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Abstract. Cloud applications are by nature dynamic and must react to
variations in use, and evolve to adopt new Cloud services, and exploit
new capabilities offered by Edge and Fog devices, or within data centers
offering Graphics Processing Units (GPUs) or dedicated processors for
Artificial Intelligence (AI). Our proposal is to alleviate this complexity
by using patterns at all stages of the Cloud application life-cycle: deploy-
ment, automatic service discovery, monitoring, and adaptive application
evolution. The main idea of this paper is that it is possible to reduce the
complexity of composing, deploying, and evolving Cross-Cloud applica-
tions using dynamic patterns.

1 Introduction

The question is not if Cloud computing should be used, but how: There are
concerns about private data, and consequently the simultaneous use of private
and public Cloud; there are questions about vendor lock-in and portability; there
are questions about the best deployment models, like deploy a Virtual Machine
(VM) and a database in that machine, or use a database as a service offered in
the Cloud; there are questions about scalability and maintenance of the deployed
application as application use and Cloud offerings evolve over time. Furthermore,
applications in the future will need to relate to major IT-trends1 like wearable
devices and sensors, mobility of users, and strong security requirements.
1 https://www.iqvis.com/blog/cloud-computing-predictions-2020/.
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Today, a decade into the era of Cloud computing, the situation is similar to
the one faced a decade into the era of object-oriented programming when soft-
ware systems grew in complexity making them exponentially harder to develop
and maintain. There was a need for abstractions [30] and the identification of best
practices, which gave raise to what became known as design patterns [10]. With
growing software system complexity this again led to architectural patterns [26],
and recently to microservices patterns [6] to help the design of distributed appli-
cations in the Cloud.

Even though such patterns capture the best practices and may help the design
and initial deployment of Cloud applications, the current state of the art fails to
capture the dynamic nature of Cloud applications. The Cloud deployment must
react to variations in use, adopt new Cloud services, and exploit new capabili-
ties offered by Edge and Fog devices, or within data centers offering GPUs or
dedicated processors for AI. The Cloud services, virtual and physical resources,
and their combinations – in the core Cloud, at the Edge, or in the Fog – will
herein be referred to collectively as Cloud capabilities.

Autonomic computing [20] applied to the application Cloud deployment can
remedy some of the concerns above. This requires a continuous feedback con-
trol loop: Monitor, Analyse, Plan, Execute—with Knowledge (MAPE-K) [17].
There are already successful utility based approaches to autonomic application
configuration management in context aware mobile computing [22] and ubiq-
uitous computing systems [28]. In the novel Multi-cloud Execution ware for
Large scale Optimised Data Intensive Computing2 (MELODIC) framework these
approaches are extended to Cross-Cloud autonomic application deployment and
run-time management [14]. These approaches assume that the application to be
deployed can be modeled as a set of interconnected components or objects [25],
and there are many frameworks based on dialects of cloud modeling languages [2].
MELODIC exploits the application model in The Cloud Application Modelling
and Execution Language (CAMEL) [1], and can thus be seen as a complete mod-
elsrun.time [16] framework that has already been successfully applied to several
demanding Computational Intelligence (CI) [19] applications [15].

An issue with this approach is the Planning part of the MAPE-K loop since
finding the best application configuration for a given execution context is a com-
binatorial optimization problem whose time complexity is typically exponential
in the number of application components, and possibly also the Cloud capa-
bilities offered by the Cloud providers that may host the application’s compo-
nents. The complexity of the problem remains hard even though it is possible in
many cases to find algorithms that work well for smaller configurations, e.g. an
adapted and improved version of the Nondominated Sorting Genetic Algorithm
II (NSGA-II) [21] is used in the DECIDE3 project to optimize the problem of
selecting the most appropriate cloud services for an application that needs to
comply with a set of non-functional requirements [24].

2 https://melodic.cloud/.
3 https://www.decide-h2020.eu/.
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However, a better approach to deal with the complexity could be to iden-
tify statically the application topology and architecture as a software pattern.
The application topology pattern sub-graphs could then be mapped onto known
classes of deployment patterns. This would reduce the problem at run-time to
select the most suitable deployment patterns for the current application exe-
cution context. This paper will explore this vision. Section 2 will show how
the application can be statically reduced to a set of patterns. Section 3 dis-
cusses Cloud deployment patterns and how they can be used for fast deployment
decisions. The application life-cycle considerations are discussed in Sect. 4, and
Sect. 5 elaborates on the consequences of using patters for application manage-
ment and adaptation.

2 Software Patterns and Semantics

There are often practical issues which limit portability and interoperability of
legacy or even native Cloud applications [4]: different data formats, parame-
ters semantics, unclear descriptions of the exposed Application Programming
Interfaces (APIs), and so on. Furthermore, many vendors try to bind their cus-
tomers to their own platform, making it difficult or expensive for them to port
their applications to another environment when needed An effective approach,
enabling automated reasoning, is the adoption of semantic representations, and
specifically ontologies, which is a formal, machine readable knowledge representa-
tion by means of a set of domain related concepts and the relationships between
those concepts. The Web Ontology Language4 (OWL) is a semantic mark-up lan-
guage for publishing and sharing ontologies on the World Wide Web (WWW). A
number of ontologies related to Cloud computing emerged in the past few years.
Androcec et al. [3] provides an overview of Cloud Computing ontologies, their
types, applications and scope. Deng et al. [9] presents a formal catalog represen-
tation of Cloud services that model, with ontologies, a range of Cloud services
and their processes. Takahashi et al. [29] use ontologies to describe cybersecu-
rity operational information such as data provenance and resource dependency
information.

There are no formal, standard, and universally accepted languages to describe
design and Cloud patterns in a uniform manner. Semantic based languages have
been proposed in literature to formalize and categorize patterns: Dietrich and
Elgar defined an ontology based model, called Object Design Ontology Layer
(ODOL) [18] that defines a series of OWL classes and properties to describe
patterns, focusing on the description of the application context of a pattern,
analyzing its possible uses and identifying real implementation of its partici-
pants [18]. On the other hand, it neglects other aspects of patterns, like their
behavior or the different relationships existing among their participants, thus
losing expressiveness.

The mOSAIC project has developed Cloud services and patterns descrip-
tion based on semantic technologies [5]. The defined Semantic Model – based
4 https://www.w3.org/TR/owl2-overview/.

https://www.w3.org/TR/owl2-overview/
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on standard World Wide Web Consortium5 (W3C) semantic representation lan-
guages OWL and Semantic Markup for Web Services6 (OWL-S), and on their
integration with the ODOL model – is able to represent in a machine readable
representation Cloud Services – with their functional and non-functional features
– and Cloud Patterns, which represent correlations and composition of Cloud
services according to well established design, architectural and process patterns.
The mOSAIC Cloud Ontology has been adopted by the Institute of Electrical
and Electronics Engineers7 (IEEE) Standard for Intercloud Interoperability and
Federation8 (SIIF).

Figure 1 shows the Semantic model as a graph, structured into five conceptual
layers. The graph represents concepts (graph nodes) and relationship (graph
edges) at different layers. In each layer relationships among concepts of the same
layer are represented, in addition to inter-layer relationships.

The Application Software Architectural Patterns layer, labeled (4) in Fig. 1,
represents the description of patterns describing the application to be deployed
on a platform where an application pattern represents a composition of applica-
tion components embodying application domain functionality. The Cloud Pat-
terns layer, layer (3) in Fig. 1, represents the semantic description of agnostic
and vendor dependent patterns. It represents patterns at the Infrastructure as a
service (IaaS) and at the Platform as a Service (PaaS) level. The Services layer,
layer (2) in Fig. 1, represents the semantic annotation of the provider dependent
platform services and the supporting ontologies needed to identify the plat-
form provider supported operation, input and output parameters. This layer
presents details of the provider platform architecture, the functionality exposed
and the underlining details. This layer contains also the semantic description
of the agnostic platform services exposed through an ontology that exposes in
vendor neutral terms platform resources, operations and exchanged parameters.
This layer is grounded onto the two underneath layers - representing the ground-
ing of the semantic representation, and following the Web Service Description
Language (WSDL) standard: the Operations layer, layer (1) in Fig. 1, that rep-
resents the syntactic description of the operation and functionality exposed by
the platform services, and provides a machine-readable description of how the
service can be called, what parameters it expects, and what data structures
it returns; and the Parameters layer (layer 0 in Figure) which represents the
description of the data type exchanged among services as input and output of
the operations.

3 Deployment Patterns

Microservices are a key pattern both in terms of software engineering and in
terms of software management in terms of deployment and configuration of
5 https://www.w3.org/.
6 https://www.w3.org/Submission/OWL-S/.
7 https://www.ieee.org/.
8 https://standards.ieee.org/project/2302.html.
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Fig. 1. The Semantic Model as a graph with five layers highlighting the generic and
provider agnostic side, and the platform and vendor specific side. The semantic rep-
resentations of both sides are fundamental for defining the equivalence among the
different levels and to enable semantic inference and matchmaking within a coherent
pattern based methodology.

different services that contribute to an overall application. Microservices refer
to atomic and individual services with a single but well-defined aim, that
are deployed autonomously [8] and in composition formulate a service (i.e.
application). Given that each microservice is deployed individually, the over-
all deployment of an application raises the challenge of how different microser-
vices are deployed, i.e. how the overall deployment of the application can be
optimized. The latter becomes even more challenging in cloud infrastructure
deployments given the distributed underlying infrastructures and the different
types of resources that can be provided, e.g. VMs, containers, or bare metal; and
the way these resources are connected, e.g. bandwidth and latency.

Deployment patterns regard the process of identifying the optimal actions
and practices that will automate the deployment and execution of services in
a computing infrastructure, such as a computing Cloud [7], meaning how the
different microservices are deployed in the same VM for example or in differ-
ent VMs with specific connection requirements and constraints between these
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VMs. Amato et al. [12] propose a pattern-based orchestration methodology that
describes the composition of a Cloud service and provides information regarding
the way the service should be deployed. The same authors suggest that a way to
orchestrate more efficiently the computing infrastructure and deploy the services
on top of them is related to the proper description of the services [13]. When the
services are properly defined, with respect to their needs, then the deployment
is adjusted in order to achieve higher performance. Yamato proposed a platform
that analyses the computing infrastructure usage during deployment in order to
achieve high performance [31]. Still, the challenge of the proper placement of the
services in heterogeneous environments such as a computing Cloud is valid.

Furthermore, there are several frameworks that aim at addressing the afore-
mentioned deployment patterns and configurations challenge. Octopus Deploy9

is a tool that is used for the deployment of services in cloud computing infras-
tructures and automates the process of the application deployment. Through
Octopus Deploy run-time adaptation can be achieved since it understands pos-
sible infrastructure changes and dynamically adjust. IBM’s WAS10 deployment
manager is a yet another production tool whose purpose regards the adminis-
tration and orchestration of application services in WAS deployment shells. In
addition to the above-mentioned tools, Google Cloud Deployment manager11

regards a deployment service that speeds up the configuration and orchestra-
tion of services hosted in Google Cloud Platform. The Runtime Configurator of
this Deployment manager allows the service provider to dynamically configure
services.

One of the key enablers for optimized deployment patterns are the software
patterns and semantics, which provide the ground for describing and character-
izing the microservices to be deployed. Approaches aim at analyzing the capabil-
ities of the microservices through their semantic descriptions, and the associated
requirements in order to identify the deployment patterns in Cloud environments
by utilizing information about the current state of the Cloud infrastructures
where the services are to be deployed, the foreseen availability of resources, the
failure estimations, etc. At the same time such approaches must take additional
aspects into consideration, such as the interdependent services and the data and
network dimensions. An additional aspect to deployment patterns generation
and configuration refers to their adaptation during run-time given the services
evolution, the utilization of specific microservices of the application, and the
infrastructure evolution. The latter enables the provision of adaptive deploy-
ments through the identification and dynamic adaptation of the deployment
patterns.

9 https://octopus.com/.
10 https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liaag/wecm/

l0wecm00 was deployment manager.htm.
11 https://cloud.google.com/deployment-manager/.

https://octopus.com/
https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liaag/wecm/l0wecm00_was_deployment_manager.htm.
https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liaag/wecm/l0wecm00_was_deployment_manager.htm.
https://cloud.google.com/deployment-manager/
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4 Cloud Application Life-Cycle

The application life-cycle of multi- and cross-Cloud native applications has var-
ied to what the literature in software engineering reported. The development of
Cloud native applications involve shorter and faster development cycles, and the
operation activities have now a more prominent role than before. Users expect
Cloud applications to be always available and perform well, which implies that
application providers need to respond quicker to malfunctions or bottlenecks.
This has created the need to merge both the development and operation teams
into one, namely the DevOps [27], which aim at being able to continuously ’archi-
tect’, develop, integrate, test, deploy and operate the application. Furthermore,
in order to understand what needs to be improved in the application and to
provide always a responsive and available solution, means have to be provided
to monitor the different components of the application and be able to deploy
automatically, these components into a new configuration that responds to the
user’s needs and expectations.

The development of multi- and cross-Cloud native applications deployed on
a hybrid scenario pose several challenges, both in development and operations
time such as:

• Applications need to be always responsive in terms of availability and perfor-
mance, among other aspects, under this hybrid Cloud configuration, especially
when the micro services of the application are deployed on different Cloud
resources from different Cloud Service Providers (CSP). To achieve that, the
health and conditions of the application micro services should be continuously
monitored in order to be able to respond to malfunctions or inefficiencies at
operation time. To this end, and to ensure a complete availability, the appli-
cation shall be able to self-adapt itself and redeployed in a new appropriate
configuration.

• Communication in terms of information exchange among the micro services
and different components of the multi-Cloud application: As systems evolve
and grow, the management of endpoints becomes cumbersome. To this end,
there are tools, e.g. Kubernetes12 that support the orchestration of containers
and can manage such endpoints, can be of assistance, but the learning curve
is high.

• Vendor lock-in: Each CSP offers its own technology, libraries and frameworks
that should be used when deploying an application on their services. Further-
more, porting data and applications from one Cloud service to another can
be challenging from the technical and regulatory point of view, although the
container approach eases this task to a great extent. Moreover, article 6 of
the new regulation of Free Flow of Data [11] aims to facilitate this, through
the adherence of the CSPs to the code of conducts currently being developed.

• Discovery, selection, management of the most appropriate Cloud service or
combination of cloud services for a specific application: The selection of cloud
services is currently more and more complex taking into consideration the

12 https://kubernetes.io/.

https://kubernetes.io/
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plethora of offerings and configurations there exist, this activity becomes
even more challenging. To alleviate this, cloud service brokers such as Cloud-
more13, Computenext14, Nephos hybrid Cloud management15, Intercloud16,
IBM cloud brokerage solutions (previously Gravitant17) and Jamcracker18,
come into play. However, these solutions do not present an easy way to select
Cloud services or do not consider the combination of multiple Cloud resources
to respond to the needs of multi-Cloud native applications. This situation can
also be extended to the monitoring of the non-functional characteristics of the
different Cloud resources. An initial solution to respond to this challenge has
been implemented in the DECIDE project19, as part of the Advanced Cloud
Service meta-Intermediator (ACSmI).

5 Application Adaptation

There are many types of Cloud applications. Our vision assumes that the appli-
cation will run over quite some time, and the deployment must therefore consider
the various factors indicated in the previous Sect. 4 life-cycle discussion. Addi-
tionally, the application may have intrinsic variability caused by the data it
processes or caused by the application users. Consider for instance an airline
industry application responsible for scheduling planes, crews certified for some
type of planes, and the passengers. It must be available around the clock, all
days around the year. It may experience variation in demand and use between
day and night, and between week days and weekends. It may see changes in
users’ location as the earth rotates. Finally, if there is a major incident closing
a major airport hub, there may temporary be a large demand for resources to
re-schedule planes, crews and passengers to clear this exceptional situation as
quickly as possible. All of these situations call for the application to be adaptive
to its current execution context.

It will be costly and error prone to have a human DevOps team constantly
monitoring the application and exploiting the elasticity of the Cloud computing
paradigm to provide or to remove resources as the demand fluctuates. Current,
autonomic approaches based on the MAPE-K loop are reactive. In other words,
when some Complex Event Processing (CEP) shows that the monitored sensors
indicate a change in the application’s execution context in the analysis phase,
there must be an efficient planning phase finding a better deployment solution
and executing this solution before the application context has changed again.
The planning phase typically involve solving a combinatorial optimization prob-
lem whose time complexity grows exponentially with the number of factors to

13 https://web.cloudmore.com/.
14 https://www.computenext.com/platform/enterprise-cloud-brokerage.
15 http://www.nephostechnologies.com/technology/hybrid-cloud-management/.
16 https://www.intercloud.com/platform/overview.
17 https://www.ibm.com/us-en/marketplace/cloud-brokerage-solutions.
18 https://www.jamcracker.com/.
19 https://www.decide-h2020.eu.
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consider for the next deployment. Using anytime algorithms will produce the
new deployment configuration solution within the time window of stability for
the current execution context. However, this may severely impact the solution
quality, and consequently the usefulness of the adapted deployment.

Consequently, it is paramount to reduce the number of factors to consider
in the planning phase. Knowing the software patterns of the application, and
their surjective mapping onto architecture patterns, and the surjective mapping
of these again onto deployment patterns will reduce the decision problem to
select the deployment pattern that is best suited for the application’s current
context. This is essentially a sorting problem that can be solved in polynomial
time. Consider as an example a very simple application with a front-end web-
server and a back-end database. Some deployment patterns can be pre-computed
for these components: They can be co-located on the same VM, they can be
on separate VMs, and the web-server and the database can both be hosted as
services offered by the Cloud platform provider. If cost is the main concern,
the current cost of using any of these three deployment patterns can quickly be
retrieved from the potential Cloud providers, and the less expensive pattern is
selected and enacted.

6 Discussion

The significant rise of Cloud computing models, services and solutions [23], in
conjunction with automatic adaptation platforms create a very complex envi-
ronment for the development and maintenance of modern applications. Also,
modern applications are becoming more complex and integrated with various
sources of data in different ways. Applications may process huge amount of data
in real-time, based on data streams or complex data lakes. On the other hand,
even when using Cloud computing, the cost of computing resources is a signif-
icant element of the whole Total Cost of Ownership (TCO) of an Information
Technology (IT) system. The rising complexity of modern applications requires
dedicated methods to handle this issue. As presented in this paper, by using well
defined, described, implemented, and tested patters, it is possible to reduce the
complexity of modern Cloud applications. It is very important to distinguish the
Cloud deployment patterns and software development patters. The first ones are
dedicated patters representing application architecture, which handle typical sit-
uation for the deployment into the Cloud. Use of these predefined patterns limits
the impact of the complexity of deployment. Also, there is limited need for test-
ing configurations based on these patterns, as they have already been deployed
and tested. On the other hand, it is still the issue of selecting the right pattern
in the certain moment, especially for some applications where different patterns
must be deployed at a various levels of applications use, e.g. high workload or
low workload. Increasing workload would sometimes even require to completely
redeploy the application with a different deployment architecture.

As automatic application management platforms become standard for the
deployment of modern, complex applications, the importance of deployment
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patterns is increasing. Automatic adaptation platforms need exploit predefined,
well-described, and tested patterns; and select the best one for the particular sit-
uation. Without patterns, it would be very difficult to use these platforms, since
one must define and hard code, for each situation, a particular type of deploy-
ment. Using patterns, one can measure the effectiveness of each deployment
and learn which pattern is the most suitable for the given or similar situations.
According to our knowledge, the only competitive approach using patterns for
Cloud deployments is using one deployment pattern for all situations, and hard
code it into the application configuration. This is a less flexible approach and
requires more effort for implementation and testing that the approach outlined
here with automatic application adaptation. Also, the static use of patterns lim-
its the potential benefit of automatic adaptation, as adaptation would be limited
to the size of resources, and would not be allowed to change deployment archi-
tecture.

When automatically selecting the best deployment patterns for the given sit-
uation, the automatic adaptation platform is able not only to adjust the amount
of resources given to the application, but also to find more optimal deployment
architecture. We are expecting a rising number of Cloud deployment patterns, as
the complexity of modern applications will be rising. Also, the increasing num-
ber of Cloud services and models will support this trend, in conjunction with
wider usage of automatic adaptation platforms.

7 Conclusion

In this paper we have devised and illustrated a preliminary methodology to sup-
port the complex Cloud application life-cycle consisting of designing, developing,
composing and deploying Cloud applications in a multiservice and multiplatform
scenario, which include possible edge and fog integration. Our proposal is to use
extensively patterns at all stages. We are investigating techniques for automat-
ing the enactment of the different stages of the life-cycle, with use of machine
readable semantic representation of patterns and service, inference, and machine
learning techniques.
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