
A Novel Technique for Improving the
Robustness to Sensor Rotation in Hand

Gesture Recognition Using sEMG

Victor H. Vimos1(B) , Marco Benalcázar2 , Alex F. Oña3 ,
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Escuela Politécnica Nacional, Quito, Ecuador
patricio.cruz@epn.edu.ec

Abstract. Hand gesture recognition consists of identifying the class
among a set of classes of a hand movement given. Surface electromyo-
graphy (sEMG) measures the electrical activity generated by voluntary
contractions of skeletal muscles. The performance of a recognition system
is affected significantly by the orientation of the armband. This orienta-
tion could change every time that the user wears the armband. In this
paper, a novel technique to improve the robustness in a recognition sys-
tem with variation in the orientation of the armband is proposed. To test
the performance of the proposed model, 4 experiments at recognizing 6
hand gestures are executed. In these experiments the proposed method
shows a recognition accuracy of 92.4% versus 59.5%, which corresponds
to the accuracy of a traditional recognition model without the correction
of orientation.
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1 Introduction

Surface electromyography (sEMG) measures the electrical activity generated
by voluntary contractions of skeletal muscles. This technique has several uses in
biomechanic, robotic and mechatronic systems [1,2]. Gesture recognition consists
of identifying the class among a set of classes of a hand movement given [11].
Hand gestures recognition system using sEMG can be used to control mecha-
tronic devices [3–5]. The amplitude and frequency content of sEMGs are affected
by different factors including: skin thickness, muscle strength, muscle volume,
physiological interference, external noise and electrodes placed incorrectly.
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Hand gestures recognition systems work well when the sensors are placed
exactly in the same position that were used to acquire signal for training [6,7].
However, placing a sensor in exactly the same position is difficult because the
physical characteristics of people’s arms are different.

There are different devices for sensing sEMG such as Myo armband [12],
gForce [10], DTing [13] and eCon [14]. These sensors allow to easily obtain elec-
tromyography data, in addition to the advantage of their portability. These sen-
sors are easy to place making it practical to implement several application in
any user. The Myo armband manufactured by Thalmic Labs is an EMG sen-
sor that allows the registration of 8 bipolar signals on a person’s forearm. The
manufacturer of the Myo armband suggests to place the armband in a certain
position on the forearm to have good performance (see Fig. 1). However, placing
the armband in the same position implies to know exactly the coordinates of the
sensor with respect to a given point of reference in the forearm and at the test
time placing the sensor in exactly the same coordinates. This requires measuring
distances accurately for every single time that the sensor is used which is very
difficult for practical applications.

There are two types of gesture recognition systems: general and user specific.
General recognition systems are trained with a finite dataset acquired from a
group of people and tested by any user. On the other hand, user specific systems
require to be trained and tested with the data from the same person each time
that the system is used. The use of general systems implies that the armband
must be placed in the same position both for training and testing which is
difficult to achieve in practice [8]. User specific models do not require placing
the sensor in the same position because these systems are trained for each user
and for each time they are used. However, training a model for each user and
for each time it is used is time consuming, making thus difficult their use for
practical applications. In practice, a user simply wants to wear the sensor and
start using the recognition system right away. Therefore the best option for
practical applications is the use of general recognition models, which should
have a system that compensates the variation in the orientation of the sensor
for the recognition systems to work well.

In [9] an algorithm is proposed to compensate the variation in sensor rotation.
The sensor rotation decrements the performance of the recognition model and
sometimes even makes inapplicable the use of the recognition model built in one
position. In this work, the armband is rotated every 45◦ and the data is recorded
with that rotation. A remapping is performed according to the predicted angle
and the distribution is marked on the user’s arm prior to the signal recording.
In addition to the high complexity of the proposed algorithm, the correction of
the orientation can be done in steps of 45◦.

In [11] a general model is proposed to classify 40 gestures in real time. The
proposed model works in both the right and the left hand and use the Myo
armband for data acquisition and a support vector machine for the classification.
The paper shows the real time classification of the gestures made. To compare
the results obtained with the Myo armband’s own recognition system, users
wear strictly the armband in the position recommended by the manufacturer.
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Unfortunately, the authors do not give any further details about the results
when the armband is placed in different positions. However, authors show the
possibility to classify the gestures independent of the arm on which the armband
is worn.

In another hand gesture recognition system such as the one proposed by
Weissmann and Salomon [15] provide good recognition results up to 100% recog-
nition rate, but the need to wear a glove can restrict the user’s freedom of move-
ments and it is not for practical applications.

To solve the problem of the variation in the orientation of the armband, a
novel method is proposed in this paper. This method is based on the maxi-
mum amplitude detection (MAD) which identifies the sensor with the maximum
activity in the sEMG and based on this detection related to a sensor, the data
is rearranged by creating a new matrix with the reordered data. The maximum
amplitude sensor is calculated using the movement wave out in a calibration
process that is executed for every time that a person wants to use the recogni-
tion system. The recognition model used to test the algorithm for correcting the
orientation is based on common features (mean value, windowing, energy, curve
envelope, standard deviation) and a SVM classifier.

Following this introduction, the remaining of this paper is organized as fol-
lows. The proposed material and model section (Sect. 2) describes the materials
used for data collection, how each data matrix is handled and how the new
matrix is organized. The experiment section (Sect. 3) describes the 4 experi-
ments with training and testing data. The results and analysis section (Sect. 4)
shows a comparison between the traditional method and the proposed method.

2 Materials and Proposed Model

2.1 MYO Armband

The Myo armband is an electronic device that measures sEMGs. This armband
consists of 8 bipolar channels which work with a sampling frequency of 200 Hz.
Data are transmitted via Bluetooth to a personal computer. The measured data
matrix consists of 8 columns and n rows, the rows depend on the recording time
of the sEMG. For 1 s the number of rows is 200. Each column of the data matrix
represents the measurements of each sensor.

The manufacturer of the armband suggests to place the armband on a specific
position (see Fig. 1) on the forearm for achieving good recognition accuracy. The
Myo armband brings a proprietary recognition system whose performance is
sensitive to the variations of the recommended position. The Myo armband was
tested by rotating it and the recognition data showed that the system has difficult
to recognize gestures when the armband is rotated from its suggested position.

2.2 Datasets

The dataset is organized as follows:

1) Training data
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Fig. 1. Myo armband base position suggested by manufacturer.

2) Testing data1 (for experiment 1 and 3)
3) Testing data2 (for experiment 2 and 4)

The training data was recorded using the same armband position for all users
(position suggested by manufacturer). In order to compare the performance of
the traditional system with the proposed one, the same training dataset for both
systems are used. The Eq. (1) shows in general how is composed the matrix of
the training data.

Training data from 40 people is used, 25 men and 15 women. The training
data consists of 15 repetitions per gesture for each category and for each user.
Each training data matrix has eight columns and their values are normalized.
Each column has the sEMG data measured by each sensor.

Dtrgeneral = [(V1,D1), . . . , (Vi,Di)]

Dtrgeneral ∈ R1000x8, Vi ∈ [−1, 1]1000x1,Di ∈ [1, 8]
(1)

The categorical variable is represented by Y ∈ {out, in, close, thumb, relax,
tap} and denotes the label for the gesture signal. The total training data per
user consists of 90 rows.

The testing data consists of two datasets, test data1 and test data2. The
test data1 was recorded using the position suggested by Myo armband manufac-
turer (see Fig. 1) and test data2 was recorded placing the armband in different
positions (see Fig. 2). For test data2, people took the armband off and they put
the armband back on the forearm in any position they wanted and no specific
angle was rotated. Each recording was made during 5 s per gesture and user.
The Eq. (2) shows in general how is composed the testing data matrix.
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Fig. 2. Myo armband rotated from the base position suggested by manufacturer.

Dtsgeneral = [(W1, E1), . . . , (Wi, Ei)]

Dtsgeneral ∈ R1000x8,Wi ∈ [−1, 1]1000x1, Ei ∈ [1, 8]
(2)

2.3 Traditional Method

Traditional gesture recognition systems using the Myo armband need to be
trained before they are used [7]. Commonly this methodology works well; how-
ever, after people take the armband off they must train the system again if they
want to use it with good accuracy. The gestures performed and recorded during
a session are shown in Fig. 3.

To process the data, a matrix organized per sensor, user and categories is
created (Eq. 3). Msi is the transposed matrix with 15 repetitions for each ges-
ture. Msi is the total training matrix for user i and has a dimension of 90 rows
and 1000 columns. The 90 rows is the result of 15 repetitions multiplied by 6
gestures. Data training matrix for user i is described as follows:

User i:

Emg(useri, categoryj) = [Ms1,Ms2,Ms3,Ms4,Ms5,Ms6,Ms7,Ms8, Y ] (3)

Msi ∈ R15x1000Y ∈ {out, in, close, thumb, relax, tap}

Dtrainuseri = [Emg(useri, out);
Emg(useri, in);

Emg(useri, close);
Emg(useri, thumb);
Emg(useri, relax);
Emg(useri, tap)]
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Fig. 3. Gestures to be recognized with both traditional and proposed method. (a) wave
out, (b) wave in, (c) close, (d) thumb, (e) relax, (f) tap

Notice that the data has been transposed to be handled and organized according
to each gesture and sensor. A table was created by gesture and sensor with the
data transposed to work with Matlab. The total matrix for the 40 users is shown
below and notice that for each user the data is concatenated.

Total training data for 40 users:

Dtraintotal = [Ms1,Ms2,Ms3,Ms4,Ms5,Ms6,Ms7,Ms8, Y ]

where:

Msi ∈ R3600x1000 and Y ∈ {out, in, close, thumb, relax, tap}

Each data matrix coming from the armband in a time t always come in the same
sequence even if the armband is located in a different position from the position
suggested by the manufacturer.

The EMG data sequence coming from the armband by default is orga-
nized in the following order Emgdefault(t) = [s1(t), s2(t), s3(t), s4(t), s5(t), s6(t),
s7(t), s8(t)] where s1 represents the sensor number 1. When the orientation of
the armband is changed, the data order is the same even though the armband
was rotated. For user1 the signals were recorded with sensor number 2 matching
with the position that was defined as base (see Fig. 1), getting a default matrix
order Emgdefault.
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Regarding the testing data1 the process to organize the data was followed
as the previous one and a total matrix was defined for 40 users too, taking
into account that these test data were recorded taking as reference the position
suggested by the manufacturer.

Total testing matrix data1 for 40 users:

Dtest1 = [Ms1,Ms2,Ms3,Ms4,Ms5,Ms6,Ms7,Ms8, Y ]

where:

Msi ∈ R3600x1000 and Y ∈ {out, in, close, thumb, relax, tap}
Regarding the testing data2, the test data2 matrix represents the set of

recordings with different rotations of the armband for each user. It is worth
mentioning that the test data2 has different sensors taken as a reference and
their distribution activity is not equal. In Fig. 5 the different gestures activity
distribution for four users is shown.

Total testing matrix data2 for 40 users:

Dtest2 = [Ms1,Ms2,Ms3,Ms4,Ms5,Ms6,Ms7,Ms8, Y ]

where:

Msi ∈ R3600x1000 and Y ∈ {out, in, close, thumb, relax, tap}
For practical reasons the number of columns to work with were reduced from

1000 to 900, because when recording the signals not always the same amount of
data was gotten. To avoid inconveniences when concatenating the data only 900
points were taken. For training data as well as test data1 and test data2 the
same extractors were applied. A SVM classifier1 with original training data
was trained and tested.

2.4 Proposed Method

The proposed method is based on the maximum amplitude detection (MAD).
After that, the data matrix is rearranged according to the sensor with the highest
mean amplitude detected. The sensor with highest amplitude is identified using
the movement “wave out”, this movement allows the maxim values data be
concentrated mainly in one sensor Sx which is taken as reference for the new
order.

Emg = [V1, V2, V3, V4, V5, V6, V7, V8], Emg ∈ R200x8 and V i ∈ [−1, 1]200x1,

Emgmean = mean(Emg) (4)

Sx = max(Emgmean) (5)

Sx = max([V1mean, V2mean, V3mean, V4mean, V5mean, V6mean, V7mean, V8mean])
(6)
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where max function represents the maximum value of the vector. After the sensor
is identified the new sEMG matrix is organized and described according to the
Eq. (7):

Emgnew = [Sx, Smod((x+1),8), Smod((x+2),8), ...., Smod((x+7),8), Smod((x+8),8)] (7)

For user20 the MAD sensor is located in the sensor number 6 (s6). According
to the proposed method the new matrix is organized as follows:

EMGnew = [s6, s7, s8, s1, s2, s3, s4, s5]

For user30 the MAD sensor is located in sensor number 5 (s5). According to the
proposed method the new matrix is organized as follows:

EMGnew = [s5, s6, s7, s8, s1, s2, s3, s4]

Applying the MAD algorithm for the original training data, test data1 and test
data2 new matrices labeled as training data∗, test data∗

1 and test data∗
2 were

gotten. It should be noticed that the new training matrix is organized according
to the maximum amplitude sensor and does not imply that as a result of applying
MAD algorithm the same reference sensor must be gotten for all recordings.
However, the result of the sensor detection should give similar sensors like the
original one obtained when the data were recorded using the position suggested
by the manufacturer.

In Table 1 the result of applying the maximum amplitude detection algorithm
in the original data for training and testing is shown. This method allows to have
greater robustness to rotation as well as greater independence in the placement of
the armband, also this allows to have higher performance and avoid the necessity
to record the signals every time the systems is going to be used. Table 1 shows
the reference electrode calculated for test data∗

1 and test data∗
2 using MAD sensor

activity.
In Fig. 5. the data for four users whose data have been recorded using different

orientation of the armband is showed. The distribution of the EMG activity is
different and not concentrated in the same region although all the recordings
correspond to the same gesture labeled with different colors respectively. The
Fig. 5 shows each group of data separately according to the gesture performed
for each user. For all users the wave out gesture is represented in dark blue. For
user17, the concentration of the highest sEMG activity is detected over sensors
1, 2 and 3. For user18, the greatest concentration of activity during the wave out
gesture is located in sensors 4, 5 and 6. For user19, the greatest EMG activity is
concentrated on sensors 4, 5 and 6. Similarly for user20, the greatest activity is
detected over sensors 5, 6, 7 and 8. It can be appreciated that the concentration
of activity for the same gesture is different for each user and this is logical since
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Fig. 4. sEMG for user3 on sensor 7 s7 while wave out gesture was performed.

each user placed the armband arbitrarily. For other hand gestures, for example
for the wave in gesture labeled in orange the concentration of activity by sensor
is not homogeneous in the same way.

The Fig. 6 shows the same data for the four previous users whose data have
been recorded using different positions of the armband. However, to this data
the orientation correction using the MAD algorithm was applied.

After applying the MAD algorithm the activity distribution is similar and
concentrated in the same region. The recordings correspond to the same gesture
labeled with different colors respectively for the four users using the armband
placed in different positions.

It can be verified that using the MAD algorithm the data of the users 17, 18,
19 and 20 have been aligned and now these data could be used in any classifier,
improving the accuracy because of the new data organization.

After making this correction in the orientation, the data entered into a new
classifier2 always have the same order, regardless the position where the user
use the armband. It is not necessary to rotate a specific angle to be able to per-
form the compensation for the rotation. The proposed method always searches
for the sensor with the highest activity.

The Fig. 6 shows how the data is automatically aligned, since it takes as
reference a sensor that has been calibrated during the beginning of the test
session. A summary of the reference electrodes calculated by MAD algorithm
applied to the original data is shown in the column 2, 3 and 4 of the Table 1.
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Table 1. Reference electrodes calculated by MAD algorithm.

User Train∗ Test∗1 Test∗2
user1 2 2 1

user2 3 2 4

user3 7 7 1

user4 2 2 1

user5 2 2 4

user6 2 2 4

user7 2 2 5

user8 8 8 4

user9 2 2 4

user10 1 1 1

user11 1 1 1

user12 1 1 4

user13 1 1 1

user14 1 1 1

user15 2 2 2

user16 1 1 3

user17 2 2 2

user18 2 1 4

user19 2 2 5

user20 1 1 6

user21 2 2 5

user22 1 1 7

user23 2 2 6

user24 1 1 7

user25 2 2 1

user26 1 1 1

user27 1 1 2

user28 2 2 5

user29 1 1 1

user30 1 1 5

user31 1 7 7

user32 2 2 6

user33 3 3 6

user34 7 2 2

user35 1 1 6

user36 2 2 8

user37 1 2 2

user38 2 2 8

user39 2 2 2

user40 2 2 2



236 V. H. Vimos et al.

Fig. 5. Normal testing data2 distribution activity for 4 users. All gesture activity is
concentrated in different sensor when recording data in different positions

Fig. 6. Testing data∗
2 distribution activity with correction to the armband rotation for

4 users. All gesture activity is concentrated in the same sensors (sensors 1, 2, 3) when
recording data in different positions

2.5 Features Extractors

sEMG curve envelope, windowing, sEMG energy, mean absolute value and stan-
dard deviation are used for both methods as features extractors. Where features
extractors are defined as follows:

Mean absolute value:

| µ |= 1
N

N∑

i=1

| Vi |

Vi ∈ [−1, 1]Nx1

(8)
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where, N denotes the number of points recorded per channel. Being N = 1000
points during 5 s.

Standard deviation:

S =

√√√√ 1
N − 1

N∑

i=1

| Vi − µ |2

Vi ∈ [−1, 1]Nx1

(9)

The same features extractors are applied to both methods with the exception
that in the proposed method the data is organized differently. The data matrix
with the characteristics used to train classifier1 and classifier2 is described
below.

Emg(useri,feature) = [Ms1,Ms2,Ms3,Ms4,Ms5,Ms6,Ms7,Ms8]

where Msi ∈ R15x1000 and feature ∈ {std, envelope, welch, absmean, energy}

Emg(useri,std) = [Ms1,Ms2,Ms3,Ms4,Ms5,Ms6,Ms7,Ms8] (10)

Emg(useri,envelope) = [Ms1,Ms2,Ms3,Ms4,Ms5,Ms6,Ms7,Ms8] (11)

Emg(useri,welch) = [Ms1,Ms2,Ms3,Ms4,Ms5,Ms6,Ms7,Ms8] (12)

Emg(useri,absmean) = [Ms1,Ms2,Ms3,Ms4,Ms5,Ms6,Ms7,Ms8] (13)

Emg(useri,energy) = [Ms1,Ms2,Ms3,Ms4,Ms5,Ms6,Ms7,Ms8] (14)

Featuresuseri =
[Emg(useri,std), Emg(useri,envelope), Emg(useri,welch), Emg(useri,absmean),

Emg(useri,energy)]

where Emg(useri,feature) ∈ R15x8

Matrix(useri,categoryj) = [Featuresuseri , Y ] (15)

where Featuresuseri ∈ R15x40 and Y ∈ {out, in, close, thumb, relax, tap}
The total matrix for training is as follows:

TrainMatrixtotal = [Matrix(user1,categoryj); ...;Matrix(user40,categoryj)] (16)

where the size TrainMatrixtotal ∈ R3600x40

The total matrix for test data1 and test data2 is as follows:

TestMatrixtotal = [Matrix(user1); ...;Matrix(user40)] (17)
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3 Experiments

In this section four experiments have been carried out and two SVM classifiers
have been designed in order to check the operation of the proposed system in
situations of rotation of the armband. Two SVM classifiers were trained using
data for the traditional method and data for the proposed method. Experiment1
and experiment2 are analyzed using the SVM classifier1 that has been trained
using the training data recorded using the position suggested by the manufac-
turer. Experiment3 and experiment4 are analyzed using the SVM classifier2.
The MAD algorithm has been applied to training and testing data to reorder
accordingly the new reference electrode. It should be noticed that in the Table 1
the training data∗ and test∗1 reference electrodes are calculated using the high-
est potential sensor and do not differ greatly with the position suggested by the
manufacturer.

In Table 1 the training data∗ as well as the test data∗
1 have approximately the

same reference sensor after apply the proposed method. These reference sensors
indirectly show how the armband was placed by the user. Comparing the two
columns it is clear that the data are similar. For column 3, in test data∗

2 the
algorithm was also applied and the result obtained for the reference sensor is
different.

In the Table 1 there are 3 users to have in consideration: users 3, 8, 34. These
reference sensors are different compared with the other users, however this is due
to the fact that when users made the gesture wave out they unwittingly made
a strong movement when returning to the relaxation position. This particular
situation can be seen in Fig. 4, where the sEMG wave out gesture for user3 on
sensor number 7 is performed and the reason why MAD algorithm selected sensor
number 7 as new reference in Table 1 is showed. The algorithm confirms that
the armband was in different positions, but in the same way when confirming
the different positions of the armband, the algorithm have changed the order of
the sensors.

3.1 Experiment 1

The experiment1 includes training the classifier1 with normal training data,
then testing the classifier1 with test data1. Both training and test data1 are
recorded using the recommendations of the armband manufacturer. Users are
from 20 to 55 years old. In this experiment, 15 repetitions are performed for
each gesture. Users are not asked to calibrate the system, simply they place the
armband according to the suggested position.

3.2 Experiment 2

The experiment2 includes training the classifier1 with training data and test-
ing the classifier1 with test data2 (armband placed in different positions). In
this experiment, the user is previously asked to take the armband off. After
this, the user is asked to place the armband in the desired position. In the same
way each user is asked to repeat each gesture 15 times. In this experiment the
classifier1 is tested with the data recorded in different positions.
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3.3 Experiment 3

The experiment3 includes training the classifier2 with training data∗ orga-
nized according the proposed method and testing the classifier2 with test data∗

1

organized according the proposed method too. In this experiment, the MAD
algorithm is used to correct the position. The reference sensor for the training
data∗ is obtained even though these data were recorded using the same position.
This data is shown in the column 2 and 3 in the Table 1.

3.4 Experiment 4

The experiment4 includes training the classifier2 with training data∗ orga-
nized according the proposed method and testing the classifier2 with test
data∗

2 (armband placed in different positions) organized according to the pro-
posed method. All data for the experiment3 and experiment4 are the same like
the experiment1 and experiment2 only with the difference that for experiment3
and experiment4 the rotation correction of the armband has been applied. The
correction in the rotation can be seen in Figs. 5 and 6 applied for four users as
example.

4 Results, Analysis and Comparisons

The confusion matrix for experiment1 is showed in Fig. 7.

Fig. 7. Confusion matrix with test data1 (experiment1)
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The confusion matrix for experiment2 is showed in Fig. 8. Two SVM clas-
sifiers were trained and tested using two separate procedures. Training and
testing dataset in default order for SVM Classifier1, training∗ and testing∗

dataset using the proposed method for SVM Classifier2. In Fig. 9 the confusion
matrix for experiment3 is showed. Comparing test data1 working with the tra-
ditional method versus this novel method, the system accuracy decreases from
95.2% to 93.9% using test data∗

1 as input. However, this result is because of the
references calculated by MAD algorithm for users 3, 8, 34 are different from the
others.

For experiment4 (armband rotated) the confusion matrix using the novel
method for test data∗

2 is showed in Fig. 10. Comparing test data2 working with
the traditional method versus this novel method the system accuracy increases
from 59.5% to 92.4% using testing data∗

2 as input. With this novel method the
recognition system can be used even by new people with great effectiveness and
accuracy.

The accuracy system decreases 35.7% when a user uses the armband in dif-
ferent position working with the traditional method. The Fig. 5 shows how is the
data distribution for users 17, 18, 19 and 20 when this data is going to be apply
for traditional method. Data in dark blue color is related to the movement wave
out. There are different distributions for all users and the signal power concen-
tration is not located in the same sensor due to users placed the armband in
different positions.

Fig. 8. Confusion matrix with test data2 (experiment2)
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Fig. 9. Confusion matrix with novel method, test data∗
1 (experiment3)

Fig. 10. Confusion matrix with novel method, test data∗
2 (experiment4)
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The accuracy system decreases only 1.5% when a user uses the armband in
different position working with the proposed method. The Fig. 6 shows how is the
data distribution for users 17, 18, 19 and 20 when this data is going to be apply
using the novel method. Data in dark blue color is related to the movement wave
out, there are almost the same distributions for all users and the signal power
concentration is located in the same sensor even if user place the armband in
different positions. Actually to calibrate the system using the MAD algorithm,
the wave out gesture or the wave in gesture can be used.

The Table 2 shows the performance summary of the two systems.

Table 2. Accuracy systems comparison.

Method Experiment1 Experiment2 Experiment3 Experiment4

Traditional 95.20% 59.5% – –

Proposed – – 93.9% 92.4%

For consideration and experimentation by anyone interested in the proposed
method, the code as well as the dataset of the paper can be found in the fol-
lowing link: https://drive.google.com/drive/folders/1bvWbh-16c4ShFQDP3Q
6a8hwBu6UaAW4y.

5 Conclusion

In this paper, three main contributions have been made. The main contribu-
tions of this novel method for gesture recognition include, (1) robustness with
placement sensors on the forearm to recognize 6 gestures with high accuracy, (2)
the low necessity to train the system every time, (3) the recognition algorithm
responds with an accuracy of 92.4% in different armband positions using the
novel technique.

The system can be calibrated using the wave out or wave in gesture. The
1.5% decrease can be improved if the system is calibrated at the beginning of
the data acquisition. In this paper the calibration at starting the acquisition is
not performed. Using the wave out gesture to reorganize the data matrix is how
the algorithm gets the new reference electrode. Any classifier can be used after
the orientation correction. Similarly it is not necessary to use several features
over the EMG signals, only 5 features were used in order to have good accuracy.

Future works will include the research for more than 20 hand gestures recog-
nition and the implementation of the system that allows to obtain a response in
less than 100 ms with great accuracy. The system response should be the same
when the armband is placed on any forearm (right or left). The system will also
be tested using an embedded system to make it more portable.

https://drive.google.com/drive/folders/1bvWbh-16c4ShFQDP3Q6a8hwBu6UaAW4y
https://drive.google.com/drive/folders/1bvWbh-16c4ShFQDP3Q6a8hwBu6UaAW4y
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11. Kerber, F., Puhl, M., Krüger, A.: User-independent real-time hand gesture recog-

nition based on surface electromyography. In: Proceedings of the 19th International
Conference on Human-Computer Interaction with Mobile Devices and Services, p.
36. ACM (2017)

12. http://www.myo.com . Accessed 17 Oct 2018
13. DTing arm band. http://www.dtingsmart.com/
14. eCon arm band. http://econtek.cn/
15. Weissmann, J., Salomon, R.: Gesture recognition for virtual reality applications

using data gloves and neural networks. In: Proceedings IJCNN, vol. 3, pp. 2043–
2046 (1999)

http://www.oymotion.com/
http://www.myo.com
http://www.dtingsmart.com/
http://econtek.cn/

	A Novel Technique for Improving the Robustness to Sensor Rotation in Hand Gesture Recognition Using sEMG
	1 Introduction
	2 Materials and Proposed Model
	2.1 MYO Armband
	2.2 Datasets
	2.3 Traditional Method
	2.4 Proposed Method
	2.5 Features Extractors

	3 Experiments
	3.1 Experiment 1
	3.2 Experiment 2
	3.3 Experiment 3
	3.4 Experiment 4

	4 Results, Analysis and Comparisons
	5 Conclusion
	References




