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Abstract In this contribution, we discuss some basic mechanical and mathemati-
cal features of the finite element technology for elliptic boundary value problems.
Originating from an engineering perspective, we will introduce step by step of some
basic mathematical concepts in order to set a basis for a deeper discussion of the
rigorous mathematical approaches. In this context, we consider the boundedness of
functions, the classification of the smoothness of functions, classical and mixed vari-
ational formulations as well as the H−1-FEM in linear elasticity. Another focus is
on the analysis of saddle point problems occurring in several mixed finite element
formulations, especially on the solvability and stability of the associated discretized
versions.

1 Introduction

This chapter deals with some fundamental concepts needed for the understanding of
the mathematical background of the finite element method (FEM). Starting from a
one-dimensional boundary value problem,wemotivate the formulation of an abstract
minimization problem in order to generalize the problems occurring in the numerical
approximation of elliptic boundary value problems. The presented general explana-
tions originate from an engineering point of view and are consulted of the mathe-
matical framework needed for a deeper understanding. Of course, there are a variety
of excellent textbooks dealing with this topic, from the engineering as well as from
the mathematical point of view. Textbooks with a more mechanical motivation are
(amongst many others) e.g. Hughes (1987),Wriggers (2008), Auricchio et al. (2004),
Gockenbach (2006), Berdichevsky (2009), Becker et al. (1981), and Oden and Carey
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(1983); representatives with amathematical background are e.g. Braess (1997), Boffi
et al. (2013), Oden and Reddy (1976), Brenner and Scott (2002), and Ern and Guer-
mond (2013).

2 Introductory Example and Propaedeutic Remarks

Let B ⊂ R
d be the body of interest parametrized in x ∈ R

d with d = 1, 2, 3. The
boundary ∂B of B is decomposed into ∂BN and ∂BD, where Neumann and Dirichlet
boundary conditions are prescribed, respectively. They satisfy

∂B = ∂BN ∪ ∂BD and ∂BN ∩ ∂BD = ∅ . (1)

The boundary value problem is typically defined by a set of partial differential equa-
tions (PDEs) on the open domain B and boundary conditions.

For simplicity we start with the simple one-dimensional (d = 1) boundary value
problem

− (EAu′(x))′ + Ksu(x) = f (x) in x ∈ B = (0, l) , (2)

with Young’s modulus E > 0, cross section A > 0, and continuous elastic support
Ks > 0, with units [E] = N/m2, [A] = m2, [Ks] = N/m2, [u] = m, [f ] = N/m, see
Fig. 1. At x = 0 a Dirichlet and at x = l a Neumann boundary condition is applied:

u(0) = 0 and EAu′(l) = tl , (3)

respectively. For the following explanations, we assume that the solution u(x) and
the distributed loading f (x) are sufficiently regular.

Analytical solution. The general solution of (2) for constant EA and f (x) =
f0 + �f x/l is based on the ansatz

u(x) = eλx � u′(x) = λeλx � u′′(x) = λ2eλx . (4)

Substituting these expressions into the homogeneous part of (2), denoted by ũ(x),
yields

Fig. 1 Bar with continuous
elastic support

EA

Ks
l

tl

f(x)
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(−EA λ2 + Ks)e
λx = 0 � λ1,2 = ±

√
Ks

EA
=: ±α , (5)

i.e., the solution is of the form

ũ(x) = c̃1 e+αx + c̃2 e−αx

= (c̃1 + c̃2)︸ ︷︷ ︸
c1

e+αx + e−αx

2︸ ︷︷ ︸
cosh(αx)

+ (c̃1 − c̃2)︸ ︷︷ ︸
c2

e+αx − e−αx

2︸ ︷︷ ︸
sinh(αx)

. (6)

Adding the particular solution f0/Ks + (�f · x)/(Ks l) yields

u(x) = c1 cosh(αx) + c2 sinh(αx) + f0
Ks

+ �f

Ks

x

l
. (7)

Evaluating the boundary conditions yields the analytical expressions for the constants
c1 and c2:

u(0) = c1 + f0
Ks

= 0

→ c1 = −f0
Ks

,

u′(l) = c2 α cosh(α l) + �f

Ks

1

l
= tl

→ c2 =
(
tl − �f

Ks

1

l

)
1

α
e−αl(1 + tanh(α l)) .

(8)

A weak formulation of the boundary value problem is obtained by multiplying
(2) with a test function δu and partial integration:

∫ l

0
(EAu′δu′ + Ks u δu)dx =

∫ l

0
f δu dx + tl δu(l) ∀ δu ∈ V , (9)

where V is a suitable space of functions, e.g., a Hilbert space. All test functions δu ∈
V have to vanish at the Dirichlet boundary condition δu(0) = 0. In the variational
formulation u is an element of the class of trial functions Vtrial . The collection of
both functions are denoted as admissible functions; in this simple case, V and Vtrial

coincide and have to satisfy

V = Vtrial =
{
u(x) :

∫ l

0
(u2 + (u′)2) dx < ∞, u(0) = 0

}
. (10)

The idea of approximation methods is to compute an approximate solution uh ∈ Vh

in the finite-dimensional subspace Vh ⊂ V , based on
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Fig. 2 Linear ansatz functions of neighboring elements, ξ ∈
[
− le

2 , le
2

]

∫ l

0
(EAu′

hδu
′
h + Ksuh δuh)dx =

∫ l

0
f δuh dx + tl δuh(l) ∀ δuh ∈ Vh . (11)

In order to do this within the finite element method, we have to subdivide the
domain in numele subsections, here we choose individual finite elements with (for
simplicity reasons) unit length le = l/numele. On this individual elements we define
a set of ansatz functions, i.e., shape functions Ni|i = 1, . . . k with local support. We
use piecewise polynomial functions which are globally C0 continuous, as depicted
in Fig. 2.

In this case, the continuity can be easily enforced by sharing the degrees of free-
dom at the interface between two neighboring elements. With this definitions we
approximate the individual fields on element level as follows:

uh = Ne de, δuh = Ne δde, u′
h = Be de, δu′

h = Be δde (12)

with the matrix of shape functions Ne, the matrix containing the derivatives of the
shape functions Be, and the vectors of nodal (virtual) degrees of freedom (δde) de of
the element e ∈ {1, 2, . . . , numele}:

de =
[
de
1
de
2

]
, δde =

[
δde

1
δde

2

]
, Ne =

[
N1

N2

]
, Be =

[
N1,x

N2,x

]
. (13)

After substituting these approximations equation (11) is reformulated into

numele∑
e=1

δdeT
∫
le
(EABeTBe + KsNeT Ne)dx

︸ ︷︷ ︸
ke

de =

numele∑
e=1

δdeT
∫
le
f NeT dx + tl δde(l)︸ ︷︷ ︸

δdeT re

→
numele∑
e=1

δdeT
{
ke de − re

} = 0 .

(14)
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Assembling the element matrices,

K =
numele

A
e = 1

ke, R =
numele

A
e = 1

re, (15)

yields
δDT

{
K D − R

} = 0 ∀ δD → K D = R , (16)

where K is the global element stiffness matrix, R the global right-hand side, D the
global vector of unknowns, and δD the global vector of virtual node displacements.
The FEM solution is depicted for a various number of elements numele based on a
constant Ks in Fig. 3. Figure4 compares the approximation with numele = 16 to the
analytical solution considering different values of Ks.

Generalizations: In order to formulate an abstract minimization problem we
define a quadratic energy functional J (u), e.g., the total potential energy,

J (u) := 1

2
a(u, u) − L(u) , (17)

with the symmetric form a(u, v) = a(v, u). We assume that a(u, u) is positive defi-
nite, i.e.,

a(v, v) > 0 ∀ v �= 0 . (18)

0
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Fig. 3 Approximate FEM solution for numele = {1, 2, 4, 8, 16} (Ks = 104 kN/m2, E = 210 · 103
kN/m2, l = 4 m, tl = 250 kN, f0 = �f = 103 kN/m)
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Fig. 4 Comparison of analytical and approximate FEM solution (numele = 16) for various values
of KS i = {103, 104, 105, 210 · 103} kN/m2, E = 210 · 103 kN/m2, tl = 250 kN, f0 = �f = 103

kN/m, l = 4 m

A bilinear form a : V × V → R is calledH -elliptic (or simply elliptic) if there exists
a constant cα > 0 such that

a(v, v) ≥ cα ‖v‖2H ∀ v ∈ V . (19)

The H -elliptic bilinear form induces the so-called energy norm

‖v‖a := √
a(v, v) , (20)

which is equivalent to a norm of the associated Hilbert space H . Under this assump-
tions the minimization problem

J (u) = min
v∈V J (v) , (21)

where the minimum is characterized by 〈J ′(u), v〉 :=
∫ l

0
J ′(u) v dx = 0, which is

equivalent to the variational problem

find u ∈ V satisfying a(u, v) = L(v) ∀ v ∈ V . (22)

Identifying our model problem with the abstract formulation yields the quadratic
functional
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a(u, u) =
∫ l

0
EA (u′(x))2 dx +

∫ l

0
Ks (u(x))

2 dx (23)

and the linear functional

L(u) =
∫ l

0
u(x) f (x) dx + tl u(l) (24)

with the Dirichlet boundary condition u(0) = 0, to be satisfied by the function u(x),
and the Neumann boundary condition EAu′(l) = tl , appearing as a natural boundary
condition in the functional.

Modus operandi. There are several direct methods for the computation of the
approximate solution. Beyond this, there are several mathematical frameworks
for the qualitative analysis of the existence and uniqueness of solutions. Beside
well-known direct methods for the treatment of established models, described by
partial differential equations, this topic is rather important for the derivation of new
models in continuum thermodynamics. In this contribution, we want to motivate the
main ideas of this scientific branch.

A functional is called bounded from below on the space V , if there exist a
constant c ∈ R, such that

J (u) ≥ c ∀ u ∈ V . (25)

This requirement can be violated if the functional is not bounded by below on V
or if it is bounded by below but its minimum is not reached on V , for a physical
interpretation see Berdichevsky (2009), Chap. 5.

We assume that in the quadratic functional a(u, u) of our model problem (23)
u(x) is a differentiable function and that the integrals exists. We conclude with the
meaningful engineering constants

EA > 0 and Ks > 0 , (26)

that a(u, u) is obviously nonnegative and therefore bounded from below. A linear
functional L(u) =< l, u > is bounded (from above) if for CL > 0

‖L(u)‖ = |L(u)| ≤ CL‖u‖ ∀ u ∈ V . (27)

Now we have to answer the question, if the functional (17) is bounded from below or
not. Let us consider our model problem. Our functional (17) can now be estimated,
compare Braess (1997) Chap.2.5, by
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J (u) ≥ 1

2
cα‖u‖2 − ‖l‖ ‖u‖

= 1

2
cα

(
‖u‖2 − 2

cα

‖l‖ ‖u‖ + ‖l‖2
c2α

− ‖l‖2
c2α

)

= 1

2
cα

(
‖u‖ − ‖l‖

cα

)2

− ‖l‖2
2cα

≥ −‖l‖2
2cα

.

(28)

Obviously, the functional is bounded from below.

Lax–Milgram Theorem (existence of classical solutions); Let V ′ be a Hilbert
space, a : V × V → R a continuous and H-elliptic bilinear form defined on V , L ∈
V ′ any continuous linear functional. Subject to these conditions there exists a unique
solution

u ∈ V

such that
a(u, v) = L(v) ∀ v ∈ V . �

Reminder, the properties of the bilinear and linear form are:

• the bilinear form has to be continuous (bounded from above), i.e., there exists a
constant Ca ∈ R

+1 such that

|a(w, v)| ≤ Ca ‖w‖V ‖v‖V ∀w, v ∈ V ,

• the bilinear form has to be H -elliptic, i.e., there exists a constant ca ∈ R
+ such

that
a(v, v) ≥ ca ‖v‖2V ∀ v ∈ V ,

• the linear functional L is continuous, i.e., there exists a constant CL ∈ R
+ such

that
|L(v)| ≤ CL ‖v‖V ∀ v ∈ V .

Note: From the continuity of the bilinear form a(·, ·), discussed in exercise 1, we
obtain |a(u, u)| ≤ Ca ‖u‖2. The continuity of the linear form yields |L(u)| ≤ CL ‖u‖.
From the H -ellipticity of the bilinear form a(·, ·), see (19), we deduce

ca ‖u‖2 ≤ a(u, u) ≤ Ca ‖u‖2 . (29)

Exploiting the continuity of the linear form allows with C ∈ R
+ for

ca ‖u‖2 ≤ a(u, u) ≤ Ca ‖u‖2 ≤ C〈l, u〉 (30)

1nonnegative real values R+
0 , positive real values R

+ = R
+
0 \0.
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and we deduce from 〈l, u〉 ≤ ‖l‖ ‖u‖

ca ‖u‖2 ≤ C ‖l‖ ‖u‖ and ca ‖u‖ ≤ C ‖l‖ (31)

and

‖u‖ ≤ C

ca
‖l‖ ∀ v ∈ V . (32)

In this sense the bounded linear functional is generated by the continuity and H -
ellipticity of the bilinear form a(·, ·).

Approximate solutions: In general it is cumbersome or even impossible to find
exact solutionsu ∈ V , thereforewe are interested in approximate solution concepts.
ApplyingRitz methodweseek a solutionuh ∈ Vhwith thediscrete subspaceVh ⊂ V ,
i.e.,

J (uh) = min
vh∈Vh

J (vh) . (33)

The Ritz approach, based on our technical assumptions, is equivalent to theGalerkin
method of the variational counterpart

find uh ∈ Vh satisfying a(uh, vh) = l(vh) ∀ vh ∈ Vh , (34)

where a(uh, vh) is a bilinear functional (linear in both arguments).

Exercise 1 Show that the bilinear form of our model problem in Eq. (9)

a(u, v) =
∫ l

0
EAu′v′ dx +

∫ l

0
Ks u v dx (35)

with EA ∈ (0,∞) and Ks ∈ (0,∞), is continuous!

Remark: Definition of continuous bilinear forms a : U × V → R on linear
normed spaces U and V : A bilinear form a(·, ·) is a continuous bilinear form, if
there exists a constant Ca ∈ R

+ such that

|a(u, v)| ≤ Ca‖u‖‖v‖ ∀ u ∈ U, v ∈ V . (36)

In anticipation of the following chapters we introduce the norm

‖u‖2H 1 = (u, u)H 1 =
∫ l

0
(u2 + (u′)2) dx = ‖u‖2L2 + ‖u′‖2L2 ; (37)

obviously we obtain the inequalities

‖u‖2L2 ≤ ‖u‖2H 1 and ‖u′‖2L2 ≤ ‖u‖2H 1 . (38)
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Solution. In order to show that the bilinear form is continuous, consider

ã(u, v) = 1

EA
a(u, v) =

∫ l

0
u′ v′ dx +

∫ l

0

Ks

EA
u v dx

≤
∣∣∣∣
∫ l

0
u′ v′ dx

∣∣∣∣ +
∫ l

0

Ks

EA
|u v| dx

≤
∣∣∣∣
∫ l

0
u′ v′ dx

∣∣∣∣ + Ks

EA

∫ l

0
|u| |v| dx

= |(u′, v′)L2 | + Ks

EA
(|u|, |v|)L2 .

(39)

Applying the Cauchy–Schwarz inequality yields

|(u′, v′)L2 | + Ks

EA
(|u|, |v|)L2 ≤ ‖u′‖L2 ‖v′‖L2 + Ks

EA
‖u‖L2 ‖v‖L2 . (40)

Using the inequalities (38) yields the final estimation

ã(u, v) ≤ ‖u‖H 1‖v‖H 1 + Ks

EA
‖u‖H 1 ‖v‖H 1

= (1 + Ks

EA
) ‖u‖H 1 ‖v‖H 1 .

(41)

For our bilinear form we write

a(u, v) ≤ Ca ‖u‖H 1‖v‖H 1 with Ca = (EA + Ks) . (42)

Thus, a(u, v) is continuous, or in other words it is bounded by above. ♠

3 Classification of the Smoothness of Functions

In this section we discuss the classification of functions and their derivatives with
respect toHilbert spaces. For thiswefirst set a fewnotations, amoredetailed summary
is given in Appendix A.

L2(B) =
{
u : ‖u‖2L2(B) =

∫
B

|u|2dv < +∞
}

(43)

characterizes the space of square integrable functions on B. At this point, it seems
to be meaningful to give some remarks concerning the Riemann integral and the
Lebesgue integral. The Riemann integral has some disqualifications if we would like
to use it for a satisfactory theory of PDEs.
In order to obtain a satisfactory theory of PDEs, we must—for technical reasons—
integrate certain singular functions. If functions are regular enough to integrate them
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they are called Lebesguemeasurable. An introduction to this topic is given in Royden
(1968). For m ∈ IN0

2 we define

Hm(B) = {
u : Dαu ∈ L2(B) ∀ |α| ≤ m

}
, (44)

with the multi-index notation for the derivatives of u, with the 3-tuple of nonnegative
integers

α = (α1, α2, α3) and |α| = (α1 + α2 + α3) . (45)

Thus the α-th derivative of u with respect to (x1, x2, x3) is defined by

Dαu = ∂α1+α2+α3u

∂xα1
1 ∂xα2

2 . . . ∂xαn
3

= ∂ |α|u
∂xα1

1 ∂xα2
2 . . . ∂xαn

3

(46)

Explanatory examples:

D(0,0,0)u = u; D(1,0,0)u = ∂u

∂x1
; D(0,0,1)u = ∂u

∂x3
;

D(1,1,0)u = ∂2u

∂x1 ∂x2
; D(3,2,1)u = ∂6u

∂x31 ∂x22 ∂x3
.

(47)

The introduction of the Sobolev spaces Hm(B) allows for the quantification of the
smoothness (regularity) of functions. Let Cm(B) be the linear space of functions
u with continuous derivatives D|α|u of the order 0 ≤ |α| ≤ m. The Sobolev spaces
Hm(B) are related with the Ck(B) spaces by the Sobolev embedding theorem: Let
B = B ∪ ∂B be a bounded domain with a Lipschitz boundary. Every function in
Hm(B) belongs to Ck(B) if

m > k + 1 for B ⊂ IR2, m > k + 3/2 for B ⊂ IR3 . �

It should be noted that the embedding is continuous:

Hm(B) ⊆ Ck(B) .

Furthermore we introduce the notation

H 1
0 (B) := {u ∈ H 1(B), u|∂B = 0}, H 1

0,D(B) := {u ∈ H 1(B), u|∂BD = 0} . (48)

2positive integers IN+ = {1, 2, 3, . . . }, nonnegative integers IN0 = {0, 1, 2, 3, . . . } = IN+ ∪ {0}.
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v′
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Fig. 5 Regularity of functions u and v and their derivatives on B = [0, l]

3.1 One-Dimensional Example

To discuss the smoothness of functions, we consider the two functions depicted in
Fig. 5.
For the function u in Fig. 5a we observe

u ∈ C2(B) , (49)

because u is twice continuously differentiable and u ∈ H 2(B). In contrast, the func-
tion v depicted in Fig. 5b is

v ∈ C0(B) , (50)

because already its first derivative is not continuous. Obviously, v ∈ H 1(B), due to
the fact that its first derivative is square integrable,3 i.e., v′ ∈ L2(B). Although the
classical derivative of v(x) does not exist at x = l/2we can define theweak derivative
of v. Consider

3The derivatives occurring in Hm(B) have to be interpreted as weak or generalized derivatives.
Classical derivatives are functions defined pointwise on an interval. A weak derivative need only to
be locally integrable. If the function is sufficiently smooth, e.g., v ∈ Cm(B), then itsweak derivatives
Dαu coincide with the classical ones for |α| ≤ m.
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∫ l

0
v η′ dx =

∫ l/2

0
v η′ dx +

∫ l

l/2
v η′ dx , (51)

with the infinitely differentiable function η, satisfying η(0) = η(l) = 0. Integration
by part, i.e., ∫ b

a
v η′ dx = v η

∣∣b
a −

∫ b

a
v′ η dx , (52)

yields

∫ l

0
v η′ dx = v(l/2) η(l/2) −

∫ l/2

0
v′ η dx − η(l/2) v(l/2) −

∫ l

l/2
v′ η dx

= −
{∫ l/2

0
v′ η dx +

∫ l

l/2
v′ η dx

}
.

(53)

The function v′(x) in (53) is denoted as the weak derivative of v(x).
Let us now consider the function in Fig. 6 which is a delta function representing

a force acting at a point. This function (distribution) is not square integrable. Before
we are able to quantify its smoothness it has to be integrated. In order to generalize
the discussion we introduce the antiderivative D−1, by means of

D(D−1u) = u with D := d

dx
. (54)

Fig. 6 Antiderivatives of
function u

x

D−2u

0 ll/2

x

D−1u

x

u

h(x)

/∈ L2(B)

∈ L2(B)

(a)

(b)

(c)
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The meaning of this operator becomes clear if we consider again the function h̃(x)
in Fig. 5b:

v′ = Dv = h̃(x) .

The calculation of the antiderivative

D−1v′ = D−1(Dv) =
∫

h̃(x) dx

yields the hat function depicted in Fig. 5b up to a constant. Switching back to our
function (distribution) shown in Fig. 6a: Evaluating the antiderivative of the delta
function δ(l/2) leads to

D−1u = h(x) , (55)

then we conclude that h(x) is a square integrable function. In other words its first
antiderivative, i.e., its “first integral”, is in L2(B). Therefore we define

u ∈ H−1(B) . (56)

The question is: What are negative Sobolev spaces?
Let m be a positive integer, then the negative Sobolev space H−m(B) is defined as
the dual of Hm

0 (B), i.e.,
H−m(B) = (Hm

0 (B))′ . (57)

The associated norm, exemplarily for m = 1 is

‖u‖H−1(B) = ‖u‖−1,B = min
v∈H 1

0 (B)\0
(u, v)0,B
‖v‖1,B . (58)

Based on the relations

Hm
0 (B) ⊂ Hm(B) ⊂ H 0(B) = L2(B) (59)

we conclude the inclusion properties

Hm(B) ⊂ H 0(B) = L2(B) ⊂ H−m(B) . (60)

3.2 H(div,B) Hilbert Spaces

The introduction of special Hilbert spaces related to vector or tensor valued fields
is expedient for the suitable description of many engineering problems. A frequent
representative,which is especially of importance in thefield of elasticity, heat conduc-
tion, flow problems, etc. is the H (div,B) space which demands a L2(B)-measurable
weak divergence. The corresponding space in introduced by
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H (div,B) = {
u ∈ (L2(B))d ∧ div u ∈ L2(B)

}
, (61)

whereas d denotes the dimension of vector u.

4 Variational Formulations of Linear Elasticity

In the following chapters,we concentrate on the formulation of elasticity. LetB ⊂ IR3

be the body of interest, parametrized in x ∈ IR3, σ the second-order stress tensor,
ε = ∇su the symmetric second-order strain tensor, u the displacement field, f the
given body force per unit volume, C the fourth-order elasticity tensor and t the
prescribed Neumann boundary conditions. Then the governing equations in linear
elasticity are given by4

balance of momentum: div σ + f = 0

constitutive law: σ = C : ε

kinematical condition: ε = ∇su = 1
2 (grad u + gradT u)

balance of angular momentum: σ = σ T

Dirichlet boundary condition: u = 0 on ∂BD

Neumann boundary condition: σ · n = t on ∂BN

(62)

4.1 Classical (Bubnov-)Galerkin Formulation

A direct substitution of (62)2–(62)4 into (62)1 leads to a variational formulation
where solely the displacements are solved in a weak form. Multiplication with a test
function δu and integration over the domain leads to the problem of seeking u such
that ∫

B
(div[C : ∇su] + f ) · δu dv = 0 ∀ δu. (63)

Integration by parts and the insertion of the important test function property δu = 0
on ∂BD leads to the formulation of seeking u ∈ H 1

0,D(B) of

∫
B

(∇sδu : C : ∇su − δu · f ) dv −
∫

∂BN

δu · t da = 0 ∀ δu ∈ H 1
0,D(B). (64)

It can be recognized, that for the latter weak formulation, the corresponding function
space of the trial function u and the test function δu coincide, which is the classical

4Note that a restriction to homogeneous Dirichlet boundary conditions is only of technical nature
and does not constitute a loss of generality, see, e.g., Braess (1997).
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characteristic of the (Bubnov-)Galerkin method. The solution of (64) is equivalent
to the minimizer u ∈ H 1

0,D(B) of the potential energy

	(u) =
∫
B

1
2∇su : C : ∇su dv −

∫
B
u · f dv −

∫
BN

u · t da (65)

and constitutes the basis of the well-known displacement based FEM for linear
elasticity.

4.2 Alternative Methods

In the previously discussed approach, Green’s theorem has been applied to shift a
derivative from the trial to the test functions. Particularly in the framework of finite
elements, this is the prevalent approach. However, various alternative approxima-
tion techniques are available. In these formulations, the space of the approximative
solution is distinct to the space of test functions. A first example is represented by
the variational problem in Eq. (63) which is e.g. the basis of collocation methods.
In the corresponding discrete formulations, the approximative solution is sought in
a subspace of H 2(B) whereas the admissible test space corresponds to L2(B).

In contrast to these formulations where broken (discontinuous) test spaces are
appropriate, both derivativesmay be transferred to the test spaces. This is executed by
means of successive application of Green‘s theorem. The corresponding formulation
is established as the so-called H−1-method, proposed by Rachford et al. (1974).
In this H−1-Galerkin method different subspaces for the space of trial functions
(approximation functions) Uk and the space of test functions (weighting functions)
Wh are used, i.e.,

Uk �= Wh. (66)

In Kendall and Wheeler (1976), the authors adopted the procedure to a Crank–
Nicolson–H−1-Galerkin procedure and investigates single space variables in
parabolic problems. The ansatz was recapitulated in Thomée (2006), Chap. 16. A
discussion of negative norm error estimates for semi-discrete Galerkin-type Finite
Element formulations for nonheterogenous parabolic equations is given in Thomée
(1980). A more recent approach can be found in Goebbels (2015).
The basis of the approach is the theory of distributional differential equations. Let
u be a distribution, v a test function and the equation of interest is the second-order
ordinary differential equation

D2u(x) = f (x) x ∈ R (67)

with appropriate boundary conditions.
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Based on this assumptions we can set up a family of distributional differential equa-
tions, see Oden and Reddy (1976), page 365 ff:

− 〈D2u, v〉 = 〈f , v〉 ∀v ∈ D(R)

〈Du,Dv〉 = 〈f , v〉 ∀v ∈ D(R)

− 〈u,D2v〉 = 〈f , v〉 ∀v ∈ D(R)

〈D−1u,D3v〉 = 〈f , v〉 ∀v ∈ D(R)

(68)

with the space of distribution D(R). From the distributional point of view all equa-
tions can be interpreted as equivalent. Equation (68)1 is the basis for collocation
methods, (68)2 for the classical Galerkin method and (68)3 for the H−1-method.

A descriptive explanation of the H−1-method on the basis of a one-dimensional
boundary value problem

− 〈u,D2v〉 = 〈f , v〉 on x ∈ (0, l) (69)

with u(0) = u(l) = 0 is discussed in Sect. 5.2.

4.3 Mixed Variational Frameworks for Linear Elasticity

Considering again the governing equations in linear elasticity in Eq. (62) it is apparent
that the direct substitution of (62)2–(62)4 into (62)1 is not mandatory. Alternatively it
is possible to solve another set of equations of (62) in a weak sense. Here, especially
two common variants are considered in the following.

Hellinger–Reissner Formulation: The stress–displacement based formulation
solves (62)1 and (62)2 in a weak sense, seeking σ ∈ H (div,B) and u ∈ H 1

0,D(B)

such that ∫
B

(div σ + f ) · δu dv = 0 ∀ δu ∈ L2(B) ,∫
B

(∇su − σ : C−1
) : δσ dv = 0 ∀ δσ ∈ L2(B) .

(70)

On this basis, two additional variational formulations can be achieved which differ
in their corresponding solution spaces.

Application of integration by parts in (70)1 leads to the so-called primal version of
the Hellinger–Reissner formulation. This yields a the saddle point problem seeking
for σ ∈ L2(B) and u ∈ H 1

0,D(B) such that

∫
B

(σ : ∇sδu − f · δu) dv −
∫

∂BN

δu · t da = 0 ∀ δu ∈ H 1
0,D(B) ,∫

B

(∇su − σ : C−1) : δσ dv = 0 ∀ δσ ∈ L2(B) .

(71)
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Equivalently, this problem can be described by the potential

	HR(σ ,u) =
∫
B

(
−1

2
σ : C−1 : σ + σ : ∇su − f · u

)
dv −

∫
∂BN

u · t dA . (72)

The expression

σ : ∇su − 1

2
σ : C−1 : σ = σ : ∇su − ψ�(σ ) (73)

represents the free energy ψ(ε) in terms of the complementary potential ψ�(σ ), i.e.,
ψ(ε) = σ : ∇su − ψ�(σ ).

In contrast, integration by parts may be applied to (70)2, which yields the so-
called dual Hellinger–Reissner formulation, seeking the saddle point σ ∈ H (div,B)

and u ∈ L2(B) such that

∫
B

(div σ + f ) · δu dv = 0 ∀ δu ∈ L2(B) ,∫
B

(
σ : C−1 : δσ + u · div δσ

)
dv = 0 ∀ δσ ∈ H (div,B) .

(74)

It should be remarked, that in this formulation the traction boundary condition (62)6
has to be incorporated into the solution space of the stresses, since they do not appear
in the weak form. In addition the stress symmetry condition has to be enforced.

Hu-Washizu Functional – Three Field Formulation: A third option is the indepen-
dent interpolation of all variables entering the elasticity problem. This formulation
solves (62)1–(62)3 in a weak sense. The optimization problem is: seek a saddle point
ε ∈ L2(B), σ ∈ L2(B) and u ∈ H 1

0,D(B) such that

∫
B

(C : ε − σ ) : δε dv = 0 ∀ δε ∈ L2(B) ,∫
B

(∇su − ε) : δσ dv = 0 ∀ δσ ∈ L2(B) ,∫
B

(σ : ∇sδu − f · δu) dv −
∫

∂B
t · δu da = 0 ∀ δu ∈ H 1

0 (B) .

(75)

An equivalent potential formulation can be given by

	HW(ε, σ ,u) =
∫
B

(ψ(ε) − σ : (∇su − ε) − u · f ) dv −
∫

∂BN

u · t da. (76)

with ψ(ε) = 1/2 ε : C : ε.
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5 Finite Element Method

The finite element method constitutes the most prevalent discretization technique
for the approximation of boundary value problems in the field of computational
mechanics. As discussed in the previous chapters, the solution of the variational
equations are in their corresponding Sobolev space. For the numerical treatment this
solution space is restrained to a finite-dimensional space, in the following called
finite element space and is denoted by the subscript h, e.g., Vh.

5.1 Conforming and Non-conforming Finite Elements

In case of a conforming discretization, the finite element space is a discrete subspace
of the corresponding Sobolev space. Considering the problem of linear elasticity
with the displacements as the only unknown, we seek u ∈ H 1

0,D(B)

∫
B

(∇sδu : C : ∇su − δu · f ) dv −
∫

∂B
δu · t da = 0 ∀ δu ∈ H 1

0,D(B) . (77)

A conforming discretization of uh ∈ Vh demands in this case

Vh ⊂ H 1
0,D(B) . (78)

It can be shown that uh of a conforming finite element converges monotonically to
u with increasing mesh density, if it is in addition able to represent the rigid body
displacements and the constant strain states, see Bathe (1996).

Standard H 1(B) conforming finite elements on triangles Pk or quadrilaterals Qk

are assigned with k + 1 nodes on each edge of the element, see Fig. 7. Continuity of
the approximated variable is enforced, when these nodes are shared with the adjacent
elements.

H (div,B) conforming elements can be constructed, for example, with help of
the Raviart–Thomas functions. In case of triangles the RTk elements have k + 1
vector-valued sampling points on each edge and in addition k (k + 1) vector-valued
sampling points in the interior of the element, as exemplary depicted in Fig. 8.

In contrast, the finite element space of non-conforming elements is not a subspace
of the appropriate Sobolev solution space and convergence is not obvious. Due to
the non-conforming discretization, an additional error is introduced and has to be
controlled. However, this leads to additional flexibility in the design of the finite
element. The simplest non-conforming element is the Crouzeix–Raviart element,
see Crouzeix and Raviart (1973). Here, we only assign k nodes on each edge and
generally do not have continuity across inter-element boundaries; thus, these are non-
conforming elements. The Crouzeix–Raviart finite elements are depicted in Fig.9.
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P1 P2 P3

Q1 Q2 Q3

Fig. 7 Examples of Pk and Qk elements

RT0 RT1

Fig. 8 Examples for RTk elements with k ≥ 0; dim RTk = (k + 1)(k + 3)

P1 P2 P3

Fig. 9 Non-conforming Crouzeix–Raviart Pk -finite elements
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5.2 Example of H−1-FEM for 1D Elliptic Problem

In order to approach the H−1-method we analyze a one-dimensional truss element,
in analogy to the one examined in Rachford et al. (1974):

L u = (
EA(x) u(x)′

)′ = −f (x), x ∈ B = (0, 1) . (79)

where EA(x)u(x) characterize the normal force in the straight bar with the longitu-
dinal stiffness

EA(x) = α−1 + α(x − x̄)2 and α > 0 , (80)

where α and x̄ are constant parameters and the right- hand side is given by

f (x) = 2 ( 1 + α(x − x̄)( arctan α(x − x̄) + arctan αx̄ ) ) . (81)

The Dirichlet boundary conditions are defined by

u(0) = u(1) = 0 . (82)

The closed-form solution of this problem is given by

u(x) = (1 − x)(arctan α(x − x̄) + arctan αx̄) (83)

and is explicitly depicted for two different sets of α and x̄ in Fig. 10c and 11c.
Considering the plots of the longitudinal stiffness and the applied load in Fig. 10,
where the parameter are chosen asα = 5and x̄ = 0.5. Iwould like to draw the reader’s
attention to the low stiffness in the middle of the domain. In the case α = 1000 the
domain responds to this with a rapid, jump like rising displacement.

Variational approach: The solution in terms of a variational weak form is
obtained via ∫

B

(
EA(x) u′(x)

)′
v dx +

∫
B
f (x) v dx = 0. (84)

A reformulation using integration by parts and exploiting v(0) = v(1) = 0 yields

∫
B
EA(x) u′(x) v′(x) dx −

∫
B
f (x) v(x) dx = 0. (85)

The classical FE discretization with uh ∈ Uh ⊂ H 1
0 and uh ∈ P1 or uh ∈ P2, yields an

approximation of the displacements as illustrated in Figs. 12 and 13. This standard
displacement FEM ansatz even with second-order interpolation is inaccurate in an
extreme edge case. It is also worth mentioning that the normal force computed from
these element are also very inaccurate in comparison to the analytical solution.
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(a) (a)

(c) (d)

Fig. 10 Distributions of a stiffness EA(x), b load f (x), c analytical solution for the displacements
u(x), and d longitudinal force distribution EA(x)u′(x) over B for α = 1000 and x̄ = 0.5

Repeated application of integration by parts leads to another weak form, which
constitutes the basis of the H−1-FE approach

∫
B
EA(x) u(x) η′′(x) dx +

∫
B
f (x) η(x) dx = 0. (86)

In this case the natural discretization is of the form uh ∈ Uh ⊂ H 0(B), i.e., it is
possible to choose discontinuous approximations of uh, denoted by uh ∈ dP. This
reduces the coupling between the elements. The associated subspace consists of all
piecewise polynomial functions in Ck . Simultaneously the continuity requirements
regarding the test space Vh are increased. Let Bh denote the discretization of B, with

Bh =
⋃
e

Be with Bj = [xj−1, xj] and hj = xj − xj−1. (87)

By setting r ≥ 1 and −1 ≤ k ≤ r − 2 we define the trial space

Uh = {
uh ∈ Ck(Bh) : uh|Be ∈ P

r−1 for e = 1, . . . , numele
}

(88)

and the test space
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(a) (b)

(c) (d)

Fig. 11 Distributions of a stiffness EA(x), b load f (x), c analytical solution for the displacements
u(x), and d longitudinal force distribution EA(x)u′(x) over B for α = 5 and x̄ = 0.5

Vh = {
vh ∈ Ck+2(Bh) : vh|Be ∈ P

r+1 for e = 1, . . . , numele, η(0) = η(1) = 0
}
.

(89)
For k = −1 the trial spaceUh exhibits discontinuities at the node of the partition,

where the functions in the test space Vh are continuously differentiable. Thus we
have

Uh = {
uh ∈ C−1(Bh) : uh|Be ∈ P

r−1 for e = 1, . . . , numele
}

, (90)

whereas C−1(Bh) considers all functions whose antiderivative is in C0(Bh), which
means we do not require continuity at the nodal points. For convenience we define
this space by

Uh = {
uh ∈ dPr−1 for e = 1, . . . , numele

}
(91)

to enforce that the trial functions are discontinuous at the exterior nodes.
This leads to the corresponding space for the test functions as

Vh = {
η ∈ C1(Bh) : η|Be ∈ P

r+1 for e = 1, . . . , numele
}
. (92)

The numerical results obtained from this discretization are given in Fig. 14 for the
displacements and for the stresses. The discontinuity in the displacements is clearly
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Fig. 12 Illustration of numerical solutions for u(x) and EA(x)u′(x) with α = 1000 and x̄ = 0.5
using classical finite elements with u ∈ P1 (top) and u ∈ P2 (bottom)

visible, especially for the coarse discretization. The method, however, shows signif-
icant advantage for this model problem in comparison to the standard FE method.
This is even more significant in terms of the normal force. The interested reader is
referred to the error plots of each solution space in Figs. 15, 16, 17 and 18, with
respect to both considered loading cases.

6 Analysis of Mixed Finite Elements

For the existence, uniqueness, and approximation of saddle point, problems arise
from Lagrangian multipliers see Brezzi (1974). The following explanations are
mainly based on the excellent treatises of Auricchio et al. (2004) and Boffi et al.
(2013).
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P1 P1

P2
P2

Fig. 13 Illustration of numerical solutions for u(x) and EA(x)u′(x) with α = 5 and x̄ = 0.5 using
classical finite elements with u ∈ P1 (top) and u ∈ P2 (bottom)

6.1 Theoretical Framework

The idea of mixed methods is based on the introduction of Lagrangian multipliers
in order to relax several constraints denoted by constr(v) = 0, e.g., the incompress-
ibility condition div u = 0. Let’s start from the constrained minimization problem

min
v∈V

{
J (v) subjected to constr(v) = 0

}
. (93)

This can be reformulated by means of a Lagrangian functional of the form

L(v, q) = J (v) + b(v, q)
= 1

2a(v, v) − L(v) + b(v, q) ,
(94)

with

b(v, q) =
∫
B
q constr(v) dv , (95)
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dP1 dP1

dP1 dP1

Fig. 14 Numerical solution of u(x) ∈ dP1 and of EA(x)u′(x) for α = 1000, α = 5 and x̄ = 0.5

where q denotes the Lagrange multiplier. The solution of this abstract optimization
problem is (u, p) if the condition

L(u, q) ≤ L(u, p) ≤ L(v, p) ∀ v ∈ V, ∀ q ∈ � (96)

is fulfilled, V and � are suitable Hilbert spaces.

a : V × V → IR and b : V × � → IR (97)

are continuous bilinear forms, and L(v) : V → IR is a continuous linear form. It
should be noted that the classical Lax–Milgram Lemma cannot be applied. In fact
we should apply the so-called Banach–Nečas–Babuška theorem also known as the
generalized Lax–Milgram theorem, see, e.g., Ern andGuermond (2013). In summary
the variational formulation has a unique solution if

1. The continuous linear form a(·, ·) is coercive on

K = {
v ∈ V : b(q, v) = 0 ∀ q ∈ �

}
,
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Fig. 15 Error plots for numerical solutions to displacements and longitudinal forces obtained by
finite element discretizations of solutions spaces P1, P2, and dP1 for α = 1000, using 51 elements
on each

i.e., there exist an α ∈ IR+, such that

a(v, v) ≥ α‖v‖2V ∀ v ∈ K ,

and
2. the inf-sup condition, also known as LBB-condition (Ladyzhenskaya–Babuška–

Brezzi), is verified, i.e., there exists a β ∈ IR+, such that
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Fig. 16 Error plots for numerical solutions to displacements and longitudinal forces obtained by
finite element discretizations of solutions spaces P1, P2, and dP1 for α = 5, using 51 elements on
each

inf
q∈�\0 sup

v∈V \0
b(v, q)

‖q‖� ‖v‖V ≥ β .

Furthermore, there exists the a priori estimate for the solution

‖u‖V ≤ 1

α
‖f ‖V ′ + 1

β

(
1 + C

α

)
‖q‖�′ (98)

and

‖p‖� ≤ 1

β

(
1 + C

α

)
‖f ‖V ′ . (99)
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Fig. 17 Error plots for numerical solutions to displacements and longitudinal forces obtained by
finite element discretizations of solutions spaces P1, P2, and dP1 for α = 1000, using 5 elements
on each

6.2 Treatment of Saddle Point Problems, Sensitization

The discrete mixed problem is given by the matrix representation

(
A BT

B 0

)
︸ ︷︷ ︸

K̂

(
du
dp

)
︸ ︷︷ ︸

d̂

=
(
ru
rp

)
︸ ︷︷ ︸

r̂

, (100)
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Fig. 18 Error plots for numerical solutions to displacements and longitudinal forces obtained by
finite element discretizations of solutions spaces P1, P2, and dP1 for α = 5, using 5 elements on
each

with A ∈ R
n×n, B ∈ R

m×n, BT ∈ R
n×m, (du, ru) ∈ R

n, (dp, rp) ∈ R
m, K̂ ∈

R
(n+m)×(n+m), and (̂d, r̂) ∈ R

n+m.
For the solvability of (100) we postulate that the system has a unique solution

for every right-hand side ru and rp. Obviously, this condition is fulfilled if K̂ is
nonsingular. In other words, we must have a continuous dependency of the solution
upon the right-hand side. Therefore, the existence of a constant c, satisfying

‖du‖? + ‖dp‖? ≤ c (‖ru‖? + ‖rp‖?) , (101)
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is required. However, the existence of c does not depend on the chosen norms,
because in finite dimensions all norms are equivalent. Indeed the numerical values
will depend on the dimension of the system. As examples consider u ∈ R

n with the
equivalent norms

‖u‖1 :=
∑
i

|ui| and ‖u‖2 :=
√∑

i

|ui|2 . (102)

For n < ∞ there exist the two positive constants c1 and c2 satisfying

c1‖u‖2 ≤ ‖u‖1 ≤ c2‖u‖2 with optimal values c1 = 1, c2 = √
n . (103)

For n → ∞ the latter inequality becomes unbounded from above.
In addition to the solvability condition we are interested in an estimate of the

stability of (100): In generalwe consider a sequenceof discrete saddle point problems
with increasing mesh densities h → 0 and therefore with increasing dimensions. Let
k = 0, 1, 2, 3, .. denote a sequence of discretizations with increasing mesh densities,
i.e., we consider (

Ak BT
k

Bk 0

)(
dku
dkp

)
=

(
rku
rkp

)
(104)

with Ak ∈ R
nk×nk , Bk ∈ R

mk×nk , …, where the dimensions nk ,mk increase with the
sequence of k. In addition to the solvability condition we are interested in an estimate

‖dku‖? + ‖dkp‖? ≤ c (‖rku‖? + ‖rkp‖?) (105)

with a constant c independent on k, i.e., independent of the increasingmesh densities.
For a meaningful analysis we have to specify the norms entering (105) carefully. For
the stability requirement this choice is rather important, because constants appearing
in the relations between equivalent (discrete) norms depend on the dimension of the
problem, which goes to infinity with h → 0. Obviously, the stability is a concept
which has to be applied to a sequence of discretized boundary value problems.

Incidental remark: In order to get an impression on the well-known dependency of
some characteristic values of a discretized system on the mesh density we perform
an eigenvalue analysis of a one-dimensional elasticity problem, minimizing the
discrete energy potential functional on B ∈ [0, 1] = Bh =

⋃
e

Be

	(uh) =
∑
Be

∫
Be

(
1

2
EA(u′

h)
2 − f uh

)
dx . (106)

In order to find the minimum we compute δ	(uh, δuh) = 0, with
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Fig. 19 Minimal eigenvalue depicted over number of unknowns (dof)

δ	(uh, δuh) =
∑
Be

∫
Be

(
δu′

h EA u′
h − δuh f

)
dx . (107)

We investigate the evolution of the minimal eigenvalue λmin for the eigenvalue
problems

(Kk − λkIk)vk = 0 and (Kk − λkMk)v
k = 0 , (108)

where Kk is the stiffness matrix, λk the associated eigenvalue to the eigenvector vk ,
Ik the identity and Mk the mass matrix. We consider a truss clamped at the edges,
i.e., the Dirichlet boundary conditions u(0) = u(1) = 0, a Young’s modulus E = 1,
a cross section A = 1. Figure19 shows the evolution of the minimal eigenvalues with
respect to mesh refinement.

Obviously, the eigenvalue problem (108)1 exhibits a decrease of the amplitude of
the lowest eigenvalue with increasing mesh density (from h = 1/2 → h = 1/500)
whereas the formulation (108)2 seems to offer a lower bound for min(λk). �

6.3 A Saddle Point Problem-Finite-Dimensional Case

Let us concentrate on the saddle point problem for a linear incompressible material
behavior. Starting from the general strong form of elasticity given in (62) and sub-
stituting the pressure as an additional unknown field as p = λ tr(ε(u)) leads for the
incompressible case λ → ∞ to

div(2μ ε(u) + p I) + f = 0 ,

tr(ε(u)) = 0 ,

u = 0 on ∂BD ,

σ · n = t on ∂BN .

(109)

The solution of this problem is similar to the saddle point of the potential
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	(u, p) =
∫
B

(μ∇su : ∇su + p div(u) − f · u) dV −
∫

∂BN

t · u dA (110)

The variational approach and a finite element discretization leads to the finite-
dimensional saddle point problem

numele∑
e=1

{∫
Be

2μ∇sδuh : ∇suh dv︸ ︷︷ ︸
a(δuh,uh)

+
∫
Be

ph div(δuh)dv︸ ︷︷ ︸
b(δuh, ph)

}
−

∫
Be

f h · δuh dv︸ ︷︷ ︸
f (uh)

= 0

numele∑
e=1

∫
∂Be

δph div(uh)dv︸ ︷︷ ︸
b(uh, δph)

= 0 .

(111)

The equivalent problem is the stationarity requirement of the discrete Lagrange func-
tional

Lh(du, dp) = 1

2
dTu Ah du − dTu f h + dTp Bh du , (112)

i.e., δduLh = 0 and δdpLh = 0, which leads to

δduLh = δdTu
{
Ahdu − f h + BT

h dp
} ∀ δdu ,

δdpLh = δdTp
{
Bh du

} ∀ δdp ,
(113)

where the field quantities have been substituted by the approximations

uh = INu du , δuh = INu δdu , ph = INp dp , δph = INp δdp , (114)

with IN and d denoting the shape functions and nodal values corresponding to the dis-
placements, pressure and its virtual counterparts. The solution of this set of algebraic
equation follows from [

Ah BT
h

Bh 0

] [
du
dp

]
=

[
f h
0

]
, (115)

with Ah ∈ IRn×n, Ah = AT
h and positive definite, Bh ∈ IRm×n, f n ∈ IRn and m < n.

The physical interpretation of m < n is obvious, there must be less constraints than
“free” variables. Obviously, we have the “identical” structure as we obtain from
equation (111). Now we have to ensure that (115) is solvable for all right-hand
sides f h, following the remarks of Devendran et al. (2009). This is of course the
fact if the whole matrix is invertible, i.e., nonsingular. Let us consider the congruent
transformation, known as Sylvester’s law of inertia

[
Ah BT

h
Bh 0

]
=

[
I 0

BhA
−1
h I

] [
Ah 0
0 −BhA

−1
h BT

h

] [
I A−1

h BT
h

0 I

]
, (116)
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this transformation preserves the number of positive and negative eigenvalues (but not
their numerical values). However, our system has full rank if the Schur complement

Sh = −BhA
−1
h BT

h (= STh ) (117)

is nonsingular. In this case Sh is invertible and we can solve system (115). The full
rank requirement is equivalent to

dTp Bh A
−1
h BT

h dp > 0 ∀ dp ∈ IRm\0, (118)

i.e., the Schur complement is negative definite. Due to the assumption that Ah and
therefore A−1

h is positive definite we argue

BT
h dp = 0 iff dp = 0 . (119)

This means that the kernel of BT , i.e.,

Ker(BT
h ) := {

dp ∈ Rm : BT
h dp = 0

}
, (120)

is trivial, i.e., the image of BT is

Im(BT
h ) = IRm, (121)

in other words BT
h ∈ IRn×m, with m < n has full column rank. If this conditions are

fulfilled the system (115) is invertible, i.e.,

[
Ah BT

h
Bh 0

]−1

=
[
A−1
h (I − BT

h S
−1
h BhA

−1
h ) A−1

h BT
h S

−1
h

S−1
h BhA

−1
h S−1

h

]
. (122)

Let β2 > 0 denote the smallest singular value of Bh. The condition that the smallest
eigenvalue β, is greater than zero is directly related to the inf-sup condition of saddle
point problems, which states

inf
dp∈IRm\0

sup
du∈IRn\0

dTp B
T
h du

‖dp‖ ‖du‖ ≥ β2 > 0 (123)

or equivalently

max
du∈IRm\0

dTp B
T
h du

‖du‖ ≥ β2 ‖dp‖ ∀ dp ∈ IRm . (124)

The independency of the mesh size, as discussed for Eq. (105), demands here β to
be bounded above zero for h → 0.



Engineering Notes on Concepts of the Finite Element Method for Elliptic Problems 35

Furthermore, we obtain the bounds

‖du‖Ah ≤ ‖f h‖A−1
h

≤ 1

α
‖f h‖

‖dp‖ ≤ 1

β
‖f h‖A−1 ≤ 1

α β
‖f‖ ,

(125)

with the energy norm ‖du‖A =
√
dTuAdu. Obviously, if β is small the bound for dp

gets large.

Numerical Inf-Sup Test The numerical inf-sup test was proposed by Chapelle
and Bathe (1993). In order to evaluate the inf-sup constant we use the fact that it is
equivalent to the square root of the smallest eigenvalue of

(
Bh M

−1
u,h B

T
h − �Mp,h

)
dp = 0 . (126)

with the global mass matrices Mu,h, Mp,h as

Mu,h =
numele∑
e=1

∫
Be

IBT
u IBu dv and Mp,h =

numele∑
e=1

∫
Be

INT
p INp dv, (127)

whereas, IBu contains spatial derivatives of the shape functions such that it holds
εh = IBu du. For exemplary purposes, the inf-sup stability is investigated by means
of an inf-sup test on the example of the well-known Q1P0 and T2P0, representing
elements with a discontinuous pressure approximation, and the T2P1, representing
an element with a continuous pressure approximation, see Hood and Taylor (1974).
The considered boundary value problem is a simple supported rectangle in 2D and
brick in 3D, whereas a consecutive number of mesh refinements is considered. The
statement on the inf-sup criterium of the considered elements are well known and
the formal proofs can be found in the literature, e.g., Boffi et al. (2009). The T2P1
element is a famous representative of the Taylor–Hood family, which is well known
to be inf-sup stable. In contrast the Q1P0 formulation is a text book example for an
element which does not satisfy the inf-sup criterium neither in the two-dimensional
nor in the three-dimensional case. Interestingly the T2P0 formulation fulfills the inf-
sup condition in the two-dimensional case but fails in three dimensions. The depicted
results in Fig. 20 approve numerically the statements on the inf-sup stability of the
elements: In 2D the T2P0 and the T2P1 elements have an approximately constant
� > 0, whereas � tends to zero for the Q1P0 element. In 3D, only the T2P1 seems
to have a bounded value for �. Of course, a purely numerical check of the LBB
condition is not sufficient, but it gives a first impression of the properties of the
solution. To be save, a rigorous mathematical proof is needed.
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Fig. 20 Inf-Sup test results in 2D (left) and 3D (right). The inf-sup test is satisfied if � is bounded
above zero, independent of the element size
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A Sobolev and Hilbert Spaces

In the following we will use the Sobolev and Hilbert Spaces, they are based on the
space of square integrable functions on B:

L2(B) = {
u : ‖u‖2L2(B) =

∫
B

|u|2dv < +∞}
. (128)

Let s ≥ 0 be a real number, the standard notation for a Sobolev space is Hs(B) and
Hs(∂B) with the inner products and norm

(u, u)s,B , (u, u)s,∂B and ‖u‖s,B , ‖u‖s,∂B , (129)

respectively. For s = 0 the space H 0(B) represents the Hilbert space L2(B) of all
square integrable functions, i.e.,

L2(B) = H 0(B) = {u ∈ L2(B)} . (130)

If s is a positive integer the spaces Hs(B) consist of all square integrable functions
whose derivatives up to the order s are also square integrable, i.e.,



Engineering Notes on Concepts of the Finite Element Method for Elliptic Problems 37

Hs(B) = {
u +

s∑
α=1

Dαu ∈ L2(B)
}
. (131)

Here we shall use the semi-norms

|u|k,B :=
√∑

α=k

|Dαu|2L2(B)
, k = 0, 1, . . . , s , (132)

and the norm

‖u‖s,B :=
√∑

k≤s

|u|2k,B. (133)

Critism:This expression for the norm does not take into account a typical length scale
l of the problem, i.e., we are adding, for example, a square integrable function |u|2L2(B)

and its square integrable derivative |u′|2L2(B)
. Without any physically meaningful

parameters these expression is hardly to interpret. This could be avoided by using
the expression

‖u‖s,B :=
√∑

k≤s

ldk |u|2k,B , (134)

where d characterizes the dimension of B ⊂ R
d, Boffi et al. (2013).

With Dα as the α-st weak differential operator. Thus the often used spaces H 1(B)

and H 1
0 (B) are defined by

H 1(B) = {
u + D1u ∈ L2(B)

}
, (135)

and
H 1

0 (B) = {
u ∈ H 1(B) : u = 0 on ∂B}

. (136)

For completeness we introduce the spaces H 2(B) and H 2
0 (B) defined by

H 2(B) = {
u + D1u + D2u ∈ L2(B)

}
, (137)

and

H 2
0 (B) = {

u ∈ H 2(B) : u = 0 and
∂u

∂n
= 0 on ∂Bu

}
. (138)

For negative superscripts, i.e., H−s(B) with s > 0, the spaces are identified with
the duals of Hs

0(B):
H−s(B) = (Hs

0(B))′ . (139)

For example, the norm associated to H−1(B), which is the dual of H 1
0 (B), is defined

as
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‖u‖−1,B = min
v∈H 1

0 (B)\0
(u, v)0,B
‖v‖1,B . (140)

The norm associated to H−1/2(∂B), the dual of H
1/2
0 (∂B), is defined as

‖u‖−1/2,∂B,0 = min
v∈H 1/2 (∂B)\0

(u, v)

‖v‖1/2,∂B
. (141)

The Hilbert spaceHm
0 (B) is a closed subspace ofHm(B); furthermore isH 0

0 (B) =
L2(B).

. . . H−2(B) ⊇ H−1(B) ⊇ L2(B) ⊇ H 1
0 (B) ⊇ H 2

0 (B) . . .

. . . ‖u‖−2,B ≤ ‖u‖−1,B ≤ ‖u‖0,B ≤ ‖u‖1,B ≤ ‖u‖2,B . . .
(142)

For tensorial Sobolev spaces, e.g., the three-dimensional tensor product space

Hs(B) × Hs(B) × Hs(B) (143)

we use the abbreviation

[Hs(B)]3 =
3∏

i=1

Hs(B) and analogously [L2(B)]3 =
3∏

i=1

L2(B) . (144)

Let u ∈ R
3 and set the Hilbert space

H (div;B) = {
u ∈ [L2(B)]3 : div v ∈ L2(B)

}
, (145)

with the associated norm

‖v‖H (div;B) = {‖v‖2 + | div v|2}1/2
. (146)
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