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Abstract In this chapter, we present boundary-oriented numerical methods to ana-
lyze three-dimensional solid structures. For the analysis, the original geometry of the
solid is employed according to the isogeometric paradigm. For the parametrization
of the domain, the idea of the scaled boundary finite element method is adopted.
Hence, the boundary of the solid is sufficient to describe the entire domain. The
presented approaches employ analytical and numerical solution methods such as the
Galerkin and collocation methods. To illustrate the applicability in the analysis pro-
cedure, three formulations are elaborated and demonstrated by means of numerical
examples. The advantages compared to standard numerical methods are discussed
thoroughly.

1 Introduction

Typically solids are designed by the boundary representation modeling technique
in computer-aided design (CAD) software (Stroud 2006). From the analysis point
of view, the finite element method (FEM) is the most popular numerical technique.
The geometry and the displacement response of the structure are approximated by
Lagrange basis functions. This leads in general to an approximation of the geometry,
which accordingly affects the accuracy of deformation results (Cottrell et al. 2009).
To circumvent the geometrical approximation error, an exact description from the
CAD model could be employed. This is the idea of the isogeometric analysis, which
was introduced by Hughes et al. (2005). The main concept is to employ the same
NURBS basis functions in order to describe the geometry and to approximate the
displacements. However, for three-dimensional solids a three-dimensional tensor–
product structure of NURBS objects must be adopted in isogeometric analysis in

The financial support of the German Research Foundation (DFG) under Grant No. KL1345/10-1 is
gratefully acknowledged.

S. Klinkel (B) · M. Chasapi
RWTH Aachen University, Aachen, Germany
e-mail: klinkel@lbb.rwth-aachen.de

© CISM International Centre for Mechanical Sciences 2020
J. Schröder and P. de Mattos Pimenta (eds.), Novel Finite Element Technologies
for Solids and Structures, CISM International Centre for Mechanical Sciences 597,
https://doi.org/10.1007/978-3-030-33520-5_6

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33520-5_6&domain=pdf
mailto:klinkel@lbb.rwth-aachen.de
https://doi.org/10.1007/978-3-030-33520-5_6


154 S. Klinkel and M. Chasapi

order to parameterize the physical domain (Cottrell et al. 2009; Düster et al. 2008;
Temizer et al. 2012; Rank et al. 2012). Such a trivariate tensor–product structure,
however, is not defined in the CAD model. In CAD, only the boundary surfaces
of the solid are defined. A classical volumetric discretization of the inner domain
becomes, therefore, a complicated task. This observation motivated the development
of numerical formulations in which the solid is defined by its boundary, and only
this boundary is used for isogeometric analysis. These so-called boundary-oriented
solid formulations combine the advantages of boundary-oriented methods and iso-
geometric analysis.

Currently, the most well-known boundary-oriented methods are the boundary ele-
ment method (BEM) and the scaled boundary finite element method (SB-FEM). The
latter one is a special kind of fundamental solution-less boundary element method,
which was introduced by Song and Wolf (1997, 1998). The basic idea lies on a
boundary scaling technique. In the analysis, the solid is defined by its boundary and
a scaling center. The scaling center is chosen in a zone fromwhich the total boundary
of the solid is visible (Song andWolf 1997). The scaling center C will, in general, be
located inside the domain. A radial scaling parameter ξ is introduced to conduct the
scaling process. Hence, ξ = 1 represents the boundary of the solid and ξ = 0 denotes
the scaling center, while 0 < ξ < 1 describes a certain point inside the domain. Scal-
ing the boundary of the solid with respect to the specified scaling center yields the
solid, see Fig. 1. In the analysis, only the tensor–product structure of the bound-
ary is employed, which is different from the “polar mesh” suggested by Bazilevs
et al. (2014). In the SB-FEM approach, it is distinguished between parameters in the
circumferential direction and in the radial scaling direction. The weak form of equi-
librium is only enforced in the circumferential direction. In the scaling direction, the
equilibrium is strongly applied. In the framework of linear elasticity, a second-order
ordinary differential equation (ODE) is obtained in terms of the scaling parame-
ter. In the circumferential direction a finite element approximation is employed,
which utilizes the Lagrange basis functions (Song and Wolf 1997, 1998) or the
NURBS basis functions as investigated by Lin et al. (2014), Natarajan et al. (2015),

(a) Geometry (b) Boundary surfaces (c) Control polygon

Fig. 1 Geometry and control net of cube with spherical intersection. The geometry is created in
CAD with the boundary representation modeling technique
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Klinkel et al. (2015), and Chen et al. (2015, 2016) for the description of the geometry
and the displacement. The Lagrange basis functions will lead to an approximation
of the geometry. For linear elastic problems, the second-order ODE can be solved
analytically or numerically. Analytical approaches include the eigenvalue method
and the matrix function solution (Song and Wolf 1998). For the eigenvalue method,
by introducing a dual vector form of the differential equation, the second-order ODE
is reduced to first-order ODE according to Song and Wolf (1998) and Song (2004).
Then, the eigenvalue problem of the first-order ODE is solved, which leads to the
displacement response of the domain. An extension to nonlinear problems was pro-
posed by Lin and Liao (2011), Ooi et al. (2014) and Behnke et al. (2014). The former
one suggested an approach for nonlinear SB-FEM based on the homotopy analysis
method. The latter studies are based on nonlinear shape functions derived from the
solution of linear problems, which are employed for the nonlinear analysis. Besides
the analytical approaches, a NURBS-based collocation approach has been proposed
to solve the ODE numerically by Klinkel et al. (2015) for 2D and by Chen et al.
(2015) for 3D problems. For this numerical approach, certain approximation is made
for the choice of the first collocation point due to the numerical instability arising at
the scaling center. Furthermore, a NURBS-based Galerkin approach has been pro-
posed by Chen et al. (2016) to solve elasticity problems of boundary-represented
solids. Moreover, Chasapi and Klinkel (2018) proposed the treatment of nonlinear
problems by employing the approximation with NURBS and the Galerkin method
for the solution in scaling direction.

In this chapter, boundary-oriented numerical methods are presented to solve the
elasticity problem of solids in boundary representation. The chapter summaizes the
main results of the publications Klinkel et al. (2015), Chen et al. (2015, 2016)
and Chasapi and Klinkel (2018). The boundary scaling technique is employed to
describe the solid. Thus, the boundary is exactly described in isogeometric analysis.
Three numerical approaches will be demonstrated: the semi- analytical method, the
NURBS-based hybrid collocation-Galerkinmethod and theNURBS- basedGalerkin
method. In the first two approaches, the weak form of equilibrium is enforced in the
circumferential direction. The response in radial scaling direction is derived from
the eigenvalue method and the collocation method accordingly. In the last approach,
the weak form of equilibrium is employed in the radial scaling and circumferential
direction. In all cases, NURBS basis functions are employed for the description of
the boundary geometry as well as for the approximation of the displacements at
the boundary. The displacement response in the radial scaling direction is approxi-
mated by one-dimensional NURBS basis functions for the numerical solution. Each
approach results in a global system of equations, the solution of which yields the
displacement response at the boundary surfaces and in the interior domain.

The outline of the chapter is as follows. In Sect. 2, the parametrization is pre-
sented. Section3 provides the governing equations for linear elasticity of 3D prob-
lems. In Sect. 4, methods for the numerical approximation are presented. First, the
basics of B-splines and NURBS as interpolation functions are illustrated. Moreover,
a semi-analytical approach based on the eigenvalue method in radial scaling direc-
tion is given. Here, the derivation of the scaled boundary finite element equation is
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addressed. Furthermore, a NURBS-based collocation approach is presented. Here,
NURBS basis functions are employed for the approximation, whereas the colloca-
tion method yields the solution in radial scaling direction. Finally, a NURBS-based
Galerkin approach is presented. Here, the weak form of equilibrium discretized with
NURBS is applied in all parametric directions. In Sect. 5, numerical examples are
presented to evaluate the accuracy of the numerical methods. Suggestions for the
optimum choice of the polynomial degree of collocation NURBS and the number of
collocation points are provided. Furthermore, comparisons to the standard FEM and
isogeometric analysis are given.

2 Parametrization

In this Section, the basic concept of the transformation of the geometry is provided.
The main idea is based on the scaled boundary finite element method as proposed
by Song and Wolf (1997, 1998). For the transformation, a radial scaling parameter
is introduced to define the geometry of the solid. The boundary of the solid is thus
scaled with respect to a scaling centerC , see Fig. 2. The coordinates ofC are denoted
as x̂0. The scaling center is defined such that the total boundary of the solid is visible
(Song and Wolf 1997). The radial scaling parameter ξ runs from the scaling center
toward the boundary, where ξ = 0 corresponds to the scaling center C and ξ = 1
describes the boundary of the solid. The total domain is partitioned into sectional
domains� = ∪nsec

s=1 �s . Each sectional domain is parametrized in the circumferential
direction to describe the boundary ∂�s .

Fig. 2 The three-dimensional domain � and the sectional domain �s in the physical space and the
parameter space
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For 3Dproblems, the boundary of each sectional domain�s is a surface, see Fig. 2,
and parametrized in the circumferential direction with η and ζ . It holds 0 ≤ η ≤ 1
and 0 ≤ ζ ≤ 1. The scaling center C is defined as x̂0 = (x̂0, ŷ0, ẑ0)T . The position
of a point on the boundary surfaces is denoted by xs = (xs, ys, zs)T and a point in
the interior of the solid is described by x̂s = (x̂s, ŷs, ẑs)T . Let N s(η, ζ ) be a matrix
of shape functions employed to describe the boundary surfaces. An arbitrary point
on the boundary surfaces or in the domain is given as

xs = N s(η, ζ ) X on ∂�s, x̂s = x̂0 + ξ(Ns(η, ζ ) X − x̂0) in �s . (1)

Here, we employ the NURBS basis functions to define the geometry of the bound-
ary surfaces. This conforms ideally to the boundary representation modeling tech-
nique used in CAD. The vector X represents the coordinates of the control points
on the boundary. Its dimension is nst = 3 · nbs , where nbs is the number of control
points on the boundary.

Considering Eq. (1) yields the Jacobian matrix

J =
⎡
⎢⎣

∂ x̂s
∂ξ

∂ ŷs
∂ξ

∂ ẑs
∂ξ

∂ x̂s
∂η

∂ ŷs
∂η

∂ ẑs
∂η

∂ x̂s
∂ζ

∂ ŷs
∂ζ

∂ ẑs
∂ζ

⎤
⎥⎦ =

⎡
⎣
1 0 0
0 ξ 0
0 0 ξ

⎤
⎦

⎡
⎢⎣
xs − x̂0 ys − ŷ0 zs − ẑ0

∂xs
∂η

∂ ys
∂η

∂zs
∂η

∂xs
∂ζ

∂ ys
∂ζ

∂zs
∂ζ

⎤
⎥⎦

︸ ︷︷ ︸
J̄

(2)

It results in a multiplicative decomposition of the determinant det J = ξ 2 det J̄ =
ξ 2 J̄ . The transformation of a volume element dV from the physical space to the
parameter space reads

dV = dx̂ d ŷ dẑ = x̂s,ξ ·(x̂s,η ×x̂s,ζ ) dξ dη dζ = ξ 2 J̄ dξ dη dζ. (3)

3 Governing Equations

The governing equations for the three-dimensional (3D) problem is formulated in
the Cartesian coordinates (x̂ , ŷ, ẑ), see Fig. 2. The displacement vector is defined
as u = u(x̂, ŷ, ẑ) = [ux̂ , uŷ, uẑ]T . It is assumed that the 3D domain � is bounded
by ∂� = ∂u� ∪ ∂t�, where ∂u� is the boundary with a prescribed displacement ū
and ∂t� is the boundary with a prescribed traction t̄ . Here, the Neumann boundary
condition does not overlap with the Dirichlet boundary condition, that is ∂u� ∩
∂t�=∅.

The differential equation of motion reads

Dσ + ρb = 0 (4)
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where ρ is the mass density, b is the body force, and D is the linear differential
operator.

The relation between the strains ε and the displacements u is given as

ε = DT u. (5)

The stresses and strains are related by the elasticity matrix C

σ = Cε. (6)

The Dirichlet and Neumann boundary conditions read

u = ū on ∂u�, n σ = t̄ on ∂t�. (7)

The matrix n contains the components of the outward unit normal vector.
Equations (4)–(7) are the general formulas for elastostatic problems.
For the 3D case, the strains are denoted by ε = [εx , εy, εz, γyz, γxz, γxy]T and the
stresses as σ = [σx , σy, σz, τyz, τxz, τxy]T . Let D be the differential operator

D =
⎡
⎢⎣

∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0

⎤
⎥⎦ . (8)

The elasticity matrix C is written as

C = E
(1+ν) (1−2ν)

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1−ν

2 0 0
0 0 0 0 1−ν

2 0
0 0 0 0 0 1−ν

2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (9)

The outward unit normal vector n is given as

n =
⎡
⎣
nx̂ 0 0 0 nẑ n ŷ

0 nŷ 0 nẑ 0 nx̂

0 0 nẑ n ŷ nx̂ 0

⎤
⎦ (10)

where nx̂ , nŷ , and nẑ are the components of the outward unit normal vector on ∂�.
Employing the parametrization of Sect. 2, each section is bounded by five surfaces,
see Fig. 2. The normal vectors nξ , nη, and nζ are perpendicular to the surfaces
described by the parameters (η, ζ ), (ζ , ξ ), and (ξ , η), respectively, see Fig. 3. The
formulas for the determination of the outward normal vectors and the description of
the infinitesimal surface elements dSξ , dSη, dSζ are given in the Appendix.
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Fig. 3 The boundary of one
3D sectional domain is
partitioned in
∂�s = Sξ ∪ Sη ∪ Sζ

With the help of Eqs. (2), (8), and (A.1)–(A.3), the differential operatorD is rewritten
as

D = 1

J̄

[
bξ

∂

∂ξ
+ 1

ξ

(
bη

∂

∂η
+ bζ

∂

∂ζ

)]
(11)

with the coefficient matrices

bTi = gi

⎡
⎣
nix̂ 0 0 0 niẑ n

i
ŷ

0 niŷ 0 niẑ 0 nix̂
0 0 niẑ n

i
ŷ n

i
x̂ 0

⎤
⎦ (i = ξ, η, ζ ) (12)

Using Eq. (12), the traction t̄ = nσ on any of the boundary surfaces (η, ζ ), (ζ ,
ξ ) and (ξ , η) can be rewritten as

t̄ i = 1

gi
bTi σ (i = ξ, η, ζ ) (13)

Substituting Eq. (11) into Eqs. (5) and (6), we obtain the strains and stresses in the
parameter space. However, it should be noted that there is a denominator in Eq. (11).
The strains and stresses will exhibit singularity at the scaling center C , as at this
point ξ = 0 holds. Here, the singularity does not arise from the method itself, but
from the employed parametrization. The singularity will arise in the context of a
solution to the strong form of the equation. To obviate the singularity in this case,
we choose a tolerance in calculating the strains and stresses at the scaling center, see
also Sect. 4.3.



160 S. Klinkel and M. Chasapi

4 Numerical Approximation

4.1 Boundary Description

The boundary surfaces of solids are described by nonuniform rational B-Splines
(NURBS) in CAD. In the scope of isogeometric analysis, the same functions are
employed for the approximation of the solution. In this Section, the basics of B-
Splines and NURBS for the boundary description of the 3D domain will be intro-
duced. For better illustration, the functions are first presented for curves (1D) and
further extended to surfaces (2D). B-spline curves in the three-dimensional spaceR3

are defined by a set of n control points

Bi = [xi , yi , zi ]
T = [

XT
i

]T
i = 1, . . . , n (14)

and the open knot vector

� = {
ξ1, ξ2, . . . , ξn+p+1

}
, (15)

where p is the polynomial degree of the B-spline basis functions. The entries ξi in the
knot vector are nondecreasing. Intervals

[
ξi , ξi+1

]
with i = 1, . . . , n + p are referred

to as knot spans. The control points Bi are the nodal values inR3, which define the
location in space of the B-spline curve X (ξ). The piecewise straight connection lines
from Bi to Bi+1 for i = 1 until i = n − 1 form the so-called control polygon, which
is a piecewise linear approximation of the curve X (ξ), see Fig. 4. The B-spline basis
functions N p

i (ξ) are defined recursively by the Cox-de Boor formula

Fig. 4 Physical curve (solid black line) and control polygon (dotted red line) of a B-spline curve

of order p = 3 with the knot vector � =
{
0, 0, 0, 0, 1

6 , 1
3 , 1

2 , 2
3 , 5

6 , 1, 1, 1, 1
}
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p = 0 : N 0
i (ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1

0 otherwise

p > 0 : N p
i (ξ) = ξ − ξi

ξi+p − ξi
N p−1
i (ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
N p−1
i+1 (ξ) .

(16)

The basis functions establish a map from the parameter space defined by the knot
vector � to the physical B-spline curve

X (ξ) =
n∑

i=1

N p
i (ξ) Bi ξ1 ≤ ξ ≤ ξn+p+1. (17)

The support of basis functions is local and the influence of the control point Bi

is limited to that interval. The number of basis functions which have influence on
one knot span is given by nen = p + 1. In the interval

[
ξi , ξi+1

]
, the basis functions

N p
i−p to N p

i are nonzero.
Figure4, aB-spline curve togetherwith its control polygon is given.The associated

basis functions are given in Fig. 5. Hereby each basis function is plotted in the same
color as its associated control point. The knot values are denoted by a black stroke.
The locally confined influence of the basis functions in each knot interval is clearly
visible in Fig. 5. One important property for the usage of B-Splines as interpolation
functions is the partition of unity

Fig. 5 Basis functions for the B-spline curve displayed in Fig. 4
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n∑
i=1

N p
i (ξ) = 1 ∀ξ ∈ �. (18)

Further properties are the affine invariance, non-negativity, and variation dimin-
ishing property. A significant advantage of B-splines is that higher continuity allows
the computation of p − m continuous derivatives at knots and of an infinite number
of derivatives within knot spans. Also, with the rising order of B-splines the smooth-
ness of the curve increases in contrast to higher order Lagrange basis functions,
which can entail oscillations. Univariate B-splines can be directly incorporated for
the approximation of the solution in the radial scaling direction of the solid, see also
Sects. 4.3 and 4.4.

NURBS curves are nonuniform rational B-splines. Their rational character allows
an exact description of conic sections, such as circles. They can be understood as a
projection of four-dimensional curves projected onto R3 (Cottrell et al. 2009). The
notion of four dimensions is kept in the definition of the four-dimensional control
points

Bi = [xi , yi , zi , wi ]
T = [

XT
i , wi

]T
i = 1, . . . , n . (19)

Together with a knot vector, as given in Eq. (15), they define a NURBS curve of
order p. The fourth coordinatewi is the weight factor of the respective control point.
All definitions and properties of B-splines hold accordingly, except the definition of
the physical curve and the derivatives thereof. A physical point X (ξ) on the NURBS
curve

X (ξ) =
∑n

i=1 N
p
i (ξ)wiX i∑n

î=1 N
p

î
(ξ)wî

ξ1 ≤ ξ ≤ ξn+p+1 (20)

is computed with the help of the B-spline basis functions N p
i (ξ) given in Eq. (16)

under consideration of the weight factorwi . The definition of rational basis functions
allows the expression of Eq. (20) in a simple form

X (ξ) =
n∑

i=1

Rp
i (ξ) X i with Rp

i (ξ) = N p
i (ξ)wi∑n

î=1 N
p

î
(ξ)wî

, ξ1 ≤ ξ ≤ ξn+p+1 (21)

akin to the B-spline case. The weight wi of a control point Bi quantifies the influ-
ence of this control point in comparison to the other control points. If the weight
is increased, the NURBS curve will tend toward this control points. In the limit
wi → 0, the curve will behave as if the control point is not present. The influence
of the weight is limited to the influence interval of the associated control point. Out-
side this interval, the curve is not affected by an alteration of the weight. By setting
the weights to wi = 1 for all control points, the curve is deduced to a B-spline. This
approach can be employed for the approximation in the scaling direction, where only
straight radial lines are defined (see Sect. 4.3 and 4.4).
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Now that we have gathered all necessary expressions to define one-dimensional
NURBS, we can easily extend these to the two-dimensional case by employing the
parametrization of the solid in Sect. 2. The geometry of the boundary surface ∂�s is
described by a NURBS surface, which is created by a tensor–product combination of
the two knot vectors H = {

η1, η2, . . . , ηnη+p+1
}
and Z = {

ζ1, ζ2, . . . , ζnζ +q+1
}
. The

orders of the basis functions along each parametric direction η and ζ are denoted by
p and q, respectively. The control points Bi j are in general arranged in a rectangular
grid called control point net. They are identified by a double index (i j) in parentheses,
where the first number i ∈ {

1, 2, . . . , nη

}
denotes the position of the control point in

η-direction. Analogously, j ∈ {
1, 2, . . . , nζ

}
identifies the position in ζ -direction.

The four components of the control points

B(i j) = [
x(i j), y(i j), z(i j), w(i j)

]T = [
XT

(i j), w(i j)
]T

(22)

correspond to the spatial coordinates X (i j) and the weight factor w(i j). The total
number of control points is denoted by nbs = nη · nζ . The projection of the control
point net from a four-dimensional space R4 to a surface embedded in the three-
dimensional space R3 is carried out with the help of the rational NURBS basis
functions Rpq

(i j) (η, ζ ). The univariate B-spline basis functions given in Eq. (16) are
used for both parametric directions and multiplied with the weight w(i j) to arrive at
the rational NURBS surface basis functions

Rpq
(i j) (η, ζ ) = N p

i (η) Nq
j (ζ )w(i j)∑nη

i=1

∑nζ

j=1 N
p
i (η) Nq

j (ζ ) w(i j)
. (23)

In analogy to the univariate B-spline, there are only nen = (p + 1) (q + 1)
nonzero basis functions in each knot span that have an impact on the arbitrary rect-
angle

[
ηi , ηi+1

] × [
ζ j , ζ j+1

]
. The number of potentially nonzero rectangles within

a NURBS surface is given by nel = (n1 − p1) (n2 − p2). For a pair of parameters
(η, ζ ) ∈ [ηi0 , ηi0+1] × [ζ j0 , ζ j0+1] a physical point xs on the NURBS surface can be
determined by

xs (η, ζ ) =
i0∑

i=i0−p

j0∑
j= j0−q

R pq
(i j) (η, ζ ) X (i j) . (24)

Recall that this is the definition of the boundary geometry (see also Eq.1) and
keep in mind that the same definition will be employed for the approximation of
the solution at the boundary (see also Eq.27). All properties mentioned above for B-
spline and NURBS curves can be carried forward to NURBS surfaces. The interested
reader is referred to the studies of Piegl and Tiller (1997) as well as Cottrell et al.
(2009) for more details on B-splines and NURBS.
For 3D problems, following the isogeometric concept, the displacements us(ξ =
1, η, ζ ) at the boundary surfaces are approximated with the same basis shape func-
tions as the original geometry of the CAD model. Therefore, it holds
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xs =
nbs∑
i j=1

Rpq
(i j)(η, ζ )X (i j) us =

nbs∑
i j=1

Rpq
(i j)(η, ζ )U (i j), (25)

where X (i j) defines the coordinate of the control point (i j) and nbs denotes the
total number of control points at the boundary surface ∂�s . The nodal displace-
ment degrees of freedom are arranged akin in the vector U (i j). R

pq
(i j)(η, ζ ) is the

NURBS basis function employed to describe the boundary surfaces, which is termed
as boundary NURBS. The corresponding control points are denoted as boundary
control points.

Considering Eq. (25) and rearranging all control point vectors U (i j) in the vector
U s , the approximation of the displacement at the boundary surface reads

us =
⎡
⎣
R1 0 0 R2 0 0 . . . Rnbs 0 0
0 R1 0 0 R2 0 . . . 0 Rnbs 0
0 0 R1 0 0 R2 . . . 0 0 Rnbs

⎤
⎦

︸ ︷︷ ︸
Ns (η, ζ )

U s (26)

Note that a bijective mapping holds between the subscript I = 1, 2, . . . , nbs and
the control point (i j). Considering Eqs. (25) and (26), the approximation of the
displacements and the virtual displacements on the sectional domain �s are defined
as

u(ξ, η, ζ ) = N s(η, ζ )U s(ξ), δu(ξ, η, ζ ) = N s(η, ζ )δU s(ξ) , (27)

where U s contains all nodal degrees of freedom in the circumferential direction of
�s . Accordingly, δU s contains all virtual nodal displacements. An example of the
interpolation in the circumferential direction of the boundary is illustrated in Fig. 6
for a 3D problem.

4.2 Scaled Boundary Finite Element Equation

The weak form of equilibrium can be derived by multiplying Eq. (4) with a test
function δu. Integration over the whole domain, application of integration by parts
and consideration of the Neumann boundary condition in Eq. (7) yields the weak
form

nsec∑
s=1

⎛
⎝

∫

�s

δεTσ dV −
∫

∂�s

δuT t̄ dS −
∫

�s

δuTρb dV

⎞
⎠ = 0 , (28)

where nsec is the total number of sectional domains �s . The first term of Eq. (28)
represents the internal virtual work, the second term is the external virtual work done
by the boundary tractions, and the third term is the external virtual work done by
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Fig. 6 Illustration of
NURBS basis functions in
the parameter space for 3D
problems. The boundary
NURBS basis functions
Rp
i (η) and Rq

j (ζ ) with
p = 2 and q = 2 are shown.
nbs = 3 × 3 control points
are employed in η and ζ

directions

the body forces. The virtual strains are given as δε = DT δu(ξ, η, ζ ). Note that only
the boundary surfaces ∂�s are approximated with NURBS as described in Sect. 4.1,
whereas the solution in the radial scaling direction is carried out analytically. The
stress vector is computed by σ = CDT u using Eqs. (5) and (6). The first term in
Eq. (28) is rewritten by employing integration by parts to

∫

�s

δεTσ dV = δUT
s

(
ξ 2k11U s,ξ +ξk21U s

)∣∣ξ=1

ξ=0

−
1∫

0

δUT
s

[
ξ 2k11U s,ξξ +ξ (2k11 + k12 − k21)U s,ξ + (k12 − k22)U s

]
dξ

(29)

with (. . . ),ξ = ∂(... )

∂ξ
. Let B1 = 1

J̄
bξ N s and B2 = 1

J̄
(bηN s,η +bζ N s,ζ ) and consid-

ering Eqs. (3) and (11), the coefficient matrices are given as

k11 =
1∫

0

1∫

0

BT
1CB1 J̄ dη dζ k22 =

1∫

0

1∫

0

BT
2CB2 J̄ dη dζ

k12 =
1∫

0

1∫

0

BT
1CB2 J̄ dη dζ k21 =

1∫

0

1∫

0

BT
2CB1 J̄ dη dζ .

(30)

The second term in Eq. (28) is rewritten considering Eqs. (A.4)–(A.6) to
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∫

∂�s

δuT t dS =
∫

sξ

δuT tξ dSξ +
∫

sη

δuT tη dSη +
∫

sζ

δuT tζ dSζ

= δUT
s Fs

∣∣ξ=1

ξ=0 +
1∫

0

δUT
s ξT 1 dξ ,

(31)

where the surfaces Sξ , Sη, and Sζ are illustrated in Fig. 3. The coefficient matrices
Fs and T 1 are defined by

Fs =
1∫

0

1∫

0

ξ 2NT
s t

ξgξ dη dζ

T 1 =
1∫

0

NT
s t

ζ gζ dη
∣∣ζ=1

ζ=0 +
1∫

0

NT
s t

ηgη dζ
∣∣η=1

η=0 .

(32)

It should be noted that tξ is identical to the prescribed traction t̄ on ∂t� and that
the force vector Fs represents the nodal forces at the control points. After assembly
over all sections T 1 vanishes. With the help of Eq. (3), the third term in Eq. (28) is
reformulated to

∫

�s

δuTρb dV =
1∫

0

δUT
s ξ 2T 2 dξ with T 2 =

1∫

0

1∫

0

NT
s ρb J̄ dη dζ . (33)

Substituting Eqs. (29), (31), and (33) into the weak form of Eq. (28) yields

�nsec
s=1

(
δUT

s

(
ξ 2k11U s,ξ +ξk21U s

)∣∣ξ=1

ξ=0

)
−

�nsec
s=1

⎛
⎝

1∫

0

δUT
s

[
ξ 2k11U s,ξξ +ξ (2k11 + k12 − k21)U s,ξ + (k12 − k22)U s

]
dξ

⎞
⎠

− �nsec
s=1

⎛
⎝δUT

s Fs

∣∣ξ=1

ξ=0 +
1∫

0

δUT
s ξT 1 dξ

⎞
⎠ − �nsec

s=1

⎛
⎝

1∫

0

δUT
s ξ 2T 2 dξ

⎞
⎠ = 0.

(34)
Collecting the boundary terms and the field equations leads to the following set

of equations:

nsec
A
s=1

(
k11U s,ξ +k21U s − Fs

) = 0 on ∂t� (35)
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nsec
A
s=1

(
ξ 2k11U s,ξξ +ξ (2k11 + k12 − k21)U s,ξ + (k12 − k22)U s

)

+ nsec
A
s=1

(
ξT 1 + ξ 2T 2

) = 0 in �,

(36)

where
nsec
A
s=1

is introduced as the assembly operator. Equation (36) is the so-called

scaled boundary finite element equation, which is a second-order Euler-type ordinary
differential equation (ODE). The displacement U s is a function of the radial scaling
parameter ξ only. Here, it is worthwhile to note that the governing equation of
elasticity has been weakly enforced in the circumferential direction, see Eqs. (28)
and (34), but it remains strong in the radial scaling direction as shown in Eq. (36).
For linear elasticity, a unique analytical solution exists and can be computed with
the eigenvalue method. The interested reader is referred to the studies of Song and
Wolf (1997, 1998) for further details on the solution procedure.

4.3 NURBS-Based Hybrid Collocation-Galerkin Method

In this Section, the NURBS-based hybrid collocation-Galerkin method (NURBS-
HCGM)will be presented. In the scope of this approach, theweak formof equilibrium
is applied only in the circumferential direction of the boundary. In the radial scaling
direction, the equation is solved numerically by employing the collocation method.
NURBS basis functions approximate the response in all parametric directions. The
scaled boundary finite element equation can be derived analogously to Sect. 4.2.
Hereafter, the B-splines approximation and the collocation in radial scaling direction
will be discussed.

B-spline approximation in scaling direction In this approach, NURBS basis func-
tions are employed to describe the geometry of the boundary. For brevity, we will
only refer to the NURBS approximation for 3D problems here. For 2D problems,
the formulas for the NURBS approximation could be derived similarly.

The NURBS basis functions Rpq
(i j)(η, ζ ) in the circumferential direction are

adopted from the geometry model following the boundary representation model-
ing technique in CAD, see also Sect. 4.1. They can be enriched via order elevation
or knot insertion. The geometry is, therefore, described exactly. The interpolation
function N s(η, ζ ) is employed for the approximation of the solution on the boundary
as given in Eq. (27). Note that in contrast to Sect. 4.2, the sectional domain�s is here
approximated with NURBS basis functions on the boundary and also in the radial
scaling direction. In the radial scaling direction, all weight factors are set to wr = 1
since only straight lines are defined. Hence, B-splines are employed for the interpo-
lation in the radial scaling direction. The displacement U s(ξ) is only a function of
the radial scaling parameter ξ . Hence, the univariate NURBS basis functions Rt

r (ξ)

are employed. The displacement in the radial scaling direction reads
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U s(ξ) =
ncp∑
r=1

Rt
r (ξ)U sr (37)

where the displacement vector U sr is associated to the control points which are
located in the radial scaling direction. The dimension of U s and U sr is nds = 3 · nbs
for 3D problems. nbs is the total number of control points at the boundary of ∂�s .
The polynomial degree in the radial scaling direction is denoted as t , and ncp is
the total number of control points per line in the radial scaling direction, see Fig. 7.
The knot vector � = [ξ1, ξ2, . . . , ξncp+t+1] is employed to determine B-spline basis
function Rt

r . Here, the radial scaling direction is represented by a straight line. The
polynomial degree is t = 1 and the corresponding knot vector reads� = [0, 0, 1, 1].
These are taken as the start values for further refinement by knot insertion or/and
order elevation. In principle h-, p-, and k-refinement can be applied (Cottrell et al.
2009). Consequently, the number of control points ncp is increased.
Rearranging all control point vectorsU sr in the vectorU sξ , the displacement Eq. (37)
and the virtual displacement in the radial scaling direction could be rewritten as

U s(ξ) =

⎡
⎢⎢⎢⎣

Rt
1 0 0 · · · Rt

2 0 0 · · · Rt
3 0 0 · · ·

0 Rt
1 0 · · · 0 Rt

2 0 · · · 0 Rt
3 0 · · ·

0 0 Rt
1 · · · 0 0 Rt

2 · · · 0 0 Rt
3 · · ·

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Nξ (ξ)

U sξ ,

δU s(ξ) = Nξ (ξ)δU sξ .

(38)

Fig. 7 Illustration of
NURBS basis functions in
the parameter space for 3D
problems. ncp = 5 control
points are used for the
interpolation in the radial
scaling direction. The
B-splines Rt

r (ξ) with t = 3
are shown only along one
line in the radial scaling
direction. All others radial
lines are identical.
nbs = 3 × 3 control points
are employed in η and ζ

directions. The boundary
NURBS basis functions
Rp
i (η) and Rq

j (ζ ) with
p = 2 and q = 2 are shown
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An example of the interpolation in the radial scaling direction and also in the
circumferential direction is illustrated in Fig. 7 for a 3D problem. Taking into account
the high continuity of the NURBS, the governing field equation (36) is approximated
as

nsec
A
s=1

( ncp∑
r=1

[
ξ 2k11Rt

r
′′ + ξ (2k11 + k12 − k21) Rt

r
′ + (k12 − k22) Rt

r

]
Ur

)

+ nsec
A
s=1

(
ξT 1 + ξ 2T 2

) = 0 in �,

(39)

where the abbreviation (. . . )′ = ∂(... )

∂ξ
is used. The approximation of the remaining

Neumann boundary conditions in Eq. (35) is given by

nsec
A
s=1

( ncp∑
r=1

(k11Rt
r
′ + k12Rt

r )Ur − Fs

)
= 0 on ∂t� . (40)

Collocation In the scope of theNURBS-HCGM, the collocationmethod is employed
to solve Equation (39) numerically. One collocation point per control point is suf-
ficient in the framework of the NURBS-based collocation method, which can be
interpreted as a rank sufficient one point quadrature as observed by Auricchio et al.
(2012) and Schillinger et al. (2013). In the proposed method, only a one-dimensional
ODE (Eqs. (35) and (36)) needs to be solved. In this case , the NURBS-based col-
location method has been proved to be numerically stable (Auricchio et al. 2012),
which motivates the use of NURBS for the approximation in scaling direction. The
potential of the collocation method to solve differential equations has been widely
investigated in the context of NURBS-based isogeometric analysis (for example, by
Auricchio et al. 2010, 2012 and De Lorenzis et al. 2015 as well as Kiendl et al. 2015
and also Reali and Gomez 2015 and most recently Gomez and De Lorenzis 2016).
Due to the above features, the NURBS-based collocation method is utilized to solve
Eq. (39). The Greville abscissae is employed to define the collocation points. They
are related to the knot vector � = [ξ1, ξ2, . . . , ξncp+t+1] as

ξ̂k = ξk+1 + ξk+2 + . . . ξk+t

t
for k = 1, . . . , ncp . (41)

The first collocation point is located at the scaling center C with ξ̂1 = 0, while
the last one is at the boundary with ξ̂ncp = 1. As stated previously, the proposed
method is a boundary-oriented method. Scaling the boundary surfaces yields the
3D solid. The unknown variables are the boundary degrees of freedom. If the first
collocation point is chosen exactly at the scaling center C (ξ̂1 = 0), then numerical
instabilities will arise. The physical explanation is that several control points will
collapse to a single point (the scaling center C). This entails a rank deficiency of the
final matrices in the collocation method. Equation (36) is a second-order Euler-type
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ordinary differential equation (ODE) and its approximations is presented in Eq. (39).
If the first collocation point is chosen exactly at the scaling center C (ξ̂1 = 0), then
Eq. (39) reduces to

nsec
A
s=1

(
(k12 − k22) Rt

rUr
) = 0 . (42)

Considering the property of the NURBS basis functions, Rt
r (ξ̂1 = 0) = 1 holds

for the first control point. As a result, Eq. (42) can be rewritten to the homogeneous
equation

(k12 − k22)Ur (ξ̂1 = 0) = 0 . (43)

It will lead to either zero solutions or an infinite number of solutions at the scaling
centerC . However, both the solutions contradict to the prerequisite of finite solutions
at the scaling center C . Hence, numerical instability will occur if the first collocation
point coincides with the scaling center C (ξ̂1 = 0). To obviate this effect, a tolerance
(tol) is introduced for the analysis and the first collocation point is defined as ξ̂1 =
0 + tol. The influence of the choice of the tolerance has been investigated by Chen
et al. (2015). It has been observed that the results of the NURBS-HCG depend only
very slightly on the choice of the first collocation point ξ̂1. There is only a marginal
dependence between the accuracy of the approach and the choice for ξ̂1. Thus, the
shifting of the first collocation point ξ̂1 can be allowed from a numerical point of view
and the influence of this slightmodification on the results can be neglected. In general,
the first collocation point can be specified, for example, as ξ̂1 = 0 + tol = 10−4.

The NURBS basis functions employed in the radial scaling direction are abbre-
viated as collocation NURBS. The displacement vector at the collocation points
reads

U s(ξ̂k) =
ncp∑
r=1

Rt
r (ξ̂k)Ur =

ncp∑
r=1

Rt
rkUr . (44)

The approximated Eq. (39) is reformulated for each collocation point except the
one at the boundary. A system of k = 1, . . . , ncp − 1 equations of the type

nsec
A
s=1

( ncp∑
r=1

[
ξ̂ 2
k k11R

t
rk

′′ + ξ̂k (2k11 + k12 − k21) Rt
rk

′ + (k12 − k22) Rt
rk

]
Ur

)

+ nsec
A
s=1

(
ξ̂kT 1 + ξ̂ 2

k T 2

)
= 0.

(45)

is established. At the boundary collocation point (ξ̂ncp = 1), the Neumann boundary
conditions defined in Eq. (40) are enforced by

nsec
A
s=1

( ncp∑
r=1

(k11Rt
rncp

′ + k12Rt
rncp )Ur − Fs

)
= 0 on ∂t� . (46)
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For a compact notation, the abbreviations k̄rncp = k11(Rt
rncp )

′ + k12Rt
rncp and k̂rk =

ξ̂ 2
k k11R

t
rk

′′ + ξ̂k (2k11 + k12 − k21) Rt
rk

′ + (k12 − k22) Rt
rk are introduced. After

assembling over all sections of the domain �, T 1 vanishes. The body forces T 2

are neglected for the sake of simplicity. The system of equations constituted by
Eqs. (45) and (46) is reformulated to

nsec
A
s=1

( ncp∑
r=1

k̂rkUr

)
= 0 k = 1, . . . , ncp − 1,

nsec
A
s=1

( ncp∑
r=1

k̄rncpUr − Fs

)
= 0 on ∂t� .

(47)

The degrees of freedom located at the interior nodes are eliminated by static
condensation. The degrees of freedom, located at the boundary ∂� are denoted as
U , while those associated with the interior of � are referred to as Û . Let F =
nsec
A
s=1

Fs(ξ = 1), the system of equations reads

[
K̂ i K̂ ib

K̄ bi K̄ b

] [
Û
U

]
−

[
0
F

]
= 0 , (48)

where the subscripts b and i denote the matrices related to the boundary and the
interior of �, respectively. The vector Û is eliminated from Eq. (48) by a static
condensation. It results in the reduced system of equations

K�U + P� = 0 (49)

with K� = K̄ b − K̄ bi K̂
−1
i K̂ ib and P� = −F. Equation (35) represents the weak

form of the Neumann boundary conditions. De Lorenzis et al. (2015) observed that
the imposition of the Neumann boundary conditions in a weak sense produces signif-
icantly lower error levels in comparison to a collocation-based evaluation of the Neu-
mann boundary conditions. The Dirichlet boundary conditions are directly applied
to the control points at the boundary. Hence, simply columns and rows of Eq. (49)
are deleted. Solving Equation (49) yields the displacement U of the control points
at the boundary. All nodal displacements U s of a section can be determined using
Eqs. (48) and (37). The displacement vector of an arbitrary point in �s is given by
Eq. (27). The strains and stresses are identified by Eqs. (5) and (6). It is noted that the
displacement U of the boundary control points is the essential variable in the whole
algorithm. All other variables can be derived from it. Hence, the displacement solu-
tion at the boundary can be employed to evaluate the performance of this approach. In
general, NURBS-HCGM solves the ODE defined by Eqs. (35) and (36) numerically
due to the NURBS approximation in the radial scaling direction. The approximation
of the displacement in the radial scaling direction allows the analysis of both linear
and nonlinear problems. For linear problems, the ODE is directly solved by the col-
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location method. While for nonlinear analysis, the Newton–Raphson scheme can be
employed to solve the equilibrium equations iteratively. The presented formulation is
suitable for the analysis of star-shaped solids. To deal with complex geometries, the
finite element discretization could be employed to discretize the solid into numer-
ous star-shaped macro elements. The stiffness matrix and the right-hand side for
each macro element can be derived as in Eq. (49). This provides a macro element
formulation for the general analysis of solids.

4.4 NURBS-Based Galerkin Method

In this Section, the NURBS-based Galerkin method (NURBS-G) will be presented.
In the scope of this approach, the weak form of equilibrium equation is applied in
all parametric directions of the solid. Hereafter, the NURBS approximation and the
derivation of the weak form of the equilibrium equation will be addressed.

NURBS Approximation In this approach, NURBS basis functions are employed
to describe the geometry of the boundary, see Sect. 4.1. The approximation is done
analogously to the NURBS-HCGM, see Sect. 4.3, whichmeans that the interpolation
at the boundary is done with the NURBS basis functions of the geometry whereas in
the interior it is done with B-Splines. An example of the interpolation in the radial
scaling direction and also in the circumferential direction is illustrated in Fig. 7 for a
3D problem. Here, it is worthwhile to note that the stiffness matrix of the NURBS-G
can be alternatively obtained by modifying the geometry of a rectangular patch to
a triangle. An example is illustrated in Fig. 8 for the 2D case. In the following, the
derivation of the stiffness matrix with the original geometry of the boundary as the
starting point for the analysis will be demonstrated.

WeakForm of EquilibriumEquation In this Section, the weak form of equilibrium
is derived for the 3D case. For 2D problems, the weak form of equilibrium equation
could be obtained analogously.The difference to the procedure in Section 4.3 is that
the weak form is employed in all parametric directions. Also here, we employ the
principle of virtualwork to derive theEq. (28). Consequently, the first termof Eq. (28)
represents the internal virtual work, the second term is the external virtual work

Fig. 8 Derivation of a triangular patch by modifying the geometry in 2D
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done by the boundary tractions, and the third term is the external virtual work done
by the body forces. The virtual strains are given also as δε = DT δu(ξ, η, ζ ). The
approximation of the displacements and the virtual displacements on the sectional
domain �s is defined according to Eq. (27). Note that the sectional domain �s is
approximated with NURBS on the boundary as well as in the radial scaling direction.
The stress vector is computed by σ = CDT u using Eqs. (5) and (6). The first term
in Eq. (28) is rewritten by expanding the integral

∫

�s

δεTσ dV =
1∫

0

δUT
s ,ξ ξ 2k11U s,ξ dξ +

1∫

0

δUT
s ,ξ ξk12U s dξ

+
1∫

0

δUT
s ξk21U s,ξ dξ +

1∫

0

δUT
s k22U s dξ

(50)

with (. . . ),ξ = ∂(... )

∂ξ
. The coefficient matrices are given in Eq. (30). The second term

in Eq. (28) is rewritten by considering Eqs. (A.4)–(A.6) to Eq. (31). The coefficient
matrices for the right-hand side are defined in Eq. (32). With the help of Eq. (3), the
third term in Eq. (28) is reformulated to Eq. (33). Substituting Eqs. (50), (31), and
(33) into Eq. (28) leads to the weak form of equilibrium equation for 3D problems

nsec∑
s=1

⎛
⎝

1∫

0

δUT
s ,ξ

(
ξ 2k11U s,ξ +ξk12U s

)
dξ +

1∫

0

δUT
s

(
ξk21U s,ξ +k22U s

)
dξ

⎞
⎠

−
nsec∑
s=1

⎛
⎝δUT

s Fs

∣∣ξ=1

ξ=0 −
1∫

0

δUT
s ξ 2T 1 dξ

⎞
⎠ = 0.

(51)
If the stress resultants in Eq. (28) are replaced with the Cauchy stress, the formula-

tions here are suitable for the geometrical nonlinear analysis. Also, the stress–strain
constitutive relation is flexible in these equations, thus, material nonlinearities can
be considered (Chasapi and Klinkel 2018).
Substituting Eq. (38) into (51) yields the compact form of the weak form of equi-
librium equation for 3D problems. For the sake of simplicity the body forces T 2 are
neglected. The system of equations is written as

δUT
ξ

(
F� − K�U ξ

) = 0 with U ξ = nsec
A
s=1

(
U sξ

)
(52)

where
nsec
A
s=1

is the assembly operator to assemble the variables over all the sectional

domains. K� is the stiffnessmatrix of the entire domain.U ξ is the nodal displacement
in the entire domain. The coefficient matrices are given as
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F� = nsec
A
s=1

[
0

Fs (ξ = 1)

]

K� = nsec
A
s=1

⎛
⎝

1∫

0

[
NT

ξ ,ξ
(
ξ 2k11Nξ ,ξ +ξk12Nξ

) + NT
ξ

(
ξk21Nξ ,ξ +k22Nξ

)]
dξ

⎞
⎠

(53)
For arbitrary test functions δU ξ in Eq. (52), the global system of equilibrium

equations can be obtained as

K�U ξ − F� = 0. (54)

The degrees of freedom located at the interior nodes are eliminated by static
condensation from Eq. (54). The degrees of freedom, located at the boundary ∂�,
are denoted as U , while those associated with the interior of � are referred as Û . Let

F = nsec
A
s=1

Fs (ξ = 1), the system of equations is given in Eq. (48). The vector Û is

eliminated from Eq. (48) by a static condensation. This results in a reduced system
of equations, which only relates to the boundary degrees of freedom, see Eq. (49).

Until now, all the formulations for the isogeometric analysis of solids in boundary
representation are available. To sum up, the solid is divided in the analysis into
several sectional domains �s . This division is in principle flexible. For the following
numerical examples, C0 continuity at the boundary is, however, employed to divide
the solid. NURBS basis functions are employed for the description of the boundary
geometry as well as for the approximation of the displacements at the boundary, see
Eqs. (24) and (27). The interior of the domain is described by a scaling center and a
radial scaling parameter. The scaling center is chosen in a zone from which the total
boundary of the domain is visible (Song and Wolf 1997). The scaling center will, in
general, be located inside the domain. It could be defined as the geometric center of
the domain if it is convenient to obtain.Or it could bedefined as the average coordinate
of the control points which are used to define the total boundary of the domain. The
displacement in the radial scaling direction is approximated by a one-dimensional
B-spline basis function, which is the main difference to the semi-analytical approach
where the analytical solution in the scaling direction is employed. The approximation
of the displacement in the radial scaling direction allows for the analysis of both linear
and nonlinear problems. Applying the weak form to the governing partial differential
equation of elasticity, the global system of equilibrium equation is obtained, see
Eq. (47). The Galerkin or the collocation method can be employed in the radial
scaling direction to solve the ODE. The Dirichlet boundary conditions are directly
applied to the control points at the boundary. Hence, simply columns and rows of
Eq. (48) are deleted. Solving Equation (48) yields the displacement U of the control
points at the boundary. All nodal displacements U s of a section can be determined
by using Eqs. (38) and (47). The displacement vector at an arbitrary point in �s

is given by Eq. (27). The strains and stresses are identified by Eqs. (5) and (6).
The above- presented analysis procedures are surface-oriented methods. They are
suitable for the numerical analysis if only the geometry of the boundary surfaces is



Isogeometric Analysis of Solids in Boundary Representation 175

given. This is the case with solids, which are designed in CAD with the boundary
representationmodeling technique. The choice of themethod depends on the problem
under investigation. In the following, the methods are discussed in terms of accuracy
and efficiency. A comparison between the presented formulations and also with
standard numerical methods is provided.

5 Numerical Examples

In this Section, five numerical examples related to 2D and 3D elastic problemswill be
presented. All examples are employed to demonstrate the capabilities of theNURBS-
based hybridGalerkin-collocationmethod (NURBS-HCGM) and theNURBS-based
Galerkin method (NURBS-G). The first two examples are employed to demonstrate
the performance in terms of accuracy. Hence, an extensive comparison between both
methods as well as a comparison to standard isogeometric analysis (IGA) is consid-
ered. The last three examples are presented to illustrate the capability of the methods.
Therefore, a comparison with standard FEM and IGA are presented. For all exam-
ples, each sectional domain is modeled with the sameNURBS basis functions, which
employ identical polynomial degree and knot vector. However, it should be noted
that the choice of the polynomial degree and the knot vector to approximate each
boundary is in principle flexible. Moreover, all 3D computational meshes consid-
ered are conforming, which means that adjacent surface patches employ the same
polynomial degree and knot vector along the shared edge. However, the NURBS
description of boundary surfaces is in principle flexible. Methods for the coupling
of nonconforming meshes which could be employed for the analysis are given by
Apostolatos et al. (2014), Ruess et al. (2014), and Dornisch et al. (2015). A further
extension could be the treatment of trimmed boundary surfaces (Schmidt et al. 2012;
Breitenberger et al. 2015).

In the linear analysis, the problems can be solved analytically by employing the
eigenvalue approach (Song and Wolf 1997). Here, the eigenvalue solution is used
as an optimal solution to evaluate the accuracy of the NURBS-G and NURBS-
HCG. In the eigenvalue method, the unknown variables are the displacements Ū of
boundary control points. For the numerical examples, we will mainly focus on the
error investigation of the boundary displacement Ū .

Declarations for the description of solids are summarized in Table1. The NURBS
basis functions employed to describe the boundary are termed as boundary NURBS.
The corresponding control points are denoted as boundary control points. Analo-
gously, theNURBSbasis functions used in the radial scaling direction are abbreviated
as radial or collocation NURBS and the control points are denoted as radial control
points or collocations points in case of the NURBS-HCGM. uα (α = eg, an, cl) rep-
resents the displacement obtained by the eigenvalue method, the analytical solution
and theNURBS-GorNURBS-HCGM, respectively. The vectors ug

α (α = eg, an, cl)
denote the displacement of boundary Gauss integration points used in the integrals
of Eq. (30).
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Table 1 Nomenclature to define the numerical models

Parameter Description

pB Polynomial degree of boundary NURBS (pB = p = q)

NB Total number of boundary control points

pC = t

NC = ncp
Polynomial degree of radial or collocation NURBS, Eq. (37) number of control
points or collocation points per line in the radial scaling direction, Eq. (37),
abbreviated as number of radial control points or collocations points

The relative error of displacement response is computed with the aid of L∞-norm.
With respect to the displacements at the boundary, the norm is defined as

‖v‖L∞(∂�) = max |v| ∀v ∈ L∞ (∂�) . (55)

This error measure is employed in convergence studies, where mesh refinement
and order elevation are considered. It is distinguished between a refinement for
the radial scaling direction and for the boundary. The influence of the polynomial
degree of radial NURBS and the number of radial control points on the accuracy
is investigated for a fixed boundary discretization. An optimal solution is gained by
using the eigenvalue method (Song and Wolf 1997). In the next step, the influence
of boundary description is discussed. The polynomial degree of boundary NURBS
and the number of boundary control points affect the accuracy of the displacement
response. Here, optimal rules for the choice of all parameters are provided.Moreover,
the capability of the analysis procedures is illustrated by comparison to standard
numerical methods. Within the numerical examples, analytical solutions serve as a
reference to evaluate the error.

5.1 Infinite Plate with Circular Hole

The aim of this example is to study the convergence behavior of the eigenvalue
method, the NURBS-G and the NURBS-HCGM for 2D problems. The geometry and
boundary conditions of the plate are illustrated in Fig. 9. Due to the symmetry, only
one-quarter of the plate is modeled. The exact traction from the analytical solution is
imposed at the free boundary (Apostolatos et al. 2014). The material properties are
considered with the Young’s modulus E = 100 N/m2, the Poisson’s ratio ν = 0.3,
and the thickness h = 1 m. The eigenvalue method as well as the NURBS-HCGM
and NURBS-G are employed in the analysis. Here, the plate is divided into five
sections with respect to the scaling center, which are bounded by dashed lines, see
Fig. 9. The scaling center C is defined by the average of all control points at the
boundary. The boundary of each section�s is discretized with the initial polynomial
degree pB = 2 and with the initial knot vector H = [0, 0, 0, 1, 1, 1]. The polynomial
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Fig. 9 Infinite plate with
circular hole: problem
definition

Fig. 10 Relative error of the
displacement at the boundary
∂� for eigenvalue method

degree is increased by order elevation. The number of elements is increased for a
fixed polynomial degree by h-refinement of the open knot vector. Correspondingly,
the total number of boundary control points NB is increased.

Solution of the eigenvalue method A solution for a given discretization of the
boundary is calculated by the eigenvalue method (Song and Wolf 1997). As this
method leads to an analytical solution for linear problems, it serves as a reference
solution for the evaluation of the NURBS-G and NURBS-HCG. In this method,
the decisive parameters which influence the accuracy are the polynomial degree pB

and the total number of boundary control points NB . Here, the convergence of the
displacement at the boundary ∂� in the L∞-norm is investigated, see Fig. 10. As
it can be seen in the figure, the eigenvalue method performs accurately. It leads to
the exact solution with increasing polynomial degree of boundary NURBS and total
number of boundary control points.

Solution of the NURBS-HCGM and NURBS-G The accuracy of the presented
numerical methods is not only determined by the parameters of boundary NURBS
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(pB and NB), but also by the parameters of radial NURBS (pC and NC). Hence, the
following convergence studies are performed for different choices of pB , NB , pC and
NC .

Since the analysis is linear, first we consider the solution of the eigenvalue method
as the reference solution for the convergence study.Within this study, the performance
of the presentedmethods concerning the accuracy of the displacement with respect to
the eigenvalue method will be investigated. The L∞ error norm for the displacement
will be employed. For better illustration, we present a comparison of the NURBS-
based Galerkin (NURBS-G) with the hybrid collocation-Galerkin method (NURBS-
HCGM) in terms of computational efficiency and accuracy. In the NURBS-HCGM,
the same boundary description as the NURBS-G is employed, however, the equation
in the radial scaling direction is solved by the NURBS-based collocation method.
In the frame of NURBS-based analysis, extensive studies regarding the collocation
method are presented by Auricchio et al. (2012), De Lorenzis et al. (2015), Kiendl
et al. (2015), Reali and Gomez (2015), Klinkel et al. (2015), and Chen et al. (2015).
Furthermore, the convergence of the NURBS-G relative to the analytical solution is
presented bymeans of the L∞ error norm.Here, wewill compare theNURBS-Gwith
the standard Galerkin-based isogeometric analysis (IGA) in terms of their accuracy
against the analytical solution.

(a) Influence of the parameters in the radial scaling direction

Figure11 presents convergence plots for the displacement at the boundary of
domain �. A comparison of the displacements obtained by the NURBS-G and the
NURBS-HCGM relative to those by the eigenvalue method is presented. The L∞

Fig. 11 Relative error of the displacement at the boundary ∂� for NURBS-G denoted with lines &
star and NURBS-HCGM denoted with solid lines: different polynomial degrees of radial NURBS
and number of radial control points are concerned
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error norm for the displacement at the boundary Gauss integration points is consid-
ered in the comparison. For a fixed boundary description (i.e., pB and NB are fixed),
different polynomial degrees of radialNURBS pC and number of radial control points
NC are utilized in the convergence study. In the figures, the results of the NURBS-G
are denoted as line with stars, while the results of the NURBS-HCGM are repre-
sented as solid lines. For the NURBS-HCGM, only the results of even polynomial
degree of radial NURBS are presented, because the best possible convergence rates
are attained for even degrees in the NURBS-HCGM (Klinkel et al. 2015; Schillinger
et al. 2013). In addition, to illustrate the best possible accuracy under current bound-
ary description, the relative error between the eigenvalue method and the analytical
solution is shown in the caption of Fig. 11. It can be seen, that the accuracy of both
methods increases with increasing polynomial degree and number of radial control
points. The error level of the proposed NURBS-G is comparably lower than that
of the NURBS-HCGM in terms of the control points and the polynomial degree of
radial NURBS. For a specified level of accuracy within the NURBS-HCGM, the
polynomial degree of radial NURBS should satisfy pC ≥ even (pB) and the number
of radial points NC ≥ NB . A further advantage of the NURBS-G is that there is no
singularity arising at the scaling center compared to the NURBS-HCGM, hence the
solution procedure is stable (see also Klinkel et al. 2015; Chen et al. 2015).

(b) Influence of the parameters in the circumferential direction

The rate of convergence is independent of the polynomial degree of boundary
NURBS in the presented NURBS-G as well as NURBS-HCGM method. Greater
difference between pB and pC will lead, however, to more accurate results for a given
number of radial points. The same holds also for the total number of boundary control
points, when the same polynomial degree of radial NURBS is concerned. Here also,
greater difference between NB and NC will yield better results provided that the same
number of radial points NC is employed in the computation. The reader is referred to
the studies of Klinkel et al. (2015) and Chen et al. (2015, 2016) for further numerical
results.

(c) Comparison of the NURBS-G with the isogeometric analysis (IGA)

Here, the boundary of each section �s is described by NURBS basis functions
with identical polynomial degree pB . It employs pB = 2 with the initial open knot
vector H = [0, 0, 0, 1, 1, 1], and extends to pB = 3, 4, 5, and 6, respectively. Under
each polynomial degree of boundary NURBS, the number of elements along the
boundary of each section is initially n = 1, and extends to n = 2, 3, 4, 5, 6, 7, and
8, separately. The h-refinement of the open knot vector is employed to generate new
open knot vectors. The total number of boundary control points NB is increased,
respectively. To illustrate the capability of the NURBS-G, we provide a comparison
to the isogeometric analysis (Dornisch et al. 2013). In Fig. 12, the different meshing
strategies of both approaches are depicted. For the NURBS-G model, the scaling
center C is defined by the average of the coordinates of the boundary control points,
which are denoted as red dots in the figure. The plate is modeled by five sections,
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Fig. 12 On the left-hand side, themesh of theNURBS-basedGalerkinmethod and on the right-hand
side the mesh of the isogeometric Galerkin approach are depicted

Fig. 13 L∞ error norm of
the displacement at the
boundary ∂�: different
polynomial degrees of
boundary NURBS and total
numbers of Gauss integration
points are considered

where each section �s is bounded by red colored dashed lines. For the IGA, k-
refinement of the open knot vector is employed to generate new open knot vectors.

In Fig. 13, the L∞ error norm for the displacement at the boundary is employed to
demonstrate the accuracy of the NURBS-G approach. In the figure, uγ denotes the
displacement solution obtained from the NURBS-G and the IGA approach, respec-
tively. For the NURBS-G, the polynomial degree of radial NURBS is defined as
pC = pB . The number of radial control points is set as NC = ceil(NB/4) + pC . Here,
ceil(·) denotes the round-toward-infinity function. In the NURBS-G, the reduced
quadrature with ceil(pC

/
2)+1 Gauss points per element is employed to perform the

integration. In the IGA approach, two integration strategies are employed for the
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Gauss quadrature integration: full quadrature with pB + 1 Gauss points per element
and reduced quadrature with ceil(pB

/
2)+1 Gauss points per element (Hughes et al.

2010). In the figures, the relative L∞ error norm is plotted versus the total number
of Gauss points NG employed in the NURBS-G and IGA approach, respectively.
Concerning the accuracy of the NURBS-G, it can be seen in Fig. 13 that the method
performs accurately. It leads to the exact solution with the rise of polynomial degree
of boundary NURBS and total number of Gauss points. Additionally, the proposed
NURBS-G and IGA yield error levels in the same range in terms of total integration
points. For coarse discretizations, the IGA performs better than the NURBS-G, for
finer discretizations the NURBS-G slightly outperforms the IGA.

5.2 Solid Sphere Under Hydrostatic Pressure

The aim of this example is to investigate the rate of convergence of the NURBS-
G and NURBS-HCG for 3D problems. Due to the symmetry of the system, only
one-eighth of the solid sphere is modeled. The geometry is shown in Fig. 14. The
radius of the sphere is Rb = 10m. In the analysis, the solid sphere is modeled by four
sections, which are bounded by the curved boundary surfaces as shown in Fig. 14c.
One section �s is shown in Fig. 14c and indicated by dashed lines. The scaling
center C is defined by the centroid of the sphere. The boundary surface of each
sectional domain �s is initially described by the polynomial degree pB = 2 and the
knot vectors H = Z = [0, 0, 0, 1, 1, 1]. The polynomial degree is increased by using
k-refinement. The number of elements is increased for a fixed polynomial degree by
h-refinement of the open knot vector. An example of the control polygon and mesh
of the boundary surfaces is presented in Fig. 15, which employs the knot vector
H = Z = [0, 0, 0, 0.5, 1, 1, 1] and the polynomial degree pB = 2. The system is
loaded by hydrostatic pressure, which is imposed at the external spherical surfaces.
The analytical solution for the displacement and the stress of the solid sphere is given

(a) Geometry (b) One eighth model (c) Boundary surfaces

Fig. 14 Solid sphere: problem definition and boundary description
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Fig. 15 Control polygon and mesh on the boundary surfaces of the solid sphere (pB = 2 and 2
elements per parametric direction)

by Timoshenko (1951). Considering the spherical coordinates (r, φ, θ), the radial
displacement and stress read

ur = − (1 − 2ν)r

E
qb σr = −qb (56)

with the external hydrostatic pressure qb. The material properties of the sphere are:
Young’s modulus E = 100 N/m2 and Poisson’s ratio ν = 0.0. The external hydro-
static pressure is qb = 10 N/m2. In the following, the eigenvalue method as well as
the NURBS-G and NURBS-HCGM are employed for the analysis.

Solution of the eigenvalue method Here, the convergence of the displacement at
the boundary surface ∂� in the L∞ error norm is investigated by employing the
eigenvalue method (Song and Wolf 1997). Figure16 shows that the degree elevation
and knot insertion lead to converged results. In analogy with the previous example,
the eigenvalue method serves as reference solution in the linear elastic case.

Solution of the NURBS-HCG and NURBS-G For better illustration, an extensive
comparison of the NURBS-G with the NURBS-HCGM is presented with respect to
their computational efficiency and accuracy. In addition to the comparison between
the NURBS-HCG and NURBS-G, the accuracy and efficiency of the NURBS-HCG
are further investigated in detail. Finally, the accuracy of both methods with respect
to the analytical solution will be discussed.
For a given boundary surface discretization, defined by NB and pB , the efficiency and
accuracy of the methods also depend on the polynomial degree of radial NURBS pC

and the number of radial control points NC . A convergence study will be, therefore,
performed for different choices of pB , NB , pC , and NC in analogywith the previous 2D
example. In the following, the L∞ error norm for displacements will be employed.
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Fig. 16 Relative error of the
displacement at the boundary
∂� of the solid sphere
(solution of the eigenvalue
method)

Figure17 presents the convergence plots for displacements at the boundary Gauss
integration points. For a fixed boundary description, different polynomial degree of
radial NURBS pC and number of radial control points NC are employed. The solution
of the eigenvalue method is set as the reference solution. Thus, the relative error
between the eigenvaluemethod, the NURBS-G and the NURBS-HCGM is displayed
in Fig. 17. In the figures, the lineswith stars denote the results of theNURBS-G,while
solid lines represent the results of theNURBS-HCGM.For theNURBS-HCGM, only
the results of even polynomial of radial NURBS are presented in order to achieve
best possible convergence rates (Chen et al. 2015). The best possible accuracy under
current boundary description is given as the relative error between the eigenvalue
method and the analytical solution with the L∞ error norm, see Fig. 17.
It can be seen in the figure that both the NURBS-HCG and NURBS-G converge with
increasing pC . The error level of the NURBS-G is comparably lower than that of the
NURBS-HCGM. In the figure, it can be observed that a rate of convergence 2pC is
attained in the L∞-norm, which can be considered as the best possible rate of con-
vergence. Although the solution for high polynomial degrees indicates instabilities
for fine discretizations, note that these results are already converged at the machine
precision under consideration of the conditioning of the matrix.

(a) Influence of the parameters in radial scaling direction on the accuracy of the
NURBS-HCGM

Figure18 presents convergence plots for the displacement at the boundary Gauss
integrationpoints,which illustrate the influenceof collocation. For afixedpolynomial
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Fig. 17 Relative error of the displacement at the boundary ∂� for NURBS-G denoted with lines
& stars and NURBS-HCGM denoted with solid lines with respect to the solution of the eigenvalue
method: The influence of the polynomial degree of radial NURBS is examined for a fixed boundary
discretization

Fig. 18 Relative error of the displacement at the boundary ∂� (solution of the NURBS-HCGM
compared to the eigenvalue method): The influence of the polynomial degree of the collocation
NURBS is examined for a fixed boundary discretization
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degree of boundary NURBS and a fixed total number of boundary control points,
different polynomial degrees of collocation NURBS pC and numbers of collocation
points NC are utilized. Here, the solution of the eigenvalue method is set as the
reference solution. Thus, the relative error between the eigenvalue method and the
NURBS-HCGM is displayed in Fig. 18. The L∞-norm of the error is employed
for the comparison. In the figure, only the results of even polynomial degrees of
collocation NURBS are presented for better illustration. The results given in Fig. 18
show that the displacements converge for increasing polynomial degrees pC . A rate
of convergence pC is attained for even degrees.

This is consistent with the observations of Auricchio et al. (2010) and can be
referred to as the best possible convergence rates. Although unstable results are
attained for very high polynomial degrees and number of collocation points, note
that these results are already converged at the machine precision under consideration
of the conditioning of the matrix.

Figure18 demonstrates that also an increase of the number of collocation points
NC results in a higher accuracy. However, unstable results are also obtained on the
convergence line before it attains the corresponding rate of convergence. The turning
point is approximately observed at NC ≈ NB/2. The following two rules are, there-
fore, suggested to achieve a stable collocation with the best possible convergence
behavior:

1. The number of collocation points should satisfy NC ≥ NB

/
2 to avoid unstable

results on the convergence lines.
2. The polynomial degree of collocation NURBS should be set to pC ≥ even (pB),

where even (A) rounds A to the nearest even number greater than or equal to A.
Higher difference between pC and pB will lead to more accurate results.

These rules may underestimate the accuracy of the NURBS-HCGM for some
lower polynomial degrees of collocation NURBS and number of collocation points.
However, they provide the best possible accuracy of the method.

(b) Influence of the parameters in the circumferential direction of the boundary
on the accuracy of the NURBS-HCGM

As the same polynomial degree of collocation NURBS pC is concerned, the rate
of convergence is identical for the different choices of pB , which implies that the
rate of convergence is independent of the polynomial degree of boundary NURBS.
However, greater difference between pB and pC will lead to more accurate results.
The results of NURBS-HCG converge in general to the theoretical convergence rates
(pC). This is also the case with increasing number of boundary control points. The
results also converge with the theoretical convergence rates (pC). Moreover, the rate
of convergence is independent of the total number of boundary control points. These
observations are therefore valid for the 2D as well as the 3D case. For further details
on the effect of pB and NB , see also the studies of Chen et al. (2015).
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(c) Efficiency of the NURBS-HCGM

The efficiency of the NURBS-HCGM is hereafter investigated as it is of funda-
mental importance and largely determines the potential of the method for the use in
engineering applications. Here, for simplicity, we only give a brief discussion about
it. For a detailed investigation, the reader can refer to Klinkel et al. (2015). The
efficiency of the NURBS-HCGM is mainly determined by the choice of pB , NB , pC ,
and NC , see Eq. (48). However, the size of the matrix in Eq. (48) enlarges primarily
with the rise of the number of boundary control points NB and collocation points NC ,
which accordingly increases the computation time. Order elevation of the polynomial
degrees pB and pC plays a minor role for the computation time. Computational costs
occur only for the computation of the NURBS basis functions and their derivatives.
There is no influence on the dimension of the matrices in Eq. (48). As a result, the
total computation time does not change significantly with the rise of pB and pC . As
already mentioned, however, a specific polynomial degree of boundary NURBS and
number of boundary control points should be employed to achieve a high level of
accuracy with respect to the exact solution. In addition, it has been already observed
that a higher polynomial degree of collocation NURBS and larger number of col-
location points should be applied to ensure the accuracy of the NURBS-HCGM.
Hence, the optimal choice of pB , pC and NB , NC is significant for an efficient and
accurate computation. To meet this need, we suggest the following two rules for the
application of the NURBS-HCGM in the analysis:

1. Initially apply order elevation for the polynomial degree of boundary NURBS
pB . Thereafter, increase the number of boundary control points NB . These steps
ensure the accuracy with respect to the exact solution.

2. Apply order elevation of the polynomial degree of collocation NURBS pC and
increase the number of collocation points NC in order to achieve high accuracy of
the NURBS-HCGM. Note, that order elevation is computationally more efficient
than increasing the number of collocation points as discussed above.

(d) Accuracy in respect to the exact solution

It has been observed that the convergence behavior of theNURBS-HCGM is equal
to the convergence behavior of the eigenvalue method with respect to the analytical
solution by Timoshenko (1951). This holds both for low and high polynomial degrees
of boundary NURBS (Chen et al. 2015). Order elevation or h-refinement of the
boundary NURBS entails more accurate results. The very good agreement between
the results of the eigenvalue method and the NURBS-HCGM results certifies also the
validity and rationality of the aforementioned rules for the best possible convergence
behavior.

Similar results have been observed by comparing the NURBS-G with the eigen-
value method with respect to the analytical solution. According to Chen et al. (2016),
the convergence behavior of the NURBS-G is equal to the convergence behavior
of the eigenvalue method, both for low and high polynomial degrees of boundary
NURBS. Order elevation or h-refinement of the boundary NURBS entails more
accurate results as is also the case for the NURBS-HCGM.
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Fig. 19 ur and σr plots of the 3D solid sphere under hydrostatic pressure. Here, for the radial
NURBS, the polynomial degree is pC = pB and the number of radial control points is NC =
ceil(NB/2) + pC

Finally, we will present the contour plot of the analytical solution and the errors in
the radial displacement (ur ) and stress (σr ) at the boundary surfaces (ξ = 1) obtained
by the NURBS-G. Here, the error is defined as the difference between the numerical
solution and the analytical solution. It should be noted that the radial stress σr is
homogeneous as shown in Eq. (56). Hence, we will only show the error of the radial
stress under two different boundary descriptions. The results are shown in Fig. 19. It
can be seen in the figures that the error level of the NURBS-G is quite low, which
implies that the method performs accurately.
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(a) Configuration of the beam (b) Boundary surface discretization of the beam

Fig. 20 Cantilever beam subjected to bending moment

5.3 Circular Cantilever Beam Subjected to Bending Moment

The aim of this example is to demonstrate the capability of the NURBS-HCGM.
Therefore, the standard FEM and the NURBS-HCGM are compared to the analytical
solution for a cantilever beam subjected to bending moment. Further studies of the
same system under torsional moment have been carried out by Chen et al. (2015).
The configuration of the beam is presented in Fig. 20a. The material properties of
the beam are: Young’s modulus E = 100 N/m2, Poisson’s ratio ν = 0.0. The beam
has a length of L = 50m and radius of R = 5m. The external bending moment
is M = 1000 N · m. The scaling center C is defined as the center of the beam,
(x̂0, ŷ0, ẑ0) = (25m, 0, 0). Thus, with respect to the scaling center the domain �

is partitioned into 6 sections�s bounded by the boundary surfaces ∂�s , see Fig. 20b.
An analytical solution is given by Timoshenko (1951) and is considered here as the
reference solution. The vertical displacement w (ẑ-direction) of the cantilever beam
subjected to the tip bending moment M is given by

w = M

2E I
(x̂2 + ν ŷ2 − ν ẑ2) . (57)

The standard FEM and the NURBS-HCGM are employed to solve the prob-
lem. The boundary surface of each section �s is initially described by NURBS
basis functions with polynomial degree pB = 2 and the open knot vector H = Z =
[0, 0, 0, 0.5, 1, 1, 1]. The polynomial degree is elevated to pB = 3 and 4. For each
polynomial degree of boundary NURBS, the number of elements per parametric
direction is initially n = 2, and is increased to n = 3, 4, 5, and 6 using h-refinement.
The control polygon and the element mesh of the boundary surfaces of the beam are
presented in Fig. 21. The contour plot of the displacement is presented in Fig. 22.
Note that the contour is very smooth. The L∞-norm for the error of the displacement
at point A (Fig. 20a, xA = (50m, 0, 5m)) is employed to demonstrate the accuracy
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Fig. 21 Control polygon and mesh on the boundary surfaces of the beam (pB = 3 and 3 elements
per parametric direction)

Fig. 22 Displacement
contour (pB = 3 and 3
elements per parametric
direction)

of both methods, see Fig. 23. In the figure, wγ
A denotes the deformation obtained

from the numerical solution, which is either NURBS-HCGM or standard FEM. For
the NURBS-HCGM, the rules proposed in the previous example are employed. The
polynomial degree of collocation NURBS is defined as pC = even (pB + 6). The
number of collocation points is determined as NC = NB . The standard FEM employs
full Gauss quadrature (Hughes 2000). Both linear and quadratic shape functions are
used and are denoted as FEM-1st and FEM-2nd, see Fig. 23. Here, the error norm
is plotted versus the total number of collocation points for NURBS-HCGM given
by NTC = NC × NB , and versus the total number of nodes employed in the standard
FEM, which is denoted by NF .

Figure23 shows that the NURBS-HCGM yields accurate results on the basis of
the proposed rules. It approaches the analytical solution with increasing polynomial
degree of the boundary NURBS and with increasing total number of collocation
points. The NURBS-HCGM and the standard FEM yield error levels in the same
range with respect to the total number of collocation points or FEM-nodes, respec-
tively. In case of a coarse discretization the standard FEM performs better than the
NURBS-HCGM, for finer discretizations the NURBS-HCGM outperforms the stan-
dard FEM.
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Vertical displacement at point A under bending moment

Fig. 23 Relative error of the displacement at point A. Here,wγ
A and uAR

γ denote the deformations
obtained from the numerical solution, which is either NURBS-HCGM or the standard FEM

5.4 Hollow Circular Cylinder Subjected to Internal Pressure

The aim of this numerical example is to investigate the capability of the NURBS-
HCGM. Therefore, the standard IGA and the NURBS-HCGMare compared with the
analytical solution for a hollow circular cylinder subjected to internal pressure The
geometry of the cylinder is shown in Fig. 24. Plane strain conditions are assumed
in the axial direction. A constant pressure is applied at the inner surface of the
cylinder. Here, the inner and outer radius are Ra = 1m, and Rb = 2m, respectively.
The properties of the cylinder are defined by a Young’s modulus E = 40 N/m2 and
a Poisson’s ratio ν = 0.0. The magnitude of the inner pressure is p = 20 N/m2.
Considering symmetry only a quarter of the cylinder is modeled, see Fig. 24b. The
scaling center C is defined as the average coordinate of all control points at the
boundary. With respect to the scaling center, the domain � is partitioned into 6
sections �s bounded by the boundary surfaces ∂�s , see Fig. 24c.

(a) Configuration (b) One quarter model (c) Boundary surface discretization

Fig. 24 Thick cylinder subjected to internal pressure
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(a) Control polygon (b) Mesh 1 (c) Mesh 2

(d) Mesh 3 (e) Mesh 4

Fig. 25 Control polygon (1 element per parametric direction) and mesh on the boundary surfaces
of the quarter cylinder (pB = 2)

An analytical solution for the displacement response is given by Hughes et al.
(2005). A plot of the control polygon is presented in Fig. 25a. Element meshes
attained by h-refinement are shown in Fig. 25b–e. The polynomial degree is pB = 2
in all cases. The initial open knot vector is H = Z = [0, 0, 0, 1, 1, 1]. The rules
proposed in the previous examples are employed for the NURBS-HCGM. The poly-
nomial degree of the collocation NURBS is defined as pC = even (pB + 6), and the
number of collocation points is determined by NC = NB .
Results of the displacement solution for each mesh are presented in Fig. 26. The
contour plot of the radial displacement of the cylinder given in Fig. 26a is clearly
apparent. Errors in the radial displacement are plotted in Fig. 26b. For better illus-
tration, the result taken from Hughes et al. (2005) for Mesh 1 is also presented in
the figure. Hughes et al. (2005) employed the isogeometric approach for the anal-
ysis. The maximum error of this approach is slightly below that of the proposed
method (Mesh 1). The maximum error through the cylinder thickness attained with
the NURBS-HCGM is: for Mesh 1 approximately 1.5%, for Mesh 2 approximately
0.25%, for Mesh 3 0.08%, and for Mesh 4 0.01%. Higher accuracy of the displace-
ment solution can be achieved on all meshes by increasing the polynomial degree pB

for the boundary NURBS.

5.5 Solid with Free Form Geometry and Arbitrary Number of
Boundary Surfaces

The last numerical example is employed to illustrate the capability of the NURBS-
G to deal with 3D solids bounded by an arbitrary number of boundary surfaces.
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(a) radial displacement contours (b) convergence of radial displacement

Fig. 26 Radial displacement of the quarter cylinder. Here, urcl denotes the displacements either
computed with the NURBS-HCGM or taken from Hughes et al. (2005). uran represents the dis-
placements obtained from the analytical solution

Therefore, the standard FEM and the NURBS-G are compared for a solid loaded by
surface tractions. The system is depicted in Fig. 27a, b. The material properties of the
solid are defined by Young’s modulus E = 100 N/m2 and Poisson’s ratio ν = 0.0.
The initial geometry of the boundary surface is described by NURBS basis functions
of polynomial degree pB = 2 and open knot vectors H = Z = [0, 0, 0, 1, 1, 1]. For
the response analysis, order elevation and h-refinement are performed to generate
boundary NURBS with higher polynomial degree and a larger number of elements.
For the NURBS-G, the polynomial degree of radial NURBS is defined as pC = pB .
The number of radial control points is set as NC = ceil(NB/4) + pC . In the NURBS-
G, the reduced quadrature with ceil(pC

/
2)+1 Gauss points per element is employed

to perform the integration in Eq. (53).
The geometry of elastic cube with circular hole is defined by the length of cube
B = L = H = 40 m and the radius of circular hole R = 10 m. The magnitude of
surface traction is p = 10 N/m2. Due to the symmetry of the problem, only one-
eighth of the cube is consideredwith the symmetric boundary conditions, seeFig. 27b.
In the analysis, the scaling center C is defined as the center of the one-eighth cube.
With respect to the center, the domain � is partitioned into 7 sections �s bounded
by the boundary surfaces ∂�s , see Fig. 27c.

Sample plots of control polygon and mesh on the boundary surfaces of the one-
eighth cube are presented in Fig. 28. An analytical solution for this problem in terms
of displacements is not available. Thus, the comparison is made between the standard
FEM and the NURBS-G. In the standard FEM, quadratic shape function (C3D20)
and full Gauss quadrature integration are employed (Hughes et al. 2010). The com-
putation is performed in Abaqus (2007) with 55273 elements and 235171 nodes. The
contour plots of the vertical displacement for both methods are presented in Fig. 29.
As it can be seen in the figure, good agreement is achieved.
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(a) Configuration (b) One eighth model (c) Boundary surface
discretization

Fig. 27 Elastic cube with circular hole in tension regime

(a) Control polygon (b) Mesh

Fig. 28 Control polygon (pB = 2 and 1 elements per parametric direction) and mesh (pB = 6 and
6 elements per parametric direction) on the boundary surfaces of the one-eighth cube

(a) Standard FEM (b) NURBS-G (see mesh Figure 28b)

Fig. 29 Contours of the vertical displacement for the one-eighth cube
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6 Summary

Wehave discussed in this chapter numerical approaches to analyze solids in an isoge-
ometric framework. These analysis procedures arewell suited for structures designed
by the boundary representation modeling technique. This is a popular technique to
define solids in CAD. In the analysis, the solid is represented by its boundary and
a radial scaling center. Employing the boundary scaling technique of the SB-FEM,
the solid can be generated by scaling the boundary with respect to the scaling cen-
ter. Here, the boundary geometry and the displacement response are modeled by
the NURBS basis functions, which are the same functions used for the definition
of the geometry. For the approximation of the displacement response in the interior
domain the eigenvalue method can be employed for linear problems. Alternatively,
one-dimensional NURBS basis function is introduced in combination with a col-
location scheme in the scaling direction for the approximation of the displacement
response. The NURBS approximation in scaling direction enables also the treatment
of nonlinear problems. Finally, the weak form of equilibrium can be enforced sepa-
rately in the circumferential direction and also in the scaling direction in the scope
of a purely Galerkin approach. Moreover, we have presented numerical examples to
illustrate the efficiency and accuracy of the approaches. After observing the results,
we have provided suggestions for the optimal choice of polynomial degree of col-
location NURBS and collocation points in scaling direction. It is worth remarking
that compared with the NURBS-based collocation, there is no singularity arising at
the scaling center in a Galerkin context. Hence, the solution procedure is stable. In
addition, the error level of a Galerkin approach is lower than that of the NURBS-
based collocation and higher rate of convergence is achieved. Furthermore, we have
seen that the rate of convergence for both approaches is primarily dependent on the
NURBS description in the scaling direction and it is independent of the boundary
description. In regard to practical applications, we have demonstrated comparisons
of the boundary-oriented approaches with analytical solution, the standard FEM and
isogeometric analysis (IGA). A good agreement is achieved in all cases. To sum
up, we consider the presented boundary-oriented formulations as promising analysis
frameworks that can be extended to a wide class of problems including nonlinearities
and complex geometries such as trimmed NURBS.

Appendix

The normal vectors nξ , nη and nζ are perpendicular to the surface described by the
parameters (η, ζ ), (ζ , ξ ) and (ξ , η), respectively, see Fig. 3. They are summarized
as
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nξ = [nξ

x̂ , n
ξ

ŷ, n
ξ

ẑ ]T = x̂s,η ×x̂s,ζ
‖x̂s,η ×x̂s,ζ ‖ = xs,η ×xs,ζ

‖xs,η ×xs,ζ ‖

= 1

gξ

⎡
⎣
ys,η zs,ζ −zs,η ys,ζ
zs,η xs,ζ −xs,η zs,ζ
xs,η ys,ζ −ys,η xs,ζ

⎤
⎦ ,

(A.1)

nη = [nη

x̂ , n
η

ŷ, n
η

ẑ ]T = x̂s,ζ ×x̂s,ξ
‖x̂s,ζ ×x̂s,ξ ‖ = xs,ζ ×(xs − x̂0)

‖xs,ζ ×(xs − x̂0)‖

= 1

gη

⎡
⎣

(zs − ẑ0)ys,ζ −(ys − ŷ0)zs,ζ
(xs − x̂0)zs,ζ −(zs − ẑ0)xs,ζ
(ys − ŷ0)xs,ζ −(xs − x̂0)ys,ζ

⎤
⎦ ,

(A.2)

nζ = [nζ

x̂ , n
ζ

ŷ, n
ζ

ẑ ]T = x̂s,ξ ×x̂s,η
‖x̂s,ξ ×x̂s,η ‖ = (xs − x̂0) × xs,η

‖(xs − x̂0) × xs,η ‖

= 1

gζ

⎡
⎣

(ys − ŷ0)zs,η −(zs − ẑ0)ys,η
(zs − ẑ0)xs,η −(xs − x̂0)zs,η
(xs − x̂0)ys,η −(ys − ŷ0)xs,η

⎤
⎦

(A.3)

where gξ , gη and gη are considered according to Chen et al. (2015, 2016). The trans-
formation of an infinitesimal surface element dS is derived by employing Eqs. (1)
and (A.1)–(A.3) as

dSξ = |x̂s,η ×x̂s,ζ |dη dζ = |ξ xs,η ×ξ xs,ζ |dη dζ = ξ 2gξ dη dζ, (A.4)

dSη = |x̂s,ζ ×x̂s,ξ |dζ dξ = |ξ xs,ζ ×(xs − x̂0)|dζ dξ = ξgη dζ dξ, (A.5)

dSζ = |x̂s,ξ ×x̂s,η |dξ dη = |(xs − x̂0) × ξ xs,η |dξ dη = ξgζ dξ dη. (A.6)
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