®

Check for
updates

Scalable Performance Modeling
and Evaluation of MapReduce
Applications

Soroush Karimian-Aliabadi'®™), Danilo Ardagna?, Reza Entezari-Maleki®,
and Ali Movaghar!

1 Computer Engineering Department, Sharif University of Technology, Tehran, Iran
skarimian@ce.sharif.ir, movaghar@sharif.ir
2 Dipartimento di Elettronica Informazione e Bioingegneria,
Politecnico di Milano, Milan, Italy
danilo.ardagna@polimi.it
3 School of Computer Engineering,
Iran University of Science and Technology (IUST), Tehran, Iran
entezari@iust.ac.ir

Abstract. Big Data frameworks are becoming complex systems which
have to cope with the increasing rate and diversity of data production in
nowadays applications. This implies an increase in number of the vari-
ables and parameters to set in the framework for it to perform well.
Therefor an accurate performance model is necessary to evaluate the
execution time before actually executing the application. Two main and
prominent Big Data frameworks are Hadoop and Spark, for which multi-
ple performance models have been proposed in literature. Unfortunately,
these models lack enough scalability to compete with the increasing size
and complexity of the frameworks and of the underlying infrastructures
used in production environments. In this paper we propose a scalable
Lumped SRN model to predict execution time of multi-stage MapReduce
and Spark applications, and validate the model against experiments on
TPC-DS benchmark using the CINECA Italian super computing cen-
ter. Results show that the proposed model enables analysis for multiple
simultaneous jobs with multiple users and stages for each job in reason-
able time and predicts execution time of an application with an average
error about 14.5%.

Keywords: Performance modeling - Scalable modeling * Stochastic
reward nets - BigData frameworks - Map Reduce

1 Introduction

Huge amount of data is available in datacenters and is steadily, being produced
in high velocity [1]. Data scientists need fast frameworks, specific algorithms,
and even new programming paradigms to efficiently process this Big Data. The
© Springer Nature Switzerland AG 2019

L. Grandinetti et al. (Eds.): TopHPC 2019, CCIS 891, pp. 441-458, 2019.
https://doi.org/10.1007/978-3-030-33495-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33495-6_34&domain=pdf
https://doi.org/10.1007/978-3-030-33495-6_34

442 S. Karimian-Aliabadi et al.

continuous struggle of data scientists with increasing size of data to be analyzed,
led to handful of practical tools and methods. In 2008, Dean and Ghemawat
proposed MapReduce (MR) paradigm [2] to process large amount of data on
multiple node cluster to increase parallelism and therefor improved performance.
The MR paradigm was not globally used until useful Hadoop framework [3]
developed in 2011 by Apache. The Hadoop Distributed File System (HDFS) is a
primary layer of the Hadoop ecosystem but not the only one. In 2013, Vavilapalli
et al. [4], introduced YARN layer to the Hadoop cluster in order to specialize the
resource management and make it dynamic rather than Hadoop’s earlier static
allocation scheme. With more complex dataflow in MR applications there was a
need to cut down the complexity into multiple stages and thus Directed Acyclic
Graphs (DAG) was chosen by Tez [5] developers to demonstrate the dataflow
between stages of a complex application. Taking advantage of the memory’s high
speed and the Resilient Distributed Dataset (RDD) concept, Spark was created
and became popular due to high speed and the ease of application development.

Tuning the framework and cluster parameters in order to reduce the execu-
tion time of a BigData application was a challenge from the earliest steps and
a main part of this optimization process is to predict the execution time for a
given set of parameters. But With each step in development of a more advanced
framework for processing BigData, new set of parameters and complexity is cre-
ated and execution time prediction made more and more challenging. A lot of
works have been done in literature to simulate [6], model [7], or learn [8] the
process, but their accuracy and scalability is only enough for simple runs with a
single job running by one or more users and not for more complex applications
with multiple multi-stage jobs running by number of users.

Among the approaches put into practice to predict execution time, analytical
models play a prominent role. Simulation methods are time-consuming, and com-
prehensive simulators are rare and heavy to work with. Exploratory approaches
like studying the history of past runs are also time-consuming and need a com-
plete setup, while sometimes, predictions have to be made prior to the real setup.
Learning traces is limited to a specified criteria and other performance measures
need another whole learning process. Analytical methods on the other hand are
fast to run, accurate enough, and give more insights on the process, hence num-
ber of performance measures can be studied using a single model. While deriv-
ing mathematical relations for a complex system like Spark framework is almost
impossible, stochastic models are more feasible to work with. Fortunately, Petri
Net (PN) and its stochastic derivations proved to be practical in literature and
also have great tool support. Not all derivations of PN are analytically solvable,
so the choice for the formalism is limited to few options which can be converted
to Markov Models like Markov Reward Model (MRM). Stochastic Reward Net
(SRN) is a formalism based on Stochastic Petri Nets (SPN) and is chosen as the
formalism for building proposed models in this paper.

An inherent drawback of stochastic models like SRNs is the state space explo-
sion problem due to increase in system variables and their cardinality. In the
Spark framework which is usually running on top of the Hadoop cluster gov-

Scalable Performance Modeling and Evaluation of MapReduce Applications 443

erned by YARN resource manager, multiple jobs are submitted simultaneously
which have different execution DAGs. Number of Map/Reduce tasks in each
stage is also different from other stages and jobs could be submitted by different
users and thus dedicated priorities according to the YARN resource management
policy. Modeling all of these variabilities in a monolithic model easily meets the
state space explosion problem and is not feasible to analyze by regular hardwares.

To tackle this challenge, analytical models based on SRNs are proposed in this
paper to accurately model the Hadoop and Spark framework running multiple
jobs. We assume that MR Job is running on top of the Hadoop cluster and is gov-
erned by YARN resource manager with capacity scheduler. A lumping technique
is also proposed to break down the complexity of the model and thus eliminate
the state space explosion problem. Proposed models are validated against the
real experiments of TPC-DS benchmark on CINECA supercomputer. Accuracy
of proposed models in predicting execution time of Spark applications compared
to results from experiments show an average error of 14.5% and the runtime of
the analytic-numeric model solver is 15s in average, which demonstrate the high
scalability of the proposed SRN models.

The remaining parts of this paper are organized as follows. The Sect.2 is
dedicated to related proposals available in the literature, Sect.3 presents the
description of the features of the application frameworks. Our proposed SRN
models for Hadoop MR and Spark applications in the single-class and multi-
class forms are included in Sects.4 and 5, respectively. In Sect. 6, we introduce
The results obtained by the proposed models and their validation against the
real systems. Finally, in Sect.7, the paper concluded with some directions for
future work.

2 Related Work

There are several researches on performance analysis of Big Data applications
and tuning framework and cluster parameters. In this section, different methods
for performing performance evaluation are being classified and reviewed one by
one. Performing experiments and studying previous executions is a general way
to reach insight on the performance of the framework. For example, in [9] MR job
execution logs are used to assess performance measures and predict the future
runs. Monitoring the execution of jobs in Hadoop, as proposed in [10], helps fine
tuning the cluster and administrating the configuration parameters which are
investigated thoroughly in [11].

A good predictor can learn from past executions and machine learning has
a handful of tools and methods in this regard. From regression [12] to more
sophisticated techniques like SVR [8] have been used in literature. Ernest [13],
for example, is a tool set designed to predict Spark job execution time in large
scale based on the behavior of the job on small samples of data. The sample set
is produced using optimal experiment design and Non-negative Least Squares
(NNLS) method to fit the model. Similar to Ernest, in [14] authors have explored
sample representative mini dataset to train their model. Each stage of Spark

444 S. Karimian-Aliabadi et al.

application is first modeled using multiple polynomial regression and afterwards,
Stage predictions are aggregated through the critical path of the execution DAG
to estimate the whole job runtime. Combining analytical modeling power with
machine learning methods has led to a operational system of MR, job execution
time estimator in [8]. Ataie et al. have combined queuing network model with
SVR technique in [8] to further increase the accuracy and reduce the number of
experiments to be performed for training the model.

Great efforts have been made to build a comprehensive simulator for Big
Data frameworks like MR and Hadoop [6,15], and here, just few of them are
mentioned. Ardagna et al. [6] have proposed DAGSim, a novel ad-hoc and fast
discrete event simulator, to model the execution of complex DAGs, which can
be used to predict Spark application runtime. Instead of building a Heavyweight
simulator, others have designed simple graphical models which can be simu-
lated. The approach, presented by Barbierato et al. [16], exploits Generalized
Stochastic Petri Nets (GSPNs) alongside other formalisms such as process alge-
bras and Markov chains to develop multi-formalism models and capture Hive
queries performance behavior. More recently, Ruiz et al. [17] formalized the MR
paradigm using Prioritized Timed Colored Petri Nets (PTCPNs). They vali-
dated the model and carried out a performance cost trade-off analysis. In [1§],
queuing network and Stochastic Well-formed Nets (SWN) simulation models
have been proposed and validated for MR applications, considering YARN as
resource manager. Requeno et al. [7] have proposed a UML profile for Apache
Tez and transformed the stereotypes of the profile into Stochastic Petri Nets
(SPNs).

Models solved analytically instead of simulation are the main focus of this
work, specifically, models based on Markovian processes. Analytic model and for-
mulation has a great value in getting to know a system, while the later, is difficult
or some time impossible in complex systems like Big Data frameworks. Although
finding a mathematic relation for execution time of a MR job is unachievable,
Upper and lower bounds were analytically derived for MR job execution time
in shared Hadoop clusters by authors in [19]. On the other hand, numerous
works have used the more feasible approach of building analytical models. SPNs
have been used by [20] for performance prediction of adaptive Big Data archi-
tecture. Mean Field Analysis was applied by authors in [20] to obtain average
performance metrics. In order to cope with the Inevitable state space explosion
problem, authors in [21] used Fluid Petri Nets to simplify the actual model.
They proposed fluid models to predict the execution time of the MR and Spark
application.

3 System Architecture and Application Structure

In order to better understand the behavior of proposed models, it’s necessary
to provide a background for the target system and application as well as the
assumptions. The primary system of concern is Spark framework and Spark
application. This choice is due to Spark’s extensive use among enterprises and

Scalable Performance Modeling and Evaluation of MapReduce Applications 445

its popularity between data scientists [22]. However, modeling starts from simple
Hadoop MR application, and then the applicability of models to Spark frame-
work is discussed. Spark is able to run on top of the Hadoop cluster governed
by YARN resource manager and since it is the usual deployment option [23], it
is also the choice of our architecture in this paper. The outline of the system is
depicted in Fig. 1.

MR Tez | [Spark

Fig. 1. The general schema of BigData frameworks

An MR job is consisted of three main phases: Map, Shuffle, and Reduce.
Each of these phases include number of tasks that run in parallel on different
cluster nodes. Map tasks perform computation on input data chunks and Shuffle
tasks are responsible for gathering Map phase output to Reduce tasks. Reduce
tasks perform aggregation on intermediate data and output the final result.
Since Reduce and Shuffle tasks run on same thread, from hereafter, we consider
a Reduce task an aggregation of corresponding Shuffle task and the succeeding
Reduce task.

Spark programming model is similar to MR but extends it with a data-
sharing in memory abstraction called Resilient Distributed Datasets (RDD).
Every Spark application consists of a number of stages. A stage corresponds to
an operation on RDDs and can be seen as Map, Shuffle, or Reduce phases in MR
jobs. Each stage consists of multiple tasks running in parallel and distributed
in the cluster. Stages are linked to each other in the form of a Directed Acyclic
Graph (DAG) which demonstrates the flow of data between stages and also the
execution order among them. The execution DAG specifies the parallelization
degree and the critical path as well. A sample Spark application can be seen in
Fig. 2.

Although, jobs were scheduled in earlier versions of the Hadoop framework
by FIFO policy, better schemes are available today. Hadoop 2.x and Hadoop 3
let more complex schedulers (i.e. Capacity and Fair schedulers) to be plugged
into the framework. A cluster is a resource pool in YARN, enabling dynamic
allocation of resources (containers) to the ready tasks. We assume Capacity
scheme for the YARN layer and this means that in the multi class environment
jobs in each class run in FIFO manner and next job can only start if the last stage
of the previous job has acquired all resources necessary to accomplish. YARN
capacity scheme indicates a specified share of the resources for each class, so
classes can race to acquire resources until they are under provisioned according

446 S. Karimian-Aliabadi et al.

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4
File Parallellize Parallellize ShuffledHashJoin ReduceByKey
[] > =3 /»o
MapPartition: //, MapPartitions Project [
+ FlatMap ® / [®
®
/'oject v Project Aggregate
[® ®
Map /L
b 4 2
$ Exchang v Exchange Exchange
e — o—

Fig. 2. A sample Spark application execution DAG

to their share. Once a class acquired all its share from the resources, it should
leave available resources in the favor of other under provisioned classes.

In this paper, we consider target Hadoop clusters running on a set of homo-
geneous resources [24], including MR and Spark execution engines on top of
the YARN Capacity scheduler [18]. This implies that the cluster capacity is
partitioned into multiple queues and within a queue, multiple applications are
scheduled in a FIFO manner. Multiple users can run the same query, which is
submitted to a specific queue. Moreover, after obtaining results, end users can
submit the same query again (possibly changing interactively some parameters)
after a think time. In other words, a multi-class closed performance model is
considered [25].

4 Single-Class Model

In this section, the proposed SRN model for a Spark application is presented.
Formal definition of SRN formalism, its structure, and behavior are given in [26]
which have been omitted herein for the sake of space limitation. SRN formalism
is widely used in other areas of computer science such as Cloud Computing [27]
and Computational Grids [28], for performance evaluation, and is proved to be
practical. First, the proposed model is described in detail and afterwards, the
validation and computation time of the model is discussed and lumping method
is proposed to overcome the model complexity.

4.1 Proposed Model

The SRN model proposed for Spark application is shown in Fig.3 and is mod-
eling the execution of sample Spark application of Fig.2. The model includes
different stages, shared resources, think time and the scheduling mechanism. It
should be noted that since stages in Spark are analogous to phases in Tez and
MR frameworks, this model can be easily simplified for modeling Tez and MR
applications as well. The detailed description of model behavior is as follows.

Scalable Performance Modeling and Evaluation of MapReduce Applications 447

MO

Stage4:
Map

N) Py

=)

Stage2:,
Map R

N e e e e e e e e e e

1
1
I
1
1
I
|
|
1
1
I
I
1
U

Stage3:

MNe
Ny

Fig. 3. The SRN model proposed for single class Spark application

In the initial state, there are N tokens in place P showing the jobs waiting
to start execution. The marking dependent timed transition 77 models the think
time of a waiting job. Upon completion of this transition, a token from place
Pr is moved to place Ps with rate A, which is the rate of the exponential
distribution considered for transition 7. Existence of a token in place Ps triggers
instantaneous transition tgg to start the job if the place Py has a token to
consume. The place Py ; initially contains a token modeling the possibility of
starting a waiting job according to the Capacity scheduler policy. At the start
of a job, the instantaneous transition tgg will produce Ny tokens in place Py,
each one representing a task in the first stage. Entities Py, tri, Pri, Tri, Ppi,
N;, and tp; where 0 < i < 4 together simulate ith stage. Place Py; is starting
point of stage i and shows tasks waiting for resource. Instantaneous transition ¢g;
Allocates an available resource to a task, which removes one token from place
P and one from Py;, and adds a token to place Pg;. Place Po is modeling
the pool of containers, which is initially set to contain C' tokens representing
the total number of containers. The execution of a single task is modeled by
the timed transition T'g;, which returns the resource to the pool of available

448 S. Karimian-Aliabadi et al.

resources whenever a task is done. This transition is characterized by the Erlang
distribution with shape kg; and a marking dependent rate Ag;. According to our
experiments, the exponential distribution is not the case for the task execution
time, and task execution time fits better with more general distributions like
Erlang. On the other hand, for the SRN model to be analytically solvable, all
timed activities have to be exponentially distributed [29]. Fortunately, an Erlang
distribution can be simulated with a set of continuous exponential activities [30]
helping us to use the analytically solvable SRN models, when some actions of
the system follow Erlang distribution. Parameters of the distributions are being
calculated from the experiment logs.

Once the number of tokens in place Pp; reaches the total number of the
tasks, the ith stage is finished and the instantaneous transition ¢p; consumes N;
tokens from Pp;, where N, denotes the number of tasks in ith stage, and starts
(¢ +1)th stage with producing N;;1 tokens in place Py (;41). The completion of
transition tg; for the second to last stage, also results in adding a token to place
Pr s, which indicates that a job is performing its last stage. Recalling from Sect. 3,
the Capacity scheduler implies that the next job can start executing only when
the previous job has received all of the necessary resources for completing its last
stage. Similarly, in our model, instantaneous transition tp; enables, whenever
there is a token in place Py g and there is no token left in place Py 4. Afterwards,
transition ¢z ; removes a token from place P g, and puts a token into place Py s
enabling instantaneous transition tgy to start the next job. Notice that place
Ps3 and transition tg3 are assuring that both stage; and stagey are completed
before stages is started.

The performance measure to be assessed by the proposed model of Fig.3
is the steady-state mean execution time of jobs, which is the average time a
token needs to move from place Pg to place Pr. In order to compute the mean
execution time, the reward shown in Eq. 1 is defined.

N 1
r=—_—
throughput,., Ar

(1)

where throughput,,, is the throughput of the instantaneous transition tz4 and
can be calculated by Eq. 2.

throughput;,, = P(#Pps = Ns— 1) - Apy4 (2)

where P(#Pps = Ny — 1) is the probability of being in a state where all but
one tasks are finished in the last stage, so there are N, — 1 tokens in place Ppy
and one token left to finish the entire job. This probability is multiplied by Ag4,
which is the rate of executing a task in the last stage.

4.2 Lumping Technique

Although the proposed model seems to conform with the Spark execution model,
in real world, scalability remains a low point for this model. Technically, the
model of Fig. 3 could easily grow in state space with increasing number of stages

Scalable Performance Modeling and Evaluation of MapReduce Applications 449

and face the state space explosion problem. The issue gets even worse in multi-
class environments where multiple multi-stage Spark applications are running in
parallel. Our experiments, also support this claim, so that, the SRN model of
Fig. 3 takes more than 4 days to solve analytically. Details of experiment setup
and tool set is described in Sect. 6. Therefore, a heuristic approach is introduced
to decrease the complexity of the model by reducing the cardinality of the param-
eters. The basics of the heuristic is the fact that according to the experiments,
tasks in a single stage run in waves. That is when the number of tasks is greater
than number of cores, then at the beginning of the ith stage, all of the C cores
are assigned to tasks and N; — C tasks are left. After a while, running tasks,
eventually finish and release their acquired resources. With the assumption that
the runtime of an individual task is almost similar to other tasks of the same
stage, then according to Fig. 4, next C tasks will acquire C' available resources.
A group of C tasks, is called a wave.

300

<@an
2an
o
250 [~ 7
reererere ettt ettt et sttt e e et eeas st s
200 S 7
o | e
I3
S 150 g ; E
g o o geg o g 8 ’
§ Ug ég \\\\\\\\\\\\\\\\ é.é ° o0 © 8 g
@ % 2 & o o oo
%y @e & 2 g
L& g Diig® oo i
100 s 3 © 00
q“, 2 @ g% ’y ‘g ° g °. o
o o8 8 ° °
a 50 00 PR g o
e g Qg f P ° °
50 o g 0 00 7
%} o8 o g
e ° oIS §ing g g0
& §8 0o o é o ¢ Map 1
N @ ZQ o% 5 ‘% & 8 8 Reducer 2
o 9.«
or, @ o)) : < Shuffle 2
0 100000 200000 300000 400000

time (ms)

Fig. 4. The execution plot for a sample MR application

Modeling the execution of waves instead of individual tasks, reduces the
cardinality of tasks and obviously increases the scalability of the model. This will
be done by lumping tasks to waves and assume a single resource with [N;/C']
waves. Although the assumption is not real and implies some error to the results,
since tasks execution times are not exactly same, but experiments in following
section shows that the error is still acceptable.

5 Multi-class Model

So far, the execution of a single class of application by multiple users is discussed
and an analytic SRN model is devised to evaluate the execution time of such

450 S. Karimian-Aliabadi et al.

environment with a heuristic to make the model feasible to solve in reasonable
time. In this section, the execution of multiple application classes is addressed,
each running by multiple users and the SRN model of Fig. 3 is extended to eval-
uate the performance of a multi-class environment using the lumping technique
discussed in Subsect. 4.2.

5.1 Proposed Model

According to the YARN scheduler, different classes of applications can be man-
aged in multiple queues each has a share of the resources which is indicated by the
framework operator. This means when a class of application is under provisioned
according to its share, and at the same time is requesting for a resource then
YARN will provide this class with more priority than other classes. In order to
increase the utilization YARN also lets fully provisioned classes to acquire more
resources than their share, only if remaining resources are free and not being
demanded by other under provisioned classes. Recall from Sect.3 that inside
each queue different instances of the application class are running in FIFO man-
ner. As claimed so far, the SRN model for multi-class environment can be built
by replicating SRN model of Fig.3 as many as the number of classes and let
them race to acquire resources by the rules described earlier. Here, in order to
be more concrete, assume 4 classes of MR applications running in parallel and
the model for this sample environment is depicted in Fig. 5. The detail of model
structure and behavior is as follows.

Fig. 5. The SRN model proposed for multi class MR application

Scalable Performance Modeling and Evaluation of MapReduce Applications 451

For the sake of simplicity, MR applications are considered here, where as you
can see in Fig. 5 there are just two Map and Reduce stages in each application.
While the behavior of sub-models for each of the classes is similar to Fig. 3,
the main difference is how instantaneous transitions ¢g; ; enable. Instantaneous
transition ¢g; ; is responsible for acquiring resource in ith class, where 1 < i < 4,
and jth stage, where 1 < j < 2 and enables according to the guard function g; ;.
The guard function g; ; is formulated as below.

1, if (#Pwi,; > 0) and (#Pc > 0) and (
(Z?:l #PRi,j <S;- C) or
for each class k and k # 1 :

3
(X5 #Pwrj =0o0r Y0, #Pri; > Sy - C) ®)

9i5 =

)

0, otherwise

where S; denotes the share factor of ith class. The desired performance measure
of the proposed model of Fig.5 is similar to the performance measure devised
for model of Fig. 3, that is steady-state mean execution time of each job in each
class and is calculated by Eq.4.

N; 1

= T 4
" throughputy,,, At @)
where throughput;,., , can be calculated by Eq. 5.

throughputtm,z =]PJ(#PFLQ = Ni72 —].) . AR»L‘,Q (5)

5.2 Lumping Technique

The modal of Fig. 5 with multiple classes of applications, each running by mul-
tiple users has a huge state space which will be more unattainable if number
of tasks in each stage increases. In Sect.4 lumping technique proposed to scale
down the number of tasks to number of waves. Here a similar technique is lever-
aged to make the model feasible to analyze. Assuming that ¢; containers are
assigned to each class i, c4eq can be calculated as the ged of ¢; values. After-
wards, both the number of tasks and containers are divided by cgcq, simulating
a lumping technique. For example, if there are 240 total containers and each of 4
application classes have a share of 60 containers then a stage with 300 tasks will
have approximately, 5 waves. This approximation is not realistic since sometimes
the application will receive less or more resources than its share, however this
assumption enables the model to be analytically tractable with an acceptable
error.

6 Numeric-Analytic Results

The numeric-analytic solution to proposed SRN models is preferred to simula-
tion results, since simulation methods can grow in runtime and usually lack in

452 S. Karimian-Aliabadi et al.

scalability as discussed in Sect. 1, therefore, we chose SPNP tool [35] and its
steady-state iterative solver, in order to analyze our proposed models, consider-
ing that SPNP is the state of the art tool for analytic solutions of SRN models.
In order to assess the accuracy of the numeric results obtained from the model
we have conducted several experiments on real world platforms including public
Clouds to private cluster and we defined the measure below as the error value.

TsrN — T

. (6)
where Osgrn denotes the relative error between the SRN model and experi-
ments, T is the execution time of a job on the real system under test which
is measured from the experiment, and Tsry is the execution time received from
the SRN model as the result of numeric solution. The experiment setup includes
the PICO Big Data cluster available at CINECA [32] configured with number
of cores ranging from 40 to 120, each of them assigned to a single container
and the private cluster. Our IBM Power8 (P8) private cluster includes 4 VMs
with 11 cores and 60 GB of RAM for each. Spark executors are configured to
leverage 2 cores and 4 GB of RAM, while Spark drivers use 8 GB of RAM. The
configurations vary in number of cores from 6 to 44 and number of executors
from 3 to 22.

Osrn = |

select avg(ws_quantity),
avg(ws_ext_sales_price),

avg (ws_ext_wholesale_cost),

sum (ws_ext_wholesale_cost)

from web_sales

where

(web_sales.ws_sales_price between
100.00 and 150.00) or

select inv_item_sk,
inv_warehouse_sk

from inventory

where
inv_quantity_on_hand > 10
group by inv_item_sk,
inv_warehouse_sk

(web_sales.ws_net_profit between having
100 and 200) sum(inv_quantity_on_hand) > 20
group by ws_web_page_sk limit 100
limit 100; ;
(a) @ (b) Q2
select avg(ss_quantity), select

avg(ss_net_profit)
from store_sales
where

inv_warehouse_sk,
sum(inv_quantity)
from inventory

select cs_item_sk,
avg (cs_quantity) as aq

having
avg(ss_quantity) > 20
limit 100;

ss_quantity > 10 and from catalog_sales group by
ss_net_profit > 0 where cs_quantity > 2 inv_warehouse_sk
group by ss_store_sk group by cs_item_sk; having

sum(inv_quantity) > 5
limit 100;

(c) Qs

(d) Qa

Fig. 6. MR queries (Q3 to Qs)

(e) Qs

Scalable Performance Modeling and Evaluation of MapReduce Applications 453

The dataset used for running the experiments was generated with the TPC-
DS benchmark data generator [33], which is the industry standard for bench-
marking data warehouses. Datasets are in the form of external tables for the
Hive [34] queries and their size varies from 250 GB to 1 TB. Different queries are
considered to be executed on datasets as MR or Spark applications. For the case
of single-class scenario, both MR and Spark applications were chosen. Queries
@1 and Q9 are designed in Fig.6 for which number of Map and Reduce tasks
vary from 1 to 151 in different configurations. Queries ()26 and @52 are selected
from TPC-DS catalog for Spark applications and vary in number of stages from
4 to 8 each one having 1 to 1000 tasks. Finally, for the case of multi-class sce-
nario MR queries were completed with queries Q3 to @5 of Fig.6 so different
configurations of queries 1 to @5 can be executed in 4 queues. Number of users
in each queue differs from 2 to 10 and number of tasks range from 1 to 600 in
each Map or Reduce phase.

Table 1. Results obtained from the proposed SRN model for single class applications

Query | Users | Cores | Scale [GB] | T'[ms| | 7srn [ms] | Ysrn [%]
Q1 1 60 250 80316 81285 |1.21
Q2 1 60 250 84551 86624 |2.45
Q1 3 20 250 1002160 | 1059403 |5.71
Q1 3 40 250 340319 | 380881 |11.92
Q2 3 20 250 95403 88982 |6.73
Q- 3 40 250 86023 76936 | 10.56
Q1 5 20 250 1736949 | 1827978 |5.24
Q1 5 40 250 636694 | 688759 |8.18
Q2 5 20 250 145646 | 148453 |1.93
Q2 5 40 250 90674 | 106200 |17.12
Q26 1 24 250 178714 | 142446 |20.29
Q26 1 32 250 168041 | 116364 |30.75
Qs2 1 24 250 181496 | 144862 |20.18
Q52 1 32 250 162232 | 121392 |25.17
Q52 1 48 750 279243 | 234573 |16
Qs2 1 48 1000 359987 | 312014 |13.33
Q26 1 500 2532250 | 2720902 | 7.45
Q26 1 500 2071159 | 2179066 |5.21
Q26 1 10 500 1778802 | 1878948 |5.63

in order to estimate the mean execution time of tasks in stages which is necessary
to solve our proposed SRN models a profiling step conducted which is a common
idea as stated in different literatures [13,14]. A pilot execution was designed for

454 S. Karimian-Aliabadi et al.

Table 2. Results obtained from the proposed lumped SRN model for multi class MR
applications

Configuration | Query | Users | T' [ms] TsrN [ms] | Ysrn [%)]
1 Q2 5 118667 86094 | 27.45
Qs 5 120947 | 117429 2.91
2 Q1 4 206938 | 235267 |13.69
Qs 2 258220 | 275443 6.67
Q4 2 246750 | 250426 1.49
3 Q2 10 252800 | 182187 | 27.93
Qs 10 246702 | 244860 0.75
4 Q1 10 436212 | 555341 27.31
Q3 5 599848 | 710399 | 18.43
Q4 5 584583 | 633454 8.36
5 Q1 5 264515 | 335193 |26.72
Q2 5 998941 | 1163866 |16.51
Qs 3 337716 | 356155 5.46
Qa 3 331327 | 338616 2.2
6 Q1 5 363047 | 469673 |29.37
Q2 5 1479480 | 1814878 | 22.67
Qs 10 1003998 | 1064639 6.04
Q4 10 1015219 | 1053188 3.74
7 Q1 10 468085 | 601863 | 28.58
Qs 5 613296 | 658311 7.34
Q4 5 621132 | 675170 8.7
Qs 10 1060763 | 1317149 |24.17
8 Q1 10 452974 | 522958 |15.45
Q2 10 1870229 | 2316278 |23.85
Qs 5 613190 | 718536 |17.18
Q4 5 587453 | 598438 1.87

each query with a minimum size cluster and mean execution times was measured
through execution logs. Obtained values were then used for other cluster and
dataset sizes. Task durations are measured as average values between 20 runs
and fit better with Erlang distribution for Map tasks while for Reduce tasks
exponential distribution fits good enough.

The results obtained from the experiments and the proposed SRN model are
shown in Table 2 for single-class MR and Spark applications. The average error
is 11.31% which offers the acceptable performance of lumping technique. Finally,
the accuracy of the proposed model for multi-class MR applications is evaluated
in Table 1 which shows an average error of 14.5%. Despite the increase in error,

Scalable Performance Modeling and Evaluation of MapReduce Applications 455

model runtime reduced from couple days to couple seconds and the improved
scalability is the main contribution of lumping technique.

7 Conclusion and Future Works

In this paper we have discussed one of the challenges in BigData area. The fact
that a BigData cluster which is equipped with the complete stack of frameworks
and tools like Hadoop, YARN, Tez, or Spark, has a huge parameter set and tun-
ing these values is not possible without a useful and accurate performance model
which can predict the execution time of applications running in the cluster. Pre-
vious works in this field are mainly focused on simulation, learning, experiment,
and log analysis which are time-consuming, costly, not accurate enough, and
not general according to different performance measures. Therefore, analytical
models were chosen, due to their low runtime, more general insight, and high
accuracy.

New version of frameworks like Spark, support shared environment for simul-
taneous applications and users to run and make use of available resources. This
feature will cause performance models to grow in state space and face state
space explosion problem. While previous work on analytical model [18] consid-
ers multiple users and multiple stages, it is limited to single-class executions and
suffers from state space explosion problem, our proposed model is scalable in
the way that can predict execution time of applications in the presence of other
simultaneous applications with different classes of jobs.

In this paper, analytical SRN models were proposed to evaluate most popular
BigData frameworks Hadoop and Spark. Despite previous works [18] which have
only considered single class executions, a lumping method is proposed to cope
with the state space explosion problem and therefore, enable our model to evalu-
ate the performance of multi-class executions. SRN models are then solved using
numeric-analytic solver which outperforms other methods in low runtime and
sufficient accuracy. Results from numeric-analytic solver are then compared to
experiments on CINECA supercomputer considering TPC-DS benchmark work-
loads and the reported error is 11.3% and 14.5% in average for single-class and
multi-class scenarios respectively, which is adequate to support capacity planning
decisions and what-if analysis [25].

Future work will extend the models to support additional scenarios of inter-
est like execution with faulty nodes, data placement, and speculative execution.
Sensitivity analysis can also be derived in order to find the most effective param-
eters in execution time of applications. Effective parameters are those which will
be optimized first to reach improved performance with the least effort.

Acknowledgment. The results of this work have been partially funded by the Euro-
pean DICE H2020 research project (grant agreement no. 644869).

456 S. Karimian-Aliabadi et al.
References
1. Reinsel, D., Gantz, J., Rydning, J.: Data age 2025: the evolution of data

10.

11.

12.

13.

14.

to life-critical (2017). https://www.seagate.com/de/de/our-story/data-age-2025/.
Accessed July 2018

. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.

Commun. ACM 51(1), 107-113 (2008). https://doi.org/10.1145/1327452.1327492
Apache, Apache Hadoop. http://hadoop.apache.org/. Accessed July 2018
Vavilapalli, V.K., et al.: Apache hadoop yarn: yet another resource negotiator. In:
Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC 2013, pp.
1-16. ACM Press, Santa Clara (2013). https://doi.org/10.1145/2523616.2523633
Saha, B., Shah, H., Seth, S., Vijayaraghavan, G., Murthy, A., Curino, C.: Apache
Tez: a unifying framework for modeling and building data processing applications.
In: Proceedings of the 2015 ACM International Conference on Management of
Data, SIGMOD 2015, pp. 1357-1369. ACM Press, Melbourne (2015). https://doi.
org/10.1145/2723372.2742790

Ardagna, D., et al.: Performance prediction of cloud-based big data applications.
In: Proceedings of the 2018 ACM/SPEC International Conference on Performance
Engineering, ICPE 2018, pp. 192-199. ACM Press, Berlin (2018). https://doi.org/
10.1145/3184407.3184420

Requeno, J.I., Gascén, 1., Merseguer, J.: Towards the performance analysis of
Apache Tez applications. In: Proceedings of the 2018 ACM/SPEC International
Conference on Performance Engineering, ICPE 2018, pp. 147-152. ACM Press,
Berlin (2018). https://doi.org/10.1145/3185768.3186284

Ataie, E., Gianniti, E., Ardagna, D., Movaghar, A.: A combined analytical mod-
eling machine learning approach for performance prediction of MapReduce jobs
in cloud environment. In: Proceedings of the 18th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2016, pp.
431-439. IEEE, Timisoara (2016). https://doi.org/10.1109/SYNASC.2016.072
Zhang, Z., Cherkasova, L., Loo, B.T.: Benchmarking approach for designing a
MapReduce performance model. In: Proceedings of the ACM/SPEC International
Conference on International Conference on Performance Engineering, ICPE 2013,
pp- 253-258. ACM Press, Prague (2013). https://doi.org/10.1145/2479871.2479906
Dai, J., Huang, J., Huang, S., Huang, B., Liu, Y.: HiTune: dataflow-based perfor-
mance analysis for big data cloud. In: Proceedings of the USENIX Annual Technical
Conference, pp. 87-100. USENIX Association, Portland (2011)

Jiang, D., Ooi, B.C., Shi, L., Wu, S.: The performance of MapReduce: an in-depth
study. Proc. VLDB Endowment 3(1-2), 472-483 (2010). https://doi.org/10.14778/
1920841.1920903

Yigitbasi, N., Willke, T.L., Liao, G., Epema, D.: Towards machine learning-based
auto-tuning of MapReduce. In: Proceedings of the IEEE 21st International Sym-
posium on Modelling, Analysis and Simulation of Computer and Telecommuni-
cation Systems, pp. 11-20. IEEE, San Francisco (2013). https://doi.org/10.1109/
MASCOTS.2013.9

Venkataraman, S., Yang, Z., Franklin, M., Recht, B., Stoica, I.: Ernest: efficient
performance prediction for large-scale advanced analytics. In: Proceedings of the
13th Usenix Conference on Networked Systems Design and Implementation, pp.
363-378. USENIX Association, Santa Clara (2016)

Gibilisco, G.P., Li, M., Zhang, L., Ardagna, D.: Stage aware performance modeling
of DAG based in memory analytic platforms. In: Proceedings of the 9th Interna-

https://www.seagate.com/de/de/our-story/data-age-2025/
https://doi.org/10.1145/1327452.1327492
http://hadoop.apache.org/
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1145/2723372.2742790
https://doi.org/10.1145/2723372.2742790
https://doi.org/10.1145/3184407.3184420
https://doi.org/10.1145/3184407.3184420
https://doi.org/10.1145/3185768.3186284
https://doi.org/10.1109/SYNASC.2016.072
https://doi.org/10.1145/2479871.2479906
https://doi.org/10.14778/1920841.1920903
https://doi.org/10.14778/1920841.1920903
https://doi.org/10.1109/MASCOTS.2013.9
https://doi.org/10.1109/MASCOTS.2013.9

Scalable Performance Modeling and Evaluation of MapReduce Applications 457

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

tional Conference on Cloud Computing, CLOUD 2016, pp. 188-195. IEEE, San
Francisco (2016). https://doi.org/10.1109/CLOUD.2016.0034

Liu, Y., Li, M., Alham, N.K., Hammoud, S.: HSim: a MapReduce simulator in
enabling cloud computing. Future Gener. Comput. Syst. 29(1), 300-308 (2013).
https://doi.org/10.1016/j.future.2011.05.007

Gribaudo, M., Barbierato, E., Tacono, M.: Modeling apache hive based applica-
tions in big data architectures. In: Proceedings of the 7th International Conference
on Performance Evaluation Methodologies and Tools, ValueTools 2013, pp. 30-38
ICST, Torino (2013). https://doi.org/10.4108/icst.valuetools.2013.254398

Ruiz, M.C., Calleja, J., Cazorla, D.: Petri nets formalization of Map/Reduce
paradigm to optimise the performance-cost tradeoff. In: Proceedings of the 2015
IEEE Trustcom/BigDataSE/ISPA, Vol. 3, pp. 92-99. IEEE, Helsinki (2015).
https://doi.org/10.1109/Trustcom.2015.617

Ardagna, D., Bernardi, S., Gianniti, E., Karimian Aliabadi, S., Perez-Palacin, D.,
Requeno, J.I.: Modeling performance of hadoop applications: a journey from queue-
ing networks to stochastic well formed nets. In: Carretero, J., Garcia-Blas, J., Ko,
R.K.L., Mueller, P., Nakano, K. (eds.) ICA3PP 2016. LNCS, vol. 10048, pp. 599—
613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49583-5_47
Malekimajd, M., Ardagna, D., Ciavotta, M., Rizzi, A.M., Passacantando, M.: Opti-
mal map reduce job capacity allocation in cloud systems. ACM SIGMETRICS Per-
form. Eval. Rev. 42(4), 51-61 (2015). https://doi.org/10.1145/2788402.2788410
Castiglione, A., Gribaudo, M., Iacono, M., Palmieri, F.: Exploiting mean field
analysis to model performances of big data architectures. Future Gener. Comput.
Syst. 37, 203-211 (2014). https://doi.org/10.1016/j.future.2013.07.016

Gianniti, E., Rizzi, A.M., Barbierato, E., Gribaudo, M., Ardagna, D.: Fluid petri
nets for the performance evaluation of MapReduce and spark applications. ACM
SIGMETRICS Perform. Eval. Rev. 44(4), 23-36 (2017). https://doi.org/10.1145/
3092819.3092824

Spark, Apache Spark. http://spark.apache.org/. Accessed July 2018

Alipourfard, O., Harry Liu, H., Chen, J., Venkataraman, S., Yu, M., Zhang, M.:
CherryPick: adaptively unearthing the best cloud configurations for big data ana-
lytics. In: Proceedings of the 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 2017), Boston, MA, USA, pp. 469-482 (2017)
Teng, F., Yu, L., Magoules, F.: SimMapReduce: a simulator for modeling MapRe-
duce framework. In: Proceedings of the Fifth FTRA International Conference on
Multimedia and Ubiquitous Engineering, pp. 277-282. IEEE, Loutraki (2011).
https://doi.org/10.1109/MUE.2011.56

Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative System
Performance: Computer System Analysis Using Queueing Network Models, 1st
edn. Prentice-Hall, Upper Saddle River (1984)

Ciardo, G., Trivedi, K.S.: A decomposition approach for stochastic reward
net models. Perform. Eval. 18(1), 37-59 (1993). https://doi.org/10.1016/0166-
5316(93)90026-Q. https://www.sciencedirect.com/science/article/pii/0166531693
90026Q

Ataie, E., Entezari-Maleki, R., Rashidi, L., Trivedi, K.S., Ardagna, D., Movaghar,
A.: Hierarchical stochastic models for performance, availability, and power con-
sumption analysis of IaaS clouds. IEEE Trans. Cloud Comput. (to appear).
https://doi.org/10.1109/TCC.2017.2760836

Entezari-Maleki, R., Trivedi, K.S., Movaghar, A.: Performability evaluation of grid
environments using stochastic reward nets. IEEE Trans. Dependable Secure Com-
put. 12(2), 204-216 (2015). https://doi.org/10.1109/TDSC.2014.2320741

https://doi.org/10.1109/CLOUD.2016.0034
https://doi.org/10.1016/j.future.2011.05.007
https://doi.org/10.4108/icst.valuetools.2013.254398
https://doi.org/10.1109/Trustcom.2015.617
https://doi.org/10.1007/978-3-319-49583-5_47
https://doi.org/10.1145/2788402.2788410
https://doi.org/10.1016/j.future.2013.07.016
https://doi.org/10.1145/3092819.3092824
https://doi.org/10.1145/3092819.3092824
http://spark.apache.org/
https://doi.org/10.1109/MUE.2011.56
https://doi.org/10.1016/0166-5316(93)90026-Q
https://doi.org/10.1016/0166-5316(93)90026-Q
https://www.sciencedirect.com/science/article/pii/016653169390026Q
https://www.sciencedirect.com/science/article/pii/016653169390026Q
https://doi.org/10.1109/TCC.2017.2760836
https://doi.org/10.1109/TDSC.2014.2320741

458

29.

30.

31.

32.
33.

34.
35.

S. Karimian-Aliabadi et al.

Meyer, J.F., Movaghar, A., Sanders, W.H.: Stochastic activity networks: structure,
behavior, and application. In: Proceedings of the International Workshop on Timed
Petri Nets, Torino, Italy, pp. 106-115 (1985)

Reinecke, P.; Bodrog, L., Danilkina, A.: Phase-type distributions. In: Wolter, K.,
Avritzer, A., Vieira, M., van Moorsel, A. (eds.) Resilience Assessment and Evalua-
tion of Computing Systems, pp. 85-113. Springer, Berlin (2012). https://doi.org/
10.1007/978-3-642-29032-9_5

Flexiant: Flexiant cloud management software & cloud orchestration. https://
www.flexiant.com/. Accessed July 2018

Cineca: Cineca computing center. http://www.cineca.it/. Accessed July 2018
Poess, M., Smith, B., Kollar, L., Larson, P.: TPC-DS, taking decision support
benchmarking to the next level. In: Proceedings of the 2002 ACM International
Conference on Management of data, SIGMOD 2002, pp. 582-587. ACM Press,
Madison (2002). https://doi.org/10.1145/564691.564759

Hive: Apache Hive. https://hive.apache.org/. Accessed July 2018

Hirel, C., Tuffin, B., Trivedi, K.S.: SPNP: stochastic petri nets. Version 6.0. In:
Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol.
1786, pp. 354-357. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
46429-8_30

https://doi.org/10.1007/978-3-642-29032-9_5
https://doi.org/10.1007/978-3-642-29032-9_5
https://www.flexiant.com/
https://www.flexiant.com/
http://www.cineca.it/
https://doi.org/10.1145/564691.564759
https://hive.apache.org/
https://doi.org/10.1007/3-540-46429-8_30
https://doi.org/10.1007/3-540-46429-8_30

	Scalable Performance Modeling and Evaluation of MapReduce Applications
	1 Introduction
	2 Related Work
	3 System Architecture and Application Structure
	4 Single-Class Model
	4.1 Proposed Model
	4.2 Lumping Technique

	5 Multi-class Model
	5.1 Proposed Model
	5.2 Lumping Technique

	6 Numeric-Analytic Results
	7 Conclusion and Future Works
	References

