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Abstract. Poor performance of artificial neural nets when applied to
credit-related classification problems is investigated and contrasted with
logistic regression classification. We propose that artificial neural nets
are less successful because of the inherent structure of credit data rather
than any particular aspect of the neural net structure. Three metrics are
developed to rationalise the result with such data. The metrics exploit
the distributional properties of the data to rationalise neural net results.
They are used in conjunction with a variant of an established concentra-
tion measure that differentiates between class characteristics. The results
are contrasted with those obtained using random data, and are compared
with results obtained using logistic regression. We find, in general agree-
ment with previous studies, that logistic regressions out-perform neural
nets in the majority of cases. An approximate decision criterion is devel-
oped in order to explain adverse results.

Keywords: Copula · Hypersphere · Cluster · Herfindahl-Hirschman ·
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1 Introduction

Successful applications of artificial neural net (hereinafter ANN ) methods, and
also of other AI methods, are numerous, and particular successes are often
reported in the press. A notable recent success in the field of cancer diagno-
sis is [1]. AI methods have been less successful for credit risk: some credit risk
datasets are the ‘wrong shape’ (the term will be formalised in Sect. 5). This view
is prompted by the following observations:

1. Insensitivity to ANN configuration or tuning
2. Low correlations of single explanatory variables with class
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3. Insensitivity to data transformations (e.g. reducing to principal components)
4. Insensitivity to attempts to redress the imbalance (e.g. SMOTE, gradient

boosting, under-sampling or over-sampling).

Our underlying assumption is that distributional properties of the credit data
inhibit prediction of a correct classification. The ‘wrong shape’ phenomenon is
illustrated in Fig. 1 which shows two contrasting marginal distributions from two
of the data sets considered in this study (see Sect. 4.1). Data set LCAB with
class credit not approved on the left shows a loose scatter with no discernable
trend or ‘shape’. Data set AUS with class credit approved on the right shows a
concentrated scatter with a trend and a triangular ‘shape’. The former type is
more typical of credit-related data.

Fig. 1. Marginal Distribution Examples showing contrasting data concentrations

1.1 Economic Consequences of Credit Default

Credit default is very costly for the lender and is a social burden for the bor-
rower and for society. A broad estimate of the amounts involved can be made
from UK Regulator figures (https://www.fca.org.uk/data/mortgage-lending-
statistics/commentary-june-2019). The outstanding value of all residential mort-
gage loans at Q1 2019 was £1451bn, of which 0.99% was in arrears. The 2018
capital disclosures from https://www.santander.co.uk/uk/about-santander-uk/
investor-relations/santander-uk-group-holdings-plc show that approximately
88% (which is typical) of arrears can be recovered. Therefore the worst case
net loss to lenders in the first 3 months of 2019 was 1451 × 0.99 × (1 − 0.88) =
£1.724bn, a very substantial sum!

1.2 Nomenclature and Implementation

In this paper the variable values to be predicted are referred to as classes.
Typically in the context of credit risk, class determination is a binary deci-
sion. The two classes are usually expressed as categorical variables: ‘approved’

https://www.fca.org.uk/data/mortgage-lending-statistics/commentary-june-2019
https://www.fca.org.uk/data/mortgage-lending-statistics/commentary-june-2019
https://www.santander.co.uk/uk/about-santander-uk/investor-relations/santander-uk-group-holdings-plc
https://www.santander.co.uk/uk/about-santander-uk/investor-relations/santander-uk-group-holdings-plc
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(alternatively ‘pass’ or ‘good’), and ‘not approved’ (alternatively ‘fail’ or ‘bad’).
Explanatory variables are referred to as features. In credit-related data they
usually include items such as income, age, address, mean account balance, prior
credit history etc. There can be many hundreds of them. The term tuple will be
used to refer to a single instance of a set of features. Each tuple is associated
with a single class. The acronyms are: LR for Logistic Regression and AUC for
Area under Curve.

The metric calculations were done using the R statistical language, and Ten-
sorFlow was used for neural net calculations. All computations were done using
a 16GB RAM i7 Windows processor.

2 Review of Neural Net Applications in Credit Risk

Louzada [2] has an extensive review of the success rate of credit-related applica-
tions prior to 2016, using the German and Australian data sets (Sect. 4.1). The
mean success rates of all 30 cases considered were: German: 77.7% and Aus-
tralian: 88.1%. Those figures are consistently good compared to some we have
encountered, but are not comparable to the worst result for the Yala’s [1] medical
application: 96.2%. More generally, Atiya’s pre-2001 review [3] is similar: 81.4%
and 85.50% success for two models. Bredart’s bankruptcy [4] prediction result
is marginally lower: 75.7%.

The results reported by West [5] indicate a general failure of ANN methods
to improve on results obtained using regressions for the German and Australian
data. We used the same data, as well as our own, in Sect. 4.1. We concur with
the conclusion that LRs often perform better than AI-based methods: 11.8%
greater error rate for ANN s. Lessmann [6] gives a lower margin of about 3.2%,
using 8 data sets.

There are some better results post-2016. Kvamme et al. [7] reports high
accuracy (given as optimal AUC 0.915) using credit data from the Danmarks
Nationalbank with a convolutional ANN. Addo et al. [8], used corporate loan
data, and report AUC = 0.975 for their best deep learning model, and 0.841 for
their worst. These results are surprisingly good, and we suspect that either the
data set used contains some behavioural indicator of default, or that loans in
the dataset are only for ‘select’ customers who have a high probability of non-
default. The LC and LCAB data Sect. 4.1 have some behavioural indicators (such
as amount owing on default, added later), and they are omitted in our analysis.
More recently, Munkhdalai et al. [9] reports more relative LR successes: 5.2%
better error rate than an ANN using a two-stage filter feature selection algo-
rithm, and 7.5% better using a random forest-based feature selection algorithm.

Yampolskiy [10] gives a similar general explanations of AI failure which is
particular applicable in the context of credit risk. If a new or unusual situation is
encountered in an AI learning process, it will be interpreted, wrongly, as a ‘fail’
within the context of that process. We suspect that, in the context of assessing
credit-worthiness, those new or unusual situations are future events that can only
be anticipated with some degree of probability (such as illness, loss of income,
mental incapacity).
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3 The Concentration Metric Framework

We propose a framwork to measure data concentration, which we think is respon-
sible for the ‘wrong shape’ phenomenon for credit data. The proposed framework
comprises three metrics, each used within a concentration component where the
values of the metrics for each class are combined. The idea of a ‘framework’ is
one of extensibility: further metrics can be incorporated in a simple way (see the
end of Sect. 3.1).

3.1 Inter-class Concentration Measure

The illustrations in Fig. 1 show one instance of a high class concentration and
another of low concentration. In order to quantify them, we develop inter-class
concentration metrics. Data are partitioned by class, and a concentration met-
ric is calculated for each. They are combined using a variant of an established
concentration measure, the Herfindahl-Hirschman Index (HHI - see for example
[11]). The HHI is usually used in economic analysis to measure concentration
of production in terms of, for example, percentage of market share or of total
sales. We define the index in terms of a metric Mi for class i, associated with a
weight wi (the weight was not part of the original HHI formulation). Let M be
the sum of the Mi for n classes: M =

∑n
i=1 Mi. Then the HHI for metric M is

given by Ĥ in Eq. 1.

Ĥ =
n∑

i=1

wi

(
Mi

M

)2

(1)

In the context of ANN classification problems, we use three different inter-
pretations of the metric Mi: MC , the Copula metric MS , the Hypersphere metric,
and MN the k-Neighbours metric. The first measures data correlation. The sec-
ond measures data dispersion and the third measures clustering. For all metrics
the weights used (Eq. 1) are the proportions of the number of tuples in each class
in a training set. The metrics are combined to form the geometric mean concen-
tration measure Ĥ in Eq. 2, which is a general expression for m metrics. The term
framework in this paper is used to refer to the applicability of the ‘concentration
measure + metrics’ approach to any required value of m. The geometric mean
is used because multiplying the metrics exaggerates the differentiation that each
introduces.

Ĥ =

(
m∏

i

Ĥi

) 1
m

∈ (0, 1) (2)

In the case of three metrics, Eq. 2 reduces to Ĥ = (ĤCĤSĤN )
1
3 .

3.2 The Copula Metric, MC

A copula is a mechanism for modelling the correlation structure of multivariate
data, and thereby generating random samples of any desired distribution. An
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initial fit to some appropriate distribution is required. Of the common Ellip-
tic copulas we choose the multivariate t-copula, as it can capture the effect of
extreme values better than the multivariate normal equivalent is able to (see
[12] and [13]). Extreme values are often observed in financial return data. It
is not necessary to use Archimedean copulas, Clayton, Gumbel or Frank, that
emphasise extremes even more.

The calculation of the Copula metric proceeds by first using a Fit function
to fit, using maximum likelihood, normal distributions to each of n features data
{xi}, giving a set of normal parameter pairs {μi, σi}. Then we define a t-copula
Ct(c, ν), with ν = 3 degrees of freedom using the covariance matrix c of all
the data, and generate a random sample of m ∼ 100000 U[0,1]-distributed ran-
dom variables Ui from it using the R copula package random number generator,
denoted here as r(Ct). The inverse normal distribution function F−1 is then
applied to the parameter pairs and the values derived from the copula, resulting
in a matrix of normal distributions {Ni}. The row sums of that matrix are then
summed to derive the required metric, MC (Eq. 3).

{μi, σi} = {Fit(xi)}
{Ui = r(Ct(ν, c),m}

{Ni = F−1(Ui, μi, σi)}
MC = Σ(Ni(∗, n)) (3)

3.3 The Hypersphere Metric, MS

The Hypersphere metric measures the deviation of each tuple that lies within
a prescribed hypersphere centred on the centroid of all tuples. For a set of n
tuples ti, i = 1..n, denote their centroid by t̄, and let the covariance matrix of
the set of tuples be c. Then the deviation for tuple ti is calculated from the
Mahanalobis distance, Di of ti from t̄. The hypersphere refers to the subset of
Di that is within 95% of the maximum of the Di, and is denoted by D

(95)
i . The

required metric is the sum of the elements of D
(95)
i (Eq. 4).

{Di} = {
√

(ti − t̄)T c (ti − t̄)}
D

(95)
i = {Di : Di ≤ 0.95 max(Di)}

MS = Σn
i=1D

(95)
i (4)

In practice it makes very little difference if the 95% hypersphere is replaced
by, for example, a 90% or a 99% hypersphere.

3.4 The k-Neighbours Metric, MN

The k-Neighbours metric uses a core k-Nearest Neighbours calculation. Empir-
ically, we have found that maximal differentiation between classes is achieved
by considering the more distant neighbours. Therefore we use the farthest 20%
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neighbours, not the nearest. The calculation proceeds, for each class, by calcu-
lating the Euclidean distances Di of all the tuples ti, i = 1..n in each class to
the centroid, t̄, of that class. The set of distances in excess of the 80th quan-
tile, Q80(Di) is extracted and summed. We have found that with large datasets,
calculating the Mahanalobis distance in place of the Euclidean distance is not
always possible due to singularity problems with some covariance matrices. The
details are in Eq. 5

{Di} = {
√

Σ(ti − t̄)2}
Di,80 = {Di : Di > q80(Di)}

MN = Σ(Di,80) (5)

3.5 Theoetical Metric Minimum Value

The metric formulations in Eqs. 1 and 2 admit a theoretical minimum result
when using random data with a binary decision. The value of each metric with
weights wi should be wi( 12 )2 +(1−wi)(12 )2 = 1

4 (from Eq. 1 with H1 = H2) since
random data should yield no useful predictive information. Then, for m metrics,
Eq. 2 gives the theoretical minimum concentration measure Ĥmin, independent
of m in Eq. 6

Ĥmin =
((

1
4

)m) 1
m

=
1
4

(6)

4 Results

The ANN configuration used was: 2 hidden layers with sufficient neurons (always
≤ 100) in each to optimise AUC; typically 100 epochs; ReLU activation in the
hidden layers, Sigmoid in the input layer, Softmax in the output layer; categorical
cross entropy loss, 66.67% of data used for training.

4.1 Data

Details of the data used in this study are in Table 1. L-Club is the Lending Club
(https://www.lendingclub.com/info/download-data.action). UCI is the Univer-
sity of California Irvine Machine Learning database [14]. SBA is the U.S. Small
Business Administration. [15]. BVD is Bureau Van Dijk, the Belfirst database
(https://www.bvdinfo.com). RAN-P is a randomly generated predictive dataset
with two classes, and two highly correlated features. It represents a near minimal
concentration with a high predictive element. RAN-NP is similar but is designed
to have no predictive element. In all cases, all features are normalised to range
[0,1], and there are no missing entries. Where relevant, categorical variables have
been replaced by numeric.

https://www.lendingclub.com/info/download-data.action
https://www.bvdinfo.com
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Table 1. Data sources

Data Source Notes

INT Internal Retail short-term loans

LC L-Club All credit grades: LoanStats3b

LCAB L-Club Best credit grades A and B only: LoanStats3b

GERMAN UCI Statlog German Credit Data

CARD UCI Default of credit card clients [16]

AUS UCI Statlog Australian Credit Approval

JP UCI Japanese Credit Screening

IND UCI Qualitative Bankruptcy India

POL5 UCI Polish Companies Bankruptcy (5-year) [17]

POL1 UCI Polish Companies Bankruptcy (1-year) [17]

SBA SBA ‘SBA Case’ dataset

BVD BVD filtered on W. Eur. + Manufacturing Financials

RAN-P Random Randomly generated predictive

RAN-NP Random Randomly generated non-predictive

4.2 Metric and Concentration Results

Table 2 shows the values obtained for the three concentration metrics and the
concentration measure (Eqs. 3, 4, 5 and 2 respectively). The error rates (Err
columns) are given as proportions, rather than as percentages.

Table 2. Distributional Indicators: metrics, Ĥ and ANN results, in Ĥ order.

Name ĤC ĤS ĤN Ĥ ANN Err ANN AUC LR Err LR AUC

RAN-NP 0.289 0.917 0.885 0.617 0.083 0.540 0.083 0.560

POL1 0.250 0.923 0.911 0.595 0.032 0.590 0.219 0.630

POL5 0.251 0.862 0.877 0.575 0.033 0.62 0.122 0.705

LCAB 0.246 0.769 0.765 0.526 0.330 0.618 0.108 0.635

LC 0.244 0.778 0.606 0.486 0.345 0.679 0.160 0.682

SBA 0.256 0.724 0.521 0.459 0.551 0.680 0.370 0.775

CARD 0.241 0.685 0.470 0.427 0.181 0.775 0.728 0.720

BVD 0.250 0.464 0.426 0.367 0.533 0.870 0.063 0.995

IND 0.374 0.343 0.271 0.326 0.428 0.885 0.012 0.985

GER 0.259 0.350 0.373 0.323 0.245 0.770 0.299 0.820

INT 0.243 0.299 0.349 0.294 0.341 0.815 0.280 0.760

JP 0.253 0.309 0.259 0.273 0.140 0.930 0.252 0.945

AUS 0.249 0.304 0.260 0.270 0.168 0.930 0.342 0.930

RAN-P 0.250 0.262 0.252 0.255 0.305 0.928 0.496 0.680

RAN 0.250 0.250 0.250 0.250 0.501 0.507 0.501 0.506
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It is noticeable from the results in Table 2 that a low Ĥ value is associated
with datasets which work well with ANN processing. Conversely, a high Ĥ value
indicates that ANN processing may not be successful in class determination.
LC, LCAB, POL1 and POL5 are the worst cases. The Ĥ values are more aligned
with the AUC values. Figure 2 shows the Ĥ-AUC scatter with a linear trend line
(AUC ∼1.2 − Ĥ, R2 = 0.88), and the Ĥ-Error Rate scatter for comparison. We
note that error rate variation with Ĥ is more volatile than the variation with
AUC. Ordinates for the randomly-generated datasets RAN-P and RAN-NP are
shown separately. RAN-P represents a borderline wrong/right shape boundary
and RAN-NP represents a ‘worst case’ with a minimal predictive element. A
further result, not in Table 2 is for randomly generated features with randomly
allocated classes (50% in each class). Consistent with Eq. 6, we obtained ĤC =
ĤS = ĤN = Ĥ = 0.25, with AUC and % success values for ANN and LR
all marginally greater than 0.5. Therefore, even ‘badly-shaped’ datasets are not
random!

Fig. 2. AUC- and Error rate-Concentration trends.

4.3 Significance Tests

Table 3 shows the results of significance tests for the correlation coefficients for
the covariates used to calculate of the two fitted lines in Fig. 2 (random data
is excluded). The table shows the values of the sum of measured correlation
coefficients, r, the calculated t-values and their corresponding p-values. For a
theoretical correlation coefficient ρ, with Null hypothesis is ρ = 0 and Alter-
native hypothesis ρ �= 0, the 95% critical t-value is tc = 2.228. The result for
the covariate pair {ANNAUC/Ĥ} falls just short of the 95% critical value (at
significance level 5.9%).
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Table 3. Paired Ĥ t-test

Covariates r t p

ANN AUC-Ĥ −0.559 2.13 0.059

ANN Error-Ĥ −0.347 1.17 0.134

A Sign test on the difference of the ANN and LR AUC results (columns
ANN AUC and ANN AUC in Table 2) gives a probability that LR will produce
a higher AUC than the ANN AUC of 0.0537 (9 cases out of 12): again, just
short of a 5% significance level.

5 Discussion

The empirical results in Table 2 give an indication of how the concentration
measure Ĥ can be used to explain any poor results obtained in a ANN analysis.
Given the result for RAN-P in particular, a decision boundary, ĤB set at 0.3 is
a useful guide. Therefore, a calculated a value of Ĥ, Ĥ > ĤB implies that ANN -
treatment might be unsuccessful or marginally successful (the data are ‘wrong’-
shaped). Few datasets are successful: {JP and AUS}, and INT is borderline.
Dataset RAN-P has been configured specifically to produce a good separation
of features so that class can be determined with a high degree of success.

Some characteristics of ‘badly-shaped’ datasets can be isolated from the met-
ric calculations. A large Copula (HC) metric is often associated with imbalanced
data and almost coincident tuples in two or more classes. For example, RAN-NP
tuples in class 0 are a random perturbation of its class 1 tuples, corresponding to
the {POL1, POL5, LC, LCAB} group. The Hypersphere (HS) metric measures
the effect of outliers: either many of them or a smaller number of extremes, or
both. Coincident clustering in more than one class is indicated by a high value
of the k-Neighbours metric MN .

The value of the concentration metric, Ĥ, should only be seen either as
a guide or as an explanatory element of the ANN analysis. A high value Ĥ
implies that either the data are too noisy or that they provide insufficient pre-
dictive information. When trying to predict credit-worthiness, cases that appear
to be high risk sometimes turn out not to be, and vice versa. These cases look
like ‘noise’ in the data, but they are significant because they provide alterna-
tive paths to ‘success’. It is better to be able to predict a higher proportion of
potential credit failures going to deny credit to borrowers who are apparently
low risk. Therefore the within-class error rates (i.e. type I and II errors) are also
important.
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