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Preface

The motion of water is governed by a set of mathematical equations which are
highly complicated and intractable, which is not surprising when one considers
the highly diverse and intricate physical phenomena which may be exhibited by
a given body of water. However, recent mathematical advances have enabled
researchers to make vast progress in this field. Cutting-edge techniques and tools
from mathematical analysis have generated strong rigorous results concerning
the qualitative and quantitative physical properties of solutions of the governing
equations. Furthermore, accurate numerical computations of fully nonlinear steady
and unsteady water waves in two and three dimensions have contributed to the
discovery of new types of waves. Model equations have been derived in the
long-wave and modulational regime using Hamiltonian formulations and solved
numerically.

Additionally, while research in nonlinear water waves has an inherent symbiotic
relationship with the generation of powerful mathematical advances, it is also
a subject which has vast potential for interdisciplinary collaborations. In many
instances throughout science, a numerical or experimental exploration is the first
approach to obtaining important information about the behaviour of solutions of
differential equations. Conversely, behaviour which is predicted by mathematical
theory may subsequently be observed and expanded upon in experimental or
numerical work. The aim of this book is to reflect, and illustrate, the wide variety of
approaches to the analysis of nonlinear water waves, featuring a range of exponents
of recent research in the theory and applications of nonlinear water waves.

This book is motivated by a workshop on nonlinear water waves which was
organised at the Erwin Schrödinger International Institute for Mathematics and
Physics in Vienna, November 27–December 7, 2017, and features contributions
from a number of participants. The aim of the workshop was to examine recent
progress in the research area of nonlinear water waves with a view to stimulating
future research and collaborations. International experts in the broad domain of
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vi Preface

fluid dynamics were present, with featured interdisciplinary expertise ranging from
pure and applied mathematicians to physicists, oceanographers, experimentalists,
and engineers.

The workshop was organised around five main themes: Nonlinear wave–current
interactions; Geophysical water waves; Analysis and justification of asymptotic
models for water waves; Numerical computations of water waves; Nonlinear surface
waves in related physical problems. Furthermore, the material featured in the
chapters of this volume range from new research results to review articles outlining
the state-of-the-art of a particular field. Accordingly, it is hoped that this volume
will be of interest to both experts, and early career researchers, alike. An overview
of the volume is given as follows.

In Chap. 1, Nachbin introduces some applied mathematics research problems
on surface water waves propagating in the presence of highly variable bottom
topographies. One problem regards solution properties, in particular connected
with wave reflection, while another asymptotic problem regards reduced models
obtained by simplifying partial differential operators, and which are more amenable
to scientific computing.

Kluczek and Rodríguez-Sanjurjo, in Chap. 2, implement a degree-theoretic
approach in order to rigorously justify the global validity of the fluid motion
described by a new, exact, and explicit solution of the nonlinear geophysical fluid
dynamic governing equations. More precisely, the three-dimensional Lagrangian
flow-map describing this exact and explicit solution is proven to be a global diffeo-
morphism from the labelling domain into the fluid domain, thereby establishing that
the flow motion is dynamically possible.

In Chap. 3, Fokas and Kalimeris review the application of the unified transform,
also known as the Fokas method, to the water waves problem. The Fokas method
involves a non-local formulation, and its application in water waves in two spatial
dimensions with moving boundaries is discussed.

Guyenne presents in Chap. 4 an overview of recent extensions of the high-order
spectral method of Craig and Sulem. Cases of wave propagation in the presence
of fragmented sea ice, variable bathymetry, and a vertically sheared current are
investigated. The main components of this method include reduction of the full
problem to a lower-dimensional system involving boundary variables alone, and a
Taylor series representation of the Dirichlet–Neumann operator, resulting in a very
efficient and accurate numerical solver by using the fast Fourier transform.

In Chap. 5 Dyachenko and Hur investigate the Stokes wave problem in a constant
vorticity flow by using a numerical method based on a formulation via a conformal
mapping as a modified Babenko equation. Touching waves of different types are
found by varying the strength of the vorticity. A fold is found to develop in the wave
speed versus amplitude plane for strong positive vorticity.

In Chap. 6, Compelli, Ivanov, and Lyons consider a model from physical
oceanography, namely a two-layer fluid system separated by a pycnocline, which
is modelled by an internal wave. The lower layer is bounded below by a flat bottom,
and the upper layer is bounded above by a flat surface. The fluids are incompressible
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and inviscid and Coriolis forces as well as currents are taken into consideration.
A Hamiltonian formulation is presented, and appropriate scaling leads to a KdV
approximation. Additionally, considering the lower layer to be infinitely deep leads
to a Benjamin–Ono approximation.

Akers and Seiders present in Chap. 7 numerical simulations of large amplitude
overturned travelling waves using a dimension-breaking continuation as a numerical
technique. They present dimension-breaking bifurcations from branches of planar
waves in two weakly nonlinear model equations as well as in the vortex sheet
formulation of the water wave problem. The challenges and potential of this method
toward computing overturned travelling waves at the interface between three-
dimensional fluids are reviewed and numerical simulations of dimension-breaking
continuation are presented in each model.

In Chap. 8, Bauer, Cummings, and Schneider consider a model for the periodic
water wave problem and its long wave amplitude equations. The validity of the KdV
and of the long wave NLS approximation for the water wave problem over a periodic
bottom is investigated.

Amann reviews in Chap. 9 some recent numerical methods used to compute
steady periodic water waves in two dimensions. These different methods are based
on a Dubreil–Jacotin transformation, on a non-local formulation, and on conformal
mapping.

Chapter 10 comprises a review by Stuhlmeier, Vrecica, and Toledo of the
theory of wave interaction in finite and infinite depth, with a focus on coastal
engineering applications. Both of these strands of water-wave research begin with
the deterministic governing equations for water waves, from which simplified
equations can be derived to model situations of interest, such as the mild slope and
modified mild slope equations, the Zakharov equation, or the nonlinear Schrödinger
equation. These deterministic equations yield accompanying stochastic equations
for averaged quantities of the sea-state, like the spectrum or bispectrum. The authors
then discuss several of these in depth, touching on recent results about the stability
of open ocean spectra to inhomogeneous disturbances, as well as new stochastic
equations for the nearshore.

In Chap. 11, Părău and Vanden-Broeck review the solitary gravity-capillary and
flexural-gravity waves in two and three dimensions found over the years by water
waves researchers. The numerical methods used to compute these solitary waves are
described in detail and similarities and differences between the solutions for the two
physical problems are discussed.

Trichtchenko presents in Chap. 12 the details of a method for identifying
stability regimes of small-amplitude, periodic travelling wave solutions of dispersive
Hamiltonian partial differential equations to high-frequency perturbations using
roots of a reduced-order polynomial.

Finally, the editors and authors would like to acknowledge the Erwin Schrödinger
International Institute for Mathematics and Physics, Vienna, for their immense
support and hospitality during the 2017 workshop on Nonlinear Water Waves: An
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Interdisciplinary Interface. This workshop was an engaging forum for discussions
and interactions between all scientific researchers in attendance and in the local
community, and all participants greatly appreciated the facilities and support of the
institute and its staff.

Cork, Ireland David Henry
Cambridge, UK Konstantinos Kalimeris
Norwich, UK Emilian I. Părău
London, UK Jean-Marc Vanden-Broeck
Lund, Sweden Erik Wahlén
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Modeling Surface Waves Over Highly
Variable Topographies

André Nachbin

Abstract This article introduces some applied mathematics research problems
on surface water waves propagating in the presence of highly variable bottom
topographies. Asymptotic problems arise from variable coefficient partial differ-
ential equations regarding both its solutions, as well as the differential operators’
reduced modeling. Two simple problems are first introduced, setting the main ideas.

Keywords Water waves · Variable topographies · Reduced modeling · Effective
solutions

Mathematics Subject Classification (2000) Primary 76B15; Secondary 35Q

1 Introduction

Water waves is a subject of great current interest regarding both the continuous
mathematical challenges it poses, as well as the many physical applications of
interest. A topic which is particularly challenging, theoretically and numerically,
is water wave interaction with the bottom topography. The goal of this article is
to introduce the reader to this class of applied math problems in water waves.
As will be shown, very quickly the problems become quite involved. Therefore
we start with two simpler problems, in the respective subareas considered, all on
the topic of partial differential equations applied to waves. One problem regards
solution properties, in particular connected with wave reflection. The other problem
regards reduced models, namely on simplifying partial differential operators in
order to obtain models amenable to the asymptotic analysis of their solutions, as
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2 A. Nachbin

well as more amenable to scientific computing. Many interesting phenomena and
theoretical results, here discussed, are inspired from acoustic waves. We start with
a very simple linear hyperbolic (acoustic) model which sets this parallel.

This article is organized as follows. In Sect. 2 we present three different settings
for the acoustic wave reflection problem. The analogy with linear shallow water
waves is explored. In Sect. 3 we describe issues related to reduced modeling in
the presence of a rapidly varying propagation medium. In Sect. 4 we present an
overview of more advanced developments regarding recent research on these topics.

2 Long Wave Reflection

We start this section with a simple exercise for a linear hyperbolic wave reflecting
at an interface. It is instructive to consider the linear acoustic equations

ρ(x) ut + px = 0, (2.1)

1

κ(x)
pt + ux = 0.

It is an easy exercise to adapt the calculations here presented for the acoustic
equations to the shallow water model presented in Eq. (2.4). Here we consider a
one-dimensional heterogeneous acoustic medium along the x-axis. The material
density is given by ρ(x), where ρ(x) = ρ1 when x < 0 and ρ(x) = ρ2 when
x > 0. The material compressibility is given through the variable coefficient 1/κ(x),
which is also discontinuous at x = 0, due to two different constant values of the bulk
modulus, κ1 �= κ2. The velocity at a point x in the variable medium is denoted by
u(x, t), while p(x, t) is the pressure. We will choose initial conditions so that a
pulse-shaped disturbance in pressure and velocity will travel from left to the right,
and interact with the medium’s interface at x = 0.

2.1 Reflection at an Interface or Step

Using the method of characteristics it is straightforward to compute the reflection
and transmission coefficients at the interface where the medium changes acoustic
wave speed. One can write system (2.1) in matrix notation and find the matrix’s
eigenvalues which are the right and left wave speeds: c(x) = ±[κ(x)/ρ(x)]1/2.
This system of equation is therefore bi-directional supporting waves in either the
right or left going directions. Right and left going modes are defined by

A(x, t) ≡ ζ−1/2 p(x, t)+ ζ 1/2 u(x, t) and (2.2)

B(x, t) ≡ −ζ−1/2 p(x, t)+ ζ 1/2 u(x, t),
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respectively, which when substituted in system (2.1) yield

At + c Ax = −r(x) B, (2.3)

Bt − c Bx = r(x) A.

The reflectivity coefficient r(x) ≡ ζ ′/(2ζ ), which depends on the impedance
ζ(x) ≡ (κρ)1/2, couples the right and left propagating modes when the medium
changes. If the medium properties are constant the two equations decouple into
elementary unidirectional wave equations, in opposite directions. A and B are an
elementary version of a Riemann Invariant along a characteristic. When the medium
properties change they are no longer invariant and exchange energy through the
reflectivity terms. Note that a matched-medium situation can occur even when the
propagation speeds change: c1 �= c2. This occurs when the impedances match, as
for example with ρ1/ρ2 = κ2/κ1. This will be confirmed in a calculation presented
below.

Consider the very simple linear shallow water model. Note that we do not have a
matched-medium possibility in this case:

ut + h(x)ηx = 0, (2.4)

ηt + ux = 0.

We have only one variable coefficient in this system. But the calculations that follow
all carry out to the linear shallow water case.

Consider the single interface case depicted in Fig. 1, to the left. In order to
calculate the reflection and transmission coefficients we impose continuity of the
acoustic solution at the interface located at x = 0:

u(0, t) = ζ−1/2
(
A1(0, t)+ B1(0, t)

2

)
= ζ−1/2

(
A2(0, t)+ B2(0, t)

2

)
, (2.5)

p(0, t) = ζ 1/2
(
A1(0, t)− B1(0, t)

2

)
= ζ 1/2

(
A2(0, t)− B2(0, t)

2

)
. (2.6)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

1
x

2 3
x

21

Fig. 1 Left: single interface between medium 1 and 2. Right: layer of medium 2 located in
between medium 1 and 3
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This leads to the propagator matrix, taking the solution across the interface from
side 1 to side 2:

[
A2

B2

]
=

[
p+ p−
p− p+

] [
A1

B1

]
, (2.7)

where p+ ≡ [(ζ2/ζ1)
1/2 + (ζ1/ζ2)

1/2]/2 and p− ≡ [(ζ2/ζ1)
1/2 − (ζ1/ζ2)

1/2]/2.
Let’s admit a disturbance arriving at the interface from the left and nothing arriving
from the right. Our boundary conditions are therefore A1(0−, t) = f (t) and
B2(0+, t) = 0. The propagator relations reads

[
A2

0

]
= P

[
f (t)

B1

]
, (2.8)

and we get the reflection and transmission coefficients

R = −p
−

p+
= ζ1 − ζ2

ζ1 + ζ2
, T = 1

p+
= 2
√
ζ1ζ2

ζ1 + ζ2
. (2.9)

The matched-medium possibility is confirmed, and it is straightforward to verify the
conservation relation

R2 + T 2 = 1. (2.10)

In section 4.2 of Mei’s book [15] the analysis for long waves over a depth
discontinuity is presented, using both the shallow water equations as well as linear
potential theory. Chapter 2 of Dingemans book [5] also has a detailed presentation
for wave reflection at a step, studied through the linear potential theory equations.
Other examples are presented.

2.2 Reflection with the Presence of a Layer

As soon as we add another interface, namely a layer of a third material, this problem
becomes much more complicated. The transmitted wave from the first interface will
be an incoming wave at the second interface from the left. The reflected wave at the
second interface will be an incoming wave from the right at the first interface. In
this case we have a nonzero B2 as a boundary condition at the first interface. Since
we are not considering any dissipation there will be a, gradually decaying, signal
reverberating forever within the layer of width L. We have that

[
A2(0, t)
B2(0, t)

]
= P1

[
f (t)

B1(0, t)

]
, (2.11)
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and

[
A3(L, t)

B3(L, t)

]
= P2

[
A2(0, (t − L/c2))

0

]
. (2.12)

Note that L/c2 is the travel time within the layer from interface 1–2 up to interface
2–3. Within this layer region A2 is invariant, namely a right-going disturbance. It
will reflect at interface 2–3 and generate an incoming mode B2 at interface 1–2.
This back-and-forth reverberation (“ringing”) leads to a complicated (mathematical)
bookkeeping, not to mention when the total number of layers is large.

For the reasons above people have considered what is known as the Goupillaud
medium. Goupillaud refers to a layered model where the travel time over each layer
is the same, therefore the delay component is constant and is better dealt with in
Fourier space as a phase factor. The frequency dependent propagator, from medium
1 up to medium 3, can be written in the form ([11, p. 43])

[
Â3(ω)

0

]
= P̂

[
f̂ (ω)

B̂1(ω)

]
, (2.13)

where P̂ = P̂2P̂1 and

P̂1 =
[
p+ p−
p− p+

]
, P̂2 =

[
p+eiωL/c2 p−e−iωL/c2

p−e−iωL/c2 p+eiωL/c2

]
.

We have that B̂1(ω) = R̂(ω)f̂ (ω) and Â3(ω) = T̂ (ω)f̂ (ω). The reflection and
transmission coefficients for the layer can be expressed as

R̂(ω) = R̂2e
2iωL/c2 + R̂1

1+ R̂1R̂2e2iωL/c2
, T̂ (ω) = T̂1T̂2e

iωL/c2 + R̂1

1+ R̂1R̂2e2iωL/c2
, (2.14)

where as expected, R̂j and T̂j , j = 1, 2 are given as in (2.9).
The simplest shallow water equivalent of a layer is system (2.4), where the depth

h(x) is piecewise constant, taking on three different values: h1, h2 and h3. The
region that plays the role of a layer has depth h2. We have depicted in Fig. 2 a
shallow water channel with steps that correspond to four layers in the associated
acoustic model. The layer depths are respectively equal to 0.15, 0.60, 0.25 and
0.675.

2.3 Wave Reflection in a Finely Layered Medium

Acoustic waves provide a reasonable model for seismic waves through the crust of
the Earth in oil exploration. The Earth crust is modeled as a finely layered medium
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-0.5 0 0.5 1 1.5
-0.2

0

0.25

0.5

Fig. 2 Shallow water channel with a geometry equivalent of having four layers; four intermediate
regions of constant speed (constant depth). The level curves depicted represent a curvilinear
coordinate system which arises from the conformal mapping of a uniform flat strip onto the
physical (polygonal shaped) domain

[11]. A good mathematical setting to start studying this nontrivial problem is the 1D
model for pulses traveling over thousands of heterogenous layers. As shown earlier,
our introductory problem, very quickly, becomes quite nontrivial in the presence
of multiple layers, multiple reflectors. The formulation can be in terms of matrix
products [11], as we have indicated in the single layer problem, or more generally
using the alternative (and more general approach) based on differential equations
for the propagator matrix. This eventually leads to random ordinary differential
equations (ODEs) and probabilistic results, along the lines of central limit theorems
[11], regarding expectations of the reflected or transmitted signals.

In section 4.1.1 of the book by Fouque et al. [11] a nice deterministic example is
presented. It considers a finely layered periodic medium with alternating acoustic
speeds ca and cb, together with the matched medium condition through the
impedances: ζa = ζb. The medium is assumed to have 2N layers. The propagator
matrix product is examined in the limit as N → ∞ and the layer spacing going
to zero, keeping the multilayer slab fixed in [0, L]. As a result one obtains the
effective pulse speed c̄ in the homogenized (composite) medium, which is built of
two materials a and b. The effective speed is the harmonic average of the individual
component speeds:

c̄ =
[

1

2

(
1

ca
+ 1

cb

)]−1

. (2.15)

In this hyperbolic system of equations the effective speed turns out to be frequency
independent. A pulse, which is broad with respect to the fine layers, propagates
as a traveling wave. The matched impedance condition tells us that no reflection
is observed at numerous interfaces. Hence, asymptotically speaking, the pulse
propagates in an effectively homogeneous medium. Nevertheless the pulse has
an effective speed different from a simple arithmetic average of the underlying
material-speeds. Similar homogenized behavior is observed for water waves over
rapidly varying periodic topographies, even in the nonlinear regime [24]. This has
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been illustrated computationally in some articles, as for example [1, 21]. It is a very
good benchmarking exercise for numerical methods that are designed for multi-
scale problems of waves propagating over a microstructure for large distances.

In section 4.5.1 [11] the study is carried over to a finely layered random medium,
with a constant impedance. The propagation speeds at each layer are independent
identically distributed, (strictly) positive random variables Cj . The homogenization
calculation follows the lines of the Law of Large Numbers. In the limit as the
(constant) layer width l→ 0, the effective speed is calculated so that the propagator
becomes the identity matrix. The effective (or homogenized) propagation speed is
expressed as

c̄ =
(
E

[
1

C1

])−1

. (2.16)

This is also observed for long (linear) water waves propagating in a channel with
randomly varying steps. Long nonlinear water waves have also been studied in the
presence of a periodic and a random microstructure, regarding depth variations. This
will be further discussed in Sect. 4.

3 Reduced Modeling

The mathematical exercise of using system (2.4) with a non-smooth topography
follows from that of the acoustic model. It is a good warmup problem in order to
consider a layered topography. Nevertheless in the presence of a rapidly varying
(non-smooth) topography, the shallow water system is not asymptotically valid as a
reduced model arising from the potential theory equations [13]. We will outline the
reasons why this is so.

Consider the potential theory formulation arising from Euler’s equations [26].
Let variables with physical dimensions be denoted with a tilde. We introduce the
length scales σ (a typical pulse width or wavelength), h0 (a typical depth), a (a
typical wave amplitude), lb (the horizontal length scale for bottom irregularities) and
L (the total length of the rough region). The acceleration due to gravity is denoted
by g and the reference shallow water speed is c0 = √gh0. Dimensionless variables
are then defined in a standard fashion [24, 26] by having

x̃ = σx, ỹ = h0 y, t̃ =
(
σ

c0

)
t,

η̃ = a η, φ̃ =
(
gσa

c0

)
φ, h̃ = h0 H

(
x̃

lb

)
.
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The velocity potential φ(x, y, t) and wave elevation η(x, t) satisfy the dimension-
less equations [26]:

β φxx + φyy = 0, for −H(x/γ ) < y < αη(x, t),

with the nonlinear free surface conditions

ηt + αφxηx −
1

β
φy = 0,

η + φt +
α

2

(
φ2
x +

1

β
φ2
y

)
= 0,

at y = αη(x, t). The Neumann condition at the impermeable bottom is

φy +
β

γ
H ′(x/γ )φx = 0.

The bottom topography is described by y = −H(x/γ ) where

H(x/γ ) =
{

1+ n(x/γ ), when 0 < x < L,

1, when x ≤ 0 or x ≥ L.

The following dimensionless parameters arise: α = a/h0 (the nonlinearity
parameter), β = h2

0/σ
2 (the dispersion parameter) and γ = lb/σ (how rapidly

varying bottom irregularities are compared to the wave-scale). When γ 
 1
the bottom topography is denoted by the rapidly varying function −n(x/γ ). The
topography can be of large amplitude about the flat bottom at depth equal to one. As
depicted in Fig. 2 the function n(x/γ ) does not have to be smooth.

Let all three parameters be O(ε) indicating that we are setting ourselves in
the weakly nonlinear, weakly dispersive (long wave) regimes, in the presence
of a rapidly varying topography. Hamilton [13] discusses that in this regime
the formal asymptotic analysis to deduce reduced Boussinesq (or shallow water)
models does not make sense. Hamilton’s presentation does not use dimensionless
variables. The asymptotic expansion about the flat bottom can be repeated with
the dimensionless equations as found in Nachbin [20]. Performing Hamilton’s
calculations for the rapidly varying topography one will find O(1/ε) terms that
arise from derivatives of the bottom profile H(x/ε). These will eventually reorder
terms in the formal expansion and destroy any hope for convergence. Hence the
shallow water equations in the presence of rapidly varying topographies is not valid
as an asymptotic approximation of the potential theory equations. An outline of
Hamilton’s calculation [13] is given below.

For this reason, in analyzing long linear (α = 0) waves over rapidly varying
random topographies, Nachbin and Papanicolaou [23] considered the linear (full)
potential theory equations. The probabilistic modeling, through random ordinary
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differential equations (ODEs), is presented in [11, 23] and the references within.
Additional discussion and results are given in Nachbin [21], where a very simple
example shows why ensemble averaging has to be performed in a random moving
frame. The example consists of the unidirectional wave equation (ut + C ux = 0)
with a random (constant) speed C. Suppose we are uncertain about the exact
propagation speed of a wave and we add uncertainty to the model through (for
example) a normally distributed C. Ensemble averaging in a fixed reference frame
leads to a spurious attenuation of the wave. This is shown in detail in [21].

The ensemble averaging for the linear potential theory formulation in [23] is
based on a central limit theorem framework developed by George Papanicolaou and
collaborators [11]. As a result one has that (statistically speaking) the reflection
process governed by the linear potential is the same as that of the acoustic system
[21]. Therefore it is the same as for the shallow water (long wave) model, even
though the asymptotic model reduction mentioned above was not valid.

But in Nachbin [20] a valid asymptotic (long wave) model was produced. In par-
ticular a model that is of interest for nonlinear (solitary-type) waves interacting with
highly disordered bottom variations. This valid Boussinesq model was achieved
by first performing the conformal mapping from a canonical flat strip onto the
undisturbed corrugated physical domain. The mapping amounts to being the same as
using an orthogonal curvilinear coordinate system in the physical domain, as shown
in Fig. 2. A very convenient property concerns the Laplacian which is invariant
under this change of coordinates which is boundary fitted [23]. The corrugated
bottom is a level curve of the curvilinear coordinate system which trivializes the
Neumann condition there. This avoids many derivatives of the bottom profile and
therefore the formal asymptotic analysis targeting a reduced Boussinesq (long wave)
model is much better behaved in the curvilinear coordinate system. This is true even
if the topography is rapidly varying and/or has a non-smooth bottom [22]. This
change of formulation has a positive numerical impact. In [18] it was shown that the
conformal mapping pre-conditions the model for numerical discretization.

To put all these comments into perspective we outline some calculations in the
following subsection.

3.1 The Conventional Depth Expansion

With the linear potential theory equations we better illustrate some shortcomings
when using the conventional power series expansion in the presence of rapidly
varying bottom topographies. The nonlinear case will be discussed subsequently
in the curvilinear coordinates framework.

The linear potential theory equations are obtained with α = 0. In the long wave
regime, propagating over rapidly varying depth variations, we will set for example
β = γ = ε. We have the wide-pulse-microstruture interaction regime which allows
the study of solitary waves over rapidly varying random topography. Hamilton [13]
did not consider a dimensionless system. Hence as a first exercise, lets consider
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β = γ = 1. In the interest of a future comment we will keep the parameter γ in the
equations, even though it is equal to one.

The linear equations are solved in the undisturbed fluid domain, with

φxx + φyy = 0 for −H(x/γ ) < y < 0,

together with the linear “free surface” condition at the y = 0,

φtt + φy = 0,

where the free surface elevation η has been (momentarily) removed from the
problem. It is recovered at the end by using η = −φt . The Neumann condition
at the impermeable bottom is

φy + (1/γ ) H ′(x/γ )φx = 0.

The conventional Taylor series expansion near the bottom [13, 26] has an ansatz of
the form

φ(x, y, t) = f (0)(x, t)+(y+H(x/γ )) f (1)(x, t)+ 1

2
(y+H(x/γ ))2 f (2)(x, t)+. . .

We should keep in mind that at first γ = 1. By collecting terms of equal powers in
(y +H(x)), one gets the recurrence relation [13]

f (m+2) = −
{
f (m)
xx + 2H ′ f (m+1) +H ′′ f (m+1)

}
/(1+H ′2). (3.1)

The Neumann condition yields

f (1)(x, t) = − H ′f (0)x

1+H ′2
. (3.2)

For the flat bottom case, as presented in Whitham [26], H ′ ≡ 0 as well as all odd
terms f (2m+1)(x, t), m = 0, 1, 2, . . .. In the flat bottom case one can operate only
with the order-zero reduced potential f0(x, t) and at the end the zero subscript is
dropped. Expression (3.1) allows for the high order reduced potential terms to be
formally incorporated, as needed [13].

As discussed in Hamilton [13] (top of page 292), for the long wave case
(β = O(ε)) in the presence of rapidly varying bottom variations (H(x/γ ); γ 
 1)
the asymptotics will break down. Derivatives of the bottom profile give rise to
powers ofO(1/ε) that will eventually promote a reordering in the formal asymptotic
expansion. Hamilton indicates that the errors for truncating the series expansion are
no longer (formally) decaying.
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In the need for an asymptotic model which can accommodate rapidly varying
layered bottom topographies, Nachbin [20] revisited the work of Hamilton. The
goal was to obtain a valid wave model amenable to extending several results
from the linear hyperbolic (acoustic) waves case to the weakly nonlinear, weakly
dispersive (water) waves case. This led to considering Hamilton’s conformal
mapping framework but using dimensionless variables to have better control on
several underlying regimes. The idea is to have a canonical domain in the form of a
uniform strip. The mapping takes the canonical domain onto the corrugated physical
domain. From a slightly different perspective, ignoring the canonical domain, the
conformal mapping amounts to using a curvilinear change of coordinate system
which is orthogonal and boundary fitted, as depicted in Fig. 2.

3.2 The Conformal Mapping Formulation

We briefly review the conformal mapping framework, which can be found in detail
in references [6, 20, 22]. Define a conformal mapping F from the (scaled) canonical
domain in the complex w-plane onto the physical domain in the complex Z-plane
[20]. The notation is such that w = ξ + iζ while Z = F(w) = x(ξ, ζ )+ iy(ξ, ζ ).

In the curvilinear coordinate system (ξ, ζ ) the nonlinear potential theory equations
are given as

φξξ + φζζ = 0, −√
β < ζ < α

√
βN(ξ, t), (3.3)

together with the kinematic and Bernoulli boundary conditions

|J |Nt + φξ Nξ − φζ = 0, (3.4)

|J | (gη + φt)+ 1

2
|∇φ|2 = 0, (3.5)

along the free surface’s pre-image ζ = α
√
βN(ξ, t). The trivial Neumann condition

φζ = 0, (3.6)

if defined at the bottom ζ = −√β of the shallow channel. The Jacobian of the
change of coordinates is denoted by |J |(ξ, ζ ) and ∇ is taken in the ξζ variables.
Under the mapping F we have that x + iη(x, t) = F(ξ + iN(ξ, t)), which
establishes a functional relation between the two free surface representations η and
N . Details of the numerical conformal mapping formulation can be found in Fokas
and Nachbin [6]. Using the Cauchy-Riemann equations we have that |J |(ξ, t) =
y2
ξ+y2

ζ . In the weakly nonlinear regime the Jacobian is well approximated [6, 20, 22]

by a time independent metric coefficient M , where |J | ≈ M2(ξ), and M(ξ) ≡
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yζ (ξ, 0) = 1+m(ξ), with

m(ξ;√β, γ ) ≡ π

4
√
β

∫ ∞
−∞

n(x(ξ0,−√β)/γ )
cosh2 π

2
√
β
(ξ0 − ξ)

dξ0. (3.7)

The asymptotic analysis in [20] yields, what we have called, the terrain-following
Boussinesq system:

M(ξ)ηt + [(1+ αη/M(ξ)) U ]ξ = 0,

Ut + ηξ + α
2

[
U2/M2(ξ)

]
ξ
− β

3Uξξt = 0.
(3.8)

Here U is the depth-averaged horizontal velocity. Other (asymptotically equivalent)
reduced models can be obtained with improved dispersion properties [19]. The
classical shallow water regime eliminates all integer-order terms in β, which is
the same as setting β = 0. With this conformal mapping setting we can take the
long wave regime by eliminating all terms of O(β) and above, but through the
metric termM , keeping an O(

√
β)mollifying effect [22] which smooths out bottom

discontinuities, as well as averages rapidly varying features [6, 22]. Thus the valid
underlying shallow water system is

ηt + 1
M(ξ) [(1+ αη/M(ξ)) U ]ξ = 0,

Ut + ηξ + α
2

[
U2/M2(ξ)

]
ξ
= 0.

(3.9)

By the conformal mapping we are assured that M(ξ) is C∞ and strictly positive.
This is true in the case that the topography has corners and also in the case when
the topography has large rapid oscillations about its mean level. The linear (α = 0)
analogue for the acoustic equations in a layered medium (such as in Fig. 2) is

ηt + 1
M(ξ)

Uξ = 0,

Ut + ηξ = 0.

(3.10)

4 More Advanced Developments

In order to guide the interested reader through some recent research, we briefly
comment on some references. The description will be informal, avoiding equations,
attempting to stimulate further studies. In the interest of space it will be more
focused on the author’s work, keeping in mind that many other references can be
found in the articles here cited, pointing to many important work but other authors.
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4.1 Regarding Wave Reflection

In the acoustic waves literature there is a very interesting phenomenon called by
mathematicians as the O’Doherty-Anstey (ODA) approximation. An acoustic pulse
propagating in a random, rapidly varying, layered medium displays an apparent
attenuation due to the multiple scattering that takes place at the interface of the
numerous layers. The mathematical theory starts with the variable coefficient,
hyperbolic system presented in the present paper. In a proper scaling regime,
to leading order, the transmitted pulse-shaped pressure wave is given by the
convolution of its initial profile with a Gaussian kernel. The asymptotic analysis is
framed as a near wavefront approximation. The Gaussian kernel can be viewed as a
Gaussian low pass filter, as well as the heat kernel for a diffusion equation. Note that
the Gaussian filter, which also characterizes the apparent diffusion, indicates wave
energy being converted from the wavefront to its forward and backward (disordered)
scattered signals: the pulse’s coda and the reflected wave. We have a conservation
law, so no energy is being lost through this apparent diffusion. Indeed it is being
extracted from the wavefront where the asymptotic approximation is being made.
As mathematical references, we mention the probabilistic formulation by Clouet
and Fouque [4] and the deterministic formulation by Berlyand and Burridge [3].
The ODA approximation is also called as the pulse-spreading formula, as presented
in chapter 8 of the book by Fouque et al. [11]. A higher dimension analysis for the
ODA approximation is presented by Sølna and Papanicolaou [25] where ray theory
takes care of slowly varying features of the 2D medium.

In Nachbin [20] the weakly nonlinear weakly dispersive water wave model (3.8)
was deduced having in mind rapidly varying random topographies and the ODA
theory developed for acoustic waves. By setting α = 0 and β = ε, Eq. (3.8) become
a dispersive perturbation of the linear acoustic model. The theory presented by
Berlyand and Burridge [3] was extended to weakly dispersive waves. It used the
Riemann Invariants of the underlying hyperbolic system, in the dispersive setting
where characteristics are no longer present and these invariants are no longer
invariant, but are slowly varying. Nevertheless, the Riemann Invariants suggest
a very useful change of variables and the dispersive pulse-shaping formula was
obtained. It comes out in the form of a Fourier integral and was compared, with
great accuracy, to numerical simulations resolving all scales. These theoretical and
numerical results are given in Muñoz and Nachbin [17]. A graphical example of the
apparent diffusion is displayed in Fig. 3. The theory formulated [17] has its Fourier
transform in terms of the delay time τ ≡ t−x, where t is the usual time variable and
x is travel time over the distance ξ , where x ≡ ∫ ξ

0 (1/C(s))ds. The reference speed
is normalized to 1 and therefore there is no delay in the absence of inhomogeneities.
This is observed in the upper part of Fig. 3 where the (dashed) initial Gaussian-
shaped pulse is compared with the final pulse profile. Under weak dispersion
we see a short oscillatory (dispersive) coda and no delay. In the bottom graph
of Fig. 3 we compare a well resolved numerical simulation (solid line) with the
theoretical Fourier integral. We observe a minor delay, at the pulse’s peak, and the
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Fig. 3 Top: the initial pulse profile (dashed line) and the propagated pulse in a flat bottom
configuration (solid line). Bottom: the numerical solution (solid line) and the theoretical Fourier
integral representation (dashed line)

apparent diffusion through the broadening and attenuation of the pulse. The energy
of the leading wavefront is converted, through multiple scattering, into the long
disordered coda behind the front. To leading order the Fourier integral represents
a convolution with a Gaussian kernel, analogous to a heat kernel. Subsequently in
[8] the probabilistic formulation was presented, leading to more universal results
regarding the class of topographic disorder. For example, the fact that the pulse-
shaping is very stable regarding different realizations of the random medium.

Regarding nonlinear waves, Fouque et al. [9] considered the hyperbolic system
for shallow water waves with a randomly varying depth. In the absence of bathymet-
ric variations a shock eventually forms. Nevertheless in the presence of a disordered
medium, in the regime of the apparent diffusion, a viscous shock is observed. The
theory considers the Riemann Invariants for the underlying conservation law. In
the presence of multiple scattering they are not invariant and exchange energy in
a similar fashion to modes A and B discussed earlier. The asymptotic analysis for
the right propagating mode A leads to the following result: up to a random shift,
mode A is effectively governed by a viscous Burgers equation, where the apparent
viscosity is related to an integral of the autocorrelation function of the random depth
fluctuations.
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This led us to exploring with solitary waves in a rapidly varying disordered
medium. By using again the underlying Riemann Invariants, now within the weakly
nonlinear, weakly dispersive Boussinesq system, Garnier et al. [12] deduced an
effective Burgers-KdV (Korteweg-de Vries) equation for the right propagating
mode. The theoretical results were qualitatively in very good agreement with
numerical simulations.

Another problem of great interest relates to waveform inversion through the time-
reversal of the reflected signal [11]. The author has worked on the one-dimensional
problem where one can consider time-reversal in reflection or time-reversal in
transmission. In the direct problem a pulse-shaped wave is sent onto the random
half-space, say placed along the positive axis, incoming from the left. The reflected
signal is recorded somewhere near the beginning of the random medium. This
is displayed schematically in Fig. 4. Here the initial pulse is in the form of the
derivative of a Gaussian. As before the pulse is under the apparent diffusion as it
propagates to the right and has its energy converted to the long multiply-scattered
signal to its left. The disordered profile over the interval ξ ∈ [0, 45] is a snapshot of
the superposition of a left and right-going wave. On the other hand the disordered
signal on the negative axis is a left-going (reflected) wave propagating over a flat
bottom. This signal (singled out at the top) is recorded, time-reversed and sent
back into the variable depth region to recompress, under reflection, and generate
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Fig. 4 Snapshot of a pulse propagating over a random topography, positioned along the positive
axis ξ > 0. In the detail above, is displayed the recorded reflected signal that, through time-
reversal, will refocus into a derivative of a Gaussian when sent back into the random medium
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a (reduced) copy of the initial pulse. Hence a waveform inversion with a fraction
of the energy. Having recorded the reflected signal for a long but finite amount
of time amounts to keeping only a fraction of the of energy. Time-reversal is,
in a sense, a play-back process where “last-information-out” (as an echo of the
medium) will be the “first-information-in” into the same random medium, in the
next step. In a hyperbolic system the data is moved from one characteristic to the
other. The disordered reflected signal that was moving to the left now is a signal
moving (backwards) to right. This new initial data will impinge on the same random
slab under the same system of partial differential equations. It is remarkable that
the random reflected signal of this time-reversed data refocuses, within the random
medium where it was generated, giving rise to a smooth pulse with the same shape
of the original data of the direct case. This pulse is a reduced copy because we
used only part of the energy. In water waves this is a mechanism for the waveform
inversion of, for example, a tsunami.

In papers [8, 18, 19] time-reversal of one-dimensional (1D) linear water waves
were studied. The time-reversed refocusing of two-dimensional (2D) linear shallow
water waves was performed by Fouque et al. [10]. Nonlinear wave refocusing was
then presented for the shallow water model in [9] and for solitary waves in [7].

4.2 Regarding Wave Modeling

Much has been outlined above for effective properties of water waves in a rapidly
varying medium. In particular, many interesting phenomena arise related to wave
scattering. As mentioned, studying these problems greatly depended on having
good reduced models at hand. Here we should mentioned not only the Boussinesq
system (3.8), but also improved ones such as those describe in [19], which display
better dispersive properties and are more accurate for time-reversal when compared
with the full (linear) potential theory model.

Mei and Hancock [16] considered slowly modulated weakly nonlinear waves
propagating over a random topography. They obtained an effective nonlinear
Schrödinger equation (NLS) with a damping term containing topographic effects.
This NLS was generalized to large-amplitude variable topographies by Luz and
Nachbin [14], where the topography amplitude affected the focusing/defocusing
critical wavenumber. The large-amplitude variable random topography regularizes
the problem in the sense of pushing the critical focusing point to a higher
wavenumber.

Recently the author, with collaborators, has explored water wave models in three-
dimensions. Namely the 3D fluid problem having a 2D surface wave propagating
in the presence of a highly variable topography. A linear potential theory model
is proposed by Andrade and Nachbin [1] where a Dirichlet-to-Neumann (DtN)
operator is constructed in the presence of highly variable topography. The DtN
operator analytically reduces one dimension of the problem. It leads to a Fourier
integral, computed through an FFT, which encodes information of the harmonic
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velocity potential and the vertical structure of the flow. This method worked very
well for the linear problem but is expensive. In particular for 3D nonlinear problems
the DtN operator has to be updated continuously and displays numerical instabilities
due to the deformed varying free surface. Alternatively, Andrade and Nachbin [2]
deduced a 2D Boussineq system which generalizes that presented in [20]. This
reduced model starts from the 3D Laplace equation in a domain with ridge-like (1D)
topography. Conformal mapping is used to flatten out the topography, but in this
(3D) case the Laplacian is no longer invariant. Nevertheless the asymptotic model
reduction goes through and a variable coefficient Boussinesq system is obtained and
tested numerically.
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Global Diffeomorphism
of the Lagrangian Flow-map
for a Pollard-like Internal Water Wave

Mateusz Kluczek and Adrián Rodríguez-Sanjurjo

Abstract In this article we provide an overview of a rigorous justification of the
global validity of the fluid motion described by a new exact and explicit solution
prescribed in terms of Lagrangian variables of the nonlinear geophysical equations.
More precisely, the three-dimensional Lagrangian flow-map describing this exact
and explicit solution is proven to be a global diffeomorphism from the labelling
domain into the fluid domain. Then, the flow motion is shown to be dynamically
possible.

Keywords Global diffeomorphism · Geophysical internal water waves · Exact
and explicit solution
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1 Introduction

Exact and explicit solutions of the nonlinear geophysical equations are very rare.
The use of the Lagrangian framework has however produced some remarkable
results. In order to conclude that these solutions produce a valid fluid motion,
they need to be subjected to a rigorous analysis beyond the confirmation that they
satisfy the governing equations. In particular, we undertake for the first time such
analysis to a three-dimensional exact solution derived for the internal water waves
in a rotating system. It can be shown by explicit calculations that it is possible to
have a motion of the whole fluid body where all particles describes circles with a
radius dependent on the depth. It is important to emphasize that these exact and
explicit solutions fulfill the governing equations locally in terms of Lagrangian
labelling variables, but this does not take into full consideration a rigorous analysis
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of the global evolution of the fluid domain under wave propagation. We use degree-
theoretic methods to illustrate the process and show that particles never collide and
fill out the entire region where waves propagate, therefore the flow is said to be
globally dynamically possible.

The solution analysed in this paper utilises the Lagrangian framework [1, 5] for
providing an exact and explicit solution of the geophysical nonlinear water wave
governing equations. Thus, it is included in a rare group of explicit solutions whose
first example was the remarkable solution derived by Gerstner [11] and rediscovered
in [12, 29, 30]. Gerstner’s solution is the only-known exact solution to the nonlinear
two-dimensional gravity wave problem under constant density. However, the fact
that the resultant flow is rotational and cannot be generated by conservative forces
has prevented the development of these type of solutions in favour of Stokes waves.

The idea behind Gerstner’s wave is that the fluid motion is described by labelling
individual particles moving in a roughly circular motion. The first Gerstner’s
wave generalisation was done by Pollard [28], extending Gerstner’s wave for
an incompressible vertically-stratified fluid in a rotating system and providing
a genuinely three-dimensional water wave solution. The solution still describes
circular particles paths but now the circular trajectories lie on a plane slightly tilted
with respect to the local vertical. This solution, which is more adequate for flows
outside the equatorial region, was generalised in [9] incorporating an underlying
current allowing the solution to produce much more complex flows and including
Pollard’s and Gerstner’s waves as particular cases. Subsequently, a new Pollard-like
solution was derived to describe internal water waves [24].

All these solutions have in common that they are described in the Lagrangian
framework. The validity of such construction where artificial labels are employed in
order to prescribe the particles paths, relies on the fact that the flow map from the
domain of the labels to the fluid domain is a global diffeomorphism. In this sense,
the first rigorous mathematical analysis was accomplished in [3] for Gerstner’s wave
and subsequently in [13] by means of an elegant proof that inspired the subsequent
studies of more general flows like equatorially-trapped water waves [34] and internal
water waves [31]. Regarding Pollard’s wave and its generalisation, they both were
proven to be dynamically possible in [32]. It is the aim of this paper to complete the
study of the Pollard-like internal wave solution [24] by providing a mathematical
justification of the diffeomorphic character of the Lagrangian flow map describing
it.

The straight forward implementation of Lagrangian solutions make them suitable
for ocean simulation software and laboratory experiments. Studies like [26] has
shown its applicability to ocean phenomena, whereas the oceanographical relevance
of this solution is discussed in [2]. Consequently, there has been a significant
increase of studies dealing with explicit solutions [3, 13, 35]. This remarkable
solution was successfully extended to describe an extensive range of nonlinear
geophysical water waves, for instance: weakly three-dimensional equatorially-
trapped surface waves [6], internal waves [7, 8, 19], as well as edge waves
[4, 20, 27]. In addition, Gerstner-like solutions may incorporate underlying currents
[14, 23] providing a valuable insight into wave-current interactions (cf. [22] for the
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importance of the incorporation of underlying currents). Moreover, solutions to the
geophysical equations incorporating centripetal forces and with a more accurate
approximation of the gravitational force were derived in [15, 16]. The interested
reader is referred to [17] for an extensive review of Gerstner-like solutions. Finally,
although remarkable, these flows are not expected to be found in this form in the
ocean; however, perturbations of such exact and explicit solutions can approximate
real-life observations. In this sense, the hydrodynamical stability becomes a key
factor (see [21] for a complete discussion of this issue).

2 Exact Pollard-like Internal Water Waves

2.1 The Governing Equations

In this section we provide a brief description of the governing equations representing
nonlinear water waves followed by a section describing what it can be called
a Pollard-like internal water wave solution of those equations. The solution is
given for the f -plane equations characterizing internal water waves, which in this
particular study specifies the oscillation of a thermocline (an interface separating
two vertical ocean regions of constant density). In order to address the physical
complexity of the stratification of the ocean, three layers are distinguished; a
motionless abyssal deep-water region denoted by S(t) where the water density is
given by the constant ρ+ which is strictly greater than the density ρ0 in the regions
above it, a region denoted by M(t) within which the oscillations propagate and a
near-surface layer L(t) where the motion is mainly due to the action of winds and
where the oscillations of the thermocline can be seen as a small perturbation (see
Fig. 1). Therefore, the geophysical internal water waves describing the oscillation of
the thermocline propagate only in the layer M(t), with the amplitude decreasing as
we ascend towards the surface. The amplitude of the waves decreases exponentially;
moving upwards 1/10 of the wavelength, the amplitude of the wave is already 1/2
of the amplitude of the thermocline.

The internal water waves propagate zonally with a wavelength such that the
effects of the Earth’s rotation are significant. We take the Earth to be a perfect
sphere of a radius R = 6378 km, rotating with a constant rotational speed � =
7.29× 10−5 rad s−1. The flow is described by means of a rotating frame with the
origin at a point on Earth’s surface with the coordinates (x, y, z) representing
the directions of longitude, latitude and local vertical, respectively. The governing
equations for the internal geophysical ocean waves are given by the Euler equations
incorporating the Coriolis terms accounting for Earth’s rotation. Let (u, v,w) be
the velocity field, ρ0 the water density in the region M(t) where the internal waves
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near-surface layer L(t)

layer M(t)

still water layer S(t)

ρ0

ρ0

ρ+

free surface

z = η+(x, y, t)

z = η(x, y, t)
thermocline

z = d

Fig. 1 The layers of the fluid domain at a fixed latitude y. The thermocline is described by a
trochoid and separates a layer of less dense water overlaying a layer of more dense and colder
water. The amplitude of the internal water wave decays exponentially and at a height of 1/10 of the
wavelength above the thermocline the amplitude of these waves is less than 50% of its initial value
at the thermocline

propagate, g = 9.8 m s−2 the gravitational constant, and let P be the pressure. Then,
the f -plane approximation of the Euler equations is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + uux + vuy + wuz + f̂ w − f v = − 1

ρ0
Px ,

vt + uvx + vvy +wvz + fu = − 1

ρ0
Py ,

wt + uwx + vwy +wwz − f̂ u = − 1

ρ0
Pz − g .

(2.1a)

where, if φ denotes the latitude, f = 2� sinφ and f̂ = 2� cosφ are the
Coriolis parameters (see [10] for a detailed derivation of Eq. (2.1a)). In the f -plane
approximation, by considering the flow propagating in a relatively narrow ocean
strip in a small neighbourhood of fixed latitude, the Coriolis parameters can be
taken as constants. In particular, for latitude of 45◦ North, the Coriolis parameters
are f = f̂ ≈ 10−4 s−1 while along the equator f vanishes and f̂ = 2�. The Euler
equations (2.1a) are coupled with the equation of mass conservation

∇ · �u = 0 , (2.1b)

for an incompressible fluid such that

Dρ

Dt
= 0 , (2.1c)
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where D/Dt represents the material derivative. Finally, boundary conditions must
be introduced in order to obtain a valid model for the internal geophysical water
waves. This results in the dynamic boundary condition

P = P0 − ρ+gz on the thermoclinez = η(x, y, t) , (2.1d)

where P0 is taken to be constant, and the kinematic boundary condition

w = Dη

Dt
on the thermocline z = η(x, y, t). (2.1e)

This last condition prevents mixing particles between the layers separated by the
thermocline.

2.2 Internal Water Wave Solution

The new solution in terms of Lagrangian labelling variables [1] for the nonlinear
internal water waves, derived by Kluczek in [24], is given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = q − b e−ms sin[k(q − ct)] ,

y = r − d e−ms cos[k(q − ct)] ,

z = s − a e−ms cos[k(q − ct)] ,

(2.2)

representing a travelling wave with a wave speed c. The Lagrangian labelling
variables (q, r, s) belong to the set R × (−r0, r0) × (s0, s+). The parameter a
corresponds to the amplitude of the wave, the parameter m is the so-called modified
wavenumber and it is also a decay factor of the amplitude of the wave. The
parameters b, d,m, c have to be suitably chosen in terms of a, f , and wavenumber
k in order to provide a continuous pressure satisfying (2.1) and (2.2). In particular,
we set a > 0, k > 0 and we require m > 0 in order to describe internal waves with
amplitude decreasing with the height above the thermocline. The parameters b, d
together with the parameter a are responsible for the shape of the closed particle
trajectory.

The variables (q, r, s) do not represent initial positions but the centre of a circle
made by each particle with a maximum radius of 1/m. The paths of water particles
are indeed circles due the non-zero vorticity of the Pollard-like solution (see [24]
for a detailed derivation of the solution). Moreover, the orbits of the particles are
tilted with an angle of arctan(−d/a) with respect to the local vertical and such
that the inclination increases with the latitude (see Fig. 2). The meridional width is
restricted by r0 which expands about given latitude φ. In the flow domain the values
s0 and s+ represent the thermocline and the upper boundary of the layer M(t) for
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The Equator

The North Pole The South Pole

y y y y

Fig. 2 Inclination of the particles’ orbits as the latitude increases. At the Equator the orbit becomes
vertical, as the parameter d is equal to zero, and as a result there is no motion of the particle in the
meridional direction [24]

fixed latitude, respectively. We introduce only the relations between the mentioned
parameters which are relevant to the proofs contained in this paper. The detailed
analysis of solution (2.2) and the complete justification of these relations are given
in [24].

The relations significant to our study are

b2 = a2 + d2 , (2.3)

and

am = bk . (2.4)

The first relation follows from the boundary condition (2.1d). In order to satisfy the
mass conservation, the solution (2.2) must preserve the volume, which holds if and
only if the Jacobian determinant is independent of time. This is ensured by relation
(2.4). Moreover, this Pollard-like solution provides the following relation between
physical and Lagrangian labelling parameters

m2 = k4c2

k2c2 − f 2
,

and it follows that

m ≥ k , (2.5)

for the whole fluid domain. At the Equator m = k and the solution (2.2)
particularises to a Gerstner-like solution. Before proceeding to the main result
establishing that (2.2) describes a dynamically possible fluid motion, we introduce
a brief quantitative discussion.

Let us consider an internal water wave of a wavelength L = 100 m, which is
associated with a wavenumber k = 6.28× 10−2 m−1. For waves propagating on
latitude 45◦N, where the density difference is taken to be �ρ/ρ = 6× 10−3, the
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Fig. 3 Quantitative aspects of the internal water waves. (a) Sketch of a circular path of a water
particle. (b) Internal water wave describing the oscillation of the thermocline

wave phase speeds derived from the model are c ≈ −0.9671 m s−1 for the westward
propagating wave and c ≈ 0.9687 m s−1 for the eastward propagating wave. The
value of the parameter m for such waves is respectively m ≈ 1.0341 m−1 and
m ≈ 1.0323 m−1. The maximal amplitude of the internal water wave describing the
oscillation of the thermocline is 15.91 m, whereas the amplitude of wave presented
in Fig. 3 is approximately 8.4839 m, which is equivalent to the radius of the circular
path traced by a water particle. The Coriolis parameters on latitude 45◦N are f =
f̂ ≈ 1.0309× 10−4 rad s−1 and therefore the parameter d , which is responsible for
the deviation of the particle path from the local vertical, is approximately 0.027 s−1.
This accounts for an angle of the inclination of the circular particle path to the local
vertical around 0.0016 rad = 0.094◦. Therefore, in this particular model for the
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wave presented in Fig. 3 at the highest and lowest point, representing the crest and
trough of the wave, the distance of the particle from the local vertical plane is around
0.0139 m.

3 Main Results

Solutions given by a Lagrangian map like (2.2) not only need to satisfy the
governing equations (2.1) but they also need to describe a motion of the whole fluid
body, in this case the fluid region M(t), where the particles do not collide. A flow
satisfying such conditions is said to be dynamically possible. The mathematical
abstraction that encapsulates this idea is the requirement of the Lagrangian map
to be a global diffeomorphism where the smoothness of the fluid quantities is
preserved. In Theorem 3.2 we provide a proof of the diffeomorphic character of the
map (2.2) that extends regularly to the boundary, rigorously showing that such flow
is dynamically possible. Before addressing the main result, the problem is simplified
following the same philosophy as in [32]. Thus, let us consider the special case of
the solution (2.2) for t = 0 and express it as a mapping from the correspondent
labelling domain, i.e.

(q, r, s) ∈ D �−→ F(q, r, s) =
⎡
⎣ q − be−ms sin(kq)
r − de−ms cos(kq)
s − ae−ms cos(kq)

⎤
⎦ , (3.1)

where

D = {(q, r, s) : q ∈ R , r ∈ (−r0, r0) , s ∈ (s0, s+)} . (3.2)

Then, it is possible to recover the general case t ≥ 0 by the change of variables and
a shift in the x component

F(q − ct, s, r)+
⎡
⎣ ct

0
0

⎤
⎦ .

Moreover, the y and z component of (3.1) are periodic in q with period λ = 2π/k,
while the x component experiences a shift of λ. Therefore, if F is a global
diffeomorphism from the domain

Dλ = {(q, r, s) : q ∈ (0, λ) , r ∈ (−r0, r0) , s ∈ (s0, s+)}. (3.3)

into its image so it will be F from the whole domain (3.2) into the interior of M(t).
Finally, it will be also proven in Theorem 3.2 that the boundary of these domains
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are mapped into the boundary of the fluid region M(t). The following proposition
establishes a local result regarding the map (3.1).

Proposition 3.1 If

1− ame−ms0 > 0 , (3.4)

then the map F is a local diffeomorphism from Dλ into F(Dλ) ⊂M(t).

Proof The main idea behind this proof is to apply the Inverse Function Theorem.
Hence, we start by obtaining the Jacobian matrix of F

DF(q,r,s) =
⎛
⎝1− bke−ms cos(kq) 0 bme−ms sin(kq)

dke−ms sin(kq) 1 dme−ms cos(kq)
ake−ms sin(kq) 0 1+ ame−ms cos(kq)

⎞
⎠

and the corresponding Jacobian,

∣∣∣∣1− bke−ms cos(kq) bme−ms sin(kq)
ake−ms sin(kq) 1+ ame−ms cos(kq)

∣∣∣∣ =
= 1− abmke−2ms + (am− bk)e−ms cos(kq).

From (2.4), the determinant is reduced to,

1− a2m2e−2ms.

Therefore, from the hypothesis (3.4), the Jacobian does not vanish for all s ∈
(s0, s+). On the other hand, F has continuous partial derivatives in any neighbour-
hood contained in Dλ. Hence, F is a continuously differentiable map such that its
Jacobian is strictly positive, so F is a local diffeomorphism from Dλ into its range
by the Inverse Function Theorem. ��

In order to prove that F is a global diffeomorphism we will show that it is
globally bijective. Let us start by the injectivity.

Proposition 3.2 If

1− bme−ms0 > 0 , (3.5)

then F is globally injective on D.

Proof Let us consider F expressed in the following form

F(q, r, s) = (q, r, s)− G(q, r, s) ,
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where

G(q, r, s) = e−ms
(
b sin(kq), d cos(kq), a cos(kq)

)
.

We note now that G is a continuously differentiable map and that, for any convex
domain, it satisfies the following mean-value-theorem type of inequality

|G(q, r, s)− G(q̃, r̃, s̃)|2 ≤ max
τ∈[0,1]

‖DGτ(q,r,s)+(1−τ)(q̃ ,r̃,s̃)‖2 · |(q, r, s)− (q̃, r̃, s̃))|2
(3.6)

where DGτ (q,r,s)+(1−τ )(q̃,r̃,s̃) is the Jacobian matrix at any point of the segment
joining (q, r, s) and (q̃, r̃, s̃), | · |2 is the Euclidean norm in R

3, and ‖ · ‖2 is the
operator norm induced by the previous norm | · |2, i.e., the norm such that for any
arbitrary three-by-three matrix M is defined by

‖M‖2 = sup{|M(q, r, s)′|2 : (q, r, s) ∈ R
3 such that |(q, r, s)|2 = 1} .

For this particular case, the matrix norm ‖ · ‖2 is the same as the so-called spectral
matrix norm [18] and M(q, r, s)′ denotes a matrix of finite dimension. The spectral
norm of a matrix M is the square root of the largest eigenvalue of the positive-
semidefinite matrix M∗M , i.e.

‖M‖2 =
√
λmax(M∗M) ,

whereM∗ is the conjugate transpose of M . Let first obtain the Jacobian matrix of G,

DG(q,r,s) =
⎛
⎝ bke−ms cos(kq) 0 −bme−ms sin(kq)
−dke−ms sin(kq) 0 −dme−ms cos(kq)
−ake−ms sin(kq) 0 −ame−ms cos(kq)

⎞
⎠ .

Now, for this real matrix, DG∗(q,r,s)DG(q,r,s) is given by

e−2ms×⎛
⎜⎝
b2k2 cos2(kq)+ (a2 + d2)k2 sin2(kq) 0 (a2 + d2 − b2)km sin(kq) cos(kq)

0 0 0
(a2 + d2 − b2)km sin(kq) cos(kq) 0 b2m2 sin2(kq)+ (a2 + d2)m2 cos2(kq)

⎞
⎟⎠

= e−2ms

⎛
⎜⎝
b2k2 0 0

0 0 0
0 0 b2m2

⎞
⎟⎠ = b2e−2ms

⎛
⎜⎝
k2 0 0
0 0 0
0 0 m2

⎞
⎟⎠ ,
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where we take into account (2.3). Hence, {0, b2k2e−2ms, b2m2e−2ms} is the set of
eigenvalues of DG∗(q,r,s)DG(q,r,s). The maximum of this set is readily obtained from
the inequality (2.5). Consequently,

‖DG(q,r,s)‖2 =
√
b2m2e−2ms = bme−ms .

On the other hand,

max
τ∈[0,1] ‖DGτ (q,r,s)+(1−τ )(q̃,r̃,s̃)‖2 = bme−ms ,

where s is the s-component of the point on the line segment joining (q, r, s) and
(q̃, r̃, s̃) that maximises bme−ms . In particular, s ≥ s0. Now by (3.6),

|G(q, r, s)− G(q̃, r̃ , s̃)|2 ≤ bme−ms |(q, r, s)− (q̃, r̃, s̃))|2
≤ bme−ms0|(q, r, s)− (q̃, r̃, s̃))|2 .

Returning to the function F, the previous inequality yields

|F(q, r, s)−F(q̃, r̃, s̃)|2 = |(q, r, s)− (q̃, r̃, s̃)− G(q, r, s)+ G(q̃, r̃, s̃)|2
= |(q, r, s)− (q̃, r̃, s̃)− (G(q, r, s)− G(q̃, r̃, s̃))|2
≥ |(q, r, s)− (q̃, r̃, s̃)|2 − |G(q, r, s))− G(q̃, r̃ , s̃)|2
≥ |(q, r, s)− (q̃, r̃, s̃)|2 − bme−ms0 |(q, r, s)− (q̃, r̃, s̃)|2
= (1 − bme−ms0)|(q, r, s)− (q̃, r̃, s̃)|2 .

Therefore, when (3.5) holds, the following bound is obtained

|(q, r, s)− (q̃, r̃ , s̃)|2 ≤ 1

1− bme−ms0
|F(q, r, s)−F(q̃, r̃, s̃)|2 .

Finally, if two arbitrary points have the same image, then the norm of the difference
of those two points is zero, and therefore, the two points must be the same. Thus, F
is globally injective on D. ��

Now, F is shown to be a homeomorphism by means of the Invariance of Domain
Theorem 3.1, whose proof within Degree Theory can be found in [33] or in a more
elementary way in [25].

Theorem 3.1 (Invariance of Domain) If U ⊂ R
n is an open set and f : U → R

n

is a continuous one-to-one mapping, then f (U) is open.

In the previous theorem, the result is true for any open set and so the map is
open. Finally, as a consequence, we have that f : U → f (U) is a homeomorphism.
Taking into account this we proceed to the main result of this paper.
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Theorem 3.2 If 1 − bme−ms0 > 0 then the map F is a global diffeomorphism
from D into the interior of fluid region M(t) and F maps ∂D onto the boundary of
M(t).

Proof By Proposition 3.2, the function F is (globally) injective if

1− bme−ms0 > 0 . (3.7)

Furthermore, it is easy to check that F is continuous on D. Hence, by the invariance
of domain theorem, the map

F : D→ F(D)

is a homeomorphism. In particular, F(∂D) = ∂F(D) and F(D) = F(D). Now,
F(D) is precisely the fluid region M(t). Thus, F maps the labelling domain
surjectively into the fluid domain (see Fig. 4). Note here that it is possible to make
use of the almost periodicity of F and show explicitly that ∂F(Dλ) = F(∂Dλ)

where Dλ is as in (3.3). However, the Invariance of Domain theorem avoids the
tedious calculations. On the other hand, as b ≥ a, the condition (3.7) implies

1− ame−ms0 > 0 ,

which is precisely the condition in Proposition 3.1. It follows that F is a bijective
local diffeomorphism from the open set D into the open set F(D); therefore, F is a
global diffeomorphism. ��

Finally, in order to analyse the conditions imposed on the parameters, we obtain
the following necessary condition for the injectivity of F.

Lemma 3.1 If F is injective, then the inequality

bke−ms0 ≤ 1 , (3.8)

must hold.

λ

z = η

z = η+

Mλ(t)

Fig. 4 Depiction of the transformation from the restricted labelling domain Dλ = [0, 2π/k] ×
[−r0, r0] × [s0(r), s+(r)] to the correspondent fluid domain section of Mλ(t) = [0, 2π/k] ×
[−y0, y0] × [η, η+]
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Proof Let us focus on the first component of (3.1). We define the following function
of q alone

H(q) := q − be−ms sin(kq) ,

and we look for solutions of the nonlinear equation given by

H(q) = 0 . (3.9)

The proof of the Lemma is done by a contrapositive argument; therefore, let us
assume that (3.8) does not hold, i.e.

bke−ms0 > 1 . (3.10)

We have that H′(q) = 0 if and only if,

q = 1

k
arccos

( 1

bke−ms0

)
.

The arccos in the previous equation is well-defined as long as (3.10) holds, and
therefore, there exists a unique

q0 ∈
(

0,
π

2k

)
,

such that H′(q0) = 0. From the second derivative of the function H, it follows that

H′′(q0) = k
√
b2k2e−2ms − 1 ,

which is strictly positive by the same condition (3.10). Hence, there exists a unique
critical point q0 ∈ (0, π

2k )which is a minimum. Furthermore,H(0) = 0 and H′ < 0
in a neighbourhood of zero; thus, H takes negatives values to the right of zero.

Finally,

H(q) −→∞ as q →∞ . (3.11)

To sum up, we have shown that

H(0) = 0 ,

H(q0) < 0 , where q0 is a minimum for H(q) in
(

0,
π

2k

)
,

which together with (3.11) shows that there exists a strictly positive solution of (3.9).
If that solution is denoted by α, then it readily follows that −α is also a solution of
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Fig. 5 Sketch of the graph of
H. Here q0 is a local
minimum for H and
H(α) =H(−α) = 0

q0

α−α

(q)

q

(3.9). This is schematically shown in Fig. 5. Turning our attention to the function F,
we show that it is not injective, as the points

(q1, r1, s1) = (α, r, s) ,

(q2, r2, s2) = (−α, r, s) ,

are such that

F(q1, r1, s1) =
(
0, r − de−ms cos(kα), s − ae−ms cos(kα)

) =F(q2, r2, s2) .

Therefore if F is injective then bke−ms0 ≤ 1 . ��
Remark It is interesting to compare the different conditions imposed to F. It has
already been mentioned that b ≥ a, thus the sufficient condition for the injectivity
of F implies that F is an orientation-preserving local diffeomorphism. On the other
hand, from Lemma 3.1 it follows that if 1 − bke−ms0 < 0, then F is not injective;
however, from (2.4) F is a local diffeomorphism by the same type of argument used
in Proposition 3.1 (although now the change of variables induced by F would have
a strictly negative Jacobian and so it does not preserve the orientation).

In addition, along the equator we have that a = b and m = k. Therefore, in this
case, F is globally injective and a local diffeomorphism if and only if

1− ame−ms0 > 0 .
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The Unified Transform and the Water
Wave Problem

A. S. Fokas and K. Kalimeris

Abstract The unified transform, also known as the Fokas method, was introduced
in 1997 by one of the authors Fokas (Proc R Soc Lond A: Math Phys Eng Sci
453(1962):1411–1443, 1997 ) for the analysis of nonlinear initial-boundary value
problems. Later, it was realised that this method also yields novel results for linear
problems. In 2006, the classical water wave problem was studied via the Fokas
method (Ablowitz et al., J Fluid Mech 562:313–343, 2006), yielding a novel non-
local formulation. In this paper we review the unified transform, with particular
emphasis on its application in water wave in two spacial dimensions with moving
boundaries.

Keywords Unified transform · Non-local formulation · Water waves
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1 Introduction

1.1 The Unified Transform

After the solution of the initial value problem for integrable evolution PDEs in
one and two space dimensions, like the KdV and KP equations respectively, the
most important open problem associated with the analysis of nonlinear integrable
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equations became the solution of initial-boundary value problems. A novel approach
for the analysis of this problem was introduced by one of the authors in 1997
[19]. The linear limit of this approach gave rise to a new method for solving
linear evolution PDEs [16, 22, 48]. Later it was realized that this method yields
new integral representations for the solution of linear elliptic PDEs in polygonal
domains [21], which in the case of simple domains can be used to obtain the
analytical solution of several problems which apparently cannot be solved by the
standard methods [40, 50]. In this way, a completely new method in mathematical
physics emerged which is called unified transform or Fokas method [18, 20, 53]. An
important role in this method is played by the so-called global relation which is an
algebraic equation formulated in the complex Fourier plane, and which relates all
relevant boundary values.

Although the global relation is only one of the ingredients of the Fokas method,
still it has had important analytical and numerical implications: first, it has led
to novel analytical formulations of a variety of important physical problems from
water waves [15, 25, 46, 54] to three-dimensional layer scattering [45]. Second, it
has led to the development of new numerical techniques for the Laplace, modified
Helmholtz, Helmholtz, biharmonic equations [3, 7–9, 14, 28, 37–39], as well as for
elliptic PDEs with variable coefficients [6].

Finally, it should be emphasised that the Fokas method has a significant
pedagogical advantage: both the numerical calculation of the analytical solutions
obtained for linear evolution PDEs, as well as the implementation of the numerical
techniques to the elliptic PDEs are straightforward, so that even undergraduate
students can implement then using MATLAB.

1.2 Water Waves

The study of water waves has been at the forefront of applied mathematics and
engineering for over 200 years.This problem impacts a variety of important practical
problems including harbour design, shipping, and tsunami prediction [44]. The
problem formulated directly from the governing equations derived from physical
principles is prohibitively difficult, because it requires the solution of Laplace’s
equation in an unknown domain, which is itself determined by nonlinear boundary
conditions which depend on the solution. The reformulation of this problem in terms
of the global relation presented in [1] reduces the problem to the solution of a global
relation and a Bernoulli-like equation, vastly reducing its complexity. This result
has had a significant impact in this classical area. In particular, it has led to new
computations of surface water waves, and the discovery of new instabilities of waves
in shallow water [15]. In addition, the employment of the global relation has inspired
the incorporation of large amplitude effects in the reconstruction of the surface wave
profile using pressure data measured at the bottom [46], as well as the solution of
the inverse water wave problem, namely the determination of the bottom topography
from surface wave data [54]. Recently, the authors have extended the results of [1] to
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investigate tsunami generation, by considering the water-wave problem with moving
bottom [25].

2 The Global Relation

2.1 Integrable Problems

There exist two well known approaches to the exact analysis of linear PDEs: first,
separation of variables gives rise to ordinary differential operators; the spectral
analysis of these operators yields an appropriate transform pair. However, for non
self-adjoint problems such transforms generally do not exist. The prototypical such
pair is the Fourier transform; variations include the sine, the cosine, the Laplace
and the Mellin transforms. Second, the use of integral representations obtained via
Green’s functions.

In the second half of the twentieth century it was realised that certain nonlinear
evolution PDEs, called integrable, can be formulated as the compatibility condition
of two linear eigenvalue equations called a Lax pair, and that this formulation gives
rise to a method for solving the initial value problem for these equations, called the
inverse scattering transform method. One of the authors has emphasised that this
method is based on a deeper form of separation of variables [23]. Indeed, the spectral
analysis of the t-independent part of the Lax pair yields an appropriate nonlinear
Fourier transform pair, whereas the t-dependent part of the Lax pair yields the
time evolution of the nonlinear Fourier data. In this sense, in spite of the fact that
the inverse scattering transform is applicable to nonlinear PDEs, this method still
follows the logic of separation of variables.

The unified transform, is based on two novel ideas (steps): (1) Perform the
simultaneous spectral analysis of both equations defining the Lax pair of the
given PDE -or equivalently of a certain closed 1-differential form—(this is to be
contrasted with the case of initial value problems, where the spectral analysis of
only the t-independent part of the Lax pair is performed). (2) Analyse the global
relation which couples the given initial and boundary data with the unknown
boundary values. The unified transform goes beyond separation of variables. Indeed,
since it is based on the simultaneous spectral analysis of both parts of the Lax
pair, it corresponds to the synthesis as opposed to separation of variables. As a
consequence of this fundamental difference, even in the case of linear PDEs the
form of the solution obtained by the unified transform differs drastically from
the classical representations. It should be noted that the integral representations
obtained classically via Green’s functions, retain global features. Actually, it is
shown in [35] and [51] that in the case of linear PDEs an alternative way to
construct the novel integral representations obtained by the unified transform is
to use appropriate contour deformations and Cauchy’s theorem starting from the
integral representations obtained via Green’s functions (instead of performing
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the simultaneous spectral analysis of the associate Lax pair). In this sense, the
unified transform reveals a deep relationship between the seminal contributions
of Fourier, Cauchy and Green and furthermore extends these contributions to
integrable nonlinear PDEs. Indeed, it is shown in [34] that for linear PDEs this
method provides a unification as well as a significant extension of the classical
transforms, of the method of images, of the Green’s functions representations, and
of the Wiener–Hopf technique (the latter technique through a series of ingenious
steps gives rise to a Wiener–Hopf factorization problem, which is actually equiv-
alent to a Riemann–Hilbert problem; in the new method, such Riemann–Hilbert
problems can be immediately obtained using the global relation). Furthermore, the
new approach provides an appropriate “nonlinearisation” of some of the above
concepts.

It is well known that the main difficulty with boundary value problems stems
from the fact that, although the solution representation requires the knowledge of
all boundary values, some of them are not prescribed as boundary conditions. In
the theory of elliptic PDEs, the determination of the unknown boundary values
is known as the problem of characterising the generalised Dirichlet to Neumann
map. For certain simple domains, the unified transform yields analytical expressions
for the unknown boundary values [2, 4, 5, 10–13, 21, 26, 27, 32, 33]. For more
complicated domains, it is remarkable that the unified transform yields a novel
numerical technique for the determination of the unknown boundary values. For
elliptic PDEs formulated in the interior of a polygon, this technique provides the
analogue of the so-called “boundary integral method”, but now the analysis takes
place in the Fourier instead of the physical plane.

The problem of characterising the Dirichlet to Neumann map also appears in
the analysis of initial boundary value problems for evolution equations formulated
in either a fixed or a moving boundary. In the former case, using the unified
transform it is possible to eliminate directly the unknown boundary values (or more
precisely appropriate transforms of the unknown boundary values), and hence the
problem of determining the generalised Dirichlet to Neumann map is bypassed
[22, 29–31, 41, 47, 49, 52]. This is also possible for particular types of boundary
conditions for integrable nonlinear PDEs; these boundary conditions are called
linearisable. For general boundary conditions, the Dirichlet to Neumann map for
integrable requires the analysis of certain nonlinear integral equations. Recently,
significant progress has been made in the large t analysis of these equations
[36, 42, 43].

2.2 The Laplace Equation

Let φ satisfy the Laplace equation, namely

φxx + φyy = 0. (2.1)
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Let

z = x + iy, z̄ = x − iy.

Using the equations

∂

∂z
= 1

2

( ∂
∂x
− i

∂

∂y

)
,

∂

∂z̄
= 1

2

( ∂
∂x
+ i

∂

∂y

)
, (2.2)

the Laplace equation (2.1) can be rewritten in the form

φzz̄ = 0. (2.3)

This equation immediately implies

(
e−iλzφz

)
z̄
= 0, λ ∈ C, (2.4)

which states that the function e−iλzφz, is an analytic function. Hence, Cauchy’s
theorem yields the global relation

∫
∂�

e−iλzφzdz = 0, λ ∈ C. (2.5)

Let � be the interior of the polygonal domain specified by the complex numbers z1,
z2, . . . ,zn, zn+1 = z1 (Fig. 1).

Let Lj denote the side (zj , zj+1).
Let φT and φN denote the values of the directional and normal derivatives on

each side of the polygon. Using the first of Eq. (2.2) and the identities

φxdx + φydy = φT ds (2.6)

Fig. 1 Part of a polygonal
domain
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and

φxdy − φydx = φNds (2.7)

we can rewrite φzdz in a from involving only φT and φN :

φzdz = 1

2
(φx − iφy)(dx + idy) = 1

2
(φxdx + φydy)+ 1

2
(φxdy − φydx)

= 1

2
φT ds + i

2
φNds.

Hence, the global relation (2.5) becomes

n∑
j=1

N̂j − i

n∑
j=1

D̂j = 0, λ ∈ C, (2.8)

where {N̂j }n1 denote the transforms of the Neumann boundary values and {D̂j }n1
denote the transforms of the Dirichlet boundary values:

N̂j =
∫ zj+1

zj

e−iλzφNj ds, j = 1, 2, . . . , n, λ ∈ C (2.9)

and

D̂j =
∫ zj+1

zj

e−iλzφTj ds, j = 1, 2, . . . , n, λ ∈ C. (2.10)

Thus, the global relation involves n unknown functions, since for a well posed
problem only one boundary condition is given on each side. This situation
appears ominous, however in Eq. (2.8) the complex constant λ is arbitrary,
thus Eq. (2.8) provides a family of equations. Using the symmetries of the
global relation, analytical representations of the solutions are provided for
simple domains such as the equilateral and the right isosceles triangle, see
[40, 50].

Equation (2.4) which is a family of divergence forms, provides the linear
analogue of the Lax pair appearing in the analysis of integrable equations.

It was shown in [17] that for a given elliptic PDE they exist several different
global relations. For example, for the Laplace equation it also exists a global relation
which involves the values of φ and φN on the boundary, instead of φT and φN .
Thus, for a Dirichlet problem, where φ is given, the latter global relation is more
convenient than (2.5).
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3 Water Waves with Moving Boundaries

In this section we derive the equations for the free surface problem for two-
dimensional irrotational flows in a domain where the rest of the boundaries are solid
but moving.

Let �(t) denote this domain with moving boundaries, depicted in Fig. 2 and S

denote the free surface.
Denoting the velocity of the flow by (u, v) the Euler equations for inviscid flow

of an incompressible fluid are written as follows:

ux + vy = 0,

ut + uux + vuy = −Px, (3.1)

vt + uvx + vvy = −Py − g, in �(t),

where P is the pressure and g is the gravitational constant.
Since the flow is irrotational the following equation is valid

vx − uy = 0, in �(t). (3.2)

Furthermore, we have the following boundary conditions on the free surface

P = Patm on S,

v = ηt + uηx on S.
(3.3)

The first of Eq. (3.3) is the dynamic boundary condition which states that the motion
of the air is decoupled from the motion of the water. The second of Eq. (3.3) is

y

x

−h1(t)

h2(t)

0

L(t)

L2(t)L1(t)

η(x, t)

Fig. 2 Two dimensional water waves with piecewise horizontal moving bottom
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the kinematic boundary condition which expresses the fact that the same particles
always form the free water surface.

3.1 Mathematical Formulation of the Problem

Let φ denote the velocity potential, (u, v) = ∇φ.
The first of the Euler equations implies that the function φ(x, y, t) satisfies

Laplace’s equation in the domain �(t) (depicted by the grey area in Fig. 2) for
t > 0, i.e.,

φxx + φyy = 0, (x, y) ∈ �(t), t > 0. (3.4)

Furthermore let the left vertical be fixed, whereas all the other parts of the boundary
are solid but moving. Then we obtain the following boundary conditions.

• On the vertical boundaries:

φx(0, y, t) = 0, −h2(t) < y < η(0, t), t > 0, (3.5)

φx(L1(t), y, t) = l1(y, t), −h2(t) < y < −h1(t), t > 0, (3.6)

φx(L2(t), y, t) = r1(y, t), −h2(t) < y < −h1(t), t > 0, (3.7)

φx(L(t), y, t) = r(y, t), −h2(t) < y < η(L(t), t), t > 0. (3.8)

• On the piecewise horizontal bottom:

φy(x,−h2(t), t) = b1(x, t), 0 < x < L1(t), t > 0, (3.9)

φy(x,−h1(t), t) = b(x, t), L1(t) < x < L2(t), t > 0, (3.10)

φy(x,−h2(t), t) = b2(x, t), L2(t) < x < L(t), t > 0. (3.11)

• On the free boundary the second of the boundary conditions (3.3) takes the form:

ηt + ηxφx = φy, on y = η(x, t). (3.12)

Equations (3.4)–(3.12) define a Neumann boundary value problem for the
Laplace equation, involving the unknown boundary η(x, t). The latter function
can be determined, in principle, by supplementing the above equations with the
additional condition

φt + 1

2
(φ2

x + φ2
y)+ gη = 0, on y = η(x, t). (3.13)
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This is the well-known Bernoulli’s law, which is a consequence of the Euler
equations. Indeed, condition (3.13) is derived by integrating the last equations of
(3.1) and using Eq. (3.2); then we evaluate the resulting equation at the surface S
and make usage of the first of the conditions (3.3).

We denote by q(x, t) the value of φ(x, y, t), on the free surface, i.e.,

q(x, t) = φ(x, η(x, t), t). (3.14)

Our aim is to find the equations satisfied by η(x, t) and q(x, t). In this respect,
differentiating (3.14) with respect to x, we obtain

qx = φx + φyηx, on y = η(x, t).

This equation together with Eq. (3.12) can be used to express the values of φx and
φy at y = η, in terms of the following derivatives of q and η:

φx = qx − ηxηt

1+ η2
x

, φy = ηt + ηxqx

1+ η2
x

, on y = η(x, t). (3.15)

Differentiating (3.14) with respect to t , we obtain

qt = φt + φyηt , on y = η(x, t).

Using in this equation the second of Eq. (3.15), we can express φt in terms of
derivatives of q and η:

φt = qt − ηt + ηxqx

1+ η2
x

ηt , on y = η(x, t).

Using the above expression together with Eq. (3.15) in condition (3.13), we obtain
the first equation coupling q and η:

qt + gη + 1

2
q2
x −

1

2

(ηt + ηxqx)
2

1+ η2
x

= 0. (3.16)

3.2 The Non-local Formulation

In order to obtain a second equation relating q and η, we introduce the complex
variable z = x + iy. Then, following the analysis of Sect. 2.2 this equation comes
as a result of the so-called global relation of the Laplace equation (2.3). Indeed, the
global relation (2.5) provides a non-local formulation of the problem. In order to
derive this formulation, we parametrise the boundary of the domain �(t).
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On the free surface

z = x + iη(x, t).

Hence, using dz = (1+ iηx)dx, and replacing φx , φy by Eq. (3.15), we find that the
relevant contribution is given by the expression

∫ L(t)

0
e
iλ
(
x+iη(x,t)

) [
qx − ηxηt

1+ η2
x

− i
ηt + ηxqx

1+ η2
x

]
(1+ iηx)dx.

This equation remarkably simplifies to the expression

∫ L(t)

0
eiλx−λη (qx − iηt ) dx. (3.17)

Using the boundary conditions (3.5)–(3.11) in Eq. (2.8), it is possible to compute
the contribution of the remaining solid but moving boundary.

Thus, the global relation (2.5) takes the following form, see [25]

∫ L(t)

0
eiλx−λη(qx − iηt )dx − eλh1(t)

∫ L2(t)

L1(t)
eiλxφx(x,−h1(t), t)dx

− eλh2(t)
∫ L(t)

L2(t)
eiλxφx(x,−h2(t), t)dx − eλh2(t)

∫ L1(t)

0
eiλxφx(x,−h2(t), t)dx (3.18)

+ eiλL2(t)
∫ −h1(t)

−h2(t)
e−λyφy(L2(t), y, t)dy − eiλL1(t)

∫ −h1(t)

−h2(t)
e−λyφy(L1(t), y, t)dy

+
∫ η(0,t)

−h2(t)
e−λyφy(0, y, t)dy − eiλL(t)

∫ η(L(t),t)

−h2(t)
e−λyφy(L(t), y, t)dy = iF (λ, t), λ ∈ C,

where the known function F(λ, t) is given by

F(λ, t) = eiλL(t)
∫ η(L(t),t)

−h2(t)

e−λyr(y, t)dy − eλh1(t)

∫ L2(t)

L1(t)

eiλxb(x, t)dx

− eλh2(t)

∫ L1(t)

0
eiλxb1(x, t)dx − eλh2(t)

∫ L(t)

L2(t)

eiλxb2(x, t)dx (3.19)

+ eiλL1(t)

∫ −h1(t)

−h2(t)

e−λyl1(y, t)dy − eiλL2(t)

∫ −h1(t)

−h2(t)

e−λyr1(y, t)dy.
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4 Water Waves with Moving Flat Bottom

In the case of a horizontal bottom, see Fig. 3, the global relation (3.18) simplifies.
The non-local formulation is now obtained as a special case of the formulation
(3.18)–(3.19), by making the substitutions

L1(t) ≡ 0, L2(t) ≡ L(t), h2(t) ≡ h1(t) =: h(t).

Thus, the boundary conditions (3.5)–(3.11) take the form

φx(0, y, t) = 0, −h(t) < y < η(0, t), t > 0, (4.1)

φx(L(t), y, t) = r(y, t), −h(t) < y < η(L(t), t), t > 0, (4.2)

φy(x,−h(t), t) = b(x, t), 0 < x < L(t), t > 0. (4.3)

Indeed, referring to [25] for details, the global relation (3.18) becomes

∫ L(t)

0
eiλx−λη(qx − iηt )dx − eλh(t)

∫ L(t)

0
eiλxφx(x,−h(t), t)dx +

∫ η(0,t)

−h(t)
e−λyφy(0, y, t)dy

− eiλL(t)
∫ η(L(t),t)

−h(t)
e−λyφy(L(t), y, t)dy = iG(λ, t), λ ∈ C, (4.4)

where the known function G(λ, t) is given by

G(λ, t) = eiλL(t)
∫ η(L(t),t)

−h(t)
e−λyr(y, t)dy − eλh(t)

∫ L(t)

0
eiλxb(x, t)dx. (4.5)

It turns out that in the case of a horizontal bottom we can eliminate the unknown
boundary values of the global relation (4.4), so that we can obtain a single equation
coupling q and η, see Eq. (4.6) below.

Fig. 3 Two dimensional
water waves with a horizontal
(moving) bottom

y

x

h(t)

0
L(t)

η(x, t)
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Indeed, it is shown in [25] that by using the invariances of the arbitrary parameter
λ we obtain the following:

∫ L(t)

0

{
qx sin(λx) sinh

[
λ(η + h(t))

]

+ ηt cos(λx) cosh
[
λ(η + h(t))

]}
dx = S(λ, t), λ = nπ

L(t)
, (4.6)

where S(λ, t) is defined by

S(λ, t) =− cos(λL(t))
∫ η(L(t),t)

−h(t)
cosh

[
λ(y + h(t))

]
r(y, t)dy

+
∫ L(t)

0
cos(λx)b(x, t)dx, λ ∈ C, t > 0. (4.7)

4.1 Non-dimensional Variables

In order to study two interesting limits of Eqs. (3.16) and (3.18) we replace all
variables with primed variables, and then we introduce dimensionless variables:

x ′ = L0x, y ′ = h0y, η′ = αη, λ′ = λ

L0
, t ′ = L0

c0
t, q ′ = εc0L0q, (4.8)

where α is a typical wave amplitude, and

ε = α

h0
, δ = h0

L0
, c2

0 = gh0. (4.9)

Moreover, consistent asymptotics yield the following scaling

r ′(y ′, t ′) = αc0

δL0
r(y, t), b′(x ′, t ′) = αc0

L0
b(x, t). (4.10)

Using the above dimensionless variables, Eq. (3.16) becomes,

qt + η + 1

2
εq2

x −
1

2
εδ2 (ηt + εηxqx)

2

1+ ε2δ2η2
x

= 0. (4.11)
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Equation (4.6) becomes

∫ L(t)
L0

0

{
qx sin(λx)

1

δ
sinh

[
λδ

(
h(t)

h0
+ εη

)]
+ ηt cos(λx) cosh

[
λδ

(
h(t)

h0
+ εη

)]}
dx

=
∫ L(t)

L0

0
cos(λx)b(x, t)dx − (−1)n

∫ εη
(
L(t)
L0

,t
)

− h(t)
h0

cosh

[
λδ

(
y + h(t)

h0

)]
r(y, t)dy,

λ = nπL0

L(t)
.

(4.12)

4.2 Boussinesq Type Equations

We note that small ε is indicative of small amplitude and small δ is indicative of
long waves.

Next we fix the vertical boundary, namely

L(t) = L0, and r(y, t) = 0.

In what follows we present two Boussinesq type equations: The first, which
has a non-local form, is given in (4.13) and corresponds to the “small amplitude”
approximation. The second one, which corresponds to the “small amplitude and
long wave” approximation, is given in (4.17).

Letting ε → 0 in Eq. (4.12) and neglecting terms of O
(
ε2

)
, we find a

generalization of the Boussinesq equations, for a moving seafloor boundary, and,
importantly, without the common “long wave” approximation:

ηt + ε (ηqx)x +
∞∑
n=0

cos(λx)

{
tanh

(
λδ

h

h0

)∫ 1

0

[
qξ

sin(λξ)

δ
+ εδληηt cos(λξ)

]
dξ

}

=
∞∑
n=0

cos(λx)

cosh(λδ h
h0
)

∫ 1

0
b(ξ, t) cos(λξ)dξ, for λ = nπ, (4.13)

equipped with the boundary conditions

qx(0, t) = qx(1, t) = 0. (4.14)

Furthermore, Eq. (4.11) becomes

qt + η + 1

2
εq2

x −
1

2
εδ2η2

t = 0. (4.15)
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Under the additional assumption that δ is small, so that terms of O(εδ2) can be
neglected, Eq. (4.11) becomes

qt + η + ε

2
q2
x = 0, (4.16)

and Eq. (4.12) yield the following well posed boundary value problem for the newly
derived Boussinesq-type equation:

ηt + h(t)

h0
qxx + ε(ηqx)x − δ2

2

(
h(t)

h0

)2

ηtxx − δ2

6

(
h(t)

h0

)3

qxxxx = − ḣ(t)
h0

,

(4.17)

along with the boundary conditions

qx(0, t) = 0, qx (1, t) = 0, (4.18)

qxxx(0, t) = 0, qxxx (1, t) = 0. (4.19)

The derivation of the above system of equations yields the conditions

ηtx(0, t) = ηtx (1, t) = 0.

4.3 Numerical Considerations

Considering small-amplitude water waves over a flat moving bottom, the employ-
ment of the scaling (4.8)–(4.10) in the global relation (4.4) yields the following
equation, see [25]:

∫ L(t)
L0

0
eiλx

[
qx − iδηt − iεδ(ηqx)x − εδ2(ηηt )x

]
dx − e

λδ
h(t)
h0

∫ L(t)
L0

0
eiλxqb (x, t) dx

+ δ2
∫ 0

− h(t)
h0

e−δλyql (y, t)dy − δ2e
iλ

L(t)
L0

∫ 0

− h(t)
h0

e−δλyqr (y, t) dy (4.20)

= iδ

[
−eλδ h(t)h0

∫ L(t)
L0

0
eiλxb(x, t)dx + e

iλ
L(t)
L0

∫ 0

− h(t)
h0

e−δλyr(y, t)dy
]
,

where we have neglected terms of O
(
ε2

)
.
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This equation is similar with the equation obtained for the analysis of the Laplace
equation formulated in the interior of a rectangle with corners at

{
0,

L(t)

L0
,
L(t)

L0
− i

h(t)

h0
, −i h(t)

h0

}
,

but with two important differences: First, the boundary values on the side
(

0, L(t)
L0

)
are quadratically nonlinear, and second all boundary values depend on t . This
implies that Eq. (4.20) can be integrated numerically via the method presented in
[39], with the following modifications:

1. qx(x, t), η(x, t), qb (x, t) , ql (y, t) , and qr(y, t) should be expanded in terms
of Chebysev instead of Legendre polynomials, since Chebysev polynomials have
the important property that

Tn(x)Tm(x) = 1

2
Tn−m(x)+ 1

2
Tn+m(x).

2. The coefficients of the expansions are now functions of time.

Similar considerations are valid also for the case of the general case of piecewise
horizontal moving bottom.

4.4 Water Waves with Fixed Boundaries

If we fix the flat bottom then the two Boussinesq-type equations (4.13) and (4.17)
take the form

ηt + ε (ηqx)x (4.21)

+
∞∑
n=0

cos(λx)

{
tanh (λδ)

∫ 1

0

[
qξ

sin(λξ)

δ
+ εδληηt cos(λξ)

]
dξ

}
= 0, λ = nπ.

and

ηt + qxx + ε(ηqx)x − δ2

2
ηtxx − δ2

6
qxxxx = 0, (4.22)

respectively.
We emphasise that the former equation corresponds to the “small amplitude”

approximation, where the terms of O
(
ε2

)
are neglected, and the latter one corre-

sponds to the “small amplitude and long wave” approximation, where the terms of
O

(
εδ2

)
are neglected, too.
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For a more detailed discussion of the limiting cases of the non-local formulation
for water with fixed boundaries, in two and three spatial dimensions we refer to [24].
A hybrid of the novel formulation and an approach based on conformal mappings
is presented in [28], where water waves with non-flat but fixed bottom are studied.
We note that therein a Boussinesq-type equation is derived for the case of non-flat
bottom, in the regime of “small amplitude and long wave”; the specific form of this
equation for the flat bottom coincides with (4.22).
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HOS Simulations of Nonlinear Water
Waves in Complex Media

Philippe Guyenne

Abstract We present an overview of recent extensions of the high-order spectral
method of Craig and Sulem (J Comput Phys 108:73–83, 1993) to simulating
nonlinear water waves in a complex environment. Under consideration are cases
of wave propagation in the presence of fragmented sea ice, variable bathymetry
and a vertically sheared current. Key components of this method, which apply
to all three cases, include reduction of the full problem to a lower-dimensional
system involving boundary variables alone, and a Taylor series representation of the
Dirichlet–Neumann operator. This results in a very efficient and accurate numerical
solver by using the fast Fourier transform. Two-dimensional simulations of unsteady
wave phenomena are shown to illustrate the performance and versatility of this
approach.

Keywords Bathymetry · Dirichlet–Neumann operator · Sea ice · Series
expansion · Spectral method · Vorticity · Water waves

Mathematics Subject Classification (2000) Primary 76B15; Secondary 65M70

1 Introduction

The potential-flow formulation of Euler’s equations for water waves has been
very popular among both the mathematical and engineering communities, as it
has proved to be successful at describing a wide range of wave phenomena. Via
application of nonlocal operators, this formulation allows the original Laplace
problem to be reduced from one posed inside the fluid domain to one posed
on the boundary alone, thus allowing for dimensionality reduction. Moreover, in
the absence of dissipative effects, the governing equations can be recast as a
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canonical Hamiltonian system in terms of two conjugate variables, namely the
surface elevation and the velocity potential evaluated there [40]. Due to these
nice features, the potential-flow formulation has served as the theoretical basis in
a countless number of water-wave studies, ranging from rigorous mathematical
analysis to direct numerical simulation and weakly nonlinear modeling in various
asymptotic regimes.

One of the most popular choices for direct numerical simulation is the so-called
high-order spectral (HOS) approach, which is based on a Taylor series expansion
of the Dirichlet–Neumann operator (DNO) combined with a pseudospectral scheme
for space discretization using the fast Fourier transform. This is a very efficient and
accurate numerical method when it is applicable. Compared to boundary integral
methods [17, 19], it provides a faster recursive procedure for solving Laplace’s
equation in an irregular domain that is a perturbation to a simple geometry. Its
computer implementation is also relatively easy and insensitive to the spatial
dimension of the problem. From a general perspective, the basic idea underlying
this approach is not marginal at all and, to some extent, shares similarities with other
“fast” algorithms that are nowadays popular in scientific computing. For example,
the fast multipole method [16] and more recently the method of quadrature by
expansion [1] or the fast Chebyshev–Legendre transform [26] all rely on some
sort of approximate series expansion in order to speed up computations. For the
interested reader, details on boundary integral methods and other techniques can be
found in other papers of this special volume.

The HOS approach was first introduced by Dommermuth and Yue [13] and West
et al. [38] to simulate nonlinear gravity waves on uniform depth. Since then, it
has been extended and applied to wave phenomena in various settings by many
other investigators [14, 15, 28]. Slightly later than [13, 38], Craig and Sulem [6]
proposed a related numerical method that has also been used with success in a
number of subsequent applications [7, 8, 10, 30]. In particular, results were validated
via comparison with laboratory experiments, weakly nonlinear predictions or other
numerical solvers [9, 21–23, 39]. While these two HOS approaches are similar in
their derivation, implementation and performance, there is a fundamental difference
in their definition of the DNO. Dommermuth and Yue [13] and West et al. [38]
define their DNO in terms of the vertical fluid velocity at the free surface, while
Craig and Sulem [6] define their DNO in terms of the normal fluid velocity. These
are two different quantities for a nontrivial free surface. In the latter definition, the
DNO can be shown to be analytic with respect to surface deformations, which gives
a justification for its Taylor series representation and thus a rigorous mathematical
foundation for the corresponding HOS method [3]. Another important property
of the DNO in that definition is its self-adjointness, which results in efficient and
relatively simple recursion formulas for its computation [5, 30].

In an effort to improve the convergence of the DNO series, Nicholls and Reitich
[32, 33] developed variants of Craig and Sulem’s approach, which they refer to
as Field Expansion and Transformed Field Expansion algorithms. These however
require a hodograph transformation to map the irregular physical domain to a
regular computational domain, together with a full-dimensional solution, because
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the elliptic problem becomes inhomogeneous. So far, they have only been used to
compute traveling waves (i.e. steady waves in a moving reference frame) and to
investigate the spectral stability of these solutions. A review on this body of work
can be found in [31].

In this paper, we present an overview of recent work by the author and
collaborators, that extends Craig and Sulem’s approach to wave propagation in a
complex environment. Most of these results have been obtained in the past decade
or so, with a focus on unsteady solutions in the time domain. More specifically, we
present direct numerical simulations of nonlinear dispersive waves in the presence
of (i) fragmented sea ice [24], (ii) bottom topography [21] and (iii) a background
shear current [18]. All three problems go beyond the classical setting of wave
propagation in a homogeneous medium, and are of practical relevance to the fields
of oceanography and coastal engineering. In particular, problem (i) has experienced
renewed interest due to the rapid decline of summer ice extent that has occurred
in the Arctic Ocean over recent years. Problem (iii) has also drawn much attention
lately, especially from the mathematical community [4, 37], because it represents a
refinement of the standard potential-flow formulation, allowing for rotational water
waves. Therefore, we now find it timely to write a review paper on these recent
advances, even more so considering that we are not aware of any previous review
specifically on the HOS technique proposed by Craig and Sulem [6].

In all three cases, the numerical algorithm is based on the same original principle,
and thus inherits the same qualities of accuracy and efficiency. In case (i), a mixed
continuum-piecewise representation of flexural rigidity is adopted to specify an
irregular array of ice floes on water. The main objective here is to emulate wave
attenuation by scattering through an inhomogeneous ice field, as it may occur in
the oceanic marginal ice zone. In contrast to linear predictions [36], slow or fast
wave decay is observed depending on wave and ice parameters. In case (ii), the
DNO exhibits an additional component that can be expanded in terms of bottom
deformations. The inherent smoothing character of the DNO with respect to water
depth is clearly revealed in this series expansion through the recurring presence of
a smoothing Fourier multiplier. As a result, both smooth and non-smooth bottom
profiles can be accommodated by this HOS method. In case (iii), wave propagation
in the presence of constant nonzero vorticity is considered. This type of vorticity
corresponds to a background shear current with a linear profile in the vertical
direction. In addition to the DNO, another nonlocal operator (the Hilbert transform)
is required in order to define a stream function at the free surface. A Taylor series
expansion is also introduced for the fast computation of this operator. For an adverse
current in deep water, it is confirmed that the Benjamin–Feir instability of Stokes
waves may be significantly enhanced and may lead to the formation of large rogue
waves [15].

The remainder of this paper is organized as follows. Sections 2 and 3 recall
the basic governing equations in the potential-flow formulation for nonlinear water
waves on uniform depth, as well as the corresponding Hamiltonian reduction and
numerical discretization. While our HOS approach is extensible to three dimensions
[5, 11, 25, 30, 39], we focus here on the two-dimensional case. Section 4 presents
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numerical results for wave propagation in the three different settings mentioned
above (fragmented sea ice, variable bottom and shear current), with each setting
discussed separately. In each case, we highlight the main points in the extension of
the classical formulation.

2 Mathematical Formulation

2.1 Governing Equations

We consider the motion of a free surface on top of a two-dimensional ideal fluid
of uniform depth h. In Cartesian coordinates, the x-axis is the direction of wave
propagation and the y-axis points upward. The free surface is assumed to be the
graph of a function y = η(x, t). For potential flow, the velocity field is given by
u = (u, v)� = ∇ϕ where ϕ(x, y, t) denotes the velocity potential. In terms of these
variables, the initial boundary value problem for irrotational water waves associated
with the fluid domain

S(η) = {x ∈ R,−h < y < η(x, t)} ,

can be stated as

�ϕ = 0 , in S(η) , (2.1)

ηt − ϕy + ϕxηx = 0 , at y = η(x, t) , (2.2)

ϕt + 1

2

(
ϕ2
x + ϕ2

y

)+ gη + P = 0 , at y = η(x, t) , (2.3)

ϕy = 0 , at y = −h , (2.4)

where g is the acceleration due to gravity and P represents normal stresses acting
on the free surface (here P = 0 except for the sea-ice case where it is meant to
model the bending force exerted by the floating ice sheet). Note that subscripts are
used as shorthand notation for partial or variational derivatives (i.e. ϕt = ∂tϕ).

Following [6, 40], the dimensionality of the Laplace problem (2.1)–(2.4) can
be reduced by introducing the trace of the velocity potential on the free surface,
ξ(x, t) = ϕ(x, η(x, t), t) together with the Dirichlet–Neumann operator (DNO)

G(η) : ξ �−→ (−ηx, 1)� · ∇ϕ∣∣
y=η ,

which is the singular integral operator that takes Dirichlet data ξ at y = η(x, t),
solves Laplace’s equation (2.1) subject to (2.4), and returns the corresponding
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Neumann data (i.e. the normal velocity at the free surface). If P = 0, the resulting
equations can be expressed as a canonical Hamiltonian system

(
ηt

ξt

)
=

(
0 1
−1 0

)(
Hη

Hξ

)
,

for the conjugate variables η and ξ , whose Hamiltonian

H = 1

2

∫ ∞
−∞

[
ξG(η)ξ + gη2

]
dx ,

corresponds to the total energy that is conserved over time. These equations more
explicitly read

ηt = G(η)ξ , (2.5)

ξt = −gη − 1

2(1+ η2
x)

[
ξ2
x − (G(η)ξ)2 − 2ξxηxG(η)ξ

]
. (2.6)

2.2 Dirichlet–Neumann Operator

Equations (2.5) and (2.6) form a closed system for the two unknowns η and ξ . The
question now is how to determine G(η)ξ given η and ξ at any time, so that the
right-hand sides of (2.5) and (2.6) can be evaluated. In two dimensions, it is known
that G is an analytic function of η if η ∈ Lip(R) [3]. Consequently, for surface
perturbations around the quiescent state η = 0, the DNO can be written in terms of
a convergent Taylor series expansion

G(η) =
∞∑
j=0

Gj(η) , (2.7)

where the Taylor polynomials Gj are homogeneous of degree j in η and, as shown
in [5, 6], they can be determined recursively: for even j > 0,

Gj = G0D
j−1 η

j

j !D −
j∑

�=2, even

D� η
�

�!Gj−� −
j−1∑

�=1, odd

G0D
�−1 η

�

�!Gj−� , (2.8)

and, for odd j ,

Gj = Dj η
j

j !D −
j−1∑

�=2, even

D� η
�

�!Gj−� −
j∑

�=1, odd

G0D
�−1 η

�

�!Gj−� , (2.9)
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where D = −i∂x and G0 = D tanh(hD) are Fourier multiplier operators. In the
infinite-depth limit (h→ +∞),G0 reduces to |D| but otherwise Eqs. (2.8) and (2.9)
remain unchanged. Using (2.7) together with (2.8) and (2.9) requires that η be a
smooth single-valued function of x and thus overturning waves with a multivalued
profile are not permitted. These formulas provide an efficient and accurate Laplace
solver that lies at the heart of our HOS scheme as outlined below.

3 Numerical Methods

3.1 Space Discretization

Assuming periodic boundary conditions in the periodic cell x ∈ [0, Lm), we use a
pseudo-spectral method based on the fast Fourier transform (FFT). This is a suitable
choice for computing the DNO since each term in (2.7) consists of concatenations
of Fourier multipliers with powers of η. Accordingly, both functions η and ξ are
expanded in truncated Fourier series

(
η

ξ

)
=

km∑
k=−km

(
η̂k

ξ̂k

)
eikx .

The spatial derivatives and Fourier multipliers are evaluated in the Fourier space,
while the nonlinear products are calculated in the physical space on a regular grid of
N collocation points. For example, if we wish to apply the zeroth-order operatorG0
to a function ξ in the physical space, we first transform ξ to the Fourier space, apply
the diagonal operator k tanh(hk) to the Fourier coefficients ξ̂k and then transform
back to the physical space.

In practice, the DNO series (2.7) is also truncated to a finite number of terms
M but, by analyticity, a small number of terms (typically M < 10 
 N) is
sufficient to achieve highly accurate results [30, 32, 39]. Note that formulas (2.8)
and (2.9) are slightly different from those originally given in [6] regarding the order
of application of the various operators. As pointed out in [5], the DNO is self-adjoint
and therefore the adjoint formulas (2.8) and (2.9) are equivalent to the original ones.
This property however has important consequences on the DNO implementation
and on the computational efficiency of the HOS approach. These adjoint formulas
allow us to store and reuse the Gj ’s as vector operations on ξ , instead of having to
recompute them at each order when applied to concatenations of Fourier multipliers
and powers of η. This results in faster calculations and the computational cost for
evaluating (2.7) is estimated to be O(M2N logN) operations via the FFT. Aliasing
errors are removed by zero-padding in the Fourier space [30].
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3.2 Time Integration

Time integration of (2.5) and (2.6) is performed in the Fourier space, which is
advantageous for two main reasons. First, solving the time evolution problem
amounts to solving an ODE system for the Fourier coefficients η̂k and ξ̂k rather than
a PDE system for η and ξ . As mentioned above, the spatial derivatives are computed
with spectral accuracy via the FFT. Second, the linear terms can be solved exactly
by the integrating factor technique [6, 22, 39].

For this purpose, we separate the linear and nonlinear parts in (2.5) and (2.6).
Setting v = (η, ξ)�, these equations can be expressed as

∂tv = Lv+N (v) , (3.1)

where the linear part Lv is defined by

Lv =
(

0 G0

−g 0

)(
η

ξ

)
,

and the nonlinear part N (v) is given by

N (v) =
( [

G(η)−G0
]
ξ

− 1
2(1+η2

x)

[
ξ2
x − (G(η)ξ)2 − 2ξxηxG(η)ξ

]
)
.

The change of variables v̂k(t) = �(t)ŵk(t) in the Fourier space reduces (3.1) to

∂t ŵk = �(t)−1N̂k

[
�(t)ŵk

]
,

via the integrating factor

�(t) =
⎛
⎝ cos

(
t
√
gG0

) √
G0
g

sin
(
t
√
gG0

)
−
√

g
G0

sin
(
t
√
gG0

)
cos

(
t
√
gG0

)
⎞
⎠ ,

for k �= 0, and

�(t) =
(

1 0
−gt 1

)
.

for k = 0. The resulting system only contains nonlinear terms and is solved
numerically in time using the fourth-order Runge–Kutta method with constant step
�t . After converting back to v̂k, this scheme reads

v̂n+1
k = �(�t)̂vnk +

�t

6
�(�t)

(
f1 + 2f2 + 2f3 + f4

)
,
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where

f1 = N̂k

(̂
vnk

)
,

f2 = �

(
−�t

2

)
N̂k

[
�

(
�t

2

)(
v̂nk +

�t

2
f1

)]
,

f3 = �

(
−�t

2

)
N̂k

[
�

(
�t

2

)(
v̂nk +

�t

2
f2

)]
,

f4 = �(−�t)N̂k

[
�(�t)

(̂
vnk +�tf3

) ]
,

for the solution at time tn+1 = tn +�t .
In cases of large-amplitude or highly deformed waves, filtering is needed in order

to stabilize the numerical solution so that it can be computed over a sufficiently
long time. Otherwise, spurious high-wavenumber instabilities tend to develop,
eventually leading to computation breakdown, unless prohibitively small time steps
are specified. This issue may be related to ill-conditioning of the DNO in its series
form or may be promoted by the specific nonlinearity of the problem [32]. As a
remedy, we apply a hyperviscosity-type filter of the form exp(−36|k/km|36) to the
Fourier coefficients η̂k and ξ̂k at each time step. Such a filter has been commonly
employed in direct numerical simulations of nonlinear fluid flows by spectral
methods [27], and its form ensures that only energy levels at high wavenumbers
are significantly affected. Therefore, if sufficiently fine resolution is specified, this
filtering technique can help suppress spurious instabilities while preserving the
overall solution. It also further contributes to removal of aliasing errors and thus
blends well into the pseudo-spectral scheme.

4 Applications

In this section, we present applications of our HOS method to wave propagation in
a complex environment. Extensions of the mathematical formulation described in
Sect. 2 are briefly discussed, and simulations are shown to illustrate the capability
and performance of the numerical model. Unless stated otherwise, Eqs. (2.5)
and (2.6) are non-dimensionalized such that g = 1.

4.1 Fragmented Sea Ice

Floating sea ice is viewed as a thin elastic plate according to the special Cosserat
theory of hyperelastic shells [29, 35]. This is modeled by an additional pressure term
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of the form P = Fσ/ρ on the right-hand side of (2.6), where

F = 1

2

(
ηxx

(1+ η2
x)

3/2

)3

+ 1√
1+ η2

x

∂x

[
1√

1+ η2
x

∂x

(
ηxx

(1+ η2
x)

3/2

)]
,

with ρ being the fluid density and σ the coefficient of ice rigidity [22, 23]. A spatial
distribution of ice floes can be specified in the physical domain by allowing the
coefficient of ice rigidity to be a variable function in space, namely f (x)σ/ρ, whose
amplitude varies between 0 (open water) and σ/ρ (pack ice).

To generate a fragmented ice cover of total length Lc, we first prescribe a regular
array of Nf identical floes whose individual length is Lf and which are evenly
distributed over some distance Lc. Then, to make this arrangement look more
irregular (and thus more realistic), each floe is shifted by an amount θLf /2 relative
to its initial center of gravity, where θ is a random number uniformly distributed
between −1 and 1. At the edges of each floe, the continuous transition between the
two phases is made steep but smooth enough to clearly distinguish the individual
floes while complying with the continuum character of the underlying formulation.
We use a tanh-like profile for this phase transition.

Focusing on the shallow-water regime, the present setup features a domain of
length Lm = 1200, with the ice cover lying between x = 100 and x = 1100
(hence Lc = 1000). The objective is to quantify the attenuation of solitary
waves propagating over this distance, for various floe configurations defined by
(Nf ,Lf ) = (77, 4), (77, 8), (13, 60), (13, 72) and corresponding to ice concen-
trations C = NfLf /Lc = 0.31, 0.62, 0.78, 0.94 respectively. The numerical
parameters are set to �t = 0.002, N = 8192 and M = 6.

Figure 1 shows snapshots of η as a solitary wave of initial amplitude a0/h = 0.3
travels across the ice field. A single realization of each of the floe settings is
considered. Two distinct mechanisms contributing to wave attenuation seem to
coexist: multiple wave reflections from the ice floes (most apparent in the short-floe
configurations), and pulse spreading due to the presence of ice itself (most apparent
in the long-floe configurations). For the sparsest floe configuration (Nf ,Lf ) =
(77, 4), the solitary wave is seen to travel essentially unaffected aside from a slight
decrease in amplitude. By contrast, for (Nf ,Lf ) = (77, 8)which has a high level of
ice concentration and ice fragmentation, the incident wave quickly decays through
backward radiation and pulse spreading.

To further quantify the observed attenuation, Fig. 2 depicts the L2 norm of η as
a function of time for all four floe settings. Motivated by linear predictions [36],
the least-squares exponential fit to each data set is also presented as a reference.
While the exponential fit performs reasonably well for (Nf ,Lf ) = (77, 4) when
attenuation is weak, it provides a poorer approximation to the numerical data when
attenuation is stronger. This is especially apparent in the case (Nf ,Lf ) = (77, 8)
where the data seem to converge to a nonzero limit rather than to zero as time goes
on. This behavior may be attributed to the well-known stability of solitary waves
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Fig. 1 Snapshots of η for (Nf , Lf ) = (77, 4) at t = 0 (a), (77, 4) at t = 416 (b), (77, 8) at
t = 416 (c), (13, 60) at t = 416 (d) and (13, 72) at t = 416 (e) with a0/h = 0.3. Open water is
represented in blue while ice floes are represented in red
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Fig. 2 L2 norm of η as a
function of time for
a0/h = 0.3. Numerical data
are represented in various
symbols while their
exponential fits are plotted in
solid line
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[9], which prevents them from completely disintegrating as they travel across the
ice field. More details can be found in [24].

4.2 Bottom Topography

In this case, Eqs. (2.5) and (2.6) together with (2.7)–(2.9) can be used verbatim with
the only exception that the first term G0 is replaced by

G0 = D tanh(hD) +DL(β) ,

where L(β) takes into account the bottom deformation β(x) relative to a reference
constant depth h [8, 20]. Because the DNO is jointly analytic with respect to β and
η [34], L(β) can be expressed in terms of a convergent Taylor series expansion in β,

L(β) =
∞∑
j=0

sech(hD)Lj (β) , (4.1)

where each Lj can be determined recursively: for even j > 0,

Lj = −
j−2∑

�=2, even

β�

�! D
�Lj−� +

j−1∑
�=1, odd

β�

�! tanh(hD)D�Lj−� , (4.2)
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Fig. 3 Submerged bar in the Delft Hydraulics experiments [12]

and, for odd j ,

Lj = −β
j

j ! sech(hD)Dj −
j−1∑

�=2, even

β�

�! D
�Lj−� +

j−2∑
�=1, odd

β�

�! tanh(hD)D�Lj−� .

(4.3)

These formulas clearly reveal the regularizing character of the DNO with respect to
water depth, as indicated by the presence of the smoothing operator sech(hD). Any
non-smoothness in the profile of β would automatically be regularized via action
of the DNO, thus producing a C∞ contribution [2, 10]. Adopting a Fourier series
representation for β, Eqs. (4.1)–(4.3) are also evaluated by a pseudo-spectral method
with the FFT. Similar to (2.7), the expansion (4.1) is truncated to a finite number of
terms Mb that may be selected independently of M .

As an illustration, we consider the Delft Hydraulics bar experiments where a
regular Stokes wave breaks up into higher harmonics after passing over a submerged
bar [12]. As shown in Fig. 3, the bottom profile is not smooth and its amplitude is
comparable to the total water depth. This case is particularly difficult to simulate
because it involves wave propagation on deep and shallow water, over a wide range
of depths. It has often been used as a discriminating test for nonlinear models of
coastal waves. Figure 4 shows time series of η at various locations along the wave
channel. At each location, our numerical results are compared with the experimental
data. The incident wave has an amplitude a0 = 0.02 m and period T0 = 2.02 s.
The numerical parameters are set to �t = 0.001 s, N = 2048 and M = Mb =
8. Overall, the agreement between the two data sets is found to be quite good. In
particular, the wave steepening during shoaling (x < 13.5 m) and the generation of
higher harmonics over the downslope of the bar (x > 13.5 m) are well reproduced
by the HOS model. More details can be found in [21], including the case of moving
bottom topography.
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Fig. 4 Time series of η at various locations for an incident Stokes wave with (a0, T0) =
(0.02 m, 2.02 s) passing over a bar: experiment (dashed line) and simulation (solid line)

4.3 Background Shear Current

In the presence of constant vorticity γ , the rotational flow can be described by two
conjugate harmonic functions, namely a velocity potential ϕ and a stream function
ψ , that satisfy

ϕx = ψy = u− U0 + γy , ϕy = −ψx = v ,

whereU0 denotes a uniform background current [15, 37]. This leads to the following
modifications in the Hamiltonian structure of the problem:

(
ηt

ξt

)
=

(
0 1
−1 γ ∂−1

x

)(
Hη

Hξ

)
,

with

H = 1

2

∫ ∞
−∞

[
ξG(η)ξ − γ ξxη

2 + 1

3
γ 2η3 − 2U0ξηx + gη2

]
dx .



66 P. Guyenne

The corresponding equations of motion take the form

ηt = G(η)ξ − U0ηx + γ ηηx ,

ξt = −gη− 1

2(1 + η2
x)

[
ξ 2
x − (G(η)ξ)2 − 2ξxηxG(η)ξ

]
− U0ξx + γ ηξx − γK(η)ξ ,

where K(η)ξ , the Hilbert transform (HT) of ξ , returns the trace of the stream
function on the free surface, i.e. K(η)ξ = ψ(x, η(x, t), t). This is also a nonlocal
operator that is related to the DNO by G(η)ξ = −∂xK(η)ξ . Similarly, it can be
expressed in terms of a Taylor series expansion

K(η) =
∞∑
j=0

Kj (η) ,

where

Kj = −K0D
j−2∂x

ηj

j ! ∂x+
j∑

�=2, even

D�−2∂x
η�

�! ∂xKj−�+
j−1∑

�=1, odd

K0D
�−1 η

�

�! ∂xKj−� ,

for even j > 0, and

Kj = Dj−1 η
j

j ! ∂x +
j−1∑

�=2, even

D�−2∂x
η�

�! ∂xKj−� +
j∑

�=1, odd

K0D
�−1 η

�

�! ∂xKj−� ,

for odd j . The Fourier multiplier K0 = i tanh(hD) represents the HT for a
uniform strip of thickness h. Because of this direct relation with the DNO, the same
numerical procedure as described in Sect. 3.1 can be used to evaluate the HT series.

For simplicity, the following application only considers the case U0 = 0. We
investigate the Benjamin–Feir instability (BFI) of Stokes waves in the presence of
a linear shear current. In the irrotational case (γ = 0), such waves are known to be
unstable to sideband perturbations on deep water. We run simulations in a domain of
length Lm = 2π and infinite depth h = +∞, with initial conditions representing a
perturbed Stokes wave. The numerical parameters are set to �t = 0.001,N = 1024
and M = 6. The initial Stokes wave has an amplitude a0 = 0.005 with carrier
wavenumber k0 = 10, while the perturbation wavenumber is κ = 1.

Figure 5 shows snapshots of η at the initial time t = 0 for γ = 0 and at the
time of maximum growth for γ = 0,±1,±2. We find that a co-propagating current
(γ > 0) tends to stabilize the Stokes wave; the larger γ , the stronger the stabilizing
effect. For γ = +1 and +2, the BFI seems to be inhibited and the corresponding
graphs are not shown here because they look almost identical to Fig. 5a. On the other
hand, a counter-propagating current (γ < 0) tends to promote and enhance the BFI.
The larger |γ |, the sooner the Stokes wave becomes unstable and the higher it grows.
For γ = −1 and−2, the wave reaches an elevation amax = 0.016 and amax = 0.025
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Fig. 5 Snapshots of η at (a) t = 0 (γ = 0), (b) t = 956 (γ = 0), (c) t = 586 (γ = −1) and
(d) t = 376 (γ = −2) for an initially perturbed Stokes wave with (a0, k0) = (0.005, 10) on deep
water

at t = 586 and t = 376 respectively, which corresponds to an amplification factor
of α = 3.2 and α = 5 compared to the initial amplitude a0. As a reference, the
maximum wave growth observed in Fig. 5b for γ = 0 is α = 2.4 (amax = 0.012),
which agrees with the classical NLS prediction

α = amax

a0
= 1+ 2

√√√√1−
(

κ

2
√

2k2
0a0

)2

= 2.4 .

These results support the fact that wave-current interactions represent a possible
mechanism for rogue wave formation in the ocean [15]. More details can be found
in [18].
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Stokes Waves
in a Constant Vorticity Flow

Sergey A. Dyachenko and Vera Mikyoung Hur

Abstract The Stokes wave problem in a constant vorticity flow is formulated via
conformal mapping as a modified Babenko equation. The associated linearized oper-
ator is self-adjoint, whereby efficiently solved by the Newton-conjugate gradient
method. For strong positive vorticity, a fold develops in the wave speed versus
amplitude plane, and a gap as the vorticity strength increases, bounded by two
touching waves, whose profile contacts with itself, enclosing a bubble of air. More
folds and gaps follow as the vorticity strength increases further. Touching waves at
the beginnings of the lowest gaps tend to the limiting Crapper wave as the vorticity
strength increases indefinitely, while a fluid disk in rigid body rotation at the ends of
the gaps. Touching waves at the boundaries of higher gaps contain more fluid disks.

Keywords Stokes wave · Constant vorticity · Conformal · Numerical

Mathematics Subject Classification (2000) Primary 76B15; Secondary 76B07,
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1 Introduction

Stokes in his classical treatise [20] (see also [21]) made formal but far-reaching
considerations about periodic waves at the surface of an incompressible inviscid
fluid in two dimensions, under the influence of gravity, which travel a long distance
at a practically constant velocity without change of form. For instance, he observed
that crests become sharper and troughs flatter as the amplitude increases, and that the
‘wave of greatest height’ exhibits a 120◦ corner at the crest. It would be impossible
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to give a complete account of Stokes waves here. We encourage the interested
reader to some excellent surveys [2, 22, 24]. We merely pause to remark that in
an irrotational flow of infinite depth, notable recent advances were based on a
formulation of the problem as a nonlinear pseudodifferential equation, involving
the periodic Hilbert transform, originally due to Babenko [1] (see also [10, 13, 17]).
For instance, [3, 4] (see also [2] and references therein) rigorously addressed the
existence in-the-large, and [11, 15, 16] numerically approximated the wave of
greatest height and revealed the structure of complex singularities in great detail.

The irrotational flow assumption is well justified in some circumstances. But
rotational effects are significant in many others, for instance, for wind driven waves,
waves in a shear flow, or waves near a ship or pier. Constant vorticity is of particular
interest because it greatly simplifies the mathematics. Moreover, for short waves,
compared with the characteristic lengthscale of vorticity, the vorticity at the fluid
surface would be dominant. For long waves, compared with the fluid depth, the
mean vorticity would be dominant (see the discussion in [23]).

Simmen and Saffman [19] and Teles da Silva and Peregrine [23], among others,
employed a boundary integral method and numerically computed Stokes waves in
a constant vorticity flow. Their results include overhanging profiles and interior
stagnation points. To compare, a Stokes wave in an irrotational flow is necessarily
the graph of a single valued function and each fluid particle must move at a velocity
less than the wave speed.

Recently, Constantin et al. [6] used conformal mapping, modified the Babenko
equation and supplemented it with a scalar constraint, to permit constant vorticity
and finite depth, and they rigorously established a global bifurcation result. The
authors [8] rediscovered the modified Babenko equation and the scalar constraint,
and numerically solved by means of the Newton-GMRES method (see also [5, 18]).
More recently, the authors [9] eliminated the Bernoulli constant from the modified
Babenko equation and, hence, the scalar constraint. The associated linearized oper-
ator is self-adjoint, whereby efficiently handled by means of the conjugate gradient
method. Here we review the analytical formulation and numerical findings of [8, 9].

For strong positive vorticity, the amplitude increases, decreases and increases
during the continuation of the numerical solution. Namely, a fold develops in the
wave speed versus amplitude plane, and it becomes larger as the vorticity strength
increases. For nonpositive vorticity, on the other hand, the amplitude increases
monotonically. For stronger positive vorticity, a gap develops in the wave speed
versus amplitude plane, bounded by two touching waves, whose profile contacts
with itself at the trough line, enclosing a bubble of air, and the gap becomes larger
as the vorticity strength increases. By the way, the numerical method of [19, 23]
and others diverges in a gap. More folds and gaps follow as the vorticity strength
increases even further.

Moreover, touching waves at the beginnings of the lowest gaps tend to the
limiting Crapper wave (see [7]) as the vorticity strength increases indefinitely—
a striking and surprising link between rotational and capillary effects—while they
tend to a fluid disk in rigid body rotation at the ends of the gaps. Touching waves
at the beginnings of the second gaps tend to the circular vortex wave on top of the
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limiting Crapper wave in the infinite vorticity limit, and the circular vortex wave on
top of itself at the ends of the gaps. Touching waves at the boundaries of higher gaps
contain more circular vortices in like manner.

2 Formulation

The water wave problem, in the simplest form, concerns the wave motion at the
surface of an incompressible inviscid fluid in two dimensions, under the influence
of gravity. Although an incompressible fluid may have variable density, we assume
for simplicity that the density = 1. Suppose for definiteness that in Cartesian
coordinates, the x axis points in the direction of wave propagation and the y axis
vertically upward. Suppose that the fluid at time t occupies a region in the (x, y)
plane, bounded above by a free surface y = η(x, t) and below by the rigid bottom
y = −h for some constant h, possibly infinite. Let

Ω(t) = {(x, y) ∈ R
2 : −h < y < η(x, t)} and Γ (t) = {(x, η(x, t)) : x ∈ R}.

Let u = u(x, y, t) denote the velocity of the fluid at the point (x, y) and time t , and
P = P(x, y, t) the pressure. They satisfy the Euler equations for an incompressible
fluid:

ut + (u · ∇)u = −∇P + (0,−g) and ∇ · u = 0 in Ω(t), (1a)

where g is the constant due to gravitational acceleration. Let

ω := ∇ × u

denote constant vorticity. By the way, if the vorticity is constant throughout the fluid
at the initial time then Kelvin’s circulation theorem implies that it remains so at
later times. We assume that there is no motion in the air and we neglect the effects
of surface tension. The kinematic and dynamic conditions:

ηt + u · ∇(η − y) = 0 and P = Patm at Γ (t) (1b)

express that each fluid particle at the surface remains so at all times, and that the
pressure there equals the constant atmospheric pressure= Patm. In the finite depth,
h <∞, the kinematic condition states

u · (0,−1) = 0 at y = −h. (1c)

We assume without loss of generality that the solutions of (1) are 2π periodic in the
x variable.
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For any h ∈ (0,∞), ω ∈ R and c ∈ R, clearly,

η(x, t) = 0, u(x, y, t) = (−ωy − c, 0) and P(x, y, t) = Patm − gy (2)

solve (1). We assume that some external effects such as wind produce such a
constant vorticity flow and restrict the attention to waves propagating in (2).

Let

u = (−ωy − c, 0)+ ∇Φ, (3)

whence �Φ = 0 in Ω(t) by the latter equation of (1a). Naemly, Φ is a velocity
potential for the irrotational perturbation from (2). For nonconstant vorticity, Φ is
no longer viable to use. Let Ψ be a harmonic conjugate of Φ. Substituting (3) into
the former equation of (1a), we make an explicit calculation to arrive at

Φt + 1

2
(Φ2

x + Φ2
y )− (ωy + c)Φx + ωΨ + P − Patm + gy = b(t) (4)

for some function b(t). We substitute (3) into the other equations of (1), likewise.
The result becomes, by abuse of notation,

�Φ = 0 in Ω(t) (5a)

ηt + (Φx − ωη − c)ηx = Φy at Γ (t), (5b)

Φt + 1

2
|∇Φ|2 − (ωη + c)Φx + ωΨ + gη = 0 at Γ (t), (5c)

Φy = 0 at y = −h. (5d)

By the way, since Φ and Ψ are determined up to arbitrary functions of t , we may
take without loss of generality that b(t) = 0 at all times! In the infinite depth,
h = ∞, we replace (5d) by

Φ,Ψ → 0 as y →−∞ uniformly for x ∈ R. (5e)

See [8, 9], for instance, for details.

2.1 Reformulations in Conformal Coordinates

To proceed, we reformulate (5) in conformal coordinates. Details may be found in
[8, 9]. In what follows, we identify R

2 with C whenever it is convenient to do so.
Let

z = z(w, t), where w = u+ iv and z = x + iy, (6)
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conformally map �d := {u+ iv ∈ C : −d < v < 0} of 2π period in the u variable,
to Ω(t) of 2π period in the x variable, for some d , possibly infinite. Let (6) extend
to map {u + i0 : u ∈ R} to Γ (t), and {u − id : u ∈ R} to {x − ih : x ∈ R} if
d, h < ∞, and −i∞ to −i∞ if d, h = ∞, where d = 〈y〉 + h (see [8] for detail).
Here and elsewhere,

〈f 〉 = 1

2π

∫ π

−π
f (u) du

denotes the mean of a 2π periodic function f over one period.

Periodic Hilbert Transforms for a Strip For d in the range (0,∞), let

Hde
iku =− i tanh(kd)eiku for k ∈ Z

and

Tde
iku =− i coth(kd)eiku for k �= 0,∈ Z. (7)

Let

Heiku =− i sgn(k)eiku for k ∈ Z.

When d < ∞, if F is holomorphic in �d and 2π periodic in the u variable and
if ReF(· + i0) = f and (ReF)v(· − id) = 0 then

F(· + i0) = (1− iHd)f (8)

up to the addition by a purely imaginary constant. Namely, 1 − iHd is the surface
value of a periodic holomorphic function in a strip, the normal derivative of whose
real part vanishes at the bottom. If ImF(· + i0) = f and ImF(· − id) = 0, and if
〈f 〉 = 0, instead, then

F(· + i0) = (Td + i)f (9)

up to the addition by a real constant. Namely, Td+i is the surface value of a periodic
holomorphic function in a strip, whose imaginary part is of mean zero at the surface
and vanishes at the bottom. Moreover, when d = ∞, if F is holomorphic in �∞
and 2π periodic in the u variable and if F vanishes sufficiently rapidly at−i∞ then
the real and imaginary parts of F(·+ i0) are the periodic Hilbert transforms for each
other (see [26], for instance).

Implicit Form Note that (x+ iy)(u, t), u ∈ R, makes a conformal parametrization
of the fluid surface. In the finite depth, d, h < ∞, it follows from the Cauchy-
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Riemann equations and (7) that

(x + iy)(u, t) = u+ (Td + i)y(u, t). (10)

In the infinite depth, d, h = ∞, H replaces Td (see [9, 10], for instance).
Moreover, let

(φ + iψ)(w, t) = (Φ + iΨ )(z(w, t), t) for w ∈ �d.

Namely, it is a conformal velocity potential for the irrotational perturbation from (2).
In the finite or infinite depth, it follows from (8) that

(φ + iψ)(u, t) = (1− iHd)φ(u, t) (11)

up to the addition by a purely imaginary constant.
In the finite depth, substituting (10) and (11) into (5b) and (5c), we make an

explicit calculation to arrive at

(1+ Tdyu)yt − yuTdyt −Hdφu − (ωy + c)yu = 0,

((1+ Tdyu)
2 + y2

u)(φt + gy − ωHdφ)

− ((1+ Tdyu)Tdyt + yuyt )φu + (yuTdyt − (1+ Tdyu)yt )Hdφu

+ 1

2
(φ2

u + (Hdφu)
2)− (ωy + c)((1+ Tdyu)φu − yuHdφu) = 0.

(12)

In the infinite depth, H replaces Hd and Td . See [8], for instance, for details.

Explicit Form In the finite depth, note that zt/zu is holomorphic in �d ,

Im
zt

zu
= Hdφu + (ωy + c)yu

|zu|2 at v = 0

by the former equation of (12), and Im(zt/zu) = 0 at v = −d by (5d). Note that
〈Im(zt/zu)〉 = 0 for any v ∈ [−d, 0] by the Cauchy–Riemann equations and (5d).
It then follows from (9) that

zt

zu
= (Td + i)

(
− (Hdφ + 1

2ωy
2 + cy)u

|zu|2
)

at v = 0. (13)

Moreover, note that (φu − iHdφu)
2 is the surface value of a holomorphic and 2π

periodic function in �d , the normal derivative of whose real part vanishes at the
bottom. It then follows from (8) and (7) that

φ2
u − (Hdφu)

2 = −2Td (φuHdφu). (14)



Stokes Waves in a Constant Vorticity Flow 77

We use (13) and (14), and make a lengthy but explicit calculation to solve (12) as

yt=(1+ Tdyu + yuTd)
(Hdφu + (ωy + c)yu

(1+ Tdyu)2 + y2
u

)
,

φt=− φuTd

(Hdφu + (ωy + c)yu

(1+ Tdyu)2 + y2
u

)

+ 1

(1+ Tdyu)2 + y2
u

(Td(φuHdφu)+ (ωy + c)(1+ Tdyu)φu)+ ωHdφ − gy.

(15)

In the infinite depth, H replaces Hd and Td . See [8], for instance, for details.

2.2 The Stokes Wave Problem in a Constant Vorticity Flow

We turn the attention to the solutions of (15), for which yt , φt = 0.
In the finite depth, substituting yt = 0 into the former equation of (15), we

arrive at

φ′ = Td(ωyy
′ + cy ′) at v = 0. (16)

Here and elsewhere, the prime denotes ordinary differentiation. Substituting φt =
0 into the latter equation of (15), likewise, we use (16) and we make an explicit
calculation to arrive at

(c + ωy(1+ Tdy
′)− ωTd(yy

′))2 = (c2 − 2gy)((1+ Tdy
′)2 + (y ′)2). (17)

In the infinite depth, H replaces Td . If we were to take (4), rather than (5c), where
b = 0, then the result would become

(c+ωy(1+Tdy
′)−ωTd(yy ′))2 = (c2+ 2b− 2gy)((1+Tdy

′)2+ (y ′)2), (18)

and one must determine b as part of the solution. See [8], for instance, for details.

The Modified Babenko Equation Unfortunately, (17) or (18) is not suitable for
numerical solution, because one would have to work with rational functions of y.
We reformulate (17) as in a more convenient form. Details may be found in [8, 9].

In the finite depth, we rearrange (17) as

(c − ωTd(yy
′))2 + 2ωy(c − ωTd(yy

′))(1+ Tdy
′)− ω2y2(y ′)2

= (c2 − 2gy − ω2y2)((1+ Tdy
′)2 + (y ′)2).
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Note that (c−ω(Td+i)(yy ′))2 is the surface value of a holomorphic and 2π periodic
function in �d , whose imaginary part is of mean zero at the surface and vanishes at
the bottom. Hence, so is

(c2 − 2gy − ω2y2)((1+ Tdy
′)2 + (y ′)2)− 2ωy(c− ωTd (yy

′))(1+ Tdy
′ + iy ′)

= ((c2 − 2gy − ω2y2)(1+ Tdy
′ − iy ′)− 2ωy(c − ωTd(yy

′)))(1+ Tdy
′ + iy ′).

Moreover, note that 1/(1+ Tdy
′ + iy ′) is the surface value of the holomorphic and

2π periodic function = 1/zu in �d , whose imaginary part is of mean zero at the
surface and vanishes at the bottom. Hence, so is

(c2 − 2gy − ω2y2)(1+ Tdy
′ − iy ′)− 2ωy(c − ωTd(yy

′)).

Therefore, it follows from (10) that

(c2− 2gy −ω2y2)(1+ Tdy
′)− 2ωy(c−ωTd(yy ′)) = −Td((c2− 2gy −ω2y2)y ′)

up to the addition by a real constant. Or, equivalently,

c2Tdy
′ − (g + cω)y − g(yTdy

′ + Td(yy
′))

− 1

2
ω2(y2 + Td (y

2y ′)+ y2Tdy
′ − 2yTd(yy ′)) = 0 (19)

and

g〈y(1 + Tdy
′)〉 + cω〈y〉 + 1

2
ω2〈y2〉 = 0. (20)

Indeed, 〈Tdf ′〉 = 0 for any function f by (7) and

〈y2Tdy
′〉 = 1

2π

∫ π

−π
y2Tdy

′ du = − 1

2π

∫ π

−π
yTd (y

2)′ du = −〈2yTd (yy ′)〉.

In the infinite depth, H replaces Td . Conversely, a solution of (19) and (20) gives
rise to a traveling wave of (5) and, hence, (1), provided that

u �→ (u+ Tdy(u), y(u)), u ∈ R, is injective (21a)

and

((1+ Tdyu)
2 + y2

u)(u) �= 0 for any u ∈ R. (21b)
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See [8, 9], for instance, for details. The Stokes wave problem in a constant vorticity
flow is to find ω ∈ R, d ∈ (0,∞], c ∈ R an a 2π periodic function y, satisfying (21),
which together solve (19) and (20). In what follows, we assume that y is even (see
[12], for instance, for arbitrary vorticity).

In an irrotational flow of infinite depth, ω = 0 and d = ∞, (19) and (20)
simplify to

c2Hy ′ − gy − g(yHy ′ +H(yy ′)) = 0 (22)

and 〈y(1 + Tdy
′)〉 = 0. Longuet-Higgins [13] discovered a set of identities among

the Fourier coefficients of a Stokes wave, which Babenko [1] rediscovered in the
form of (22) and, independently, [10, 17] among others. One may regard (19) and
(20) as the modified Babenko equation, permitting constant vorticity and finite
depth.

If we were to take (4), rather than (5c), where b = 0, then (19) would become

(c2 + 2b)Tdy ′−(g + cω)y − g(yTdy
′ + Td(yy

′))

−1

2
ω2(y2 + y2Tdy

′ + Td (y
2y ′)− 2yTd(yy ′)) = 0,

(23)

which is supplemented with

〈(c+ωy(1+Tdy ′)−ωTd (yy ′))2〉 = 〈(c2+2b−2gy)((1+Tdy ′)2+(y ′)2)〉. (24)

This is what [6, 8] derived.

3 Numerical Method

We write (19) in the operator form as G(y; c, ω, d) = 0 and solve it iteratively using
the Newton method. Let y(n+1) = y(n) + δy(n), n = 0, 1, 2, . . . , where y(0) is an
initial guess, to be supplied (see [8, 9], for instance), and δy(n) solves

δG(y(n); c, ω, d)δy(n) = −G(y(n); c, ω, d), (25)

δG(y(n); c, ω, d) is the linearization of G(y; c, ω, d) with respect to y and evaluated
at y = y(n).

We exploit an auxiliary conformal mapping, involving Jacobi elliptic functions
(see [9] and references therein), and take efficient, albeit highly nonuniform, grid
points in u ∈ [−π, π]. We approximate y(n) by a discrete Fourier transform and
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numerically evaluate y(n), Tdy(n) and others using a fast Fourier transform. Since

δG(y; c, ω, d)δy =c2Td (δy)
′ − (g + cω)δy − g(δyTdy

′ + yTd(δy)
′ + Td(yδy)

′)

− 1

2
ω2(2yδy + Td(y

2δy)′ − [2yδy, y] + [y2, δy]),

where [f1, f2] = f1Tdf
′
2 − f2Tdf

′
1, is self-adjoint, we solve (25) using the

conjugate gradient (CG) method. We employ (20) to determine the zeroth Fourier
coefficient. Once we arrive at a convergent solution, we continue it along in the
parameters. See [9], for instance, for details.

If we were to take (23) and (24), rather than (19), where b = 0, then the
associated linearized operator includes

(δy, δb) �→(c2 + 2b)Td(δy)′+2δbTdy ′−(g + cω)δy

−g(δyTdy ′ + yTd(δy)
′ + Td(yδy)

′)

− 1

2
ω2(2yδy + Td(y

2δy)′ − [2yδy, y] + [y2, δy]),

which is not self-adjoint, whence the CG or conjugate residual method may not
apply. The authors [8] used the generalized minimal residual (GMRES) method and
achieved some success. But it would take too much time to accurately resolve a
numerical solution when it requires excessively many grid points. The CG method
is more powerful than the GMRES for self-adjoint equations, and it leads to new
findings, which we discuss promptly.

4 Results

Summarized below are the key findings of [8, 9].
We take without loss of generality that c is positive, and allow ω positive or

negative, representing waves propagating upstream or downstream, respectively (see
the discussion in [23]).

We take for simplicity that g = 1 and d = ∞. By the way, the effects of finite
depth change the amplitude of a Stokes waves and others, but they are insignificant
otherwise (see [8], for instance).

In what follows, the steepness s measures the crest-to-trough wave height divided
by the period = 2π .

4.1 Folds and Gaps

For zero and negative constant vorticity, for instance, for ω = 0 and −1, the left
panel of Fig. 1 collects the wave speed versus steepness from the continuation of
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Fig. 1 On the left, wave speed vs. steepness for ω = 0 and −1. Insets are closeups near the
endpoints of the continuation of the numerical solution. On the right, the profiles of almost extreme
waves

the numerical solution. For ω = 0, Longuet-Higgins and Fox [14], among others,
predicted that c oscillates infinitely many times whereas s increases monotonically
toward the wave of greatest height or the extreme wave, whose profile exhibits a
120◦ corner at the crest. Numerical computations (see [11, 16], for instance, and
references therein) bear it out. The insets reproduce the well-known result and
suggest likewise when ω = −1.

The right panel displays the profiles of almost extreme waves, in the (x, y) plane
in the range x ∈ [−π, π]. Troughs are at y = 0. Note that the steepness when
ω = −1 is noticeably less than ω = 0.

For a large value of positive constant vorticity, for instance, for ω = 2.5, Fig. 2
includes the wave speed versus steepness and the profiles at the indicated points
along the c = c(s) curve, in the (x, y) plane, where x ∈ [−3π, 3π]. Troughs are
at y = 0. The upper left panel reveals that s increases and decreases from s = 0 to
waveD. Namely, a fold develops in the c = c(s) curve. For s small, for instance, for
wave A, the profile is single valued. But we observe that the profile becomes more
rounded as s increases along the fold, so that overhanging waves appear, whose
profile is no longer single valued. Moreover, we arrive at a touching wave, whose
profile becomes vertical and contacts with itself somewhere the trough line, whereby
enclosing a bubble of air. Wave B is an almost touching wave.

Past the touching wave, a numerical solution is unphysical because (21a) no
longer holds true (see [8, 9] for examples). Moreover, we observe that the profile
becomes less rounded as s decreases along the fold, so that we arrive at another
touching wave; past the touching wave, a numerical solution is physical. Wave C is
an almost touching wave and wave D is physical. Together, a gap develops in the
c = c(s) curve, consisting of unphysical numerical solutions and bounded by two
touching waves. We remark that waveC encloses a larger bubble of air than wave B.

Past the end of the fold, interestingly, the upper left panel reveals another fold
and another gap. The steepness increases from waves D to F , and decreases from
waves F to H . Waves E and G are almost touching waves and numerical solutions



82 S. A. Dyachenko and V. M. Hur

0

10

20

30

40

50

 0  1  2  3  4

A
B

C

D

E

F

G

H I

c

s

0

4

8

12

-2π 0 2π

A

0

4

8

12

-2π 0 2π

B

0

4

8

12

-2π 0 2π

C

0

4

8

12

-2π 0 2π

D

0

5

10

15

20

25

-2π 0 2π

F

 0

 5

 10

 15

 20

-2π 0 2π

E

 0

 5

 10

 15

 20

-2π 0 2π

G

 0

 5

 10

 15

 20

-2π 0 2π

H

 0

 5

 10

 15

 20

-2π 0 2π

I

Fig. 2 For ω = 2.5. Clockwise from upper left: wave speed vs. steepness; the profiles of eight
solutions, labelled by A to E, and G to I ; the profile of an unphysical solution labelled by F

between are unphysical. For instance, for wave F , the profile intersects itself and
the fluid region overlaps itself.

Past the end of the second fold, we observe that s increases monotonically,
although c oscillates (see [9], for instance, for details), like when ω = 0; moreover,
overhanging profiles disappear as s increases and the crests become sharper, like
when ω = 0. Therefore, we may claim that an extreme wave ultimately appears,
whose profile exhibits a sharp corner at the crest. Wave I is an almost extreme wave.
One may not continue the numerical solution past the extreme wave because (21b)
would no longer hold true.

Figure 3 includes the wave speed versus steepness for several values of positive
constant vorticity. For zero vorticity, one predicts that c experiences infinitely many
oscillations whereas s increases monotonically (see [14], for instance). For negative
constant vorticity, numerical computations (see [8, 19, 23], among others) suggest
that the crests become sharper and lower. Figure 1 bears it out.

For positive constant vorticity, for instance, for ω = 1.7, on the other hand,
Fig. 3 reveals that the lowest oscillation of c deforms into a fold. Consequently,
there correspond two or three solutions for some values of s. Moreover, the extreme
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wave seems not the wave of greatest height. We observe that the fold becomes larger
in size as ω increases. For a larger value of the vorticity, for instance, for ω = 1.74,
the figure reveals that part of the fold transforms into a gap. We observe that the gap
becomes larger in size as ω increases. See [8], for instance, for details.

Moreover, for ω = 2.4, Fig. 3 reveals that the second oscillation of c deforms
into another fold, and we observe that the second fold becomes larger in size as ω
increases. For ω = 2.5, part of the second fold transforms into another gap, and we
observe that the second gap becomes larger in size as ω increases. We merely pause
to remark that the numerical method of [19, 23] and others diverges in a gap and is
incapable of locating a second gap. The numerical method of [8] converges in a gap,
but it would take too much time to accurately resolve a numerical solution along a
second fold.

We take matters further and claim that higher folds and higher gaps develop
in like manner as ω > 0 increases. For instance, for ω = 4, Fig. 3 reveals
five folds and five gaps! Moreover, we claim that past all the folds, the steepness
increases monotonically toward an extreme wave. Numerical computations (see [9],
for instance) suggest that the extreme profile is single valued and exhibits a 120◦
corner at the crest, regardless of the value of the vorticity.

4.2 Touching Waves in the Infinite Vorticity Limit

The left panel of Fig. 4 displays the profiles of almost touching waves near the
beginnings of the lowest gaps, and the right panel near the ends of the gaps, for four
values of positive constant vorticity, in the (x, y) plane in the range x ∈ [−2π, 2π].
Touching is at y = 0. The profiles on the left resemble that in [25, Figure 4(b)].

At the beginnings of the gaps, we observe that s decreases monotonically toward
≈0.73 as ω→∞ (see [8], for instance). Crapper [7] derived a remarkable formula
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Fig. 4 On the left, touching waves at the beginnings of the lowest gaps for four values of vorticity.
The dashed curved line is the limiting Crapper wave. On the right, touching waves at the ends of
the gaps. The dashed curved line is a circle

of periodic capillary waves (in the absence of gravitational effects) in an irrotational
flow of infinite depth, and calculated that s ≈ 0.73 for the wave of greatest height.
Moreover, the left panel reveals that, for instance, for ω = 14, the profile of an
almost touching wave is in excellent agreement with the limiting Crapper wave.
Therefore, we claim that touching waves at the beginnings of the lowest gaps tend
to the limiting Crapper wave as the value of positive constant vorticity increases
indefinitely. It reveals a striking and surprising link between positive constant
vorticity and capillarity!

At the ends of the gaps, on the other hand, we observe that s → 1 as ω → ∞
(see [8], for instance). Teles da Silva and Peregrine [23], among others, numerically
computed periodic waves in a constant vorticity flow in the absence of gravitational
effects, and argued that a limiting wave has a circular shape made up of fluid in rigid
body rotation (see also [25]). Moreover, the right panel reveals that, for instance, for
ω = 14, the profile of an almost touching wave is nearly circular. Therefore, we
claim that touching waves at the ends of the lowest gaps tend to a fluid disk in rigid
body rotation in the infinite vorticity limit. It is interesting to analytically explain
the limiting Crapper wave and the circular vortex wave in the infinite vorticity limit.

Moreover in the left panel of Fig. 5 are the profiles of almost touching waves near
the beginnings of the second gaps, and the right panel near the ends of the gaps, for
three values of positive constant vorticity, in the (x, y) plane, where x ∈ [−2π, 2π].
The profile on the left for ω = 14 resembles that in [25, Figure 5(c)], and the profile
on the right resembles [25, Figure 6]. We may claim that touching waves at the
beginnings of the second gaps tend to the circular vortex on top of the limiting
Crapper wave as the value of positive constant vorticity increases indefinitely,
whereas the circular vortex wave on top of itself at the ends of the gaps.
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Fig. 5 On the left, touching waves at the beginnings of the second gaps for three values of vorticity
(solid) and the circular vortex wave on top of the limiting Crapper wave (dashed). On the right,
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We take matters further and claim that touching waves at the boundaries of higher
gaps accommodate more circular vortices in like manner. See [9], for instance, for a
profile nearly enclosing five circular vortices!
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Integrable Models of Internal Gravity
Water Waves Beneath a Flat Surface

Alan C. Compelli, Rossen I. Ivanov, and Tony Lyons

Abstract A two-layer fluid system separated by a pycnocline in the form of an
internal wave is considered. The lower layer is bounded below by a flat bottom and
the upper layer is bounded above by a flat surface. The fluids are incompressible
and inviscid and Coriolis forces as well as currents are taken into consideration.
A Hamiltonian formulation is presented and appropriate scaling leads to a KdV
approximation. Additionally, considering the lower layer to be infinitely deep leads
to a Benjamin–Ono approximation.

Keywords Internal waves · Currents · Nonlinear waves · Long waves ·
Hamiltonian systems · Solitons
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Secondary: 37K10

1 Introduction

The presented material provides a review of some well-known long wave models:
the KdV and Benjamin–Ono approximations. The context is an oceanic fluid system
comprising of two layers separated by an internal wave, created by a sharp density
gradient, bounded above and below by a flat surface and flat seabed respectively.
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Many irrotational studies of both single layered and stratified systems such as [2–
4, 17, 19, 20, 27, 28] have followed on from Zakharov’s determination in [32] of a
canonical Hamiltonian structure for a deep fluid with gravitational surface waves.
The consideration of vorticity, however, is necessary for the inclusion of currents.
The interaction of waves and currents have been examined for single layer systems
in [10, 11, 14–16, 30, 31] and for stratified systems in [5–7, 12, 13].

2 The Set-Up

Consider a fluid system consisting of two domains as shown in Fig. 1. The lower
medium is bounded underneath by a solid, stationary, impermeable layer of constant
depth called the ‘flatbed’ at a depth h and the upper medium is bounded by a flat
surface called the ‘lid’ at a height h1. The physical reasoning is that the surface
waves in the ocean have usually much smaller amplitudes in comparison to the
internal waves. Typically h1 may be of the order of hundreds of metres and the
order of h may vary from hundreds of meters to several kilometers.

The system comprises of two separate fluids which have different densities due to
different salinity levels and temperatures. Some prescribed flow has been generated
by, perhaps, surface winds permeating downwards or due to tidal influences.
However, at the interface the fluids do not mix and form a free common interface
in the form of an internal wave. The wave is two-dimensional (in the x-y plane),
propagating in the positive x-direction, due to the assumption that there is no
lateral movement. This is a reasonable assumption for example, for oceanic waves
of constant depth travelling along the equator [13, 22, 26]. The wave extends to
infinity in both the positive and negative directions. The wave is characterised by
the elevation function η(x, t) with respect to the level y = 0. In other words the
equation of the interface is

y = η(x, t). (2.1)

Fig. 1 Set-up for the system
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The mean value of η is taken to be zero for convenience,

∫
R

η(x, t)dx = 0, for all t . (2.2)

The system is assumed to be on the surface of the Earth, that is on a rotating solid
body. The wave is acted upon by the restorative action of gravity. The Earth’s centre
of gravity is considered to be in the negative y-direction.

The domains � and �1 are defined as

� := {(x, y) ∈ R
2 : −h < y < η(x, t)}

and �1 := {(x, y) ∈ R
2 : η(x, t) < y < h1}.

Due to an assumption of incompressibility the constant densities are given by ρ and
ρ1 and stability is ensured by the assumption of immiscibility and that ρ > ρ1.

The stream functions, ψ and ψ1, are related to the velocity fields u = (u, v) and
u1 = (u1, v1) via the relations

u = ψy, u1 = ψ1,y, v = −ψx and v1 = −ψ1,x (2.3)

due to the incompressibility assumption ∇ · u = 0, ∇ · u1 = 0.
The velocity potentials, ϕ and ϕ1, are introduced such that

u = ϕx + γy, u1 = ϕ1,x + γ1y, v = ϕy and v1 = ϕ1,y (2.4)

where γ and γ1 are the constant vorticities, where the vorticities are defined as

γ = −vx + uy and γ1 = −v1,x + u1,y . (2.5)

This setup allows for modelling of an undercurrent, such as the Equatorial
Undercurrent. A piecewise linear current profile can be represented by the velocity
fields of the form (2.4), [12] by writing

u = ϕ̃x + γy + κ, u1 = ϕ̃1,x + γ1y + κ1, v = ϕ̃y and v1 = ϕ̃1,y (2.6)

where κ and κ1 are constants representing the current horizontal velocities at y = 0.
The wave-only components have been separated out by introducing a tilde notation.

There is a harmonic conjugate relationship between ψ and ϕ̃ (cf. [21, 25]) given
by the complex analytic function

f (z) = ϕ̃(x, y, t)+ i
(
ψ(x, y, t) − 1

2
γy2 − κy

)
,
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where z = x + iy ∈ �, and similar for �1. The fact that f (z) is analytic in the
corresponding domain allows the determination of the velocity potential ϕ̃(x, y, t)
in � from its value φ(x, t) at the interface y = η(x, t) (see (4.13) below, φ(x, t) can
be expressed through the canonical Hamiltonian variables defined at the interface).
Hence, the physical quantities in the body of the fluid can be determined from the
variables at the interface as well.

We assume that the functions η(x, t), ϕ̃(x, y, t) and ϕ̃1(x, y, t) belong to the
Schwartz class S(R) (cf. [24]) with respect to x (for any y and t). The assumption
of course implies that for large absolute values of x the internal wave attenuates,
and is vanishing at infinity, and therefore

lim|x|→∞ η(x, t) = lim|x|→∞ ϕ̃(x, y, t) = lim|x|→∞ ϕ̃1(x, y, t) = 0. (2.7)

Note that we have not specified the dynamics (the time-evolution) of our physical
variables yet.

3 Governing Equations

The fluid velocities and the net forces per unit mass for the inviscid media under
study are related through the Euler equations

ut + (u.∇)u = − 1

ρ
∇P + F and u1,t + (u1.∇)u1 = − 1

ρ1
∇P1 + F1 (3.1)

where

F = 2ω∇ψ and F1 = 2ω∇ψ1 (3.2)

are the Coriolis forces per unit mass with ω being the rotational speed of the Earth.
The pressures are given as static, dynamic and constant atmospheric pressure terms
respectively, ρ and ρ1 (due to the assumption of incompressibility) are the constant
densities and g is the acceleration due to gravity. For the lower medium �,

P = ρ1gh1 − ρgy + p + patm, (3.3)

and for the upper medium �1 the total pressure is

P1 = ρ1g(h1 − y)+ p1 + patm. (3.4)
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The gradients of the dynamic pressures are given as

∇p = −ρ∇
(
ϕ̃t + 1

2
|∇ψ|2 − (γ + 2ω)ψ + gy

)

and ∇p1 = −ρ1∇
(
ϕ̃1,t + 1

2
|∇ψ1|2 − (γ1 + 2ω)ψ1 + gy

)
.

We can hence obtain the following Bernoulli condition at the interface (where
p = p1)

ρ
(
(ϕ̃t )c + 1

2
|∇ψ|2c − (γ + 2ω)χ + gη

)

= ρ1

(
(ϕ̃1,t )c + 1

2
|∇ψ1|2c − (γ1 + 2ω)χ1 + gη

)
(3.5)

where the subscript c signifies the evaluation at the common interface y =
η(x, t), χ = ψ(x, η, t) and χ1 = ψ1(x, η, t). Equation (3.5) will eventually
produce the evolution of the quantity

ξ := ρ(ϕ̃)c − ρ1(ϕ̃1)c

and this indicates that ξ can be chosen as a momentum variable in the Hamiltonian
formulation of the problem. The obvious candidate for a counterpart coordinate
variable is η(x, t) and it evolves according to the so called kinematic boundary
condition at the interface

ηt = v − uηx = v1 − u1ηx. (3.6)

This can be expressed in terms of the stream functions, using (2.3), as

ηt = −(ψx)c − (ψy)cηx = −(ψ1,x)c − (ψ1,y)cηx, (3.7)

and in terms of the velocity potentials, using (2.6), as

ηt = (ϕ̃y)c −
(
(ϕ̃x)c + γ η + κ

)
ηx = (ϕ̃1,y)c −

(
(ϕ̃1,x)c + γ1η + κ1

)
ηx. (3.8)

The kinematic boundary condition at the bottom, requiring that there is no velocity
component in the y-direction on the flat bed, is given by

(
ϕ̃(x,−h, t))

y
= 0 and

(
ψ(x,−h, t))

x
= 0 (3.9)

and, additionally, there is a kinematic boundary condition at the top, requiring that
there is no velocity component in the y-direction on the surface, given by

(
ϕ̃1(x, h1, t)

)
y
= 0 and

(
ψ1(x, h1, t)

)
x
= 0. (3.10)
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4 Hamiltonian Formulation

The functional H , which describes the total energy of the system, can be written as
the sum of the kinetic, K, and potential energy,V contributions. The potential part is

V (η) = ρg

∫
R

η∫
−h

y dydx + ρ1g

∫
R

h1∫
η

y dydx.

However, the potential energy is always measured from some reference value, e.g.
V (η = 0) which is the potential energy of the current (without wave motion).
Therefore, the relevant part of the potential energy, contributing to the wave
motion is

V(η) = V (η)−V (0) = ρg

∫
R

η∫
0

y dydx+ρ1g

∫
R

0∫
η

y dydx = 1

2
(ρ−ρ1)g

∫
R

η2dx.

In order to determine the kinetic energy of the wave motion, from the total kinetic
energy of the fluid

1

2
ρ

∫
R

η∫
−h

(u2 + v2)dydx + 1

2
ρ1

∫
R

h1∫
η

(u2
1 + v2

1)dydx (4.1)

one should subtract again the constant, but infinite kinetic energy of the current
which is

1

2
ρ

∫
R

0∫
−h

(γy + κ)2dydx + 1

2
ρ1

∫
R

h1∫
0

(γ1y + κ1)
2dydx. (4.2)

In terms of the dependent variables η(x, t), ϕ̃(x, t) and ϕ̃1(x, t) this kinetic
energy is

K(η, ϕ̃, ϕ̃1) = 1

2
ρ

∫
R

η∫
−h

(
(ϕ̃x + γy + κ)2 + (ϕ̃y)

2
)
dydx − 1

2
ρ

∫
R

0∫
−h

(γy + κ)2dydx

+ 1

2
ρ1

∫
R

h1∫
η

(
(ϕ̃1,x + γ1y + κ1)

2 + (ϕ̃1,y)
2
)
dydx − 1

2
ρ1

∫
R

h1∫
0

(γ1y + κ1)
2dydx
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= 1

2
ρ

∫
R

η∫
−h

(
(ϕ̃x)

2 + (ϕ̃y )
2 + 2ϕ̃x (γy + κ)

)
dydx

+ 1

2
ρ1

∫
R

h1∫
η

(
(ϕ̃1,x)

2 + (ϕ̃1,y)
2 + 2ϕ̃1,x(γ1y + κ1)

)
dydx

+ 1

6
(ργ 2 − ρ1γ

2
1 )

∫
R

η3dx + 1

2

(
ργ κ − ρ1γ1κ1

) ∫
R

η2dx. (4.3)

The Hamiltonian is therefore

H(η, ϕ̃, ϕ̃1) = K+ V = 1

2
ρ

∫
R

η∫
−h

(
(ϕ̃x)

2 + (ϕ̃y)
2 + 2ϕ̃x(γy + κ)

)
dydx

+ 1

2
ρ1

∫
R

h1∫
η

(
(ϕ̃1,x)

2 + (ϕ̃1,y)
2 + 2ϕ̃1,x(γ1y + κ1)

)
dydx

+ 1

6
(ργ 2 − ρ1γ

2
1 )

∫
R

η3dx + 1

2

(
(ργ κ − ρ1γ1κ1)+ (ρ − ρ1)g

) ∫
R

η2dx.

(4.4)

The Dirichlet–Neumann operators G(η) and G1(η) are defined as [18]

G(η)φ = (ϕ̃n)c

√
1+ η2

x and G1(η)φ1 = (ϕ̃1n1
)c

√
1+ η2

x (4.5)

where n and n1 are the unit exterior normals,
√

1+ (ηx)2 is a normalisation factor
and

φ(x, t) := (ϕ̃)c = ϕ̃(x, η(x, t), t) and φ1(x, t) := (ϕ̃1)c = ϕ̃1(x, η(x, t), t)

(4.6)

have been introduced as the interface velocity potentials and also introduce the
operator B [19] as

B := ρG1(η)+ ρ1G(η). (4.7)
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Using the boundary conditions

{
G(η)φ = −ηx(ϕ̃x)c + (ϕ̃y)c = ηt + (γ η + κ)ηx,

G1(η)φ1 = ηx(ϕ̃1,x)c − (ϕ̃1,y)c = −ηt − (γ1η + κ1)ηx
(4.8)

we get

G(η)φ +G1(η)φ1 = μ (4.9)

where

μ := (
(γ − γ1)η + (κ − κ1)

)
ηx. (4.10)

Introducing the momentum variable [2, 3]

ξ(x, t) = ρφ(x, t) − ρ1φ1(x, t) (4.11)

we can show that

Bφ = ρ1G(η)φ + ρG1(η)φ = ρ1μ+G1(η)ξ (4.12)

and thus

{
φ = B−1

(
ρ1μ+G1(η)ξ

)
φ1 = B−1

(
ρμ−G(η)ξ

) (4.13)

gives the explicit expression of φ and φ1 in terms of η and ξ . Due to the initial
assumptions on the velocity potentials, ξ(x, t) is a Schwartz class S(R) function in
x (for any t).

Usually there is no jump in the current velocity, hence in what follows we take
κ = κ1. The Hamiltonian of the system can be expressed in terms of variables
defined on the interface only, η and ξ :

H(η, ξ) = 1

2

∫
R

ξG(η)B−1G1(η)ξ dx − 1

2
ρρ1(γ − γ1)

2
∫
R

ηηxB
−1ηηxdx

−γ
∫
R

ξηηxdx−κ
∫
R

ξηxdx+ρ1(γ −γ1)

∫
R

ηηxB
−1G(η)ξ dx+ 1

6
(ργ 2−ρ1γ

2
1 )

∫
R

η3dx

+ 1

2

(
(ργ − ρ1γ1)κ + g(ρ − ρ1)

) ∫
R

η2dx. (4.14)

It is a natural physical fact that there is no flow through the common interface and
therefore the stream functions χ = ψ(x, η, t) and χ1 = ψ1(x, η, t) at the interface
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coincide,

χ = χ1 = −
∫ x

−∞
ηt (x

′, t)dx ′ = −∂−1
x ηt (4.15)

noting that due to (3.7)

d

dx
ψ(x, η, t) = ψx + ψy(x, η, t)ηx = −ηt .

By evaluating the variations of the Hamiltonian one can show that (3.8) and (3.5)
can be written in the form of a non-canonical Hamiltonian system [16]

ηt = δH

δξ
and ξt = −δH

δη
+ !χ = −δH

δη
− !∂−1

x ηt , (4.16)

where

! := ργ − ρ1γ1 + 2ω(ρ − ρ1) (4.17)

is a constant. Canonical equations of motion can be achieved by transforming the
velocity potential at the interface, ξ , to a new variable, ζ , via the transformation
(cf. [31])

ξ → ζ = ξ + !

2

x∫
−∞

η(x ′, t)dx, (4.18)

and due to (2.2) the variable ζ ∈ S(R) (for any t). For our further convenience
however Eq. (4.16) will be written in terms of the variable

u = ξx

and hence for a Hamiltonian in terms of u and η

ηt = −
(δH
δu

)
x

and ut = −
(δH
δη

)
x
− !ηt . (4.19)

5 Expanding the Dirichlet–Neumann Operators

The Dirichlet–Neumann operators can be expanded in terms of powers of η as

G(η) =
∞∑
j=0

G(j)(η) and G1(η) =
∞∑
j=0

G
(j)

1 (η), (5.1)
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where G(j)(η) is a homogeneous expression in η of degree j , that is G(j)(bη) =
bjG(j)(η) for any constant b. The explicit expansion is [19]

G(η) = DT (D)+DηD −DT (D)ηDT (D)+O(η2) (5.2)

and G1(η) = DT1(D)−DηD +DT1(D)ηDT1(D) +O(η2) (5.3)

where

D := −i∂x (5.4)

is a differential operator and

T (D) := tanh(hD) and T1(D) := tanh(h1D) (5.5)

have been introduced.
The operatorB, as defined in (4.7), which is a function of the Dirichlet–Neumann

operators, can therefore be expressed as

B = ρ

∞∑
j=0

G
(j)

1 (η)+ ρ1

∞∑
j=0

G(j)(η).

It is noted that the leading (zeroth order in η) term in the expansion of B−1,
represented by [B−1](0), is

[B−1](0) = 1

ρDT1(D) + ρ1DT (D)
. (5.6)

6 Approximations

6.1 The KdV Approximation

A KdV-type approximation will be derived (cf. [8]). This family of equations are
characterised as having weakly nonlinear and dispersive components.

Small parameters associated to the physical scales

ε = a

h1
and δ = h1

λ
(6.1)

are introduced where λ is the wavelength of the internal wave and a is the average
wave amplitude. Indeed, δ 
 1 is small for long waves λ� h1. This approximation
therefore is for the long-wave regime. The quantity h1k where k = 2π/λ is the wave
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number is therefore scaled as

O(h1k) = δ,

and therefore for the operatorD (which on monochromatic waves has an eigenvalue
equal to the wave number) clearly

O(h1D) = δ. (6.2)

To keep track of the order of the variables we replace h1D with δh1D and further
assume that h1D itself is of order 1. Since h and h1 are fixed constants, then their
ratio is of order 1. The wave elevation function is scaled according to

η→ εη. (6.3)

It can be shown as in [8] that the scaling of ξ , leading to the KdV approximation is

ξ → δξ. (6.4)

The expansion of the Dirichlet–Neumann operators, given in (5.2) and (5.3), can
be scaled as

G(η) → δ
(
D tanh(δhD)

)+ εδ2(DηD −D tanh(δhD)ηD tanh(δhD)
)+O(ε2δ4)

G1(η) → δ
(
D tanh(δh1D)

)− εδ2(DηD −D tanh(δh1D)ηD tanh(δh1D)
)

+O(ε2δ4).

Using the expansion for the hyperbolic tangent the Dirichlet–Neumann operators
can be represented as

G(η) = δ2
(
hD2 + εDηD

)
− δ4

(1

3
h3D4 + εh2D2ηD2

)

+ δ6
( 2

15
h5D6

)
+O(δ8, εδ6, ε2δ4) (6.5)

and

G1(η) = δ2
(
h1D

2 − εDηD
)
+ δ4

(
− 1

3
h3

1D
4 + εh2

1D
2ηD2

)

+ δ6
( 2

15
h5

1D
6
)
+O(δ8, εδ6, ε2δ4). (6.6)
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and so the inverse of the operator B is given by

B−1 = 1

δ2(ρ1h+ ρh1)
D−1

{
1− ε

ρ1 − ρ

ρ1h+ ρh1
η + ε2 (ρ1 − ρ)2

(ρ1h+ ρh1)2
η2

+ δ2
(

1

3

ρ1h
3 + ρh3

1

ρ1h+ ρh1
D2 − 1

3
ε
(ρ1 − ρ)(ρ1h

3 + ρh3
1)

(ρ1h+ ρh1)2
ηD2

− 1

3
ε
(ρ1 − ρ)(ρ1h

3 + ρh3
1)

(ρ1h+ ρh1)2
D2η + ε

ρ1h
2 − ρh2

1

ρ1h+ ρh1
DηD

)

− δ4
(

2

15

ρ1h
5 + ρh5

1

ρ1h+ ρh1
D4 − 1

9

(ρ1h
3 + ρh3

1)
2

(ρ1h+ ρh1)2
D4

)
+O(δ6, εδ4, ε2δ2, ε3)

}
D−1.

(6.7)

By assuming that ε and δ2 are of the same order, so as to permit a balancing
between nonlinearity and dispersion, the Hamiltonian to O(δ6) is therefore

H(η, ξ) = 1

2
δ4α1

∫
R

ξD2ξdx + 1

2
δ6α3

∫
R

ξDηDξdx − 1

2
δ6α2

∫
R

ξD4ξdx

− δ4κ

∫
R

ξηxdx − δ6α4

∫
R

ξηηxdx + 1

6
δ6α6

∫
R

η3dx + 1

2
δ4α5

∫
R

η2dx (6.8)

or

H(η, u) = 1

2
δ4α1

∫
R

u2dx + 1

2
δ6α3

∫
R

ηu2dx − 1

2
δ6α2

∫
R

u2
xdx

+ δ4κ

∫
R

ηudx + δ6 1

2
α4

∫
R

uη2dx + 1

6
δ6α6

∫
R

η3dx + 1

2
δ4α5

∫
R

η2dx (6.9)

where the following constants have been introduced

α1 = hh1

ρ1h+ ρh1
, (6.10)

α2 = 1

3

h2h2
1(ρ1h1 + ρh)

(ρ1h+ ρh1)2
, (6.11)

α3 = ρh2
1 − ρ1h

2

(ρ1h+ ρh1)2
, (6.12)

α4 = γρh1 + γ1ρ1h

ρ1h+ ρh1
, (6.13)
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α5 = (ργ − ρ1γ1)κ + g(ρ − ρ1), (6.14)

α6 = ργ 2 − ρ1γ
2
1 . (6.15)

The equations of motion (4.19) are now written in terms of η and u as

ηt + κηx + α1ux + δ2α3(uη)x + δ2α2uxxx + δ2α4ηηx = 0 (6.16)

and ut + κux + δ2α3uux + δ2α4(uη)x + δ2α6ηηx + α5ηx + !ηt = 0,
(6.17)

with an appropriate scaling of t . Noting the assumption that g � 2ωκ and
introducing a Galilean shift

X = x − κt, T = t, ∂X = ∂x and ∂T = ∂t + κ∂x (6.18)

the equations of motion can be written as

ηT + α1uX + δ2(α2uXXX + α3(uη)X + α4ηηX
) = 0 (6.19)

and uT − !α1uX + g(ρ − ρ1)ηX + δ2(− !α2uXXX

+ α3uuX + α4(uη)X − !α3(uη)X + α6ηηX − !α4ηηX
) = 0. (6.20)

The leading order linearised equations are therefore

ηT + α1uX = 0 (6.21)

and uT − !α1uX + g(ρ − ρ1)ηX = 0. (6.22)

The variables, η and u can be represented as

η(X, T ) = η0e
i(kX−�(k)T ) (6.23)

and u(X, T ) = u0e
i(kX−�(k)T ). (6.24)

Noting that the wave number, angular frequency and wave speed are related via
c(k) = �(k)/k means it can be written that

− ickη+ iα1ku = 0 (6.25)

and − icku+ ig(ρ − ρ1)kη − i!α1ku = 0. (6.26)
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This has solutions for observers moving with the flow as

c = 1

2

(
− !α1 ±

√
α2

1!
2 + 4α1g(ρ − ρ1)

)
. (6.27)

From (6.25) in the leading order u = c
α1
η. Considering a relation that goes to the

next order

u = c

α1
η + δ2(σηXX + μη2) (6.28)

for some constants μ and σ we can exclude u from the system (6.19)–(6.20) and
write both equations in terms of η. Of course they should coincide for the special
choice of the constants μ and σ which is

σ = − cα2(c + !α1)

α2
1(2c+ !α1)

(6.29)

and

μ = α1α4(c − !α1)− α3c(c+ 2!α1)+ α2
1α6

2α2
1(2c+ !α1)

(6.30)

giving the KdV equation

ηT + cηX + δ2
(

c2α2

α1(2c+ !α1)

)
ηXXX + δ2

(
α2

1α6 + 3α3c
2 + 3α1α4c

α1(2c + !α1)

)
ηηX = 0.

(6.31)

Recalling the constants (6.10)–(6.15) when γ = γ1 = ω = 0 this becomes

ηT +cηX+δ2 chh1(ρ1h1 + ρh)

6(ρ1h+ ρh1)
ηXXX+ 3

2
δ2c

ρh2
1 − ρ1h

2

hh1(ρ1h+ ρh1)
ηηX = 0, (6.32)

where

c = ±
√
hh1(ρ − ρ1)g

ρ1h+ ρh1
= ±

√
(ρ − ρ1)g

ρ1/h1 + ρ/h
.

In the case h→∞ we have

c∞ = ±
√
h1(ρ − ρ1)g

ρ1
. (6.33)
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Next, we recall fact that the canonical KdV equation

ET + EXXX + 6EEX = 0 (6.34)

has a one-soliton solution

E(X, T ) = 2ν2sech2ν(X − 4ν2T −X0)

where ν,X0 are constants, related to the soliton’s initial position and velocity.
Let us now introduce

A = δ2 α
2
1α6 + 3α3c

2 + 3α1α4c

α1(2c+ !α1)

B = δ2 c2α2

α1(2c+ !α1)

and rescale the variables

η = αE, X→ βX, T → βT

in order to match the coefficients of (6.34). This gives α = 6β2B/A. Applying
further a Galilean shift we obtain the one-soliton solution of (6.31) as

η(X, T ) = 12B
A ν2β2sech2

(
νβ(X −X0 − (c + 4ν2β2B)T )

)
.

Introducing the constant K = νβ which has a dimensionality (length)−1 and the
meaning of an analogue of a wave number, the above formula becomes

η(X, T ) = 12B
A K2sech2

(
K(X −X0 − (c + 4K2B)T )

)
. (6.35)

The maximal amplitude of the solitary wave is therefore

η0 = 12B
A K2

and it is related to the constant K. The propagation speed is

V = c + 4K2B

which is represented from the component of the leading order linear wave c and the
soliton speed 4K2B which is proportional to the amplitude η0 due to the K2 factor.
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Let us now analyse the irrotational case where

η0 = 4K2h2h2
1(ρ1h1 + ρh)

3(ρh2
1 − ρ1h2)

.

Since ρ and ρ1 are very close, and usually h is much bigger than h1, then η0 < 0
and the soliton is a depression wave. The velocity is

V = c

(
1+ δ2 2

3
K2hh1

)
= ±

√
hh1(ρ − ρ1)g

ρ1h+ ρh1

(
1+ δ2 2

3
K2hh1

ρ1h1 + ρh

ρ1h+ ρh1

)
.

The plus and minus signs are for the right and left running waves respectively.
Therefore the bigger wave travels faster.

6.2 The Benjamin–Ono Approximation

For the Benjamin–Ono approximation we consider the system with an infinitely
deep lower layer h → ∞ (cf. [9]). The Hamiltonian is (4.14) with the following
scaling

η→ δη, ξ → ξ and D→ δD. (6.36)

The Dirichlet–Neumann operators, given in (5.2) and (5.3), can be expanded,
taking into account that

lim
h→∞ tanh(hD) = sgn(D), lim

h→∞D tanh(hD) = |D|.

In order to explain the meaning of |D|, we introduce the Fourier transform

û(k) := F{u(x)}(k), u(x) = F−1{û(k)}(x).

Then

|D|u(x) := F−1{|k|û(k)}(x)

and similarly

sgn(D)u(x) := F−1{sgn(k)û(k)}(x).

There is a relation between the Hilbert transform, H

H{u}(x) := P.V.
1

π

∫ ∞
−∞

u(x ′)dx ′

x − x ′
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and the Fourier transforms, namely

F{H{u}(x)}(k) = −isgn(k)û(k)

or

H{u}(x) = −iF−1{sgn(k)û(k)}(x).

Hence

H{Du}(x) = −iF−1{|k|û(k)}(x) = −i|D|u(x),

or

|D| = iHD = H∂x.

The expansion is

G(η) = δ|D| + δ3(DηD − |D|η|D|)+O(δ5)

and G1(η) = δD tanh(δh1D)

−δ3(DηD −D tanh(δh1D)ηD tanh(δh1D)
) +O(δ6)

noting from [19] that the leading term for the infinite lower layer is |D|. Using the
expansion for the tanh, the Dirichlet–Neumann operators can be represented further
as

G(η) = δ|D| + δ3DηD − δ3|D|η|D| +O(δ5)

and G1(η) = δ2h1D
2 − δ3DηD +O(δ4)

and so the inverse of the operator B is given by

B−1 = 1

δρ1
|D|D−1

{
1− δ

ρ

ρ1
h1|D| +O(δ2)

}
D−1.

The Hamiltonian can therefore be written, using components of the expanded
operators as (see the notations (6.14) and (6.15))

H(η, ξ) = 1

2
δ2 h1

ρ1

∫
R

ξD2ξ dx − 1

2
δ3 h

2
1ρ

ρ2
1

∫
R

ξ |D|D2ξ dx − 1

2
δ3 1

ρ1

∫
R

ξDηDξ dx

− δ3γ1

∫
R

ξηηxdx − δ2κ

∫
R

ξηxdx + 1

6
δ3α6

∫
R

η3dx + 1

2
δ2α5

∫
R

η2dx +O(δ4)

(6.37)
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and in terms of η, u

H(η, u) = 1

2
δ2 h1

ρ1

∫
R

u2 dx − 1

2
δ3 h

2
1ρ

ρ2
1

∫
R

u|D|u dx − 1

2
δ3 1

ρ1

∫
R

ηu2 dx

+ δ3 γ1

2

∫
R

uη2 dx + δ2κ

∫
R

uη dx + 1

6
δ3α6

∫
R

η3dx + 1

2
δ2α5

∫
R

η2dx +O(δ4).

(6.38)

The equations of motion (4.19) are now written in terms of η and u as

ηt + κηx + h1

ρ1
ux − δ

h2
1ρ

ρ2
1

|D|ux − δ
1

ρ1
(ηu)x + δγ1ηηx = 0 (6.39)

and ut + κux − δ
1

ρ1
uux + δγ1(ηu)x + δα6ηηx + α5ηx + !ηt = 0. (6.40)

Again we perform the Galilean shift (6.18) noting that g � 2ωκ and α5 − !κ ≈
g(ρ − ρ1) to obtain

ηT + h1

ρ1
uX − δ

h2
1ρ

ρ2
1

|D|uX − δ
1

ρ1
(ηu)X + δγ1ηηX = 0 (6.41)

and uT −δ 1

ρ1
uuX+δγ1(ηu)X + δα6ηηX + g(ρ − ρ1)ηX + !ηT = 0. (6.42)

In the leading order

ηT = −h1

ρ1
uX and uT = −g(ρ − ρ1)ηX − !ηT .

Again using exponential representations (6.23) the above equations give

−cη = −h1

ρ1
u (6.43)

and − cu = (− g(ρ − ρ1)+ c!
)
η. (6.44)

This gives an equation c2 = −h1
(− g(ρ − ρ1)+ c!

)
/ρ1 with solutions

c = − h1

2ρ1
! ± 1

2

√
h2

1

ρ2
1

!2 + 4
h1

ρ1
g(ρ − ρ1). (6.45)
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Considering an expansion of the type of (6.28)

u = ρ1

h1
cη + δαη2 + δβ|D|η,

we can determine that

α = ρ1(ρ1c
2 + 2h1!c − γ1h

2
1! + ρ1γ1h1c + h2

1α6)

2h2
1

(
2ρ1c + h1!

) (6.46)

and

β = ρ(ρ1c
2 + h1!c)

2ρ1c + h1!
. (6.47)

The equation for η is therefore given by

ηT + cηX − δ
ρh1c

2

2ρ1c + h1!
|∂X|ηX + δ

−3ρ1c
2 + 3ρ1γ1h1c + h2

1α6

h1(2ρ1c + h1!)
ηηx = 0.

(6.48)

The obtained equation is the well known Benjamin–Ono (BO) equation [1, 29]
which is an integrable equation whose solutions can be obtained by the Inverse
Scattering method [23].

The Benjamin–Ono equation in the irrotational case ( γ = γ1 = ω = 0, α6 =
! = 0) becomes (cf. [5])

ηt + cηx − 1

2
δ
ρh1c

ρ1
|D|ηx − 3

2
δ
c

h1
ηηx = 0, (6.49)

where, from (6.45)

c = ±
√
h1

ρ1
g(ρ − ρ1).

This wavespeed of course coincides with (6.33).
The BO equation in the form

ηT + cηX +AηηX + B|∂X|ηX = 0 (6.50)

has a one-soliton solution

η(X, T ) = η0

1+
(Aη0

4B
)2 [

X −X0 −
(
c + 1

4Aη0

)
T
]2 (6.51)
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where the amplitude η0 and the initial displacement X0 are arbitrary constants.
From (6.48) for the internal wave equation

A := δ
−3ρ1c

2 + 3ρ1γ1h1c + h2
1α6

h1(2ρ1c + h1!)
(6.52)

and

B := δ
ρh1c

2

2ρ1c + h1!
. (6.53)

We note that (6.51) shows that the wavespeed of the soliton c + 1
4Aη0 depends on

its amplitude η0 and on the parameters of the system.

7 Discussion

The illustrative one-soliton solutions of the KdV (6.35) and the BO equation (6.51)
suffers, however, from the following disadvantages. First, the BO soliton is not in
the Schwartz class in the x-variable, which is not a very serious disadvantage from
the physical point of view. Second, the assumption (2.2) for η is violated since for
the one-soliton solutions have finite “mass” proportional to

∫
R
η(X, T )dX, which

for the KdV model is 24BK/A and for the BO model is πB/A. One can argue
again that this does not change the physical setup. Indeed, the average value of η
would be

〈η〉 =
∫
R
η(X, T )dX∫

R
dX

= 0

since the nominator is finite and the denominator is infinite. We note also that the
“mass”

∫
R
η(X, T )dX, is always a conserved quantity due to (4.19). Therefore the

extra condition (2.2) can be properly relaxed, allowing for solitary waves with a
finite “mass”.
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Numerical Simulations of Overturned
Traveling Waves

Benjamin F. Akers and Matthew Seiders

Abstract Dimension-breaking continuation as a numerical technique for comput-
ing large amplitude, overturned traveling waves is presented. Dimension-breaking
bifurcations from branches of planar waves are presented in two weakly-nonlinear
model equations as well as in the vortex sheet formulation of the water wave
problem, with the small scale approximation (Ambrose et al., J Comput Phys
247:168–191, 2013; Akers and Reeger, Wave Motion 68:210–217, 2017). The
challenges and potential of this method toward computing overturned traveling
waves at the interface between three-dimensional fluids is reviewed. Numerical
simulations of dimension-breaking continuation are presented in each model.
Overturned traveling three-dimensional waves are presented in the vortex sheet
system.

Keywords Traveling waves · Overturned · Numerical continuation
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1 Introduction

Traveling waves have a long and illustrious history with origins dating back at
least to Stokes, a wonderful review of which appears in [1]. It has been known
since Crapper wrote his exact solution to the capillary wave problem that there
exist traveling interfacial waves in which the free surface is not a function of the
horizontal coordinate [2]; we refer to these as overturned traveling waves. We will
focus on the infinite depth problem in this article, but almost all of the results
translate readily to finite depth, even the existence of exact solutions, for example
the Kinnersley waves [3].
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In this work we consider the mathematical and numerical difficulties associated
with the computation of overturned traveling waves. This work primarily focuses
on the water wave problem, but many of these same difficulties exist, without
significant changes, in the hydro-elastic and internal wave cases [4–6]. We study
periodic waves of the interface between two constant-density fluids undergoing
irrotational motions. The fluid depth is not crucial for this discussion, but we present
results only for the infinite depth case, with periodicity (of possibly very large
size) in the horizontal directions. We seek traveling wave solutions, in which the
free surface is of permanent form and steadily translating. The main goal being to
compute waves on a two-dimensional interface, between three-dimensional fluids,
which may have overhanging crests (or troughs).

Currently, no study has been conducted for fully three-dimensional water waves
which are both overturned and traveling in the full equations for potential flow.
A number of studies have considered overturning in the time dependent problem,
for example [7–12] with a review in [13]. There are also numerous computations
of permanent three-dimensional waves (both traveling and standing) in which
the interface is parameterized by the horizontal coordinates, for example [14–
17]. Additionally, there exist studies of axisymmetric three-dimensional overturned
traveling waves in fluid jets, where such symmetry is natural [18, 19]. There have
also been studies of fully three-dimensional overhanging traveling waves in model
equations [20].

There are a number of reasons for the absence of previous work on three-
dimensional overturned traveling waves. First, one must have a three-dimensional
formulation of the problem which allows for traveling waves which are overturning.
Conformal mappings are by far the most popular technique for the two-dimensional
problem, but do not generalize to three-dimensions, [21–23]. There are three modern
formulations which seem promising venues in which to compute overturned trav-
eling waves in three-dimensions. These include a Hamiltonian formulation which
allows for arbitrary interface parameterizations, and thus overturned interfaces,
proposed by Bridges and Dias [24]. The AFM (Ablowitz, Fokas, and Musslimani)
formulation has an extension for overturned interfaces [25, 26]. Finally, the vortex
sheet formulation of the water wave problem can by written with an arbitrary
parameterization, allowing for overturned interfaces [27–29]. More progress has
been made computing overturned waves in the vortex sheet formulation than the
other two. This reason for the increased simulation in the vortex sheet formulation is
historic rather than strategic, and there is hope that these other formulations may be
more amenable to simulation. The difficulties in numerical simulation in the vortex
sheet formulation will be discussed in later sections, in a sense motivating future
computational studies in alternative formulations.

A second reason for the lack of computations of overhanging three-dimensional
traveling waves is the extreme expense of the computation. This cost increase
comes in the natural manner of a dimension increase, but also in some more subtle
ways. By far the most popular, and arguably best two-dimensional method for
computing waves is via conformal mapping, which relies on complex variables, and
is thus unavailable in three-dimensions. Alternatively, boundary integrals methods
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typically result in a Birkhoff-Rott integral, which is notoriously difficult to compute
[30]. For periodic problems, the sum over periodic images can be rapidly evaluated
in the two-dimensional problem, again using complex variable techniques [13]. The
AFM formulation has no obvious obstacle to three-dimensional calculations, but
has yet to be used for numerical computations of overturned waves; there have,
however, been substantial computations of traveling non-overturned waves in this
formulation [31–33]. Overturned traveling wave computations in AFM are being
actively pursued [34].

In this work, we consider dimension-breaking as a continuation procedure for
computing three-dimensional overturned traveling waves. The idea is to compute
three-dimensional overturned traveling waves at large amplitude by first computing
a large amplitude two-dimensional wave, and then slowly adding transverse vari-
ation. Naturally this first requires accurate computations of the two-dimensional
profiles. One also needs to understand the manner in which transverse variation
enters into these secondary bifurcations. The accuracy of two-dimensional compu-
tations of overturned waves and the asymptotics of dimension-breaking bifurcations
will be both be discussed herein.

For two-dimensional fluids, with one-dimensional interfaces, a significant
amount of work has been done in the study of both dynamic and steady overturned
waves [35–42]. Most relevant to this work are the exact traveling solutions of
Crapper [2], the numerically computed waves of Meiron and Saffman [43], and the
large amplitude gravity-capillary solitary waves simulated in [42]. These represent
the three qualitatively different two-dimensional overturned traveling waves from
which three-dimensional overturned traveling waves can be expected to bifurcate.
To date, such overhanging bifurcations have only been computed near profiles
similar to those in Meiron and Saffman’s work [43], which need fewer points to be
resolved numerically than either the Crapper waves or the gravity-capillary solitary
waves in [42].

This chapter is an outgrowth of a number of recent studies by one of the authors.
For the two dimensional problem, the traveling wave ansatz developed in [28]
has since been used extensively to compute two-dimensional overturning traveling
waves [4–6, 29]. Examples of such waves are in Fig. 1. More recently, the three
dimensional overturned traveling waves were computed in an approximate model
[20]; this work uses dimension breaking to compute fully three dimensional profile
whose two-dimensional cross section resembles those computed by Meiron and
Saffman [43].

There has been significant recent interest in computing traveling waves in the
hydro-elastic problem, where the fluid interface includes an elastic membrane
[4, 5, 44–48]. The status of the field in computing overturned three-dimensional
hydroelastic waves is essentially in the same state as traveling water waves.
In neither setting (water waves or hydro-elastic waves) have overturned fully
three-dimensional waves been computed; in both cases planar, two-dimensional,
overturned waves have been computed using multiple formulations [4, 5, 28, 42, 48].

The body of the paper is organized as follows. In Sect. 2, the vortex sheet
formulation is presented, including the small scale approximation. This is the
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Fig. 1 Examples of extreme overturned traveling waves are depicted. The Crapper wave (g =
0, At = 1, τ = 2) is on the left; a wave in the regime of Meiron and Saffman (g = 1, τ = 0, At =
0.1) is on the right [43]

model for which three-dimensional overturned traveling waves are later computed.
In Sect. 3, numerical dimension-breaking is presented, using the Kadomtsev–
Petviashvili equation and its deep water analogue [49] for illustration purposes. In
Sect. 4, three-dimensional dimension breaking continuation is presented, including a
successful computation of a doubly periodic overturned traveling wave. Conclusions
and future research areas are presented in Sect. 5.

2 The Vortex Sheet Formulation

In this section we present the vortex sheet formulation, in the small-scale approx-
imation, describing the interface between two fluids which are undergoing irrota-
tional motions (one may be a vacuum). The two fluids are separated by an interface,
and are permitted to be sheared tangentially along the interface. Shear induces a
jump in tangential velocity which in turn comes with an associated vorticity, whose
magnitude is described by temporally and spatially varying function called the
vortex sheet strength μ. We will label the interface as X = (x1, x2, x3). Both the
interface and the vortex sheet strength will be described parametrically, as functions
of α and β, and will evolve in time t . The coordinate α is aligned with the direction
of propagation; β is the transverse direction. The parameterization is assumed to be
isothermal with equal step length, that is

Xα ·Xβ = 0 X2
α = X2

β.

A more general isothermal parameterization would allow different step lengths by
inserting a constant factor, typically λ, multiplying X2

β , as in [7, 50].
The continuity equation for the interface location is

Xt = U n̂+ V1 t̂1 + V2t̂2. (2.1)
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in which n̂ is the unit normal vector to the interface, t̂j are the unit tangent vectors in
the α and β directions respectively. The scalars U and Vj are the interface velocity
components in each of these directions. This is paired with an evolution equation
for vortex sheet strength, μ, essentially a Bernoulli equation,

μt = τκ +
(

μα√
X2
α

(V1 −W · t̂1)+ μβ√
X2
α

(V2 −W · t̂2)

)

+At
(
|W|2 + 2W · t̂1(V1 −W · t̂1)+ 2W · t̂2(V2 −W · t̂2)−

μ2
α + μ2

β

4X2
α

− gx3

)

(2.2)

Here Vj are the tangential components of the velocity of the interface in the
parameterized coordinates, not to be confused with W · t̂j, the velocity of fluid
particles on the interface. The parameter g is gravity and τ is surface tension
coefficient. The parameter At = ρ1−ρ2

ρ1+ρ2
is the Atwood ratio, comparing the densities

of the upper and lower fluids with densities of ρ2, ρ1, respectively; the water wave
problem is the limit At → 1. The vector W = (W1,W2,W3) is the velocity of the
fluid evaluated at the interface, whose closure for doubly 2π-periodic interfaces is

W = 1

4π
P.V .

∑
n∈Z

∑
m∈Z

∫ 2π

0

∫ 2π

0
(μ′αX′β − μ′βX′α)×

(X − X′ − 2πne1 − 2πme2)

|X − X′ − 2πne1 − 2πme2|3
dα′ dβ ′

(2.3)

in which ej are the cannonical unit vectors in the j th coordinate.
For two-dimensional flows, μβ = x1,β = x3,β = 0 and x2 = β. The sum in m

and integral in β ′ can be evaluated exactly with elementary calculus, yielding

W = 1

4π
P .V .

∑
n∈Z

∫ 2π

0
μ′α

⎛
⎜⎝
⎛
⎜⎝

x3

0

−x1

⎞
⎟⎠ −

⎛
⎜⎝

x′3
0

−x′1 + 2nπ

⎞
⎟⎠

⎞
⎟⎠ 2

(x1 − x′1 − 2nπ)2 + (x3 − x′3)2
dα′.

(2.4)

Complexifying the domain z = x1 + ix3 and using the identity,

1

2
cot

( z
2

)
=

∞∑
n=−∞

1

z+ 2nπ
, (2.5)

allows the infinite sum from (2.4) to be replaced with a hyperbolic cotangent,

W1 − iW3 = 1

4πi
P.V .

∫ 2π

0
μ′αcot

(
z− z′

2

)
dα′ (2.6)
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This integral, while still singular, can be numerically approximated with standard
methods, for example the alternating point trapezoid rule [51, 52]. It can also be
regularized be subtraction of a Hilbert transform, see [53]. The two-dimensional
problem is significantly simpler than the three-dimensional problem due funda-
mentally to access to the summation formulae (2.5). This formula comes from
residue calculus, thus the ease of two-dimensional simulations in the vortex sheet
formulation is reliant on complex variables, just like conformal mappings.

The Birkhoff-Rott integral for three-dimensional flows, (2.3), is notoriously
difficult to simulate, see [7, 30]. In this work we replace it with the small-scale
approximation of [7, 20],

W ≈ 1

2
Hα

[
μαXβ ×Xα√

X2
α

3

]
− 1

2
Hβ

[
μβXα ×Xβ√

X2
α

3

]
. (2.7)

The operators Hα and Hβ are the Riesz transforms, a generalization of the Hilbert
transform. The Riesz transforms have multiplicative Fourier symbols,

Ĥαf (k) = −i k1√
k2

1 + k2
2

f̂ , and Ĥβf (k) = −i k2√
k2

1 + k2
2

f̂

in which k1 is the wavenumber corresponding to α and k2 is the wavenumber
corresponding to β.

When searching for traveling waves, it is convenient to parameterize in the
traveling frame, so that μt = 0. The traveling wave ansatz for waves traveling in the
x1 direction is Xt = (c, 0, 0), which can be combined with (2.1), to give a closure
for the interface velocities

U = c(n̂)1, V1 = c(t̂1)1, V2 = c(t̂2)1.

The prescriptions of the tangential velocities, Vj , to equal the speed times the first
component of the tangent vector, t̂j, can be thought of as being chosen to preserve
the parameterization in the traveling frame. The normal velocity prescription is a
restriction on the physical fluid velocity at the interface to match that of the interface
itself.

Ultimately, the system of equations for computing a traveling wave in the vortex
sheet formulation in three dimensions requires finding four functions x1, x2, x3, and
μ as well as a speed c, which solve four equations,

0 = τκ + 1√
X2
α

(Ṽ · ∇)μ+ At

(
|W|2 + 2W · t̂1Ṽ1 + 2W · t̂2Ṽ2 − 1

4X2
α

|∇μ|2 − gx3

)
,

(2.8a)

0 = c(n̂)1 −W · n̂, (2.8b)
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0 = Xα · Xβ, (2.8c)

0 = X2
β −X2

α, (2.8d)

in which Ṽj = c(t̂j)1 −W · t̂j, and Ṽ = (Ṽ1, Ṽ2) are the tangential components
of the interface velocity differences. The first equation is effectively Bernoulli
in the traveling frame, the second equation matches the fluid velocity to the
traveling wave interface velocity, and the last two equations are descriptions of the
parameterization. The system is closed by appending a scalar equation specifying
a measure of the wave’s amplitude. Natural amplitude measures include the crest
height, total displacement, the amplitude of a Fourier mode of the third coordinate
of the interface, x3, or in dimension breaking computations the second derivative of
x3 with respect to β at the base of the trough.

3 Dimension-Breaking Continuation

From a numerical perspective, dimension-breaking is a tool to compute large ampli-
tude traveling waves with a continuation method which pays a lower-dimensional
cost for the bulk of the computation. The idea is simple and comes in three steps.
First, compute large two-dimensional waves by continuation in amplitude. The
trivial extension of these solutions to three dimensions yields a branch of planar
waves. Second, fix an amplitude and find the transverse period from which there is
a dimension-breaking bifurcation. In other words, find a wave with small transverse
variation that is near to the planar wave at the prescribed amplitude. This step is
the most delicate, and we will discuss it in detail in two model equations in this
section. Third, continue in transverse variation, for example by using ∂2

βx3(0, 0)
as a continuation parameter. The last step requires a continuation method in the
higher-dimensional space, thus is numerically more expensive. It is, however, not
a continuation in wave amplitude, but instead in transverse variation, thus this
method may begin at a large amplitude with lower cost than continuation from small
amplitude in the higher-dimensional problem directly. The search for overturned
waves is done in the two-dimensional problem, thus avoiding the need to search
parameter space in the more expensive three-dimensional setting.

In this section, we present numerical dimension-breaking continuation using
the Kadomtsev–Petviashvili (KP) equation [54] and a model equation from [55]
as pedagogical examples. These models are both derived for waves with small
transverse variation, thus are a natural setting to discuss dimension-breaking.
The former is a shallow water model, the latter a deep water model. Numerical
computations in the KP setting are unnecessary; the entire solution set has explicit
formula [56]. This problem however, can be used as a valuable test bed from
which numerics can be understood, and debugged, before application to problems
where exact solutions are unavailable. Neither of these pedagogical models include
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overturning; we will also compute dimension-breaking bifurcations in the small-
scale approximation of the vortex-sheet equations in Sect. 4.

The Kadomtsev–Petviashvili (KP) equation is

∂2
x

(
uxx − cu− 3

2
u2

)
− uyy = 0. (3.1)

which supports solitary traveling wave solutions

u = −c sech2
(√

c

2
(x − ct)

)
. (3.2)

At c = 1, a dimension-breaking bifurcation is known explicitly,

u = −4(1− δ2)

4− δ2

1− δcosh(ax) cos(ωy)

(cosh(ax)− δ cos(ωy))2
, (3.3)

a =
√

1− δ2

4− δ2 , ω =
√

3(1− δ2)

4− δ2 ,

in which the bifurcation parameter δ ∈ [0, 1). The transverse wavenumber, ω, is
a key quantity of interest in numerical computations, as this dictates the required
domain size upon which a dimension-breaking bifurcation occurs. The classic KP

rescaling gives that ωδ=0(c) =
√

3
4 c.

Ignoring the above exact solution for the dimension-breaking bifurcation, the
transverse wavenumber, d , and it’s accompanying function, u1(x), can be calculated
by linearizing the model equation using the following ansatz,

u = u0(x)+ δu1(x) cos (dy) ,

and linearizing with respect to δ, yields

∂2
x

(
u1,xx − cu1 − 3u0u1

)+ d2u1 = 0, (3.4)

in which we seek the pair (u1(x), d).
Typically Eq. (3.4) requires numerical solution, however for KP it can be solved

exactly. At c = 1 a solution to (3.4) is

u1 = sech

(
1

2
x

)
− 2 sech3

(
1

2
x

)
, with, d =

√
3

4
.

This pair can be used as an initial guess for the third step, in which we continue
in transverse variation. A measure of transverse variation which we have been
successful using is ∂2

βx3(0, 0). An example computation is in Fig. 2.
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Fig. 2 Traveling waves from the Kadomtsev–Petviashvili equation along with their speed
amplitude dependence. On the left, the solid (blue) curve is the planar wave speed amplitude
relationship; the dashed (red) curve is the three-dimensional wave speed. In the center, is the planar
wave from which the three-dimensional bifurcation occurs. On the right is the three-dimensional
interface whose speed and amplitude are marked with a star in the left panel

For a general problem, one will not have access to the exact solution for either the
planar wave or its bifurcation direction, (u1, d). As an example of such an equation,
we use the the deep water gravity-capillary model, from [55], presented here for
waves traveling at speed c,

(
(2− c)ux +Hu−Huxx − 3

2
uux

)
+ 2Huyy = 0, (3.5)

where H is the Hilbert transform, whose Fourier symbol is Ĥ(u) = −i sign(k)û(k).
The linearization about a planar solution u0 with transverse wavenumber d gives a
similar equation

(
(2− c)u1,x +Hu1 −Hu1,xx − 3

2
(u0u1,x + u1u0,x)

)
− 2d2Hu1 = 0 (3.6)

To solve (3.6) in this context is to compute real spectra of the operator,

L(u1) = (c − 2)H(∂xu1)− u1 + ∂xxu1 + 3

2
H(u0∂xu1 + u0,xu1) (3.7)

We approximate L via Fourier-collocation, then use the QR method on the discrete
approximation to L. The computed spectrum is then searched for real eigenvalues.
Any resulting pairs (u1(x), d) may then be used as an initial guess for the
dimension-breaking portion of the method, wherein we continue in transverse
variation (e.g. ∂2

yu(0, 0).) An example dimension-breaking bifurcation computed
in this equation is depicted in Fig. 3.
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Fig. 3 Traveling waves from Eq. (3.5) along with their speed amplitude dependence. On the left,
the solid (blue) curve is the planar wave speed amplitude relationship; the dashed (red) curve is the
three-dimensional wave speed. In the center, is the planar wave from which the three-dimensional
bifurcation occurs. On the right is the three-dimensional interface whose speed and amplitude are
marked with a star in the left panel

4 Overturning Three-Dimensional Traveling Waves

In this section we present three-dimensional computations of overturned waves in
the vortex sheet equations. As discussed earlier, the Birkhoff-Rott integral is very
difficult to simulate for three-dimensional periodic waves, see [30]. There have not
yet been successful computations of fully (non-planar) three-dimensional periodic
overturned traveling waves; in this section we present computations using the small-
scale approximation of [7].

Three-dimensional traveling waves in system (2.8) have been computed using
the small-scale approximation (2.7), resulting in similar waves and method to
those presented in [20]. The continuation method applied here uses a dimension-
breaking approach, but absent knowledge of the linearization about a planar wave as
discussed in the previous section. Such knowledge would lead to a more systematic
and reliable continuation procedure, but as of yet this approach has not been
implemented. Instead, a single dimension-breaking bifurcation is found via trial and
error, and then numerical continuation is used to find nearby dimension-breaking
bifurcations with similar amplitudes and periods.

A single three-dimensional bifurcation is presented here as an illustrative
example. In this example, overturned traveling waves exist on the interface between
a small density fluid and a higher density fluid, as first simulated by Meiron and
Saffman [43]. The profiles in this regime are quite regular, and need relatively few
points for accurate simulation (as compared to the profile in Fig. 3). This regime is
thus a good candidate for three dimensional simulations.

In Fig. 4, the pure gravity waves with near to equal mass fluids in the regime
first computed by Meiron and Saffman [43] are computed. The planar waves in
this regime overturn at large amplitude, and are very regular. Dimension-breaking
bifurcations were computed at a sampling of amplitudes, and the transverse period’s
amplitude dependence is reported. In this computation, a dimension-breaking
bifurcation was guessed via trial and error near h ≈ 0.1. There is potential for
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Fig. 4 Traveling waves with At = 0.1, g = 1, τ = 0. The overturning waves in this parameter
regime were discovered by Meiron and Saffman. The speed amplitude curve of planar traveling
waves is in the left panel. The aspect ratio (transverse/longitudinal period) of computed dimension-
breaking bifurcations is in the center panel. An example of an overturning planar profile, marked
with a diamond in the left panel, is in the right panel

2 4 6
h

0.22

0.24

0.26

0.28

0.3

0.32

c

-2 0 2
x1

-2

0

2

4

x 3

Fig. 5 Periodic traveling solution to system (2.8) with At = 0.1, g = 1, τ = 2 are depicted.
On the left, the solid (blue) curve is the planar wave speed amplitude relationship; the dashed (red)
curve is the speed of the three-dimensional waves. A three dimensional wave marked with the star
in the left panel is sliced at at its centerline, x2 = 0, in the center panel, with the full wave in the
right panel

the initial guess to be avoided via small amplitude arguments, as in [57], however
we fundamentally desire direct access to the transverse period at large amplitude.

Figure 4, illustrates the need for the operator-spectrum based approach outlined
in the previous section. First, following the transverse period from small amplitude
is numerically costly; continuation for the transverse period in system (2.8) requires
use of a three-dimensional solver with a number of simulations proportionate to the
number of steps in amplitude. Even worse, there is no guarantee that continuation
from small amplitude produces a large amplitude overturned wave.

An example of a parameter set where such brute force guessing has been
successful in computing overturned traveling waves is in Fig. 5. The overturned
waves in this regime are qualitatively similar to those computed by Meiron and
Saffman, however their bifurcation structure is simpler. The transverse period is
continuous as a function of amplitude, and large amplitude dimension-breaking
bifurcations were found.
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5 Conclusions and Future Research

In this work, we present techniques for computing three-dimensional overturned
traveling waves on fluid interfaces. The prospects and limitations of dimension-
breaking as a numerical continuation technique is evaluated with this aim in mind.
Numerical computations were presented for two-dimensional interfaces in the full
water wave problem. Dimension-breaking bifurcations were presented in the weakly
nonlinear models [54, 55] and in the vortex sheet formulation with the small-scale
approximation to the Birkhoff-Rott integral [7]. Dimension-breaking is a promising
continuation technique, whose importance grows with cost of three-dimensional
computation, thus should be of particular use for computing three-dimensional
overturned traveling waves in the Euler equations.
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1 Introduction

The two-dimensional irrotational water wave problem with a free surface !(t) =
{y = η(x, t) : x ∈ R} over an L-periodic bottom B = {y = b(x) : b(x) =
b(x + L), x ∈ R} is governed by a system of nonlinear PDEs which are given by

∂2
xφ + ∂2

yφ = 0, in �(t),

∂�nφ = 0, on B,

∂t η = ∂yφ − (∂xη)∂xφ, on !(t),

∂tφ = −1

2
((∂xφ)

2 + (∂yφ)
2)+ μ∂x

(
∂xη√

1+ (∂xη)2

)
− gη, on !(t),

for the flow potential φ and the elevation of the top surface η, where�(t) = {(x, y) :
b(x) < y < η(x, t)}, where g is the gravitational acceleration, and where μ ≥ 0 is
the surface tension parameter. For a non-dimensionalized version see [3]. It is well
known that the water wave problem is completely described by the elevation η of the
top surface and the horizontal velocity w = ∂xφ|! at the top surface !(t) (Fig. 1).

We are interested in the qualitative behavior of the solutions:

• The linearized problem is solved by Bloch modes, cf. [8],

(
η

w

)
= eilxfn(l, x)e

iωn(l)t ,

with n ∈ Z \ {0}, fn(l, x) = fn(l, x + L) ∈ C
2, and l ∈ [−π

L
, π
L

]
. Curves of

eigenvalues ωn(l) are sketched in Fig. 2. They are ordered as ωn(l) ≤ ωn+1(l)

with ω−n(l) = −ωn(l) for n ∈ Z \ {−1, 0, 1} and ω1(l) = ω−1(−l). Due to the
periodicity of the bottom, spectral gaps can occur.

• With the ansatz

(
η

w

)
= ε2A(ε(x − ct), ε3t)f1(0, x) (1.1)

Γ(t)

Ω(t)
B

L

Fig. 1 The water wave problem over an L-periodic bottom
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Fig. 2 The panels show the curves of eigenvalues l �→ ωn(l), n ∈ Z \ {0} of the linearized
water wave problem. The left panel shows the curves of eigenvalues in the homogeneous case,
i.e., b(x) = const., in case of positive surface tension. For L = 2π the dispersion relation ω2 =
(k + μk3) tanh(k) in Fourier space transfers to Bloch space by setting k = n + l with n ∈ Z. In
case of a periodic bottom, cf. [8], spectral gaps, such as sketched in the right panel, can occur. The
modes in the blue circle can be described by a KdV approximation. The modes in the red circle
can be described by an NLS approximation. For the derivation of the NLS equation it is essential
that ω2(0) > 0

a KdV equation

∂T A = ν1∂
3
XA+ ν2∂X(A

2), (1.2)

can be derived, with amplitude A(X, T ) ∈ R, with group velocity c ∈ R, with
0 < ε 
 1 a small perturbation parameter, and with coefficients ν1, ν2 ∈ R.

• With the ansatz

(
η

w

)
= εA(εx, ε2t)fn(0, x)eiωn(0)t + c.c. (n �= ±1) (1.3)

an NLS equation

i∂T A = ν1∂
2
XA+ ν2A |A|2 , (1.4)

can be derived, with amplitude A(X, T ) ∈ C, with 0 < ε 
 1 a small
perturbation parameter, and with coefficients ν1, ν2 ∈ R.

Our future goal is to prove error estimates between these approximations and true
solutions of the water wave problem. Such estimates are a nontrivial task since for
the KdV approximation we have to control solutions of order O(ε2) on an O(1/ε3)-
time scale, and for the NLS approximation we have to control solutions of order
O(ε) on an O(1/ε2)-time scale.

(A) In the homogeneous case, b(x) = −1, there are two fundamentally
different approaches to prove KdV approximation results. For solutions to
the KdV equation with analytic initial conditions a Cauchy–Kowalevskaya
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based approach can be chosen, see [15, 18]. Working in spaces of analytic
functions gives some artificial smoothing which allows to gain the above
explained missing order with respect to ε via the derivative in front of the
nonlinear terms in the KdV equation. This ‘analytic’ approach is very robust
and works without a detailed analysis of the underlying problem, but doesn’t
give optimal results.

For initial conditions in Sobolev spaces the underlying idea to gain
such estimates is conceptually rather simple, namely the construction
of a suitably chosen energy which includes the terms of order O(ε2)

in the equation for the error, such that for the energy finally O(ε3t)

growth rates occur. However, the method is less robust since for every
single original system a different energy occurs and the major diffi-
culty is the construction of this energy. Estimates that the formal KdV
approximation and true solutions of the different formulations of the
homogeneous water wave problem stay close together over the natural KdV
time scale have been shown for instance in [7, 9, 22, 23] by using this
approach.

(B) In the homogeneous case, b(x) = −1, the NLS approximation has
been justified in various papers for a number of original systems, cf.
[14, 16, 19]. If no quadratic terms are present in the original system a
simple application of Gronwall’s inequality allows to prove the validity
of the NLS approximation. Quadratic terms can be eliminated by a near
identity change of variables, if a non-resonance condition is satisfied. This
non resonance condition has been weakened in a number of papers, cf.
[20]. The NLS approximation has been justified for the two-dimensional
irrotational water wave problem in case of infinite depth and no sur-
face tension [25, 26], and in case of finite depth and no surface tension
[11].

(A+B) KdV approximation results in the spatially periodic case are only known
for small perturbations of a flat bottom, cf. [3, 4, 13]. To our knowledge
NLS approximation results in the spatially periodic case do not exist for the
water wave problem.

It is the purpose of this paper to present for a phenomenological model, which
has similar properties as the water wave problem, some approximation results and
the underlying ideas of their proofs. One focus is on results which are robust
in the sense that they hold under very weak non-resonance conditions without a
detailed discussion of the resonances. This robustness is achieved by working in
spaces of analytic functions. We explain that, if analyticity is dropped, the KdV
approximation and the long wave NLS approximation make wrong predictions
in case of unstable resonances and suitably chosen periodic boundary conditions.
Finally we outline how, we think, the presented ideas can be transferred to the water
wave problem.
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2 The Boussinesq Klein–Gordon Model

In Bloch space the two-dimensional irrotational water wave problem is formally of
the form

∂t ũn(l, t) = iωn(l)̃un(l, t)

ă +i
∑

n1,n2∈Z\{0}

∫ π
L

− π
L

βn,n1,n2(l, l − l1, l1)̃un1(l − l1, t )̃un2(l1, t)dl1 + . . . ,

with n ∈ Z\{0}, ũn(l, ) = ũn(l+ 2π
L
, t), and nonlinear kernels βn,n1,n2(l, l−l1, l1) ∈

R, cf. [21]. The model, which we consider, is a Boussinesq equation coupled with a
Klein-Gordon equation, in the following called BKG system. It possesses a Fourier
mode representation which shares several properties with the above Bloch wave
representation of the water wave problem. It is given by

∂2
t u = α2∂2

xu+ ∂2
t ∂

2
xu+ ∂2

x (auuu
2 + 2auvuv + avvv

2), (2.1)

∂2
t v = ∂2

xv − v + buuu
2 + 2buvuv + bvvv

2, (2.2)

with u = u(x, t), v = v(x, t), x, t ∈ R, and coefficients α > 0, auu, . . . , bvv ∈ R.
The curves of eigenvalues are given by

ωu(k) = αk√
1+ k2

and ωv(k) =
√

1+ k2. (2.3)

Hence, the spectral picture of the water wave problem over a periodic bottom, which
is qualitatively sketched in the right panel of Fig. 2, and of the BKG system, see
Fig. 3, look qualitatively the same. Moreover, in both systems the nonlinear terms
vanish for modes associated to ω±1, resp. ωu, at the wave numbers l = 0, resp.
k = 0. Since the subsequent non-resonance conditions (3.1) and (3.5) come from
the Bloch/Fourier mode representations of the original systems they are the same
for all original systems with a spectral picture as plotted in Fig. 2.

Inserting the ansatz

ε2ψKdV
u (x, t) = ε2A(ε(x − αt), ε3t) and ε2ψKdV

v = 0 (2.4)

into (2.1)–(2.2) yields the KdV equation

∂T A = ν1∂
3
XA+ ν2∂X(A

2), (2.5)

with coefficients ν1, ν2 ∈ R, the slow temporal variable T = ε3t , and the long
spatial variable X = ε(x − αt).
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k

ωu

ωv

k

ωu

ωv

Fig. 3 The curves of eigenvalues ±ωu, ±ωv for the linearized BKG system plotted as a function
over the Fourier wave numbers in case α2 = 1 (left) and α2 = 5 (right). The modes in the blue
circles are described by the KdV approximation. The modes in the red circles are described by the
NLS approximation

Inserting the ansatz

εψNLS
u (x, t) = O(ε2) and εψNLS

v = εA(εx, ε2t)eit + c.c.+O(ε2)

(2.6)

into (2.1)–(2.2) yields the NLS equation

i∂T A = ν1∂
2
XA+ |A|2A = 0, (2.7)

with coefficients ν1, ν2 ∈ R, the slow temporal variable T = ε2t , and the long
spatial variable X = εx. The ansatz is called long wave NLS approximation since
we have k0 = 0 for the wave number of the underlying carrier wave ei(k0x+ω0t ).

We are interested in the validity of the KdV approximation and long wave NLS
approximation for the BKG system. For this phenomenological model we present
some approximation results and explain the underlying ideas. Approximation
estimates are non-trivial, since solutions of order O(ε2), resp. O(ε), have to be
controlled on an O(1/ε3), resp. O(1/ε2), time scale. That these approximation
results are really subtle is explained in the next section when the resonance structure
of the problem is discussed.

3 The Resonance Structure

The BKG system is written as first order system

∂tU = #U +N(U,U),
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where#U stands for the linear terms and where the nonlinear terms are represented
by the symmetric bilinear mapping N(U,U).

3.1 Resonances in the KdV Case

The error εβR = U − ε2ψKdV made by the KdV approximation ε2ψKdV satisfies

∂tR = #R + 2ε2N(ψKdV, R)+O(ε3),

where O(ε3) contains the nonlinear terms with respect to R and the residual
terms, i.e., the terms which do not cancel after inserting the KdV approximation
into the BKG system. In order to obtain O(ε3+β) for the residual terms in
this equation, higher order terms have to be added to the KdV approximation
ε2ψKdV. This is standard and so we will concentrate on other aspects. Due to
the term 2ε2N(ψKdV, R) a simple application of Gronwall’s inequality is not
sufficient to obtain an O(1)-bound for R on the long O(1/ε3)-time scale. The
difficulty can be overcome by normal form transformations and energy esti-
mates. In this section we will concentrate on the normal form transformations,
i.e., near identity change of variables, and on the resonances which prevent
the elimination of the quadratic terms by normal form transformations. A term
ψKdVRj can be eliminated in the i-th equation with a near identity change of
variables

Ri = R̃i + ε2M(ψKdV, R̃j ),

with M a suitably chosen bilinear mapping, if the non-resonance condi-
tion

ωi(k) �= ωj (k) (3.1)

is satisfied for all k ∈ R. Herein, ωj is the curve of eigenvalues corresponding to
Rj . Hence, in the Ru-equation the term 2ψKdVRu cannot be eliminated. If only
this term is resonant, it can be controlled with energy estimates. However, for a
coefficient α > 2 in (2.1) there are k1, k2 > 0 with ωu(kj ) = ωv(kj ) for j = 1, 2,
see the right panel of Fig. 3. Hence, the terms 2ψKdV(0)Rv(kj ) for j = 1, 2 cannot
be eliminated in the Ru-equation.

Similarly, in the Rv-equation the term 2ψKdVRv cannot be eliminated. If only
this term is resonant, it can be controlled with energy estimates. The fact, that
ωu(kj ) = ωv(kj ) for j = 1, 2, implies now also that the terms 2ψKdV(0)Ru(kj )
for j = 1, 2 cannot be eliminated in the Rv-equation.

These resonances can be used to prove that in case of 2π/k1-periodicity, with
k2 �∈ k1N, the KdV equation makes wrong predictions about the dynamics of the
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BKG system. In order to illustrate this, we make the ansatz

u = ε2A(ε2t)+ εnA1(ε
2t)eiωu(k1)t eik1x + εnA−1(ε

2t)e−iωu(−k1)t e−ik1x,

v = εnB1(ε
2t)eiωv(k1)t eik1x + εnB−1(ε

2t)eiωv(−k1)t e−ik1x,

to analyze the resonance at the wave number k = k1. Equating the coefficients to
zero at ε4e0it e0ix in the u-equation and at εn+2eiωu(k1)t eik1x both in the u and v-
equation yields, with τ = ε2t , that

∂2
τ A = 0, (3.2)

2iωu(k1)∂τA1 = −2k2
1(auuAA1 + auvAB1), (3.3)

2iωv(k1)∂τB1 = 2(buuAA1 + buvAB1). (3.4)

The first equation is the KdV equation, i.e., (2.5) restricted to the wave number
k = 0. Hence, for instance on a O(ε−1/2)-time scale with respect to τ , the
variable A can be considered to be constant in time. The last two equations can
be written as

∂τ

(
A1

B1

)
= M ă

(
A1

B1

)
,

with

M = 1

iωu(k1)

(−auuk2
1A −auvk2

1A

buuA buvA

)
.

By choosing the real-valued coefficients auu, auv, buu, and buv in a suitable way,
namely

(auuk
2
1 + buv)

2 − auvbuuk
2
1 < 0,

the matrix M has an eigenvalue with strictly positive real part. Therefore, the
occurrence of such an eigenvalue is excluded in case auvbuu ≤ 0. Hence, for
suitably chosen coefficients growth rates eβτ = eβε

2t = eβT/ε with a β > 0
occur. These allow us to bring εnA1 and εnB1, which are initially of order O(εn),
to an order O(ε2) at a time T = O((n − 2)ε| ln(ε)|) 
 1. Therefore, we
have that v = O(ε2) far before the natural time scale of the KdV equation.
Hence, in this situation the KdV approximation makes wrong predictions. These
calculations can be transferred into a rigorous proof of a non-approximation result
in case of 2π

k1
-periodic boundary conditions using analysis as presented in [24]

(Fig. 4).
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Fig. 4 The mode distribution for t = 0 in the KdV case and the mode distribution for t =
O(| ln ε|/ε2) 
 O(1/ε3). In the NLS case the magnitude ε2 has to be replaced by ε and the
second time is t = O(| ln ε|/ε) 
 O(1/ε2). The KdV/NLS approximation is no longer valid in
the right picture, since the modes at ±k1 are of the same order as the KdV/NLS modes at k = 0

3.2 Resonances in the NLS Case

The error εβR = U − εψNLS, made by the NLS approximation εψNLS, satisfies

∂tR = #R + 2εN(ψNLS, R)+O(ε2),

where O(ε2) contains the nonlinear terms with respect to R and the residual
terms, i.e., the terms which do not cancel after inserting the NLS approximation
into the BKG system. In order to obtain O(ε2+β) for the residual terms in this
equation, higher order terms have to be added to the NLS approximation εψNLS.
This is standard and so we will concentrate on other aspects. Due to the term
2εN(ψNLS, R) a simple application of Gronwall’s inequality is not sufficient to
obtain an O(1)-bound for R on the long O(1/ε2)-time scale. A term ψNLSRj can
be eliminated in the i-th equation by a near identity change of variables if the non-
resonance condition

ωi(k) �= ω2(0)+ ωj (k), (3.5)

with ω2(0) = 1 for (2.1)–(2.2), is satisfied for all k ∈ R.
The resonances found in Fig. 5 can be used to prove that in case of 2π/k1-

periodicity with k2 �∈ k1N the NLS equation makes wrong predictions about the
dynamics of the BKG system. In order to illustrate this we make the ansatz

u = ε2A(εt)+ εnA1(εt)e
−iωu(k1)t eik1x + c.c.,

v = εB(εt)eit + εnB1(εt)e
−iωv(k1)t eik1x + c.c.,

to analyze the resonance at the wave number k = k1. Equating the coefficients
to zero at εeit e0ix in the v-equation, at εne−iωu(k1)t eik1x in the u-equation, and at
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kk1 kk2

kk1 k

Fig. 5 The intersection points of k �→ ωi(k), and k �→ ωv(0) ± ωj (k) correspond to resonances.
The associated nonlinear terms cannot be eliminated by near identity change of coordinates. The
two graphs in the first line show that in the Ru-equation terms ψNLSRv(k1) and ψNLSRu(k2) for
wave numbers k1 and k2 cannot be eliminated. For the same wave number k1 the term ψNLSRu(k1)

cannot be eliminated in the Rv-equation

εne−iωv(k1)t eik1x in the v-equation, yields, with τ = ε2t , that

∂2
τ A = 0, (3.6)

2i∂τB = O(ε), (3.7)

−2iωu(k1)∂τA1 = −2avvk2
1BB1, (3.8)

−2iωv(k1)∂τB1 = 2buvBA1, (3.9)

where we used −ωu(k1) = 1− ωv(k1). The first equation is the NLS equation, i.e.,
(2.7) restricted to the wave number k = 0. Hence, for instance on an O(ε−1/2)-time
scale with respect to τ , the variable B can be considered to be constant in time. The
last two equations can be written as

∂2
τ A1 = !A1 resp. ∂2

τ B1 = !B1,

with

! = |B|2
ωu(k1)ωv(k1)

avvbuv.
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Since ωu(k1)ωv(k1) > 0, by choosing avvbuv positive we have growth rates eβτ =
eβεt = eβT/ε with a β > 0. These allow us to bring εnA1 and εnB1, which are
initially of order O(εn), to an order O(ε) at a time T = O((n − 1)ε| ln(ε)|) 
 1.
Therefore, we have that v = O(ε) far before the natural scale of the NLS equation.
Hence, in this situation the NLS approximation makes wrong predictions. These
calculations can be transferred into a rigorous proof using analysis as presented
in [24].

4 Validity in the Non-oscillatory Case

In this section we discuss the validity of the KdV approximation for the BKG
system. There are essentially three different results which we would like to present.
As in [1] the subsequent analysis is not only valid for the KdV limit, but also for the
inviscid Burgers and the Whitham limit.

4.1 Approach 1: Using Normal Form Transformations
in the Non-resonant Case

In [6] the BKG system has been considered in case α = 1 or more general in case
without additional resonances, i.e., in case ωu(k) �= ωv(k) for all k ∈ R. Then with
normal form transformations and energy estimates the following result has been
established.

Theorem 4.1 Let A ∈ C([0, T0],H 8(R,R)) be a solution of the KdV equation
(2.5). Then there exist ε0, C > 0 such that for all ε ∈ (0, ε0) we have solutions
(u, v) of (2.1)–(2.2) with

sup
t∈[0,T0/ε

3]
sup
x∈R
|(u, v)(x, t) − (ε2ψKdV

u (x, t), 0)| ≤ Cε7/2.

Sketch of the Proof We write a true solution of (2.1)–(2.2) as approximation
plus error, i.e., u = ε2ψu + εβRu and v = ε4ψv + εβRv with β = 7/2,
where (ε2ψu, ε

4ψv) is an improved approximation which is formally O(ε4) close
to (ε2ψKdV

u (x, t), 0). The error satisfies

∂2
t Ru = α2∂2

xRu + ∂2
t ∂

2
xRu + 2ε2∂2

x (auuψuRu + auvψuRv)+O(ε3), (4.1)

∂2
t Rv = ∂2

xRv − Rv + 2ε2buuψuRu + 2ε2buvψuRv +O(ε3). (4.2)
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After elimination of the non-resonant terms the system decouples up to order O(ε3),
namely

∂2
t Ru = α2∂2

xRu + ∂2
t ∂

2
xRu + 2ε2∂2

x (auuψuRu)+O(ε3),

∂2
t Rv = ∂2

xRv − Rv + 2ε2buvψuRv +O(ε3),

where we used the same symbols for the old and new variables. Then multiplying
the first equation with ∂t∂

−2
x Ru and the second equation with ∂tRv gives, after

integration with respect to x, the energy estimates

∂t

∫
((∂t ∂

−1
x Ru)

2 + α2(Ru)
2 + (∂tRu)

2 + 2ε2auuψu(Ru)
2

+(∂tRv)2 + (∂xRv)
2 + (Rv)

2 − 2ε2buvψu(Rv)
2)dx = O(ε3),

where we used integration by parts, ∂tψu = O(ε), and ∂xψu = O(ε). Hence, the
integral on the left hand side stays O(1)-bounded on an O(1/ε3)-time scale. Since
similar estimates can be obtained for the derivatives, the Hs-norm of the error stays
O(1)-bounded on the O(1/ε3)-time scale.

4.2 Approach 2: Using the Hamiltonian

In the resonant case the terms 2ε2∂2
x (auvψuRv) and 2ε2buuψuRu cannot be

eliminated from the equations for the error (4.1)–(4.2). In Sect. 3.1 we have seen
that then in case of suitably chosen coefficients positive growth rates occur. There
we have also seen that positive growth rates can not occur in case auvbuu ≤ 0, i.e.,
when auv and buu have different signs. The second result is obtained in this situation,
more precisely, when the lowest order part of the error equation can be written as
Hamiltonian system. Then the ideas of [1] apply. There, a first justification result
for the KdV approximation of a scalar dispersive PDE, posed in a spatially periodic
medium of non-small contrast, has been obtained via some suitably chosen energy.
It is based on

d

dt
H(R(t), t) = ∇H · ∂tR(t) + ∂tH = 0+O(ε3), (4.3)

since ε2∂tψu = O(ε3) due to the long wave character of the KdV approximation
with respect to time. The approximation result is as above. The sketch of the proof
in this case is as follows. Without performing a normal form transform as before,
we multiply the first equation of the system for the error (4.1)–(4.2) with ∂t ∂−2

x Ru
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and the second equation with ∂tRv . This gives after integration with respect to x the
energy estimates

∂t (buuEu − auvEv) = ε2s1 +O(ε3),

with

Eu =
∫
(∂t∂

−1
x Ru)

2 + α2(Ru)
2 + (∂tRu)

2 + 2ε2auuψu(Ru)
2dx,

Ev =
∫
(∂tRv)

2 + (∂xRv)
2 + (Rv)

2 − 2ε2buvψu(Rv)
2dx,

s1 = 2auvbuu

∫
(∂tRu)ψuRv + (∂tRv)ψuRudx,

where we used integration by parts, ∂tψu = O(ε), and ∂xψu = O(ε). Hence, in
case of opposite signs of auv and buu the term |buuEu− auvEv | is an energy and for
this energy s1 can be written as time-derivative plus some small error, i.e.,

∂t

∫
ψuRuRvdx +O(ε),

again due to ∂tψu = O(ε). Therefore, the time derivative term can be included into
the energy on the left hand side. Then we have

∂t (buuEu − auvEv − 2ε2auvbuu

∫
ψuRuRvdx) = O(ε3),

and so the modified energy stays O(1)-bounded on an O(1/ε3)-time scale. Since
similar estimates can be obtained for the derivatives, the Hs-norm of the error stays
O(1)-bounded on the O(1/ε3)-time scale.

4.3 Approach 3: Handling Unstable Resonances

The third approach also works in case of unstable resonances. In order to explain
the underlying idea we go back to the amplitude system (3.3)–(3.4) describing
the unstable resonances. In order to have an O(1)-bound for A1 on an O(1/ε3)-
time scale with respect to t we need that A1 is exponentially small initially, i.e.,
A1(0) = e−r/ε for an r > 0. Since eβε

2t e−r/ε ≤ 1 for t ≤ r/(βε3) the exponential
smallness for t = 0 allows us to come at least to the correct time-scale. This idea
has to be combined with energy estimates for the wave numbers close to k = 0.
With this respect the approach is more involved than the one used in [15, 18] for the
water wave problem over a flat bottom. There, functions exponentially decaying
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with respect to the Fourier wave numbers for |k| → ∞ were used for a local
existence and uniqueness proof.

Our third approximation result is as follows.

Theorem 4.2 Let A be a solution of the KdV equation (2.5) with

sup
T ∈[0,T0]

∫
|Â(K, T )|er |K |dK <∞

for an r > 0. Then there exist ε0 > 0, T1 ∈ (0, T0], C > 0 such that for all
ε ∈ (0, ε0) we have solutions (u, v) of (2.1)–(2.2) with

sup
t∈[0,T1/ε3]

sup
x∈R
|(u, v)(x, t) − (ε2ψKdV

u (x, t), 0)| ≤ Cε7/2.

A detailed proof will be given in a forthcoming paper.

Remark 4.3 For coefficients satisfying (auuk2
1+buv)2−auvbuuk2

1 ≥ 0 and auvbuu >
0, the approach of Sect. 4.2 does not apply although we have a stable resonance, cf.
Sect. 3.1. We expect that in this parameter regime the approach of Sect. 4.3 with the
exponential weights can be avoided and a mixture of normal form transformations
and energy estimates like in [20] applies.

5 Validity in the Oscillatory Case

An NLS approximation result in a periodic medium has been obtained in [2].
However, due to ω1(0) = 0 in the spectral picture plotted in Fig. 2 the approach from
[2] does not transfer to the situation we are interested in. A spectral picture, similar
to the one for the BKG system, occurs for the Klein–Gordon–Zakharov (KGZ)
system. A long wave NLS approximation result for the KGZ system can be found
in [17]. A NLS approximation result for wave packets with carrier wave number
k0 > 0 for systems including the BKG system can be found in [5, 10, 12]. However,
none of these results apply in the situation of long wave NLS approximations with
unstable resonances.

In order to explain the underlying idea we again go back the amplitude system
(3.8)–(3.9) describing the unstable resonances. In order to have an O(1)-bound for
A1 on an O(1/ε2)-time scale with respect to t , we need that A1 is exponentially
small initially, i.e.,A1(0) = e−r/ε for an r > 0. Since eβεte−r/ε ≤ 1 for t ≤ r/(βε2)

the exponential smallness for t = 0 allows us to come at least to the correct time-
scale. This idea has to be combined with energy estimates for the wave numbers
close to k = 0.
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Theorem 5.1 Let A be a solution of the NLS equation (2.7) with

sup
T ∈[0,T0]

∫
|Â(K, T )|er |K |dK <∞

for an r > 0. Then there exist ε0 > 0, T1 ∈ (0, T0], C > 0 such that for all
ε ∈ (0, ε0) we have solutions (u, v) of (2.1)–(2.2) with

sup
t∈[0,T1/ε

2]
sup
x∈R
|(u, v)(x, t)− (0, εψNLS

u (x, t))| ≤ Cε3/2.

A detailed proof will be given in a forthcoming paper.

6 How to Transfer the Ideas to the Water Wave Problem?

In [24] a counterexample has been constructed showing that the NLS approximation
makes wrong predictions about the dynamics of the water wave problem with
surface tension and periodic boundary conditions, if the surface tension and the
periodicity is suitably chosen. Since the water wave problem with a flat bottom is a
special case of the periodic bottom case this counterexample transfers to the periodic
water wave problem. Since the construction of this counterexample is robust under
small perturbations of the bottom b, a counterexample can be constructed for a
slightly periodic bottom, too. Therefore, it is the goal of future research to prove
theorems similar to Theorems 4.2 and 5.1 for the water wave problem with a
periodic bottom. This will be done by controlling the spatially periodic case first,
then by handling the case |l| > 0 by some perturbation analysis with the help of
exponential weights in Bloch space, and finally to use these exponential weights to
control the resonances. The linear water wave problem over periodic bottoms has
been analyzed in [8]. Spectral gaps in the Bloch wave spectrum have been found.
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On Recent Numerical Methods
for Steady Periodic Water Waves

Dominic Amann

Abstract The study of steady periodic water waves, analytically as well as
numerically, is a very active field of research. We describe some of the more
recent numerical approaches to computing these waves numerically as well as the
corresponding results. The focus of this work is on the different formulations as well
as their limitations and similarities.

Keywords Steady water waves · Numerical methods · Numerical continuation ·
Nonlocal formulation

1 Introduction

We consider steady water waves in two dimensions, travelling over a flat bottom
with speed c and a free surface, under the influence of gravity. This means that in
a frame moving along the wave with the same speed c, the velocity field, pressure
and shape of the wave does not change over time. This model can be used to study
plane waves by considering their cross section perpendicular to the wave crest. For
a more detailed derivation of the model equations we refer to [6, 8].

This problem is governed by the Euler equations, find u(x, y, t), v(x, y, t) and
P(x, y, t) that solve

ux + vy = 0 in − d < y < η(x, t),

ut + uux + vuy = −Px in − d < y < η(x, t), (1)

vt + uvx + vvy = −Py − g in − d < y < η(x, t)
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with the free surface η(x, t) and the depth d . The fluid domain is sketched on the
left hand side of Fig. 1. The boundary conditions for the pressure P and the velocity
field (u, v) are the dynamic boundary condition

P = Patm on y = η(x, t) (2)

which model the interaction on the free surface where negligible surface tension is
assumed. Additionally we have kinematic boundary conditions, those are that the
surface of the wave is always made up of the same particles and that the water can
not penetrate the flat bottom. These boundary conditions are modelled by

v = ηt + uηx on y = η(x, t), (3)

v = 0 on y = −d. (4)

Since we consider steady periodic waves, we introduce a frame moving at the
constant speed c which removes the time variable from our system. The new
system is

UX + VY = 0 in − d < Y < η,

(U − c)UX + VUY = −P̃X in − d < Y < η, (5)

(U − c)VX + V VY = −P̃Y − g in − d < Y < η

where (X, Y ) = (x − ct, y) and (U, V, P̃ ) are the functions (u, v, P ) transformed
to the moving frame. The boundary conditions now read

P̃ = P̃atm on Y = η, (6)

V = (U − c)ηX on Y = η, (7)

V = 0 on Y = −d. (8)

Of particular interest are rotational waves, that means that the vorticity γ = vx −
uy is not zero. One reason for the importance of vorticity is its influence on the
existence and position of stagnation points, these are points in the wave where the
velocity of the fluid is equal to the wave speed c. For the effects that stagnation
points have on the flow structure of wave see [13, 14, 35]. For example, waves with
a non-smooth peak, such as the Stokes wave of maximal height, see [33], have a
stagnation point at that peak.

In this work several schemes on how to solve (1)–(4) numerically are discussed.
While there exists a large literature concerning this problem, see [10, 16, 29, 30],
here some more recent approaches are presented. Section 2 presents two schemes
based on a Dubreil-Jacotin transformation, a numerical continuation approach [3,
20, 21, 32] and an asymptotic expansion approach [2, 9, 18]. Section 3 discusses a
non-local formulation [1, 4, 11, 15] and a conformal mapping approach [5, 24, 28]
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is presented in Sect. 4. The schemes have in common that in order to be able to
solve their respective systems, they assume all but one of the parameters, like depth,
vorticity or velocity, are fixed. The remaining parameter can be varied to continue
along the solution branch.

A non-exhaustive list of further numerical schemes not included in this discus-
sion are: in [31] a shape optimisation approach applied to a stream formulation that
allows for a non-flat bottom is presented; [17] modifies the nonlinear shallow water
equations to allow for constant vorticity and examines wave breaking; the papers
[22, 23] study and compute periodic waves based on an integral formulation.

2 Dubreil-Jacotin Transformation

Following the procedure described in [8] we define the stream function ψ by ψx =
−V and ψy = U−c. Then the system (5)–(8) can be reformulated as the equivalent
system

�ψ = γ (ψ) in − d < y < η, (9)

ψ = 0 on y = η, (10)

|∇ψ|2 + 2g(y + d)−Qψ = −p0 on y = −d, (11)

ψ = 0 on y = η. (12)

Here Q is the hydraulic head, p0 the relative mass flux and γ the vorticity function.
In order to ensure that the vorticity is a function of ψ one has to assume

u < c (13)

in the whole fluid domain. This condition excludes stagnation points since there it
holds u = c.

One major difficulty with the original system as well as the stream formulation
is the unknown free surface η. In [8, 32] a fixed domain formulation equivalent to
(9)–(12) is discussed. The used coordinate transform known as the Dubreil-Jacotin
transform, see [12], is illustrated in Fig. 1. This transform exploits that ψ is constant
both on the flat bottom and the free surface as well as strictly increasing inside the
domain, note that this again makes use of the assumption (13). Introducing the fixed
domainR = {(q, p)|−π < q < π;p0 < p < 0} and the height function h = y+d
where y depends implicitly on q and p, results in a new system of equations.
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Fig. 1 Dubreil-Jacotin transformation

Hence instead of (9)–(12) the problem is now to find h and Q satisfying

H[h] :=(1+ h2
q )hpp − 2hphqhqp + h2

phqq − γ (−p)h3
p = 0 in R, (14)

B0[h,Q] := 1+ h2
q + (2gh−Q)h2

p = 0 for p = 0,
(15)

B1[h] := h = 0 for p = p0
(16)

for a given domain R and vorticity function γ . Due to assumption (13), the
formulations presented in this chapter and all schemes based on the Dubreil-Jacotin
transformation can not be used to compute waves with stagnation point.

A special family of solutions of these equations are the so called laminar waves.
These solutions, defined in the fixed domain R, describe parallel shear flows that do
not depend on the q variable and are denoted as H . In the case of linear vorticity the
laminar waves are given by

H(p; λ) = 2(p − p0)√
λ− 2γp +√λ− 2γp0

(17)

where the parameter λ > 0 is coupled to Q by the relation D

Q = λ− 4gp0√
λ+√λ− 2γp0

.

In general, there are no non-laminar waves in the neighbourhood of the laminar wave
(Q(λ),H(λ)). For certain values of λ and thus Q, determined by the dispersion
relation [19], a branch of non-laminar waves bifurcates from the family of laminar
flows. These bifurcation points are denoted as λ∗ and Q∗ respectively.

While the schemes presented in Sects. 3 and 4 consider different system of
equations and computational domains, the concepts of laminar branches and
bifurcation of a branch of non-trivial waves remain the same.
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2.1 Numerical Continuation Scheme

One straightforward approach is to discretise (14)–(16) with a second order
finite difference scheme as was done in [3, 20, 21, 32]. The resulting system is
underdetermined since the hydraulic head Q as well as the height function h are
unknown. A numerical continuation scheme can be used to compute waves along the
solution branch. This means introducing additional conditions to make the system
determined and provide initial guesses based on previous solutions, the resulting
system of nonlinear equations is solved with a Newton’s method.

Finding the bifurcation point Q∗ and the initial guess for the first non-trivial
wave can be done by either computing eigenvalues of the linearised system, using
analytical results [19] or employing other approaches such as the asymptotic
expansion, see Sect. 2.2.

For numerical computations, wavelength and the relative mass flux p0 have to
be chosen.1 In the standard case of a given vorticity function γ the hydraulic head
Q is the only free parameter which makes it the natural choice for the bifurcation
parameter.

Note that other choices are valid and may be beneficial. For example consider
the case of constant vorticity γ = γ0, then one can fix Q and consider γ0 as the
bifurcation parameter. Given one solution, new waves can then be computed by
varying γ0 while Q remains fixed. This strategy was used in [3] to compute parts
of the solution branch beyond a wave with stagnation points. This branch is not
reachable by continuation with Q since there, the part of the branch that violates
(13), can not be bypassed.

The biggest drawback of this approach is that, due to the assumption (13) of the
Dubreil-Jacotin transform, waves with stagnation points are not modelled by (14)–
(16). This manifests in an increasingly ill-condition Jacobian of the discretisation
near stagnating waves. The advantage of this scheme are its ease of use and
the big flexibility it has: no assumptions on the vorticity function γ are made,
examples presented in [3, 20, 21] include piecewise constant and cubic vorticity
with respect to the stream function; Fig. 2 shows some examples of linear vorticity;
The scheme is also flexible with regard to the model equation (1). Extensions, like
periodic travelling equatorial waves [7, 27], that add earths rotation to the model,
are straightforward to incorporate.

1A condition for such a choice which ensures existence of solution is given by (1.6) in Theorem
1.1 of [8].
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2.2 Asymptotic Expansion

In the approach presented in [2] and based on [9, 18], one considers the fixed
domain formulation (14)–(16) and finds asymptotic expansion of its solution around
a bifurcation point.

Looking for q-independent solutions of (14)–(16) leads to the laminar flows H .
Similarly, one can obtain solutions for the linearised problem with the approach

ĥ(q, p; b) = H(p, λ)+ bm(q, p)

where b ∈ R and m is an even and 2π-periodic function in q . The unknown function
m is chosen such that ĥ is the solution of the linearised problem, that is

H[ĥ] = O(b2), B0[ĥ,Q] = O(b2), B1[ĥ] = 0.

This linearised problem only has non-trivial solutions at bifurcation points, that is
(Q∗,H(λ∗)). Those are either known analytically [19] for some vorticities or can be
approximated numerically. A way to compute a better approximation of h would be
to consider higher order approximations. As discussed in [9], adding more terms to
ĥ only yields solutions of the system up to second order. There exists no expansion
ĥ3 of third order that satisfies the system (14)–(16) up to third order, that is

H[ĥ3] = O(b4), B0[ĥ3,Q] = O(b4), B1[ĥ3] = 0.
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This caveat was remedied in [18] by approximating not just the height function
h but Q as well. For this introduce approximations of the pair (Q, h) by the
polynomials in b ∈ R

Q ≈ Q(2N)(b) := Q∗ +
N∑
k=1

Q2kb
k, (18)

h(q, p;Q) ≈ h(2N+1)(q, p; b) :=
2N+1∑
k=0

hk(q, p)b
k (19)

with coefficients Q2k ∈ R and hk defined as

h2k(q, p) :=
k∑

m=0

cos(2mq)f 2k
2m(p), (20)

h2k+1(q, p) :=
k∑

m=0

cos((2m+ 1)q)f 2k+1
2m+1(p) (21)

where f km ∈ C∞([p0, 0]) for all m, k. Note that the functions f km only depend on
p introduced by the Dubreil-Jacotin transformation. Let the wavelength, vorticity
γ and relative mass flux p0 be given. What remains to be computed are the
constants Q2k and functions f km such that (Q(2N), h(2N+1)) satisfies (14)–(16) up
to O(b2N+2). The structure of h(2N+1), given by (19)–(21), can be exploited to
considerably simplify this problem, as shown in [2]. Ultimately, what has to be
solved is a series of one dimensional systems of differential equations which can be
done numerically.

Due to the used Dubreil-Jacotin transformation, restriction (13) must be satisfied
what in turn means this approach is limited to non-stagnation waves. The advantage
of this scheme is its flexibility with regard to the vorticity, in particular non constant
vorticity is possible, see [2]. This, together with the availability of analytical results
for the first couple expansion terms [18], allows the use of this expansion as a very
good initial guess for other approaches.

3 Non-local Formulations

In [1], a new, non-local formulation of the Euler equations was presented which is
based on the unified transform or Fokas method. While this approach allows for
rotational waves, we present here the periodic irrotational case as was considered in
[11]. In the irrotational case, that is γ = 0, the Euler equations can be formulated in
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terms of a velocity potential φ and become

�φ = 0 in − d < y < η (22)

φy = 0 on y = −d, (23)

ηt + φxηx = φy on y = η, (24)

φt + 1

2

(
φ2
x + φ2

y

)
+ gη = σ

ηxx

(1+ η2
x)

3/2 on y = η (25)

where σ denotes the constant surface tension and ρ is the density.
Introduce the velocity potential evaluated at the surface, see [36], as q(x, t) =

φ(x, η(x, t), t) which leads to the dynamic boundary condition

qt + 1

2
q2
x + gη − 1

2

(ηt + qxηx)
2

1+ η2
x

= σ
ηxx

(1+ η2
x)

3/2 . (26)

Additionally one gets a non-local equation

∫ L

0
e−ikx{iηt cosh[k(η+ d)] + qx sinh[k(η + d)]}dx = 0, t > 0 (27)

where k = kn = 2kπ
L

with n ∈ Z \ {0}.
Starting from the set of Eqs. (26)–(27) several modifications and generalisations

can be made. Considerations include the constant vorticity case [4, 34], a variable
bottom [1] and using a moving frame [11]. A hybrid of the novel formulation and
an approach based on conformal mapping is presented in [15], where water waves
with variable bottom are studied numerically.

For numerical considerations in the case of steady periodic water waves (26)
and (27) can be reformulated as a single non-local equation only containing the
unknown η, see [11]. The wave profile η is approximated by truncated Fourier
series and the non-local equation discretised using a spectral collocation method.
Then the problem to find solutions can be seen as a bifurcation problem for fixed
wavelength and depth where the wave velocity c is the bifurcation parameter. To
find a bifurcation point for which non-trivial solutions exist, the null space of the
linearisation about the trivial wave is studied.

This approach allows for the computation of streamlines and pressure in the
whole domain, independent of any grid. This holds true even in the presence of
stagnation points when rotational waves are considered. For example, in [34] a wave
with interior stagnation and a bottom pressure maxima which is not under the crest
is presented.

Such non-local formulations are a very active research area, for some more
related formulations see [25, 26, 34]. This, together with the easily available infor-
mation about streamlines, wave form and pressure, make non-local formulations
very effective. The main limitation is that the vorticity function has a larger impact
on the formulation and is thus more restricted, in most cases to constant vorticity.
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4 Conformal Mapping and Spectral Collocation Method

In the approach presented in [28], the constant vorticity case is considered as a
superposition of a linear shear flow and a harmonic velocity potential. This leads to a
system of equations similar to (22)–(25) but with an additional vorticity term, which
is then non-dimensionalised. The manuscript [28] considers the case of periodic
travelling waves with constant speed and introduces a frame moving along with
wave speed c. Then the problem is to find the potential φ satisfying

�φ = 0 in − 1 < y < η (28)

φy = 0 on y = −1, (29)

−cηx + (φx − γ (η + b))ηx = φy on y = η, (30)

−cφx + 1

2

(
φ2
x + φ2

y

)
+ η − γ (η + b)φx + γψ = B on y = η (31)

where B is the Bernoulli constant, ψ is the streamfunction associated with φ and
b ∈ R is a parameter of the background flow.

To solve this system, a conformal mapping such as given in [5, 24], that maps
the uniform strip onto the wave domain, is considered. In the uniform strip domain,
a flat domain of unknown depth, the solution of the Laplace equation is analytically
known. It is ensured that this solution satisfies the dynamic and kinematic boundary
conditions using a spectral collocation method. For a sketch of the involved domains
see Fig. 1, where reversely the fluid domain was mapped onto a rectangle domain.

To compute a first non-laminar wave the irrotational case of small amplitude,
for which good approximations are available, is considered. More waves along
the solution branch can be computed using a continuation scheme with previous
solution as initial guess. For continuation parameters, [28] studies two cases. In the
first case, the depth and wave height H are fixed and the continuation parameter is
the wavelength λ. In the second case, the depth and wavelength are fixed and either
the vorticity γ or the steepness parameter H

λ
are varied.

This approach can be used to compute waves with stagnation points as well
as wave characteristics such as streamlines, stagnation points, particle paths and
the pressure. The results presented in [28] include waves with up to three interior
stagnation points and waves with switched pressure maxima and minima at the
bottom opposed to the irrotational case. The various continuation schemes allow
for the detailed study of interactions between parameters and wave characteristics.
The biggest restriction of this approach is that it is limited to constant vorticity.
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Nonlinear Wave Interaction in Coastal
and Open Seas: Deterministic and
Stochastic Theory

Raphael Stuhlmeier, Teodor Vrecica, and Yaron Toledo

Abstract We review the theory of wave interaction in finite and infinite depth.
Both of these strands of water-wave research begin with the deterministic governing
equations for water waves, from which simplified equations can be derived to model
situations of interest, such as the mild slope and modified mild slope equations,
the Zakharov equation, or the nonlinear Schrödinger equation. These deterministic
equations yield accompanying stochastic equations for averaged quantities of
the sea-state, like the spectrum or bispectrum. We discuss several of these in
depth, touching on recent results about the stability of open ocean spectra to
inhomogeneous disturbances, as well as new stochastic equations for the nearshore.

Keywords Water waves · Nonlinear interaction · Kinetic equations · Shoaling ·
Zakharov equation · Nonlinear Schrödinger equation · Mild-slope equation ·
Wave forecasting · Deep water · Nearshore · Resonant interaction
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1 Introduction

1.1 Preliminaries

The water wave problem as it is understood today is an outgrowth of Newtonian
mechanics, and was first cast in the framework of partial differential equations by
Leonhard Euler. From its very beginnings, the development of water wave theory
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went hand in hand with the development of new mathematical tools for treating
differential equations. Belying its classical origins, the subject of water waves
remains a vibrant area of research to this day.

Much applicable research on ocean waves today is focused on forecasting, which
adds a stochastic element to the deterministic equations for the free boundary
problem for an inviscid, incompressible fluid. The purpose of the present review is
to present some of these ideas, as well as some recent developments, in the subject
of deterministic and stochastic wave interaction. Far from being a mathematical
abstraction, this body of ideas informs the surfer waiting for a big swell, the marine
engineer designing an offshore structure, and the commercial mariners voyaging
across the world’s oceans and seas.

1.2 Governing Equations

The governing equations for water waves can by now be found in any textbook
on the subject. A clear, modern derivation may be found in Johnson [37]. In what
follows, the assumptions made of the water will be as follows: it is inviscid (to
avoid the Navier–Stokes equations), it is incompressible (so the speed of sound
is infinite), and the only restoring force is gravity. The surface tension of water
plays an important role for very short waves (periods less than about half a
second), but on these scales viscosity also becomes important, and it is expedient to
dispense with both. Usually only a single fluid (the water) is considered, and the air
above is neglected, allowing a decoupling of the atmosphere from the ocean. This
assumption is realistic for the propagation of ocean waves without wind, but must
be viewed critically when wind forcing becomes important. One final assumption,
less convincing on purely physical grounds, but mathematically important, is that
of irrotational flow. While Kelvin’s circulation theorem may be invoked to justify
this choice, the mathematical convenience of potential flow, i.e. replacing the fluid
velocity field u by a potential φ with ∇φ = u, is critical in simplifying all
subsequent analysis.

The governing equations with these assumptions are as follows:

�φ = 0 (1.1)

ηt + φxηx + φyηy − φz = 0 on z = η(x, y, t) (1.2)

φt + 1

2

(
φ2
x + φ2

y

)
+ gη = 0 on z = η(x, y, t) (1.3)

φz + φxhx + φyhy = 0 on z = −h(x, y) (1.4)

Here g is the (constant) acceleration of gravity, h denotes the bottom boundary, and
η the unknown free-surface. While the bottom may be allowed to vary in space,
it will be fixed in time—so we cannot consider, for example, the generation of a
tsunami by an earthquake.
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Since all nonlinearity is contained in the kinematic surface (1.2) and bottom (1.4)
boundary conditions, and the Bernoulli condition (1.3), upon linearization this
problem becomes a standard exercise in solving Laplace’s equation.

Allowing for bathymetry, the linear problem takes the form

�φ = 0, (1.5)

φtt + gφz = 0 on z = 0, (1.6)

φz + φxhx + φyhy = 0 on z = −h(x, y), (1.7)

where the surface boundary conditions have been combined to eliminate η from
the problem. Equation (1.7) simplifies to φz = 0 on z = −h for constant depth,
resulting in the Laplace equation on a horizontal strip, or, for infinite depth, a half
space.

It suffices here to record a few main results: travelling wave solutions in constant
depth have the form exp(i(kx−ω(k)t)), where the relationship between k and ω(k)
is given by

ω(k)2 = g|k| tanh(|k|h). (1.8)

When the depth varies it makes sense to define a local wavenumber and frequency—
in general we may have k = k(x, t), ω = ω(x, t). Thus, we have travelling wave
solutions exp(iS(x, t)) for a phase-function S, and through this define k = ∇S and
ω = ∂S/∂t.

2 Nonlinear Waves and Interaction

The theory of nonlinear water waves was historically first treated by perturbation
expansions, dating back to the work of Stokes in the mid nineteenth century. The
procedure starts by expanding φ and η in (1.1)–(1.4) in terms of a small factor ε,
and transferring the free surface from z = εη to z = 0 by a Taylor expansion. One
may then solve (1.5)–(1.7) first for terms of order O(1), the solution of which then
appears as an inhomogeneity in the equations for O(ε1), and so on. The algebra
quickly becomes cumbersome, particularly for finite depth, and if more than one
wave-train is involved.

It is easier to start with simpler equations, and a good introduction is furnished
by Whitham [74, Sec. 15.6]. Assume for the moment that we have a nonlinear,
dispersive equation of the form

φtt + Lx(φ) = εN (φ),

where ε is some small parameter,Lx is a linear differential operator involving spatial
(x) derivatives, and N is some nonlinear operator. The linearised problem, for ε =
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0, has travelling wave solutions of the form exp(i(kx −ω(k)t)), as above, where ω
depends on the operator Lx .

In the linear problem, the sum of two plane-wave solutions exp(i(k1x − ω1t))

and exp(i(k2x−ω2t)) is again a solution. However, if N contains a term φ2, then a
sum of two solutions results in the product exp(i((k1 + k2)x − (ω1 + ω2)t)) on the
right-hand side. If the nonlinearity is cubic, then three travelling waves can combine
on the right-hand side to exp(i((k1 + k2 + k3)x − (ω1 + ω2 + ω3)t)). These terms
act as a forcing for the linear equation φtt +Lx(φ). Just as in the classical theory of
forced linear oscillators, the critical phenomenon is resonance, when the frequency
of the forcing matches that of the unforced system.

Accounting for all possible sums and differences, we see that resonances for
quadratic nonlinearities involve three waves (one from the left-hand side of the
equation, and two from the right)

{
±k1 ± k2 ± k3 = 0,

±ω(k1)± ω(k2)± ω(k3) = 0,
(2.1)

and those for cubic nonlinearities involve four waves

{
±k1 ± k2 ± k3 ± k4 = 0,

±ω(k1)± ω(k2)± ω(k3)± ω(k4) = 0.
(2.2)

These very relations also arise in the expansion of the water wave problem in
a small parameter (like the wave slope ka), where the dispersion relation is given
by (1.8). In the limit of infinite depth (h → ∞) (1.8) reduces to ω(k) = √g|k|,
and (2.1) cannot be fulfilled nontrivially. For this limit, (2.2) can be fulfilled only
for two + and two − signs in both equations.

The opposite extreme, of shallow water (|k|h 
 1) means that ω = |k|√gh,
whereby already (2.1) can be fulfilled, provided the signs are not all the same and
all wave components propagate in the same direction (see Fig. 1c and d). Due to the
lack of dispersivity (i.e. all wave frequencies propagate with the same celerity) (2.2)
is also fulfilled, as are the resonance conditions for any higher order interaction (see
[73]). Nevertheless, the evolution equations are almost always limited to O (ka)2

for finite water depth. While higher order nonlinear terms may be relevant for high
wave steepness, their treatment is extremely cumbersome and will not be considered
further.

As waves propagate from deep to shallow water, they are transformed due to
bottom changes. In intermediate waters, the changing depth induces a change of the
wavenumbers through the dispersion relation (1.8). This alone does not enable the
closure of a triad resonance condition and an additional component is required. This
component may be supplied by a bottom-induced free-surface interference, which
does not satisfy the dispersion relation.
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a b

c d

Fig. 1 Resonance conditions in intermediate (a and b) and shallow water (c and d). Superhar-
monic (a and c), and subharmonic interactions are shown (b and d). The kbot represents the bottom
component which closes the Bragg III resonance condition

Assume the bottom profile h is decomposed into a sum of sinusoids, then any
bottom wavelength can act as a fourth wavenumber component (kbot ) with a still
(ω(kbot ) = 0) disturbance on the surface. This allows the closure of (2.2) in what is
known as a class III Bragg-type resonance condition

{
±k1 ± k2 ± k3 = ±kbot
±ω(k1)± ω(k2)± ω(k3) = 0,

(2.3)

with a triad of waves. This closure can be represented graphically. Figure 1a–
d shows this closure for superharmonic and subharmonic 1D interactions in
intermediate water and shallow water conditions, respectively. In the 2D case,
bottom components can close resonance with any direction of the third wave k3. The
circles represent the wavenumber k3 satisfying the closure in all possible directions.
Depending on its direction, a bottom component kbot that satisfies the class III
closure should connect its origin on the circle with the origin of the other two waves
(see [43, Sec. 3.3]).
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3 Deterministic Evolution Equations

3.1 The Zakharov Equation for Constant Depth

It is expedient to take a consistent Fourier analysis perspective with Eqs. (1.1)–(1.4),
under the assumption of constant depth h, rather than considering interaction of
individual wave-trains via perturbation theory, as was done in [45, 54, 70]. This
approach leads after considerable labour to the Zakharov equation, first derived in
[77].

In terms of a complex amplitude B(k, t), related at lowest order to the free-
surface elevation η by

η̂(k, t) =
√
ω(k)
2g

(
B(k, t)eiω(k)t + c.c.

)
(3.1)

(where “c.c.” denotes the complex conjugate, and ˆ denotes the (x → k) Fourier
transform) the Zakharov equation has the following form

i
∂B(k, t)

∂t
=

∫∫∫ ∞
−∞

T0123B
∗
1 (t)B2(t)B3(t)δ0+1−2−3e

i(�0+1−2−3)tdk1dk2dk3

(3.2)

where δ0+1−2−3 = δ(k + k1 − k2 − k3) is the delta-distribution, �0+1−2−3 =
ω(k) + ω(k1) − ω(k2) − ω(k3), and T0123 = T (k,k1,k2,k3) is a very lengthy
interaction kernel (see [42]). For brevity we have denoted by Bj(t) the complex
amplitude B(kj , t), and the superscript ∗ denotes a complex conjugate. While a
detailed discussion of the Zakharov equation can be found elsewhere (see, e.g.
[48, Sec. 14]) it is important to appreciate that Eq. (3.2) arises from a multiple-
scale ansatz for the full third-order Fourier-space problem, and so captures terms
with cubic nonlinearities. In terms of the small wave steepness ε, the time t in this
equation is related to physical time T by t = ε2T , which is the same as the slow
time-scale for the evolution of the envelope in the nonlinear Schrödinger equation
[37, Eq. (4.2)]. This long time scale must be borne in mind for all subsequent results.

For computational implementation (and even analytic studies of systems with
few waves) it is inevitable that (3.2) must be discretized. Making an ansatz that
B(k, t) =∑N

i=1 Bi(t)δ(k−ki ), i.e. that the complex amplitudes can be written as a
sum of generalized functions, and integrating over a ball centered around kn yields

i
dBn(t)

dt
=

N∑
p,q,r=1

Tnpqrδn+p−q−r ei�n+p−q−r tB∗p(t)Bq(t)Br(t) (3.3)
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where

δn+p−q−r =
{

1 for kn + kp = kq + kr
0 otherwise

(3.4)

now denotes a Kronecker delta-function. Note that other approaches to discretiza-
tion have been taken, for example by Rasmussen and Stiassnie [57] or Gramstad et
al. [26], although their applications largely await further study.

The simplest solution to (3.3) is obtained when only a single wave is present,
where with the identity (valid for deep-water)

T (k,k,k,k) = |k|
3

4π2
(3.5)

the third-order Stokes’ correction is recovered as expected (see [48, Sec. 14.5]).
Similarly, if only two collinear waves are present, and we denote these by scalar
wavenumbers k1, k2 the identity

T (k1, k2, k1, k2) =
{
k1k

2
2/(4π

2) if k2 < k1

k2
1k2/(4π2) if k2 ≥ k1

(3.6)

(see [78, Eq. (4.18)]) can be used to establish the mutual Stokes’ correction of two
wave-trains in deep water, as in [45, eq. (2.11)]. In finite depth the kernels are more
involved, and do not yield such compact expressions. In particular, work of Janssen
and Onorato [35] first pointed out the problem of non-unique limits for the finite-
depth kernel T (k,k,k,k), which was later studied in depth, including for kernels
of the form T (k,k1,k,k1), by Stiassnie and Gramstad [63] and Gramstad [24].
A significant consequence of [35] is that modulational instability was shown to
disappear for k0h < 1.363,where k0 is the carrier wavenumber, and h the (constant)
water depth.

In fact, in Zakharov’s [77, Eq. (2.3)] derivation of the eponymous equation,
it was not the endpoint of his analysis, but rather a step towards the derivation
of the nonlinear Schrödinger equation (NLS), which itself was used to study the
stability of deep-water waves to perturbations. Having moved from a description in
physical variables (x, y, z, t) of fluid motion via the PDEs (1.1)–(1.4), to a third-
order simplification (written in terms of variables defined only at the free surface,
thus eliminating z) in (kx, ky, t) via the integro-differential Zakharov equation (3.2),
it is possible to make further restrictions so that an inverse Fourier-transform can be
carried out.

The central assumption needed to derive NLS is that all interacting waves are
clustered about a single wavenumber, say k0, an assumption usually referred to
as “narrow-bandwidth”. This is less apparent when deriving the NLS from the
governing equations by perturbation theory [37, Sec. 4.1.1], but implicit also in this
formulation. On this basis, the Zakharov kernel in (3.2) is replaced by the kernel
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T (k0,k0,k0,k0) of (3.5), and the frequency ω(k) is expanded in a Taylor series
about ω(k0). These two steps allow the inverse Fourier transform to be carried out,
and lead to the NLS in much the same way that Zakharov [77, Eq. (2.7)ff] first
outlined.

3.2 Shallow Water and Varying Depth

We have noted in Sect. 2 that no triad resonance is possible in finite, constant depth.
The nature of the perturbation arguments involved implies that quadratic terms
are associated with faster time-scales (and larger corrections) than cubic terms,
which are in turn more significant than quartic terms—assuming all the necessary
interactions are allowed by the dispersion relation. Thus the Zakharov equation (3.2)
contains only cubic terms, the non-resonant quadratic terms having been eliminated,
and the resonant quartic terms being neglected (indeed, it would be more accurate
to refer to (3.2) as the reduced Zakharov equation, see [42] or [64] for the related
fourth-order equations in constant depth). For waves in the deep water of the open
ocean, this is perfectly satisfactory, but once waves enter coastal environments new
equations are needed to capture the effects of a changing bathymetry.

In the shallow water limit, waves become non-dispersive and are able to close
exact triad resonances. In real seas waves will almost always tend to steepen
and break before reaching the shallow water limit allowing for exact resonance.
Nevertheless, breaking does not extract all of the wave energy immediately. It is a
gradual process, in which breaking and nonlinearity are coupled. Due to the inherent
complexities of wave breaking (only empirical terms for breaking exist), we simply
note its importance and include a general dissipation term in the equations. Hence,
no nonlinear shoaling examples that include breaking are presented in this chapter.
However, even without reaching exact resonance, the nonlinear triad interactions
are still of great importance in coastal areas. It is shown here that wave propagation
even over mildly varying bathymetry [43] leads to quasi-resonance and significant
transformations of wave spectra. The subsequent deterministic model equations are
often called mild slope-type equations [4].

The derivation of the linear mild slope equation is based on Eqs. (1.5)–(1.7). If
the bed is flat, i.e. h is constant, the Laplace equation can be separated, and the
vertical component of the velocity potential is

f (z) = cosh k(z+ h)

cosh kh
. (3.7)

The key to the mild slope equation is assuming this functional form for the z-
dependent part of the solution, even when the bottom is not of constant depth. Thus
the solution to (1.5)–(1.7) is written φ(x, y, z) = −igη(x, y)ω−1f (z), (here φ

denotes the time-harmonic velocity potential) and the explicit depth-dependence is
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integrated out using Green’s identity:

∫ 0

−h
(fzzφ − f φzz) dz = [fzφ − f φz]0−h .

For a flat bed −h = const. the right-hand side vanishes, and we are left with a
Helmholtz equation. Otherwise, a varying bed h = h(x, y) gives rise to the mild
slope equation when terms O(∇hh)2 and O(∇2

hh) are neglected:

∇h · (a∇hφ̂)+ k2aφ̂ = 0, (3.8)

where a(x, y) = g
∫ 0
−h(x,y) f (z)2dz. Here, ∇h = (∂x, ∂y) is the horizontal gradient

and φ̂ is a single harmonic of the velocity potential on the linearised free surface
(z = 0). In fact, a is exactly the product of the phase velocity and the group velocity,
a = ω/k · dω/dk = Cp · Cg. More details can be found in [48, Ch. 3.5]. Note that
upon retaining higher order bottom terms one can derive the more accurate Modified
MSE (see [14]).

Nonlinear mild-slope evolution equations can also be derived from the governing
equations (1.1)–(1.4), with the vertical structure of velocity potential either assumed
to be that of a free wave as in Eq. (3.7) [4, 38], or expanded as a Frobenius series
[13, 73], with the latter giving better accuracy in the nonlinear part. The general
form, written in terms of the surface velocity potential for a given harmonic p is
defined as

∇2
hφ̂p +

∇h
(
CpCg,p

) · ∇hφ̂p
CpCg,p

+ k2
pφ̂p = NLp, (3.9)

where Cp and Cg,p are wave celerity and group velocity for harmonic p, while
NLp is the nonlinear triad term, which closes an exact resonance in frequency for
harmonic p.

In order to evaluate the evolution of the wave field, the model is often parabolized
or hyperbolized (see [56]), by assuming a progressive wave of the form

ηp,l = ap,le
−i

(
−kyl y−

∫ x
0 kx

′
p,l dx

′+ωpt
)
, (3.10)

similar to (3.1) with kxp,l and kyl representing the x- and y-components of the wave
number vector respectively. The l-index relates to the discretisation in the lateral
direction, where no bottom changes are assumed. This allows the direct satisfaction
of the resonance closure in the lateral direction and a decoupling between directional
components of each harmonic.

The relation between ηp and φ̂p can be found using a Taylor series expansion
of (1.3) about z = 0. Note that one should retainO(ε2) terms in this relation in order
to remain consistent with the equation’s order (see [20]). Based on [13] and [73]
the deterministic wave evolution equation for the Fourier amplitude of the surface
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elevation ap,l, with constant lateral wavenumber kyl , is defined as

1

Cg,p

∂ap,l

∂t
+ ∂ap,l

∂x
+ 1

2Cg,p

∂Cg,p

∂x
ap,l +Dp,lap,l

= −εi
s=N

u=min{l+M,M}∑
u=max{l−M,−M}

s=p−N

Ws,p−s,u,l−uas,uap−s,l−ue
−i ∫ (

kxs,u+kxp−s,l−u−kxp,l
)
dx
. (3.11)

Here, the W -term is the nonlinear interaction kernel defined in Bredmose et al. [13]
and Vrecica and Toledo [73] for cases without and with dissipation, respectively.
Dp,l can describe a linear damping or forcing term, while t = ε2T represents a
slow time evolution, which is typically on a different scale than the spatial evolution
x = εX, for T andX physical time and space variables (cf. the comments after (3.2)
in Sect. 3.1). It appears when one allows the potential in the mild-slope type equation
to vary slowly in time on top of its harmonic behaviour.

Typically wave reflection and nonlinear generation in the backwards direction are
second order effects, and are not considered further. They can become significant
under certain conditions, and to account for them it is possible either to solve the
nonlinear elliptic MSE given in (3.9) or to create two coupled evolution equations—
one for forward propagating waves and the other for backward propagating waves
in the same manner as in the linear case (see [56]).

3.3 Explanation of Nonlinear Energy Transfer Using
Spring-Mass Allegory

One way to think about the wave resonance phenomenon is via an analogy to
oscillating mass-spring systems. The linear part of (3.9), upon redefinition of φ̂p
and kp, takes the form of a Helmholtz equation (see [56]), which in one dimension
becomes a simple harmonic oscillator. Imagine a set of N oscillating spring-mass
systems, related to N spectral frequency bins. Softer springs (small spring constant
kp) are in lower harmonics, and as the frequency increases the springs become stiffer
(larger kp). When the problem is linear, these systems are decoupled, but nonlinear
terms couple each spring system (spectral bin) to the oscillation of other spring
systems.

The nonlinear part of (3.9), which relates to combinations of waves that already
satisfy the resonance condition in ω, acts as a forcing term on the mass-spring
system, as explained schematically in Sect. 2. These forcing terms are generally
small in magnitude, compared to the total energy of the system. Non-resonant
forcings (i.e., ones that do not close the resonance condition in k) will cause the
system to oscillate slightly at the frequency of forcing (bound wave). If the forcing
matches the spring’s natural frequency (i.e., the resonance condition in wavenumber
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is met), a resonance is reached and a significant amount of energy transfers to the
related spectral bin.

4 Stochastic Evolution Equations

4.1 Introduction

The deterministic equations given above seem to provide fertile material for
modelling the sea. Under the assumption that the waves are not too steep (in
particular, not breaking), so as to remain in a weakly nonlinear regime, and that
there are no further forces, it seems that if suitable initial conditions can be supplied
the subsequent evolution could be solved for numerically. If we are able to measure
a sea-surface, and to conclude that it is composed of Fourier modes ki with given
amplitudes ai, suitable initial conditions for the discrete Zakharov equation (3.3)
consist of specifying Bi(t = 0).

If one is interested in average quantities of the sea-state, like the energy, it
becomes necessary to develop new evolution equations, in particular since we
cannot accurately specify initial conditions for all situations of interest. In particular,
the wave phases are found to be essentially uniformly distributed between (0, 2π].
Underlying this approach is the idea that the free surface η(x, y, t) (or the complex
amplitudes in our deterministic equations) is a stochastic process. The perspective
taken here is that the temporal evolution of any realization is governed by a
given deterministic equation—for example the Zakharov equation (3.2). This is a
suitable viewpoint for waves at sea, but in a wave-tank it may be more appropriate
to consider a spatial evolution equation instead (see, for example, Shemer and
Chernyshova [60]). Our assumption also means that no random forcing by the wind,
or the like, plays a role in the evolution of the wave field.

The energy density spectrum, based on linear theory, rests on an underlying
assumption of homogeneity of the sea state. This is a prerequisite for sensible
measurements (see [31, Sec. 3.5, App. A & App. C], or [40, Sec. 9]) and is
a convenient starting point for assumptions that are made in the equations for
the temporal evolution of energy spectra. In practical measurements of waves,
stationarity (or homogeneity) means that the conditions are unchanged for the
duration of the measurement (or over the space being measured). For example, it
clearly makes no sense to average two measurements of the sea-surface elevation if
one is windward and the other leeward of an island.

While the literature on nonlinear stochastic evolution equations is vast, it is worth
pointing the reader to some of the resources with a bearing on water wave theory.
The stochastic approach to ocean waves was initiated by Pierson (see [55]) in the
1950s, and an account of the field up to the mid 1960s is found in the engaging
work of Kinsman [40]. A general perspective on weakly nonlinear dynamics,
also touching on other fields, is provided by Zakharov et al. [79] and Nazarenko
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[49], while Janssen [33] places this theory firmly in the context of modern wave
forecasting. A particularly clear account of many aspects of nonlinear and random
waves may also be found in a book chapter by Trulsen [72].

4.2 Stochastic Evolution Equations for Deep Water

Historically, the first treatment of the evolution of a spectrum of surface waves dates
back to Hasselmann [27], shortly after the discovery of resonant interaction theory
for surface waves in deep water by Phillips [54]. It is simpler to start with the later
work of Longuet-Higgins [44], whose point of departure is the 2D NLS in deep
water—as mentioned above, this can be derived from the Zakharov equation.

4.2.1 Narrow-Band Equations

We start, following Longuet-Higgins, with the scaled form of the 2D NLS

2iAτ = 1

4
(Axx − 2Ayy)+ |A|2A, (4.1)

with A = A(x, y, τ ) the envelope amplitude, x and y slow spatial variables, and
τ = ε2T a slow time. Two approaches are possible, in either physical or in Fourier
space, and we explore the former first—the main ideas are identical for both, and
can be found, for example, in [79, Sec. 2]

Step 1: write (4.1) at a point x1 = (x1, y1), and multiply it by A∗(x2) =
A∗(x2, y2), where ∗ stands for a complex conjugate. Step 2: Subtract the equation
with A(x1) and A∗(x2) interchanged. Assume that the envelope amplitudes A(x, τ )
are stochastic processes, such that each realization is governed by the deterministic
NLS (4.1). Step 3: take averages (expected values) of the equation from step 2 to
obtain

2i
∂

∂τ
〈A(x1)A

∗(x2)〉 = 1

4

(
∂2

∂x2
1

− ∂2

∂x2
2

)
〈A(x1)A

∗(x2)〉

− 1

2

(
∂2

∂y2
1

− ∂2

∂y2
2

)
〈A(x1)A

∗(x2)〉 (4.2)

+ 〈A(x1)A
∗(x1)A(x1)A

∗(x2)〉 − 〈A(x2)A
∗(x2)A(x2)A

∗(x1)〉.

At this point, further progress depends on stochastic assumptions made for A. The
principal obstacle is to treat the fourth-order averages appearing on the right-hand-
side of (4.2). Assuming that the process A is close to Gaussian, and has zero mean,
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allows the decomposition

〈A(x1)A
∗(x1)A(x1)A

∗(x2)〉 = 2〈A(x1)A
∗(x1)〉〈A(x1)A

∗(x2)〉,

where higher order cumulants have been discarded entirely We can factorize the
differential operators on the right-hand side of (4.2) by introducing R = (rx, ry) =
x1 − x2 and X = (X, Y ) = 1

2 (x1 + x2), and with C(R,X) := 〈A(x1)A
∗(x2)〉

rewriting (4.2) as

2i
∂

∂τ
C = 1

2

∂2

∂rx∂X
C − ∂2

∂ry∂Y
C + 2C〈A(x1)A

∗(x1)〉 − 2C〈A(x2)A
∗(x2)〉.

(4.3)

This is, up to scaling, the deep-water analogue of Alber’s equation [5, Eq. (3.7)].
If, in addition, we assume that A is homogeneous in (physical) space, then

averages must be invariant under translation, i.e. the autocorrelation C must depend
only on spatial separation R, and not on the average position X. Employing
this homogeneity condition in (4.3) gives ∂C/∂τ = 0 at this order, as all
terms on the right-hand side of (4.3) vanish. To proceed with a statistically
homogeneous theory, the lowest order decomposition of the fourth-order terms
〈A(x1)A

∗(x1)A(x1)A
∗(x2)〉 must be corrected, by using the product rule and (4.1)

in considering ∂/∂τ 〈A(x1)A
∗(x1)A(x1)A

∗(x2)〉. In addition, higher-order cumu-
lants and moments will have to be retained and treated accordingly (see [39]).

Longuet-Higgins [44] pursued exactly such an aim, albeit in Fourier space,
substituting

A =
∑
n

an(τ )e
i(λnx+μny−ωnτ)

into (4.1), and using the dispersion relation ωn = − 1
8 (λ

2
n − 2μ2

n). Equating
coefficients, and denoting ki = (λi , μi), he found [44, Eq. 4.3]

2i
dan

dτ
=

∑
p,q,r

apaqa
∗
r e

i(ωp+ωq−ωr−ωn)τ δ(kp + kq − kr − kn), (4.4)

which is formally identical (except for a factor of 2) with (3.3) when the kernel is
taken as a constant.1 To now derive a stochastic evolution equation, follow the three
steps above in k−space: multiply (4.4) by a∗m, subtract the complementary equation,
and take averages. Homogeneity in physical space now means a lack of correlation
of Fourier modes [53, Eq. (11.75)], so that 〈ana∗m〉 = Cnδ(n−m), while the quasi-

1However, the ωi satisfy the dispersion relation of the NLS rather than the linear deep-water
dispersion relation in (3.3).
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Gaussian closure remains unchanged. Finally, this leads to [44, Eq. 4.10], a discrete,
narrow-band kinetic equation.

Thus the same deterministic equation has yielded two different stochastic evo-
lution equations, depending on whether or not statistical homogeneity is imposed.
Homogeneity means that the energy density (as measured by our correlators) does
not change to lowest order, so that the time-scale of evolution is longer. Note in (4.3)
that the rate of change of the energy density C is proportional to C, whereas in the
homogeneous case [44, Eq. (4.10)] we find dC/dt ∝ C3. Thus a homogeneous sea-
state can be expected to change only slowly due to nonlinear interactions, except
possibly when perturbed by inhomogeneous disturbances.

4.2.2 Stability of Narrow Spectra to Inhomogeneous Disturbances

Alber’s equation, which is a finite depth version of (4.3), has proved to be one of
the main tools used to study the stability of ocean wave spectra to inhomogeneous
disturbances. This is an important question, that has direct bearing on the suitability
of modern wave-forecasting codes. To reiterate some main points: an ocean-
wave spectrum represents a homogeneous, stationary sea-state, whose energy is
transported at the group velocity according to linear theory. Nonlinear wave-wave
interaction gives rise to a redistribution of energy from the middle frequencies
to lower and higher frequencies, as well as changes in the frequencies (and thus
velocities) of the waves themselves [68]. It should be borne in mind that this
homogeneous energy transfer acts on a timescale of order T/ε4, which for a typical
period T of 10 s, and a typical steepness of ε = 0.1 works out to somewhat more
than 27 h.

It is generally appreciated that statistical homogeneity is an idealization—
necessary for writing a time-independent spectrum theoretically, and required
when measuring waves to establish such spectra at sea (see Hasselmann et al.
[29, Sec. 2]2). In light of this, it is important to establish whether even a small
departure from homogeneity might invalidate the conclusions reached based on the
homogeneous theory. The question addressed by Alber and others is exactly this:
will inhomogeneities give rise to a faster energy exchange, and alter the energy
distribution, and thus wave-statistics, of an otherwise homogeneous sea-state.

The case of unidirectional spectra has been particularly well studied, beginning
with Alber [5], and recent numerical and analytical work has shed light on many of
the central issues. Approaches akin to Alber’s, following the linear stability analysis
[5, Sec. 4] and arriving at his eigenvalue equation (4.16), have relied on integration
(analytic in the case of simple spectral shapes like square, Gaussian, or Lorentz
spectra in Stiassnie et al. [66], and numerical for more complex JONSWAP spectra)
and parameter studies to establish instability criteria. Simply put, inhomogeneous

2“Over 2000 wave spectra were measured; about [. . . ] 121 corresponded to “ideal” stationary and
homogeneous wind conditions.” p. 10.
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Fig. 2 Diagram of relationships between stochastic and deterministic equations. Indicated are
assumptions of statistical homogeneity (“hom.”) or inhomogeneity (“inhom.”), as well as restric-
tions to narrow bandwidth (ki = k0 ±�, |�| 
 |k0|)

disturbances will grow with the nonlinearity of the wave field, and with decreasing
spectral bandwidth; Gramstad [23] has verified that unidirectional JONSWAP
spectra are unstable for αγ/ε > 0.77, for ε the mean wave slope, and α, γ the usual
JONSWAP parameters, using Alber’s criteria as well as Monte-Carlo simulations
(using the Higher Order Spectral Method). A mathematically rigorous examination
of the stability and instability of Alber’s equation, including a study of well-
posedness, was recently undertaken by Athanassoulis et al. [9] for unidirectional
spectra, putting earlier numerical results on solid footing.

For directional sea-states, the matter of instability was investigated by Ribal et
al. [58], who were able to extend earlier results for JONSWAP spectra to show that
instability also depends on the degree of directional spreading—narrower spectra
again being more unstable.

From the deterministic perspective, the Benjamin-Feir instability derived from
the NLS is an important mechanism in wave evolution. However, employing the
Zakharov equation in place of the NLS [76, Sec. VI.B, Fig. 23ff] yields a more
realistic (finite) instability region. The same argument applies to the stochastic
counterparts: instability should be investigated not only via the narrow-band NLS,
but more generally for the Zakharov equation of which it is a special case (Fig. 2).

4.2.3 Broad-Band Equations

In the above sections, we have discussed stochastic evolution equations derived
from the NLS, which implies a narrow bandwidth of order εk0, for k0 the carrier
wavenumber. As mentioned at the beginning of the section, the equation which
models nonlinear interaction in current wave-forecasting codes—Hasselmann’s
kinetic equation (KE)—has no such restriction. It is possible to derive this equation
directly from the Zakharov equation (3.2), using the steps outlined in Sect. 4.2, but
retaining terms up to sixth order in the moment hierarchy (see [25, Eq. (2.6)ff]).
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Further details can be found in [48, Sec. 14.10], resulting in the equation

dC(k, t)
dt

=4π
∫∫∫ ∞

−∞
T 2

0,1,2,3 (C2C3(C0 + C1)− C0C1(C2 + C3))

δ(k+ k1 − k2 − k3)δ(ω + ω1 − ω2 − ω3)dk1dk2dk3. (4.5)

Here, as elsewhere, subscripts are understood to denote dependence on the wave-
number, so that e.g. Ci = C(ki , t). The kernel of the Zakharov equation appears
again, and due to δ distributions in both wavenumber and frequency it follows that
only exactly resonant quartets play a role in the interaction. It is also worth noting
that (4.5) predicts no evolution for purely unidirectional waves—symmetric quartets
such as ka + kb − ka − kb cause the integrand to vanish, and for nonsymmetric
unidirectional quartets, the kernel T vanishes [16, p. 147]. This contrasts markedly
with the narrow-banded case, where stochastic analogues of the (unidirectional)
Benjamin-Feir instability play an important role.

4.2.4 Stability of Broad Spectra to Inhomogeneous Disturbances

A broad-banded evolution equation relaxing the assumption of spatial homogeneity
was first derived by Crawford et al. [15], and recently studied for the case of a
degenerate quartet of waves by Stuhlmeier and Stiassnie [67]. Like the kinetic
equation, it is derived from the Zakharov equation (3.2), and due to the retention
of the inhomogeneous terms it has a non-trivial evolution at the same order (and
thus, the same time-scale) as the Alber equation (see (4.3)). The discrete version of
this equation, which is suitable for numerical computation, is

drnm

dt
= irnm(ωm−ωn)+ 2i

⎛
⎝ N∑
p,q,r=1

Tmpqrrpqrnr δ
qr
mp −

N∑
p,q,r=1

Tnpqr rqprrmδ
qr
np

⎞
⎠ .

(4.6)

As mentioned above, underlying the idea of an energy spectrum (for a description
of the ocean surface) is the property of statistical homogeneity. The energy spectrum
thus consists of the homogeneous terms rii only, and Eq. (4.6) provides a possibility
to study whether such a spectrum undergoes some evolution if suitably perturbed.
It is easy to note that if no inhomogeneous terms are present, i.e. the rij vanish for
i �= j, there is no evolution to this order—the next order yields the KE (4.5).

Let us write rnm as rnm = rhnmδnm + εrinm, where the superscripts h and i denote
homogeneous and inhomogeneous terms, respectively. Substituting this into (4.6)
yields

drhnn

dt
= 0, (4.7)
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and, for the inhomogeneous terms at order ε:

1

2i

drnm

dt
= rnm

(
ωm − ωn

2
+

∑
p

Tmppmrpp −
∑
p

Tnppnrpp

)

+
∑
p,q

Tmpqnrpqrnnδ
mp
qn −

∑
p,q

Tnpqmrqprmmδ
np
qm. (4.8)

This reduces for a degenerate quartet to the system studied by Stuhlmeier and
Stiassnie [67]. Equation (4.8) describes a system of n2 − n linear, autonomous
differential equations. For a given homogeneous initial state, the terms rnn are
specified, and the system has the general form

1

2i

dri

dt
= Ari , (4.9)

for A the matrix of coefficients given in (4.8), and ri is the vector of the
inhomogeneous correlators rnm, n �= m. Negative eigenvalues of A therefore yield
instability. That is, for a given homogeneous state, consisting of a specification of
N wave-vectors k1, . . . ,kN and corresponding energy (or, equivalently, amplitude)
in the form r11, . . . , rNN , initially small inhomogeneous disturbances will grow
exponentially with time and give rise to energy exchange within the framework
of (4.6).

The case of a degenerate quartet ka = (1, 0), kb = (1+p, q), kc = (1−p,−q),
which satisfies 2ka = kb + kc already demonstrates a range of possible behaviours.
Two scenarios are presented in Fig. 3, which depicts the domain of instability
(shaded region) for different wave slopes.

For a sea-state with three random waves such that (p, q) is in the shaded region
of the figure, the evolution is changed by the presence of small inhomogeneities.
One example of this subsequent evolution is given in Fig. 4. The shaded grey region
represents a “warm-up” where the inhomogeneous terms (bottom panel) are small,
and there is no evolution of the homogeneous terms (top panel). As this is an
unstable case, the initially small inhomogeneities grow, and give rise to an energy
exchange among the homogeneous terms. Further details on the choice of initial
conditions, and the form of the inhomogeneities, may be found in [67].

More realistic cases, involving many modes, for which (4.6) is a generalization
of Alber’s equation without a narrow-band restriction, await further study.

4.3 Stochastic Evolution Equations for Coastal Environments

While deterministic (often called phase resolving) models can provide relatively
accurate calculations of the wave field evolution in coastal waters, they require vast
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Fig. 3 Computed region of
instability for (4.6) (shaded
region), for three waves
ka = (1, 0), kb =
(1+p, q), kc = (1−p,−q),
and for different wave slopes.
Top panel: εa = 0.01, εb =
0.1, εc = 0.1, the degenerate
quartet with greatest growth
rate (red dot) has
(p, q) = (0, 0.19). Bottom
panel: εa = 0.1, εb =
0.01, εc = 0.01, the
degenerate quartet with
greatest growth rate (red dot)
is collinear and has
(p, q) = (0.23, 0)
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computational resources. This is due to the Nyquist limitation, which enforces small
grid spacing in a simulation, and due to a need for a large number of runs required
to obtain statistical quantities of interest. Indeed, running nonlinear deterministic
models such as the nonlinear MSE (3.9) or high-order Boussinesq (see, e.g., Madsen
et al. [46]) for large domains is a very computationally intensive procedure, which
commonly reduces the range of practically calculated sea conditions and the size of
the modelled region. Extending stochastic models to the nearshore can overcome
this restriction by limiting such intensive, deterministic calculations to the very
shallow region and the vicinity of coherent marine structures. In addition, it may
allow for better nearshore wave forecasting capabilities. Therefore, the extension of
stochastic models to the nearshore region is currently of great interest.

4.3.1 One- and Two-Equation Stochastic Models in the Nearshore Region

In the theory of waves in deep-water, cubic nonlinearities give rise naturally to
equations for the spectrum in terms of fourth order and sixth order averages (and
respective cumulants). Just so, in the nearshore quadratic nonlinearities mean that
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Fig. 4 Depiction of the evolution of a degenerate quartet ka = (1, 0), kb = (1.1, 0.2),kc =
(0.9,−0.2) with εa = 0.01, εb = 0.1, εc = 0.1, (see Fig. 3, Top panel) from time t = 0 to
t = 1500 s, under small inhomogeneous disturbances. The top panel depicts the homogeneous
terms, while the bottom panel depicts the magnitude of the inhomogeneous terms

the evolution of the spectrum is influenced by third order averages—called the
bispectra—as investigated by Hasselmann et al. [28], Elgar and Guza [21] and
others. Two-equation nearshore stochastic models consist of an equation for the
wave energy evolution (second order moment) with bi-spectral coupling terms, and
another equation for the evolution of the bi-spectral components (see [2, 3, 20,
41, 61, 73]). Both equations are commonly derived from the above deterministic
models, and have the following general form:

∂Ep,l

∂t1
+ ∂

∂x

(
Cg,pEp,l

)+ 2Dp,lCg,pEp,l

= −2Cg,p

s=N
u=min{l+M,M}∑
u=max{l−M,−M}

s=p−N

�[(iWs,p−s,u,l−uBs,u,p−s,l−u)e−i
∫
(kxs,u+kxp−s,l−u−kxp,l )dx], (4.10)

which was derived from the deterministic equation (3.11) using the same procedure
as in Sect. 4.2.1: multiplying (3.11) by the complex conjugate of ap,l , summing the
result with its complement, and applying an ensemble average. Here � denotes the
real part of an expression. The energy spectrum and bispectrum are defined as

Ep,l =
〈∣∣ap,l∣∣2

〉
, Bs,u,p−s,l−u =

〈
a∗p,las,uap−s,l−u

〉
. (4.11)
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The brackets 〈·〉 denote the ensemble averaging operation, the index p defines the
frequency of the spectral component, l defines its lateral wavenumber, and the terms
Dp,l, Ws,p−s,u,l−u are defined as in Sect. 3.2 (see (3.11)).

The bispectrum evolution equation is also derived from the same deterministic
model in a similar manner to yield

dBs,u,p−s,l−u
dx

+ (
Dp,l +Ds,u +Dp−s,l−u

)
Bs,u,p−s,l−u

+
(
C′g,p

2Cg,p
+ C′g,s

2Cg,s
+ C′g,p−s

2Cg,p−s

)
Bs,u,p−s,l−u = −i

(
Iq,r,s−q,u−r,−p,l,p−s,l−u

Tq,r,s−q,u−r,−p,l,p−s,l−u+ Iq,r,s−q,u−r,−p,l,s,uTq,r,s−q,u−r,−p,l,s,u

+Iq,r,s−q,u−r,s,u,p−s,l−uTq,r,s−q,u−r,s,u,p−s,l−u
)

(4.12)

with the trispectrum components and their coefficients defined as

Tq,r,s−q,u−r,−p,l,p−s,l−u =
〈
aq,ras−q,u−ra∗p,lap−s,l−u

〉
, (4.13)

Iq,r,s−q,u−r,−p,l,p−s,l−u =
q=N

r=min{u+M,M}∑
r=max{u−M,−M}

q=s−N

Wq,s−q,r,u−re
−i ∫ (

kxq,r+kxs−q,u−r−kxs,u
)
dx
. (4.14)

Here, slow time changes of the spectral components were discarded, leading to a
formulation of the bispectra as a function of only spatial coordinates.

In a similar manner it can be shown that the trispectrum will depend on
fourth order moments, which will in turn depend on fifth order moments and so
forth. Therefore, for solving the system a closure relation is required, as when
deriving (4.3). A quasi-Gaussian closure [12] is applied to truncate the infinite
hierarchy of equations, resulting in

dBs,u,p−s,l−u
dx

+ (
Dp,l +Ds,u +Dp−s,l−u

)
Bs,u,p−s,l−u

+
(
C′g,p

2Cg,p
+ C′g,s

2Cg,s
+ C′g,p−s

2Cg,p−s

)
Bs,u,p−s,l−u

= −2i
(
W−s,−(p−s),u,l−uEs,uEp−s,l−u

+Wp,−s,l,l−uEp,lEs,u +Wp,−(p−s),l,l−uEp,lEp−s,l−u
)
e
i
∫ (

kxs,u+kxp−s,l−u−kxp,l
)
dx
.

(4.15)

Equations (4.10) and (4.15) comprise a two-equation stochastic model, which can
be used to solve the shoaling problem.
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The number of permutations between wave components constructing the various
bi-spectral components is very large, so that the problem becomes very compu-
tationally intensive. In order to address this limitation, Eq. (4.15) is solved for
Bs,u,p−s,l−u. The bispectrum is assumed to be negligible in deep water as in
this region the sea is nearly Gaussian. Applying the integrating factor method
to Eq. (4.15) yields an analytical solution for the bispectrum, which can then be
substituted into (4.10) to construct a one-equation model (see [2, 3, 73]) of the form

∂Ep,l

∂t1
+ ∂

∂x

(
Cg,pEp,l

)+ 2Dp,lCg,pEp,l (4.16)

= 4Cg,p

s=N
u=min{l+M,M}∑
u=max{l−M,−M}

s=p−N

� [
Qs,p−s,u,l−u +Qp,s,l,t−u +Qp,p−s,l,l−u

]
Ws,p−s,u,l−u,

(4.17)

with

Qs,p−s,u,l−u = e
−i ∫ x0

(
kx
′

s,u+kx
′

p−s,l−u−kx
′

p,l

)
dx ′
e−

∫ x
0 −Js,u,p−s,l−udx ′ (4.18)

∫ x

0

(
Es,uEp−s,l−uW−s,−(p−s),u,l−ue

i
∫ x′

0

(
kx
′′

s,u+kx
′′

p−s,l−u−kx
′′

p,l

)
dx ′′

×e
∫ x′

0 −Js,u,p−s,l−udx ′′
)
dx ′,

where the J -term represents summation of all linear coefficients.
In order to simplify the calculation of the Q-terms, as a first approximation, one

can assume slow spectral evolution with respect to shoaling coefficients and take
the energy terms outside of the integral (see [2, 3]), similar to the procedure adopted
when deriving the kinetic equation (4.5) for the evolution of spectra in deep water
(see [25, Eq. (A1)ff]). This may reduce the accuracy in breaking regions where wave
heights change significantly within short distances.

4.4 Localization Procedures for Nearshore Stochastic Models

The one-equation model (4.17) reduces the number of equations to be solved
significantly. However, the solution still requires the calculation of non-local non-
linear coefficients. This makes its implementation difficult for operational models
based on the wave-action equation (WAE). Furthermore, the evaluation of the
bispectrum (4.12) or the non-local coefficients (4.18) still enforces a strict Nyquist
limitation as they themselves may oscillate quite rapidly in space. A localisation of
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the Q coefficient can therefore allow for operational model implementation while
improving the efficiency of calculation significantly.

Simplified approaches are currently employed in source terms used in operational
wave models (see [11, 18, 59]). They approximate the bi-spectral evolution equation
using empirical data for the second harmonic, or assume very small changes in the
bi-spectra to solve it as an algebraic equation.

A more advanced localization approach, which aims to further improve opera-
tional models in the nearshore region, was first considered in Stiassnie and Drimer
[62] and subsequently improved in Toledo and Agnon [71] and Vrecica and Toledo
[73]. This procedure entails extracting spectral components out of the integral, and
only the mean part of the bispectra—the main interest in such models—is accounted
for. Assuming a monotone slope, the Q-term is simplified from (4.18) as

Qs,p−s,u,l−u (x) = Es,uEp−s,l−uPs,p−s,u,l−u
(
h (x) , h′ (x)

)
, (4.19)

which enables pre-calculation of the nonlinear coupling term P , which is a localized
coefficient.

The different behaviours of the non-local nonlinear interaction coefficients (4.18)
and the localized simplification (4.19) can be seen in Fig. 5 for a monochromatic
wave energy transfer to the second harmonic while shoaling on a beach with a
constant slope. In deep water, the nonlinear interaction term (or the bispectra)
oscillates in space with no mean change (see Fig. 5 (left panel) in the region of
x < 80 m). This indicates a bound wave behaviour with mean energy transfer
between the modes. Once the wave enters intermediate depths, class III triad
resonance conditions (2.3) can be satisfied, and the nonlinear interaction coefficient
oscillates, albeit with a small mean change. This indicates a mean energy transfer
to the second harmonic in the class III Bragg resonance mechanism as shown in
Fig. 1a.

Fig. 5 Two different behaviors of the bispectra for the case of monochromatic wave propagation
over a slope, as shown in [73]. In intermediate waters the nonlinear coupling term (Q1100) is mostly
oscillating with a slowly growing mean component (left panel). As the water gets shallower (kh
reduces) the Q-term tends to an asymptotic shallow water solution (right panel)
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As all the interacting waves enter shallow water conditions, they asymptotically
go to resonance as in Fig. 1c, so instead of an oscillatory behaviour they act in
an exponential manner (see Fig. 5, right panel). Under such conditions, a distinct
localization approach is needed compared to the intermediate water case. Such an
approach was developed in Vrecica and Toledo [73, Sec. 4.3.2]. The two different
formulations of the localized model are separated by a gate term, which is a function
of depth and bottom slope (see Fig. 5). It is stressed that the transition between these
two behaviours also depends on the bottom slope, for sharp changes the shallow
water localization will activate sooner, and vice versa.

A limitation of the model is its inapplicability to long propagation in shallow
water with strong nonlinearity. Energy would cascade to ever higher frequencies,
leading to wave breaking. This condition is more relaxed for cases with large
directional spreading, as waves are still dispersive in the angular space (see [50]).
However, operational stochastic models are usually not extended to such areas,
typically a Bousinessq-type model (e.g, [46]), or RANS model ([80]) would be used
for such cases.

4.5 Comparison Between Deterministic Ensembles and
Stochastic Equations

In deep water waves are often considered to be uncorrelated, and the slow evolution
of the spectral energy density can be captured by e.g. the kinetic equation (4.5).
However, as waves propagate to nearshore correlations build up, and coherent
patterns form [51]. Therefore, a quasi-Gaussian closure, while commonly used in
nearshore wave models, is often not valid for cases involving strong nonlinearity
or dissipation. Such quasi-Gaussian closure can result in an overestimate of energy
transfer to higher frequencies, as well as result in (unphysical) negative energies
(see [34, Sec. 4.4]). The closure of Holloway [30], which adds dissipation to the
bispectral evolution equation, is often used as an empirical solution.

Nonlinear shoaling also affects the wave shape, which is commonly expressed
using skewness and asymmetry, as discussed in Elgar and Guza [21]. Initially, in
deep water, wave skewness (which relates to wave phase), and asymmetry (which
relates to nonlinear energy transfer) are both near zero. As the wave field starts
shoaling both begin to grow, however in the surf zone skewness tends back to zero,
while the limit for asymmetry is∼3. These depend on the value of the Ursell number
aλ2/h3 (for a, λ, h a typical sea-surface elevation, horizontal length scale, and
vertical length scale, respectively), as shown in [22].

In order to shed light on the validity of the quasi-Gaussian closure a simulation
of unidirectional JONSWAP spectra with a 1 m significant wave height and peak
frequency of 0.1 Hz was performed using the nonlinear MSE (3.11). The spectrum
propagates from deep water (Fig. 6a) to 5 m depth (Fig. 6b) over a 5% slope.
In the present case, the Ursell number is small, so skewness and asymmetry
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Fig. 6 Evolution of a JONSWAP spectra, obtained using Eq. (3.11), over a monotone (5%) slope
from deep water (a) to 5 m depth (b). Comparison of quasi-Gaussian, and ensemble averaged
trispectral moments (T1 = T39,41,−q,−80+q and T2 = T−39,80,−q,−41+q, lateral indices are dropped
for brevity) at 5 m depth, describing energy transfer to secondary peak (c), and backtransfer to the
primary peak (d)

may be neglected. The quasi-Gaussian closure for trispectral moments describing
energy transfer to the secondary peak (E39,0 and E41,0 to E80,0), as defined by
Eq. (4.11) is compared against ensemble averaged trispectral sums. Comparison is
also made between trispectral moments describing backtransfer of energy to E41,0.
The quasi-Gaussian moments are defined using Eq. (4.13) as T1 = E39,0E41,0
and T2 = E39,0E80,0, while the ensemble averaged ones are defined as T1 =∑N

q=−N a39,0a41,0a
∗
qa
∗
80−q,0, and T2 = ∑N

q=−N a∗39,0a80,0a
∗
qa
∗
41−q,0 for the super-

and sub-harmonic interactions respectively (N represents the number of discretized
wave harmonics). The results are shown in Fig. 6c and d.

As a relatively mild nonlinear case is considered, the quasi-Gaussian closure
[12] is accurate to leading order. Based on preliminary analysis, the closure is
accurate for the trispectral moments containing the most energetic wave components
up to this point. However, the errors are not proportional to each trispectrum, and
the relative error is larger for less energetic components. When summed over all
possible indices the errors can become significant in cases of strong nonlinearity.

While averaged equations based on the quasi-Gaussian closure may agree well
with ensemble averages of the deterministic equations, it is important to point out
that individual realizations of the deterministic equations may show significant
deviations from the average. This is illustrated via the generation of infragravity
waves (0.01 Hz), where Eq. (3.11) is solved with an input of a bichromatic wave
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Fig. 7 Evolution of a low-frequency wave (0.01 Hz) of initial amplitudes 0.04 cm (a) and 0.02 cm
(b) due sub-harmonic interaction of bi-chromatic waves (0.11 Hz and 0.1 Hz) over a monotone
beach. Grey area and dot-dashed brown line: Monte-Carlo realizations using Eq. (3.11) and their
ensemble average. Brown lines: the ensemble’s standard deviation added and subtracted from
the averaged result see [13]. Thick black line: localized stochastic model. Dotted black line: the
ensemble averaged deterministic result of [2]

field (0.1 and 0.11 Hz, with amplitudes of 2.07 cm for Fig. 7a and 1.22 cm for
Fig. 7b). The ensemble relates to different relative phases between the bi-chromatic
waves. An envelope containing all realizations is shown in grey together with
their mean value and standard deviation. It can be clearly seen that depending on
the relative phase of interacting components, each realization can be drastically
different. Hence, it should be taken into account that the ensemble averaged wave
height may be significantly lower than that of the largest realization.

5 Conclusions and Perspectives

We have focused throughout on the mechanism of resonant (or near-resonant)
energy exchange, and how it drives wave evolution in deep water as well as finite
depth. A variety of deterministic and stochastic model equations exist, suitable for
simulating the evolution of a wave field from deep to shallow water. Deterministic
models are able to give insight through many realizations, while stochastic models
are much faster, enabling analysis of larger areas. Although present day operational
wave models are highly reliable overall, there is considerable work to be done on
the theoretical front. In particular, while an accuracy within a few percent for a wave
forecast may be suitable for the vast majority of situations, it is often the outliers,
or extreme events (see, e.g. Adcock and Taylor [1] for a review), that have the most
potential to cause damage. We highlight a few areas where further study is needed
for deep and shallow water.



176 R. Stuhlmeier et al.

5.1 Direct Numerical Simulations and Kinetic Equations

While it is a formally simple step to average an evolution equation, the relationship
between solutions of the deterministic equation and its random counterpart is a
subtle one, as highlighted above in Sect. 4.5. Ideally, we would observe the fol-
lowing: if averaging is done by assuming, say, phases randomly and independently
distributed over (0, 2π], then the behaviour of the averaged equation should be the
average of many realizations of the deterministic equation, where each realization
chooses random phases independently distributed over (0, 2π]. This is Monte-Carlo
simulation, where computationally a “realization” means a solution with given
initial data.

The simplest nontrivial case already shows some difficulties: a resonant quartet of
four waves. The results of Stiassnie and Shemer [65, Sec. 9, Fig. 8] and Annenkov
and Shrira [7, Sec. 3, Fig. 2] demonstrate clear discrepancies. In both cases four
initial conditions b(k1, t = 0), . . . b(k4, t = 0) are supplied. In the Monte-Carlo
simulation, the Zakharov equation is integrated when b(k1, 0) = |b(k1, 0)|eiφ for
many realizations with different φ ∈ (0, 2π]. The kinetic equation is integrated with
the (phase-free) initial condition Ci(0) = |b(ki , 0)|2. Annenkov and Shrira [7, Fig.
3] were able to obtain good agreement with the kinetic equation only after replacing
each of the four waves in the Monte-Carlo simulation with a cluster of five waves,
with a resulting 181 coupled quartets.

The comparison between numerical simulation and the kinetic equation for
JONSWAP spectra with many modes has also been extensively explored. Despite
the fact that the kinetic equation is derived with some long-time asymptotic limits
(to eliminate non-resonant contributions), and is formally on the long time-scale T4,

Tanaka [69] found that it captures spectral changes for a broad (cos2(θ)) JONSWAP
spectrum on a much shorter time-scale. Tanaka’s results point to the fact that
ensemble averaging is inessential provided the mode density is high enough—which
is related to the theoretical view of the kinetic theory as averaging out redundancy in
the dynamic description [79, Sec. 2.1.2]—but the four-wave results point to a lower
limit to the applicability of the kinetic theory.

Direct numerical simulations can also be used to investigate other averaged
equations. For example, the instability results of Alber [5] were compared with
Monte-Carlo simulations of the NLS by Onorato et al. [52, Sec. 3] for unidirectional
Lorentz spectra, and some qualitative agreement with the theoretical instability
region was found. For initial Gaussian spectra, Dysthe et al. [17] found approximate
agreement between Alber’s results and Monte-Carlo simulations only in the unidi-
rectional case—for directional Gaussian spectra there were marked discrepancies.
All these results, as well as the recent study by Annenkov and Shrira [8] comparing
several wave kinetic equations with Monte-Carlo simulations, point to a need for
intense further study.
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5.2 The Role of Near-Resonant Interactions

The classical kinetic equation (4.5) contains δ-functions in both wavenumber and
frequency—this reflects its derivation under the assumptions of exact resonance.
This is the consequence of an asymptotic limit, described in detail by Janssen [32,
see Eq. 27]. The Zakharov equation requires no such assumption, and includes near-
resonant interactions such that �n+p−q−r = ωn + ωp − ωq − ωr is of order ε2.

Indeed, the side-band instability relies on exactly these (fast, compared to the kinetic
time-scale) interactions.

A number of generalizations of the kinetic equation (4.5) exist, which aim to
incorporate near-resonant interactions. Janssen [32, Eq. 25] proposed one such
equation, Annenkov and Shrira [7, Eq. 2.25] proposed another, and Gramstad and
Stiassnie [25, Eq. 2.19] generalized this to include frequency correction terms. The
same generalized equation was recently studied by Andrade et al. [6], and found to
exhibit finite-time blow-up for some degenerate quartets. When performing Monte-
Carlo simulations, Annenkov and Shrira [7, Sec. 3.4] found that omitting waves in
exact resonance, and keeping only their near-resonant neighbors had no effect on
the subsequent evolution. There are clearly many more nearly-resonant interactions
than there are exactly resonant ones. This fact, together with the need to discretize
in wavenumber-space when performing computations, means that some amount of
coarse-graining is inevitable. Such near resonant generalizations should be explored
in detail, and compared with the kinetic equation (see Annenkov and Shrira [8] for
the initiation of such an effort).

5.3 Nearshore Wave Modelling

Much work remains to be done on important aspects of coastal wave modelling.
The stochastic nonlinear formulation used in the breaking region (see Sect. 4.5) has
limitations, as the quasi-Gaussian closure it employs is not valid in the surf zone.
The empirical closure of [30] corrects overestimation of energy transfer, but does
not fully describe nearshore wave statistics. Hence, an in-depth study of nearshore
wave statistics is still required in order to formulate better stochastic closures. Of
particular note is the fact that an arbitrary realization of the deterministic solution
can drastically vary from the ensemble averaged result. This can be seen even in
the very simplistic case of a subharmonic interaction of bi-chromatic waves (see
Fig. 7). For the evolution of a JONSWAP spectrum (Fig. 6), which has numerous
phase selection possibilities, is was necessary to generate 200 realizations in order to
obtain good agreement between the quasi-Gaussian closure and ensemble averaged
trispectra. The work of Smit and Janssen [61] addresses some recent advances in
understanding non-Gaussian wave statistics.

Another nearshore phenomenon to consider is wave reflection. Incident waves
will be scattered backwards from the bottom slope (see [75] for the linear case)
and nonlinearly generated in the backwards direction. In addition, most models
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assume linear dispersion for every wave harmonic ([36] is good counterexample),
and neglect formation of coherent wave patterns, but how important these are is yet
to be investigated.

Wave breaking is one of the most important mechanisms in the nearshore region.
Its formulations are empirical by nature (usually based on [10]). Therefore, they
better resolve cases close to the ones under which they were tested, and commonly
require tuning of their coefficients (see [19, 47]). As most laboratory measurements
are conducted in wave flumes, the resulting formulations are limited to directly
incident waves without addressing two dimensional aspects. Furthermore, when
nearshore nonlinear interactions are not well described in the models used for
their formulations, these breaking formulations may not separate well between the
two mechanisms. Hence, they have problems representing the complex combined
behaviour of breaking and nonlinear interaction, and may require changes and
recalibration for any advancement in the nonlinear modelling.
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Institute for Mathematics and Physics (ESI), Vienna, Austria, as well as support from a Small
Grant from the IMA.
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Gravity-Capillary and Flexural-Gravity
Solitary Waves
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Abstract Solitary gravity-capillary and flexural-gravity waves in two and three
dimensions of space are reviewed in this paper. Numerical methods used to compute
the solitary waves are described in detail and typical solutions found over the years
are presented. Similarities and differences between the solutions for the two physical
problems are discussed.
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1 Introduction

Solitary gravity-capillary waves at the surface a inviscid fluid have been investigated
intensively for the last 40 years (see [17, 65] for reviews). Due to the similarities
with the gravity-capillary problem and motivated by the observation of waves
under continuous ice sheets, the interest in flexural-gravity solitary waves has also
increased considerably in the last 15–20 years.

Under certain conditions the floating ice plates can be modelled using the theory
of elastic plates or shells (see [46, 62]). Different models for the elastic plates have
been proposed over the years, starting with linear plates [29], Kirchhoff–Love plates
[22, 23] or, more recently, using the special Cosserat theory of hyperelastic shells
satisfying Kirchhoff’s hypothesis [61].

In this paper we will review the most utilised numerical methods in the
computation of solitary gravity-capillary and flexural-gravity waves in two and three
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dimensions. Different types of solitary waves will be discussed for both physical
problems. While we concentrate here on the numerical solutions of the fully-
nonlinear equations of motion, it is worth mentioning that there are also numerous
results obtained for various weakly-nonlinear model equations and rigorous proofs
of existence of gravity-capillary or flexural-gravity solitary in two and three
dimensions.

When a shallow water waves approximation is used weakly-nonlinear model
equations of the KdV-type [47] in two dimensions have been generalised to three-
dimensions, and KP-type [43] equations were obtained which admit fully-localised
solitary waves solutions in the gravity-capillary case [2, 8, 18, 50] (see also [4]
for a review of KP solutions). Higher order weakly-nonlinear model equations
such as fifth-order KdV which have solitary wave packets as solutions have also
been derived for some critical region of parameters for gravity-capillary waves
[30, 74] or flexural-gravity waves [34, 73] in two dimensions, and higher order
KP-type equations were derived for the three-dimensional flexural-gravity case
[36, 37].

Weakly-nonlinear model equations which admit packet-type solitary waves
solutions have also been derived by removing the shallow water waves assump-
tion. In two dimensions they are of the NLS-type (see e.g [3, 15, 49]) and in
three-dimensions they are of the Benney–Roskes–Davey–Stewartson (BRDS)-type,
derived initially for gravity waves [7, 14] and latter generalised for gravity-capillary
waves [20]. More recent studies of these weakly-nonlinear equations have been
conducted for gravity-capillary waves [1, 5, 44] and for flexural-gravity waves
[6, 54].

The existence of gravity-capillary solitary waves in two dimensions has been
proved in two dimensions using a spatial dynamics method and centre-manifold
techniques in the strong surface tension case [45] and in the weak surface tension
case [40–42]. The existence of flexural-gravity solitary waves in two dimensions
was established using variational method for the Cosserat model [32] (see also [16,
39] for results using the Kirchhoff–Love model). Recently, the existence of three-
dimensional fully-localised gravity-capillary solitary waves was also proved using
variational methods for strong tension [9, 31] and weak tension [10].

In this paper in Sect. 2 the two physical problems are formulated. In Sect. 3
two-dimensional solitary waves are presented, including some popular numerical
methods used to compute them. In Sect. 4 the three-dimensional solitary waves are
discussed briefly, together with a short description of a boundary-integral equation
method and the paper ends with conclusions in Sect. 5.

2 Formulation

We consider an inviscid, incompressible fluid of constant density ρ and an irro-
tational flow in Cartesian coordinates Oxyz, with z being the vertical coordinate.
We assume that the fluid is bounded below by a rigid bottom at z = −h. The
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free surface or ice/water interface is given by z = ζ(x, y, t) and we introduce
the velocity potential $(x, y, z, t) in the fluid. The governing equation in the fluid
domain is

∇2$ = 0 for x, y ∈ R,−h < z < ζ(x, y, t). (2.1)

The kinematic condition on the free surface is

ζt +$xζx +$yζy = $z on z = ζ(x, y, t), (2.2)

and the no-flow condition at the bottom is

$z = 0 on z = −h. (2.3)

In the deep-water case the last condition is replaced by

|∇$| → 0 as z =→ −∞. (2.4)

The dynamic boundary condition on the free surface is

$t + 1

2

(
$2
x +$2

y +$2
z

)
+ gζ + P = 0 on z = ζ(x, y, t), (2.5)

where g is the gravitational acceleration. When considering only the effect of the
surface tension σ we replace P by P = σ

ρ
Pgc, where

Pgc = −
⎡
⎢⎣
⎛
⎝ ζx√

1+ ζ 2
x + ζ 2

y

⎞
⎠
x

+
⎛
⎝ ζy√

1+ ζ 2
x + ζ 2

y

⎞
⎠
y

⎤
⎥⎦ . (2.6)

If we assume that the fluid is covered instead by an ice sheet modelled using the
Cosserat theory of hyperelastic shells [61], then the dynamic boundary condition at
the interface between the fluid and the ice sheet z = ζ(x, y, t) is still (2.5), but now
P = D

ρ
Pfg , describing the effect of the ice on the surface of water, where D is the

flexural rigidity of the elastic shell and

Pfg = 2√
a

[
∂x

(
1+ ζ 2

y√
a

∂xH

)
− ∂x

(
ζxζy√
a
∂yH

)
− ∂y

(
ζxζy√
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)
+ ∂y

(
1+ ζ 2

x√
a

∂yH

)]

+ 4H 3 − 4KH (2.7)
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whereH is the mean curvature and K the Gauss curvature of the ice/water interface,
given by

H = 1

2a3/2

[
(1+ ζ 2

y )ζxx − 2ζxyζxζy + (1+ ζ 2
x )ζyy

]

K = 1

a2

[
ζxxζyy − ζ 2

xy

]

a = 1+ ζ 2
x + ζ 2

y .

We assume here that the ice sheet is not pre-stressed and there is no friction between
ice sheet and the fluid [35]. The effect of inertia of the plate is also neglected. We
also note that Pgc = −2H . If we consider a linear elastic plate [57], the Pfg term
simplifies to the bilaplacian term

Pfg = ζxxxx − 2ζxxyy + ζyyyy.

By looking for linear waves of the form ei(kx+ly−ωt), we can derive the dispersion
relation in the two cases. For the surface tension case it is

ω2 =
(
g|k| + σ

ρ
|k|3

)
tanh(|k|h), (2.8)

and for the ice-covered fluid

ω2 =
(
g|k| + D

ρ
|k|5

)
tanh(|k|h), (2.9)

where k = (k, l), hence |k| = √k2 + l2.
If we investigate two-dimensional waves which are travelling in x-direction and

are constant on the transverse direction, and assume now that y is the vertical
coordinate instead of z, the problem will simplify: the free surface or ice/water
interface is given by y = η(x, t), the velocity potential in the fluid is $(x, y, t)
and they will satisfy the equivalent two-dimensional equations corresponding
to (2.1)–(2.5). It is worth writing explicitly only the dynamic boundary condi-
tion.

$t + 1

2

(
$2
x +$2

y

)
+ gη + P = 0, on y = η(x, t). (2.10)

For the surface tension case

P = σ

ρ
Pgc = −σ

ρ
κ, on y = η(x, t), (2.11)
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where κ is the curvature of the free surface given by

κ = ηxx

(1+ η2
x)

3/2 .

For the ice-covered fluid case

P = D

ρ
Pfg = D

ρ

(
κss + 1

2
κ3

)
, on y = η(x, t), (2.12)

where s is the arclength along this interface, and therefore

κss + 1

2
κ3 = 1√

1+ η2
x

∂x

[
1√

1+ η2
x

∂x

(
ηxx

(1+ η2
x)

3/2

)]
+ 1

2

(
ηxx

(1+ η2
x)

3/2

)3

.

Simplified Kirchhoff–Love leading-order versions of Pfg have been used in the past
as approximations of the elastic plate [55, 67], e.g.

Pfg = PKL = κxx = ∂2
xx

(
ηxx

(1+ η2
x)

3/2

)
. (2.13)

To simplify the analysis, we will non-dimensionalise all the equations and variables,
using in the gravity-capillary case the length and times units Lgc = (σ/ρg)1/2

and Tgc = (σ/ρg3)1/4, and in the flexural-gravity case Lfg = (D/ρg)1/4 and
Tfg = (D/ρg5)1/8. We also introduce the dimensionless depths hgc = h/Lgc =
h(ρg/σ)1/2 in the gravity-capillary case and hfg = h/Lfg = h(ρg/D)1/4 in the
flexural-gravity case. The dimensionless dispersion relations for two-dimensional
gravity-capillary waves moving in the x-direction with wavenumber k with phase-
speed c = ω/k is

c =
√(

1

k
+ k

)
tanh

(
khgc

)
, (2.14)

and in the ice-covered fluid case

c =
√(

1

k
+ k3

)
tanh

(
khfg

)
. (2.15)

It can be observed that in both cases c→∞ as k→∞. The long-wave limit k→ 0
of c(k) is c0 =

√
hgc for gravity-capillary waves and c0 =

√
hfg for flexural-gravity

waves.
When the water is of finite depth there is always a minimum of the phase

speed c = c(k) in the flexural-gravity case, while in the gravity-capillary case this
minimum exists only when σ/ρgh2 < 1/3 (see Fig. 1). This can be easily seen if
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Fig. 1 Dispersion relation for (a) gravity-capillary waves given by (2.14) and (b) flexural-gravity
waves given by (2.15). The dimensionless parameters are hgc = 3 (solid line) and hgc = 1 (dashed
line) for gravity-capillary waves in (a) and hfg = 3 and flexural-gravity waves in (b)

we expand (2.14) in Taylor series about k = 0 for gravity-capillary waves

c ≈ √
hgc +

(3− h2
gc)

√
hgc

6
k2 +O(k4),

and expand (2.15) about k = 0 for flexural-gravity waves

c ≈ √
hfg −

h
5/2
fg

6
k2 +O(k4).

If the water is of infinite depth, then c → ∞ as k → 0 and there is always a
minimum phase speed cmin =

√
2 ≈ 1.4142 at kmin = 1 for gravity-capillary waves

and cmin = 2
33/8 ≈ 1.3247 at kmin = 31/4 for flexural-gravity waves.

Different types of solitary waves can bifurcate from either the long-wave limit
speed c0, or from the minimum phase speed cmin (when it exists).

3 Two-Dimensional Solitary Waves

3.1 Numerical Methods

We present some numerical methods used to compute solitary waves. We concen-
trate only on computations of steady gravity-capillary and flexural-gravity waves
here. One of the methods used to calculate solitary waves is based on boundary
integral equation technique [66].
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For steady waves in a reference frame moving at constant speed c, we introduce
the complex velocity potential

w(z) = $(x, y)+ i%(x, y), (3.1)

where %(x, y) is the stream function and x = x − ct . We map the physical plane

z = x(w)+ i y(w),

to w(z) in the inverse plane. Without loss of generality, we set % = 0 on the free
surface or fluid-ice interface and choose $ = 0 at x = 0. It can be shown that
% = −ch on the bottom (here h = hgc or h = hfg , depending on the problem).
The fluid-ice interface is denoted by

(x($), y($)) = (x($+ i 0), y($+ i 0)).

In this notation, x ′($) and y ′($) are the values of x$ and y$ evaluated at the
interface % = 0. As y$ = 0 on the bottom % = −ch for the finite-depth problem,
we can extend the function x$−1/c+ iy$ by symmetry about the line % = −ch to
an analytic function in the strip (−2ch, 0), then apply the Cauchy integral formula
in this rectangular strip.

Assuming the symmetry of solutions about $ = 0, application of the Cauchy
integral formula yields, after some algebra,

x ′($0)− 1

c
= − 1

π
−
∫ ∞

0
y ′($)

(
1

$−$0
+ 1

$+$0

)
d$

+ 1

π

∫ ∞
0

($0 −$)y ′($)+ 2ch(x ′($)− 1/c)

($−$0)2 + 4c2h2 d$

+ 1

π

∫ ∞
0

−($0 +$)y ′($)+ 2ch(x ′($)− 1/c)

($+$0)2 + 4c2h2 d$, (3.2)

where the primes denote differentiation with respect to $ and the evaluation point
$0 lies on the free surface. In the infinite-depth case only the integral on the first
line remains, which is evaluated in the principal value sense [66].

The dimensionless dynamic condition becomes in the inverse plane in the
gravity-capillary case

1

2

(
1

x ′2 + y ′2
− c2

)
+ y − y ′′x ′ − y ′x ′′

(x ′2 + y ′2)3/2 = 0, (3.3)
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and in the flexural-gravity case

1

2

(
1

x ′2 + y ′2
− c2

)
+ y + 1

2

(
y ′′x ′ − y ′x ′′

(x ′2 + y ′2)3/2

)3

+ S

(x ′2 + y ′2)9/2 = 0, (3.4)

where

S = x ′5y(iv) + 2x ′3y ′2y(iv) + x ′y ′4y(iv) − 6x ′4x ′′y ′′′ − 2x ′2y ′2x ′′y ′′′

+4x ′′y ′4y ′′′ − x ′4x(iv)y ′ − 2x ′2x(iv)y ′3 − x(iv)y ′5 − 4x ′4x ′′′y ′′

+2x ′2x ′′′y ′2y ′′ + 6x ′′′y ′4y ′′ − 10x ′3y ′y ′′y ′′′ + 10x ′3x ′′x ′′′y ′

+10x ′x ′′x ′′′y ′3 − 10x ′y ′3y ′′y ′′′ − 39x ′x ′′2y ′2y ′′ + 3x ′′3y ′3 − 3x ′3y ′′3

+15x ′y ′2y ′′3 + 39x ′2x ′′y ′y ′′2 − 15x ′′y ′3y ′′2 + 15x ′3x ′′2y ′′ − 15x ′2x ′′3y ′.

Equations (3.2) and (3.3) or (3.4) define a system for the unknown functions
x($) and y($) which is solved by employing a method described in [33, 34, 66].
The system is discretized by choosing n equally spaced points $j = j�$ for j =
1, . . . , n. The integral (3.2) is evaluated at mid-points by the trapezoidal rule. Finite
differences and interpolation formulae are used for the derivatives. Equation (3.3)
or (3.4) is evaluated at the interior grid points, and a truncation condition at $n

is imposed. The nonlinear system obtained for the unknowns y ′i = y ′($i), where
i = 1, . . . , n, is solved by Newton’s method.

A different method based on conformal mapping methods is also used to compute
gravity-capillary or flexural-gravity solitary waves [21]. As above, the main idea
is to reformulate the physical system which involves an unknown free surface as
a system on a fixed domain in a new complex plane ξ + iβ, using a conformal
map. In the transformed plane the free surface corresponds to β = 0 and it is
described parametrically as (X(ξ), Y (ξ)). The link between these variables is in
infinite-depth

X(ξ) = ξ −H[Y (ξ)], (3.5)

where H is the Hilbert transform

H[f (ξ)] =
∫ ∞
−∞

f (ξ ′)
ξ ′ − ξ

dξ ′.

In the finite case the physical domain is mapped into a strip of depth h̄ in the
transformed plane and the operator H in (3.5) changes to T , where

T [f (ξ)] = 1

2h̄

∫ ∞
−∞

f (ξ ′) coth

(
π

2h̄
(ξ ′ − ξ)

)
dξ ′.
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The dynamic condition to be solved in the steady case of a gravity-capillary wave
propagating with speed c is

c2

2

(
1

J
− 1

)
+ Y − YξξXξ − YξXξξ

J 3/2 = 0, (3.6)

where J = X2
ξ + Y 2

ξ is the Jacobian of the conformal map. A similar equation can
be easily written for flexural-gravity waves, with the last term replaced by terms as
in (3.4) and the primes replaced by ξ -derivatives.

The solitary waves are approximated by long periodic waves and the solutions
are written in Fourier series with unknown coefficients. The Fourier series for Y is
truncated after N terms and the same number of collocation points are distributed
along the ξ -axis. A set of algebraic equations is obtained from Eq. (3.6), or a similar
one for flexural-gravity waves, which is then solved using the Newton method.

The generalised solitary waves, which are waves with a central pulse and non-
decaying oscillations, can be also approximated with long periodic waves and can be
computed with this numerical method based on conformal mapping. They were also
computed using a modification of the method based on Cauchy integral methods
described above, where the integrals in (3.2) will contain cotangent terms [38].
Another approach to compute generalised solitary waves is to use a truncation series
method, as described in detail in [65].

3.2 Numerical Results

We will describe the main results obtained on the two problems under consideration,
highlighting the differences between them.

In water of infinite depth there exists branches of symmetric solitary waves of
elevation and depression which bifurcate from c = cmin and continue for c < cmin
in both flexural-gravity and gravity-capillary cases [48, 66]. They are characterised
by damped oscillations in the direction of propagation (see Fig. 2 for an example)
The main difference between the two cases is that the branches of gravity-capillary
solitary waves bifurcate from zero-amplitude periodic solutions at c = cmin, while
the flexural-gravity solitary waves bifurcate from a finite-amplitude solution at c =
cmin. The solitary waves end in a trapped-bubble for the depression branch [33,
66]. The flexural-gravity waves branch can be continued to c = 0, where a self-
intersecting profile is obtained, but the solutions are obviously not physical past
the trapped-bubble point. The elevation branch is more complicated in both cases,
having a number of turning points (see [19] for gravity-capillary waves and [70],
Fig. 3 for flexural-gravity waves).

More recently a plethora of non-symmetric and multi-hump gravity-capillary
[72] and flexural-gravity waves [26] have been discovered and computed (see
Fig. 3 (left) for an example)). The initial guess for the numerical scheme to find
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Fig. 2 Symmetric flexural-gravity solitary waves in infinite depth: depression (a, left) and
elevation solitary waves (b, right). In both cases c = 1.29

Fig. 3 Two non-symmetric gravity-capillary wave in infinite depth with c = 1.385 (left).
Symmetric generalised gravity-capillary solitary wave (right). Only half of the wave is shown

these solutions was obtained by ‘glueing’ different elevation or depression waves
travelling at the same speed.

Finite depth has an important effect on the branches of solutions in both cases.
Elevation and depression solitary waves bifurcating from cmin (when exist) were
found. When the depth of the fluid is less than a critical one the branches of flexural-
gravity solitary waves bifurcate from zero-amplitude solutions at c = cmin, as do the
gravity-capillary solitary waves.

In the gravity-capillary case, when σ/gρh2 > 1/3 a different type of depression
waves exists when c < c0, with the branch of solutions bifurcating from c0.
For small amplitudes they are very similar with sech2 solutions of KdV equation
and they decay monotonically to infinity. There are no equivalent solutions in the
flexural-gravity case.

However, when σ/gρh2 < 1/3 for the gravity-capillary case and for any values
of parameters for flexural-gravity case, there are branches of generalised solitary
waves bifurcating from c0 and they exist for c > c0. These are waves with one
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or more central pulses with non-decaying oscillations. Symmetric single-hump
gravity-capillary generalised solitary waves have been computed in [11, 38, 64],
where the central pulse is always of elevation (see Fig. 3 for an example). More
recently symmetric flexural-gravity generalised solitary waves were computed
in [67] for a Kirchhoff-Love model (2.13) and in [25] for the general elastic
model (2.12). Multi-humped symmetric generalised solitary waves have also been
computed using conformal mapping techniques and pseudospectral methods to
solve the fully-nonlinear gravity-capillary waves problem rewritten as a Babenko-
type equation [12].

Using the conformal mapping techniques described above (3.5) and (3.6) new
branches of non-symmetric generalised solitary waves have been discovered in the
last few years: gravity-capillary waves in [27] and flexural-gravity waves in [28].

It is worth noting that generalised flexural-gravity solitary waves have also been
found in infinite depth for c > cmin, when the solitary waves with decaying
oscillations existing for c < cmin become generalised solitary waves at c = cmin
(see [52, 53]).

The evolution in time and the stability of the computed solitary waves were
studied using numerical methods based on time-dependent conformal maps [51, 52]
or by using a Hamiltonian reformulation of the problem and the truncation of
Dirichlet-to-Neumann operator [13, 33, 34] which gives approximations of the
normal velocity at the free surface. Both methods use pseudospectral techniques
based on the fast Fourier transform.

4 Three-Dimensional Solitary Waves

4.1 Numerical Methods

The numerical computation of solitary waves in three-dimensions can be performed
using boundary integral equations methods based on Green’s theorem [24, 56]. After
some manipulation of the Laplace equation (2.1) and using Green second identity
we obtain

1

2
($(P ∗)− x∗) =

∫ ∫
S

[
($(P )− x)

∂G(P, P ∗)
∂n

−G(P,P ∗)∂($(P )− x)

∂n

]
dS,

(4.1)

where n is the normal to the free surface or ice-water interface S pointing into the
fluid, and P ∗ is a point from S. The Green’s function in infinite depth for the points
P = (x, y, z) and P ∗ = (x∗, y∗, z∗) is

G(P,P ∗) = 1

4π

1

((x − x∗)2 + (y − y∗)+ (z− z∗)2)(1/2)
, (4.2)
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The Green function is modified when the water is of finite depth is considered by
including a term taking into account the symmetry on the bottom.

By defining

φ(x, y) = $(x, y, ζ(x, y)), (4.3)

it allows us to rewrite (4.1) in terms of surface integrals. The dimensionless dynamic
boundary condition is

1

2

(1+ ζ 2
x )φ

2
y + (1+ ζ 2

y )φ
2
x − 2ζxζyφxφy

1+ ζ 2
x + ζ 2

y

+ ζ + P = c2

2
(4.4)

here P = Pgc or Pfg , depending on the problem studied (see [59, 60] for gravity-
capillary waves, [57, 58, 63] for flexural-gravity waves). Equations (4.1) and (4.4)
are discretised by setting xi and yj to be equally spaced points such that i =
1, . . . , N and j = 1, . . . ,M and the resulting algebraic equations are solved using
Newton’s method.

Three-dimensional solitary waves have also been computed by numerically
solving model equations obtained by reformulating the equations of motion in a
Hamiltonian form and then truncating the Dirichlet-to-Neumann operator associated
up to some order (see [68] for gravity-capillary solitary waves and [71] for flexural-
gravity waves).

4.2 Numerical Results

With the methods described above fully-localised solitary waves have been com-
puted for the two problems on both infinite and finite depth. As for the two-
dimensional case, branches of elevation and depression solitary waves have been
found bifurcating from the cmin for all values of parameters in the flexural-gravity
case and when σ/ρgh2 < 1/3 in the gravity-capillary case. These waves have a
central depression or elevation and have decaying oscillations in the direction of
propagation, but decay monotonically in the transverse direction (see Figs. 4 and 5
for some examples).

In the gravity-capillary case the amplitude of the solitary waves decays to zero as
c↗ cmin, approaching a train of two-dimensional periodic waves of zero-amplitude
for both infinite and finite depth [59, 60]. In the flexural-gravity case a similar
behaviour is found in finite depth when h is small. However, when h is larger
or infinite, the numerical computations suggest that the two branches of solitary
waves bifurcate from a finite-amplitude periodic waves at c = cmin, similar with the
two-dimensional case [63, 71]. Using a linear elastic plate approximation, flexural-
gravity solitary waves in infinite depth have also been computed in [58].
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Fig. 4 Example of three-dimensional flexural-gravity depression solitary wave in infinite depth
for c = 1.276 (a, left). Centrelines of the solution in x and y direction (b, right)
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Fig. 5 Example of three-dimensional flexural-gravity elevation solitary wave in infinite depth for
c = 1.273 (a, left). Centrelines of the solution in x and y direction (b, right)

In the gravity-capillary case, for strong surface tension σ/ρgh2 > 1/3 we found
only fully-localised depression gravity-capillary solitary waves which are similar
to the fully-localised solitary-wave solutions of the KP-I equation [60]. The waves
no longer have decaying oscillations in the direction of propagation: the central
depression is between two elevations which decay monotonically to zero as x →
∞. It is also worth mentioning that in the flexural-gravity case a higher order KP
equation was derived by Guyenne and Părău [36].

In all the cases it becomes numerically quite challenging to follow the branches
for large-amplitude solutions to investigate the limiting configurations. We have
investigated so far only symmetric waves in three dimensions, but based on the two-
dimensional case and on a weakly nonlinear model equation for the gravity-capillary
case [69], we expect to find non-symmetric solitary waves in three dimensions for
the fully-nonlinear problems.
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5 Conclusion

A number of numerical methods used for computing solitary waves in two and three
dimensions have been reviewed. Different types of solitary waves obtained with
these numerical methods have been discussed. While there are a number of similari-
ties between the flexural-gravity and gravity-capillary waves, some differences have
also been highlighted. In particular, the solitary waves with decaying oscillations
bifurcate at c = cmin at a finite-amplitude in the flexural-gravity case in infinite
depth, while they bifurcate at zero-amplitude in the gravity-capillary case. Another
type of gravity-capillary solitary is found in finite depth when there is a strong
surface tension, bifurcating at the long-wave limit c = c0. Branches of symmetric
and non-symmetric solitary and generalised solitary waves have also been presented.
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A Method for Identifying Stability
Regimes Using Roots of a Reduced-Order
Polynomial

Olga Trichtchenko

Abstract For dispersive Hamiltonian partial differential equations of order 2N+1,
N ∈ Z, there are two criteria to analyse to examine the stability of small-
amplitude, periodic travelling wave solutions to high-frequency perturbations. The
first necessary condition for instability is given via the dispersion relation. The
second criterion for instability is the signature of the eigenvalues of the spectral
stability problem given by the sign of the Hamiltonian. In this work, we show how
to combine these two conditions for instability into a polynomial of degree N . If the
polynomial contains no real roots, then the travelling wave solutions are stable. We
present the method for deriving the polynomial and analyse its roots using Sturm’s
theory via an example.

Keywords Spectral stability · High-frequency instabilities · Hamiltonian PDE ·
Dispersion · Sturm’s theory

Mathematics Subject Classification (2000) Primary 35B35; Secondary 37K45

1 Introduction

Partial differential equations (PDEs) are used in a wide variety of applications to
describe physical phenomena where this physical relevance imposes the require-
ment that the solutions to the PDEs are real. Moreover, if the description is
of a closed system, there is usually an associated conservation of energy and
the equations used are Hamiltonian. As more methodology for solving PDEs is
developed [7], the natural question to ask is then how realistic are these solutions
are and how likely we are to observe them in nature. Thus, analysing their stability
also becomes important [1, 4, 5]. The purpose of this work is to present a simplified
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method for stability analysis, illustrated by an explicit example. We focus on high-
frequency instabilities arising from spectral analysis of a perturbation of periodic
travelling waves [3] and restrict our focus to stability of solutions of dispersive
Hamiltonian equations. We show how working with the dispersion relation, we can
methodically construct a parameter regime where there is only spectral stability with
respect to particular perturbations and in the regions where we expect instability, we
show what types of instabilities can arise.

In recent work [3], a method for establishing the presence of high-frequency
instabilities of travelling wave solutions for both scalar PDEs as well as for systems
of equations was described. In this method, there are two important conditions to
consider:

1. collisions of eigenvalues of the spectral stability problem and
2. the signature of these eigenvalues.

Furthermore, it was shown that in order for the solutions to become unstable, the
system had to admit waves travelling in different directions (bi-directional waves).
In the follow-up work [11], the authors showed that a different way to meet the
instability criteria, was for equations to contain what is referred to as a generalised
resonance. An equation contains a resonance if there is a certain set of parameters for
which travelling wave solutions are predominantly composed of at least two distinct
frequencies which can travel at the same speed. Physically, this implies that there
are at least two different forces that can influence the travelling waves that are of
the same order of magnitude. For example, if we are considering water waves, then
these waves are in a resonant regime if surface tension and gravity are competing
forces of the same order of magnitude. The result is that the travelling wave profiles
contain two different prominent modes, otherwise referred to as Wilton ripples [10,
12].

If we restrict ourselves to scalar, dispersive and Hamiltonian PDEs where the
solution u depends on one spatial and one time variable, i.e. u = u(x, t) with
a period L and up to 2N + 1 derivatives, then it has been shown [3] that all
we need is a polynomial dispersion relation ω(k) of order 2N + 1 to describe
both of the necessary conditions for instability. In [6], it was shown that the two
necessary conditions for instability can be collapsed into one criterion on the roots
of a polynomial of order N to be in an interval I defined in Sect. 2. This greatly
simplifies the analysis, leading to closed-form results for stability regions of specific
PDEs.

This work presents a method for the single criteria for instability of periodic trav-
elling wave solutions to a dispersive, Hamiltonian PDE using an example with three
competing terms. The formulation and underlying theory is described in Sect. 2.
Working with the dispersion relation, we show the general methodology for the
stability analysis in Sect. 3. Section 4 explicitly shows how to implement the method
via an example, demonstrating how to construct the coefficients systematically and
use Sturm’s theory to analyse the roots of the reduced polynomial. In Sect. 5, figures
of the stability and instability regions are shown and we conclude in Sect. 6.



Stability via a Reduced-Order Polynomial 203

2 Summary of Stability Theory

Consider a scalar Hamiltonian PDE of the form

ut = ∂x
δH

δu
, (2.1)

where the function u = u(x, t) describes a periodic travelling wave, with H the
Hamiltonian and δH

δu
a variational derivative. More specifically u(x, t) is a solution

of

ut =
N∑
n=1

C2n+1
∂2n+1u

∂x2n+1
+ f (u, ux, . . . , u(2N)x)x, (2.2)

where N is positive integer and ∂2n+1u
∂x2n+1 are 2n + 1 (odd) derivatives up to order

2N + 1 with the nonlinearity f that can depend on u as well as its derivatives up to
order 2N (denoted as u(2N)x), keeping the overall system dispersive. For ease, we
consider the equation with real coefficientsC2n+1. We obtain the dispersion relation
ω(k) if we let u(x, t) ∼ eikx−iωt with k a Fourier mode, and substitute into (2.2) to
obtain

ω(k) =
N∑
n=1

(−1)(n+1)C2n+1k
2n+1. (2.3)

Furthermore, if we restrict the space of solutions u(x, t) to periodic, travelling waves
moving at speed V such that u(x, t)→ u(0)(x −V t), then we can write (2.2) in the
travelling frame of reference and consider the steady-state equation

V ux +
N∑
n=1

C2n+1
∂2n+1u

∂x2n+1 + f (u, ux, . . . , u(2N)x)x = 0, (2.4)

and setting x → x − V t from now on. Despite restricting the space of solutions to
travelling waves u(0)(x), we can still gather information about the time dependence
by perturbing about this steady-state with a small perturbation governed by δ, i.e.

u(x, t) = u(0)(x)+ δū(1)(x, t)

= u(0)(x)+ δeλtu(1)(x). (2.5)

We have made an assumption about the time dependence of the perturbation by
introducing λ ∈ C. Recall that u(0)(x) is periodic of period L (for convenience,
L = 2π) [3]. We allow the perturbations to be of any period, but bounded in space
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using the Fourier-Floquet expansion

u(1)(x) = eiμx
M∑

m=−M
bme

imx, (2.6)

with μ ∈ R the Floquet parameter governing the period of the perturbation and a
Fourier mode m ∈ Z [2]. We note that this perturbation can grow exponentially in
time if Re(λ) > 0, where λ = λ(μ +m) depends on the Fourier-Floquet modes m
and μ. For solutions with |u(0)(x)| = O(ε) with ε → 0,

λ(μ+m) = i(m+ μ)V − iω(m+ μ), (2.7)

if we consider O(δ) term when substituting (2.5) and (2.6) into (2.2), staying in the
travelling frame of reference.

For ease of notation, we introduce the dispersion relation � in the travelling
frame of reference as �(m + μ) = ω(m + μ) − (m + μ)V with λ(μ + m) =
−i�(m + μ). Since λ is purely imaginary when we consider the linear regime,
the perturbation will not grow exponentially in time and thus u(0)(x) is spectrally
stable. However, as the nonlinearity is increased with increasing ε, the eigenvalues
which depend continuously on the amplitude of the solution will change and may
develop some non-zero real part. Since the equation is Hamiltonian, they will do
so symmetrically in the complex plane to conserve the energy, keeping the solution
real. The possible configurations of the symmetries in eigenvalues are shown in
Fig. 1. In order to leave the imaginary axis and develop instability, the eigenvalues
first have to collide in order to maintain the symmetry of the equation. In Fig. 1,
even if eigenvalues move and collide, they do not necessarily leave the imaginary
axis as shown in the left panel. This implies a necessary condition for instability is

Reλ

Imλ

Reλ

Imλ

Reλ

Imλ

Fig. 1 Three different configurations of the smallest number of eigenvalues λ of the spectral
stability problem of a Hamiltonian system, showing the symmetry about the real and imaginary
axes. On the left (in blue), is the stable regime. The centre and right panel are the unstable regimes
(in red)
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collisions of eigenvalues for different modes m and n in a perturbation given by

λ(μ+m) = λ(μ+ n). (2.8)

Also in the linear regime (considering the O(δ) term when substituting (2.5)
into (2.2) with |u(0)(x)| → 0), we can explicitly write the Hamiltonian of the system
as

Hlin =
∫ L

0

1

2

(
N∑
n=1

(−1)nC2n+1(u
(1)
nx )

2 + V (u(1))2

)
dx, (2.9)

with

0 = ∂x
δHlin

δu(1)
. (2.10)

An unstable solution has to conserve energy given by (2.9). This implies that
for a collision of eigenvalues arising from two different modes, for every mode
that is contributing positively to the Hamiltonian, there needs to be a negatively
contributing mode as well. This contribution of eigenvalues to the Hamiltonian
(known as their signature) is simply given by the sign of the Hamiltonian. The
signature is derived from (2.9) by substituting u(1) ∼ ei(μ+m)x to obtain

sign(Hlin) = sign

(
N∑

m=1

(−1)mC2m+1(i(μ+m))2m + V

)
. (2.11)

Using the definition of the dispersion relation in the moving frame and dividing by
i, we can write the sign of the Hamiltonian as

sign(Hlin) = sign

(
�(μ+m)

μ+m

)
, (2.12)

where we have used (2.3) and the definition of the dispersion relation incorporating
the travelling frame of reference. With more algebra described in [3, 6], we can
introduce s which will govern if two colliding eigenvalues for modes m and n will
have opposing signature as

s = (μ+m)(μ+ n) < 0. (2.13)

To reduce the number of unknowns in (2.13), we set (μ + m) → μ therefore
letting n→ (n − m), shifting the focus instead on the difference in Fourier modes
of the perturbation. This implies that if we wish to consider when the periodic
travelling wave solutions are unstable to perturbations of the form shown in (2.6),
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then we need examine the collision condition

λ(μ) = λ(μ+ n) (2.14)

as well as the corresponding combination of signatures of colliding eigenvalues
given by

s = μ(μ+ n) (2.15)

In the following sections, we show this can be further simplified to one condition
using a reduced order polynomial of degree N and examine where the polynomial
has real roots thereby meeting the necessary conditions for instability.

3 General Methodology

In general, if we are given a polynomial with p(μ) = μN with N odd (for example
one term in a dispersion relation), then a collision of eigenvalues is of the form

p(μ+ n)− p(μ) = 0. (3.1)

Setting s = μ(μ+n), we can equivalently write the collision condition as a reduced-
order polynomial q(s, n) of order N−1

2 that is indirectly dependent on the Floquet
parameter μ as

q(s, n) =
N−1

2∑
i=0

ai,N−2i s
inN−2i . (3.2)

The coefficients can be computed recursively as

ai,j =

⎧⎪⎪⎨
⎪⎪⎩

(
N
j

)
for i = 0, j = 2, . . . , N,

ai−1,j+1 − ai,j+1 for i = 1, . . . , N−1
2 , j = 1, . . . , N − 2i,

0 otherwise.

(3.3)

Rewriting the collision condition as a signature condition is always possible as
shown by Kollar et al. in [6]. In the following section we will focus on the simplicity
of constructing this polynomial for the signature. The main consequence of being
able to rewrite the polynomial of lower order, is that it simplifies the equation and
the number of roots we have to consider. From (2.15), we can solve for the Floquet
parameter as

μ = 1

2

(
−n±

√
n2 + 4s

)
. (3.4)
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To satisfy both the collision condition and signature condition for instability while
maintaining that perturbations are bounded in space, we need the roots of (3.4) to
be real and for the signatures to remain opposite, i.e.

−n
2

4
< s < 0. (3.5)

Checking that the roots of a polynomial are within a certain interval I , in this
case given by (3.5), becomes a relatively straightforward procedure and is in some
respect easier than computing exact roots. This can be done using Sturm’s theory
[8, 9] via a sequence of polynomials (sometimes known as a Sturm chain). Given
a polynomial g(x) = g0(x) of degree N with real coefficients, a sequence of
polynomials of decreasing order is constructed by using the following criteria

g1(x) = ∂

∂x
g0(x) and (3.6)

gn(x) = −
(
gn−2(x)− gn−1(x)

gn−2(x)

gn−1(x)

)
= −Rem(gn−2(x), gn−1(x)) (3.7)

where gn−2(x)

gn−1(x)
is a polynomial quotient and Rem(gn−2(x), gn−1(x)) is the remainder.

The sequence terminates at n = N when the last term is a constant and therefore
independent of x. If we are interested in how many real roots rn occur in the interval
I = (ai, af ), where ai and af are not themselves roots, then we need to examine
the difference in the number of sign changes of the polynomials evaluated at the
endpoints of the interval (as shown in (3.5), in this case ai = −n2/4 and af = 0).
To obtain the number of real roots in the interval, we subtract the number of sign
changes at af from the number of sign changes at ai .

To summarise, in order to analyse spectral stability of periodic travelling waves
of (2.4) to high-frequency instabilities of the form given by (2.6), we must

1. Write the dispersion relation ω given by the general form in (2.3).
2. Compute the travelling wave speed V for a non-trivial solution.
3. Solve for the polynomial that governs the collision condition of the form (2.14).
4. Reduce the order of the polynomial by substituting s = μ(μ+ n).
5. Generate the Sturm sequence of polynomials using (3.7).
6. Compute the number of roots in I by examining the number of sign changes in

the Sturm sequence of polynomials at each end point and noting the difference.

If the result is that we have no real roots contained in I , then the periodic travelling
waves are spectrally stable to high-frequency perturbations. In order to show how
this method works, we proceed with an example.
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4 Example

In this section we examine an equation of the form

ut + αu3x + βu5x + γ u7x + f (u)x = 0, (4.1)

where α, β and γ are real coefficients and the subscripts represent the number of
derivatives of u(x, t) and go through the process outlined in Sect. 3 to compute the
regions of stability, referring to step number in parentheses. In this section, we will
keep these as variables however in practice, they are defined by the scaling in the
partial differential equation that is being considered. We begin by introducing a
travelling frame of reference, moving with speed V and considering a steady-state
solution

αu3x + βu5x + γ u7x + f (u)x + V ux = 0. (4.2)

The dispersion relation (step 1 in the process) of this equation is given by

ω = −αk3 + βk5 − γ k7. (4.3)

Linearizing about a small amplitude solution with u(0) = εeikx (where f (u(0)x ) ≈
0), we obtain

α(ik)3 + β(ik)5 + γ (ik)7 + V (ik) = 0, (4.4)

or

−αk2 + βk4 − γ k6 + V = 0. (4.5)

If we assume the solution we are linearising about is 2π periodic, we can show it
is symmetric and without loss of generality we can set k = 1. This gives V0 =
α − β + γ (completing step 2) as a bifurcation point from which we can compute
non-trivial solutions u(0)(x) travelling at speed V0. We will sub in for V = V0 in the
equations from now on.

The polynomial in terms of (μ, n) (step 3) for the collision condition is given by

p(μ, n) = γ (μ+ n)7 − β(μ+ n)5 + α(μ+ n)3 − γμ9 + βμ5 − αμ3 − (α − β + γ )n.

(4.6)

The above can be simplified if we set s = μ(μ+n). In order to do this, we first note
that we can use binomial theorem gives us the polynomial expansion

(μ+ n)N =
N∑
k=0

(
N

k

)
μN−knk. (4.7)
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Table 1 Coefficients from the binomial theorem in a Pascal’s triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

The coefficients from the binomial theorem can be computed via Pascal’s triangle
where each row represents coefficients in a polynomial of degree N = 0, · · · , 7
shown in Table 1 and obtain the collision condition as

p(μ, n) =γ (7μ6n+ 21μ5n2 + 35μ4n3 + 35μ3n4 + 21μ2n5 + 7μn6 + n7)

−β
(

5μ4n+ 10μ3n2 + 10μ2n3 + 5μn4 + n5
)
+ α(3μ2n+ 3μn2 + n3)

− (α − β + γ ()n = 0. (4.8)

Just as Pascal’s triangle provides an easy way to compute the coefficients of (μ +
n)N in (3.1), we can use a triangular construction to find the coefficients of q(s, n)
in (3.2). To begin, create a table whoseN columns are the coefficients of (μ+n)N−
μN beginning with the coefficient of nN and ending with the coefficient of n1. Row
2 begins with a zero one place to the left of the first column in row 1. Subsequent
elements in row 2 are found by computing the difference between row 1 and row
2 in the previous column. This procedure is repeated until the final row which will
have just two elements. The coefficients in the reduced polynomial for the signature
(that is the polynomial which depends on s = μ(μ+n)) are the first non-zero values
in each row (circled in Tables 2, 3 and 4). They are given in increasing order of s as
labelled in the right-most row. That is, row 1 gives the coefficient of s0nN and row
(N + 1)/2 gives the coefficient of s(N−1)/2n1. Tables 2, 3 and 4 show this process
explicitly for N = 7, 5, 3 respectively.

Finally, combining the results from the Tables 2, 3 and 4, the polynomial for the
signature condition (step 4 in the process) is

q(s, n) =− γ (n6 + 7n4s + 14n2s2 + 7s3)+ β(n4 + 5n2s + 5s2)

− α(n2 + 3s)+ α − β + γ (4.9)
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Table 2 Tabular computation of (μ+ n)7 − μ7 = n7 + 7sn5 + 14s2n3 + 7s3n

n7 n6 n5 n4 n3 n2 n1

1 7 21 35 35 21 7 s0

↓ ↓ ↓ ↓ ↓
0 → 7 → 14 → 21 → 14 → 7 s1

↓ ↓ ↓
0 → 14 → 7 → 7 s2

↓
0 → 7 s3

The coefficients of the reduced polynomial in terms of s = μ(μ + n) are given by the circled
terms. Downward arrows (in blue) indicate subtraction and arrows to the right (in black) indicate
the result of the subtraction

Table 3 Tabular
computation of
(μ+ n)5 − μ5 =
n5 + 5sn3 + 5s2n

n5 n4 n3 n2 n1

1 5 10 10 5 s0

↓ ↓ ↓
0 → 5 → 5 → 5 s1

↓
0 → 5 s2

The coefficients of the reduced polynomial in
terms of s = μ(μ + n) are given by the circled
terms. Downward arrows (in blue) indicate sub-
traction and arrows to the right (in black) indicate
the result of the subtraction

Table 4 Tabular
computation of
(μ+ n)3 − μ3 = n3 + 3sn

n3 n2 n1

1 → 3 → 3 s0

↓
0 → 3 s1

The coefficients of the reduced
polynomial in terms of s =
μ(μ + n) are given by the cir-
cled terms. Downward arrows
(in blue) indicate subtraction and
arrows to the right (in black) indi-
cate the result of the subtraction
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We can analyse the roots of (4.9) using Sturm’s theory by constructing a sequence
of polynomials (this is step 5) in s of the form in (3.7) as

p1(s) =− γ (7n4 + 28n2s + 21s2)+ β(5n2 + 10s)− 3α (4.10)

p2(s) =− 2s

63γ

(
49γ 2n4 − 35βγ n2 − 63αγ + 25β2

)

− 1

63γ

(
35γ 2n6 − 42βγ n4 − 21αγ n2 + 25β2n2 − 15αβ + 63αγ − 63βγ + 63γ 2

)

(4.11)

p3(s) =− 63γ

4(49γ 2n4 − 35βγ n2 − 63αγ + 25β2)2

(
49γ 4n12 − 196βγ 3n10 − 98αγ 3n8

+322β2γ 2n8 − 126αβγ 2n6 + 1274αγ 3n6 − 200β3γ n6 − 1274βγ 3n6 + 1274γ 4n6

+441α2γ 2n4 − 210αβ2γ n4 − 1176αβγ 2n4 + 125β4n4 + 1176β2γ 2n4

−1176βγ 3n4 + 630α2βγ n2 − 2646α2γ 2n2 − 250αβ3n2 + 1050αβ2γ n2

+2646αβγ 2n2 − 2646αγ 3n2 − 1050β3γ n2 + 1050β2γ 2n2 − 756α3γ

+225α2β2 + 1890α2βγ − 1323α2γ 2 − 500αβ3 − 1890αβ2γ + 4536αβγ 2

−2646αγ 3 + 500β4 − 500β3γ − 1323β2γ 2 + 2646βγ 3 − 1323γ 4
)

(4.12)

Despite the length of the expressions in (4.9)–(4.12), their sign changes are easy to
evaluate for particular α, β, γ and s ∈ (−1/4, 0). For ease, Table 5 shows the sign
changes for α = 1, β = 1/4 and γ = 0 for n = 1, 2, 3, 4 which are in complete

Table 5 The stability results with α = 1, β = 1/4 and γ = 0 and n = 1, 2, 3, 4 (note this is a
singular case of (4.1))

n = 1 sign(pj (−n2/4)) sign(pj (0))

p0(s) + +
p1(s) − −
p2(s) + +
Sign 2 2
changes

n = 2 sign(pj (−n2/4)) sign(pj (0))

p0(s) − +
p1(s) − +
p2(s) + +
Sign 1 0
changes

n = 3 sign(pj (−n2/4)) sign(pj (0))

p0(s) − +
p1(s) + +
p2(s) + +
Sign 2 0
changes

n = 4 sign(pj (−n2/4)) sign(pj (0))

p0(s) + +
p1(s) + +
p2(s) + +
Sign 0 0
changes

By subtracting the number of sign changes at s = −n2/4 from the ones at s = 0 (subtract the total
in column 3 from column 2) for each n, we get the number of real roots in that interval. Instability
is possible for n = 2 and n = 3 since there are roots for which s ∈ I = (−n2/4, 0). We can also
conclude the equation is stable to perturbations with n = 1 and n ≥ 4
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agreement with results in [11] (this is the final step in the process, step 6). They
imply that the perturbations with n ≥ 4 are stable as is the perturbation for n = 1
since there are no real roots. Note that in cases where pj (s) = 0, we must consider
the limit as s approaches the value 0 or −n2/4 from the correct side to match with
the condition in (3.5).

5 Stability Results

Figures 2, 3 and 4 show in more detail the stable and unstable regions in two-
dimensions for PDEs with only one free parameter (setting one of the parameters
in the PDE to zero). In Fig. 2, α = 0, β = 1 and γ is a free parameter. The region

Fig. 2 Reduction to the two-dimensional system with α = 0, giving the instability results for
ut = V ux + βu5x + γu7x + nonlinearity

Fig. 3 Reduction to the two-dimensional system with β = 0, giving the instability results for
ut = V ux + αu3x + γu7x + nonlinearity
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Fig. 4 Reduction to the two-dimensional system with the singular limit when γ = 0, giving the
instability results for ut = V ux + αu3x + βu5x + nonlinearity

bounded below by the blue line and above by the red line is where we can have
instability and outside of these curves is where the small amplitude solutions are
stable with respect to the instabilities considered in this work. In the plot on the right
in Fig. 2, the dots show the unstable regime for integer values of n where (4.9) has
roots in the interval (−n2/4, 0). We see that as γ decreases, the instabilities occur
for larger n, indicating the difference in Fourier modes of colliding eigenvalues.
Figure 3 gives the stability regions for α = 1, β = 0 and γ as a free parameter. In
this case, only γ < 0 leads to instabilities, but the pattern is similar to the previous
figure. Figure 4 gives the results previously computed in [11] where once again with
decreasing β, the instabilities have an increasing n.

Figure 5 summarises the full stability results for the general PDE (2.2) with
γ = 1, which is simply a rescaling of the full equation and does not reduce the
degrees of freedom. The regions between the blue and red lines are possible regions
of instability. For clarity, points in the lower plot of Fig. 5 show possible regions
of instability and the white space gives the regimes for spectrally stable periodic
travelling wave solutions to (2.2). This plot shows that most of the regimes of (2.2)
are stable.
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Fig. 5 On the top, the regions bounded by red and blue curves are those where instabilities can
arise. On the bottom, the dots represent possible unstable regions for discrete values of n. For both
figures, the equations were normalised such that γ = 1
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6 Conclusion

In this work, we describe a systematic way to fully characterise spectral stability
regions of travelling wave solutions of a dispersive, Hamiltonian PDE subject
to high-frequency instabilities. This method shows explicitly how two necessary
conditions can be merged into one and a systematic way to analyse the reality of
its roots. It relies on reducing the polynomial derived from the dispersion relation
describing collisions of eigenvalues of degree 2N + 1, to a polynomial for the
signature condition of degreeN . This polynomial can be constructed using a triangle
of coefficients as is illustrated using an example of a PDE containing three linear
dispersive terms with general coefficients. If this reduced-order polynomial has
roots in a given interval I = (−n2/4, 0), which can be determined using Sturm’s
theory, then the necessary criteria for an instability is met. This methodology can
be used on any dispersive, Hamiltonian partial differential equation. Sturm’s theory
has also been implemented in Maple and can be accessed through the commands
sturm and sturmseq.

There are two drawbacks to this method. One is that it can only be used if the sign
of the Hamiltonian is definite, hence the restriction to high-frequency instabilities is
made. It also relies on the underlying equations having a Hamiltonian and hence a
fourfold symmetry in the complex eigenvalue plane. Since many physical systems
are Hamiltonian, there is a large number of applications of this method (for more
examples, see [3]), which also includes Euler equations describing water waves.
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