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Abstract. Distributed applications are composed of multiple objects.
An object is an unit of computation resource. Conflicting transactions
have to be serialized to keep objects mutually consistent. In this paper,
the energy-efficient purpose ordering (EEPO) scheduler is proposed to
not only serialize multiple conflicting transactions in the significant order
of purposes assigned to the transactions but also reduce the total electric
energy consumption of servers by omitting meaningless methods.
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1 Introduction

A subject doing a job function plays a role [1,2] in an enterprise. In the role-
based access control (RBAC) model [1–3], a role is a set of access rights. An
access right is given in a pair 〈o, op〉 of an abject o [4] and a method op. A sub-
ject granted a role including an access right 〈o, op〉 can manipulate the object
o through the method op by issuing a transaction. A transaction [5,6] is an
atomic sequence of methods issued by a subject to manipulate objects. Con-
flicting methods [6] issued by multiple transactions have to be serialized on an
object to keep the object mutually consistent. There are various ways to serialize
multiple conflicting methods like timestamp ordering (TO) [5] and FIFO [5,6].

In our previous studies, the role ordering (RO) scheduler [3] is proposed to
serialize multiple conflicting transactions in the significant order of roles granted
to subjects and authorization relation [1,2,7] of roles. The RO scheduler does
not consider to reduce the total electric energy consumption of servers to per-
form methods on objects. The energy-efficient role ordering (EERO) scheduler
[8] is proposed to not only serialize multiple conflicting transactions in the signif-
icant order of roles granted to subjects but also reduce the total electric energy
consumption of servers by omitting meaningless methods. In the RO and EERO
schedulers, a subject granted more significant roles is more significant than other
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subjects granted less significant roles. Then, a method issued by a more sig-
nificant subject is performed prior to other methods issued by less significant
subjects. However, this assumption is not true in some types of applications.
For example, suppose a president would like to access to a bank account just
for checking but a manager would like to access to the bank account for trans-
ferring money to make payment. The purpose payment is more significant than
the purpose check in a purpose point of view. Hence, a method issued by the
manager should be performed prior to a method issued by the president.

In this paper, a subject assigns a transaction with a purpose which is a subset
of roles granted to the subject. We first define the purpose-oriented dominant
relation among subjects. Then, the energy-efficient purpose ordering (EEPO)
scheduler is proposed to not only serialize multiple conflicting transactions in
the significant order of purposes but also reduce the total electric energy con-
sumption of servers by omitting meaningless methods. We evaluate the EEPO
scheduler in terms of the total electric energy consumption of servers and the
execution time of each transaction compared with the RO and EERO schedulers.

In Sect. 2, we discuss the significancy of transactions, meaningless methods,
and power consumption model of a server. In Sect. 3, we propose the EEPO
scheduler. In Sect. 4, we evaluate the EEPO scheduler compared with the RO
and EERO schedulers.

2 System Model

2.1 Object-Based Systems with RBAC Model

A server cluster S is composed of multiple servers s1, ..., sn (n ≥ 1) and mul-
tiple clients cl1, ..., cll (l ≥ 1) interconnected in reliable networks. Let O be a
set of objects o1, ..., om (m ≥ 1) [4]. Each object oh is a unit of computation
resource like a file and is an encapsulation of data and methods to manipulate
the data. Objects are distributed on multiple servers. A pair of methods op1 and
op2 conflict if and only if (iff) the result obtained by performing the methods
depends on the computation order. Otherwise, op1 and op2 are compatible. A
transaction is an atomic sequence of methods [5]. A transaction Ti is initiated
in a client cls and issues methods to servers to manipulate objects. In this paper,
we assume each transaction Ti serially issues methods. Each transaction Ti initi-
ated in a client cls is given an identifier tid(Ti) = 〈V (Ti), id(cls)〉 where V (Ti) is
a logical time of the client cls when Ti is initiated and id(cls) is an identifier of
the client cls. For every pair of transaction identifiers tid(Ti) (= 〈V (Ti), id(cl1)〉)
and tid(Tj) (= 〈V (Tj), id(cl2)〉), tid(Ti) < tid(Tj) iff 1) V (Ti) < V (Tj) or 2)
id(cl1) < id(cl2) and V (Ti) ‖V (Tj). A role R is a collection of access rights in
the role-based access control (RBAC) model [1,2]. An access right is specified
in a pair 〈o, op〉 of an object o and a method op. If a subject Sub is granted a
role R including 〈o, op〉, the subject Sub is allowed to invoke a method op on an
object o. Let Srole be a family {R1, ..., Rq} of roles granted to a subject Sub.
Let Subi denote a subject which initiates a transaction Ti.
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2.2 Significancy of Methods

Class methods are ones for creating and dropping an object. Object meth-
ods are ones for manipulating data in an object. Object methods are fur-
thermore classified into change and output types. In an output type method,
data is derived from an object. Change type methods are furthermore clas-
sified into full and partial types. In a full type method, whole data in an
object is fully changed. In a partial type method, a part of data in an object
is changed. A method op1 semantically dominates op2 on an object o (op1 �
� op2) iff an application considers op1 to be more significant than op2. op1 is
semantically equivalent with op2 (op1 ∼= op2) if op1 �� op2 and op2 �� op1.
op1 is more semantically significant than op2 (op1 �� op2) if op1 �� op2 and
op1 	∼= op2. op1 and op2 are semantically uncomparable (op1 ‖ op2) iff neither
op1 �� op2 nor op2 �� op1.

Definition. A method op1 is more significant than another method op2 on an
object o (op1 � op2) iff (1) op1 is a class type and op2 is an object type, (2) op1
is a change type and op2 is an output one, (3) op1 is a full change type and op2
is an partial one, or (4) op1 and op2 are a same object type and op1 �� op2.

A method op1 is significantly equivalent with op2 (op1 ≡ op2) iff op1 and
op2 are a same type and op1 ∼= op2. op1 significantly dominates op2 (op1 �
op2) iff op1 � op2 or op1 ≡ op2. op1 and op2 are significantly uncomparable
(op1 ‖ op2) iff neither op1 � op2 nor op2 � op1.

Suppose a file object F supports six methods create, drop, modify, insert,
delete, and read as shown in Fig. 1. modify � insert since modify is a full change
type method and insert is a partial change type method.

create

drop
modify

insert
read

class type change type

output type

delete
full type

partial type

Fig. 1. Significancy of methods.

2.3 Significancy of Roles

In object-based systems, subjects and objects are referred to as entities.
Each entity ei is given one security class sc(ei) [9]. A security class sc1 can
flow into sc2 (sc1 �→ sc2) iff the information in an entity e1 of a security class sc1
can flow into another entity e2 of a security class sc2. sc1 and sc2 are equivalent
(sc1 ≡ sc2) iff sc1 �→ sc2 and sc2 �→ sc1. sc1 precedes sc2 (sc1 ≺ sc2) iff
sc1 �→ sc2 but sc2 	�→ sc1. sc2 dominates sc1 (sc1 � sc2) iff sc1 ≺ sc2 or
sc1 ≡ sc2.
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Definition. An object o1 is more significant than o2 (o1 � o2) iff sc(o1)
� sc(o2).

A pair of objects o1 and o2 are significantly equivalent (o1 ≡ o2) iff sc(o1)
≡ sc(o2). o1 significantly dominates o2 (o1 � o2) iff o1 � o2 or o1 ≡ o2. o1
and o2 are significantly uncomparable (o1 ‖ o2) iff neither sc(o1) � sc(o2) nor
sc(o2) � sc(o1).

Definition. Let α1 and α2 be a pair of access rights 〈o1, op1〉 and 〈o2, op2〉. An
access right α1 is more significant than α2 (α1 � α2) iff (1) o1 � o2, (2)
op1 � op2 and o1 ≡ o2, or (3) α1 � α3 and α3 � α2 for some access right α3.

A pair of access rights α1 and α2 are significantly equivalent (α1 ≡
α2) iff (1) op1 ≡ op2 and o1 = o2, or (2) o1 ≡ o2 and o1 	= o2.
α1 significantly dominates α2 (α1 � α2) iff α1 � α2 or α1 ≡ α2. α1 and
α2 are significantly uncomparable (α1 ‖α2) iff neither α1 � α2 nor α2 � α1.

Let A be a set of access rights. An access right β is maximally reachable
from another access right α (β ↼ α) iff β � α and there is no access right γ
such that γ � β in A.

Definition. A role R1 significantly dominatesR2 (R1 � R2) iff (1) for some
access right α in R2, there is an access right β ∈ R1 - R2 such that β ↼ α in
R1 ∪ R2 and (2) for every access right β ∈ R1, there is no access right α ∈ R2

such that α ↼ β in R1 ∪ R2.
A role R1 is significantly equivalent with R2 (R1 ≡ R2) iff R1 � R2

and R2 � R1. R1 and R2 are significantly uncomparable (R1 ‖R2) iff neither
R1 � R2 nor R2 � R1. A least upper boundR1 � R2 is a role R3 such that
R3 � R1 and R3 � R2 and there is no role R4 such that R3 � R4 � R1

and R3 � R4 � R2. A greatest lower boundR1 � R2 is similarly defined. Here,
R1 � · · · � Rm � Ri � R1 � · · · � Rm holds but R1 ∩ · · · ∩ Rm � Ri �
R1 ∪ · · · ∪ Rm may not hold.

Definition. Let R1 and R2 be families of roles. R1 significantly dominatesR2

(R1 � R2) iff �R∈R1R � �R∈R2R. R1 and R2 are significantly equivalent
(R1 ≡ R2) iff R1 � R2 and R2 � R1. R1 and R2 are significantly uncomparable
(R1 ‖R2) iff neither R1 � R2 nor R2 � R1.

2.4 Significancy of Transactions

We first define the dominant relation of subjects with respect to the significancy
of roles and authorized relation:

Definition. A subject Subi precedes Subj on a role R (Subi ⇒R Subj) iff Subi

grants R to Subj or Subi ⇒R Subk ⇒R Subj for some subject Subk.
A pair of subjects Subi and Subj are equivalent on R (Subi ≡R Subj)

iff Subi ⇒R Subj and Subj ⇒R Subi. A pair of subjects Subi and Subj are
independent with respect to R (Subi ‖R Subj) iff neither Subi ⇒R Subj nor
Subj ⇒R Subi.
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Subject-oriented (SO) Dominant Relation. A subject Subi subject-
oriented (SO) dominates Subj (Subi �SO Subj) iff (1) Srolei � Srolej , (2)
Subi ⇒R Subj for some role R ∈ Sroleij and Subj 	⇒R Subi for every
R ∈ Sroleij if Srolei ‖Srolej , or (3) Subi �SO Subk �SO Subj for some
subject Subk.

Suppose each subject Subi issues a transaction Tt with purpose Prolet

(⊆ Srolei). We define the dominant relation of subjects with respect to the
significancy of purposes of transactions.

Purpose-oriented (PO) Dominant Relation. For a pair of transactions Tt

and Tu issued by subjects Subi and Subj , respectively, the subject Subi purpose-
oriented (PO) dominates Subj (Subi �PO

tu Subj) with respect to the purposes
of transactions Tt and Tu iff (1) Prolet � Proleu or (2) Subi ⇒R Subj for some
role R ∈ Proletu and Subj 	⇒R Subi for every R ∈ Proletu if Prolet ‖Proleu.

The SO-dominant relation �SO is transitive. However, the PO-dominant rela-
tion �PO

tu is not transitive since the PO-dominant relation �PO
tu is only defined

for a pair of transactions Tt and Tu.
We define the SO- and PO-dominant relations of transactions based on the

SO- and PO-dominant relations of subjects issuing the transactions, respectively.

Definition. For a pair of conflicting transactions Ti and Tj ,

– Ti SO-dominates Tj (Ti �SO Tj) iff Subi �SO Subj .
– Ti PO-dominates Tj (Ti �PO Tj) iff Subi �PO

tu Subj .

Let �D show a dominant relation of transactions for a dominant type D ∈
{SO, PO}. A pair of transactions Ti and Tj are equivalent (Ti ≡D Tj) iff
Ti �D Tj and Tj �D Ti. A pair of transactions Ti and Tj are independent
(Ti ‖D Tj) iff neither Ti �D Tj nor Tj �D Ti.

2.5 Meaningless Methods

Let T be a set {T1, ..., Tk} (k ≥ 1) of transactions. Let SH be a schedule of the
transactions in a set T where every transaction in the schedule SH is serially
performed in the following serial precedent relation:

Definition. A transaction Ti serially precedes Tj in a schedule SH (Ti →SH

Tj) iff (1) Ti �D Tj , or (2) tid(Ti) < tid(Tj) if Ti ‖D Tj or Ti ≡D Tj .
A schedule SH is a totally ordered set 〈T,→SH〉. A schedule SH is serializ-

able iff the serial precedent relation →SH is acyclic. A schedule SH = 〈T,→SH〉
is legal iff T1 →SH T2 if T1 �D T2, or tid(T1) < tid(T2) if T1 ‖D T2 or T1 ≡D T2

for every pair of T1 and T2 in T. In order to make a schedule legal, methods from
transactions are required to be buffered until all the transactions are initiated.

Definition. A schedule SH = 〈T,→SH〉 is RS-partitioned into the subsched-
ules SHf = 〈Tf ,→SHf

〉 (f = 1, ..., d):

1. Tf ∩ Tg = φ for every pair of subschedules Hf and Hg and T1 ∪ · · · ∪ Td

= T.
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2. T1 →SHf
T2 if T1 �D T2, or tid(T1) < tid(T2) if T1 ‖D T2 or T1 ≡D T2 for

every pair of transactions T1 and T2 in each SHf .
3. T1 →SH T2 if T1 →SHf

T2 for every pair of transactions T1 and T2 in each
SHf .

4. For every pair of subschedules SHf and SHg, if Tf1 →SH Tg1 for some pair
of transactions Tf1 in SHf and Tg1 in SHg, there is no pair of transactions
Tf2 in SHf and Tg2 in SHg such that Tg2 →SH Tf2.

Definition. A schedule SH of T is RS-serializable with respect to subsched-
ules SH1, ..., SHd iff SH is RS-partitioned into the subschedules SH1, ..., SHd.

It is straightforward for the following theorem to hold.

Theorem. A history SH is serializable if SH is RS-serializable with respect to
some RS-partition SH1, ..., SHd of SH.

Suppose a schedule SH is RS-partition into the subschedules SH1, ..., SHd.

Definition. A method op1 serially precedes op2 in a subschedule SHf

(op1 →SHf
op2) iff (1) the methods op1 and op2 are issued by a same transac-

tion Ti and op1 is issued before op2, (2) the methods op1 and op2 are issued
by a pair of transactions Ti and Tj , respectively, and Ti →SHf

Tj , or (3)
op1 →SHf

op3 →SHf
op2 for some method op3.

Let SHoh

f be a local subschedule of methods which are performed on an
object oh in a subschedule SHf .

Definition. A method op1 serially precedes another method op2 in a local sub-
schedule SHoh

f (op1 →oh

SHf
op2) iff op1 →SHf

op2.
Suppose an object oh supports six methods as shown in Fig. 1 and a method

insert serially precedes another method modify in a local subschedule SHoh

f

(insert →oh

SHf
modify) on the object oh. Here, the insert method is not required

to be performed on the object oh if the modify method is surely performed on
the object oh, i.e. the modify method can absorb the insert method.

Definition

– A full change method op1 absorbs another partial change method op2 in a local
subschedule SHoh

f on an object oh if op2 →oh

SHf
op1, and there is no class or

output method op′ such that op2 →oh

SHf
op′ →oh

SHf
op1, or op1 absorbs op′′

and op′′ absorbs op2 for some method op′′.
– An output method op1 absorbs another output method op2 in a local sub-

schedule SHoh

f on an object oh if op2 →oh

SHf
op1, and there is no class or

change method op′ such that op2 →oh

SHf
op′ →oh

SHf
op1, or op1 absorbs op′′

and op′′ absorbs op2 for some method op′′.
– A class method op1 for dropping an object oh absorbs another change method

op2 in a local subschedule SHoh

f on an object oh if op2 →oh

SHf
op1, and there

is no class or output method op′ such that op2 →oh

SHf
op′′ →oh

SHf
op1, or op1

absorbs op′′ and op′′ absorbs op2 for some method op′′.
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A method op is not required to be performed on an object oh if the method
op is absorbed by another method op′ in a local subschedule SHoh

f .

Definition. A method op is meaningless iff the method op is absorbed by
another method op′ in the local subschedule shoh

f of an object oh.

2.6 Power Consumption Model of a Server

In class methods and change type methods, data is written into an object. On
the other hand, in output type methods, data is read from an object. In this
paper, methods are classified into read (r) and write (w) types of methods.
Methods which are being performed and already terminate are current and
previous at time τ , respectively. Let RPt(τ) and WPt(τ) be sets of current r
and w methods on a server st at time τ , respectively. Here, Pt(τ) = RPt(τ)
∪WPt(τ). Let rti(oh) and wti(oh) be methods issued by a transaction Ti to read
and write data in an object oh on a server st, respectively. By each method
rti(oh) in a set RPt(τ), data is read in an object oh at rate RRti(τ) [B/sec] at
time τ . By each method wti(oh) in a set WPt(τ), data is written in an object oh

at rate WRti(τ) [B/sec] at time τ . Let maxRRt and maxWRt be the maximum
read and write rates [B/sec] of r and w methods on a server st, respectively.
The read rate RRti(τ) (≤ maxRRt) and write rate WRti(τ) (≤ maxWRt) are
given as frt(τ) · maxRRt and fwt(τ) · maxWRt, respectively. Here, frt(τ)
and fwt(τ) are degradation ratios for read and write methods, respectively. 0
≤ frt(τ) ≤ 1 and 0 ≤ fwt(τ) ≤ 1. The degradation ratios frt(τ) and fwt(τ)
are given as 1

|RPt(τ)|+rwt·|WPt(τ)| and 1
wrt·|RPt(τ)|+|WPt(τ)| , respectively. Here, 0

≤ rwt ≤ 1 and 0 ≤ wrt ≤ 1. The read laxity lrti(τ) [B] and write laxity lwti(τ)
[B] of methods rti(oh) and wti(oh) show how much amount of data are read and
written in an object oh by the methods rti(oh) and wti(oh) at time τ , respectively.
Suppose that a pair of methods rti(oh) and wti(oh) start on a server st at time
stti, respectively. At time stti, the read laxity lrti(τ) is rbh [B] where rbh is the
size of data in an object oh. The write laxity lwti(τ) is wbh [B] where wbh is the
size of data to be written in an object oh. Here, lrti(τ) = rbh - Στ

τ=sttiRRti(τ)
and lwti(τ) = wbh - Στ

τ=sttiWRti(τ).
Let Et(τ) be the electric power consumption [W] of a server st at time τ .

maxEt and minEt show the maximum and minimum electric power consumption
[W] of the server st, respectively. The power consumption model for a storage
server (PCS model) [10] is proposed. According to the PCS model, the electric
power Et(τ) [W] of a server st to perform multiple r and w methods at time τ
is given as follows:

Et(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

WEt if |WPt(τ)| ≥ 1 and |RPt(τ)| = 0.

WREt(α) if |WPt(τ)| ≥ 1 and |RPt(τ)| ≥ 1.

REt if |WPt(τ)| = 0 and |RPt(τ)| ≥ 1.

minEt if |WPt(τ)| = |RPt(τ)| = 0.

(1)
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The server st consumes the electric power REt [W] if |WPt(τ)| = 0 and
|RPt(τ)| ≥ 1. The server st consumes the electric power WEt [W] if |WPt(τ)| ≥
1 and |RPt(τ)| = 0. The server st consumes the electric power WREt(α) [W]
= α · REt + (1 - α) ·WEt [W] where α = |RPt(τ)| / (|RPt(τ)| + |WPt(τ)|) if
|WPt(τ)| ≥ 1 and |RPt(τ)| ≥ 1. Otherwise, a server st consumes the minimum
electric power minEt. Here, minEt ≤ REt ≤ WREt(α) ≤ WEt ≤ maxEt.
The processing power consumption PEt(τ) [W] of a server st at time τ is Et(τ)
- minEt. The total processing energy consumption TPEt(τ1, τ2) of a server st

from time τ1 to τ2 is given as TPEt(τ1, τ2) = Στ2
τ=τ1PEt(τ).

3 Energy-Efficient Purpose Ordering (EEPO) Scheduler

We discuss energy efficient purpose ordering (EEPO) scheduler to not only
make transactions RS-serializable with PO-dominant relation but also reduce
the total energy consumption of a server cluster S. A transaction Ti first sends a
begin request bi to every target object. Then, the transaction Ti issues methods
and lastly issues either a commit (cmi) or abort (abi) request to the objects.
Each client cls manipulates a variable cfs where initially cfs = 1. Each client
cls periodically sends a fence message k to make an RS-partition, which carries
k.f (= cfs). Each time a client cls sends a fence message k, cfs = cfs + 1 in the
client cls. Each object oh has a variable fh where initially fh = 1. Each time an
object oh receives a fence message k where k.f = fh from every client, fh = fh

+ 1 in the object oh. Transactions whose begin requests are received before a
fence message k compose an RS-partition and are sorted in the serial precedence
relation →SHf

.
There are a set RQh of local receipt queues RQh1, ..., RQhl, a global receipt

queue GRQh, and an auxiliary global receipt queue AGRQh for each object oh.
On receipt of a method opi from a transaction Ti initiated on a client cls, the
method opi is enqueued into a local receipt queue RQhs for the client cls (s
= 1, ..., l) on an object oh. Begin requests and fence messages are moved to
AGRQh to make an RS-partition. Transactions in an RS-partition are serialized
in the serial precedence relation →SHf

. Methods are moved to GRQh and are
performed in the serial precedence relation →SHf

. The following conditions have
to be satisfied to realize the RS-serializability:

Role-Based Serializability (RS) Conditions

1. Methods in every global receipt queue GRQh are sorted in the serial prece-
dence relation →SHf

.
2. For a method opi from a transaction Ti, if opi precedes a method opj conflict-

ing with opi from another transaction Tj in some GRQh, op′
i from Ti precedes

a method op′
j conflicting with op′

i from Tj in every GRQh′ .

The EEPO scheduler for an object oh handles methods to realize the RS-
serializability by the RS procedure as shown in Algorithm 1.

Suppose an RS-partition SHf is composed of begin requests preceding a fence
k where k.f is the minimum in AGRQh of an object oh. Each begin request bi
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Algorithm 1. RS procedure
Input: GRQh, AGRQh, {RQh1, ..., RQhl}.
Output: RS-partitioned GRQh.

/* The following procedures are used to manipulate a queue Q for a method op. */
– top(Q): a top element in Q. – enqueue(op, Q): op is enqueued into Q.
– tail(Q): a tail element in Q. – dequeue(Q): a top element in Q is dequeued.
– RSsort(op, Q, e1, e2): op is inserted between elements e1 and e2 in Q, and requests
between elements e1 and e2 in Q are sorted in the serial precedence relation →SHf .

procedure RS(GRQh, AGRQh, {RQh1, ..., RQhl})
if there is a fence k where k.f = fh in every RQhs then

for every local receipt queue RQhs do
while top(RQhs) �= k do

opi ← dequeue(RQhs);
if opi = bi then enqueue(opi, AGRQh);
else /* opi is not a begin request bi. */

if bi is between the top of AGRQh and a fence k′ then
RSsort(opi, GRQh, top(GRQh), k′);

else if bi is between a pair of fences k′ and k′′ then
RSsort(opi, GRQh, k′, k′′);

else if bi is between a fence k′ and the tail of AGRQh) then
RSsort(opi, GRQh, k′, tail(GRQh));

end if
end if

end while
opi ← dequeue(RQhs); opi is removed; /* fence k is removed. */

end for
enqueue(k, AGRQh); enqueue(k, GRQh); fh = fh + 1;

end if
end procedure

of a transaction Ti holds a transaction identifier tid(Ti) and list Li of methods
issued by the transaction Ti. Here, begin requests in the RS-partition SHf can
be totally ordered in the serial precedent relation →SHf

of transactions. Hence,
a local subschedule SHoh

f of methods can be created on an object oh by sorting
lists of methods held in begin requests according to the serial precedent relation
→SHf

. Methods in GRQh are performed on an object oh by the Delivery
procedure as shown in Algorithm 2.

4 Evaluation

We evaluate the EEPO scheduler in terms of the total electric energy consump-
tion [J] of a server cluster S and the average execution time [msec] of each
transaction compared with the RO [3] and EERO [8] schedulers. We consider
a homogeneous server cluster S composed of five servers s1, ..., s5. Every server
st (t = 1, ..., 5) follows the same data access model and power consumption



146 T. Enokido and M. Takizawa

Algorithm 2. Delivery procedure
Input: GRQh. Eh and TEh are sets of current methods and transactions on oh.
Output: Performing methods on an object oh.

/* Procedures to check methods and transactions being performed on oh. */
– Mcompatible(op, Eh): true if Eh = φ or a method op does not conflict with
every method in Eh, otherwise false.
– Tcompatible(T (op), TEh): true if TEh = φ or a transaction T (op) issuing a
method op does not conflict with every transaction in TEh, otherwise false.
– Meaningless(op): true if a method op is meaningless in the local subschedule
SH

oh
f and there is a method op′ in a global receipt queue GRQh where the method

op′ absorbs the method op, otherwise false.

procedure Delivery(GRQh)
op ← top(GRQh);
if op �= fence then

if Mcompatible(op, Eh) and Tcompatible(T (op), TEh then
op ← dequeue(GRQh); Eh ← Eh ∪ {op};
if T (op) �∈ TEh then TEh = TEh ∪ {T (op)}; end if
if Meaningless(op) then

Eh = Eh - {op};
if op = cmi or op = abi then TEh = TEh - {T (op)}; end if

else perform(op);
end if

end if
else

if Eh = φ and TEh = φ then
every begin request bi preceding the fence op in AGRQh is removed;
op is removed from GRQh and AGRQh; /* the fence op is removed. */

end if
end if

end procedure

model as shown in Table 1. Parameters of each server st are given based on
the experimentations [10]. There are five objects o1, ..., o5 in a system. Each
server st holds one object oh (t = h). The size of data in each object oh is
randomly selected between 50 and 80 [MB]. Each object oh supports six types
of methods as shown in Fig. 1. There are five subjects Sub1, ..., Sub5. There
are three roles R1, R2, and R3 owned by Sub1, where R1 � R2 � R3. Here,
Sub1 �Ri

Sub2, Sub1 �Ri
Sub3, Sub1 �Ri

Sub4, Sub1 �Ri
Sub5 for every

role Ri (i = 1, ..., 3). Sub2 �R3 Sub4 and Sub3 �R3 Sub5. Srole1 = {R1,
R2, R3}, Srole2 = Srole3 = {R2, R3}, and Srole4 = Srole5 = {R3}. Here,
Srole1 �SO Srole2 = Srole3 �SO Srole4 = Srole5. The subject Sub1 issues
transactions with a purpose Prole1 = {R3} (⊆ Srole1). Other transactions are
assigned with purposes as Prole2 = Prole3 = {R2, R3} and Prole4 = Prole5
= {R3}. Here, Prole2 = Prole3 �PO Prole1 = Prole4 = Prole5. Each subject
Subi (i = 1, ..., 5) initiates a same number l (0 ≤ l ≤ 1,200) of transactions on
each of five clients cl1, ..., cl5. The total number tn (= l · 5) (0 ≤ tn ≤ 6,000)



Energy-Efficient Purpose Ordering (PO) Scheduler 147

Table 1. Homogeneous cluster S.

Server st maxRRt maxWRt rwt wrt minEt WEt REt

st 80 [MB/sec] 45 [MB/sec] 0.5 0.5 39 [W] 53 [W] 43 [W]
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in the RO scheduler.

of transactions are issued to manipulate objects. We assume each transaction
issues full change, partial change, and output methods. The total amount of
data of an object oh are fully written and read by each full change and output
methods, respectively. On the other hand, a half size of data of an object oh are
written into the object oh by partial change methods. Each transaction issues
three methods randomly selected from twenty methods on the five objects. The
starting time of each transaction Ti is randomly selected in a unit of one second
between 1 and 3600 [sec].

Figure 2 shows the average total electric energy consumption [KJ] of the
server cluster S to perform the number tn of transactions in the RO, EERO, and
EEPO schedulers. The average total electric energy consumption of the server
cluster S in the EEPO algorithm is almost the same as the EERO scheduler. In
the EERO and EEPO schedulers, meaningless methods which are not required to
be performed on each object are omitted. As a results, the average total electric
energy consumption of the server cluster S can be more reduced in the EERO
and EEPO schedulers than the RO scheduler.

Suppose a transaction Ti starts at time sti and commits at time eti. Here,
the execution time ETi of the transaction Ti is eti - sti [msec]. Figures 3, 4,
and 5 show the average execution time AETi of each transaction issued by
the same subject Subi in the server cluster S to perform the total number tn
of transactions in the RO, EERO, and EEPO schedulers, respectively. In the
RO and EERO schedulers, transactions are ordered based on the SO-dominant
relations. As a result, the average execution time AET1 of transactions issued
by the subject Sub1 is the minimum in the RO and EERO schedulers since the
subject Sub1 is more significant than the other subjects. Following Figs. 3 and 4,
the more significant subject is, the shorter average execution time a transaction
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issued by the subject implies in the RO and EERO schedulers. On the other
hand, transactions are ordered based on the PO-dominant relations in the EEPO
scheduler. As a result, the average execution time of AET1 of transactions issued
by the subject Sub1 is the same as the average execution times AET4 and AET5

issued by subjects Sub4 and Sub5, respectively, since Prole1 = Prole4 = Prole5.
Following Fig. 5, the more significant transaction with respect to purpose is, the
shorter average execution time a transaction implies in the EEPO scheduler.

Following the evaluation, the more significant transactions with respect to
purposes, the earlier performed in the EEPO scheduler. The average total elec-
tric energy consumption of a server cluster can be more reduced in the EEPO
and EERO schedulers than the RO scheduler. The average total electric energy
consumption of a server cluster in the EEPO scheduler is the same as the EERO
scheduler.

5 Concluding Remarks

In this paper, we newly proposed the EEPO scheduler to not only serialize
multiple conflicting transactions in the significant order of purposes assigned to
transactions but also reduce the total electric energy consumption of a server
cluster by omitting meaningless methods. We evaluated the EEPO scheduler
compared with the RO and EERO schedulers. The evaluation results show the
total electric energy consumption of a server cluster in the EEPO scheduler is
the same as the EERO scheduler. The total electric energy consumption of a
server cluster can be more reduced in the EEPO and EERO scheduler than
the RO scheduler. In addition, the more significant transactions with respect to
purposes, the earlier performed in the EEPO scheduler.
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