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Abstract This work presents a geometrically exact Bernoulli–Euler rod model. In
contrast to Pimenta (1993b), Pimenta and Yojo (1993), Pimenta (1996), Pimenta and
Campello (2001), where the hypothesis considered was Timoshenko’s, this approach
is based on the Bernoulli–Euler theory for rods, so that transversal shear deformation
is not accounted for. Energetically conjugated cross-sectional stresses and strains are
defined. The fact that both the first Piola–Kirchhoff stress tensor and the deformation
gradient appear again as primary variables is also appealing. A straight reference
configuration is assumed for the rod, but, in the same way, as in Pimenta (1996),
Pimenta and Campello (2009), initially curved rods can be accomplished, if one
regards the initial configuration as a stress-free deformed state from the straight
position. Consequently, the use of convective non-Cartesian coordinate systems is
not necessary, and only components on orthogonal frames are employed. A cross
section is considered to undergo a rigid body motion and parameterization of the
rotation field is done by the rotation tensor with the Rodrigues formula that makes the
updating of the rotational variables very simple. This parametrization can be seen in
Pimenta et al. (2008), Campello et al. (2011). A simple formula for the incremental
Rodrigues parameters in function of the displacements derivative and the torsion
angle is also settled down.A2-nodefinite elementwithCubicHermitian interpolation
for the displacements, together with a linear approximation for the torsion angle, is
displayedwithin the usual Finite ElementMethod, leading to adequateC1 continuity.
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1 Introduction

The first objective of thiswork is to present a geometrically exact Bernoulli–Euler rod
formulation and its finite element implementation. The class of admissible motions,
that follows from this assumption, is obtained by imposing that the cross sections of
the rod, that are initially orthogonal to the chosen axis, remain rigid and orthogonal to
it after deformation. Thus, the transversal shear deformation is not accounted for. This
theory is called geometrically exact because no approximation is employed after the
basic kinematical assumption made. Displacements and rotations can be unlimited
large. TheBernoulli–Euler formulation for rods is analogous to theKirchhoff–Love’s
for shells presented in Viebahn et al. (2016), Pimenta et al. (2010).

As framework one uses the theory presented in Pimenta (1993b), Pimenta and
Yojo (1993), which is now constrained to obey the Bernoulli–Euler assumption.
This approach defines energetically conjugated generalized cross-sectional stress
and strains. Besides their practical importance, cross-sectional quantities make the
derivation of equilibrium equations easier, as well as the achievement of the corre-
sponding tangent bilinear form, which is always symmetric for hyper-elastic mate-
rials and conservative loadings, even far from an equilibrium state.

Themodels are implemented using thefinite elementmethodwith cubicHermitian
polynomial interpolation on the displacements and linear Lagrangian interpolation
for the considered torsion degree of freedom. Usually in shear deformable rod the-
ories, one needs to worry about shear-locking. With Bernoulli–Euler assumption,
the shear deformation is not accounted for in the initial kinematics, therefore, there
is no shear-locking. So, there is no need for reduced numerical integration or any
other techniques to bypass this problem. Since only initially straight elements are
considered here, membrane locking is not an issue too. Linear elastic constitutive
equations for small strains are considered in the numerical examples of this paper.
A forthcoming paper will address the issue of finite strain elastic and elastic–plastic
constitutive equations.

As mentioned before, a straight reference configuration is assumed for the rod.
Initially, curved rods can then be regarded as a stress-free deformation from this con-
figuration.This approachwas already employed for rods and shells inPimenta (1996),
Pimenta and Campello (2009). It precludes the use of convective non-Cartesian coor-
dinate systems and other complicate entities like Christoffel symbols and fundamen-
tal forms. It simplifies, as well, the comprehension of tensor quantities, since only
components on orthogonal systems are employed.

Throughout the text, italic Greek or Latin lowercase letters (a, b, . . . , α, β, . . .)

denote scalars, bold italic Greek or Latin lowercase letters (a, b, . . . ,α,β, . . .)

denote vectors and bold italic Greek or Latin capital letters (A, B, . . .) denote
second-order tensors in a three-dimensional Euclidean space. Summation conven-
tion over repeated indices is adopted in the entire text, whereby Greek indices range
from 1 to 2, while Latin indices range from 1 to 3. ‖v‖ = √

v · v is the is the norm of
vector v, where · denotes de scalar product of two vectors. The operator ⊗ denotes
the dyadic or tensor product of two vectors. For instance, a ⊗ b is a second-order



A Fully Nonlinear Beam Model of Bernoulli–Euler Type 129

tensor such that (a ⊗ b)c = (b · c)a. Note that (a ⊗ b)T = (b ⊗ a), where (•)T

denotes the transpose. The operator axial (•) is such that, if v = axial (V ), with V
skew-symmetric, then Vx = v × x,∀x, where × denotes the cross product of two
vectors. If v = axial (V ), then V = Skew (v), with V skew-symmetric.

Rod models are of great interest in structural mechanics and flexible multibody
systems. The first works on bending problems date back to Bernoulli investigating
deflections of beams and Euler published the first systematic treatment of elastic
curves. A full history can be seen in Timoshenko (1953). After these first discoveries,
many authors wrote about rods. Until the 60s, most of these works were restricted
to linear kinematics.

With the advent of computers, nonlinear problems started to be addressed. First as
plane problems Reissner (1972, 1973) and then as three-dimensional ones Antman
(1974), Whirman and De Silva (1974), Argyris (1982). The first geometrically exact
problems in three-dimensional space were addressed by Simo (1985), resulting in a
nonsymmetric tangent matrix far from the equilibrium state. Many authors solved
geometrically exact rod problems based on this work, as to name just a few Simo
and Vu-Quoc (1986, 1991), Simo (1992), Simo et al. (1992).

As Campello (2000) pointed out, it is evident that these early theories did not
have rigor and precision in their conceptualizations, mainly because they are derived
from simplifications imposed in the theories of three-dimensional solids.

Pimenta (1993b), Pimenta and Yojo (1993) presented a geometrically exact rod
theory in three-dimensional space with the Fréchet derivative of the weak form of
the equilibrium being exact and the rotations in three-dimensional space treated in a
consistent and convenient way through the Euler–Rodrigues formula. Many authors
extended these geometrically exact rodmodels to incorporate general cross-sectional
in-plane changes and out-of-plane warping Pimenta and Campello (2003), distortion
of the cross section Sokolov et al. (2015).

All those geometrically exact rod models are not constrained to obey the
Bernoulli–Euler assumption as it is done herein. This class of rod models has drawn
some attention in the last few years. Boyer and Primault (2004) present a geomet-
rically exact nonlinear Euler–Bernoulli model for the special case of beams with
circular cross sections and a straight initial configuration, in Boyer et al. (2011) the
same theory is applied to cable dynamics. In the present approach, one can have
arbitrary cross sections, the initial configuration is also straight, initially curved rods
could be accomplished in the same it way as in Pimenta (1996, Pimenta andCampello
2009), if one regards the initial configuration as a stress-free deformed state from
the plane position, this will be subject of future work. Bauer et al. (2016) extend
Boyer and Primault (2004) into a nonlinear isogeometric spatial Bernoulli–Euler
rod theory that is treated spatially curved and a rotation around the centerline of the
rod is adopted as a degree of freedom, that also differs from this work, as it can be
seen later. Greco and Cuomo (2013, 2016) have made some advances in nonlinear
Bernoulli–Euler rod theory. They use an isogeometric approach. Meier et al. (2014,
2017) has a similar approach for the geometrically exact Bernoulli–Euler rod theory,
in terms of initial kinematics configuration, but presents different parameterizations
for the rotation. He also indicates two portions of motion on the beam axes, and 4
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degrees of freedom, but they connect the elements through as usual in the finite ele-
ment method, which imposes a continuous rotational degree of freedom. This cannot
be true in many examples and is not consistent with the theory. Meier et al. (2016)
extend Meier et al. (2014), a geometrically exact beam theory was developed con-
sidering discrete Bernoulli hypothesis of rigid cross sections that remain orthogonal
to the chosen axis during deformation. Meier et al. (2016) focus on the development
of finite element formulations that are capable of accurately modeling the dynamics
of slender components and their contact interaction with circular cross sections. All
the papers referred to above describes the rotation in a different way we do in this
work.

Bernoulli–Euler theory can be widely applied to engineering problems. It can be
used in the aerospace industry, oil drilling rods, robot arms and for rib-reinforced
shells that are common in aerospace, naval and automobile industry. The hypothesis
can be used whenever the rods are slender.

It is proposed a novel interpolation scheme for the rotation field representing the
cross-sectional orientation, which is based on Rodrigues parameters and obeys the
Bernoulli–Euler constraint. This formulation has continuous displacement degrees
of freedom and can have discontinuous degrees of freedom for the derivatives of
the displacements and the rotation. The connection between elements is enforced by
the de Rodrigues parameter for the rotation being equal on both connecting ends.
This is an advantage because one can address sudden changes of cross section or
material along the rod, an example that is shown later in Sect. 6. And, there is the
opportunity, in general, for the rod element to be used togetherwith aKirchhoff–Love
shell element.

2 Geometrically Exact Bernoulli–Euler Rod Theory

2.1 Kinematics

It is assumed at the outset that the rod is straight at the initial configuration, which
is used as a reference. This formulation can be directly used for straight finite ele-
ments. The case of initially curved rods, which can be used for initially curved finite
elements, can be treated as in Pimenta (1996) and is subject to future work. Let{
er1, e

r
2, e

r
3

}
be an orthogonal system placed at the reference (or initial) configuration

of the rod. The vectors erα, α = 1, 2, are placed on the cross sections of the rod,
which are orthogonal to the axis at that configuration. Thus, er3 is orthogonal to this
plane and tangent to the rod axis.

The position of the rod material points in the reference configuration can be
described by

ξ = ζ + rr , (1)
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where the vector

ζ = ζ er3, (2)

describes the rod axis at reference configuration and rr is the director given by

rr = ξαerα. (3)

One introduces the axial coordinate ζ = (
ζ − ζ 0

) · er3, ζ ∈ Ω = (0, �), where � is
the rod length at reference configuration and ζ 0 is the position of the axis for ζ = 0.
The boundary of the domain Ω is denoted by Γ . Herein, Γ contains the two ends
of the rod, i.e., Γ = {0, �}. A ⊂ R

2 is the cross-sectional domain at the reference
configuration. The contour of A is denoted by C . Coordinates ξα = rr · erα are such
that {ξ1, ξ2} ∈ A. Thus, ξ1, ξ2 and ζ build a Cartesian coordinate system.

At the current configuration, according to Fig. 1, the position of thematerial points
is given by

x = z + r, (4)

where z = ẑ(ζ ) describes the position of the rod axis at the current configuration
and r is the current director given by

Fig. 1 Rod description and basic kinematical quantities
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r = Qrr , (5)

where Q = Q̂(ζ ) is the cross-sectional rotation tensor.
The Bernoulli–Euler assumption states that the plane cross sections are subjected

to a rigid body motion and remain orthogonal to the axis. After deformation the triad{
er1, e

r
2, e

r
3

}
is transformed to {e1, e2, e3} at current configuration. e3 is orthogonal

to the cross sections and tangent to rod axis, while eα, α = 1, 2 remain attached
to the cross sections. The axis of the rod at current configuration is defined by the
axis placement. The vector e3 is defined by the axis as well, but the unitary vectors
eα, α = 1, 2 the cross sections are not. They can be rotated around the rod axis and
need an additional parameter, which is called herein torsion parameter. It can also be
regarded as a rotation around a moving axis. We denote this scalar by ϕ. It follows
that the rotation tensor can be expressed by

Q = Q̂(e3, ϕ). (6)

Note that no cross-sectional change is assumed. A general Bernoulli–Euler theory
that incorporates cross section in-plane and out-of-plane changes will be presented
in a coming work under preparation.

Remark 1: Back-Rotated Or Material Vectors
The following notation for vectors in R

3 is used, (•) = Q(•)r ⇔ (•)r = QT (•).
The vector (•)r is said to be the back-rotated or material counterpart of (•) and is
not affected by superimposed rigid body motions. On the other hand, (·) is said to be
the spatial counterpart of (·)r . Notice that the vector (•) has the same components
on the local system

{
ei = Qeri , i = 1, 2, 3

}
as the vector (•)r has on the system{

eri , i = 1, 2, 3
}
.

2.2 Rodrigues Parameterization

Let θ denote a rotation around an axis defined by the unitary vector e. Let θ represent
the vector of Euler parameters. Then, one defines the following vector of Rodrigues
parameters α = α e, where α = 2 tan θ

/
2. The rotation tensor is then given by

Pimenta and Campello (2001), Campello et al. (2003), Argyris (1982)

Q̂(α) =
(
I − 1

2
A
)−1(

I + 1

2
A
)

, (7)

where A = Skew(α). An alternative to (7) is

Q̂(α) = I + 4

4 + α2

(
A + 1

2
A2

)
, (8)
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where α2 = α · α.
For the spin vector

ω = axial(Ω), where Ω = Q̇ QT , (9)

the following relation holds

ω = Ξα̇, where Ξ = 4

4 + α2

(
I + 1

2
A
)

, (10)

which has been derived for the first time in Pimenta and Campello (2001).

2.3 Incremental Description of the Rotation

The use of Rodrigues parameters is restricted to −π < θ < π . To overcome this
drawback, we describe the rotation by the incremental approach, as in Pimenta et al.
(2008). This limitation is then restricted to a load increment in Statics or to a time
increment in Dynamics.

Let (·)i and (·)i+1 denote a quantity (·) at instants ti and ti+1, respectively. And let
(·)� be an incremental quantity. Thus, one gets for the rotation tensor the following
relations

Qi+1 = Q� Qi ,where

Qi+1 = Q̂(αi+1), Q� = Q̂(α�) and Qi = Q̂(αi ). (11)

We recall the following result by Rodrigues, which is probably the most relevant
result by him,

αi+1 = 4

4 − αi · α�

(
αi + α� − 1

2
αi × α�

)
. (12)

In the incremental description one has for the spin vector

ω = axial(Ω), where Ω = Q̇� QT
�, (13)

the following relation

ω = Ξ�α̇�, where Ξ� = 4

4 + α2
�

(
I + 1

2
A�

)
, (14)

where A� = Skew(α�) and α2
� = α� · α�.
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Fig. 2 Description of the incremental motion of the vector that describes de axis of the rod

At instants ti and ti+1 triad
{
e1, e2, e3

}
is denoted by

{
ei1, e

i
2, e

i
3

}
and{

ei+1
1 , ei+1

2 , ei+1
3

}
, respectively. We denote the incremental torsion parameter by ϕ�.

This is schematically shown in Fig. 2. From (7) and ei+1
3 = Q�e

i
3, one arrives at the

important result below

ei+1
3 − ei3 = α� × em3 , where em3 = 1

2

(
ei+1
3 + ei3

)
. (15)

We remark that em3 is not a unitary vector, but
∥∥em3

∥∥−1
em3 is. Now we state

α� = ∥∥em3
∥∥−2(

ei3 × ei+1
3

) + ϕ�

∥∥em3
∥∥−1

em3 . (16)

We can show that (16), after some algebraic manipulation, preserves (15)1. Note
that

ϕ� = ∥∥em3
∥∥−1

α� · em3 . (17)

Thus, assuming that the configuration at ti is known, the incremental rotation
tensor in (11) can be expressed as

Q� = Q̂�

(
ei+1
3 , ϕ�

)
, (18)

which is the incremental counterpart of (6).



A Fully Nonlinear Beam Model of Bernoulli–Euler Type 135

Meier et al. (2014) uses a similar rotation parameter, but their conclusion on this
matter is that anHermite interpolation of the relative angleϕ�‘(s)would lead to a non-
objective element formulation. ϕ� in Meier et al. (2014) is used within the context
of the “smallest rotation” triad, but not within the Rodrigues parameterization.

Remark 2: Alternative Definition of Incremental Torsion Parameter
In place of (16), we could define

α� = ∥∥em3
∥∥−2(

ei3 × ei+1
3

) + 2 tan
ϕ�

2

∥∥em3
∥∥−1

em3 ,

which seems to be more adequate when the rotation is a torsion around a fixed axis.
(16) simplifies the resulting equations. We recall that both are equal to second order
with respect to the torsion parameter ϕ�.

Remark 3: Objectivity
Objectivity is a major issue for any formulation dealing with large deformations. We
remark that the rod theory presented herein entirely fulfills objectivity requirements
in the sense of continuum mechanics. Objectivity of the strain and stress measures
is assured since one uses only material (back-rotated) quantities in the constitutive
equations and thus are invariant under superposed rigid body motions. An analytical
proof of this property is straightforward and will be omitted here. It is easy to verify
that (16) is also objective. The torsion parameterϕ� is a scalar, therefore it is objective
as well, as (17) show.

Remark 4: Path-Dependency
It is also important to mention that by adopting an incremental description for the
rotations, this description for the rotation turns out to be path-dependent. But one
should keep in mind that path-dependency is a natural consequence when the time
variable is discretized in the framework of a time-stepping scheme, which is manda-
tory for the numerical simulation of dynamical processes. Moreover, upon time
increment refinement the dependence on the history of incrementation decreases and
in an asymptotic manner path-independence is reached, as also discussed in Pimenta
et al. (2008), Campello et al. (2011), Crisfield and Jelenic (1999). This is an obvious
consequence, since (16) is numerically consistent.

2.4 Strains

According to the Bernoulli–Euler assumption the unitary vector e3 is given by

e3 = ∥∥z′∥∥−1
z′, (19)

whereby the following notation for derivative along the axis has been defined
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(•)′ = d(•)

dζ
. (20)

e3 is tangent to the rod axis in the current configuration and orthogonal to the
cross sections (19) makes this formulation different from Pimenta (1993b), Pimenta
and Yojo (1993) and the geometrically exact theory is constrained ab initio to obey
the Bernoulli–Euler assumption.

Displacements of the points on the rod axis are defined by

u = z − ζ . (21)

Note also that

z′ = er3 + u′ and z′′ = u′′. (22)

Analogously to (9), the curvature vector of the axis at the current configuration is
given by

κ = axial
(
Q′ QT

)
. (23)

Since
(
Q̇

)′ = (
Q′)·

, one has

ω′ = κ̇ − ω × κ . (24)

Time differentiation of κr = QT κ leads to κ̇r = QT (κ̇ − ω × κ). Hence, from
(24), one arrives at the important relation displayed below

κ̇r = QTω′. (25)

The deformation gradient can then be expressed by

F = QFr , (26)

where

Fr = I + γ r ⊗ er3 (27)

is the back-rotated deformation gradient, I is the identity tensor and

γ r = ηr + κr × rr (28)

are back-rotated cross section strains. In (28) the following generalized back-rotated
strain has been introduced
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ηr = QT z′ − er3. (29)

We remark that

ηr · erα = ηr × er3 = 0. (30)

due to the Bernoulli–Euler assumption. Note that

ηr = εer3, where ε = ∥∥z′∥∥ − 1 (31)

(28) and (29) are the back-rotated counterparts of the following cross-sectional
generalized strains

γ = η + κ × r and η = z′ − e3. (32)

From (19) and (22)1, it follows that e3 = ê3
(
u′), which together with (18) leads

to

α� = α̂�

(
u′

i+1, ϕ�

)
. (33)

Hence, one may write

α̇� = Wu̇′ + wϕ̇�, (34)

where

W = ∂α�

∂u′ and w = ∂α�

∂ϕ�

. (35)

With the aid of (14), (35) and (34), the spin vector can be written as

ω = Ξ�Wu̇′ + Ξ�wϕ̇�. (36)

On the other hand, the curvature vector needs to be updated at instant ti+1 from
the curvature vector at instant κ i . From (23) one gets

κ i+1 = axial
(
Q′

i+1Q
T
i+1

) = axial
((

Q� Qi

)′
QT

i QT
�

)
(37)

This delivers

κ i+1 = Q�κ i + Ξ�α′
�. (38)

Introducing (33) in (38), and using definitions (35), one gets
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α′
� = Wu′′ + wϕ′

�, (39)

Similarly, the back-rotated curvature vector at instant ti+1 is given by

κr
i+1 = κr

i + QT
i+1Ξ�α′

�. (40)

The derivatives in (35) are now displayed below,

W =
[∥∥em3

∥∥−2
Ei

3 − ∥∥em3
∥∥−4(

ei3 × ei+1
3

) ⊗ em3
]∥∥z′∥∥−1

Mb

+ 1

2
ϕ�

∥∥em3
∥∥−1

(
I − ∥∥em3

∥∥−2
em3 ⊗ em3

)∥∥z′∥∥−1
Mb (41)

and

w = ∥∥em3
∥∥−1

em3 . (42)

In (41), one has introduced Ei
3 = Skew

(
ei3

)
, and Mb = I − ei+1

3 ⊗ ei+1
3 . Note

that
(
Mb

)k = Mb, so that W in (35) has following property

WMb = W . (43)

Note that, with assistance from (15), one gets

Ξ�w = 4

4 + α2
�

∥∥em3
∥∥−1

ei+1
3 . (44)

Hence, in place of (36) and (40), one has

ω = ωm + ωb and κr
i+1 = κr

i + QT
i+1

(
κm

� + κb
�

)
, (45)

respectively, where, with aid of (43), one has

ωm =
(

4

4 + α2
�

∥∥em3
∥∥−1

ϕ̇�

)
ei+1
3 , ωb = Ξ�WMb u̇′,

κm
� =

(
4

4 + α2
�

∥∥em3
∥∥−1

ϕ′
�

)
ei+1
3 and κb

� = Ξ�WMbu′′. (46)

Remark 5: Variance of the Axis Position
It is remarked that γ r · erα = 0 only at the chosen rod axis (ξα = 0). Therefore, the
Bernoulli–Euler theory is not invariant with respect to the axis position. One can
show that the axis should be placed on the cross-section shear centers.
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Remark 6: Axial and Transversal Parts of a Vector
According to (45), one defines the axial (membrane) and transversal (bending) parts
of a vector v by vm = (e3 ⊗ e3)v and vb = Mbv, respectively. (46) shows that only
the bending parts of u′ and u′′ affect the spin and incremental curvature vectors,
respectively.

Remark 7: Number of Turns Around a Moving Axis
The number of turns around the moving axis e3 can be computed through

N =
∑

i

ϕ�

2π
. (47)

(47) allows us to count the number of turns that a cross section did from the initial
to the current configuration.

2.5 Strain Rates

The velocity gradient is given by time differentiation of (26)

Ḟ = ΩF + Q
(
γ̇ r ⊗ er3

)
, (48)

where

γ̇ r = η̇r + κ̇r × rr . (49)

Finally, from (25) and (40), one gets

κ̇r
i+1 = QT

i+1ω
′
i+1 = QT

i QT
�(Ξ�α̇�)′. (50)

Hence, one may write

κ̇r
i+1 = QT

i QT
�Ξ ′

�α̇� + QT
i QT

�Ξ�α̇′
�. (51)

On the other hand, time differentiation of (29) yields

η̇r = QT u̇′ + Q̇
T
z′ = QT

(
u̇′ + z′ × ω

)
. (52)

Thus, with Z′ = Skew
(
z′), one may write

η̇r
i+1 = QT

i+1

(
u̇′

i+1 + Z′
i+1Ξ�α̇�

)
. (53)
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2.6 Stresses

Let the 1st Piola–Kirchhoff stress tensor be expressed by its columns as follows

P = τ i ⊗ eri = Q
(
τ r
i ⊗ eri

)
. (54)

One can now introduce the back-rotated 1st Piola-Kirchhoff stress tensor by

Pr = QT P = τ r
i ⊗ eri , (55)

where

τ r
i = QT τ i , i = 1, 2, 3, (56)

are the back-rotated nominal stress vectors.
The following cross-sectional resultants are obtained by integration of the stresses

τ = τ 3 on the cross section

n =
∫

A
τd A and m =

∫

A
(r × τ )d A. (57)

n are the true forces andm are the true moments that are acting on a cross section.
The axial (membrane) and transversal (bending) parts of the force n are expressed
by

nm = (e3 ⊗ e3)n = N e3 and nb = Mbn = Vαeα, (58)

respectively, where N = n · e3 and Vα = n · eα are the normal and shear forces that
are acting on the cross section, respectively.

Their back-rotated counterparts are

nr = QT n and mr = QTm. (59)

Hence, one may also write

nr =
∫

A
τ r d A and mr =

∫

A

(
rr × τ r

)
d A. (60)

nr and mr are the back-rotated cross section forces and moments, respectively.
The back-rotated counterparts of (58) are

nmr = N er3 and nbr = Vαerα, (61)

For the bending moments and the torsion moment, Mα = m · eα = m · erα and
T = m · e3 = mr · er3 are written, respectively. Hence, one has
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n = Vαeα + N e3 and m = Mαeα + T e3, or

nr = Vαerα + N er3 and mr = Mαerα + T er3. (62)

2.7 Kinetics

From (54) and (48) and the angular momentum balance PFT : Ω = 0, one gets the
following result:

P : Ḟ = τ r · γ̇ r . (63)

(63) is the stress power per unit of reference volume. Introducing (49) in (63) and
after some manipulation with the cross product, one gets

P : Ḟ = τ r · η̇r + (
rr × τ r

) · κ̇r . (64)

Note that τ r
α are powerless in this model. With the aid of the definitions (60), the

integration of (64) over the cross section furnishes

∫

A

(
P : Ḟ)

d A = nr · η̇r + mr · κ̇r . (65)

(65) is the stress power per unit length of the reference axis. It is important to
remark that nr ,mr , ηrand κr are not affected by superimposed rigid body motions.
Regarding (61)1, one has

nr · η̇r + mr · κ̇r = nmr · η̇r + mr · κ̇r .. (66)

The internal power on the domain Ω is then given by

PΩ
int =

∫

Ω

(
nr · η̇r + mr · κ̇r

)
dΩ. (67)

On the other hand, the external power on the same domain can be expressed by

PΩ
ext =

∫

Ω

[∫

C

(
t̄ · ẋ)

dC +
∫

A

(
b̄ · ẋ)

d A

]
dΩ, (68)

where t̄ is the surface traction per unit reference area that is prescribed on the lateral
surface of the rod and b̄ is the body force per unit reference volume. The time
differentiation of (4) yields

ẋ = u̇ + ω × r. (69)
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With following definitions

n̄Ω =
∫

C
t̄dC +

∫

A
b̄d A and m̄Ω =

∫

C

(
r × t̄

)
dC +

∫

A

(
r × b̄

)
d A, (70)

Together with (69), one may write

PΩ
ext =

∫

Ω

(
n̄Ω · u̇ + m̄Ω · ω

)
dΩ =

∫

Ω

(
n̄Ω · u̇ + Ξ T

�m̄
Ω · α̇�

)
dΩ. (71)

n̄Ω is the applied external force per unit length at reference configuration and m̄Ω

is the applied external moment per unit length at reference configuration. Introducing
(34) in (71), it furnishes

PΩ
ext =

∫

Ω

(
n̄Ω · u̇ + μ̄Ω · u̇′ + μ̄Ωϕ̇�

)
dΩ, (72)

where

μ̄Ω = W TΞ T
�m̄

Γ and μ̄Ω = w · Ξ T
�m̄

Γ (73)

are the pseudo-bending-moments and the pseudo-torsion-moments per unit reference
length applied along the rod, respectively. Note that μ̄Ωb = μ̄Ω and μ̄Ω · u̇′ =
μ̄Ω ·

(
u̇′

)b
.

Similarly to (70), one defines

n̄Γ =
∫

C
t̄dC +

∫

A
b̄d A and m̄Γ =

∫

C

(
r × t̄

)
dC +

∫

A

(
r × b̄

)
d A. (74)

Thus, with the aid of (69), one may write for the rod ends

PΓ
ext = (

n̄Γ · u̇ + m̄Γ · ω
)
Γ

= (
n̄Γ · u̇ + Ξ T

�m̄
Γ · α̇�

)
Γ
. (75)

n̄Γ and m̄Γ are the applied external forces and moments at rod ends, respectively.
In (75), the notation (·)Γ = (·)ζ=� − (·)ζ=0 has been introduced. With (34), (71)
furnishes

PΓ
ext =

(
n̄Γ · u̇ + μ̄Γ · u̇′ + μ̄Γ ϕ̇�

)

Γ
, (76)

where

μ̄Γ = W TΞ T
�m̄

Γ and μ̄Γ = w · Ξ T
�m̄

Γ (77)
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are the pseudo-bending-moments and the pseudo-torsion-moments applied on the
rod ends, respectively. Note that μ̄Γ b = μ̄Γ .

2.8 Weak Form of the Local Equilibrium Equation

The internal virtual work on a domain Ω ⊂ R is given by

δWΩ
int =

∫

Ω

(
nmr · δηr

i+1 + mr · δκr
i+1

)
dΩ, (78)

while the external virtual work on the domain Ω ⊂ R is, in a similar manner, given
by

δWΩ
ext =

∫

Ω

(
n̄Ω · δui+1 + Ξ T

�m̄
Ω · δα�

)
dΩ, (79)

where

δηr
i+1 = QT

i+1

(
δu′

i+1 + Z′
i+1Ξ�δα�

)
,

δκr
i+1 = QT

i+1(Ξ�δα�)′ and

δα� = Wδu′
i+1 + wδϕ�. (80)

Introducing (80) in (78), one gets

δWΩ
int =

∫

Ω

nm · (
δu′

i+1 + Z′
i+1Ξ�δα�

)
dΩ

+
∫

Ω

m · (
Ξ�

(
Wδu′

i+1 + wδϕ�

))′
dΩ. (81)

Similarly, from (79) one arrives at

δWΩ
ext =

∫

Ω

(
n̄Ω · δu + μ̄Ω · δu′ + μ̄Ωδϕ�

)
dΩ. (82)

The rod local equilibrium equations are obtained by applying the Virtual Work
Theorem as follows:

δWΩ
int − δWΩ

ext = δWΓ
ext, ∀δu, δϕ� in Ω. (83)

where δWΓ
ext is the external virtual work on the boundary Γ , which is given by

δWΓ
ext = (

n̄Γ · δu + μ̄Γ · δu′ + μ̄Γ δϕ�

)
Γ
. (84)
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Introducing (81) and (82) in (83), and taking into account that z′
i+1 × nm = o,

one gets

∫

Ω

(
nm · δu′

i+1 + m · (Ξ�

(
Wδu′

i+1 + wδϕ�

))′)
dΩ+

−
∫

Ω

(
n̄Ω · δui+1 + μ̄Ω · δu′ + μ̄Ωδϕ�

)
dΩ = δWΓ

ext. (85)

By integration by parts of (85), one obtains

−
∫

Ω

(((
nm

)′ + n̄Ω
)

· δui+1

)
dΩ+

−
∫

Ω

((
W TΞ T

�m
′ + μ̄Ω

) · δu′
i+1 + (

w · Ξ T
�m

′ + μ̄Ω
)
δϕ�

)
dΩ

+ (
nm · δui+1 + m · Ξ�

(
Wδu′

i+1 + wδϕ�

))∣∣
Γ

= δWΓ
ext (86)

and again on (86), one arrives at

−
∫

Ω

[(
ñ′ + n̄Ω

) · δui+1
]
dΩ −

∫

Ω

((
w · Ξ T

�m
′ + μ̄Ω

)
δϕ�

)
dΩ

+ (
ñ · δui+1 + m · Ξ�

(
Wδu′

i+1 + wδϕ�

))∣∣
Γ

= δWΓ
ext, (87)

where

ñ = nm − W TΞ T
�m

′ − μ̄Ω. (88)

By standard arguments of Calculus of Variation, (87) delivers the following local
equilibrium equations in Ω

ñ′ + n̄Ω = o and w · Ξ T
�m

′ + μ̄Ω = 0. (89)

It remains the following boundary term on Γ

(
ñ · δui+1 + m · Ξ�

(
Wδu′

i+1 + wδϕ�

))
Γ

= (
n̄Γ · δu + μ̄Γ · δu′ + μ̄Γ δϕ�

)
Γ
. (90)

Thus, one can conclude that the natural (Neumann) boundary conditions are

n̄Γ = ñ, μ̄Γ = W TΞ T
�m and μ̄Γ = w · Ξ T

�m, (91)

while the essential (Dirichlet) boundary conditions are

u = ū,
(
u′)b = (

ū′)b and ϕ� = ϕ̄�. (92)



A Fully Nonlinear Beam Model of Bernoulli–Euler Type 145

2.9 Statics

The rod local equilibrium equations can be directly derived by Statics (see, for
example, Pimenta (1993a), Pimenta and Yojo (1993)). They are displayed below

n′ + n̄Ω = o and m′ + z′ × n + m̄Ω = o. (93)

From (93)2, one gets z′ × n = −(
m′ + m̄Ω

)
, which, with the aid of (58), i.e.,

n = nm + nb, and z′ × nm = o, leads to the result below

z′ × nb = −(
m′ + m̄Ω

)
. (94)

From (94), with nb = Vαeα , one can derive

eβ · (
z′ × nb

) = ∥∥z′∥∥Vα

(
eβ · e3 × eα

)

= εαβ

∥∥z′∥∥Vα = −eβ · (
m′ + m̄Ω

)
,
, (95)

where εαβ = eα · eβ × e3 is a permutation symbol. From (95), one arrives at

Vα = −∥∥z′∥∥−1
εαβeβ · (

m′ + m̄Ω
)
. (96)

An alternative to (96) is

nb = Vαeα = −∥∥z′∥∥−1[
εαβeβ · (

m′ + m̄Ω
)]
eα =

= −∥∥z′∥∥−1
(e1 ⊗ e2 − e2 ⊗ e1)

(
m′ + m̄Ω

)
. (97)

From (97), with the assistance of e2 ⊗ e1 − e1 ⊗ e2 = Skew(e3), one arrives at

nb = ∥∥z′∥∥−1
e3 × (

m′ + m̄Ω
) = ∥∥z′∥∥−2

z′ × (
m′ + m̄Ω

)
. (98)

3 Elastic Constitutive Equations

Only elastic small strains have been considered in this work. In a later work under
preparation, other constitutive equations will be considered. If the rod axis is placed
along with the cross-sectional shear centers, the following linear elastic constitutive
equation for small strain isotropic elasticity can be adopted :
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σ r = Dεr , (99)

where

σ r =
[
nmr

mr

]
, εr =

[
ηr

κr

]
and D =

[
Dηη Dηκ

Dκη Dκκ

]
. (100)

The strain energy per unit reference length, in this case, is given by

ψ = 1

2
εr · Dεr . (101)

In (100)3, one has

Dηη = E Aer3 ⊗ er3
Dηκ = ESαer3 ⊗ erα = DT

κη and

Dκκ = E Jαβerα ⊗ erβ + GJT er3 ⊗ er3, (102)

where E is the elasticity modulus, G is the shear modulus, A is the cross-sectional
area, JT is the cross-sectional torsion constant, Sα = εαβ

∫
A ξβd A are the cross-

sectional static moments and Jαβ = εαγ εβδ

∫
A ξγ ξδd A are the cross-sectional inertia

moments. It is recalled that JT is given by

JT = J0 −
∫

A
εαβξβφ,αd A, (103)

where φ = φ̂(ξα) is the St.Venant warping function, φ,α = ∂φ/∂ξα and

J0 =
∫

A
ξαξαd A = J11 + J22 (104)

is the cross-sectional polar inertia moment. For circular or annular sections, with
the origin at the barycenter Sα = 0, J12 = J21 = 0, φ = 0 and JT = J0. For
bisymmetrical cross sections with the origin at the barycenter and erα along the
principal axes of the cross section, one has Sα = 0, J12 = J21 = 0, and JT given
by (103).

Remark 8: Strain Energy Density
According to (40) and (100), we may write

ψ = ψ̂(u, ϕ�). (105)
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4 Finite Element Implementation

The simulations can be performed within the AceFEM finite element software. Both
AceGen and AceFEM programs are developed and maintained by Joze Korelc (Uni-
versity of Ljubljana). The interested reader is referred toKorelc andWriggers (2016).

Within the class of conservative problems, only the formulation of the total poten-
tial energy is required, which can be given by

Π =
∑

e

(
Π e

int + Π e
ext

)
, (106)

where (·)e is the contribution of each element e = 1, 2, . . . Nelements . The strain
energy of an element is

Π e
int =

∫

Ωe

ψdΩ, (107)

with ψ given by (101). Regarding (105), we may write

Π e
int = Π̂ e

int(u, ϕ�) (108)

The potential energy of an element, for the case of constant forces and constant
pseudo-moments along the rods, is given by

Π e
ext = −

∫

Ωe

(
n̄Ω · u + μ̄Ω · u′ + μ̄Ωϕ�

)
dΩ. (109)

In view of (109), we may write

Π e
ext = Π̂ e

ext(u, ϕ�) (110)

According to (92), for a smooth axis at reference configuration, the finite element
approximation must be continuous for u,

(
u′)b and ϕ�. If there is no sudden cross-

sectional change, sudden material change nor concentrated loads at a connection
node, a C1 interpolation for the displacements u and a C0 interpolation for the
incremental rotation ϕ� and a standard connection between elements is adequate.
This has been done in [46]. In these cases, the element can be directly employed
with the usual finite element tying procedure. However, a continuity of

(
u′)m , i.e.

the axial part of u′, is also achieved, what is not required by the theory. Moreover,
the imposition of general Dirichlet boundary conditions can be complicated.

For the general case, i.e., for nonsmooth axis, multiple connections or for the case
of cross section or material change from an element to the other, the connection of
elements must be carefully performed. The appropriate connection can be generally
formulated by imposing the equality of u and α� at connecting ends.
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Herein, the connection is achieved in a more standard way, as follows. The pro-
posed element has only 2 nodes. Displacements u are approximated by cubic Her-
mitian polynomials, as usual

u(ζ ) = Nu
1 u1 + Nu′

1 u′
1 + Nu

2 u2 + Nu′
2 u′

2, (111)

where

Nu
1 = 1 − 3ζ 2

�2
+ 2ζ 3

�3
, Nu′

1 = ζ − 2ζ 2

�
+ ζ 3

�2
,

Nu
2 = 3ζ 2

�2
− 2ζ 3

�3
and Nu′

2 = ζ 3

�2
− ζ 2

�
. (112)

At nodes I = 1, 2, from the nodal values α�I and εi+1
I , we get

ei+1
i I = Q�I e

i
i I = Q̂(α�I )eii I , (113)

ϕ�I = ∥∥em3I
∥∥−1(

α�I · em3I
)

(114)

and

u′i+1
I = (

1 + εi+1
I

)
ei+1
3I − er3. (115)

Along the rod, we compute u(ζ ) and u′(ζ )with the aid of (111). When necessary,
we obtain ei+1

3 (ζ ) with the help from (19) and α�(ζ ) with the assistance from (16)
together with the following linear approximation:

ϕ�(ζ ) = ϕ�1N
ϕ
1 (ζ ) + ϕ�2N

ϕ
2 (ζ ), where

Nϕ
1 (ζ ) = 1 − ζ

�
and Nϕ

2 (ζ ) = ζ

�
.

(116)

This 2-node finite element has 7 DOFs, namely, u, α� and ε, at each extremity,
but only u and α� can be shared with neighboring elements.

Remark 9: Quadratic Approximation for ϕ�

A quadratic approximation for the incremental torsion angle ϕ� could also be used,
but an extramid-length nodewith aDOF forϕ� will be needed.This canbe interesting
for couplingwithKirchhoff–Love shell elements and to achieve a better convergence.

5 Conclusions

The geometrically exact rod formulation presented in Pimenta (1993b), Pimenta
and Yojo (1993) was extended to a Bernoulli–Euler-type rod. Thereby, the present
work is based on rotational parametrization via the Rodrigues rotation vector, which
is used to propose an incremental update that a priory fulfills the shear rigidity
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constraint. It also introduces the ability to formulate inter-element connections in a
more flexiblemanner. As in Pimenta (1993b), Pimenta andYojo (1993), the approach
has defined energetically conjugated generalized cross-sectional stress and strains
based on the concept of a cross section. Besides their practical importance, cross-
sectional quantities make the derivation of equilibrium equations easy, as well as the
achievement of the corresponding tangent bilinear form, which is always symmetric
for hyper-elastic materials and conservative loadings, even far from an equilibrium
state.

A straight reference configuration was assumed for the rod on this work. Initially,
curved rods are then regarded as a stress-free deformation from the straight configu-
ration. This approach was already employed for rods in Pimenta (1996) and for shells
in Pimenta and Campello (2009). It precludes the use of convective non-Cartesian
coordinate systems and simplifies the comprehension of tensor quantities, since only
components on orthogonal systems are employed.

Some examples were computed to show the capabilities of the formulation pre-
sented. As exposed throughout the paper, some examples with this Bernoulli–Euler
rod theory were compared to benchmark problems and presented satisfying results.
This formulation shows great promises and can be used to accurately describe the
stresses, strains, displacements of flexible structures with great efficiency.

The derived beam formulation will be implemented in a finite element framework
and investigated in various aspects. The authors aim to consider non-straight refer-
ence configurations on the element level in future studies. Further work is planned
on extending the formulation to a pointwise approach, to incorporate general three-
dimensional material laws. Consideration of out of plane warping is on the schedule
as well.
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