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Abstract The paper describes automation of primal and sensitivity analysis of com-
putational models formulated and solved by the finite element method. Based on the
symbolic system AceGen (http://symech.fgg.uni-lj.si/), fast and reliable code can
be created with minimum effort and immediately tested and verified by using the
associated finite element program AceFEM . Automation of first- and second-order
sensitivity analysis with respect to an arbitrary parameter is presented. In an exam-
ple, it is shown how sensitivity analysis has become an indispensable part of modern
computational algorithms.

1 Introduction

Contemporary finite element software is mostly handwritten and based on formula-
tions that were derived by scientists and software engineers. The related process is
slow and can take more than several weeks to derive for a new finite element. Deriva-
tions of complex tensor fields to obtain residuals and tangent matrices are also prone
to errors. To reduce the effort of developing the related new source code, symbolic
code generation has been developed over the past decade. It is in a stage where the
automatically generated source code is as small as the handwritten code, it is effi-
cient and reliable. In this paper, a general approach is described that can be applied
to many different applications in engineering and science. The main advantage of
using symbolic code development is that the development time, especially for com-
plex materials or elements, reduces by orders of magnitude. The paper will mainly
focus on solid and structural mechanics problems. However, the general potential of
the automatic code generation goes far beyond these engineering applications.

Modern finite element simulations are often coupled with optimization proce-
dures that require additionally to the solution of primal problem also the solution of
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sensitivity problem. The aim of the sensitivity analysis is to calculate derivatives of
an arbitrary response functional with respect to chosen parameters (see e.g., Kleiber
et al. (1997), Keulen et al. (2005), Choi and Kim (2005a), or Choi and Kim (2005b)).
Thus, any proposed method of automation should address automation of primal as
well as sensitivity analysis. The response functional can depend on arbitrary analysis
model inputs (material constants, load intensity and distribution, shape parameters,
etc.) as well as on arbitrary intermediate or final results of the analysis (solution
vectors, derived quantities such as stress tensor, integrated quantities such as dam-
age, etc.). The complete automation of the sensitivity analysis is thus possible only
if the automatic differentiation technology is applied on the complete simulation
code. This is not possible for general finite element environments. Thus, a finite dif-
ference approximation of sensitivities is used for practical applications. However, a
large variety of practical problems can still be solved by the classical finite element
procedure, where all problem-dependent quantities are evaluated on the individual
element level and then assembled on the global level. The established algorithm is
then applied on the global level to obtain the derivatives of the response functional.
A comprehensive overview of the possible approaches can be found in Keulen et al.
(2005). In this case we can, with the use of methods of automation, obtain ana-
lytically exact sensitivities. The use of analytically exact sensitivity analysis can
significantly improve optimization procedures Choi and Kim (2005b), Kristanic and
Korelc (2008), multi-scale algorithms Solinc and Korelc (2015), Korelc and Zupan
(2018) and implementation of nonlinear material models Korelc and Stupkiewicz
(2014), Hudobivnik and Korelc (2016).

The paper will follow the automation procedure of an analytically exact first-
and second-order sensitivity analysis. In the first chapter, the necessary tools will be
described that can be used to automatically derive problem-dependent quantities at
the individual element level. In the second chapter, the global sensitivity problem
will be formulated and solved. The third chapter introduces a set of examples that
demonstrate how sensitivity analysis can be used to improve modern computational
algorithms.

2 Automatic Code Generation with AceGen

The problem of automation of computational methods has been explored by
researches from the fields of mathematics, computer science, and computational
mechanics, resulting in a variety of approaches (e.g., the hybrid object-oriented
approach by Eyheramendy and Zimmermann (2000), Logg et al. (2012) and the
hybrid symbolic-numeric approach by Korelc and Wriggers (2016)) and available
software tools (e.g., computer algebra systems, AD tools by Griewank (2000),
problem-solving environments, and numerical libraries). Automation can address
all steps of the finite element solution procedure from the strong form of a boundary-
value problem to the visualization of results, or it can be applied only to the automa-
tion of the selected steps of the whole procedure.



Sensitivity Analysis Based Automation of Computational Problems 43

2.1 Hybrid Symbolic-Numerical System AceGen

Automation of primal and sensitivity analysis is AceGen (http://symech.fgg.uni-lj.
si/) achieved through the hybrid symbolic-numeric approach to automation of finite
element method that combines symbolic and algebraic capabilities of a general com-
puter algebra system, e.g., Mathematica (www.wolfram.com), an automatic differ-
entiation technique (AD) and an automatic code generation with the general-purpose
finite element environment. The structure of the hybrid symbolic-numerical system
AceGen for multi-language and multi-environment code generation introduced by
Korelc (2002) is presented in Fig. 1.

General characteristics of AceGen code generator are the following:

• simultaneous optimization of expressions immediately after they have been
derived,

• automatic differentiation technique,
• automatic selection of the appropriate intermediate variables,
• the whole program structure can be generated,

AceGen code generator

Symbolic derivation of the model

Numerical FEM environment

AceFEM
CDriver MDriver

ELFEN

FEAP

Matlab FE

ABAQUS

Numerical user subroutines
C/C++/C# Mathematica FORTRAN Matlab

Environment interface
data interface
tasks interpreter
general numerical 
subroutines

Automatic code generation
C, C++
C#
FORTRAN
Mathematica script
Matlab script

Expression 
optimization

Automatic 
differentiation

Introduction of 
intermediate variables

Fig. 1 Hybrid symbolic-numeric approach to automation of finite element method

http://symech.fgg.uni-lj.si/
http://symech.fgg.uni-lj.si/
www.wolfram.com
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• appropriate for large problems where also intermediate expressions can be sub-
jected to uncontrolled swell,

• global expression optimization procedures with stochastic evaluation of expres-
sions,

• differentiation with respect to indexed variables,
• automatic interface to other numerical environments,
• multi-language code generation (Fortran/Fortran90, C/C++, Mathematica lan-
guage, Matlab language),

• advanced methods for exploring and debugging generated formulae.

The AceGen system is written in the symbolic language of Mathematica. A
detailed description of the system can be found in Korelc and Wriggers (2016).

2.2 Simultaneous Simplification Procedure

Typical AceGen function takes the expression provided by the user, either inter-
actively or in file, and returns an optimized version of the expression. Optimized
version of the expression can result in a newly created auxiliary symbol, or in an
original expression in parts replaced by previously created auxiliary symbols. In the
first case, AceGen stores the new expression in an internal database. The procedure
is presented in Fig. 2.

Fig. 2 Simultaneous simplification procedure
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Fig. 3 Typical AceGen input

2.3 Typical Example of Automatic Code Generation with
AceGen

To illustrate the standard AceGen procedure, a simple example is considered. A
typical numerical subprogram that returns a determinant of the Jacobi matrix of
nonlinear transformation from the reference to initial configuration for quadrilateral
element topology is derived. The syntax of the AceGen script language is the same
as the syntax of the Mathematica script language with some additional functions.
The input for AceGen is presented in Fig. 3. It can be divided into six characteristic
steps:

• At the beginning of the session, the SMSInitialize function initializes the
system.

• The SMSModule function defines the input and output parameters of the subrou-
tine DetJ.

• The SMSReal function assigns the input parameters X$$ and k$$ and e$$ of
the subroutine to the standardMathematica symbols. Double $ character indicates
that the symbol is an input or output parameter of the generated subroutine.

• During the description of the problem, special operators (�, �, |=) are used to
perform the simultaneous optimization of expressions and the creation of new
intermediate variables. The SMSD function performs an automatic differentiation
of one or several expressions with respect to the arbitrary variable or the vector of
variables by simultaneously enhancing the already derived code.

• The results of the derivation are assigned to the output parameter J$$ of the
subroutine by the SMSExport function.

• At the end of the session, the SMSWrite function writes the contents of the vector
of the generated formulae to the file in a prescribed language format.

The generated subroutine in C language is presented in Fig. 4 and in FORTRAN
language in Fig. 5.
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Fig. 4 Typical automatically generated subroutine in C language

Fig. 5 Typical automatically generated subroutine in FORTRAN language

2.4 Automatic Differentiation

Differentiation is the most important symbolic operation needed within the algo-
rithmic treatment of the solution process for the nonlinear boundary-value problems.
This is, for example, the case for finite elementmethods, whereNewton- - Raphson
algorithms are employed to solve the nonlinear algebraic equation systems. The auto-
matic differentiation (AD) method is used in AceGen for the evaluation of the exact
derivatives of any arbitrary complex function via chain rule and represents an alterna-
tive solution to the numerical differentiation and symbolic differentiation. Automatic
differentiation techniques are based on the fact that every computer program exe-
cutes a sequence of elementary operations with known derivatives, thus allowing
the evaluation of exact derivatives via the chain rule for an arbitrary complex for-
mulation. If one has a computer code, which allows to evaluate a function f and
needs to compute the gradient ∇ f of f with respect to arbitrary variables, then the
automatic differentiation tools, see e.g., Griewank (2000), can be applied to generate
the appropriate program code.
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There are two approaches for the automatic differentiation of a computer program,
often recalled as the forward and the backward mode of automatic differentiation.
The procedure is illustrated on a simple example of function f defined by

f = b c with b =
n∑

i=1

a2i and c = Sin(b) (1)

where a1, a2, . . . , an are n independent variables. The forward mode accumulates
the derivatives of intermediate variables with respect to the independent variables as
follows:

∇b =
{

db
dai

}
= {2 ai } i = 1, 2, . . . , n

∇c =
{

dc
dai

}
= {Cos(b)∇bi } i = 1, 2, . . . , n

∇ f =
{

d f
dai

}
= { ∇bi c + b∇ci } i = 1, 2, . . . , n

(2)

In contrast to the forward mode, the backward mode propagates adjoin x̄ = ∂ f
∂x ,

which are the derivatives of the final values, with respect to intermediate variables:

f̄ = d f
d f = 1 1

c̄ = d f
dc = ∂ f

∂c f̄ = b f̄ 1
b̄ = d f

db = ∂ f
∂b f̄ + ∂c

∂b c̄ = c f̄ + Cos(b) c̄ 1

∇ f = {āi } =
{

∂b
∂ai

b̄
}

= {
2 ai b̄

}
i = 1, 2, . . . , n.

(3)

Although obviously numerically superior when the number of functions is small,
the backward mode requires potential storage of a large amount of intermediate
data during the evaluation of the function that can be as high as the number of
numerical operations performed. Additionally, a complete reversal of the program
flow is required. This is because the intermediate variables are used in reverse order
when related to their computation. For the efficient automation of the FE method,
it is desirable that both approaches are available and that the software tool used
for the automation can automatically select the most efficient approach for a given
task. There exist many strategies how the AD procedure can be implemented, see
e.g., Bischof et al. (2002). The simplest approach is to use operator overloading and
during the evaluation of function f create a trace of all numerical operations and
their arguments, later used to evaluate gradient in forward or backward mode. More
efficient is source-to-source transformation strategy that transforms the source code
for computing a function into the source code for computing the derivatives of the
function.

The result of the AD procedure is called “computational derivative” and is written

as δ̂ f (a)
δ̂a

. The AD operator δ̂ f (a)
δ̂a

represents partial differentiation of a function f (a)
with respect to variables a. If, for example, alternative or additional dependencies
for a set of intermediate variables b have to be considered for differentiation, then
the AD exception is indicated by the following formalism:
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δ̂ f (a,b)

δ̂a

∣∣∣∣∣ Db
Da=M

, (4)

which indicates that during theADprocedure, the total derivatives of variables bwith
respect to variables a are set to be equal to matrix M. The automatic differentiation
exceptions are the basis for the automatic differentiation or ADB formulation of
computational problem. The ADB notation can be directly translated to the AceFEM
code and is part of numerically efficient code automation. Details of the method and
of the corresponding software AceGen can be found in Korelc (1997), Korelc (2009)
and Korelc (2018).

2.5 Automatic Differentiation and Finite Element Method

Large finite element environment usually employs a large variety of finite elements,
solution procedures, and they commonly use commercial numerical libraries for
which the source codes are not readily available. In such a case, it would be difficult
to directly apply the AD tools to get, for example, the global stiffness matrix of a
large-scale problem. However, the AD technology can still be used for the evaluation
of specific quantities that appear as a part of FE simulation. For example, one can
use AD at the individual element level to evaluate element-specific quantities such
as

• strain and stress tensors,
• nonlinear coordinate transformations,
• consistent tangent stiffness matrix,
• residual vector and
• sensitivity pseudo-load vectors.

3 Sensitivity Analysis

The procedures for the formulation and solution of primal and sensitivity problem for
an arbitrary coupled path-dependent problem are presented in detail inKorelc (2009).
Here, a summary of the primal and sensitivity analysis of hyper-elastic problems is
given. Let us define a primal problem with the residual equation R(p) = 0, where
p represents a set of nodal unknowns of the problem. The primal problem is solved
by the standard Newton–Raphson iterative procedure. For sensitivity analysis, we
define the residual and the vector of unknowns as a function of a vector of design
parameters φ = {φ1, . . . , φn} as

R(p(φ),φ) = 0. (5)
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The sensitivity problem can be obtained from the primal problem by differentiating
(5) with respect to design parameter φI . Equation (6) represents a system of linear
equations for the unknown sensitivities of the primal unknowns of the problem Dp

DφI

(8). The right-hand side (7) is called “first-order sensitivity pseudo- load vector”.

∂R
∂p

Dp
DφI

+ ∂R
∂φI

= 0 (6)

I R̃ = − ∂R
∂φI

(7)

K
Dp
DφI

= −I R̃ (8)

The sensitivity problem that is solved after the convergence of the primal problem has
been reached. The second-order sensitivity problem is obtained from the first-order
problem by differentiating (6) with respect to design parameter φJ . It results in

∂2R
∂p2

Dp
DφI

Dp
DφJ

+ ∂2R
∂p∂φJ

Dp
DφI

+ ∂2R
∂p∂φI

Dp
DφJ

+ ∂R
∂p

D2p
DφI DφJ

+ ∂2R
∂φI ∂φJ

= 0

(9)

K
D2p

DφI DφJ
= −I J R̃ (10)

where D2p
DφI DφJ

are second-order sensitivities and I J R̃ represents the “second- order
sensitivity pseudo-load vector” (11).

I J R̃ = ∂2R
∂p2

Dp
DφI

Dp
DφJ

+ ∂2R
∂p∂φJ

Dp
DφI

+ ∂2R
∂p∂φI

Dp
DφJ

+ ∂2R
∂φI ∂φJ

(11)

The global pseudo-load vectors I R̃ and I J R̃ are obtained by the standard integration
over the element domain and the standard finite element assembly procedure of
element contributions to global vectors

I R̃ =
ne

A
e=1

ng∑

g=1

wg
I R̃g,

I J R̃ =
ne

A
e=1

ng∑

g=1

wg
I J R̃g (12)

where I R̃g and I J R̃g represent integration point contributions to the element
pseudo-load vectors and consequently to the global pseudo-load vectors and wg

is an integration point weight. The only part of the whole procedure that depends on
specific element formulation is the evaluation of the integration point pseudo-load
vectors. Consequently, for the automation of the complete sensitivity analysis pro-
cedure we only need a method for automatic derivation of integration point pseudo-
load vectors I R̃g and I J R̃g . For an arbitrary finite element formulation, this can be
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Element levelGlobal level

global parameter input data of element subroutines
length L nodal coordinates X(L)

Fig. 6 Parametrization of input data of continuum and discretized problem

achieved with automatic differentiation and code optimization as described in Korelc
(2009).

The obvious problem in obtaining the right-hand sides I R̃ and I J R̃ is that an
arbitrary sensitivity parameter (e.g., length of the beam in Fig. 6) does not appear
explicitly as an input parameter of the finite element solution procedure, either at
the global level or at the level of user subroutines. The missing dependency between
an arbitrary sensitivity parameter and the finite element code is defined by “design
velocity field” (Korelc and Wriggers (2016)).

3.1 Design Velocity Field

For example, let us consider shape parameter L of the beam depicted in Fig. 6 as
sensitivity parameter. The relation between shape parameter L and the coordinates
of an arbitrary node XJ (L) can be an arbitrary complex function that, in general,
cannot be input data of the finite element analysis. However, it is not the relation
XJ (L) itself that is needed within the sensitivity analysis to obtain I R̃ and I J R̃, but
its first and second derivatives. The input data for the sensitivity analysis are thus
the rate of change of nodal coordinates with the change of sensitivity parameter L .
The rate of change of X1 coordinate in all nodes represents the nodal values of a
scalar field DX1

DL . The DX1
DL field is traditionally called the design velocity field. The

discretized design velocity field DX1
DL is evaluated for the numeric values of the design

sensitivity parameter L in all nodes and is the appropriate input data for sensitivity
analysis related finite element subroutines.

Evaluation of sensitivity pseudo-load vectors I R̃ and I J R̃ for the first- and second-
order sensitivity analysis of the above example then follows as

I R̃g = ∂Rg

∂Xe
1

DXe
1

DL
(13)

I J R̃g = ∂2Rg

∂pe2

(
Dpe
DL

)2

+ 2
∂2Rg

∂pe∂X
e
1

DXe
1

DL

Dpe
DL

+ ∂2Rg

∂Xe
1
2

D2Xe
1

DL2
(14)
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where Xe
1 is a vector of X1 coordinates of element nodes. For the automation, we

also need automatic differentiation based version of formulas (13) and (14) or the
ADB notation (see Korelc (2009)). For the ADB notation, the partial derivatives are
replaced with computational derivatives and the AD exceptions are added for the
indirect dependencies X1(L), leading to

I R̃g = δ̂Rg

δ̂L

∣∣∣∣∣ DXe
1

DL =VL

(15)

I J R̃g = δ̂

δ̂L

⎛

⎝ δ̂Rg

δ̂L

∣∣∣∣∣ DXe
1

DL =VL ,
Dpe
DL =SL

⎞

⎠

∣∣∣∣∣∣ DXe
1

DL =VL ,
DVL
DL =VLL ,

Dpe
DL =SL

(16)

where matrices VL = DXe
1

DL and VLL = D2Xe
1

DL2 are simulation input data that represent

the first- and second-order velocity fields. Components of matrix SL = Dpe
DL are zero

for the DOF’s with prescribed essential boundary conditions and are set to already
calculated first-order sensitivities for the true DOF’s. Consequently, all the first-order
sensitivities have to be calculated first in order to be able to calculate the second-order
sensitivities.

Shape sensitivity parameters (shape sensitivity analysis) Symbol L in (15) and
(16) is a global quantity. Thus, it does not actually appear explicitly as a part of
Gauss point residual Rg . Consequently, in formulas (15) and (16), symbol L has no
meaning and it can be replaced by any symbol. Let φI and φJ be an arbitrary shape
parameters and Xe nodal wise ordered nested set of all coordinates of all element
nodes (Xe = Xe(φI , φJ )). A general ADB notation of the first- and second-order
shape sensitivity analysis then follows as

I R̃g = δ̂Rg

δ̂φI

∣∣∣∣∣ DXe
DφI

=VI

(17)

I J R̃g = δ̂

δ̂φJ

⎛

⎜⎝
δ̂Rg

δ̂φI

∣∣∣∣∣ DXe
DφI

=VI ,
Dpe
DφI

=SI

⎞

⎟⎠

∣∣∣∣∣∣∣ DXe
DφJ

=VJ ,
DVI
DφJ

=VI J ,
Dpe
DφJ

=SJ

. (18)

The sensitivity-dependent analysis input data in (17) and (18) are matrices VI =
DXe/DφI , VJ = DXe/DφI and VI J = D2Xe/DφI DφJ that represent the first-
and second- order shape design velocity fields, and SI = Dpe

DφI
, SJ = Dpe

DφJ
are already

calculated first-order sensitivities of element DOF’s.



52 J. Korelc and T. Melink

3.2 Arbitrary Sensitivity Parameters

The formulation can be extended to arbitrary sensitivity parameters. In Fig. 7, the
parametrization of a general continuum problem to be solved using the finite element
model is presented. Additionally to the nodal coordinates, the input data of the typical
finite element procedures are material parameters and boundary conditions. The goal
of automation is to preserve the standard finite element technology paradigm, where
all the physical problem dependent quantities are calculated at the individual finite
element level and then assembled at the global level. For the purpose of automation,
each analysis input data is considered as a field defined over the domain of the
problem that depends on specific sensitivity parameters, as depicted in Fig. 7. Fields
and the corresponding design velocity fields are classified according to their actual
appearance (or lack of it) in the formulation of the finite element problem. FE analysis
input data can be, for the purpose of automation of sensitivity analysis, classified into
several classes:

1. parameter (material) input data with corresponding parameter sensitivity analysis
and parameter design velocity fields (e.g., E J and DE J

DEσ
),

2. nodal spatial coordinates with corresponding shape sensitivity analysis and shape

design velocity fields (e.g., X J
1 and DX J

1
DL ),

Fig. 7 Parametrization of a general continuum problem to be solved using the finite element model
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3. nodal essential boundary conditions with corresponding essential boundary con-
dition sensitivity analysis and essential boundary condition velocity fields (e.g.,

ū J
1 and Dū J

1
Dua

, Dū J
1

Dub
),

4. nodal natural boundary conditionswith corresponding natural boundary condition
sensitivity analysis and natural boundary condition velocity fields (e.g., P J

2 and
DP J

2
Dta

, DP J
2

DL ).

Shape sensitivity analysis Shape sensitivity analysis is described in Sect. 3.1.

Essential boundary condition sensitivity analysis Essential boundary condition
sensitivity parameters are used to parametrize the distribution of the essential bound-
ary conditions at the boundary of the problem domain (e.g. ua and ub are used to
parametrize ū in Fig. 7). Let φI and φJ be arbitrary essential boundary condition sen-
sitivity parameters and p̄e a set of element DOF with prescribed essential boundary
condition, thus p̄e ⊂ pe. The pe set includes both degrees of freedomwith prescribed
essential boundary condition and true degrees of freedom, because they are at the
element-level indistinguishable. The corresponding first- and second-order essential
boundary condition velocity fields are defined by

VI =
{

D p̄eJ
DφI

if peJ ∈ p̄e
0 if peJ ∈ pe\p̄e

: J = 1, . . . , np, (19)

VI J =
{

D2 p̄eJ
DφI DφJ

if peJ ∈ p̄e
0 if peJ ∈ pe\p̄e

: J = 1, . . . , np (20)

where np is the total number of element nodal DOF. Velocity field is zero for the true
degrees of freedom. Thus, proper definition of velocity fields is sufficient to make
the difference between the degrees of freedom with prescribed essential boundary
condition and true degrees of freedom. A general ADB notation of Gauss point
contribution to the first- and second-order essential boundary condition pseudo-load
vectors then follows as

I R̃g = δ̂Rg

δ̂φI

∣∣∣∣∣ Dpe
DφI

=VI

(21)

I J R̃g = δ̂

δ̂φJ

⎛

⎜⎝
δ̂Rg

δ̂φI

∣∣∣∣∣ Dpe
DφI

=SI

⎞

⎟⎠

∣∣∣∣∣∣∣ DSI
DφJ

=VI J ,
Dpe
DφJ

=SJ

. (22)

The sensitivity-dependent analysis input data in (21) and (22) are matrices VI

and VI J . Matrices SI and SJ are composed of the components of velocity fields
for the DOF’s with prescribed essential boundary conditions and already calculated
first-order sensitivities for the true DOFs (23).
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SI =
{

D p̄eJ
DφI

if peJ ∈ p̄e
DpeJ
DφI

if peJ ∈ pe\p̄e
: J = 1, . . . , np (23)

Material sensitivity parameters (parameter sensitivity analysis) Input parameters
of the finite element procedures can be scalars (e.g., elastic modulus E), discretized
scalar fields (e.g., nodal temperatures), and discretized vector fields (e.g., nodal spa-
tial coordinates XJ ). Without losing the generality of the formulation, a scalar can
be considered as a constant scalar field discretized by its constant nodal values and
a vector field can be considered component-wise. Most of the input data of the
finite element procedures are associated with nodes. However some quantities, such
as material constants (Eg = Eg(Eσ ) and νg = ν0), are associated with integration
points. Again, the integration point based quantities can be obtained from the appro-
priate nodal-based quantities using standard finite element interpolation techniques.
Consequently, integration point based quantities are also represented as a discretized
scalar field unifying all sensitivity parameters within the same framework. Let ψe

be a set of parameters on which element residual explicitly depends (Rg = Rg(ψe)).
A general ADB notation of Gauss point contribution to the first- and second-order
parameter pseudo-load vectors then follows as

I R̃g = δ̂Rg

δ̂φI

∣∣∣∣∣ Dψe
DφI

=VI

(24)

I J R̃g = δ̂

δ̂φJ

⎛

⎜⎝
δ̂Rg

δ̂φI

∣∣∣∣∣ Dψe
DφI

=VI ,
Dpe
DφI

=SI

⎞

⎟⎠

∣∣∣∣∣∣∣ Dψe
DφJ

=VJ ,
DVI
DφJ

=VI J ,
Dpe
DφJ

=SJ

. (25)

The sensitivity-dependent analysis input data in (24) and (25) are matrices VI =
Dψe/DφI , VJ = Dψe/DφI and VI J = D2ψe/DφI DφJ that represent the first-
and second-order parameter design velocity fields. SI = Dpe

DφI
and SJ = Dpe

DφJ
are the

already calculated first-order sensitivities of element DOFs.

Natural boundary condition sensitivity parameters (natural boundary condi-
tion sensitivity analysis) Problems in solid mechanics and nonlinear structural
mechanics, subjected to quasi-static proportional load, are frequently formulated
as

R = Rint − λRref = 0 (26)

where Rint denotes the contribution of the internal forces to the global residual vec-
tor. Vector Rref is the reference load vector associated with the pattern of the applied
nodal forces (natural boundary condition input data) and λ is the loading param-
eter. Load vector λ Rref is subtracted from the internal force vector and thus does
not affect directly the residual vectors of the finite elements at local element level.
Consequently, the contribution of variation of natural boundary conditions has to be
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formulated within the global solution algorithm and it does not follow the standard
sensitivity analysis procedures as described in previous sections. If the contribution
of the natural boundary conditions to the global residual R is accounted for by a
special generalized finite elements then the natural boundary condition input data
can be considered as a part of general input parameters ψe and treated accordingly.

The general equation (26) leads for an arbitrary time-dependent problem and for
an arbitrary sensitivity parameter φI , φJ to

Rint(p(φI , φJ )) − λRref(φI , φJ ) = 0. (27)

Direct differentiation of (27) with respect to φI yields the first-order pseudo-load
vector and sensitivity of the response Dp

DφI
by the solution of the linear equation

systems (28).

I R̃ = −λ
DRref

DφI
, K

Dp
DφI

= −I R̃ (28)

Second derivative of (27) yields

I J R̃ = ∂2R
∂p2

Dp
DφI

Dp
DφJ

+ ∂2R
∂p∂φJ

Dp
DφI

+ ∂2R
∂p∂φI

Dp
DφJ

− λ
D2Rref

DφI DφJ
. (29)

Equation (29) has parts that depend on internal forces and a part that depends on
reference load vector. Consequently, it has to be split into parts, one that is formed

globally I J R̃
ref

(30) and one that is formed by an element-based assembly procedure
I J R̃

int
(31).

I J R̃
ref = −λ

D2Rref

DφI DφJ
. (30)

I J R̃
int = ∂2R

∂p2
Dp
DφI

Dp
DφJ

+ ∂2R
∂p∂φJ

Dp
DφI

+ ∂2R
∂p∂φI

Dp
DφJ

. (31)

A general ADB notation of Gauss point contribution to the I J R̃
int

pseudo-load
vector then follows as

I J R̃g
int = δ̂

δ̂φJ

⎛

⎜⎝
δ̂Rg

δ̂φI

∣∣∣∣∣ Dpe
DφI

=SI

⎞

⎟⎠

∣∣∣∣∣∣∣ Dpe
DφJ

=SJ

. (32)

At the end, the second-order sensitivity of the response D2p
DφI DφJ

leads from the
solution of the linear equation systems

K
D2p

DφI DφJ
= −(I J R̃

ref + I J R̃
int

). (33)
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Table 1 Comparison of code size and AceGen evaluation time

3.3 Sensitivity Analysis—Code Complexity of AceGen Codes

The concept of design sensitivity velocity fields can be extended to general input
parameters (e.g., nodal coordinates, material parameters, essential boundary condi-
tions, and natural boundary conditions). For details see Korelc andWriggers (2016).
Any approach to automation is feasible only when the physical size of the generated
codes stays within reasonable limits allowed by compilers and when the time to
generate the code also stays within reasonable limits.

In Table1, the code size and the AceGen evaluation time are compared for dif-
ferent finite element formulations. Two extreme cases are compared: simple two-
dimensional linear elastic element and three-dimensional, finite strain, elastoplastic,
27-node brick element. For each required quantity (tangent and residual, the first-
order sensitivity pseudo-load vector and the second-order sensitivity pseudo-load
vector), the actual size of the code generated and the time used to generate the code
are presented. We can see that also for the most complicated element the size of the
code and the time to generate the code remain moderate.

4 Applications of Sensitivity Analysis

It is common for all applications of sensitivity analysis that once the element code
that supports primal and sensitivity analysis for all input parameters of the individual
finite elements is generated, then the only unanswered question remains “WHAT IS
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THE VELOCITY FIELD OF THE PROBLEM?”. In this chapter, several examples
are presented and the corresponding velocity fields are identified.

4.1 Sensitivity Analysis Based Stochastic Analysis

When an input parameter of the problem is random and it also randomly varies over
the domain, it can be modeled as stochastic field. A stochastic field is defined with
probability density function and covariance function. Probability density function
specifies the probability of the random variable falling within a particular range
of values. Covariance function describes how much a variable changes along the
domain. In mechanical problems, most often used is exponential covariance function

C(X1,X2) = σ 2e− ||X2−X1 ||
lc , where Xi is a position vector over the physical domain, σ

is standard deviation and lc is correlation length. The bigger lc is, the higher correlated
is stochastic field (see e.g. Ghanem and Spanos (2003)).

The representation of the Gaussian stochastic field can be done with Karhunen–
Loeve expansion, which is truncated after first M terms as

w(X, θ) = w̄(X) +
M∑

k=1

√
λk fk(X) ξk(θ) (34)

where X is a position vector over the physical domain, θ is an event of the space of
random events, w̄(X) is expected value of the stochastic field and ξk(θ) are normal-
ized uncorrelated Gaussian random variables with zero mean and unit variance. λk

and fk(X) are the eigenvalues and eigenvectors, respectively, obtained as the solu-
tion of the homogeneus Fredholm integral equation (

∫
D C(X1,X2) fk(X1) dX1 =

λk fk(X2)) of the second kindwith covariance functionC(X1,X2) as kernel. Galerkin
procedure can be used to solve this equation numerically (see e.g.,Melink andKorelc
(2014)). The result is an approximated and discretized stochastic field according
to (34).

When at least one of the input parameters is random, the response of the system
is also random. The final goal of stochastic analysis is to calculate statistics (e.g.,
expected value and standard deviation) of the response. The response of the system is
a function of a set of uncorrelatedGaussian randomvariables ξk(θ). In general,Monte
Carlo method can be used to get statistics of the response for an arbitrary problem.
However, Monte Carlo method requires a large number of direct simulations to be
performed. An alternative approach is to use the second-order sensitivity analysis
to the get second-order approximation of the response. In this case, only one direct
simulation is needed.

In the presented stochastic approach, the response of the problem is approximated
with a finite number of its Taylor series around the expected values of random vari-
ables (0ξ = {0ξ1, 0ξ2, . . . 0ξM}), which resembles higher order sensitivity analysis.
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In case of Gaussian stochastic field (0ξ = {0, 0, 0, . . . }) and second-order sensitivity
analysis, we get

p(ξ1, ξ2, . . . ξM) = p(0, 0, 0, . . . ) +
M∑

i=1

∂p
∂ξi

ξi + 1

2

M∑

i=1

M∑

j=1

∂2p
∂ξi∂ξ j

(35)

where p is solution vector (in mechanics, p is usually vector of displacements).
Derivatives of solution vector p with respect to random variables are calculated
with sensitivity analysis. Thus, a set of sensitivity parameters of the problem is
φ = ξ . The approximation of the response is now closed-form polynomial formula.
Thus, the statistics of the response (expected value and standard deviation) can be
cheaply obtained either analytically or with the use of standard statistical functions
inMathematica . All we need to complete the derivation is the design velocity field
of the problem.

Anumerical example of bended clamped sinusoidal double skin cladding is chosen
(see Fig. 8) to demonstrate the use of the above-described automation of the stochastic
finite elementmethod. The cladding ismodeled by two-dimensional, four-node, finite
strain elements. The shape of the cladding is sinusoidal with n wavelengths and
constant thickness of the skin and foam. The amplitude of waves h is presumed to
change stochastically along the X axis. Therefore, one-dimensional stochastic field
h(X, ξ) of the wave amplitude is considered. The Y coordinate of the central line
nodes is then given by

Y (X, ξ) = h(X, ξ) sin
nπX

L
, (36)

Fig. 8 Sinusoidal double skin cladding
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Fig. 9 Deflection in the middle of cladding, obtained with sensitivity analysis of different orders
and MC simulations

h(X, ξ) = h̄wave +
M∑

k=1

√
λk fk(X) ξk (37)

The corresponding first- and second-order shape design velocity fields are then

∂Y

∂ξk
= √

λk fk(X) sin
nπX

L
,

∂2Y

∂ξk∂ξl
= 0 (38)

where h̄wave is the expected value of amplitude.
Stochastic field of wave amplitude change is represented via the first four terms

of K-L expansion, thus ξ = {ξ1, ξ2, ξ3, ξ4}. In Fig. 9, the vertical displacement vm
in the middle of the cladding is calculated in dependence of ξ1, while other random
variables are taken at their mean value (ξ2 = ξ3 = ξ4 = 0). The results of the first-
and second-order sensitivity analysis are comparedwith those obtained by 100Monte
Carlo (MC) simulations. It can be seen that the second-order sensitivity analysis suits
almost exactly the direct evaluation of the response, for approximately two standard
deviations from the mean value.

In Table2, the calculated mean value, standard deviation and CPU time are com-
pared for statistics of the response obtained by the first-order sensitivity analysis,
the second-order sensitivity analysis, finite difference approximation of the second-
order sensitivities, andMonte Carlo simulations. In this comparison, all four random
variables (ξ1, ξ2, ξ3, ξ4) are considered. InMC simulations, the range of random vari-
ables was limited to the interval between 0.001 and 0.999 quantile, due to physically
acceptable results. The results justify the use of the second-order sensitivity analysis
instead of the analysis of the first order, since the second-order results fit the results
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Table 2 Mean value and standard deviation of vertical displacement vm (in cm) and total CPU
time, needed for calculation

Mean (vm ) Standard deviation (vm ) Total CPU time

First-order sensitivity analysis −4.1374cm 0.0555cm 0.25s

Second-order sensitivity analysis −4.1263cm 0.0577cm 0.39s

Second-order finite difference −4.1263cm 0.0577cm 46.58 s

103 MC simulations −4.1262cm 0.0588cm 271s

4 × 104 MC simulations −4.1264cm 0.0578cm 10084s

considerably better. As can be seen, the exact second-order sensitivity analysis is
considerably more efficient in comparison with all other methods for comparable
results.

4.2 Asymptotic Numerical Methods

At present, in solid mechanics and nonlinear structural mechanics there exists no
iterative method that can be applied to all different problem areas in an efficient
and robust way. Additionally, for highly nonlinear problems the solution of time-
independent problems cannot, in general, be achieved in one step. More efficient
procedures can be derived when the resulting system of equations can be naturally
parametrized in a way that for some given value of parameter the solution is trivial.
The system of equations R(p) = 0 will be parametrized for the following consider-
ations in the form:

R(p, λ) = 0, (39)

where λ is parameter, and solved using the standard Newton–Raphson method. With
the introduction of parameter λ, the final solution is achieved in nstep incremental
steps with associated solution vectors p0, . . . pnstep . As an example, problems in solid
mechanics and nonlinear structural mechanics subjected to quasi-static proportional
load are frequently parametrized by introducing the loading parameter λ as follows:

R(p, λ) = Rint(p) − F(λ) = 0, F = λFref (40)

where Rint denotes the contribution of internal forces to the nodal force vector and
Fref is the reference load vector associated with the pattern of the applied nodal
forces.

Within the asymptotic numerical method approach (see e.g., Nezamabadi et al.
(2011)), amore efficient load stepping scheme is derived by expansion of the response
with respect to parameter of the problem (load level λ). Thus, sensitivity parameter
of the problem is φ = {λ} and the response is approximated as
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Fig. 10 Bending of column using asymptotic numerical methods

p(λ) = p0 + ∂p
∂λ

δλ + 1

2

∂2p
∂λ2

δλ2 . . . (41)

The corresponding first- and second-order natural boundary condition design
velocity fields are then

∂F
∂λ

= Fref,
∂2F
∂λ2

= 0. (42)

Due to the fact that within the asymptotic numerical methods, we deal with only
one sensitivity parameter, also the sensitivities of the order higher than two can be
obtained in a reasonable computational time (see e.g. Nezamabadi et al. (2011)).

A numerical example of bending of column modeled by two-dimensional finite
strain elements is presented in Fig. 10. The final load is achieved in 8 load steps.
For each load step, the converged solution is depicted together with the converged
solution from the previous load step (the usual initial guess for the standard Newton–
Raphson method), the first-order ANM approximation and the second-order ANM
approximation. It can be seen that in this case second-order ANM approximation
gives almost an exact solution . By using even higher orders one can skip New-
ton iterations altogether (see e.g., Nezamabadi et al. (2011)). However, this can
also change dramatically, for example, with more dense meshes and non-monotonic
response.

4.3 Optimization

Optimization problems were one of the first problems, where sensitivity analysis was
used to improve numerical efficiency of optimization algorithms. Depending on the
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available order of sensitivity analysis, constrained or unconstrained problem and the
form of objective function, the optimization can benefit from sensitivity analysis in
several ways. Just to name some:

• the first-order sensitivity analysis is essential for the gradient-based optimization
algorithms for the solution of constrained or unconstrained optimization problems,

• with the second-order sensitivity analysis, an unconstrained optimization problem
can be solved using quadratically convergent Newton- - Raphson type algo-
rithms,

• the first- or second-order sensitivity analysis of objective function can be used
to form response surface leading to sequential linear or quadratic programing
algorithms.

The last possibility is especially useful when the evaluation of the objective function
is very costly (e.g., requires full nonlinear analysis of the global FE problem) and
in the case of multiple constraints. An example will be given here where the sen-
sitivity analysis is used to solve the problem of worst imperfection of structures in
means of ultimate limit states(Kristanic and Korelc (2008)) using sequential linear
programming approach. It is well known that geometrical, structural, material, and
load imperfections play a crucial role in the load-carrying behavior, especially of
thin-walled structures. The idea to find such a combination of imperfections that will
cause the structure to fail at the lowest possible load is as old as the ascertainment of
the crucial role of imperfections itself. The review of different approaches accompa-
nied with an impact on modern design procedures of engineering structures can be
found in Schmidt (2000).When analyzing structures discretized with finite elements,
it turns out that the choice of the shape and size of initial imperfections have a major
influence on the response of the structure and its limit state.

With the use of direct and sensitivity analysis combined with optimization, it
is possible to determine the most unfavorable combination of chosen shapes rep-
resenting the initial imperfection, which leads to the least possible ultimate load.
Within the optimization algorithm, the objective function is constructed by means of
a fully nonlinear direct and first-order sensitivity analysis. The method is not limited
to small imperfections or a linear fundamental path based on Koiters asymptotical
theory (Koiter (1945)) and also allows the imposition of technological constraints
on the shape of the imperfection, thus making it possible to avoid unrealistically low
ultimate loads. When carefully constructed, the objective function and constraints
remain linear, enabling the use of numerically efficient and readily available sequen-
tial linear programming algorithms.

Let Xp be a coordinate of the nodes of the perfect geometry, X = Xp + X̄ coor-
dinates of the imperfect geometry, where imperfection X̄ is approximated as linear
combination of M base shapes �i and corresponding weights αi (43).

X = Xp + X̄ = Xp +
M∑

i=1

αi�i (43)
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Base shapes can be chosen arbitrarily. The most convenient set of shapes is the set
of buckling modes that can be extended by eigenshapes of tangent matrix, empiri-
cally known as worst shapes or deformation shapes. The response of the imperfect,
materially and geometrically nonlinear structure is defined by its response curve
u(λ), where λ is the load level as defined for proportional loading by (40). Let λl

be the ultimate load factor. A limit state of a structure is generally defined with
the limit point of the equilibrium path. In real, imperfect structures, this criterion
proves unreliable because of the possible exceeding of permissible tolerances of dis-
placements or deformations before reaching the limit point. The goal is to determine
such coefficients αi that the ultimate limit load factor λl of the structure would be
minimal. Therefore, a minimization problem (44) for the limit load factor can be
defined, where the imposition of technological constraints requires that the maximal
amplitude of the imperfection has to be equal to or smaller than the amplitude of the
prescribed equivalent geometrical imperfections e0.

min
αi

λl

||X̄||∞ � e0
(44)

Solution of the nonlinear optimization problem (44) requires full nonlinear analy-
sis (direct and, depending on optimization algorithm, also sensitivity analysis) of the
structure at every iteration of optimization algorithm. Because of the enormous com-
putational time required, this approach is not feasible at this time. The fully nonlinear
problem (44) is simplified by expansion of the limit state load factor of the imper-
fect structure to a Taylor series around the imperfect geometry. The limit load factor
λl(X̄(αi )) is then for k th global iteration of the sequential nonlinear optimization
algorithm written as

λl ≈ λk−1
l +

M∑

i=1

∂λl

∂αi

∣∣∣∣
αk−1
i

�αk
i (45)

where coefficients of the series expansion ∂λl/∂αi |αk−1
i

are obtained by the first-order
shape sensitivity analysis. Sensitivity parameters of the problem are weights αi and
the the corresponding shape design velocity field is obtained by the differentiation
of (43) with respect to sensitivity parameters

∂X
∂αi

= �i . (46)

Function (45) is a linear function. However, the constraint in (44) is a highly non-
linear function. A set of linear constraints for the maximal amplitude of the total
imperfection vector |X̄l,m | = | ∑i αi
l,m | � e0; ∀l,m, where X̄l,m and 
l,m are the
m th component of the imperfection and base shape vector in l th node, can be defined
instead. The result is numerically highly efficient sequential linear programming
problem. For each global iteration of sequential linear programming algorithm only
one fully nonlinear limit state analysis together with the shape sensitivity analysis
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Fig. 11 Example of a T cross-sectional thin-walled beam example

has to be performed. Computational cost for the solution of the corresponding linear
programming problem is in fact negligible.

The example presented refers to the ultimate load calculation of a simply supported
thin-walled beam with a T cross section, loaded with a concentrate force at the mid-
length. The geometrical details and loads are presented in Fig. 11. The thin-walled
girders in this section were modeled by elastoplastic four node shell elements based
on finite rotations, six-parameter shell theory combined with assumed natural strain
formulation and two enhanced strain modes for improved performance. Within the
optimization problem, it was necessary to define 3150 constraint equations for the
maximal initial imperfection amplitude perpendicular to the web and 2025 constraint
equations for the maximal imperfection amplitude perpendicular to the flange. The
structure is analyzed considering the shape base consisting of buckling modes. In
Fig. 12, the calculated limit load of the T-beamwith increasing number of base shapes
is shown. The results show a clear convergence of the calculated limit load.

Convergence of the global iterative optimization process of finding the most unfa-
vorable imperfection by considering 52 base shapes (M = 52) is presented in Fig. 13.
The most unfavorable initial imperfection is achieved within engineering tolerances
in the 4th global iteration of the sequential linear programming algorithm.
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Fig. 12 Convergence of the ultimate limit load with the number of base shapes

Fig. 13 Convergence of the global iterative optimization process of finding the most unfavorable
imperfection shape of a T cross section
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4.4 Multi-scale Modeling

The use of different kinds of multi-scale methods is limited by specifications of the
problem to be solved. Standard two-level finite element homogenization approach
FE2 is appropriate for problemswithweakly coupled scales. If the difference between
two scales is finite, the FE2 multi-scale approach fails, then some sort of domain
decomposition method can be applied. Within the sensitivity analysis based multi-
scale computational environment, various types of multi-scale approaches can be
freely mixed. The automation of the FE2 methods requires the first-order sensitivity
analysis with respect to prescribed essential boundary conditions, and the automa-
tion of domain decomposition methods requires the second-order sensitivity anal-
ysis with respect to prescribed essential boundary conditions. Thus, finite element
code that supports the first- and second-order sensitivity analyses enable unification
and automation of various multi-scale approaches for an arbitrary nonlinear, time-
dependent, coupled problem (e.g., general finite strain plasticity). More details can
be found in Korelc and Zupan (2018).

5 Conclusions

The paper describes a hybrid symbolic-numerical approach to the automation of pri-
mal and sensitivity analyses of computational models formulated and solved by finite
element method. A hybrid symbolic-numerical approach that combines a general
computer algebra system, an automatic differentiation technique, and an automatic
code generation with the general-purpose finite element environment is proposed as
an appropriate method.

Additional to the solution of primal problem, efficient computational algorithms
often require also the solution of sensitivity problem. Thus, any proposed method of
automation should address the automation of primal as well as sensitivity analysis.
ADB notation together with automatic differentiation and automatic code genera-
tion enables automatic derivation of element-level subroutines for the evaluation of
analytically exact pseudo-load vectors, while the global sensitivity problem remains
independent of element formulation. Consequently, once we have the individual ele-
ment codes that support primal and sensitivity analyses for all input parameters of
the individual finite elements, the only unanswered question remains “What is the
velocity field of the problem?”. Sensitivity analysis based stochastic analysis and
asymptotic numerical methods were given as examples of identification and defini-
tion of design velocity fields. It is important to notice that no additional functionality
or coding is needed for the implementation of these examples, apart from knowing
the design velocity field of the problem.
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