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Abstract. In opportunistic networks the communication opportunities
(contacts) are intermittent and there is no need to establish an end-
to-end link between the communication nodes. The enormous growth of
nodes having access to the Internet, along the vast evolution of the Inter-
net and the connectivity of objects and nodes, has evolved as Internet of
Things (IoT). There are different issues for these networks. One of them
is the selection of IoT nodes in order to carry out a task in opportunistic
networks. In this work, we implement a Fuzzy-Based System for IoT node
selection in opportunistic networks. For our proposed system, we use four
input parameters: Node’s Distance from Task (NDT), Node’s Remaining
Energy (NRE), Node’s Buffer Occupancy (NBO) and Node Inter Contact
Time (NICT). The output parameter is Node Selection Decision (NSD).
We also implemented a testbed with the same input and output param-
eters and compared its results with the simulation results. The results
show that the proposed system makes a proper selection decision of IoT
nodes in opportunistic networks. The IoT node selection is increased
up to 40% and decreased 38% by decreasing NBO and increasing NICT,
respectively.

1 Introduction

Future communication systems will be increasingly complex, involving thou-
sands of heterogeneous nodes with diverse capabilities and various networking
technologies interconnected with the aim to provide users with ubiquitous access
to information and advanced services at a high quality level, in a cost efficient
manner, any time, any place, and in line with the always best connectivity prin-
ciple. The Opportunistic Networks (OppNets) can provide an alternative way to
support the diffusion of information in special locations within a city, particu-
larly in crowded spaces where current wireless technologies can exhibit conges-
tion issues. The efficiency of this diffusion relies mainly on user mobility. In fact,

© Springer Nature Switzerland AG 2020
L. Barolli et al. (Eds.): BWCCA 2019, LNNS 97, pp. 32-43, 2020.
https://doi.org/10.1007/978-3-030-33506-9_4


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33506-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-33506-9_4

A Fuzzy-Based System for Selection of IoT Nodes in OppNets 33

mobility creates the opportunities for contacts and, therefore, for data forward-
ing [1]. OppNets have appeared as an evolution of the MANETS. They are also
a wireless based network and hence, they face various issues similar to MANETSs
such as frequent disconnections, highly variable links, limited bandwidth etc. In
OppNets, nodes are always moving which makes the network easy to deploy and
decreases the dependence on infrastructure for communication [2].

In Internet of Things (IoT), the traffic is going through different networks.
The IoT can seamlessly connect the real world and cyberspace via physical
objects embedded with various types of intelligent sensors. A large number of
Internet-connected machines will generate and exchange an enormous amount
of data that make daily life more convenient, help to make a tough decision and
provide beneficial services. The IoT probably becomes one of the most popular
networking concepts that has the potential to bring out many benefits [3,4].

OppNets are the variants of Delay Tolerant Networks (DTNs). It is a class
of networks that has emerged as an active research subject in the recent times.
Owing to the transient and un-connected nature of the nodes, routing becomes
a challenging task in these networks. Sparse connectivity, no infrastructure and
limited resources further complicate the situation [5,6]. Routing methods for
such sparse mobile networks use a different paradigm for message delivery. These
schemes utilize node mobility by having nodes carry messages, waiting for an
opportunity to transfer messages to the destination or the next relay rather than
transmitting them over a path [7]. Hence, the challenges for routing in OppNet
are very different from the traditional wireless networks and their utility and
potential for scalability makes them a huge success.

In mobile OppNet, connectivity varies significantly over time and is often
disruptive. Examples of such networks include interplanetary communication
networks, mobile sensor networks, vehicular ad hoc networks (VANETS), ter-
restrial wireless networks, and under-water sensor networks. While the nodes in
such networks are typically delay-tolerant, message delivery latency still remains
a crucial metric, and reducing it is highly desirable [§].

The Fuzzy Logic (FL) is unique approach that is able to simultaneously
handle numerical data and linguistic knowledge. The fuzzy logic works on the
levels of possibilities of input to achieve the definite output. Fuzzy set theory
and FL establish the specifics of the nonlinear mapping.

In this paper, we propose and implement a Fuzzy-based system for selection
of IoT nodes in OppNet considering four parameters: Node’s Distance from Task
(NDT), Node’s Remaining Energy (NRE), Node’s Buffer Occupancy (NBO) and
Node Inter Contact Time (NICT) for IoT node selection. We show the simulation
results for different values of parameters.

The remainder of the paper is organized as follows. In the Sect. 2, we present
ToT and OppNet. In Sect. 3, we introduce the Fuzzy-based simulator system and
testbed implementation. The evaluation results are shown in Sect.4. Finally,
conclusions and future work are given in Sect. 5.
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2 IoT and OppNets

2.1 IoT

IoT allows to integrate physical and virtual objects. Virtual reality, which was
recently available only on the monitor screens, now integrates with the real world,
providing users with completely new opportunities: interact with objects on the
other side of the world and receive the necessary services that became real due
the wide interaction [9]. The IoT will support substantially higher number of
end users and nodes. In Fig. 1, we present an example of an IoT network archi-
tecture. The IoT network is a combination of IoT nodes which are connected
with different mediums using loT Gateway to the Internet. The data transmitted
through the gateway is stored, processed securely within cloud server. These new
connected things will trigger increasing demands for new IoT applications that
are not only for users. The current solutions for IoT application development
generally rely on integrated service-oriented programming platforms. In partic-
ular, resources (e.g., sensory data, computing resource, and control information)
are modeled as services and deployed in the cloud or at the edge. It is difficult to
achieve rapid deployment and flexible resource management at network edges,
in addition, an IoT system’s scalability will be restricted by the capability of the
edge nodes [10].

2.2 OppNets

In Fig.2 we show an OppNet scenario. OppNets comprises a network where
nodes can be anything from pedestrians, vehicles, fixed nodes and so on. The
data is sent from the sender to receiver by using communication opportunity
that can be Wi-Fi, Bluetooth, cellular technologies or satellite links to transfer
the message to the final destination. In such scenario, IoT nodes might roam
and opportunistically encounter several different statically deployed networks
and perform either data collection or dissemination as well as relaying data

IoT Devices IoT.
connected to the Integration Hub

Internet

IoT Gateway

Fig. 1. An ot network architecture.
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between these networks, thus introducing further connectivity for disconnected
networks. For example, as seen in Fig. 2, a car could opportunistically encounter
other IoT nodes, collect information from them and relay it until it finds an
available access point where it can upload the information. Similarly, a person
might collect information from home-based weather stations and relay it through
several other people, cars and buses until it reaches its intended destination [11].

Movement

\j Battery Level

. Buffer Occupancy

Fig. 2. OppNets scenario.

OppNets are not limited to only such applications, as they can introduce
further connectivity and benefits to IoT scenarios. In an OppNet, due to node
mobility network partitions occur. These events result in intermittent connec-
tivity. When there is no path existing between the source and the destination,
the network partition occurs. Therefore, nodes need to communicate with each
other via opportunistic contacts through store-carry-forward operation.

3 Proposed Fuzzy-Based Simulator and Testbed
Implementation

In this work, we use fuzzy logic to implement the proposed system. Fuzzy sets
and fuzzy logic have been developed to manage vagueness and uncertainty in a
reasoning process of an intelligent system such as a knowledge based system, an
expert system or a logic control system [12-25].



36 M. Cuka et al.

3.1 Proposed Fuzzy-Based Simulation System

The structure of the proposed system for the node selection is shown in Fig. 3.
Based on OppNets characteristics and challenges, we consider the following
parameters for implementation of our proposed system:

Node’s Distance to Task (NDT): The distance of a node from the task is
an important parameter. An IoT node will be selected to carry out a task with
high possibility if the node is close to the task.

Node’s Remaining Energy (NRE): The IoT nodes are active and can
perform tasks and exchange data in different ways from each other. Consequently,
some IoT nodes may have a lot of remaining power and other may have very
little, when an event occurs.

Node’s Buffer Occupancy (NBO): In an network that consists of diverse
IoT nodes with different resources, buffer occupancy at a certain time is very
important. Some IoT nodes are in more advantageous position than others, mak-
ing them more likely to deliver messages thus making them busier than others.
Due to high amount of traffic, these nodes’s buffer may overflow affecting the
average throughput and the dropping ratio.

Node Inter Contact Time (NICT): The inter-contact time measures the
time between the end of previous contact and the beginning of a new one between
two IoT nodes. Shorter inter-contact time means having more opportunities to
forward the message to the next IoT node.

Our proposed system consists of one Fuzzy Logic Controller (FLC), which is
the main part of our system and its basic elements which are shown in Fig. 4.
They are the fuzzifier, inference engine, Fuzzy Rule Base (FRB) and defuzzifier.
The FRB forms a fuzzy set of dimensions |T(NDT)|x |T(NRE)| x |T(NBO)| x
|T(NICT)|, where |T'(z)| is the number of terms on T'(z). We have four input
parameters, so our system has 81 rules. The term sets for these parameters are
shown in Table 1. The control rules which are shown in Table 2 have the form:
IF “conditions” THEN “control action”.

These parameters will be represented from numerical form into linguistic
variables. We use fuzzy membership functions to quantify the linguistic term.
The fuzzy membership functions of our system our shown in Fig. 5. We use trian-
gular and trapezoidal membership functions for FLC, because they are suitable
for real-time operations [26].

3.2 Testbed Implementation

In order to evaluate the simulation system, we have implemented a Testbed as
shown in Fig. 6. The testbed setup consists of the hardware and software part.
Different data sensing sensors, are mounted on Arduino Uno via IoT Tab Shield
4. This sensed data gets collected by a processing device which is connected to
Arduino Uno via USB cable. The processing device consists of Raspberry Pi
3 model B+ which operates on an optimized Debian based system, or a Mac
os laptop. For the software part, we used Arduino IDE to collect the sensed
data, Processing language to read this data and FuzzyC [12] to evaluate which
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Fig. 3. Proposed system model.

Input — Inference Output
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Fuzzy Rule
Base

Fig. 4. FLC structure.

Table 1. Parameters and their term sets for FLC.

Parameters

Term sets

Node’s Distance to Task (NDT)

Near (Nr), Close (Cl), Far (Fr)

Node’s Remaining Energy (NRE)

Low (Lo), Medium (Md), High (Hg)

Node’s Buffer Occupancy (NBO)

Minimum (Min), Medium (Med),
Maximum (Maz)

Node Inter Contact Time (NICT)

Short (Sh), Medium (Mdm), Long
(Lng)

Node Selection Decision (NSD)

Extremely Low Selection Possibility
(ELSP), Very Low Selection
Possibility (VLSP), Low Selection
Possibility (LSP), Medium Selection
Possibility (MSP), High Selection
Possibility (HSP), Very High
Selection Possibility (VHSP),
Extremely High Selection Possibility

(EHSP)

37

of the nodes based on the data is more likely to be selected for a certain task.
The hardware is mounted on different IoT nodes to mimic a real life scenario.
In Fig.6(a) and (b) are shown static and mobile IoT nodes, respectively. In
static IoT nodes, the data is sensed by the sensor mounted in Arduino with IoT
Tab Shield 4, read and processed using the laptop. For mobile IoT nodes, we
use Raspberry Pi 3 model B+ for data reading and processing, which is power

supplied by a 24000 mAh battery with a lcd display for battery level reading.
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Table 2. FRB.
No.NDT|NRE|NBO|NICT|NSD ||No. NDT|NRE NBO|NICT|NSD ||No.NDT|NRE|NBO|NICT NSD
1 |Nr |Lo |Min |Sh EHSP||28 |Cl Lo |Min |Sh VHSP| |55 |Fr Lo |Min [Sh VHSP
2 |Nr |Lo |Min |[Mdm |[VHSP||29 |Cl Lo |Min |Mdm |[MSP ||56 |Fr Lo |Min |[Mdm |LSP
3 |Nr |Lo |Min |Lng |VHSP|30 |Cl Lo |Min |Lng |MSP ||57 |Fr Lo |Min |Lng |LSP
4 |Nr |Lo |Med |Sh EHSP||31 |C1 Lo |Med |Sh HSP ||58 |Fr Lo |Med |Sh MSP
5 |Nr |Lo |Med |Mdm HSP |32 |Cl Lo |Med |Mdm |VLSP||59 |Fr Lo |Med Mdm |VLSP
6 |Nr Lo |Med |Lng |HSP 33 |Cl Lo |Med |Lng |VLSP||60 |Fr Lo |Med |Lng |VLSP
7 |Nr |Lo |Max |Sh HSP |[34 |Cl Lo |Max [Sh LSP 61 |Fr Lo |Max [Sh VLSP
8 |Nr |Lo |Max |[Mdm |[LSP 35 |Cl Lo |Max |Mdm |ELSP ||62 |Fr Lo |Max |[Mdm |[ELSP
9 |Nr |Lo |Max Lng |LSP 36 |Cl Lo |Max |Lng |ELSP ||63 |Fr Lo |Max |Lng |ELSP
10 |[Nr |Md |Min |Sh EHSP ||37 |C1 Md |Min |Sh EHSP||64 |Fr Md |Min |Sh VHSP
11 |[Nr |Md |Min |[Mdm [EHSP||38 |Cl Md |Min |Mdm |[HSP ||65 |Fr Md |Min |[Mdm MSP
12 |[Nr |Md |Min |[Lng |EHSP||39 |Cl Md |Min |Lng |HSP ||66 |Fr Md |Min |Lng |MSP
13 |[Nr |Md |Med Sh EHSP |40 |Cl Md |Med |Sh VHSP||67 |Fr Md |Med |Sh HSP
14 |[Nr |Md |Med Mdm HSP [/41 |Cl Md |Med [Mdm |LSP 68 |Fr Md |Med Mdm |VLSP
15 |[Nr |Md |Med |Lng |HSP |42 |Cl Md |Med |Lng |LSP 69 |Fr Md |Med |Lng |VLSP
16 |[Nr |Md |Max |Sh VHSP||43 |Cl Md |Max |Sh MSP ||70 |Fr Md |Max |Sh LSP
17 |[Nr |Md |Max |[Mdm MSP |44 |Cl Md |Max |Mdm |VLSP||71 |Fr Md |Max |[Mdm |ELSP
18 |[Nr |Md |Max [Lng |MSP |/45 |Cl Md |Max |Lng |VLSP||72 |Fr Md |Max |Lng |ELSP
19 |[Nr |Hg |Min |Sh EHSP ||46 |Cl Hg |Min |Sh EHSP ||73 |Fr Hg |Min |Sh EHSP
20 (Nr |Hg |Min |[Mdm [EHSP|[47 |Cl Hg |Min |Mdm |[EHSP||74 |Fr Hg |Min |Mdm |[VHSP
21 |[Nr |Hg |Min |Lng |EHSP|/48 |Cl Hg |Min |Lng |EHSP||75 |Fr Hg |Min |Lng |VHSP
22 [Nr |Hg |Med [Sh EHSP |49 |C1 Hg |Med |Sh EHSP||76 |Fr Hg |Med |Sh EHSP
23 [Nr |Hg |Med [Mdm |[EHSP||50 |Cl Hg |Med Mdm |[VHSP||77 |Fr Hg |Med |Mdm |[HSP
24 [Nr |Hg |Med |[Lng |EHSP||51 |Cl Hg |Med |Lng |VHSP||78 |Fr Hg |Med |Lng |HSP
25 [Nr |Hg |Max [Sh EHSP||52 |Cl Hg |Max |Sh EHSP ||79 |Fr Hg |Max |Sh VHSP
26 |[Nr |Hg |Max Mdm |[VHSP|/53 |Cl Hg |Max [Mdm MSP ||80 |Fr Hg |Max |[Mdm |[LSP
27 |Nr |Hg |Max |Lng |VHSP||54 |Cl Hg |Max |Lng |MSP ||81 |Fr Hg |Max |Lng |LSP

4 Proposed System Evaluation

4.1 Simulation Results

We present the simulation results in Fig.7. We show the relation between the
possibility of an IoT node to be selected (NSD) to carry out a task, versus NDT,
NRE, NBO and NICT.

In Fig.7(a) and (b), we show how the output parameter NSD is affected
by NRE. IoT nodes with more remaining energy, have a higher possibility to
be selected for carrying out a job. To show how remaining energy affects the
selection of an IoT node, we compare Fig.7(a) with Fig. 7(b) for NICT =0.4,
NBO =0.9. We see that NSD is increased 37%.

In Fig. 7(c) and (d) are shown the simulation results for NDT = 0.5. Compar-
ing Fig.7(c) with (a), when NICT =0.4 and NBO =0.1, we see that that NDS
is decreased 16%. This means that nodes which are far from task, are less likely
to be selected since these IoT nodes will need more resources to reach this task.

In Fig. 7(e) and (f), the NDT is increased to 0.9. We have a further decrease
of NSD with the increase of NDT. In Fig.7(e), for NICT =0.2 to NICT=04
and NBO = 0.1, we see that NSD is decreased 38%. IoT nodes that take a longer
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Fig. 5. Fuzzy membership functions.

(a) Statically deployed IoT Nodes. (b) Mobile IoT Nodes.

Fig. 6. Testbed Implementation.

time to come in contact with other nodes will create less connections, thus the
possibility that the IoT node be selected decreases. To see the effect that buffer
occupancy has on NSD, we take NICT =0.4 for NBO=0.9 and NBO=0.1 in
Fig. 7(f). We see that NSD is increased 40% with the decrease of NBO from
NBO = 0.9 to NBO =0.1. The buffer of some IoT nodes may be occupied or fully
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Fig. 7. Simulation results.

occupied. Since these networks use store-carry-forward mechanism, an occupied
buffer will cause a congestion due to buffer overflow.

4.2 Experimental Results

The experimental results are shown in Fig.8. In Fig.8(a) and (b) are shown
the results for NDT = Near, NRE = Low and NDT = Near, NRE = High, respec-
tively. During the testbed implementation we gathered a lot of data from the
sensors. The simulation results in Fig. 7(a) and (b) are close with experimen-
tal results in Fig.8(a) and (b). However, there are some variations from point
to point which represent the different outside factors that affect experimental
results. In Fig. 8(c) and (d), are shown results for NDT = Close, NRE = Low and
NDT = Close, NRE = High. In Fig. 8(e) and (f), are shown results for NDT = Far,
NRE =Low and NDT =Far, NRE = High. For all the above results, we can see
that the simulation results are close to the experimental results.
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Fig. 8. Experimental results.

5 Conclusions and Future Work

In this paper, we proposed a fuzzy-based IoT node selection system for Opp-
Nets considering four parameters: NDT, NRE, NBO, NICT. We implemented
a testbed and compared experimental results with the simulation results for
the selection of IoT nodes in an Oppnet scenario. The simulation results and
experimental results are close, but in experiment there are some variations.

In the future work, we will also consider other parameters for IoT node selec-
tion and make extensive simulations and experiments to evaluate the proposed
system.
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