

Data Exchange Algorithm at Aggregate Level in the TWTBFC Model

Yinzhe Guo $^{1(\boxtimes)},$ Ryuji Oma $^{1},$ Shigenari Nakamura $^{1},$ Tomoya Enokido $^{2},$ and Makoto Takizawa¹

> ¹ Hosei University, Tokyo, Japan *{*yinzhe.guo.3e,ryuji.oma.6r*}*@stu.hosei.ac.jp, ² Rissho University, Tokyo, Japan eno@ris.ac.jp eno@ris.ac.jp

Abstract. In the TBFC (Tree-Based Fog Computing) and TWTBFC (Two-Way TBFC) models the electric energy consumed by fog nodes and servers can be reduced in the fog computing (FC) model. Here, fog nodes are hierarchically structured in a height-balanced tree, where a root node is a cloud of servers, leaf nodes are edge nodes which communicate with devices, and each node receives data from child nodes and sends the processed data to a parent node. In the TWTBFC model, nodes send processed data to not only a parent node but also each child node. In order to reduce the network traffic in the TWTBFC model, only aggregate nodes at some level collect the output data of every other aggregate node, i.e. aggregate data. Since only target actuators are to be activated, the aggregate data has to be only delivered to target actuators. Nodes whose descendant actuators are target ones are relay nodes. On receipt of aggregate data, only relay nodes forward the aggregate data to the child nodes. We evaluate the new TWTBFC model in terms of energy consumption of nodes and number of messages transmitted to deliver aggregate data to edge nodes.

Keywords: Energy-efficient fog computing · IoT (Internet of Things) · Two-way TBFC (TWTBFC) model · Aggregate node

1 Introduction

The IoT (Internet of Things) [\[5](#page-9-0)[,7](#page-9-1)] is composed of not only computers like servers and clients but also millions of devices, i.e. sensors and actuators installed in various things like glasses and cars [\[11](#page-10-0)[,14](#page-10-1)]. Compared with traditional information systems like the cloud computing (CC) model [\[4](#page-9-2)], the IoT is more scalable and huge amount of data from sensors are transmitted in networks and are processed by application processes on servers. The fog computing (FC) model [\[16](#page-10-2)] is proposed to reduce the network and server traffic of the IoT (Internet of Things). On the other hand, huge amount of electric energy is consumed by nodes. In order to not only increase the performance but also reduce the electric energy

-c Springer Nature Switzerland AG 2020

L. Barolli et al. (Eds.): BWCCA 2019, LNNS 97, pp. 114–124, 2020. [https://doi.org/10.1007/978-3-030-33506-9](https://doi.org/10.1007/978-3-030-33506-9_11)_11

consumption of the IoT, the TBFC (Tree-based Fog Computing) model is proposed in our previous studies [\[3,](#page-9-3)[11,](#page-10-0)[12](#page-10-3)[,15\]](#page-10-4). Here, fog nodes are hierarchically structured in a height-balanced tree. A root node is a cloud of servers and leaf nodes are edge nodes which receive sensor data from sensors and send actions to actuators. Each fog node has one parent node and child nodes. Each node receives input data from the child nodes. Then, the fog node processes the input data and sends the output data, obtained by processing the input data to a parent node. A server in a cloud finally receives data processed by fog nodes. Then, the servers delivers actions to actuators through networks of fog nodes. While the traffic of servers and networks can be reduced, it takes time to deliver actions to actuators.

The TWTBFC (Two-Way TBFC) model [\[9](#page-9-4)[,10](#page-10-5)] is also proposed to reduce delay time to deliver actions to actuators. Here, a node not only sends output data to a parent node in a same way as the TBFC model but also forwards the output data to the child nodes. In addition, some level is taken as aggregate level. Nodes at aggregate level are aggregate nodes [\[8](#page-9-5)]. Each aggregate node collects the output data from every other aggregate nodes. Then, each aggregate node obtains aggregate data which is a collection of output data of all the aggregate nodes. Then, the aggregate data is transmitted from each aggregate node down to the descendant edge nodes. Then, edge nodes make a decision on actions and activate child actuators by sending the actions. Since the aggregate data is transmitted to every edge node, more number of messages are transmitted in networks. On the other hand, only some edge node is required to activate its child actuators. Actuators to be activated for the aggregate data are target ones. Nodes whose descendant actuators are target ones are referred to as relay ones. In order to reduce the network traffic, we propose a new model where only relay nodes forward the aggregate data to the child nodes. In the evaluation, we show the number of messages and energy consumption of nodes to obtain the aggregate data and deliver the aggregate data to target edge nodes.

In Sect. [2,](#page-1-0) we present the TWTBFC model of the IoT. In Sect. [3,](#page-4-0) we present the power consumption and computation module of a fog node. In Sect. [4,](#page-7-0) we evaluate the TWTBFC model.

2 Two-Way Tree-Based Fog Computing (TWTBFC) Model

2.1 TBFC Model

The fog computing (FC) model [\[16](#page-10-2)] to efficiently realize the IoT [\[11](#page-10-0)] is composed of sensor and actuator devices, fog nodes, and clouds. Clouds are composed of servers like the cloud computing (CC) model [\[4](#page-9-2)]. In the TBFC (Tree-Based Fog Computing) model [\[12](#page-10-3)[,15](#page-10-4)], fog nodes are hierarchically structured in a height-balanced tree as shown in Fig. [1.](#page-2-0) Here, the root node f denotes a cloud of servers. Fog nodes at the bottom level are edge nodes which communicate with sensors and actuators.

Fig. 1. TBFC model.

Each node f_R has c_R (≥ 0) child nodes f_R, \ldots, f_{R,c_R} . Here, f_{Ri} shows the ith child node of the fog node f_R and in turn f_R is a parent node of the node f_{Ri} . $ch(f_R)$ is a set $\{f_{R1}, \ldots, f_{R,c_R}\}$ of child nodes of a node f_R . $pt(f_{Ri})$ is a parent node f_R of a node f_{Ri} . For example, the second child node of a root node f is f_2 , and the first child node of the node f_2 is f_{21} . Thus, the label R of a fog node f_R is a sequence of numbers and shows a path from the root node f to the fog node f_R . Let $an(f_R)$ be a set of ancestor nodes of a node f_R . $dn(f_R)$ shows a set of descendant nodes of a node f_R and $sn(f_R)$ is a set of nodes which are at the same level as a node f*R*.

In the cloud computing (CC) model, an application process p is performed on servers to process sensor data sent by sensors in networks. In this paper, an application process p is assumed to be linear, i.e. a sequence of subprocesses *p*₀, *p*₁,..., *p*_{*h*−1}. The edge subprocess *p*_{*h*−1} takes input data from sensors. The root subprocess p_0 is performed on a root node f, i.e. servers. Each subprocess p_i takes data from a subprocess p_{i-1} and gives the processed data to a subprocess p_{i+1} . In the TBFC tree of height h, each subprocess p_i is performed on nodes of level *i*. Let $p(f_R)$ show a subprocess to be performed in a node f_R .

A node f_R takes input data d_{Ri} from each child node f_{Ri} ($i = 1, \ldots, l_R$). D_R shows a collection of the input data $d_{R1}, \ldots, d_{R,l_R}$ from child nodes $f_{R1},...,f_{R,l_R}$, respectively. The node f_R obtains output data d_R by doing the computation $f(p_R)$ on the input data D_R . Then, the node f_R sends the output data d_R to a parent node $pt(f_R)$.

A notation |d| shows the size [Byte] of data d. Let i_R and o_R be the size of $|D_R|$ and $|d_R|$ of input data D_R and output data d_R , respectively. The ratio $|o_R|/|i_R|$ is the *output ratio* ρ_R of a node f_R . Here, $o_R = \rho_R \cdot i_R$. For example, if a fog node f_R obtains an average value of the input data $d_{R1}, \ldots, d_{R,l_R}$, the output ratio ρ_R is $1/l_R$.

2.2 Aggregate Nodes

Each fog node f_R receives input data $D_R = \{d_{R1}, \ldots, d_{R,l_R}\}\$ from the child nodes $f_{R1}, \ldots, f_{R,l_R}$ and obtains output data d_R by processing the output data D_R . At some level l of the tree, each fog node sends the output data d_R to every other node f_v and receives output data d_v from every other fog node f_v in addition to sending the output data d_R to the parent node $pt(f_R)$. Then, each fog nodes f_R obtains a collection AD_l of output data from every node at the same level, i.e. here, nodes of level l are referred to as aggregate nodes and the level l is *aggregate level* in the tree. Let AN_l be a set of aggregate nodes of level l in the tree. The data AD*^l* is an aggregate data which is a set of output data obtained by all the aggregate nodes of the level *l*, i.e. $AD_l = \{d_s \mid f_s \in AN_l\}$. By using the aggregate data AD_l , actuators to be activated are decided. An actuator to be activated for the aggregate data AD_l is referred to as *target* actuator. Here, a node which is an ancestor of a target actuator is referred to as relay node. Each aggregate node f_R sends the aggregate data AD_l to each relay child node. Let $RN_R(\in ch(f_R))$ be a subset of relay child nodes of a node f_R . Even if a non-relay child node f_{Ri} receives the aggregate data AD_l , the node f_{Ri} does not forward AD_l to any child node f_{Rij} . Thus, only a relay node f_{Ri} forwards the aggregate data AD_l to child nodes f_{Rij} . Eventually, a relay edge node f_R receives the aggregate data AD_l . The relay edge node f_R makes a decision on actions to be performed on child target actuators and issues the actions to the target actuators.

Target actuators are localized in some area for the aggregate data AD*^l* as shown in Fig. [2.](#page-4-1) A node f_R is referred to as *broadcast* node if every descendant edge node is a relay one. This means, actuators in an area covered by a broadcast node are activated. On receipt of the aggregate data AD*l*, a broadcast node f*^R* forwards the aggregate data AD*^l* to every child node. Every descendant node of a broadcast node f*^R* is a broadcast node. An aggregate node forwards the aggregate data AD_l to relay nodes. A relay node forwards the aggregate data AD*^l* to relay nodes. Eventually, a relay node f*^R* forwards the aggregate data AD_l to every child node. Here, f_R is a broadcast node. A level at which the node f_R exists is a *broadcast* (b) level. At higher level than the b level, a relay node send the aggregate data AD_l to only relay nodes, i.e. unicasts AD_l to each relay nodes

Let us consider a node f_R which has child fog nodes $f_{R1}, \ldots, f_{R,c_R}$. Let x_R stand for the size $|d_R|$ of the output data d_R . The size x_R of the output data d_R of a node f_R is given as $x_R = \rho_R \cdot (\sum_{i=1}^{c_R} x_{Ri})$. Here, ρ_R is the output ratio of the node f_R . If f_R is an edge node, each size x_{Ri} shows the size of the sensor data d_{Ri} from a child sensor s_{Ri} . Thus, the size x_{Ri} of the output data d_{Ri} of each child

Fig. 2. Relay nodes and target actuators.

node f_{Ri} of level l can be obtained, and then the size x_R of an aggregate node f_R is calculated. Each aggregate node f_R of aggregate level l obtains the aggregate data AD_l whose size $as_l(= |AD_l|)$ is $\Sigma_{f_s \in AN_l}$ ($\rho_s \cdot \Sigma_{i=1}^{c_s} x_{si}$). The aggregate data AD*^l* of size as*^l* is forwarded to target edge nodes. On receipt of the aggregate data AD_l , a relay edge node f_R decides on actions and sends the actions to the target actuators $a_{R1}, \ldots, a_{R,al_R}$.

3 Power Consumption and Computation Models of a Fog Nodes

3.1 Upward Transmission

A fog node f_R is assumed to be implemented to be a sequence of input (I_R) , computation (C_R) , and output (O_R) modules. The input module I_R receives input data d_{Ri} from a child node f_{Ri} and the output module O_R sends output data d_R to a parent node $pt(f_R)$. The computation module C_R is a subprocess $p(f_R)$ which generates the output data d_R by processing input data $D_R = d_{R1}, \ldots, d_{R,C_R}$. In this paper, we assume the I_R , C_R , and O_R modules are sequentially performed in a fog node f_R on receipt of the input data D_R .

It takes time to perform the I_R , C_R , and O_R modules of a node f_R . Let $TI_R(x)$, $TC_R(x)$, and $TO_R(x)$ show the execution time [sec] of the input I_R ,

computation C_R , and output O_R modules of a node f_R for data of size x, respectively. The execution time $TC_R(x)$ depends on the computation complexity of a subprocess $p(f_R)$. In this paper, the computation complexity of the subprocess $p(f_R)$ is assumed to be $O(x)$ or $O(x^2)$. That is, the execution time $TC_R(x)$ of the computation module (C_R) is $ct_R \cdot C_R(x)$ where $C_R(x) = x$ or $C_R(x) = x^2$ and ct_R is a constant. A pair of execution time $TI_R(x)$ and $TO_R(x)$ to receive and send data of size x , respectively, are proportional to the data size x , i.e. $TI_R(x) = rt_R \cdot x$ and $TO_R(x) = st_R \cdot x$, where st_R and rt_R are constants. Thus, the execution time $TC_R(x)$, $TI_R(x)$, and $TO_R(x)$ are given as follows:

$$
TC_R(x) = ct_R \cdot C_R(x). \tag{1}
$$

$$
TI_R(x) = rt_R \cdot x. \tag{2}
$$

$$
TO_R(x) = st_R \cdot x. \tag{3}
$$

It takes time $TF_R(x)$ [sec] for each node f_R to receive and process input data D_R of size x and send the output data d_R to a parent node $pt(f_R)$:

$$
TF_R(x) = TI_R(x) + TC_R(x) + \delta_R \cdot TO_R(\rho_R \cdot x). \tag{4}
$$

Here, if f_R is a root node, $\delta_R = 0$, else $\delta_R = 1$. The execution time $TI_R(x)$ of the I_R module realized in a Raspberry Pi 3 model B $[2]$ node is five times longer than the execution time $TO_R(x)$ of the O_R module, i.e. $rt_R = 5 \cdot st_R$ and $ct_R = rt_R/2$ [\[13](#page-10-6)]. That is, $ct_R : st_R : rt_R = 1:2.5:0.5$.

 $EI_R(x)$, $EC_R(x)$, and $EO_R(x)$ show the electric energy [J] consumed by the input I_R , computation C_R , and output O_R modules [\[11\]](#page-10-0) of a node f_R for data of size x, respectively. In this paper, we assume each node f*^R* follows the SPC (Simple Power Consumption) model [\[5](#page-9-0)[–7\]](#page-9-1). The power consumption of a node f*^R* to perform the computation module $C_R = p(f_R)$ is $maxE_R$ [W]. In a Raspberry Pi Model B, node f_i , $maxE_i = 3.7$ [W]. The energy consumption $EC_R(x)$ [J] of the computation module C_R of a node f_R to process data of size $x > 0$ is $EC_R(x) = max E_R$ [W] $\cdot TC_R(x)$ [sec].

A pair of the electric power PI_R and PO_R [W] are consumed to perform the input I_R and output O_R modules, respectively [\[5](#page-9-0)[–7\]](#page-9-1). PI_R and PO_R are re_R . $maxE_R$ and $se_R \cdot maxE_R$, respectively, where $0 < se_R \leq re_R \leq 1$. For example, $se_R = 0.676$ and $re_R = 0.729$ in the Raspberry Pi 3 model B node f_R [\[13](#page-10-6)]. The energy consumption $EI_R(x)$ and $EO_R(x)$ [J] to receive and send data of size x (> 0) are $EI_R(x) = PI_R[w] \cdot TI_R(x)$ [sec] and $EO_R(x) = PO_R[w] \cdot TO_R(x)$ [sec], respectively.

Each node f_R consumes the energy $E F_R(x)$ to reduce and process the input data D_R of size x and send the processed data d_R of size $\rho_R \cdot x$:

$$
EF_R(x) = EI_R(x) + EC_R(x) + \delta_R \cdot EO_R(\rho_R \cdot x)
$$

= $(re_R \cdot TI_R(x) + TC_R(x) + \delta_R \cdot se_R \cdot TO_R(\rho_R \cdot x)) \cdot maxE_R$
= $(re_R \cdot rt_R \cdot x + ct_R \cdot C_R(x) + \delta_R \cdot se_R \cdot st_R \cdot \rho_R \cdot x) \cdot maxE_R.$ (5)

3.2 Downward Transmission

Each aggregate node f_R consumes electric energy and takes time to collect the aggregate data AD_l from other aggregate nodes of aggregate level l as shown in Fig. [2.](#page-4-1) AN_l is a set of aggregate nodes at level l. Each aggregate node f_R of level l sends the output data d_R to and receives the output data d_s from every other aggregate node f_s . Let o_s be the size $|d_s|$ of the output data d_s . Then, the aggregate node f_R forwards the aggregate data AD_l to the child nodes $f_{R1}, \ldots, f_{R,c_R}$. The aggregate data AD_l is a set $\{d_s \mid f_s \in AN_l\}$ of output data of every aggregate node. The size $as_l(= |AD_l|)$ of the aggregate data AD_l is:

$$
as_l = \sum_{f_s \in AN_l} |o_s| = \sum_{f_s \in AN_l} (\rho_s \cdot \Sigma_{i=1}^{c_s} o_{si}).
$$
\n(6)

It takes time AEX_R of an aggregate node f_R to send the output data d_R and to receive the output data d_s from every other aggregate node f_s :

$$
AEX_R = TO_R(o_R) \cdot |AN_l| + \Sigma_{f_s \in AN_R} TI_R(o_s). \tag{7}
$$

Then, a relay aggregate node f_R of aggregate level l sends the aggregate data AD_l to relay child nodes. Let $RN_R(\subseteq ch(f_R))$ be a set of relay child nodes of a node f_R . The total time ATO_R [sec] of a relay aggregate node f_R is given as follows:

$$
ATO_R = TO_R(o_R) \cdot |AN_l| + \Sigma_{f_s \in AN_l} TI_R(o_s) + TO_R(as_l) \cdot |RN_R|.
$$
 (8)

The relay aggregate node f_R consumes the energy AEO_R [J] as follows:

$$
AEO_R = (se_R \cdot TO_R(o_R) \cdot |AN_l| + se_R \cdot TO_R(|as_l|)
$$

+ $re_R \cdot \Sigma_{f_s \in AN_l} TI_R(o_s)) \cdot maxE_R.$ (9)

A descendant relay node f*^R* of the aggregate nodes receives the aggregate data AD_l . If f_R is a relay node, the node f_R forwards the aggregate data AD_l to the relay child nodes. The execution time ATO_R of a relay node f_R is as follows:

$$
ATO_R = TI_R(as_l) + TO_R(as_l) \cdot |RN_R|
$$

= $rt_R \cdot as_l + st_R \cdot as_l \cdot |RN_R|$. (10)

Each node f_R of level $k \ll l$) consumes energy AEO_R to forwards the aggregate data AD*^l* to the descendant edge nodes.

$$
AEO_R = (re_R \cdot TI_R(as_l) + se_R \cdot TO_R(as_l)) \cdot maxE_R
$$

=
$$
(re_R \cdot rt_R \cdot as_l + se_R \cdot st_R \cdot as_l \cdot |RN_R|) \cdot max_R.
$$
 (11)

The higher the aggregate level l is, the smaller size of the aggregate data AD_l and the fewer number of messages are exchanged among the aggregate nodes. However, the more number of messages are transmitted to deliver the aggregate data AD*^l* to edge nodes.

4 Evaluation

We evaluate the TWTBFC model of the IoT in terms of electric energy consumption of fog nodes and number of messages transmitted by fog nodes. The TWTBFC model is composed of fog nodes structured in a tree. In this paper, we consider a height-balanced k -ary tree of fog nodes, whose height is h . The output ratio ρ_R of each fog node f_R is assumed to be the same ρ , i.e. $\rho_R = \rho$. We assume a root node is a server f with a pair of Inter Xeon E5-2667 CPUs [\[1](#page-9-7)], where the minimum electric power consumption $minE_0$ is 126.1 [W] and the maximum electric power consumption $maxE_0$ is 301.3 [W]. Each fog node f_R is realized by a Raspberry Pi 3 Model B $[2]$. Here, the minimum power $minE_R$ is 2.1 [W] and the maximum power $maxE_R$ is 3.7 [W] [\[3](#page-9-3)]. The computation ratio CR_R of each fog node f_R is $0.879/4.75 = 0.185$, where the computation rate of the root node f is 1. This means, the computation speed of the node f_R is 18.5 $[\%]$ of the root node f.

 AN_l is a set of aggregate nodes at aggregate level l. There are k^l (= $|AN_l|$) aggregate nodes at aggregate level l in the tree. As presented in the preceding section, each aggregate node f_R exchanges the output data d_R with every other aggregate node and obtains the aggregate data AD_l (= $\bigcup_{f_s \in AN_l} d_s$). Each aggregate node f_R sends the output data d_R to $(k^l - 1)$ aggregate nodes and receives output data from the other $(k^l - 1)$ aggregate nodes. Hence, totally, $k^{l} \cdot (k^{l} - 1)$ messages are transmitted. Here, the size of sensor data which each edge node receives from the child sensors is assumed to be one. A node of level $h-1$ receives data of total size k from k edge nodes and sends the output data d_R of size $\rho \cdot k$. Thus, each aggregate node f_R receives the output data D_R of size $(\rho k)^{h-1-l} \cdot k$ and generates the output data of size $(\rho k)^{h-l-2}$. Hence, the total size $k^l \cdot (k^l - 1) \cdot (\rho k)^{h-l-1}$ of data is exchanged among the aggregate nodes.

For the aggregate data AD_l , the target actuators are in some area. In this paper, we assume there is one broadcast node at broadcast level b and every descendant edge node of the broadcast node is a target one. At level q ($l \leq q \leq$ b), one relay node sends the output data AD_l to one child relay node. Then, a broadcast node sends the output data AD_l to k child nodes. Thus, $(b - l)$ messages are transmitted to deliver the aggregate data AD*^l* to the broadcast node. The node f_R sends the aggregate data AD_l to k child nodes and each child node forwards the message AD_l to k child nodes. Thus, totally, $k + k^2 + ...$ $k^{h-1-b} = k \cdot (1 - k^{h-1-b})/(1-k)$ messages are transmitted. For a broadcast node f_R of broadcast level b, there are k^{h-1-b} descendant edge nodes. Here, totally $(b-l) + k \cdot (1-k^{h-1-b})/(1-k)$ messages are transmitted. The total size of data transmitted is $[(b - l) + k \cdot (1 - k^{h-1-b})/(1 - k)] \cdot k^l \cdot (k^l - 1) \cdot (\rho k)^{h-1-l}$.

We assume $k = 2$, the height h of tree is 10 ($h = 10$) and the output ratio $\rho = 0.5$ in the evaluation.

Fig. 3. Total size of data transmitted $(b = 5)$.

Fig. 4. Total size of data transmitted $(l = 5)$.

Figure [3](#page-8-0) shows the ratio of the total size of data transmitted at the aggregate level $l(1 \leq l \leq 8)$ to the level 8. Here, a broadcast level b is five $(b = 5)$. The higher the aggregate level l is, the smaller the total size of data transmitted. Especially, if the aggregate level l is larger than 5, the total size of data transmitted exponentially increases.

Figure [4](#page-8-1) shows the ratio of the total size of data transmitted for the broadcast level b $(b > l)$ where $l = 5$. The higher the broadcast level b is, the more volume of data is transmitted.

5 Concluding Remarks

In this paper, we proposed the modified model to efficiently realize the TWTBFC model. Here, one aggregate level l is selected and aggregate nodes at the aggregate level l collect output data of every aggregate node as the aggregate data AD*l*. A target edge node is one whose actuators are activated for the aggregate data AD*l*. A fog node whose descendant edge nodes are target ones is a relay node. Only target actuators have to be activated. The aggregate data AD*^l* has to be delivered to only edge nodes of target actuators. In this paper, only a relay node forwards the aggregate data AD_l to its relay nodes. In the evaluation, we showed the number of messages and energy consumption of nodes to exchange output data and forward aggregate data to descendant nodes can be reduced.

References

- 1. Dl360p gen8. <www8.hp.com/h20195/v2/getpdf.aspx/c04128242.pdf?ver=2>
- 2. Raspberry pi 3 model b. [https://www.raspberrypi.org/products/raspberry-pi-3](https://www.raspberrypi.org/products/raspberry-pi-3-model-b/) [model-b/](https://www.raspberrypi.org/products/raspberry-pi-3-model-b/)
- 3. Chida, R., Guo, Y., Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: Implementation of fog nodes in the tree-based fog computing (TBFC) model of the IOT. In: Proceedings of the 7th International Conference on Emerging Internet, Data and Web Technologies (EIDWT-2019), pp. 92–102 (2019)
- 4. Creeger, M.: Cloud computing: an overview. Queue **7**(5), 3–4 (2009)
- 5. Enokido, T., Ailixier, A., Takizawa, M.: A model for reducing power consumption in peer-to-peer systems. IEEE Syst. J. **4**, 221–229 (2010)
- 6. Enokido, T., Ailixier, A., Takizawa, M.: Process allocation algorithms for saving power consumption in peer-to-peer systems. IEEE Trans. Ind. Electron. **58**(6), 2097–2105 (2011)
- 7. Enokido, T., Ailixier, A., Takizawa, M.: An extended simple power consumption model for selecting a server to perform computation type processes in digital ecosystems. IEEE Trans. Ind. Inf. **10**, 1627–1636 (2014)
- 8. Guo, Y., Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: Data and subprocess transmission on the edge node of TWTBFC model. In: The 11th International Conference on Intelligent Networking and Collaborative Systems (INCoS-2019) (2019, Accepted)
- 9. Guo, Y., Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: Evaluation of a two-way tree-based fog computing (TWTBFC) model. In: Proceedings of the 13th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS-2019), pp. 72–81 (2019)
- 10. Guo, Y., Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: A twoway flow model for fog computing. In: Proceedings of the Workshops of the 33rd International Conference on Advanced Information Networking and Applications (WAINA-2019), pp. 612–620 (2019)
- 11. Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: An energyefficient model for fog computing in the internet of things (IoT). Internet Things **1–2**, 14–26 (2018)
- 12. Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: Evaluation of an energy-efficient tree-based model of fog computing. In: Proceedings of the 21st International Conference on Network-Based Information Systems (NBiS-2018), pp. 99–109 (2018)
- 13. Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: Evaluation of data and subprocess transmission strategies in the tree-based fog computing (TBFC) model. In: Proceedings of the 22nd International Conference on Network-Based Information Systems (NBiS-2019) (2019, Accepted)
- 14. Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: A fault-tolerant tree-based fog computing model. Int. J. Web Grid Serv. (IJWGS) (2019, Accepted)
- 15. Oma, R., Nakamura, S., Enokido, T., Takizawa, M.: A tree-based model of energyefficient fog computing systems in IoT. In: Proceedings of the 12th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2018), pp. 991–1001 (2018)
- 16. Rahmani, A.M., Liljeberg, P., Preden, J.S., Jantsch, A.: Fog Computing in the Internet of Things. Springer, Heidelberg (2018)