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Abstract Using electroencephalography (EEG) data to extract information about
cortical signals has become an increasingly explored task of interest in the field of
computational neuroscience. In this paper, we proposed a novel procedure which
reduce dimension by applying spatial Independent Component Analysis (SICA) on
EEG motion artifact data and classify gait speed for a given subject by the projected
EEG motion artifact signals. Whereas most applications of ICA in analyzing EEG
data employ temporal ICA, we use SICA and Principal Component Analysis for
dimension reduction before applying classifiers such as Support Vector Machines,
Naive Bayes, and multinomial logistic regression to the extracted independent
components. We evaluate and compare the classification models by using randomly
selected channels from the multi-channel EEG motion artifact data as our test data.
For practical application and interpretation, we treat the test channels as if they
might come from a new trial for the given subject.

Keywords Classification · Brain signals · Time series · High-dimensional ·
Spatial dimension reduction

1 Introduction

Electroencephalography (EEG) has become more readily available as a method to
analyze cortical activity due to its relatively low cost and high temporal resolution
[10]. Although it can be convenient to collect EEG data, the dimensions of the
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recorded electrical activity can become large very quickly, especially when using
high-density EEG for trials recorded at lengthy time periods. Since EEG datasets are
high-dimensional and noisy, thus it is difficult to use them for classifying subjects
in terms of their movement characteristics. Therefore, it is important to develop
methods for analyzing the EEG data with a reduced dimensional space where the
variable information is still retained for classifying different gait movements for a
given subject.

The purpose of this paper is to introduce a novel procedure which could
classify movement characteristics with EEG motion artifact data projected by spatial
Independent Component Analysis (SICA) for a given subject. The EEG motion
artifact data did not actually contain electrophysiological signals from the body.
Instead, the EEG motion artifact data consisted of signals that were recorded from
an isolated conductive reference cap using an EEG system [17]. This EEG motion
artifact recording method has enabled the development of new artifact rejection
techniques to clean EEG signals [22] but these EEG motion artifact data could also
potentially be used to classify movement characteristics.

ICA originates from a method to solve problems such as the “cocktail party”
problem where one hopes to identify individual voices when many people are
speaking simultaneously, recorded in multiple devices in different locations. In this
case, the temporal ICA (TICA) algorithm assumes independence in time such that
the original voices can be extracted from the mixtures [5]. Similar to the cocktail
party problem, each electrode in EEG data is composed of the mixture of multiple
electrophysiological signals that includes the true underlying cortical signals which
are assumed to be temporally independent [6]. Therefore, TICA has been most
commonly used to analyze EEG data [9]. Because TICA is most commonly used
to analyze EEG data, the authors who recorded the first set of EEG motion artifact
data in [17] applied TICA and source localization to the data and found that the
independent components were mostly outside of the brain volume, which provided
evidence that TICA could be used to partially distinguish motion artifact from
electrophysiological signals [25]. However, the authors did not attempt to extract
movement characteristics from the EEG motion artifact data, which inspired us to
investigate that possibility in this paper.

In contrast to TICA, SICA assumes spatially independent components and has
been used more commonly in literature which focuses on the analysis of functional
magnetic resonance imaging (fMRI) data [7]. However, the temporal dimension of
EEG data can be much larger than that of the spatial dimension in many cases [23].
Therefore, our aim is to reduce the temporal dimension and employ SICA on the
reduced data instead of using TICA. Consequently, we propose a method which
iteratively computes SICA on subsets of the partitioned data, and concatenates the
independent components from each iteration.

The rest of this paper is organized as follows. We introduce the techniques
of ICA, and then describe the examined data and the proposed data analysis
procedure for dimension reduction. Furthermore, the classification methods: k-
nearest neighbors, Support Vector Machines, Naive Bayes, and multinomial logistic
regression are described. Finally, we discuss the results of our classification and
further suggest the implications of our conclusions.
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2 Classification Methods

We use the EEG motion artifact data projected by Spatial ICA with the following
classifiers. (1) k-nearest neighbor (k-nn), (2) Support Vector Machines, (3) Naive
Bayes, and (4) multinomial logistic regression. A brief description of each method
is introduced as follows. Notice that X is the matrix of predictors and Y is the
response vector of classification labels in this section.

2.1 k-Nearest Neighbor (k-nn)

We used the k-nearest neighbour classification method with k = 3, which
determines the class by majority voting of each point’s k nearest neighbors. The
knn was fulfilled by knn3() function in package ‘caret’ in R were used in this study.

2.2 Support Vector Machines

In an approach to solve multi-class pattern recognition, we can consider the problem
as many binary classification problems [8, 27]. If we consider the case of K classes,
K classifiers are constructed. Each classifier builds a hyperplane between itself and
the K − 1 other classes [27]. If our response, or the two classes, are represented by
Y ∈ {−1, 1}, we can use a Support Vector Machine (SVM) to construct a hyperplane
to separate the two groups such that the distance between the hyperplane and the
nearest point, or the margin, is maximized [8].

The optimization problem seeks to minimize: φ(w, ξ) = 1
2‖w‖2 + C

∑n
i=1 ξi

with constraints yi((w ·xi)+b) ≥ 1−ξi, i = 1, . . . , n and ξi ≥ 0, i = 1, . . . , n. We
can solve the optimization problem by solving the dual problem, which consists of
minimizing W(α) = ∑n

i=1 αi − 1
2

∑n
i,j=1 yiyjαiαjK(xi, xj ) under the constraints

0 ≤ αi ≤ C, i = 1, . . . , n and
∑n

i=1 αiyi = 0 The above gives the decision
function: f (x) = sign

[∑n
i=1 (αiyiK(x, xi)) + b

]
[27].

There exist many different types of kernel functions to use in Support Vector
Machine classification. Support vector machines (SVM) [8] with a linear kernel
was used in this study. The cost parameters C was tuned using cross validation [16]
with package ‘e1071’ in R [21].

2.3 Naive Bayes

The Naive Bayes algorithm is a classification algorithm based on Bayes’ rule and
a set of conditional independence assumptions. Given the goal of learning P(Y |X)

where X = X1, . . . , Xp, the Naive Bayes algorithm makes the assumption that each
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feature Xi is conditionally independent of each of the other Xj s given Y = k, and
also independent of each subset of the other Xj s given Y = k [15]. Bayes’ rule
states that the probability of some observed data, x = (x1, . . . , xp), belonging to

class k is P(Y = k|x) = πkfk(x)
∑K

l=1 πlfl(x)
, where P(Y = k) = πk and fk(x) = p(X =

x|Y = k) is the probability density for X in class k. For a given class k, Naive Bayes
classification makes the assumption that all of the features, or xis are independent,
or fk(x) = P(x1, x2, . . . , xp|Y = k) = ∏p

i=1 P(xi |Y = k). Thus, the Naive Bayes
classifier is as follows: arg maxk πk

∏p

i=1 f i
k (xi), where f i

k (xi) = P(Xi = xi |Y =
k) [15]. We believe that, because we are reducing our data by Spatial ICA, Naive
Bayes classification will provide the best results in terms of misclassification rate.
We will use all other classification methods for a comparison to Naive Bayes.

2.4 Multinomial Logistic Regression

Logistic regression can be used as a method for modeling a categorical response
variable by finding significant parameters. In the multinomial case, our y response
variable represents more than two categories. It does not require the assumption of
statistical independence of predictors unlike the Naive Bayes classifier, but assumes
collinearity between predictors.We used package ‘glmnet’ in R [11] to fulfill the
multinomial logistic regression.

3 The EEG Motion Artifact Signals Data and Spatial ICA
Methodology

We used the EEG motion artifact signals data that was collected in [17] and were
analyzed using TICA in [25]. The method of recording isolated motion artifact
in EEG is described in detail in [17]. Briefly, the isolated motion artifact data
were collected using a 256 channel EEG system (ActiveTwo, Biosemi) from ten
young and healthy participants. A non-conductive silicone swim cap was placed
on each subject’s head to block true electrophysiological signals. A simulated scalp
consisting of a short wig soaked in conductive gel was placed over the silicone layer,
and the EEG cap and electrodes were placed over the simulated scalp. Subjects sat
(0 m/s) and walked at four different speeds (0.4 m/s, 0.8 m/s, 1.2 m/s, 1.6 m/s) on
a treadmill. Each trial was 10 min in duration, and data were recorded at 512 Hz
[25]. Ten subjects with complete data sets were used in analysis. In this study, we
pre-processed data by vertically concatenating each of the subject’s five speeds into
one data file while creating a speed label for each signal. In terms of the temporal
dimension, each recording consisted of 300, 000–310, 000 points for the 10 min of
recorded signal. However, we used only points 1 through 300, 000 for consistency
within and between the ten subjects. Therefore, for one of the ten subjects, we have
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total 1280 EEG motion artifact signals with dimension p = 300, 000 in five speeds
and the sample size n = 256 given a speed.

Independent Component Analysis (ICA) belongs to a class of methods often
referred to as “Blind Source Separation” which aim to extract certain quantities from
a mixture of other quantities [26]. ICA-unlike other statistical methods of dimension
reduction that find mutually de-correlated signals such as Principle Component
Analysis (PCA) or Factor Analysis (FA)- is based on the assumption of statistical
independence [26]. ICA decomposes the data such that we are left with maximally
independent signals by maximizing non-Gaussianity. One important distinction of
ICA is that there is no order or ranking of the extracted components. It is also
notable that the components do not recognize the difference of signs [18]. Since
the EEG signals in our dataset have heavy-tailed and multimodal distributions, it
is inadequate to apply PCA, which can not recover statistically independent source
signals [13, 14].

Let us denote the observed data as an n by p matrix, X where n the number of
spatial voxels and p represents the number of time points. In Spatial ICA (SICA),
we consider the n vectors containing each of the p instances to be our signals [3].
We can represent the SICA decomposition as follows. Assuming that X is a mixture
signals matrix from sources matrix S, and let r = the number of components, A is
n × r and S is r × p, and then X = AS + E, where E is defined using the smallest
(n−r) principal components (PCs). S = WKX is the estimated n×m matrix source
matrix, W is the estimated m × m un-mixing matrix, K is the estimated p × m pre-
whitening matrix projecting data onto the first m principal components, where n is
the number of observations and m is the number of independent components [3, 14].
In this study, the ordering of independent components is determined by Principal
Component Analysis.

Before ICA is performed, it is necessary to first pre-process the data with
reduction and whitening. For the purposes of data compression, SICA presumes that
there are fewer independent sources than there are time points [7]. Reduction is first
performed by PCA and the specified number of components are retained such that
the maximum amount of variation is represented. ICA combined with PCA allows
both whitening and achieving dimension reduction [23].

ICA supposes that the underlying sources are each not normally distributed. It
follows that, sources can be extracted by making them as non-Gaussian as possible
with the measure of negentropy. Given a covariance matrix, the distribution that has
the highest entropy is the Gaussian distribution [4, 18]. Negentropy or differential
entropy is a measure of deviation from normality expressed as

N(Z) = (EG(Z) − EG(ZGaussian))
2

where Z is an arbitrary multivariate random variable and ZGaussian is a multivariate
Gaussian random variable of the same covariance matrix as Z, and the contrast
function G(u) = − exp(−u2/2) was used in our analysis [18]. There are several
different algorithms that employ methods to estimate the independent components.
The FastICA algorithm maximizes negentropy N(X) [23]. We use the FastICA
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algorithm [13, 14] for SICA because it has been shown to outperform most other
ICA algorithms in speed of convergence [23].

4 Data Analysis Procedure

The challenge of the examining EEG signals data is its high dimension. Since
the dimension comes from the multiple time moments which records the EEG
signals of the individuals walking on a treadmill at a given speed, we assume
that the high dimensional (p > n) EEG motion artifact signals used in this study
can be decomposed as m < n independent components. Note that SICA cannot
perform dimension reduction directly. Therefore, PCA is applied as a pre-process to
determine the ordering of the importance of the components by the magnitude of the
eigenvalues of the correlation matrix of X. To reduce the high dimensional signals,
we transform the signals by using only the first four (which is K−1, K is the number
of categories) independent components. We applied package FastICA in software R
[20] for our data analysis. For each of the ten subjects, we split our data into training
and testing subsets, such that we will use the training set to train our classification
model, and the testing set to see how our model performs for new observations.
We randomly select 256 channels out of the 1280 concatenated channels as our
test set, and use the remaining 1024 channels as our training set. Although the
channels for a given trial (or given speed) are receiving motion artifact signals
simultaneously, we proceed in our analysis as if the selected test signals are recorded
from another trial. The data analysis procedure is shown in the following algorithm.
The proposed method is outlined, starting from the structure of the original data to
the concatenated data, further into the training and testing split, and finishing with
the SICA and PCA projected data.

For each of the ten subjects data, we first concatenate all records as a dataset
with 1280 rows and 300,000 columns, and then partitioned the data as a training set
(1024 records) and a test set (256 records) by random sampling. For each interval of
1000, we sampled a time point for both the training and test sets. The downsampling
rate is equalled a duration of 1.95 s, since the original signals were collected by
512 Hz sampling rate (the unit of time is 1/512 or 0.00195 s). Then we applied SICA
to the downsampled training set using the FastICA algorithm on the training data,
since the five categories can be represented in a 4-dimensional space, each signal
is compressed to the first four independent components. We then project the test
data set onto the space of the first four independent components obtained from the
training data. The plots in Figs. 1 and 2 show that most of the four independent
components for the test set each subject have obvious clusters corresponding to the
walking-speed categories.

We used the k-nearest neighbors with k = 3, SVM, Naive Bayes, and
multinomial logistic regression for classification modeling. The accuracy rate is
computed as the number of correctly categorized signals, over the total number of
classified signals. We use the accuracy rates and the multi-class area under the curve
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Algorithm 1 Spatial ICA and classification of EEG motion artifacts signals
1: There are 10 subjects. Each subject has five EEG motion artifact signals datasets according to

the five different walking speeds. Each dataset has 256 rows/space points (from 256 channels)
and 300,000 columns/time points (recordings in sequential time points).

2: procedure
3: Concatenate all records of the five speeds EEG motion artifact datasets corresponding to

the subject walking speeds.
4: Downsample the time points by keeping the first sample and then every 1000th sample after

the first.
5: Partition the data as training (1024 records) Xtr and test sets (256 records) Xte by random

sampling.
6: Apply SICA to the training set and extract 4 independent components by fastICA with type

‘deflation’ and the exponential contrast function. The components are extracted one at a time.
7: The SICA outputs a source matrix Str , pre-whitening matrix K , and un-mixing matrix W .
8: Obtain the source matrix of the test set by projection Ste = XteKW

9: Build classification models on Str and evaluate by using Ste

10: end procedure
11: For comparisons, another analysis used randomly sampling 4 time points from Xtr and Xte,

and build classification models on the training and evaluation on the test set.

(AUC) to evaluate the proposed method with comparisons of randomly selecting
four time points. Next we trained our Naive Bayes model for classification. For each
subject, we use the projected SICA test data to compare the classified results with
the true classifications and output the accuracy rate and AUC. Package ‘naivebayes’
in R was used for the Naive Bayes Classification [19]. Finally, we trained our last
classification model with the training data using multinomial logistic regression
[28]. We do not evaluate individual parameters for significance but instead simply
use the fitted model for prediction of the test data to obtain the accuracy rates for
each subject. We also provide a and 3. We provide the Area Under the Curve (AUC)
values as well to show classification performance. These values give the total area
under the Receiver Operating Curve (AUC) values were calculated with package
HandTill2001 in R [12]. Classification results are presented in Tables 1 and 2.
Table 3 is the comparison of the proposed SICA method versus random sampling
four time points on the simulation data, which was generated by adding noises
into the signals of Subject 1. The noises were sampled from uniformly distributed
random variables with the range of (−a, a), where a is

√
3 signal-to-noise (SNR)

ratio in order to make the simulated data have SNR = 1.

5 Classification Results

The aim of our study is to explore SICA as a method of dimension reduction for
analyzing high dimensional EEG or EEG motion artifact datasets. We proposed an
algorithm to downsample and perform SICA to the signals with a large number of
time points such that sufficient information is still retained for classification. By
using the first four independent components, the k-nn with k = 3, support vector
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Fig. 1 The first four projected independent components of the test set of each of subjects 1–5.
In each plot, the y-axis is the component and the x-axis represents the space points (electrode
channels) of the EEG motion artifacts signals. There are total 256 space points and five speeds
(five categories). On average, each category contains about 51 space points. For each subject, most
of the first four independent components clusters according to the subject’s walking speed. The
clusters are highlighted by different colored. The x-axis is the 256 space points in the test set, and
the y-axis represents the values of the independent components, which are compressed time points

classifier with linear kernels, and multinomial logistic regression all successfully
classify the EEG motion artifacts signals. The Naive Bayes method performed
worse than the others. In contrast, the classification results are very poor when just
using four randomly selected time points. The comparisons show that the proposed
method effectively reduce the dimension of time with high classification accuracy.
The scatter plots of the top four independent components (ICs) indicate that these
ICs have different patterns with respect to their walking speeds (see Figs. 1 and 2).
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Fig. 2 The first four projected independent components of the test set of each of subjects 6–10. In
each plot, the y-axis is the component and the x-axis represents the space points of the EEG motion
artifacts signals. There are total 256 space points and five speeds (five categories). On average,
each category contains about 51 space points. For each subject, most of the first four independent
components clusters according to the subject’s walking speed. The clusters are highlighted by
different colored. The x-axis is the 256 space points in the test set, and the y-axis represents the
values of the independent components
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Table 1 Model comparisons in terms of accuracy rates

Methods knn (k = 3) SVM (linear kernel) Naive Bayes Multinomial logistic

SICA with four components

Subject 1 0.9922 1.0000 0.8008 0.9961

Subject 2 0.9219 0.9759 0.8242 0.9492

Subject 3 0.8906 0.8789 0.7266 0.8945

Subject 4 0.7891 0.9609 0.8056 0.9967

Subject 5 0.8359 0.8906 0.8516 0.9180

Subject 6 0.8320 0.8320 0.7578 0.8320

Subject 7 0.9688 0.9141 0.9063 0.9531

Subject 8 0.8125 0.8594 0.7539 0.9219

Subject 9 0.7891 0.7852 0.8164 0.8359

Subject 10 0.8984 0.8867 0.8320 0.8984

Random sampling four time points

Subject 1 0.1211 0.1367 0.1406 0.1445

Subject 2 0.1953 0.2148 0.2031 0.2188

Subject 3 0.1133 0.1055 0.1563 0.0938

Subject 4 0.2109 0.1445 0.1875 0.1758

Subject 5 0.3047 0.3594 0.3281 0.3359

Subject 6 0.2148 0.2305 0.2813 0.2500

Subject 7 0.3164 0.3047 0.2578 0.2969

Subject 8 0.2695 0.2422 0.2227 0.2383

Subject 9 0.2930 0.3008 0.2656 0.3125

Subject 10 0.1172 0.1055 0.1797 0.1055

6 Discussion

Before classification, the independent components data for each subject was of
dimensions 256 by 4 whereas the original test set started as 256 by 300,000.
Hence, the temporal dimension of our data was reduced by 75,000 folds. The
four independent components successfully retained a sufficient amount of infor-
mation about the EEG motion artifact signals in order to successfully classify a
subject’s walking speed. However, it is important to take caution in interpreting
the independent components. With TICA, it can be assumed that the independent
components represent the unmixed cortical signals. SICA has been commonly
applied to functional MRI data, where time points correspond to input dimensions
and voxels are samples. In contrast, TICA for EEG assumes that sensors constitute
input dimensions and time-points are samples [1]. We used SICA for EEG motion
artifact signals with the assumption that sensors constitute input samples and time
points are dimensions. Consequently, the EEG motion artifact signals observed
at different time points are assumed to be linear sums of the source signals and
maximizes spatial sparsity alone [2].
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Table 2 Model comparisons in terms of multi-class areas under the ROC (AUC)

Methods knn (k = 3) SVM (linear kernel) Naive Bayes Multinomial logistic

SICA with four components

Subject 1 0.9977 1.0000 0.6174 0.9997

Subject 2 0.9631 1.0000 0.8128 1.0000

Subject 3 0.9472 0.9998 0.4480 1.0000

Subject 4 0.8861 0.9974 0.8220 0.9894

Subject 5 0.9644 0.9695 0.3556 0.9820

Subject 6 0.9251 0.9997 0.4075 1.0000

Subject 7 0.9914 0.9977 0.7357 0.9977

Subject 8 0.9462 0.9896 0.4486 0.9892

Subject 9 0.9381 0.9551 0.5486 0.9718

Subject 10 0.9501 0.9891 0.6709 0.9902

Random sampling four time points

Subject 1 0.4575 0.5503 0.4841 0.5433

Subject 2 0.5315 0.5721 0.5243 0.5792

Subject 3 0.4249 0.3431 0.4778 0.3463

Subject 4 0.5166 0.5014 0.4483 0.5216

Subject 5 0.5968 0.6533 0.6764 0.6708

Subject 6 0.5016 0.4673 0.5232 0.4965

Subject 7 0.5898 0.5670 0.5453 0.5549

Subject 8 0.5502 0.5369 0.5843 0.5164

Subject 9 0.5713 0.5727 0.4970 0.5581

Subject 10 0.4419 0.3814 0.5056 0.3651

Table 3 Model comparisons of simulation data with 100 repetitions in terms of average accuracy
rates and AUC

Methods knn (k = 3) SVM (linear kernel) Naive Bayes Multinomial logistic

SICA with four components

Accuracy 0.9577(0.0081) 0.9547(0.0120) 0.8215(0.0360) 0.9286(0.0204)

AUC 0.9908(0.0025) 0.9990(0.0010) 0.4473(0.0586) 0.9999(0.0004)

Random sampling four time points

Accuracy 0.2310(0.1100) 0.2126(0.1109) 0.0039(0.0387) 0.2205(0.1233)

AUC 0.5267(0.0891) 0.5342(0.1271) 0.0069(0.0069) 0.5382(0.1328)

Numbers in the parenthesis are the standard deviation

It is evident that for a given subject, we are able to successfully classify walking
speed with EEG motion artifact signals. The classification results (Tables 1 and 2)
show that except for the Naive Bayes classifiers, k-nn, SVM, and multinomial
logistic regression all have high classification accuracy and area under the Receiver
Operating Curve (AUC). The Naive Bayes classifier assumes that every two pre-
dictors are mutually independent given the class. The classification results indicate
that the statistically independent components obtained by SICA do not the class
information, so that the assumption of Naive Bayes may not be satisfied by using
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independent components as predictors. It is also well-know that independence does
not imply conditional independence generally. Future studies may use supervised
ICA [24] and might be performed to create gait movement profiles across different
subjects. Such that, if information existed about a group of subjects and their raw
uncleaned EEG signals that includes cortical signals and motion artifact signals for
a given movement, a new subject’s raw uncleaned EEG signals could be used to
classify the new subject’s movement.

Acknowledgement We thank NIH for grant 1R01AG054621-01 which partially supported this
study.
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