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Abstract The study of steady periodic water waves, analytically as well as
numerically, is a very active field of research. We describe some of the more
recent numerical approaches to computing these waves numerically as well as the
corresponding results. The focus of this work is on the different formulations as well
as their limitations and similarities.
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1 Introduction

We consider steady water waves in two dimensions, travelling over a flat bottom
with speed c and a free surface, under the influence of gravity. This means that in
a frame moving along the wave with the same speed c, the velocity field, pressure
and shape of the wave does not change over time. This model can be used to study
plane waves by considering their cross section perpendicular to the wave crest. For
a more detailed derivation of the model equations we refer to [6, 8].

This problem is governed by the Euler equations, find u(x, y, t), v(x, y, t) and
P(x, y, t) that solve

ux + vy = 0 in − d < y < η(x, t),

ut + uux + vuy = −Px in − d < y < η(x, t), (1)

vt + uvx + vvy = −Py − g in − d < y < η(x, t)
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with the free surface η(x, t) and the depth d . The fluid domain is sketched on the
left hand side of Fig. 1. The boundary conditions for the pressure P and the velocity
field (u, v) are the dynamic boundary condition

P = Patm on y = η(x, t) (2)

which model the interaction on the free surface where negligible surface tension is
assumed. Additionally we have kinematic boundary conditions, those are that the
surface of the wave is always made up of the same particles and that the water can
not penetrate the flat bottom. These boundary conditions are modelled by

v = ηt + uηx on y = η(x, t), (3)

v = 0 on y = −d. (4)

Since we consider steady periodic waves, we introduce a frame moving at the
constant speed c which removes the time variable from our system. The new
system is

UX + VY = 0 in − d < Y < η,

(U − c)UX + V UY = −P̃X in − d < Y < η, (5)

(U − c)VX + V VY = −P̃Y − g in − d < Y < η

where (X, Y ) = (x − ct, y) and (U, V, P̃ ) are the functions (u, v, P ) transformed
to the moving frame. The boundary conditions now read

P̃ = P̃atm on Y = η, (6)

V = (U − c)ηX on Y = η, (7)

V = 0 on Y = −d. (8)

Of particular interest are rotational waves, that means that the vorticity γ = vx −
uy is not zero. One reason for the importance of vorticity is its influence on the
existence and position of stagnation points, these are points in the wave where the
velocity of the fluid is equal to the wave speed c. For the effects that stagnation
points have on the flow structure of wave see [13, 14, 35]. For example, waves with
a non-smooth peak, such as the Stokes wave of maximal height, see [33], have a
stagnation point at that peak.

In this work several schemes on how to solve (1)–(4) numerically are discussed.
While there exists a large literature concerning this problem, see [10, 16, 29, 30],
here some more recent approaches are presented. Section 2 presents two schemes
based on a Dubreil-Jacotin transformation, a numerical continuation approach [3,
20, 21, 32] and an asymptotic expansion approach [2, 9, 18]. Section 3 discusses a
non-local formulation [1, 4, 11, 15] and a conformal mapping approach [5, 24, 28]
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is presented in Sect. 4. The schemes have in common that in order to be able to
solve their respective systems, they assume all but one of the parameters, like depth,
vorticity or velocity, are fixed. The remaining parameter can be varied to continue
along the solution branch.

A non-exhaustive list of further numerical schemes not included in this discus-
sion are: in [31] a shape optimisation approach applied to a stream formulation that
allows for a non-flat bottom is presented; [17] modifies the nonlinear shallow water
equations to allow for constant vorticity and examines wave breaking; the papers
[22, 23] study and compute periodic waves based on an integral formulation.

2 Dubreil-Jacotin Transformation

Following the procedure described in [8] we define the stream function ψ by ψx =
−V and ψy = U −c. Then the system (5)–(8) can be reformulated as the equivalent
system

�ψ = γ (ψ) in − d < y < η, (9)

ψ = 0 on y = η, (10)

|∇ψ|2 + 2g(y + d) − Qψ = −p0 on y = −d, (11)

ψ = 0 on y = η. (12)

Here Q is the hydraulic head, p0 the relative mass flux and γ the vorticity function.
In order to ensure that the vorticity is a function of ψ one has to assume

u < c (13)

in the whole fluid domain. This condition excludes stagnation points since there it
holds u = c.

One major difficulty with the original system as well as the stream formulation
is the unknown free surface η. In [8, 32] a fixed domain formulation equivalent to
(9)–(12) is discussed. The used coordinate transform known as the Dubreil-Jacotin
transform, see [12], is illustrated in Fig. 1. This transform exploits that ψ is constant
both on the flat bottom and the free surface as well as strictly increasing inside the
domain, note that this again makes use of the assumption (13). Introducing the fixed
domain R = {(q, p)|−π < q < π; p0 < p < 0} and the height function h = y+d

where y depends implicitly on q and p, results in a new system of equations.
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Fig. 1 Dubreil-Jacotin transformation

Hence instead of (9)–(12) the problem is now to find h and Q satisfying

H[h] :=(1 + h2
q )hpp − 2hphqhqp + h2

phqq − γ (−p)h3
p = 0 in R, (14)

B0[h,Q] := 1 + h2
q + (2gh − Q)h2

p = 0 for p = 0,

(15)

B1[h] := h = 0 for p = p0
(16)

for a given domain R and vorticity function γ . Due to assumption (13), the
formulations presented in this chapter and all schemes based on the Dubreil-Jacotin
transformation can not be used to compute waves with stagnation point.

A special family of solutions of these equations are the so called laminar waves.
These solutions, defined in the fixed domain R, describe parallel shear flows that do
not depend on the q variable and are denoted as H . In the case of linear vorticity the
laminar waves are given by

H(p; λ) = 2(p − p0)√
λ − 2γp + √

λ − 2γp0
(17)

where the parameter λ > 0 is coupled to Q by the relation D

Q = λ − 4gp0√
λ + √

λ − 2γp0
.

In general, there are no non-laminar waves in the neighbourhood of the laminar wave
(Q(λ),H(λ)). For certain values of λ and thus Q, determined by the dispersion
relation [19], a branch of non-laminar waves bifurcates from the family of laminar
flows. These bifurcation points are denoted as λ∗ and Q∗ respectively.

While the schemes presented in Sects. 3 and 4 consider different system of
equations and computational domains, the concepts of laminar branches and
bifurcation of a branch of non-trivial waves remain the same.
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2.1 Numerical Continuation Scheme

One straightforward approach is to discretise (14)–(16) with a second order
finite difference scheme as was done in [3, 20, 21, 32]. The resulting system is
underdetermined since the hydraulic head Q as well as the height function h are
unknown. A numerical continuation scheme can be used to compute waves along the
solution branch. This means introducing additional conditions to make the system
determined and provide initial guesses based on previous solutions, the resulting
system of nonlinear equations is solved with a Newton’s method.

Finding the bifurcation point Q∗ and the initial guess for the first non-trivial
wave can be done by either computing eigenvalues of the linearised system, using
analytical results [19] or employing other approaches such as the asymptotic
expansion, see Sect. 2.2.

For numerical computations, wavelength and the relative mass flux p0 have to
be chosen.1 In the standard case of a given vorticity function γ the hydraulic head
Q is the only free parameter which makes it the natural choice for the bifurcation
parameter.

Note that other choices are valid and may be beneficial. For example consider
the case of constant vorticity γ = γ0, then one can fix Q and consider γ0 as the
bifurcation parameter. Given one solution, new waves can then be computed by
varying γ0 while Q remains fixed. This strategy was used in [3] to compute parts
of the solution branch beyond a wave with stagnation points. This branch is not
reachable by continuation with Q since there, the part of the branch that violates
(13), can not be bypassed.

The biggest drawback of this approach is that, due to the assumption (13) of the
Dubreil-Jacotin transform, waves with stagnation points are not modelled by (14)–
(16). This manifests in an increasingly ill-condition Jacobian of the discretisation
near stagnating waves. The advantage of this scheme are its ease of use and
the big flexibility it has: no assumptions on the vorticity function γ are made,
examples presented in [3, 20, 21] include piecewise constant and cubic vorticity
with respect to the stream function; Fig. 2 shows some examples of linear vorticity;
The scheme is also flexible with regard to the model equation (1). Extensions, like
periodic travelling equatorial waves [7, 27], that add earths rotation to the model,
are straightforward to incorporate.

1A condition for such a choice which ensures existence of solution is given by (1.6) in Theorem
1.1 of [8].
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Fig. 2 Free boundary of the limiting wave with vorticity γα(p) = α(1 − p
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2.2 Asymptotic Expansion

In the approach presented in [2] and based on [9, 18], one considers the fixed
domain formulation (14)–(16) and finds asymptotic expansion of its solution around
a bifurcation point.

Looking for q-independent solutions of (14)–(16) leads to the laminar flows H .
Similarly, one can obtain solutions for the linearised problem with the approach

ĥ(q, p; b) = H(p, λ) + bm(q, p)

where b ∈ R and m is an even and 2π-periodic function in q . The unknown function
m is chosen such that ĥ is the solution of the linearised problem, that is

H[ĥ] = O(b2), B0[ĥ,Q] = O(b2), B1[ĥ] = 0.

This linearised problem only has non-trivial solutions at bifurcation points, that is
(Q∗,H(λ∗)). Those are either known analytically [19] for some vorticities or can be
approximated numerically. A way to compute a better approximation of h would be
to consider higher order approximations. As discussed in [9], adding more terms to
ĥ only yields solutions of the system up to second order. There exists no expansion
ĥ3 of third order that satisfies the system (14)–(16) up to third order, that is

H[ĥ3] = O(b4), B0[ĥ3,Q] = O(b4), B1[ĥ3] = 0.
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This caveat was remedied in [18] by approximating not just the height function
h but Q as well. For this introduce approximations of the pair (Q, h) by the
polynomials in b ∈ R

Q ≈ Q(2N)(b) := Q∗ +
N∑

k=1

Q2kb
k, (18)

h(q, p; Q) ≈ h(2N+1)(q, p; b) :=
2N+1∑

k=0

hk(q, p)bk (19)

with coefficients Q2k ∈ R and hk defined as

h2k(q, p) :=
k∑

m=0

cos(2mq)f 2k
2m(p), (20)

h2k+1(q, p) :=
k∑

m=0

cos((2m + 1)q)f 2k+1
2m+1(p) (21)

where f k
m ∈ C∞([p0, 0]) for all m, k. Note that the functions f k

m only depend on
p introduced by the Dubreil-Jacotin transformation. Let the wavelength, vorticity
γ and relative mass flux p0 be given. What remains to be computed are the
constants Q2k and functions f k

m such that (Q(2N), h(2N+1)) satisfies (14)–(16) up
to O(b2N+2). The structure of h(2N+1), given by (19)–(21), can be exploited to
considerably simplify this problem, as shown in [2]. Ultimately, what has to be
solved is a series of one dimensional systems of differential equations which can be
done numerically.

Due to the used Dubreil-Jacotin transformation, restriction (13) must be satisfied
what in turn means this approach is limited to non-stagnation waves. The advantage
of this scheme is its flexibility with regard to the vorticity, in particular non constant
vorticity is possible, see [2]. This, together with the availability of analytical results
for the first couple expansion terms [18], allows the use of this expansion as a very
good initial guess for other approaches.

3 Non-local Formulations

In [1], a new, non-local formulation of the Euler equations was presented which is
based on the unified transform or Fokas method. While this approach allows for
rotational waves, we present here the periodic irrotational case as was considered in
[11]. In the irrotational case, that is γ = 0, the Euler equations can be formulated in
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terms of a velocity potential φ and become

�φ = 0 in − d < y < η (22)

φy = 0 on y = −d, (23)

ηt + φxηx = φy on y = η, (24)

φt + 1

2

(
φ2

x + φ2
y

)
+ gη = σ

ηxx

(1 + η2
x)

3/2 on y = η (25)

where σ denotes the constant surface tension and ρ is the density.
Introduce the velocity potential evaluated at the surface, see [36], as q(x, t) =

φ(x, η(x, t), t) which leads to the dynamic boundary condition

qt + 1

2
q2
x + gη − 1

2

(ηt + qxηx)2

1 + η2
x

= σ
ηxx

(1 + η2
x)3/2 . (26)

Additionally one gets a non-local equation

∫ L

0
e−ikx{iηt cosh[k(η + d)] + qx sinh[k(η + d)]}dx = 0, t > 0 (27)

where k = kn = 2kπ
L

with n ∈ Z \ {0}.
Starting from the set of Eqs. (26)–(27) several modifications and generalisations

can be made. Considerations include the constant vorticity case [4, 34], a variable
bottom [1] and using a moving frame [11]. A hybrid of the novel formulation and
an approach based on conformal mapping is presented in [15], where water waves
with variable bottom are studied numerically.

For numerical considerations in the case of steady periodic water waves (26)
and (27) can be reformulated as a single non-local equation only containing the
unknown η, see [11]. The wave profile η is approximated by truncated Fourier
series and the non-local equation discretised using a spectral collocation method.
Then the problem to find solutions can be seen as a bifurcation problem for fixed
wavelength and depth where the wave velocity c is the bifurcation parameter. To
find a bifurcation point for which non-trivial solutions exist, the null space of the
linearisation about the trivial wave is studied.

This approach allows for the computation of streamlines and pressure in the
whole domain, independent of any grid. This holds true even in the presence of
stagnation points when rotational waves are considered. For example, in [34] a wave
with interior stagnation and a bottom pressure maxima which is not under the crest
is presented.

Such non-local formulations are a very active research area, for some more
related formulations see [25, 26, 34]. This, together with the easily available infor-
mation about streamlines, wave form and pressure, make non-local formulations
very effective. The main limitation is that the vorticity function has a larger impact
on the formulation and is thus more restricted, in most cases to constant vorticity.



On Recent Numerical Methods for Steady Periodic Water Waves 147

4 Conformal Mapping and Spectral Collocation Method

In the approach presented in [28], the constant vorticity case is considered as a
superposition of a linear shear flow and a harmonic velocity potential. This leads to a
system of equations similar to (22)–(25) but with an additional vorticity term, which
is then non-dimensionalised. The manuscript [28] considers the case of periodic
travelling waves with constant speed and introduces a frame moving along with
wave speed c. Then the problem is to find the potential φ satisfying

�φ = 0 in − 1 < y < η (28)

φy = 0 on y = −1, (29)

−cηx + (φx − γ (η + b))ηx = φy on y = η, (30)

−cφx + 1

2

(
φ2

x + φ2
y

)
+ η − γ (η + b)φx + γψ = B on y = η (31)

where B is the Bernoulli constant, ψ is the streamfunction associated with φ and
b ∈ R is a parameter of the background flow.

To solve this system, a conformal mapping such as given in [5, 24], that maps
the uniform strip onto the wave domain, is considered. In the uniform strip domain,
a flat domain of unknown depth, the solution of the Laplace equation is analytically
known. It is ensured that this solution satisfies the dynamic and kinematic boundary
conditions using a spectral collocation method. For a sketch of the involved domains
see Fig. 1, where reversely the fluid domain was mapped onto a rectangle domain.

To compute a first non-laminar wave the irrotational case of small amplitude,
for which good approximations are available, is considered. More waves along
the solution branch can be computed using a continuation scheme with previous
solution as initial guess. For continuation parameters, [28] studies two cases. In the
first case, the depth and wave height H are fixed and the continuation parameter is
the wavelength λ. In the second case, the depth and wavelength are fixed and either
the vorticity γ or the steepness parameter H

λ
are varied.

This approach can be used to compute waves with stagnation points as well
as wave characteristics such as streamlines, stagnation points, particle paths and
the pressure. The results presented in [28] include waves with up to three interior
stagnation points and waves with switched pressure maxima and minima at the
bottom opposed to the irrotational case. The various continuation schemes allow
for the detailed study of interactions between parameters and wave characteristics.
The biggest restriction of this approach is that it is limited to constant vorticity.
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