from their definition that xe and Me are both in normal form
and that Me is guarded. From Lemma 7.4 we then get that there exists a unique
solution se to (Me, xe), and se is a Qe-vector in normal form. Now consider the
Qe-vector y such that y(q) = q for all q ∈ Qe. Using Lemma 5.14 and Theorem
6.2, we can derive the following:

xe(q) + Me · y(q) ≡SF1 xe(q) +
∑

q′∈Qe

Me(q, q′) · y(q′)

≡SF1 o(q) +
∑

q′∈Qe

∑

q′∈δ(q,A)

AΠ · q′

≡SF1 o(q) +
∑

q′∈δ(q,A)

AΠ · q′ ≡SF1 q = y(q)

This demonstrates that y is also a solution to (Me, xe). As we know from Lemma
7.4 that se is unique, we get that y ≡SF1 se. This means that e = y(e) ≡SF1 se(e).
As se is in normal form we get that se(e) ∈ TNSF. Thus, if we take se(e) = ê,
then we have obtained the desired result. 
�

Combining Theorem 7.6 and Lemma 7.3 gives the main result of this section:

Theorem 7.7 (Soundness and Completeness). For all e, f ∈ TSF1 , we have

e ≡SF1 f ⇔ �e�SF1 = �f�SF1

As a corollary of Theorem 6.3 and Theorem 7.7 we know that SF1 is decidable
by deciding language equivalence in the syntactic automaton.

8 Related Work

Synchonous cooperation among processes has been extensively studied in the
context of process calculi such as ASP [4] and SCCS [23]. SKA bears a strong
resemblance to SCCS, with the most notable differences being the equivalence
axiomatised (bisimulation vs. language equivalence), and the use of Kleene star
(unbounded finite recursion) instead of fixpoint (possibly infinite recursion).
Contrary to ASP, but similar to SCCS, SKA cannot express incompatibility
of action synchronisation.
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In the context of Kleene algebra based frameworks for concurrent reason-
ing, a synchronous product is just one possible interpretation of concurrency.
An interleaving-based approach with a concurrent operator (a parallel operator
denoted with ‖) is explored in Concurrent Kleene Algebra [14,15,17,22].

We have proved that ≡SF1 is sound and complete with respect to the syn-
chronous language model by making use of the completeness of F1 [26]. The
strategy of transforming an expression e to an equivalent expression ê with a
particular property is often used in literature [16,17,20,22]. In particular, we
adopted the use of linear systems as a representation of automata, which was
first done by Conway [9] and Backhouse [2]. The machinery that we used to
solve linear systems in F1 is based on Salomaa [26] and can also be found in [17]
and [19]. The idea of the syntactic automaton originally comes from Brzozowski,
who did this for regular expressions [8]. He worked with derivatives which turn
a Kleene algebra expression into a deterministic automaton. We worked with
partial derivatives instead, resulting in a non-deterministic finite automaton for
each SF1-expression. Partial derivatives were first proposed by Antimirov [1].

Other related work is that of Hayes et al. [12]. They explore an algebra of
synchronous atomic steps that interprets the synchrony model SKA is based
on (Milner’s SCCS calculus). However, their algebra is not based on a Kleene
algebra—they use concurrent refinement algebra [11] instead. Later, Hayes et al.
presented an abstract algebra for reasoning about concurrent programs with an
abstract synchronisation operator [13], of which their earlier algebra of atomic
steps is an instance. A key difference seems to be that Hayes et al. use different
units for synchronous and sequential composition. It would be interesting to
compare expressive powers of the two algebras more extensively.

A decision procedure for equivalence between SKA terms is given by Broda
et al. [7]. They defined partial derivatives for SKA that we also used in the proof
of completeness, and used those to construct an NFA that accepts the semantics
of a given SKA expression. Deciding language equivalence of two automata then
leads to a decision procedure for semantic equivalence of SKA expressions.

9 Conclusions and Further Work

We have presented a complete axiomatisation with respect to the model of syn-
chronous regular languages. We have first proved incompleteness of SKA via a
countermodel, exploiting the fact that SKA did not have any axioms relating the
synchronous product to the Kleene star. We then provided a set of axioms based
on the F1-axioms from Salomaa [26] and the axioms governing the synchronous
product familiar from SKA. This was shown to be a sound and complete axioma-
tisation with respect to the synchronous language model.

In the original SKA paper there is a presentation of synchronous Kleene
algebra with tests including a wrongful claim of completeness. An obvious next
step would be to see if we can prove completeness of SF1 with tests. We conjecture
SF1 with tests is indeed complete and that this is straightforward to prove via
a reduction to SF1 in a style similar to the completeness proof of KAT [20].
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Another generalisation is to add a unit to the semilattice, making it a bounded
semilattice. This will probably lead to a type of delay operation [23].

Our original motivation to study SKA was to use it as an axiomatisation of
Reo, a modular language of connectors combining synchronous data flow with
an asynchronous one [3]. The semantics of Reo is based on an automata model
very similar to that of SKAT, in which transitions are labelled by sets of ports
(representing a synchronous data flow) and constraints (the tests of SKAT).
Interestingly, automata are combined using an operation analogous to the syn-
chronous product of SKAT expressions. We aim to study the application of SKA
or SKAT to Reo in future work.

Acknowledgements. The first author is grateful for discussions with Hans-Dieter
Hiep and Benjamin Lion.

A Appendix

Lemma 3.5. The structure (LΣ , S,+, ·,∗ ,×, ∅, {ε}) is an SKA, that is, syn-
chronous languages over Σ form an SKA.

Proof. The carrier LΣ is obviously closed under the operations of synchronous
Kleene algebra. We need only argue that each of the SKA axioms is valid on
synchronous languages.

The proof for the Kleene algebra axioms follows from the observation that
synchronous languages over the alphabet Σ are simply languages over the alpha-
bet Pn(Σ). Thus we know that the Kleene algebra axioms are satisfied, as lan-
guages over alphabet Pn(Σ) with 1 = {ε} and 0 = ∅ form a Kleene algebra.

For the semilattice axioms, note that S is isomorphic to Pn(Σ) (by sending
a singleton set in S to its sole element), and that the latter forms a semilattice
when equipped with ∪. Since the isomorphism between S and Pn(Σ) respects
these operators, it follows that (S,×) is also a semilattice.

The first SKA axiom that we check is commutativity. We prove that × on
synchronous strings is commutative by induction on the paired length of the
strings. Consider synchronous strings u and v. For the base, where u and v
equal ε, the result is immediate. In the induction step, we take u = xu′ with
x ∈ Pn(Σ). If v = ε we are done immediately. Now for the case v = yv′ with
y ∈ Pn(Σ). We have u×v = (xu′)×(yv′) = (x∪y) ·(u′ ×v′). From the induction
hypothesis we know that u′ ×v′ = v′ ×u′. Combining this with commutativity of
union we have u × v = (x ∪ y) · (v′ × u′) = v × u. Take synchronous languages K
and L. Now consider w ∈ K×L. This means that w = u×v for u ∈ K and v ∈ L.
From commutativity of synchronous strings we know that w = u × v = v × u.
And thus we have w ∈ L × K. The other inclusion is analogous.

It is obvious that the axioms K × ∅ = ∅ and K × {ε} = K are satisfied.
For associativity we again first argue that × on synchronous strings is asso-

ciative. Take synchronous strings u, v and w. We will show by induction on the
paired length of u, v and w that u × (v × w) = (u × v) × w. If u, v, w = ε the
result is immediate. Now consider u = xu′ for x ∈ Pn(Σ). If v or w equals
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ε the result is again immediate. Hence we consider the case where v = yv′

and w = zw′ for y, z ∈ Pn(Σ). From the induction hypothesis we know that
u′ × (v′ × w′) = (u′ × v′) × w′. We can therefore derive

u × (v × w) = (xu′) × (yv′ × zw′) = (xu′) × ((y ∪ z) · (v′ × w′))
= (x ∪ (y ∪ z)) · (u′ × (v′ × w′)) = (x ∪ (y ∪ z)) · ((u′ × v′) × w′)

From associativity of union, we then know that (x ∪ (y ∪ z)) · ((u′ × v′) × w′) =
(u×v)×w. Now consider t ∈ K ×(L×J) for K,L and J synchronous languages.
Thus t = u × (v × w) for u ∈ K, v ∈ L and w ∈ J . From associativity of
synchronous strings we know that t = u × (v × w) = (u × v) × w, and thus we
have t ∈ (K × L) × J . The other inclusion is analogous.

For distributivity consider w ∈ K×(L+J) for K,L, J synchronous languages.
This means that w = u × v for u ∈ K and v ∈ L + J . Thus we know v ∈ L or
v ∈ J . We immediately get that u × v ∈ K × L or u × v ∈ K × J and therefore
that w ∈ K × L + K × J . The other direction is analogous.

For the synchrony axiom we take synchronous languages K,L and A,B ∈ S.
Suppose A = {x} and B = {y} for x, y ∈ Pn(Σ). Take w ∈ (A · K) × (B · L).
This means that w = u × v for u ∈ A · K and v ∈ B · L. Thus we know
that u = xu′ with u′ ∈ K and v = yv′ with v′ ∈ L. From this we conclude
w = u × v = (xu′) × (yv′) = (x ∪ y) · (u′ × v′). As u′ ∈ K and v′ ∈ L and
x ∪ y = x × y with x ∈ A and y ∈ B, we have that w ∈ (A × B) · (K × L). For
the other direction, consider w ∈ (A × B) · (K × L). This entails w = t · v for
t ∈ A × B and v ∈ K × L. As A × B = {x ∪ y} we have t = x ∪ y. And v = u × s
for u ∈ K and s ∈ L. Thus t ·v = (x∪y) · (u× s) = (xu)× (ys) for u ∈ K, s ∈ L,
x ∈ A and y ∈ B. Hence w ∈ (A · K) × (B · L). 
�

Lemma 3.6 (Soundness of SKA). For all e, f ∈ TSKA, we have that e ≡SKA f
implies �e�SKA = �f�SKA.

Proof. This is proved by induction on the construction of ≡SKA. In the base case
we need to check all the axioms generating ≡SKA, which we have already done
for Lemma 3.5. For the inductive step, we need to check the closure rules for
congruence preserve soundness. This is all immediate from the definition of the
semantics of SKA and the induction hypothesis. For instance, if e = e0 + e1,
f = f0 + f1, e0 ≡SKA f0 and e1 ≡SKA f1, then �e�SKA = �e0�SKA + �e1�SKA = �f0�SKA +
�f1�SKA = �f�SKA, where use that �e0�SKA = �f0�SKA and �e1�SKA = �f1�SKA as a
consequence of the induction hypothesis.

Lemma 4.1. For α ∈ TSL, we have �α∗ × α∗�SKA = �α∗�SKA.

Proof. For the first inclusion, take w ∈ �a∗ × a∗�SKA = �a∗�SKA × �a∗�SKA. Thus
we have w = u × v for u, v ∈ �a∗�SKA. Hence u = x1 · · · xn for xi ∈ �a�SKA

and v = y1 · · · ym for yi ∈ �a�SKA. As �a�SKA = {�a�SL} with �a�SL ∈ Pn(Σ),
we know that xi = �a�SL and yi = �a�SL. Assume that n ≤ m without loss of
generality. We then know that v = u · �a�m−n

SL , where synchronous string en

indicates n copies of string e concatenated. Unrolling the definition of × on
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words, we find u × v = u × (u · �a�k
SL) = (u × u) · �a�k

SL = u · �a�k
SL = v, and hence

w = u× v = v ∈ �a∗�SKA. For the other inclusion, take w ∈ �a∗�SKA. As ε ∈ �a∗�SKA

and w × ε = w, we immediately have w ∈ �a∗�SKA × �a∗�SKA. 
�

Lemma A.1. For K,L ∈ Ls, K a non-empty finite language and L an infinite
language, K × L is an infinite language.

Proof. Suppose that K × L is a finite language. Hence we have an upper bound
on the length of words in K ×L. Since the length of the synchronous product of
two words is obviously the maximum of the length of the operands, this means
we also have an upper bound on the length of words in L, and as we have finite
words over a finite alphabet in L this means that L is finite. Hence we get a
contradiction, thus K × L is infinite.

Lemma 4.3. M = (Ls ∪ {†}, {{{s}}},+, ·,∗ ,×, ∅, {ε}) with the operators as
defined in Definition 4.2 forms an SKA.

Proof. In the main text we treated one of the least fixpoint axioms and the
synchrony axiom, and here we will treat all the remaining cases. For the sake of
brevity, for each axiom we omit the cases where we can appeal to the proof for
(synchronous) regular languages.

The proof that (S,×) is a semilattice is the same as in Lemma 3.5. Next, we
take a look at the Kleene algebra axioms. If K ∈ Ls, then K + ∅ = ∅ holds by
definition of union of sets. If K = †, we get † + ∅ = †, and the axiom also holds.

For K ∈ Ls ∪ {†}, the axiom K + K = K also easily holds by definition of
the plus operator. Same for K · {ε} = K = K · {ε} and K · ∅ = ∅ = ∅ · K by
definition of the operator for sequential composition.

It is easy to see the axioms 1 + e · e∗ ≡SKA e∗ and 1 + e∗ · e ≡SKA e∗ hold for
K ∈ Ls. In case K = †, for 1 + e · e∗ ≡SKA e∗ we have

1 + † · †∗ = 1 + † · † = 1 + † = † = †∗

and a similar derivation for 1 + e∗ · e ≡SKA e∗.
For the commutativity of + we take K,L ∈ Ls ∪ {†}. If K = † or L = †, we

have K + L = † = L + K.
For associativity of the plus operator we take K,L, J ∈ Ls ∪ {†}. If any of

K, L or J is †, it is easy to see the axiom holds.
For associativity of the sequential composition operator, consider K,L, J ∈

Ls ∪{†}. We first can observe that if one of K, L or J is empty, then the equality
holds trivially. Otherwise, if one of K, L and J is †, then (K ·L)·J = † = K ·(L·J).

Next, we verify distributivity of concatenation over +. We will show a detailed
proof for left-distributivity only; right-distributivity can be proved similarly. Let
K,L, J ∈ Ls∪{†}. If one of K, L, or J is empty, then the claim holds immediately
(the derivation is slightly different for K versus L or J). Otherwise, if one of K,
L or J is †, then K · (L + J) = † = K · L + K · J .
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For the remaining least fixpoint axiom, let K,L, J ∈ Ls ∪ {†}. Assume that
K + L · J ≤ L. We need to prove that K · J∗ ≤ L. If L = †, then the claim holds
immediately. If L ∈ Ls and J = †, then L must be empty, hence K is empty,
and the claim holds. If L, J ∈ Ls, then also K ∈ Ls and the proof goes through
as it does for KA.

We now get to the axioms for the ×-operator. The commutativity axiom is
obvious from the commutative definition of × (as we already know that × is
commutative on synchronous strings). The axiom K × ∅ = ∅ is also satisfied by
definition. The same holds for the axiom K × {ε} = K as {ε} is finite.

For associativity of the synchronous product, consider K,L, J ∈ Ls ∪ {†}.
If one of K, L or J is empty, then both sides of the equation evaluate to ∅.
Otherwise, if one of K, J , or L is †, then both sides of the equation evaluate
to †. If K, J and L are all languages, and at most one of them is finite, then either
K × L = †, in which case the left-hand side evaluates to †, or K × L is infinite
(by Lemma A.1) and J = †, in which case the right-hand side evaluates to †
again. The right-hand side can be shown to evaluate to † by a similar argument.
In the remaining cases (at least two out of K, J and L are finite languages and
none of them is † or ∅), the proof of associativity for the language model applies.

For distributivity of synchronous product over +, let K,L, J ∈ Ls ∪ {†}. If
one of K, L or J is ∅, then the proof is straightforward. Otherwise, if one of
K, L or J is †, then both sides evaluate to †. If K and L + J are infinite, then
the outcome is again † on both sides (note that L + J being infinite implies
that either L or J is infinite). In the remaining cases, K, L and J are languages
and either K or L + J (hence L and J) is finite. In either case the proof for
synchronous regular languages goes through. 
�

Lemma 5.6. Let e, f ∈ TSF1 . If e ≡SF1 f then �e�SF1 = �f�SF1 .

Proof. We need to verify each of the axioms of SF1. The proof for the axioms
of F1 is immediate via the observation that synchronous languages over the
alphabet Σ are simply languages over the alphabet Pn(Σ). Thus we know that
the F1-axioms are satisfied, as languages over alphabet Pn(Σ) with 1 = {ε} and
0 = ∅ form an F1-algebra. The additional axioms are the same as the ones that
were added to KA for SKA, and we know they are sound from Lemma 3.6. 
�

Lemma 5.14. For all e ∈ TSF1 and A ∈ Pn(Σ), we have δ(e,A) ⊆ ρ(e). Also, if
e′ ∈ ρ(e), then δ(e′, A) ⊆ ρ(e).

Proof. We prove the first statement by induction on the structure of e. In the
base, if we have e ∈ {0, 1}, the claim holds vacuously. If we have a ∈ Σ, then
ρ(a) = {1, a} and δ(a,A) = {1 : A = {a}}, so the claim follows. For the inductive
step, there are five cases to consider.

– If e = H(e0), then immediately δ(H(e0), A) = ∅ so the claim holds vacuously.
– If e = e0+e1, then by induction we have δ(e0, A) ⊆ ρ(e0) and δ(e1, A) ⊆ ρ(e1).

Hence, we find that δ(e,A) = δ(e0, A) ∪ δ(e1, A) ⊆ ρ(e0) ∪ ρ(e1) = ρ(e).
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– If e = e0 ·e1, then by induction we have δ(e0, A) ⊆ ρ(e0) and δ(e1, A) ⊆ ρ(e1).
Hence, we can calculate that

δ(e,A) = {e′
0 · e1 : e′

0 ∈ δ(e0, A)} ∪ Δ(e1, e0, A)
⊆ {e′

0 · e1 : e′
0 ∈ ρ(e0)} ∪ ρ(e1) = ρ(e)

– If e = e0×e1, then by induction we have δ(e0, A) ⊆ ρ(e0) and δ(e1, A) ⊆ ρ(e1)
for all A ∈ Pn(Σ). Hence, we can calculate that

δ(e,A) = {e′
0 × e′

1 : e′
0 ∈ δ(e0, B1), e′

1 ∈ δ(e1, B2), B1 ∪ B2 = A}
∪ Δ(e0, e1, A) ∪ Δ(e1, e0, A)

⊆ {e′
0 × e′

1 : e′
0 ∈ ρ(e0), e′

1 ∈ ρ(e1)} ∪ ρ(e0) ∪ ρ(e1) = ρ(e)

– If e = e∗
0, then by induction we have δ(e0, A) ⊆ ρ(e0). Hence, we find that

δ(e,A) = {e′
0 · e∗

0 : e′
0 ∈ δ(e0, A)} ⊆ {e′

0 · e∗
0 : e′

0 ∈ ρ(e0)} ⊆ ρ(e)

For the second statement, we prove that if e′ ∈ ρ(e), then ρ(e′) ⊆ ρ(e).
The result of the first part tells us that δ(e′, A) ⊆ ρ(e′), which together with
ρ(e′) ⊆ ρ(e) proves the claim. We proceed by induction on e. In the base, there
are two cases to consider. First, if e = 0, then the claim holds vacuously. If e = 1,
then the only e′ ∈ ρ(e) is e′ = 1, so the claim holds. If e = a for a ∈ Σ, we have
ρ(e) = {1, a}. It trivially holds that ρ(e′) ⊆ ρ(e) for e′ ∈ ρ(e).

For the inductive step, there are four cases to consider.

– If e = H(e0), then ρ(e) = {1}, and the proof is as in the case where e = 1.
– If e = e0 + e1, assume w.l.o.g. that e′ ∈ ρ(e0). By induction, we derive that

ρ(e′) ⊆ ρ(e0) ⊆ ρ(e)

– If e = e0 · e1 then there are two cases to consider.
• If e′ = e′

0 · e1 where e′
0 ∈ ρ(e0), then we calculate

ρ(e′) = {e′′
0 · e1 : e′′

0 ∈ ρ(e′
0)} ∪ ρ(e1)

⊆ {e′′
0 · e1 : e′′

0 ∈ ρ(e0)} ∪ ρ(e1) = ρ(e)

• If e′ ∈ ρ(e1), then by induction we have ρ(e′) ⊆ ρ(e1) ⊆ ρ(e).
– If e = e0 × e1 then there are three cases to consider.

• The first case is e′ = e′
0 × e′

1 where e′
0 ∈ ρ(e0) and e′

1 ∈ ρ(e1), we get
ρ(e′

0) ⊆ ρ(e0) and ρ(e′
1) ⊆ ρ(e1) by induction. We calculate

ρ(e′) = {e′′
0 × e′′

1 : e′′
0 ∈ ρ(e′

0), e
′′
1 ∈ ρ(e′

1)} ∪ ρ(e′
0) ∪ ρ(e′

1)
⊆ {e′′

0 · e′′
1 : e′′

0 ∈ ρ(e0), e′′
1 ∈ ρ(e1)} ∪ ρ(e0) ∪ ρ(e1)

= ρ(e)

• For e′ ∈ ρ(e0), then by induction we have ρ(e′) ⊆ ρ(e0) ⊆ ρ(e).
• For e′ ∈ ρ(e1), the argument is similar to the previous case.
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– If e = e∗
0, then either e′ = 1 or e′ = e′

0 · e∗
0 for some e′

0 ∈ ρ(e0). In the former
case, ρ(e′) = {1} ⊆ ρ(e). In the latter case, we find by induction that

ρ(e′) = {e′′
0 · e∗

0 : e′′
0 ∈ ρ(e′

0)} ∪ ρ(e∗
0)

⊆ {e′′
0 · e∗

0 : e′′
0 ∈ ρ(e0)} ∪ ρ(e∗

0) ⊆ ρ(e∗
0)


�

Lemma 5.17. For all e ∈ TSL we have that e = e.

Proof. As e ∈ TSL we have that e = e0 for some e0 ∈ TSL. From Lemma 5.16
we know that e0 ≡SF1 e0. So we get e ≡SF1 e0. Again from Lemma 5.16 we then
know that e = e0 = e. 
�

Lemma A.2. For x, y ∈ (Pn(Σ))∗, we have (x · y)Π = xΠ · yΠ .

Proof. We proceed by induction on the length of xy. In the base, we have xy = ε.
Thus x = ε and y = ε. We have εΠ = ε so the result follows immediately. In
the inductive step we consider xy = aw for a ∈ Pn(Σ). We have to consider
two cases. In the first case we have x = ax′. The induction hypothesis gives us
that (x′ · y)Π = x′Π · yΠ . We then have (x · y)Π = (ax′ · y)Π = aΠ · (x′ · y)Π =
aΠ · x′Π · yΠ = xΠ · yΠ . In the second case we have x = ε and y = aw. We then
conclude that (x · y)Π = yΠ = xΠ · yΠ . 
�

Lemma 5.18. For synchronous languages L and K, all of the following hold:
(i) (L ∪ K)Π = LΠ ∪ KΠ , (ii) (L · K)Π = LΠ · KΠ , and(iii) (L∗)Π = (LΠ)∗.

Proof. (i) First, suppose w ∈ (L ∪ K)Π . Thus we have w = vΠ for v ∈ L ∪ K.
This gives us v ∈ L or v ∈ K. We assume the former without loss of
generality. Thus we know w = vΠ ∈ LΠ . Hence we know w ∈ LΠ ∪ KΠ .
The other direction can be proved analogously.

(ii) First, suppose w ∈ (L · K)Π . Thus we have w = vΠ for some v ∈ L ·K. This
gives us v = v1 · v2 for some v1 ∈ L and some v2 ∈ K. By definition of (−)Π

we know that vΠ
1 ∈ LΠ and vΠ

2 ∈ KΠ . Thus we have vΠ
1 · vΠ

2 ∈ LΠ · KΠ .
From Lemma A.2 we know that w = vΠ = (v1 · v2)

Π = vΠ
1 ·vΠ

2 , which gives
us the desired result of w ∈ LΠ · KΠ . The other direction can be proved
analogously.

(iii) Take w ∈ (L∗)Π . Thus we have w = vΠ for some v ∈ L∗. By definition of
the star of a synchronous language we know that v = u1 · · · un for ui ∈ L.
As ui ∈ L, we have uΠ

i ∈ LΠ and uΠ
1 · · · uΠ

n ∈ (LΠ)∗. By Lemma A.2, we
know that w = vΠ = (u1 · · · un)Π = uΠ

1 · · · uΠ
n . Thus we have w ∈ (LΠ)∗,

which is the desired result. The other direction can be proved analogously.

�

Theorem 6.2 (Fundamental Theorem). For all e ∈ TSF1 , we have

e ≡SF1 o(e) +
∑

e′∈δ(e,A)

AΠ · e′.
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Proof. Here we treat the inductive cases not displayed in the main proof, where
we treated only the synchronous case.

– If e = H(e0), derive:

H(e0) ≡SF1 H(o(e0)) +
∑

e′∈δ(e0,A)

H(AΠ) · H(e′) (IH, compatibility of H)

≡SF1 H(o(e0)) (H(AΠ) = 0)
≡SF1 o(H(e0)) (o(H(e0)) ∈ 2)

≡SF1 o(H(e0)) +
∑

e′∈δ(H(e0),A)

AΠ · e′ (Def. δ)

– If e = e0 + e1, derive:

e0 + e1 ≡SF1 o(e0) +
∑

e′∈δ(e0,A)

AΠ · e′ + o(e1) +
∑

e′∈δ(e1,A)

AΠ · e′ (IH)

≡SF1 o(e0 + e1) +
∑

e′∈δ(e0,A)∪δ(e1,A)

AΠ · e′ (Def. o, merge sums)

≡SF1 o(e0 + e1) +
∑

e′∈δ(e0+e1,A)

AΠ · e′ (Def. δ)

– If e = e0 · e1, derive:

e0 · e1 ≡SF1

(
o(e0) +

∑

e′∈δ(e0,A)

AΠ · e′) · e1 (IH)

≡SF1 o(e0) · e1 +
∑

e′∈δ(e0,A)

(AΠ · e′ · e1) (Distributivity)

≡SF1 o(e0) ·
(
o(e1) +

∑

e′∈δ(e1,A)

AΠ · e′) +
∑

e′∈δ(e0,A)

(AΠ · e′ · e1) (IH)

≡SF1 o(e0 · e1) + o(e0) ·
∑

e′∈δ(e1,A)

AΠ · e′ +
∑

e′∈δ(e0,A)

(AΠ · e′ · e1)

(Def. o, distributivity)

≡SF1 o(e0 · e1) +
∑

e′∈Δ(e1,e0,A)

AΠ · e′ +
∑

e′∈{e′
0·e1:e′

0∈δ(e0,A)}
AΠ · e′

≡SF1 o(e0 · e1) +
∑

e′∈δ(e0·e1,A)

AΠ · e′ (Def. δ)
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– If e = e∗
0, we derive:

e∗
0 ≡SF1

(
o(e0) +

∑

e′∈δ(e0,A)

AΠ · e′
)∗

(Induction hypothesis)

≡SF1

(∑

e′∈δ(e0,A)

AΠ · e′
)∗

(o(e0) ∈ 2 and loop tightening)

≡SF1 1 +
( ∑

e′∈δ(e0,A)

AΠ · e′
)

·
( ∑

e′∈δ(e0,A)

AΠ · e′
)∗

(star axiom of SF1)

≡SF1 1 +
( ∑

e′∈δ(e0,A)

AΠ · e′
)

· e∗
0 (first two steps)

≡SF1 1 +
∑

e′∈δ(e0,A)

(AΠ · e′ · e∗
0) (Distributivity)

≡SF1 o(e∗
0) +

∑

e′∈δ(e∗
0 ,A)

AΠ · e′ (Def. o, def. δ) 
�

Lemma 7.2. For all e ∈ TNSF, we have (�e�SF1)
Π = �e�F1 .

Proof. In the main text we have treated the base cases. The inductive cases
work as follows. There are three cases to consider. If e = e0 + e1, then
(�e�SKA)

Π = (�e0�SKA ∪ �e1�SKA)
Π = (�e0�SKA)

Π ∪ (�e1�SKA)
Π (Lemma 5.18). From

the induction hypothesis we obtain (�e0�SKA)
Π = �e0�KA and (�e1�SKA)

Π = �e1�KA.
Combining these results we get (�e�SKA)

Π = �e0�KA ∪ �e1�KA = �e0�KA + �e1�KA =
�e0 + e1�KA, so the claim follows. Secondly, if e = e0 · e1, then (�e�SKA)

Π =
(�e0�SKA · �e1�SKA)

Π = (�e0�SKA)
Π · (�e1�SKA)

Π (Lemma 5.18). From the induc-
tion hypothesis we obtain (�e0�SKA)

Π = �e0�KA and (�e1�SKA)
Π = �e1�KA. We

can then conclude that (�e�SKA)
Π = �e0�KA · �e1�KA = �e0 · e1�KA. Lastly, if

e = e∗
0, we get (�e∗

0�SKA)
Π = ((�e0�SKA)

∗)Π = ((�e0�SKA)
Π)

∗
(Lemma 5.18).

From the induction hypothesis we obtain (�e0�SKA)
Π = �e0�KA. Thus we have

(�e�SKA)
Π = �e0�

∗
KA = �e∗

0�KA and the claim follows. 
�

Lemma 7.4. Let (M,p) be a Q-linear system such that M and p are guarded.
We can construct Q-vector x that is the unique (up to SF1-equivalence) solution
to (M,p) in SF1. Moreover, if M and p are in normal form, then so is x.

Proof. We will construct x by induction on the size of Q. In the base, let Q = ∅.
In this case the unique Q-vector is a solution. In the inductive step, take k ∈ Q
and let Q′ = Q \ {k}. Then construct the Q′-linear system (M ′, p′) as follows:

M ′(i, j) = M(i, k) · M(k, k)∗ · M(k, j) + M(i, j)
p′(i) = p(i) + M(i, k) · M(k, k)∗ · p(k)

As Q′ is a strictly smaller set than Q and M ′ is guarded, we can apply our
induction hypothesis to (M ′, p′). So we know by induction that (M ′, p′) has a
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unique solution x′. Moreover, if M ′ and p′ are in normal form, so is x′; note that
if M and p are in normal form, then so are M ′ and p′.

We use x′ to construct the Q-vector x:

x(i) =
{

x′(i) i �= k
M(k, k)∗ ·

(
p(k) +

∑
j∈Q′ M(k, j) · x′(j)

)
i = k

The first thing to show now is that x is indeed a solution of (M,p). To this end,
we need to show that M · x + p ≡SF1 x. We have two cases. For i ∈ Q′ we derive:

x(i) = x′(i) (Def. x)

≡SF1 p′(i) +
∑

j∈Q′
M ′(i, j) · x′(j) (x′ solution of (M ′, p′))

≡SF1 p(i) + M(i, k) · M(k, k)∗ · p(k)

+
∑

j∈Q′
(M(i, k) · M(k, k)∗ · M(k, j) + M(i, j)) · x′(j) (Def. (M ′, p′))

≡SF1 p(i) +
∑

j∈Q′
M(i, j) · x′(j)

+ M(i, k) · M(k, k)∗ ·
(
p(k) +

∑

j∈Q′
M(k, j) · x′(j)

)
(Distributivity)

≡SF1 p(i) +
∑

j∈Q′
M(i, j) · x(j) + M(i, k) · x(k) (Def. x)

≡SF1 p(i) +
∑

j∈Q

M(i, j) · x(j) (Merge sum)

For i = k, we derive:

x(k) = M(k, k)∗ ·
(
p(k) +

∑

j∈Q′
M(k, j) · x′(j)

)
(Def. x)

≡SF1 (1 + M(k, k) · M(k, k)∗) ·
(
p(k) +

∑

j∈Q′
M(k, j) · x′(j)

)
(star axiom)

≡SF1 p(k) +
∑

j∈Q′
M(k, j) · x′(j)

+ M(k, k) · M(k, k)∗ ·
(
p(k) +

∑

j∈Q′
M(k, j) · x′(j)

)
(Distributivity)

≡SF1 p(k) +
∑

j∈Q′
M(k, j) · x(j) + M(k, k) · x(k) (Def. x)

≡SF1 p(k) +
∑

j∈Q

M(k, j) · x(j) (Merge sum)
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We now know that x is a solution to (M,p) because M ·x+p ≡SF1 x. Furthermore,
if M and p are in normal form, then so is x′, and thus x is in normal form by
construction.

Next we claim that x is unique. Let y be any solution of (M,p). We choose
the Q′-vector y′ by taking y′(i) = y(i). To see that y′ is a solution to (M ′, p′),
we first claim that the following holds:

y(k) ≡SF1 M(k, k)∗ ·
(
p(k) +

∑

j∈Q′
M(k, j) · y(j)

)
(3)

To see that this is true, derive

y(k) ≡SF1 p(k) +
∑

j∈Q

M(k, j) · y(j) (y solution of (M,p))

≡SF1 p(k) + M(k, k) · y(k) +
∑

j∈Q′
M(k, j) · y(j) (Split sum)

≡SF1 M(k, k)∗ ·
(
p(k) +

∑

j∈Q′
M(k, j) · y(j)

)
(Unique fixpoint axiom)

Note that we can apply the unique fixpoint axiom because we know that M is
guarded and thus that H(M(k, k)) = 0.

Now we can derive the following:

y′(i) = y(i) (Def. y)

≡SF1 p(i) +
∑

j∈Q

M(i, j) · y(j) (y solution of (M,p))

≡SF1 p(i) + M(i, k) · y(k) +
∑

j∈Q′
M(i, j) · y(j) (Split sum)

≡SF1 p(i) +
∑

j∈Q′
M(i, j) · y(j)

+ M(i, k) · M(k, k)∗ ·
(
p(k) +

∑

j∈Q′
M(k, j) · y(j)

)
(Equation 3)

≡SF1 p(i) + M(i, k) · M(k, k)∗ · p(k)

+
∑

j∈Q′

(
M(i, k) · M(k, k)∗ · M(k, j) + M(i, j)

)
· y(j) (Distributivity)

≡SF1 p′(i) +
∑

j∈Q′
M ′(i, j) · y(j) (Def. (M ′, p′))

Thus y′ is a solution to (M ′, p′). As x′ is the unique solution to (M ′, p′), we
know that y′ ≡SF1 x′.
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For i �= k we know that x(i) = x′(i) ≡SF1 y′(i) = y(i). For i = k we can
derive:

y(k) ≡SF1 M(k, k)∗ ·
(
p(k) +

∑

j∈Q′
M(k, j) · y(j)

)
(Equation 3)

≡SF1 M(k, k)∗ ·
(
p(k) +

∑

j∈Q′
M(k, j) · y′(j)

)
(Def. y′)

≡SF1 M(k, k)∗ ·
(
p(k) +

∑

j∈Q′
M(k, j) · x′(j)

)
(x′ ≡SF1 y′)

≡SF1 M(k, k)∗ ·
(
p(k) +

∑

j∈Q′
M(k, j) · x(j)

)
(Def. x′)

≡SF1 x(k) (Def. x)

Thus, y ≡SF1 x, thereby proving that x is the unique solution to (M,p). 
�
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17. Kappé, T., Brunet, P., Silva, A., Zanasi, F.: Concurrent Kleene algebra: free
model and completeness. In: Proceedings of European Symposium on Program-
ming (ESOP), pp. 856–882 (2018). https://doi.org/10.1007/978-3-319-89884-1 30

18. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110(2), 366–390 (1994). https://doi.org/10.1006/inco.1994.
1037

19. Kozen, D.: Myhill-Nerode relations on automatic systems and the completeness of
Kleene algebra. In: Proceedings of Symposium on Theoretical Aspects of Computer
Science (STACS), pp. 27–38 (2001). https://doi.org/10.1007/3-540-44693-1 3

20. Kozen, D., Smith, F.: Kleene algebra with tests: completeness and decidability. In:
van Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258, pp. 244–259. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63172-0 43

21. Krob, D.: Complete systems of B-rational identities. Theor. Comput. Sci. 89(2),
207–343 (1991). https://doi.org/10.1016/0304-3975(91)90395-I

22. Laurence, M.R., Struth, G.: Completeness theorems for pomset languages and
concurrent Kleene algebras. arXiv:1705.05896

23. Milner, R.: Calculi for synchrony and asynchrony. Theor. Comput. Sci. 25, 267–310
(1983). https://doi.org/10.1016/0304-3975(83)90114-7

24. Prisacariu, C.: Synchronous Kleene algebra. J. Log. Algebr. Program. 79(7), 608–
635 (2010). https://doi.org/10.1016/j.jlap.2010.07.009

25. Rutten, J.J.M.M.: Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. Theor. Comput. Sci. 308(1–3), 1–53 (2003).
https://doi.org/10.1016/S0304-3975(02)00895-2

26. Salomaa, A.: Two complete axiom systems for the algebra of regular events. J.
ACM 13(1), 158–169 (1966). https://doi.org/10.1145/321312.321326

27. Silva, A.: Kleene Coalgebra. PhD thesis, Radboud Universiteit Nijmegen (2010)

https://doi.org/10.1007/978-3-319-48989-6_22
https://doi.org/10.1007/978-3-319-48989-6_22
https://doi.org/10.1007/s00165-018-0464-4
https://doi.org/10.1007/s00165-018-0464-4
https://doi.org/10.1007/3-540-44693-1_3
https://doi.org/10.1016/j.jlamp.2015.09.012
http://arxiv.org/abs/1811.10401
https://doi.org/10.1007/978-3-319-89884-1_30
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1007/3-540-44693-1_3
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1016/0304-3975(91)90395-I
http://arxiv.org/abs/1705.05896
https://doi.org/10.1016/0304-3975(83)90114-7
https://doi.org/10.1016/j.jlap.2010.07.009
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1145/321312.321326


Unraveling Recursion: Compiling an IR
with Recursion to System F

Michael Peyton Jones1(B) , Vasilis Gkoumas1, Roman Kireev1 ,
Kenneth MacKenzie1, Chad Nester2, and Philip Wadler2

1 IOHK, Hong Kong, China
{michael.peyton-jones,vasilis.gkoumas,roman.kireev,

kenneth.mackenzie}@iohk.io
2 University of Edinburgh, Edinburgh, UK

{cnester,wadler}@inf.ed.ac.uk

Abstract. Lambda calculi are often used as intermediate representa-
tions for compilers. However, they require extensions to handle higher-
level features of programming languages. In this paper we show how to
construct an IR based on System Fμ

ω which supports recursive functions
and datatypes, and describe how to compile it to System Fμ

ω . Our IR
was developed for commercial use at the IOHK company, where it is
used as part of a compilation pipeline for smart contracts running on a
blockchain.

1 Introduction

Many compilers make use of intermediate representations (IRs) as stepping
stones between their source language and their eventual target language. Lambda
calculi are tempting choices as IRs for functional programming languages. They
are simple, well-studied, and easy to analyze.

However, lambda calculi also have several features that make them poor IRs.

– They are hard to read and write. Although they are mostly read and written
by computers, this complicates writing compilers and debugging their output.

– They can be hard to optimize. Some optimizations are much easier to write
on a higher-level language. For example, dead-binding elimination is much
easier with explicit let-bindings.

– They make the initial compilation step “too big”. Compiling all the way from
a high-level surface language to a lambda calculus can involve many complex
transformations, and it is often advantageous from an engineering standpoint
to break it into smaller steps.

Hence it is common to design an IR by extending a lambda calculus with
additional features which make the IR more legible, easier to optimize, or closer
to the source language (e.g. GHC Core [26], Henk [25], Idris’ TT [4], and OCaml’s
Lambda [20]). However, given that such IRs are desirable, there is little material
on implementing or compiling them.
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In this paper we construct an IR suitable for a powerful functional pro-
gramming language like Haskell. We take as our lambda calculus System Fμ

ω

(System Fω with indexed fixpoints: see [27, Chapter 30], formalized recently in
[8]), which allows us to talk about higher-kinded recursive types, and extend it
to an IR called FIR which adds the following features:

– Let-binding of non-recursive terms, types, and datatypes.
– Let-binding of recursive terms and datatypes.

This is a small, but common, subset of the higher-level features that func-
tional programming languages usually have, so this provides a reusable IR for
compiler writers targeting System Fμ

ω .
Moreover, all of the compilation passes that we provide are local in the sense

that they do not access more than one level of the syntax tree, and they do not
require any type information that is not present in type annotations. So while
we provide typing rules for FIR, it is not necessary to perform type synthesis in
order to compile it.

Encoding recursive terms has traditionally been done with fixpoint combina-
tors. However, the textbook accounts typically do not cover mutual recursion,
and where it is handled it is often assumed that the calculus is non-strict. We
construct a generalized, polyvariadic fixpoint combinator that works in both
strict and non-strict base calculi, which we use to compile recursive terms.

In order to compile datatypes, we need to encode them and their accom-
panying constructors and destructors using the limited set of types and terms
we have available in our base calculus. The Church encoding [27, Chapter 5.2,
Chapter 23.4] is a well-known method of doing this in plain System F . With it,
we can encode even recursive datatypes, so long as the recursion occurs only in
positive positions.

However, some aspects of the Church encoding are not ideal, for example, it
requires time proportional to the size of a list to extract its tail. We use a different
encoding, the Scott encoding [1], which can encode any recursive datatype, but
requires adding a fixpoint operator to System F in order to handle arbitrary
type-level recursion.

To handle mutually recursive datatypes we borrow some techniques from the
generic programming community, in particular indexed fixpoints, and the use of
type-level tags to combine a family of mutually recursive datatypes into a single
recursive datatype. While this technique is well-known (see e.g. [32]), the details
of our approach are different, and we face some additional constraints because
we are targeting System Fμ

ω rather than a full dependently-typed calculus.
We have used FIR as an IR in developing Plutus [16], a platform for develop-

ing smart contracts targeting the Cardano blockchain. Users write programs in
Haskell, which are compiled by a GHC compiler plugin into Plutus Core, a small
functional programming language. Plutus Core is an extension of System Fμ

ω ,
so in order to easily compile Haskell’s high-level language features we developed
FIR as an IR above Plutus Core. We have used this compiler to write substan-
tial programs in Haskell and compile them to Plutus Core, showing that the
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techniques in this paper are usable in practice. The compiler is available for
public use at [17].

Contributions. We make the following contributions.

– We give syntax and typing rules for FIR, a typed IR extending System Fμ
ω .

– We define a series of local compilation passes which collectively compile FIR
into System Fμ

ω .
– We provide a reference implementation of the syntax, type system, and sev-

eral of the compilation passes in Agda [24], a powerful dependently typed
programming language.

– We have written a complete compiler implementation in Haskell as part of a
production system for the Plutus platform.

Our techniques for encoding datatypes are not novel [21,32]. However, we
know of no complete presentation that handles mutual recursion and parame-
terized datatypes, and targets a calculus as small as System Fμ

ω .
We believe our techniques for encoding mutually recursive functions are

novel.
While the Agda compiler implementation is incomplete, and does not include

soundness proofs, we believe that the very difficulty of doing this makes our
partial implementation valuable. We discuss the difficulties further in Sect. 5.

Note on the Use of Agda. Although System Fμ
ω is a complete programming

language in its own right, it is are somewhat verbose and clumsy to use for the
exposition of the techniques we are presenting.

Consequently we will use:

– Agda code, typeset colourfully, for exposition.
– System Fμ

ω code, typeset plainly, for the formal descriptions.

We have chosen to use ∗ for the kind of types, whereas Agda normally uses
Set. To avoid confusion we have aliased Set to ∗ in our Agda code. Readers
should recall that Agda uses → following binders rather than a . character.

The Agda code in this paper and the Agda compiler code are available in
the Plutus repository.

Notational Conventions. We will omit kind signatures in System Fμ
ω when they

are ∗, and any other signatures when they are obvious from context or repetition.
We will be working with a number of constructs that have sequences of

elements. We will adopt the metalanguage conventions suggested by Guy Steele
[29], in particular:

– t[x := v] is a substitution of v for x in t.
– t is expanded to any number of (optionally separated) copies of t. Any under-

lined portions of t must be expanded the same way in each copy. Where we
require access to the index, the overline is superscripted with the index. For
example:

https://github.com/input-output-hk/plutus/tree/3008f78ed7f75cdd98da7fb06f06345fc52c2e31/papers/unraveling-recursion
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• x : T is expanded to x1 : T1 . . . xn : Tn

• Γ � J is expanded to Γ � J1 . . . Γ : Jn

• xj : Tj+1
j

is expanded to x1 : T2 . . . xn : Tn+1

– t → u is expanded to t1 → . . . → tn → u, similarly for ⇒.

2 Datatype Encodings

The Scott encoding represents a datatype as the type of the pattern-matching
functions on it. For example, the type of booleans, Bool, is encoded as

∀R.R → R → R

That is, for any output type R you like, if you provide an R for the case where
the value is false and an R for the case where the value is true, then you have
given a method to construct an R from all possible booleans, thus performing
a sort of pattern-matching. In general the arguments to the encoded datatype
value are functions which transform the arguments of each constructor into an
R.

The type of naturals, Nat, is encoded as

∀R.R → (Nat → R) → R

Here we see an occurrence of Nat in the definition, which corresponds to recursive
use in the “successor” constructor. We will need type-level recursion to deal with
recursive references.

The Church encoding of Bool is the same as the Scott encoding. This is true
for all non-recursive datatypes, but not for recursive datatypes. The Church
encoding of Nat is:

∀R.R → (R → R) → R

Here the recursive occurrence of Nat has disappeared, replaced by an R. This is
because while the Scott encoding corresponds to a pattern-match on a type, the
Church encoding corresponds to a fold, so recursive occurrences have already
been folded into the output type.

This highlights the tradeoffs between the two encodings (see [19] for further
discussion):

– To operate on a Church encoded value we must perform a fold on the entire
structure, which is frequently inefficient. For a Scott encoded value, we only
have to inspect the surface level of the term, which is inexpensive.

– Since recursive occurrences of the type are already “folded” in the Church
encoding, there is no need for a type-level recursion operator. Contrast this
with the situation with the Scott encoding, in which additional type-level
machinery (fixed points) is needed to define type-level recursion.

In this paper we will use the Scott encoding to encode datatypes.
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3 Syntax and Type System of System F μ
ω and FIR

FIR is an extension of System Fμ
ω , which is itself an extension of the well-known

System Fω. In the following figures we give

– Syntax (Fig. 1)
– Kinding (Fig. 2)
– Well-formedness of constructors and bindings (Fig. 4)
– Type equivalence (Fig. 5)
– Type synthesis (Fig. 6)

for full FIR. Cases without highlighting are for System Fω, while we highlight
additions for System Fμ

ω and FIR .
There are a number of auxiliary definitions in Fig. 3 for dealing with

datatypes and bindings. These define kinds and types for the various bindings
produced by datatype bindings. We will go through examples of how they work
in Sect. 4.3.

3.1 Recursive Types

System Fω is very powerful, but does not allow us to define (non-positive) recur-
sive types. Adding a type-level fixed point operator enables us to do this (see
e.g. [27, Chapter 20]). However, we must make a number of choices about the
precise nature of our type-level fixed points.

Isorecursive and Equirecursive Types. The first choice we have is between
two approaches to exposing the fixpoint property of our recursive types. Systems
with equirecursive types identify (fix f) and f(fix f); whereas systems with
isorecursive types provide an isomorphism between the two, using a term unwrap
to convert the first into the second, and a term wrap for the other direction.

The tradeoff is that equirecursive types add no additional terms to the
language, but have a more complicated metatheory. Indeed, typechecking
System Fμ

ω with equirecursive types is not known to be decidable in general
[7,11]. Isorecursive types, on the other hand, have a simpler metatheory, but
require additional terms. It is not too important for an IR to be easy to program
by hand, so we opt for isorecursive types, with our witness terms being wrap
and unwrap.

Choosing an Appropriate Fixpoint Operator. We also have a number of
options for which fixpoint operator to add. The most obvious choice is a fixpoint
operator fix which takes fixpoints of type-level endofunctions at any kind K (i.e.
it has signature fix : (K ⇒ K) ⇒ K). In contrast, our language System Fμ

ω has
a fixpoint operator ifix (“indexed fix”) which allows us to take fixpoints only
at kinds K ⇒ ∗.

The key advantage of ifix over fix is that it is much easier to give fully-
synthesizing type rules for ifix. To see this, suppose we had a fix operator
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Fig. 1. Syntax of FIR

Fig. 2. Kinding for FIR
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Fig. 3. Auxiliary definitions

Fig. 4. Well-formedness of constructors and bindings

Fig. 5. Type equivalence for FIR
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Fig. 6. Type synthesis for FIR

in our language, with corresponding wrap and unwrap terms. We now want to
write typing rules for wrap. However, fix allows us to take fixpoints at arbitrary
kinds, whereas wrap and unwrap are terms, which always have types of kind ∗.
Thus, the best we can hope for is to use wrap and unwrap with fully applied
fixed points, i.e.:

wrap0 f0 t : fix f0 where t : f0 (fix f0)
wrap1 f1 a1 t : fix f1 a1 where t : f1 (fix f1) a1
wrap2 f2 a1 a2 t : fix f2 a1 a2 where t : f2 (fix f2) a1 a2
. . .

This must be accounted for in our typing rules for fixed points.
It is possible to give typing rules for wrap that will do the right thing regard-

less of how the fixpoint type is applied. One approach is to use elimination
contexts, which represent the context in which a type will be eliminated (i.e.
applied). This is the approach taken in [10]. However, this incurs a cost, since
we cannot guess the elimination context (since type synthesis is bottom-up), so
we must attach elimination contexts to our terms somehow.

An alternative approach is to pick a more restricted fixpoint operator. Using
ifix avoids the problems of fix: it always produces fixpoints at kind K ⇒ ∗,
which must be applied to precisely one argument of kind K before producing a
type of kind ∗. This means we can give relatively straightforward typing rules
as shown in Fig. 6.
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Adequacy of ifix. Perhaps surprisingly, ifix is powerful enough to give us
fixpoints at any kind K. We give a semantic argument here, but the idea is
simply stated: we can “CPS-transform” a kind K into (K ⇒ ∗) ⇒ ∗, which then
has the correct shape for ifix.

Definition 1. Let J and K be kinds. Then J is a retract of K if there exist
functions φ : J ⇒ K and ψ : K ⇒ J such that ψ ◦ φ = id.

Proposition 1. Suppose J is a retract of K and there is a fixpoint operator
fixK on K. Then there is fixpoint operator fixJ on J .

Proof. Take fixJ(f) = ψ(fixK(φ ◦ f ◦ ψ)).

Proposition 2. Let K be a kind in System Fμ
ω . Then there is a unique (possibly

empty) sequence of kinds (K0, . . . ,Kn) such that K = K ⇒ ∗.
Proof. Simple structural induction.

Proposition 3. For any kind K in System Fμ
ω , K is a retract of (K ⇒ ∗) ⇒ ∗.

Proof. Let K = K ⇒ ∗ (by Proposition 2), and take

φ : K ⇒ (K ⇒ ∗) ⇒ ∗
φ = λ(x :: K).λ(f :: K ⇒ ∗).f x

ψ : ((K ⇒ ∗) ⇒ ∗) ⇒ K

ψ = λ(w :: (K ⇒ ∗) ⇒ ∗).λ(a :: K).w(λ(o :: K).o a)

Corollary 1. If there is a fixpoint operator at kind (K ⇒ ∗) ⇒ ∗ then there is
a fixpoint operator at any kind K.

We can instantiate ifix with K ⇒ ∗ to get fixpoints at (K ⇒ ∗) ⇒ ∗, so
ifix is sufficient to get fixpoints at any kind.

Note that since our proof relies on Proposition 2, it will not go through for
arbitrary kinds when there are additional kind forms beyond ∗ and ⇒. However,
it will still be true for all kinds of the structure shown in Proposition 2.

The fact that retractions preserve the fixed point property is well-known
in the context of algebraic topology: see [12, Exercise 4.7] or [5, Proposition
23.9] for example. While retractions between datatypes are a common tool in
theoretical computer science (see e.g. [30]), we have been unable to find a version
of Proposition 1 in the computer science literature. Nonetheless, we suspect this
to be widely known.
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3.2 Datatypes

FIR includes datatypes. A FIR datatype defines a type with a kind, parameter-
ized by several type variables. The right-hand side declares of a list of construc-
tors with type arguments, and the name of a matching function.1 They thus are
similar to the familiar style of defining datatypes in languages such as Haskell.

For example,

data Maybe (A :: ∗) = (Nothing(), Just(A)) with matchMaybe

defines the familiar Maybe datatype, with constructors Nothing and Just, and
matching function matchMaybe.

The type of matchMaybe is MaybeA → ∀R.R → (A → R) → R. This acts as
a pattern-matching function on Maybe—exactly as we saw the Scott encoding
behave in Sect. 2. The matcher converts the abstract datatype into the raw,
Scott-encoded type which can be used as a pattern matcher. We will see the
full details in Sect. 4.3, and the type is given by matchTy(Maybe) as defined in
Fig. 10.

Since FIR includes recursive datatypes, we could have removed ifix, wrap
and unwrap from FIR. However, in practice it is useful for the target language
(System Fμ

ω ) to be a true subset of the source language (FIR), as this allows us
to implement compilation as a series of FIR-to-FIR passes.

3.3 Let

FIR also features let terms. These have a number of bindings in them which
bind additional names which are in scope inside the body of the let, and inside
the right-hand-sides of the bindings in the case of a recursive let.

FIR supports let-binding terms, (opaque) types, and datatypes.
The typing rules for let are somewhat complex, but are crucially responsible

for managing the scopes of the bindings defined in the let. In particular:

– The bindings defined in the let are not in scope when checking the right-
hand sides of the bindings if the let is non-recursive, but are in scope if it is
recursive.

– The bindings defined in the let are not in scope when checking the type of
the entire binding.2

The behaviour of type-let is also worth explaining. Type-lets are more like
polymorphism than type aliases in a language like Haskell. That is, they are
opaque inside the body of the let, whereas a type alias would be transparent.
1 Why declare a matching function explicitly, rather than using case expressions? The

answer is that we want to be local : matching functions can be defined and put into
scope when processing the datatype binding, whereas case expressions require addi-
tional program analysis to mach up the expression with the corresponding datatype.

2 This is the same device usually employed when giving typing rules for existential
types to ensure that the inner type does not escape.
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This may make them seem like a useless feature, but this is not so. Term-lets
are useful for binding sub-expressions of term-level computations to reusable
names; type-lets are similarly useful for binding sub-expressions of type-level
computations.

4 Compilation

We will show how to compile FIR by defining a compilation scheme for each
feature in FIR:

– Non-recursive bindings of terms (Cterm, Sect. 4.1) and types (Ctype, Sect. 4.1)
– Recursive bindings of terms (Ctermrec, Sect. 4.2)
– Non-recursive bindings of datatypes (Cdata, Sect. 4.3)
– Recursive bindings of datatypes (Cdatarec, Sect. 4.4)

We do not consider recursive bindings of types, since the case of recursive
datatypes is much more interesting and subsumes it.

Although our goal is to compile to System Fμ
ω , since it is a subset of FIR we

can treat each pass as targeting FIR, by eliminating one feature from the lan-
guage until we are left with precisely the subset that corresponds to System Fμ

ω .
This has the advantage that we can continue to features of FIR until the point
in the pipeline in which they are eliminated.3

In particular, we will use non-recursive let-bindings in Ctermrec and Cdatarec,
which imposes some ordering constraints on our passes.

Homogeneous Let-Bindings. We have said that we are going to compile e.g.
term and type bindings separately, but our syntax (and typing rules) allows for
let terms with many bindings of both sorts. While this is technically true, it is
an easy problem to avoid.

Non-recursive bindings do not interfere with each other, since the newly-
defined variables cannot occur in the right-hand sides of other bindings. That
means that we can always decompose a single term with n bindings into n
separate terms, one for each binding. Hence we can consider each sort of binding
(and indeed, each individual binding) in isolation.

The same is not true for recursive bindings. To simplify the presentation we
add a restriction to the programs that we compile: we require recursive lets to
be homogeneous, in that they must only contain one sort of binding (term, type,
or datatype). This means that we can similarly consider each sort of binding in
isolation, although we will of course need to consider multiple bindings of the
same sort.

This restriction is not too serious in practice. Given a recursive let term with
arbitrary bindings:

3 An elegant extension of this approach would be to define an indexed family of lan-
guages with gradually fewer features. However, this would be a distraction from the
main point of this paper, so we have not adopted it.
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– Types cannot depend on terms, so there are no dependencies from types or
datatypes to terms.

– We do not support recursive type bindings, so there are no dependencies from
types or datatypes to types.

So we can always pull out the term and type bindings into separate (recursive)
let terms. The situation would be more complicated if we wanted to support
recursive types or dependent types.

Fig. 7. Compilation of non-recursive term and type bindings

4.1 Non-recursive Term and Type Bindings

Non-recursive term and type bindings are easy to compile. They are encoded as
immediately-applied lambda- and type-abstractions, respectively. We define the
compilation scheme in Fig. 7.

4.2 Recursive Term Bindings

Self-reference and Standard Combinators. It is well-known that we cannot
encode the Y combinator in the polymorphic lambda calculus, but that we can
encode it if we have recursive types [14, Section 20.3].4 We need the following
types:

4 We here mean arbitrary recursive types, not merely strictly positive types. We cannot
encode the Y combinator in Agda, for example, without disabling the positivity
check.
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The first thing we defined was Fix0 : (∗ ⇒ ∗) ⇒ ∗, which is a fixpoint opera-
tor that only works at kind ∗. We won’t need the full power of ifix for this
section, so the techniques here should be applicable for other recursive variants
of System Fω, provided they are able to define Fix0.

Now we can define the Y combinator and its η-expanded version, the Z
combinator.

In strict lambda calculi the Y combinator does not terminate, and we need to
use the Z combinator, which has a more restricted type (it only allows us to take
the fixpoint of things of type A → B).

Mutual Recursion. The Y and Z combinators allow us to define singly recur-
sive functions, but we also want to define mutually recursive functions.

This is easy in a non-strict lambda calculus: we have the Y combinator, and
we know how to encode tuples, so we can simply define a recursive tuple of
functions. However, this is still easy to get wrong, as we must be careful not to
force the recursive tuple too soon.

Moreover, this approach does not work with the Z combinator, since a tuple
is not a function (the Scott-encoded version is a function, but a polymorphic
function).

We can instead construct a more generic fixpoint combinator which will be
usable in both a non-strict and strict setting. We will present the steps using
recursive definitions for clarity, but all of these can be implemented with the Z
combinator.

Let us start with the function fix2 which takes the fixpoint of a function of
2-tuples.

We can transform this as follows: first we curry f .

Now, we replace both the remaining tuple types with Scott-encoded versions,
using the corresponding version of uncurry for Scott-encoded 2-tuples.
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Finally, we reorder the arguments to f to make it look as regular as possible.

This gives us a fixpoint function pairs of mutually recursive values, but we want
to handle arbitrary sets of recursive values. At this point, however, we notice that
all we need to do to handle, say, triples, is to replace A → B with A → B → C
and the binary uncurry with the ternary uncurry. And we can abstract over this
pattern.

To get the behaviour we had before, we instantiate by appropriately:

How do we interpret by? Inlining uncurry into our definition of by2 we find that
it is in fact the identity function! However, by choosing the exact definition we
can tweak the termination properties of our fixpoint combinator. Indeed, our
current definition does not terminate even in a non-strict language like Agda,
since it evaluates the components of the recursive tuple before feeding them into
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f . However, we can avoid this by “repacking” the tuple so that accessing one of
its components will no longer force the other.5

Passing by2-repack to fixBy gives us a fixpoint combinator that terminates in
a non-strict language like Agda or Haskell.

Can we write one that terminates in a strict language? We can, but we incur
the same restriction that we have when using the Z combinator: the recursive
values must all be functions. This is because we use exactly the same trick,
namely η-expanding the values.

This gives us general, n-ary fixpoint combinators in System Fμ
ω .

Formal Encoding of Recursive Let-Bindings. We define the compilation
scheme for recursive term bindings in Fig. 8, along with a number of auxiliary
functions.

The definitions of fixBy, by, and fix are as in our Agda presentation. The
function selk is what we pass to a Scott-encoded tuple to select the kth element.
The Z combinator is defined as in the previous section (we do not repeat the
definition here). We have given the lazy version of by, but it is straightforward

5 We have defined × as a simple datatype, rather than using the more sophisticated
version in the Agda standard library. The standard library version has different
strictness properties—indeed, for that version repack2 is precisely the identity.
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Fig. 8. Compilation of recursive let-bindings

to define the strict version, in exchange for the corresponding restriction on the
types of the recursive bindings.

The compilation function is a little indirect: we create a recursive tuple of
values, then we let-bind each component of the tuple again! Why not just pass
a single function to the tuple that consumes all the components and produces
t? The answer is that in order to use the Scott-encoded tuple we need to give
it the type of the value that we are producing, which in this case would be the
type of t. But we do not know this type without doing type inference on FIR.
This way we instead extract each of the components, whose types we do know,
since they are in the original let-binding.

Polymorphic Recursion with the Z Combinator. Neither the simple Z
combinator nor our strict fixBy allow us to define recursive values which are
not of function type. This might not seem too onerous, but this also forbids
defining polymorphic values, such as polymorphic functions. For example, we
cannot define a polymorphic map function this way.

Sometimes we can get around this problem by floating the type abstraction
out of the recursion. This will work in many cases, but fails in any instance of
polymorphic recursion, which includes most recursive functions over irregular
datatypes.

However, we can work around this restriction if we are willing to trans-
form our program. The thunking transformation is a variant of the well-known
transformation for simulating call-by-name evaluation in a call-by-value language
[9,28]. Conveniently, this also has the property that it transforms the “thunked”
parameters into values of function type, thus making them computable with the
Z combinator.

The thunking transformation takes a set of recursive definitions fi : Ti = bi

and transforms it by:

– Defining the Unit datatype with a single, no-argument constructor ().
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– Creating new (recursive) definitions f ′
i : Unit → Ti = λ(u : Unit).bi.

– Replacing all uses of fi in the bis with f ′
i (),

– Creating new (non-recursive) definitions fi : Ti = f ′
i () to replace the

originals.

Now our recursive value is truly of function type, rather than universal type, so
we can compile it as normal.

An example is given in Fig. 9 of transforming a polymorphic map function.

Fig. 9. Example of transforming polymorphic recursion

4.3 Non-recursive Datatype Bindings

Non-recursive datatypes are fairly easy to compile. We will generalize the Scott-
encoding approach described in Sect. 2.

We define the compilation scheme for non-recursive datatype bindings in
Fig. 10, along with a number of auxiliary functions in addition to those in Fig. 3.

Let’s go through the auxiliary functions in turn (both those in Figs. 3 and
10), using the Maybe datatype as an example.

d := data Maybe A = (Nothing(), Just(A)) with match

– branchTy(c,R) computes the type of a function which consumes all the argu-
ments of the given constructor, producing a value of type R.

branchTy(Nothing(), R) = R

branchTy(JustA,R) = A → R

– dataKind(d) computes the kind of the datatype type. This is a kind arrow
from the kinds of all the type arguments to ∗.

dataKind(Maybe) = ∗ ⇒ ∗
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Fig. 10. Compilation of non-recursive datatype bindings

– dataTy(d) computes the Scott-encoded datatype. This binds the type variables
with a lambda and then constructs the pattern matching function type using
the branch types.

dataTy(d) = λA.∀R.R → (A → R) → R

– constrTy(c, T ) computes the type of a constructor of the datatype d.

constrTy(Nothing(),Maybe) = ∀A.MaybeA

constrTy(JustA,Maybe) = ∀A.A → MaybeA

– unveil(d, t) “unveils” the datatype inside a type or term, replacing the abstract
definition with the concrete, Scott-encoded one. We apply this to the defi-
nition of the constructors, for a reason we will see shortly. This makes no
difference for non-recursive datatypes, but will matter for recursive ones.

unveil(d, t) = t[Maybe := λA.∀R.R → (A → R) → R]

– constrk(d, c) computes the definition of the kth constructor of a datatype. To
match the signature of the constructor, this is type abstracted over the type
variables and takes arguments corresponding to each of the constructor argu-
ments. Then it constructs a pattern matching function which takes branches
for each alternative and uses the kth branch on the constructor arguments.

constr1(d,Nothing()) = ΛA.ΛR.λ(b1 : R)(b2 : A → R).b1
constr2(d, Just(A)) = ΛA.λ(v : A).ΛR.λ(b1 : R)(b2 : A → R).b2 v

– matchTy(d) computes the type of the datatype matcher, which converts from
the abstract datatype to a pattern-matching function—that is, precisely the
Scott-encoded type.

matchTy(d) = ∀A.MaybeA → (∀R.R → (A → R) → R)
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– match(d) computes the definition of the matcher of the datatype, which is
the identity.

match(d) = ΛA.λ(v : MaybeA).v

The basic idea of the compilation scheme itself is straightforward: use type
abstraction and lambda abstraction to bind names for the type itself, its con-
structors, and its match function.

There is one quirk: usually when encoding let-bindings we create an imme-
diately applied type- or lambda-abstraction, but here they are interleaved. The
reason for this is that the datatype must be abstract inside the signature of the
constructors and the match function, since otherwise any uses of those functions
inside the body will not typecheck. But inside the definitions the datatype must
be concrete, since the definitions make use of the concrete structure of the type.
This explains why we needed to use unveil(d, t) on the definitions of the con-
structors, since they appear outside the scope in which we define the abstract
type. Note that this means we really must perform a substitution rather than
creating a let-binding, since that would simply create another abstract type.6

Consider the following example:

Cdata(let data Maybe A = (Nothing(), Just(A)) with match

in match {Int} (Just{Int}1) 0 (λx : Int .x + 1))
= (Λ(Maybe :: ∗ ⇒ ∗). (signature of Maybe)

λ(Nothing : ∀A.MaybeA). (signature of Nothing)
λ(Just : ∀A.A → MaybeA). (siganture of Just)
λ(match : ∀A.MaybeA → ∀R.R → (A → R) → R). (signature of match)
match {Int} (Just{Int}1) 0 (λx : Int .x + 1)) (body of the let)
(λA.∀R.R → (A → R) → R) (definition of Maybe)
(ΛA.ΛR.λ(b1 : R) (b2 : A → R).b1) (definition of Nothing)
(ΛA.λ(v1 : A).ΛR.λ(b1 : R) (b2 : A → R).b2 v1) (definition of Just)
(ΛA.λ(v : ∀R.R → (A → R) → R).v) (definition of match)

Here we can see that:

– Just needs to produce the abstract type inside the body of the let, otherwise
the application of match will be ill-typed.

– The definition of Just produces the Scott-encoded type.
– match maps from the abstract type to the Scott-encoded type inside the body

of the let.
– The definition of match is the identity on the Scott-encoded type.

6 It is well-known that abstract datatypes can be encoded with existential types [22].
The presentation we give here is equivalent to using a value of existential type which
is immediately unpacked, and where existential types are given the typical encoding
using universal types.
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4.4 Recursive Datatype Bindings

Adding singly recursive types is comparatively straightforward. We can write
our datatype as a type-level function (often called a “pattern functor” [3]) with
a parameter for the recursive use of the type, and then use our fixpoint operator
to produce the final datatype.7

However, it is not immediately apparent how to use this to define mutually
recursive datatypes. The type of ifix is quite restrictive: we can only produce
something of kind k ⇒ ∗.

If we had kind-level products and an appropriate fixpoint operator, then
we could do this relatively easily by defining a singly recursive product of our
datatypes. However, we do not have products in our kind system.

But we can encode type-level products. In [32] the authors use the fact that
an n-tuple can be encoded as a function from an index to a value, and thus
type-level naturals can be used as the index of a type-level function to encode a
tuple of types. We take a similar approach except that we will not use a natural
to index our type, but rather a richer datatype. This will prove fruitful when
encoding parameterized types.

Let’s consider an example: the mutually recursive types of trees and forests.

First of all, we can rewrite this with a “tag” datatype indicating which of the
two cases in our datatype we want to use. That allows us to use a single data

7 This is where the Scott encoding really departs from the Church encoding: the
recursive datatype itself appears in our encoding, since we are only doing a “one-
level” fold whereas the Church encoding gives us a full recursive fold over the entire
datastructure.
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declaration to cover both of the types. Moreover, the tag can include the type
parameters of the datatype, which is important in the case that they differ
between the different datatypes.

That has eliminated the mutual recursion, but we still have a number of prob-
lems:

– We are relying on Agda’s data declarations to handle recursion, rather than
our fixpoint combinator.

– We are using inductive families, which we don’t have a way to encode.
– TreeForestt is being used at the kind level, but we don’t have a way to

encode datatypes at the kind level.

Fortunately, we can get past all of these problems. Firstly we need to make our
handling of the different constructors more uniform by encoding them as sums
of products.
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If we now rewrite TreeForestF to take the recursive type as a parameter instead
of using it directly, we can write this with ifix.

Finally, we need to encode the remaining datatypes that we have used. The sums
and products in the right-hand-side of TreeForestF should be Scott-encoded as
usual, since they represent the constructors of the datatype.

The tag type is more problematic. The Scott encoding of the tag type we
have been using would be:

However, we do not have polymorphism at the kind level! But if we look at how
we use the tag we see that we only ever match on it to produce something of
kind ∗, and so we can get away with immediately instantiating this to ∗.
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This, finally, gives us a completely System Fμ
ω -compatible encoding of our mutu-

ally recursive datatypes.

Formal Encoding of Recursive Datatypes. We define the compilation
scheme for recursive datatype bindings in Fig. 11, along with a number of aux-
iliary functions. We will reuse some of the functions from Fig. 10, but many of
them need variants for the recursive case, which are denoted with a rec super-
script.

Let’s go through the functions again, this time using Tree and Forest as
examples:

d1 := data Tree A = (Node(A,ForestA)) with matchTree

d2 := data Forest A = (Nil(),Cons(TreeA,ForestA)) with matchForest

– tagKind(l) defines the kind of the type-level tags for our datatype family,
which is a Scott-encoded tuple of types.

tagKind(l) = (∗ ⇒ ∗) ⇒ (∗ ⇒ ∗) ⇒ ∗

– tagk(l, d) defines the tag type for the datatype d in the family.

tag1(l,Tree) = λA.λ(v1 :: ∗ ⇒ ∗)(v2 :: ∗ ⇒ ∗).v1 A

tag2(l,Forest) = λA.λ(v1 :: ∗ ⇒ ∗)(v2 :: ∗ ⇒ ∗).v2 A
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Fig. 11. Compilation of recursive datatype bindings

– instk(f, l, d) instantiates the family type f for the datatype d in the family
by applying it to the datatype tag.

inst1(f, l,Tree) = λA.f (tag1(l,Tree) A)
inst2(f, l,Forest) = λA.f (tag2(l,Forest) A)

– family(l) defines the datatype family itself. This takes a recursive argument
and a tag argument, and applies the tag to the Scott-encoded types of the
datatype components, where the types themselves are instantiated using the
recursive argument.

family(l) = λr t. let

Tree = inst1(r, l,Tree)
Forest = inst2(r, l,Forest)

in t dataTy(d1) dataTy(d2)
dataTy(d1) = λA.∀R.(A → ForestA → R) → R

dataTy(d2) = λA.∀R.R → (TreeA → ForestA → R) → R

– instFamilyk(l, d) is the full recursive datatype family instantiated for the
datatype d, much like instk(f, l, d), but with the full datatype family.

instFamily1(l,Tree) = λA. ifix (family(l)) (tag1(l,Tree) A)

– unveilrec(l, t) “unveils” the datatypes as before, but unveils all the datatypes
and replaces them with the full recursive definition instead of just the Scott-
encoded type.



438 M. Peyton Jones et al.

– constrreck,m(l, d, c) defines the constructor c of the datatype d in the family. It
is similar to before, but includes a use of wrap.

constrrec1,1 (l,Tree,Node) = ΛA.λ(v1 : A)(v2 : ForestA).

wrap (instFamily1(l,Tree)) A

(ΛR.λ(b1 : A → ForestA → R).b1 v1 v2)
constrrec2,1 (l,Forest,Nil) = ΛA.

wrap (instFamily2(l,Forest)) A

(ΛR.λ(b1 : R)(b2 : TreeA → ForestA → R).b1)
constrrec2,2 (l,Forest,Cons) = ΛA.λ(v1 : TreeA)(v2 : ForestA).

wrap (instFamily2(l,Forest)) A

(ΛR.λ(b1 : R)(b2 : TreeA → ForestA → R).b2 v1 v2)

– matchreck (l, d) defines the matcher of the datatype d as before, but includes a
use of unwrap.

matchrec1 (l,Tree) = ΛA.λ(v : TreeA). unwrap v

matchrec2 (l,Forest) = ΛA.λ(v : ForestA). unwrap v

5 Compiler Implementation in Agda

As a supplement to the presentation in this paper, we have written a formali-
sation of a FIR compiler in Agda.8 The compiler includes the syntax, the type
system (the syntax is intrinsically typed, so there is no need for a typechecker),
and implementations of several of the passes. In particular, we have implemented:

– Type-level compilation of mutually recursive datatypes into System Fμ
ω types.

– Term-level compilation of mutually recursive terms into System Fμ
ω terms.

The Agda presentation uses an intrinsically-typed syntax, where terms are iden-
tified with their typing derivations [2]. This means that the compilation process
is provably kind- and type-preserving.

However, the implementation is incomplete. The formalization is quite
involved since the term-level parts of datatypes (constructors) must exactly line
up with the type-level parts. Moreover, we have not proved any soundness results
beyond type preservation. The complexity of the encodings makes it very hard
to prove soundness. The artifact contains some further notes on the difficulties
in the implementation.

6 Optimization

FIR has the virtue that it is significantly easier to optimize than System Fμ
ω .

Here are two examples.
8 The complete source can be found in the Plutus repository.

https://github.com/input-output-hk/plutus/tree/3008f78ed7f75cdd98da7fb06f06345fc52c2e31/papers/unraveling-recursion
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6.1 Dead Binding Elimination

Languages with let terms admit a simple form of dead code elimination: any
bindings in let terms which are unused can be removed. A dead binding in a
FIR term can be easily identified by constructing a dependency graph over the
variables in the term, and eliminating any bindings for unreachable variables.

We can certainly do something with the compiled form of simple, non-
recursive let bindings in System Fμ

ω . These are compiled to immediately-applied
lambda abstractions, which is an easy pattern to identify, and it is also easy to
work out whether the bound variable is used.

Recursive let bindings are much trickier. Here the compiled structure is
obscured by the fixpoint combinator and the construction and deconstruction
of the encoded tuple, which makes the pattern much harder to spot. Datatype
bindings are similarly complex.

The upshot is that it is much easier to perform transformations based on
the structure of variable bindings when those bindings are still present in their
original form.

6.2 Case-of-Known-Constructor

The case-of-known-constructor optimization is very important for functional pro-
gramming languages with datatypes (see e.g. [26, section 5]). When we perform
a pattern-match on a term which we know is precisely a constructor invocation,
we can collapse the immediate construction and deconstruction.

For example, we should be able to perform the following transformation:

match {Int} (Just {Int} 1) 0 (λx.x + 1) =⇒ (λx.x + 1) 1

This is easy to implement in FIR, since we still have the knowledge of which
constructors and destructors belong to the same datatype. But once we have
compiled to System Fμ

ω we lose this information. A destructor-constructor pair
is just an inner redex of the term, which happens to reduce nicely. But reducing
arbitrary redexes is risky (since we have no guarantee that it will not grow the
program), and we do not know of a general approach which would identify these
redexes as worth reducing.

7 Why Not Support These Features Natively?

The techniques in this paper cause a significant amount of runtime overhead.
The combinator-based approach to defining recursive functions requires many
more reductions than a direct implementation which could implement recursive
calls by jumping directly to the code pointer for the recursive function.

Similarly, representing datatype values as functions is much less efficient than
representing them as tagged data.

However, there are tradeoffs here for the language designer. If the language
is intended to be a competitive general-purpose programming language like
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Haskell, then these performance losses may be unacceptable. On the other hand,
if we care less about performance and more about correctness, then the benefits
of having a minimal, well-studied core may dominate.

Moreover, even if a language has a final target language which provides these
features natively, a naive but higher-assurance backend can provide a useful
alternative code generator to test against.

Of course, the proof is in the pudding, and we have practical experience using
these techniques in the Plutus platform [16]. Experience shows that the overhead
proves not to be prohibitive: the compiler is able to compile and run substantial
real-world Haskell programs, and is available for public use at [17].

8 Related Work

8.1 Encoding Recursive Datatypes

Different approaches to encoding datatypes are compared in [19]. The authors
provide a schematic formal description of Scott encoding, but ours is more thor-
ough and includes complete handling of recursive types.

Indexed fixpoints are used in [32] to encode regular and mutually recursive
datatypes as fixpoints of pattern functors. We use the same fixpoint operator—
they call it “hfix”, while we call it “ifix”. They also use the trick of encoding
products with a tag, but they use the natural numbers as an index, and they do
not handle parameterized types. Later work in [21] does handle parameterized
types, but our technique of putting the parameters into the tag type appears to
be novel. Neither paper handles non-regular datatypes.

There are other implementations of System Fω with recursive types. Brown
and Palsberg [6] use isorecursive types, and includes an indexed fixpoint operator
as well as a typecase operator. However, the index for the fixpoint must be of
kind ∗, whereas ours may be of any kind. Cai et al. [7] differ from this paper
both in using equirecursive types and in that their fixpoint operator only works
at kind ∗. Moreover, algebraic datatypes are supported directly, rather than via
encoding.

8.2 Encoding Recursive Terms

There is very little existing material on compiling multiple mutually recursive
functions, especially in a strict language. Some literature targets lower-level or
specialized languages [15,23,31], whereas ours is a much more standard calculus.
There are some examples which use fixpoint combinators (such as [18], extending
[13] for typed languages) which use different fixpoint combinators.

8.3 Intermediate Representations

GHC Haskell is well-known for using a fairly small lambda-calculus-based IR
(“Core”) for almost all of its intermediary work [26]. FIR is very inspired by GHC
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Core, but supports far fewer features and is aimed at eliminating constructs like
datatypes and recursion, whereas they are native features of GHC Core.

A more dependently-typed IR is described in [25]. We have not yet found the
need to generalize our base calculus to a dependently-typed one like Henk, but
all the techniques in this paper should still apply in such a setting. Extensions to
Henk that handle let-binding and datatypes are discussed, but it appears that
these are intended as additional native features rather than being compiled away
into a base calculus.

9 Conclusion

We have presented FIR, a reusable, typed IR which provides several typical
functional programming language features. We have shown how to compile it
into System Fμ

ω via a series of local compilation passes, and given a reference
implementation for the compiler.

There is more work to do on the theory and formalisation of FIR. We have
not given a direct semantics, in terms of reduction rules or otherwise. We would
also like to prove our compilation correct, in that it commutes with reduction. A
presentation of a complete compiler written in Agda with accompanying proofs
would be desirable.

We could also remove some of the restrictions present in this paper: in par-
ticular the lack of mutually recursive type bindings, and the requirement that
recursive let terms be homogeneous.
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Abstract. Asymmetric Numeral Systems (ANS) are an entropy-based
encoding method introduced by Jarek Duda, combining the Shannon-
optimal compression effectiveness of arithmetic coding with the execu-
tion efficiency of Huffman coding. Existing presentations of the ANS
encoding and decoding algorithms are somewhat obscured by the lack of
suitable presentation techniques; we present here an equational deriva-
tion, calculational where it can be, and highlighting the creative leaps
where it cannot.

1 Introduction

Entropy encoding techniques compress symbols according to a model of their
expected frequencies, with common symbols being represented by fewer bits than
rare ones. The best known entropy encoding technique is Huffman coding (HC)
[18], taught in every undergraduate course on algorithms and data structures:
a classic greedy algorithm uses the symbol frequencies to construct a trie, from
which an optimal prefix-free binary code can be read off. For example, suppose
an alphabet of n = 3 symbols s0 = ’a’, s1 = ’b’, s2 = ’c’ with respective
expected relative frequencies c0 = 2, c1 = 3, c2 = 5 (that is, ’a’ is expected
2/2+3+5 = 20% of the time, and so on); then HC might construct the trie and
prefix-free code shown in Fig. 1. A text is then encoded as the concatenation of
its symbol codes; thus, the text "cbcacbcacb" encodes to 1 01 1 00 1 01 1 00 1 01.
This is optimal, in the sense that no prefix-free binary code yields a shorter
encoding of any text that matches the expected symbol frequencies.

But HC is only ‘optimal’ among encodings that use a whole number of bits per
symbol; if that constraint is relaxed, more effective encoding becomes possible.
Note that the two symbols ’a’ and ’b’ were given equal-length codes 00 and 01
by HC, despite having unequal frequencies—indeed, any expected frequencies
in the same order c0 < c1 < c2 will give the same code. More starkly, if the
alphabet has only two symbols, HC can do no better than to code each symbol
as a single bit, whatever their expected frequencies; that might be acceptable
when the frequencies are similar, but is unacceptable when they are not.
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a b

c

0 1

0 1

’a’ �→ 00
’b’ �→ 01
’c’ �→ 1

Fig. 1. A Huffman trie and the corresponding prefix-free code

Arithmetic coding (AC) [23,26] is an entropy encoding technique that allows
for a fractional number of bits per symbol. In a nutshell, a text is encoded as a
half-open subinterval of the unit interval; the model assigns disjoint subintervals
of the unit interval to each symbol, in proportion to their expected frequen-
cies (as illustrated on the left of Fig. 2); encoding starts with the unit interval,
and narrows this interval by the model subinterval for each symbol in turn (the
narrowing operation is illustrated on the right of Fig. 2). The encoding is the
shortest binary fraction in the final interval, without its final ‘1’. For exam-
ple, with the model illustrated in Fig. 2, the text "abc" gets encoded via the
narrowing sequence of intervals

[0, 1) ’a’−→ [0, 1/5)
’b’−→ [1/25, 1/10)

’c’−→ [7/100, 1/10)

from which we pick the binary fraction 3/32 (since 7/100 � 3/32 < 1/10) and output
the bit sequence 0001. We formalize this sketched algorithm in Sect. 3.

This doesn’t look like much saving: this particular example is only one
bit shorter than with HC; and similarly, the arithmetic coding of the text
"cbcacbcacb" is 14 bits, where HC uses 15 bits. But AC can do much better;
for example, it encodes the permutation "cabbacbccc" of that text in 7 bits,
whereas of course HC uses the same 15 bits as before.

In fact, AC is Shannon-optimal : the number of bits used tends asymptotically
to the Shannon entropy of the message—the sum

∑
i −log2 pi of the negative

logarithms of the symbol probabilities. Moreover, AC can be readily made adap-
tive, whereby the model evolves as the text is read, whereas HC entails separate
modelling and encoding phases.

’a’ �→ [0, 1/5)
’b’ �→ [1/5, 1/2)
’c’ �→ [1/2, 1)

0
l

r

1

0

p

q

1

Fig. 2. A text model in interval form. Narrowing interval [l , r) by interval [p, q) yields
the interval marked in bold on the left, which stands in relation to [l , r) as [p, q) does
to [0, 1).
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However, AC does have some problems. One problem is a historical accident:
specific applications of the technique became mired in software patents in the
1980s, and although those patents have now mostly expired, the consequences
are still being felt (for example, Seward’s bzip compressor [24] switched in 1996
from AC to HC because of patents, and has not switched back since). A more fun-
damental problem is that AC involves a lot of arithmetic, and even after slightly
degrading coding effectiveness in order to use only single-word fixed-precision
rather than arbitrary-precision arithmetic, state-of-the-art implementations are
still complicated and relatively slow.

A recent development that addresses both of these problems has been Jarek
Duda’s introduction of asymmetric numeral systems (ANS) [10,11,13]. This is
another entropy encoding technique; in a nutshell, rather than encoding longer
and longer messages as narrower and narrower subintervals of the unit interval,
they are simply encoded as larger and larger integers. Concretely, with the same
frequency counts c0 = 2, c1 = 3, c2 = 5 as before, and cumulative totals t0 =
0, t1 = t0 + c0 = 2, t2 = t1 + c1 = 5, t = t2 + c2 = 10, encoding starts with
an accumulator at 0, and for each symbol si (traditionally from right to left in
the text) maps the current accumulator x to (x div ci) × t + ti + (x mod ci), as
illustrated in Fig. 3. Thus, the text "abc" gets encoded via the increasing (read
from right to left) sequence of integers:

70 ’a’←− 14 ’b’←− 5 ’c’←− 0

It is evident even from this brief sketch that the encoding process is quite sim-
ple, with just a single division and multiplication per symbol; it turns out that
decoding is just as simple. The encoding seems quite mysterious, but it is very
cleverly constructed, and again achieves Shannon-optimal encoding; ANS com-
bines the effectiveness of AC with the efficiency of Huffman coding, addressing
the more fundamental concern with AC. The purpose of this paper is to motivate
and justify the development, using calculational techniques where possible.

As it happens, Duda is also fighting to keep ANS in the public domain,
despite corporate opposition [20], thereby addressing the more accidental concern
too. These benefits have seen ANS recently adopted by large companies for

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 · · ·
’a’ ••••••
’b’ • • • • • •
’c’ • • • • • • • • • •

Fig. 3. The start of the coding table for alphabet ’a’, ’b’, ’c’ with counts 2, 3, 5.
The indices 0 . . are distributed across the alphabet, in proportion to the counts: two
for ’a’, three for ’b’, and so on. Encoding symbol s with current accumulator x
yields the index of the x th blob in row s as the new accumulator. For example, with
x = 4 and next symbol s = ’b’ = si with i = 1, we have ci = 3, ti = 2, t = 10 so
x ′ = (x div ci)× t + ti + (x mod ci) = 13, and indeed the 4th blob in row ’b’ (counting
from zero) is in column 13.



Coding with Asymmetric Numeral Systems 447

products such as Facebook Zstd [8], Apple LZFSE [9], Google Draco [6], and
Dropbox DivANS [22], and ANS is expected [1] to be featured in the forthcoming
JPEG XL standard [19].

One disadvantage of ANS is that, whereas AC acts in a first-in first-out man-
ner, ANS acts last-in first-out, in the sense that the decoded text comes out in
the reverse order to which it went in. Our development will make clear where this
happens. This reversal makes ANS unsuitable for encoding a communications
channel, and also makes it difficult to employ adaptive text models. (DivANS
[22] processes the input forwards for statistical modelling, and then uses this
information backwards to encode the text; one could alternatively batch process
the text in fixed-size blocks. In some contexts, such as encoding the video stream
of a movie for distribution to set-top boxes, it is worth expending more effort in
offline encoding in order to benefit online decoding.)

The remainder of this paper is structured as follows. Section 2 recaps various
well-known properties of folds and unfolds on lists. Section 3 presents the relevant
basics of AC, and Sect. 4 a proof of correctness of this basic algorithm. Section 5
presents the key step from AC to ANS, namely the switch from accumulating
fractions to accumulating integers. Section 6 shows how to modify this naive
ANS algorithm to work in bounded precision, and Sect. 7 shows how to make
the resulting program ‘stream’ (to start generating output before consuming all
the input). Section 8 discusses related work and concludes.

We use Haskell [21] as an algorithmic notation. Note that function application
binds tightest of all binary operators, so that for example f x +y means (f x )+y ;
apart from that, we trust that the notation is self-explanatory. We give definitions
of functions from the Haskell standard library as we encounter them. The code
from the paper is available online [15], as is a longer version [16] of the paper
including proofs and other supporting material.

2 Origami Programming

In this section, we recap some well-studied laws of folds

foldr :: (a → b → b) → b → [a ] → b
foldr f e [ ] = e
foldr f e (x : xs) = f x (foldr f e xs)

foldl :: (b → a → b) → b → [a ] → b
foldl f e [ ] = e
foldl f e (x : xs) = foldl f (f e x ) xs

and unfolds

unfoldr :: (b → Maybe (a, b)) → b → [a ]
unfoldr f y = case f y of Nothing → [ ]

Just (x , y ′) → x : unfoldr f y ′

on lists.
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Folds. The First Duality Theorem of foldl and foldr [4, §3.5.1] states that

foldr f e = foldl f e

when f and e form a monoid. The Third Duality Theorem, from the same source,
says:

foldr f e · reverse = foldl (flip f ) e

where flip f a b = f b a swaps the arguments of a binary function. (The published
version [4, §3.5.1] has the reverse on the other side, and holds only for finite lists.)

We will also use the Fusion Law for foldr [3, §4.6.2]:

h · foldr f e = foldr f ′ e ′ ⇐ h e = e ′ ∧ h (f x y) = f ′ x (h y)

(at least, on finite lists), and its corollaries the Map Fusion laws:

foldr f e · map g = foldr (λx y → f (g x ) y) e
foldl f e · map g = foldl (λx y → f x (g y)) e

Unfolds. The sole law of unfoldr stated in the Haskell 98 standard [21, §17.4]
gives conditions under which it inverts a foldr : if

g (f x z ) = Just (x , z )
g e = Nothing

for all x and z , then

unfoldr g (foldr f e xs) = xs

for all finite lists xs. We call this the Unfoldr–Foldr Theorem. (The proof is a
straightforward induction on xs.)

We make two generalisations to this theorem. The first, the Unfoldr–Foldr
Theorem with Junk, allows the unfold to continue after reconstructing the orig-
inal list: if only

g (f x z ) = Just (x , z )

holds, for all x and z , then

∃ys . unfoldr g (foldr f e xs) = xs ++ ys

for all finite lists xs—that is, the unfoldr inverts the foldr except for append-
ing some (possibly infinite) junk ys to the output. This too can be proved by
induction on xs.

The second generalisation is the Unfoldr–Foldr Theorem with Invariant. We
say that predicate p is an invariant of foldr f e and unfoldr g if

p (f x z ) ⇐ p z
p z ′ ⇐ p z ∧ g z = Just (x , z ′)

for all x , z , z ′. The theorem states that if p is such an invariant, and the
conditions
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g (f x z ) = Just (x , z ) ⇐ p z
g e = Nothing ⇐ p e

hold for all x and z , then

unfoldr g (foldr f e xs) = xs ⇐ p e

for all finite lists xs. Again, there is a straightforward proof by induction. And
of course, there is an Unfoldr–Foldr Theorem with Junk and Invariant, incorpo-
rating both generalisations; this is the version we will actually use.

3 Arithmetic Coding

We start from a simplified version of arithmetic coding: we use a fixed rather
than adaptive model, and rather than picking the shortest binary fraction within
the final interval, we simply pick the lower bound of the interval.

Intervals and Symbols. We represent intervals as pairs of rationals,

type Interval = (Rational ,Rational)

so the unit interval is unit = (0, 1) and the lower bound is obtained by fst . We
suppose a symbol table

counts :: [(Symbol , Integer)]

that records a positive count for every symbol in the alphabet; in the interests
of brevity, we omit the straightforward definitions of functions

encodeSym :: Symbol → Interval
decodeSym :: Rational → Symbol

that work on this fixed global model, satisfying the central property: for x ∈
unit ,

decodeSym x = s ⇔ x ∈ encodeSym s

For example, with the same alphabet of three symbols ’a’, ’b’, ’c’ and
counts 2, 3, and 5 as before, we have encodeSym ’b’ = (1/5, 1/2) and
decodeSym (1/3) = ’b’.

We have operations on intervals:

weight , scale :: Interval → Rational → Rational
weight (l , r) x = l + (r − l) × x
scale (l , r) y = (y − l) / (r − l)

narrow :: Interval → Interval → Interval
narrow i (p, q) = (weight i p,weight i q)
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that satisfy

weight i x ∈ i ⇔ x ∈ unit
weight i x = y ⇔ scale i y = x

Informally, weight (l , r) x is ‘fraction x of the way between l and r ’, and con-
versely scale (l , r) y is ‘the fraction of the way y is between l and r ’; and narrow
is illustrated in Fig. 2.

Encoding and Decoding. Now we can specify arithmetic encoding and decod-
ing by:

encode1 :: [Symbol ] → Rational
encode1 = fst · foldl estep1 unit

estep1 :: Interval → Symbol → Interval
estep1 i s = narrow i (encodeSym s)

decode1 :: Rational → [Symbol ]
decode1 = unfoldr dstep1

dstep1 :: Rational → Maybe (Symbol ,Rational)
dstep1 x = let s = decodeSym x in Just (s, scale (encodeSym s) x )

For example, with the same alphabet and counts, the input text "abc" gets
encoded symbol by symbol, from left to right (because of the foldl), starting
with the unit interval (0, 1), via the narrowing sequence of intervals

estep1 (0, 1) ’a’ = (0, 1/5)
estep1 (0, 1/5) ’b’ = (1/25, 1/10)
estep1 (1/25, 1/10) ’c’ = (7/100, 1/10)

from which we select the lower bound 7/100 of the final interval. Conversely,
decoding starts with 7/100, and proceeds as follows:

dstep1 (7/100) = Just (’a’, 7/20)
dstep1 (7/20) = Just (’b’, 1/2)
dstep1 (1/2) = Just (’c’, 0)
dstep1 0 = Just (’a’, 0)
dstep1 0 = Just (’a’, 0)
...

Note that decoding runs forever; but the finite encoded text is a prefix of the
decoded output—for any input text xs, there is an infinite sequence of junk ys
such that

decode1 (encode1 xs) = xs ++ ys

(indeed, ys = repeat ’a’ when we pick the fst of an interval).
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4 Correctness of Arithmetic Coding

Using the laws of folds, we can ‘fission’ the symbol encoding out of encode1, turn
the foldl into a foldr (because narrow and unit form a monoid), fuse the fst with
the foldr , and then re-fuse the symbol encoding with the fold:

encode1

= { definition }
fst · foldl estep1 unit

= { map fusion for foldl , backwards }
fst · foldl narrow unit · map encodeSym

= { duality: narrow and unit form a monoid }
fst · foldr narrow unit · map encodeSym

= { fusion for foldr (see below) }
foldr weight 0 · map encodeSym

= { map fusion; let estep2 s x = weight (encodeSym s) x }
foldr estep2 0

For the fusion step, we have

fst unit = 0
fst (narrow i (p, q)) = weight i (fst (p, q))

as required. So we have calculated encode1 = encode2, where

encode2 :: [Symbol ] → Rational
encode2 = foldr estep2 0

estep2 :: Symbol → Rational → Rational
estep2 s x = weight (encodeSym s) x

Now encoding is a simple foldr , which means that it is easier to manipulate.

Inverting Encoding. Let us turn now to decoding, and specifically the question
of whether it faithfully decodes the encoded text. We use the Unfoldr–Foldr The-
orem. Of course, we have to accept junk, because our decoder runs indefinitely.
We check the inductive condition:

dstep1 (estep2 s x )
= { estep2; let x ′ = weight (encodeSym s) x }

dstep1 x ′

= { dstep1; let s ′ = decodeSym x ′ }
Just (s ′, scale (encodeSym s ′) x ′)

Now, we hope to recover the first symbol; that is, we require s ′ = s:

s ′ = s
⇔ { s ′ = decodeSym x ′; central property }

x ′ ∈ encodeSym s
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⇔ { definition of x ′ }
weight (encodeSym s) x ∈ encodeSym s

⇔ { property of weight }
x ∈ unit

Fortunately, it is an invariant of the computation that the state x is in the unit
interval, as is easy to check; so indeed s ′ = s. Continuing:

dstep1 (estep2 s x )
= { above }

Just (s, scale (encodeSym s) (weight (encodeSym s) x ))
= { scale i · weight i = id }

Just (s, x )

as required. Therefore, by the Unfoldr–Foldr Theorem with Junk and Invariant,
decoding inverts encoding, up to junk: for all finite xs,

∃ys . decode1 (encode2 xs) = xs ++ ys

But we can discard the junk, by pruning to the desired length:

take (length xs) (decode1 (encode2 xs)) = xs

for all finite xs. Alternatively, we can use an ‘end of text’ marker ω that is
distinct from all proper symbols:

takeWhile (	= ω) (decode1 (encode2 (xs ++ [ω ]))) = xs ⇐ ω /∈ xs

for all finite xs. Either way, arithmetic decoding does indeed faithfully invert
arithmetic coding.

5 From Fractions to Integers

We now make the key step from AC to ANS. Whereas AC encodes longer and
longer messages as more and more precise fractions, ANS encodes them as larger
and larger integers. Given the symbol table counts as before, we can easily derive
definitions of the following functions (for example, by tabulating cumul using a
scan)—we again omit the definitions for brevity:

count :: Symbol → Integer
cumul :: Symbol → Integer
find :: Integer → Symbol

such that count s gives the count of symbol s, cumul s gives the cumulative
counts of all symbols preceding s in the symbol table, and find x looks up an
integer 0 � x < t :

find x = s ⇔ cumul s � x < cumul s + count s

(where t = sum (map snd counts) is the total count).
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The Integer Encoding Step. We encode a text as an integer x , contain-
ing log2 x bits of information. The next symbol s to encode has probability
p = count s / t , and so requires an additional log2 (1/p) bits; in total, that makes
log2 x + log2 (1/p) = log2 (x/p) = log2 (x × t / count s) bits. So entropy consid-
erations tell us that, roughly speaking, to incorporate symbol s into state x we
want to map x to x ′ 
 x × t / count s. Of course, in order to decode, we need to
be able to invert this transformation, to extract s and x from x ′; this suggests
that we should do the division by count s first:

x ′ = (x div count s) × t -- not final

so that the multiplication by the known value t can be undone first:

x div count s = x ′ div t

(we will refine this definition shortly). How do we reconstruct s? Well, there is
enough headroom in x ′ to add any value u with 0 � u < t without affecting the
division; in particular, we can add cumul s to x ′, and then we can use find on
the remainder:

x ′ = (x div count s) × t + cumul s -- still not final

so that

x div count s = x ′ div t
cumul s = x ′ mod t
s = find (cumul s) = find (x ′ mod t)

(this version still needs to be refined further). We are still missing some infor-
mation from the lower end of x through the division, namely x mod count s; so
we can’t yet reconstruct x . Happily,

find (cumul s) = find (cumul s + r)

for any r with 0 � r < count s; of course, x mod count s is in this range, so there
is still precisely enough headroom in x ′ to add this lost information too, without
affecting the find , allowing us also to reconstruct x :

x ′ = (x div count s) × t + cumul s + x mod count s -- final

so that

x div count s = x ′ div t
s = find (cumul s + x mod count s)

= find (x ′ mod t)
x = count s × (x div count s) + x mod count s

= count s × (x ′ div t) + x ′ mod t − cumul s

This is finally the transformation we will use for encoding one more symbol.
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Integer ANS. We define

encode3 :: [Symbol ] → Integer
encode3 = foldr estep3 0

estep3 :: Symbol → Integer → Integer
estep3 s x = let (q , r) = x divMod count s in q × t + cumul s + r

decode3 :: Integer → [Symbol ]
decode3 = unfoldr dstep3

dstep3 :: Integer → Maybe (Symbol , Integer)
dstep3 x = let (q , r) = x divMod t

s = find r
in Just (s, count s × q + r − cumul s)

Correctness of Integer ANS. Using similar reasoning as for AC, we can show
that a decoding step inverts an encoding step:

dstep3 (estep3 s x )
= { estep3; let (q , r) = x divMod count s, x ′ = q × t + cumul s + r }

dstep3 x ′

= { dstep3; let (q ′, r ′) = x ′ divMod t , s ′ = find r ′ }
Just (s ′, count s ′ × q ′ + r ′ − cumul s ′)

= { r ′ = cumul s + r , 0 � r < count s, so s ′ = find r ′ = s }
Just (s, count s × q ′ + r ′ − cumul s)

= { r ′ − cumul s = r , q ′ = x ′ div t = q }
Just (s, count s × q + r)

= { (q , r) = x divMod count s }
Just (s, x )

Therefore decoding inverts encoding, modulo pruning, by the Unfoldr–Foldr The-
orem with Junk:

take (length xs) (decode3 (encode3 xs)) = xs

for all finite xs. For example, with the same alphabet and symbol counts as
before, encoding the text "abc" proceeds (now from right to left, because of the
foldr in encode3) as follows:

estep3 ’c’ 0 = 5
estep3 ’b’ 5 = 14
estep3 ’a’ 14 = 70

and the result is 70. Decoding inverts this:

dstep3 70 = Just (’a’, 14)
dstep3 14 = Just (’b’, 5)
dstep3 5 = Just (’c’, 0)
dstep3 0 = Just (’a’, 0)
...
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Huffman as an Instance of ANS. Incidentally, we can see here that ANS
is in fact a generalisation of HC. If the symbol counts and their sum are all
powers of two, then the arithmetic in estep3 amounts to simple manipulation
of bit vectors by shifting and insertion. For example, with an alphabet of four
symbols ’a’, ’b’, ’c’, ’d’ with counts 4, 2, 1, 1, encoding operates on a state x
with binary expansion · · · x3 x2 x1 x0 (written most significant bit first) as follows:

estep3 ’a’ (· · · x3 x2 x1 x0) = · · · x3 x2 0 x1 x0
estep3 ’b’ (· · · x3 x2 x1 x0) = · · · x3 x2 x1 1 0 x0
estep3 ’c’ (· · · x3 x2 x1 x0) = · · · x3 x2 x1 x0 1 1 0
estep3 ’d’ (· · · x3 x2 x1 x0) = · · · x3 x2 x1 x0 1 1 1

That is, the symbol codes 0, 10, 110, 111 are inserted into rather than appended
onto the state so far; the binary expansion of the ANS encoding of a text yields
some permutation of the HC encoding of that text.

A Different Starting Point. As it happens, the inversion property of encode3

and decode3 holds, whatever value we use to start encoding with (since this value
is not used in the proof); in Sect. 6, we start encoding with a certain lower bound
l rather than 0. Moreover, estep3 is strictly increasing on states strictly greater
than zero, and dstep3 strictly decreasing; which means that the decoding process
can stop when it returns to the lower bound. That is, if we pick some l > 0 and
define

encode4 :: [Symbol ] → Integer
encode4 = foldr estep3 l

decode4 :: Integer → [Symbol ]
decode4 = unfoldr dstep4

dstep4 :: Integer → Maybe (Symbol , Integer)
dstep4 x = if x == l thenNothing else dstep3 x

then the stronger version of the Unfoldr–Foldr Theorem (without junk) holds,
and we have

decode4 (encode4 xs) = xs

for all finite xs.

6 Bounded Precision

The previous versions all used arbitrary-precision arithmetic, which is expen-
sive. We now change the approach slightly to use only bounded-precision arith-
metic. As usual, there is a trade-off between effectiveness (a bigger bound on the
numbers involved means more accurate approximations to ideal entropies) and
efficiency (a smaller bound generally means faster operations). Fortunately, the
reasoning does not depend much on the actual bounds. We will pick a base b
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and a lower bound l , and represent the integer accumulator x as a pair (w , ys)
which we call a Number :

typeNumber = (Int , [Int ])

such that ys is a list of digits in base b, and w is an integer in the range l � w <u
(where we define u = l × b for the upper bound), under the abstraction relation
x = abstract (w , ys) induced by

abstract (w , ys) = foldl inject w ys

where

inject w y = w × b + y

We call w the ‘window’ and ys the ‘remainder’. For example, with b = 10 and
l = 100, the pair (123, [4, 5, 6]) represents the value 123456.

Properties of the Window. Specifying a range of the form l � w < l × b
induces nice properties. If we introduce an operation

extract w = w divMod b

as an inverse to inject , then we have

inject w y < u ⇔ w < l
l � fst (extract w) ⇔ u � w

(we omit the straightforward proofs, using the universal property

u < v × w ⇔ u div w < v

of integer division). That is, given an in-range window value w , injecting another
digit will take it outside (above) the range; but if w is initially below the range,
injecting another digit will keep it below the upper bound. So starting below
the range and repeatedly injecting digits will eventually land within the range
(it cannot hop right over), and injecting another digit would take it outside
the range again. Conversely, given an in-range window value w , extracting a
digit will take it outside (below) the range; but if w is initially above the range,
extracting a digit will keep it at least the lower bound. So starting above the
range and repeatedly extracting digits will also eventually land within the range
(it cannot hop right over), and extracting another digit would take it outside
the range again. This is illustrated in Fig. 4. In particular, for any x � l there is
a unique representation of x under abstract that has an in-range window.

For fast execution, b should be a power of two, so that multiplication and
division by b can be performed by bit shifts; and arithmetic on values up to u
should fit within a single machine word. It is also beneficial for t to divide evenly
into l , as we shall see shortly.
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l u

inject inject

extractextract

Fig. 4. ‘Can’t miss it’ properties of the range: injecting an extra digit can only land
within the range [l , u) when starting below it, and will land above the range when
starting within it; and conversely, extracting a digit can only land within the range
when starting above it, and will land below the range when starting within it.

Encoding with Bounded Arithmetic. The encoding step acts on the window
in the accumulator using estep3, which risks making it overflow the range; we
therefore renormalize with enorm5 by shifting digits from the window to the
remainder until this overflow would no longer happen, before consuming the
symbol.

econsume5 :: [Symbol ] → Number
econsume5 = foldr estep5 (l , [ ])

estep5 :: Symbol → Number → Number
estep5 s (w , ys) = let (w ′, ys ′) = enorm5 s (w , ys) in (estep3 s w ′, ys ′)

enorm5 :: Symbol → Number → Number
enorm5 s (w , ys) = if estep3 s w < u

then (w , ys)
else let (q , r) = extract w in enorm5 s (q , r : ys)

That is, enorm5 preserves the abstract value of a Number :

abstract · enorm5 = abstract

and leaves the window safe for estep3 to incorporate the next symbol.
Note that if t divides l , then we can rearrange the guard in enorm5:

estep3 s w < u
⇔ { estep3; let (q , r) = w divMod count s }

q × t + cumul s + r < u
⇔ { t divides l , so u = (u div t) × t }

q × t + cumul s + r < (u div t) × t
⇔ { universal property of division: u < v × w ⇔ u div w < v }

(q × t + cumul s + r) div t < u div t
⇔ { 0 � r < count s, so 0 � cumul s + r < t }

q < u div t
⇔ { q = w div count s }

w div count s < u div t
⇔ { universal property of div again }

w < (u div t) × count s
⇔ { u = l × b, t divides l }

w < b × (l div t) × count s
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This is worthwhile because b × (l div t) is a constant, independent of s, so the
comparison can be done with a single multiplication, whereas the definition of
estep3 involves a division by count s.

For example, consider again encoding the text "abc", with b = 10 and
l = 100. The process is again from right to left, with the accumulator start-
ing at (100, [ ]). Consuming the ’c’ then the ’b’ proceeds as before, because the
window does not overflow u:

estep5 ’c’ (100, [ ]) = (205, [ ])
estep5 ’b’ (205, [ ]) = (683, [ ])

Now directly consuming the ’a’ would make the window overflow, because
estep3 ’a’ 683 = 3411 � u; so we must renormalize to (68, [3]) before consuming
the ’a’, leading to the final state (340, [3]):

enorm5 ’a’ (683, [ ]) = (68, [3])
estep5 ’a’ (683, [ ]) = (estep3 ’a’ 68, [3]) = (340, [3])

Note that the move from arbitrary to fixed precision is not just a data
refinement—it is not the case that econsume5 xs computes some representation
of encode4 xs. For example, encode4 "abc" = 3411, whereas econsume5 "abc" =
(340, [3]), which is not a representation of 3411. We have really sacrificed some
effectiveness in encoding in return for the increased efficiency of fixed precision
arithmetic.

Decoding with Bounded Arithmetic. Decoding is an unfold using the accu-
mulator as state. We repeatedly output a symbol from the window; this may
make the window underflow the range, in which case we renormalize if possible
by injecting digits from the remainder (and if this is not possible, because there
are no more digits to inject, it means that we have decoded the entire text).

dproduce5 :: Number → [Symbol ]
dproduce5 = unfoldr dstep5

dstep5 :: Number → Maybe (Symbol ,Number)
dstep5 (w , ys) = let Just (s,w ′) = dstep3 w

(w ′′, ys ′′) = dnorm5 (w ′, ys)
in if w ′′ � l then Just (s, (w ′′, ys ′′)) elseNothing

dnorm5 :: Number → Number
dnorm5 (w , y : ys) = if w < l then dnorm5 (inject w y , ys) else (w , y : ys)
dnorm5 (w , [ ]) = (w , [ ])

Note that decoding is of course symmetric to encoding; in particular, when
encoding we renormalize before consuming a symbol; therefore when decoding
we renormalize after emitting a symbol. For example, decoding the final encoding
(340, [3]) starts by computing dstep3 340 = Just (’a’, 68); the window value 68
has underflowed, so renormalization consumes the remaining digit 3, restoring
the accumulator to (683, [ ]); then decoding proceeds to extract the ’b’ and ’c’
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in turn, returning the accumulator to (100, [ ]) via precisely the same states as
for encoding, only in reverse order.

dstep5 (340, [3]) = Just (’a’, (683, [ ]))
dstep5 (683, [ ]) = Just (’b’, (205, [ ]))
dstep5 (205, [ ]) = Just (’c’, (100, [ ]))
dstep5 (100, [ ]) = Nothing

Correctness of Decoding. We can prove that decoding inverts encoding, again
using the Unfoldr–Foldr Theorem with Invariant. Here, the invariant p is that the
window w is in range (l � w < u), which is indeed maintained by the consumer
estep5 and producer dstep5. As for the conditions of the theorem: in the base
case, dstep3 l = Just (s,w ′) with w ′ < l , and dnorm5 (w ′, [ ]) = (w ′, [ ]), so indeed

dstep5 (l , [ ]) = Nothing

For the inductive step, suppose that l � w < u; then we have:

dstep5 (estep5 s (w , ys))
= { estep5; let (w ′, ys ′) = enorm5 s (w , ys) }

dstep5 (estep3 s w ′, ys ′)
= { dstep5, dstep3; let (w ′′, ys ′′) = dnorm5 (w ′, ys ′) }
if w ′′ � l then Just (s, (w ′′, ys ′′)) elseNothing

= { see below: dnorm5 inverts enorm5 s, so (w ′′, ys ′′) = (w , ys) }
if w � l then Just (s, (w , ys)) elseNothing

= { invariant holds, so in particular w � l }
Just (s, (w , ys))

The remaining proof obligation is to show that

dnorm5 (enorm5 s (w , ys)) = (w , ys)

when l � w < u. We prove this in several steps. First, note that dnorm5 is
idempotent:

dnorm5 · dnorm5 = dnorm5

Second, when l � w holds,

dnorm5 (w , ys) = (w , ys)

Finally, the key lemma is that, for w < u (but not necessarily w � l), dnorm5 is
invariant under enorm5:

dnorm5 (enorm5 s (w , ys)) = dnorm5 (w , ys)

When additionally w � l , the second property allows us to conclude that dnorm5

inverts enorm5:

dnorm5 (enorm5 s (w , ys)) = (w , ys)
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The ‘key lemma’ is proved by induction on w . For w = 0, we clearly have

dnorm5 (enorm5 s (w , ys))
= { estep3 s 0 = cumul s � t � l , so enorm5 s (w , ys) = (w , ys) }

dnorm5 (w , ys)

For the inductive step, we suppose that the result holds for all q<w , and consider
two cases for w itself. In case estep3 s w < u, we have:

dnorm5 (enorm5 s (w , ys))
= { assumption; enorm5 }

dnorm5 (w , ys)

as required. And in case estep3 s w � u, we have:

dnorm5 (enorm5 s (w , ys))
= { assumption; enorm5; let (q , r) = extract w }

dnorm5 (enorm5 s (q , r : ys))
= { q < w ; induction }

dnorm5 (q , r : ys)
= { w < u, so q = w div b < l ; dnorm5 }

dnorm5 (inject q r , ys)
= { q , r }

dnorm5 (w , ys)

Note that we made essential use of the limits of the range: w < u ⇒ w div b < l .
Therefore decoding inverts encoding:

dproduce5 (econsume5 xs) = xs

for all finite xs.

7 Streaming

The version of encoding in the previous section yields a Number , that is, a pair
consisting of an integer window and a digit-sequence remainder. It would be
more conventional for encoding to take a sequence of symbols to a sequence of
digits alone, and decoding to take the sequence of digits back to a sequence of
symbols. For encoding, we have to flush the remaining digits out of the window
at the end of the process, reducing the window to zero:

eflush5 :: Number → [Int ]
eflush5 (0, ys) = ys
eflush5 (w , ys) = let (w ′, y) = extract w in eflush5 (w ′, y : ys)
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For example, eflush5 (340, [3]) = [3, 4, 0, 3]. Then we can define

encode5 :: [Symbol ] → [Int ]
encode5 = eflush5 · econsume5

Correspondingly, decoding should start by populating an initially-zero window
from the sequence of digits:

dstart5 :: [Int ] → Number
dstart5 ys = dnorm5 (0, ys)

For example, dstart5 [3, 4, 0, 3] = (340, [3]). Then we can define

decode5 :: [Int ] → [Symbol ]
decode5 = dproduce5 · dstart5

One can show that dstart5 inverts eflush5 on in-range values:

dstart5 (eflush5 (w , ys)) = (w , ys) ⇐ l � w < u

and therefore again decoding inverts encoding:

decode5 (encode5 xs)
= { decode5, encode5 }

dproduce5 (dstart5 (eflush5 (econsume5 xs)))
= { econsume5 yields in-range, on which dstart5 inverts eflush5 }

dproduce5 (econsume5 xs)
= { dproduce5 inverts econsume5 }

xs

for all finite xs.

Introducing Streaming. We would now like to stream the encoding and decod-
ing processes, so that each can start generating output before having consumed
all its input. With some effort, it is possible to persuade the definitions of encode5

and decode5 into metamorphism form [14]; however, that turns out to be rather
complicated. Here, we take a more direct route instead.

For encoding, we have

encode5 = eflush5 · foldr estep5 (l , [ ])

A first step for streaming is to make as much of this as possible tail-recursive.
The best we can do is to apply the Third Duality Theorem to transform the
foldr into a foldl :

encode5 = eflush5 · foldl (flip estep5) (l , [ ]) · reverse
Now we note that the remainder component of the Number behaves like a queue,
in the sense that already-enqueued digits simply pass through without being
further examined:
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eflush5 (w , ys ++ zs) = eflush5 (w , ys) ++ zs
enorm5 s (w , ys ++ zs) = let (w ′, ys ′) = enorm5 s (w , ys) in (w ′, ys ′ ++ zs)
estep5 s (w , ys ++ zs) = let (w ′, ys ′) = estep5 s (w , ys) in (w ′, ys ′ ++ zs)

If we then introduce the auxilliary functions e1, e2 specified by

reverse (e1 w ss) ++ ys = eflush5 (foldl (flip estep5) (w , ys) ss)
reverse (e2 w) ++ ys = eflush5 (w , ys)

and unfold definitions, exploiting the queueing properties, we can synthesize
encode5 = encode6, where:

encode6 :: [Symbol ] → [Int ]
encode6 = reverse · e1 l · reverse where

e1 w (s : ss) = let (q , r) = w divMod count s
w ′ = q × t + cumul s + r in

if w ′ < u then e1 w ′ ss
else let (q ′, r ′) = w divMod b in r ′ : e1 q ′ (s : ss)

e1 w [ ] = e2 w
e2 w = if w == 0 then [ ] else let (w ′, y) = w divMod b in y : e2 w ′

In this version, the accumulator w simply maintains the window, and digits
in the remainder are output as soon as they are generated. Note that the two
reverses mean that encoding effectively reads its input and writes its output
from right to left; that seems to be inherent to ANS.

Streaming Decoding. Decoding is easier, because dnorm5 is already tail-
recursive. Similarly specifying functions d0, d1, d2 by

d0 w ys = dproduce5 (dnorm5 (w , ys))
d1 w ys = dproduce5 (w , ys)
d2 s w ′ ys = let (w ′′, ys ′′) = dnorm5 (w ′, ys) in

if w ′′ � l then s : d1 w ′′ ys ′′ else [ ]

and unfolding definitions allows us to synthesize directly that decode5 = decode6,
where:

decode6 :: [Int ] → [Symbol ]
decode6 = d0 0where

d0 w (y : ys) | w < l = d0 (w × b + y) ys
d0 w ys = d1 w ys
d1 w ys = let (q , r) = w divMod t

s = find r
w ′ = count s × q + r − cumul s

in d2 s w ′ ys
d2 s w (y : ys) | w < l = d2 s (w × b + y) ys
d2 s w ys | w � l = s : d1 w ys
d2 s w [ ] = [ ]
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Ignoring additions and subtractions, encoding involves one division by count s
and one multiplication by t for each input symbol s, plus one division by b for
each output digit. Conversely, decoding involves one multiplication by b for each
input digit, plus one division by t and one multiplication by count s for each
output symbol s. Encoding and decoding are both tail-recursive. The arithmetic
in base b can be simplified to bit shifts by choosing b to be a power of two. They
therefore correspond rather directly to simple imperative implementations [17].

8 Conclusion

We have presented a development using the techniques of constructive functional
programming of the encoding and decoding algorithms involved in asymmetric
numeral systems, including the step from arbitrary- to fixed-precision arithmetic
and then to streaming processes. The calculational techniques depend on the
theory of folds and unfolds for lists, especially the duality between foldr and foldl ,
fusion, and the Unfoldr–Foldr Theorem. We started out with the hypothesis that
the theory of streaming developed by the author together with Richard Bird for
arithmetic coding [2,14] would be a helpful tool; but although it can be applied,
it seems here to be more trouble than it is worth.

To be precise, what we have described is the range variant (rANS) of ANS.
There is also a tabled variant (tANS), used by Zstd [8] and LZFSE [9], which
essentially tabulates the functions estep5 and dstep5; for encoding this involves a
table of size n × (u − l), the product of the alphabet size and the window width,
and for decoding two tables of size u−l . Tabulation makes even more explicit that
HC is a special case of ANS, with the precomputed table corresponding to the
Huffman trie. Tabulation also allows more flexibility in the precise allocation of
codes, which slightly improves effectiveness [13]. For example, the coding table
in Fig. 3 corresponds to the particular arrangement "aabbbccc" of the three
symbols in proportion to their counts, and lends itself to implementation via
arithmetic; but any permutation of this arrangement would still work, and a
permutation such as "cbcacbcacb" which distributes the symbols more evenly
turns out to be slightly more effective and no more difficult to tabulate.

One nice feature of AC is that the switch from arbitrary-precision to fixed-
precision arithmetic can be expressed in terms of a carefully chosen adaptive
model, which slightly degrades the ideal distribution in order to land on conve-
nient rational endpoints [25]. We do not have that luxury with ANS, because of
the awkwardness of incorporating adaptive coding; consequently, it is not clear
that there is any simple relationship between the arbitrary-precision and fixed-
precision versions. But even with AC, that nice feature only applies to encoding;
the approximate arithmetic seems to preclude a correctness argument in terms
of the Unfoldr–Foldr Theorem, and therefore a completely different (and more
complicated) approach is required for decoding [2].

The ANS algorithms themselves are of course not novel here; they are due
to Duda [12,13]. Our development in Sect. 5 of the key bit of arithmetic in ANS
encoding was informed by a very helpful commentary on Duda’s paper published
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in a series of twelve blog posts [5] by Charles Bloom. The illustration in Fig. 3
derives from Duda, and was also used by Roman Cheplyaka [7] as the basis of a
(clear but very inefficient) prototype Haskell implementation.
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