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Preface

The purpose of this book is to reflect the frontiers of statistical modeling in
biomedical research, stimulate new research, and provide great opportunities
for further collaborations. We received high-quality papers from distinguished
researchers in biostatistics and biomedical research and have invited them to prepare
book chapters. Finally, we selected 19 excellent papers for this book. All of the book
chapters have been thoroughly peer-reviewed and revised several times before the
final publication. This timely volume presents new developments in biomedical
research, introduces innovative procedures, presents interesting applications in
statistics and biomedical investigations, and contains the potential to impact
statistics and biomedical research. This book makes contributions to biomedical
studies in the data science era and provides new insights for biomedical researchers,
postdocs, graduate students, applied investigators, and industry practitioners.

The 19 chapters are organized into five parts: Part I includes four chapters, which
present next-generation sequence data analysis. Part II consists of three chapters on
deep learning, precision medicine, and applications. Part III is composed of four
chapters that present large-scale data analysis and its applications. Part IV outlines
the biomedical research and the modeling. Part V consists of three chapters on
survival analysis with complex data structures and its applications. The chapters are
organized as self-contained units. In addition, we have included references at the
end of each chapter. Furthermore, readers can easily request from us or the chapter
authors computer programs or data sets used to facilitate the application of these
statistical approaches in practice.

Part I: Next-Generation Sequence Data Analysis
(Chapters 1–4)

The chapter, “Modeling Species-Specific Gene Expression Across Multiple Regions
in the Brain,” presents a new statistical approach for identifying genes with species-
specific expression. This new approach avoids multiple pairwise comparisons and

v



vi Preface

can be susceptible to small changes in expression as well as intransitivity. In this
chapter, Diao, Zhu, Sestan, and Zhao show that the proposed model can better
identify human-specific genes than the naive approach. The authors also show that
the new approach produces more robust gene classifications across regions and
greatly reduces the number of human-specific genes.

In the chapter, “Classification of EEG Motion Artifact Signals Using Spatial
ICA,” Huang, Condor, and Huang proposed a new procedure, which reduces dimen-
sion by applying spatial independent component analysis (SICA) and classifies
the gait speed for a given subject by the projected EEG motion artifact signals.
The authors use SICA and principal component analysis for the dimensionality
reduction before applying classifiers such as support vector machines, naïve Bayes,
and multinomial logistic regression.

In the chapter, “Weighted K-means Clustering with Observation Weight for
Single-Cell Epigenomic Data,” Zhang, Wangwu, and Lin develop a weighted K-
means algorithm. By down-weighting cells, the authors show that the new algorithm
can lead to the improved detection of rare cell types. The authors finally investigated
the proposed methods using extensive simulation studies.

In the chapter, “Discrete Multiple Testing in Detecting Differential Methylation
Using Sequencing Data,” Hao and Lin present the multiple testing issue in detecting
differential methylation in next-generation sequencing studies. The existing FDR
control procedures are often underpowered in methylation sequencing data analysis
due to the discreteness. In this chapter, the authors also discussed several FDR
control methods that can accommodate such discreteness.

Part II: Deep Learning, Precision Medicine, and Applications
(Chapters 5–7)

The chapter, “Prediction of Functional Markers of Mass Cytometry Data via Deep
Learning,” presents a novel deep learning architecture for predicting functional
markers in the cells given data on surface markers. The proposed approach can
automate measurements of functional markers across cell samples, and the proposed
procedure demonstrates the improved prediction performance of the deep learning
architecture.

In the chapter, “Building Health Application Recommender System Using
Partially Penalized Regression,” the authors proposed to estimate the optimal policy,
which maximizes the expected utility by partial regularization via orthogonality
using the adaptive Lasso (PRO-aLasso). The chapter also shows that PRO-aLasso
estimators share the same oracle properties as the adaptive Lasso.

In the chapter, “Hierarchical Continuous-Time Hidden Markov Model, with
Application in Zero-Inflated Accelerometer Data,” Xu, Laber, and Staicu propose
a flexible continuous-time hidden Markov model to extract meaningful activity
patterns from human accelerometer data and derive an efficient learning algorithm
for the proposed model. In this chapter, the authors also develop a bootstrap
procedure for interval estimation.
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Part III: Large-Scale Data Analysis and Its Applications
(Chapters 8–11)

In the chapter, “Privacy-Preserving Feature Selection via Voted Wrapper Method
for Horizontally Distributed Medical Data,” Lu and Zhang propose a privacy-
preserving feature selection method, “privacy-preserving feature selection algorithm
via voted wrapper methods (PPFSVW).” The experimental results show that the new
algorithm workflow can work effectively to improve classification performance by
selecting informative features and genes and can also make the classifier achieve the
higher classification accuracy.

The chapter, “Improving Maize Trait Through Modifying Combination of
Genes,” proposes a computational method for detecting complex traits associated
with gene interactions using a combination of gene expression and trait data across
a set of maize hybrids. This new method represents changes of expression patterns
in a gene pair and employs network topology to describe the inherent genotype–
phenotype associations. In this chapter, the authors also investigate the proposed
method on several phenotypic traits and achieved consistent results.

In the chapter, “Molecular Basis of Food Classification in Traditional Chinese
Medicine,” the authors used machine learning methods by using food molecular
composition to predict the hot, neutral, or cold label of food, and achieved more
than 80% accuracy, which indicated that TCM labels have a significant molecular
basis. This research is the first study to quantitatively investigate the relationship
between TCM labels and the molecular composition of food.

The chapter, “Discovery Among Binary Biomarkers in Heterogeneous Popu-
lations,” presents jointly modeled binary and continuous disease outcomes when
the association between predictors and these outcomes exhibits heterogeneity. In
this chapter, Geng and Slate use ideas from logic regression to find Boolean
combinations of these biomarkers and adopt a mixture-of-finite-mixtures fully
Bayesian approach to simultaneously estimate the number of subgroups, the
subgroup membership structure, and the subgroup-specific relationships between
outcomes and predictors.

Part IV: Biomedical Research and the Modeling
(Chapters 12–16)

In the chapter, “Heat Kernel Smoothing on Manifolds and Its Application to Hyoid
Bone Growth Modeling,” Chung, Adluru, and Vorperian propose a unified heat
kernel smoothing framework for modeling 3D anatomical surface data extracted
from medical images. In this chapter, the authors apply the proposed method in
characterizing the 3D growth pattern of human hyoid bone between ages 0 and 20
obtained from CT images. A significant age effect is detected on localized parts of
the hyoid bone.
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In the chapter, “Optimal Projections in the Distance-Based Statistical Methods,”
Yu and Huo propose a new way to calculate distance-based statistics, particularly
when the data are multivariate. The main idea is to pre-calculate the optimal
projection directions given the variable dimension and to project multidimensional
variables onto these pre-specified projection directions. In this chapter, the authors
also show that the exact solution of the nonconvex optimization problem can be
derived in two special cases and propose an algorithm to find some approximate
solutions.

The chapter “Kernel Tests for One, Two, and K-Sample Goodness-of-Fit: State
of the Art and Implementation Considerations,” discusses statistical distances in
the goodness-of-fit and reviewed multivariate two-sample goodness-of-fit tests from
machine learning point of view. In this chapter, Chen and Markatou introduce a class
of one- and two-sample tests constructed using the kernel-based quadratic distance.
The implementation of these tests, with emphasis on the kernel-based two-sample
test, is provided.

The chapter, “Hierarchical Modeling of the Effect of Pre-exposure Prophylaxis
on HIV in the US,” centers on the effectiveness of chemical prophylaxis on the
populations involved in the HIV epidemic in the US. In this chapter, the authors use
a system of nonlinear differential equations to represent the system of populations
involved in the HIV epidemic and define model parameters for both the national and
the urban case, representing low and high sexual network densities. These results
indicate that the undiagnosed high-risk infected group is the largest contributor to
the epidemic under both national and urban conditions.

The chapter, “Mathematical Model of Mouse Ventricular Myocytes Overex-
pressing Adenylyl Cyclase Type 5,” studies a new model of transgenic (TG)
mouse ventricular myocytes overexpressing adenylyl cyclase type 5. The proposed
model describes β1- and β2-adrenergic signaling systems very well. In this chapter,
Bondarenko finds that the overexpression of AC5 results in an increased basal
cAMP production.

Part V: Survival Analysis with Complex Data Structure
and Its Applications (Chapters 17–19)

The chapter, “Non-parametric Maximum Likelihood Estimator for Case-Cohort
and Nested Case–Control Designs with Competing Risks Data,” assumed cause-
specific hazards given by the Cox’s regression model and provided non-parametric
maximum likelihood estimators (NPMLEs) in the nested case–control or case-
cohort design with competing risks data. In this chapter, the authors propose an
iterative algorithm based on self-consistency equations to compute the NPMLE and
established the consistency and asymptotic normality of the proposed estimators.

In the chapter, “Variable Selection in Partially Linear Proportional Hazards
Model with Grouped Covariates and a Diverging Number of Parameters,” Afzal
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and Lu proposed a hierarchical bi-level variable selection approach for censored
survival data in the linear part of a partially linear proportional hazards model. The
benefit of the proposed method is that it enables us to conduct a simultaneous group
selection and individual variable selection within selected groups. The chapter also
develops computational algorithms and establishes the selection consistency, and
asymptotic normality of the proposed estimators.

The chapter, “Inference of Transition Probabilities in Multi-State Models using
Adaptive Inverse Probability Censoring Weighting Technique,” develops a model-
specific, state-dependent adaptive IPCW (AIPCW) technique for estimating transi-
tion probabilities in multi-state models. In this chapter, Zhang and Zhang conduct
intensive simulation studies and the results show that the proposed AIPCW pro-
cedure improves the accuracy of transition probability estimates compared to the
existing SIPCW approach.

The two editors are so grateful to all of the people who have provided the great
support for the publication of this book. We deeply thank all the chapter authors (in
the “Contributors”) for their excellent contributions to this book. We sincerely thank
all the reviewers (in the “List of Chapter Reviewers”) for their insightful and helpful
reviews, which significantly improved the presentation of the book. Moreover,
our deep appreciations go to the organizers of the 6th Workshop on Biostatistics
and Bioinformatics since several book chapters are based on the presentations
in this workshop. Last but not least, our sincere acknowledgments go to the
wonderful support of Laura Aileen Briskman (Editor, Statistics, Springer Nature)
from Springer New York and Gerlinde Schuster (Editorial Assistant, Statistics,
Springer), who made this interesting book publish on time. We look forward to
readers’ comments on further improvements for the book. Please contact us: Dr.
Yichuan Zhao (email: yichuan@gsu.edu) and Dr. Ding-Geng (Din) Chen (email:
dinchen@email.unc.edu).

Atlanta, GA, USA Yichuan Zhao
Chapel Hill, NC, USA Ding-Geng (Din) Chen
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Modeling Species Specific Gene
Expression Across Multiple Regions in
the Brain

Liyang Diao, Ying Zhu, Nenad Sestan, and Hongyu Zhao

Abstract Motivation: The question of what makes the human brain functionally
different from that of other closely related primates, such as the chimpanzee,
has both philosophical as well as practical implications. One of the challenges
faced with such studies, however, is the small sample size available. Furthermore,
expression values for multiple brain regions have an inherent structure that is
generally ignored in published studies.

Results: We present a new statistical approach to identify genes with species
specific expression, that (1) avoids multiple pairwise comparisons, which can be
susceptible to small changes in expression as well as intransitivity, and (2) pools
information across related data sets when available to produce more robust results,

Electronic Supplementary Material The online version of this chapter (https://doi.org/10.1007/
978-3-030-33416-1_1) contains supplementary material, which is available to authorized users.

Availability and Implementation: Code for estimating the Markov random field parameters and
obtaining posterior probabilities for the MRF can be found in the data package attached. All code
is written in R.
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such as in the case of gene expression across multiple brain regions. We demonstrate
through simulations that our model can much better identify human specific genes
than the naive approach. Applications of the model to two previously published data
sets, one microarray and one RNA-Seq, suggest a moderately large benefit from
our model. We show that our approach produces more robust gene classifications
across regions, and greatly reduces the number of human specific genes previously
reported, which we show were primarily due to the noise in the underlying data.

Keywords Gene expression · R code · Posterior probabilities · Markov random
field · RNA sequencing · Akaike · Bayes

1 Introduction

As the human genome was first being sequenced, a natural question began to
emerge: Can we determine what parts of our genomes differentiate us from our
closest primate relatives? The origins of characteristic human abilities, such as
speech, social behaviors, and abstract thinking, might be uncovered by comparing
the genomes of humans, chimpanzees, and outgroups such as gorillas and macaques.
Beyond the questions of our innate “human-ness”, comparisons of the genomic
differences between humans and other great apes have potentially wide-ranging
practical effects: see [27] for an extensive collection of possible phenotypic compar-
isons of interest, ranging from differences in female reproductive biology, to brain
size, to control of fire, and to usage of toys and weapons. In addition to observational
phenotypic differences, the authors also note widely different incidence rates for
certain diseases in humans and chimpanzees which have long been known. Diseases
such as the progression from HIV to AIDS, infection by P. falciparum malaria,
and occurrence of myocardial infarction, for example, are common in humans yet
very rare in the great apes. Alzheimer’s disease is a neurodegenerative disease
characterized by the presence of amyloid plaques and neurofibrillary tangles in the
brain, resulting in memory loss, dementia, and eventually death. While the diagnosis
of these symptoms in primates may be difficult, one comparison that can be made
is in age-matched dissections of human and primate brains. In such studies, human
brains show development of these signature plaques as well as the neurofibrillary
tangles, whereas chimpanzee brains show neither [26].

There are many approaches to finding the differences between human and
primate genomics, several of which are delineated in [27]. We could analyze
various kinds of genomic differences, such as indels, chromosomal changes, gene
duplications, and repetitive element insertions. In this manuscript we will focus
on differences in gene expression as measured by microarray and RNA-Seq
technologies, which have been used in several studies [4, 9, 13, 14]. In the first
study [9], only a single region of the brain, the left prefrontal lobe (Brodmann
area 9) was analyzed. However, all subsequent studies have sampled at least three
regions of the brain. In these studies, the analysis was conducted by performing
pairwise comparisons and setting a cutoff for whether a gene has human specific
gene expression or not in each region.
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There are some issues with this straightforward approach, one of which is due to
issues arising with pairwise comparisons: When all three pairwise comparisons are
performed among three species, for example, intransitive results can easily result.
When pooled pairwise comparisons are performed, i.e. by pooling two species and
comparing the pooled species against the remainder, results are highly subject to
slight changes in expression, as demonstrated in the following. The second issue is
related to the structure of the data. Namely, while there are sure to be genes with
differential expression patterns across brain regions, we expect that most genes do
not. Thus, instead of analyzing each region separately, we should be able to use the
gene expression in other regions to inform the analysis of a given region. Particularly
in the case of primate studies, samples are difficult to attain, so sample sizes tend
to be very limited. By pooling information, we can obtain more robust estimates of
differential gene expression.

In this manuscript, we propose a method which overcomes the two issues
described above. The problem of intransitivity in pairwise comparisons is well
known, and examples are detailed in [6, 7]. We follow the author’s suggestion
here and propose an information criterion based model selection approach, testing
various information criteria for which performs best for small sample sizes. An
additional benefit of using an information criterion is that it produces a relative
class membership probability for each gene, for each class. This enables us to use
a Markov random field (MRF) to “smooth” assigned class memberships across
brain regions, so that in regions with less certainty, we can use information from
neighboring regions to inform the decision.

We demonstrate through simulations that the Bayesian information criterion
(BIC) performs best for small sample sizes, and that the addition of the MRF can
significantly reduce the number of classification errors when the neighbor effect
is moderate, particularly for those genes with high variance. We then apply our
method to two recently published brain expression data sets, one microarray and one
RNA-Seq [14]. In these data, three brain regions were sampled: the caudate nucleus
(CN), frontal pole (FP), and hippocampus (HP). We find evidence of a moderate
neighbor effect among the three regions, and demonstrate that the Markov random
field is able to reduce the number of incorrect classifications compared to the naive
approach. Among the top genes we identified as being human specific include those
associated with various neurological disorders and neural function, which we did
not find using the naive ANOVA approach described in the original paper.

2 Methods

2.1 Overview

2.2 Use of Information Criterion for Model Selection

For each gene, we determine the appropriate latent model based on its expression
levels. The latent models are described in Table 1. For this model selection
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Table 1 Description of
latent classes for a three
species comparison

Model Description

M1 Hu = Ch = Ma

M2 Ma �= Hu = Ch

M3 Hu �= Ma = Ch

M4 Ch �= Hu = Ma

M5 Hu �= Ch �= Ma

step, we evaluate the performance of three types of information criteria: Akaike’s
information criterion (AIC), the small sample size corrected version of the AIC
(AICc), and the Bayesian information criterion (BIC) [1, 11, 22]. These are given in
Eqs. (1)–(3), where L is the likelihood of the model, k is the number of parameters
in the model, and n is the sample size.

AIC = −2 · ln(L)+ 2 · k (1)

AICc = AIC + 2k(k + 1)

n− k − 1
(2)

BIC = −2 · lnL+ k · ln(n) (3)

Let I = (I1, . . . , I5) be the vector of information criteria calculated for each of the
5 models, for a particular gene g. Then the probability of g belonging to model i is
given by

pi = 1

W
exp (0.5 (min(I)− Ii)) (4)

where W is the normalizing constant W =∑
i Ii .

We choose to use information criteria as a natural approach to performing model
selection. In particular, we choose to perform model selection in lieu of multiple
pairwise comparisons because the latter can often result in intransitivity. For
example, we may find that B > A, A > C, and yet B = C. With model selection,
such a nonsensical result is not possible. Use of model selection was advocated in
[6, 7], which also extensively pointed out the problem of intransitive decisions.

2.3 Estimating Prior Probabilties of Class Membership

For the information criteria described above, we must first determine which models
to use for microarray and RNA-Seq data types. Differential expression testing
for microarray data has often been carried out using the t-test, but this can be
problematic particularly when sample sizes are small, as variance estimates become
unstable. Several methods have attempted to pool information across multiple genes
in order to better model the variance [8, 10, 24]. Jeanmougin et al. [12] found in
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a comparison of multiple methods that appropriate modeling of the variance can
significantly reduce the number of false positives found.

Here we assume that the data follow a Gaussian distribution after appropriate
normalization just as in the standard t-test, and do not perform any moderated
estimates of variance. We therefore simply estimate standard deviations of the
microarray data. In simulations we find that both the unmoderated t-test and the
information criteria perform relatively well under reasonable variances.

RNA-Seq data are widely modeled according to the negative binomial model
[18, 19]. We use DESeq2 [18] to estimate the mean and dispersion parameters of
the negative binomial model for the RNA-Seq data.

Let yg be the vector of normalized microarray expression values for a given gene
g, where we drop the subscript g for clarity. In the remainder of this manuscript, we
adopt the following shorthand when referencing the three species, human, chimp,
and macaque: Hu, Ch, and Ma, respectively.

Then let yHu, yCh, and yMa denote vectors of expression values for human,
chimp, and macaque samples, respectively, for the given gene. We estimate the
means μ and standard deviations σ (likewise dispersions φ) for each of seven
species groupings separately. i.e., μMa is the mean expression value for macaque
samples, σHu the standard deviation of human samples, μHu,Ch the mean of the
pooled human and chimp samples, and so on. The seven species groupings are
Ma,Hu,Ch, {Ma,Hu}, {Ma,Ch}, {Hu,Ch}, {Ma,Hu,Ch}.

Then the model likelihood can be computed as:

P(y|M1) = P(y|μ, σ)
P (y|M2) = P(yMa |μMa, σMa) P (yHu,Ch|μHu,Ch, σHu,Ch)
P (y|M3) = P(yHu|μHu, σHu) P (yCh,Ma |μCh,Ma, σCh,Ma)

P (y|M4) = P(yCh|μCh, σCh) P (yHu,Ma |μHu,Ma, σHu,Ma)

P (y|M5) = P(yMa |μMa, σMa) P (yHu|μHu, σHu) P (yCh|μCh, σCh) (5)

Here P indicates Gaussian densities, e.g., the probability of observing microarray
values yMa for macaque samples, given mean and standard deviations μMa and
σMa , respectively. We can obtain similar model likelihoods for the RNA-Seq data,
with mean and dispersion parameters estimated using DESeq2, and based on
negative binomial probability densities. The model is specified as:

y ∼ NB(mean = μ, dispersion = α) (6)

μ = sq (7)

log(q) =
∑

r

xjβj (8)

s is a factor unique to each sample that accounts for differences in library size among
samples, xj are covariates (species, batch effects, etc.), and βj are the corresponding
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coefficients. For the [14] RNA-Seq data, no batch effects were identified, so that
log(q) simply equals β for the species grouping.

2.4 Empirical Bayes Shrinkage Priors for Negative Binomial
Model

For the negative binomial model, we find that using the DESeq2 estimate of μ
can result in overfitting when the absolute count values are small, thus leading to
genes with low expression and/or high variability being ranked as highly species
specific. To avoid this, we propose a shrunken mean model, which is derived from
the interpretation of the negative binomial distribution as a hierarchical gamma-
Poisson mixture.

In particular, we assume that the counts for each gene g arise from a Poisson
distribution, whose mean itself is gamma distributed:

p(kg; λg) =
n∏

i=1

e−λgλkgig

kgi ! (9)

λg ∼ �(αg, βg) (10)

Here n is the number of samples. We drop the subscript g in the following for
clarity, understanding that we are calculating the posterior mean for a particular
gene g. Then the posterior mean of λ = λg takes on the form

λ̂ = n

n+ β

(∑
ki

n

)

+ β

n+ β

(
α

β

)

= nμ

nμ+ α

(∑
ki

n

)

+ α

nμ+ α
μ (11)

We get Eq. (11) by noting that the mean of �(α, β) isμ = α/β and the dispersion
parameter of the negative binomial is the same α in �(α, β). Thus, when the mean μ
and/or sample size n is large with respect to the dispersion α, λ̂ is shrunken towards
the average count value, whereas if the dispersion parameter is large, it is shrunken
towards the mean of the underlying �.

In practice, we must obtain λ̂ while taking into consideration differences in
library size among samples. To do this, we take the ki above to be k∗i = ki/si ,
where si is the size factor for sample i.
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2.5 Leveraging Gene Expression Profiles over Several Brain
Regions Using a Markov Random Field

While different regions of the brain may have different expression patterns, in
general we find that the correlation of gene expressions across different regions
is very high (see Fig. S2). Further, when sample sizes are small, robust estimates
of model parameters can be difficult to obtain, even when borrowing information
across genes as both limma and DESeq2 do. We propose to address this issue
by utilizing prior model probabilities in neighboring regions to obtain more stable
posterior model probabilities.

To do so, assume that the underlying “true” states of the genes are an instantiation
of a locally dependent Markov random field (MRF) [3]. Let zg,r denote the unknown
true model membership of gene g in region r , zg,r ∈ {M1, · · · ,M5}. Intuitively, if
zg,r1 = M2, then we are more likely to believe that zg,r2 = M2 as well, for regions
r1, r2 ∈ R. Under this model, only the neighboring regions of R, R \ {r}, have
an effect on zg,r . We will assume that all brain regions are thus neighbors of each
other.

Generally speaking, the issue of finding the most likely Z,

Pr(Z|Y ) ∝ l(Y |Z)P r(Z) (12)

is extremely difficult. We use the simulated field approximation proposed in [5],
which produces a solution via the expectation-maximization (EM) algorithm, and
which the authors showed performed favorably compared to other approaches.

Let the conditional probability p(zgr = Mi |R \ {r}) be

p(zg,r = Mi |V \ {gr}) ∝ exp

⎧
⎨

⎩
αi + β

∑

r ′∈R\{r}
IMi

(zg,r ′)

⎫
⎬

⎭
(13)

where IMi
(zi) is an indicator variable, such that IMi

(zi) = 1 if zi = Mi and 0
otherwise.

Thus we see that the probability of model membership is proportional to the
number of neighbors belonging to the same model. The strength of this “neighbor
effect” is given by β. In total we have five parameters that need to be estimated,
denoted by � = {α∗1 , α∗2 , α∗4 , α∗5 , β} (here we have taken α∗i = αi − α3 to avoid
identifiability issues).

The steps of the simulated field algorithm are as follows:

1. Initialization:

(a) Set the initial parameters �.
(b) Obtain an initial estimate of the modelsZ. These are the states corresponding

to maximum relative BIC prior probabilities.
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2. For each gene g and region r:

(a) Calculate the model probability, for each model, of zg,r .
(b) Sample z∗g,r accordingly.
(c) Move to the next region and/or gene and repeat.

3. Once we have obtained Z∗, an updated state matrix for all genes and regions,
re-estimate the parameters �.

4. Repeat 2–3 until convergence.

We update the parameters � using the Newton Raphson method.
After obtaining estimates of the MRF parameters, we can obtain the posterior

model membership probabilities using Markov chain Monte Carlo (MCMC).

2.6 Simulations

We perform three types of simulations to evaluate each of the following:

1. Best information criterion to use for model selection
2. Accuracy of estimation of Markov random field parameters using the simulated

field algorithm
3. Reduction of classification errors due to implementation of Markov random field

In each set of simulations, we generate gene expression values based on the
gene’s classification into one of five latent models, listed in Table 1. We generate
expression values for three simulated “species” according to a Gaussian distribution,
with species means given in Table 2. We tested three values of σ : 0.15, 0.25,
and 0.5. For each species, we simulate five samples, comparable to the number
of samples present in the Konopka experimental data. Simulations by both the
DESeq [2], DESeq2 [18], and a similar method edgeR [21] have shown that these
negative binomial approaches model the variances well. Thus, we will assume that
the parameter estimates produced by DESeq2 of the means and dispersions are
reasonable, and so evaluation of the information criteria on Gaussian simulated data
is sufficient.

Table 2 Gaussian simulation
parameters

Model μCh μHu μMa

M1 2 2 2

M2 2 2 2.5

M3 2 2.5 2

M4 2.5 2 2

M5 1.5 2 2.5

We test σ = 0.15, 0.25, and 0.5
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2.6.1 Selection of Information Criterion

We test three different information criteria to see how well they classify genes
belonging to each of the five models Mi : the AIC, AICc, and BIC. Additionally,
although they are not directly comparable, we use two types of t-tests as a
benchmark against which to compare the information criteria: the pairwise t-test
as well as the pooled t-test. In the pairwise t-test, a gene is determined to be human
specific if the comparisons Hu vs. Ch and Hu vs. Ma are both significant, while
Ch vs. Ma is not significant (at p = 0.05). Species specificity for the other two
species is similarly defined. Note that in some cases a gene will not be classifiable
by this method.

In the pooled t-test, a gene is determined to be human specific if the comparison
Hu vs. Ch,Ma is significant. If more than one such comparison is significant, then
the mean difference between Hu and Ch,Ma must be larger than the difference in
means of the other comparison in order for the gene to be declared species specific.
This is similar to the approach taken by [14].

Performance is assessed according to the percentage of misclassified genes,
which we call the classification error. For the information criterion approaches, we
choose Mi with the highest probability. We perform 100 such simulations.

2.6.2 Estimation of Markov Random Field Parameters

To determine how well we are able to estimate the true parameters � of an MRF,
we simulate the latent models according to an MRF model, then generate gene
expression values as before, and see if we can recover �.

The latent class matrix Z of G = 1000 genes by R = 3 regions is generated as
follows: first, we randomly assign to each zgr one of the five classes M1, · · · ,M5.
Then, given MRF parameters � = {α∗1 , α∗2 , α∗4 , α∗5 , β}, we update each element
of the Z matrix according to the probability given in Eq. (13). We perform five
complete steps of updating to obtain the final Z matrix. In practice, very few steps
are required for the Z matrix to converge.

We take α = (0.8, 0.3, 0.1,−0.1) and let β vary as one of (1, 1.5, 2).
From these simulations, we can determine how well � is estimated, given (a)

the underlying Gaussians are known, and (b) the prior probabilities are determined
using the BIC. The former gives us an indication of how well the simulated field
algorithm is able to estimate the MRF parameters when the prior probabilities are
“exact”; the latter introduces noise from “inexact” priors. We calculate “exact”
priors by taking, for each Mi , the probability of observing the values x given the
known μi and σi corresponding to Mi . i.e.,

p(Mi) = 1

W

∏

x

p(x|μi, σi) (14)
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where W is a normalizing constant. In theory it is possible that Ii = Ij for i �= j ,
though we did not observe this in practice. In such cases of tied values of information
criteria, we can divide

We run 20 steps of the simulated field algorithm for parameter estimation, and
50 steps of burnin and 100 steps of sampling for posterior probability estimation.
We perform 20 simulations for each value of β.

2.6.3 Improvement in Performance Due to Markov Random Field

In the previous section all expression values are generated from Gaussians with the
same variance, and thus all are equally noisy. Conceivably, when data are very noisy
to begin with, borrowing information from neighbors does not improve predicted
classification. However, in the case where some genes are less noisy than others, we
may expect to observe an improvement.

To evaluate this effect, we perform a similar set of simulations as in Sect. 2.6.2,
but this time randomly selected genes to have different variances. Out of a total of
G × R = 1000 × 3 = 3000 genes, we let 50% be generated from a Gaussian with
means given in Table 2 and σ = 0.15, 30% be generated with σ = 0.25, and the
remaining 20% be generated with σ = 0.5. All other simulation parameters follow
those in Sect. 2.6.2.

2.7 Experimental Data

We analyze two data sets published in [14]. The authors collected samples from
three regions in human, chimp, and macaque brains, and compared their expression
patterns using two microarray platforms (Affymetrix and Illumina) as well as next-
generation sequencing (NGS). Since the authors found in their original manuscript
that the Affymetrix arrays were able to capture more genes than the Illumina arrays,
here we focus our analysis on the Affymetrix microarray and Illumina NGS data.

We downloaded the log transformed and quantile normalized microarray data
deposited at the NCBI Gene Expression Omnibus (GEO) under accession number
GSE33010. For genes corresponding to more than one probe, we took the maximum
value over all probes. We mapped probes to their appropriate gene symbols from the
downloaded .soft file. The RNA-Seq expression counts table was downloaded
from GEO under accession number GSE33587. Only genes that were uniquely
aligned to the genome were retained.

Konopka et al. [14] filtered both microarray and RNA-Seq data to retain only
those genes which they deemed “present”. For the Affymetrix microarray data, they
defined such genes to be those which had a detection score of 0.05 or less in all
samples, for each region and species. For RNA-Seq data, a gene was considered
“present” if for each individual of a species and in a brain region, at least 2 reads
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aligned to the gene. Additional details of the processing steps can be found in the
Supplementary Experimental Procedures of the original manuscript.

Here we did not filter the RNA-Seq genes for “presence”, or perform additional
filtering of the microarray data. In total, we retained 18,458 genes in the microarray
data and 16,036 in the RNA-Seq data. We used the same set of genes for analysis of
each brain region.

3 Results

3.1 Simulation Results

3.1.1 BIC Produces Best Classifications Overall Under a Variety of
Different Scenarios and Parameters

We evaluate five different criteria for model selection: the three information criteria
(AIC, AICc, and BIC), as well as the pooled and pairwise t tests. The t tests we use
here only as a benchmark with which to compare the information criteria, because
such tests do not produce relative model likelihoods and thus are not useful for the
Markov random field part of our model.

We noticed marked differences in classification error depending on the criterion
used and σ (see Figs. S3, S4, and S5). Additionally, some criteria are better at
distinguishing particular classes of Mi than others.

Unsurprisingly, all classifiers perform best for σ = 0.15, and poorly for σ = 0.5.
In comparison, half of the estimated σ over all genes and all models fitted in Table 1
were less than or equal to 0.2 for each of the three regions, with 95% of the estimated
σ being less than 0.61, suggesting that the classifiers should perform relatively well.
In particular, we find that the pooled and pairwise t test classifiers make virtually no
errors for σ = 0.15 for any Mi . However, as σ increases, we find that the pairwise
t test classifier performs substantially worse than the others at differentiating genes
which are species specific to at least one species. The pooled t test classifier has
among the lowest classification error rates across all σ tested and for all Mi except
M5, which it is unable to distinguish.

Of the three information criteria, the AIC incurs the most errors at detecting
nonspecific genes, and AICc is significantly worse at detecting genes of class M5.
Overall, the BIC model selection criterion maintains relatively low error across the
five classes compared to the other methods under the various σ , with error rates
similar to that of the pooled t test classifier. Thus, we choose to use the BIC to
determine prior probabilities for use in our downstream analyses. However, the best
choice may change on a case to case basis, with considerations for sample size. In
our particular case where the sample size is very small for each region and species,
the BIC appears to perform the best.
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3.1.2 Estimation of Markov Random Field Parameters is Precise for
Exact Priors

We perform extensive simulations to study how well we are able to correctly
estimate the parameters of the MRF using the simulated field algorithm, both for
exact and BIC priors (see Sect. 2.6.2).

The value of β and most values of α are well estimated for exact priors (Fig. S6).
For larger values of β, we observe higher estimation error for αi . If we fix α = 0, the
estimate of β does not suffer. In fact, we surprisingly observe a greater decrease in
classification error of the MRF model compared to the naive prior model when we
hold α fixed, compared to using the estimated α. This is reasonable if we consider
that, in the context of Eq. (13), the magnitude of αi indicates the prior likelihood
a gene is classified as class Mi in the absence of any other information. Thus,
incorrectly estimated values of αi may skew the results. However, if we fix α = 0,
we are essentially only using the classifications of neighboring regions and not these
prior beliefs to influence p(zg,r = Mi).

Overall the classification errors under the exact model are extremely low for
σ = 0.15 and σ = 0.25, being less than 5%. However, when σ is increased to 0.5,
the classification error jumps to nearly 30%. In the latter case, the MRF model can
significantly reduce the error, even for moderate values of β (Fig. S9). For β = 1,
1.5, and 2, the reduction in classification error from nearly 30% is to 21%, 16%, and
11%, respectively.

The picture is less clear when using BIC priors. Notably, parameter estimates
become significantly worse at σ = 0.5. This is unsurprising, as we saw in our
previous simulations comparing the different information criteria and the pairwise
classifier that all methods make many classification errors when σ is large. Thus,
when priors are very noisy, MRF parameter estimation is poor. In both cases of
α free and fixed, we find a small reduction in classification errors for σ = 0.25
(Fig. S10). However, when σ = 0.5, we find no improvement for α fixed, and in
fact find that the MRF model performs slightly worse for α free.

Parameter estimation and classification results for AICc priors are given in
Figs. S8 and S11, respectively, to demonstrate that noisier priors produce poorer
results: Here we find no improvement from the MRF model for σ = 0.5.

3.1.3 Markov Random Field Can Significantly Improve Classification
Errors When Some Neighboring Genes Have Smaller Variance

In the previous section, we find that when the priors are noisy, the MRF model yields
little improvement. However, that is under the assumption that all gene expression
values arise from distributions with the same high variance. In reality this is not
always the case, as a few randomly selected genes demonstrate (Fig. S12). It is thus
reasonable to ask if the MRF can improve the classification of such genes, which
have high variability in one region but lower variability in others.
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Fig. 1 Classification error for the pooled t test, the BIC, and the BIC + MRF models, when
there is a mixture of genes of different σ . We simulate 50% of the genes from distributions with
σ = 0.15, 30% from distributions with σ = 0.25, and the remaining 20% from distributions
with σ = 0.5. We see that as the neighbor effect β increases, the MRF model can dramatically
reduce the classification error of high variability genes. Results shown are for α fixed, α =
(0.8, 0.3, 0.1,−0.1). Results for α free, as well as α = (0.2, 0.8,−0.1, 0.2), are given in Fig. S13

We indeed find this to be the case, as seen in Fig. 1. For the pooled t test and
BIC, the classification error is high for genes simulated with σ = 0.5, as expected.
However, the MRF is able to “rescue” these genes by borrowing information from
neighbors which are less variable. Thus, when the neighbor effect is not negligible,
we can achieve a dramatic decrease in classification error for these genes, and thus
also a lower classification error overall.

The α tested in Fig. 1 may favor the pooled t test because α∗1 is large, thereby
increasing the number of genes classified as M1. In Sect. 3.1.1 we find that the
pooled t test incurs fewer errors for genes of this class, and so we also tested a sepa-
rate set of α, α = (0.2, 0.8,−0.1, 0.2), and indeed find even greater improvements
(Fig. S14). For both α we also tested the MRF model with AICc priors (Figs. S15
and S16). As expected, the AICc initially has lower classification error for genes
generated from distributions with small σ , but the overall performance of the MRF
model with AICc priors is not as good as with BIC priors, though there is still
improvement over the naive pooled t test model.

3.1.4 Shrunken Priors for RNA-Seq Data Produce More Consistent
Results and Reduce the Number of Low-Abundance Genes Found to
be Species Specific

Using BIC priors for the Konopka et al. [14] RNA-Seq data tended to give high
species specific rankings for genes with low abundance. Thus, a gene may have
low absolute counts, but fit a particular species specific model better than a gene
with much higher absolute counts, though from a biological standpoint we are
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more interested in the latter. Similar to testing log fold changes in DESeq2 [18],
even statistically significant findings may not be of practical interest if the absolute
change is small.

To address this issue, we propose a shrunken BIC prior in Sect. 2.4. In
essence, the shrunken BIC updates the model means of the seven species groupings
(μR,μH ,μP ,μR,H , · · · , μR,H,P ) described in the equations listed in (5) such that
when the count values are large with respect to the dispersion, the model means are
shrunken towards the average count value, thus producing a better fit. As a result,
shrunken priors have a tendency to rank higher abundance genes more highly when
it comes to species specificity.

One way to visualize the effect of the shrunken BIC is to look at the maximum
expression over all three species of the genes classified as nonspecific, ordered by
probability of being nonspecific. These genes are those which are the most highly
species specific for at least one species. As we see in Fig. S17, by using the shrunken
BICs the genes which are most nonspecific have higher maximum expression than if
we used the naive BIC, as desired. Additionally, we find that the shrunken BIC leads
to more consistent classifications across brain regions in the [14] data (Table S1).

3.1.5 Application to Experimental Data

We apply our BIC + MRF analysis method to the microarray and RNA-Seq data
presented in [14]. For the microarrray data, we estimate mean and standard deviation
of each of the seven species groupings as described in the equations of (5). For the
sequencing data, we use DESeq2 to estimate the mean and dispersion parameters.
Prior to doing this, we normalize the counts for library size using the relative log
expression (RLE) method default for DESeq analyses using the full sequencing data
set, including all regions and species. We then estimate the prior probabilities of
each gene belonging to each model using the BIC and shrunken BIC, respectively
for microarray and sequencing data. Finally, we estimate MRF parameters on these
prior probabilities, and obtain posterior probabilities using MCMC. For these exper-
imental data, we run 50 steps of the simulated field algorithm to estimate the MRF
parameters, and also extend the burnin-in and sampling periods of the MCMC algo-
rithm to 100 and 1000, respectively. The estimated parameters are given in Table 3.

Table 3 MRF parameters estimated from the microarray and RNA-Seq data sets

Data α α∗1 α∗2 α∗4 α∗5 β

Microarray Free 0.23 1.0 0.17 0.78 1.85

Fixed – – – – 1.68

RNA-Seq Free 0.86 0.40 -0.26 -0.99 1.93

Fixed – – – – 1.59

RNA-Seq (shrunken) Free 0.78 0.54 -0.07 -0.45 2.46

Fixed – – – – 2.10
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Fig. 2 Classification breakdown of the 18,458 genes in the microarray data, for the ANOVA test
as described in [14] and the BIC and BIC + MRF models described in this manuscript. As we see
here, most genes are classified as macaque specific, regardless of the model used. Additionally, the
BIC and BIC + MRF models identify a large number of genes with differential expression in all
three species

First, we note that the value of β estimated for both microarray and sequencing
data fall between 1.6 and 2.1 for fixed α∗i , and is slightly higher for freely estimated
α∗i . Based on our simulations, such values suggest that there is a moderate to large
neighbor effect present in the data, which can benefit our MRF model. This is
consistent with Fig. S2, which shows high expression correlation across regions
within species. We also note that the values of the freely estimated α∗i vary quite
widely, particularly between the two data types. In particular, the values of the
estimated α∗5 are 0.78 for the microarray data, −0.99 for RNA-Seq, and −0.45 for
the shrunken BIC for RNA-Seq. This is consistent with what we observed in our
simulations, which particularly showed that estimates of α∗5 could be problematic.
Since it appears that the freely estimated α∗i are highly variable and possibly
unreliable, and our simulations show that in such cases fixing α = 0 produce better
results, we will discuss here only the results obtained from the fixed α∗i analysis.

The proportion of genes classified into each of the five models for the microarray
data is presented in Fig. 2. The figure also shows the discrepancy in these
proportions among the ANOVA, BIC, and BIC + MRF models. Parallel results
for the RNA-Seq data, for both the BIC and shrunken BIC, are given in Figs. S19
and S18. The two data types show distinctly different patterns. Firstly, there is a
much smaller proportion of genes classified as M5, and a much larger proportion
of genes classified as M1, in the RNA-Seq data than in the microarray data. There
is also a much larger proportion of genes classified as macaque specific for the
microarray data. Additionally, for the microarray data, the greatest difference we
observe between the ANOVA and BIC classifications is that the BIC model classifies
a large percentage (∼25%) of the genes as M5, or different for all species. Since the
ANOVA model is unable to classify such genes, it is unsurprising that a discrepancy
exists. However, the RNA-Seq data show very different model proportions.
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For both data types, we find that the imposition of the MRF model decreases the
number of genes which are differentially classified across the three brain regions,
but does not destroy region specific patterns. For example, we observe more genes
which are human specific in the frontal pole than in either the caudate nucleus or the
hippocampus (see Table S2). We also observe an enrichment in M5, i.e. all species
specific, genes in the frontal pole. However, this is not the case for the ANOVA
analysis for the microarray data (Table S3), where we in fact observe an opposite
pattern, with 200 fewer genes human specific in FP than in the other two regions.

The microarray data suggest that most genes are macaque specific, whereas the
RNA-Seq data suggest that most genes are not species specific. There are a variety
of reasons why the microarray and RNA-Seq data types might show such different
patterns. For one thing, both human and chimp microarray data were obtained
using the Affymetrix U133 Plus 2.0 array, which is designed for humans, while
the macaque data was obtained using a specially designed macaque array [14]. As
[20] noted, using a chip designed for one species for another even closely related
species, can cause biases in differential gene expression estimation. In this case
of these data, two different microarray chips were used for three species. Namely,
human and chimp data were both analyzed using a human chip, whereas macaque
was analyzed using a macaque specific chip. The differences between these two
chips likely inflated the observed differences among the species. Interestingly, in a
PCA plot of the microarray data (Fig. S20), we observe a clear separation by brain
region, which is much weaker in the RNA-Seq data.

On the other hand in cross-species comparisons using RNA-Seq data, transcripts
which are mapped to more than a single position in the genome are often discarded.
However, genomic differences between species encompass more than just base pair
polymorphisms. For example, gene duplication events can affect whether or not a
transcript is uniquely aligned. If in one species these transcripts are thrown out due
to gene duplications, while in another species no such duplication exists, we may
observe a systematic difference in what appears to be gene expression, but what
is actually an artifact of data processing. See Supplementary text for a prominent
example.

Comparing the ANOVA results with those genes found to be human specific by
the MRF model yield a reasonable amount of overlap. For example, of the 1273
genes which are classified as M3 (human specific) in the frontal pole by the BIC
+ MRF model and 1692 genes classified as such by the ANOVA method, 813 of
the genes overlap. For the microarray data, the amount of overlap is comparable:
Of 1534 and 1529 genes classified by the MRF + BIC and ANOVA models as M3,
respectively, 711 overlap. However, as we saw in our simulations, based on the σ
(average of 0.25) and β (between 1.59 and 2.1) estimated from the data, we would
expect that the BIC + MRF model to reduce the number of wrongly classified genes,
and to make classifications more consistent across brain regions, the latter of which
we directly observe.

It is reasonable that in addition to genes which are classified as M3, we might
also be interested in genes which are differentially expressed in all species, but for
which the human gene has either highest or lowest expression compared to the other
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two species. This definition is more comparable to the ANOVA method described by
the original authors. However, after including these genes as being human specific,
we do not find a noticeably greater overlap. Rather, the greatest difference in results
is in those genes which are human specific in only a single region (Table S4). We
find noticeably fewer genes that are human specific in only a single brain region,
while still finding an enrichment of human specific genes found in the frontal pole
for both microarray and RNA-Seq data. The frontal pole is of particular interest to
researchers because it is enlarged in humans compared to the other great apes, and
has also been associated with human specific functions [14, 23, 25].

Among the top genes that we find to be human specific in the frontal pole
using the RNA-Seq data are TOMM20, LRRTM1, SPG7, and OPRL1, which are
associated with Perry syndrome (a neurodegenerative disorder associated with
adult-onset parkinsonism and depression), schizophrenia, spastic paraplegia, drug
dependence, and pain agnosia, respectively. Using the microarray data, top genes
include SHISA9, NEO1, BICD1, GBE1, SOX1, and DLGAP3. SHISA9, NEO1, and
SOX1 are associated with neuronal synaptic plasticity, neural tube formation, and
neural cell differentiation, while BICD1, DLGAP3, and GBE1 are associated with
various neurological disorders. The fact that we can find genes associated with
neuron development and regulation, and psychiatric disorders, while we find very
few such associations in the ANOVA analysis, suggests that our method is better
at finding significant species-specific, cross-regional signals. A full list of results
can be found Supplementary Table 2. Figure S21 gives us an indication of why that
might be the case: in the ANOVA analysis, a gene may be found to be human specific
in a single region due to slight variations in the expression of a single species,
whereas our method is more robust to such variation.

4 Discussion

We have proposed a method for determining human specific genes using gene
expression data sets from multiple brain regions and multiple species. The discovery
of genes with human specific expression in the brain has biomedical implications:
their involvement with neurological disorders and neural development could help
us better understand the pathways involved, and point to important targets. While
chimpanzees are most closely related to humans, an outgroup is needed in order to
determine which differences formed between human and chimp divergence, and not
before. This multi-species comparison poses some challenges for analysis, one of
which is issues arising from multiple pairwise comparisons, and another of which
is small sample size.

Our proposed analysis method of combining the Bayesian information criterion
(BIC) for model selection and a Markov random field (MRF) produces classifica-
tions that are more robust to small sample sizes. The MRF has been used in a variety
of biological contexts where multiple related data sets are available, for example for
time series data [15–17, 28]. In the brain, we observe high expression correlation



20 L. Diao et al.

among the different regions of the brain sampled, suggesting that although there are
almost certainly region-specific patterns in expression, it is reasonable to assume we
can borrow information from neighboring regions to get more robust estimates of
gene classifications.

We applied our method to a previous study with the same aim, published in [14].
The authors obtained both microarray and RNA-Seq expression data sets for three
brain regions, and our analysis indicates that there is a moderate to strong neighbor
effect among regions. According to our extensive simulations, this suggests that
using a MRF can dramatically reduce the number of incorrect classifications. Noisy
classifications in a single region will incur more genes incorrectly identified as
being human specific in the frontal pole only. We find twice as many genes that
are human specific in the frontal pole compared to the other two regions using the
RNA-Seq data. We find the same pattern in the microarray data, though to a lesser
degree, which is not found using the original ANOVA method. Thus, our analysis
recapitulates some of the major patterns presented in the original study, but suggests
that there are many fewer human specific genes.

While we have extensively demonstrated the performance of the BIC + MRF
model here only on brain gene expression data, such a model can be applied to
any group of datasets which one may believe are related in some way, whether by
physical proximity, as is the case for the brain data, or some other measure. The
model also demonstrates an approach to the analysis of multiple groups, in this case
species, where we are interested in all pairwise comparisons of means. Instead of
performing pairwise t tests, for example, which frequently can lead to inconsistent
results, using a model selection criteria such as the BIC can avoid such issues.
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Classification of EEG Motion Artifact
Signals Using Spatial ICA

Hsin-Hsiung Huang, Aubrey Condor, and Helen J. Huang

Abstract Using electroencephalography (EEG) data to extract information about
cortical signals has become an increasingly explored task of interest in the field of
computational neuroscience. In this paper, we proposed a novel procedure which
reduce dimension by applying spatial Independent Component Analysis (SICA) on
EEG motion artifact data and classify gait speed for a given subject by the projected
EEG motion artifact signals. Whereas most applications of ICA in analyzing EEG
data employ temporal ICA, we use SICA and Principal Component Analysis for
dimension reduction before applying classifiers such as Support Vector Machines,
Naive Bayes, and multinomial logistic regression to the extracted independent
components. We evaluate and compare the classification models by using randomly
selected channels from the multi-channel EEG motion artifact data as our test data.
For practical application and interpretation, we treat the test channels as if they
might come from a new trial for the given subject.

Keywords Classification · Brain signals · Time series · High-dimensional ·
Spatial dimension reduction

1 Introduction

Electroencephalography (EEG) has become more readily available as a method to
analyze cortical activity due to its relatively low cost and high temporal resolution
[10]. Although it can be convenient to collect EEG data, the dimensions of the
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recorded electrical activity can become large very quickly, especially when using
high-density EEG for trials recorded at lengthy time periods. Since EEG datasets are
high-dimensional and noisy, thus it is difficult to use them for classifying subjects
in terms of their movement characteristics. Therefore, it is important to develop
methods for analyzing the EEG data with a reduced dimensional space where the
variable information is still retained for classifying different gait movements for a
given subject.

The purpose of this paper is to introduce a novel procedure which could
classify movement characteristics with EEG motion artifact data projected by spatial
Independent Component Analysis (SICA) for a given subject. The EEG motion
artifact data did not actually contain electrophysiological signals from the body.
Instead, the EEG motion artifact data consisted of signals that were recorded from
an isolated conductive reference cap using an EEG system [17]. This EEG motion
artifact recording method has enabled the development of new artifact rejection
techniques to clean EEG signals [22] but these EEG motion artifact data could also
potentially be used to classify movement characteristics.

ICA originates from a method to solve problems such as the “cocktail party”
problem where one hopes to identify individual voices when many people are
speaking simultaneously, recorded in multiple devices in different locations. In this
case, the temporal ICA (TICA) algorithm assumes independence in time such that
the original voices can be extracted from the mixtures [5]. Similar to the cocktail
party problem, each electrode in EEG data is composed of the mixture of multiple
electrophysiological signals that includes the true underlying cortical signals which
are assumed to be temporally independent [6]. Therefore, TICA has been most
commonly used to analyze EEG data [9]. Because TICA is most commonly used
to analyze EEG data, the authors who recorded the first set of EEG motion artifact
data in [17] applied TICA and source localization to the data and found that the
independent components were mostly outside of the brain volume, which provided
evidence that TICA could be used to partially distinguish motion artifact from
electrophysiological signals [25]. However, the authors did not attempt to extract
movement characteristics from the EEG motion artifact data, which inspired us to
investigate that possibility in this paper.

In contrast to TICA, SICA assumes spatially independent components and has
been used more commonly in literature which focuses on the analysis of functional
magnetic resonance imaging (fMRI) data [7]. However, the temporal dimension of
EEG data can be much larger than that of the spatial dimension in many cases [23].
Therefore, our aim is to reduce the temporal dimension and employ SICA on the
reduced data instead of using TICA. Consequently, we propose a method which
iteratively computes SICA on subsets of the partitioned data, and concatenates the
independent components from each iteration.

The rest of this paper is organized as follows. We introduce the techniques
of ICA, and then describe the examined data and the proposed data analysis
procedure for dimension reduction. Furthermore, the classification methods: k-
nearest neighbors, Support Vector Machines, Naive Bayes, and multinomial logistic
regression are described. Finally, we discuss the results of our classification and
further suggest the implications of our conclusions.
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2 Classification Methods

We use the EEG motion artifact data projected by Spatial ICA with the following
classifiers. (1) k-nearest neighbor (k-nn), (2) Support Vector Machines, (3) Naive
Bayes, and (4) multinomial logistic regression. A brief description of each method
is introduced as follows. Notice that X is the matrix of predictors and Y is the
response vector of classification labels in this section.

2.1 k-Nearest Neighbor (k-nn)

We used the k-nearest neighbour classification method with k = 3, which
determines the class by majority voting of each point’s k nearest neighbors. The
knn was fulfilled by knn3() function in package ‘caret’ in R were used in this study.

2.2 Support Vector Machines

In an approach to solve multi-class pattern recognition, we can consider the problem
as many binary classification problems [8, 27]. If we consider the case of K classes,
K classifiers are constructed. Each classifier builds a hyperplane between itself and
the K − 1 other classes [27]. If our response, or the two classes, are represented by
Y ∈ {−1, 1}, we can use a Support Vector Machine (SVM) to construct a hyperplane
to separate the two groups such that the distance between the hyperplane and the
nearest point, or the margin, is maximized [8].

The optimization problem seeks to minimize: φ(w, ξ) = 1
2‖w‖2 + C

∑n
i=1 ξi

with constraints yi((w ·xi)+b) ≥ 1−ξi, i = 1, . . . , n and ξi ≥ 0, i = 1, . . . , n.We
can solve the optimization problem by solving the dual problem, which consists of
minimizing W(α) =∑n

i=1 αi − 1
2

∑n
i,j=1 yiyjαiαjK(xi, xj ) under the constraints

0 ≤ αi ≤ C, i = 1, . . . , n and
∑n

i=1 αiyi = 0 The above gives the decision
function: f (x) = sign

[∑n
i=1 (αiyiK(x, xi))+ b

]
[27].

There exist many different types of kernel functions to use in Support Vector
Machine classification. Support vector machines (SVM) [8] with a linear kernel
was used in this study. The cost parameters C was tuned using cross validation [16]
with package ‘e1071’ in R [21].

2.3 Naive Bayes

The Naive Bayes algorithm is a classification algorithm based on Bayes’ rule and
a set of conditional independence assumptions. Given the goal of learning P(Y |X)
whereX = X1, . . . , Xp, the Naive Bayes algorithm makes the assumption that each
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feature Xi is conditionally independent of each of the other Xj s given Y = k, and
also independent of each subset of the other Xj s given Y = k [15]. Bayes’ rule
states that the probability of some observed data, x = (x1, . . . , xp), belonging to

class k is P(Y = k|x) = πkfk(x)∑K
l=1 πlfl(x)

, where P(Y = k) = πk and fk(x) = p(X =
x|Y = k) is the probability density forX in class k. For a given class k, Naive Bayes
classification makes the assumption that all of the features, or xis are independent,
or fk(x) = P(x1, x2, . . . , xp|Y = k) = ∏p

i=1 P(xi |Y = k). Thus, the Naive Bayes
classifier is as follows: arg maxk πk

∏p

i=1 f
i
k (xi), where f ik (xi) = P(Xi = xi |Y =

k) [15]. We believe that, because we are reducing our data by Spatial ICA, Naive
Bayes classification will provide the best results in terms of misclassification rate.
We will use all other classification methods for a comparison to Naive Bayes.

2.4 Multinomial Logistic Regression

Logistic regression can be used as a method for modeling a categorical response
variable by finding significant parameters. In the multinomial case, our y response
variable represents more than two categories. It does not require the assumption of
statistical independence of predictors unlike the Naive Bayes classifier, but assumes
collinearity between predictors.We used package ‘glmnet’ in R [11] to fulfill the
multinomial logistic regression.

3 The EEG Motion Artifact Signals Data and Spatial ICA
Methodology

We used the EEG motion artifact signals data that was collected in [17] and were
analyzed using TICA in [25]. The method of recording isolated motion artifact
in EEG is described in detail in [17]. Briefly, the isolated motion artifact data
were collected using a 256 channel EEG system (ActiveTwo, Biosemi) from ten
young and healthy participants. A non-conductive silicone swim cap was placed
on each subject’s head to block true electrophysiological signals. A simulated scalp
consisting of a short wig soaked in conductive gel was placed over the silicone layer,
and the EEG cap and electrodes were placed over the simulated scalp. Subjects sat
(0 m/s) and walked at four different speeds (0.4 m/s, 0.8 m/s, 1.2 m/s, 1.6 m/s) on
a treadmill. Each trial was 10 min in duration, and data were recorded at 512 Hz
[25]. Ten subjects with complete data sets were used in analysis. In this study, we
pre-processed data by vertically concatenating each of the subject’s five speeds into
one data file while creating a speed label for each signal. In terms of the temporal
dimension, each recording consisted of 300, 000–310, 000 points for the 10 min of
recorded signal. However, we used only points 1 through 300, 000 for consistency
within and between the ten subjects. Therefore, for one of the ten subjects, we have
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total 1280 EEG motion artifact signals with dimension p = 300, 000 in five speeds
and the sample size n = 256 given a speed.

Independent Component Analysis (ICA) belongs to a class of methods often
referred to as “Blind Source Separation” which aim to extract certain quantities from
a mixture of other quantities [26]. ICA-unlike other statistical methods of dimension
reduction that find mutually de-correlated signals such as Principle Component
Analysis (PCA) or Factor Analysis (FA)- is based on the assumption of statistical
independence [26]. ICA decomposes the data such that we are left with maximally
independent signals by maximizing non-Gaussianity. One important distinction of
ICA is that there is no order or ranking of the extracted components. It is also
notable that the components do not recognize the difference of signs [18]. Since
the EEG signals in our dataset have heavy-tailed and multimodal distributions, it
is inadequate to apply PCA, which can not recover statistically independent source
signals [13, 14].

Let us denote the observed data as an n by p matrix, X where n the number of
spatial voxels and p represents the number of time points. In Spatial ICA (SICA),
we consider the n vectors containing each of the p instances to be our signals [3].
We can represent the SICA decomposition as follows. Assuming that X is a mixture
signals matrix from sources matrix S, and let r = the number of components, A is
n× r and S is r × p, and then X = AS +E, where E is defined using the smallest
(n−r) principal components (PCs). S=WKX is the estimated n×m matrix source
matrix, W is the estimated m×m un-mixing matrix, K is the estimated p×m pre-
whitening matrix projecting data onto the first m principal components, where n is
the number of observations andm is the number of independent components [3, 14].
In this study, the ordering of independent components is determined by Principal
Component Analysis.

Before ICA is performed, it is necessary to first pre-process the data with
reduction and whitening. For the purposes of data compression, SICA presumes that
there are fewer independent sources than there are time points [7]. Reduction is first
performed by PCA and the specified number of components are retained such that
the maximum amount of variation is represented. ICA combined with PCA allows
both whitening and achieving dimension reduction [23].

ICA supposes that the underlying sources are each not normally distributed. It
follows that, sources can be extracted by making them as non-Gaussian as possible
with the measure of negentropy. Given a covariance matrix, the distribution that has
the highest entropy is the Gaussian distribution [4, 18]. Negentropy or differential
entropy is a measure of deviation from normality expressed as

N(Z) = (EG(Z)− EG(ZGaussian))
2

where Z is an arbitrary multivariate random variable and ZGaussian is a multivariate
Gaussian random variable of the same covariance matrix as Z, and the contrast
function G(u) = − exp(−u2/2) was used in our analysis [18]. There are several
different algorithms that employ methods to estimate the independent components.
The FastICA algorithm maximizes negentropy N(X) [23]. We use the FastICA
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algorithm [13, 14] for SICA because it has been shown to outperform most other
ICA algorithms in speed of convergence [23].

4 Data Analysis Procedure

The challenge of the examining EEG signals data is its high dimension. Since
the dimension comes from the multiple time moments which records the EEG
signals of the individuals walking on a treadmill at a given speed, we assume
that the high dimensional (p > n) EEG motion artifact signals used in this study
can be decomposed as m < n independent components. Note that SICA cannot
perform dimension reduction directly. Therefore, PCA is applied as a pre-process to
determine the ordering of the importance of the components by the magnitude of the
eigenvalues of the correlation matrix of X. To reduce the high dimensional signals,
we transform the signals by using only the first four (which isK−1,K is the number
of categories) independent components. We applied package FastICA in software R
[20] for our data analysis. For each of the ten subjects, we split our data into training
and testing subsets, such that we will use the training set to train our classification
model, and the testing set to see how our model performs for new observations.
We randomly select 256 channels out of the 1280 concatenated channels as our
test set, and use the remaining 1024 channels as our training set. Although the
channels for a given trial (or given speed) are receiving motion artifact signals
simultaneously, we proceed in our analysis as if the selected test signals are recorded
from another trial. The data analysis procedure is shown in the following algorithm.
The proposed method is outlined, starting from the structure of the original data to
the concatenated data, further into the training and testing split, and finishing with
the SICA and PCA projected data.

For each of the ten subjects data, we first concatenate all records as a dataset
with 1280 rows and 300,000 columns, and then partitioned the data as a training set
(1024 records) and a test set (256 records) by random sampling. For each interval of
1000, we sampled a time point for both the training and test sets. The downsampling
rate is equalled a duration of 1.95 s, since the original signals were collected by
512 Hz sampling rate (the unit of time is 1/512 or 0.00195 s). Then we applied SICA
to the downsampled training set using the FastICA algorithm on the training data,
since the five categories can be represented in a 4-dimensional space, each signal
is compressed to the first four independent components. We then project the test
data set onto the space of the first four independent components obtained from the
training data. The plots in Figs. 1 and 2 show that most of the four independent
components for the test set each subject have obvious clusters corresponding to the
walking-speed categories.

We used the k-nearest neighbors with k = 3, SVM, Naive Bayes, and
multinomial logistic regression for classification modeling. The accuracy rate is
computed as the number of correctly categorized signals, over the total number of
classified signals. We use the accuracy rates and the multi-class area under the curve
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Algorithm 1 Spatial ICA and classification of EEG motion artifacts signals
1: There are 10 subjects. Each subject has five EEG motion artifact signals datasets according to

the five different walking speeds. Each dataset has 256 rows/space points (from 256 channels)
and 300,000 columns/time points (recordings in sequential time points).

2: procedure
3: Concatenate all records of the five speeds EEG motion artifact datasets corresponding to

the subject walking speeds.
4: Downsample the time points by keeping the first sample and then every 1000th sample after

the first.
5: Partition the data as training (1024 records) Xtr and test sets (256 records) Xte by random

sampling.
6: Apply SICA to the training set and extract 4 independent components by fastICA with type

‘deflation’ and the exponential contrast function. The components are extracted one at a time.
7: The SICA outputs a source matrix Str , pre-whitening matrix K , and un-mixing matrix W .
8: Obtain the source matrix of the test set by projection Ste = XteKW

9: Build classification models on Str and evaluate by using Ste
10: end procedure
11: For comparisons, another analysis used randomly sampling 4 time points from Xtr and Xte,

and build classification models on the training and evaluation on the test set.

(AUC) to evaluate the proposed method with comparisons of randomly selecting
four time points. Next we trained our Naive Bayes model for classification. For each
subject, we use the projected SICA test data to compare the classified results with
the true classifications and output the accuracy rate and AUC. Package ‘naivebayes’
in R was used for the Naive Bayes Classification [19]. Finally, we trained our last
classification model with the training data using multinomial logistic regression
[28]. We do not evaluate individual parameters for significance but instead simply
use the fitted model for prediction of the test data to obtain the accuracy rates for
each subject. We also provide a and 3. We provide the Area Under the Curve (AUC)
values as well to show classification performance. These values give the total area
under the Receiver Operating Curve (AUC) values were calculated with package
HandTill2001 in R [12]. Classification results are presented in Tables 1 and 2.
Table 3 is the comparison of the proposed SICA method versus random sampling
four time points on the simulation data, which was generated by adding noises
into the signals of Subject 1. The noises were sampled from uniformly distributed
random variables with the range of (−a, a), where a is

√
3 signal-to-noise (SNR)

ratio in order to make the simulated data have SNR = 1.

5 Classification Results

The aim of our study is to explore SICA as a method of dimension reduction for
analyzing high dimensional EEG or EEG motion artifact datasets. We proposed an
algorithm to downsample and perform SICA to the signals with a large number of
time points such that sufficient information is still retained for classification. By
using the first four independent components, the k-nn with k = 3, support vector
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Fig. 1 The first four projected independent components of the test set of each of subjects 1–5.
In each plot, the y-axis is the component and the x-axis represents the space points (electrode
channels) of the EEG motion artifacts signals. There are total 256 space points and five speeds
(five categories). On average, each category contains about 51 space points. For each subject, most
of the first four independent components clusters according to the subject’s walking speed. The
clusters are highlighted by different colored. The x-axis is the 256 space points in the test set, and
the y-axis represents the values of the independent components, which are compressed time points

classifier with linear kernels, and multinomial logistic regression all successfully
classify the EEG motion artifacts signals. The Naive Bayes method performed
worse than the others. In contrast, the classification results are very poor when just
using four randomly selected time points. The comparisons show that the proposed
method effectively reduce the dimension of time with high classification accuracy.
The scatter plots of the top four independent components (ICs) indicate that these
ICs have different patterns with respect to their walking speeds (see Figs. 1 and 2).



Classification of EEG Motion Artifact Signals Using Spatial ICA 31

Fig. 2 The first four projected independent components of the test set of each of subjects 6–10. In
each plot, the y-axis is the component and the x-axis represents the space points of the EEG motion
artifacts signals. There are total 256 space points and five speeds (five categories). On average,
each category contains about 51 space points. For each subject, most of the first four independent
components clusters according to the subject’s walking speed. The clusters are highlighted by
different colored. The x-axis is the 256 space points in the test set, and the y-axis represents the
values of the independent components
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Table 1 Model comparisons in terms of accuracy rates

Methods knn (k = 3) SVM (linear kernel) Naive Bayes Multinomial logistic

SICA with four components

Subject 1 0.9922 1.0000 0.8008 0.9961

Subject 2 0.9219 0.9759 0.8242 0.9492

Subject 3 0.8906 0.8789 0.7266 0.8945

Subject 4 0.7891 0.9609 0.8056 0.9967

Subject 5 0.8359 0.8906 0.8516 0.9180

Subject 6 0.8320 0.8320 0.7578 0.8320

Subject 7 0.9688 0.9141 0.9063 0.9531

Subject 8 0.8125 0.8594 0.7539 0.9219

Subject 9 0.7891 0.7852 0.8164 0.8359

Subject 10 0.8984 0.8867 0.8320 0.8984

Random sampling four time points

Subject 1 0.1211 0.1367 0.1406 0.1445

Subject 2 0.1953 0.2148 0.2031 0.2188

Subject 3 0.1133 0.1055 0.1563 0.0938

Subject 4 0.2109 0.1445 0.1875 0.1758

Subject 5 0.3047 0.3594 0.3281 0.3359

Subject 6 0.2148 0.2305 0.2813 0.2500

Subject 7 0.3164 0.3047 0.2578 0.2969

Subject 8 0.2695 0.2422 0.2227 0.2383

Subject 9 0.2930 0.3008 0.2656 0.3125

Subject 10 0.1172 0.1055 0.1797 0.1055

6 Discussion

Before classification, the independent components data for each subject was of
dimensions 256 by 4 whereas the original test set started as 256 by 300,000.
Hence, the temporal dimension of our data was reduced by 75,000 folds. The
four independent components successfully retained a sufficient amount of infor-
mation about the EEG motion artifact signals in order to successfully classify a
subject’s walking speed. However, it is important to take caution in interpreting
the independent components. With TICA, it can be assumed that the independent
components represent the unmixed cortical signals. SICA has been commonly
applied to functional MRI data, where time points correspond to input dimensions
and voxels are samples. In contrast, TICA for EEG assumes that sensors constitute
input dimensions and time-points are samples [1]. We used SICA for EEG motion
artifact signals with the assumption that sensors constitute input samples and time
points are dimensions. Consequently, the EEG motion artifact signals observed
at different time points are assumed to be linear sums of the source signals and
maximizes spatial sparsity alone [2].
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Table 2 Model comparisons in terms of multi-class areas under the ROC (AUC)

Methods knn (k = 3) SVM (linear kernel) Naive Bayes Multinomial logistic

SICA with four components

Subject 1 0.9977 1.0000 0.6174 0.9997

Subject 2 0.9631 1.0000 0.8128 1.0000

Subject 3 0.9472 0.9998 0.4480 1.0000

Subject 4 0.8861 0.9974 0.8220 0.9894

Subject 5 0.9644 0.9695 0.3556 0.9820

Subject 6 0.9251 0.9997 0.4075 1.0000

Subject 7 0.9914 0.9977 0.7357 0.9977

Subject 8 0.9462 0.9896 0.4486 0.9892

Subject 9 0.9381 0.9551 0.5486 0.9718

Subject 10 0.9501 0.9891 0.6709 0.9902

Random sampling four time points

Subject 1 0.4575 0.5503 0.4841 0.5433

Subject 2 0.5315 0.5721 0.5243 0.5792

Subject 3 0.4249 0.3431 0.4778 0.3463

Subject 4 0.5166 0.5014 0.4483 0.5216

Subject 5 0.5968 0.6533 0.6764 0.6708

Subject 6 0.5016 0.4673 0.5232 0.4965

Subject 7 0.5898 0.5670 0.5453 0.5549

Subject 8 0.5502 0.5369 0.5843 0.5164

Subject 9 0.5713 0.5727 0.4970 0.5581

Subject 10 0.4419 0.3814 0.5056 0.3651

Table 3 Model comparisons of simulation data with 100 repetitions in terms of average accuracy
rates and AUC

Methods knn (k = 3) SVM (linear kernel) Naive Bayes Multinomial logistic

SICA with four components

Accuracy 0.9577(0.0081) 0.9547(0.0120) 0.8215(0.0360) 0.9286(0.0204)

AUC 0.9908(0.0025) 0.9990(0.0010) 0.4473(0.0586) 0.9999(0.0004)

Random sampling four time points

Accuracy 0.2310(0.1100) 0.2126(0.1109) 0.0039(0.0387) 0.2205(0.1233)

AUC 0.5267(0.0891) 0.5342(0.1271) 0.0069(0.0069) 0.5382(0.1328)

Numbers in the parenthesis are the standard deviation

It is evident that for a given subject, we are able to successfully classify walking
speed with EEG motion artifact signals. The classification results (Tables 1 and 2)
show that except for the Naive Bayes classifiers, k-nn, SVM, and multinomial
logistic regression all have high classification accuracy and area under the Receiver
Operating Curve (AUC). The Naive Bayes classifier assumes that every two pre-
dictors are mutually independent given the class. The classification results indicate
that the statistically independent components obtained by SICA do not the class
information, so that the assumption of Naive Bayes may not be satisfied by using
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independent components as predictors. It is also well-know that independence does
not imply conditional independence generally. Future studies may use supervised
ICA [24] and might be performed to create gait movement profiles across different
subjects. Such that, if information existed about a group of subjects and their raw
uncleaned EEG signals that includes cortical signals and motion artifact signals for
a given movement, a new subject’s raw uncleaned EEG signals could be used to
classify the new subject’s movement.
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study.
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Weighted K-Means Clustering with
Observation Weight for Single-Cell
Epigenomic Data

Wenyu Zhang, Jiaxuan Wangwu, and Zhixiang Lin

Abstract The recent advances in single-cell technologies have enabled us to profile
genomic features at unprecedented resolution. Nowadays, we can measure multiple
types of genomic features at single-cell resolution, including gene expression,
protein-binding, methylation, and chromatin accessibility. One major goal in single-
cell genomics is to identify and characterize novel cell types, and clustering methods
are essential for this goal. The distinct characteristics in single-cell genomic datasets
pose challenges for methodology development. In this work, we propose a weighted
K-means algorithm. Through down-weighting cells with low sequencing depth, we
show that the proposed algorithm can lead to improved detection of rare cell types in
analyzing single-cell chromatin accessibility data. The weight of noisy cells is tuned
adaptively. In addition, we incorporate sparsity constraints in our proposed method
for simultaneous clustering and feature selection. We also evaluated our proposed
methods through simulation studies.

Keywords Single-cell genomics · Single-cell chromatin accessibility data · Rare
cell types · Weighted K-means clustering · Sparse weighted K-means clustering

1 Introduction

The recent advances in technologies have enabled us to profile genome-wide
features at single-cell resolution [1]. A large international collaborative effort,
the Human Cell Atlas Project, (see https://www.humancellatlas.org/) officially
announced in 2017, aims to characterize the molecular profile of all human
cell types [1]. Nowadays, we can not only measure single-cell gene expression
(scRNA-Seq), but also characterize other functional genomic features at single-
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cell resolution, including single-cell CHIP-seq [2], single-cell methylation [3], and
single-cell chromatin accessibility [4, 5]. Different types of genomic data capture
complementary information and together they provide a more complete biological
picture.

Datasets arising from single-cell technologies are difficult to analyze due to the
inherent sparsity and technical variability. One major goal in single-cell genomics
is to identify and characterize novel cell types, and clustering methods are essential
for this goal. Most clustering methods developed in single-cell genomics have been
focused on single-cell gene expression data. The clustering methods are usually
algorithm-based and are built upon different similarity/distance metrics between
the cells. t-SNE + K-means is one common approach in practice where the K-
means clustering algorithm is performed after dimension reduction by t-SNE.
SNN-Cliq [6] uses shared nearest neighbor (SNN) graph based upon a subset of
genes and clusters cells by identifying and merging sub-graphs; pcaReduce [7]
integrates principal components analysis and hierarchical clustering. RaceID [8]
uses an iterative K-means clustering algorithm based on a similarity matrix of
Pearson’s correlation coefficients. SC3 [9] is an ensemble clustering algorithm
that combines the clustering outcomes of several other methods. CIDR [10] first
imputes the gene expression profiles, calculates the dissimilarly matrix based on
the imputed data matrix, performs dimension reduction by principal coordinate
analysis and finally performs clustering on the first several principal coordinates.
SIMLR [11] implements a kernel-based similarity learning algorithm, where RBF
kernel is utilized with Euclidean distance. The “Corr” [12] method implements a
new cell similarity measure based on cell-pair differentiability correlation. SAFE-
clustering [13] is another ensemble clustering algorithm that uses hypergraph-based
partitioning algorithms. SOUP [14] is a semi-soft clustering algorithm that first
identifies the set of pure cells by exploiting the block structures in cell-cell similarity
matrix, uses them to build the membership matrix, and then estimates the soft
memberships for the other cells. DIMM-SC [15] is a model-based approach that
builds upon a Dirichlet mixture model and is designed to cluster droplet-based
single-cell transcriptomic data.

As for the analysis of single-cell epigenomic data, such as single-cell chromatin
accessibility, scABC [16] first performs weighted K-medoids clustering, followed
by aggregation of the reads within a cluster and cluster reassignment by the nearest
neighbor. In scABC, the cells with low sequencing depth, which are expected to be
noisier than cells with high sequencing depth, are down-weighted in the objective
function. The difference between K-medoids and K-means algorithms is the choice
of cluster center, where K-medoids uses representative data points and K-means
uses the average of data points assigned to the same cluster. When a rare cell type
is present in the dataset, it can be challenging to find a good representative cell for
that particular cell type. On the other hand, averaging over similar cells help reduce
the variance and can potentially lead to better estimate of the cluster center and
thus may improve the detection of rare cell types. Motivated by this, we extend the
weightedK-medoids algorithm to a weightedK-means algorithm. We show that the
proposed algorithm can lead to improved detection of rare cell types in the analysis
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of single-cell chromatin accessibility data. A data adaptive tuning scheme for the
weight of noisy cells is presented. In addition, we incorporate sparsity constraints in
the weighted K-means algorithm for simultaneous clustering and feature selection.
The proposed methods are also evaluated through simulation studies.

Extending the K-means algorithm to a weighted K-means algorithm is not a
new idea. The majority of weighted K-means algorithms [17–22] aim to assign
weights for the features, while ours assign weights to the observations based on
prior information, i.e. the sequencing depth of single-cell data. The method that is
closely related to our algorithm is the penalized and weighted K-means method
[23]. Our weighted K-means objective function is a special case of the penalized
and weighted K-means method. However, the penalized and weighted K-means
method did not provide a systematic way to tune the weights for the observations
and did not incorporate the sparsity constraint. In the Supplementary Notes of
this paper, we also demonstrated the connection between our proposed method
and standard K-means with data augmentation: our proposed method is the same
as replicating some observations and then implementing the standard K-means
algorithm.

2 Methodology

2.1 Weighted K-Means

Let xi denote the vector of data for observation i. In K-means algorithm, the
problem is to minimize within-cluster sum of squares (WCSS):

WCSS =
K∑

k=1

1

nk

∑

i,i′∈Ck
‖xi − xi′ ‖2

2 = 2
K∑

k=1

∑

i∈Ck
‖xi − μk‖2

2 (1)

where Ck represents the set of observations assigned to the k-th cluster, μk =
1
nk

∑
i∈Ck xi , and nk is the number of observations in the k-th cluster.

All observations are equally weighted in K-means clustering. In single-cell
experiments, the cells have diverse sequencing depth: cells with low depth tend to
be noisier compared with cells with high depth. Putting less weights on these noisy
observations can potentially improve the clustering algorithm. Hence we propose
the following weighted K-means algorithm:

min
C1,C2,··· ,CK

⎧
⎨

⎩

K∑

k=1

∑

i∈Ck
ui‖xi − μ̂k‖2

2

⎫
⎬

⎭
(2)
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where ui is the weight for observation xi , and μ̂k =
∑

i∈Ck uixi∑
i∈Ck ui

. Here we assume that

ui is known and how to choose ui is presented in Sect. 2.3. The following iterative
scheme can be implemented to solve (2):

1. Initialize clusters C1, C2, . . . , CK .
2. Repeat the following until convergence:

• Fix C1, C2, . . . , CK , update centers μ̂k =
∑

i∈Ck uixi∑
i∈Ck ui

, for k = 1, 2, . . . , K .

• Fix μ̂k, k = 1, 2, . . . , K , update Ck by clustering observations to the nearest
centers.

Note that finding the optimal solution of the objective function is an NP-hard
problem [24], and the above iterative scheme usually converges to local optima. In
practice, we found that an alternative iterative scheme similar to Hartigan–Wong’s
algorithm [25] usually converges to a better local optimum:

1. Initialize clusters C1, C2, . . . , CK .
2. Repeat the following until no reallocation takes place:

• For each observation xi , i = 1, 2, . . . , n, first check if the number of
observations in the cluster to which xi is allocated is larger than 1. If so,
then check whether the objective Obj = ∑K

k=1
∑

i′∈Ck ui′ ‖xi′ − μ̂k‖2
2 will

decrease when xi is reassigned from the current cluster to the second nearest
cluster. More specifically, suppose xi is currently assigned to Cj1 , and its
second nearest cluster is Cj2 . It can be shown that after we reassign xi to

Cj2 , the new objective minus the original objective equals

∑
l∈Cj2

ul

ui+∑l∈Cj2
ul
‖xi −

μ̂j2
‖2

2−
∑

l∈Cj1
ul

−ui+∑l∈Cj1
ul
‖xi−μ̂j1

‖2
2, where μ̂j1

, μ̂j2
is the original cluster center

for Cj1 , Cj2 . So if

∑
l∈Cj1

ul

−ui+∑l∈Cj1
ul
‖xi − μ̂j1

‖2
2 >

∑
l∈Cj2

ul

ui+∑l∈Cj2
ul
‖xi − μ̂j2

‖2
2, then

we reassign xi to the second nearest cluster, and update cluster centers.

The above iterative scheme is implemented with random initializations and the
solution with the smallest objective is chosen as the clustering result.

2.2 Sparse Weighted K-Means

The total sum of squares (TSS) is defined as follows:

TSS = 1

n

n∑

i,i′=1

‖xi − xi′ ‖2
2
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where n equals the total number of observations.
As TSS equals the summation of the between-cluster sum of squares (BCSS) and

the within-cluster sum of squares (WCSS), given that the TSS does not depend on
the cluster label, the K-means algorithm, which minimizes the WCSS, is equivalent
to maximizing the BCSS:

BCSS = 1

n

n∑

i,i′=1

‖xi − xi′ ‖2
2 −

K∑

k=1

1

nk

∑

i,i′∈Ck
‖xi − xi′ ‖2

2

= 2
n∑

i=1

‖xi − μ0‖2
2 − 2

K∑

k=1

∑

i∈Ck
‖xi − μk‖2

2

(3)

where Ck represents the set of observations assigned to the k-th cluster, μ0 =
1
n

∑n
i=1 xi , μk = 1

nk

∑
i∈Ck xi , and n is the total number of observations, nk is

the number of observations in the k-th cluster.
Let xi,j denote the data for the i-th observation with the j -th feature. Based on

the BCSS, the sparse K-means criterion [26] is as follows:

max
C1,C2,··· ,CK,w

⎧
⎨

⎩

p∑

j=1

wj

⎛

⎝
n∑

i=1

(xi,j − μ0,j )
2 −

K∑

k=1

∑

i∈Ck
(xi,j − μk,j )

2

⎞

⎠

⎫
⎬

⎭

subject to‖w‖2
2 ≤ 1, ‖w‖1 ≤ s, wj ≥ 0,∀j

(4)

where wj represents the importance of the j -th feature, μ0,j = 1
n

∑n
i=1 xi,j , and

μk,j = 1
nk

∑
i∈Ck xi,j , j = 1, . . . , p.

Based upon the proposed weighted K-means algorithm, we also incorporate
sparsity constraints for variable selection. In single-cell genomics, it is a common
practice to remove noisy features before performing the clustering algorithms.
Incorporating sparsity constraint in the clustering algorithm may help us better deal
with the noisy features and select the relevant features. So we extend the objective
function (4) with weights ui on each observation:

max
C1,C2,··· ,CK,w

⎧
⎨

⎩

p∑

j=1

wj

⎛

⎝
n∑

i=1

ui(xi,j − μ̂0,j )
2 −

K∑

k=1

∑

i∈Ck
ui(xi,j − μ̂k,j )

2

⎞

⎠

⎫
⎬

⎭

subjectto‖w‖2
2 ≤ 1, ‖w‖1 ≤ s, wj ≥ 0,∀j

(5)

where μ̂0,j =
∑n

i=1 uixi,j∑n
i=1 ui

, μ̂k,j =
∑

i∈Ck uixi,j∑
i∈Ck ui

, j = 1, . . . , p.

Similar to the sparse K-means algorithm, we propose an iterative scheme
for (5):
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1. Initialize w as w1 = w2 = · · · = wp = 1√
p

, and initialize cluster
C1, C2, . . . , CK .

2. Iterate until convergence:

• Fix w, update C1, C2, · · · , CK . We need to solve the following problem

min
C1,C2,··· ,CK

⎧
⎨

⎩

p∑

j=1

wj

K∑

k=1

∑

i∈Ck
ui(xi,j − μ̂k,j )

2

⎫
⎬

⎭
.

The problem can be solved by applying weighted K-means algorithm to
X
√

W , where X is a n × p matrix representing the original data, and
√

W

is a p × p diagonal matrix with elements
√
w1,

√
w2, · · · ,√wp.

• Fix C1, C2, · · · , CK , update w by soft-thresholding:

w = S(a+,Δ)
‖S(a+,Δ)‖2

where S(·, ·) is the soft-thresholding function, aj =∑n
i=1 ui(xi,j − μ̂0,j )

2 −
∑K

k=1
∑

i∈Ck ui(xi,j − μ̂k,j )2, a+ is the positive part of a, and if ‖w∣
∣
Δ=0‖1 ≤

s, then choose w = w
∣
∣
Δ=0; otherwise, pick Δ = Δ0 s.t. ‖w∣

∣
Δ=Δ0

‖1 = s and

let w = w
∣
∣
Δ=Δ0

.

Convergence of the Algorithm When the weights and the sparsity parameter are
chosen as proposed, the iterative scheme ensures the objective to be non-increasing
in each step, and the objective has an obvious lower bound 0, so this method is sure
to converge to a local optimum.

2.3 Selection of Tuning Parameter for Weighted K-Means

In weighted K-means algorithm, the weight vector U represents how much we
penalize the noisy observations. Choosing U can be essential to the algorithm
performance. To tune U, we consider a sequence of weight vectors, U(1), . . . ,U(Q),
where all observations are given the flattest weight in U(1), and in U(Q), the noisy
observations are given the smallest weight. Details for creating the sequence of
weight vectors are discussed in the simulation and real data analysis.

In order to choose the value of U, we apply a permutation approach which is
closely related to the Gap statistic [27]. The intuition for the tuning procedure is
that when the weight U is chosen wisely, it should further decrease the objective
function, compared with randomly assigning the weight.
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Algorithm to Select Tuning Parameter U for Weighted K-Means
• For U(q), q = 1, . . . ,Q, implement steps 1, 2, 3 and 4:

1. Perform weighted K-means with weight U(q) and data X, and then compute
the objective function O(U(q)) =∑K

k=1
∑

i∈C(q)k

u
(q)
i ‖xi − μ̂

(q)
k ‖2

2.

2. Obtain U(q)

1 , . . . ,U(q)
B , by independently shuffling the elements in U(q).

3. For U(q)
b , b = 1, . . . , B, perform weighted K-means with weight U(q)

b and

data X, and then compute the objective function O(U(q)
b ).

4. Compute Gap(U(q))= 1
B

∑B
b=1 logO(U(q)

b )− logO(U(q)).

• Choose the smallest q∗ such that Gap(U(q∗)) is within one standard deviation
from the largest value of Gap(U(q)).

Additionally, K , the number of clusters, is also a tuning parameter. Criterion for
choosing K is similar to tuning U , and details are presented in the Supplementary
Notes.

2.4 Selection of Tuning Parameter for Sparse Weighted
K-Means

In sparse weighted K-means algorithm, the weights for the samples U and the
sparsity parameter s are tuned sequentially, where we first tune U through weighted
K-means without the sparsity constraint, and then tune s with U fixed.

In order to choose s, a permutation approach similar to tuning the sparsity
parameter in sparse K-means algorithm is applied.

Algorithm to Select Tuning Parameter s for Sparse Weighted K-Means
1. Obtain permuted datasets X1, . . . ,XB by independently permuting observations

within each feature.
2. For each candidate tuning parameter value s:

(a) Compute O(s) = ∑p

j=1 wj

(∑n
i=1 ui(xi,j − μ̂0,j )

2 −∑K
k=1

∑
i∈Ck

ui(xi,j − μ̂k,j )
2
)
, the objective obtained by performing sparse weighted

K-means with tuning parameter s on the data X.
(b) For b = 1, 2, . . . , B, compute Ob(s), the objective obtained by performing

sparse weighted K-means with tuing parameter s on the data Xb.
(c) Calculate Gap(s)= log(O(s))− 1

B

∑B
b=1 log(Ob(s)).

3. Choose s∗ corresponding to the largest value of Gap(s).
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3 Simulation

3.1 Simulation 1: Multivariate Normal Distribution

The simulation setup is as follows: the total number of features p = 1000, the
number of cluster-specific features q = 50, the number of classes K = 3,
the number of observations n = 60 with 20 observations per class. Among the
n obeservations, n0 = 10 noisy observations are included. We first generate
Xij ∼N(μij , 1) independently, whereμij = μ(1i∈C1,j≤q−1i∈C2,j≤q) andμ = 0.8.
Then to generate the noisy observations, we randomly select n0 observations, and
generate them from N(μij , σ 2

0 ). We generated datasets with various σ0, representing
different noise levels for the noisy observations. When σ0 = 1, all observations have
the same noise level, and the larger σ0, the larger noise level.

Effectiveness of the Algorithm to Select the Tuning Parameter U for Weighted
K-Means We fix the weight of normal observations as 1, and choose a descending
sequence of candidate weights for the noisy observations to apply the method to
select tuning parameter for weighted K-means. The results are shown in Fig. 1.
When σ0 increases, the selected weight for noisy observations tends to decrease.

Effectiveness of the Algorithm to Select the Sparsity Parameter s We compare
the number of features selected by our proposed algorithm with that selected by the
sparse K-means method. The sparse K-means method was implemented with the R
package sparcl. As shown in Table 1, both algorithms tend to select more features
than the true number of cluster-specific features. When the noise level increases, the
number of features selected by sparse K-means method tends to increase, deviating
greatly from the true number of cluster-specific features, which is q = 50. The
number of features selected by sparse weighted K-means method tend to be quite
stable except when the noise level is very high (σ0 = 20).

Convergence of the Sparse Weighted K-Means Algorithm When the sparsity
parameter and weights are chosen as proposed, we show the convergence of our
proposed algorithm in Fig. 2. We generate one dataset for each noise level and
plot iteration number vs objective. It is clear that the objective converges in less
than 10 iterative times, which shows the sparse weighted K-means algorithm works
effectively.

Performance Comparison with Other Clustering Methods We compare the
performance of our proposed approach, weighted K-means and sparse weighted
K-means with that of some other approaches: standard K-means, sparse K-means,
standard K-medoids and weighted K-medoids (Table 2). We use purity, which
ranges from 0 to 1, to measure the clustering performance. Note that purity
equals 1 if the clustering result agrees perfectly with the true label; and a small
value indicates disagreement. From the table, when the noise level for the noisy
observations increases, sparse weighted K-means outperforms the other clustering



Weighted K-Means Clustering with Observation Weight for Single-Cell. . . 45

−
0.

00
2

0.
00

0
0.

00
2

0.
00

4
σ0 = 1, best weight = 1

G
ap

σ0 = 2, best weight = 0.1
0.

0
0.

1
0.

2
0.

3
0.

4

tuning weight

G
ap

tuning weight

Fig. 1 Simulation setting 1: best weight chosen by the smallest value for which Gap(U) is within
one standard deviation from the largest value of Gap(U). The candidate weight sequence chosen is
1, 0.8, 0.5, 0.2, 0.1, 0.08, 0.05, 0.02, 0.01, 0.005, 0.001. The results for different noise levels are
shown

Table 1 The quantities
reported are the mean and
standard error (given in
parentheses) of the number of
features selected, i.e. features
with non-zero weight in w,
over 50 runs of simulation

Sparse weighted K-means Sparse K-means

σ0 = 1 103.02 (12.896) 102.8 (12.269)

σ0 = 2 100.6 (32.789) 323.18 (370.624)

σ0 = 5 112.9 (42.864) 972.48 (68.234)

σ0 = 20 712.26 (334.293) 1000 (0)

Recall that the true number of cluster-specific features q =
50. The results for simulation setting 1 is shown

methods, and weightedK-means is also robust against noisy observations. The other
methods lead to a low purity performance when noisy observations exist.

Effectiveness of Selecting Cluster-Specific Features Next, we selected the spar-
sity parameter s such that∼50 or∼100 features are selected in sparse K-means and
our proposed sparse weighted K-means algorithm, and compared the performance
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Fig. 2 Simulation setting 1: convergence of the sparse weightedK-means algorithm. One iteration
step includes either updating the clusters C1, C2, C3 or updating w. 0 iteration time corresponds to
the initial objective. The results for different noise levels are shown

Table 2 The quantities reported are the mean and standard error (given in parentheses) of puritya,
over 50 runs of simulation

σ0 = 1 σ0 = 2 σ0 = 5 σ0 = 20

Weighted K-means 0.836 (0.082) 0.767 (0.081) 0.765 (0.065) 0.747 (0.073)

Sparse weighted K-means 0.974 (0.034) 0.924 (0.063) 0.915 (0.081) 0.815 (0.105)

Standard K-means 0.836 (0.082) 0.522 (0.142) 0.376 (0.016) 0.374 (0.015)

Sparse K-means 0.974 (0.034) 0.538 (0.142) 0.376 (0.016) 0.374 (0.015)

Standard K-medoids 0.565 (0.073) 0.484 (0.094) 0.367 (0) 0.367 (0)

Weighted K-medoids 0.565 (0.073) 0.542 (0.075) 0.557 (0.075) 0.542 (0.064)

The results for simulation setting 1 are shown
aPurity [28] is given by 1

n

∑k
q=1 max1≤j≤l

(
n
j
q

)
, where l denotes the number of original class

labels, n the total number of samples and njq the number of samples in the cluster q that belong to
original class j (1 ≤ j ≤ l)
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Table 3 The quantities reported are the mean and standard error (given in parentheses) of the
number of true cluster-specific features selected, over 50 runs of simulation

Simulation Noise level Sparse weighted K-means Sparse K-means

∼50 features selected σ0 = 1 46.72 (1.512) 46.72 (1.565)

σ0 = 2 45.7 (1.689) 37.8 (6.682)

σ0 = 5 44.94 (2.123) 5.66 (6.432)

σ0 = 20 45.16 (1.583) 2.76 (1.697)

∼100 features selected σ0 = 1 49.82 (0.438) 49.8 (0.4949)

σ0 = 2 49.4 (0.881) 43.88 (6.542)

σ0 = 5 49.2 (1.010) 9.44 (9.002)

σ0 = 20 49.4 (0.926) 5.36 (2.768)

Recall that the true number of cluster-specific features q = 50. The results for simulation setting 1
are shown

in selecting the true cluster-specific features (Table 3). The performance of sparse
weighted K-means algorithm is quite stable when the noise level increases and
outperforms sparse K-means algorithm.

3.2 Simulation 2: Dirichlet-Multinomial Distribution

To mimic the data structure in single-cell experiments, we simulated data from the
Dirichlet-multinomial distribution. Note that the Dirichlet-multinomial distribution,
denoted by DM(N,α), has two sets of parameters: the number of trials N and the
concentration parameter vector α. The parameter α is set based on a single-cell
chromatin accessibility (scATAC-Seq) dataset with in silico mixture of three known
cell types, K562, GM12878, and HL-60 [4], so the simulation will naturally capture
the distribution and correlation in real data.

The simulation setup is as follows. We assume that the number of classes K = 3,
the total number of observations n = 100, and we have ni observations for class
i, i = 1, 2, 3. To incorporate as much information as possible and to reduce the
computational time, the top 5000 regulatory regions ranked by total read counts
over all the cells in the scATAC-Seq dataset are selected. So the total number of
features p = 5000. Assuming that cells of the same type are generated from the
same multinomial distribution, the multinomial parameter p(i) is calculated using
the maximum likelihood estimation from the scATAC-Seq dataset. The Dirichlet-
multinomial parameter vector α(i) is chosen as 600p(i), and the number of trials
N = 1800. We first generate Xj ∼DM(N,αj ) independently, where αj =
α(1)1{1≤j≤n1} + α(2)1{n1+1≤j≤n1+n2} + α(3)1{n1+n2+1≤j≤n}. Then to generate noisy
observations, we randomly pick n0 = 20 observations and set 90% of their non-zero
features to be 0 for each observation picked. Intuitively, this process corresponds to
the fact that the sequencing depth, or the count sum, in the noisy cells is far smaller
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Fig. 3 The best weight is chosen by the smallest value for which Gap(U) is within one
standard deviation from the largest value of Gap(U). The candidate weights (x-axis) for the
noisy observations are 1, 0.8, 0.5, 0.2, 0.1, 0.08, 0.05, 0.02, 0.01, 0.005, 0.001. The results for
simulation setting 2 is shown

than that in the other cells. Note that when choosing the weight, we assume that
the labels for noisy observations are known, which is reasonable as the sequencing
depth in single-cell experiments is known.

In this setup, we set n1:n2:n3 to be three different proportions: 45:40:15,
50:40:10, 50:45:5. As for assigning the weight in the weighted K-means algorithm,
we perform data preprocessing on the generated data first (details for data prepro-
cessing are presented in the Supplementary Notes), and then choose a descending
sequence of candidate weights for the noisy observations, and set the weights for the
other observations to be 1. The results for tuning the weights are shown in Fig. 3.

We compare the clustering purity among different methods: K-means, weighted
K-means, K-medoids, weighted K-medoids, SC3 [9], CIDR [10] and SIMLR [11].
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Table 4 Mean and standard error (given in parentheses) of purity over 50 runs of simulations,
simulation setting 2

n1:n2:n3 K-means
Weighted
K-means K-medoids

Weighted
K-medoids SC3 CIDR SIMLR

45:40:15 0.793 0.968 0.819 0.830 0.853 0.709 0.860

(0.027) (0.015) (0.040) (0.039) (0.046) (0.124) (0.048)

50:40:10 0.829 0.975 0.839 0.840 0.836 0.723 0.837

(0.014) (0.012) (0.030) (0.030) (0.020) (0.152) (0.026)

50:45:5 0.873 0.972 0.888 0.883 0.874 0.783 0.873

(0.013) (0.032) (0.020) (0.020) (0.015) (0.155) (0.013)

For K-means, weighted K-means, K-medoids, and weighted K-medoids, we first
do data preprocessing and then perform clustering. For SC3, CIDR and SIMLR,
we use the original data, as these methods are designed for count data. The results
are shown in Table 4. We can see that under all the settings of different proportions
of cells, our proposed weighted K-means algorithm has the best clustering result.
Note that the weight in the weighted K-means and weighted K-medoids algorithm
is chosen based on Fig. 3. However, it is worth mentioning that these weighted
algorithms have stable clustering results as long as the weights for noisy cells are
less than some threshold. Details for the stability are presented in the Supplementary
Notes. Moreover, the weighted K-medoids algorithm tends to be more stable when
the weight for noisy cell changes, while the clustering result of weighted K-means
tends to vary when the weight changes, indicating the necessity of a good tuning
scheme for the weight. Therefore, compared with weighted K-medoids, weighted
K-means can suffer more from bad weighting scheme. Fortunately, we have a data
adaptive tuning scheme to tune the weights for the observations.

3.3 Summary

To summarize, we show a schematic plot (Fig. 4) to illustrate the performance of K-
means, weighted K-means, K-medoids and weighted K-medoids under different
settings.

When the observations are evenly distributed and the number of observations is
moderately large (Fig. 4a), all four algorithms should be able to find good centers
and should perform similarly.

When observations are more spread out from the ideal cluster center (Fig. 4b), the
medoid-based algorithms are less likely to find good representative centers, while by
averaging over the observations,K-means algorithms can find better cluster centers.
This corresponds to the Dirichlet-multinomial simulation setting with the absence
of noisy observations.

When noise observations, i.e. cells with low sequencing depth, are present in the
dataset (Fig. 4c), K-means is less robust, and the estimated center can deviate from
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Fig. 4 Schematic plots comparing different methods. For illustration, we assume that the true
cluster labels are known (red and blue), and we compare the cluster centers estimated by different
algorithms. (a) When observations are evenly distributed and the number of observations per
cluster is moderately large, we expect that the four algorithms perform similarly: K-means ≈
weightedK-means≈K-medoids≈weightedK-medoids. (b) When observations are more spread
out from the center, representing higher noise/signal ratio for all the observations, we expect that
the performance of K-means ≈ weighted K-means > K-medoids ≈ weighted K-medoids. The
medoid-based algorithm may not find a good observation for the cluster center. (c) When there
are noisy observations, representing cells with low sequencing depth, the performance of weighted
K-means ≈ weighted K-medoids ≥ K-medoids > K-means. Note that the K-means algorithm is
sensitive to the noisy data points. (d) When there is a rare cell type,K-means≈weightedK-means
> K-medoids ≈ weighted K-medoids. The medoid-based algorithms are less likely to choose a
good representative observation within the rare population for the cluster center. (e) When there are
both cells with low sequencing depth and a rare cell type, the performance of weighted K-means
> weighted K-medoids > K-medoids > K-means. Weighted K-means has the best performance,
and weighted K-medoids is slightly better than K-medoids, while K-means performs the worst
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the ideal cluster center, while weighted K-means alleviates the deviation by down
weighting the noisy observations. The medoid-based algorithms are also robust
since the cluster centers are representative observations and not the average.

When there is a rare cell type (Fig. 4d), the medoid-based algorithms are less
likely to find a good representative center for the rare cell type. K-means and
weighted K-means can find a better center for the rare cell type, via averaging over
the observations, which reduces the variance.

When there are both cells with low sequencing depth and a rare cell type (Fig. 4e),
weighted K-means will outperform weighted K-medoids as it can find a better
cluster center for the rare cell type. Weighted K-means will also outperform K-
means as it is more robust to noisy observations.

We have proposed a data adaptive weighting scheme for weighted K-means
algorithm. When the weighting scheme is able to characterize the noisy observations
well, weighted K-means should outperform weighted K-medoids in principle.
However, there are some other concerns include the following:

1. Implementation. The medoid-based methods are more flexible as we can use any
dissimilarity metric. For the mean-based methods, we can transform the data first
(as we did) and then use Euclidean distance.

2. Computation. The medoid-based methods can be faster when the number of
observations is not large. The dissimilarity metric is pre-computed, so we only
need to operate on the n × n dissimilarity matrix. For the mean-based methods,
we need to operate on the n× p data matrix, which is large when p >> n.

3. Robustness. Since medoid-based methods use less information of the data to
calculate the cluster center, they can be more robust to noisy observations
and misspecified weighting scheme, for example, incorrect labels for the noisy
observations. For single-cell genomic data, the noise level is usually determined
by the known sequencing depth.

4 Application to Single-Cell Chromatin Accessibility Data

Eukaryotic genomes are hierarchically packaged into chromatin, and the nature
of this packaging plays a central role in gene regulation [29]. ATAC-seq maps
transposase-accessible chromatin regions, and provides information for understand-
ing this epigenetic structure of chromatin packaging and for understanding gene
regulation [30]. Single-cell chromatin accessibility (scATAC-Seq) maps chromatin
accessibility at single-cell resolution and provides insight on the cell-to-cell vari-
ation of gene regulation [4]. The cell types in scATAC-Seq datasets are usually
not known in priori and need to be inferred from the data: clustering methods are
essential for this goal.



52 W. Zhang et al.

Next we applied our proposed approach to a scATAC-Seq dataset. The dataset
includes in silico mixture of three known cell types, K562, GM12878, and HL-
60 [4]. We applied clustering methods to this dataset, and use the true cell type
labels to evaluate the methods. The raw data matrix for this dataset is n× p, where
n = 1,131 cells is the number of observations, and p = 68,069 genomic regions
is the number of features. The entries in this data matrix represent the read counts
within each genomic region. A non-zero count suggests that the genomic region
may be accessible. Some features in the dataset do not carry much information
in separating the cell types: the majority of the cells have zero counts in those
features, and only very few cells have non-zero counts. In the clustering algorithm,
we removed the features with excessive zeros and selected the top 5000 features by
sum of read counts over all the cells. Details for data preprocessing are presented in
the Supplementary Notes.

In our previously proposed method based on weighted K-medoids algorithm
[16], we implemented the following weighting scheme for cell i:

ui = 1

1+ exp{−(hi − c)/(cλ)} ,

where hi denotes a measure of relative sequencing depth for cell i, c is chosen to be
the median of hi and λ is the tuning parameter. When λ is large, the weight ui tends
to be flat across cells with different sequencing depths. We first tune λ based on
the method proposed in Sect. 2.3. By decreasing λ, we create a sequence of weight
vectors, U(λ=10), . . . , U(λ = 0.005). Based on Fig. 5, the best λ is 0.1. It is a
coincidence that the tuned λ is the same as the default λ in our previous method.

Next, using the tuned weight U, we compared the performance of weighted
K-means with K-means, K-medoids, weighted K-medoids, SC3 [9], CIDR [10]
and SIMLR [11]. Incorporating the weighting scheme in K-means algorithm
significantly improves the clustering performance. The cluster center in K-means
algorithm is calculated as the average of cells assigned to the same cluster. We
reason that down-weighting the noisy cells in the averaging step can lead to a
much better estimate of the cluster center. 17 observations are misclassified by
weighted K-medoids, 5 by SC3, 11 by SIMLR, while only 1 misclassification given
by weighted K-means (Table 5).

Following the discussion in Sect. 3.3, the mean-based methods may work better
to detect rare cell type as averaging reduces variance and can lead to a better
estimate for the cluster center. To confirm this hypothesis, we downsampled HL-
60 cells to synthetically create a rare cell type in the dataset. More specifically, we
picked random subsets of 100 cells from the full dataset, treating HL-60 cells as the
rare population and gradually decrease the proportion of it to 15%, 10% and 5%
respectively.

Our proposed weighted K-means algorithm achieves the best performance in
detecting the rare cell type (HL-60) in all settings (Table 6). We also compared
the clustering purity (Table 7). Note that when the proportion of HL-60 is 15%,
weighted K-means performs as good as SC3. Besides, when the proportion of
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Fig. 5 Best λ is chosen at λ = 0.1 for the scATAC-Seq dataset

Table 5 Clustering results comparing different methods for the scATAC-Seq dataset

K-means Weighted K-means

K562 GM12878 HL60 K562 GM12878 HL60

Cluster 1 375 0 0 Cluster 1 666 0 0

Cluster 2 0 361 85 Cluster 2 0 372 0

Cluster 3 291 12 7 Cluster 3 0 1 92

K-medoids Weighted K-medoids

K562 GM12878 HL60 K562 GM12878 HL60

Cluster 1 657 0 0 Cluster 1 657 0 0

Cluster 2 2 372 7 Cluster 2 2 372 7

Cluster 3 7 1 85 Cluster 3 7 1 85

SC3 CIDR

K562 GM12878 HL60 K562 GM12878 HL60

Cluster 1 666 2 3 Cluster 1 391 244 70

Cluster 2 0 371 0 Cluster 2 263 116 21

Cluster 3 0 0 89 Cluster 3 12 13 1

SIMLR

K562 GM12878 HL60

Cluster 1 666 0 2

Cluster 2 0 373 9

Cluster 3 0 0 81
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Table 6 Comparing different methods for detectinga rare cell population, HL-60

Proportionb K-means
Weighted
K-means K-medoids

Weighted
K-medoids SC3 CIDR SIMLR

45:40:15 0.12 1.00 0.24 0.34 0.92 0.00 0.68

50:40:10 0.00 0.90 0.12 0.28 0.62 0.00 0.42

50:45:5 0.00 0.58 0.00 0.02 0.06 0.00 0.04

The results for 50 runs of subsampling from the scATAC-Seq dataset are shown
aThe criterion that we use for successful detection of rare cell population is as follows. Firstly, the
number of observations of rare pupolation in one cluster, denoted as nrare, should be the majority
within this cluster. Secondly, nrare should be larger than 80% of the total number of observations in
the rare pupolation. We run 50 experiments for each setting, and the proportion of success measures
the ability of detection
bThe first column denotes the proportions of three cell types (K562:GM12878:HL-60)

Table 7 Mean and standard error (given in parentheses) of purity

Proportion K-means
Weighted
K-means K-medoids

Weighted
K-medoids SC3 CIDR SIMLR

45:40:15 0.786 0.958 0.869 0.890 0.978 0.491 0.868

(0.060) (0.036) (0.080) (0.073) (0.034) (0.036) (0.085)

50:40:10 0.831 0.956 0.890 0.911 0.951 0.527 0.866

(0.042) (0.049) (0.071) (0.065) (0.044) (0.029) (0.088)

50:45:5 0.858 0.944 0.937 0.945 0.937 0.539 0.879

(0.045) (0.041) (0.031) (0.018) (0.022) (0.033) (0.071)

The results for 50 runs of subsampling from the scATAC-Seq dataset are shown

HL-60 is 5% (50:45:5), the purities for weighted K-medoids algorithm and SC3
are comparable with weighted K-means, but neither weighted K-medoids nor SC3
algorithm can detect the rare cell type.

Finally, we applied sparse weighted K-means. Sparse weighted K-means mis-
classifies 13 observations (Fig. 6a), the clustering result is slightly worse than
weighted K-means with only 1 misclassification, but is comparable to K-medoids
and weighted K-medoids algorithm (17 misclassified observations respectively in
Table 5). After tuning the sparsity parameter s, all the features have non-zero
weights, which may be due to the fact that we pre-selected the top 5000 features. The
distribution of the weights decays exponentially, where the majority of the features
have weights close to 0 (Fig. 6b). Although the weights for all features are non-zero,
the weights still provide useful information on the importance of the features. We
selected the top 500 features ranked by w (the cutoff is plotted as the red line in
Fig. 6b). It is clear that these top features differentiate the three clusters (Fig. 6c).
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Fig. 6 (a) Clustering table for sparse weighted K-means algorithm on scATAC-Seq data. (b)
Distribution of the feature weights w. (c) Visualization of the top 500 features with high weight (the
threshold is shown as a vertical red line in the histogram. To calculate the relative abundance, we
first normalize each cell by sequencing depth hi , and then normalize by the mean of each feature,
to make the plot more comparable across cells and across features)

5 Conclusion

In this work, we have proposed a weighted K-means clustering algorithm and a
sparse version of this algorithm. Both methods perform well on simulated datasets
with different noise levels and different proportions of the cell types. On a single-cell
chromatin accessibility dataset, through down-weighting cells with low sequencing
depth, the proposed weighted K-means algorithm achieves a higher success rate
of detecting rare cell types and improved clustering purity. The proposed sparse
weighted K-means algorithm can select cluster-specific features.

Though our proposed methods work well on simulated and real data, they are
based on the assumption that labels for noisy observations are known. Given a
dataset without this assumption, it can be hard to select the tuning parameters.
Tuning parameter selection in the unsupervised setting is known to be a difficult
problem, and more work is needed in this area. In addition, weighted K-means
algorithm can suffer more from bad weighting scheme compared with weighted
K-medoids algorithm.

The R package SWKM is available at https://github.com/Van1yu3/SWKM.
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grant 2018/2019 No. 4053360.
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Supplementary Information

Supplementary Notes

The Connection Between Our Proposed Weighted K-Means Method and
Standard K-Means with Data Augmentation Here we would like to show that
our proposed method is the same as replicating some observations and then imple-
menting the standard K-means algorithm. The propositions below are proposed and
proved in one-dimension condition. However, it can be shown that the propositions
also hold in high-dimension condition, and the proof is quite similar.

Proposition 1 Given n distinct points {x1, x2, · · · , xn}, and s duplicate points
x01, x02, · · · , x0s . Assume that K-means algorithm is applied to those (n+ s) data
points with K = 2, and denote by C1, C2 the two cluster multisets. We show that
to minimize the WCSS, all of these s duplicate points should be in the same cluster,
either C1 or C2. That is, if we denote by w the number of duplicate points in C1,
then we have

min
w∈{0,1,··· ,s}WCSS = min

w∈{0,s}WCSS

Proof Define two sets C̃1, C̃2 that satisfy the following:

C̃1 ⊂ C1, C̃2 ⊂ C2, x0 /∈ C̃1 ∪ C̃2, C̃1 ∪ C̃2 = {x1, x2, · · · , xn}

Intuitively, C̃1, C̃2 is extracted from C1, C2 except the duplicate points.
Let n1 = #C̃1, n2 = #C̃2, obviously n1 + n2 = n.

WCSS(w) = 1

n1 + w

∑

i,i′∈C1

(xi − xi′)
2 + 1

n2 + s − w

∑

i,i′∈C2

(xi − xi′)
2

= 1

n1 + w

∑

i,i′∈C̃1

(xi − xi′)
2 + 2w

n1 + w

∑

i∈C̃1

(x0 − xi)
2

+ 1

n2 + s − w

∑

i,i′∈C̃2

(xi − xi′)
2 + 2(s − w)

n2 + s − w

∑

i∈C̃2

(x0 − xi)
2

= 2{
∑

i∈C̃1

x2
i + n1[(x0 − μ1)

2 − μ2
1] −

n2
1

n1 + w
(x0 − μ1)

2

+
∑

i∈C̃2

x2
i + n2[(x0 − μ2)

2 − μ2
2] −

n2
2

n2 + s − w
(x0 − μ2)

2}

where μ1 = 1
n1

∑
i∈C̃1

xi, μ2 = 1
n2

∑
i∈C̃2

xi .
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Define a0 ≡ −n2
1(x0 − μ1)

2, b0 ≡ −n2
2(x0 − μ2)

2. Treat w as a continuous
variable in [0, s], then take derivative of 1

2 WCSS(w):

1

2

dWCSS(w)

dw
=− a0

(n1 + w)2
+ b0

(n2 + s − w)2

=b0(n1 + w)2 − a0(n2 + s − w)2

(n1 + w)2(n2 + s − w)2

= (b0 − a0)w
2 + 2[n1b0 + (n2 + s)a0]w + b0n

2
1 − a0(n2 + s)2

(n1 + w)2(n2 + s − w)2

Let f (w) ≡ (b0−a0)w
2+2[n1b0+ (n2+ s)a0]w+b0n

2
1−a0(n2+ s)2. Discuss

the following conditions:

• If b0 − a0 ≤ 0, as f (w) is a linear or quadratic function, it’s easy to check that
WCSS(w) can either be monotonic, or firstly increase and then decrease in [0, s].

• If b0 − a0 > 0, as the symmetry axis of f (w) is x = n1b0+(n2+s)a0
a0−b0

> s, easy
to check that WCSS(w) can either be monotonic, or firstly increase and then
decrease in [0, s].

Both the conditions conclude that

min
w∈{0,1,··· ,s}WCSS = min

w∈{0,s}WCSS

��
Proposition 2 Given n data points x(1)1 , x

(2)
1 , · · · , x(u1)

1 , x
(1)
2 , x

(2)
2 , · · · , x(u2)

2 , · · · ,
x
(1)
s , x

(2)
s , · · · , x(us)s , where x(1)j = x

(2)
j = · · · = x

(uj )

j for j = 1, 2, · · · , s.
If standard K-means algorithm is applied to the data points (K ≤ s), then the
duplicate points must be in the same cluster.

Proof Using the Proposition 1 above, this can be easily proved by contradiction.
��

Here, u1, u2, · · · , us are positive integers, satisfying
∑

i∈C̃k ui = nk . More
generally, if u1, u2, · · · , us are real numbers representing weights of the distinct
points, the proof above still holds. Hence, a weighted K-means algorithm could be
performed with respect to the distinct points.

Data Preprocessing for Simulated Data in Sect. 3.2 and Single-Cell Chromatin
Accessibility (scATAC-Seq) Data in Sect. 4 Details for data preprocessing are
similar to that in [16]. The scATAC-seq data from [4] is publicly available in the
Gene Expression Omnibus (GEO) under the accession number GSE65360. We
used the Kundaje pipeline (https://github.com/kundajelab/atac_dnase_pipelines) to
process the raw scATAC-seq reads, aligning reads to hg19. we employed MACS2 to
perform peak calling on accessibility data aggregated across all cells [31]. MACS2
generates (1) narrow peaks generally called for transcription factor binding sites

https://github.com/kundajelab/atac_dnase_pipelines
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and (2) broad peaks suitable for detection of functional regulatory elements such as
promoters and enhancers. We utilized both narrow and broad regions, called gapped
peaks, to better classify cell identities. After obtaining the data matrix for the read
counts, we first take rank for each cell. For each cell, we then standardize the rank
matrix to mean 0 and unit standard deviation.

Denote the data matrix as X = (xij ). X̃i, = Xi,∑
j Xij

× median(
∑

j Xij ),

where Xi, is the ith row of X. We also applied another four methods for data
preprocessing, log(X+ 1), X̃, log(X̃+ 1) and z-score. Tables S1, S2, S3 and S4 in
the Supplementary Tables summarize the clustering results for these four methods
respectively. Compared to these four data preprocessing methods, the normalized-
rank preprocessing we employed (Table 5) offers much better performance in terms
of low misclassification rate.

Choosing Number of Clusters K We make use of Gap statistics [27] with
modifications similar to that in [16] to establish the following procedures to select
K . Choice of K for Simulation 2 and scATAC-Seq dataset are presented in Figs. S1
and S2 respectively.

1. Perform the weighted K-means clustering algorithm on the observed
cell×feature data matrix X with tuned weight U, varying the total number
of clusters from 1 to the maximum number of clusters N , K = 1, . . . , N , and
use the weighted K-means optimized objective function in the last iteration as
OK . The objective function is the weighted within-cluster sum of squares defined
in Sect. 2.1 as

∑K
k=1

∑
i∈Ck ui‖xi− μ̂k‖2

2, where ui is the weight for observation

xi , and μ̂k =
∑

i∈Ck uixi∑
i∈Ck ui

.

2. Generate B reference data sets, by performing permutation for each feature
(peak). The permutation shuffles the entries in each column of X. Perform the
weighted K-means clustering algorithm on the B reference data sets, varying the
total number of clusters, and calculate the weighted K-means objective O∗Kb, for
b = 1, . . . , B and K = 1, . . . , N .

3. Compute the estimated gap statistics Gap(K)= 1
B

∑B
b=1 logO∗Kb − logOK ,

and the standard deviation sd(K) =
√

1
B

∑B
b=1(logO∗Kb − l̄)2, where l̄ =

∑B
b=1 logO∗Kb/B. Finally we choose the number of clusters by

K̂ = smallest K s.t. Gap(K) ≥ Gap(K + 1)− sd(K + 1)

Stability of the Weighted K-Means and Weighted K-Medoids Algorithm Under
the setup in Sect. 3.2, we choose a sequence of 11 candidate noisy weights. For each
candidate weight, the weighted K-means and the weighted K-medoids algorithm
are performed over 50 simulations, and the results of clustering purity are presented
in Tables S5 and S6 in the Supplementary Tables. The results indicate that when
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the noisy weight is less than 0.1, the weighted K-means clustering becomes
stable, while the threshold of the noisy weight in the weighted K-medoids is
0.5. Comparing these two tables, we can also draw a conclusion that weighted
K-medoids is more robust against weights, which is reasonable as the original K-
medoids is more robust against noisy observations naturally.

A Simple Alternative to the Weighted K-Means Algorithm: A Two-Step
Approach First apply standard K-means to the less noisy cells (by thresholding
on hi or ui) and calculate the cluster centers; then use the cluster centers to cluster
the noisy cells by the nearest neighbor. This simple approach does not work as
well as weighted K-means, which implies that using the whole sample weight
information is favoured. In particular, when different thresholds are chosen, the
power to detect the rare cell type can be quite variable under different settings
(i.e. different proportions of cell types), making it challenging to choose a good
threshold in practice. The clustering results for this two-step approach under the
same setting of Table 6 is shown in Table S7 in the Supplementary Tables.

Supplementary Figures (Figs. S1 and S2)
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Fig. S1 Choice of K for Simulation 2 under three different proportions. The number of clusters is
chosen based on large gap statistic, considering the standard error. Based on this rule, K is chosen
at 3, 3 and 2 for the three proportions, while the true value of K is 3. When the sample size of the
rare population is small (5%), the rare population may not be detected, hence K̂ = 2 is chosen.
Details for the criteria of choosing K are presented in the Supplementary Notes
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Fig. S2 Choice of K for the
scATAC-Seq dataset. K̂ = 7,
while there are only 3 cell
types. This may due to the
heterogeneity of data, and
since we have prior
knowledge about the dataset,
we keep K = 3 for the
analysis
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Supplementary Tables (Tables S1, S2, S3, S4, S5, S6, and S7)

Table S1 Clustering results using log(X + 1) for the scATAC-Seq dataset

K-means Weighted K-means

K562 GM12878 HL60 K562 GM12878 HL60

Cluster 1 421 221 41 Cluster 1 522 302 60

Cluster 2 227 107 42 Cluster 2 138 28 26

Cluster 3 18 45 9 Cluster 3 6 43 6

K-medoids Weighted K-medoids

K562 GM12878 HL60 K562 GM12878 HL60

Cluster 1 641 330 79 Cluster 1 641 330 80

Cluster 2 24 37 12 Cluster 2 24 37 11

Cluster 3 1 6 1 Cluster 3 1 6 1
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Table S2 Clustering results using X̃ for the scATAC-Seq dataset

K-means Weighted K-means

K562 GM12878 HL60 K562 GM12878 HL60

Cluster 1 649 356 91 Cluster 1 650 356 91

Cluster 2 15 14 1 Cluster 2 14 14 1

Cluster 3 2 3 0 Cluster 3 2 3 0

K-medoids Weighted K-medoids

K562 GM12878 HL60 K562 GM12878 HL60

Cluster 1 646 353 91 Cluster 1 646 353 91

Cluster 2 17 17 1 Cluster 2 18 17 1

Cluster 3 3 3 0 Cluster 3 2 3 0

Table S3 Clustering results using log(X̃ + 1) for the scATAC-Seq dataset

K-means Weighted K-means

K562 GM12878 HL60 K562 GM12878 HL60

Cluster 1 416 0 0 Cluster 1 666 0 0

Cluster 2 0 311 83 Cluster 2 0 372 0

Cluster 3 25 62 9 Cluster 3 0 1 92

K-medoids Weighted K-medoids

K562 GM12878 HL60 K562 GM12878 HL60

Cluster 1 583 0 0 Cluster 1 636 0 3

Cluster 2 14 230 55 Cluster 2 28 373 89

Cluster 3 69 143 37 Cluster 3 2 0 0

Table S4 Clustering results using z-score for the scATAC-Seq dataset

K-means Weighted K-means

K562 GM12878 HL60 K562 GM12878 HL60

Cluster 1 561 290 63 Cluster 1 639 321 81

Cluster 2 104 77 28 Cluster 2 26 47 10

Cluster 3 1 6 1 Cluster 3 1 5 1

K-medoids Weighted K-medoids

K562 GM12878 HL60 K562 GM12878 HL60

Cluster 1 665 365 91 Cluster 1 665 365 91

Cluster 2 1 7 1 Cluster 2 1 7 1

Cluster 3 0 1 0 Cluster 3 0 1 0
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Table S5 Mean and standard
error (given in parentheses) of
purity over 50 runs of
simulation 2 for weighted
K-means under 11 candidate
noisy weights

Noisy weight 45:40:15 50:40:10 50:45:5
1 0.791 (0.028) 0.826 (0.016) 0.869 (0.013)

0.8 0.845 (0.039) 0.828 (0.015) 0.869 (0.013)

0.5 0.949 (0.028) 0.964 (0.046) 0.942 (0.054)

0.2 0.964 (0.016) 0.978 (0.019) 0.972 (0.034)

0.1 0.966 (0.015) 0.980 (0.012) 0.968 (0.039)

0.08 0.966 (0.015) 0.980 (0.012) 0.971 (0.037)

0.05 0.966 (0.015) 0.980 (0.012) 0.963 (0.043)

0.02 0.965 (0.015) 0.979 (0.019) 0.966 (0.041)

0.01 0.965 (0.015) 0.980 (0.012) 0.966 (0.043)

0.005 0.965 (0.015) 0.979 (0.012) 0.962 (0.045)

0.001 0.965 (0.015) 0.979 (0.012) 0.964 (0.044)

Table S6 Mean and standard
error (given in parentheses) of
purity over 50 runs of
simulation 2 for weighted
K-medoids under 11
candidate noisy weights

Noisy weight 45:40:15 50:40:10 50:45:5
1 0.816 (0.033) 0.839 (0.024) 0.882 (0.023)

0.8 0.826 (0.031) 0.839 (0.023) 0.882 (0.023)

0.5 0.820 (0.026) 0.837 (0.022) 0.883 (0.021)

0.2 0.822 (0.027) 0.838 (0.023) 0.882 (0.021)

0.1 0.822 (0.027) 0.838 (0.023) 0.883 (0.022)

0.08 0.822 (0.026) 0.838 (0.023) 0.883 (0.022)

0.05 0.822 (0.026) 0.839 (0.023) 0.882 (0.022)

0.02 0.823 (0.027) 0.839 (0.023) 0.881 (0.021)

0.01 0.823 (0.027) 0.839 (0.023) 0.881 (0.021)

0.005 0.823 (0.027) 0.839 (0.023) 0.882 (0.022)

0.001 0.823 (0.027) 0.839 (0.023) 0.882 (0.022)

Table S7 Ability of detecting rare population, mean and standard error of purity using the two-
stage approach under three cell type proportionsa

Proportion of success Purity

Proportion u > 0.2 u > 0.5 u > 0.8 u > 0.2 u > 0.5 u > 0.8

45:40:15 0.74 0.92 0.96 0.907 0.940 0.920

(0.082) (0.063) (0.066)

50:40:10 0.26 0.66 0.82 0.883 0.926 0.933

(0.060) (0.065) (0.055)

50:45:5 0.00 0.30 0.48 0.906 0.926 0.935

(0.043) (0.041) (0.038)
aUnder the same setting of Table 6



Weighted K-Means Clustering with Observation Weight for Single-Cell. . . 63

References

1. The Human Cell Atlas Participants. (2017). Science forum: The human cell atlas. Elife, 6,
e27041.

2. Rotem, A., Ram, O., Shoresh, N., Sperling, R. A., Goren, A., Weitz, D. A., et al. (2015). Single-
cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nature Biotechnology,
33(11), 1165.

3. Smallwood, S. A., Lee, H. J., Angermueller, C., Krueger, F., Saadeh, H., Peat, J., et al. (2014).
Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nature
Methods, 11(8), 817.

4. Buenrostro, J. D., Wu, B., Litzenburger, U. M., Ruff, D., Gonzales, M. L., Snyder, M. P., et al.
(2015). Single-cell chromatin accessibility reveals principles of regulatory variation. Nature,
523(7561), 486–490.

5. Cusanovich, D. A., Daza, R., Adey, A., Pliner, H. A., Christiansen, L., Gunderson, K. L., et
al. (2015). Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular
indexing. Science, 348(6237), 910–914.

6. Xu, C., & Su, Z. (2015). Identification of cell types from single-cell transcriptomes using a
novel clustering method. Bioinformatics, 31(12), 1974–1980

7. Yau, C. (2016). pcaReduce: Hierarchical clustering of single cell transcriptional profiles. BMC
Bioinformatics, 17(1), 140.

8. Grün, D., Muraro, M. J., Boisset, J. C., Wiebrands, K., Lyubimova, A., Dharmadhikari, G., et
al. (2016). De novo prediction of stem cell identity using single-cell transcriptome data. Cell
Stem Cell, 19(2), 266–277.

9. Kiselev, V. Y., Kirschner, K., Schaub, M. T., Andrews, T., Yiu, A., Chandra, T., et al. (2017).
SC3: Consensus clustering of single-cell RNA-seq data. Nature Methods, 14(5), 483.

10. Lin, P., Troup, M., & Ho, J. W. (2017). CIDR: Ultrafast and accurate clustering through
imputation for single-cell RNA-seq data. Genome Biology, 18(1), 59.

11. Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., & Batzoglou, S. (2017). Visualization and
analysis of single-cell RNA-seq data by kernel-based similarity learning. Nature Methods,
14(4), 414.

12. Jiang, H., Sohn, L. L., Huang, H., & Chen, L. (2018). Single cell clustering based on cell-pair
differentiability correlation and variance analysis. Bioinformatics, 34(21), 3684–3694.

13. Yang, Y., Huh, R., Culpepper, H. W., Lin, Y., Love, M. I., & Li, Y. (2018). SAFE-
clustering: Single-cell aggregated (from Ensemble) clustering for single-cell RNA-seq data.
Bioinformatics, 35(8), 1269–1277.

14. Zhu, L., Lei, J., Devlin, B., Roeder, K. (2019). Semi-soft clustering of single cell data.
Proceedings of the National Academy of Sciences of the United States of America, 116(2),
466–471.

15. Sun, Z., Wang, T., Deng, K., Wang, X. F., Lafyatis, R., Ding, Y., et al. (2017). DIMM-
SC: A dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
Bioinformatics, 34(1), 139–146.

16. Zamanighomi, M., Lin, Z., Daley, T., Chen, X., Duren, Z., Schep, A., et al. (2018). Unsu-
pervised clustering and epigenetic classification of single cells. Nature Communications, 9(1),
2410.

17. Makarenkov, V., & Legendre, P. (2001). Optimal variable weighting for ultrametric and
additive trees and k-means partitioning: Methods and software. Journal of Classification, 18,
245–271.

18. Modha, D. S., & Spangler, W. S. (2003). Feature weighting in k-means clustering. Machine
Learning, 52(3), 217–237.

19. Huang, J. Z., Ng, M. K., Rong, H., & Li, Z. (2005). Automated variable weighting in k-means
type clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 657–68.

20. Jing, L., Ng, M. K., & Huang, J. Z. (2007). An entropy weighting k-means algorithm for
subspace clustering of high-dimensional sparse data. IEEE Transactions on Knowledge and
Data Engineering, 19, 1026–1041.



64 W. Zhang et al.

21. Wu, F. X. (2008). Genetic weighted k-means algorithm for clustering large-scale gene
expression data. BMC Bioinformatics, 9(Suppl. 6), S12.

22. Amorim, R., & Mirkin, B. (2012). Minkowski metric, feature weighting and anomalous cluster
initializing in k-means clustering. Pattern Recognition, 45, 1061–1075.

23. Tseng, G. (2007). Penalized and weighted k-means for clustering with scattered objects and
prior information in high-throughput biological data. Bioinformatics (Oxford, England), 23,
2247–55.

24. Aloise, D., Deshpande, A., Hansen, P., & Popat, P. (2009). NP-hardness of Euclidean sum-of-
squares clustering. Machine Learning, 75,(2), 245–248.

25. Hartigan, J. A., & Wong, M. A. (1979). Algorithm as 136: A k-means clustering algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100–108.

26. Witten, D. M., & Tibshirani, R. (2010). A framework for feature selection in clustering. Journal
of the American Statistical Association, 105(490), 713–726.

27. Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set
via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
63(2), 411–423.

28. Park, H., & Kim, H. (2007). Sparse non-negative matrix factorizations via alternating non-
negativity-constrained least squares for microarray data analysis. Bioinformatics, 23(12),
1495–1502.

29. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., & Greenleaf, W. J. (2013). Trans-
position of native chromatin for fast and sensitive epigenomic profiling of open chromatin,
DNA-binding proteins and nucleosome position. Nature Methods, 10(12), 1213.

30. Buenrostro, J. D., Wu, B., Chang, H. Y., & Greenleaf, W. J. ATAC-seq: A method for assaying
chromatin accessibility genome-wide. Current Protocols in Molecular Biology, 109(1), 21–29.

31. Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., et al. (2008).
Model-based analysis of chip-seq (MACS). Genome Biology, 9(9), R137.



Discrete Multiple Testing in Detecting
Differential Methylation Using
Sequencing Data

Guanshengrui Hao and Nan Lin

Abstract DNA methylation, as one of the most important epigenetic mechanisms,
is critical for deciding cell fate, and hence tightly relevant to understanding disease
processes, such as cancer. We will discuss the multiple testing issue in detect-
ing differential methylation in next generation sequencing studies. The detection
requires comparing DNA methylation levels at millions of genomic loci across
different genomic samples and can be viewed as a large-scale multiple testing
problem. Due to low read counts at individual CpG sites, discreteness in the test
statistics is nonignorable and brings up many intriguing statistical issues on proper
control of false discovery rates (FDRs). Popular FDR control procedures are often
underpowered in methylation sequencing data analysis due to the discreteness. We
will discuss FDR control methods that accommodate such discreteness.

Keywords Multiple testing · Discreteness · False discovery rate · Methylation ·
Next generation sequencing

1 Introduction

1.1 Detecting Differential Methylation in Sequencing Data

DNA methylation typically refers to the methylation of the C-5 position of cytosine
by DNA methyltransferases [23]. The methylation status of cytosines in CpGs
influences protein-DNA interactions, gene expression, and chromatin structure and
stability. It plays a vital role in the regulation of cellular processes, including host
defense against endogenous parasitic sequences, embryonic development, transcrip-
tion, X-chromosome inactivation, and genomic imprinting [6, 24, 26, 28, 31, 48, 52].
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One major task of genomic methylation analysis is the detection of differ-
entially methylated regions (DMRs). DMRs are genomic regions with different
DNA methylation status across different biological conditions. They are regarded
as possible functional regions involved in gene transcriptional regulation. The
different biological conditions can refer to different cells or tissues within the same
individual, same cell or tissue at different times, cells or tissues from different
individuals, or even different alleles in the same cell [39]. The detection of DMRs
can provide valuable insights into many biological fields such as cell differentiation,
cancer development, epigenetic modification and gene regulation [57].

Sequencing-based DNA methylation profiling methods provide an opportunity
to map complete DNA methylomes and set the basis for DMR detection. These
technologies include whole-genome bisulfite sequencing (WGBS or BS-seq; [10,
29, 34]), reduced-representation bisulfite-sequencing (RRBS; [36]), enrichment-
based methods (MeDIP-seq; [35, 53]), and methylation-sensitive restriction enzyme
based methods (MRE-seq; [35]). These methods yield largely concordant results but
differ significantly in the extent of genomic CpG coverage, resolution, quantitative
accuracy, and cost [5, 21].

WGBS is by now the most comprehensive method to detect methylated cytosines
in DNA and often considered as the gold standard in DMR detection. In this method,
genomic DNA is treated with sodium bisulfite to convert cytosines to uracils
before sequencing, providing single-base resolution of methylated cytosines in the
genome [34]. Upon bisulfite treatment, unmethylated cytosines are deaminated
to uracils, which are then converted to thymidines upon sequencing. Meanwhile,
methylated cytosines resist deamination and are read as cytosines. Thus the location
of the methylated cytosines can be determined by comparing treated and untreated
sequences. WGBS data can then be summarized as counts of methylated and
unmethylated reads at any given CpG site. To obtain a complete DNA methylome
to cover each CpG site, this method requires essentially resequencing the entire
genome multiple times for every experiment. As a result, WGBS dataset is mostly
limited to only few individuals per biological condition [58].

Typically, the workflow of DMR detection involves first identifying the dif-
ferentially methylated CpG sites (DMCs), and then grouping neighboring DMCs
into DMRs by some distance criteria [42]. Identification of DMCs involves com-
paring methylation levels based on read counts at each CpG site across different
biological conditions through hypothesis testing. Such a task then requires large-
scale multiple testing (LSMT), where thousands or even millions of hypotheses
are tested simultaneously. LSMT raised the attention of the statistical community
since the 1950s, and has recently gained increased relevance with the rapid devel-
opment of modern technologies and the explosive emergence of massive large-scale
datasets.

Current commonly used approaches for identifying DMCs can be divided into
two categories: count-based hypothesis tests and ratio-based hypothesis tests [42].
Count-based methods [1, 14, 37, 55] take short read count values as input, while
ratio-based methods [20, 25, 46, 56] first convert read counts into methylation
levels, i.e. the ratio of the methylated read counts out of the total read counts at
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a CpG site, and then compare them across different biological conditions. As read
counts at a single CpG site are low, e.g. often below 15, the test statistics are in
nature discretely distributed. However, many of the aforementioned methods have
used asymptotic tests for identifying DMCs and ignored the discreteness in the test
statistic. Consequently, standard multiple testing methods, such as the Benjamini–
Hochberg method [2] and the q-value method [43], are used in current practice
of genomewide DMC identification, which leaves the discreteness unaddressed.
Recently, Dai et al. [11] demonstrated that proper treatment to the discreteness
in the multiple testing step can significantly raise the detection power for DMR
identification. In this chapter, we will thoroughly study current multiple testing
procedures for discrete tests and provide our recommendation for the analysis of
methylation sequencing data.

1.2 Multiple Testing and False Discovery Rate (FDR)

In a standard hypothesis testing problem, the Type-I error (false positive) rate is
controlled and the Type-II error (false negative) rate is minimized to increase large
detection power [30]. Likewise, in a typical LSMT problem, decisions are made
based on two similar criteria:

• Control the Type-I error measurement of the multiple testing decision;
• Meanwhile, detect as many true signals (true positives) as possible.

Among several error measurements of LSMT adopted in the literature, the FDR
first introduced by Benjamini and Hochberg [2], is one of the most widely used in
genome-side studies.

Table 1 presents a summary on the test decision and underlying truth in an LSMT
problem where m hypotheses are tested. First define the false discovery proportion
(FDP) as the proportion of false discoveries (rejections) in total rejections, i.e.

FDP = V

max(R, 1)
, (1)

which measures the accuracy of a one-time decision. For simplicity, we will use
the operator ∨ to refer the operation of taking the maximum between two values,
i.e., R ∨ 1 = max(R, 1). The FDR, as the expected proportion of false rejections

Table 1 Summary of
multiple testing

Decision

Accept null Reject null

Truth

True null U V

True alternative T S

Total m− R R
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among all rejections, is then defined as the expectation of FDP [2]. FDR measures
the accuracy of the LSMT procedure, i.e.

FDR = E[FDP] = E

[
V

R ∨ 1

]

. (2)

Other similar measures include the positive false discovery rate (pFDR; [43]) and
the marginal false discovery rate (mFDR; [15, 47]), respectively, defined as

pFDR = E

(
V

R

∣
∣
∣
∣R > 0

)

, (3)

mFDR = E(V )

E(R)
. (4)

The pFDR and mFDR ofter serve as approximations to the FDR when the number
of tests is large. Genovese and Wasserman [15] show that under mild conditions,
mFDR = FDR + O(m−1/2). Storey [44] show that the pFDR and mFDR are
equivalent when test statistics come from a two-component mixture model of null
and alternative distributions. Analogously, the false non-discovery rate (FNR) is
defined as

FNR = E

(
T

(m− R) ∨ 1

)

. (5)

The positive false non-discovery rate (pFNR) and the marginal false non-discovery
rate (mFNR) is given by

pFNR = E

(
T

m− R

∣
∣
∣
∣R > 0

)

(6)

and

mFNR = E(T )

E(m− R)
, (7)

respectively. We call an LSMT procedure valid if it controls the FDR under a
nominal level α and optimal if it has the smallest FNR among all valid procedures.

1.3 Notations

The following notations will be used throughout the remainder of this chapter,
unless otherwise noted. We consider simultaneously performing m hypothesis tests,
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H1, . . . , Hm at nominal FDR level α. For each i ∈ Nm = {1, . . . , m}, for the
ith test Hi , let Hi0 and Hi1 denote the null hypothesis and alternative hypothesis,
respectively. Let Pi denote the p-value from the ith test as a random variable and
pi as its observed value. Let Fi0 and Fi1 be the p-value’s cumulative distribution
function (cdf) under the null and alternative hypothesis, respectively. For each test, if
the null hypothesis is true, we call it a true null; otherwise, we call it a true non-null.
We then call the proportion of true nulls among all tests being the null proportion
and denote it by π0. In addition, we call π1 = 1− π0 the non-null proportion.

This chapter is organized as follows. Section 2 gives a brief overview of
conventional FDR control procedures. In Sect. 3, we will address the discreteness
issue arising naturally in DMR detection tasks and overview a few existing methods
proposed to handle it. Such an issue could result in underpowered detection results,
yet is often overlooked by conventional FDR control procedures. Simulation studies
evaluating performances of existing methods are included in Sect. 4. Section 5 then
discusses their advantages and limitations.

2 Conventional FDR Control Procedures

The Benjamini-Hochberg (BH) procedure [2] and Storey’s q-value procedure [43]
are the two most popular LSMT FDR control procedures. Many other works can be
conceived as modifications or generalizations of these two. We will briefly describe
the two procedures in this section.

2.1 The BH Step-up Procedure

Suppose p(1), . . . , p(m) are the sorted observed p-values of each test in an ascending
order and H(1), . . . , H(m) are the corresponding hypotheses. The BH step-up
procedure controls the FDR under the nominal level α as follows:

1. let k = max{i : p(i) ≤ (i/m)α},
2. reject all H(i), i ≤ k.

The BH procedure is the first FDR control procedure and provides large power
gains over traditional family-wise error rate (FWER, the probability of at least one
false discovery) control methods as the number of tests increases [17]. It revitalized
research in multiple testing and has inspired other procedures, including the
Benjamini–Liu step-down procedure [3], Sarkar’s generalized step-wise procedure
[41], etc.

Despite its power advantages over FWER control methods, the BH procedure
is in general over-conservative. Assuming all tests are continuous Benjamini and
Yekutieli [4] prove that the BH procedure controls the FDR at a level less than or
equal to π0α, where π0 is the null proportion. Furthermore, it is well known that
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using discrete test statistics can lead to a severe power loss even for a single test
[54]. As a result, direct application of the BH procedure to discrete multiple testing
will result in even more underpowered performance [17, 38].

2.2 Storey’s q-Value Procedure

Storey [43] proposes a Bayesian LSMT framework that estimates the FDR con-
servatively for a given p-value cutoff. This framework assumes the following
two-component model on the p-values,

Pi |Δi ∼ (1−Δi) · F0 +Δi · F1, i ∈ Nm, (8)

where Δi is the indicator function which equals 0 if the ith null hypothesis is a true
null and 1 otherwise, and F0 can be viewed as the average of F0i overall true nulls
and F1 as the average of F1i overall all true non-nulls. Let Δi’s be i.i.d. Bernoulli
random variables with Pr(Δi = 0) = π0 and Pr(Δi = 1) = π1, respectively. When
tests are all continuous, every F0i is Unif(0, 1) and so is F0. Storey [43] then shows
that the pFDR for a given p-value cutoff λ is

pFDR(λ) = π0λ

π0F0(λ)+ π1F1(λ)
. (9)

And the q-value corresponding to the p-value pi is defined as

q(pi) = inf
λ≤pi

{pFDR(λ)}. (10)

The q-value q(pi) can be interpreted as the minimum pFDR level under which
a hypothesis with the p-value of pi is rejected. For a given FDR nominal level
α ∈ (0, 1), Storey’s q-value procedure rejects the ith test if q(pi) ≤ α.

For continuous tests, the p-value’s Unif(0, 1) null distribution leads to F0(λ) =
λ. And it is usually reasonable to assume that F1 is stochastically larger than F0,
hence F1(λ)/λ is decreasing in λ. One can then show that arg min

λ≤pi
q(pi) = pi Storey

[43]. It is then equivalent to reject the ith test if pi ≤ λ∗(α), where

λ∗(α) = sup{λ : pFDR(λ) ≤ α}. (11)

In practice, the null proportion π0 and the cdfs F0 and F1 are usually unknown.
Storey [43] proposes the following conservative estimate of the null proportion,

π̂S0 =
#{i : pi > c}
(1− c) ·m (12)
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with a suggested value of 0.5 for the threshold c. Furthermore, the denominator
of (9), π0F0(λ)+ π1F1(λ), can be estimated by the empirical distriubtion #{i:pi≤λ}

m
.

Therefore the q-values can be estimated as

q̂(pi) = inf
λ≤pi

{p̂FDR(λ)} = π̂S0 · pi ·m
#{j : pj ≤ pi} . (13)

The decision is then made by rejecting all Hi , where q̂(pi) ≤ α.
Other procedures similar to Storey’s q-value procedure with different estimation

methods are also proposed in literature such as Liao et al. [33] and Tang et al. [49].
Storey et al. [45] showed that the BH procedure can be viewed as a special case of

Storey’s q-value procedure. Notice that the BH procedure can be stated as “rejecting
all Hi , where pi ≤ (#{j : pj ≤ pi}/m)α.” In the q-value procedure, if we take
c = 0, Eq. (12) gives π̂S0 = 1, and Eq. (13) then gives the decision rule of the
q-value approach as q̂(pi) = pi ·m

#{j :pj≤pi } ≤ α, which is equivalent to the decision
rule of the BH procedure. Because of this equivalence, the two methods often yield
similar performance when π0 is close to 1.

3 Control the FDR in Testing Multiple Discrete Hypotheses

As introduced in Sect. 1, identifying DMCs involves testing equal methylation levels
at each CpG site across biological groups, where the methylation level is usually
summarized based on counts of methylated (C) and unmethylated reads (N − C),
as illustrated in Table 2.

When there is no replicate, a typical statistical test to discern DMC is Fisher’s
Exact Test (FET; [34]), which is commonly used to examine the significance of
association between two conditions (in this case it examines that of methylation
levels across biological groups). When replicates are available in each biological
group, the FET is criticized for ignoring variation among biological replicates [14].
Current available methods include the t-test approach by Hansen et al. [20] and other
methods based on the beta-binomial model [14, 37, 55]. The beta-binomial model
assumes that, conditional on the methylation proportion at a particular CpG site,
the read counts are binomial distributed, while the methylation proportion itself can
vary across replicates and biological groups, according to a beta distribution [40].
However, these methods all rely on asymptotic theory to develop tests at each CpG
site and the accuracy of the asymptotic approximation can be hard to justify with
limited replicates.

Table 2 Data structure in
identifying DMC for the ith
site

C N − C Total

Group 1 c1i n1i − c1i n1i

Group 2 c2i n2i − c2i n2i
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Besides the limited number of replicates, prevalence of small read counts in
methylation sequencing data, e.g. WGBS data, makes it more urgent to concern
about the accuracy of asymptotic approaches. As read counts in methylation
sequencing data are summarized from reads covering a single CpG site, they tend to
be much smaller than those in other next generation sequencing experiments, such
as RNA-seq where read counts are collected over a much wider region of a gene.

Discreteness arising from small read counts and limited replicates in DMR
detection brings new challenges to the LSMT problems. It has been shown that
ill-conducted FDR control procedures without properly addressing the discreteness
issue led to underpowered performance [17, 38]. To develop better FDR control
procedures for the discrete paradigm, three major approaches can be taken: (1)
modify the step-up sequence in the BH procedure according to the achievable
significance level of a discrete p-value distribution Gilbert [17] and Heyse [22]; (2)
use randomized p-values [11, 19]; (3) propose less upwardly biased estimators of
the proportion π0 of true null hypotheses and use them to induce more powerful
adaptive FDR procedures [9, 32]. Next, we will describe methods under these
categories in more details.

3.1 Modify the Step-Up Sequence

3.1.1 Gilbert’s Method

Consider an LSMT problem consisting m tests, and denote the number of true null
hypotheses by m0. Benjamini and Yekutieli [4] point out that for independent test
statistics, the BH procedure in Sect. 2.1 conducted at significance level α controls
the FDR at exactly (m0/m)α for continuous test statistics, and at level less than
or equal to (m0/m)α for general test statistics. The equality holds for continuous
test statistics because the m p-values Pi’s are uniformly distributed under the null
hypotheses, which implies that Pr(Pi ≤ (k/m)α) = (k/m)α for all i, k ∈ Nm.
Yet for discrete statistics, Pr(Pi ≤ (k/m)α) may be less than (k/m)α. Gilbert [17]
sees the opportunity to improve the performance by filling the gap. We will refer the
method proposed in Gilbert [17] as Gilbert’s method hereafter.

Gilbert’s method consists of two main steps. The first step borrows the idea
from Tarone [50]. Note that for the discrete tests not all significance levels can
be achieved exactly. Let α∗i be the minimum achievable significance level for the
ith test. For each k ∈ Nm, the first step defines a set of indices Rk as all tests
satisfying α∗i < α/k, and denotes m(k) as the number of tests included in Rk . It
then specifies K to be the smallest k that satisfies m(k) ≤ k, with corresponding set
of indices RK and its size m(K). It then moves on to the second step and performs
the BH procedure at level α on the subset of tests RK . That is, sort all the observed
p-values p(1), . . . , p(m(K)) of tests from RK , find the threshold p-value pI , where
I = max{i : p(i) ≤ i/m(K)α}, and reject all tests with p-values pi ≤ pI for all
i ∈ Nm.
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Gilbert’s method improves the performance of the BH procedure by restricting
onto a subset of testsRK when finding the threshold p-value. By doing so all tests in
RK can be legitimately brought into the BH procedure, as the minimum achievable
significance level

α∗i < α/K ≤ α/m(K), (14)

where the last term is used to compare with the smallest observed p-value in the
BH procedure. Besides, by choosing K as the smallest k such that m(k) ≤ k,
it can include as many tests as possible into the subset without violating the
inequality (14).

Gilbert [17] also pointed out that the performance can be further improved since
the BH procedure only controls the FDR at (m0/m)α < α. In particular Gilbert
[17], shows that when Gilbert’s method is carried out at level α, the FDR is bounded
above by

m(K)∑

i=1

m(K)∑

k=1

1

k
ηikωik, (15)

where ηik is the largest achievable significance level that is less than or equal to
(k/m(K))α for each i in RK and each k = 1, . . . , m(K), and {ωik} are weights
satisfying

∑m(K)
k=1 ωik = 1. This bound can be approximated by setting ωik = 1(k =

m(K)), which places all weight on the largest ηik (i.e., ηim(K)) for each i. Under this
approximation, the FDR is bounded by

FDR∗ = 1

m(K)

m(K)∑

i=1

ηim(K), (16)

and the bound FDR∗ may be substantially less than α. Gilbert [17] proposes a grid
search procedure that conducts Gilbert’s method for a grid of α+ ≥ α for which
FDR∗ ≤ α, and keeps the results from the iteration for which FDR∗ is as close as
possible to α without exceeding it.

3.1.2 The BHH Procedure

Instead of restricting the BH procedure onto a proper subset of tests to find the
threshold p-value, Heyse [22] proposes to utilize an average related to the minimal
achievable significant levels of individual p-values and modify the original critical
values of BH procedure, thereby referred to as the BHH procedure. The original
BHH procedure could be reduced to the following easier-to-handle procedure as
stated in [9]. Let F0i denote the cdf of the ith p-value under null, and define
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F̄0(t) = 1

m

m∑

i=1

Fi0(t), t ∈ [0, 1]. (17)

Then the critical values λk can be calculated by inverting F̄0 at the αk/m for all
k ∈ Nm

λk = F̄−1
0 (αk/m). (18)

Take the threshold p-value λ∗ = λk∗ , where k∗ = max{k ∈ Nm : p(k) ≤ λk}. With
the threshold p-value identified, the procedure can thus reject all tests with p-values
smaller or equal to λ∗. We refer to this method as the Benjamini-Hochberg-Heyse
(BHH) procedure due to its close relationship with the BH procedure.

The BHH method reduces to the standard BH procedure if there is no discreteness
issue, because the Fi0’s are then Unif(0, 1). The BH procedure essentially compares
ordered p-values with critical values defined by inverting the CDF of Unif(0, 1)
and then evaluating at αk/m, k ∈ Nm. With the commonly assumed condition that
Fi0(t) ≤ t , for all t ∈ [0, 1] and i ∈ Nm, the BHH method also has F̄0(t) ≤ t , for all
t ∈ [0, 1] and i ∈ Nm. Thus the smaller the F̄0 values, the larger the critical values,
which yields more rejections than the BH procedure.

3.1.3 The HSU and AHSU Procedure

Although the BHH procedure tends to be more powerful than the BH procedure for
discrete tests Döhler et al. [12], point out that the BHH procedure is not correctly
calibrated for a rigorous FDR control and provide concrete counterexample. Döhler
et al. [12] propose a heterogeneous step-up (HSU) procedure, which corrects the
BHH procedure. Döhler et al. [12] also introduce an adaptive version of HSU
(AHSU) procedure, which further improves its performance.

To start with Döhler et al. [12], assume that {Pi, i ∈ I0} consists of independent
random variables and is independent of {Pi, i ∈ I1}, where I0 and I1 are the sets
of true null hypotheses and true non-null hypotheses, respectively. Let Ai be the
support of Pi . In our discrete context Ai is some finite set. Let A = ∪mi=1Ai be
the overall p-value support. The authors then define the corrected version of critical
values

λm = max

{

t ∈ A : 1

m

m∑

i=1

Fi0(t)

1− Fi0(t)
≤ α

}

, (19)

λk = max

{

t ∈ A : t ≤ λm,
1

m

m∑

i=1

Fi0(t)

1− Fi0(λm)
≤ αk/m

}

, k ∈ Nm−1,(20)

corresponding to the ones defined in BHH procedure as in (18). The correction term
in the critical values (20) lies in the additional denominator 1 − Fi0(λm). Similar
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to the decision rule of the BHH procedure, the HSU procedure takes the threshold
p-value λ∗ = λk∗ , where k∗ = max{k ∈ Nm : p(k) ≤ λk}, and reject all tests with
p-values smaller than or equal to λ∗.

One consequence of the correction is that the HSU procedure can sometimes be
more conservative than the BH procedure. To improve its performance, the authors
introduce the adaptive version, the AHSU procedure. The critical value λm is defined
the same way as in (19), while for k ∈ Nm−1, the critical values are defined as

λk = max

{

t ∈ A : t ≤ λm,

(
F(t)

1− F(λm)

)

(1)
+ · · · +

(
F(t)

1− F(λm)

)

(m−k+1)
≤ αk

}

,

(21)

where each
(

F(t)
1−F(λm)

)

(i)
denotes the ith largest element of the range of values

{
F(t)

1−F(λm) , i ∈ Nm

}
. The decision rule is the same as that in the HSU procedure.

Notice that the critical values of AHSU is clearly larger than or equal to those of its
non-adaptive counterparts in HSU, which indicates that AHSU mostly yields more
rejections.

Besides the HSU and AHSU procedures Döhler et al. [12], also analogously
propose the heterogeneous step-down (HSD) procedure and its adaptive version
AHSD. Readers may refer to the original reference for details. Another major
contribution of [12] is that it provides the unified FDR bounds for general step-
up and step-down FDR control procedures under the assumption of independence
between p-values. The authors use the bounds to show that HSU, AHSU, HSD,
AHSD procedures all control the FDR at level α in the independent setup.

3.2 Use Randomized Tests

3.2.1 Habiger’s Method

To reduce the conservativeness caused by the discrete raw p-values Habiger [18],
suggests utilizing the randomized p-values instead. Let us start with the single
discrete test scenario. Tocher [51] shows that a single discrete test may not be able
to achieve an exact significance level for that its raw p-value is not continuously
distributed. He further suggests using an efficient randomized test strategy as a
remedy. Specifically, consider a right-tailed test with discrete test statistic T , whose
observed value is denoted by t . Let P denote the raw p-value of this test, and let the
observed value be p = P(t) = Pr0(T ≥ t) calculated under the null distribution of
T . When considering the sampling variation, the p-value is then a random variable.
Since T has a discrete support, the support of P is also discrete. Thus the test can
not obtain certain significance α exactly. This difficulty can be solved by introducing
randomized tests. Given observed test statistics t , the randomized p-value is defined
as P̃ (t) = Pr0(T > t) + U · Pr0(T = t) for U ∼ Unif(0, 1) and independent with
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T . The randomizer U can be interpreted as a need for an extra Bernoulli experiment
with the probability of rejection (α − Pr0(T > t))/Pr0(T = t) at T = t . Given p,
let p− = Pr(T > t) be the largest possible value less than p in the support of the
raw p-value [16], then

P̃ |P = p ∼ Unif(p−, p). (22)

Marginally, when integrating out P , P̃ follows the Unif(0, 1) distribution under the
null hypothesis, and the exact level-α test can be achieved.

To generalize the idea of randomized tests to LSMT, consider testing m

hypotheses with discrete test statistics, and let P1, . . . , Pm be their corresponding
raw p-values and P̃1, . . . , P̃m be their randomized p-values. Assuming that uncon-
ditionally, P̃i , i ∈ Nm, independently follow the two-component mixture model,

P̃i |Δi ∼ (1−Δi) · Unif(0, 1)+Δi · F1, with F1 = m−1
m∑

i=1

F1i , (23)

where Δi is the indicator function that equals 0 if the ith null hypothesis is true (true
null) and equals 1 if it is false (true non-null), and F1i is the alternative distribution
of P̃i . Under the mixture model (23), following Storey [43] similar as in (9), the
pFDR corresponding to a threshold λ on the randomized p-values is

pFDR(λ) = π0λ

π0F0(λ)+ π1F1(λ)
. (24)

Given a nominal FDR level α ∈ (0, 1) Habiger [18], defines

λ∗(α) = sup
{
λ : pFDR∞(λ) ≤ α

}
, (25)

and suggests rejecting the ith tests if P̃i ≤ λ∗(α). We will refer this method as
Habiger’s method hereafter and denote λ∗(α) as λ∗ with no confusion. The conser-
vativeness of the Habiger’s method follows as a corollary of Theorem 3 in [45].

3.2.2 MCF-Based Procedure

Although enjoying nice theoretical properties, Habiger’s method is likely to be
undesirable in practice due to its instability in terms of the variance of its FDP and
true discovery proportion [7, 9], caused by the usage of randomized tests. In order to
resolve this Dai et al. [11], consider making decisions on the expected results instead
of the random experiment, and aligning the proportion of rejections according to the
expected proportion from Habiger’s method to keep its advantage.

First let us consider the marginal critical function (MCF) of a single randomized
test [27] defined as follows.
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Definition 1 Suppose that p is the observed p-value from a discrete test and p− is
the largest possible value less than p in the support of p-value as before. If no such
p− exists, let it be 0. For a given threshold λ ∈ (0, 1), the MCF of a randomized
test is defined as

r(p, λ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if p < λ

λ− p−

p − p−
, if p− < λ ≤ p,

0, if λ ≤ p−.

Following the two-component model (23), the conditional distribution of P̃ in (22)
leads to r(pi, λ∗) = Pr(P̃i < λ∗|pi) = E(Xi), i ∈ Nm, where Xi = 1{P̃i ≤ λ∗|pi}.
For simplicity, the authors use ri to refer to r(pi, λ∗) conditional on pi . Habiger’s
method rejects the ith test if Xi = 1, and the MCF ri represents the conditional
probability being rejected by Habiger’s method. Therefore, the tests with larger
MCF values are more likely to be true non-null and should be rejected. To avoid
the random decisions in Habiger’s method caused by the random variable Xi’s, the
authors make decisions based on the expected value of each Xi , E(Xi |pi) = ri ,
which is fixed given the observed pi .

To ensure the FDR is controlled exactly under the nominal level Dai et al.
[11], make the same proportion of rejections as in Habiger’s method. Specifically,
following the two-component model (23), given threshold λ∗ corresponding to the
nominal level α, the expected proportion of rejections by Habiger’s method is

μ∗ = 1

m

m∑

i=1

Pr(P̃i < λ∗) = π0λ
∗ + π1F1(λ

∗). (26)

The decision rule is to reject the i-th test if ri > Q(1−μ∗), where Q(1−μ∗) is the
(1− μ∗)-th quantile of the pooled MCF’s {r1, . . . , rm}.

3.3 Use a Less Upwardly Biased Estimator of π0

The third approach aims at proposing a less conservative estimator of π0. Let us
consider Storey’s π0 estimator in (12). Its expected bias E(π̂S0 − π0) is the sum of

1
m(1−c) and

b0 = 1

m(1− c)

∑

i∈I0

[c − F0i (c)], (27)

b1 = 1

m(1− c)

∑

i∈I1

[1− F1i (c)], (28)
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where I0 is the set of true null hypotheses and I1 is the set of true non-nulls; F0i
and Fi1 are the CDFs of the p-value Pi when the ith test is a true null and true non-
null, respectively. The bias b0 is associated with null p-values, and is zero when the
null p-values are continuous. However, b0 is usually positive when p-values have
discrete distributions with different supports. On the other hand, the bias associated
with the alternative p-values, b1, is always positive regardless of whether the p-
value is continuously distributed or not [9]. Due to positive of b0 and b1, Storey’s
estimator of π0 tends to be upwardly biased, which leads the associated FDR control
procedure conservative. Thus reducing the bias in estimating π0 in general helps
to improve the detection power. While b1 usually cannot be reduced unless more
information is available, most of the time b0 could be reduced by choosing the
tuning parameter c carefully when the p-values have discrete distributions.

3.3.1 The aBH and aBHH Procedure

As explained at the end of Sect. 2.2, the BH procedure can be viewed as a special
case of the q-value method using an estimate of π̂0 = 1. But this overestimate of π0
also results in conservativeness in the BH procedure.

In testing multiple discrete hypotheses Chen et al. [9], proposed using a
refined estimator of π0 that accommodates the discreteness in the support of p-
values. Combining this improved estimator with the BH and BHH method, they
proposed two adaptive FDR control procedures called the aBH and aBHH methods,
respectively.

Let Fi denote the CDF of the p-value Pi of the ith test. The authors make two
basic assumptions:

• Each Fi has a non-empty support Si = {t ∈ R : Fi(t)− Fi(t
−) > 0};

• Under null, the p-value Pi stochastically dominates Unif(0, 1), i.e. Fi0(t) ≤
t for all t ∈ [0, 1].

Let ti = inf{t : t ∈ Si} for each i ∈ Nm, and let γ = max{ti : i ∈ Nm}. Pick a
sequence of n increasing, equally spaced “guiding values” {τj }nj=1 such that τ0 ≤
τ1 ≤ . . . ≤ τn < 1, for which τ0 = max{ti : ti < 1} if γ = 1, or τ0 = γ if γ < 1.
Further consider the set of indices C = {i ∈ Nm : ti = 1}, and for each i ∈ Nm \ C
and j ∈ Nn, set λij = sup{λ ∈ Si : λ ≤ τj }. Chen et al. [9] define a “trial estimator”
for each j ∈ Nn,

β(τj ) = 1

(1− τj )m
+ 1

m

∑

i∈Nm\C

1{Pi > λij }
1− λij

+ 1

m
|C|, (29)

where |C| is the cardinality of the setC. After truncating β(τj ) at 1 when it is greater
than 1, it then delivers the estimator of π0 as

π̂G0 = 1

n

n∑

j=1

β(τj ). (30)
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It is clear that for each j ∈ Nn, the expected bias for the trial estimator β(τj ) is

δj = E(β(τj )− π0) = 1

(1− τj )m
+ 1

m

∑

i∈I1\C

1− F1i (λij )

1− λij
, (31)

and therefore the expected bias of πG0 is δ = 1
n

∑n
j=1 δj . The authors prove that

for each j ∈ Nn, δj ≥ 0. Therefore δ ≥ 0 and π̂G0 is upwardly biased to π0. It is
undetermined which estimator, π̂S0 or π̂G0 , is less conservative without information
on the cdf’s Fi of the alternative p-values.

But Chen et al. [9] prove that the induced BH procedure at the new nominal
FDR level α/π̂G0 is conservative. An induced BHH procedure is also proposed by
applying the BHH procedure in Sect. 3.1.2 at the FDR level α/π̂G0 analogously. The
authors show by simulation studies that the induced BHH procedure yields good
results, but provide no theoretical guarantee for conservativeness. We will refer to
the BH procedure and BHH procedure induced by π̂G0 as the aBH (adaptive BH)
procedure and aBHH (adaptive BHH) procedure hereafter.

Based on the estimator (30) of π0 Chen et al. [7], further propose a weighted
FDR procedure with a grouping algorithm. Chen et al. [7] first define a metric

d(F,G) = η(SFΔSG)+ ‖F −G‖∞, (32)

where F and G are two cdfs with finitely many discontinuities, with SF and SG
being their support, respectively; η is the counting measure and Δ is the symmetric
difference operator between two sets; ‖·‖∞ is the supremum norm for functions.
The procedure first group the null cdfs {Fi0}mi=1 using the metric d into K groups
Gk , k = 1, . . . , K . Then for each k, it estimates the null proportion of Gk , πk0, as
π̂Gk0 using (30), and therefore estimates the overall null proportion π0 as

π̂∗0 = m−1
K∑

k=1

π̂k0|Gk|, (33)

where |A| is the cardinality of set A. Next, it sets the weight for group Gk as

wk = π̂k0(1− π̂k0)
−11{π̂k0 �= 1} +∞ · 1{π̂k0 = 1}, (34)

and weighs the p-value pi , i ∈ Gk into p̃i = wkpi . And finally, for a given FDR
level α, it rejects the ith null hypothesis whenever p̃i ≤ tα , where the rejection
threshold is

tα = 1{π̂∗0 < 1} sup
{
t ≥ 0 : F̃DR(t) ≤ α

}
(35)

and



80 G. Hao and N. Lin

F̃DR(t) = min

{

1,
(1− π̂∗0 )t

m−1 max{R(t), 1}
}

, (36)

and R(t) = ∑m
i=1 1{p̃i < t}. The intuition behind the grouping algorithm is that

similar p-value distributions could represent statistical evidence of similar strength
against the null hypothesis, as explained in [7]. However, this algorithm is time
consuming when a large number of tests are tested for that it needs to evaluate
pairwise distances for all the tests. We will refer this procedure as the grouping
algorithm hereafter.

3.3.2 Liang’s Discrete Right-Boundary Procedure

Liang [32] considers a special case where all p-values across m discrete tests share
the identical discrete support S = {t1, . . . , ts , ts+1}, with 0 < t1 < · · · < ts <

ts+1 ≡ 1, and the true null distributions satisfy that F0i (t) = t only at t ∈ S. Such a
scenario often arises when simultaneously testing many mean differences between
two groups using permutation tests. Without loss of generality, suppose large values
of test statistics provide evidence against the null hypothesis, then the p-value is
p = 1

B

∑B
i=1 1{T i ≥ T ∗}, where B is the number of all possible permutations of

group labels, T i is the test statistic computed for the ith permutation, and T ∗ is
the observed test statistic. The permutation p-values computed in this way clearly
satisfy the assumption and the support is thus S = { 1

B
, 2
B
, . . . , B−1

B
, 1}.

Liang’s method is based on the framework of Storey et al. [45], but uses a
different estimator of π0. Storey et al. [45] estimate π0 using a constant value for
the tuning parameter c (0.5 by default) in (12), whereas Liang [32] proposes an
adaptive procedure that chooses c according to the distribution of the p-values. Let
C = {c1, . . . , cn} be a candidate set for c of size n such that C is an ordered positive
subset of L = {t0 = 0, t1, . . . , ts}. Then the value of c is chosen as cI where
I = min{n,min{1 ≤ i ≤ n − 1 : π̂0(ci) ≥ π̂0(ci−1}} with π̂L0 (ci) = 1+#{p>ci }

m(1−ci )
following Storey’s π0 estimator except the value of tuning parameter ci .

We can consider this procedure from another perspective. The set C divides the
interval (0, 1] into n + 1 bins such that the ith bin is (ci−1, ci] for i ∈ Nn+1.
Let bi = #{p : p ∈ (ci−1, ci]} be the number of p-values in the ith bin, i.e.
the ith bin count. If the spacings between ci’s are equal, then the procedure is
equivalent to selecting the right boundary of the first bin whose bin count is no
larger than the average of the bin counts to its right. Therefore, we would refer
this procedure as Liang’s discrete right-boundary procedure, or Liang’s method for
short.

The intuition behind Liang’s method is to expand the range of p-values used to
estimate π0 as large as possible. For continuous tests, Storey’s method estimates the
null proportion π0 relying on the intuition that almost all large p-values are from
true nulls. Using tuning parameter c = 0.5, Storey’s method essentially assumes p-
values from the right half (those larger than 0.5) are all from true nulls. Then based
on the two-component model, the null proportion π0, as the mixing proportion of the



Discrete Multiple Testing in Detecting Differential Methylation Using Sequencing Data 81

U(0, 1) component, can be easily estimated from the empirical distribution of the
large p-values. For the discrete testing scenario considered in this section, the null
distributions of p-values are no longer all U(0, 1) but different discrete distributions
on the same support S. Although the same idea can be applied, it requires individual
adjustment on ci for each test to precisely estimate π0.

Liang’s method involves a candidate set C , which needs to be specified
beforehand. Liang [32] recommends to start from 11 equally-spaced bins with
dividers being {0.05, 0.1, . . . , 0.45, 0.5}, and then let C be the set of unique nonzero
elements in L that are closest to each of the dividers. In this setup, the last divider
only goes up to 0.5 to ensure that roughly at least half of the true null p-values are
utilized to estimate π0.

3.4 Software Availability

The BH procedure, BHH method, aBH method, aBHH method, grouping algorithm
and Habiger’s method are implemented in the package fdrDiscreteNull [8], while
the HSU and AHSU methods are implemented in the package DiscreteFDR [13].
For the purpose of boosting computational speed as well as avoiding rounding
errors, we extract the core code from the packages, slightly modify and regroup
together. The rest of the aforementioned methods are also implemented. All source
code is put in a public GitHub repository with demos. Please see https://github.com/
ghao89/gary_research_projects for details.

4 Simulation Study

In this section, we compare the performance of the aforementioned methods through
simulation under different scenarios.1 Let j = 1, 2 denote the two groups under
comparison. Consider testing m = 10,000 hypotheses between the two groups.
Each hypothesis i is to discern if the success probabilities qji between two groups
are the same. Such success probabilities resemble the methylation levels in real
DMR detection problems. We set the null proportion at three different levels (π0 =
0.3, 0.6 or 0.9), and evaluate the performance of each method under different signal
(true non-null) abundance. Let L denote the number of samples in each group. We
set L to be either 2 or 5, which reflects the fact that the number of replicates is often
limited in real DMR detection problems. We conduct a FET for each test i. The

1We only include the aBHH method out of the aBH and the aBHH methods, and the AHSU method
out of the HSU and the AHSU methods, as those two have been shown yielding better performance
than their non-adaptive counterparts in their original references. Besides, due to high computational
cost, we do not include the grouping algorithm in our simulation study.

https://github.com/ghao89/gary_research_projects
https://github.com/ghao89/gary_research_projects
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Table 3 Contingency table
for a FET

C N − C Total

Binomial (n1i , q1i ) c1i n1i − c1i n1i

Binomial (n2i , q2i ) c2i n2i − c2i n2i

FET is built on a 2× 2 contingency table, which consists of the counts (C,N − C)

from two Binomial distributions, Binomial(n1i , q1i ) and Binomial(n2i , q2i ). Table 3
shows the contingency table.

For simplicity, we condense the counts within each group for each test.2 The data
are generated as follows:

1. Randomly choose π0 · m tests (true nulls), and for each test i from this set,
generate the common success probability q1i = q2i from Unif(0, 1).

2. For each test i from the other (1 − π0) · m tests, generate q1i = 0.5μi , q2i =
q1i + δi , where μi ∼ Unif(0, 1) and δi ∼ Unif(0.2, 0.5).

3. For each replicate l ∈ NL of each test i ∈ Nm in each group j = 1, 2,
generate the number of trials njil ∼ Poisson(20). Then draw the count cjil from
Binomial(njil, qji).

4. For each test i, condense the counts as cji = ∑L
l=1 cjil and nji = ∑L

l=1 njil ,
j = 1, 2 to prepare the contingency table.

With the data generated, we can then apply FET to test H0i : q1i = q2i v.s.
H1i : q1i �= q2i , for each i ∈ Nm, and control the FDR using each method discussed
in Sect. 3, with the exception being Liang’s method. Liang’s method assumes that
all m tests share the identical discrete support. To meet its assumption, we use
a permutation test instead, as suggested in [32], and define a test statistic T =
1
L

∣
∣
∣
∑L

l=1
c1il
n1il
−∑L

l=1
c2il
n2il

∣
∣
∣. The p-values are calculated based on the permutation

tests and Liang’s method can thus be applied to deliver the estimator π̂L0 of π0. The
rejections are made using Storey’s method [45] by substituting π̂S0 with π̂L0 . Note
that the performance of Liang’s method depends on which test statistic T is used.
We have followed the example in the original reference [32] by obtaining T as the
absolute group mean difference.

For each combination of π0 and L, we run 500 Monte Carlo simulations
to investigate the average performance of each method. To make sure that the
repetitions are identical and independent, for each combination of π0 and L, across
500 repetitions, we fix the indices of true nulls and true non-nulls, the success
probabilities qji , and the number of trials njil , for all i, j, l. The realized FDRs
and statistical power are evaluated using the simulation truth at different nominal
FDR level α, where the statistical power is defined as the ratio between the number

2When multiple samples are available in each group, other approaches like those based on t-test or
the beta-binomial model may also be used, as discussed in Sect. 3. Our focus is not to address how
to model the replicates, but using the FET to demonstrate the performance of various methods in
the context of multiple testing of discrete hypotheses.
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of correct rejections and the number of true non-null hypotheses. Those for the BH
procedure and Storey’s q-value method are plotted in Figs. 1 and 2, while those for
the remaining methods are plotted in Figs. 3 and 4. For each figure, the left column
plots the cases where L = 2, while the right column plots those where L = 5;
The first, second and third row correspond to the cases where the null proportion
π0 = 0.3, 0.6 and 0.9, respectively.

From the figures, we can see that the two conventional methods control the
FDR over-conservatively comparing to other methods. Such over-conservativeness
leads to a loss of statistical power, especially when there are lack of replicates and
the null proportion is high. Yet it is often what the real situations are. The BH
procedure performs better as the null proportion increases, but never exceeds that of
the Storey’s method, since the BH procedure actually controls the FDR at level π0α

[4]. The two methods perform equally when π0 = 0.9, which illustrates empirically
that the BH procedure is equivalent to a special case of the Storey’s method, as we
point out at the end of Sect. 2.2.

For the realized FDR, according to Fig. 3, all methods control it under the
nominal level α. Gilbert’s method controls the FDR at π0α, but it performs better
than the BH procedure, when compared to Fig. 1.3 Liang’s method is not sensitive to
the null proportion π0, and yields better performance when L = 5, as the p-values
calculated based on permutation lead to a more accurate estimation of π0 with more
replicates. Overall, Habiger’s method controls the FDR closest to the nominal level,
closely followed by the aBHH method and MCF method.

As for the statistical power, according to Fig. 4, we can see that the aBHH method
always performs the best. When the null proportion is not high, the MCF method
and Habiger’s method perform nearly as good as the aBHH method. When the null
proportion is high, the difference among those methods are marginal, except for
Liang’s method when L = 2. Again this is because that the permutation with only
2 replicates in each group cannot accurately estimate π0.

In practice, due to high cost of methylation sequencing experiments, there are
either no or just a small number, e.g. 2 or 3, of biological replicates available. The
simulation results show that, for every method, the statistical power under more
replicates is clearly higher than that under fewer replicates. However, it is worth
noting that we have simply aggregated the read counts across different replicates
and ignored the biological variations. For practical data, a more thorough treatment
is needed to model the biological variation. We consider the replicates in the
simulation study, mainly to include Liang’s method, which requires replicates to
perform the permutation test.

3As mentioned in Sect. 3.1.1 Gilbert [17], recognized this issue and proposed a grid search method.
However, the grid search method is computationally too costly to be included in the simulation
study.
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Fig. 1 The realized FDR for the BH procedure and Storey’s q-value method when m = 10,000.
The first column plots the results for the cases where L = 2, while the second column for L = 5.
The first, second and third row correspond to the cases where π0 = 0.3, 0.6 and 0.9, respectively.
The black solid line plots the nominal FDR as reference



Discrete Multiple Testing in Detecting Differential Methylation Using Sequencing Data 85

Fig. 2 The statistical power for the BH method and Storey’s q-value method when m = 10,000.
The first column plots the results for the cases where L = 2, while the second column for L = 5.
The first, second and third row correspond to the cases where π0 = 0.3, 0.6 and 0.9, respectively
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Fig. 3 Comparisons for the resulted FDR across different methods when m = 10,000. The first
column plots the results for the cases where L = 2, while the second column for L = 5. The first,
second and third row correspond to the cases where π0 = 0.3, 0.6 and 0.9, respectively. The black
solid line plots the nominal FDR as reference
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Fig. 4 Comparisons for the statistical power across different methods when m = 10,000. The first
column plots the results for the cases where L = 2, while the second column for L = 5. The first,
second and third row correspond to the cases where π0 = 0.3, 0.6 and 0.9, respectively
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5 Conclusion

In this chapter, we study various FDR control methods for large-scale discrete
multiple testing problems often appearing in the context of detecting differential
methylation in sequencing data. Simulation studies show the necessity of adjusting
for discreteness. Conventional procedures like the BH method and Storey’s q-value
method often result in over-conservative FDR control and thus lead to underpowered
performance. Among our discussed methods that address the discreteness issue,
the MCF method, Habiger’s method, and the aBHH method control the FDR
closest to the nominal level and yield the highest detection power in most cases.
However, Habiger’s method is practically undesirable due to its random decisions.
Overall, we would recommend the aBHH method and the MCF method based
on our comparison, whereas the MCF method’s asymptotic control of the FDR
is theoretically established while that for the aBHH method still requires further
theoretical contributions.
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Abstract Recently, there has been an increasing interest in the analysis of flow
cytometry data, which involves measurements of a set of surface and functional
markers across hundreds and thousands of cells. These measurements can often
be used to differentiate various cell types and there has been a rapid development
of analytic approaches for achieving this. However, in spite of the fact that
measurements are available on such a large number of cells, there have been very
limited advances in deep learning approaches for the analysis of flow cytometry
data. Some preliminary work has focused on using deep learning techniques to
classify cell types based on the cell protein measurements. In a first of its kind study,
we propose a novel deep learning architecture for predicting functional markers in
the cells given data on surface markers. Such an approach is expected to automate
the measurement of functional markers across cell samples, provided data on the
surface markers are available, that has important practical advantages. We validate
and compare our approach with competing machine learning methods using a real
flow cytometry dataset, and showcase the improved prediction performance of the
deep learning architecture.
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1 Introduction

Multiparametric single-cell analysis has advanced our understanding of diverse
biological and pathological processes, providing insights into cellular differentia-
tion, intracellular signaling cascades and clinical immunophenotyping. Modern flow
cytometers typically provide simultaneous single-cell measurements of up to 12
fluorescent parameters in routine cases, and analysis of up to 30 protein parameters
has been recently made commercially available. In addition, a next-generation mass
cytometry platform (CyTOF) has become commercially available, which allows
routine measurement of 50 or more protein markers.

Despite the technological advances in acquiring an increasing number of param-
eters per single cell, approaches for analyzing such complex data lag behind.
The existing approaches are often subjective and labor-intensive. For example, the
widely used gating approach identifies cell types by user-defined sequences of
nested 2-D plots. There have been efforts to develop clustering algorithms (e.g.,
flowMeans [1], flowSOM [2], X-shift [3]), and dimension reduction algorithms
(e.g., SPADE [4], tSNE [5], Scaffold [6]). However, there is still huge space for
developing new methods to ask new questions in this field.

Recently, deep learning models are revolutionizing the fields of precision
medicine, data mining, astronomy, human-computer interactions, among many
others, by becoming a major discovery force in science due to the unprecedented
accuracy in prediction. However, deep learning approaches showing accurate per-
formance on genomics and biomedical applications [7–13], the CyTOF community
has not fully adopted these methods yet. In fact, it turns out that CyTOF data is
perfectly suited for deep learning methods. On one side, identify markers define a
cell type (e.g., B cell, T cell, monocytes, MSC), and on the other side, expressions of
functional markers identify the cell’s activity (e.g., quiescent, secreting cytokines,
proliferating, apoptosis). Since CyTOF technology allows for the simultaneous
measurement of a large number of protein markers, most CyTOF studies measure
both identity markers and functional markers, providing data for supervised learning
tools, like neural networks. In addition, each CyTOF run typically collects data on
106 cells, creating an ideal large dataset in which the number of samples (cells) is
orders of magnitude larger than the number of variables (markers). Deep learning
methods are particularly suited for this type of big data.

In terms of motivation, there are two main reasons to predict the functional
markers from surface markers in CyTOF data: (1) monetary and time cost, and
(2) technical limit of the total number of markers CyTOF can measure, which is
currently around 50 protein markers. That is, if we can accurately predict some
functional markers based on surface markers, there is no longer the need to include
those functional markers in the staining panel (experimental design), and thereby
freeing up channels to measure more surface markers or additional functional
markers that cannot be predicted.

Here, we present the first work to explore neural network models to predict
functional markers (internal phosphoproteins) with identify markers (cell surface
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proteins). We compare the performance of neural networks in terms of accuracy and
speed to other standard statistical approaches like regression, and random forests.
We show that neural networks improve prediction of functional markers, making
them a powerful alternative to the usual regression techniques, thus, providing
quantitive evidence that deep learning methods can enrich the existing research
landscape of CyTOF big data.

2 Data

2.1 Pre-processing

The CyTOF dataset has been previously published in [4, 14]. It contains single-cell
data for 5 bone marrow samples from healthy donors. The data for each sample
contains measurements for 31 protein markers for individual cells, including 13 cell
surface markers which are conventionally used to define cell types, as well as 18
functional markers which reflect the signaling activities of cells. The number of cells
per sample is roughly 250,000, and the total number of cells across all 5 samples is
1,223,228. Thus, the data can be expressed in a 1,223,228× 31 matrix.

The data was transformed with inverse hyperbolic sine function (arcsinh with
co-factor of 5), which is the standard transformation for CyTOF data [14].

2.2 Exploratory Analysis

We will compare the performance of different methods (explained next section) to
predict the functional markers with the surface markers. The data is highly complex
and correlated, violating some of the fundamental assumptions of standard statistical
approaches (like regression). For example, the data is highly skewed and the pattern
between response and predictor is not linear (see Fig. 1).

3 Materials and Methods

3.1 Background on Neural Networks

A neural network model is formed by several neurons. Each neuron receives an
input vector x, then weights its components according to the neuron’s weight vector
w, adds a bias constant b, and passes the result through a non-linear activation
function σ . This way, the output of a neuron is given by σ(wT x + b). There are
several options for the activation function σ . Common choices include the sigmoid
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Fig. 1 Exploratory plots of surface and functional markers. The histograms show a biased
pattern, and the scatterplot shows non linearity, both violations of crucial assumptions in standard
regression models

function σ(z) = 1
1+e−z or the rectified linear unit (ReLU) σ(z) = max(0, z). For

the CyTOF data, we use the hyperbolic tangent as activation function, as it showed
better performance than the sigmoid or ReLU functions (more details on the specific
neural network fit in Sect. 3.2).

The final output of the network is given by f̂ (x) with parameters W1, · · · ,WL

for the weight matrices and b1, · · · , bL for the bias vectors for each layer.
The estimation of the parameters is done through the following optimization

min
{Wl,bl}Ll=1

n∑

i=1

‖yi − f̂ (xi)‖2. (1)

The most widely used technique to solve this optimization is through stochastic
gradient descent (SGD) and back-propagation, but we discovered that Adam [15],
an algorithm for first-order gradient-based optimization of stochastic objective func-
tions, based on adaptive estimates of lower-order moments had better performance
for our data (more details in Sect. 3.2).

3.2 Methods Comparison

We fit a neural network model to predict functional markers from surface markers,
and compare its performance to three classical statistical methods: (1) linear
regression (unpenalized and penalized), (2) decision trees, and (3) random trees.
Due to computational time constraints, we could not fit a support vector regression
(SVR) model (more in Discussion). We compared the performance of the four
approaches by computing the mean square error (MSE) of the predicted responses.

To fit the models, we divided the data into training set, and testing set. The
training set was used to perform a tenfold cross validation scheme to choose the
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best model fit for each method. We chose the model fit with the smallest average
MSE. Then, we used all the training samples to estimate the final model for each
method (e.g. model and tuning parameters), and reported the prediction MSE of
each method based on the testing samples.

The complete data consisted of 1,223,228 cells in 18 functional markers
(responses) and 15 surface markers (predictors), which we divided as follows:
1,000,000 rows as training set, and 223,228 rows as testing set.

We used two separate measure of performance: a vector MSE (Eq. (2)) and
individual MSE (Eq. (3)), one per predictor (so, 18 in total).

The vector MSE is defined as

MSEvec = 1

2n

n∑

i=1

||Ŷi − Yi ||22 (2)

where Ŷi ∈ R18 is the predicted vector of responses for individual i, and Yi ∈ R18

is the observed vector of responses for individual i.
The individual MSE for predictor k is defined as

MSE(k) = 1

2n

n∑

i=1

(Ŷk,i − Yk,i)
2 (3)

where Ŷk,i ∈ R is the kth predicted response (k = 1, · · · , 18) for individual i, and
Yk,i ∈ R is the kth observed response for individual i.

Neural Network Model We tested different network architectures, activation
functions, regularization coefficients, solver methods, momentum policies, and
learning rates with 50,000 maximum epochs. The best network has four layers
(see Fig. 2) with 90, 90, 45 and 45 nodes. The network uses hyperbolic tangent as
activation function, regularization coefficient of 0.0001, momentum policy fixed at
0.8, inverse-decay learning rate policy with base learning rate, gamma and power

Fig. 2 Neural network for predicting functional markers (18 responses) from surface markers (15
predictors) with 4 hidden layers with 90, 90, 45 and 45 nodes each
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parameters at 0.01, 0.0001, 0.75. We used Adam solver [15], an algorithm for
first-order gradient-based optimization of stochastic objective functions, based on
adaptive estimates of lower-order moments, instead of Stochastic Gradient Descent
(SGD) as the former showed increased accuracy. All networks were trained using
the julia package Mocha [16, 17].

Linear Regression (Unpenalized/Penalized) We fit standard linear regression, as
well as the penalized version with LASSO penalty under different penalization
parameters. We used the ScikitLearn [18] Julia Wrapper, with default settings.
We noted that the penalized version performed worse than the unpenalized version
for all the predictors (regardless of penalty parameter), so we only present results
below for the unpenalized linear regression model.

Decision Tree and Random Forest Regressions We fit one decision tree regres-
sion per response with ScikitLearn julia wrapper, with default settings. We
compared the performance of the “mse” criterion and the Friedman’s improvement
score, deciding on the former (“mse”) which is the default setting. We did not
constraint the maximum depth of the tree, and set as 2 the minimum number of
samples required to split an internal node. In addition, we did not constraint the
maximum number of features to consider when looking for the best split. Later, we
fit 20 trees into a random forest regression. We could not explore more than 20 trees
due to computational time constraints.

4 Results

Figure 3 (left) shows the vector MSE (Eq. (2)) across all four different methods,
being decision tree the least accurate and neural network the most accurate. Figure 3
(right) shows a comparison on computation time (in seconds) among the four

Decision Tree

Linear Model

Random Forest

Neural Network

0 3 6 9 12

Vector MSE

Random Forest

Neural Network

Decision Tree

Linear Model

0 300 600 900

Time (sec.)

Fig. 3 Left: Vector MSE (Eq. (2)) for all four methods sorted from most accurate (neural network)
to least accurate (decision tree). Right: Running time (in seconds) for the training and validation
sets (sample 750,000 rows) for all four methods, sorted from fastest (linear regression) to slowest
(random forest)
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Fig. 4 Individual MSE (Eq. (3)) for each 18 responses. The neural network outperforms all other
methods across all responses. Lines are drawn simply for visual effect

methods, being linear regression the fastest and random forest the slowest. To sum
up, the neural network approach outperforms the other three methods in terms of
prediction accuracy, without sacrificing too much computational speed.

Figure 4 shows the individual MSE (Eq. (3)) per response (18 responses in x-
axis) for each of the four methods. Again, the prediction accuracy of neural network
is better than the other three methods for all the 18 predictors.

The MSE performance varies across responses. For example, the first response
(functional marker 141.pPLCgamma2) has an overall MSE lower than other
responses like the third (functional marker 152.Ki67), the 8th (functional marker
159.pSTAT3) or the 14th (functional marker 171.pBtk.Itk).

Figure 5 (left) shows the violin plots for these 4 functional markers. We observe
that the 14th response has a wider range and heavier tails than the other responses,
which is confirmed in the scatterplots on the center and right (Fig. 5). It appears
that the wider spread and higher variability of the 14th response (functional marker
171.pBtk.Itk) causes the lower prediction accuracy compared to other responses,
like the first one (functional marker 141.pPLCgamma2).

Finally, we present selected scatterplots of surface markers as predictors for the
responses 1, 3, 8 and 14 (Fig. 6). We can appreciate in these plots the non-linear
relationship between the predictors and responses, which justifies the use of a neural
network approach.
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14th functional marker (171.pBtk.Itk) across all four methods. The closer the slope to 1 (black
line), the better
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Fig. 6 Scatterplot of selected surface markers (predictors) and selected functional markers
(responses). Left: the first response (functional marker 141.pPLCgamma2) shows a linear rela-
tionship to the predictor (surface marker 115.CD45), which partially explains the better MSE in
Fig. 4. Right: the 14th response (functional marker 171.pBtk.Itk) shows a non-linear relationship
to the predictor (surface marker 115.CD45), which partially explains the worse MSE in Fig. 4

5 Discussion

To the best of our knowledge, our work presents the first neural network model
for the prediction of functionality in CyTOF big data. In this work, we showed
that a neural network model outperforms standard statistical approaches like linear
regression and random forest in the prediction of functional markers from surface
markers for CyTOF data. Neural networks were also faster and more efficient than
random forests, which make them a more viable choice for big datasets.

The improved prediction accuracy of neural networks can be explained by their
flexibility to account for non-linearity or skewness. Unlike regression models, neural
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networks do not have linearity or normality assumptions, and they take advantage
of the correlation structure among responses by fitting a network for the whole
response vector. It is important to note that the while the neural network model
shows better performance than the other methods, this edge is still quite modest.
Random forest models also represent a suitable choice for prediction under non-
linear assumptions. However, we show here that when scalability also matters, the
neural network model outperforms random forests (in computation time), while
providing more accurate predictions. We claim that neural networks are better suited
for big CyTOF data than random forests, but more work is needed to corroborate
this claims.

As mentioned already, CyTOF data is perfectly suited for deep learning methods
given the simultaneous measurement of a large number of protein markers, includ-
ing both identity markers and functional markers. Both measurements allow for
the implementation of highly accurate supervised methods, like neural networks. In
addition, the structure of CyTOF data is ideal for deep learning: number of samples
orders of magnitude greater than the number of variables.

The accuracy in the prediction of functional markers from surface markers has
economic and computational advantages, for example, considering the limitation
to the total number of markers CyTOF can measure, which is currently around
50 protein markers. Being able to predict functional markers from surface markers
could allow for different types of staining panels which could measure more surface
markers, or focus on functional markers not so easily predicted.

Initially, we were surprised by the lack of scalability of SVR models. However,
given the non-linearity and optimization complexity [19, 20], it appeared that our
dataset was too large for the computation of the kernel matrix, which is n×n where
n is the number of samples (more than 1 million in our case). More work is needed
to assess the performance of SVR under smaller datasets to assess the accuracy of
such models and the limits in scalability.

For future work, we can include an extended version of the dataset [4, 14]
that includes 24 healthy sample of bone marrow treated by 24 different drugs. In
this setting, we are interested in predicting the functional markers under different
drug scenarios, using information at baseline (no treatment) and surface markers at
different treatment levels. Furthermore, based on the trained deep learning model,
we are interested in the question of whether we can identify cell clusters, and
whether these cell clusters agree with well-accepted cell types in literature. Finally,
if we focus on cells belonging to the same known cell type, and examine the
distribution of functional markers and the correlation with the subtle variations
of the identity markers among cells of this type, we can explore whether there is
evidence that the specific cell type could be further divided into subtypes.
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Building Health Application
Recommender System Using Partially
Penalized Regression

Eun Jeong Oh, Min Qian, Ken Cheung, and David C. Mohr

Abstract Behavioral intervention technologies through mobile applications have
a great potential to enhance patient care by improving efficacy. One approach
to optimize the utility of mobile health applications is through an individualized
health application recommender system. We formalize such a recommender system
as a policy that maps individual subject information to a recommended app. We
propose to estimate the optimal policy which maximizes the expected utility by
partial regularization via orthogonality using the adaptive Lasso (PRO-aLasso). We
also derive the convergence rate of the expected outcome of the estimated policy
to that of the true optimal policy. The PRO-aLasso estimators are shown to enjoy
the same oracle properties as the adaptive Lasso. Simulations studies show that the
PRO-aLasso yields simple, more stable policies with better results as compared to
the adaptive Lasso and other competing methods. The performance of our method
is demonstrated through an illustrative example using IntelliCare mobile health
applications.

Keywords Mobile health · Application recommender system · Partial
regularization via orthogonality (PRO) · Adaptive lasso · Optimal policy

1 Introduction

With increasing utilization of mobile devices, there is a great potential for behavioral
intervention technologies via mobile applications to be included in a portfolio
of available resources [7], and to be a viable option for delivering psychological
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treatments to mental health patients who will otherwise not have access to traditional
treatments [13]. With more than 165,000 mobile health applications estimated to be
available [16], it is crucial to create a recommender system for health applications,
so as to increase user engagement and adherence and ultimately lead to health
benefits [2]. Our goal is to develop an individualized recommender system for
health applications. Specifically, we consider building a recommender system for
apps in the IntelliCare ecosystem, which is a suite of health apps for users with
depression and anxiety disorders [1, 9]. Briefly, IntelliCare consists of 12 apps
each implementing a psychological therapy with simple interactional elements. A
Hub app is used to organize the user’s experience with IntelliCare, with a specific
function of pushing recommendations for other IntelliCare apps. Description of the
IntelliCare apps and the effectiveness of the Hub recommendation can be found in
[9]. Cheung et al. [1] showed that the Hub recommendation is effective at increasing
user engagement, and the current version of Hub makes recommendations for up
to 2 apps randomly at weekly intervals. However, it is conceivable that we can
further improve performance of the Hub by tailoring recommendations based on
each individual’s past interaction with the apps and the system’s recommendation
history.

One way to operationalize this type of recommender system is through a
policy that takes individual information as an input and returns an action (e.g.,
recommendation) as an output. Our goal is to construct a high quality policy that,
when implemented, will maximize the value associated with the outcome of interest.
Various methods have been developed to estimate this optimal policy. Gunter et al.
[6] proposed ranking techniques designed to differentiate variables that are included
merely to facilitate estimation and variables involved in the decision rules. Zhang
et al. [23, 24] developed an approach for estimating policy using doubly robust
augmented inverse probability weighted estimator over a restricted class of regimes.
Zhao et al. [28, 29], Zhang et al. [22], and Zhang and Zhang [25] proposed a
statistical learning procedure, which reformulates the optimal policy estimation as a
weighted classification problem. There is also a vast literature on the estimation of
optimal policy based on tree-based methods [4, 8, 11, 18]. Zhang et al. [26, 27] and
Rudin and Ertekin [17] also proposed list-based methods which are special cases of
tree-based rules.

A main challenge in developing optimal policy in our example, however, is
the high-dimensionality of the covariate space and the action space. For the
IntelliCare Hub, with up to 2 recommendations among 13 apps (including Hub’s
self-recommendation), there are 92 possible actions. Furthermore, as in most policy
development, it is imperative to consider interactions between the actions and the
covariates; and this will result in a very large model that is prone to overfitting
and aggravate the “curse of dimensionality”. To address this challenge, researchers
have applied regularization and variable selection techniques to correctly select a
subset of relevant variables from the huge set of candidates. Recent developments
in high-dimensional variable selection approaches include shrinkage regression
methods, such as least absolute shrinkage and selection operator (Lasso) [20],
smoothly clipped absolute deviation method [3], elastic net [31], adaptive Lasso
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[30], nonnegative garrote [21], and many others. Penalized regression methods for
estimating optimal policy were proposed by Qian and Murphy [15] and Lu et al.
[12].

The foregoing variable selection methods are completely data-driven. However,
there are at least two reasons for including human decisions in building a predictive
model. First, investigators may have strong prior evidence that certain variables
contribute much information to the response, and should be kept regardless of
the data. For example, Chueng et al. [1] demonstrated significant main effects of
the Hub’s recommendation; that is, users receiving a recommendation of a given
app will more likely engage with the app. Keeping those known main effects in
the model will intuitively improve precision in variable selection and estimation.
Second, even when there is no evidence that a variable has a strong effect, the
variable may be included if it facilitates interpretation of a model. We emphasize that
the contribution of human expert goes beyond the identification of which variables
to penalize or not to penalize in the model; it is the integration of domain knowledge
into the model building and validation process.

We propose to incorporate expert knowledge in a Lasso-type variable selection
procedure by performing regularization only for a pre-specified partial set of
variables. Specifically, we will achieve partial regularization via an orthogonaliza-
tion (PRO) technique, and apply it in conjunction with the adaptive Lasso. The
remainder of the paper is organized as follows. In Sect. 2, we provide a general
framework for estimating an optimal policy using the adaptive Lasso (aLasso)
and applying the proposed PRO technique, and we also present the asymptotic
behavior of our estimators and the rate of convergence for the value of the estimated
policy. In Sect. 3, we compare the proposed method with some existing alternatives
through extensive simulation studies. In Sect. 4, we apply the PRO-aLasso to the
IntelliCare data to estimate the optimal recommender algorithm after 6 weeks of
use. Discussion and conclusions are presented in Sect. 5. Proofs of theorems are
included in the Appendix.

2 Partial Regularization via Orthogonality Using the
Adaptive Lasso

Suppose we observe data from n individuals. For each individual, the data is of
the form {O,A, Y }, where O is the vector of individual covariates, A denotes
recommended actions, and Y is the outcome of interest with large values desired.
For instance, in terms of the IntelliCare data, O is the baseline number of app usage
(i.e., count), A is the recommendation action by the Hub, and Y is the count on log
scale, observed the week after the recommendation. We assume A is a categorical
variable (i.e., discrete actions). If there are more than two possible actions, A is
coded as a vector of dummy variables. In this context, a policy π , is a mapping
from the space of observations, O, to the action space, A. The value of the policy,
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denoted as V (π), is the expected outcome that would be obtained if the policy were
to be implemented in the population of interest. The goal is to estimate the optimal
policy, π0, that would maximize the expected outcome if implemented:

π0 = arg maxπV (π).

Define the Q-function Q(O,A) = E(Y |O,A) so that Q(o, a) measures the
quality of assigning action A = a to an individual with O = o [14, 15].
Then, the optimal policy is the best action for each individual; i.e., π0(O) =
arg maxa Q(O, a). We construct the optimal policy by estimating the Q-function.
We assume

Q(O,A) = Φ(O,A)T γ 0, (1)

where Φ(O,A) is a vector summary of (O,A). It may contain linear or higher
order terms of O, A, and their interactions; thus, it could be high-dimensional. We
separate Φ(O,A) into two parts: those need to be penalized, denoted by X ∈ R

p1 ,
and those left unpenalized, denoted by Z ∈ R

p2 . Usually Z is low-dimensional and
only includes several key variables. For instance, we could let X = (O,OA) and
Z = (1,A) if the main effect of action is desired to remain in the model along with
the unpenalized intercept. Thus, model (1) can be re-written as

Q(O,A) = XT β0 + ZT α0, (2)

where α0 and β0 are the vectors of true parameters.
Although the model is high-dimensional, we expect only a few terms in

X are active. It is well-known that the adaptive Lasso possesses the so-called
oracle property so that the set of non-zero coefficients is correctly identified with
probability converging to one, and the estimated coefficients within this set are
asymptotically normal [30]. In what follows, we describe the PRO-aLasso algorithm
that imposes an adaptive Lasso penalty only on X but not on Z, and will show that
the oracle properties are preserved.

Let En denote the sample average. The PRO-aLasso aims to find (α̂n, β̂n) that
minimizes the following objective function

Ln(α, β) = nEn

(
Y −XT β − ZT α

)2 + λn

p1∑

j=1

wj |βj |, (3)

and the estimated policy is the action which maximizes the estimated Q-function

π̂(O) ∈ arg max
a∈A

(XT β̂n + ZT α̂n).
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Note that λn in (3) is a tuning parameter which controls the model complexity
of X, and w = (w1, . . . , wp1) is a vector of weights that are used to adjust a level
of penalization on individual variables. Ideally, large penalties are suitable for zero
coefficients (inactive covariates) and small penalties for non-zero coefficients (active
covariates). This can be achieved by defining the weight vector as ŵ = |β̄|−δ
for some δ > 0 with β̄ being a root-(n/p1)-consistent estimator. That is, heavier
penalties are put on the coefficients with smaller β̄ estimates and thus smaller true
parameters. In practice, we propose to set β̄ as perturbed elastic net estimates,
following Zou and Zhang [32], and fivefold cross-validation can be used to select
an optimal pair of (δ, λn).

The PRO-aLasso algorithm is given below. It implies that β̂n is the adaptive
Lasso estimator obtained based on the new response vector Ỹ = Y − ZT υ̂n and
the new predictor matrix X̃ = X − ZT Γ̂ n, where Ỹ is the residuals of Y on a
direction orthogonal to Z (or simply Y adjusted for Z) and X̃ is the residuals of X

on a direction orthogonal to Z (or simply X adjusted for Z). The adaptive Lasso
estimates can be obtained using a coordinate descent algorithm with the R package
glmnet [5], which is integrated in the PRO-aLasso algorithm.

PRO-aLasso algorithm
Input: data (O, A, Y )
Output: policy π̂
1: Formulate X and Z as a function of O and A in order to impose an adaptive Lasso penalty on

X but not on Z

2: υ̂n ← arg minυ En
(
Y − ZT υ

)2

3: for j = 1, . . . , p1 do
4: γ̂ nj ← arg minγ j

En
(
Xj − ZT γ j

)2

5: end for
6: Γ̂ n ← (γ̂ n1, . . . , γ̂ np1

)

7: Construct ŵ = |β̄|−δ for some δ > 0 with β̄ being a root-(n/p1)-consistent estimator, which
is obtained from the response Y − ZT υ̂n and the predictor matrix X − ZT Γ̂ n

8: Define (X − ZT Γ̂ n)
∗ = (X − ZT Γ̂ n)/ŵ

9: Solve the lasso problem for all λn,

β̂
∗
n ← arg minβ nEn

(
Y − ZT υ̂n − ((X − ZT Γ̂ n)

∗)T β
)2 + λn

p1∑

j=1

|βj |

10: β̂n ← β̂
∗
n/ŵ

11: α̂n ← υ̂n − Γ̂ nβ̂n
12: π̂(O) ∈ arg maxa Q̂(O, a) = arg maxa(X

T β̂n + ZT α̂n)

To study the properties of the PRO-aLasso estimator, we introduce some
additional notation. Let J = {

j : β0j �= 0, j = 1, . . . , p1
}

be the true active set
of variables in X, and assume that |J| = r < p1. Denote the estimated active set
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of variables by Ĵn =
{
j : β̂nj �= 0, j = 1, . . . , p1

}
. Let β0J = {β0j : j ∈ J}

and β̂
nJ = {β̂j : j ∈ J}. Denote θ = (αT ,βT )T for any α ∈ R

p2 , β ∈ R
p1 .

Then S = {1, 2, . . . , p2} ∪ {s : θ0s �= 0, s = p2 + 1, . . . , p} is the true active set of
variables in (Z,X), and thus J is always the subset of S. Denote

Σ = E

(
ZZT ZXT

XZT XXT

)

, ΣS = E

(
ZZT ZXTJ

XJZT XJXTJ

)

,

where Σ ∈ R
p×p and ΣS ∈ R

(p2+r)×(p2+r).
Theorem 1 below shows that the PRO-aLasso estimator enjoys variable selec-

tion consistency and asymptotic normality even when the number of parameters
diverges.

Theorem 1 Suppose assumptions (A1)–(A6) in the Appendix hold. Under
model (2), the PRO-aLasso estimator possesses the following properties:

(i) (variable selection consistency) limn P (Ĵn = J) = 1,
(ii) (joint asymptotic normality)

√
nψTΣ

1/2
S

(
α̂n − α0

β̂
nJ − β0J

)

→d N(0, σ
2),

where ψ is a vector of norm 1.

In the Theorem below, we provide a rate of convergence for the value of the
estimated policy to that of the optimal policy. Theorem 2 advocates the approach of
minimizing the estimated prediction error to estimate Q0 and maximizing Q̂ over
a ∈ A to obtain an policy.

Theorem 2 Let p(A|O) denote the conditional distribution of action assignment
given O in the training data. Suppose all assumptions in Theorem 1 hold, and
p(a|o) ≥ S−1 for a positive constant S for all (o, a) pairs. Assume that there exist
some constants C > 0 and η ≥ 0 such that

P

(

max
a∈A

Q0(O, a)− max
a∈A/ arg maxa∈A Q0(O,a)

Q0(O, a) ≤ ε

)

≤ Cεη (4)

for all positive ε. Then

V (π0)− V (π̂) ≤ OP

[(p2 + r

n

)(1+η)/(2+η)]
.

Remark Condition (4) is a “margin” type condition. It measures the difference in
mean outcomes between the optimal action(s) and the best suboptimal action(s) at
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O. For C = 1, η = 0, condition (4) always holds for all ε > 0. See Qian and
Murphy [15] for discussion of this condition.

3 Simulation Experiments

We conduct a set of numerical studies to assess the performance of each method.
The simulated data are generated from the model

Y = (1,O)T
(
α1

β1

)

︸ ︷︷ ︸
main effects

+ (A,OA)T
(
α2

β2

)

︸ ︷︷ ︸
trt effects

+ ε,

where ε ∼ N(0, σ 2). In our simulation, we set σ = 1. Covariates O ∈ R
q are

generated from N(0, Ω̂q×q) where Ω̂q×q is a sample correlation matrix of the real
data. The following is the minimum, mean, and maximum of absolute value of the
correlations in Ω̂q×q : (0.000, 0.076, 0.933). Policy action A is randomly generated
from {−1, 1}with equal probability 0.5. A number of scenarios are considered based
on the generating model that differs by the number of observations n, the number of
predictors p = 2(q + 1), the effect size (es), and the following two cases:

1. Weak dense: α1 = 1, β1 =
{
1.25q/2, 0q/2

}
, β2 = 4.5 · |es − 0.3| · β1,

α2 =
es ·

√
βT1 Ωβ1 + βT2 Ωβ2 + σ 2

2
;

2. Sparse signal: α1 = 1, β1 = {seq(.1q + .5, 1.5), rep(0, .9q)} , β2 = 4.5 ·
|es − 0.3| · β1,

α2 =
es ·

√
βT1 Ωβ1 + βT2 Ωβ2 + σ 2

2
.

In settings with the weak dense scenario, half of the β1 components are zero.
However, in the sparse signal case, nine-tenths of β1 are zero; e.g., if q = 10,
β1 = (1.5, 0, 0, . . . , 0), and if q = 40, β1 = (4.5, 3.5, 2.5, 1.5, 0, 0, . . . , 0). In both
cases, β2 has the same structure to β1 with a different magnitude. In each scenario,
we generate n = 50 and n = 200 samples with p = 82 (i.e., q = 40) and es

ranging over 0, 0.2, 0.5, 0.8. The performances of the methods are assessed by the
following three aspects. The first is to evaluate the variable selection performance in
β2 using (C, IC), where C is the number of correctly identified active variables and
IC is the number of zero variables incorrectly selected in the final model, since the
size of β2 indicates the number of tailoring variables to construct the optimal policy,
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π̂(O) =
∣
∣
∣α̂2 +OT β̂2

∣
∣
∣. The second is to assess the value function by the estimated

optimal policy using an independent test dataset with sample size of 5000. The third

is to estimate the root-mean-squared error (RMSE),
√

En(Y −XT β̂n − ZT α̂n)2.
The simulation results are summarized in Table 1.

In the weak dense case, as the sample size increases, all the methods tend to
correctly identify the active variables. However, the PRO-aLasso selects less number
of true zero variables which are incorrectly set to non-zero, compared to other
competing methods. It is worth noting that good variable selection results lead to
the value estimates closer to the optimal value. In the sparse signal case, the PRO-
aLasso outperforms its counterparts in almost all simulation settings in terms of
better variable selection performance, higher value function estimate, and smaller
prediction error. In particular, our proposed method produces the estimated values
nearly close to the optimal value, as the sample size grows. Not surprisingly, the
forward variable selection shows a lower performance than other methods since it
is highly likely to miss the ultimate model by the one-at-a-time nature of adding
variables. The ridge regression performs competitively in the weak dense case but
not in the sparse signal case. Based on the overall comparison between the PRO-
aLasso and the adaptive Lasso (aLasso), the PRO technique seems to be a better
idea in both cases.

4 Real Data Application

In this section, we apply our proposed method to the IntelliCare data introduced
earlier. The data consists of use patterns of the 13 apps (including Hub) and the
recommendation records by the Hub at 1–16 weeks after first download in 2508
Hub users. For illustration purposes, we apply the proposed method to estimate
the optimal 6-week recommendation based on the use history in the week prior
to recommendations. We considered the number of meaningful app use session
(“count”, O) on each app. With 13 apps including the Hub, we therefore have
O = (O1, . . . , O13) from each user as the baseline covariates. We recoded each
of the count variables to be 3 if greater than or equal to 3 to minimize the
effect of fairly large counts. Using the notation developed above, we also let
A = (A1, . . . , A13) indicate the recommendation action by the Hub. The primary
outcome Y = (Y1, . . . , Y13) is the count on log scale, observed the week after the
recommendation; precisely, we added one before taking the log transformation to
handle zero counts.

We applied various regularization and variable selection methods to build the
model for each individual app use. For the model for app j , we postulate

E(Yj |O,A) =(1, Aj ,AjOj )
T αj + (A1, . . . , Aj−1, Aj+1, . . . , A13,

O1, . . . , O13, AjO1, . . . , AjOj−1, AjOj+1, . . . , AjO13)
T βj ,
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where αj ∈ R
3 and βj ∈ R

37. This model allows for the possibility that the
use history of other apps may have an effect on the use of app j ; however,
regularization will be applied to avoid overfitting when we build the prediction
model and the recommendation algorithm. On the other hand, because we expect
the recommendation of app j will have a direct effect on the use pattern of app j ,
and are interested in estimating this effect, the PRO-aLasso does not place a penalty
on the intercept, Aj , and AjOj (which we call concordant interaction). That is,
Z = (1, Aj ,AjOj ).

We also considered maximizing the total usage as an outcome, for which we
postulate

E(

13∑

j=1

Yj |O,A) = (1, A1, . . . , A13, A1O1, . . . , A13O13)
T α

+ (O1, . . . , O13, A1O2, A1O3, . . . , A13O12)
T β,

where α ∈ R
27 and β ∈ R

169. Like the individual app models, the PRO-aLasso does
not place a penalty on the intercept, the direct main effects {Aj , j = 1, . . . , 13}, and
the concordant interactions {AjOj , j = 1, . . . , 13}.

The data is randomly split so that three-fourths of data is used to estimate the
optimal policy, and the remaining is used to estimate the value of the policies. In
addition to the PRO-aLasso, we analyzed the data using the adaptive Lasso and the
ridge regression, both of which placed penalties on all coefficients. We also ran the
forward variable selection by the Akaike information criterion (AIC).

To illustrate the results of the PRO-aLasso and other methods, we examine the
optimal recommender algorithm in terms of improving the usage of Daily Feats (app
j = 4). According to the analysis results of the PRO-aLasso, the optimal decision
is always to push a recommendation of Daily Feats. In contrast, the adaptive Lasso
shrank all coefficients to 0 (including that of A4) and the ridge regression yielded
coefficients all very close to 0. As a result, these methods were not able to provide
any policy. This indicates a pragmatic reason for avoiding penalizing the main
effects.

For maximizing the total usage, the PRO-aLasso would mostly recommend the
combination of Boost Me and Worry Knot in about 90.5% of the users in our data,
followed by Boost Me and Day to Day (1.2%) and Boost Me and My Mantra (1.0%).
The forward variable selection would recommend the combination of Thought
Challenger and Worry Knot in 87.2% of the users in the data, and Hub and Worry
Knot in 5.1%. The ridge regression would recommend the combination of Boost
Me and Worry Knot in 68.9% and Boost Me and My Mantra in 20.7% of the
users. Again, the adaptive Lasso could not provide any policy for the mobile health
application recommendation.

To compare the performance of the various methods, Table 2 reports the
estimated value and the size of the policy. The size of the policy is equivalent to the
total number of non-zero coefficients except for the intercept and that of the baseline
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Table 2 Estimated value and size of the policy (in parentheses) for maximizing the app use count
on log scale

PRO-aLasso aLasso Ridge Forward Observed

Individual app use

Aspire 0.15 (2) 0.15 (1) 0.15 (26) 0.07 (16) 0.05

Boost Me 0.07 (2) 0.04 (4) 0.06 (26) 0.11 (13) 0.02

Hub 1.20 (14) 0.78 (12) 0.78 (26) 0.34 (17) 0.33

Daily Feats 0.08 (2) 0.03 (0) 0.03 (26) 0.07 (11) 0.03

iCope 0.05 (2) 0.05 (1) 0.04 (26) 0.05 (19) 0.05
My Mantra 0.02 (2) 0.07 (0) 0.02 (26) 0.07 (16) 0.07
Day to Day 0.06 (2) 0.06 (2) 0.12 (26) 0.11 (19) 0.09

MoveMe 0.11 (2) 0.11 (1) 0.05 (26) 0.04 (12) 0.04

Purple Chill 0.09 (3) 0.09 (1) 0.09 (26) 0.05 (14) 0.04

Slumber Time 0.07 (2) 0.03 (0) 0.03 (26) 0.07 (10) 0.03

Social Force 0.18 (2) 0.18 (1) 0.07 (26) 0.18 (17) 0.04

Thought Challenger 0.08 (2) 0.07 (4) 0.09 (26) 0.06 (14) 0.05

Worry Knot 0.17 (2) 0.17 (2) 0.17 (26) 0.14 (19) 0.04

Total usage 4.65 (31) 0.89 (0) 4.12 (182) 2.27 (108) 0.89

The size of the policy is the total number of non-zero coefficients except the intercept and baseline
covariates. Numbers associated with the highest value are in boldface

covariates. It is called the size of the policy because it indicates the number of input
variables required to operate the policy. The last column of the tables reports the
observed outcome in the data set, which reflects the properties of the Hub built-in
recommender system. The PRO-aLasso yielded policies with the highest values for
9 apps including ties, and this was achieved with generally small policy size. The
adaptive Lasso tended to over-shrink, whereas the forward variable selection tended
to overfit. Table 2 also compares the performance of the various methods when the
objective is to maximize the total usage. The PRO-aLasso produced the policy with
the highest value. Using the algorithm by PRO-aLasso would increase the sum of
log-transformed number of app use sessions by 4.65 in a week on average, whereas
the other methods did not appear to make a significant increase. By examining the
size of the policy, the PRO-aLasso seems to strike the right balance between over
shrinkage (cf. aLasso) and overfitting (cf. forward variable selection).

5 Conclusion

In this paper, we propose a PRO-aLasso algorithm that can be used to develop
a recommender system for mobile health applications. Since the PRO involves
orthogonalization, which is a linear operation, the computational cost of the PRO-
aLasso is only marginally higher than that of the adaptive Lasso. The PRO technique
is also versatile and can be applied with other regularization methods, although we
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opted to use the adaptive Lasso for its oracle property. However, it is well-known
that the oracle property provides little value in finite samples (see the series of papers
by Potscher and Leeb among others).

For the purpose of illustrating the PRO technique, we have developed the PRO-
aLasso algorithm to construct one-stage policy, and applied it to the IntelliCare
data for a one-off recommendation at week 6 by the Hub. We chose week 6
as the decision time, because the users would have established certain app use
habits so that the weekly use data (covariate) would be relatively representative of
general patterns. While the choice of week 6 is pragmatic, the Hub by design gives
recommendations on a regular basis. Therefore, a realistic recommender system
should provide sequential decision rules that adapt over time, and ideally account
for additional personal information such as demographic variables. The versatility
and computational efficiency of the PRO allow for a straightforward and feasible
extension to build multi-stage policy by incorporating the PRO to reinforcement
methods, such as Q-learning [19]. As we have demonstrated that the PRO-aLasso
is superior to some common existing methods in producing one-stage recommender
algorithm for the simplified setting, the PRO technique is set to be a promising tool
for the multi-stage setting.

Appendix

The proof of Theorems 1 and 2 relies on the following assumptions and lemmas.

Assumptions

(A1) ε
Δ= Y − ZT α0 − XT β0 has mean zero and finite variance σ 2, and is

independent of (Z,X) with E(|ε|2+κ) <∞ for some κ > 0.
(A2) (ZT ,XT )T is uniformly bounded.
(A3) There exist positive constants b and B such that b ≤ λmin(Σ) ≤ λmax(Σ) ≤

B, where λmin(Σ) and λmax(Σ) are the smallest and the largest eigenvalues
of Σ , respectively.

(A4)
∥
∥
∥Σ̂ −Σ

∥
∥
∥
F
→p 0, where ‖·‖F stands for the Frobenius norm.

(A5) logp
log n → ν for some 0 ≤ ν < 1.

(A6) λn = o(
√
n), λn√

n
n((1−ν)(1+δ)−1)/2 →∞.

Remark Assumptions (A1) and (A2) are employed in the proof of the asymptotic
results which are regular requirements. Assumption (A3) implies that the matrix Σ

has a reasonably good behavior. Assumption (A4) is needed for the random design
case. Also, note that the convergence in Frobenius norm implies the convergence in
operator norm, which further guarantees the consistency of the sample eigenvalues.
When p2/n→ 0, this assumption is usually satisfied, see, e.g., the proof of Lemma
3.1 in Ledoit and Wolf [10] for more details. Assumptions (A5) and (A6) are needed
for the rate of convergence and oracle properties. Following Zou and Zhang [32],



118 E. J. Oh et al.

we can fix δ =
⌈

2ν
1−ν

⌉
+ 1 to avoid the tuning on δ, and the oracle properties hold

as long as δ > 2ν
1−ν .

Lemma 1 Suppose assumptions (A1)–(A6) hold. Then under model (2), we have

∥
∥
∥
∥

(
α̂n − α0

β̂n − β0

)∥
∥
∥
∥

2

2
= OP

(p

n

)
.

We derive the excess loss bound of the PRO-aLasso estimator in Lemma 1, which
helps to prove the oracle properties. Under the regularity conditions, Lemma 1 also
tells us that the PRO-aLasso estimator is a root-(n/p)-consistent estimator.

Lemma 2 Let us write (α0,β0) = (α0,β0J, 0) and define

(α̃n, β̃nJ) = arg min
(α,β)

nEn

(
Y − (Z,XJ)T (αT ,βT )T

)2 + λn
∑

j∈J
ŵj |βj |.

Then with probability tending to 1, (α̃n, β̃nJ, 0) is the solution to (3).

Lemma 2 provides an asymptotic characterization for solving the PRO-aLasso
criterion. Lemma 2 also shows that the PRO-aLasso estimator possesses oracle
properties in Theorem 1.

Proof of Theorem 1 Denote θ = (αT ,βT )T for any α ∈ R
p2 , β ∈ R

p1 , θ̂n =
(α̂

T
n , β̂

T

n )
T , and θ0 = (αT0 ,β

T
0 )

T . Let Φ = (Z,X) ∈ R
p×p, where p1+p2 = p. We

first prove the model selection consistency part. Lemma 2 shows that the estimator
minimizing the objective function (3) is equivalent to (θ̃

nS, 0). Thus, it suffices to
show that Pr(min

s∈S |θ̃ns | > 0)→ 1. Let η = min
s∈S |θ0s |. Note that

min
s∈S |θ̃ns | > min

s∈S |θ0s | −
∥
∥
∥θ̃nS − θ0S

∥
∥
∥

2
.

By Lemma 1, it is straightforward that

∥
∥
∥θ̃nS − θ0S

∥
∥
∥

2

2
= OP

(
p2 + r

n

)

.

Therefore it follows that

min
s∈S |θ̃ns | > η −

√
p2 + r

n
OP (1)

and finally Pr(min
s∈S |θ̃ns | > 0)→ 1.
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Now we show the asymptotic normality part. Note that from Lemma 2 the
estimator θ̃

nS satisfies the following first order equation:

−2nEn
[
φs(Y −ΦTSθ̃

nS)
]
+λnŵssgn(θ̃ns)I (s ∈ S\{1, . . . , p2}) = 0 for s ∈ S.

Since θ0s = 0 for ∀s ∈ Sc and ε = Y −ΦTSθ0S, this equation can be written

−2nEn
[
φsΦ

TS(θ0S − θ̃
nS)

]
− 2nEn(φsε)

+ λnŵssgn(θ̃ns)I (s ∈ S \ {1, . . . , p2}) = 0 for s ∈ S.

Therefore, we have

√
nΣS(θ̃nS−θ0S) =

√
nEn(ΦSε)−

λn

2
√
n

ŵS sgn(θ̃nS)IS+
√
n(ΣS−Σ̂S)(θ̃nS−θ0S)

where IS = (01 . . . , 0p2 , 1p2+1, . . . , 1p2+r )T .

Let Dn = √nψTΣ
1/2
S (θ̃

nS − θ0S). Then Dn = T1 + T2 + T3, where

T1 = √nψTΣ
−1/2
S En(ΦSε),

T2 = − λn

2
√
n
ψTΣ

−1/2
S ŵS sgn(θ̃

nS)IS,

T3 = √nψTΣ
−1/2
S (ΣS − Σ̂S)(θ̃nS − θ0S).

Using similar techniques as in the proof of Zou and Zhang [32], we obtain Dn →d

N(0, σ 2). The result follows from Lemma 2 that with probability tending to 1,√
nψTΣ

1/2
S (θ̂

nS − θ0S) = Dn →d N(0, σ 2).

Proof of Theorem 2 We show the convergence rate of the value function of the
estimated policy. Observe that

E[ΦT (θ̂n − θ0)]2 = E[ΦTS(θ̂nS − θ0S)+ΦT

Sc (θ̂
nSc − θ0Sc )]2

≤ 2(θ̂
nS − θ0S)T E

[
ΦSΦTS

]
(θ̂
nS − θ0S)

+ 2E(θ̂
nSc − θ0Sc )T E

[
ΦScΦT

Sc

]
(θ̂
nSc − θ0Sc )

≤ 2B
∥
∥
∥θ̂nS − θ0S

∥
∥
∥

2

2
+ 2B

∥
∥
∥θ̂nSc − θ0Sc

∥
∥
∥

2

2
.

By Theorem 1, it is true that for any an
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P

(

a−1
n

∥
∥
∥θ̂nSc − θ0Sc

∥
∥
∥

2

2
> ε

)

≤ P(∃ s ∈ Sc, θ̂s �= 0)→ 0,

and since
∥
∥
∥θ̂nS − θ0S

∥
∥
∥

2

2
= OP (

p2+r
n
), we have

E[ΦT (θ̂n − θ0)]2 ≤ OP

(
p2 + r

n

)

+ oP (1)

= OP

(
p2 + r

n

)

.

Hence, using Theorem 1 of Qian and Murphy [15], we obtain

V (π0)− V (π̂) ≤E[ΦT (θ̂n − θ0)]2

≤OP

[(
p2 + r

n

)(1+η)/(2+η)]
.

Proof of Lemma 1 The PRO-aLasso estimator minimizing the objective function
(3) can be re-written as

θ̂n(λn) = arg min
θ
nEn(Y −ΦT θ)2 + λn

p∑

s=p2+1

ŵs |θs |.

We know that for s ∈ {1 . . . , p}, the estimator θ̂n(λn) satisfies the first order equa-

tion:−2nEn
[
φs(Y −ΦT θ̂n(λn))

]
+λnŵssgn(θ̂ns(λn))I (s ∈ {p2+1, . . . , p}) = 0,

where sgn(θs) = 1 if θs > 0, sgn(θs) = −1 if θs < 0, and sgn(θs) ∈ [−1, 1] if
θs = 0 for any θs ∈ R. This implies

−2nEn
[
Φ(Y −ΦT θ̂n(λn))

]
+ λnŵ sgn(θ̂n(λn))I = 0,

where I = (01, . . . , 0p2 , 1p2+1, . . . , 1p)T . Note that assumption (A4) implies
λmin(Σ̂ − Σ) ≤ λmax(Σ̂ − Σ) →p 0. Then by the Courant-Fischer min-max
Theorem, we have λmin(Σ) + λmin(Σ̂ − Σ) ≤ λmin(Σ̂) and λmax(Σ̂) ≤
λmax(Σ) + λmax(Σ̂ − Σ). This implies λmin(Σ̂) →p b and λmax(Σ̂) →p B,
respectively, by assumption (A3). Also, note that the estimator θ̂n(0) satisfies

−2nEn
[
Φ(Y −ΦT θ̂n(0))

]
= 0. Therefore,

EnΦΦT (θ̂n(λn)− θ̂n(0)) = λnŵ sgn(θ̂n(λn))I

2n
,
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which yields

∥
∥
∥θ̂n(0)− θ̂n(λn)

∥
∥
∥

2

2
≤ λ2

n(
∑p

s=p2+1 ŵ
2
s )

4n2(λmin(Σ̂))2
,

since (sgn(θs))2 ≤ 1 for any θs ∈ R. Also, note that θ̂n(λn) − θ0 = (θ̂n(λn) −
θ̂n(0))+ Σ̂

−1
EnΦε. Then it follows that

∥
∥
∥θ̂n(λn)− θ0

∥
∥
∥

2

2
≤ 2

∥
∥
∥θ̂n(λn)− θ̂n(0)

∥
∥
∥

2

2
+ 2

‖EnΦε‖2
2

(λmin(Σ̂))2

≤ 2
λ2
n(
∑p

s=p2+1 ŵ
2
s )+ n2 ‖EnΦε‖2

2

n2(λmin(Σ̂))2
,

≤ 2
λ2
np1 + ‖nEnΦε‖2

2

n2(λmin(Σ̂))2
,

where we set ŵs = 1 for all s ∈ {p2 + 1, . . . , p} in the last inequality. Note
that E ‖nEnΦε‖2

2 = E(
∑n

i=1 Φiεi)
2 = nσ 2E(ΦTΦ) = nσ 2 Tr(E(ΦTΦ)) =

nσ 2 Tr(Σ) ≤ nσ 2pλmax(Σ). Thus,
∥
∥
∥θ̂n(λn)− θ0

∥
∥
∥

2

2
= OP (p/n).

Proof of Lemma 2 Denote θ̃
nS = (α̃Tn , β̃

T

nJ)T . We show that (θ̃
nS, 0) satisfies the

KKT condition of (3) with probability tending to 1. It suffices to show that

Pr(∃ s ∈ Sc | − 2nEnφs(Y −ΦTSθ̃
nS)| > λnŵs)→ 0. (5)

Note that (5) can be regarded as the adaptive elastic-net problem when the L2
penalty is eliminated, and thus the proof follows Zou and Zhang [32].
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Hierarchical Continuous Time Hidden
Markov Model, with Application in
Zero-Inflated Accelerometer Data

Zekun Xu, Eric B. Laber, and Ana-Maria Staicu

Abstract Wearable devices including accelerometers are increasingly being used
to collect high-frequency human activity data in situ. There is tremendous potential
to use such data to inform medical decision making and public health policies.
However, modeling such data is challenging as they are high-dimensional, heteroge-
neous, and subject to informative missingness, e.g., zero readings when the device
is removed by the participant. We propose a flexible and extensible continuous-
time hidden Markov model to extract meaningful activity patterns from human
accelerometer data. To facilitate estimation with massive data we derive an efficient
learning algorithm that exploits the hierarchical structure of the parameters indexing
the proposed model. We also propose a bootstrap procedure for interval estimation.
The proposed methods are illustrated using data from the 2003–2004 and 2005–
2006 National Health and Nutrition Examination Survey.

Keywords Continuous-time hidden Markov model · Consensus optimization ·
Accelerometer data

1 Introduction

The development of the wearable technology has given rise to a variety of sensing
devices and modalities. Some of these devices, e.g., Fitbit or Apple Watch, can be
worn continuously and thereby produce huge volumes of high-frequency human
activity data. Because these data present little burden on the wearer to collect and
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provide rich information on the in situ behavior of the wearer, they have tremendous
potential to inform decision making in healthcare. Examples of remote sensing
data in healthcare include elder care, remote monitoring of chronic disease, and
addition management [3, 12, 18]. Accelerometers are among the most commonly
used and most widely studied types of wearable devices, they have been used both in
randomized clinical trials to evaluate treatment effect on activity-related impairment
[15, 21] and in observational studies to characterize activity patterns in a free-living
environment [12, 20, 36]. However, despite rapidly growing interest and investment
in wearable devices for the study of human activity data, a general and extensible
class of models for analysis of the resulting data is lacking.

We propose a continuous-time hidden Markov model for the modeling human
accelerometer data that aligns with scientific (conceptual) models of human activity
data; in the proposed model, latent states correspond to latent (unobserved) activ-
ities, e.g., resting, running, jumping, etc., that are shared across the population
yet the accelerometer signatures within these activities are allowed to vary across
subjects. Furthermore, differences across subgroups, e.g., defined by sex, age, or
the presence-absence of a comorbid condition, can be identified by aggregating
individual-level effects across these groups. This work is motivated in part by
the physical activity data set from the 2003–2004 National Health and Nutrition
Examination Survey (NHANES). In this study, human activity patterns were
measured at one-minute intervals for up to 7 days using the ActiGraph Model 7164
accelerometer [19, 29, 33]. Activity for each minute was recorded as an integer-
valued intensity-level commonly referred to as an activity count. In the study,
subjects were instructed to remove the device during sleep or while washing (to
keep it dry). Therefore, the observed data comprise high-frequency, integer-valued
activity counts for each subject with intervals of missing values corresponding to
when the device was removed.

The goal of paper is to use the observed data to characterize activity patterns of
each subject, subjects within pre-defined subgroups, and the population as a whole.
This is important because the estimated physical activity model can potentially
serve the following three purposes. On the subject level, the estimated activity
model can be used both for the prediction of future activities and the imputation
of missing activity readings. On the subgroup level, the estimated activity patterns
provide useful insights into clustering people based on their activity profiles. On
the population level, public policies can be designed based on the estimated activity
model so as to encourage everyday exercise and healthy life style.

Prior work on modeling activity counts has focused on aggregation and other
smoothing techniques. One common approach is to average the activity counts over
time for each subject and then compare the group means using two-sample t-tests
[33], analysis of covariance [12], or linear mixed effects models [7]. However, in
these approaches, averaging focuses on overall activity levels and may obscure
trends in activity type, activity duration, and transitions between activities. Another
approach is to use functional data analysis methods wherein the integer activity
counts are first log-transformed to fix the right-skewedness in the distribution
and the transformed activity modeled as a function of time of day and other
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covariates [11, 20, 36]. These approaches are best-suited for the identification of
smooth, cyclical patterns in the data whereas the observed accelerometer data are
characterized by abrupt (i.e., non-smooth) changes in activity levels.

Discrete-time hidden Markov models are another common approach to the
analysis of mobility data measured by wearable devices [13, 22, 28, 35]. In these
models, activity is partitioned into different latent behavioral states and the observed
activity count is dependent on the unobserved latent activity. The latent states evolve
according to a discrete-time Markov process and a primary goal is the correct
classification of the latent activity. To construct and validate these models requires
training data that are labeled by latent activity. However, the NHANES data, like
many accelerometer studies, are not labeled by activity. Furthermore, our goal
is to identify the dynamics of a patients evolution through these latent activities
including activity duration, activity intensity, and transitions between activities.
Discrete-time hidden Markov models have been used to model latent health states
and subsequently conduct inference for activity patterns within each state [2, 30, 32],
but the time scales in these applications are rather coarse (daily or weekly). By
contrast, the physical activity in the NHANES data is measured for each minute; this
results in a much larger data volume and the ability to provide are more complete
picture of activity dynamics.

A technical limitation of the discrete-time approach, is that it assumes that
the observations are equally spaced in time. Continuous-time hidden Markov
models (CTHMM) have been used to analyze the irregularly-sampled temporal
measurements [17, 23, 34]. The flexibility of the CTHMM comes at the expense of
increased computational cost, which makes it infeasible for large datasets without
modification. Liu et al. [17] developed an efficient learning algorithm for parameter
estimation in the CTHMMs. However, this algorithm is only suitable for either the
completely pooled or unpooled cases wherein all subjects are assumed to be either
completely homogeneous so that they share the same parameters, or completely
heterogeneous so that all parameters are subject-specific. Moreover, the algorithm
cannot estimate the effects of subject covariates and environmental factors on
activity counts.

We propose to model minute-by-minute accelerometer data using a hierarchi-
cal continuous-time hidden Markov model (HCTHMM). This model is aligned
with scientific models of activity as the latent states represent different types of
unobserved physical activities. The continuous-time Markov process for the latent
states evolution avoids having to perform imputation for missing yet allows for
the possibility that the temporal measurements are irregularly spaced. Furthermore,
the proposed model can incorporate both baseline subject covariates and time-
varying environmental factors. The proposed model is hierarchical in that it is
parameterized by: (1) subject-specific parameters to account for variability between
subjects; (2) subgroup-specific parameters parameters to account for similarity in
activity patterns within groups; (3) population parameters that are common across
all subjects. This specification allows us to pool information on some parameters
while retaining between-group and between-subject variability. We proposed an
estimator of these parameters that is based on consensus optimization using the
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alternating direction method of multipliers (ADMM). There is a vast literature on
the convergence properties of ADMM [4, 14, 31] which can be readily ported to the
proposed algorithm. Finally, we use the nonparametric bootstrap [9] to estimate the
sampling distributions of parameter estimators and to conduct statistical inference.

2 Model Framework

We assume that the observed data are of the form {Wi , Yi(Ti ),Xi (Ti )}ni=1, which
comprise n independent copies of the trajectory {W, Y (T),X(T)}, where: W ∈ R

p

are baseline subject characteristics; Y (T) = {Y (T1), . . . , Y (TK)} are the non-
negative integer activity counts at times T = (T1, . . . , TK) ∈ [0, 1]K ; and X(T) =
{X(T1), . . . ,X(TK)} are concurrent environmental factors such that X(·) ∈ R

q .
Both T and K are treated as random variables as the number and timing of
observations vary across subjects. We model the evolution of the observed data using
a hierarchical continuous-time hidden Markov model (HCTHMM), which we will
develop over the remainder of this section.

Let Si(t) ∈ {1, . . . ,M} denote the unobserved latent state for subject i =
1, . . . , n at time t ∈ [0, 1]. The latent state evolves according to a Markov
process indexed by: (1) an initial state distribution πi(m) � P {Si(0) = m)}
for m = 1, . . . ,M such that

∑M
m=1 πi(m) = 1; (2) a transition rate matrix

Qi = {qi(m, �)}m,�=1,...,M such that qi(m,m) = −∑
��=m qi(m, �). The transition

rate matrix, also known as the infinitesimal generator matrix, describes the rate
of movements between states in a continuous-time Markov chain [1, 24, 25];
the transition probabilities are derived from the transition rates through a matrix
exponential operation such that for k = 1, . . . , K − 1 and t > u, P t−u

i (m, �) �
P {Si(t) = �|Si(u) = m} = {e(t−u)Qi }m,�.

We assume that the conditional distribution of the activity counts is homogeneous
in time given the current latent state and environmental factors (to streamline
notation, we include baseline characteristics in the time-varying environmental
factors). For i = 1, . . . , n and m = 1, . . . ,M define gi,m(y; x) � P {Yi(t) =
y|Si(t) = m,Xi (t) = x}. Because longitudinal activity count data are zero-inflated,
we set gi,1(y; x) to be the probability mass function for a zero-inflated Poisson
distribution with structural zero proportion δi and mean λi,1 for state 1 such that

gi,1(y; x) = δi(x)1y=0 + {1− δi(x)}
{
λi,1(x)

}y exp
{
λi,1(x)

}

y! .

For m = 2, . . . ,M we model the activity counts using a Poisson regression model
so that

gi,m(y; x) =
{
λi,m(x)

}y exp
{
λi,m(x)

}

y! .
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For each subject i, and latent state m, we assume that functions δi(x) and λi,m(x)are
of the form

log

{
δi(x)

1− δi(x)

}

= bi,0,0 + x′bi,0,1,

log
{
λi,m(x)

} = bi,m,0 + x′bi,m,1,

where bi,0,0, . . . , bi,M,0 and bi,0,1, . . . ,bi,M,1 are unknown coefficients.
In the foregoing model description, all parameters are subject-specific so that

each subject’s trajectory can be modeled separately. However, in the HCTHMM,
some of the parameters are shared among pre-defined subgroups of the subjects. We
assume that subjects are partitioned into J such subgroups based on their baseline
characteristics W. For example, these groups might be determined by age and sex.
Subjects within the same group are though to behave more similarly to each other
than across groups. LetGi ∈ {1, . . . , J } be the subgroup to which subject i belongs,
and let nj denote the number of subjects in group j = 1, . . . , J .

The HCTHMM is a flexible multilevel model in that it allows for three levels
of of parameters: (1) subject-specific, (2) subgroup-specific, (3) population-level.
For example, one might let the intercepts in the generalized linear models for
state-dependent parameters be subject-specific to account for the between-subject
variability; let the initial state probabilities and the transition rate parameters depend
on group-membership, i.e. π i1 = π i2 and Qi1 = Qi2 for all i1, i2 such that
Gi1 = Gi2 ; and let the slope parameters in the generalized linear models for state-
dependent parameters be common across all subjects.

If all the observed time points are equally spaced and all the parameters are
subject-specific, the HCTHMM reduces to the subject-specific zero-inflated Poisson
hidden Markov model. If there are no covariates and all parameters are common for
all subjects, the HCTHMM reduces to a zero-inflated variant of the continuous-
time hidden Markov model [17]. The extension from the previous models to
the HCTHMM better matches the scientific goals associated with analyzing the
NHANES data but also requires new methods for estimation. Because of the
hierarchical structure in the parameters, joint parameter estimation is no longer
embarrassingly parallelizable as it would be in the case of its completely pooled
or unpooled counterparts.

3 Parameter Estimation

3.1 Forward-Backward Algorithm

For subject i = 1, . . . , n, let ai ∈ R
M−1 be the M − 1 free parameters in the initial

probabilities π i , and let ci ∈ R
M(M−1) be the M(M − 1) free parameters in the

transition matrix Qi . To simplify notation, write bi,0 � [bi,0,0, . . . , bi,M,0] ∈ R
M+1
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and bi,1 � [b′i,0,1, . . . ,b′i,M,1] ∈ R
q(M+1) to denote the parameters indexing the

generalized linear models for the activity counts in each state. Define the entire
vector of parameters for subject i to be θ i � [a′i , c′i ,b′i,0,b′i,1] ∈ R

(M+1)(M+q). The
likelihood function for subject i is computed using the forward-backward algorithm
[26] as follows. For subject i = 1, . . . , n, define the forward variables for k =
1, . . . , K − 1, and m = 1, . . . ,M ,

α
Tk
i (m; θ i ) �Pθ i

{

Yi(T1), . . . , Yi(Tk), Si(Tk) = m
∣
∣XXXi(T1) = xT1 ,

. . . ,XXXi(Tk) = xTk

}

.

The initialization and recursion formulas are defined as

α
T1
i (m; θ i ) =πi(m; θ i )gi,m{Yi(T1); xT1 , θ i},

α
Tk+1
i (m; θ i ) =

[
M∑

�=1

α
Tk
i (�; θ i ){e(Tk+1−Tk)Qi }�,m

]

gi,m{Yi(Tk+1);

xTk+1 , θ i},

where m = 1, . . . ,M and k = 1, . . . , K − 1. The negative log-likelihood for θ i

is therefore fi(θ i ) = −log
{∑M

m=1 α
TK
i (m; θ i )

}
. Define the joint likelihood for

θ = (θ1, . . . , θn) to be f (θ) =∑n
i=1 fi(θ i ).

To compute the conditional state probabilities in the HCTHMM, we need to
generate a set of auxiliary backward variables analogous to the forward variables
defined previously. For subject i = 1, . . . , n, define the backward variables for
k = 1, . . . , K , and m = 1, . . . ,M ,

β
Tk
i (m; θ i ) �Pθ i

{

Yi(Tk+1), . . . , Yi(TK)
∣
∣Si(Tk) = m,

XXXi(Tk+1) = xTk+1 , . . . ,XXXi(TK) = xTK

}

.

The initialization and recursion formulas are

β
TK
i (m; θ i ) =1,

β
Tk
i (m; θ i ) =

M∑

�=1

{e(Tk+1−Tk)Qi }m,� gi,�{Yi(Tk+1); xTk+1 , θ i}

β
Tk+1
i (�; θ i ),
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where m = 1, . . . ,M . The probability of state m for subject i at time t is

γ ti (m; θ i ) � Pθ i {Si(t) = m|Yi(T1), . . . , Yi(TK)}

= αti (m; θ i )βti (m; θ i )
∑M

m=1 α
t
i (m; θ i )βti (m; θ i )

,

where t = T1, . . . , Tk , m = 1, . . . ,M , and i = 1, . . . , n. The mean probability of
state m among subjects in group j is thus

φj (m; θ) = 1

nj

∑

{i:Gi=j}
ηi(m; θ i ), j = 1, . . . , J,

where ηi(m; θ i ) = 1

K

K∑

k=1

γ
Tk
i (m; θ i ), m = 1, . . . ,M.

The mean state probabilities φj (m; θ) can be interpreted as the mean proportion of
time spent in latent state m for subjects in group j , whereas ηi(m; θ i ) represents the
mean proportion of time spent in state m for subject i.

3.2 Consensus Optimization

If all sets of parameters are subject-specific, then the maximum likelihood estimates
for the parameters can be obtained by minimizing f (θ) using the gradient-based
methods which can be parallelized across subjects. However, in the general setting
where parameters are shared across subgroups of subjects, such paralellization is
no longer possible. Instead, we use the consensus optimization approach to obtain
the maximum likelihood estimates in the HCTHMM, which is performed via the
alternating direction method of multipliers (ADMM) [4]. We use the Bayesian
Information Criterion (BIC) to select the number of latent states M .

Let D denote a contrast matrix such that Dθ = 0 corresponds to equality of
subgroup-specific parameters within each subgroup and equality of all population-
level parameters across all subjects. The maximum likelihood estimator solves

min
θ
f (θ) s.t. Dθ = 0.

For the purpose of illustration, suppose that: (1) the intercepts in the generalized
linear models for state-dependent parameters are subject-specific; (2) the initial
state probabilities and the transition rate parameters are subgroup-specific; (3) the
slope parameters in the generalized linear models for state-dependent parameters are
common across all subjects. Then Dθ = 0 is the same as restricting (1) ai1 = ai2
for all Gi1 = Gi2 ; (2) ci1 = ci2 for all Gi1 = Gi2 ; (3) bi,1 = b1.
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In our illustrative example, the maximum likelihood estimator solves

min
θ ,z

f (θ)

s.t. Aiθ i = Biz, i = 1, . . . , n,

where z represents the set of all subgroup-specific and common parameters in θ

so the linear constraint Aiθ i = Biz is equivalent to Dθ = 0. The corresponding
augmented Lagrangian is

Lρ(θ , z, ξ) = f (θ)+ ξT (Aθ − Bz)+ ρ

2
‖Aθ − Bz‖2

2

=
n∑

i=1

{fi(θ i )+ ξTi (Aiθ i − Biz)+ ρ

2
‖Aiθ i − Biz‖2

2},

where ξ = [ξ ′1, . . . , ξ ′n],

A =

⎡

⎢
⎢
⎢
⎣

A1 0 · · · 0
0 A2 · · · 0
...

. . . 0
0 0 · · · An

⎤

⎥
⎥
⎥
⎦
,B =

⎡

⎢
⎢
⎢
⎣

B1

B2
...

Bn

⎤

⎥
⎥
⎥
⎦
.

Here ξ are the Lagrange multipliers and ρ is a pre-specified positive penalty

parameter. Let θ̃
(v)

n , z̃(v)n , ξ̃
(v)

n be the vth iterates of θ , z, ξ . Then, at the iteration
v + 1, the ADMM algorithm updates are

θ − update :∇f (θ̃ (v+1)
n )+ AT ξ̃

(v)

n + ρAT (Aθ̃
(v+1)
n − Bz̃(v+1)

n ) = 0,

z− update :BT ξ̃
(v)

n + ρBT (Aθ̃
(v+1)
n − Bz̃(v)n ) = 0,

ξ − update :ξ̃ (v+1)
n − ξ̃

(v)

n − ρ(Aθ̃
(v+1)
n − Bz̃(v+1)

n ) = 0,

where the most computationally expensive θ -update can be programmed in parallel
across each i = 1, . . . , n as

θ i − update :∇fi(θ̃ (v+1)
i,n )+ AT

i ξ̃
(v)

i,n + ρAT
i (Ai θ̃

(v+1)
i − Bi z̃(v)n ) = 0.

The gradients ∇fi(·) for subject i’s HMM parameters can be computed using
Fisher’s identity [5] based on the efficient EM algorithm proposed in [17]. The
details are included in Supplementary Materials. The use of gradients is needed
in our model both due to the ADMM update and the covariate structure. Even when
there are no covariates and all parameters are shared across subjects, the gradient
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method is still faster than the EM algorithm because M-step is expensive in the
zero-inflated Poisson distribution.

3.3 Theoretical Properties

Define θ̂n to be the maximum likelihood estimator for θ and let θ� denote its
population-level analog. The following are the sufficient conditions to ensure: (1)
almost sure convergence of θ̂n to θ� as n→ ∞, and (2) numerical convergence of

θ̃
(v)

n to θ̂n as v→∞.

(A0) The true parameter vector θ� for the unconstrained optimization problem
min

θ
f (θ) is an interior point of �, where � is a compact subset of Rdim θ .

(A1) The constraint set C � {θ ∈ �;Dθ = 0} is nonempty and for some r ∈ R,
the set {θ ∈ C; f (θ) ≤ r} is nonempty and compact.

(A2) The observed time process (Tk : k ∈ N) is independent of the generative
hidden Markov process: the likelihood for the observed times do not share
parameters with θ .

(A3) There exist positive real numbers 0 < κ− ≤ κ+ < 1 such that for all subjects
i = 1, . . . , n, κ− ≤ P

Tk+1−Tk
i (m, �) ≤ κ+ for k = 1, . . . , K − 1 and m, � =

1, . . . ,M , almost surely and gi,m(y; x) > 0 for all y ∈ supp Y for some
m = 1, . . . ,M .

(A4) For each θ ∈ �, the transition kernel indexed by θ is Harris recurrent and
aperiodic. The transition kernel is continuous in θθθ in an open neighborhood
of θθθ�.

(A5) The hidden Markov model is identifiable up to label switching of the latent
states.

(A6) Denote by emin(θ) and emax(θ) to be the smallest and largest eigenvalues
of ∇2f (θ). There exist positive real numbers ε and �− ≤ �+ such that
infθ :‖θ−θ�‖2<ε emin(θ) ≥ �− > 0 and supθ :‖θ−θ�‖2<ε

emax(θ) ≤ �+ <∞.

Assumption (A0)–(A2) are mild regularity conditions whereas (A3)–(A5) are
standard in hidden Markov models [8]; together they ensures that the model is
well-defined. Assumption (A4) avoids non-standard asymptotic behavior associated
with non-smooth functionals. Assumption (A6) states that the smallest and largest
eigenvalues for the Hessian of the negative log likelihood function are bounded
away from 0 and infinity in an open neighborhood of the true parameter values,
indicating the local Lipschitz differentiability and convexity, which are used in [31]
to establish the numerical convergence in the ADMM algorithm.

Theorem 3.1 Under assumptions (A0)–(A5), as Ti →∞ for i = 1, . . . , n,

(i) θ̂n converges to θ� almost surely as n→∞,
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(ii) suppose (A6) also holds, then θ̃
(v)

n converges numerically to θ̂n in an open
neighborhood of θ� as v→∞.

The first part of Theorem 3.1 states the almost sure convergence of the con-
strained maximum likelihood estimator θ̂n to the true parameter value θ�. This
can be shown using the uniform convergence results of the log likelihood [8] for
each subject-specific hidden Markov model, along with the feasibility assumption
(A1) and identifiability assumption (A5). The second part of Theorem states the
numerical convergence of the ADMM algorithm. This is anticipated by [4] which
identifies general conditions for the numerical convergence of the residual, the
dual variable, and the objective function. [31] extended the convergence to the
primal variable by adding the Lipschitz continuity and convexity assumptions. The
details for those assumptions, as well as the proof for Theorem 3.1, are included in
Supplementary Materials.

For i = 1, . . . , n, define the estimator for the mean proportion of time in state
m in group k as φ̂j,n(m), j = 1, . . . , J,m = 1, . . . ,M , and the estimator for the
mean proportion of time in state m as η̂i,ki where ki is the number of observed time
points for subject i. The following result characterizes the limiting behavior of the
estimated time in each state.

Theorem 3.2 Under (A0)–(A5), as ki → ∞ for i = 1, . . . , n, nj → ∞ for j =
1, . . . , J ,

(i) φ̂j,n(m; θ̂n) converges to μj (m; θ�) almost surely,
(ii)

φ̂j,n(m;θ̂n)−μj (m;θ̂n)√
σ 2
j (m;θ̂n)/nj

converges in distribution to a standard normal random vari-

able, where μj (m; θ̂n) = E[η̂i,ki (m; θ̂n)], σ 2
j (m; θ̂n) = V ar[η̂i,ki (m; θ̂n)] for

all i such that Gi = j.

A proof of the preceding result is given in the Supplementary Materials, which
follows from the almost sure convergence of a bounded continuous function and
the central limit theorem. In principle, μj (m; θ̂n) can be obtained from the limiting
distribution of a stationary continuous-time Markov chain, which is determined by
the transition as a function of θ̂n. However, it is generally not easy to compute the
standard error analytically for the estimated mean state probabilities. Instead, we
use a stratified nonparametric bootstrap [9] in which we resample subjects with
replacement from each subgroup.

4 Simulation Experiments

We study the finite sample performance of the proposed estimator for the state
probabilities using a suite of simulation experiments. We simulate minute-by-
minute activity counts of length T ∼ Uniform(500, 2500) for n = 20 and n = 200
subjects, where half of the subjects are male (Group 1) and the other half female
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(Group 2). The intervals between consecutive time points are independently drawn
from {1, 2, . . . , 10} with equal probabilities. For each subject, we assume 2/5 of the
observations are from weekends and 3/5 of the observations are from weekdays.

The activity counts are generated using a three state continuous-time zero-
inflated Poisson hidden Markov model. We assume that during the weekend the
log mean activity decreases by 10%, 20%, 30% in states 1, 2, 3 respectively, while
the log odds of zero in state 1 increases by 10%, so that

log

{
δi(x)

1− δi(x)

}

= bi,0,0 + 0.1× I{Weekend}ti ,

log
{
λi,1(x)

} = bi,1,0 − 0.1× I{Weekend}ti ,
log

{
λi,2(x)

} = bi,2,0 − 0.2× I{Weekend}ti ,
log

{
λi,3(x)

} = bi,3,0 − 0.3× I{Weekend}ti ,

where bi,0,0
iid∼ N(−1, 0.12), bi,1,0

iid∼ N
{
log(50), 0.12

}
, bi,2,0

iid∼ N {log(300),

0.12
}
, bi,3,0

iid∼ N
{
log(700), 0.12

}
are subject-specific intercepts; the weekend

effect is assumed to be common across all subjects.
The initial probabilities for male are (U1, U2, 1 − U1 − U2), where

U1, U2
iid∼Uniform(0.2, 0.4); for female, the initial probabilities are (U3, U4, 1 −

U3 − U4), where U3
iid∼Uniform(0.6, 0.8), U4

iid∼Uniform(0.1, 0.2). The transition
rate matrix for male is

⎡

⎣
−U5 − U6 U5 U6

U7 −U7 − U8 U8

U9 U10 −U9 − U10

⎤

⎦ ,

where U5, . . . , U10
iid∼ Uniform(0.05, 0.15); for female, the transition rate matrix is

⎡

⎣
−U11 − U12 U11 U12

U13 −U13 − U14 U14

U15 U16 −U15 − U16

⎤

⎦ ,

where U11, U12
iid∼ Uniform(0.05, 0.1), U13, U15

iid∼ Uniform(0.3, 0.4), and

U14, U16
iid∼ Uniform(0.1, 0.2).

Table 1 shows the bias and standard error of the estimators for different
hierarchies of parameters in the HCTHMM via 500 simulations. In both cases,
the biases are small due to the fact that the length of each individual series is
large. As the sample size increases, the standard errors become smaller which is
expected. Figure 1 shows the average runtime (s) for each ADMM iteration scales
linearly with the number of subjects. It generally takes some 30–100 iterations for
the algorithm to converge. Table 2 compares the mean coverage probability of the
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Table 1 The bias and standard error for the estimated population and subgroup-specific parame-
ters in HCTHMM

n = 20 n = 200

Parameter Bias (s.e.) Bias (s.e.)

Population parameters

Slope for State 1 zero odds 0.0021 (0.0422) 0.0032 (0.0134)

Slope for State 1 Poisson mean 0.0001 (0.0034) 0.0001 (0.0011)

Slope for State 2 Poisson mean 0.0016 (0.0053) 0.0019 (0.0018)

Slope for State 3 Poisson mean 0.0036 (0.0120) 0.0046 (0.0044)

Subgroup-specific parameters

Initial probabilities (Male) 0.0169 (0.0022) 0.0165 (0.0008)

Initial probabilities (Female) 0.0152 (0.0069) 0.0284 (0.0038)

Transition rates (Male) 0.0038 (0.0029) 0.0011 (0.0006)

Transition rates (Female) 0.0099 (0.0089) 0.0016 (0.0012)

The metric is Euclidean norm for population parameters, and Frobenius norm for subgroup-specific
parameter vectors

Fig. 1 Average runtime (s)
using eight cores on a Unix
cluster for each ADMM
iteration in different
configurations (number of
subjects, length of each
series)

Table 2 Comparisons on the
mean coverage probability for
the 95% and 99% bootstrap
confidence intervals for the
mean proportion of time in
each latent state between
subject-specific HMM and
HCTHMM (n = 200)

Subject-specific HMM HCTHMM

State Male Female Male Female

95% C.I.

1 0.942 0.942 0.942 0.950

2 0.944 0.938 0.950 0.960

3 0.946 0.936 0.960 0.944

99% C.I.

1 0.982 0.988 0.986 0.994

2 0.986 0.984 0.986 0.988

3 0.978 0.980 0.994 0.992
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95% and 99% bootstrap confidence intervals for the mean proportion of time in each
latent state between a baseline subject-specific HMM and the proposed HCTHMM
when the sample size is 200. As we can see, the baseline subject-specific HMM
suffers undercoverage (coverage probability smaller than nominal level), while the
proposed HCTHMM recovers the nominal level on average in both the 95% and
99% cases.

5 Application

The motivating application is a human physical activity data set from the 2003–2004
National Health and Nutrition Examination Survey (NHANES), which is publicly
available at the National Center for Disease Control (CDC) website https://wwwn.
cdc.gov/Nchs/Nhanes/2003-2004/PAXRAW_C.htm. There are 7176 participants in
the study, and for each participant we have minute-by-minute activity counts for up
to seven days. As the subjects were supposed to remove the accelerometer when
washing, there are prolonged intervals during the day when accelerometer readings
are zeros. We further impose the following two inclusion/exclusion criteria,

• Subjects whose age is between 20 and 60 are included.
• Subjects with very few measurements are excluded.

The first criterion specifies the scope of inference. The second criterion exclude
subjects with very few non-missing data available (<500 min out of 7 days). There
are 2467 subjects who satisfy both conditions, which constitute more than 95% of
those whose age is between 20 and 60. Further, we split those subjects by their
baseline characteristics (gender, age) into 4 subgroups. Subgroup 1 consists of 608
male subjects with age from 20 to 40; subgroup 2 consists of 557 male subjects with
age from 40 to 60; subgroup 3 consists of 712 female subjects with age from 20 to
40; and subroup 4 consists of 590 female subjects with age from 40 to 60.

Table 3 summarizes the related work on the length of an extended period of
zero activity counts to be defined as missingness. In this paper, we choose to define
missingness as a sustained interval of greater than or equal to 20 consecutive zero
activity counts, which is the most commonly used criterion in the literature. Most

Table 3 The definition of
missing interval in terms of
consecutive minutes of zeros
in the literature on human
activity

Literature Definition of missing

[7] 30 min

[6] 20 min

[33] 60 min

[27] 20 min

[10] 20 min

[29] 60 min

[16] 20 min

https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/PAXRAW_C.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/PAXRAW_C.htm
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missingness occurs between 10 pm to 8 am, which is the sleep time for most of
the subjects. There is still sporadic missingness during other periods of time in the
day, which may correspond to activities like swimming or bathing. The missingness
periods are removed during the data preprocessing. The average proportion of zeros
after removing the missingness is around 25%, so that zero-inflation is still an issue
to be considered in the modeling. In the data preprocessing, activity counts greater
than 1500 (<5%) are truncated at 1500 to ensure the numeric stability of the fitting
algorithm.

To apply the HCTHMM model on the activity counts data, we need to select
the number of latent states as well as the hierarchy for different sets of the
parameters. The weekend effect is adjusted for in the Poisson and zero-inflated
Poisson regression on the activity counts in each latent state. By the minimum
BIC criterion as shown in Table 4, we select the type IV HCTHMM with six
latent states, where the intercepts in the state-dependent generalized linear models
for logit zero proportion in state 1 and log Poisson means in the all states are
subject-specific, while the initial probabilities, transition rates, and the slopes in the
state-dependent generalized linear models are subgroup-specific. This final model
indicates the baseline zero proportion and mean activity counts in each latent state
vary across subjects. For all the other parameters, the between-subgroup variability
is more prominent than the within-subgroup variability. Figure 2 shows the 99%
confidence interval for the estimated proportion of time spent in latent activity states
for each subgroup in 03–04 NHANES. There are several interesting findings. First,
younger men spend less time in the low intensity activity states (state 1, 2) than
older men and women. Second, men spend less time than women in the medium
intensity activity states (state 3, 4). Third, men spend more time than women in
the high intensity activity states (state 5, 6). To validate the results, we apply the
HCTHMM methodology to 05–06 NHANES, which has the same study setup and
data structure as the 03–04 NHANES. Figure 3 shows the 99% confidence interval
for the estimated proportion of time spent in latent activity states for each subgroup
in 05–06 NHANES, which has a similar pattern as seen in 03–04 NHANES.

Table 4 Summary of BIC
from model selection

Model specifications BIC

5 states, type I 248,009,082

6 states, type I 202,804,081

7 states, type I 203,261,150

6 states, type II 200,457,217

6 states, type III 198,808,738

6 states, type IV 198,807,080

In type I models, all parameters are subject-specific. In type II
models, all parameters are subject-specific except the slopes,
which are population parameters. In type III models, the
intercepts are subject-specific; the slopes are population; the
initial probabilities and transitions are subgroup-specific. In
type IV models, all parameters are subgroup-specific except
the intercepts, which are subject-specific



Hierarchical Continuous Time Hidden Markov Model, with Application in. . . 139

Fig. 2 The 99% bootstrap confidence intervals for the estimated proportion of time spent in latent
activity states by subgroup in 03–04 NHANES

Fig. 3 The 99% bootstrap confidence intervals for the estimated proportion of time spent in latent
activity states for each subgroup in 05–06 NHANES

6 Conclusions

We propose HCTHMM to be valid inference strategy for the longitudinal activity
data. Within this framework, we can estimate the mean state probabilities for
different subgroups of subjects as well as quantify the uncertainty. Our findings
are consistent with previous literature on human physical activity [12, 19, 33, 36],



140 Z. Xu et al.

which indicated that the physical activity can be classified into different categories
by intensity, and that the activity level decreases as a result of aging. Moreover,
women tend to spend more time in lighter intensity activity, whereas younger men
tend to have periods of higher intensity activities.

In the future, this HCTHMM framework can be extended to the controlled
clinical studies to estimate certain treatment effects in a specific cohort of patients.
We can also allow for time-varying covariates in the transition rates. Moreover,
when some model parameters are truly subject-specific or subgroup-specific, it may
be more powerful to model them as random so that tests based on variance com-
ponents can be constructed to test their effects. Another modification is to extend
the latent continuous-time Markov process to a semi-Markov process. This will be
scientifically interesting because it is reasonable to assume that the current latent
state not only depends on the most recent past state but also on the history of the state
trajectory. However, all these changes are computationally expensive, especially on
such large-scale high-frequency data. Corresponding estimation methods have to be
developed before the application becomes feasible.
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Privacy Preserving Feature Selection via
Voted Wrapper Method for Horizontally
Distributed Medical Data

Yunmei Lu and Yanqing Zhang

Abstract Feature selection plays a crucial step for data mining algorithms via
eliminating the curse of dimensionality. Many feature selection approaches are
developed for analyzing centralized data on the same location. In recent years, multi-
source biomedical data mining methods have been developed to analyze different
distributed databases at different locations such as different hospitals. However,
a major concern is privacy of sensitive personal medical records in different
hospitals. Therefore, as the needs for new privacy preserving distributed data mining
algorithms increase, it is necessary to develop new privacy preserving feature
selection algorithms for biomedical data mining. In this paper, a privacy preserving
feature selection method named “Privacy Preserving Feature Selection algorithm
via Voted Wrapper methods (PPFSVW)” is developed. This method was tested
on six benchmark datasets under two testing scenarios. Our experimental results
indicate that the proposed algorithm workflow can work effectively to improve the
classification performance regarding accuracy via selecting informative features and
genes. Besides, the proposed method can make the classifier achieve higher or same
level classification accuracy with fewer features compared with those sophisticated
methods, such as SVM-RFE, RSVM and SVM-t. More importantly, the individual
private information can be protected during the whole feature selection process.

Keywords Privacy preserving · Horizontally distributed data mining · Support
vector machine · SVM · Feature selection · PAN-SVM

1 Introduction

Data mining approaches have been widely used to analyze the massive amount of
data in lots of fields such as medical data, consumer purchase data and census data,
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and they have become increasingly important tools to discover useful knowledge.
However, the potential divulged sensitive information during the data mining
process has been raised as a private issue and the high dimension of data attributes
often makes a curse to data mining tasks, thus data mining tasks have been
encountering more and more challenges as new concerns and applications emerge.
Many approaches and techniques have been developed to address the two issues
separately; novel approaches that could integrate solutions for these two issues are
also in high demand.

One of the sources for emerged concerns for privacy during data mining process
is its application in distributed scenario. Recently, assembling datasets maintained
by different sources have become increasingly common, and applying data mining
techniques on the aggregated datasets may build more reliable prediction models
and attain useful patterns, which benefits for medical research, improving customer
service and homeland security, and so forth. However, this multi-data source system
might divulge sensitive information about individuals. It thus leads to increasing
concerns about privacy during the process of data mining, which in turn prevents
different parties from sharing information. For examples, the Centers for Disease
Control (CDC) may want to identify the trends of some disease to understand
its progression via data mining techniques but has no relevant data. Insurance
companies that have considerable data are unwilling to share these data due to
patient privacy concerns.

A number of state-of-the-art techniques of privacy preserving data mining have
been developed to leverage the privacy and mining issue. Among these methods,
the most popular ones are randomization [1], k-anonymity [2] and l-diversity
[3]. Methods based on such technologies usually employ data transformation
techniques or add some noise to protect privacy and sensitive data. The granularity
of representation of data is usually reduced after transformation to mitigate the risk
of divulging privacy, which results in the loss of information or effectiveness of data
management and data mining algorithms. However, it is inevitable and usually a
trade-off between privacy and information loss.

Privacy Preserving Distributed Data Mining (PPDDM) provides another way
to address the privacy issue without accessing the actual data values to avoid
the disclosure of information beyond the final results at the era of more and
more available datasets on multi-site. In such case, a variety of cryptographic
protocols usually needed to communicate with different parties. Secure Multiparty
Computation (SMC) is a possible way to make it possible of distributed data mining
without divulging sensitive information. The problem PPDDM overlaps closely
with the field of cryptography for determining the secure multiple computation,
which aims to design secure protocols to make sure those different parties, can
perform joint computation by providing inputs without actual disclosure or sharing
the individual inputs. In this paper, a SMC method was employed to protect data,
details will be expressed in the Method section.

High dimension of attributes is another issue for data mining. The huge number
of data attributes or dimensions often makes a curse to data mining tasks. Feature
selection techniques address the issue of dimensionality reduction by selecting
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some available subset of features via predetermined selecting criteria to decrease
the complexity of data mining tasks and thus improve the performances (such as
classification accuracy) of data mining algorithms. Take the classification problem
into consideration, by doing feature selection, irrelevant and redundant features are
usually eliminated. Thus the computational complexity of classification procedure
is reduced, and a better classifier with generalization ability will be constructed, and
the risk of over-fitting is also be reduced. Therefore, feature selection plays a vital
role in optimizing classification procedure.

Feature selection methods can be grouped into two categories according to their
searching directions: forward selection and backward selection. Forward selection
usually starts searching relevant features from an empty subset and adds one or
several ones at each step until a stop criterion is met. On contrast, the backward
selection methods usually start searching for the whole feature space and eliminate
or remove one or some at each step, until some the predetermined stop criteria
are reached. Besides, feature selection algorithms can also be classified into two
categories based on the relationship of features: feature ranking and subset selection.
In the ranking list, the importance of each gene is unequal. Usually the most top
one is supposed to be the most important one, and so forth; while in the subset
selection, each feature is equal, they work together making the classifier obtain the
best performance.

Moreover, feature selection methods can also be classified into three main
groups: filter, wrapper and embedded approaches [4] according to different selecting
strategies and procedures of algorithms. The filter methods usually take account
of the statistical properties of features and rank them according to some criteria
of relevant information. This step is always before the classification step and is
entirely independent of data mining algorithms; they are usually fast. Just as the
name implies, the wrapper methods often wrapped the feature selection step in the
process of mining algorithms. Compared with the filter methods, wrapper methods
have the advantages of taking account into the performance of mining algorithms
or tasks. Thus a better classification model will be built with high performance,
says high classification accuracy. However, it needs to repeatedly train and test
the data and build classification model at each step when a subset of features are
selected; the computational complexity thus increased sharply. In recent years,
many approaches of wrapper feature selections are developed [5–9]. The third
kind of feature selection approaches is named embedded method, which performs
feature selection in the process of the building data mining model by adding or
modifying the optimizing process of classification [10, 11]. Different from the
wrapper methods, the embedded methods could better use of the available data
without splitting the dataset into training and validation set, and thus convers faster
by reaching a solution. However, the embedded methods are usually specific to
given learning approaches, while the wrapper methods usually take the learning
machine as a black box and thus are remarked as universal and simple. Therefore, a
general framework by employing SMC for privacy issue and wrapper methods for
feature selection was proposed in this paper, which could be applied in a general
scenario. This paper only focuses experiments on medical data.
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The feature selection methods mentioned above [4–11] are developed for
centered data, however, assembling datasets and sharing information from multiple
locations such as health relevant organizations have become increasingly common
in recent years [12–14]. It is not only to reduce cost, but also to dig much more
useful knowledge from a wider picture by applying data mining techniques on
the aggregated datasets and build much more reliable prediction. As the needs
for privacy preserving distributed data mining algorithms increase, the needs for
privacy preserving feature selection algorithms also grow rapidly, and the privacy
concerns of sharing data by distributed parties also brings significant challenges to
feature selection. Data can be distributed among multiple sites by horizontally or
by vertically. For horizontally partitioned data, the individual records are distributed
across multiple parties, and each of them has the data with all the same attributes;
while for vertically partitioned data, each party has the same set of entries, but
the individual entries may contain different attributes. In the current work, data are
distributed horizontally.

In the current work, a Privacy Preserving Feature Selection algorithm via Voted
Wrapper methods (PPFSVW) [15] is proposed. PPFSVW is based on our previous
work PAN-SVM [16] to protect individual privacy. Compared with traditional
centered feature selection methods, it could be applied to distributed scenario,
especially with the ability of protecting sensitive information from being divulged.
Besides, PPFSVW inherits the advantages of other three popular feature selection
methods to avoid overfitting and outliers. It was tested on six benchmark datasets,
including gene expression datasets by partitioned horizontally. The experimental
results demonstrated that the proposed method could achieve higher classification
accuracy, with less number of selected features. Details about PPFSVW are
described in Methods section, and the experimental results are shown in the Results
and Discussion section, followed by the Conclusion at last.

2 Methods

2.1 Definition of Privacy

It is important to define privacy before measuring it and protect its confidentiality.
However, this could be the hardest part, since it is inevitable to get totally different
answers from different individuals when asking what privacy is. Privacy can
mean different things to different audience, at different environments, in various
contexts; and across different cultures. Fortunately, no matter how different the
boundaries and content of privacy are among various groups and cultures, the
common principles should be the same. It is most common that individuals consider
something inherently special or sensitive as privacy, like HIV disease. First of
all, privacy is not security, even though the domain of privacy partially overlaps
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security, which could include the appropriate use and how to protect the individual
information.

According to the view of Ruth Gavison [17], the privacy can be defined in
the term of access that others have to us, as well as our information. A general
definition of privacy must to be one which is measurable of values and actionable.
The common definition [18] of privacy in the community of cryptography limits
the information that is leaked by the distributed computation function, while
information learned from the output regards as no-privacy leakage, since it is
inevitable and designed by the secure computation function. For example, if two
millionaires would like to know who is richer without telling the other his/her
net worth. A secure computation function must return the result without revealing
private information. Suppose one has $10,000,000 net worth, and he knows that he
is richer from the function output. Therefore, he can learn that the net worth of the
other one is less than $10,000,000, and this information leakage is inevitable.

In addition, privacy preserving is not only in the interest of individual but also
to the public. On the other hand, privacy preserving is for the sake of both people
and the society. Nowadays, many laws are issued to protect privacy, and various
techniques are developed to prevent privacy from disclosure when using personal or
public databases.

2.2 Secure Multiparty Computation

Secure Multiparty Computation (SMC) is derived from Yao’s Millionaires’ problem
[19], which states that two millionaires would like to know who is richer without
telling each other their net worth. There are two basic adversarial models in SMC,
and one is named Semi-Honest. In this model, the participants will follow the secure
protocol, but keep curious and may attempt to dig some sensitive information from
the received data from the other parties during the execution of the protocol. The
other one is Malicious model, in which case, the participants may do anything to
learn sensitive information, such as abort the protocol at any time, send sophisticated
inputs to others, or send spurious messages and collude with other malicious parties.

The semi-honest model may seem questionable for preserving privacy if a party
can be trusted to follow the secure protocol, why don’t we trust them with the data?
The following example can explain this. Consider the situation that several credit
card companies would like to detect fraud via jointly building data mining models,
and every business has been authorized to access that data. Once the data processing
is completed, the data are supposed to be removed, since storing data brings the
companies responsibility and cost to save the data. If there is a way that can build
data mining models across distributed parties without actually accessing the original
data, then they can save the responsibility and cost to protect the data from other
parties other than their own.

However, no matter how secure the computation is, it is inevitable to leak some
information. Still take the two millionaires as an example; once one party knows
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another party is richer or poorer, it can learn the upper bound or the lower bound
of their net worth. In general, two kinds of information will leak, the information
leaks from the secure computation function, and the information leaks from the
computation process. Whatever is leaked from the former case, it is unavoidable as
long as the function has to be computed. The latter case of information leakage
during secure computation is provable prevented. Another key point is how to
demonstrate that the security of the secure protocol used in the privacy preserving
distributed data mining. It is common to restrict the secure against polynomial time
adversary. According to the SMC literature, the composition theorem [20] is a very
useful theorem.

Composition Theorem for the semi-honest model: Suppose that g is privately reducible to
f and that there exists a protocol for privately computing f. Then there exists a protocol for
privately computing g.

The composition theorem states that if the sub-protocols are proved secure, then the
entire protocol is secure. Therefore, if algorithms can be efficiently implemented
on the sub-protocols, it can significantly improve the overall efficiency. Thus a lot
of privacy preserving distributed data mining algorithms can be developed follow-
ing the sub-protocols. These sub-protocols can be described using homomorphic
encryption techniques [21]. Homomorphic encryption techniques allow operations
such as search, comparison on encrypted data and obtain the same results as
those based on plaintext data. Decryption becomes unnecessary during the whole
computing process. Thus data and computation do not need put in a third party, the
risk of revealing information to other can be deduced. The following protocols only
use homomorphic encryption, and all of them are secure in the semi-honest model
with no collusion. According to the composition theorem, they can be combined to
produce new privacy-preserving algorithms.

Secure Sum Protocol In this secure protocol, the sum of values from each site

will be securely calculated. Let v denote the sum and be represented as: v =
s∑

i=1
vi ,

where v is known in the range [0 . . . n]. In this secure sum protocol [22], one site
will be assumed as a master site, numbered 1, and 2 . . . s for the left sites. Normally,
site 1 will uniformly generate a random number R in [0 . . . n], adds it to its local
value v1, and then sends the sum of R + v1 mod n to site 2. Since R is chosen
uniformly from [0 . . . n], and then R + v1 mod n also distributes uniformly in
this region. Thus site 2 learns nothing from this value. Site 2 receives this sum from
site 1, and sends S + v2 mod n to site 3, where S is the sum received from site 1,

and v2 is its local value. In general, the site l receives: v = R+
l−l∑

i=1
vi mod n. Since

v is uniformly distributed, site l learns nothing from another site. It then computes

the sum and passes it to next site by v = R +
l∑

i=1
vi mod n.

The last site s also performs the above steps and sends the sum to site 1, since
only site 1 knows the value of R, and then it can subtract R from this sum value to
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get the actual result. The details of how this method operates are introduced in [22].
This protocol is proved secure for the semi-honest model but faces a clear problem
of leakage information if collusion exists. For example, if the site l − 1 and l + 1
collude, and tell each other the values they sent/received, they can determine the
value at the site l. Different from the randomization, k-anonymity and l-diversity
methods, which usually employ data transformation techniques or add some noise
to protect privacy and sensitive data, and the granularity of representation of data
is usually reduced after transformation to mitigate the risk of divulging privacy;
the Secure Sum Protocol has potential information leakage if collusion between
parities exists, otherwise, information will be protected. Therefore, we do not add
measurement to assess the privacy preservation ability in the experiment section.

2.3 PAN-SVM Classifier

The present proposed method is classified into a wrapper feature selection category,
and as mentioned above, wrapper methods usually integrate feature selection step in
the process of mining algorithms. When applied to a classification problem, methods
used for selecting features are closely related to classifiers. In the current work, one
of our previous works, Privacy-Aware Non-linear SVM (PAN-SVM) [16] is used to
be as the classifier, which guarantees the private information to be protected during
the whole mining process. The framework of PAN-SVM for distributed data sources
is shown as in Fig. 1.

PAN-SVM contains three layers to finish corresponding functions. The bottom
layer protects private individual data information and makes data invisible to other
parties through the encrypting protocol of Secure Sum Protocol (SSP) [22]. Data
will be encrypted by SSP before being sent to the remote miner. The SSP works
like this: assume that there are three or more data sources numbered from 1 to S
and no collusion, site 1 is designed as the master site. Site 1 randomly generates a
number X ~ uniform[1,N] and adds it to its local sum value V1, and sends the sum
X + V1 mod N to site 2. Since X is uniformly selected from 1~N, X + V1mod N
is also uniformly distributed in the range of 1~N. Therefore, site 2 knows nothing
about the local value of site 1. Site 2 receives the sum and adds it to its local sum
of V2 mod N, and then passes the new sum to the next site without disclosing its
local values, and so on, until to the first site. Since the sum is always uniformly
distributed in 1 ~ N, each site cannot learn the private information from the previous
sites. Details about this protocol could be found from [22]. The protocol works for
an honest majority and assumes no collusion between sites.

The master site grabs the encrypted data from the other sites and builds a global
classification model in the Medium layer. Since kernel matrix calculation is one of
the most time consuming parts during the whole process of SVM, sophisticated
apporaches that could alleviate the computation burden should be employed to
accelerate the whole training process. In the proposed framework, the low-rank
Nystrom method [23] is used to approximate the kernel matrix.
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Fig. 1 Proposed framework of PAN-SVM

The Nystrom method randomly picks l global landmark points, named a set of L,
from all data sources, and then infers the kernel value of K(xi, xj) implicitly from the
relations of xi and xj and with these landmarks. Let Ri be a 1× l vector that contains
kernel values between xi and L respectively: Ri = [K(xi, L1), K(xi, L2), . . . , K(xi,
Ll)] and similarly, Rj = [K(xj, L1), K(xj, L2), . . . , K(xj, Ll)]; finally, let A be the l× l
kernel matrix between any pair of l andmarks. Then, K(xi, xj) can be approximated
by Eq. (1).

K
(
xi, xj

) = RiA
−1RTj (1)

By approximation using the Nystrom method, the kernel values between any pair
of samples can by replaced by Eq. (1). However, the quality of Nystrom approx-
imation highly depends on landmarks (sampled data); many sampling schemes
[23–26] have been proposed to select the best landmarks. Among those state-of-the-
art sampling approaches, [24] shows that the k-means clustering method can achieve
significant performance and provide a low approximation error bound; helpfully, the
k-means clustering algorithm is also simple to implement. Therefore, the k-means
algorithm is adopted to select landmarks in the system and the data centers that are
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selected by k-means at each single site are treated as landmarks, which are used in
the medium layer.

In the medium layer, the computation cost of kernel matrix can be further reduced
via eigenvalue decomposition method. Zhang et al. in [27] show that the kernel
matrix K can be decomposed into the form of K = FFT . If a kernel matrix of n
samples can be decomposed into FFT, where F is a n × m matrix, then F can be
treated as virtual inputs for a linear SVM model by mapping X from the original
higher p-dimensional space into a much lower m-dimensional space, p � m.
Equation (1) can be rewritten in a general form as in Eq. (2).

K = RA−1RT = R
(
U�UT

)−1
RT = R

(
UT�−1U

)
RT (2)

Here “A” is an l × l symmetric and positive semi-definite matrix; thus Eigen-
decomposition of A can be expressed as A = U�UT, where U and � are the
eigenvectors and eigenvalues of A, respectively. If K is decomposed into a K= FFT

form, it is obvious that F can be approximated as in Eq. (3):

F = RUΛ−1/2 (3)

It is interesting to note in Eq. (3) that it is not necessary to calculate any pair of
the kernel values K(xi, xj) across data sources at all. Only the kernel value between
each data point and the chosen landmarks need to be calculated, which can then be
mapped on to the eigenvectors of the landmarks. Since approximating all pairs of (xi,
xj) that are located at different locations requires a large amount of communication
among data sources, which does not scale well when the number of data or data
sources is significant. Since only small sizes of samples are used to approximate the
kernel matrix, a large number of complex communication and computation cost are
avoided.

Moreover, the non-linear SVM is converted into a linear one by the Nys-
trom approximation and matrix decomposition techniques with the kernel matrix
K = FFT , where F can be regarded as virtual points. Thus the global “linear”
classification model has been constructed with virtual points of F = RUΛ−1/2. The
representations of all data in the non-linear space will be converted into virtual
points in the final linear space, thus a linear SVM model is built in the medium
layer.

To further improve the efficiency of the proposed model, the linear search and
cutting-plane techniques introduced in [28] are employed in the top layer. The
proposed framework provides a good solution to preserve sensitive information via
secure sum protocol. It can also be applied to large datasets very efficiently since
data size is reduced by sampling. Although the classification accuracy of PAN-
SVM sacrifices slightly because of sampling when compared with the traditional
SVM, such as LIBSVM with RBF kernel, the training process is speeded up when
compared with other distributed classification methods; especially the individual
private information is preserved. Details can be found from [16].
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2.4 Wrapper Methods

2.4.1 SVM-RFE

Just as the name implies, the wrapper methods often wrapped the feature selection
step in the process of mining algorithms. Compared with the filter methods, wrapper
methods have the advantages of taking account into the performance of mining
algorithms or tasks; thus a better classification model will be built with high
performance, says high classification accuracy. However, it needs to repeatedly train
and test the data and build classification model at each step when a subset of features
are selected; the computational complexity thus increased sharply. In recent years,
many approaches of wrapper feature selections are developed [5–9]. Among these
methods, the Recursive Feature Elimination (RFE-SVM) proposed by Guyon [5] is
very popular. RFE-SVM employs Support Vector Machine as a classifier and aims
to find the best subset with r features by ranking the whole feature set according to
a criterion of w2, which is formulated in Eq. (4):

ωi =
m∑

i

αiyixi (4)

where ω is the weighted vector of SVM classifier, αi is nonzero if xi is support
vector, otherwise, αi equals to zero. Therefore, this criterion can also be explained
as the weighted sum of support vectors, which tries to achieve high performance
by maximization the separation margin in SVM. The elimination procedure can be
described by three steps:

• Step 1: Train SVM classifier.
• Step 2: Calculate the ranking scores ω2 for all features according to equation.
• Step 3: Eliminate the feature (features) which has (have) the smallest ranking

scores.

The elimination procedure iterates the above steps until all features are elim-
inated and ranked, top features that make the classifier attain highest accuracy
performance will be selected. However, over-fitting is an important issue in machine
learning study, since SVM-RFE is aiming to find the features that maximum the
separation margin, over-fitting also exists.

2.4.2 RSVM

SVM-RFE works very well for many problems but data with outliers. To improve
the robustness to noise and outliers, another Recursive Support Vector Machine
(RSVM) is proposed in [7]. RSVM shares the same iterative procedures with SVM-
RFE, but different ranking criterion, which is formulated by Eq. (5). RSVM also
starts from the whole feature set and backwardly eliminates the feature with the
least ranking score.
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ranking score = ωjm
+
j m

−
j (5)

where ωj represents the weight of the jth feature, m+j and m−j denote the means of

jth feature in the positive and negative class, respectively. Unlike SVM-RFE, this
method of RSVM takes account into the classification information via weight, as
well as the data itself by calculating the means of each class. By this recursive
iteration step, a feature subset with smaller and smaller size will be selected, and
the classification can also be performed on the selected features at each step. Top
features with high selected-frequency will be chosen as the final selection results.
However, this method is greatly affected by the class label, since the class means are
used to calculate the ranking criterion, which makes the selection method unstable.

2.4.3 SVM-t

To conquer the disadvantages of RSVM and develop a stable selection method, Tsai
et al. [9] proposed another wrapped feature selection method named SVM-t. It also
follows the workflow of SVM-RFE and RSVM to eliminate least important features
through backward selection procedure but employs t-statistics to be as the ranking
criterion, as denotes in the Eq. (6).

∣
∣tj

∣
∣ = μ+j − μ−j

√((
s+j

)2
/n+

)

+
((
s−j

)2
/n−

) (6)

where n+ and n- denotes the number of support vectors for the positive class (+)
and negative class (−), respectively. μ+j and μ−j indicate the means of the jth feature

in class+ and class−; s+j and s−j represent the standard deviations of the jth feature
in class+ and class−, respectively. SVM-t just uses the most important subset of
data, says support vectors, to evaluate the importance of each feature and construct
the ranking criterion. It works well when data have significant statistical differences.

2.5 Workflow of PPFSVW

The above mentioned three feature selection methods employ the wrapper strategy
and use SVM as the classifier. SVM-RFE directly chooses the weight vector as a
ranking criterion, but it does not consider class information and has a high risk of
over-fitting. RSVM outperforms SVM-RFE in the way of improving its robustness
to noise and outliers, but unstable to class label assignment. SVM-t uses only the
support vectors information and outperforms other two methods when considering
distinct variance between informative and non-informative genes, but it is only
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suitable for linear support vector machine. Although any of the three methods are
not perfect or suitable to every scenario, they share some common of returning a
ranking list of features, and thus users could choose different subsets of top ranked
features according to their contributions to classification accuracy. Besides, the
iteration process is simple and easy to implement.

The current work proposed a feature selection framework aiming to inheriting
the advantages of the above three methods via voting in the form of classification
accuracies returned by the three methods. In the meanwhile protect individual
privacy via employing the privacy preserving framework of PAN-SVM. PPFSVW
[15] shares the common workflow with SVM-RFE, RSVM, and SVM-t, but has two
main differences from them in the way of choosing eliminating feature at each step.
First, PPFSVW employs PAN-SVM as classifier, which can guarantee the privacy
to be preserved; second, it calculates the ranking scores for each feature according
to Eqs. (4), (5) and (6), respectively, and then eliminate the least important one
via voting by the three measurements. The workflow of PPFSVW is described as
following and presented in Fig. 2.

• Step 1: Train PAN-SVM, privacy preserved classifier.
• Step 2: Calculate ranking scores using the criteria of SVM-RFE, RSVM, and

SVM-t according to Eqs. (4), (5) and (6),
• Step 3: Rank features according to three measuring scores obtained from step 2,

and obtain three ranking lists, respectively.
• Step 4: Choose one feature that needed to be eliminated at this iteration according

to the following way:
• Step 4.1: Select one least important feature from each list obtained from Step 3

waiting for eliminating as following:
• Step 4.2a): If two of the selected three least important features are the same, then

this feature win this votes, and will be selected at this step. Selected feature at this
step will be removed from the feature list and put in the head of another ranking
list of features. The program here will go to step 1 until all features are ranked;
otherwise, go to step 4.2b);

• Step 4.2b): if the selected three least important features from Step 4.1 are
different from each other, calculating the classification accuracy by fivefold
cross validation for classifiers, which with the three selected features eliminated,
respectively. Feature that has highest negative affection to the classifier will be
selected and removed. Once selected, the program will go to step 1 until all
features are ranked.

• Step 5: Return a ranked list of removed features at each step, with most top
features with highest importance.

In step 3, three feature ranking lists will be generated according to the three
ranking criteria formulated in Eqs. (4), (5) and (6), and the least important feature
in each ranking list will be voted in step 4 to decide which one should be eliminated
finally at this iteration. If the three temporally selected features are different from
each other, PPFSVW will train three classifiers, which have one of the three features
removed respectively. For example, features 1, 2, and 3 are three temporally selected
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Fig. 2 Workflow of PPFSVW

features waiting for eliminating, PPFSVW will train classifier number one with
feature 1 being removed and get the classification accuracy of 90%, classifier
number two with feature 2 being eliminated and get accuracy of 93%, and classifier
number three with feature 3 being eliminated and get accuracy of 92%. Number two
classifier obtains the highest accuracy by eliminating feature 2, so feature 2 makes
the highest negative affection to classifier. In other word, it is the least important one
among the three temporally selected features; therefore, PPFSVW will eliminate
feature 2 at this iteration and restore features 1 and 3. The eliminated feature will be
put at the head in the queue of the ranking list. This procedure will repeat until all
features are eliminated and ranked, with the most important feature at the top and
least important one at the bottom (the tail in the queue).
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3 Experiment Results and Discussions

3.1 Datasets

The performance of PPFSVW is assessed on six benchmark datasets, including
three microarray datasets with different numbers of features, which are shown in
Table 1. C and γ are the penalty parameter for SVM and a free parameter for Radial
Basis Function kernel (RBF) used in SVM. They are generated by fivefold cross
validation.

The Diabetes and Ionosphere data are downloaded from LIBSVM repository
[29], the Wisconsin Breast Cancer data (WBC) is downloaded from University
of California, Irvine (UCI) Machine Learning Repository [30]. The colon data
[31–33] contain 62 samples including 22 normal samples and 40 colon cancer
samples. Each sample is described by the expression levels of 2000 genes. The
Leukemia data [31, 33], originally introduced by Golub et al., in 1999, contains
47 ALL (Acute lymphoblastic leukemia) leukemia patients and 25 AML (Acute
myelogenous leukemia) leukemia patients with expression levels of 7129 genes.
DLBCL data [34], the distinct types of diffuse large B-cell lymphoma (DLBCL)
with expression levels of 4026 genes, contains 47 samples, 24 of them are from
“germinal center B-like” group and 23 are “activated B-like” group.

3.2 Performance Assessing

The performance of PPFSVW will be assessed by the measurement of classification
accuracy, which is formulated by the Eq. (7), Where TP represents True Positive,
TN denotes True Negative, FP means False Positive and FN states False Negative.

Accuracy = T P + TN

T P + FP + TN + FN
(7)

The Cross Validation (CV) method is often used to assess the performance
of classifier due to lack of data that can be utilized as separate testing samples

Table 1 Details about datasets used for PPFSVM

Dataset # of samples # of features C γ

Diabetes (DIA) 768 8 512.0 0.0078125
Ionosphere 351 34 8.0 0.5
Colon 62 2000 32.0 0.0078125
Leukemia 72 7129 128.0 0.0001220703125
Lymphoma (DLBCL) 47 4026 2.0 0.0078125
Breast Cancer (WBC) 569 30 128.0 8.0
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(like fivefold cross validation, Leave One Out method). During the cross-validation
process, data will be randomly split into k (k-fold) subsets, and at each training
round, k−1 subsets are used as training data, and the left 1 subset is used as testing
set. However, as pointed by [7], the feature selection results may vary due to even
a single difference in the training set, especially for small datasets. Many feature
selection methods are done with all samples, and the cross-validation step is only
done during the classification process, which makes the feature selection external
to the cross-validation procedures, and leads to ‘information leak’ in the feature
selection step. It calls this kind of error made by cross-validation as a CV1 error
[35–37]. Also points out that CV1 error may severely bias the evaluation of feature
selection. The work in [7] also demonstrates the existing of the bias via simulation
data and suggests another error evaluation method, named CV2. Under the CV2
scenario, a separate dataset is used as test samples and leaves out of training set
before any feature selection step. In the current work, PPFSVW will be tested and
evaluated under the two testing schemes. We use ‘Whole’ to denote the experiment
is conducted under CV1, which means the whole dataset is involved in the training
and feature selection process, and ‘Separate’ to denote that the testing is conducted
under CV2, which means testing data are separate from the training one. fivefold
cross-validation is used to generated the classification accuracy at each selection
iteration, the classification accuracies in the following sections are average value of
10-times running.

3.3 Feasibility and Effectiveness

The effectiveness and feasibility of the proposed method is assessed via conducting
experiments on PAN-SVM, as well as a popular regular SVM package of LIBSVM
[29, 38]. The experiments are conducted under both CV1 and CV2 testing scenario,
and the results are presented in Tables 2 and 3, respectively. We use ‘Voted’ to denote
the classification accuracy which is obtained after applying the proposed algorithm
and ‘NoSelection’ denotes the accuracy that is obtained without a feature selection
procedure. For LIBSVM, it follows the proposed workflow and selection strategies,
only uses LIBSVM instead of PAN-SVM as the classifier.

From the results shown in Tables 2 and 3, we can observe that the classification
accuracy for most of the classifiers that conduct by LIBSVM, as well as PAN-
SVM, are improved after being applied the proposed feature selection methods
PPFSVW when assessed under both testing scenarios, which indicates that the
proposed feature selection is feasiable and works well. If summate all of the
improvements together, they are 26.76% versus 39.99% for LIBSVM and PAN-
SVM under CV1 scenario, and 36.32% versus 41.82% under CV2 scenario,
respectively. Moreover, the results also show that PAN-SVM works better than
LIBSVM, especially under CV1 testing scenario, the classification accuracies in
sum have been improved 39.99% (PAN-SVM) v.s 26.76% (LIBSVM). The reason
is probably because LIBSVM can achieve slight higher prediction accuracy under
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Table 2 Classification accuracy (%) before and after feature selection under CV1 scenario

CV1 LIBSVM PAN-SVM
Datasets Voted NoSelection Improvement Voted NoSelection Improvement

DIA 77.91 76.54 1.37 80.13 76.76 3.37
Ionosphere 97.50 93.78 3.72 96.29 93.03 3.27
Colon 100.00 82.30 17.70 100.00 82.00 18.00
Leukemia 94.29 93.10 1.19 94.29 89.65 4.64
WBC 98.23 96.10 2.13 96.46 96.69 −0.23
DLBCL 91.11 90.46 0.65 100.00 89.05 10.95
SUM 559.04 532.28 26.76 567.17 527.17 39.99

Table 3 Classification accuracy (%) before and after feature selection under CV2 scenario

CV2 LIBSVM PAN-SVM
Datasets Voted NoSelection Improvement Voted NoSelection Improvement

DIA 75.95 75.63 0.32 79.35 76.48 2.86
Ionosphere 97.50 93.04 4.47 96.86 93.94 2.91
Colon 100.00 82.79 17.21 100.00 81.92 18.08
Leukemia 92.86 90.00 2.86 92.86 87.14 5.72
WBC 98.41 93.54 4.87 96.64 96.64 0.00
DLBCL 95.56 88.95 6.61 100.00 87.76 12.24
SUM 560.27 523.94 36.32 565.70 523.88 41.82

CV1 than that under CV2 before applying the proposed feature selection procedure;
thus the improvement in sum reduced, which probably indicates that LIBSVM has
the problem of over-fitting, whereas, the accuracy imporvement achieved by PAN-
SVM under CV1 and CV2 has no significant difference; therefore it may say that
PAN-SVM can reduce or avoid the risk of over-fitting when compared with regular
SVM.

The experimental results are also represented in bar charts in Figs. 3 and 4
to show the effectiveness of PPFSVW via classification accuracy improvements
achieved by PAN-SVM and regular SVM of LIBSVM. “Whole” denotes that
experiment is conducted under CV1 scenario, means the whole dataset was involved
in the feature selection procedure; while “Separate” represents the experiment
was conducted under CV2 test scenario with separate dataset as testing samples.
PAN-SVM is shown as ‘PrivacySVM’, aiming to emphasize its difference from
the regular SVM at the aspect of privacy preserving property, and ‘RegularSVM’
denotes LIBSVM.

Figure 3 shows the results conducted by PAN-SVM. The classification accuracy
has been significantly improved, especially for the Colon, DLBCL and Leukemia
microarray data, and improvements are 18.08%, 12.24% and 5.72% under CV2
testing scenario, and 18%, 10.95% and 4.64% under CV1 testing situation. The
classification accuracy is also improved for datasets DIA and Ionosphere, and they
are 2.86% and 2.91%, 3.37% and 3.27% for CV2 and CV1, respectively. There is



Privacy Preserving Feature Selection via Voted Wrapper Method for. . . 161

Fig. 3 Performance improvement achieved after feature selection by PAN-SVM

Fig. 4 Performance improvement achieved after feature selection by LIBSVM

no improvement for WBC datasets under CV2 and a slight sacrifice under CV1.
Besides, from Fig. 3 we can also observe that the classification accuracy can be
improved slightly higher by PAN-SVM under CV2 test situation than that under
CV1 test scenario, when compared with the total improvements added from each
dataset, but there is no significant difference (41.82% vs. 39.99% in total) between
the improvements obtained under CV1 and CV2.

Figure 4 shows the results conducted by the regular SVM of LIBSVM. Similar
to the results obtained by executing PAN-SVM, the classification accuracy has been
significantly improved after executing the proposed feature selection procedure for
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Colon and DLBCL microarray dataset under CV2 test situation, they are 17.21%
and 6.61%, respectively. However, the “Voted”classification accuracy of LIB-SVM
for DLBCL dataset is only 95.56%, which is 100% for PAN-SVM under CV2,
and 91.11% verus 100% under CV1, respectively. These results may indicate that
PPFSVW works better for microarray datasets, which always include small sample
size and much higher gene number.

3.4 Comparison with Other Feature Selection Methods

3.4.1 Classification Accuracy Improvement

We firstly conducted our experiments on the six benchmark datasets and compared
some of the results obtained by the proposed algorithm in this paper with those
obtained by other state-of-the-art methods, such as Fisher-SVM, FSV, RFE-SVM
and KP-SVM [5, 39]. The accuracies obtained from these four methods shown in
Table 4 are cited from [39]. DIA, WBC, and Colon are three common datasets which
are used as the benchmark datasets in paper [39] and in the current work.

There is no privacy preserving issue or testing scheme in [39], therefore, we
can compared our experimental results conducted via regular SVM under CV1
test situation, which are shown in the last column in Table 4, from which we can
observe that the proposed method of PPFSVW outperforms the other methods
for all of the three datasets DIA, WBC, and Colon. Besides, experimental results
obtained by LIBSVM under CV2 and by PAN-SVM are also listed in Table 4 for
a better comparison, and the results show that the proposed algorithm in this paper
outperforms all the other four state-of-the-art methods.

Furthermore, we also conduct our experiments on the six benchmark datasets
described in Table 1 and compare the results obtained by PPFSVW with those
obtained by SVM-RFE, RSVM, and SVM-t. The classification accuracies achieved
by different methods under two test scenarios are shown as in Figs. 5, 6, 7, and 8 in
the form of bar charts and the results of accuracy improvement achieved by these
four methods are shown in Tables 5, 6, 7, and 8, respectively.

From Fig. 5 and Table 5, we can observe that all of the four methods, SVM-
RFE, RSVM, SVM-t, as well as the proposed method of PPFSVM in this paper
can significantly improve the classifier predicting performance after executing the

Table 4 Classification accuracy after feature selection achieved by different methods

Datasets
Fisher-
SVM FSV

RFE-
SVM

KP-
SVM

Privacy
SVM
(CV2)

Privacy
SVM
(CV1)

Regular
SVM
(CV2)

Regular
SVM
(CV1)

DIA 76.42 76.58 76.56 76.74 79.35 80.13 75.95 77.91
WBC 94.7 95.23 95.25 97.55 96.64 96.46 98.41 98.23
Colon 87.46 92.03 92.52 96.57 1.00 1.00 1.00 1.00
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Fig. 5 Comparison of classification accuracy achieved by PAN-SVM under CV2

Fig. 6 Comparison of classification accuracy achieved by PAN-SVM under CV1

feature selection procedure for most datasets except the WBC dataset. However,
different methods have different behaviors when working with various datasets. For
example, the method of SVM-t works better on Ionosphere dataset, but achieves
worse classification results when compared with the other three methods on the
microarray datasets, which contain much more features, and fails to improve the
classifier’s predicting performance for WBC datasets. RFE, RSVM, and PPFSVW
can achieve almost the same level accuracy improvement for DIA, Colon, WBC and
DLBCL datasets, but slightly lower for Ionosphere dataset and higher on Leukemia
data. Compared with the total sum improvement on all datasets, RFE-SVM defeats
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Fig. 7 Comparison of classification accuracy achieved by LIBSVM under CV2

Fig. 8 Comparison of classification accuracy achieved by LIBSVM under CV1

Table 5 Accuracy improvement achieved by different methods via PAN-SVM under CV2

SVM-RFE (%) RSVM (%) SVM-t (%) PPFSVW (%)

DIA 2.86 2.99 2.60 2.86
Ionosphere 1.77 2.63 3.77 2.91
Colon 18.08 18.08 18.08 18.08
Leukemia 8.57 5.72 5.72 5.72
WBC 0.00 0.00 −0.35 0.00
DLBCL 12.24 12.24 12.24 12.24
Sum 43.53 41.66 42.06 41.82
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Table 6 Accuracy improvement achieved by different methods via PAN-SVM under CV1

RFE (%) RSVM (%) SVM-t (%) PPFSVW (%)

DIA 2.71 2.71 2.71 3.37
Ionosphere 2.69 1.27 1.55 3.27
Colon 18.00 18.00 18.00 18.00
Leukemia 6.06 3.21 6.06 4.64
WBC −0.41 −0.23 −0.76 −0.23
DLBCL 10.95 10.95 10.95 10.95
Sum 40.01 35.91 38.52 39.99

Table 7 Accuracy improvement achieved by different methods via LIBSVM under CV2

RFE (%) RSVM (%) SVM-t (%) PPFSVW (%)

DIA 0.05 0.18 0.32 0.32
Ionosphere 4.11 4.47 4.47 4.47
Colon 17.21 17.21 17.21 17.21
Leukemia 2.86 1.43 0.00 2.86
WBC 3.99 4.16 4.87 4.87
DLBCL 2.16 2.16 4.38 6.61
Sum 30.37 29.61 31.24 36.32

Table 8 Accuracy improvement achieved by different methods via LIBSVM under CV1

RFE (%) RSVM (%) SVM-t (%) PPFSVW (%)

DIA −0.85 0.07 −0.85 1.37
Ionosphere 3.72 4.08 3.72 3.72
Colon 17.70 17.70 17.70 17.70
Leukemia 1.19 −0.24 −1.67 1.19
WBC 1.07 1.25 2.49 2.13
DLBCL 0.65 0.65 2.87 0.65
Sum 23.47 23.50 24.26 26.76

all other three feature selection methods benefiting from its higher improvement on
the Leukemia data.

The results in Fig. 6 and Table 6 show the classification performance and
comparison of classification accuracy improvements that have been achieved by
SVM-RFE, RSVM, SVM-t and PPFSVM under CV1 test situation using a separate
testing sample set. These results indicate a similar pattern made by these four
feature selection methods via PAN-SVM under CV1 to that under CV2. All
of these four methods can improve the classifier’s ability to predict unknown
samples, for DIA, Ionosphere, Colon, Leukemia and DLBCL datasets, and achieve
a significant improvement for microarray datasets. The performance improvement
has no significant difference among these four methods.
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Figures 7 and 8 show the comparison of classification accuracies by using LIB-
SVM as the classifier for SVM-RFE, RSVM, SVM-t and the proposed algorithm
workflow in this paper. Tables 7 and 8 show accuracy improvements achieved by
these four different methods via employing LIBSVM. Each method is tested under
CV1, and CV2 testing mode and the accuracies at each iteration step are obtained
by fivefold cross-validation, as well as the final accuracy using the series of selected
features.

From Figs. 7 and 8, Tables 7 and 8, we can observe that all of these four methods
perform better under CV2 testing environment, which is similar to PAN-SVM.
However, the overall improvement achieved by LIBSVM under CV2 is much higher
than that under CV1 when summarizing all of the improvements together (as shown
in the last line in Tables 7 and 8) than PAN-SVM, the reason is probably there
exists overfitting for LIBSVM under CV1, and the regular SVM cannot achieve
higher or same level of predicting accuracy for separating testing samples under
CV2 scenario. Besides, when compared all the overall improvements achieved by
these four different methods, we can observe that the proposed workflow can make
the classifier achieve higher classification accuracy than the other three methods and
have significant improvements, no matter under CV1 or CV2 test environment. In
other word, the proposed workflow in this paper works better for regular SVM and
can preserve individual privacy when employing PAN-SVM as the classifier.

3.4.2 Number of Selected Features

We also compare the selected number of features by these four methods on datasets
DIA, Ionosphere, Colon, Leukemia, WBC and DLBCL, and only show the results
achieved by PAN-SVM under CV2 test situation. The results are represented as
curves in Fig. 9 and the detail descriptions are shown in Table 9, from which we
can observe that PPFSVW can make the classifier achieve the highest predicting
accuracy for DIA dataset by the top five features (with accuracy 79.35%), which
is the same as SVM-RFE and is fewer than 7 (79.48%) and 8 (79.09%) for
RSVM and SVM-t, respectively. For the Colon data, the classifier can achieve the
best classification performance with top 53 features (with accuracy 100%) after
conducting PPFSVW algorithms, but 63 (accuracy 100%), 61 (accuracy 100%) and
617 (accuracy 100%) for RFE-SVM, RSVM, and SVM-t, respectively.

For WBC data, the number of best-selected feature subset is 11 (accuracy
96.64%), which is fewer than 18 (accuracy 96.64%), 17 (accuracy 96.64%) and 21
(accuracy 96.28%) for SVM-RFE, RSVM, and SVM-t, respectively. For the three
datasets of DIA, Colon, and WBC, PPFSVW can not only select fewer features but
also keep the classifier with higher or almost same level of classification accuracy.
For the Ionosphere data, although PPFSVW selects a subset of features with a larger
number than other methods, it makes the classifier achieve the highest classification
performance. For the Leukemia and DLBCL data, PPFSVW is defeated by SVM-
RFE but still works better than RSVM and SVM-t with fewer features but the same
level of accuracy.
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Fig. 9 Comparison of accuracy as the number of selected features increases

Table 9 Selected feature number by different methods

DIA Ionosphere Colon Leukemia WBC DLBCL

RFE 5 (79.35) 12 (95.71) 63 (100) 4565 (95.71) 18 (96.64) 114 (100)
RSVM 7 (79.48) 12 (96.57) 61 (100) 6380 (92.86) 17 (96.64) 147 (100)
SVM-t 8 (79.09) 10 (97.71) 617 (100) 5420 (92.86) 21 (96.28) 166 (100)
PPFSVW 5 (79.35) 17 (96.86) 53 (100) 4826 (92.86) 11 (96.64) 121 (100)
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From these results, we can conclude that PPFSVW can make the classifier
achieve higher or same level of classification performance with fewer features,
especially when compared with RSVM and SVM-t. The selected six datasets
are different at their sample sizes and feature numbers; the other three existing
sophisticated methods outperforms each other on different datasets, but PPFSVW
can always make the classifier achieve competitive results compared with the other
three, which indicate that PPFSVW is much stable and robust.

4 Conclusions

In this paper, we proposed a privacy preserving feature selection method (PPFSVW)
via integrating three popular wrapper methods in the way of voting at feature
eliminating phase. PPFSVW is based on our previous work of PAN-SVM, which
is a privacy preserving framework for binary classification on SVM; therefore,
PPFSVM inherits the privacy preserving property of PAN-SVM and can protect
individual privacy during the procedure of feature selection. PPFSVW shares the
common workflow with RFE-SVM, RSVM, and SVM-t, but different from them
at the step of choosing to be eliminated feature at each iteration. It combines
the three criteria used by these three methods, and votes to be eliminated one. If
eliminating feature cannot be decided by voting, PPFSVW will construct classifiers
and compare the negative affection to classifiers which caused by those temporarily
selected three features, and the one with highest negative affection will be eliminated
at this iteration.

The feasibility and performance of the proposed workflow are assessed on six
benchmark datasets, including three microarray datasets, and they are different at
sample size and feature numbers. The experiments are also conducted under two
different testing situations, CV1 and CV2. Our experimental results indicate that
the proposed algorithm workflow can work effectively to improve the classification
performance regarding accuracy via selecting informative features and genes,
for both PAN-SVM with privacy preserving consideration and LIBSVM without
privacy consideration under CV1 and CV2. Besides, PPFSVW outperforms other
state-of-the-art feature selection methods of Fisher-SVM, FSV, RFE-SVM and
KP-SVM [5, 39] for DIA, Ionosphere and Colon datasets. Furthermore, we also
conducted the proposed workflow on PAN-SVM and LIBSVM and compared their
classification accuracies with those obtained from SVM-RFE, RSVM, and SVM-
t. The experimental results show that PPFSVW has no significant difference from
these three methods when employing PAN-SVM, but works better when conducting
on LIBSVM. The reason for this is because of the stability and ability of PAN-SVM
to reduce the risk of over-fitting. In addition, our experimental results also show
that PPFSVM can make the classifier achieve higher or same level classification
accuracy with fewer features when compared with SVM-RFE, RSVM and SVM-t.
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Improving Maize Trait through
Modifying Combination of Genes

Duolin Wang, Juexin Wang, Yu Chen, Sean Yang, Qin Zeng, Jingdong Liu,
and Dong Xu

Abstract In molecular breeding, trait improvement has been focused on explor-
ing genetic variations of single genes. To explore the potential of modifying
multiple genes simultaneously for trait improvement, we developed a systematic
computational method aiming at detecting complex traits associated with gene
interactions using a combination of gene expression and trait data across a set of
maize hybrids. This method represents changes of expression patterns in a gene
pair in uniform statistics and employs network topology to describe the inherent
genotype-phenotype associations at the systems level. We applied and evaluated
our method on several phenotypic traits measured on a set of maize hybrids across
2 years (2013 and 2014) and achieved consistent and biologically meaningful
results. Our results provide a subset of candidate gene pairs that have the potential
to improve several specific traits by gene expression enhancement or silence. Our

Duolin Wang and Juexin Wang contributed equally with all other contributors.

Electronic supplementary material The online version of this chapter (https://doi.org/10.1007/
978-3-030-33416-1_9) contains supplementary material, which is available to authorized users.

D. Wang · J. Wang · D. Xu (�)
Department of Electric Engineering and Computer Science, and Christopher S. Bond Life
Sciences Center, University of Missouri, Columbia, MO, USA
e-mail: wangdu@missouri.edu; wangjue@missouri.edu; xudong@missouri.edu

Y. Chen
Bayer U.S. Crop Science, Monsanto Legal Entity, Chesterfield, MO, USA

Current address: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
e-mail: yu.chen@lilly.com

S. Yang · Q. Zeng · J. Liu (�)
Bayer U.S. Crop Science, Monsanto Legal Entity, Chesterfield, MO, USA
e-mail: sean.yang@bayer.com; qin.zeng@bayer.com; jingdong.liu@bayer.com

© Springer Nature Switzerland AG 2020
Y. Zhao, D.-G. (Din) Chen (eds.), Statistical Modeling in
Biomedical Research, Emerging Topics in Statistics and Biostatistics,
https://doi.org/10.1007/978-3-030-33416-1_9

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33416-1_9&domain=pdf
http://dx.doi.org/10.1007/978-3-030-33416-1_9
mailto:wangdu@missouri.edu
mailto:wangjue@missouri.edu
mailto:xudong@missouri.edu
mailto:yu.chen@lilly.com
mailto:sean.yang@bayer.com
mailto:qin.zeng@bayer.com
mailto:jingdong.liu@bayer.com
https://doi.org/10.1007/978-3-030-33416-1_9


174 D. Wang et al.

work partially addresses the “missing heritability” problem in complex traits and
offers an alternative way for improving crop traits via modifying a combination of
multiple loci.

Keywords Maize · Complex trait · Yield improvement · Gene expression data
analysis · Network biomarker

1 Introduction

Continuously advancing crop yield is a long-term task and a formidable challenge
for crop breeders given the growing population and climate change. It is estimated
that 60% more food will be required by 2050 (compared to 2005) to meet human
nutrition needs [1]. Crop yield is a complex plant phenotype that is synthetically
impacted by different physiological and molecular traits varying with environment
and genetics. Under an identical controlled environment, the ideal trait for genetic
improvement of crop yield is one that is heritable and correlated to yield. After
these targeted traits have been identified, the next task is to determine how
genetic variations (i.e. genes) impact these traits. This type of investigation offers
opportunities to improve the traits by modifying the relevant genes via breeding
or transgenic approaches. For example, biomarkers can be developed based on the
gene information to assist in the selection of a relevant exchange of genetic materials
in breeding, or alternatively, gene candidates can be manipulated with altered
expression or coding sequences by transgenic or gene editing, especially using the
clustered regularly interspaced short palindromic repeats (CRISPR) technique to
achieve better trait efficacies. A significant yield improvement work has been done
for maize [2–4], which is one of the most important crops in the world since its
domestication in Central Mexico at least 9000 years ago [5].

While the traditional strategy assuming that genes are independent has
approached its limit [6], gene-gene interaction has attracted more and more interest
in genotype-phenotype relationship analysis in recent years. For example, in the
field of complex human diseases’ research, dysfunctional gene-gene interactions or
even dysfunctional regulatory networks have been identified [7, 8]. In genetics, the
interaction between genetic variations is also referred as “epistasis,” which indicates
that the effect of a specific genetic variant on a trait depends on the genotype
of another variant. Detecting epistasis also partly addresses the phenomenon of
“missing heritability” in a genome wide association study (GWAS) analyses [9,
10]. There are various computational tools for calculating the epistasis effects, such
as PLINK, a toolset for whole-genome association and population-based linkage
analysis [11], the Bayesian method (BEAM) [12], and multifactor-dimensionality
reduction (MDR) [13]. In our previous work, a Bayesian high-order interaction
toolkit (BHIT) was developed to detect associations between trait and genetic
epistasis in GWAS [14]. However, epistasis identified in GWAS may not be
actionable for trait improvement and trait-dependent gene expression analysis may
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help address the problem. The levels of gene expression in different crop lines reflect
inherited or genetic differences among these individuals, which can serve as the
basis for predicting gene combinations to be used in trait improvement. However,
few studies have been applied to breeding practices for detecting trait-dependent
interacting genes at the expression level.

Our primary objective is to detect interactions between genes that are associated
with phenotypic traits in maize and to identify a subset of gene pairs as candidates
for modifying the traits. Based on gene expression data, trait-dependent interact-
ing gene pairs are typically represented by the patterns of “shift,” “cross,” and
“rewiring” [15]. “Shift” represents changes in the mean gene expression value;
“cross” represents changes in the rotation angle of correlation; and “rewiring”
represents changes from having no correlation to having a significant correlation
between a gene pair or vice versa. These gene interaction expression patterns may
not be detected by any single gene testing approach, since neither of the two genes
alone necessarily has a strong association with the phenotype (technically referred
to as marginal effects).

To address this problem, a Bayesian-based method implemented in our pre-
viously developed R package Bayes factor for differential co-expression analysis
(BFDCA) [16] was applied to infer trait-dependent interacting genes and gene
modules based on gene expression data across a set of maize hybrids. By using
the Bayes factor as a score to distinguish trait-dependent interacting genes from
the noisy background, our method can identify “shift,” “cross,” and “rewiring,”
as well as their complex combinations with or without high marginal effects. The
effectiveness of BFDCA in identifying differentially expressed interacting gene
pairs was demonstrated by comparing it with several existing methods on simulation
data, and BFDCA was the only method that could correctly identify interacting
patterns of “shift,” “cross,” and “rewiring” consistently across these gene pairs.

In BFDCA, by making use of gene-gene interactions, subnetworks are con-
structed by integrating information of trait-dependency gene pairs with information
on topological similarity. Then, each gene within a subnetwork module is assigned
a weight according to the topological structure to indicate its importance within
the module. Finally, taking the edge and node information together from the
subnetworks, a subset of gene pairs is selected, which serves as candidates to
modify the traits by expression enhancement or silence. In this work, both the trait-
associated genes, gene-gene interactions selected in this work, and their associations
with traits were demonstrated with some degree of consistency on two independent
maize data sets cross 2 years. Notably, compared with the traditional single-gene-
based method, the edge-based markers can achieve higher prediction accuracy,
especially for trait grain moisture, with an accuracy of more than 90%. The
functional analyses such as gene ontology (GO) enrichment and pathway analysis
for trait-dependent gene modules provided several potential biological explanations.
Our study offers a method that potentially addresses the “missing heritability”
problem in complex traits, as well as alternative means for improving crop traits
via modifying multiple loci genetically.
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2 Materials and Methods

This section includes two subsections. Section 2.1 describes the data materials we
used, including the germplasm selection, the phenotyping, the RNA-seq profiling
and how we processed these materials to fit our method. Section 2.2 describes the
details of the analysis method.

2.1 Materials

2.1.1 Data Description

A panel of 57 lines that represents genetic diversities of the Monsanto maize
germplasm was created using 34,000 homozygous marker genotype data on 4458
lines. The panel consisted of commercial and elite male and female lines spanning
95–115 days relative maturity range (6 early, 17 medium and 34 late maturity group
lines). Hybrids were made by crossing each of the 57 inbred lines described above
into one pool of six inbred lines, not among the 57, within the same maturity group
and from the opposite-gender heterotic group.

Flowering time within a plot was measured as the number of accumulated
growing degree units (GDUs) between planting and when 50% of plants within a
plot reached anthesis (P50) and silking (S50). Plant height (PHT) was measured for
five plants per plot from the soil to the ligule of the uppermost fully expanded leaf.
Grain yield, moisture and test weight (YLD, MST and TWT) were determined by
harvesting two rows of the eight-row plot where no previous sampling had occurred,
and no impact was observed on other destructive samplings in one row bordering
land used for combine harvest.

Top leaf tissue samples were collected from corn plants at the V8 stage. Total
RNA was isolated from three biological replicates for each tissue using TRIzol
(Invitrogen) according to the manufacturer’s protocol. The RNA quantity was
determined with the Thermo Scientific NanoDrop 8000 spectrophotometer (Thermo
Scientific, Wilmington, DE, USA) and the integrity was assessed by a bioanalyzer
assay with RIN greater than 6. 2 μg of total RNA was used for sequencing
library preparation with Illumina TruSeq RNA Sample Prep Kit V2 (RS-122-
2001, Illumina Inc., San Diego, CA, USA) following manufacturer’s protocol.
qPCR (SYBR PCR Master Mix, Applied Biosystems, Foster City, CA, USA)
was utilized to quantify sequencing libraries. Sequencing was performed with
HiSeq2000 sequencing using 50 base pair reads.

RNA-Seq data was normalized by RPKM (reads per kilobase per million)
mapped reads [17]. The normalized reads were subsequently converted to log2 scale
by log(1 + c), where c is the normalized read value. Reads with extremely low
expression values in all samples with log2(1 + c) less than 1 were removed. The
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resulting 19,319 common genes between 2013 and 2014 experiments that mapped
to GRAMME IDs (http://www.gramene.org/) were used for subsequent analyses.

2.1.2 Data Preprocessing

The resulting 19,319 genes were further filtered. Following the process in [18],
genes with median absolute deviation (MAD) smaller than 0.5 were removed
from each dataset (each year), except for transcription factors (TFs), which may
have major causal regulatory effects in biological processes. Then the union genes
between the two datasets (in 2 years) were kept, resulting in 4312 genes in total.

Because all the traits involved in our work were continuous data, we had to
convert them into discrete data to fit our method. For each trait, maize hybrids were
classified into binary-level trait groups partitioned by the mean value of the trait.
Hybrids with trait values smaller than the mean value were classified as a low-level
trait group and given an assigned designation of Label 1, while hybrids with trait
values larger than the mean value were classified as the high-level trait group and
given an assigned designation of Label 2.

2.2 Methods

Figure 1 summarizes our method. The major part and some additional details are
described as follows. For other details refer to our previous paper [16]. The crucial
component of the method is the Bayes factor, which is used as a score to distinguish
trait-dependent interacting genes from the null background. The Bayes factor is a
ratio of marginal likelihood of the data between two models, the null model under
the null hypothesis and the alternative model under the alternative hypothesis. In
this application, the alternative hypothesis is that the gene pair under the test had
differential (non-random) interacting patterns under different trait levels. The null
hypothesis describes the complementary scenarios to the alternative hypothesis,
where either gene pair has no interaction or has an identical pattern among different
trait levels. All the gene pairs were tested, and a Bayes factor for each gene pair
was calculated. After filtering out the insignificant gene pairs by a permutation
procedure, the remaining interacting gene pairs were further analyzed and ranked
by a network topology method. Finally, a subset of interacting genes was selected
according to their end-node importance and the module assignment.

2.2.1 Calculation of Bayes Factor

For each gene pair G, the Bayes factor is defined as:

http://www.gramene.org/
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Fig. 1 Overview of the method

BF= ln
PA (C1G,C2G)

P0 (C1G,C2G)

= ln
Pjoin (C1G) ·Pjoin (C2G)+Pjoin (C1G) ·Pind (C2G)+Pind (C1G) ·Pjoin (C2G)

Pjoin (C1G,C2G)+Pind (C1G,C2G)+Pind (C1G) ·Pind (C2G)
(1)

where C1G and C2G denote the lines for G partitioned into two different trait groups
(C1, C2). PA(C1G, C2G) denotes the marginal likelihood of the alternative model
under the alternative hypothesis, and P0(C1G, C2G) denotes the marginal likelihood
of the null model under the null hypothesis. They contain different combinations
of two distributions: Pjoin(X) and Pind(X), where X represents the two-dimensional
vector of gene expression of G. Pjoin(X) assumes a joint distribution of X and is
modeled as a bivariate normal distribution whose marginal likelihood is formulated
in Eq. (4), while Pind(X) assumes that genes in X are independent and modeled as
multiplying two independent normal distributions according to the expression of
each gene whose marginal likelihood is formulated in Eq. (7). Under the alternative
hypothesis, we assume that the gene pairs in G follow a bivariate normal distribution
in at least one trait group with different expression profile correlations in different
trait groups. Therefore, PA(C1G,C2G) is modeled considering the following three
scenarios:
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1. The two genes in G interact in group C1 and group C2, and their gene expression
profile relationships are different in these two groups. It can be described
by Pjoin(C1G)Pjoin(C2G) representing a joint distribution of two independent
bivariate normal distributions.

2. The two genes in G only interact in group C1 but not in group C2. It
can be described by Pjoin(C1G)Pind(C2G), representing a joint distribution of
one bivariate normal distribution and one product of two independent normal
distributions.

3. The two genes in G only interact in group C2 but not in group C1. It can
be described by Pind(C1G)Pjoin(C2G), representing a joint distribution of one
product of two independent normal distributions and one bivariate normal
distribution.

The null hypothesis needs to cover all of the above complementary sce-
narios to the alternative hypotheses; therefore, P0(C1G,C2G) is modeled by
combinations of identical distributions of gene expression profiles in different
trait groups, as in Pjoin(C1G,C2G) and Pind(C1G,C2G), except that the last term
Pind(C1G)Pind(C2G) is used as a constraint when two genes in the gene pair G
are generated from independent distributions, which cannot be counted as an
interacting gene pair. The bigger the Bayes factor, the stronger the evidence,
which supports the conclusion that interaction of the gene pair impacts the
specific trait.

Let X = (X1, . . . ,XN) be the data. N is the number of samples in each condition
(number of samples are the same for all the genes), and d = 2 is the gene
dimension for each Xi in our case.

Pjoin(X) is modeled as a bivariate normal distribution (X ~ N (μ, �)
with a normal-inverse-Wishart (NIW) conjugate prior on mean vector (μ) and
covariance matrix (�). The likelihood can be written in the following form:

Pjoin

(
X|μ,

∑)
= 1

(2π)Nd/2
∣
∣∑

∣
∣N/2 exp

(

−
∑N

i=1
(Xi − μ)�−1 (Xi − μ) /2

)

(2)

The normal-inverse-Wishart prior is:

p (μ,Σ) = NIW (μ0, k0,Λ0, ν0) = 1

Z
|Σ |−

(
ν0+d

2 +1
)

exp

(

−1

2
tr

(
Λ0Σ

−1
)

−k0

2
(μ− μ0)

T Σ−1 (μ− μ0)

)

(3)

and

Z = 2ν0d/2�d (ν0/2) (2π/k0)
d/2

|�0|ν0/2
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where μ0, k0, v0, and Λ0 are hyper-parameters selected according to [2], where μ0
is the mean of the data, k0 is 0.01, v0 is 4, and Λ0 is the empirical covariance matrix.
By integrating μ and �, we get:

pjoin(X) = 1

πNd/2

Γd (νN/2)

Γd (ν0/2)

|Λ0|ν0/2

|ΛN |νN/2

(
k0

kN

)d/2

(4)

and

kN = k0 +N

νN = ν0 +N

ΛN = Λ0 + S + k0N
k0+N (x − μ0) (x − μ0)

T

S =
N∑

i=1
(xi − x) (xi − x)T

Pind (X) is modeled as the product of two independent normal distributions ()(
Xg ∼ N

(
μg, σ

2
g

)
, g ∈ {1, . . . , d}

)
with the normal-inverse-chi-squared conju-

gate priors on mean (μg) and variance
(
σ 2
g

)
. The likelihood can be written as the

following form:

Pind
(
X|μg, σg

) =
d∏

g=1

(
2πσg

2
)−N

2
exp

(

− 1

2σg2

N∑

i=1

(
Xig − μg

)2

)

(5)

The normal-inverse-chi-squared prior is:

p
(
μg, σg

) = NIχ2
(
μ0κ0ν0|σ 2

0

)
= N

(
μg|μ0, σ

2
g /k0

)
× χ−2

(
σ 2
g |ν0, σ

2
0

)
(6)

Here, μ0, k0, v0, and σ 2
0 are hyper-parameters selected according to [19], where

μ0 is the mean of data, k0 is 0.01, v0 is 3, and σ 2
0 is the empirical covariance matrix.

By integrating μg and σ 2
g , we get:

Pind(X) =
∏d

g=1

1

π
N
2

√
κ0

κN,g

Γ
( νN,g

2
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(
ν0
2

)

(
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2
0
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2

(7)

and

kN,g = k0 +N

νN,g = ν0 +N
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σ 2
N,g =

1

νN,g
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ν0σ0 +
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i

(
xig −Xg

)2 + Nk0

k0 +N

(
μ0 −Xg

)2

)

2.2.2 Permutation Procedure

We extended the previous BFDCA method with a permutation test to estimate the
significance of observing the calculated Bayes factor scores. Only gene pairs with
significantly high Bayes factor scores were provided to the subsequent analysis. In
the permutation procedure, the samples are permuted N times across different trait
conditions to simulate a null background of the Bayes factor BF_null for each gene
pair independently and the permutation P-value of gene pair G is calculated by{

1+∑N
i=1 I (BFnull i ≥ BFG)

}
, where I is an indicator function and is equal to 1

only when BF _ nulli ≥ BFG. By default, N is set as 100 to reduce the computational
burden. Out of the ranked list of gene pairs, we discarded gene pairs with P-values
higher than 0.01 (i.e., more than one occurrence out of 100 permutations).

2.2.3 Identifying Trait-Dependent Gene Modules and Estimating
the Importance of Genes Interacting with Traits

To identify trait-dependent gene modules, we followed a similar approach in
weighted correlation network analysis (WGCNA) [20]. First, we generated an
adjacency matrix by using the normalized Bayes factors calculated for all the
selected gene pairs from the previous filtering procedures, defined as aij in Eq. (8).
Second, we considered the topological overlap between each gene and calculated
a dissimilarity matrix from the adjacency matrix; then, we applied a hierarchical
clustering method for the dissimilarity matrix to cluster genes into different
modules.

A : aij =
(

log
(
BF ij

)−min

max−min

)β

(8)

In Eq. (8), the max and min are the maximum and minimum values of log(BF),
respectively. β is a tuning parameter in WGCNA, which is used in our case to reduce
the noise of the Bayes factors in the adjacency matrix. Following the instruction of
the WGCNA, we set β to 6 by default to maintain the scale-free network property.

To estimate the importance of the inner-module genes associated with the specific
trait quantitatively, we calculated a weight for each gene proportional to their
differential connectivity with all the other genes within the module. The weight
assignment was the same as in [21]. All we had to do was to simply replace their
gene correlation matrix with our adjacency matrix, which is formulated as:
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wi =
∑

j �=iwja
m
ij , 1 ≤ i ≤ n (9)

Here, n represents the number of genes in module m, amij represents the element
of the submatrix of matrix A in Eq. (8), whose edges are presented in module m.
This problem is equivalent to solving eigenvector w in the matrix form, shown as:

(
Am − I

)
w = w (10)

Because matrix Am is a non-negative, irreducible, and symmetric, it can be solved
equivalently by Eq. (11). The unique solution for Equation (11) is w = v∗ , where v∗

is the positive eigenvector corresponding to the largest real eigenvalue λ∗ of Am.

1
λ∗−1 (A

m − I )w = w, λ∗ �= 1 (11)

After this procedure, we obtained submodules of fully connected genes (no
connections between modules), where each gene had a weight representing its
importance associated with a specific trait. All the genes within each module were
assumed to function together but had different degrees of contributions to the
specific trait.

2.2.4 Extraction of Candidates of Interacting Gene Pairs

We extracted the candidates of interacting gene pairs for each specific trait by con-
sidering both end-node importance and the module assignment. For the remaining
gene pairs, w1 and w2 indicated the two end-node weights that comprised the gene
pair, and BFij indicated the original Bayes factor, a score evaluating the importance
of this pair was calculated by

√
w1 · w2 · BF ij . For each trait-dependent gene

module generated in the former procedure, a union of the first and second minimum
spanning trees (MST2) was constructed with the distance between gene pairs
calculated by (1- aij), where aij was the normalized Bayes factor. Gene pairs that
were not represented in the MST2 were removed; in this way, a subset of gene pairs
was selected and assigned with scores. These gene pairs capture the main skeleton
of the network associated with a specific trait, but they were still too large for
downstream analyses. So we applied the generalized sequential forward selection
algorithm [22] to further constrain the candidate gene pairs into an acceptable size.
Gene pairs were sorted in decreasing order in terms of their scores; moreover, gene
pairs assigned to the same module were kept together. In other words, gene pairs
assigned to the same module were grouped together and were ranked by their scores
within each group. Starting from an empty set, the next m gene pairs were added
to the set iteratively. The tradeoff for maximizing the accuracy and minimizing the
number of gene pairs was made according to the cross-validation accuracy curve to
select the final candidate gene pairs, which could be used in a future field test.
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2.2.5 Classification Models

To demonstrate that the candidate interacting gene pairs identified by our method
were associated with a specific trait level, we designed a classification model to
test whether the binary-condition trait samples can be classified correctly by the
candidate interacting gene pairs. The idea of this classification model was similar
to the Naive Bayes classifier [23], but instead of manipulating single genes, the
classifier worked on gene pairs. Our assumption was that gene pairs followed one
of the three mutual exclusive distributions as described in the alternative models
of Bayes factors in Equation (1). One was represented by Pjoin(DG)·Pjoin(UG),
indicating that the gene pairs from the case and control groups followed two
different joint distributions. The second was represented by Pjoin(DG)·Pind(UG),
indicating that the gene pairs from the case group followed joint distributions but
were independent when they were from the control group. The third mutually
exclusive distribution was represented by Pind(DG)·Pjoin(UG), which was opposite
to the second distribution. The representing model for each gene pair had to be
determined first; then, the parameters of the model were estimated. For each gene
pair, the representing model with the maximum marginal likelihood was selected,
while for the determined model, the parameters were estimated by the maximum a
posterior probability (MAP). Two distinct distributions were involved in the three
representing models, where one was the bivariate normal distribution as in Pjoin(X),
and the other was the univariate normal distribution as in Pind(X). The parameters
of the two distributions were estimated as follows:

For the bivariate normal distribution:

MAP (μ) = x (12)

MAP (�) = �0 + k0N
k0+N (x − μ0) (x − μ0)

T + S

v0 +N + d + 2
(13)

For the univariate normal distribution:

MAP (μ) = x (14)

MAP
(
σ 2

)
= v0σ0 +∑

i (xi − x)2 + k0N
k0+N (x − μ0)

2

v0 +N − 1
(15)

Here, all the other parameters were the same as in calculating the Bayes factor.
The training and testing followed the standard method of the Naive Bayes classifier.
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2.2.6 Significant Estimation of Overlapping Genes and Gene Pairs Across
2 Years

We estimated the repeatability of our method in identifying genes and gene pairs
across 2 years by p-value. We assumed that the number of overlapping genes or
gene pairs followed the hypergeometric distribution. If x represents the number of
overlapping genes/gene pairs, n represents the number of genes/gene pairs in the
2013 dataset, D represents the number of genes in the 2014 dataset, N represents
the total number of genes, according to the hypergeometric distribution; thus, the
probability of x overlapping genes/gene pairs was calculated as follows:

P(x) = C (D, x)C (N −D,n− x)

C (N, n)
(16)

The probability of finding x or more genes/gene pairs, i.e. p-value, was formu-
lated as follows:

P (i ≥ x) = 1−
x−1∑

i=0

P(x) (17)

3 Results

3.1 Analyze the Trait-Dependent Gene Modules in Maize

We conducted a comprehensive investigation of gene expression data from 57
genetically diverse commercial maize hybrids across 2 years (2013 and 2014) to
identify different expression patterns associated with specific agronomic traits. The
traits we focused on are listed in Table 1. For each trait, we identified a number
of mutually exclusive gene modules associated with the specific trait based on the
trait-dependent interacting genes.

The numbers of modules and genes in the whole gene interacting network are
listed in Table 2. Along with the module assignment, each gene was assigned a
weight representing its contribution to the trait in the gene interacting network.
Figure 2 shows an example of Module 13 generated for trait MST, with pathways

Table 1 Information of trait Trait name Units

MST Grain moisture (%)
P50 Days to 50% pollen shed
PHTR3 Plant height (cm)
TWT Test weight (lb/bu)3
YLD Yield (t/ha)
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Table 2 Number of modules and corresponding genes

# of modules/# of genes P50 MST PHTR3 TWT YLD

2013 dataset 19/1285 20/1058 22/1113 23/1734 17/1081
2014 dataset 21/1323 15/941 13/967 23/1364 21/1443

Fig. 2 An example of Module 13 of trait MST. Nodes represent genes and edges represent gene-
gene interactions. Some enriched pathways and GO terms with their over-represented genes are
shown within circles of different colors. The size of each gene and the width of each edge are
shown according to gene weight and value of Bayes factor, respectively. To make the display clear,
only edges with significantly high Bayes factors are shown

and gene oncology (GO) terms, and some common genes shared by different
clusters; in particular, GRMZM2G119300 is shared with nearly half of all clusters
with high weights, indicating its key role in trait MST.

We analyzed the overlapping trait-dependent genes across 2 years, as shown in
a Venn plot in Fig. 3, where different traits shared many trait-dependent genes. It
shows which patterns were consistent across 2 years (2013 and 2014). Figure 4
shows heat maps representing the proportion of overlapping modules between pair-
wise traits across both years. Overlapping modules are defined as modules from
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Fig. 3 Venn plot of overlapping trait-dependent genes for traits P50, TWT, PHTR3, MST and
YLD across 2 years: (a) the 2013 dataset and (b) the 2014 dataset

Fig. 4 Heat maps represent the proportion of overlapping modules between pair-wise traits across
2 years (left, the 2013 dataset and right, the 2014 dataset). Two modules belonging to two different
traits are counted as an overlapping module between these two traits when the overlapping numbers
of genes within these modules are significant (p-value ≤ 0.01). The proportion of overlapping
modules for the pair of traits under comparison was calculated by dividing by the minimum module
number of these two traits as presented in these heat maps

different traits sharing a significant number of overlapping genes (p-value ≤ 0.01).
The proportion of overlapping modules was calculated by dividing the number of
overlapping modules by the minimum module number of the comparing traits.
Figure 4 shows that traits YLD and PHTR3, as well as traits MST and P50 were
consistently clustered together across the 2 years. At the gene expression level, we
can see PHT was much more relevant to yield than any other traits, and MST had
many more underlying gene modules overlapping with trait pollen shed.
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3.2 Functional Enrichment Analysis on Trait-Dependent Gene
Modules

We applied pathway enrichment analysis and gene-ontology enrichment analysis
to explore the biological explanations of the identified gene modules. Pathway
enrichment analysis was performed based on the MaizeCyc database (http://
maizecyc.maizegdb.org/) [24]. Gene ontology enrichment analysis was conducted
using the AgriGO database (http://bioinfo.cau.edu.cn/agriGO/) [25].

Trait YLD was the most interesting trait in this study. The functional analysis
result of Module 1 is presented in Table 3. The basic functionality of the genes in
Module 1 is glycolysis [26]. Glycolysis was found to be associated with grain yield
[26]. Fu et al. also confirmed the relationships by analyzing the maize seedling
transcriptome [27]. However, oxidizing hexoses to generate ATP, another essential
function of glycolysis in plants, reversibly produces hexoses from various low-
molecular weight molecules [26]. To control the process of glycolysis, various
hormones are involved, and glucosylation of these hormones is highlighted in
these modules. In our result, cytokinins-O-glucoside biosynthesis and the flavonol
glucosylation pathway were significantly enriched. Glucosylation of cytokinins is a
well-recognized modification that plays an important role in hormonal homeostasis
[28], and the function of O-glucosylated cytokinins in regulating growth and devel-
opment was confirmed by genetic manipulation [29]. The glucosylation reactions
can accumulate high concentrations of flavonoids, particularly the characteristic
flavanone and flavone glycosides [30, 31].

Table 3 Functional analysis on Module 1 in Trait YLD

Name P-value Genes

Pathways Cytokinins-O-glucoside
biosynthesis
(PWY-2902)

0.004 GRMZM2G007012;GRMZM2G476049;
GRMZM2G479038

Flavonol glucosylation I 0.018 GRMZM2G007012; GRMZM2G479038
Glycolysis IV (plant
cytosol)

0.078 GRMZM2G132069;GRMZM2G458728

Glycolysis I
(GLYCOLYSIS)

0.085 GRMZM2G132069;GRMZM2G458728

Glycolysis III 0.087 GRMZM2G132069;GRMZM2G458728
Superpathway of
cytosolic glycolysis
(plants), pyruvate
dehydrogenase and TCA
cycle

0.150 GRMZM2G132069;GRMZM2G458728

GO Response to hormone
stimulus (GO:0009725)

0.012 GRMZM2G081158;GRMZM2G390641

Glycolysis
(GO:0006096)

0.160 GRMZM2G132069;GRMZM2G458728

http://maizecyc.maizegdb.org/
http://maizecyc.maizegdb.org/
http://bioinfo.cau.edu.cn/agriGO/
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Trait MST is an interesting trait associated with both grain yield and the quality
of maize grain. Functional analysis revealed several inner mechanisms related to the
modules detected. Table 4 lists the functional analysis result of Module 13. Sugar
biosynthesis and degradation are the most obvious functionalities enrichments in
this module, such as UDP-L-rhamnose, GDP-mannose, UDP-galactose biosynthe-

Table 4 Functional analysis on Module 13 in trait MST

Name P-value Genes

Pathways UDP-L-rhamnose
biosynthesis
(PWY-3261)

2.303e-5 GRMZM2G031311; GRMZM2G166767

GDP-mannose
biosynthesis
(PWY-5659)

0.0014 GRMZM2G119300; GRMZM2G456471

UDP-galactose
biosynthesis (salvage
pathway from galactose
using UDP-glucose)
(GALACTMETAB-
PWY)

0.014 GRMZM2G119300;GRMZM2G166767

Stachyose degradation
(PWY-6527)

0.018 GRMZM2G119300;GRMZM2G166767

Galactose degradation
III (PWY-3821)

0.022 GRMZM2G119300;GRMZM2G166767

Colanic acid building
blocks biosynthesis
(COLANSYN-PWY)

0.002 GRMZM2G119300;
GRMZM2G166767;GRMZM2G456471

Flavonoid and flavonol
biosynthesis pathway
leading to anthocyanin
biosynthesis and
accumulation
(PWYBWI-410)

0.019 GRMZM2G162755; GRMZM2G175076

Bassinosteroid
biosynthesis II
(PWY-2582)

0.033 GRMZM2G031311;GRMZM2G166767

GO Biosynthetic
process(GO:0009058)

6.005e-6 GRMZM2G008263;GRMZM2G031311;
GRMZM2G119300;GRMZM2G151227;
GRMZM2G166767;GRMZM2G422750

Oxidation-reduction
process (GO:0055114)

0.016 GRMZM2G025832;GRMZM2G031311;
GRMZM2G134134;GRMZM2G138074;
GRMZM2G139874;GRMZM2G166767;
GRMZM2G167336;GRMZM5G891656

Monooxygenase activity
(GO:0004497)

1.700e-4 GRMZM2G025832;GRMZM2G138074;
GRMZM2G139874;GRMZM2G167336;
GRMZM5G891656

Structural constituent of
ribosome (GO:0003735)

0.140 GRMZM2G022686;GRMZM2G131516;
GRMZM2G134134
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sis, and stachyose and galactose degradations. Because the major components are
sugar related carbohydrates, grain yield in maize is highly related to carbohydrate
biosynthesis and degradation. “Anthocyanin biosynthesis and accumulation” are
also highly enriched functions. In terms of drying kinetics and final quality of
product, vacuum drying had a higher drying rate with a higher conservation of
anthocyanin [32]. Breeding practice also revealed that the anthocyanin content
was significantly affected by the drying method, drying temperature, and product
thickness [33, 34].

Trait P50 is a pollen shed development related trait. Table 5 lists the func-
tional analysis on Module 2 associated with trait P50. “Phosphate acquisition and
utilization” was significantly enriched in the analysis, which was consistent with
plant development. Phosphorous is an essential macronutrient in plant growth and
development, and it is usually absorbed and utilized by the plants in the form of
phosphate. Once absorbed, the phosphate is utilized inside the cells at optimum
cellular concentration for various developmental and biochemical processes [35].

Trait PHTR3 is highly related to grain yield. Table 6 lists the functional
analysis on Module 10 associated with trait PHTR3. “Tryptophan biosynthesis” was
significantly enriched in the module. Consistent with the knowledge about plant
height trait, L-tryptophan is a precursor of the growth hormone, indole acetic acid,
and is known to stimulate plant growth at extremely low concentrations [36].

Trait TWT is the test weight, which is the measure of bulk density or the weight
of a specified volume of corn. Twenty-three modules were identified associated
with trait TWT. Table 7 lists the functional analysis on Module 9 associated with

Table 5 Functional analysis on Module 2 in Trait P50

Name P-value Genes

Pathways Cytokinin-O-glucoside
biosynthesis
(PWY-2902)

0.004 GRMZM2G007012; GRMZM2G476049;
GRMZM2G479038

Flavonol glucosylation I 0.018 GRMZM2G007012; GRMZM2G479038
Glycolysis IV (plant
cytosol)

0.078 GRMZM2G132069;GRMZM2G458728

Glycolysis I
(GLYCOLYSIS)

0.085 GRMZM2G132069;GRMZM2G458728

Glycolysis III 0.087 GRMZM2G132069;GRMZM2G458728
Super pathway of
cytosolic glycolysis
(plants), pyruvate
dehydrogenase and TCA
cycle

0.150 GRMZM2G132069;GRMZM2G458728

GO Response to hormone
stimulus (GO:0009725)

0.012 GRMZM2G081158;GRMZM2G390641

Glycolysis
(GO:0006096)

0.160 GRMZM2G132069;GRMZM2G458728
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Table 6 Functional analysis on Module 10 in Trait PHTR3

Name P-value Genes

Pathways Tryptophan biosynthesis 4.1e-4 GRMZM2G003109;GRMZM2G138382
Superpathway of
tryptophan biosynthesis

3.04e-3 GRMZM2G003109;GRMZM2G138382

GO Biosynthetic process
(GO:0009058)

1.05e-2 GRMZM2G003109;GRMZM2G138382

Nucleotide binding
(GO:0000166)

0.130 GRMZM2G014089;GRMZM2G156565

Table 7 Functional analysis on Module 9 in Trait TWT

Name P-value Genes

Pathways Glycogen biosynthesis I
(from ADP-D-Glucose)

8.9e-4 GRMZM2G008263;GRMZM2G106213

Starch biosynthesis 2.5e-3 GRMZM2G008263;GRMZM2G106213
GO Glycogen biosynthetic

process (GO:0005978)
1.7e-3 GRMZM2G088361;GRMZM2G106213

Biosynthetic process
(GO:0009058)

1.8e-3 GRMZM2G008263;GRMZM2G106213;
GRMZM2G118345;GRMZM2G147256

trait TWT. The functional analysis revealed that it was significantly associated with
glycogen and starch biosynthesis, which is known as related to the main component
of the grain yield [37].

3.3 Validation Results Using Data Sets across 2 Years

To explore whether our method can capture the intrinsic genetic effect, we compared
the results from data sets across 2 years to validate the repeatability of the
method in identifying genes and gene pairs. We first considered the repeatability
of high-weight genes associated with specific traits. For each trait-dependent gene
interacting network, the top N weighted genes from the 2013 dataset were compared
with the same number of top weighted genes from the 2014 dataset. The significance
of the overlapping top-weighted genes was estimated by the p-value (as described
in Sect. 2.2.6). The comparison results are shown in Table 8. N was selected as 100,
500, and the whole gene set, identified as the top 100, top 500, and all the genes in
the whole gene interacting network, as shown in Table 8.

3.4 Candidate Interacting Gene Pairs

Following the method described in Sect. 2.2.4, subsets of trait-associated gene pairs
were extracted and served as candidates for the field test. The main idea behind the
extraction was that the candidate gene pairs with large Bayes factors were expected
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Table 8 Overlapping of high-weight genes interaction with specific trait across 2 years of data

Traits
Genes in
2013 data

Genes in
2014 data

Top100 overlapping
genes (p-value)

Top 500 overlapping
genes (p-value)

Whole overlapping
genes (p-value)

YLD 1081 1443 15 (5.24e-09) 135 (1.34e-24) 455 (3.26e-47)
P50 1285 1323 8 (0.002) 107 (1.34e-11) 543 (1.49e-30)
MST 1058 941 24 (6.63e-19) 196 (5.38e-68) 452 (1.70e-95)
PHTR3 1113 967 20 (3.50e-14) 160 (5.59e-40) 402 (6.23e-54)
TWT 1734 1364 4 (0.200) 95 (1.69e-07) 591 (8.64e-31)

Table 9 Number of gene pairs selected for each trait and prediction accuracy for different methods

Traits # of gene pairs Our method t-test ANOVA mRMR

P50 31 98% (77%) 98% (68%) 98% (71%) 98% (63%)
MST 71 100% (84%) 98% (84%) 98% (78%) 96% (55%)
PHTR3 91 81% (84%) 84% (83%) 86% (82%) 75% (48%)
TWT 41 77% (50%) 77% (57%) 77% (55%) 61% (55%)
YLD 61 86% (70%) 84% (77%) 86% (71%) 88% (60%)

Columns 3–6 show the LOOCV accuracies on the 2013 dataset and the accuracies on the 2014
dataset (in parenthesis) for each method

to be significantly related to a specific trait and have high impact in the full network.
In Table 9, the number of gene pairs selected for each trait was summarized in the
first and second columns for the 2013 and 2014 datasets, respectively. Only dozens
of genes are shown for each trait, making the following experimental investigation
feasible.

We compared the trait-dependent gene expression patterns for the candidate
interacting genes observed during the two-year study. Figure 5 shows one example
of the top four ranked gene pairs for trait PHTR3. The top gene pair (No. 1) was
GRMZM2G042253-GRMZM2G075124 presented in the first plot of Fig. 5, which
was annotated by a functional gene interaction in protein-protein interaction (PPI)
networks [38]. From Fig. 5, we can clearly see different patterns under different trait
levels (blue and red) and these patterns prevail across 2 years. This consistency in
gene expression patterns across 2 years indicates that some genetic interactions in
corn populations may impact the repeatability of the trait performance from year to
year and that our method can capture these repeatable patterns between genes.

3.5 Prediction Power of the Candidate Interacting Genes

To further demonstrate the association between candidate interacting gene pairs
and phenotypes, we trained a classification model based on the expression of
the candidate gene pairs and evaluated their prediction power by the prediction
accuracy of trait levels. The classification model was modified from a standard
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Fig. 5 Gene-pair expression patterns across 2 years. This figure shows the expression patterns of
the top four gene pairs for trait PHTR3 under two different trait levels (blue and red) and across
2 years. The upper plot is generated by the 2013 dataset and the lower plot is generated by the
2014 dataset. The x-axes and y-axes represent gene expression levels for each gene of the pair.
Maize hybrids under the two trait levels are differentiated by different dot types and colors. The
95% contours of the bivariate normal density estimated by gene expression levels is shown

Naive Bayes classifier [23] (as described in Sect. 2.2.5). We compared the prediction
power using the same classification model on the genes selected by our method
and the same number of genes selected by other classical gene selection methods.
We compared our method with two single-gene-based methods: the t-test and
ANOVA, which considered the changes in mean and the changes in variance,
respectively. We also compared with a widely used feature selection method mRMR
(minimum redundancy maximum relevance) [39], which also considered gene-gene
interactions. For each trait, the leave-one-out cross-validation (LOOCV) accuracy
on the 2013 dataset and the prediction accuracy on the 2014 dataset were calculated,
as shown in Table 9. According to the accuracy and other comparison results across
2 years, trait TWT showed very poor predictability and repeatability. Because many
factors in the field such as moisture, kernel size and shape, slickness of seed coat,
and physical characteristics may influence the trait TWT, the poor predictability
may be attributed to the complex of environmental or the low heritability of the
TWT itself. In general, our method obtained higher accuracies in both 2013 and
2014 datasets compared with other methods. If considering the loss of accuracies
from the 2013 dataset to the independent 2014 dataset, the selected gene pairs by
our method presented high consistency in terms of prediction power.
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4 Discussion

Identifying trait-dependent genes is important in trait development through molec-
ular breeding. Correctly identifying trait-dependent genes or gene pairs helps to
understand how intrinsic genetic variation impacts traits. In addition, these genes
could serve as candidates to modify the traits in the downstream experiments.
Beyond the traditional breeding practices, which assume that genes affect the traits
independently, in this study, we took gene-gene interactions into consideration and
applied a Bayesian method based on data of gene expression traits across a set of
maize hybrids to detect complex traits associated gene interactions. The identified
gene-gene interactions formed a network and then the trait-dependent gene modules
were generated by considering the network topology. These modules demonstrated
several biological functions, which associated with a specific trait.

Unlike other machine learning methods applied in detecting trait-dependent
genes by seeking high prediction accuracy, our method selects gene pairs by
considering both the discrimination power and the influence in the network. From
the results across 2 years, the trait-dependent genes and gene-gene interactions
selected by our method were demonstrated with some degree of consistency, which
suggests that the candidate interacting genes selected by our method are expected
to be biologically meaningful for the interested trait. When compared with the
traditional single-gene-based methods, the edge-based markers achieved generally
higher prediction power for traits with high heritability. Different from other traits,
the overall results of trait TWT were relatively poor, which may be due to a
combination of its low genetic heritability, low measurement repeatability, and
the complexity of its potential biological determinants. TWT is a complex trait
that measures the density of the grain and is influenced by many environmental
factors such as grain moisture, kernel size and shape as well as other physical
characteristics. We may involve the environment factors to improve the prediction
power of our method in the future.

From the functional enrichment analyses on the obtained gene modules, most
of the modules presented some interesting functions related to the traits. These
modules shed some light on the underlying biological mechanisms of the traits.
We explored and discussed several biological enrichment results on the presented
modules in each trait and found that the genes in these modules may work together to
affect the trait development. However, due to the limited knowledge and inadequate
annotation of maize species, the biological functional analyses could only explain
some mechanisms related to the trait development. It is still a challenge to detail the
biological explanation in gene-gene interactions. Some traits have several shared
modules. Further exploration on these shared modules may help us to better
understand the intricate mechanism associations among these traits.

For each trait, dozens of trait-dependent gene modules and interacting gene
pairs were selected, which needed further investigation by downstream experiments.
The interacting genes could serve as candidates to modify the traits by expression
enhancing or silencing approaches. We plan to do a field test in the future.
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Abstract Traditional Chinese Medicine (TCM) started considering the medicinal
and health effects of food thousands of years ago. TCM labels are placed on foods
based on cold, neutral, and hot properties similar to Chinese herbal medicine. How-
ever, it is unclear whether such a classification has any molecular or biochemical
basis, and what the relationship is between this TCM classification and the nutrient
composition of food. To answer these questions, we collected a large dataset, in
which each type of food has both TCM labels and molecular composition records for
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statistical analyses and machine-learning predictions. We applied machine-learning
methods by using food molecular composition to predict the hot, neutral or cold
label of food, and achieved more than 80% accuracy, which clearly indicated that
TCM labels have a significant molecular basis. We also applied ANOVA to analyze
the main factors contributing to the TCM labels. The ANOVA analysis shows that
some molecular/biochemical compositions and categories, such as Energy, Fat,
Protein, Water and Selenium (Se), have the strongest correlations with the TCM
labels of food. To the best of our knowledge, this study represents the first effort
to quantitatively explore the relationship between TCM labels and the molecular
composition of food.

Keywords Traditional Chinese medicine · Zheng · Food composition · Health
effect of food · Machine learning

1 Introduction

Traditional Chinese Medicine (TCM) has been practiced for more than 2500 years
in China and in many other Asian countries. It is also gaining more and more
popularity in Western countries. TCM includes herbal medicine, acupuncture,
massage, exercise, and dietary therapy [1]. In TCM herbal medicine, all kinds of
herbs can be categorized based on four properties—hot, warm, cool, and cold. Hot
and warm herbs are often used for cold diseases, while cool and cold herbs are often
used for hot diseases [2]. One of TCM’s typical characteristics is the homology
of medicine and food; thus, most common food can be regarded as medicine to
treat diseases, which implies there is no strict boundary between food and herbal
medicine [3]. In fact, it is stated in a classic TCM Bible “Inner Canon of Huangdi”
that food is only food when people are hungry, but turns into medicine when
people become sick. Such a homology between medicine and food has been studied
extensively [4]. Given such a homology, food also has the four TCM properties,
which are used as a guide in dietary therapy and health improvement.

The labels of hot, warm, cool, and cold are hard to define scientifically. They
are widely used in TCM. For example, the human body’s health status is often
based on “ZHENG” when using various body features such as the tongue [5],
i.e., hot ZHENG, normal ZHENG, and cold ZHENG [6]. TCM uses “ZHENG”
as a key pathological principle to understand the human homeostasis and guide
the applications of Chinese herbs [6]. A hot or cold ZHENG or status does
not mean high or low in terms of body temperature, but a certain pathological
condition or development tendency of an illness [7]. If one has a hot ZHENG/status,
it is suggested to take more cold/cool food to achieve balance. If one has a
cold ZHENG/status, more hot/warm food is recommended; if one has a normal
ZHENG/status, any food is considered okay as long as it is balanced. So far, these
food properties are identified empirically with some general guidance. For example,
hot food often tastes sweet or spicy, tends to have a red color, is more likely to
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be present on land, and has more access to sunshine. In contrast, cold food often
tastes bitter or sour, tends to have a green color, is more likely to be present in
water, and has less access to sunshine.

Although the four properties of food are identified based on people’s experience
and sense without any scientific theories and methods, some related research has
been conducted in China. TCM properties were delineated by Can Hou (a famous
TCM expert) in the 1960s [5]. Can Hou studied antibacterial function, antipyretic
function, and three other functions of 72 traditional Chinese herbal medicine.
According to the comparison of these medicine, he found that the coldest TCM
medicine were antibacterial and antipyretic while the hottest TCM medicine were
stimulants [5]. In the 1980s, Li et al. [6] indicated that hot medicine and cold
medicine have corresponding relations with excitation and inhibition effects on
human body based on an analysis of many kinds of medicines such as heat-clearing
medicine and diaphoretics, i.e., hot medicine can stimulate the body activities and
the cold medicine can inhibit them [5]. In the 1990s, Liang [7] proposed that
one of the basic functions of cold medicine was the synthesis and release of the
sympathetic medium, based on the sympathetic medium content of 28 patients with
hot symptoms and 12 with cold symptoms during pre- and post- treatment. Outside
China, some scholars are also interested in the four properties of TCM. For instance,
in the1970s, a group in Japan studied different effects on people’s health from hot
herbs and cold herbs [8]. They found that when rats with inflammation ate cold herbs
(such as Sini soup and Huanglian Jiedu soup), the temperature would decrease and
the inflammation was inhabited, while hot herbs caused drinking more water and
increasing temperature. This result indicated that hot herbs might exacerbate the
inflammation while cold herbs could diminish inflammation and inhibit metabolism.

Although hot and cold properties of food are well documented [2], no research
has explored the connection between the nutrition composition in food and the TCM
properties of food, or whether these properties have any scientific (molecular) basis
at all. This paper focuses on the connection between cold/hot properties of food
and nutrition composition using data analysis and machine learning methods. If the
connection is significant, we can also find out which components of a food affect
TCM properties the most. This study also considered ways to predict the hot and
cold properties of food based on its molecular composition.

2 Data

Many materials about hot and cold properties of food are available online, but their
accuracy requires validation. We collected annotations from the ‘Encyclopedia of
Healthcare Based on Chinese Food’ [9] written by Huanhua Wang, an expert in
TCM, especially in Chinese medical recuperation theory. The book collected 556
types of food and each of them is labeled with a unique property—hot, warm, cool,
cold or neutral. Table 1 shows some examples. All of these properties are labeled by
experts in this field.
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Table 1 Three food properties according to TCM

Type Hot/warm food Neutral food Cold/cool food

Meat Lamb, chicken, goose, prawn Pork, beef Crab, rabbit, duck
Vegetable Eggplant, onions, chive,

garlic, pepper
Potatoes Seaweed, cabbage, spinach,

carrots, celery, cucumbers,
tomatoes, green beans

Fruit Longan, litchi, citrus,
chestnuts, walnuts

Apricots,
peaches,
grapes

Melons, watermelons,
bananas, pears, persimmons,
pineapples

Others Brown sugar, coffee, syrup,
wine, curry

Chicken eggs Sugar, tofu, duck eggs

Table 2 Information of U1
and U2 datasets

Cold Neutral Hot Total Features

U1 80 102 90 272 25
U2 1797 2874 3036 7707 99

Regarding the food nutrition composition, we collected data mainly from the
website SELFNutritionData [10] and ‘China Food Composition’ [11]. The infor-
mation in the USDA’s National Nutrient Database for Standard Information from
the USDA Food Composition Databases [12] was used as a supplement. All these
resources are authoritative and comprehensive. To coalesce the data, we developed
a web crawler based on the WebMagic scalable framework. It includes the whole
crawler cycle: downloading, URL management, and content extraction. It provides
an application programming interface (API) for html extracting, with multi-thread
and distribution support [13]. The input of the crawler is the name of food and a list
of nutrition compositions of the corresponding food that can be exported as a file.

With the API, a small dataset (U1) and a large dataset (U2) were obtained
(Table 2). The data in the small dataset was manually collected from the ‘China
Food Composition’ Book. It contains 272 entries, and the numbers of hot, neutral
and cold food were 80, 102, and 90, respectively. This small dataset contains 25 food
compositions are shown in a bold font in column 1 of Table 3. The large dataset has
7707 entries and each of them contained 99 features, which are also shown in Table
3. Some features such as each fatty acid isomer are not considered because the data
had too many incomplete entries. There were 1797 entries of cold food, 2874 entries
of neutral food, and 3036 entries of hot food in total. Each entry in these two datasets
is labeled according to “Encyclopedia of Healthcare Based on Chinese Food” with
0 for cold property, 1 for neutral property and 2 for hot property.

3 Methods

Figure 1 is the flowchart of our study, which contains three parts. The first part is data
imputing, which allows us to estimate the missing values by a k-nearest neighbor
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Table 3 Features included in U1 and U2 datasetsa

Energy ND rating Weight loss Fullness factor

Ash Fluoride Calories from
carbohydrate

Amino acid score

Vitamin B1 Starch Galactose Lactose
Vitamin B3 Maltose Total trans-monoenoic

fatty acids
Polyunsaturated fat

P Total trans fatty acids Threonine Methionine
Protein Tryptophan Phenylalanine Histidine
Fiber Cystine Aspartic acid Serine
Vitamin B2 Alanine Lycopene Beta carotene
Na Weight gain Gamma tocopherol Vitamin E (alpha tocopherol)
Cu Calories from protein Vitamin B6 Dietary folate equivalents
Sugar Glucose Pantothenic acid Campesterol
Water Saturated fat Calories from alcohol Caffeine
K Total omega-3 fatty acids Beta-sitosterol Monounsaturated fat
Ca Leucine Completeness score Vitamin D
Zn Valine Optimum health Phytosterols
Fat Glycine Calories from fat Beta tocopherol
Carotene Retinol activity equivalent Sucrose Vitamin B12
Vitamin E Vitamin K Total trans-polyenoic fatty

acids
Stigmasterol

Mg Food folate Isoleucine Theobromine
Mn Betaine Tyrosine Total Omega-6 fatty acids
Vitamin A Cholesterol Glutamic acid Proline
Retinol Fructose Lutein+Zeaxanthin Hydroxyproline
Vitamin C Alpha carotene Delta tocopherol Beta cryptoxanthin
Fe Arginine Folate Alcohol
Se Folic acid Choline

aAll the features belong to U2, and features in bold font belong to U1

(k-NN) method. The second part is data analysis. Analysis of variance (ANOVA)
was used to assess which features has a strong relation to TCM food labels. The last
part is classification. Ensemble learning, deep learning and support vector machine
(SVM) were applied to train the prediction models of food labels. The source code
of our method is available at https://github.com/squarlhan/foodsvm.

3.1 Data Imputing

Dataset U2 contains 99 features for each entry of collected food. These features
contain not only common nutrition compositions such as calories, fat, carbohydrates
and protein but also have some uncommon compositions like zinc, fluoride and
betaine. Features of some entries were unknown. Simply ignoring all these missing

https://github.com/squarlhan/foodsvm
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Fig. 1 Flowchart of the study

values would result in a loss of much information from the data; hence, we estimated
some of them.

The missing value rates of all the features are calculated as the ratio of entries
with null values:

r = n/T (1)

where n is the number of null values and T is the total number of all entries for
a given feature. Based on Eq. (1), the missing value rates of some features such
as calories and fat are less than 1%, while some other features like vitamin D and
phytosterols are over 90%. In order to ensure the accuracy of the analyses, high-
quality data is needed. We set the threshold from 1% to 25% with a 1% step and
exported the features below the threshold as one dataset.

For every null value in the datasets, a value was estimated by the matrix comple-
tion algorithm k-NN. k in k-NN was set from 5 to 10, and 54 datasets with different
missing value rates were generated from U2 after duplicate removal. The k-NN
method identifies the correlation among the variables based on cross-correlation.
Assuming the variable x is missing at an entry, and x has a relationship with y and z,
the test vector will then be formed using the values of y and z in that entry. The train-
ing vectors are formed in a similar way. A weighted modification of the Euclidean
distance is proposed to measure cross-correlation, which is similar to Mahalanobis
distance but can handle missing values in both test and training vectors:

d (x, y) =
√∑N

i=1 (xi ∧ yi)× (xi − yi)
2

∑N
i=1 (xi ∧ yi)

(2)
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where N is the number of variables, and d(x, y) is the distance between x and
y. Considering an instance i with missing values in position v, the value of v is
estimated by the weighted cross-correlation with neighbor instances.

iv =
∑k

j=1 x
v
j × d

(
i, xj

)

k •∑k
j=1 d

(
i, xj

) (3)

where k is the k value of k-NN, and xvj is the value of position v in jth neighbor of
instance i.

3.2 Single Factor Analysis

Analysis of variance (ANOVA) [14] was employed to analyze the relationship
between molecular compositions and TCM food labels. To assess each molecular
composition’s effects on the TCM labels of food, ANOVA was first applied to the
25 features in dataset U1, such as energy, sugar, fiber, and so on. After the test, those
features with a P-value <0.05 were considered to have significant influence on the
final classification results. ANOVA was also applied to 54 datasets generated from
dataset U2. The F-test was chosen to compare the factors of the total deviation. In
the single-factor ANOVA, statistical significance was tested by comparing the F test
statistic:

F = BMSS

WMSS
=

∑
i ni

(
Y i − Y total

)2
/ (k − 1)

∑
i

∑
j

(
Yij − Y i

)2
/ (N − k)

(4)

where BMSS is between the mean sum of squares, WMSS is within the mean sum of
squares, Y i is the mean of group i, Y total is the mean of all cases, ni is the number
of cases in group i, Yij is the j-th case in group i, k is the total number of groups,
and N is the total number of cases. We performed the ANOVA F-test to minimize
false negative errors of a fixed rate of false positive errors [15]. ANOVA F-test is
recommended as a practical test, because of its robustness against many alternative
distributions [16].

3.3 Classifier

A variety of machine-learning methods were employed as the classifiers, i.e.,
ensemble learning, deep learning and SVM. For ensemble learning, random forests
and XGboost were used with one deep learning framework, Convolutional neural
network (CNN) was also applied. In SVM, the genetic algorithm (GA) was used to
select parameters and features.
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3.3.1 SVM

The SVM algorithm creates nonlinear classifiers by applying the kernel function
to maximum-margin hyperplanes [17, 18]. Intuitively, in SVM, a good separation
is achieved by the hyperplane that has the largest distance to the nearest training-
data point of any class (so-called functional margin); thus, in general, the larger the
margin the lower the generalization error of the classifier. In this work, LibSVM
[19], a popular open source machine-learning library was used in the experiment.
LibSVM implements the SMO algorithm for kernelized SVMs, supporting clas-
sification and regression [19]. We selected the Gauss Kernel Function, because it
has fewer parameters to optimize. Genetic algorithm (GA) was applied to optimize
SVM and select features in the experiment. In particular, the parameter optimization
was performed for gamma (the width of the kernel function) and C (the penalty
coefficient). The fitness function of GA is the average accuracy of a tenfold cross-
validation. The data was randomly divided into ten portions of equal sizes where
nine portions were taken as the training samples and the final one was taken as a
test sample. The mean of ten results’ accuracies was used as the final fitness value.
In addition, feature selection was also conducted to identify significant features.
Hybrid encoding was applied in the experiment. Figure 2 is an example chromosome
in U1, where 27 genes are encoded in total. The first two genes with decimal coding
are parameters of SVM (gamma, C). The remaining genes with binary coding
represent features described as either true or false to indicate whether this feature is
selected.

3.3.2 Ensemble Learning

In statistics and machine learning, ensemble methods use more multiple learning
algorithms to obtain better predictive performance than any of the constituent
learning algorithms alone. The random forests algorithm [20] is a method for
classification, regression and other tasks. It constructs a multitude of decision trees
at training and then outputs the mode of the classes or mean prediction of the
individual trees. Random decision forests can help correct the potential problem
of decision trees overfitting the training set [21], by averaging the predictions of a
set of m trees with individual weight functions [22].

Gradient boosting is another ensemble learning method for regression and
classification problems. It produces a prediction model in the form of an ensemble
of weak prediction models. It also builds the stage-wise model like other boosting
methods and generalizes them by allowing optimization of an arbitrary differen-

Fig. 2 GA encoding example
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tiable loss function. In this study, we applied Extreme Gradient Boosting (XGboost
[23, 24]), an open-source gradient boosting library. XGboost has gained popularity
recently as it was the algorithm of choice for many winning teams in a number of
machine learning competitions [23].

While both random forests and XGboost belong to ensemble learning, some
differences exist between them. The training algorithm for random forests applies
the general technique of bootstrap aggregating (bagging) to tree learners while the
training algorithm for XGboost applies boosting. Bagging means that users take
bootstrap samples (with replacement) of their data set and each subset trains a
(potentially) weak learner. Boosting, on the other hand, uses all the data to train
each learner, but instances that were misclassified by the previous learners are given
more weight so that subsequent learners focus more on them during the training. The
classification of XGboost is often more accurate and efficient than random forests.
The training sets of random forests are selected randomly and are independent
from each other. The training sets of each iteration for XGboost is weighted by
the learning results generated by previous iterations.

In this work, we used the classification and regression tree (CART) to create a
random forest, and generated ten trees for the forest. The number of features for
each CART is set as Eq. (5), where M is the total number of features:

Ms = Round
(
log2M + 1

)
(5)

Regarding XGboost, we set the objective as multiclassification and Softmax. The
maximum depth of each tree was set as 6, and the learning step size shrinkage “eta”
(used to prevent overfitting) is set to 0.1, which is a very conservative value.

3.3.3 Deep Learning

CNN [25, 26] is a powerful and efficient method for discovering local patterns.
It is widely used in image-recognition and pattern-recognition problems. In a
CNN, the layer of convolutions plays a major role as a feature extractor. Unlike
traditional feature extractors, convolution layers extract local features with local
windows. Convolution weights are determined in the training process. Figure 3 is
the architectural diagram of our CNN model. We used three convolutional layers
with a max pooling and then followed by two fully connected layers with each layer
including 20 neurons. Each layer in a convolutional layer is a three-dimensional
array of size h × w × d, where h and w are the size of input, and d is the channel
dimension. Based on the Bayesian optimization method, the size of 2 × 1 × 50
neurons in each convolutional layer can obtain the best performance. Our model
also includes max pooling layers, that reduce the dimension of the features, and the
fully connected layers to sum weights of the previous features. In the final layer of
CNN, a Softmax function is applied to classify each sample with cross-entropy loss
as the objective function for the parameter estimate.
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Fig. 3 Architectural diagram of CNN

Fig. 4 Bar diagram of ANOVA analysis for each feature of U1. The x-axis represents the name
of each molecular composition, and the y-axis represents the negative base 10 logarithm of the
P-value computed by ANOVA

4 Experiments

4.1 ANOVA Result

ANOVA was performed on the both datasets. It was mainly used to find the features
in the dataset with the greatest impact on the hot and cold properties of food.
Figure 4 shows the analysis result of ANOVA for U1, where the abscissa line
names each nutrition composition, and the vertical ordinate is the negative number
of the base 10 logarithm of the P-value computed by ANOVA. The smaller the P-
value, the greater impact it has on the property of food, which is the feature. In
our experiment, if the P-value of one feature is smaller than 0.05, the feature is
considered to be significant. In Fig. 5 we can find that the P-values of five features
are smaller than 0.05, including energy, fat, protein, water, and Se. Figure 5 boxplots
the three features with the lowest P-values. It shows the distribution of the data for
each feature.
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Fig. 5 Boxplots of 3 top features in U1

The ANOVA analysis of 54 datasets in U2 calculated the P-value of each feature
in these datasets. The data are divided into three groups. After the application
of Bonferroni’s correction, we sorted these P-values and selected those features
with smallest P-values, i.e., protein, weight loss, optimum health and calories from
protein. The boxplots of the first three features are shown in Fig. 6, which illustrates
that TCM labels tend to be hot with high protein abundance. Health indices weight
loss and optimum health tend to have high values among food with cold labels.

4.2 TCM Label Classification

The above classifiers were all applied on dataset U1, and the results are shown in
Table 4. The first dataset, “ALL,” is U1 which contains all 25 features. The second
dataset “ANOVA5” only includes the five most influential features of which the
P-value is smaller than 0.05. The accuracy of optimized SVM using GA is also
displayed in the table, and it performed better than the other classifiers.

Table 5 highlights some features including the five most influential features and
12 highlighted features in the second column, selected by GA in the SVM. This
table also shows that energy, protein, fat, water and Se are all selected in these two
lists.
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Fig. 6 Boxplot of 3 top features in U2

Table 4 The accuracy for
each algorithm

Algorithm framework Detailed Accuracy (%)

SVM ALL 64.30
ANOVA5 59.85
GA 73.20

XGboost (XG) ALL 60.50
ANOVA5 64.45

Random Forest (RF) ALL 52.60
ANOVA5 51.40

Deep learning CNN 60.80

These algorithms were also used to train the 54 datasets in U2, and we obtained
the accuracy of prediction from these algorithms. Figure 8 is the curve of these
algorithms. The abscissa lists 54 datasets, and the ordinate is the prediction accuracy
of each dataset resulting from each algorithm. With the increase of missing value
rates and k, the accuracy predicted by these algorithms increases slowly. In Fig. 7,
XGboost is stable and shows a higher accuracy than other algorithms. The orange
solid curve is the average value of four algorithms; furthermore, this curve reaches
its peak while the missing value rate is 0.25 and k is 6. All four curves are similar.
This U3 dataset has a missing value rate of 0.25 and k, which is 6, includes the best
distributed data.
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Table 5 Most influential features selected by ANOVA and GA in U1

ANOVA GA
Energy Vitamin C Energy Vitamin C
Protein Vitamin E Protein Vitamin E
Sugar K Sugar K
Fat Na Fat Na
Water Ca Water Ca
Fiber Mg Fiber Mg
Ash Fe Ash Fe
Vitamin A Mn Vitamin A Mn
Carotene Zn Carotene Zn
Retinol Cu Retinol Cu
Vitamin B1 P Vitamin B1 P
Vitamin B2 Se Vitamin B2 Se
Vitamin B3 Vitamin C

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 5 6 7 5 6 7 5 6 7

SVM RF XG CNN Mean
0.01 0.02 0.03 0.04 0.05 0.08 0.16 0.21 0.22 0.24 0.25

Fig. 7 The curve plot of the accuracy for each algorithm with different ks (first row of x-axis) and
missing value rates (second row of x-axis)

Although XGboost and CNN perform better than SVM, the two algorithms have
little space to improve by fine tuning. Therefore, in order to get a better prediction
accuracy, GA is applied in SVM to adjust the main parameters of SVM. And finally,
the GA-SVM with feature selection achieves accuracy at 85.86%, which is higher
than any other algorithms. Compared with U1, the classification accuracy in U3
improves a lot. We believe that U3 supplies more samples and features which make
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Fig. 8 The column chart of the accuracy for each algorithm on U3

the classifier performs better. Figure 8 is the column chart of the tenfold cross-
validation accuracy for each algorithm in U3. The accuracy of an optimized SVM
using GA and feature selection (FS) has the highest accuracy (85.86%). The GA-
SVM algorithm without feature selection shows an intermediate value of 68.97%,
which is much smaller than the GA-FS-SVM.

The most influential set of features selected by GA in U3 are the following:
Fullness Factor, Fiber, Weight gain, Vitamin C, Glycemic Load, Vitamin B1,
Completeness Score, K, Na, Calories, Calories from Fat, Calories from Protein
Water, Saturated Fat, Alcohol, Sugar, Ash

The next set of influential features selected by GA in U3 are the following: ND
Rating, Weight loss, Optimum Health, Calories from Carbohydrate, Protein, Total
Fat, Polyunsaturated Fat Monounsaturated Fat, Cholesterol, Vitamin A, Vitamin B2,
Vitamin B3, Ca, Fe, Mg, Zn, P.

In both sets, many features were selected by GA and ANOVA. Fat and protein
appear in both the GA and ANOVA datasets. Vitamin A, Ca and P were selected by
GA in U1 and U3.

5 Discussion

Although these TCM labels are empirical, they have been refined and widely
practiced for more than 2000 years. These TCM labels were not established
scientifically, but it is worthwhile to study them using a scientific approach. The
statistical and machine-learning analyses and predictions clearly show that TCM
labels of the hot, neutral, and cold foods have a molecular basis and are predictable
based on their food molecular composition. We also identified key molecular
compositions that contribute to the TCM labels. The highly-overlapped features
selected by ANOVA and GA in U1 and U3 may have the greatest effect on the
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labels. Fat and Protein are two of the three main macronutrients. In addition, Fig. 5
shows that the food with more energy tends to be hot, while food with less energy
tends to be cold. The boxplots in Fig. 6 for U3 illustrate the similar result.

Although this study does not prove the value of TCM food labels in health-
care, the key features that drive the TCM labels are highly important in health.
Calcium plays an important role in building stronger and denser bones early in
life and keeping bones strong and healthy later in life; P is an essential mineral
primarily used for growth and repair of body cells and tissues. Lack of P-rich
adenosine triphosphate (ATP) can cause hypophosphatemia, including neurological
dysfunction and disruption of muscle and blood cells. Too much phosphate can lead
to diarrhea and calcification of organs and soft tissue, and can interfere with the
body’s ability to use Fe, Ca, Mg, and Zn [4]. While a lifelong deficit of Ca can
affect bone and tooth formation, over-retention can cause hypercalcemia, impaired
kidney function, and decreased absorption of other minerals. Vitamin D is needed to
absorb Ca [2]. All these symptoms may be related to the hot or cold status of human
body. Food that has more essential nutrients per calorie is considered a better choice
for optimum health. We can find that food with the cold label has high scores in
optimum health, which shows that cold food is often heathier. Besides, cold food
contains less energy, and it helps to control body weight. In the future, we will do
more research on this work, with a focus on exploring the health impact of food
with different TCM labels.
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Discovery Among Binary Biomarkers in
Heterogeneous Populations

Junxian Geng and Elizabeth H. Slate

Abstract Biomarkers have great potential to improve disease diagnosis and treat-
ment. Disease may arise via multiple pathways, however, each associated with
distinct complex interactions among multiple biomarkers, and hence patients exhibit
considerable heterogeneity in the biomarker-disease association despite sharing the
same clinical diagnosis. Thus identification of clinically useful biomarker combina-
tions requires statistical methods that accommodate population heterogeneity and
enable discovery of possibly complex interactions among biomarkers that associate
with disease. We address jointly modeling binary and continuous disease outcomes
when the association between predictors and these outcomes exhibits heterogeneity.
In the context of binary biomarkers, we use ideas from logic regression to find
Boolean combinations of these biomarkers that predict the binary disease outcome.
The associated continuous outcome is modeled as Gaussian. Heterogeneity is cast
as unknown subgroups in the population, with the associations between the joint
outcome and biomarkers and other covariates varying by subgroup. We adopt a
mixture of finite mixtures (MFM) fully Bayesian formulation to simultaneously
estimate the number of subgroups, the subgroup membership structure, and the
subgroup-specific relationships between outcomes and predictors. We describe
how our model incorporates the Boolean relations as parameters arising from the
MFM model and our approach to the associated challenges of specifying the prior
distribution and estimation using Markov chain Monte Carlo. We illustrate the
performance of the methods using simulation and discuss application.
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1 Introduction

Biomarkers are individual characteristics that have great potential for personalizing
and, therefore, improving health care. Biomarkers include demographic, environ-
mental, clinical and biological characteristics such as gender, genotype, protein
expression, prognostic status, etc., that can refine risk assessment, aid diagnosis,
guide therapeutics and improve our understanding of the disease process. Few
diseases, however, are well predicted by any single biomarker. Heterogeneous
diseases such as cancer may have different molecular agents (biomarkers) regulating
development, growth and ultimate survival of the individual, and may arise from
complex interactions among biomarkers. Hence a panel of biomarkers and consid-
eration of interactions among these biomarkers is needed to achieve sensitivity and
specificity sufficient for clinical use [18, 31].

This paper is motivated by the problem of predicting a binary disease status
using a collection of binary biomarkers. These biomarkers may encode for the
occurrence of single nucleotide polymorphisms (SNPs) in the genome or indicate
over expression of genes or associated proteins, for instance. Particularly in this
case of binary biomarkers as predictors, the interactions may predict disease
status far better than only biomarker main effects. We build on the method of
logic regression [27], which enables discovery of Boolean combinations of binary
predictors to explain a binary response. Briefly, letting x1, x2, . . . , xp be binary
biomarkers, logic regression finds a Boolean combination, L(x1, x2, . . . , xp), that
best predicts the binary response y according to a criterion such as minimizing the
misclassification rate. The Boolean relation, L(·), may involve complex interactions
among the biomarkers that are discovered through adaptive exploration of all
combinations of ands, ors and nots, yet retains an appealing interpretability. We
describe logic regression in more detail in Sect. 2.

Complex diseases such as cancer arise via multiple pathways, with different
sets of biomarkers integral to the different pathways. Thus, the population (and,
correspondingly, the individuals comprising our sample) exhibits latent heterogene-
ity arising from subpopulations defined by distinct disease pathways and their
associated predictive biomarkers. Such subpopulation structure also results from
heterogeneity in the stage of disease progression, as different sets of biomarkers
may be active at initiation, early and late phases of disease, even when these phases
are not clinically apparent. We envision, then, that the population consists of an
unknown number of subpopulations, and the disease status in each subpopulation
is governed by a different Boolean relation among the binary biomarkers. At first
glance, one may think that the disjunction of the collection of Boolean relations is
sufficient to capture this structure. But consider the case of two subpopulations with
Boolean relations L1 = x1 ∨ x2 and L2 = !x2 ∨ x3, respectively. If combined with
disjunction, the result is L1∨L2 = (x1∨ x2)∨ (!x2∨ x3) = x1∨ x3, and the role of
x2, which is important for both subpopulations and may be a key therapeutic target,
is lost!
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To accommodate population heterogeneity, a latent class structure can be
introduced. The latent class logic regression (LCLR) model [30] postulates the
existence of K latent classes that accommodate K subpopulations, each of which
has its own Boolean relation between the binary predictors and disease outcome.
We let zi ∈ {1, 2, . . . , K} be the class membership indicator for observation i,
i = 1, 2, . . . , n, and note that these are unobservable and hence latent variables. It is
straightforward to derive and implement maximum likelihood estimation using the
expectation-maximization (EM) [8] algorithm with the {zi} handled as the missing
data. However, there are two concerns about this LCLR approach. First, the number
of latent classes K must be specified before using the EM algorithm. Thus K may
be estimated by means not integrated with the LCLR model, or estimated in a post
hoc way, say, by using information criteria. The second concern is that, because our
response y is binary, more than one latent class is not strictly identifiable [2]. We
propose an approach that handles these two concerns within a Bayesian framework.

A natural solution for simultaneously estimating the number of clusters1 and
the cluster configuration is provided by adopting a Bayesian framework where K
is merely another unobservable random variable, i.e., parameter, of the model and
hence amenable to inference derived from its posterior distribution. Nonetheless,
inference about an unknown number of clusters poses a substantial computational
challenge. Historically, the number of clusters was given a prior distribution and
Markov chain Monte Carlo (MCMC) used to draw samples from a distribution
converging to the posterior distribution. However, implementation typically requires
a search algorithm in a variable dimensional parameter space such as reversible
jump MCMC [12], which requires complicated Metropolis moves as well as suffers
from a lack of scalability and poor mixing.

In this paper, we analytically marginalize over the number of clusters to obtain a
more efficient Gibbs sampler and avoid the difficulties brought by the dimension
changes in parameter space. One modeling choice is a Bayesian nonparametric
approach such as the Dirichlet process mixture model (DPMM), which is also
termed the Chinese restaurant process (CRP) [19, 25] for the characteristics of
the probability distribution induced on the cluster configuration. While CRPs have
long been observed empirically to tend to form tiny extraneous clusters, it has only
recently been established that the estimation of the number of clusters from CRPs
is inconsistent in a fairly general setting [21]. We use the mixture of finite mixtures
(MFM) approach of [21] instead, which prunes the tiny extraneous clusters and,
consequently, consistently estimates the number of clusters. Moreover, the MFM
model has a Pólya urn scheme similar to the CRP that supports an efficient MCMC
algorithm.

1Henceforth we refer to the classes defining the underlying subpopulation structure as clusters for
greater consistency with the machine learning and Bayesian literature. The cluster configuration
is the cluster assignment information encoded by the {zi}. Because each individual is assigned to
exactly one cluster, the cluster configuration is, equivalently, a partition of the n observations into
K groups.
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To address the strict nonidentifiability of more than one latent cluster, we
couple the binary disease status y with a continuous response, w, and jointly
model the outcome pair (y,w). The continuity of w fills the “information gap”
and supports full identifiability of K ≤ n clusters under usual conditions on the
data. An example scenario is y the indicator for positive diagnosis of prostate
cancer, w a serum biomarker such as prostate specific antigen, and the biomarkers
x1, x2, . . . , xp representing SNPs in the genome. The rest of the paper is organized
as follows. Section 2 provides an overview of logic regression. The development
of our Bayesian model is in Sects. 3 and 4 describes the MCMC algorithm for
inference. Section 5 presents a simulation study of the performance of our model
and estimation. In Sect. 6, we discuss the model and describe future challenges.

2 Logic Regression

In traditional regression problems, a model is developed using prespecified main
effects and, perhaps, simple two- or three-way interactions to explain the response.
In contrast, logic regression [27] is an adaptive regression methodology that enables
discovery of complex interactions among binary predictors associated with a binary
response. In this context when all predictors are binary, it is the interactions among
many predictors, even more so than the main effects, that may best associate with
the response.

Given data on n individuals, (yi, xi ), i = 1, 2, . . . , n, where yi is a binary
response and xi = (xi1, xi2, . . . , xip)

T is a vector of p binary markers, logic
regression (LR) seeks to recover the underlying Boolean relation, L(xi ), among the
markers that describes yi . In disjunctive normal form (DNF) [11], L is a series of
conjunctions (∧) called prime implicants (PIs) [29] joined by disjunctions (∨). Thus,
for example, a Boolean relation in disjunctive normal form isL(x) = (x1∧x2)∨ !x3,
which has two PIs. An advantage of LR is its ability to discern arbitrary, and hence
highly flexible, interactions (represented as PIs) among biomarkers predictive of
disease. In cancer research [9, 15] and other settings [16, 17], LR has shown modest
improvements in sensitivity/specificity compared to traditional statistical methods
for binary variables.

The interpretability of Boolean relations, and hence LR, is illustrated by Figure 1
of Mitra et al. [22] (not reproduced here), which depicts three pathways by which
bladder cancer may develop. Each of the three pathways requires that a series of
events occur; hence each pathway can be expressed as a PI. Taken together, the
three pathways can be represented by the following Boolean relation in DNF:

I (Y = cancer+) = (HRAS ∧ FGFR3 ∧ !p53 ∧ !p21)∨
(
9q− ∧ !p53 ∧ !p21

)∨
(!p53 ∧ Rb) .
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Here, the variables HRAS and FGFR3 are indicators of activating mutations in the
corresponding HRAS and FGFR3 genes; the variables p53 and p21 indicate normal
expression of the genes p53 and p21, hence !p53 and !p21 indicate loss of this
expression; 9q− indicates a deletion in chromosome 9; and the variable Rb indicates
elevated expression of the protein Rb in hyperphosphorylated form.

Although appealing for its flexibility and interpretability, LR exhibits characteris-
tics of a weak learner [28]. In particular, the model fit is unstable when the response
is only weakly associated with a PI [32], a likely situation when the biomarker-
response association is heterogeneous in the study population.

3 Model Description

We develop a Bayesian model to accommodate latent subpopulation structure in the
association between biomarkers and response. By incorporating logic regression
within a fully Bayesian framework, our approach provides simultaneous estimation
of the number of clusters (subpopulations), cluster configuration, and distinct
Boolean relations associating biomarkers and response within each cluster. Hence,
we retain the ability of logic regression to discover complex, yet interpretable,
interactions among binary biomarkers predictive of response, and gain estimation
of the underlying subpopulation structure and corresponding disease-response
associations.

Recall that we jointly model the binary disease status and a related continuous
outcome such as a serum marker or quality of life assessment to ensure identifiability
(up to label switching) of the subpopulation structure. Expanding on the notation of
Sect. 2, let Yi = (yi, wi) be the joint response, where yi is binary and wi is con-
tinuous. In addition to the p binary biomarkers xi , we obtain additional covariates
vi for modeling wi . Let F(Yi | xi , vi , θi) denote the joint probability distribution
for the bivariate response Yi depending on individual-specific parameters θi and
incorporating the association with the binary biomarkers and additional covariates.
The notational dependence on xi and vi will often be suppressed, and we write
Yi | θi ∼ F(θi).

The subpopulation structure is handled in our model by clustering among the
{θi}. When θi = θj , we view observations i and j as clustered, so that individuals
i and j are members of the same subpopulation. This clustering naturally arises
from the DPMM, as we describe in Sect. 3.1. Following this, we introduce our
preferred MFM formulation in Sect. 3.2. Section 3.3 notes important similarities and
differences induced on the distribution of cluster configurations by the DPMM and
MFM models. Section 3.4 details our joint model, including all prior distributions.
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3.1 Dirichlet Process Mixture Model (DPMM)

Given the response Yi, i = 1, 2, . . . , n for each of n individuals, the DPMM may
be written as

Yi | θi ∼ F(θi), independently

θi | G ∼ G, independently

G ∼ DP(α,G0),

where DP(α,G0) denotes the Dirichlet process with concentration parameter α and
base distribution G0. Details of the properties of the Dirichlet process are described
in [10], but it may be helpful to note that if G ∼ DP(α,G0), then the measure of a
set B under G has mean G0(B), and G(B) varies inversely with α. In particular, the
larger the value of α, the more the measure G resembles G0. Because the Dirichlet
process yields distributions G that are almost surely discrete [3], the unique values
among θ1, θ2, . . . , θn induce a natural clustering among the observations. More
specifically, observations i and j are clustered when θi = θj , in which case we view
Yi and Yj as having arisen from the same subpopulation. Although this clustering
may be viewed as a side effect of the DPMM, it fulfills our goal of accommodating
latent subpopulation structure.

There is an equivalent formulation that incorporates the cluster membership
indicator zi ∈ {1, 2, . . . , K}, with zi = k when observation i arises from
subpopulation k. With K ≤ n distinct subpopulations, let φ = (φ1, φ2, . . . , φK) be
the vector of unique values among {θ1, θ2, . . . , θn}. Then φzi are the parameters for
the cluster containing observation i; that is, φzi = θi . Letting π = (π1, π2, . . . , πK)

be a vector of probabilities summing to one, the equivalent model is the following:

Yi | zi,φ ∼ F(φzi ), independently

zi | π ∼ Categorical(π1, π2, . . . , πK), independently

φk ∼ G0, independently

π ∼ DirichletK(α/K, . . . , α/K),

which becomes the DPMM in the limit as K →∞ [14].
The form of the prior distribution for the cluster configuration in the DPMM leads

to conditional distributions that make it straightforward to use the Gibbs sampler to
obtain posterior samples [23]. These prior distributions are discussed in Sect. 3.3.
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3.2 Mixture of Finite Mixtures (MFM)

A mixture of finite mixtures (MFM) model may also be used to represent subpopu-
lation structure. In our context, the MFM model is written as follows:

Yi | zi,φ ∼ F(φzi ), independently

zi | π,K ∼ Categorical(π1, π2, . . . , πK), independently

φk | K ∼ G0, independently

π | K ∼ DirichletK(γ, . . . , γ ),

K ∼ p, where p is a proper distribution on 1, 2, . . . .

(1)

Here, G0 is a base measure on the space of the model parameters φ, and γ > 0
governs the Dirichlet distribution for the cluster assignment probabilities.

The MFM model shares many attractive properties with the DPMM. As noted
in [20], both the MFM model and DPMM may be interpreted as providing a
random discrete measure for our model parameters {θ1, θ2, . . . , θn}; both provide
for exchangeability; and both induce a simple probability distribution on the
cluster configuration that admits a restaurant process. Thus, many DPMM inference
algorithms can be applied to the MFM setting directly after minor modifications.
Miller [20] notes the following two major advantages of the MFM model over the
DPMM:

1. The prior distributions on the number of clusters, K , have very different
behaviors. In the MFM model prior distribution, the number of clusters converges
to a finite value with probability one as the sample size grows. In the DPMM prior
distribution, the number of clusters grows to infinity with probability one as the
sample size grows.

2. The MFM model prior distribution is such that the sizes of clusters are all the
same order of magnitude (asymptotically), a property that Petrone & Raftery
[24] termed balance. The DPMM prior distribution, on the other hand, exhibits
substantial imbalance because it favors partitions with some very small clusters
relative to the remaining larger clusters.

Miller [21] notes that these properties of the prior distributions for the DPMM
and MFM model carry over to the posterior distributions, largely, explaining the
extraneous small clusters produced by the DPMM and its overestimation of the
number of clusters. We discuss these properties in Sect. 3.3.

However, there are also disadvantages to using a MFM model. A very significant
issue is that since the MFM model dislikes small clusters, the mixing time of
incremental MCMC samplers, that is, samplers that explore the partition distribution
by moving one observation at a time, can be worse than for the DPMM. Another
inconvenience is that the coefficients of the partition distribution, {Vn(·)} defined
in (5) below, need to be precomputed.
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3.3 The Prior Distribution on the Cluster Assignments

The DPMM and MFM model both accommodate latent subpopulation structure
by providing a discrete probability distribution for the individual-specific model
parameters {θi}, which provides a distribution for the cluster assignment variables
{zi}. This probability distribution on the cluster assignment facilitates simultaneous
inference on the number of subpopulations and the assignment of individuals
among them. Here we elaborate on key distinctions between the cluster assignment
distributions induced by the DPMM and MFM model.

The DPMM induces a distribution on the cluster assignments called the Chinese
restaurant process (CRP) [1, 23, 25]. Figure 1 depicts a CRP, so named for the
popular Chinese restaurant metaphor: imagine customers arriving to a Chinese
restaurant that has infinitely many tables, with the index of each table corresponding
to a cluster label. The first customer chooses to sit at the first table, so that z1 = 1.
Then zi, i = 2, 3, . . . , n, have the following conditional distribution (also called a
Pólya urn scheme by [4]):

Pr(zi = k | z1, z2, . . . , zi−1) ∝
{
|k| , at an existing table labeled k

α, if k is a new table.
(2)

Here, |k| refers to the size of table k, i.e., the number of customers already seated
at table k, and α is the concentration parameter of the underlying Dirichlet process.
As is evident from Fig. 1, after all n customers have been seated, the tables form a
partition of the n customers into a number of clusters corresponding to the number
of occupied tables. These clusters capture our subpopulation structure.

The prior distribution on the cluster assignments induces a prior distribution
on the sizes of the clusters in the partition. Denote a partition of the observations
{1, 2, . . . , n} by C , and let |C | denote the number of clusters in C . Further, for a
partition C with |C | = t clusters, let the cluster sizes be s = (s1, s2, . . . , st ). The
prior distribution on the cluster sizes of the DPMM is given by

PrDP(s = (s1, s2, . . . , st ) | t) ∝ (s1s2 · · · st )−1. (3)

Fig. 1 An illustration of the Chinese restaurant process. A new customer chooses an existing table
with probability proportional to the number of customers already seated at the table, and selects a
new table with probability proportional to the Dirichlet process concentration, α
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From (3), it is clear that the DPMM tends to assign large probabilities to highly
imbalanced cluster sizes in which, necessarily, some clusters will be quite small.
This provides justification for the tendency of the DPMM to produce small,
extraneous clusters. From (2), smaller values of the concentration parameter α have
some tendency to curb introduction of new clusters, but the prior distribution on
cluster sizes (3) nonetheless pushes toward extraneous clusters. It has recently been
established that estimation of the number of clusters from DPMMs is inconsistent,
even when the sample size grows to infinity [21].

The MFM model described in Sect. 3.2 induces a prior distribution on the cluster
assignments that can also be represented as a restaurant process [21, Theorem 4.1].
As illustrated in Fig. 2, the first customer enters the empty restaurant and sits at
Table 1. Subsequently, customer i enters and, finding that the previous customers
are seated among t tables, chooses a table according to the following conditional
distribution:

Pr(zi = k | z1, z2, . . . , zi−1) ∝

⎧
⎪⎨

⎪⎩

|k| + γ, at an existing table labeled k

Vi(t + 1)

Vi(t)
γ, if k is a new table.

(4)

Recall that γ > 0 is the parameter of the Dirichlet distribution from which the
cluster assignment probabilities arise. The coefficients Vi(t), i = 2, 3, . . . , n are
given by

Vi(t) =
∞∑

k=1

k(t)

(γ k)(i)
p(k), (5)

where k(t) = k(k−1) . . . (k− t+1), (γ k)(i) = γ k(γ k+1) . . . (γ k+ i−1) and p(·),
recall, is the prior probability distribution on the number of clusters. (By convention,
x(0) = 1 and x(0) = 1).

While this restaurant process bears close resemblance to the CRP (compare Fig. 2
of the MFM model with Fig. 1 of the DPMM and, similarly, Eqs. (4) and (2)), the
introduction of a new (t+1)st table at the appearance of customer i is slowed by the
factor Vi(t + 1)/Vi(t), which allows a model-based pruning of the tiny extraneous
clusters.

Fig. 2 The restaurant process associated with the MFM models. New customer i arrives to find
the previous i− 1 customers seated among t = 3 tables. The coefficients {Vi(·)} defined in (5) and
γ determine the probability that this customer starts a new table
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Another way to understand the natural pruning of extraneous clusters in the MFM
model is through the probability distribution induced on the cluster sizes. Again, let
C be a partition with t = |C | clusters of sizes s = (s1, s2, . . . , st ). In contrast to (3)
of the DPMM, the prior probability of the cluster sizes under the MFM model is

PrMFM(s = (s1, s2, . . . , st ) | t) ∝ (s1s2 · · · st )γ−1. (6)

Comparison of (3) and (6) reveals that the MFM model assigns comparatively
smaller probability to highly imbalanced cluster sizes than the DPMM. The relative
size of the clusters is thus controlled by the parameter γ ; large γ gives less variation
among the cluster assignment probabilities π = (π1, π2, . . . , πt ), and hence more
similar cluster sizes, while small γ gives more variation among the πs.

The pruning of small extraneous clusters by the prior distributions of the MFM
model induce similar properties in the posterior distributions. Miller [20] proved
the consistency of the posterior distribution on the number of clusters in the MFM
model, as well as provided careful discussion of the inconsistency of the DPMM in
this respect. Because of the desirable feature of consistent estimation of the number
of clusters, we use the MFM model (1).

3.4 Bayesian Joint Model

We now specify the details of our Bayesian model for the joint response Yi =
(yi, wi), where yi is a binary disease status and wi is an associated continuous
outcome. We use logic regression to allow discovery of interactions among the
binary biomarkers, xi , associated with yi , Gaussian regression to associate the
covariates vi with wi , and embed this structure within the MFM model (1) to
accommodate heterogeneity due to an unknown number of subpopulations. A
key assumption is that yi and wi are conditionally independent given the cluster
assignment zi .

With K subpopulations, let Lk be the Boolean relation governing subpopulation
k, k = 1, 2, . . . , K , and define the accuracy of Lk as ξk = Pr(yi = Lk(xi ) | zi =
k, Lk). Transforming from the response yi to the indicators uik = I (yi = Lk(xi ) |
zi = k, Lk), we model uik | zi = k, Lk, ξk ∼ Ber(ξk), independently. The response
wi is modeled as Gaussian (following transformation, perhaps), again specific to
the subpopulation: wi | zi = k, βk, τk ∼ N(vTi βk, τk), where βk and τk are the
regression coefficients and precision, respectively, for subpopulation k. Thus, the set
of subpopulation-specific parameters is φk = (Lk, ξk, βk, τk), and φ of Sects. 3.1
and 3.2 is the collection of all of these parameters, φ = {(Lk, ξk, βk, τk), k =
1, 2, . . . , K}. The conditional independence of yi and wi given zi completes the
specification of F in (1), yielding
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F ((yi, wi) | zi,φ) =

ξ
uizi
zi (1− ξzi )

1−uizi ·
√
τzi

2π
exp

(

−τzi
2

[
wi − vTi βzi

]2
)

, i = 1, 2, . . . , n. (7)

The remainder of our MFM joint model is the choice of prior distribution for
the number of subpopulations, K , and the conditional prior distribution for the
model parameters φk = (Lk, ξk, βk, τk) given K . As derived by Miller [21], the
consistency of the MFM model for the number of subpopulations follows as long
as the prior distribution, K ∼ p(·), satisfies p(k) > 0, k = 1, 2, . . .. Miller also
notes, however, that it is desirable to avoid heavy tails in p to make computation of
the coefficients {Vn(·)} in (5) more efficient. (When p has thin tails, the infinite sum
in (5) converges rapidly and fewer terms are needed for accurate approximation of
Vn.) We use K − 1 ∼ Poisson(λ), a priori, a choice also studied by Miller [21].

We take the parameters in the conditional submodels for yi and wi to be a
priori independent. Thus, the prior G0 for φk factors into the product of the prior
distribution for (Lk, ξk) of the logic regression and the prior distribution for (βk, τk)
of the Gaussian regression. We further model Lk and ξk as a priori independent,
take ξk to follow a beta distribution, and adopt the conjugate normal-gamma prior
for (βk, τk). Thus, the prior distribution has the form

G0(φk) = Pr(Lk) · Beta(ξk; a, b) · N(βk;μβ, τ−1
k Vβ) · Gamma(τk; a′, b′), (8)

where the parameterizations are such that the beta distribution has mean a/(a + b)

and the gamma distribution has mean a′/b′. In the simulation of Sect. 5, we take
a = 50, b = 10, μβ = 0, Vβ the identity matrix, and a′ = b′ = 1.5. The values of
a and b ensure that identified subpopulations have meaningfully accurate Boolean
relations.

Building on ideas from Bayesian CART [5] and BART [6], we define the prior
distribution on the Boolean relationLk constructively via the following four steps:

1. Select the number of PIs, denoted NPI, for Lk according to the distribution

Pr(NPI = q) ∝ δq−ε − δ(q + 1)−ε, 0 < δ < 1, ε ≥ 0, q = 1, 2, . . . . (9)

The probability is a decreasing function of q, making larger numbers of PIs less
likely. In practice, this distribution is truncated at a maximum size, maxQ, say.

2. Select the number of biomarkers to be included in each PI, denoted M , again
using probabilities of the form (9), though truncated above at maxVar ≤ p.

3. Select the specific biomarkers for each PI uniformly.
4. Negate each selected biomarker with probability 0.5.

These steps yield a Boolean relation in DNF. The corresponding prior probability
associated with a Boolean relation L can be computed as
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Pr(L) =
maxQ∑

q=1

Pr(L | NPI = q)Pr(NPI = q)

=
maxQ∑

q=1

⎧
⎨

⎩

q∏

j=1

maxVar∑

m=1

(
p

m

)−1

2−m Pr(M = m in PI j)

⎫
⎬

⎭
Pr(NPI = q).

4 Estimation

We perform estimation in the joint MFM model using an MCMC procedure that
marginalizes over the number of subpopulations by sampling directly from the
induced distribution on the cluster assignments. Because a realization of the cluster
assignment corresponds precisely to a partition of the n observations, it provides
also a realization of K , the number of clusters. Consequently, the MFM model (1)
can be written equivalently using the restaurant process for the cluster assignments,
the distribution for the distinct parameter values {φk} associated with the clusters,
and the common distribution of the outcomes for all observations in the same cluster,
{Yi : zi = k}. That is, MFM model (1) may be formulated as follows:

(z1, z2, . . . , zn) ∼ restaurant process in (4)

φk | (z1, z2, . . . , zn) ∼ G0, independently, for k ∈ {z1, z2, . . . , zn}
(yi, wi) | φ, (z1, z2, . . . , zn) ∼ F(φzi ), independently.

(10)

Here, the joint distribution of z1, z2, . . . , zn is obtained from the series of condi-
tional distributions in (4), and the effect of the prior distribution on the number of
clusters, p(·), enters through the coefficients {Vn} in (5). In the second line of (10),
k assumes only the unique values among the cluster assignments.

The model formulation (10) has marginalized over the number of subpopulations,
thereby enabling estimation using a Gibbs sampling MCMC procedure with no
need to explore model spaces of varying dimension. Let z−i denote the cluster
assignments for the n − 1 observations excluding observation i. Also, let Yk be
the set of data from the individuals currently in subpopulation k, i.e., Yk = {Yi =
(yi, wi) | zi = k}, and similarly define Bk = {yi | zi = k} and Wk = {wi | zi = k}
as the data specific to the binary and continuous outcomes, respectively, among
individuals currently in subpopulation k. We first sample from the conditional
posterior distribution on {zi}, that is Pr(zi | z−i , Yi,φ), i = 1, 2, . . . , n, in order
to have a summary about the number of clusters and cluster assignment. Then we
sample from P(φk | Yk) for each unique value k among {z1, z2, . . . , zn}. This
sampling of φk involves drawing the Boolean relation and its accuracy for each
cluster from P(Lk, ξk | Bk), as well as the Gaussian regression parameters from
P(βk, τk |Wk).
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The algorithm used here is Algorithm 4.4.2 in [20] (similar to Neal’s algorithm
8 [23] for the DPMM), which iterates the following updates until convergence:

1. Update the cluster assignments, {zi}: For i = 1, 2, . . . , n, if observation i is
the sole member of cluster zi , set φ∗ = φzi . Otherwise, draw parameters for
a potential new cluster as φ∗ ∼ G0 given in (8). Then draw a new cluster
assignment zi from the full conditional distribution induced by the MFM model:

Pr(zi = k | z−i , Yi, φ) ∝

⎧
⎪⎨

⎪⎩

(|k| + γ ) F (Yi | φk) for an existing cluster k

Vn(t + 1)

Vn(t)
γ F (Yi | φ∗) if k is a new cluster,

where t is the number of clusters after removing observation i and |k| is the size
of cluster k.

2. Update the cluster parameters, {φk}: For each unique k ∈ {z1, . . . , zn}, draw
φk ∼ P(φ | Yk). Because of the structure of our model, we may draw the
Boolean relation and associated accuracy (Lk, ξk) ∼ P(Lk, ξk | Bk) based
on the information from the binary outcome and separately draw the Gaussian
parameters (βk, τk) ∼ P(βk, τk |Wk) based on the continuous outcome.

Note that the full conditional distribution for the cluster assignments in Step 1
is a restaurant process of the same form as the prior distribution (4). Because
these are full conditional distributions, the coefficients {Vi} defined in (5) need be
precomputed only for i = n. The sampling in Step 2 is straightforward due to the
conjugate nature of our model, apart from the sampling of the Boolean relation, Lk .
We use a Metropolis-Hastings algorithm to obtain the new Lnew

k from P(Lk | Bk)
with the proposal distribution consisting of a random selection among a set of
“tweaks” to the existing relation, Lk . Then we draw the corresponding accuracy
ξnew
k ∼ P(ξk | Lnew

k ,Bk) using the conjugate beta structure.
We initialize the algorithm by generating values for each parameter from their

prior distributions. Convergence can be assessed in the usual ways for parameters
apart from the Boolean relations. In practice, we observe that the Boolean relations
have the slowest convergence rate, thus we deem the Markov chain as having
converged once the Boolean relations are stable.

5 Simulation Study

We use a simulation study to illustrate the performance of the estimation procedure
described in Sect. 4 for the joint model of Sect. 3.4 based on the MFM formulation,
and also provide comparison with the DPMM. Data are generated according to
the joint model with K = 3 subpopulations, each having a distinct Boolean
function relating the binary biomarkers and binary disease outcome. We explore
the effects of increasing the number of nonpredictive binary biomarkers and
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decreasing the informativeness of the continuous outcome about the distinction
among subpopulations.

A simulated data set consists of n = 300 individuals with 100 in each of the
K = 3 subpopulations. For a given number of binary biomarkers, p, the binary
biomarkers xi are generated for each individual as xi1, xi2, . . . , xip ∼ Ber(0.5),
independently. The Boolean relation for the first subpopulation is L1(x) = (x1 ∧
x2) ∨ (x3 ∧ x4) and the binary disease outcome in this subpopulation is determined
as yi = L1(xi ) with probability ξ1 = 0.99, i = 1, 2, . . . , 100. The binary
outcome is generated similarly for the individuals in subpopulations 2 and 3 with
L2(x) = x5 ∧ x6, ξ2 = 0.95, L3(x) = x7∧ !x8, and ξ3 = 0.90. Thus, there are
six informative biomarkers among the p biomarkers in x, with different sets of
biomarkers pertinent to each of the subpopulations. The Boolean relation is most
complex and has the highest accuracy for the first subpopulation. The continuous
outcome, wi , for individual i in subpopulation k is generated as Gaussian with
mean βk0 + βk1vi and variance 1, where vi ∼ Uniform(0, 2), independently.
Three simulation cases are distinguished by three sets of subpopulation-specific
coefficients {βk , k = 1, 2, 3}. These values are given in Table 1, which summarizes
the simulation settings. Figure 3 shows density estimates for the generated values
of wi for each of the three subpopulations in each of the simulation cases. The
impact of the predictor vi and the coefficients βk is apparent in these distributions,
apart from subpopulation 2, for which the associated regression coefficient is zero.
The subpopulation distributions are progressively less well distinguished across the
three cases (in order), and hence the continuous outcome w provides increasingly
less information about the underlying cluster structure. For each simulation case,
we also vary the number of binary predictors p ∈ {20, 50, 100}. The comparison to
DPMM is provided for p = 20.

For each replicate, the Gibbs sampler described in Sect. 4 is run for 2000 burn-in
iterations and an additional 3000 iterations for inference. The hyperparameters are
fixed as maxQ = 3, maxVar = 3, δ = 1, ε = 0.6, a = 50, b = 10, a′ = 1.5, b′ = 1.5,
λ = 1 and γ = 1.

Table 1 Data for the simulation are generated from K = 3 subpopulations with the Boolean
relations, accuracies and Gaussian regression coefficients shown here

Cluster 1 Cluster 2 Cluster 3

Binary disease outcome yi

Boolean relation L1(x) = (x1 ∧ x2) ∨ (x3 ∧ x4) L2(x) = x5 ∧ x6 L3(x) = x7∧ !x8

Boolean accuracy ξ1 = 0.99 ξ2 = 0.95 ξ3 = 0.90

Membership proportion π1 = 1/3 π2 = 1/3 π3 = 1/3

Continuous outcome wi

Case I βT1 = (−5.0, 10) βT2 = (0, 0) βT3 = (−10, 5.0)

Case II βT1 = (−2.5, 5.0) βT2 = (0, 0) βT3 = (−5.0, 2.5)

Case III βT1 = (−2.5, 3.5) βT2 = (0, 0) βT3 = (−5.0, 2.5)

The Boolean relations and accuracies are the same for the three simulation cases. The regression
coefficients differ for the three cases, with the distribution of w differing the most among
subpopulations in Case I, and the least among subpopulations in Case III
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Fig. 3 The realized distribution of the continuous outcomes w in the simulation. The red dashed
line corresponds to cluster 1, the solid black line to cluster 2 and the blue dotted line to cluster 3.
The three clusters are most distinguishable in Case I and least distinguishable in Case III

The model fit for a replicate is then summarized by the following quantities: an
estimated number of clusters, the estimated Boolean relations for each cluster, the
Rand index comparing the estimated and true cluster assignments, and the accuracy
of predictions for the binary response. The estimated number of clusters is the
posterior mode, determined as the most frequently occurring value among the post
burn-in iterations. The estimated Boolean relations, the Rand index and prediction
accuracy are determined from the best post burn-in iteration selected using Dahl’s
method [7]. This best iteration has the cluster configuration best supported by the
post burn-in iterations in a least squares sense. It provides a single realization of the
cluster assignments and all model parameters. The Rand index evaluates the quality
of the estimated cluster assignments as the proportion of pairs of observations that
are correctly clustered together or apart. The prediction accuracy is the proportion
of individuals for whom the binary response is correctly predicted when using the
estimated Boolean relation for the individual’s assigned cluster.

For ten replicates, we report the set of cluster-specific Boolean relations appear-
ing most frequently among the selected best iterations and, in parentheses in the
table, the proportion of replicates yielding this set; the average of the resulting Rand
indices; and the average prediction accuracy.

5.1 Simulation Results

Table 2 provides the results of the simulation. The posterior mode of the number of
clusters accurately captures the K = 3 subpopulations in all three simulation cases
and consistently as the number of noise biomarkers gets large, e.g., p = 100. The
Boolean relations within each subpopulation are also recovered very well when the
distributions for the continuous response have separation (Cases I and II) and are
robust to increasing p. Recovery of the exact Boolean relations used to generate the
data ranges from 40 to 60% in Cases I and II as p varies, and in all of these Case
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Table 2 Results of the simulation study of the MFM model

Prediction

# of clusters Boolean relations Rand index accuracy

Case I

p = 20 3 (x1 ∧ x2) ∨ (x3 ∧ x4), x5 ∧ x6, x7∧ !x8 (0.6) 0.74 0.93

p = 50 3 (x1 ∧ x2) ∨ (x3 ∧ x4), x5 ∧ x6, x7∧ !x8 (0.5) 0.74 0.92

p = 100 3 (x1 ∧ x2) ∨ (x3 ∧ x4), x5 ∧ x6, x7∧ !x8 (0.4) 0.73 0.93

Case II

p = 20 3 (x1 ∧ x2) ∨ (x3 ∧ x4), x5 ∧ x6, x7∧ !x8 (0.6) 0.50 0.91

p = 50 3 (x1 ∧ x2) ∨ (x3 ∧ x4), x5 ∧ x6, x7∧ !x8 (0.5) 0.52 0.91

p = 100 3 (x1 ∧ x2) ∨ (x3 ∧ x4), x5 ∧ x6, x7∧ !x8 (0.4) 0.51 0.89

Case III

p = 20 3 x1 ∧ x2, x5 ∧ x6, x7∧ !x8 (0.3) 0.39 0.89

p = 50 3 x3 ∧ x4, x5 ∧ x6, x7∧ !x8 (0.4) 0.35 0.88

p = 100 3 x1, x5 ∧ x6, x7∧ !x8 (0.3) 0.36 0.88

The estimated number of clusters is the posterior mode. The estimated Boolean relations are the
set that occurred most frequently among the summary iterates from the ten replications. The Rand
index and prediction accuracy are the average values over the replicates. Details are given in the
text

I and Case III replicates, the four most frequently occurring PIs among the 3000
inferential MCMC iterates are correctly identified, namely x1 ∧ x2, x3 ∧ x4, x5 ∧ x6
and x7∧ !x8.

Even in Case III where there is considerable overlap in the distributions of w for
the three subpopulations, the recovery of informative biomarkers is very strong. In
Case III, examination of the inferential MCMC iterations reveals that the top four
most frequently appearing PIs are x5 ∧ x6, x7∧ !x8, x1 and x3 ∧ x4 for all values of
p and all replicates, implying the algorithm successfully finds important features.

The estimated cluster configuration (Rand index) is stable with increasing p,
but becomes worse as the separation among the distributions of the continuous
response in the subpopulations decreases. This degradation of the estimated cluster
assignment is not surprising given that the subpopulation structure is purely latent.
Nonetheless, the resulting prediction of the binary response is relatively robust
at near 90% accuracy. In contrast, if the underlying heterogeneity is ignored and
a single logic regression is used, the average prediction accuracy for the binary
response is approximately 70%.

Table 3 provides the results of the comparison of the MFM and DPMM
formulations for p = 20. While the prediction of the binary response is similar for
two models, the DPMM tends to overestimate the number of clusters by identifying
tiny extraneous clusters, behavior that is consistent with our discussion in Sect. 3.3.
The estimated Boolean relations for these extraneous clusters are highly variable in
the posterior distribution, which complicates summarization of the fitted Boolean
relations in the DPMM. We report the estimated Boolean relations as the set that
occurred most frequently among the summary iterates from the ten replications. As
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Table 3 Comparison of the MFM and DPMM formulations with p = 20

Prediction

# of clusters Boolean relations Rand index accuracy

Case I

MFM 3 (x1 ∧ x2) ∨ (x3 ∧ x4), x5 ∧ x6, x7∧ !x8 (0.6) 0.74 0.93

DPMM 3 (x1 ∧ x2) ∨ (x3 ∧ x4), x5 ∧ x6, x7∧ !x8 (0.4) 0.73 0.93

Case II

MFM 3 (x1 ∧ x2) ∨ (x3 ∧ x4), x5 ∧ x6, x7∧ !x8 (0.6) 0.50 0.91

DPMM 4 (x1 ∧ x2) ∨ (x3 ∧ x4), x5 ∧ x6, x7∧ !x8 (0.2) 0.49 0.90

Case III

MFM 3 x1 ∧ x2, x5 ∧ x6, x7∧ !x8 (0.3) 0.39 0.89

DPMM 4 x3 ∧ x4, x5 ∧ x6, x7∧ !x8 (0.3) 0.38 0.89

The estimated number of clusters is the posterior mode. The estimated Boolean relations are the
set that occurred most frequently among the summary iterates from the ten replications. The Rand
index and prediction accuracy are the average values over the replicates. Details are given in the
text

Fig. 4 Exploration of the added value of the binary response in the joint model. When the MFM
model is fit to only the continuous response in the simulated data, the cluster configuration is not
recovered as accurately as from the joint model

shown in Table 3, this set contained three Boolean relations in all cases, even if the
posterior mode of the number of clusters was higher.

5.2 Added Value of the Binary Response

Theoretically, the continuous response alone is sufficient to identify the subpop-
ulation structure. It is natural, then, to ask “What is the contribution of the binary
response to recovering the cluster configuration?” To address this question, we fit the
MFM model for only the continuous response w to the same simulated datasets. We
used the same estimation algorithm to fit model (10) with the response distribution
F in (7) modified to only the Gaussian part, F(wi | zi,φ). The results are shown
in Fig. 4. The average (over the ten replicates) of the Rand indices drops to 0.66,
0.39 and 0.25 for the three simulation cases, respectively. Moreover, the posterior
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mode over estimates the number of clusters in Cases II and III. This illustrates that
incorporating the binary response through the joint modeling does improve recovery
of the cluster configuration in these settings.

6 Discussion

We have proposed a fully Bayesian joint model for discovery of interactions among
binary biomarkers predictive of disease while accommodating latent subpopula-
tion heterogeneity. The model enables simultaneous estimation of the number
of subpopulations, subpopulation membership and distinct associations between
the response and predictors within each subpopulation. The Bayesian hierarchical
framework provides borrowing-of-strength across the discovered subgroups that can
enhance within-group estimation. Our contributions include incorporating Boolean
relations among the binary biomarkers as parameters arising from a MFM model
and addressing the associated challenges both in terms of specification of the prior
distributions and estimation using an MCMC approach.

Our focus is to capture heterogeneity of the predictor-response association using
the postulated subgroup structure. This contrasts with analyses that cluster the
responses themselves, or the predictors themselves, perhaps as initial steps toward
discovery of predictive interactions. The simulation study shows that estimation of
the number of clusters, cluster configuration and cluster-specific relations is robust
to a moderately increasing number of noise predictors and improves with greater
separation of the underlying clusters.

The identifiability of our model requires sufficient variation in the data such that
there is no collinearity among the biomarkers x, the covariates v, and how these
relate to the responses y andw, among other conditions. We have not derived details,
but techniques such as those used for latent class regression models [13] or latent
class joint models [26] could be adapted to study global and local identifiability
carefully. We advise ensuring, at minimum, that x and v are full column rank and
do not induce singularities in combination with the responses, properties expected
for reasonably large sample sizes. We noted that the strict identifiability of more
than one latent cluster in the association between the biomarkers and binary disease
status requires additional information. We have opted to couple the binary disease
status y with a continuous response, w, which is often available in our experience.
Recall our motivating example is the association between SNPs and presence of
prostate cancer, for which the continuous prostate specific antigen level provides
a meaningful value for w. Even in cases when w is not available, we have found
that the modified version of our model utilizing only the binary disease status y and
biomarkers x reliably identifies Boolean relations that improve prediction accuracy
of y.

The model may be extended to handle data with a large number of predictors, but
estimation presents some computational challenges. The Bayesian sampler itself
may be used as a variable screening tool, as it has demonstrated the ability to
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identify features useful for response prediction. However, variable pre-screening
or additional variable selection methods incorporated in the model may improve
efficiency.
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Heat Kernel Smoothing on Manifolds and
Its Application to Hyoid Bone Growth
Modeling

Moo K. Chung, Nagesh Adluru, and Houri K. Vorperian

Abstract We present a unified heat kernel smoothing framework for modeling 3D
anatomical surface data extracted from medical images. Due to image acquisition
and preprocessing noises, it is expected the medical imaging data is noisy. The
surface data of the anatomical structures is regressed using the weighted linear
combination of Laplace-Beltrami (LB) eigenfunctions to smooth out noisy data and
perform statistical analysis. The method is applied in characterizing the 3D growth
pattern of human hyoid bone between ages 0 and 20 obtained from CT images. We
detected a significant age effect on localized parts of the hyoid bone.

Keywords Heat kernel smoothing · Hyoid bone growth · Random field theory ·
Laplace Beltrami eigenfunctions · Diffusion on manifolds

1 Introduction

For normally developing children, age and sex could be major factors that affect the
structure and function of growing hyoid bone. As in other developmental studies
[22, 55, 56], we expect highly localized complex growth pattern to emerge between
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ages 0 and 20 in the hyoid bone. Growth is expected to extend laterally with respect
to the surface of the bone. However, it is unclear what specific parts of the hyoid
bone are growing. This provides a biological motivation for a need to develop a
local surface-based morphometric technique beyond simple volumetric techniques
that cannot detect localized subtle anatomical changes along the surface of the hyoid
bone composting of three segments—a central hyoid body with two greater cornua
(horns) [11, 21].

The end results of existing surface-based morphometric studies in medical
imaging are statistical parametric maps (SPM) that show the statistical significance
of growth at each surface mesh vertex [22, 48, 64]. In order to obtain stable and
robust SPM, various signal smoothing and filtering methods have been proposed.
Among them, diffusion equations, kernel smoothing, and wavelet-based approaches
are probably the most popular. Diffusion equations have been widely used in image
processing as a form of noise reduction starting with Perona and Malik in 1990s
[46]. Although numerous techniques have been developed for performing diffusion
along surfaces [2, 21, 22, 43, 51–53], many approaches are nonparametric and
requires the finite element or finite difference schemes which are known to suffer
various numerical instabilities [16, 18].

Recently, few regression models are proposed on manifolds. In [40], Laplace-
Beltrami operator based functional principal component analysis was proposed. In
[25], Fréchet mean based regression model was proposed on manifolds. Kernel
smoothing based models have been also proposed for surface and manifolds data
[6, 17, 18]. The kernel methods basically smooth data as the weighted average of
neighboring mesh vertices using mostly a Gaussian kernel and its iterative applica-
tion is supposed to approximate the diffusion process. Recently, wavelets have been
popularized for surface and graph data [33, 36, 38]. Spherical wavelets have been
used on brain surface data that has been mapped onto a sphere [8, 44]. Since wavelet
basis functions have local support in both space and scale, the wavelet coefficients
from the scale-space decomposition using the spherical wavelets provide shape
features that describe local shape variation at a variety of scales and spatial locations.
However, spherical wavelets have an intrinsic problem that they require to establish
a smooth mapping from the surface to a unit sphere, which introduces a serious
metric distortion. The spherical mapping such as conformal mapping introduces
serious metric distortion which usually compounds SPM [28, 34]. Furthermore, such
basis functions defined on a sphere seem to be suboptimal than those directly defined
on anatomical surfaces in detecting locations or scales of shape variations. To
remedy the limitation of the spherical wavelets, the spectral graph wavelet transform
defined on a graph has been applied to arbitrary surface meshes by treating surface
meshes as graphs [3, 29, 38]. The wavelet transform is a powerful tool decomposing
a signal or function into a collection of components localized at both location
and scale. Although all three methods (diffusion-, kernel- and wavelet-based) look
different from each other, it is possible to develop a unified framework that relates
all of them in a coherent mathematical framework [16].

Starting with a symmetric positive definite kernel, we propose a unified kernel
smoothing framework within the Hilbert space theory [23]. The proposed kernel
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smoothing works for any symmetric positive definite kernel, which behaves like
weights between two functional data. We show how this facilitates a coherent
statistical inference for functional signals defined on an arbitrary manifold. The
focus of this paper is on the development of the proposed kernel smoothing on
manifolds.

The structure of this paper is as follows. First, we present a unified bivariate
kernel smoothing that is related to diffusion-like equations on manifolds. The
proposed kernel regression inherits various mathematical and statistical properties
of diffusion-like equations. Then, we show the relationship between the ker-
nel smoothing and recently popular spectral graph wavelets for manifolds. The
proposed kernel smoothing is shown to be equivalent to the wavelet transform.
This mathematical equivalence levitates a need for constructing wavelets using a
complicated computational machinery as often done in previous diffusion wavelet
constructions [3, 29, 36, 38]. A unified statistical inference framework is then
developed for the kernel method via Worsley’s random field theory [54, 63]. This
levitates the need for using time consuming nonparametric procedures such as false
discovery rates (FDR) [7, 27] or permutation tests [9, 15, 20, 31] that do not have
explicate control over the scale and smoothness of models. Finally, we illustrate how
the kernel smoothing procedure can be used to localize the disconnected hyoid bone
growth pattern in human.

2 Preliminary

Let us illustrate two statistical problems in the Euclidean space that motivate the
development of the proposed kernel smoothing on manifolds. Consider measure-
ments fi sampled at point pi ∈ R

d . The measurements are usually modeled as

fi = h(pi)+ εi

with mean zero noise εi and unknown mean function h that has to be estimated.
In the traditional kernel regression framework [6, 24, 45], the mean function h is
estimated in the weighted least squares fashion:

ĥ(p) =
k∑

j=1

G(p − pi)fi,

where G is given by Nadaraya-Waton type of normalized kernels. In the local
polynomial regression framework [24], h is estimated as

ĥ(p) = arg min
β0,··· ,βk

n∑

i=1

G(p − pi)

∣
∣
∣fi −

k∑

j=0

βj (p − pi)
j
∣
∣
∣
2
. (1)
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In many related local polynomial or kernel regression frameworks, kernel G and
polynomial basis {pj } are translated by the amount of pi in fitting the data locally. In
this fashion, at each data point pi , exactly the same shape of kernel and distance can
be used. However, one immediately encounters a difficulty of directly generalizing
the Euclidean formulation (1) to an arbitrary surface since it is unclear how to
translate the kernel and basis in a coherent fashion. To remedy this problem, many
recent kernel regression frameworks on manifolds use bivariate kernel G(p, q) and
bypass the problem of translating a univariate kernel [6]. By simply changing the
second argument, it has the effect of translating the kernel.

A similar problem is also encountered in wavelets in the Euclidean space.
Consider wavelet basis Wt,q(p) obtained from a mother wavelet W with scale
parameter t and translation parameter q:

Wt,q(p) = 1

t
W

(p − q

t

)
. (2)

Scaling a function on a surface is trivial. But the difficulty arises when one tries
to define a mother wavelet and translate it on a surface. It is not straightforward
to generalize the Euclidean formulation (2) to an arbitrary manifold. If one tries
to modify the existing spherical wavelets to an arbitrary surface [8, 44], one also
encounters the lack of regular grids on the surface. The recent work based on the
spectral graph wavelet transform bypass this problem by also taking a bivariate
kernel as a mother wavelet [3, 29, 38, 42]. To remedy these two different but related
problems, we propose to use a bivariate kernel and bypass the problem of translating
a univariate kernel. By simply changing the second argument, it has the effect of
translating the kernel.

3 Methods

In many anatomical surface studies in medical imaging, measurements are sampled
densely at each mesh vertex so it is more practical to model the measurements
as smooth functions. Consider a functional measurement f defined on a manifold
M ⊂ R

d . We assume the following additive model:

f (p) = h(p)+ ε(p), (3)

where h is the unknown signal to be estimated and ε is a zero-mean random
field, possibly Gaussian. The manifold M can be a single connected component
or multiple disjoint components as our hyoid bone application (Fig. 1). We further
assume f ∈ L2(M ), the space of square integrable functions on M with the inner
product
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Fig. 1 CT image showing the location of the hyoid bone (left), and 3D model (right) showing the
relative location of the hyoid bone (red) with respect to the mandible (gray) and vocal tract (green)

〈f, g〉 =
∫

M
f (p)g(p) dμ(p),

where μ is the Lebesgue measure. μ(M ) will measure the volume of M in d-
dimension [11, 16]. Define a self-adjoint operator L satisfying

〈g1,L g2〉 = 〈L g1, g2〉

for all g1, g2 ∈ L2(M ). Then L induces the eigenvalues λj and eigenfunctions ψj
on M (Fig. 2):

Lψj = λjψj . (4)

Without loss of generality, we can order the eigenvalues

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · .

We can show that the eigenfunctions ψj form an orthonormal basis in L2(M ). We
will consider a smooth symmetric positive definite kernel of the form

K(p, q) =
∞∑

j=0

τjψj (p)ψj (q) (5)

for some τj in this paper. The constants τj are identified as follows. Apply the kernel
convolution on the eigenfunction ψj :

K ∗ ψj (p) =
∫

M
K(p, q)ψj (q) dμ(q). (6)
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Fig. 2 Laplace-Beltrami eigenfunctions ψj of various degrees (j = 0, 1, 5, 20, 100, 500) on the
template. The first eigenfunction is constant in each component. As the degree increases, the spatial
frequency increases

Substituting (5) into (6), we have

K ∗ ψj (p) = τjψj (p)

indicating τj and ψj must be the eigenvalues and eigenfunctions of the con-
volution (6). Note ψj are eigenfunctions of self-adjoint operator L and kernel
convolution at the same time.

Example 1 For τj = e−λt , we have heat kernel

K(p, q) =
∞∑

j=0

e−λtψj (p)ψj (q), (7)

where t is the bandwidth of kernel. The heat kernel has been often used in numerous
studies but without much theoretical justification [16, 32, 37, 49]. For this study, we
will denote the heat kernel as Ht(p, q) to explicitly show that the spread of the
kernel is determined by diffusion time t [17, 18].
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3.1 Kernel Smoothing on Manifolds

Consider subspace Hk ⊂ L2(M ) spanned by the orthonormal basis {ψj }, i.e.,

Hk = {
k∑

j=0

βjψj (p) : βj ∈ R}.

Then the least squares estimation (LSE) of h in Hk is given by the shortest distance
from f to Hk [14, 16]:

ĥ(p) = arg min
h∈Hk

∫

M

∣
∣f (p)− h(p)

∣
∣2 dμ(p) =

k∑

j=0

fjψj (p), (8)

where fj = 〈f,ψj 〉 are the Fourier coefficients. Figure 3 shows an example of LSE
with L as the Laplace-Beltrami operator and k = 1000. This is a special case of
Fourier series expansion that tends to suffer the Gibbs phenomenon, i.e., ringing
artifact [13, 26]. The Gibbs phenomenon can be effectively removed if the Fourier
series expansion converges fast enough as the number of basis functions goes to
infinity. By weighting the Fourier coefficients exponentially smaller, we can make

Original 0.1 0.5 1

5 10 100 1000
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Fig. 3 Heat kernel smoothing using different bandwidth between 0.1 and 1000. As the bandwidth
increases, the kernel regression becomes inversely proportional to the square root of the surface
area
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the representation converges faster; this can be achieved by additionally weighting
the squared residuals in Eq. (8) with some weights. Thus, we propose to estimate h
by minimizing the weighted distance to the space Hk:

ĥ(p) = arg min
h∈Hk

∫

M

∫

M
K(p, q)

∣
∣
∣f (q)− h(p)

∣
∣
∣
2
dμ(q) dμ(p). (9)

Without loss of generality, we will assume the kernel to be a probability distribution

∫

M
K(p, q) dμ(q) = 1

for all p ∈M . The solution of (9) has the following analytic expression.

Theorem 1

ĥ(p) = arg min
h∈Hk

∫

M

∫

M
K(p, q)

∣
∣
∣f (q)− h(p)

∣
∣
∣
2
dμ(q) dμ(p) =

k∑

j=0

τjfjψj ,

where fj = 〈f,ψj 〉 are Fourier coefficients.
Proof Any function h ∈Hk can be expressed as

h(p) =
k∑

j=0

βjψj (p). (10)

Then by plugging (10) into the inner integral I (p), it becomes

I (p) =
∫

M
K(p, q)

∣
∣
∣f (q)−

k∑

j=0

βjψ(p)

∣
∣
∣
2
dμ(q).

Simplifying the expression, we obtain

I (p) =
k∑

j=0

k∑

j ′=0

ψj (p)ψj ′(p)βjβj ′ − 2K ∗ f (p)
k∑

j=0

ψj (p)βj +K ∗ f 2(p).

(11)

The kernel can be written as

K(p, q) =
∞∑

j ′=0

τj ′ψj ′(p)ψj ′(q). (12)

The convolution is then written as
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K ∗ f (p) =
∞∑

j ′=0

τj ′fj ′ψj ′(p).

Since I is an unconstrained positive semidefinite quadratic program (QP) in
βj , there is no unique global minimizer of I without additional linear constraints.
Integrating I further with respect to dμ(p), we collapses (11) to a positive definite
QP, which yields a unique global minimizer:

∫

M
I (p) dμ(p) =

k∑

j=0

β2
j − 2

k∑

j=0

τjfjβj + const.

The minimum of the above integral is obtained when all the partial derivatives with
respect to βj vanish, i.e.

∫

M

∂I

∂βj
dμ(p) = 2βj − 2τjfj = 0

for all j . Hence
∑k

j=0 τjfjψj must be the unique minimizer. ��
Theorem 1 generalizes the weighted spherical harmonic (SPHARM) represen-

tation on a unit sphere to an arbitrary manifold [14]. Theorem 1 implies that the
kernel regression can be performed by simply computing the Fourier coefficients
fj = 〈f,ψj 〉 without doing any numerical optimization. The numerically difficult
optimization problem is then reduced to the problem of computing Fourier coef-
ficients. If the kernel K is the Dirac-delta function, the kernel regression simply
collapses to the least squares estimation (LSE) which results in the standard Fourier
series, i.e.

ĥ(p) = arg min
h∈Hk

∫

M

∣
∣
∣f (q)− h(q)

∣
∣
∣
2
dμ(q) =

k∑

j=0

fjψj .

It can be also shown that as k→∞, the kernel regression

ĥ =
k∑

j=0

τjfjψj

converges to convolution K ∗ f establishing the connection to the manifold-based
kernel smoothing framework [5, 18]. Hence, asymptotically the proposed kernel
regression should inherit many statistical properties of the usual kernel smoothing.
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3.2 Properties of Kernel Smoothing

Kernel smoothing can be shown to be related to the following diffusion-like Cauchy
problem [13, 14].

Theorem 2 For an arbitrary self-adjoint differential operator L , the unique
solution of the following initial value problem

∂g(p, t)

∂t
+L g(p, t) = 0, g(p, t = 0) = f (p) (13)

is given by

g(p, t) =
∞∑

j=0

e−λj tfjψj (p). (14)

Proof For each fixed t , g(p, t) can be written as

g(p, t) =
∞∑

j=0

cj (t)ψj (p). (15)

Then

L g(p, t) =
∞∑

j=0

cj (t)λjψj (p). (16)

Substituting (15) and (16) into (13), we obtain

∂cj (t)

∂t
+ λj cj (t) = 0 (17)

for all j . The solution of equation (17) is given by cj (t) = bj e
−λj t . So we have a

solution

g(p, t) =
∞∑

j=0

bj e
−λj tψj (p).

At t = 0, we have

g(p, 0) =
∞∑

j=0

bjψj (p) = f (p).

The coefficients bj must be the Fourier coefficients, i.e.,
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bj = 〈f,ψj 〉 = fj .

��
For a particular choice of kernel K with τj = e−λj t , the proposed kernel

regression ĥ = ∑k
j=0 τjfjψj should converge to the solution of the diffusion-like

equation.

Example 2 If L is the Laplace-Beltrami operator, (13) becomes an isotropic
diffusion equation as a special case and we are then dealing with heat kernel

Ht(p, q) =
∞∑

j=0

e−λj tψj (p)ψj (q),

which is often explored mathematical objects in various areas [5, 18].

In order to construct wavelets on an arbitrary graph and mesh, diffusion wavelet
transform has been proposed recently [3, 29, 38]. The diffusion wavelet construction
has been fairly involving so far. However, its mathematical structure is related to
the proposed kernel smoothing. For scale function g that satisfies the admissibility
conditions [3, 29, 36, 38], diffusion wavelet Wt,p(p) at position p and scale t is
given by

Wt,q(p) =
k∑

j=0

g(λj t)ψj (p)ψj (q).

If we let τj = g(λj t), the diffusion wavelet transform is given by

〈Wt,p, f 〉 =
∫

M
Wt,q(p)f (p) dμ(p) =

k∑

j=0

τjfjψj (q),

which is the exactly kernel smoothing we introduced. Hence, the diffusion wavelet
transform can be simply obtained by doing the kernel smoothing with specific scale
function g [38]. If we let g(λj t) = e−λj t , we have

Wt,p(q) = Ht(p, q),

which is a heat kernel. The bandwidth t of heat kernel controls resolution while the
translation is done by shifting one argument in the kernel. Thus, although heat kernel
smoothing is not exactly diffusion wavelet, it shares the same algebraic formalism
and behaves similarly. Although the kernel smoothing is constructed using global
basis functions ψj , the kernel regression at each point p coincides with the diffusion
wavelet transform at that point. Hence, just like wavelets, the kernel smoothing will
have the localization property of wavelets.
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Fig. 4 The Gibbs phenomenon on a hat shaped simulated surface showing the ringing effect on the
SPHARM expansion (top) and the reduced effect on the heat kernel smoothing (bottom) [12, 13].
7225 basis functions were used for the both cases and the bandwidth t = 0.001 is used for heat
kernel smoothing

Another important property of heat kernel smoothing is the ability to reduce the
Gibbs phenomenon, which often occurs when we tried to represent signals with
rapid changes [12–14]. Example 3 illustrates how heat kernel smoothing can be use
in reducing ringing artifacts in a 3D step function.

Example 3 A hat-shaped step function is simulated in 3D as z = 1 for x2 + y2 < 1
and z = 0 for 1 ≤ x2 + y2 ≤ 2 (Fig. 4). Then the step function is reconstructed
using the SPHARM expansion via LSE (top) and kernel regression (bottom). In the
both cases, up to 7225 basis functions were used. For the kernel regression, the heat
kernel with bandwidth t = 0.0001 is used. LSE clearly shows the visible Gibbs
phenomenon, i.e., ringing artifact [13, 26] compared to the kernel regression.

3.3 Numerical Implementation

In this study, the Laplace-Beltrami operator is chosen as the self-adjoint operators
L of choice. The eigenfunctions of the Laplace-Beltrami operator on an arbitrary
curved surface is analytically unknown. So it is necessary to discretize (4) using the
Cotan formulation as a generalized eigenvalue problem [19, 47, 66]:

Cψ = λAψ, (18)
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where C is the stiffness matrix, A is the mass matrix and ψ = (ψ(p1), · · · , ψ(pn))′
is the eigenfunction evaluated at n mesh vertices. Once we obtained the basis
functions ψj , the corresponding LB-eigenfunction expansion coefficients βj are
estimated as

βj = f′Aψj ,

where f = (f (p1), · · · , f (pn))′ and ψj = (ψj (p1), · · · , ψj (pn))′ [66]. Figure 2
shows few representative LB-eigenfunctions on the hyoid surface. For heat kernel
smoothing, we used the bandwidth t = 5 and 500 LB-eigenfunctions on the surface
of the hyoid bone. The number of eigenfunctions used is more than sufficient
to guarantee relative error less than 0.3% in our data. The MATLAB code for
computing the eigenfunctions and performing heat kernel smoothing is available
at http://www.stat.wisc.edu/~mchung/mandible.

3.4 Statistical Inference

We are interested in determining the significance of functional signals on manifolds.
We borrow the statistical parametric mapping (SPM) framework for analyzing and
visualizing statistical tests on surfaces that is often used in brain image analysis
[2, 17, 39, 57, 62, 65]. Since test statistics are constructed over all mesh vertices
on the surfaces, the multiple comparisons correction is needed. For continuous
functional data, the random field theory is often used [54, 62, 63]. The random
field theory assumes the measurements to be a smooth Gaussian random field. Heat
kernel smoothing will make the data more smooth and Gaussian and increase the
signal-to-noise ratio [17].

Consider a functional measurements f1, · · · , fn on manifold M . In the simplest
statistical setting, the measurements can be modeled as

fi(p) = h(p)+ εi(p),

where h is an unknown group level signal and εi is a zero-mean Gaussian random
field [63]. At each fixed point p, we are assuming εi ∼ N(0, σ 2).

We are interested in determining the significance of h, i.e.

H0 : h(p) = 0 for all p ∈M vs. H1 : h(p) > 0 for some p ∈M . (19)

Note that any point p0 that gives h(p0) > 0 is considered as signal. The hypoth-
sis (19) is an infinite dimensional multiple comparisons problem for continuously
indexed hypotheses over the manifold M . The underlying group level signal h is
estimated using the proposed heat kernel smoothing. Subsequently, a test statistic
is given by a T-field T (p) or a F-field, which is simply given by the square of the
T-field [62, 63].

http://www.stat.wisc.edu/~mchung/mandible
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Under H0, the type-I error of testing hypotheses (19) is given by

α = P(T (p) > z for some p ∈M )

= 1− P(T (p) ≤ z for all p ∈M )

= 1− P
(

sup
p∈M

T (p) ≤ z
)

= P
(

sup
p∈M

T (p) > z
)

for observed threshold z, which is the maximum T (p) in the whole region M . Note
we are taking the sup operator over all M . For sufficiently high threshold z, the
multiple comparisons corrected type-I error of testing hypothesis (19) is given by

P
(

sup
p∈M

T (p) > z
)
=

d∑

j=0

μj (M )ρj (z),

where μd(M ) is the j -th Minkowski functional or intrinsic volume of M and ρj
is the j -th Euler characteristic (EC) density of T-field [1, 54, 59, 63]. Since the
hyoid bone is compact with no boundary but has three disconnected components,
the Minkowski functionals are simply

μ2(M ) = area(M )/2

μ1(M ) = 0

μ0(M ) = χ(M ) = 3× 2.

The term μ1 is zero since there is no boundary and μ0 is simply the Euler
characteristic of the template surface. Note that the Euler characteristic of a closed
surface with no hole or handle is 2 and there are three such surfaces. The EC-
densities of the T-field with ν degrees of freedom is given by

ρ0(z) = 1− P(Tν ≤ z),

ρ1(z) = 1√
2t2

· 1

2π

(
1+ z2

ν
)−(ν−1)/2,

ρ2(z) = 1

2t2
· 1

(2π)3/2

Γ (ν+1
2 )

( ν2 )
1/2Γ (ν2 )

z
(

1+ z2

ν

)−(ν−1)/2
.
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Fig. 5 The type-I error plot over bandwidth t of kernel smoothing for testing the difference
between the groups I and III on the middle hyoid bone. As the bandwidth increases, the multiple
comparisons corrected type-I error decreases. The bandwidth 5 is chosen for the study. The choice
of the bandwidth around 5 does not change the over-all type-I error much

The EC-density of the F-field is similarly given in [54, 63]. The EC-density has
the kernel bandwidth t in the formulation so the inference is done at a particular
smoothing scale. Figure 5 shows the type-I error plot over different bandwidth t of
the kernel regression in our application. As the bandwidth t goes to zero, the type-
I error increases. When t = 0, the kernel regression collapse to the usual Fourier
series expansion. Note that the LB-eigenfunction expansion with 500 eigenfunctions
is close to the original data without any smoothing. Hence, the proposed kernel
smoothing can be viewed as having substantially smaller type-I error compared
to the LB-eigenfunction expansion and the original data demonstrating a better
statistical performance. The type-II error and the statistical power can be similarly
computed.

Theorem 3 The statistical power P of testing the hypotheses

H0 : h(p) = 0 for all p ∈M vs. H1 : h(p) = cσ > 0 for some p ∈M .

using the T random field T (p) is given by

P(n) ≈ 1− exp
[
−

d∑

j=0

μj (M1)ρj (t
∗
α − c

√
n)
]
,
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Fig. 6 Schematic of the
hypothesis testing in
Theorem 3 when H1 is true.
Since the hyoid bone is
composed of three structures
(hyoid body and two greater
horns), we can have multiple
disconnected M1, where
c > 0

where t∗α is the α-quantile given by

α = P
(

sup
p∈M

T (p) > t∗α
)
.

Proof In the region M0 =M /M1 corresponding to H0,

f i(p) ∼ N(0, σ 2).

In the region M1 corresponding to H1,

f i(p) ∼ N(cσ, σ 2).

Figure 6 illustrates this setting, where M1 can be disconnected sets. Consider the
test statistic

T (p) = f̄ (p)

S(p)/
√
n
, (20)

where f̄ and S are the sample mean and standard deviation of the measurements
f i, · · · , f n. In M0, T (p) is a T random field with n− 1 degrees of freedom [1]. In
M1, T (p) can be written as

T (p) = T ′(p)+ cσ

S(p)/
√
n
,
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where T ′(p) a T random field with n − 1 degrees of freedom. Since σ is usually
estimated using the standard deviation, approximately, we have S(p) = σ and the
test statistic becomes T (p) = T ′(p) + c

√
n in M1. At each fixed p, T (p) is no

longer a T random field but a non-central T random field [30]. Subsequently the
power P at the α-level is given by

P(n) = P
(

sup
p∈M1

T (p) > t∗α
)

(21)

= P
(

sup
p∈M1

T ′(p) > t∗α − c
√
n
)
, (22)

where t∗α is the α-quantile of supp∈M T (p) under H0, i.e.

α = P
(

sup
p∈M

T (p) > t∗α
)
.

Although (22) is intractable to directly compute, we can approximate (22) using the
expected Euler characteristic (EC) [59, 61]. The power (22) can be written as

P(n) =
d∑

j=0

μj (M1)ρj (t
∗
α − c

√
n),

where μd(M ) is the j -th Minkowski functional or intrinsic volume of M and
ρj is the j -th EC-density of T-field [1, 54, 59, 60]. The expansion only works
for sufficiently large t∗α − c

√
n. The rate of the convergence is given in terms

of probability as O((t∗α)−1/2) [58]. For small thresholds, the power may not be
bounded between 0 and 1. Thus, it is necessary to use the exponential transform
to bound the power [30]. For small P(n), using the Taylor expansion, we can write
exp

[−P(n)
] ≈ 1−P(n). Equivalently, it is written as P(n) ≈ 1−exp

[−P(n)
]
.

This transformation guarantees the power estimation to be bounded between 0 and
1 [30]. Subsequently, the power is given by

P(n) = 1− exp
[
−

d∑

j=0

μj (M1)ρj (t
∗
α − c

√
n)
]
. (23)

Figure 7 displays the power P(n) over the sample size n for effect sizes c =
0.1, 0.2, 0.5 based on (23). The actual surface of the hyoid bone is taken as M
and 10% of surface area is taken as the signal region M1.

��



252 M. K. Chung et al.

Fig. 7 Statistical power over the sample size under the multiple comparisons. c is the effect size
using formula (23). The surface of the hyoid bone is taken as M and 10% of surface area is taken
as the signal region M1

3.5 Validation

The proposed method is validated against the iterated kernel smoothing [17, 18],
which smooth data as weighted average of neighboring mesh vertices using a
Gaussian kernel and its iterative application is supposed to approximate the diffusion
process. The iterated Gaussian kernel smoothing was also used as the baseline
method in [40]. We performed two simulations with small and large signal to
noise ratio (SNR) settings on a T-junction surface with three different curvatures:
convex, concave and almost flat regions (Fig. 8). Surface smoothing methods
perform differently under different curvatures. Three signal regions of different
sizes (colored red in Fig. 8) were taken as the ground truth at these regions and 60
independent functional measurements on the surface were simulated as |N(0, γ 2)|,
the absolute value of normal distribution with mean 0 and variance γ 2, at each mesh
vertex. Value 1 was then added to the regions in 30 of the measurements, which
served as group II, while the other 30 measurements were taken as group I. Group
I has distribution |N(0, γ 2)| while group II has distribution |N(1, γ 2)| in the signal
regions. Larger variance γ 2 corresponds to smaller SNR.

In Study I, γ 2 = 22 was used to simulate smaller SNR. Figure 8 shows the
simulation results. For iterated kernel smoothing [17, 18], we used bandwidth t =
0.5 and 100 iterations (second column). The expansion with 1000 LB eigenfunction
is used to smooth data, which is equivalent to heat kernel smoothing with zero
bandwidth (third column). For heat kernel smoothing, bandwidth t = 0.5 and 1000
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Fig. 8 Simulation study on a T-junction shaped surface where three regions of different sizes
are taken as the ground truth (colored red in group II - ground truth). 60 independent functional
measurements on the T-junction were simulated as |N(0, γ 2)| at each mesh vertex. Value 1 was
added to the ground truth region in 30 measurements, which served as group II while the other
30 measurements were taken as group I. T-statistics are shown for these simulations (original) and
three techniques with bandwidth 0.5. Heat kernel smoothing performed the best in detecting the
ground truth regions

eigenfunctions were used (fourth column). We then performed a two sample t-
test with the random field theory corrected threshold of 4.90 to detect the group
difference at α = 0.05 level. The noise added raw data were able to correctly
identify only 3% of signal regions but also detected 3% of non-signal regions as
signal. Iterated kernel smoothing also was able to identify only 3% of signal regions
as signal but also detected 3% of non-signal regions as signal. The LB eigenfunction
expansion were able to correctly identify 25% of signal regions but did not detect
any signal in non-signal regions as signal. In comparison, heat kernel correctly
identified 94% of the signal regions and incorrectly identified 0.4% of non-signal
regions as signal. The proposed heat kernel smoothing performed very well in the
small SNR setting.

In Study II, γ 2 = 1 was used to simulate functional measurements with
substantially larger SNR. The same parameters were used as in Study I. The noise
added raw data was able to correctly identify 88% of signal regions and did not
detect any signal in non-signal regions as signal. Iterated kernel smoothing was able
to correctly identify 91% of signal regions and did not detect any signal in non-
signal regions as signal. LB eigenfunction expansion was able to correctly identify
only 94% of signal regions and did not detect any signal in non-signal regions as
signal. In comparison, heat kernel correctly identified 97% of the signal regions and
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incorrectly identified 1.5% of non-signal regions as signal. Although all the methods
performed well in small SNR setting, the proposed heat kernel smoothing performed
the best.

4 Application

4.1 CT Imaging Data and Preprocessing

This study consists of high resolution CT images of 70 typically developing
individuals ages between 0 and 20 years (mean age 8.0± 11.3 years). CT scans were
converted to DICOM format and Analyze 8.1 software package (AnalyzeDirect,
Inc., Overland Park, KS) was then used in segmenting binary hyoid bone images by
a trained individual rater in the native space by simple image intensity thresholding
and careful manual editing [10, 16]. A nonlinear image registration using the
diffeomorphic shape and intensity averaging technique with cross-correlation as
similarity metric was performed through Advanced Normalization Tools (ANTS)
[4]. Some individual may have larger hyoid than others so it was necessary
to remove the global size differences in local shape modeling. From the affine
transformed individual hyoid surfaces, we performed the diffeomorphic nonlinear
image registration to the template. A study-specific template was constructed as
follows. We chose a 12 year old female identified as F155 as the initial template
and aligned the remaining 69 hyoids to this template affinely to remove the overall
size variability. F155 was carefully chosen among all other segmentation results by
visual inspection to have no segmentation artifacts. Further, it was constantly used as
a reference template in previous studies [49, 50]. By averaging the inverse deforma-
tion fields from the initial template to individual hyoid, we obtained the yet another
final template. Since the final template is the average of all other surfaces, the final
localized growth pattern is not much influenced by the choice of the initial template.

Image acquisition error, discretization error, and image preprocessing noises in
segmentation and registration often result in noisy deformation fields. The proposed
heat kernel smoothing was applied to the displacement vector fields to smooth
out high frequency noises. 70 individuals are binned into three age groups: ages
between 0 and 6 years (group I), between 7 and 12 years (group II), and between
13 and 19 years (group III). There are 26, 14 and 30 individuals in group I, II
and III respectively. The main biological hypothesis of interest is if there is any
localized hyoid bone growth spurts between these specific age groups. The age range
is chosen based on prior bone growth studies [35], where similar age binning is used
in modeling the growth of mandible, which is located in the close proximity to the
hyoid bone.
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Fig. 9 Left: Hyoid F155 which forms an initial template MI . All other hyoids are affine registered
to F155. Middle: The superimposition of affine registered hyoids showing local misalignments.
Diffeomorphic registration is then performed to register misaligned affine transformed hyoids.
Right: The average of deformation with respect to F155 provides the final population average
template MF where statistical parametric maps will be constructed

4.2 Results

Figure 9 shows the initial and final templates. The isosurface of the final template
volume is extracted using the marching cubes algorithm [41]. The displacement
from the template to an individual surface is obtained at each mesh vertex. Figure 10
shows the mean displacement differences between the groups I and II (top) and
II and III (bottom). Each row shows the group differences of the displacement:
group II–group I (first row) and group III–group II (second row). The arrows are
the growth direction given by the mean displacement differences and colors indicate
their lengths in mm. We are interested in localizing the regions of hyoid bone growth
between the age groups.

Since the length measurement provides a much easier biological interpretation,
we used the length of displacement vector as a response variable among many other
possible features. Since the length on the template surface is expected to be noisy
due to image acquisition, segmentation and image registration errors, it is necessary
perform the proposed kernel regression and subsequently reduce the type-I error
and obtain more stable SPM. Figure 3 shows an example of kernel smoothing
on our data. The kernel smoothing increases the signal-to-noise ratio (SNR) and
improves the smoothness and Gaussianness of data. Subsequently, the heat kernel
smoothing of the displacement length is taken as the response variable. We have
chosen t = 5 as the bandwidth for the study since the bandwidth 5 is where the
type-I error starts to flatten out in Fig. 5. Note that the LB-eigenfunction expansion
with 500 eigenfunctions is close to the original data (relative error of less than 0.3%).
Hence, performing the proposed kernel regression before the statistical analysis can
substantially smaller type-I error demonstrating its effectiveness.
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Fig. 10 Hyoid bones are binned into three age groups: group I (ages 0 and 6), group II (ages 7 and
12) and group III (ages 13 and 19) and the mean displacements between the groups are visualized.
Each row shows the mean group differences of the displacement: group II–group I (first row) and
group III–group II (second row). The arrows are the mean displacement differences and colors
indicate their lengths in mm

After the displacement lengths are smoothed, we constructed the F-field, or
equivalently the T-field square, for testing the length difference between the age
groups I and II, II and III, and I and III showing the regions of growth spurts
between different age range (Fig. 11). Since test statistics are constructed over all
mesh vertices on the hyoid bone, multiple comparisons were account for using the
random field theory [62, 63].

For testing the differences between the groups I and II, II and III, and I and III,
they are based on F-field with 1 and 38, 1 and 42, and 1 and 54 degrees of freedom
respectively. The result is displayed in Fig. 11, where the significant results were
only found between the groups II and III (middle), and I and III (bottom) at α = 0.1
level. Between the groups I and II, we obtained maximum F -statistic value of 4.58
(left hyoid), which is not significant enough. Between the groups II and III, we the
maximum F-statistic value of 9.36 (right hyoid), which corresponds to the p-value
of 0.13 (corrected). Between the groups I and III, we obtained the maximum F -
statistic value of 10.55 (middle hyoid), which corresponds to the p-value of 0.074
(corrected). The multiple comparisons were done over the whole hyoid bone. If
we perform the multiple comparisons for each of the three components of the hyoid
bone, we can boost the signal a bit. For instance, restricted to the middle hyoid bone,
the maximum F -statistic value of 10.55 will correspond to the p-value of 0.028.
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Fig. 11 F-statistic maps on hyoid showing age effect between the groups. The significant growth
regions (red) are identified only between groups II and III, and I and III. The growth is highly
localized near the regions that connect the disconnected hyoid bones

5 Conclusions

We have developed a new kernel regression framework on a manifold that unifies
bivariate kernel regression, heat diffusion and wavelets in a single coherent math-
ematical framework. The kernel regression is robust both globally and locally in
that it uses global basis functions to perform regression but locally related to the
diffusion wavelet transform. The proposed framework is demonstrated to reduce the
type-I error in modeling shape variations compared to the usual LB-eigenfunction
expansion. The method is then used in developing a statistical inference procedure
for functional signals on manifolds.
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Abstract This paper introduces a new way to calculate distance-based statistics,
particularly when the data are multivariate. The main idea is to pre-calculate the
optimal projection directions given the variable dimension, and to project multidi-
mensional variables onto these pre-specified projection directions; by subsequently
utilizing the fast algorithm that is developed in Huo and Székely (Technometrics,
58(4):435–447, 2016) for the univariate variables, the computational complexity can
be improved from O(m2) to O(nm · log(m)), where n is the number of projection
directions and m is the sample size. When n � m/ log(m), computational
savings can be achieved. The key challenge is how to find the optimal pre-
specified projection directions. This can be obtained by minimizing the worse-case
difference between the true distance and the approximated distance, which can be
formulated as a nonconvex optimization problem in a general setting. In this paper,
we show that the exact solution of the nonconvex optimization problem can be
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1 Introduction

Distances are very important in statistics: a class of hypotheses testing methods
are based on distances, such as the energy statistics [16], the distance covariance
[10, 17, 18], and many others. This type of testing statistics usually belong to the
class of U-statistics or V-statistics [6, 9, 11], which require the calculation of all
pairwise distances within the sample. When variables are univariate, assuming the
sample size is m, both [8] and [4] proposed fast algorithms with computational
complexity O(mlog(m)) where m is the sample size. Recall that the computa-
tional complexity is O(m2) when the statistics are computed directly based on
their definitions. When variables are multivariate, especially when they are high-
dimensional, the calculation of the pairwise distances among these multivariate
variables can not be implemented directly by the algorithm in [8], and therefore
becomes a potential bottleneck. Our paper is aimed at reducing the computation
complexity in the multivariate case by projecting the variables along a set of pre-
specified optimal directions. When the number of pre-specified optimal directions
n � m/ log(m), computational savings can be achieved, since the computational
complexity is O(nm · log(m)), which would be less than O(m2).

We use the energy distances [16] as an example to solidify our motivation.
The energy statistic is used to test the equality between two distributions. More
precisely, suppose X1, . . . , Xn1 ∈ R

p, p ≥ 1 are independent and identically
distributed (i.i.d.), sampled from the distribution FX, and Y1, . . . , Yn2 ∈ R

p are
i.i.d., sampled from the distribution FY . The two-sample test statistic (also called
the energy statistic) for testing the two-sample hypothesis

H0 : FX = FY

is defined as [16]:

En1,n2 � 2

n1n2

n1∑

i=1

n2∑

j=1

∥
∥Xi − Yj

∥
∥− 1

n2
1

n1∑

i=1

n1∑

k=1

‖Xi −Xk‖− 1

n2
2

n2∑

j=1

n2∑

k=1

∥
∥Yj − Yk

∥
∥ ,

(1)
where

∥
∥Xi − Yj

∥
∥ , ‖Xi −Xk‖ ,

∥
∥Yj − Yk

∥
∥ are the distances from the two samples.

Note that the statistic En1,n2 solely depends on three types of inter-point distances:∥
∥Xi − Yj

∥
∥ , ‖Xi −Xk‖ ,

∥
∥Yj − Y�

∥
∥ , i, k = 1, . . . , n1, j, � = 1, . . . , n2. Denote

m = n1 + n2. [7] showed that it can be efficiently computed with computational
complexity O(mlog(m)) in the univariate case (i.e., p = 1).

When Xi’s and Yj ’s are multivariate (i.e., we have p > 1), random projections
have been proposed to find a fast approximation to the statistic En1,n2 . For example,
[7] gave a fast algorithm that is based on random projections, which can achieve
O(nm · log(m)) computational complexity, where n is the number of random
projections. Note that the approach in [7] is a pure Monte Carlo approach. The
recent advances in the quasi-Monte Carlo methods [12, 14] have demonstrated that
in some settings, utilizing pre-determined projections can lead to better performance



Optimal Projections in the Distance-Based Statistical Methods 265

than the completely random ones in the pure Monte Carlo approach. Quasi-Monte
Carlo methods sometimes enjoy faster rate of convergence, e.g., [1].

Our approach turns a distance calculation in a multivariate situation to the one in
a univariate situation. The proposed approach

P1. first projects each multivariate variable along some pre-specified optimal
directions to corresponding one-dimensional subspaces (the projected values are
univariate),

P2. then the sum of the �1 norm of the projected values is used to approximate the
associated distance in the multivariate setting.

More specifically, let’s suppose the multivariate variable is v = (v1, . . . , vp) ∈ R
p.

Recall that the norm of v is

||v|| =
√
√
√
√

p∑

i=1

v2
i .

For n ≥ 1, our objective is to identify the projection directions, which can be
represented by vectors u1, u2, . . . , un ∈ R

p, and a predetermined constant Cn ∈ R,
such that for any v ∈ R

p, we have

||v|| ≈ Cn

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣ . (2)

Consequently in step P2., when one needs to compute a distance ‖Xi − Yj‖, one

can alternatively compute Cn
n∑

i=1

∣
∣uTi Xi − uTi Yj

∣
∣. Note that uTi Xi and uTi Yj are

univariate. Therefore, the fast algorithm in the one-dimensional case can be utilized.
We continue with the example of the energy distances. Recall that the pre-

specified directions are supposed to be u1, . . . , un. The projected values of the
corresponding multivariate variables then become

Xwi = uTwXi ∈ R, w = 1, . . . , n; i = 1, . . . , n1; and

Ywj = uTwYj ∈ R, w = 1, . . . , n; j = 1, . . . , n2.

The distance between any two multivariate variables can be approximated by the
sum of these projections multiplying by a constant:

‖Xi − Yj‖ ≈ Cn

n∑

w=1

|Xwi − Ywj |.

Therefore, the statistic En1,n2 in (1) can be approximated by
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En1,n2 ≈ Cn

( 2

n1n2

n1∑

i=1

n2∑

j=1

n∑

w=1

∥
∥Xwi − Ywj

∥
∥− 1

n2
1

n1∑

i=1

n1∑

k=1

n∑

w=1

‖Xwi −Xwk‖

− 1

n2
2

n2∑

j=1

n2∑

k=1

n∑

w=1

∥
∥Ywj − Ywk

∥
∥
)

= Cn

( 2

n1n2

n1∑

i=1

n2∑

j=1

n∑

w=1

∣
∣Xwi − Ywj

∣
∣− 1

n2
1

n1∑

i=1

n1∑

k=1

n∑

w=1

|Xwi −Xwk| (3)

− 1

n2
2

n2∑

j=1

n2∑

k=1

n∑

w=1

∣
∣Ywj − Ywk

∣
∣
)
.

The second equation is true because in the one-dimensional case, the �2 norm
becomes the absolute value. Then one can apply the fast algorithms for univariate
variables to calculate the energy statistic in (3).

Remark Our method is not restricted to the calculation of the energy statistic,
or other distance-based statistics. It can also be applied to the calculation of the
distance-based smooth kernel functions.

In this paper, we first give a detailed description of our strategy to find the optimal
pre-specified projection directions. We formulate the searching for optimal projec-
tion directions problem as a minimax optimization problem. Let {u1, u2, · · · , un}
denote the optimal set of projection directions, they should minimize the worst-case
difference between the true distance and the approximate distance. Equation (4)
below shows this idea in the mathematical form:

min
Cn,ui :‖ui‖=1,i=1,··· ,n

max
v:‖v‖2≤1

∣
∣
∣
∣
∣
Cn

n∑

w=1

∣
∣
∣uTwv

∣
∣
∣− ‖v‖

∣
∣
∣
∣
∣
. (4)

Discussion on how to solve the above problem is presented in Sect. 2.
In general, the problem in (4) is a nonconvex optimization problem, which is

potentially NP-hard. We found that in two special cases, the optimal directions can
be derived analytically: (a) the 2-dimensional case and (b) when the dimension is
equal to the number of projections. More details on these two special cases are
presented in Sect. 3. In general cases, we propose a greedy algorithm to find the
projection directions. Note that the greedy algorithm terminates at a local optimal
solution to (4). In this case, we cannot theoretically guarantee that the found
directions correspond to the global solution to the problem in (4), which is the
case in most nonconvex optimization problems. At the same time, the simulations
show that our approach can still outperform the pure Monte Carlo approach in many
occasions.
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The rest of this paper is organized as follows. Section 2 shows the formulation
of our problem. Section 3 provides the analytical solutions to the problem in (4) in
two special cases. Section 4 presents the numerical algorithm for the general cases.
In Sect. 5, the simulation results of our method are furnished. Section 6 contains
the conclusion and a summary of our work. All the technical proofs are relegated to
Appendix section.

We adopt the following notations. Throughout this paper, we use p to denote the
dimension of the data. The sample size is denoted by m. The number of projections
is denoted by n.

2 Problem Formulation

As mentioned above, in order to estimate the distance between two multivariate
variables, we project them onto some pre-specified one-dimensional linear sub-
spaces. We present details in the following. Suppose the multivariate variable is
v = (v1, . . . , vp) ∈ R

p. Recall that the norm of vector v is

||v|| =
√
√
√
√

p∑

i=1

v2
i .

Our objective is to design u1, u2, . . . , un ∈ R
p, for n ≥ 1, and Cn ∈ R, such that

for any v ∈ R
p, we have

||v|| ≈ Cn

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣ . (5)

We would like to turn a distance (i.e., norm) of a multivariate variable v into a
weighted sum of the absolute values of some of its one dimensional projections
(i.e., uTi v’s), knowing that the one dimensional projections may facilitate efficient
numerical algorithms.

Without loss of generality, we may assume ||v|| = 1. The approximation problem
in (5) can be formulated into the following problem:

min
Cn,u1,...,un

max
v:||v||2=1

∣
∣
∣
∣
∣
Cn

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣− 1

∣
∣
∣
∣
∣
. (6)

In words, we would like to select u1, . . . , un and Cn such that the approximation
in (5) has the minimal discrepancy in the worst case. One can verify that the problem
in (6) and the problem in (4) share the same solution.

To solve the problem in (6), the following two quantities are needed. For fixed
u1, u2, . . . , un, we define
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Vmax = max
v:||v||2=1

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣ , (7)

Vmin = min
v:||v||2=1

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣ , (8)

where Vmax and Vmin are the maximum and minimum of
n∑

i=1

∣
∣uTi v

∣
∣ among all

possible v under the constraint ||v||2 = 1, respectively. With these two quantities
(i.e., Vmax and Vmin), we have the following result.

Theorem 1 For given u1, u2, . . . , un ∈ R
p, the optimal value for Cn in the

problem (6) is

Cn = 2

Vmin + Vmax
.

Furthermore, the solutions of u1, u2, . . . , un in problem (6) are identical to the
solutions to the following problem:

max
u1,...,un:||ui ||=1,∀i,1≤i≤n

Vmin

Vmax
. (9)

The above theorem indicates that the minimax problem in (6) is equivalent to the
maximization problem in (9). Note that in general, both problems are nonconvex,
therefore potentially NP-hard. In our analysis, we found that both formulations
(in (6) and (9)) are convenient in various steps of derivation. Both of them are used
in later analysis.

3 Derivable Analytical Results

We present the two special cases where analytical solutions are derivable. When
the dimension is 2 (i.e., p = 2), we show in Sect. 3.1 that an analytical solution
to the problem in (9) is available. In Sect. 3.2, we present another case (when the
dimension of the data is equal to the number of projections, that is we have n = p)
where an analytic solution to the problem in (9) is derivable.
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3.1 Special Case When the Dimension is 2

When the multivariate variables are two-dimensional, we can get the exact optimal
projections that minimize the worse-case discrepancy. The following theorem
describes such a result.

Theorem 2 When p = 2, the 2-dimensional vectors u1, u2, . . . , un can be
represented by

ui = e
√−1θi , i = 1, . . . , n.

The optimal solution in (9) has the form

θi = (i − 1)π

n
+ kiπ, i = 1, . . . , n (10)

where each ki ∈ N.

Specially, when n is odd, the optimal solutions can be represented by the equally
spaced points on the circle. Furthermore, we can get the error rate in the 2-
dimensional case, as in the following theorem.

Theorem 3 If u1, · · · , un are chosen according to Theorem 2, we have

E
v∼Unif(S1)

⎧
⎨

⎩

∣
∣
∣
∣
∣
Cn

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣− 1

∣
∣
∣
∣
∣

2
⎫
⎬

⎭
= O

(
1

n2

)

.

Remark Theorem 3 can be used as a guidance of choosing the number of directions.
Assume we would like to control the squared error to be ε. Then, we can get 1

n2 = ε,

and therefore the number of directions should be larger than 1√
ε
.

In the above theorem, the random vector v is sampled independently from
the Uniform distribution on the unit circle S1. Note that the squared error rate
is O(1/n2). The following theorem presents the corresponding rate for the pure
random projections.

Theorem 4 If u1, · · · , un are selected base on Monte Carlo, we have

E
ui ,v∼Unif(S1)

⎧
⎨

⎩

∣
∣
∣
∣
∣
Cn

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣− 1

∣
∣
∣
∣
∣

2
⎫
⎬

⎭
= O

(
1

n

)

.

In the above theorem, both random vector v and vectors ui’s are independently
sampled from the Uniform distribution on the unit circle (S1). The squared error
rate in the pure Monte Carlo case is O(1/n). These two theorems illustrate the
theoretical advantage of adopting the pre-calculated projection directions (in relative
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to the random projections). Such a phenomenon has been discovered in the literature
regarding the quasi-Monte Carlo methodology.

3.2 Second Special Case with Provable Result

When the dimension is larger than 2, the problem in (6) is challenging. There is some
potentially relevant literature in mathematics, such as the searching for algorithms
to locate the equally-distributed points on the surfaces of some high-dimensional
spheres [3, 5, 15]. We fail to locate the exact solutions to our problem.

Our analysis indicates that when the number of projections is equal to the
dimension, an analytical solution to the problem in (6) is derivable. We present
details in the following. To derive our analytical solution in a special case, we need
to revisit two quantities, Vmin and Vmax, which have been introduced in (7) and (8).
The following lemma is about Vmax.

Lemma 1 For fixed u1, u2, . . . , un ∈ R
p, we have

Vmax = max
si∈{1,−1}

∥
∥
∥
∥
∥

n∑

i=1

siui

∥
∥
∥
∥
∥
. (11)

Lemma 1 points out a way to calculate Vmax, that is, given binary si’s, finding out the

linear combination
n∑

i=1
siui with the maximal norm out of the all possible 2n linear

combinations. Let {smax
i ∈ {1,−1} : i = 1, . . . , n} denote the solution for (11)

when u1, · · · , un are given. The Algorithm 1 formally presents the aforementioned
approach. Assume we are in the k-th loop, where the uj ’s are known, which are

denoted by u(k)1 , u
(k)
2 , . . . , u

(k)
n . Let s(k)i ’s denote the si’s that can achieve Vmax in

the k-th loop. We have the Algorithm 1.

Algorithm 1 Find smax
i ’s in the k-loop

Initialization: Unit vectors u(k)1 , u
(k)
2 , . . . , u

(k)
n ∈ Sp−1 are given.

Output: s(k)i ’s.

1: for all binary combination of s(k)i ’s do

2: Calculate the value

∥
∥
∥
∥

n∑

i=1
siui

∥
∥
∥
∥.

3: end for

4: The binary combination that can make the value of

∥
∥
∥
∥

n∑

i=1
siui

∥
∥
∥
∥ be the maximum among all the

possible values, is the smax
i ’s, which is denoted as s(k)i ’s.
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As for Vmin, suppose vmin is a minimizer of Vmin. We have the following property
for vmin.

Lemma 2 For fixed u1, u2, . . . , un ∈ R
p, if Ω is an intersection of Sp−1 and a

linear subspace with at least 2 dimensions, then the solution to the minimization
problem

min
v∈Ω f (v) =

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣

must have uTj vmin = 0 for at least one j (1 ≤ j ≤ n).

Geometrically, the above lemma indicates that vector vmin should be orthogonal to
at least one of the projection vector uj . For vector vmin, we will need the following
definition to further our derivation.

Definition 1 (Maximal Subset) We call Ω(vmin) a maximal subset of the set
{u1, . . . , un} if it satisfies

Ω(vmin) =
{
uj : uTj vmin = 0

}
⊂ {u1, . . . , un},

and it cannot be a strict subset for another Ω(v′min) where v′min is a minimizer that
is different from vmin.

Lemma 2 ensures that the setΩ(vmin) cannot be empty. The following lemma shows
that the linear subspace that is spanned by the elements ofΩ(vmin)must have certain
dimensions.

Lemma 3 If Ω(vmin) is a maximal subset of u1, . . . , un, we must have

rank (Ω(vmin)) = p − 1,

for any minimizer vmin.

Recall p is the dimension of the data. The above lemma essentially states that the
space that is spanned by the elements of Ω(vmin) is the orthogonal complement
subspace of the one-dimensional space that is spanned by the vector vmin.

One direct corollary of Lemma 3 is that the cardinality of the set Ω(vmin) is at
least p− 1. Consequently, the total number of possible sets (of Ω(vmin)) is no more
than

(
n

p−1

)
. This inspires us to use Algorithm 2 to find vmin as well as Ω(vmin) if all

the uj ’s are given. Here suppose we are in the k-th loop where the uj ’s are known,

which are u(k)1 , u
(k)
2 , . . . , u

(k)
n .

From Lemma 3 we can get the exact solution for the special case when the
number of projection directions is equal to the dimension of the multivariate
variables, which is described in the following theorem.
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Algorithm 2 Find vmin and Ω(vmin) in the k-loop

Initialization: Unit vectors u(k)1 , u
(k)
2 , . . . , u

(k)
n ∈ Sp−1 are given.

Output: v(k) and Ω(v(k)).
1: for all (p − 1) combination of u(k)i ’s, denoted as Sut do
2: while rank(Sut ) < p − 1 do
3: Add another uj that is not in the set Sut ;
4: end while
5: Find the orthogonal direction of the set Sut , which is one of the candidates of v(k), denoted

as v(k)t , and calculate the value of f (v(k)t ) =
n∑

i=1

∣
∣
∣
∣

(
u
(k)
i

)T
v
(k)
t

∣
∣
∣
∣.

6: end for
7: The v(k)t , that can make the value of f (v(k)t ) be the minimum among all the possible f (v(k)t )

values, is the vmin, which is denoted as v(k), and the corresponding Sut set is the set Ω(vmin),
which is denoted as Ω(v(k)).

Theorem 5 When the number of projections is equal to the dimension of the data,
i.e., we have n = p, the optimal solution in (9) satisfies the following condition:

uTi uj = 0,∀i �= j. (12)

The above is equivalent to stating that the set {u1, u2, · · · , un} forms an orthonor-
mal basis in Rp.

4 Numerical Approach in General Cases

When p > 2 and n �= p, we propose an algorithm to identify the optimal projections
u1, u2, ..., un, such that they solve (9). Per Lemma 1 and the definition of smax

i ’s, the
Vmax can be written as:

Vmax =
∥
∥
∥
∥
∥

n∑

i=1

smax
i ui

∥
∥
∥
∥
∥
.

According to Lemma 3, we have

Vmin =
n∑

i=1

∣
∣
∣uTi vmin

∣
∣
∣ =

∑

ui∈Ω(vmin)

∣
∣
∣uTi vmin

∣
∣
∣+

∑

ui �∈Ω(vmin)

∣
∣
∣uTi vmin

∣
∣
∣

=
∑

ui �∈Ω(vmin)

∣
∣
∣uTi vmin

∣
∣
∣ .

So when u1, · · · , un are given, Vmin
Vmax

can be written as
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Vmin

Vmax
=

∑

ui �∈Ω(vmin)

∣
∣uTi vmin

∣
∣

∥
∥
∥
∥

n∑

i=1
smax
i ui

∥
∥
∥
∥

, (13)

where vmin and Ω(vmin) are defined in Sect. 3.2. We assume that the set Ω(vmin)

corresponds to the minimum over all
(
n

p−1

)
possible sets, and (smax

i )’s maximize the

norm of
n∑

i=1
smax
i ui .

We use a method that is similar to the coordinate descent algorithm [13, 19]
to search for the optimal solutions of (9). Details of our algorithm can be found
in Algorithm 3. The optimal solution can be achieved in circular iterations:
maximizing (13) with respect to one ui , while the others are fixed. We then
iteratively maximize the objective function in (13) until the value of the objective
function (13) cannot be increased.

We derive the iteration strategy in the following. Let v(k) be the minimizer of
n∑

i=1

∣
∣uTi v

∣
∣ at the kth iteration. Let Ω(k) denote the minimum over all

(
n

p−1

)
possible

sets at the kth iteration. For any u(k)j �∈ Ω(k), without loss of generality, we assume

that u1 �∈ Ω(k). The objective function in (13) can be written as

Vmin

Vmax
=

∣
∣uT1 v

(k)
∣
∣+ ∑

i>1,ui �∈Ω(k)

∣
∣uTi v

(k)
∣
∣

∥
∥
∥
∥s

max
1 u1 +

n∑

i=2
smax
i ui

∥
∥
∥
∥

. (14)

Without loss of generality, we can assume smax
1 = 1. This is because, recalling that

(smax
i )’s are binary, we have

∥
∥
∥
∥
∥
smax

1 u1 +
n∑

i=2

smax
i ui

∥
∥
∥
∥
∥
=

∥
∥
∥
∥
∥
u1 +

n∑

i=2

smax
1 smax

i ui

∥
∥
∥
∥
∥
.

The expression in (14) can then be rewritten as

∣
∣uT1 v

(k)
∣
∣+ A

‖u1 + B‖ , (15)

where

A =
∑

i>1,ui �∈Ω(k)

∣
∣
∣uTi v

(k)
∣
∣
∣ , and B =

n∑

i=2

smax
i ui .
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Note that quantities A and B do not depend on u1. Our objective is to derive a
strategy to maximize the quantity in (15) as a function of the vector variable u1.

We first solve a constrained version of the above maximization problem. We
define Σ(v, θ) = {x : ‖x‖ = 1, 〈x, v〉 = θ}, for any fixed θ ∈ [0, π), where 〈·, ·〉
denotes the angle between two vectors. Conditioning on u1 ∈ Σ(v, θ), and v = v(k),
maximizing the function in (15) is equivalent to maximizing the following function:

|cos θ | + A

‖u1 + B‖ . (16)

Note that the numerator is not a function of u1. Consequently, it is equivalent to
minimizing

‖x + B‖ , where x ∈ Σ(v, θ).

The following lemma presents an analytical solution to the above minimization
problem.

Lemma 4 Given a vector B, a constant θ ∈ [0, π), and a unit-norm vector v, the
solution to the following problem

min
x:‖x‖=1,〈x,v〉=θ

‖x + B‖2 (17)

is

x = v cos θ + | sin θ |
√
BT B − (vT B)2

[
(vT B)v − B

]
. (18)

Using the solution in (18) to substitute the u1 in (16), we have

|cos θ | + A

‖u1 + B‖ = |cos θ | + A
∥
∥
∥
∥v cos θ + B + | sin θ |√

BT B−(vT B)2
[
(vT B)v − B

]
∥
∥
∥
∥

. (19)

Maximizing (16) with respect to θ is equivalent to maximizing (19). For fixed A, B,
and v, the right hand side of (19) is a function of θ . The following Theorem 6 gives
the solution to the above problem.

Theorem 6 The solutions of maximizing (16) with respect to θ are the zeros of the
following function:

g(θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
BT B [cosα + A cos(α − θ)− sin θ sin(α − θ)]

−(1+ BT B) sin θ, if θ ∈ [0, π2 ),√
BT B [− cosα + A cos(α − θ)+ sin θ sin(α − θ)]

+(1+ BT B) sin θ if θ ∈ [π2 , π),
(20)
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where α satisfies sinα = vT B√
BT B

, and cosα =
√
BT B−(vT B)2√

BT B
.

The above theorem indicates that one can adopt a line search algorithm to compute
for θ .

Based on all the above, the Algorithm 3 (below) furnishes a coordinate ascent
scheme to maximize the objective in (9).

Algorithm 3 Optimal projection algorithm

Initialization: Set a threshold Δ > 0, initial unit vectors u(0)1 , u
(0)
2 , . . . , u

(0)
n ∈ Sp−1. Thus, by

Algorithms 1 and 2, we can get the corresponding values v(0),Ω(0)(v(0)), and s(0)i ’s.
1: repeat
2: In the k-th loop, suppose the previous u(k−1)

1 , u
(k−1)
2 , . . . , u

(k−1)
n are known.

3: for all u(k−1)
j �∈ Ω(k−1)(v(k−1)) do

4: Find the zeros of the function g(θ) in (20) in Theorem 6, where v = v(k−1), B =
∑

i �=j
s
(k−1)
j s

(k−1)
i u

(k−1)
i , and denote the zeros as θ∗.

5: According to Lemma 4, the new u
(k)
j would be v cos θ∗+ | sin θ∗|√

BT B−(vT B)2
[
(vT B)v − B

]
.

6: By Algorithm 1 and 2, we can get the corresponding values v(k),Ω(k)(v(k)), and s(k)i ’s,
based on the newly updated uj ’s, which also give us the value of Vmin and Vmax.

7: Compute Vmin/Vmax.
8: end for
9: Pick the u(k)j �∈ Ω(k−1)(v(k−1)) that gives the maximal value of Vmin/Vmax in the above

loop.
10: if The value of Vmin/Vmax decreases then
11: Go back to u(k−1)

j .
12: end if
13: until The increment of Vmin/Vmax is less than Δ.

5 Simulations

In the previous section, the optimal projections for both the special cases and
the general case are provided. The simulations will follow the same order. The
simulations are about the comparison of the Monte Carlo method and our method
for the special cases and then for a general case.

According to [7], Monte Carlo method is to select some random directions,
denoted as wi , i = 1, . . . , n, on the unit sphere Sp−1 and project the vector we
would like to estimate, that is v, along these directions, so the norm of the vector v
could be estimated as

‖v‖ ≈ C′p
1

n

n∑

i=1

|wT
i v|,
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where C′p =
√
πΓ (

p+1
2 )

Γ (
p
2 )

.

In all the experiments, we randomly select 100 unit vectors on the sphere as the
vectors that we would like to estimate, in order to get the mean squared error for
comparison between the Monte Carlo method and the method we propose.

5.1 When the Dimension is 2

When the dimension is equal to 2, the exact solution can be found as well as the
mean squared error rate. So we randomly select 100 unit vectors on the sphere
as the vectors that we would like to estimate. For both the Monte Carlo method
and our optimal projection method, we calculate the mean squared error over these
100 vectors. More specifically, the squared error between the true norm of the
vector, which is 1, and the estimated norm is calculated for each of the 100 unit
vectors when the number of directions is fixed. By taking the mean of the 100
squared errors from the previous step, we get the mean squared error for given
number of directions. The number of directions used in our simulation is from 2
to 10,000. Figure 1 shows the comparison between our method and Monte Carlo
method regarding the logarithm of the mean squared error and the number of
projection directions. From the figure, we can see that our method performs better
than the Monte Carlo, and the advantage becomes more obvious when the number
of projection directions increases.

Fig. 1 Optimal projection vs.
Monte Carlo in the 2
dimensional case
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5.2 When We Have n = p

When the dimension p is equal to the number of projection directions n, recall that
in Theorem 5, we give the exact solution of the pre-specified directions. Similar to
what we have done in the 2-dimensional case, we randomly select 100 unit vectors
on the sphere Sp−1, with dimension p varying from 8 to 11. So the number of
projection directions is varying from 8 to 11 correspondingly. We calculate the mean
squared error of both the Monte Carlo method and our optimal projection method
for each p using the same strategy as before. The details are in Fig. 2, where the
x-axis represents the dimension, and y-axis represents the mean squared error.

5.3 General Setting: n > p

When the dimension p is larger than 2 and n �= p, the exact solution of (9) can
not be obtained. Therefore, we adopt the Algorithm 3. Like in previous simulations,
we randomly select 100 unit vectors on the sphere Sp−1, with dimension p varying
from 3 to the number of directions minus 1, and the fixed number of directions to
be 8, 9, 10, 11, respectively, and calculate the mean squared error of both the Monte
Carlo method and our optimal projection method for each p using the same strategy
as before. Figures 3, 4, 5 and 6 show the comparison, where the x-axis represents
the dimension, and y-axis represents the mean squared error.

Overall, we can see that our method performs better than the Monte Carlo
method.

Fig. 2 Optimal projection vs. Monte Carlo in the n = p case
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Fig. 3 Optimal projection vs. Monte Carlo for dimension varying from 3 to 7 in the case n = 8

Fig. 4 Optimal projection vs. Monte Carlo for dimension varying from 3 to 8 in the case n = 9
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Fig. 5 Optimal projection vs. Monte Carlo for dimension varying from 3 to 9 in the case n = 10

Fig. 6 Optimal projection vs. Monte Carlo for dimension varying from 3 to 10 in the case n = 11
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6 Conclusion

We propose a new method to calculate the distance, which is critical in computing
the distance-based statistics, and can also be utilized in the calculation of the kernel
functions that are distance-based and smooth. The main idea is to use the sum of
the norms of the projections along a set of pre-calculated directions to approximate
the original norm. By doing so, one can utilize the fast algorithm for univariate
variables that has been proposed by [8]. The advantage is that the computational
complexity is reduced from O(m2) to O(mlog(m)) where m is the sample size.
These pre-specified directions can be found by minimizing the difference between
the estimated distance and the true value in the worst case. The associated problem is
eventually a nonconvex optimization problem. We derive the exact solutions when
dimension is equal to either 2 or the number of projection directions. In general
cases, we propose an algorithm to find the projection directions. The simulations
show the advantage of the proposed method versus the pure Monte Carlo approach,
via comparing the mean squared errors.
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Appendix

All the proofs are included in this section, including a proof of Theorem 1, a proof
of Theorem 2, a proof of Theorem 3, a proof of Theorem 4, a proof of Lemma 1, a
proof of Lemma 2, a proof of Lemma 3, a proof of Theorem 5, a proof of Lemma 4,
and a proof of Theorem 6. Some of these proofs involves detailed and potentially
tedious derivations. We try to furnish as much details as deemed reasonable.

Proof of Theorem 1

Proof By definition of Vmin and Vmax, we have

CnVmin − 1 ≤ Cn

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣− 1 ≤ CnVmax − 1.

The above leads to the following

http://triad.gatech.edu
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max
v:||v||2=1

∣
∣
∣
∣
∣
Cn

n∑

i=1

|uTi v| − 1

∣
∣
∣
∣
∣
= max {|CnVmin − 1|, |CnVmax − 1|} . (21)

Consider the right hand side of the above as a function of Cn, it is verifiable that the
minimum is achieved when

1− CnVmin = CnVmax − 1, which leads to, Cn = 2

Vmin + Vmax
.

Bringing the above to (21), we have

∣
∣
∣
∣

2

Vmin + Vmax
Vmin − 1

∣
∣
∣
∣ =

Vmax − Vmin

Vmax + Vmin
= 2

1+ Vmin
Vmax

− 1. (22)

From the above, it is evident that minimizing the right hand of (22) is equivalent to
the following

max
u1,...,un:||ui ||2=1

Vmin

Vmax
.

From all the above, the lemma is proved. ��

Proof of Theorem 2

Proof Without loss of generality, we assume θi = αi + kiπ, where α1 ≤ α2 ≤
. . . ≤ αn ∈ [0, π). Then the problem in (9) can be written as

max
αi :i=1,...,n

min
θ
f (θ)

max
θ
f (θ)

,

where f (θ) =
n∑

i=1
|cos(αi − θ)|.

Let δi = αi+1 − αi, i = 1, . . . , n− 1, and δn = α1 − αn + π. We have

n∑

i=1

δi = π.

For given αi , the minimum and the maximum of f (θ) satisfy

1

n
min
θ
f (θ) ≤ 1

n
f (αi − π

2
), for i = 1, . . . , n, (23)
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1

n
max
θ
f (θ) ≥ 1

n
f

(
αi + αi+1

2
− π

2

)

, for i = 1, . . . , n− 1, (24)

1

n
max
θ
f (θ) ≥ 1

n
f

(
αn + α1

2

)

. (25)

By summing up each side of (23) with i from 1 through n, we get

min
θ
f (θ) ≤ 1

n

n∑

i=1

f (αi − π

2
). (26)

By summing up each side of (24) with i from 1 through n− 1 and adding it to (25),
we have

max
θ
f (θ) ≥ 1

n

[
n−1∑

i=1

f

(
αi + αi+1

2
− π

2

)

+ f

(
αn + α1

2

)]

. (27)

Based on (26) and (27), for given αi , we have

min
θ
f (θ)

max
θ
f (θ)

≤
1
n

n∑

i=1
f (αi − π

2 )

1
n

[
n−1∑

i=1
f
(
αi+αi+1

2 − π
2

)
+ f

(
αn+α1

2

)
] .

Therefore, one can verify the following:

max
αi :i=1,...,n

min
θ
f (θ)

max
θ
f (θ)

≤ max
αi :i=1,...,n

1
n

n∑

i=1
f (αi − π

2 )

1
n

[
n−1∑

i=1
f
(
αi+αi+1

2 − π
2

)
+ f

(
αn+α1

2

)
]

= max
αi :i=1,...,n

n∑

i=1
f (αi − π

2 )

[
n−1∑

i=1
f
(
αi+αi+1

2 − π
2

)
+ f

(
αn+α1

2

)
] . (28)

Denote the numerator of the right hand side of (28) as Nn, and the denominator
as Dn. Thus, we have
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Nn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2
n∑

i=1
|sin δi | + 2

n−2∑

i=1
|sin(δi + δi+1)| + 2

n−3∑

i=1
|sin(δi + δi+1 + δi+2)| + . . .

+2
2∑

i=1
|sin(δi + δi+1 + . . .+ δi+n−3)| , if n ≥ 4,

2
n∑

i=1
|sin δi | if n = 3;

and

Dn =
n∑

i=1

2

∣
∣
∣
∣sin

δi

2

∣
∣
∣
∣+

n−1∑

i=2

i−1∑

j=1

∣
∣
∣
∣sin

(
δi

2
+ δi−1 + δi−2 + . . .+ δj

)∣
∣
∣
∣

+
n−2∑

i=1

n−1∑

j=i+1

∣
∣
∣
∣sin

(
δi

2
+ δi+1 + . . .+ δj

)∣
∣
∣
∣+

n−1∑

j=2

∣
∣
∣
∣sin

(
δn

2
+ δ1 + . . .+ δj−1

)∣
∣
∣
∣ .

We would like to show that when all the θi’s satisfies (10),
min
θ
f (θ)

max
θ
f (θ)

is equal to the

right hand side of (28), which means (10) is the optimal solution. In order to do that,
we first need to figure out what value the right hand side of (28) is. In the following
we use perturbation analysis to show that when δi = π

n
, which is equivalent to (10),

the right hand side achieves the maximum value. And then we show that the left
side is equal to the right side under the condition of (10). Therefore our proof can
be completed.

For n ≥ 4, Nn and Dn are treated as functions of Δ. Then we have

Nn(δ1 +Δ, δ2 −Δ, δ3, . . . , δn) = 2 |sin(δ1 +Δ)| + 2 |sin(δ2 −Δ)|

+2
n−1∑

j=3

∣
∣
∣
∣
∣
∣
sin(−Δ+

j∑

i=2

δi)

∣
∣
∣
∣
∣
∣
+ Const,

and

∂Nn(δ1 +Δ, δ2 −Δ, δ3, . . . , δn)

∂Δ

∣
∣
∣
∣
Δ=0

= 2 cos δ1sign(sin δ1)− 2 cos δ2sign(sin δ2)

−2
n−1∑

j=3

cos

⎛

⎝
j∑

i=2

δi

⎞

⎠ sign

⎛

⎝sin

⎛

⎝
j∑

i=2

δi

⎞

⎠

⎞

⎠ .

When δi = π
n
, i = 1, . . . , n, we have
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∂Nn(δ1 +Δ, δ2 −Δ, δ3, . . . , δn)

∂Δ

∣
∣
∣
∣
Δ=0

= 0− 2
n−1∑

j=3

cos

(
(j − 1)π

n

)

sign

(

sin

(
(j − 1)π

n

))

= 0. (29)

Similarly, for Dn, we have

Dn(δ1 +Δ, δ2 −Δ, δ3, . . . , δn)

= 2

∣
∣
∣
∣sin

(
δ1 +Δ

2

)∣
∣
∣
∣+ 2

∣
∣
∣
∣sin

(
δ2 −Δ

2

)∣
∣
∣
∣+

∣
∣
∣
∣sin

(
Δ

2
+ δ1 + δ2

2

)∣
∣
∣
∣

+
n−1∑

j=3

∣
∣
∣
∣
∣
∣
sin

⎛

⎝−Δ+
j−1∑

i=2

δi + δj

2

⎞

⎠

∣
∣
∣
∣
∣
∣
+

n∑

j=3

∣
∣
∣
∣
∣
∣
sin

⎛

⎝−1

2
Δ+ δ1

2
+

j−1∑

i=2

δi

⎞

⎠

∣
∣
∣
∣
∣
∣

+
n−1∑

j=3

∣
∣
∣
∣
∣
∣
sin

⎛

⎝−1

2
Δ+ δ2

2
+

j∑

i=3

δi

⎞

⎠

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣sin

(
δn

2
+ δ1 +Δ

)∣
∣
∣
∣+ Const,

and

∂Dn(δ1 +Δ, δ2 −Δ, δ3, . . . , δn)

∂Δ

∣
∣
∣
∣
Δ=0

= cos
δ1

2
sign(sin

δ1

2
)− cos

δ2

2
sign(sin

δ2

2
)+ 1

2
cos

(
δ2

2
+ δ1

)

sign

(

sin

(
δ2

2
+ δ1

))

−
n−1∑

j=3

cos

⎛

⎝
j−1∑

i=2

δi + δj

2

⎞

⎠ sign

⎛

⎝sin

⎛

⎝
j−1∑

i=2

δi + δj

2

⎞

⎠

⎞

⎠

−1

2

n−1∑

j=2

cos

⎛

⎝δ1

2
+

j∑

i=2

δi

⎞

⎠ sign

⎛

⎝sin

⎛

⎝δ1

2
+

j∑

i=2

δi

⎞

⎠

⎞

⎠

−1

2

n−1∑

j=3

cos

⎛

⎝δ2

2
+

j∑

i=3

δi

⎞

⎠ sign

⎛

⎝sin

⎛

⎝δ2

2
+

j∑

i=3

δi

⎞

⎠

⎞

⎠

+ cos

(
δn

2
+ δ1

)

sign

(

sin

(
δn

2
+ δ1

))

.

When δi = π
n
, i = 1, . . . , n, we have
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∂Dn(δ1 +Δ, δ2 −Δ, δ3, . . . , δn)

∂Δ

∣
∣
∣
∣
Δ=0

= 0+ 1

2
cos

(
3π

2n

)

sign

(

sin

(
3π

2n

))

−
n−1∑

j=3

cos

(
(2j − 3)π

2n

)

sign

(

sin

(
(2j − 3)π

2n

))

−1

2

n−1∑

j=2

cos

(
(2j − 1)π

2n

)

sign

(

sin

(
(2j − 1)π

2n

))

−1

2

n−1∑

j=3

cos

(
(2j − 3)π

2n

)

sign

(

sin

(
(2j − 3)π

2n

))

+ cos

(
3π

2n

)

sign

(

sin

(
3π

2n

))

= 0. (30)

Define g(Δ) as the following

g(Δ) = Nn(δ1 +Δ, δ2 −Δ, δ3, . . . , δn)

Dn(δ1 +Δ, δ2 −Δ, δ3, . . . , δn)
.

Then we have

∂g(Δ)

∂Δ

∣
∣
∣
∣
Δ=0

=
N ′n

∣
∣
∣
∣
Δ=0

Dn(0)
−
Nn(0)D′n

∣
∣
∣
∣
Δ=0

Dn(0)2
,

where

N ′n
∣
∣
∣
∣
Δ=0

= ∂Nn(δ1 +Δ, δ2 −Δ, δ3, . . . , δn)

∂Δ

∣
∣
∣
∣
Δ=0

,

D′n
∣
∣
∣
∣
Δ=0

= ∂Dn(δ1 +Δ, δ2 −Δ, δ3, . . . , δn)

∂Δ

∣
∣
∣
∣
Δ=0

;

Nn(0) = Nn(δ1, δ2, δ3, . . . , δn),

Dn(0) = Dn(δ1, δ2, δ3, . . . , δn).

According to (29) and (30), we have

N ′n
∣
∣
∣
∣
Δ=0

= D′n
∣
∣
∣
∣
Δ=0

= 0.
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So we can get ∂g(Δ)
∂Δ

∣
∣
∣
∣
Δ=0

= 0− 0 = 0.

Similarly, for any two δi, δj , simply by giving some perturbation to them, we
can get the same result as above. Therefore we can conclude that, for n ≥ 4,{
δi = π

n
, i = 1, . . . , n

}
can maximize the function Nn

Dn
. Furthermore, we can get

the maximum of Nn
Dn

by letting each δi be π
n

:

(
Nn

Dn

)

max
=

2n sin π
n
+ 2

n−2∑

r=2
(n− r) sin rπ

n

2n sin π
n
+

n−2∑

r=1
[2(n− r)− 1] sin (2r+1)π

2n

. (31)

Next, we would like to show that when δi = π
n
, i = 1, . . . , n, we have

min
θ
f (θ)

max
θ
f (θ)

=
(
Nn

Dn

)

max
.

As f (θ) =
n∑

i=1

∣
∣
∣cos

(
θ − (i−1)π

n

)∣
∣
∣, we know f (θ) = f

(
θ − π

n

)
. So we only need

to consider θ ∈ [0, π
n
] to get the maximum.

Recall f (θ) is linear, so the minimum and maximum must be either θ = 0 or
θ = π

n
. By observing the periodicity of the function f (θ), we can get

min
θ
f (θ) =

⎧
⎪⎪⎨

⎪⎪⎩

f (0) = 2
a−1∑

r=1
sin rπ

2a + 1 if n = 2a,

f
(

π
2(2a+1)

)
= 2

a∑

r=1
sin rπ

2a+1 if n = 2a + 1.

max
θ
f (θ) =

⎧
⎪⎪⎨

⎪⎪⎩

f
(
π
4a

) = 2
a∑

r=1
sin (2r−1)π

4a if n = 2a.

f (0) = 2
a∑

r=1
sin (2r−1)π

2(2a+1) + 1 if n = 2a + 1,

From (31) we can get

(
Nn

Dn

)

max
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2
a−1∑

r=1
sin rπ

2a +1

2
a∑

r=1
sin (2r−1)π

4a

if n = 2a.

2
a∑

r=1
sin rπ

2a+1

2
a∑

r=1
sin (2r−1)π

2(2a+1)+1
if n = 2a + 1,

(32)
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Therefore, we can conclude that when δi = π
n
, i = 1, . . . , n,

min
θ
f (θ)

max
θ
f (θ)

=
(
Nn

Dn

)

max
.

Recall the definition of δi’s, we know that (10) is the optimal solution for n ≥ 4.
For n = 3 and 2, by applying the similar strategy, we can get the same result as

above. ��

Propositions We Need in Order to Prove Theorem 3

Before proceeding to the proof of Theorem 3, we need the following Propositions 1
and 2:

Proposition 1

n−1∑

s=1

sin
s

n
π = cot

π

2n
,

n−1∑

s=1

cos
s

n
π = 0,

n−1∑

s=1

s sin
s

n
π = n

2
cot

π

2n
,

n−1∑

s=1

s cos
s

n
π = −1

2
cot2

π

2n
+ n− 1

2
,

n−1∑

s=1

s2 cos
s

n
π = −n

2
cot2

π

2n
+ n(n− 1)

2
.

Proof As the following holds true

sin
sπ

N
sin

π

2n
= 1

2

(

cos
(2s − 1)π

2n
− cos

(2s + 1)π

2n

)

,

we have
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(
n−1∑

s=1

sin
s

n
π

)

· sin
π

2n

= 1

2

n−1∑

s=1

(

cos
(2s − 1)π

2n
− cos

(2s + 1)π

2n

)

= 1

2

(

cos
π

2n
− cos

(2n− 1)π

2n

)

= cos
π

2n
.

So by dividing sin π
2n for both sides, we can get

n−1∑

s=1

sin
s

n
π = cot

π

2n
. (33)

As we also have

cos
sπ

N
sin

π

2n
= 1

2

(

sin
(2s + 1)π

2n
− sin

(2s − 1)π

2n

)

.

Therefore, we can get

(
n−1∑

s=1

cos
s

n
π

)

· sin
π

2n

= 1

2

n−1∑

s=1

(

sin
(2s + 1)π

2n
− sin

(2s − 1)π

2n

)

= 1

2

(

sin
(2n− 1)π

2n
− sin

π

2n

)

= 0,

which implies

n−1∑

s=1

cos
s

n
π = 0. (34)

As we also have

sin
s

n
π · sin

π

2n
= cos

(2s − 1)π

2n
− cos

(2s + 1)π

2n
,

the following can be derived:

(
n−1∑

s=1

s sin
s

n
π

)

· sin
π

2n
= 1

2

n−1∑

s=1

s ·
(

cos
(2s − 1)π

2n
− cos

(2s + 1)π

2n

)

. (35)
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Since we have

n−1∑

s=1

s ·
(

cos
(2s − 1)π

2n
− cos

(2s + 1)π

2n

)

=
n−1∑

s=1

cos
(2s − 1)π

2n
− (n− 1) cos

(2n− 1)π

2n

=
n−1∑

s=1

(
cos

s

n
π cos

π

2n
+ sin

s

n
π sin

π

2n

)
+ (n− 1) cos

π

2n
,

by plugging the above as well as (33) and (34) into (35), we can get

(
n−1∑

s=1

s sin
s

n
π

)

· sin
π

2n

= 1

2

(
n−1∑

s=1

(
cos

s

n
π cos

π

2n
+ sin

s

n
π sin

π

2n

)
+ (n− 1) cos

π

2n

)

= 1

2

(
0+ cos

π

2n

)
+ n− 1

2
cos

π

2n
= n

2
cos

π

2n
. (36)

Similarly, since we have

cos
s

n
π · sin

π

2n
= sin

(2s + 1)π

2n
− sin

(2s − 1)π

2n
,

by using the similar strategy, we can get

(
n−1∑

s=1

s cos
s

n
π

)

· sin
π

2n
= −1

2
cos

π

2n
cot

π

2n
+ n− 1

2
sin

π

2n
. (37)

Therefore, dividing both Eqs. (36) and (37), we can get

n−1∑

s=1

s sin
s

n
π = n

2
cot

π

2n
, (38)

n−1∑

s=1

s cos
s

n
π = −1

2
cot2

π

2n
+ n− 1

2
. (39)

Since the following holds true,
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(
n−1∑

s=1

s2 cos
s

n
π

)

· sin
π

2n
= 1

2

{

−
n−1∑

s=1

(2s − 1) sin
(2s − 1)π

2n
+ (n− 1)2 sin

2n− 1

2n
π

}

,

by simplifying the above equation we can get

(
n−1∑

s=1

s2 cos
s

n
π

)

· sin
π

2n

= −
n−1∑

s=1

s
(

sin
s

n
π cos

π

2n
− cos

s

n
π sin

π

2n

)
+ 1

2

n−1∑

s=1

(
sin

s

n
π cos

π

2n
− cos

s

n
π sin

π

2n

)

+ (n− 1)2

2
sin

π

2n

= −
(
n−1∑

s=1

s sin
s

n
π

)

cos
π

2n
+

(
n−1∑

s=1

s cos
s

n
π

)

sin
π

2n
+ 1

2

(
n−1∑

s=1

sin
s

n
π

)

cos
π

2n

−1

2

(
n−1∑

s=1

cos
s

n
π

)

sin
π

2n
+ (n− 1)2

2
sin

π

2n
.

Plugging (33), (34), (38), and (39) into the above, we can get

(
n−1∑

s=1

s2 cos
s

n
π

)

· sin
π

2n
= −1

2
cot2

π

2n
sin

π

2n
+ n(n− 1)

2
sin

π

2n
.

Therefore, dividing sin π
2n on each side, we get

n−1∑

s=1

s2 cos
s

n
π = −n

2
cot2

π

2n
+ n(n− 1)

2
.

��
Proposition 2

2
n−1∑

s=1

(n− s)f (s) = n

π
cot

π

2n
+ 1

2
cot2

π

2n
− n

2
+ 1

2
.

Proof According to the definition of function f (s) in (42), we have
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2
n−1∑

s=1

(n− s)f (s)

= 2
n−1∑

s=1

(n− s)

(
1

π
sin

s

n
π +

(
1

2
− s

n

)

cos
s

n
π

)

= 2n

π

n−1∑

s=1

sin
s

n
π − 2

π

n−1∑

s=1

s sin
s

n
π + n

n−1∑

s=1

cos
s

n
π − 3

n−1∑

s=1

s cos
s

n
π + 2

n

n−1∑

s=1

s2 cos
s

n
π.

Applying Proposition 1,we have

2
n−1∑

s=1

(n− s)f (s) = n

π
cot

π

2n
+ 1

2
cot2

π

2n
− n

2
+ 1

2
.

��

Proof of Theorem 3

Proof Recall that ui can be rewritten as

ui = e
√−1 iπ

n , i = 0, 1, . . . , n− 1.

And we have

E
v∼Unif(S1)

⎧
⎨

⎩

∣
∣
∣
∣
∣
Cn

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣− 1

∣
∣
∣
∣
∣

2
⎫
⎬

⎭

= C2
n E
v∼Unif(S1)

⎧
⎨

⎩

(
n∑

i=1

∣
∣
∣uTi v

∣
∣
∣

)2
⎫
⎬

⎭
− 2Cn E

v∼Unif(S1)

{
n∑

i=1

∣
∣
∣uTi v

∣
∣
∣

}

+ 1

= C2
n

n∑

i=1

E
v∼Unif(S1)

(∣
∣
∣uTi v

∣
∣
∣
2
)

+ 2C2
n

∑

1≤i<j≤N
E

v∼Unif(S1)

(∣
∣
∣uTi v

∣
∣
∣
∣
∣
∣uTj v

∣
∣
∣
)

−2Cn

n∑

i=1

E
v∼Unif(S1)

{∣
∣
∣uTi v

∣
∣
∣
}
+ 1. (40)

So we will find out the expected squared error, if for all i, j = 1, . . . , n, we can
get the values of
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E
v∼Unif(S1)

(∣
∣
∣uTi v

∣
∣
∣
2
)

, E
v∼Unif(S1)

(∣
∣
∣uTi v

∣
∣
∣
∣
∣
∣uTj v

∣
∣
∣
)
, E

v∼Unif(S1)

{∣
∣
∣uTi v

∣
∣
∣
}
.

In order to calculate E
v∼Unif(S1)

(∣
∣uTi v

∣
∣2
)

, we let ui = (1, 0)′ and v =
(cos θ, sin θ)′ without loss of generality. Then,

E
v∼Unif(S1)

(∣
∣
∣uTi v

∣
∣
∣
2
)

= E
θ∼Unif(0,2π)

cos2 θ = 1

2
+ 1

2
E

θ∼Unif(0,2π)
cos 2θ = 1

2
.

Without loss of generality, assume 〈ui, uj 〉 = s
n
π, for all 1 ≤ i, j ≤ n, i �= j,

which means we can assume

ui = (1, 0)′, uj = (cos
s

n
π, sin

s

n
π)′, s = 1, 2, . . . , n− 1.

Therefore, we have

∣
∣
∣uTi v

∣
∣
∣ ·

∣
∣
∣uTj v

∣
∣
∣ = |cos θ |

∣
∣
∣cos θ cos

s

n
π + sin θ sin

s

n
π

∣
∣
∣

=
∣
∣
∣cos2 θ cos

s

n
π + cos θ sin θ sin

s

n
π

∣
∣
∣ .

As the following equations hold,

cos2 θ = 1+ cos 2θ

2
and cos θ sin θ = sin 2θ

2
,

quantity
∣
∣uTi v

∣
∣ ·

∣
∣
∣uTj v

∣
∣
∣ can be further written as

∣
∣
∣uTi v

∣
∣
∣ ·

∣
∣
∣uTj v

∣
∣
∣ = 1

2

∣
∣
∣cos 2θ cos

s

n
π + sin 2θ sin

s

n
π + cos

s

n
π

∣
∣
∣

= 1

2

∣
∣
∣cos

(
2θ − s

n
π
)
+ cos

s

n
π

∣
∣
∣ .

So E
v∼Unif(S1)

(∣
∣uTi v

∣
∣ ·

∣
∣
∣uTj v

∣
∣
∣
)

can be rewritten as follows:

E
v∼Unif(S1)

(∣
∣
∣uTi v

∣
∣
∣ ·

∣
∣
∣uTj v

∣
∣
∣
)

= 1

2
E

θ∼Unif(0,2π)

{∣
∣
∣cos

(
2θ − s

n
π
)
+ cos

s

n
π

∣
∣
∣
}
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= 1

2
× 1

2π

⎛

⎝

π∫

0

+
2π∫

π

⎞

⎠
∣
∣
∣cos

(
2θ − s

n
π
)
+ cos

s

n
π

∣
∣
∣ dθ.

As we have

2π∫

π

∣
∣
∣cos

(
2θ − s

n
π
)
+ cos

s

n
π

∣
∣
∣ dθ

=
π∫

0

∣
∣
∣cos

(
2θ − s

n
π
)
+ cos

s

n
π

∣
∣
∣ dθ =

π∫

0

∣
∣
∣cos (2θ)+ cos

s

n
π

∣
∣
∣ dθ

=
∫ π

2 + s
2n π

− π
2 + s

2n π

∣
∣
∣cos (2θ)+ cos

s

n
π

∣
∣
∣ dθ,

we can get

E
v∼Unif(S1)

(∣
∣
∣uTi v

∣
∣
∣ ·

∣
∣
∣uTj v

∣
∣
∣
)
= 1

2π

∫ π
2 − s

2n π

− π
2 + s

2n π

∣
∣
∣cos (2θ)+ cos

s

n
π

∣
∣
∣ dθ. (41)

By breaking the integral interval (−π
2 + s

2nπ,
π
2 + s

2nπ) into two subintervals, (−π
2 +

s
2nπ,

π
2 − s

2nπ) and (π2 − s
2nπ,

π
2 + s

2nπ), we have

∣
∣
∣cos 2θ + cos

s

n
π

∣
∣
∣ =

{
cos 2θ + cos s

n
π, θ ∈ (−π

2 + s
2nπ,

π
2 − s

2nπ),

− (
cos 2θ + cos s

n
π
)
, θ ∈ (π2 − s

2nπ,
π
2 + s

2nπ).

Combining (41), we get

E
v∼Unif(S1)

(∣
∣
∣uTi v

∣
∣
∣ ·

∣
∣
∣uTj v

∣
∣
∣
)

= 1

2π

(∫ π
2 − s

2n π

− π
2 + s

2n π

+
∫ π

2 + s
2n π

π
2 − s

2n π

)
∣
∣
∣cos 2θ + cos

s

n
π

∣
∣
∣ dθ

= 1

2π

{∫ π
2 − s

2n π

− π
2 + s

2n π

(
cos 2θ + cos

s

n
π
)
dθ −

∫ π
2 + s

2n π

π
2 − s

2n π

(
cos 2θ + cos

s

n
π
)
dθ

}

= 1

2π

{

2 sin
s

n
π +

(

π − 2s

N
π

)

cos
s

n
π

}

= 1

π
sin

s

n
π +

(
1

2
− s

n

)

cos
s

n
π.
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If we define

f (s) = 1

π
sin

s

n
π +

(
1

2
− s

n

)

cos
s

n
π, s = 0, 1, 2, · · · , n− 1. (42)

Then we will get

E
v∼Unif(S1)

(∣
∣
∣uTi v

∣
∣
∣
2
)

= f (0),

E
v∼Unif(S1)

(∣
∣
∣uTi v

∣
∣
∣ ·

∣
∣
∣uTj v

∣
∣
∣
)
= f (s), where 〈ui, uj 〉 = s

n
π, s = 1, 2, · · · , n− 1.

(43)

Similarly, without loss of generality, if we assume ui = (1, 0)′, v =
(cos θ, sin θ)′, the following holds,

E
v∼Unif(S1)

{∣
∣
∣uTi v

∣
∣
∣
}
= E

θ∼Unif(−π,π)
|cos θ | = 2

π
2∫

− π
2

1

2π
cos θdθ = 2

π
. (44)

Recall that we have

Cn = 2

Vmin + Vmax
, where Vmin = min

v:‖v‖=1

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣ ,Vmax = max

v:‖v‖=1

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣ .

From (32) we can easily verify that

Vmin + Vmax = 2
n−1∑

k=1

sin
kπ

2n
+ 1.

Therefore, Cn can be derived:

Cn = 2

2
n−1∑

k=1
sin kπ

2n + 1

. (45)

As we have

sin
kπ

2n
· sin

π

4n
= 1

2

(

cos
(2k − 1)π

4n
− cos

(2k + 1)π

4n

)

,

we can get
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sin
π

4n

(
n−1∑

k=1

sin
kπ

2n

)

= 1

2

n−1∑

k=1

(

cos
(2k − 1)π

4n
− cos

(2k + 1)π

4n

)

= 1

2

(
cos

π

4n
− sin

π

4n

)
,

which leads to

n−1∑

k=1

sin
kπ

2n
=

1
2

(
cos π

4n − sin π
4n

)

sin π
4n

= 1

2
cot

π

4n
− 1

2
. (46)

Therefore, by plugging (46) into (45), we have

Cn = 2

cot π4n
= 2tan

π

4n
.

If we plug in (40) with (43) and (44), we can get

E
v∼Unif(S1)

⎧
⎨

⎩

∣
∣
∣
∣
∣
Cn

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣− 1

∣
∣
∣
∣
∣

2
⎫
⎬

⎭

= C2
n

n∑

i=1

E
v∼Unif(S1)

(∣
∣
∣uTi v

∣
∣
∣
2
)

+ 2C2
n

∑

1≤i<j≤N
E

v∼Unif(S1)

(∣
∣
∣uTi v

∣
∣
∣
∣
∣
∣uTj v

∣
∣
∣
)

−2Cn

n∑

i=1

E
v∼Unif(S1)

{∣
∣
∣uTi v

∣
∣
∣
}
+ 1

= 4tan2 π

4n

(
n

2
+ 2

n−1∑

s=1

(n− s)f (s)

)

− 8N

π
tan

π

4n
+ 1. (47)

In order to calculate the part
n−1∑

s=1
(n − s)f (s) in (47), we need the Proposition 2.

Applying Proposition 2 on (47), we get

E
v∼Unif(S1)

⎧
⎨

⎩

∣
∣
∣
∣
∣
Cn

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣− 1

∣
∣
∣
∣
∣

2
⎫
⎬

⎭

= 4tan2 π

4n

(
n

2
+ n

π
cot

π

2n
+ 1

2
cot2

π

2n
− n

2
+ 1

2

)

− 8n

π
tan

π

4n
+ 1

= 2tan2 π

4n
cot2

π

2n
+ 4n

π
tan2 π

4n
cot

π

2n
+ 2tan2 π

4n
− 8n

π
tan

π

4n
+ 1. (48)
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As tanx → x, as x → 0, we can get

E

v∼Unif(S1)

⎧
⎪⎨

⎪⎩

∣
∣
∣
∣
∣
∣
Cn

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣− 1

∣
∣
∣
∣
∣
∣

2
⎫
⎪⎬

⎪⎭
−→ 2

π2

16n2

4n2

π2
+ 4n

π

π2

16n2

2n

π
+ 2

π2

16n2
− 8n

π

π

4n
+ 1

= π2

8n2
.

��

Proof of Theorem 4

Proof Monte Carlo method uses random directions to approximate the norm, which
means

ui ∼ Unif(S1), i.i.d.

We also know that

E
ui ,v∼Unif(S1)

⎧
⎨

⎩

∣
∣
∣
∣
∣
Cn

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣− 1

∣
∣
∣
∣
∣

2
⎫
⎬

⎭

= C2
n E
ui ,v∼Unif(S1)

⎧
⎨

⎩

(
n∑

i=1

∣
∣
∣uTi v

∣
∣
∣

)2
⎫
⎬

⎭
− 2Cn E

ui ,v∼Unif(S1)

{
n∑

i=1

∣
∣
∣uTi v

∣
∣
∣

}

+ 1

= C2
n

n∑

i=1

E
ui ,v∼Unif(S1)

(∣
∣
∣uTi v

∣
∣
∣
2
)

+ 2C2
n

∑

1≤i<j≤N
E

ui ,uj ,v∼Unif(S1)

(∣
∣
∣uTi v

∣
∣
∣
∣
∣
∣uTj v

∣
∣
∣
)

−2Cn

n∑

i=1

E
ui ,v∼Unif(S1)

{∣
∣
∣uTi v

∣
∣
∣
}
+ 1, (49)

where Cn satisfies

Cn ·
∫

ui∈S1

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣ dui = 1,

which implies

Cn = π

2n
.
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We can find out the expected squared error if we can get the values of

E
ui ,v∼Unif(S1)

(∣
∣
∣uTi v

∣
∣
∣
2
)

,

E
ui ,uj ,v∼Unif(S1)

(∣
∣
∣uTi v

∣
∣
∣
∣
∣
∣uTj v

∣
∣
∣
)
,

E
ui ,v∼Unif(S1)

{∣
∣
∣uTi v

∣
∣
∣
}
, for all i, j = 1, · · · , n.

Let ui = (cosφ, sinφ)′, v = (cos θ, sin θ)′, where φ ∼ Unif(0, 2π), θ ∼
Unif(0, 2π). Then the above three can be computed as follows:

E
ui ,v∼Unif(S1)

(∣
∣
∣uTi v

∣
∣
∣
2
)

= E
φ,θ∼Unif(0,2π)

cos2(φ − θ) = E
φ∼Unif(0,2π)

[

E
θ∼Unif(0,2π)

[
cos2(φ − θ)|φ

]
]

= 1

2
,

and

E
ui ,uj ,v∼Unif(S1)

(∣
∣
∣uTi v

∣
∣
∣
∣
∣
∣uTj v

∣
∣
∣
)

= E
φi ,φj ,θ∼Unif(0,2π)

{|cos(θ − φi)|
∣
∣cos(θ − φj )

∣
∣
}

= E
φj ,θ∼Unif(0,2π)

{

E
φi∼Unif(0,2π)

[|cos(θ − φi)| [
∣
∣cos(θ − φj )

∣
∣ |φj , θ

]
}

= E
φj ,θ∼Unif(0,2π)

{
∣
∣cos(θ − φj )

∣
∣ · 2

π

}

= E
θ∼Unif(0,2π)

{

E
φj∼Unif(0,2π)

[

| cos(θ − φj )| · 2

π
|θ
]}

= E
θ∼Unif(0,2π)

[
2

π
· 2

π

]

= 4

π2 ,

and
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E
ui ,v∼Unif(S1)

{∣
∣
∣uTi v

∣
∣
∣
}

= E
φ,θ∼Unif(0,2π)

|cos(φ − θ)| = E
φ∼Unif(0,2π)

[

E
θ∼Unif(0,2π)

[|cos(φ − θ)| |φ]

]

= E
φ∼Unif(0,2π)

2

π
= 2

π
.

Therefore by plugging the above results into (49), we eventually get

E
ui ,v∼Unif(S1)

⎧
⎨

⎩

∣
∣
∣
∣
∣
Cn

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣− 1

∣
∣
∣
∣
∣

2
⎫
⎬

⎭

= π2

4N2

(

N · 1

2
+ 2

N(N − 1)

2

4

π2

)

− 2
π

2n
·N · 2

π
+ 1 = π2 − 8

8N
.

��

Proof of Lemma 1

Proof Recall that we have

Vmax = max
v:||v||2=1

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣ = max

v:||v||2=1
max

si∈{1,−1}

(
n∑

i=1

siu
T
i

)

v, (50)

where the second equality is based on a standard trick in optimization [2, Chap-
ter 9.2(ii)].

The following is an application of the Cauchy-Schwartz inequality:

(
n∑

i=1

siu
T
i

)

v ≤
√
√
√
√

∥
∥
∥
∥
∥

n∑

i=1

siui

∥
∥
∥
∥
∥

2

2

||v||22 =
∥
∥
∥
∥
∥

n∑

i=1

siui

∥
∥
∥
∥
∥
,

where the equality is due to the condition ‖v‖ = 1.

In the first part, the equality holds if and only if |vj | = c

∣
∣
∣
∣
∣

(
n∑

i=1
siui

)

j

∣
∣
∣
∣
∣
, j =

1, . . . , p.

Apparently, we must have c =
∥
∥
∥
∥

n∑

i=1
siui

∥
∥
∥
∥

−1

(because of ‖v‖ = 1).

So we can have
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v =

n∑

i=1
siui

∥
∥
∥
∥

n∑

i=1
siui

∥
∥
∥
∥

. (51)

Combining (51) and (50), we have (11). ��

Proof of Lemma 2

Proof We start with a special case: the linear subspace is R
p(the entire space).

Obviously the n hyperplanes

{
y : uTi y = 0

}
, for i = 1, 2, . . . , n

divide the sphere Sp−1 into at most 2n sectors. Within each sector, functionf (v) is
strictly linear, therefore the minima cannot be an interior point. Recall a boundary
point v must have uTj v = 0 for at least one j, 1 ≤ j ≤ n.

Now we consider a linear subspace with dimension less than p, say, k. Let
b1, . . . , bk be the orthonormal basis of such a linear subspace, we have ∀x ∈ Ω ,

x =
k∑

j=1

cj bj ,

and

k∑

j=1

c2
j = 1, (Because we have ‖x‖ = 1).

Therefore, we have

f (v) =
n∑

i=1

∣
∣
∣uTi v

∣
∣
∣ =

n∑

i=1

∣
∣
∣
∣
∣
∣
uTi

k∑

j=1

cj bj

∣
∣
∣
∣
∣
∣
=

n∑

i=1

∣
∣
∣
∣
∣
∣

k∑

j=1

cj (u
T
i bj )

∣
∣
∣
∣
∣
∣
=

n∑

i=1

∣
∣
∣hTi c

∣
∣
∣ ,

where c = (c1, . . . , ck)
T and hTi =

(
uTi b1, . . . , u

T
i bk

)
, i = 1, . . . , n. Note that in

the early part of this proof, the ui can be arbitrary.
The above derivation indicates that the latter case can be converted into the

former case, as c ∈ R
k is from the entire space. So we can get

hTi c = 0 for at least one i, 1 ≤ i ≤ n.
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Since we have hTi c = uTi

(
k∑

j=1
bj cj

)

, the above is equivalent to

uTi

⎛

⎝
k∑

j=1

bj cj

⎞

⎠ = 0 for at least one i, 1 ≤ i ≤ n.

Quantity
k∑

j=1
bj cj can also be denoted as v, because any vector on the space is a

linear combination of the orthonormal basis b1, . . . , bk.

From all the above, we proved the lemma. ��

Proof of Lemma 3

Proof For notational simplicity, let us donate Ω = Ω(vmin). We can easily verify
the following

rank(Ω) ≤ p − 1.

Otherwise (i.e., rank(Ω) = p), by the definition of Ω , we will have vmin = 0. Now
we show that

rank(Ω) ≥ p − 1.

We use contradiction. Let us assume that rank(Ω) < p − 1. Define the following
complementary set

Ω⊥ = {x : ‖x‖ = 1, x ⊥ Ω} ,

where x ⊥ Ω stands for that x is perpendicular to the linear space that is spanned
by all the uj ’s in Ω . Because vmin is a minimizer, we have that

f (vmin) = min
v∈Ω⊥

f (v) = min
v∈Ω⊥

n∑

i=1

∣
∣
∣uTi v

∣
∣
∣ = min

v∈Ω⊥
∑

ui �∈Ω

∣
∣
∣uTi v

∣
∣
∣

Note that if rank(Ω) < p − 1, we have dim(Ω⊥) ≥ 2.
By Lemma 2, we can declare that there exists uj �∈ Ω , uTj vmin = 0. However,

this contradicts to the definition of Ω , which is supposed to be the maximal subset.
��
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Proof of Theorem 5

Proof When n = p, we have

f (v) = |uT1 v| + |uT2 v| + . . .+ |uTpv|, for u1, . . . up, v ∈ S
p−1.

According to the Lemma 3, we have

rank (Ω(vmin)) = p − 1,

where Ω(vmin) =
{
uj : uTj vmin = 0

}
, and vmin is the minimizer of f (v). So the

minimizer of f (v) must satisfy that it is orthogonal to p − 1 linearly independent
uj ’s.

Assume every p− 1 uj ’s are linearly independent. Then the minimizer is among
the vectors that are orthogonal to any p − 1 uj ’s. We know there are

(
p

p−1

) = p

different combinations of uj ’s, and each combination is correspond to 2 unit vectors
orthogonal to one of the p− 1 uj ’s. (These 2 unit vectors are the two directions that
are orthogonal to a p − 1 spaces in R

p.) Thus there are totally 2p unit vectors that
might be the minimizer of f (v).

Suppose p of the 2p unit vectors are those whose first nonzero entry
is positive. Denote them as v−(1), v−(2), . . . , v−(p). Then the other p unit
vectors would be −v−(1),−v−(2), . . . ,−v−(p). Suppose that for any i ∈
{1, 2, . . . , p}, v−(1), v−(2), . . . , v−(p) satisfy

(
v−(i)

)T
uj = 0,∀j �= i, j ∈ {1, 2, . . . , p}.

Thus the minimum value of f (v) can be upper bounded by the average of the
function values of the p unit vectors:

min
v
f (v) ≤ 1

p

p∑

i=1

f (v−(i)). (52)

We can also bound the maximum value of f (v) by some value:

max
v
f (v) ≥ max

si=±1
f

⎛

⎜
⎜
⎜
⎝

p∑

i=1
siv

−(i)

‖
p∑

i=1
siv−(i)‖

⎞

⎟
⎟
⎟
⎠
. (53)

Because we have
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f

⎛

⎜
⎜
⎜
⎝

p∑

i=1
siv

−(i)

‖
p∑

i=1
siv−(i)‖

⎞

⎟
⎟
⎟
⎠
=
f

(
p∑

i=1
siv

−(i)
)

‖
p∑

i=1
siv−(i)‖

,

and

f

(
p∑

i=1

siv
−(i)

)

=
p∑

j=1

∣
∣
∣
∣
∣
uTj

(
p∑

i=1

siv
−(i)

)∣
∣
∣
∣
∣
=

p∑

j=1

∣
∣
∣
∣
∣

p∑

i=1

siu
T
j v
−(i)

∣
∣
∣
∣
∣
=

p∑

j=1

∣
∣
∣sju

T
j v
−(j)

∣
∣
∣

=
p∑

j=1

∣
∣
∣uTj v

−(j)
∣
∣
∣ =

p∑

j=1

f
(
v−(j)

)
,

we can get

f

⎛

⎜
⎜
⎜
⎝

p∑

i=1
siv

−(i)

‖
p∑

i=1
siv−(i)‖

⎞

⎟
⎟
⎟
⎠
=

p∑

j=1
f
(
v−(j)

)

‖
p∑

i=1
siv−(i)‖

.

So (53) becomes

max
v
f (v) ≥ max

si=±1

p∑

i=1
f (v−(i))

∥
∥
∥
∥

p∑

i=1
siv−(i)

∥
∥
∥
∥

=

p∑

i=1
f (v−(i))

min
si=±1

∥
∥
∥
∥

p∑

i=1
siv−(i)

∥
∥
∥
∥

. (54)

Based on (52) and (54), we can get

min
v
f (v)

max
v
f (v)

≤
1
p

p∑

i=1
f (v−(i))

p∑

i=1
f (v−(i))

min
si=±1

∥
∥
∥
∥
∥

p∑

i=1
siv

−(i)
∥
∥
∥
∥
∥

= 1

p
min
si=±1

∥
∥
∥
∥
∥

p∑

i=1

siv
−(i)

∥
∥
∥
∥
∥
.

So we have

max
u1,...up

min
v
f (v)

max
v
f (v)

≤ 1

p
max
u1,...up

min
si=±1

∥
∥
∥
∥
∥

p∑

i=1

siv
−(i)

∥
∥
∥
∥
∥
. (55)

Since solving the problem
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max
u1,...up

min
si=±1

∥
∥
∥
∥
∥

p∑

i=1

siv
−(i)

∥
∥
∥
∥
∥

is equivalent to solving

max
u1,...up

min
si=±1

∥
∥
∥
∥
∥

p∑

i=1

siv
−(i)

∥
∥
∥
∥
∥

2

,

we will try to solve the latter one in the following. We have

max
u1,...up

min
si=±1

∥
∥
∥
∥
∥

p∑

i=1

siv
−(i)

∥
∥
∥
∥
∥

2

= max
u1,...up

min
si=±1

sT Σs,

where we have Σ ∈ R
p×p and

Σ =

⎛

⎜
⎜
⎜
⎝

1
(
v−(1)

)T
v−(2)

(
v−(1)

)T
v−(3) · · · (v−(1))T v−(p)

(
v−(2)

)T
v−(1) 1

(
v−(2)

)T
v−(3) · · · (v−(2))T v−(p)

· · · · · · · · · · · · · · ·
(
v−(p)

)T
v−(1)

(
v−(p)

)T
v−(2)

(
v−(p)

)T
v−(3) · · · 1

⎞

⎟
⎟
⎟
⎠
.

We claim that min
si=±1

sT Σs is upper bounded by p, and min
si=±1

sT Σs = p when

(
v−(i)

)T
v−(j) = 0,∀i �= j.

We can see that if there are some i, j (i �= j), such that
(
v−(i)

)T
v−(j) �= 0,

then there exists some s, such that sT Σs ≤ p. Suppose there does not exist such s,
which means for any s, the following holds,

sT Σs > p. (56)

Since we have

∑

si=±1

sT Σs =
∑

s∈{s:sk=±1}

∑

i,j

sisjΣij =
∑

s∈{s:sk=±1}

⎛

⎝p +
∑

i �=j
sisjΣij

⎞

⎠

= 2pp +
∑

s∈{s:sk=±1}

∑

i �=j
sisjΣij = 2pp,
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this will lead to
∑

si=±1
sT Σs > 2pp, which is a contradiction of (56). So we proved

that our claim is true, which says

min
si=±1

sT Σs ≤ p,

and when
(
v−(i)

)T
v−(j) = 0,∀i �= j, which means Σ = Ip, we have

min
si=±1

sT Σs = p.

We know that v−(i)’s only depends on ui’s, and when uTi uj = 0,∀i �= j, we

have
(
v−(i)

)T
v−(j) = 0,∀i �= j. So when the following holds,

uTi uj = 0,∀i �= j,

min
si=±1

sT Σs achieves the maximum value, which is p. Therefore we get

max
u1,...up

min
si=±1

∥
∥
∥
∥
∥

p∑

i=1

siv
−(i)

∥
∥
∥
∥
∥

2

= max
u1,...up

min
si=±1

sT Σs = p,

which leads to

max
u1,...up

min
si=±1

∥
∥
∥
∥
∥

p∑

i=1

siv
−(i)

∥
∥
∥
∥
∥
= √p. (57)

Based on (55) and (57), we have

max
u1,...up

min
v
f (v)

max
v
f (v)

≤
√
p

p
. (58)

Next if we can prove that when uTi uj = 0,∀i �= j, the following holds,
min
v
f (v)

max
v
f (v)

=
√
p

p
; combined with (58), we can arrive at the conclusion and finish

the proof of the Lemma.
Let us assume

uTi uj = 0,∀i �= j.

Without loss of generality, we can assume ui = ei,∀i �= j, where ei’s are the basic
vectors of Rp. Then the following holds,
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f (v) =
p∑

i=1

|vi |, v ∈ S
p−1.

We can easily verify the following, min
v
f (v) = 1, and max

v
f (v) = √p. So when

uTi uj = 0,∀i �= j , we have

min
v
f (v)

max
v
f (v)

=
√
p

p
.

Combined what we get from (58), that is,
√
p

p
is the upper bound of max

u1,...up

min
v
f (v)

max
v
f (v)

,

we finished the proof. ��

Proof of Lemma 4

Proof As we have

min
x:‖x‖=1,〈x,v〉=θ

‖x + B‖2 = min
x:‖x‖=1,〈x,v〉=θ 1+ ‖B‖2 + 2 〈x, B〉 ,

the problem (17) is equivalent to

min
x:‖x‖=1,〈x,v〉=θ

〈x, B〉 . (59)

Suppose x∗ is the solution to the above problem (17). Then x∗ is the farthest point
to B on the circle that satisfies the constraints ‖x‖ = 1, 〈x, v〉 = θ . The three points
x∗, v, and B must be on a same plane. Therefore, we can assume

x∗ = av + bB. (60)

Bringing (60) into (59), we have

min
x:‖x‖=1,〈x,v〉=θ

〈x, B〉 = min
a,b:‖av+bB‖=1,〈av+bB,v〉=θ

〈av + bB,B〉 ,

which is equivalent to

min
a,b

avT B + bBT B (61)

s.t.

{
a2 + b2‖B‖2 + 2abvT B = 1

a + bvT B = cos θ.
(62)
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Bringing the second equation in the constraints (62), that is,

a = cos θ − bvT B (63)

into (61), we have

min
b

vT B cos θ + b
(
BT B − (vT B)2

)

s.t. b2
(
BT B − (vT B)2

)
+ cos θ2 = 1. (64)

Then the solution to (64) is

b = ± sin θ
√
BT B − (vT B)2

.

Since BT B − (vT B)2 ≥ 0, the minimum is achieved when

b = − | sin θ |
√
BT B − (vT B)2

. (65)

Combining (65) with (63), we can get the solution. ��

Proof of Theorem 6

Proof If θ ∈ [0, π), the square of the denominator of (18) becomes

1+2vT B cos θ+BT B−2 sin θ
√
BT B − (vT B)2 = 1+BT B+2

√
BT B sin(α−θ),

where

sinα = vT B√
BT B

,

cosα =
√
BT B − (vT B)2√

BT B
.

Similarly, if θ ∈ [π, 2π), then the square of the denominator of (18) becomes

1+2vT B cos θ+BT B+2 sin θ
√
BT B − (vT B)2 = 1+BT B+2

√
BT B sin(α+θ),

where α is the same defined as above.
Hence, for θ ∈ [0, π), we have
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f (θ) = | cos θ | + A
√

1+ BT B + 2
√
BT B sin(α − θ)

;

for θ ∈ [π, 2π), we have

f (θ) = | cos θ | + A
√

1+ BT B + 2
√
BT B sin(α + θ)

,

which is equivalent to

f (θ) = | cos θ | + A
√

1+ BT B + 2
√
BT B sin(α + θ)

,

where θ ∈ [−π, 0), which is also equivalent to

f (θ) = | cos θ | + A
√

1+ BT B + 2
√
BT B sin(α − θ)

,

where θ ∈ [0, π).
So the problem we want to solve is actually to maximize

f (θ) = | cos θ | + A
√

1+ BT B + 2
√
BT B sin(α − θ)

on θ ∈ [0, π).
Under the first order condition, we have that if θ∗ maximizes f (θ), then 0 =

f ′(θ∗).
When θ ∈ [0, π2 ), the first order differentiable function of f (θ) can be written as

f ′(θ) = −(1+ BT B) sin θ +√BT B [cosα + A cos(α − θ)− sin θ sin(α − θ)]
(

1+ BT B + 2
√
BT B sin(α − θ)

)3/2
;

When θ ∈ [π2 , π), the first order differentiable function of f (θ) can be written as

f ′(θ) = (1+ BT B) sin θ +√BT B [− cosα + A cos(α − θ)+ sin θ sin(α − θ)]
(

1+ BT B + 2
√
BT B sin(α − θ)

)3/2
.

If we define function g(θ) as the following
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g(θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
BT B [cosα + A cos(α − θ)− sin θ sin(α − θ)]

−(1+ BT B) sin θ, if θ ∈ [0, π2 ),√
BT B [− cosα + A cos(α − θ)+ sin θ sin(α − θ)]

+(1+ BT B) sin θ if θ ∈ [π2 , π),

Then our goal becomes to find the zeros of the function g(θ). ��
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Kernel Tests for One, Two, and K-Sample
Goodness-of-Fit: State of the Art and
Implementation Considerations

Yang Chen and Marianthi Markatou

Abstract In this article, we first discuss the fundamental role of statistical distances
in the problem of goodness-of-fit and review various existing multivariate two-
sample goodness-of-fit tests from both statistics and machine learning literature. The
review conducted delivers the fact that there does not exist a satisfactory multivariate
two-sample goodness-of-fit test. We introduce a class of one and two-sample tests
constructed using the kernel-based quadratic distance, and briefly touch upon their
asymptotic properties. We discuss the practical implementation of these tests, with
emphasis on the kernel-based two-sample test. Finally, we use simulations and real
data to illustrate the application of the kernel-based two-sample test, and compare
this test with tests existing in the literature.

Keywords Goodness-of-fit · Kernel tests · Quadratic distance · Multivariate ·
Two-sample methods

1 Introduction

An important reason for the popularity of testing is that it is often thought to
be a major, if not the main, ingredient of scientific progress [8, 38] and the best
way to move from alchemy to science. Further, a frequently expressed goal of
testing is decision making. This view of testing and its implementation in statistics,
is primarily due to Neyman-Pearson theory of inductive behavior. The decision-
theoretic approach to testing has been further elaborated by Wald [50], and from a
Bayesian perspective by Savage [42]. However, the modern approach to significance
testing starts with Karl Pearson’s goodness of fit for large samples.
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The goodness-of-fit problem has a long history in the statistical literature,
particularly in the one-dimensional (univariate) case. Examples include Durbin [16],
D’Agostino and Stephen [14] and Rayner and Best [39]. Many goodness-of-fit tests
for univariate samples have been proposed in the literature. As examples of current
literature on the subject, and for the univariate case, we list Cao and Van Keilegom
[11] and Cao and Lugosi [10].

In contrast to the voluminous univariate goodness-of-fit testing literature much
less is written for the multivariate case. In this paper we first offer a brief review
on these multivariate tests. This is actually the first step towards our goal of
understanding the performance of existing multivariate goodness-of-fit tests and
constructing two and k-sample tests based on the concept of statistical distance.
In what follows we justify our decision of basing goodness-of-fit procedures on the
concept of a statistical distance.

There has been a recent growth of interest in the use of quadratic distance for
goodness-of-fit in the scientific literature outside statistics, no doubt because of the
modern challenges of very large samples and high dimensions. One area is modern
particle physics, where the experimenter is confronted with data in many dimensions
and the task of assessing how accurately a model function fits the observed data.
Because of the computational and other difficulties encountered with extensions of
existing goodness-of-fit tests, Aslan and Zech [2] discuss the construction of energy
function-based goodness-of-fit functions R. Expressed in our language, R is one-
half of the quadratic distance between two distributions F , G. The proposed kernels
are monotonically decreasing functions of the Euclidean distance between points
x, y. When K(x, y) = 1/(‖ x − y ‖), where ‖ x − y ‖ is the Euclidean distance,
the function R is the electrostatic energy of the two charge distributions of opposite
signs; the energy is minimum if the charges neutralize each other.

Another scientific domain where quadratic methods have arisen is biology, where
the high dimensional nature of microarray and other “omics” data challenges
standard statistical methodology. Szabo et al. [45, 46] use a negative quadratic
distance as a test statistic to identify a subset of genes that in some sense differs the
most between two subsets of genes. They use Euclidean distance based kernels, and
one of the desirable requirements is ease of computation. Szabo et al. [45] discuss
how to construct negative definite kernels and how to use the proposed function of
the distance to construct two-sample tests.

The field of quasi Monte-Carlo methods requires the use of criteria for measuring
whether a set of points is uniformly scattered in the p-dimensional unit cube.
These criteria, called discrepancies, arise in the error analysis of quasi-Monte Carlo
methods for evaluating multiple integrals. In this literature the discrepancy is a
measure of the quality of a set of points used to approximate the integral.

A related literature to the aforementioned goodness-of-fit problems comes from
machine learning and it is mainly represented by papers such as Gretton et al. [20,
21], Póczos et al. [37], Zaremba et al. [53] and others. Specifically, Gretton et al. [20]
introduce a test for the two-sample problem, called Maximum Mean Discrepancy,
that is computationally fast and thus, it can be used with large samples and high
dimensional data sets.
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As rich and interesting as this literature is, there is virtually no discussion of
a critical concept for multivariate goodness-of-fit testing. That is, in multivariate
goodness-of-fit it is important to construct tunable distances so that one can adjust
the operating characteristics of the distances to the dimension of the sample space
and sample size. Lindsay et al. [28] are the first to recognize this fundamental issue
and propose the concept of a quadratic distance as an extension of Pearson’s chi-
squared analysis, in continuous distributions. Lindsay et al. [28] show that quadratic
distances are functions of nonnegative definite kernels, and they study their applica-
tion to goodness-of-fit problems. They also show that classical goodness-of-fit tests
can be thought of as functions of kernels. Further, Lindsay et al. [27] are the first
to actually construct one-sample goodness-of-fit tests in the multivariate case using
the concept of a statistical distance and show how to build kernels with targeted
power properties. Lindsay et al. [27] discuss the one-sample case, and the choice
of kernels K that constitute the backbone of the goodness-of-fit procedures they
advocate. They note that the choice of a distance kernel is a matter of design, with
important design factors such as the data type, the dimension of the data, the ability
to carry out explicit calculations, and the alternatives of interest playing important
roles in its construction.

Before we leave this section we would like to mention the work of Székely and
Rizzo [49] on energy statistics. Energy statistics are statistical distances between
random vectors and they can be expressed as U -statistics and V -statistics. Székely
and Rizzo [49], in an interesting paper, construct one-sample tests for testing
multivariate normality, which can be considered as special cases of the quadratic
distance based tests presented here, for a specific choice of a kernel. This kernel is
the Euclidean distance between two random vectors.

In this paper, we review the existing multivariate two-sample goodness-of-fit
tests and introduce the tests constructed using the kernel-based quadratic distance.
Section 2 provides a brief review of the multivariate goodness-of-fit tests from
statistics literature. In Sect. 3, we elaborate on Maximum Mean Discrepancy, a test
from machine learning literature, and discuss the issues pertaining to this test. We
introduce the kernel-based quadratic distance in Sect. 4 and present the goodness-
of-fit tests constructed using this distance in Sects. 4.1 and 4.2. Section 5 discusses
the practical implementation of several tests mentioned in this paper, with emphasis
on the kernel-based two-sample tests presented in Sect. 4.2. Sections 6 and 7 use
a simulation study and a real-data application to illustrate the performance of the
kernel-based test, and to compare it with the existing multivariate two-sample
goodness-of-fit tests. Finally, Sect. 8 provides further discussion.

2 Relevant Statistical Literature

In this section, we offer a brief review of the multivariate goodness-of-fit tests from
statistics literature. We begin with stating some basic notations and the question
we are interested in. Let F(x) and G(y) be two unknown continuous distribution
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functions of two random vectors X and Y, both defined on Rp (p ≥ 1). Let
the set of N = n + m points x1, x2, · · · , xn and y1, y2, · · · , ym be observations
from X and Y. Let Z = {z1, z2, · · · , zN } be the pooled sample of x1, x2, · · · , xn
and y1, y2, · · · , ym, with distribution function H(z). Further, f (x), g(y) and h(z)
are the corresponding density functions, with Fn(x), Gm(y) and HN(z) denote the
corresponding empirical distribution functions. We would like to test H0 : F(x) =
G(y) versus a general alternative H1 : F(x) �= G(y).

The first set of tests utilize graph-based multivariate ranking strategies for the
extensions of univariate two-sample tests in high dimensional settings. Friedman
and Rafsky [19] use the minimal spanning tree (MST) as a multivariate generaliza-
tion of the univariate ordered list to extend the univariate Wald-Wolfowitz “run” test
[51] to multivariate cases. They also point out that the multivariate Kolmogorov-
Smirnov (KS) test can be constructed via ranking observations using the rooted
MST. It is known that the standard KS test has relatively low power against scale
alternatives. Friedman and Rafsky [19] resolve this defect with a modified KS test
that can substantially increase the power against scale alternatives at the expense
of rendering the test ineffective against location alternatives. Recent work on the
graph-based tests also includes Biswas et al. [7] and Chen and Friedman [12]. These
two-sample tests concentrate on the limited information captured from ranks of
observations within the sorted list of the pooled sample. One possible limitation
is that their performance might depend on the distance used. That is, it is possible to
obtain different results if different distances are used for these multivariate ranking
strategies. However, there is no guideline provided for the selection of the best
distance, and only R packages involving Euclidean distance are available.

The second set of tests attempts to extend several famous tests, such as
Kolmogorov two-sample test, Anderson-Darling rank test and Cramér-von Mises
test. The work includes Maag and Stephens [31], Pettitt [35, 36], Bickel [5], Burke
[9]. These five tests use information from permutations of the pooled sample. Only
the test proposed by Maag and Stephens [31] provides exact distribution. Although
the test proposed by Bickel [5] can handle multivariate cases, it does not have an
explicit formula that provides its asymptotic distribution. Only a weighted bootstrap
procedure that approximates its limiting distribution is offered by Burke [9].

The third type of tests are based on likelihood methods. Cao and Van Keilegom
[11] provide a local empirical likelihood test that reduces testing the multivariate
goodness-of-fit to testing the equality of parameters of elliptically contoured
distributions. In our opinion, the use of elliptically contoured distributions is actually
a limitation, as it does not cover the other types of distributions. For example,
the simple mixture of two normal distributions, which is common when studying
biomarkers, does not belong to the aforementioned family.

The fourth set of tests concentrate on the application of general “distance”
measures, where “distance” in this context means that the measure may not satisfy
all the properties in the mathematical definition of a distance. Henze [23, 24]
proposes a multivariate two-sample test based on the number of nearest neighbor
type coincidences. This test is generalized and extended in various publications,
including Schilling [43], Mondal et al. [32], Barakat et al. [3], and Chen et al. [13].
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Rosenbaum [41] uses inter-point distances for the construction of optimal bi-partite
matchings among the pooled sample and builds a multivariate two-sample test based
on the matched pairs. Other inter-point distance-based tests include Hall and Tajvidi
[22], Baringhaus and Franz [4], Székely and Rizzo [47], Biswas and Ghosh [6],
Liu and Modarres [29]. Other than using inter-point distances to construct tests,
Anderson et al. [1] utilize L2 distance between kernel density estimators; Fernández
et al. [18] compare the empirical characteristic functions; Aslan and Zech [2], from
the field of physics, make use of a positive definite distance function. As a comment,
most inter-point distance-based tests use Euclidean distance, and the robustness of
the results of these tests to the chosen distances has not been demonstrated in the
literature. It is possible that the performance of these tests is affected by the choice of
the distance function. For the kernel-based tests, the selection of the bandwidth can
be a difficult issue. Anderson et al. [1] are the first to recognize that the performance
of kernel-based tests is affected by the selection of the bandwidth. Furthermore, they
notice that the bandwidth must be constant for the test to perform well in terms of
power and significance level. Lindsay et al. [27], in related work, offer a method for
selecting the bandwidth that maximizes the power of the test.

3 Relevant Machine Learning Literature: Maximum Mean
Discrepancy

Gretton et al. [20] utilize the property of the kernel mean embedding to con-
struct a test statistic, called Maximum Mean Discrepancy (MMD). For a kernel,
K(x, y) =< K(x, .),K(., y) >, that is a unit ball in a reproducing kernel Hilbert
space (RKHS), the kernel mean embeddings of two random vectors X, Y with
distribution functions F(x), G(y) are μX = EX

(
K(X, .)

)
, μY = EY

(
K(.,Y)

)
.

The kernel mean embedding is injective and can preserve the information on all
moments of an embedded distribution for universal kernels [20].

As an example, let us consider a univariate kernel K(x, y) = exy , as well as two
univariate random variablesX, Y with distribution functions F(x),G(y). Both F(x)
andG(y) have moment-generating functions. With the help of Taylor expansion, the
kernel mean embeddings of X, Y can be expressed as

μX = EX

(
K(X, .)

) = EX

(
1+ yX + y2

2!X
2 + y3

3!X
3 + · · · )

= 1+ yEX(X)+ y2

2! EX(X
2)+ y3

3! EX(X
3)+ · · · ,

μY = EY

(
K(Y, .)

) = EY

(
1+ xY + x2

2! Y
2 + x3

3! Y
3 + · · · )

= 1+ xEY (Y )+ x2

2! EY (Y
2)+ x3

3! EY (Y
3)+ · · · .
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Clearly these are exactly the same as the moment-generating functions of X and
Y which contain information on all moments. However, if a polynomial kernel
with finite degree is used, the Taylor expansions of the kernel mean embeddings
are finite sums and the corresponding kernel mean embeddings cannot preserve
the information on all moments. Therefore, the kernel function used in the kernel
mean embedding must be carefully selected. To the best of our knowledge, the
kernels having exponential form can guarantee the preservation of the informa-
tion on all moments of an embedded distribution. Furthermore, if either of the
moment-generating functions of the two random variables X, Y does not exist, the
aforementioned way in which the kernel mean embedding preserves the information
on all moments breaks down. Under this situation, it is unclear how MMD works.
Muandet et al. [33] show that the characteristic function can be also used to explain
the mechanism of the kernel mean embedding, but the kernel involved still has
limitations.

With the help of the kernel mean embedding, the MMD statistic is defined as

MMD2(X,Y) =‖ μX − μY ‖2
H ,

where ‖ . ‖H denotes the Hilbert space norm. The corresponding unbiased estimate,
in terms of U -statistics, is provided as

MMD2
u(X,Y) = 1

n(n− 1)

n∑

j=1

n∑

k �=j
K(xj , xk)+ 1

m(m− 1)

m∑

j=1

m∑

k �=j
K(yj , yk)

− 2

nm

n∑

j=1

m∑

k=1

K(xj , yk).

The null hypothesis is rejected for large values of MMD2
u. The limiting distribution

is showed to be a weighted sum of squared independent Gaussian variables.
Bootstrap is recommended to calculate the corresponding critical values in practice.

Gretton et al. [20] use the Gaussian radial basis function kernel K(x, y) =
exp{−‖x−y‖2

2σ 2 }, where σ is a tuning parameter that needs to be selected in order to
operationalize the test. They suggest selecting this tuning parameter as the median
Euclidean distance between the points in the pooled sample. However there is
no guarantee that this selection of tuning parameter is at all optimal. In fact, a
fundamental problem here is that the selection of this parameter is not associated
with any of the fundamental aspects of the performance of the test. In this sense,
it is obvious that there are distributions for which this choice is clearly suboptimal
[40]. Furthermore, the issue of the selection of an appropriate kernel for carrying
out the MMD test still remains open. The radially symmetric kernel is appropriate
for interval scale data, but is not necessarily the case for either categorical or ordinal
categorical data.



Kernel Tests for One, Two, and K-Sample Goodness-of-Fit 315

Recognizing these two drawbacks of MMD, Gretton et al. [21] try to address
the issues involved by offering an approach to “optimally” select the kernel. This is
done by restricting attention to a family of linear combinations of positive definite
kernels, and learning the kernel from the data to be tested by solving an optimization
problem. Gretton et al. [21] show that this procedure is equivalent to maximizing the
Hodges-Lehmann asymptotic relative efficiency. The procedure is really involved
and there is no extensive experience with its use in practice. As a comment, Danafar
et al. [15] extend the MMD test by incorporating two penalty terms when sample
sizes are small. Eric et al. [17] propose a test, called Maximum Kernel Fisher
Discriminant Ratio, which combines both mean element and covariance operator
in RKHS.

The review presented in Sects. 2 and 3 clearly suggests that there does not exist
a satisfactory multi-dimenional goodness-of-fit testing procedure. MMD is reported
to have a better performance than others. But the selection of the kernel and the
tuning parameter still remains un-determined, and there is no clear guideline on
how this problem could be solved with minimal cost. In the following sections, we
introduce goodness-of-fit tests constructed using kernel-based quadratic distances
that are capable of handling at least some of these issues.

4 Statistical Distance-Based Goodness-of-Fit Tests

In this section, we introduce the kernel-based quadratic distance and the goodness-
of-fit tests constructed using this distance. Lindsay et al. [28] define the kernel-based
quadratic distance as:

Definition 1 (Lindsay et al. [28]) Given a nonnegative definite kernel K(s, t),
the kernel-based quadratic distance between two probability measures F and G is
defined as

dK(F,G) =
∫∫

K(s, t)d(F −G)(s)d(F −G)(t). (1)

Kernel based quadratic distances are of interest in statistical work for various
reasons, one of which is that the empirical quadratic distance between two dis-
tributions F and G has a relatively simple asymptotic distribution theory. Other
reasons include the fact that many distances, i.e., Kullback-Leibler distance, are
asymptotically quadratic, and many important distances are exactly quadratic, such
as Pearson’s Chi-squared and Cramér-von Mises statistics. One additional reason
justifying the attractiveness of the kernel-based quadratic distance is the fact that
when the distance is exactly quadratic, expressed exactly as in relation 1, it is a
metric. Furthermore, for a given symmetric kernel K(s, t) there exists a symmetric

kernel K
1
2 , called the squared root kernel, satisfying
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K(s, t) =
∫

K
1
2 (s, r)K

1
2 (r, t)dσ (r),

where σ(.) is a probability measure. We write dK(F,G) = ∫ (
f ∗(r) −

g∗(r)
)2
dσ(r), where f ∗(r) = ∫

K
1
2 (s, r)dF (s) and g∗(r) = ∫

K
1
2 (r, t)dG(t). For

example, the convolution of the two univariate normal kernels with variances h2
1 and

h2
2, produces a normal kernel with variance h2

1 + h2
2, and we call this property the

convolution property. This property is also valid for multivariate normal kernels.
We work with kernels that exhibit this convolution property. In Sect. 5, we will
show that this property can help us with the computation of the corresponding test
statistics.

It is also important to note that the distance kernel K that generates a particular
distance is not unique. Lindsay et al. [28] discuss this point and introduce the model-
centered kernel, defined as follows.

We note here that Sejdinovic et al. [44] introduced a general energy distance
using negative definite functions ρ. Specifically, Sejdinovic et al. [44] defined this
general energy distance as

DE,ρ(F,G) = −
∫

ρd[(F −G)× (F −G)],

where ρ is a general semimetric of negative definite type. This definition is similar
to the definition provided by Lindsay et al. [28], with the difference that Lindsay
et al. [28] use general positive definite kernels that are tunable. Székely and Rizzo’s
energy test [47–49] uses as ρ the Euclidean distance between two multi-dimensional
random variables.

Definition 2 The G-centered kernel Kcen(G) of a kernel K is defined as

Kcen(G)(s, t) = K(s, t)−K(s,G)−K(G, t)+K(G,G),

where

K(s,G) =
∫

K(s, t)dG(t),

K(G, t) =
∫

K(s, t)dG(s),

K(G,G) =
∫∫

K(s, t)dG(s)dG(t).

This G-centered kernel plays an important role in obtaining the asymptotic theory
of one, two, and k-sample goodness-of-fit tests. However, in later sections, we
will show that the integration to obtain the G-centered kernel could increase the
computational cost under certain scenarios.
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It is interesting to note that the construction of the function dμ of Lyons [30]
redefines the Lindsay et al. [28] construction on general metric spaces. In the latter
case, the kernel is taken to be the distance between two random variables defined on
a suitable metric space.

4.1 One-Sample Goodness-of-Fit Tests

In the context of one-sample goodness-of-fit, we let G be a null distribution
whose distribution function is known and whose fit we wish to assess. After
centering the kernel K with respect to the null distribution G to obtain the centered
kernel Kcen(G), the kernel-based quadratic distance can be written as d(F,G) =∫∫

Kcen(G)(s, t)dF (s)dF (t). Lindsay et al. [27] construct a test statistic based on
the U -statistic that unbiasedly estimates the true distance d(F,G). The test statistic
is provided as

Un = 1

n(n− 1)

∑

i

∑

j �=i
Kcen(G)(xi , xj ).

Under the simple null hypothesis, the limiting distribution of Un is

nUn →
∑

j

λj
(
Z2
j − 1

)
as n→∞,

where λj ’s are the nonzero eigenvalues of the centered kernelKcen(G) under the null
distribution G and Zj follows the standard normal distribution. Lindsay et al. [27]
also study the limiting distribution of Un under the composite null hypothesis and
provide the exact variance under the alternative.

The selection of the tuning parameter is quite critical to the application of the
kernel-based methods. In the context of goodness-of-fit, one cannot expect that a
single tuning parameter is capable of obtaining the optimal power for all alternative
hypotheses. Lindsay et al. [27] propose a precise strategy to compare the sensitivity
of a class of kernels to select the optimal tuning parameter with respect to a specific
alternative hypothesis of interest. They provide a very comprehensive simulation
study to evaluate the quality of this selection strategy. The simulation study indicates
that the proposed strategy indeed provides reasonable guidance without burden of
an extensive simulation.
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4.2 Two and K-Sample Goodness-of-Fit Tests

Compared to the one-sample problem, the luxury of knowing the null distribution
G no longer exists in two-sample cases. We let Fn(x) and Gm(y) be the empirical
distribution functions of F(x) andG(y). UnderH0 : F = G = F ∗, the kernel-based
quadratic distance can be written as

d(Fn,Gm) =
∫∫

Kcen(s, t)d(Fn − F ∗)(s)d(Fn − F ∗)(t)

− 2
∫∫

Kcen(s, t)d(Fn − F ∗)(s)d(Gm − F ∗)(t)

+
∫∫

Kcen(s, t)d(Gm − F ∗)(s)d(Gm − F ∗)(t).

where Kcen is an appropriately centered kernel. The test statistic unbiasedly
estimating d(Fn,Gm) is provided as

Dn,m = 1

n(n− 1)

n∑

i=1

n∑

j �=i
Kcen(xi , xj )− 2

nm

n∑

i=1

m∑

j=1

Kcen(xi , yj )

+ 1

m(m− 1)

m∑

i=1

m∑

j �=i
Kcen(yi , yj ).

To obtain the correct limiting theory the kernel must be appropriately centered.
Notice that F ∗, appearing in the expression of the quadratic distance, offers the
“appropriate” centering distribution, which needs to be identified. Section 5 of this
paper will provide a clear guideline on determining the centering distribution F ∗
and algorithms to calculate the test statistic as well as critical values.

Under the null hypothesis, the limiting distribution of Dn,m is provided as

NDn,m
d−→

∞∑

k=1

λk

[
( 1√

ρx
Z1k − 1√

ρy
Z2k

)2 − ( 1

ρx
+ 1

ρy

)
]

as n,m→∞, (2)

where Z1k , Z2k are independent variables that both follow the standard normal
distribution; λk’s are the nonzero eigenvalues of Kcen; limn,m→∞ n

N
= ρx ,

limn,m→∞ m
N
= ρy and 0 < ρx < 1. The exact variance of Dn,m under the null

hypothesis and the limiting distribution under the alternative hypothesis can also
be derived. Additionally, optimal tuning parameters used to construct Dn,m can be
determined by extending the strategy proposed for the one-sample tests by Lindsay
et al. [27].

Further, the two-sample tests Dn,m can be extended to address the k-sample
problem by defining a distance matrix with (i, j)th element
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Di,j =
∫∫

Kcen(s, t)d(Fi − F̄ )(s)d(Fj − F̄ )(t),

where Kcen is a centered kernel centered by F̄ and F̄ =
∑k

i niFi∑k
i ni

is the grand

mean centering distribution. All eigenvectors of this matrix will be contrasts
between the densities F1, F2, · · · , Fk . Limiting distributional results, understanding
the operational characteristics of this formulation, and implementation of the test
procedures constitute the contents of our future work on goodness-of-fit testing.

5 Practical Implementation

In this section, we discuss the practical implementation of the goodness-of-
fit tests mentioned in Sects. 2–4, especially focusing on the issues met in the
computation of the kernel-based two-sample tests in Sect. 4.2. Table 1 lists the tests
having existing R packages and their associated R packages. It has been demon-
strated that the computational cost of Friedman-Rafsky Kolmogorov-Smirnov test,
modified Friedman-Rafsky Kolmogorov-Smirnov test, and Friedman-Rafsky Wald-
Wolfowitz test increases as the sample size increases because these tests involve
ranking the pooled sample, a procedure that is relatively computationally expensive.
Rosenbaum’s Cross Match test has a sharp rate of increase in the computational
cost as dimension increases because its computation involves the calculation of the
inverse of a variance covariance matrix, which is time consuming as the dimension
grows.

In the content of the kernel-based two-sample test in Sect. 4.2, one important
issue involved in the practical implementation is the calculation of Dn,m because
the integration of the kernel used with respect to the common distribution under the
null hypothesis is required to obtain the correct model-centered kernel that is used to
constructDn,m. Under the assumption that the common null distribution F ∗ belongs
to a family of parametric distribution, the convolution property discussed in Sect. 4
can assist us in this calculation. One example of kernels having the convolution
property is the multivariate normal kernel, provided as

Table 1 Tests and related R packages

Tests R packages

Friedman-Rafsky Kolmogorov-Smirnov test [19] “GSAR”

Modified Friedman-Rafsky Kolmogorov-Smirnov test [19] “GSAR”

Friedman-Rafsky Wald-Wolfowitztest [19] “GSAR”

Rosenbaum’s Cross Match test [41] “crossmatch”

Maximum Mean Discrepancy [20] “kernlab”

Cramer test [4] “cramer”

Energy test [47] “energy”
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ΦΣh
(s, t) = 1

(2π)p/2|Σh|1/2 exp
(− 1

2
(s− t)T Σ−1

h (s− t)
)
,

where Σh is a matrix of tuning parameters. We now take this kernel as an example
to illustrate the algorithm to calculate Dn,m. Assume the common distribution F ∗
under the null hypothesis is a multivariate normal distribution with unknown μ, Σ .
The parametric calculation of Dn,m is described as follows:

• At first, μ, Σ are estimated from the pooled sample z1, · · · , zn+m, using
Maximum Likelihood Estimation, as μ̂, Σ̂ .

• Then with the help of the convolution property, the integration of the multivariate
normal kernel with respect to F ∗ with μ̂, Σ̂ produces

∫

ΦΣh
(s, t)dF ∗(t) =

∫

ΦΣh
(s, t)Φ

Σ̂
(t, μ̂)dt = Φ

Σh+Σ̂ (s, μ̂). (3)

And the centered version of ΦΣh
(s, t), centered by F ∗ with μ̂ and Σ̂ , is given as

Φcen(F ∗)(s, t) = ΦΣh
(s, t)−Φ

Σh+Σ̂ (s, μ̂)−Φ
Σh+Σ̂ (μ̂, t)+Φ

Σh+2Σ̂ (μ̂, μ̂).

• The kernel-based test statistic is now calculated as

Dn,m = 1

n(n− 1)

n∑

i=1

n∑

j �=i
Φcen(F ∗)(xi , xj )− 2

nm

n∑

i=1

m∑

j=1

Φcen(F ∗)(xi , yj )

+ 1

m(m− 1)

m∑

i=1

m∑

j �=i
Φcen(F ∗)(yi , yj ).

Note that the multivariate normal kernel is used because the common distribution
under the null hypothesis is assumed as a multivariate normal distribution. In
practice, one can assume the common distribution under the null hypothesis as any
distribution but appropriate kernels that respect the range and measurement scale of
the data must be used.

In the case that the parametric assumption is absent, we can replace Eq. (3) with

∫

ΦΣh
(s, t)dF ∗(t) = 1

n+m

n+m∑

i=1

ΦΣh
(s, zi ).

That is, instead of centering the normal kernel with respect to the assumed normal
or any other model, we still use the normal kernel and center it with respect to the
empirical distribution of the pooled sample. And the centered version of ΦΣh

(s, t),
centered by F ∗, is provided as
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Φ∗cen(F ∗)(s, t) =ΦΣh
(s, t)− 1

n+m

n+m∑

i=1

ΦΣh
(s, zi )− 1

n+m

n+m∑

i=1

ΦΣh
(zi , t)

+ 1

(n+m)(n+m− 1)

n+m∑

i=1

n+m∑

j �=i
ΦΣh

(zi , zj ).

The nonparametric calculation of Dn,m can then be achieved via using
Φ∗cen(F ∗)(s, t). Generally, in the absence of any distributional assumptions, that
is in the case where F , G are treated as two unknown distributions, we directly
define

Dn,m =
∫∫

K(s, t)d(F − F̄ )(s)d(G− F̄ )(t),

where K(s, t) is the uncentered NND kernel, and F̄ is the centering distribution
defined as

F̄ = n

n+m
F + m

n+m
G.

Note that the weights used for F , G are functions of the sample sizes. In the
case of n = m, these weights become 1/2; and the kernel used is the same with
Φ∗cen(F ∗). As a comment, involving nonparametric integration indicates an urgent
demand of increased computational power and computational algorithms providing
high accuracy results.

Another issue closely related to the implementation of the tests proposed in
Sect. 4.2 is the calculation of its critical value. Since the eigenvalues of the kernel
used are involved in the limiting distribution of the test statistic but they are quite
hard to determine in most real cases, it is barely possible to directly obtain the
critical value using formula (2). So we adapt the strategy from Lindsay et al. [27] to
make use of the normal approximate of the limiting distribution. The exact variance
of the test statistic can be derived under the null hypothesis, but we decide to not use
it because Lindsay et al. [27] find that the achieved level of the one-sample test using
the exact variance shows disturbing results. We concentrate on using the empirical
critical value of Dn,m, which does not require the use of the exact variance and has
the ability to achieve higher accuracy. In what follows, we present the parametric
and nonparametric calculations of the empirical critical value of Dn,m.

The parametric algorithm to calculate the empirical critical value of Dn,m based
on the multivariate normal assumption is described as follows:

• Estimate μ, Σ from z1, · · · , zn+m, using Maximum Likelihood Estimation, as
μ̂, Σ̂ .

• Generate B pairs of independent samples x∗1,b, · · · , x∗n,b and y∗1,b, · · · , y∗m,b, b =
1, · · · , B, from the multivariate normal distribution with μ̂, Σ̂ .
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• For each pair, compute D∗n,m,b, b = 1, · · · , B.
• These D∗n,m,1, · · · ,D∗n,m,B are ordered from smallest to largest.The empirical

critical value is determined as the 95th quantile of the above list of values.

Note that one can assume the common distribution under the null hypothesis as
any distribution, but appropriate kernels and centering distributions that respect the
range and measurement scale of the data must be used.

We next provide two nonparametric calculations of the empirical critical value
of Dn,m. The first way is to utilize the help of bootstrap methods. The bootstrap
algorithm to compute the empirical critical value ofDn,m is described as follows:

• Draw B pairs of independent samples (with replacement) x∗1,b, · · · , x∗n,b and
y∗1,b, · · · , y∗m,b, b = 1, · · · , B, from z1, · · · , zn+m.

• For each pair, compute D∗n,m,b, b = 1, · · · , B.
• These D∗n,m,1, · · · ,D∗n,m,B are ordered from smallest to largest. The empirical

critical value is determined as the 95th quantile of the above list of values.

The second way is to apply permutation procedures. Let σ(1), · · · , σ (n + m) be a
permutation of 1, · · · , n + m. Then zσ(1), · · · , zσ(n+m) is a permutation sample of
z1, · · · , zn+m. The permutation algorithm to compute the empirical critical value of
Dn,m is described as follows:

• Generate B permutation samples z∗σb(1), · · · , z∗σb(n+m), b = 1, · · · , B, from
z1, · · · , zn+m.

• For each sample, let x∗i,b = z∗σb(i), i = 1, · · · , n, and y∗j,b = z∗σb(n+j),
j = 1, · · · ,m. Calculate D∗n,m,b using x∗1,b, · · · , x∗n,b and y∗1,b, · · · , y∗m,b, b =
1, · · · , B.

• These D∗n,m,1, · · · ,D∗n,m,B are ordered from smallest to largest. The empirical
critical value is determined as the 95th quantile of the above list of values.

Note that we are in the process of building an R package to implement the one, two,
and k-sample tests constructed using kernel-based quadratic distances, as well as
the associated procedures.

6 Simulation Study

This section presents s a simulation study that is used to evaluate the performance
of the kernel-based test, and compare it with the existing multivariate two-sample
goodness-of-fit tests that are discussed in Sects. 2 and 3.

6.1 Simulation Design

To accomplish these objectives, we design the following simulation study. We sim-
ulate data from a p-dimensional multivariate normal distribution MVNp(μk, Σk),



Kernel Tests for One, Two, and K-Sample Goodness-of-Fit 323

k = F,G, where μk is a p-dimensional column vector that presents the mean vector
andΣk is a p×p non-negative definite matrix that represents the covariance matrix.
Note that when carrying out the tests, both of μk and Σk are treated as unknown.

Samples are obtained by using the R package “distrEllipse”. We specify the mean
vectors as

EF (X) = 1 · μF , EG(Y) = 1p∗ · μG + (1− 1p∗) · μF ,

where μF , μG correspond to the distributions F and G, p∗ indicates the number
of the coordinates where the means of F , G differ, 1 is a p-dimensional column
vector of 1, and 1p∗ is a p-dimensional column vector that has value 1 for the first
p∗ (0 ≤ p∗ ≤ p) elements and value 0 for the remaining elements. The covariance
matrices are specified as

CovF (X) = I · σ 2
F ,

CovG(Y) =
(
Ip∗ · σG + (I − Ip∗) · σF

)
I
(
Ip∗ · σG + (I − Ip∗) · σF

)
,

where σF , σG correspond to the distributions F and G and Ip∗ is a p × p diagonal
matrix that has value 1 for the first p∗ (0 ≤ p∗ ≤ p) diagonal elements and value 0
for the remaining elements. The sample sizes (n = m) used are 50, 100, 200, 300,
400, 500, and 1000. The dimensions are 5, 10, 20, 30, and 40. And p∗ is fixed as 3
for all scenarios.

When applying the kernel-based test, we use the multivariate normal kernel
ΦΣh

(s, t) where Σh equals I · h and h is a tuning parameter that needs to be
selected. The parametric calculation of Dn,m is used because we know the data
are generated from multivariate normal distributions. The common distribution
under the null hypothesis is assumed as a multivariate normal distribution with
unknown μ and Σ , which are estimated using Maximum Likelihood Estimation
from the pooled sample. Both the parametric and nonparametric calculations of the
empirical critical value of Dn,m are implemented, as follows. When applying the
distributional assumption (QD-MVN), we assume the common distribution under
the null hypothesis is a multivariate normal distribution with unknown μ, Σ ; using
maximum likelihood estimators μ̂, Σ̂ obtained from the pooled sample, we generate
B = 5000 pairs of independent samples as indicated in the parametric algorithm.
When using bootstrap methods (QD-Bootstrap), we generate B = 5000 bootstrap
samples according to the bootstrap algorithm. When applying the permutation
procedure (QD-Permutation), we generate B = 5000 permutation samples as
discussed in the permutation algorithm. Under the null hypothesis, the kernel-based
test is implemented with various tuning parameters to see how the achieved level of
the kernel-based test changes for different tuning parameters. Under the alternative
hypothesis, the strategy adapted from Lindsay et al. [27] is first implemented to
select the most appropriate tuning parameter and the kernel-based test is then
applied using the tuning parameter selected. All programs of the kernel-based test
are written in R.
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We also make comparisons, in terms of achieved level and power, with the exist-
ing multivariate two-sample goodness-of-fit tests. These tests are Friedman-Rafsky
Kolmogorov-Smirnov test (FR-KS), modified Friedman-Rafsky Kolmo- gorov-
Smirnov test (modified FR-KS), Friedman-Rafsky Wald-Wolfowitz test (FR-WW),
Rosenbaum’s Cross Match test (Cross Match), and Maximum Mean Discrepancy
(MMD). The R packages of these tests are listed in Table 1.

All simulations are conducted using R 3.3.0 (64 bit) on the computing cluster
located at the State University of New York at Buffalo, and carried out as follows.
Each scenario is examined for 1000 simulation runs. In each simulation run, two
new data sets are generated from the distributions F , G and the kernel-based test
with three different ways to determine the empirical critical value, as well as the
existing multivariate two-sample goodness-of-fit tests selected, are applied on these
data sets to test the null hypothesis. The performance of the tests is summarized as
the ratio of rejecting the null hypothesis at the level 0.05 over all 1000 simulation
runs. The R package to implement the kernel-based tests is under development, and
the R codes used in this manuscript are available from the corresponding author
upon reasonable request.

6.2 Simulation Results

6.2.1 Parametric Case

Here we present results associated with testing the null hypothesis H0 : F = G =
MVNp(μ,Σ).

We first measure the performance of the kernel-based test in terms of achieved
level. Figure 1 presents the achieved level of the test using three different ways to
calculate the empirical critical value as a function of the sample size n = m and
dimension p for various values of the tuning parameter h. Specifically, the x-axis
plots the dimension used and the y-axis plots the achieved level. The horizontal line
in the plots indicates the theoretical level α = 0.05. In this case, μF = μG = 0 and
σF = σG = 1.

Figure 1 indicates that the achieved level of QD-MVN and QD-Permutation
is very consistent across different values of n, p, and h. And the achieved level
of QD-MVN seems more stable than that of QD-Permutation because data are
generated from a multivariate normal distribution which is the same as the assumed
distribution under the null hypothesis. Increases of the sample size n can improve
the performance of QD-Bootstrap and QD-Permutation for different values of h in
the sense that their achieved levels become more stable and closer to the theoretical
level α = 0.05 as the sample size increases. On the other hand, the achieved level of
QD-Bootstrap shows decreasing trends when both h and n are small; and when h and
n grow larger, the decreasing trend is mitigated. Especially when n = m = 1000 and
h = 16, 20, the achieved level of QD-Bootstrap is very consistent and close to 0.05.
This decreasing trend may be explained by the finding of Karoui and Purdom [26],
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Fig. 1 Achieved level of the kernel-based test using three different ways to calculate the empirical
critical value as a function of the sample size n = m and dimension p for various values of the
tuning parameter h. The horizontal line indicates the theoretical level α = 0.05. The plots are
smoothed using LOESS with smoothing parameter 0.6

that is, bootstrap methods have severe loss of power as the ratio p/n grows. Further,
the ratio p/n affects the tuning parameter h, that is, larger tuning parameters should
be used for QD-Bootstrap when the ratio p/n becomes larger. This result is not
entirely surprising as the single, most important factor affecting performance (hence
selection of h) is the dimension of the data.

We next compare the performance of the kernel-based test, in terms of power,
with that of the existing multivariate two-sample goodness-of-fit tests. Figure 2 plots
the power of the various tests versus the separation between the means of the two
distributions F , G with n = m = 100, σF = σG = 1, p = 5, and p∗ = 3. The
tuning parameter selected for QD-MVN, QD-Bootstrap, QD-Permutation is h = 14.
It is obvious that the larger the difference between the means of the two distributions
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Fig. 2 Power of the tests studied as a function of the mean difference (μF = 0) with n =
m = 100, σF = σG = 1, p = 5, and p∗ = 3. The tuning parameter selected for QD-MVN,
QD-Bootstrap, QD-Permutation is h = 14. The plot is smoothed using LOESS with smoothing
parameter 0.6

Table 2 Tuning parameter selected for QD-MVN, QD-Bootstrap, QD-Permutation as a function
of the sample size n = m with μF = 0, μG = 0.2, σF = σG = 1, p = 5 and p∗ = 3

Sample size (n = m)

Tests 100 300 500

QD-MVN 14 12 10

QD-Bootstrap 14 12 10

QD-Permutation 14 12 10

the higher the power is, across all the tests under investigation. The modified FR-KS
test has the worst performance because it is designed for scale alternatives. QD-
MVN, QD-Bootstrap, QD-Permutation, and MMD present far better performance
than the others. Among these top four performers, QD-MVN, QD-Bootstrap, and
QD-Permutation have very similar performance, which is generally better than that
of MMD. Note that the tuning parameter selected for QD-Bootstrap is not larger
than the others because the ratio p/n is fixed and small in this case.

Figure 3 shows the power of the tests investigated as a function of the sample
size n = m when the difference occurs in the means (μF = 0, μG = 0.2).
The dimension used is p = 5 and p∗ is fixed as 3. Correspondingly, Table 2
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Fig. 3 Power of the tests studied as a function of the sample size n = m with μF = 0,
μG = 0.2, σF = σG = 1, p = 5 and p∗ = 3. The tuning parameters selected for QD-MVN,
QD-Bootstrap, QD-Permutation are listed in Table 2. The plot is smoothed using LOESS with
smoothing parameter 0.6

lists the tuning parameters selected, in the presenting scenario, for QD-MVN,
QD-Bootstrap, QD-Permutation. Figure 3 clearly illustrates that all the tests under
investigation have better performance as the sample size increases. QD-MVN, QD-
Bootstrap, QD-Permutation, and MMD are the top four performers, whose power is
much higher than that of the other tests across various sample sizes. Among these
four tests, QD-MVN, QD-Bootstrap, QD-Permutation seem to have very similar
performance while the power curve of MMD is below its three competitors. Further,
from Table 2, we observe that QD-MVN, QD-Bootstrap, QD-Permutation have the
same tuning parameter for each sample size studied; the tuning parameters selected
decrease as the sample size increases; and QD-Bootstrap does not use larger tuning
parameters than the others because the ratio p/n decreases as the sample size
increases.

We next illustrate the performance of kernel-based tests in the case of small
sample sizes (n = m = 100) and relatively high dimensions in relationship to
the sample size, with small differences between means.

Figure 4 presents the power of the various tests studied as a function the
dimension p. The plot shows the case where n = m = 100, μF = 0,
μG = 0.2 σF = σG = 1, and p∗ = 3. The tuning parameters selected for
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Fig. 4 Power of the tests studied as a function of the dimension p with n = m = 100, μF = 0,
μG = 0.2, σF = σG = 1, and p∗ = 3. The tuning parameters selected for QD-MVN,
QD-Bootstrap, QD-Permutation are listed in Table 3. The plot is smoothed using LOESS with
smoothing parameter 0.6

Table 3 Tuning parameter selected for QD-MVN, QD-Bootstrap, QD-Permutation as a function
of the dimension p with n = m = 100, μF = 0, μG = 0.2, σF = σG = 1, and p∗ = 3

Dimension (p)

Tests 5 10 20 30

QD-MVN 14 15 16 17

QD-Bootstrap 14 15 20 24

QD-Permutation 14 15 16 17

QD-MVN, QD-Bootstrap, QD-Permutation are listed in Table 3. Clearly, larger
tuning parameters are chosen for higher dimensions. When the dimension is low,
the tuning parameters selected for QD-MVN, QD-Bootstrap, QD-Permutation are
the same for each dimension p. When the dimension becomes higher, QD-MVN
and QD-Permutation still have the same tuning parameters; but QD-Bootstrap
requires larger tuning parameters. This actually verifies our previous finding, that
is, larger tuning parameters should be used for QD-Bootstrap when the ratio p/n
grows. Figure 4 illustrates that the power of the tests investigated decreases as the
dimension increases. QD-MVN, QD-Bootstrap, QD-Permutation, and MMD are
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the top four performers, across various dimensions. When the dimension is low
(i.e., p < 20), QD-MVN, QD-Bootstrap, and QD-Permutation obtain almost the
same performance, which is higher than that of MMD. When the dimension grows
higher, QD-MVN has the best performance, and although the power for all tests
is low, it can keep the power relatively stable; QD-Bootstrap and QD-Permutation
present decreasing trends; especially for QD-Bootstrap, its power drops to almost
the same value as that of MMD. The severe decreasing trend of QD-Bootstrap may
be explained, as we discussed, by the finding that bootstrap methods suffer from
severe loss of power as the ratio p/n grows [26].

The aforementioned results illustrate the performance of the kernel-based test
as well as the existing multivariate goodness-of-fit tests when the differences
between two distributions come from means. We also conduct simulations when
the differences come from variances, and here we provide a brief overview of their
results. When the differences between two distributions come from variances, QD-
MVN, QD-Bootstrap, QD-Permutation, and MMD are still top performers across
various scenarios studied. Among these four top performers, the power curves of
QD-MVN, QD-Bootstrap, and QD-Permutation are always above that of MMD.
Further, QD-Bootstrap tends to have larger tuning parameters selected than QD-
MVN and QD-Bootstrap when the ratio p/n grows.

6.2.2 Nonparametric Case

We now present results associated with testing H0 : F = G versus H1 : F �= G. We
have studied the performance of the parametric calculation of the test statistic Dn,m

using three different ways to compute the empirical critical value. In this paper,
we also introduced a completely nonparametric version of the test statistic Dn,m. In
what follows, we provide some results of a simulation study conducted to investigate
the performance of this nonparametric calculation.

To measure the performance of the nonparametric calculation ofDn,m in terms of
achieved level and power, we use the following design. We simulate the data from a
p-dimensional Laplace distribution (MVLp), whose density function is provided as

MVLp(X) = pΓ (
p
2 )

π
p
2 |Σk| 1

2 (1+ p)21+p
exp

{
− 1

2
[(X− μk)

T Σ−1
k (X− μk)] 1

2

}
,

where k = F or G corresponds to the densities under testing; μk is a p-dimensional
column vector that presents the mean vector; andΣk is a p×p non-negative definite
matrix that does not present the covariance matrix. The covariance matrix is given as

CovMVLp(X) =
4Γ (p + 2)

pΓ (p)
Σk.

Samples are obtained by using the R package “LaplacesDemon”. The mean vectors
and covariance matrices of the distributions F , G are specified as those used in
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Sect. 6.1. The sample size used is n = m = 100, and the dimensions are 5, 10, 20,
30, 40. To apply the kernel-based test with the nonparametric calculation of Dn,m,
the multivariate normal kernel ΦΣh

(s, t), provided in Sect. 6.1, is implemented.
We use the permutation procedure to compute the empirical critical value because
it is shown to have better performance, in terms of achieved level and power,
than the bootstrap method when the sample size is small. When applying the
permutation procedure, we generate B = 100 permutation samples as indicated in
the permutation algorithm. Each scenario is examined for 100 simulation runs, and
the performance of the test is summarized as the ratio of rejecting the null hypothesis
at the level of 0.05 over all 100 runs.

Table 4 lists the achieved level of the kernel-based test with the nonparametric
calculation of Dn,m and the permutation procedure to compute the empirical critical
value as a function of the dimension p for various values of the tuning parameter h.
Clearly, the achieved level of the test is very consistent and close to the theoretical
level α = 0.05 even if we use only 100 simulation runs.

Table 5 presents the power of the kernel-based test with the nonparametric
calculation of Dn,m and the permutation procedure to compute the empirical critical
value as a function of the dimension p. In this case, n = m = 100, μF = 0,
μG = 0.2, σF = σG = 1, and p∗ = 3. We use the tuning parameter selected
for QD-Permutation in Table 3 to illustrate the performance of the nonparametric
kernel-based test. It is obvious that the power of this test decreases as the dimension
increases.

We also implement the same simulation setting for the nonparametric kernel-
based test to investigate the performance of MMD with the exception that 1000
simulation runs are used. The simulation results reveal that the achieved level
of MMD is consistent and close to 0.05, but its power curve, across different

Table 4 Achieved level of the kernel-based test with the nonparametric calculation of Dn,m and
the permutation procedure to compute the empirical critical value as a function of the dimension
p for various values of the tuning parameter h

Tuning parameter (h)

Dimension (p) 0.5 4 8 12 16 20

5 0.07 0.06 0.05 0.05 0.07 0.07

10 0.04 0.05 0.07 0.05 0.07 0.04

20 0.05 0.04 0.04 0.06 0.05 0.05

30 0.05 0.05 0.06 0.05 0.04 0.06

40 0.06 0.05 0.05 0.07 0.06 0.05

Table 5 Power of the kernel-based test with the nonparametric calculation of Dn,m and the
permutation procedure to compute the empirical critical value as a function of the dimension p
with n = m = 100, μF = 0, μG = 0.2, σF = σG = 1, and p∗ = 3. The tuning parameter used
for each dimension is the same as that selected for QD-Permutation in Table 3

Dimension (p) 5 10 15 20 25 30

Power 0.57 0.47 0.36 0.27 0.23 0.17
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dimensions, is clearly below what we can observe in Table 5. In spite of the number
of simulation runs used, we believe that the nonparametric kernel-based test already
shows a better performance than MMD which takes over the lead among the existing
tests even if the tuning parameter used for the nonparametric kernel-based test may
not be optimal.

At last, we compare the computational cost of the parametric and nonpara-
metric calculations of Dn,m. The data are generated from the multivariate normal
distribution with the settings described in Sect. 6.1. In this case, n = m = 50,
p = 5, μF = μG = 0, and σF = σG = 1. The multivariate normal kernel
ΦΣh

(s, t), where Σh equals I · 4, is implemented in both ways of computing Dn,m.
The computational cost is calculated as the average time spent for a single run, in
which only one Dn,m is computed, over 50 simulation runs. With these settings,
the computational cost is 0.288 s for the parametric calculation and 26.177 min
for the nonparametric calculation. It is obvious that the computational power
required for the nonparametric calculation of Dn,m is much higher than that for the
parametric calculation. The above simulation was carried out with the sole purpose
of measuring the computational time used. To speed up computation, one idea is
to adapt the fast computing algorithm proposed by Huo and Székely [25]. This,
however, constitutes future work.

Notice that, because of the computational time involved in the nonparametric
calculation of the test statisticDn,m, we only used a small sample size of 100. When
the sample size increases, we believe the power of the test increases as well and the
test still outperforms all other tests.

7 Real Data Illustration

In this section, we use real data to illustrate the practical application of the
kernel-based test introduced in Sect. 4.2, and compare this test with the existing
multivariate two-sample goodness-of-fit tests. The data used is Fisher’s iris data
which has been used by many statisticians to illustrate the application of various
statistical procedures. We obtained the data from UCI Machine Learning Repository
(https://archive.ics.uci.edu/ml; accessed on April 6, 2019). In this data, there are
150 observations, which belong to three different classes of the flower iris: Setosa,
Versicolor, and Virginica; each of these classes contains 50 observations. The data
consist of 4 continuous variables: sepal length, sepal width, petal length, and petal
width.

We are interested in testing whether Versicolor and Virginica have the same
multivariate distribution with respect to all the four variables. Figure 5 presents the
density plots of the variables in Versicolor and Virginica. Suppose that we assume
the joint distributions of sepal length, sepal width, petal length, and petal width
are multivariate normal in Versicolor and Virginica. The null hypothesis is then
simplified as

https://archive.ics.uci.edu/ml
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Fig. 5 Density plot of sepal length, sepal width, petal length, petal width in Versicolor and
Virginica. The density estimation uses a Gaussian kernel with the bandwidth automatically selected
by the R function “density”

H0 : μV ersicolor = μV irginica and ΣVersicolor = ΣV irginica,

where μV ersicolor , μV irginica are 4 dimensional column vectors that present, from
the first to the last row, the means of sepal length, sepal width, petal length, and petal
width in Versicolor, Virginica; and ΣVersicolor , ΣV irginica are the corresponding
covariance matrices in both classes.

To apply the kernel-based test, we use the multivariate normal kernel ΦΣh
(s, t)

with Σh = I · h where h is the tuning parameter that needs to be selected. Both the
parametric and nonparametric calculations of the empirical critical value of Dn,m

are used. When applying the distributional assumption (QD-MVN), we assume the
common distribution under the null hypothesis is a multivariate normal distribution
with unknown μ, Σ and generate B = 1000 pairs of independent samples from a
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multivariate normal distribution with μ̂, Σ̂ as discussed in the parametric algorithm.
When using bootstrap methods (QD-Bootstrap), we generate B = 1000 bootstrap
samples from the data according to the bootstrap algorithm. When applying the
permutation procedure (QD-Permutation), we generate B = 1000 permutation
samples as indicated in the permutation algorithm.

Table 6 lists the summary of the variables in Versicolor and Virginica. We can
find that the differences between the means of the variables are bigger than those
between the variances, skewness and kurtosis; and the mean difference of petal
length is almost twice of that of sepal length and petal width while the mean
difference of sepal width is close to zero. Therefore, we aim at testing the differences
between the means of sepal length, petal length, and petal width in Versicolor and
Virginica. The target alternative hypothesis is specified as

H1 : μV ersicolor = μV irginica + δ and ΣVersicolor = ΣV irginica,

where δ = (δ, 0, 2δ, δ)T and δ �= 0 is a scalar that indicates the difference between
the means. Using the strategy adapted from Lindsay et al. [27], the tuning parameter
selected is h = 4 for QD-MVN, QD-Bootstrap, and QD-Permutation. We then
apply these three versions of the test with the h selected, and find that all of
them are in favor of the target alternative hypothesis (test statistic is 0.0006 with
critical value 0.000015 for QD-MVN, 0.000028 for QD-Bootstrap, 0.000031 for
QD-Permutation).

We also apply Friedman-Rafsky Kolmogorov-Smirnov test (test statistic is 4.4
with p-value < 0.001), modified Friedman-Rafsky Kolmogorov-Smirnov test (test
statistic is 2.2 with p-value < 0.001), Friedman-Rafsky Wald-Wolfowitz test (test
statistic is −8.47 with p-value < 0.001), Rosenbaum’s Cross Match test (test
statistic is 4 with p-value < 0.001), and MMD (test statistic is 28.98 with critical
value 2.52) to test the null hypothesis that the variables in Versicolor and Virginica
follow the same multivariate distribution. All these tests reject the null hypothesis.
Note that Cramer test and Energy test are not implemented as they are very similar
to MMD.

Table 6 Summary of the variables in Versicolor and Virginica

Variable

Summary Classes Sepal length Sepal width Petal length Petal width

Mean Versicolor 5.936 2.770 4.260 1.326

Virginica 6.588 2.974 5.552 2.026

Variance Versicolor 0.266 0.098 0.221 0.039

Virginica 0.404 0.104 0.305 0.075

Skewness Versicolor 0.102 −0.352 −0.588 −0.030

Virginica 0.114 0.355 0.533 −0.126

Kurtosis Versicolor 2.401 2.552 2.926 2.512

Virginica 2.912 3.520 2.744 2.339
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To further compare the sensitivities of the kernel-based two-sample test and
MMD, we only concentrate on the variable sepal width which has almost the
same variance and different means, skewness, kurtosis in Versicolor and Virginica.
Regarding the kernel-based two-sample tests, we are interested in testing the null
hypothesis that sepal width has the same distribution in both classes versus the
alternative that there is a difference between the means. We follow the aforemen-
tioned settings to implement QD-MVN, QD-Bootstrap, QD-Permutation, with the
exception that we now have a univariate distribution. The tuning parameter selected
is h = 1 for all the three versions of the kernel-based test; and all the tests are in
favor of the alternative hypothesis (test statistic is 0.01 with critical value 0.0006
for QD-MVN, 0.004 for QD-Bootstrap, 0.0035 for QD-Permutation). On the other
hand, MMD (test statistic is 2.32 with critical value 2.94) concludes the result of not
rejecting the null hypothesis that sepal width follows the same distribution in both
classes. The difference between the results of the kernel-based two-sample tests and
MMD indicates that the kernel-based tests are more sensitive than MMD.

8 Discussion and Conclusions

In this paper, we discuss the fundamental role of statistical distances in the problem
of goodness-of-fit and review various existing multivariate two-sample goodness-of-
fit tests from both statistics and machine learning literature. The review conducted
delivers the fact that there does not exist a satisfactory multivariate two-sample
goodness-of-fit test. MMD is reported to have a better performance than other
existing tests. But the selection of the kernel used in the MMD test is not discussed
often in the literature. The kernel selected is almost by default the Gaussian radial
basis function kernel with a specific choice of bandwidth parameter provided by the
median heuristic (the median of the inter-point distances between the pooled sample
points). As we have previously discussed, this heuristic does not guarantee the
optimality of the test performance. And it is unclear how this test can be generalized
to the problem of testing equality of more than 2 distribution functions.

We then introduce the kernel-based quadratic distance and the goodness-of-fit
tests constructed using this distance. The asymptotic properties of the tests are
briefly mentioned, and we point out that there are precise strategies to select the
most appropriate kernel tuning parameter that was involved in the construction of
the kernel-based tests. We discuss the practical implementation of the kernel-based
two-sample test, and introduce various ways to calculate the test statistic and critical
value. Our simulation experiments indicate that the kernel-based test is superior to
all other existing tests in terms of achieved level and power. The kernel-based test
can keep the achieved level stable and close to the theoretical level α = 0.05; it
also presents better power properties. We also use real data to illustrate that this
kernel-based test is more sensitive than MMD.

One issue in the implementation of the kernel-based two-sample tests is the
increasing computational cost especially when the distributional assumption is
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absent. This is because the integration of the kernel used with respect to the
common distribution under the null hypothesis is required to obtain the correct
model-centered kernel that constructs the test statistic. So it is necessary to have
sophisticated computer languages to develop efficient algorithms to speed up the
computational procedures. And we are now in the process of building an R package
for the implementation of the kernel-based tests. Further, the kernel-based two-
sample tests are not applicable to the high dimension low sample size situations.
Neuhaus [34] provides a theorem to obtain the limiting distribution of the statistic
having the same expression as our test statistic. With the help of this theorem, we
may be able to build new tests, using the quadratic distance, that can handle the high
dimension low sample size situations, without centering the kernel.

One advantage of the kernel-based tests is the use of the kernel function that
has the ability to accommodate different data scales. Data analyzed in real-world
applications are rarely comprised of data of exclusively interval scale. Most data are
comprised of mixed, continuous and categorical, scale data. This is the case across a
diverse range of scientific areas including health care, economics, ecology, biology
and other areas. Further, in genetics research, a score test to detect rare genetics
variants associated with a disease was developed by Wu et al. [52]. Score tests based
on likelihoods are in fact special cases of tests based on general quadratic distances.
To apply quadratic distances to genetics research, appropriate kernels need to be
constructed.
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Hierarchical Modeling of the Effect of
Pre-exposure Prophylaxis on HIV in the
US

Renee Dale, Yingqing Chen, and Hongyu He

Abstract Pre-exposure chemical prophylaxis has been proposed as a way to slow
the growth of the HIV epidemic in the US. This medication reduces the chances
of an at-risk, susceptible individual acquiring HIV from an infected partner. The
effectiveness of this preventative medication is dependent upon the population that
uses it. Individuals susceptible to acquire HIV may engage in risky behaviors such
as high partner number. We analyze the effectiveness of chemical prophylaxis on the
populations involved in the HIV epidemic in the US using a hierarchical differential
equation model. We create a system of nonlinear differential equations representing
the system of populations involved in the HIV epidemic, focusing on susceptible
and infected individuals. We stratify the susceptible population by behavior risk,
and the infected population by behavior risk and HIV status awareness. We further
define model parameters for both the national and the urban case, representing low
and high sexual network densities. We apply a preventative medication protocol to
the susceptible populations to understand the effectiveness. These parameter sets are
used to study the predicted population dynamics over the next 5 years. Our results
indicate that the undiagnosed high risk infected group is the largest contributor to the
epidemic under both national and urban conditions. When medication that prevents
contraction of HIV is applied to 35% of the high-risk susceptible population we
observe a 40–50% reduction in the growth of the infected population. Little impact
is observed when the medication is focused on the low-risk susceptible population.
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The simulations suggest that preventative medication effectiveness extends outside
of the group that is taking the drug (herd immunity). Our model suggests that a
strategy targeting the high-risk susceptible population would have the largest impact
in the next 5 years. We also find that such a protocol has similar effects for the
national as the urban case in our model, despite the smaller sexual network and
lower transmission chance for rural areas.

Keywords Hierarchical differential equations · Nonlinear differential equations ·
HIV · Pre-exposure prophylaxis · Mathematical modeling

1 Introduction

HIV is a disease found across the world that causes autoimmune deficiency
syndrome (AIDS). Drugs that treat HIV and prevent AIDS, called anti-retroviral
therapies (ART), were first developed in 1985 [1]. It is estimated that 80–95%
of HIV infected individuals who are linked to care are prescribed ART [2, 3].
Later it was found that the rate of transmission of HIV was reduced by 44% when
HIV-negative at-risk individuals took ART medications as chemoprophylaxis (pre-
exposure prophylaxis or PrEP) [4]. It is currently estimated that approximately
135,000 individuals in the US are prescribed chemoprophylaxis, compared to
approximately one million infected individuals [5]. However, the HIV infected
population shows a steady growth rate [6–8].

To understand what an effective prevalence of PrEP would be, we first need to
understand the composition of the susceptible population. Previous research has
found that the chance of transmitting HIV is largely dependent on partner number
[3, 9]. It is well known that urban and rural populations do not have the same
epidemiological dynamics due to differences in population density. In our model
we establish two susceptible populations corresponding to an average-density sexual
network (national) and high-density sexual network (urban). When considering the
effectiveness of P Rep for a given population of susceptibles, we must also consider
the many factors involved in those susceptibles contracting HIV. Risky behavior
affects transmission events in two ways. High risk susceptibles are more likely to
engage in high-risk sexual activities, and they are more likely to do this with a higher
partner number. Meanwhile, there is the chance that high risk individuals may not
be aware of their status. This can be considered as a generally higher prevalence of
risky behavior, and it is reduced by about 50% upon diagnosis [9].

Our model consists of a population of susceptible individuals, stratified by
behavior risk, and infected individuals, stratified by both behavior risk and HIV-
status awareness. We use our model to look at the effect of a targeted protocol on
the rate at which susceptible individuals contract HIV. Our simulations allow us
to calculate the optimal target population for PrEP usage based on the projected
5 year population dynamics in high and low risk susceptibles for urban or national
(rural and urban) conditions. Our model suggests that targeting the high risk
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susceptible population is always more effective. While this result is intuitive, we
also find that such a protocol is equally effective at the national and urban levels.
This demonstrates the unintuitive effect of targeting small sexual networks in the
prevention of HIV transmission in the United States.

2 Methods

2.1 Mathematical Model

To construct our model (Figs. 1 and 2), we first separate the susceptible population
into high risk Sh and low risk Sl . We use P(t) to describe the growth rate of the
susceptibles. We consider new susceptibles to be relatively low risk, and movement
into the high risk category is modeled using g(t).

The infected population is stratified by both sexual activity and diagnosis
status. High risk undiagnosed individuals are designated as Ina (infected not aware
active), and diagnosed individuals as Ika (infected knowing active). Movement from
undiagnosed to diagnosed is modeled using the diagnosis rate δ. Data suggests
that most newly infected individuals are diagnosed within 1 year of contracting the
disease [6]. We use θ ∈ [0,1] to distribute these individuals between diagnosed and
undiagnosed populations proportionally.

We further consider that, regardless of awareness level, some infected individuals
may be largely sexually inactive. The transmission of HIV for this group of
individuals we consider to be due to rare sexual encounters. We consider low risk
individuals’ chance of transmitting the disease to be indistinguishable by diagnosis

Fig. 1 Interactions between
populations in the conceptual
model of the system of
susceptibles S, infected I,
with movement described by
the parameters from Table 1 Sh

Sl
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Sh

Sl

Ika

Ina

IO

θ (β γhaIka+ γhaIna+ γhoI0)

(1−θ )(βγ haIka+ γhaIna+ γhoI0)

γloI0+ γlaIna+βγ laIka

ε1

ε1

ε1

ε0
δ

ε0

g(t) τ

r

Fig. 2 Movement of individuals between populations in the conceptual model of the system of
susceptibles S, infected I, with movement described by the parameters from Table 1

status. Both undiagnosed and diagnosed low risk populations are pooled into a single
population Io.

Transmission rates are modified according to the relative risk of each group.
Infected individuals who are aware are considered to have significant reduction
in transmissibility due to reduction in risky behavior, ART usage, and other,
psychological factors [3, 9]. Non-active individuals have a very low chance of
transmitting the disease, reflective of their low partner number. Death rates of all
groups are estimated using data [7, 8].

2.2 Preventative Medication Protocol

We model the preventative medication protocol as a control system where the π ’s
are control parameters. The removal of individuals from the pool of susceptibles
due to preventative medication usage is represented by π . The rate of PrEP usage
for high risk susceptibles is πh and πl for low risk susceptibles. We consider
the effects of different magnitudes of preventative effort, from 5% to 30% of the
susceptible population yearly. Ideally, one wants to vary π to achieve maximal
reduction of HIV transmission. We ignore the effect of adherence as preliminary
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results indicate that even poor adherence (60–70%) provides protection against
contraction of the disease [10]. We obtain the following system of equations to
describe these dynamics:

dSh

dt
=− (1−πh) (γho · Io · Sh+γha · Ina · Sh+β · γha · Ika · Sh)−Sh · ε0 + g(t)

(1)

dSl

dt
=− (1−πl)(γlo · Io · Sl+γla · Ina · Sl+β · γla · Ika · Sl)−Sl · ε0+P(t)−g(t)

(2)

dIka

dt
=θ(1−πh)(β·γha ·Sh · Ika+γho · Io · Sh+γha · Sh · Ina)+δ·Ina−ε1·Ika−τ ·Ika

(3)

dIna

dt
=(1−θ)(1−πh)(β · γha · Sh · Ika+γho · Io · Sh+γha ·Sh·Ina)−δ·Ina−ε1·Ina

(4)

dIo

dt
=(1− πl)(γlo · Io · Sl + γla · Ina · Sl + β · γla · Ika · Sl)− ε1 · Io + τ · Ika

(5)

P(t) =r · (Sh + Sl) (6)

g(t) =μ · Sl (7)

2.3 Parameter Estimates

2.3.1 National Population Dynamics

We consider the susceptible population to be about ten times larger than the infected
population, a conservative estimate since the primary groups affected by the HIV
epidemic are MSM and IV drug users [8]. Previous research estimates the size of
the high risk population to be about 10% of the susceptible population [3]. Estimates
of the undiagnosed population, estimated using the CD4 levels of newly diagnosed
individuals, put it at about 20% of the total infected population [6].

The highest transmission rate is between high risk susceptibles and high risk
infected who are undiagnosed (γho). Previously it was found that high risk indi-
viduals are more likely to get diagnosed in the early stages of the disease, where
transmission rate is the highest [11]. We estimate this using the relative differences
in transmission rates estimated by fitting epidemiological models to genealogical
data [12]. The transmission rate for high risk susceptibles with high risk infected
who are aware of their HIV status is reduced in our model by 50% (β) [9]. Contact
between high risk susceptibles and low risk infected is estimated using chronic HIV
transmission rates (γho) [12].
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Transmission rates for low risk susceptibles engaging with high risk infected
who are unaware is estimated using chronic to late stage HIV transmission rates
(γla) [12]. The transmission rate is reduced by 1− β for interaction with diagnosed
high risk infected individuals [9]. The transmission rate for low risk susceptibles
engaging with low risk infected, γlo, is assumed to be the chronic HIV transmission
rates [12].

Using data from the CDC, we calculate that approximately 50% of individuals
infected between 2006 and 2008 are diagnosed within 1 year [6, 7]. In our model,
newly infected susceptibles are immediately moved into the diagnosed category.
We set θ to be 1

3 since the true number of individuals infected from 2006 to 2008
may not be known until as late as 2018. The diagnosis rate for each year thereafter
is estimated as 10% by us, and around 15–16% using other methods [13, 14].
Diagnosis rate is represented as δ in our model.

The growth rate of the susceptible population is taken to be 1.2%, which is
the birth rate of the general U.S. population (r(SH + SL)) [15]. The mortality of
the susceptible population is ε0, the mortality of the general U.S. population. The
mortality of the infected population ε1 is obtained from [7]. Movement from low to
high risk susceptible (μ) is estimated using the approximate prevalence of high-risk
behavior in youth [16]. These rates are not adjusted by the death rate.

We set the proportion of infected individuals as active and aware to be 20%
nationally, and 25% in urban areas. CDC data indicates that around 17–30% of
HIV-positive MSM engaged in condomless intercourse [3]. Between 3% and 12% of
HIV-positive MSM in the same survey reported engaging in condomless intercourse
with HIV-negative or unknown HIV status individuals. A survey performed in Los
Angeles, CA found that 50–64% of respondents reported engaging in condomless
intercourse in the past 3 months [9]. These included both newly diagnosed and
known HIV-positive MSM. We use this information to set the proportion of
susceptibles that are high risk. We set the national proportion to be 10% and
the urban proportion to be 30%. The proportion of unaware and active infected
individuals is set at 10% nationally and 15% in high population density areas,
as individuals engaging in risky sexual behavior are more likely to seek HIV
testing [17].

2.3.2 Urban Population Dynamics

Due to the larger infected population and higher diagnosis rates, we consider
transmission to be more likely in high population density areas. The data on the
HIV infected population in high population density areas indicates a high diagnosis
rate, so we increased the number of individuals diagnosed in their first year of
infection as well as a higher frequency of diagnosis in the subsequent years. The
death rate in Detroit due to HIV infection is approximately six times larger than
national [7, 18]. We incorporate this into the model by increasing the death rate of
infected individuals.



Hierarchical Modeling of the Effect of Pre-exposure Prophylaxis on HIV in the US 345

Table 1 Comparison of the parameters for the Urban and General population in the US

Parameter Description Urban General Source

β Decrease of transmission risk due to diagnosis of
infected

0.5 0.5 [3, 9]

θ Proportion of individuals diagnosed in first year 0.4 1
3 [7, 11]

τ Proportion of diagnosed high risk individuals
becoming low risk

0.04 0.05 [9, 12]

γha Transmission rate between high risk S and high risk
Ina

0.8 0.4 [12]

γho Transmission rate between high risk S and low risk I0 0.08 0.04 [12]

γla Transmission rate between low risk S and high risk
Ina

0.08 0.04 [12]

γlo Transmission rate between low risk S with low risk I0 0.02 0.01 [12]

δ Rate of diagnosis of the general infected population 0.1 0.06 [7]

ε0 Death rate of susceptibles 0.017 0.017

ε1 Death rate of infected 0.026 0.019 [7]

μ Susceptible movement from low to high risk 0.04 0.02 [16]

r Growth rate of susceptible population 0.015 0.012

Proportion of S that is active 0.3 0.1 [3, 11]

Proportion of I that is aware, active 0.25 0.2 [3, 11]

Proportion of I that is unaware, active 0.15 0.1 [3, 11]

Proportion of I that is inactive 0.6 0.7 [3, 11]

Bolding indicated altered values. Values are taken from the literature when available, or estimated
using literature relationships and proportions (primarily [12])

All other parameters are obtained from the literature as stated in Table 1.
Simulations were performed in Matlab and code is available as Supplemental.
Regional sensitivity analysis of the parameters for the base model and the PrEP
model were performed using SAFE toolbox for Matlab [19]. The sensitivity was
measured by comparing the proportional changes of the five populations: high risk
susceptibles, low risk susceptibles, infected diagnosed active, infected undiagnosed
active, and inactive infected. Sensitivities are shown in Figs. 6 and 7.

3 Results

In the national case, active undiagnosed infected populations grow up to 50% in
5 years (Fig. 3). The rate of increase for high risk diagnosed infected individuals
is 10%, while the rate of increase for high risk undiagnosed infected is 50%. Low
risk infected increases by 14% in the fifth year. High risk undiagnosed individuals
increase the fastest and remain to be of concern.

We consider the urban situation separately due to the higher population density,
which translates into higher density sexual networks. The transmission rates of the
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Fig. 3 Model simulation of national HIV population dynamics. Parameter estimates in Table 1

urban population appear to be much higher than that of the general population.
This effect is most likely due to increased ability for larger partner numbers than
in rural or small areas. We consider the growth rate of the susceptible population
to be equivalent to the national case and reduce the movement of diagnosed active
individuals into the inactive pool. We modify the parameters to reflect a larger high
risk susceptible population as well as a larger movement from low to high risk of
the susceptibles.

In the urban case, the undiagnosed active infected population quadrupled in the
same time frame (Fig. 4). The diagnosed active doubled and the inactive population
grows at about 25%. Overall, the undiagnosed high risk population is driving
the dynamics of HIV infection. Our model suggests that nationally the high risk
susceptible population grows, but the high risk susceptible population in high
population density areas decreases over time. The high risk susceptible population
is clearly a concern (Fig. 5).
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Fig. 4 Model simulation of the urban HIV population dynamics. Parameters provided in Table 1

Fig. 5 No preventative medication (yellow) compared with 20% high risk susceptibles on
medication per year (purple) on the national (left) and urban (right) situations. Preventative would
appear to be more effective for the population in general than in high density infective populations
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3.1 Effect of Preventative Medication

We find a linearly increasing reduction on the size of the active infected populations
with PrEP usage when applied to high or low risk susceptibles (Table 2). For both
national and urban populations PrEP is most effective when applied to high risk
susceptibles. In the national case, PrEP usage by high risk susceptibles primarily
reduces the infected active aware and unaware populations. In the urban case, a
small reduction is also seen in the infected inactive population. If PrEP is primarily
used by low risk susceptibles, reduction is primarily observed in the inactive infected
population for both national and urban cases. The combination of both low and high
risk susceptibles doesn’t appear to significantly improve the effects compared to
high risk susceptibles alone (Supplemental Figs. 1 and 2).

3.1.1 Model Sensitivity Changes with Preventative Medication

The model is most sensitive to parameters that are altered to describe the differ-
ence between national and urban dynamics—transmission risk due to diagnosis
status (β), high risk transmission rate (γha), movement from low to high risk
susceptible (μ), and proportion of high risk susceptibles and infected non-diagnosed
populations (Figs. 6 and 7). Comparing our parameters for the national and urban
populations, we double γha and increase the proportion of high risk susceptibles
from 1.2% to 1.5%.

When PrEP is added to the model, the sensitivities change. The proportion of
high risk susceptibles on prep and size of high risk susceptibles (phr) determine
the dynamics. The dynamics are sensitive to both πh and πl , and when comparing
the effect of these separately, as well as their combinations, the effect of low-

Fig. 6 Parameter sensitivities for base model (πh = πl = 0)
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Fig. 7 Parameter sensitivities when PrEP incorporated

risk susceptible PrEP usage is primarily seen on the low-risk infected group
(Supplemental Figs. 2 and 3).

The model suggests that targeting the low risk susceptible population would not
be very effective, both in the size of transmission reduction and cost. The low
risk susceptible population is estimated to be 10 times larger than the high risk
population [3]. A larger effect can be obtained by providing PrEP to high risk
susceptibles while reducing the cost by an order of magnitude. The model also
suggests that minimal effect would be observed on the inactive infected population.
This subpopulation includes both diagnosed and undiagnosed individuals who very
rarely interact with susceptibles. We don’t expect large changes to occur in this
population since they have minimal effect on the HIV epidemic.

4 Conclusions

Here we take the control parameters to be constants. We wish to address time variant
control parameter in the future. Our results suggest that programmes targeting PrEP
to high risk HIV-negative individuals would have similar levels of effectiveness at
the national and urban level. The model predicts 40–50% reductions in the size
of the diagnosed and undiagnosed active infected populations after 5 years with a
medication rate of 35% (Table 2). Previously a 44% reduction in the transmission
rate was found in the original study with HIV seronegative men [4]. The increased
effectiveness predicted by our model may be due to apparent herd immunity. Not
only are individuals taking PrEP protected from HIV transmission, but they confer
a degree of immunity to others within the pool of HIV-negative individuals who are
at-risk.
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Table 2 Comparison of the
effect of a high risk
susceptible PreP protocol on
the susceptible and infected
population after 5 years

PrEP Sh Sl Ika Ina Io

National

0 1.02 0.98 1.11 1.47 1.14

0.05 1.03 0.98 1.11 1.44 1.14

0.10 1.03 0.98 1.10 1.42 1.14

0.15 1.03 0.98 1.09 1.39 1.14

0.20 1.04 0.98 1.09 1.36 1.14

0.25 1.04 0.98 1.08 1.34 1.14

0.30 1.04 0.98 1.07 1.31 1.14

0.35 1.05 0.98 1.07 1.27 1.14

Urban

0 0.89 0.96 1.78 2.83 1.33

0.05 0.90 0.96 1.73 2.71 1.33

0.10 0.91 0.97 1.68 2.59 1.32

0.15 0.92 0.97 1.63 2.48 1.31

0.20 0.93 0.97 1.59 2.37 1.31

0.25 0.94 0.97 1.54 2.26 1.30

0.30 0.95 0.97 1.50 2.15 1.30

0.35 0.96 0.97 1.45 2.05 1.29

A value < 1 indicates a reduction over
5 years, while a value > 1 indicates an
increase

Targeting PrEP to high risk HIV-negative individuals provides effective protec-
tion for the general HIV-negative population according to our model, including
those who are lower risk. We also find that targeting rural, smaller sexual networks
can effectively curtail the growth of the HIV epidemic. Research suggests that
rural individuals have higher risk profiles, as well as more difficulty accessing care
[20]. The CDC has reported multiple HIV outbreaks in rural areas involving socio-
economically disadvantaged individuals [21, 22], and the New York Times recently
reported on a rural community with a high density of individuals dying due to
lacking access to medical attention for their HIV infections [23]. We emphasize
that our model makes some assumptions about the sexual network densities of
high risk individuals. We expect that, in the real scenario, the benefits provided by
herd immunity will increase with increasing PrEP usage over the 35% we consider
here.
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Appendix

Supplemental Fig. 1 Comparison between national (blue) and urban (red) dynamics. In the urban
case, the infected populations grow much more quickly, while the high risk susceptible population
begins to decrease



352 R. Dale et al.

Supplemental Fig. 2 Effect of PrEP on susceptible populations—national. The effect of PrEP
on any combination of low or high risk susceptibles demonstrates that targeting the high risk
population is much more effective in the resulting high risk infected populations (Ika, infected
diagnosed active; Ina, infected unaware active). As the proportion of low risk susceptibles on
PrEP increases, the effect is restricted to reducing the inactive infected population (I0). Hotter
(red) values indicate a larger increase in the size of the population. The vertical effect indicates
increasing PrEP usage by the high risk susceptible population, while the horizontal effect indicates
the effect of low risk susceptible PrEP usage

Supplemental Fig. 3 Effect of PrEP on susceptible populations—urban. The effect of PrEP
on any combination of low or high risk susceptibles demonstrates that targeting the high risk
population is much more effective in the resulting high risk infected populations (Ika, infected
diagnosed active; Ina, infected unaware active). As the proportion of low risk susceptibles on
PrEP increases, the effect is restricted to reducing the inactive infected population (I0). Hotter
(red) values indicate a larger increase in the size of the population. The vertical effect indicates
increasing PrEP usage by the high risk susceptible population, while the horizontal effect indicates
the effect of low risk susceptible PrEP usage
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Mathematical Model of Mouse
Ventricular Myocytes Overexpressing
Adenylyl Cyclase Type 5

Vladimir E. Bondarenko

Abstract A compartmentalized mathematical model of transgenic (TG) mouse
ventricular myocytes overexpressing adenylyl cyclase type 5 was developed. The
model describes well β1- and β2-adrenergic signaling systems consisting of β1-
and β2-adrenergic receptors (β1-ARs and β2-ARs), stimulatory and inhibitory G
proteins (Gs and Gi), adenylyl cyclases types 4–7 (AC4–7), phosphodiesterases
type 2–4 (PDE2–4), protein kinase A (PKA), protein phosphatases type 1 and 2A
(PP1 and PP2A), G-protein receptor kinase type 2 (GRK2), heat-stable protein
kinase inhibitor (PKI), and the inhibitor-1 (I-1). We found that the overexpression
of AC5 resulted in an increased basal cAMP production, leading to an increased
activation of PKA, prolongation of the action potential, and increased [Ca2+]i
transient. Simulation results suggest blunted response of TG ventricular cells to
the stimulation of β-adrenergic signaling system with isoproterenol comparing to
wild type (WT) cells. Simulations of spontaneous Ca2+ release showed larger
magnitudes of DADs in TG as compared to WT mice. Modeling data were compared
to the experimental data obtained from TG mice overexpressing AC5 as well as to
the simulations obtained with the mathematical model for WT mice.

Keywords Transgenic mice · β1- and β2-adrenergic receptors · Delayed
afterdepolarizations · Phosphodiesterases · Protein kinase A · Isoproterenol

1 Introduction

Transgenic mice are important experimental models of the human diseases. Specif-
ically, they have been generated to investigate the heart development and func-
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tions, as well as the progression and treatment of cardiovascular diseases [1–3].
Of particular interest are the TG mice overexpressing the proteins involved in the β1-
and β2-adrenergic signaling system of cardiac myocytes. It was shown experimen-
tally and in clinical practice that the development of heart failure is accompanied by
modifications of the β-adrenergic signaling system and its components [4]. Because
these changes led to the impairment of cardiac function, the idea was to restore it by
the specific drugs or by the overexpression of proteins involved in the β-adrenergic
signaling.

Experimental investigations by Engelhardt et al. [5] have shown that the over-
expression of β1-ARs resulted in a hypertrophy and heart failure. Despite the
overexpression level of β1-ARs in TG mice was only 15 times the normal expression
of wild type (WT) mice, it resulted in the development of cardiac hypertrophy,
heart failure, and premature deaths before the age of 14 months. On the other
hand, Milano et al. [6] demonstrated an improved cardiac function due to the
overexpression of β2-ARs. More comprehensive investigation of different levels of
overexpression of β2-ARs performed by Liggett et al. [7] have shown that cardiac
function was dependent on the level of overexpression, and the high levels of
overexpression resulted in cardiomyopathy.

The experiments were also carried out with TG mice altering the downstream
components of the β-adrenergic signaling. It was shown that the overexpression or
deletion of adenylyl cyclases type 5, 6, or 8 (AC5, AC6, or AC8) can lead to both
increased or decreased cardiac function [8]. In particular, TG mice overexpressing
AC5 demonstrated an improved baseline cardiac function [9, 10], but the TG mice
were more susceptible to arrhythmias upon stimulation of the β-adrenergic signaling
system [11].

To reveal the mechanisms of ventricular myocyte modifications in TG mice
overexpressing AC5, we developed and explored a compartmentalized mathematical
model of those cells. The model is based on the previously developed mathematical
model of the combined β1- and β2-adrenergic signaling system in mouse ventricular
myocytes, which was extensively verified by experimental data [12–15]. In the new
model for TG ventricular myocyte, we implemented an overexpression of AC5 by
a factor of 26 (according to the experimental finding [9]) and simulated different
myocyte behavior found experimentally at baseline and upon stimulation of the β-
adrenergic signaling by 1 μM isoproterenol.

2 Model Development

A mathematical model for TG mouse ventricular myocytes overexpressing AC5
is based on our previously published mathematical models of mouse ventricular
myocytes [12–15] (Fig. 1). It contains three major compartments: (1) the caveolar
compartment with the cholesterol-rich membrane domain that includes caveolin
3; (2) the extracaveolar compartment with cholesterol-rich lipid rafts that do not
include caveolin; (3) the cytosolic compartment associated with the remainder
of the cell membrane [12, 15]. The β-adrenergic receptors (β1-AR and β2-AR)



Mouse Ventricular Myocytes Overexpressing AC5 357

β1-AR β1-AR

β1-AR

Gβγ

Gβγ Gsα
GRK2

AC4/7

AC4/7

AC5/6

cAMP cAMP

cAMP

PDE2

PDE3

PDE4

PDE2

PDE4

PDE2

PDE3

PDE4

PKI

PKI

PKIC

C

R

R

C

C

R

R

C

C

R

R

TnI

PP1/2A

PP1/2A
JSR NSR

INa ICaL,ecavINaK IKurIK1
IKss

RyRs

ICab

IKto,f

IKr

JupPLB

AC5/6
PP1

Caveolae Extracaveolae
Cytosol

INab

Ip(Ca)

INaCa

I-1

Vss

Jrel

Iso Iso

Iso

ICl,Ca

PLM

Gsα

ICaL,cav

β2-AR Gβγ

Gβγ Giα GsαGβγ

Iso

GRK2

β2-AR Gβγ
Gsα

Iso

Gsα Gβγ Giα

GRK2

Fig. 1 A schematic representation of the β-adrenergic signaling system in mouse ventricular
myocytes overexpressing type 5 adenylyl cyclase. The cell consists of three compartments
(caveolae, extracaveolae, and cytosol). The subspace volume (Vss) is localized in the extracaveolae.
The signaling system consists of the β1-adrenergic receptors (β1-AR), the β2-adrenergic receptors
(β2-AR), the α-subunit of stimulatory G-protein (Gsα), the α-subunit of inhibitory G-protein (Giα),
the βγ-subunit of Gs and Gi (Gβγ), the adenylyl cyclases of type 5/6 or 4/7 (AC5/6 or AC4/7,
respectively), the phosphodiesterases of type 2, 3, or 4 (PDE2, PDE3, or PDE4, respectively), the
cyclic AMP (cAMP), regulatory (R) and catalytic (C) subunits of protein kinase A holoenzyme,
the protein kinase A inhibitor (PKI), the G-protein-coupled receptor kinase of type 2 (GRK2), the
protein phosphatases of type 1 and 2A (PP1 and PP2A, respectively), the inhibitor-1 (I-1). Targets
of the β-adrenergic signaling system are in the caveolae (the fast Na+ current (INa), the L-type
Ca2+ current (ICaL,cav), the Na+/K+ pump (INaK) which is regulated by phospholemman (PLM),
phosphodiesterases PDE2-PDE4, and the time-independent K+ current (IK1)), the extracaveolae
(the L-type Ca2+ current (ICaL,ecav), the rapidly recovering transient outward K+ current (IKto,f),
the ultra-rapidly activating delayed rectifier K+ current (IKur), ryanodine receptors (RyRs), and
phosphodiesterases (PDE2, PDE4)), and cytosol (phospholamban (PLB) and troponin I (TnI)).
Stimulatory links are shown by black arrows and inhibitory links are shown by red dashed lines
with balls. Other transmembrane currents are the sarcolemmal Ca2+ pump (Ip(Ca)), the Na+/Ca2+
exchanger (INaCa), the rapid delayed rectifier K+ current (IKr), the noninactivating steady-state
voltage activated K+ current (IKss), the Ca2+ and Na+ background currents (ICab and INab), which
are not affected by the β-adrenergic signaling systems. The Ca2+ fluxes are uptake of Ca2+ from
the cytosol to the network sarcoplasmic reticulum (NSR) (Jup) by the SERCA pump and Ca2+
release from the junctional sarcoplasmic reticulum (JSR) (Jrel) through the ryanodine receptors.
[Ca2+]i, [Na+]i, and [K+]i are the intracellular Ca2+, Na+, and K+ concentrations in the caveolae,
extracaveolae, and cytosol; [Ca2+]o, [Na+]o, and [K+]o are the extracellular Ca2+, Na+, and K+
concentrations. Proteins which characteristics are modified in transgenic mouse overexpressing
AC5 are shown in white. Reproduced with modifications from Bondarenko [12]
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were stimulated by isoproterenol (Iso). This leads to activation of the stimulatory
G protein (Gs) by β1-ARs and both Gs and inhibitory G protein (Gi) by β2-
ARs, resulting in activation of adenylyl cyclases AC5/6 in caveolae and cytosol
and AC4/7 in extracaveolae and cytosol. AC4–7 generated cyclic AMP (cAMP),
which activated protein kinase A (PKA) holoenzyme. Catalytic subunits of PKA
phosphorylated multiple targets, such as β1- and β2-ARs, phosphodiesterases
PDE3 and PDE4, the L-type Ca2+ current (ICaL), the fast Na+ current (INa), the
phospholemman (PLM), which regulates the Na+-K+ pump (INaK), the ryanodine
receptors (RyRs), the ultra-rapidly activating delayed rectifier K+ current (IKur), the
rapidly inactivating transient outward K+ current (IKto,f), the time-independent K+
current (IK1), phospholamban (PLB), and troponin I (TnI) (Fig. 1).

Several parameters were changed in the mathematical model of mouse ven-
tricular myocytes overexpressing AC5, found experimentally (Table 1). First, we

Table 1 Differences between the current model of mouse ventricular myocytes overexpressing
AC5 and the model by Rozier and Bondarenko [15]

Parameter definition WT cell model [15]
TG cell model [this
paper]

[AC]tot Total cellular AC
concentration

0.02622 μM 0.2295 μM

fAC56, AC47 Fraction of AC that is of type
5 or 6

0.74 0.97029

GCaL Specific maximum
conductivity for L-type Ca2+
channel
(non-phosphorylated)

0.3772 mS/μF 0.32062 mS/μF

GCaLp Specific maximum
conductivity for L-type Ca2+
channel (phosphorylated)

0.7875 mS/μF 0.6694 mS/μF

ν3 SR Ca2+-ATPase maximum
pump rate

306.0 μM s−1 918.0 μM s−1

K
np
m,up Half-saturation constant for

SR Ca2+-ATPase pump
(non-phosphorylated)

0.41 μM 0.902 μM

K
p
m,up Half-saturation constant for

SR Ca2+-ATPase pump
(phosphorylated)

0.31 μM 0.682 μM

GKurp Specific maximum
conductance of the
ultra-rapidly activating K+
current (phosphorylated)∗

0.53307 pA/pF 0.4451 pA/pF

kIKur _ PKA Rate of IKur phosphorylation
by PKA∗

6.9537× 10−3 μM−1 s−1 1.391× 10−2 μM−1 s−1

KIKur _ PKA Relative affinity for IKur
phosphorylation by PKA∗

0.138115 2.0

kIKur _ PP Rate of IKur
dephosphorylation by PP1∗

3.170× 10−2 μM−1 s−1 2.536× 10−2 μM−1 s−1

KIKur _ PP Relative affinity for IKur
dephosphorylation by PP1∗

0.23310 0.2
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increased expression of AC5 by a factor of 26 (according to the experimental
finding [9]). Then we evaluated an increase in concentration of AC5 in the total
concentration of adenylyl cyclases, [AC]tot,TG, in TG mice overexpressing AC5
based on the experimental data and our model [15]. Because of experimental
difficulties of separation of AC5 and AC6, we used the experimental fact that
the ventricular myocytes from transgenic mice with AC5 deletion showed a 35%
reduction of basal AC activity [16]. From our simulations [15], we obtained that
the fractional contribution of AC activities from different compartments under basal
conditions are 11.23%, 9.79%, 72.30%, and 6.68% for AC5/6 in caveolae, AC4/7
in extracaveolae, AC5/6 in cytosol, and AC4/7 in cytosol, respectively. The total
contribution of AC5/6 to the total cellular AC activity is, therefore, 83.53%. To
obtain a 35% reduction in the total AC activity due to the deletion of AC5, we
found that the contributions of AC5 and AC6 should be 41.9% and 58.1% (or
0.419 and 0.581 in fractions), respectively. Out of [AC]tot = 0.02622 μM, the
fraction of AC5/6 is 0.74 [12], which gives [AC]AC5/6 = 0.01940 μM, leaving
AC4/7 [AC]AC4/7 = 0.00682 μM. Overexpression of AC5 by 26 times gives
the proportional increase of AC5 activity by factor 10.894, with the total AC5/6
concentration increase by factor 10.894 plus 0.581, which is equal to 11.475.
Multiplication of 11.475 by [AC]AC5/6 = 0.01940 μM gives the total concentration
of AC5/6 in TG cells, [AC]AC5/6, TG = 0.2226 μM.

Assuming that the concentration of [AC]AC4/7 = 0.00682 μM in TG cell does not
change, we obtain the total AC concentration in TG mouse ventricular myocytes is
[AC]tot,TG = 0.00682 μM + 0.2226 μM = 0.2295 μM. In addition, we changed
fractional contribution of AC5/6 activity fAC56,AC47 from 0.74 in wild type (WT) to
0.97029 in TG cells to reflect the AC5 overexpression.

Further, experimental data by Zhao et al. [11] showed a threefold increase in the
expression levels of both SR Ca2+ ATPase (SERCA2a) and phospholamban (PLB).
In our model, we increased the SR Ca2+-ATPase maximum pump rate by threefold
as well. We also increased half-saturation constants for SR Ca2+-ATPase pump
(non-phosphorylated and phosphorylated) by a factor 2.2 to implement a threefold
increase in PLB expression. This factor was obtained by the extrapolation data by
Luo et al. [17] for PLB knock-out mice and Kadambi et al. [18] for mice with
twofold overexpression of PLB.

Moreover, we modified the description of phosphorylation of the ultra-rapidly
activating K+ current, IKur (Table 1). In our mathematical model [12, 13], IKur
includes K+ currents carried by both Kv1.5 and Kv2.1 ion channels, which have
different response to β-adrenergic stimulation. Experimental data by Li et al. [19]
demonstrated a 35% increase in IKur in human atrial myocytes upon stimulation
with 1 μM isoproterenol. Additional experiments with application of 200 μM of
4-AP, a Kv1.5 inhibitor, with and without 1 μM isoproterenol, have shown that
the predominant portion of IKur in the human atria is Kv1.5 channels. This finding
also supported by the experimental data on expression of Kv1.5 and Kv2.1 in the
human atria, where the expression level of Kv2.1 is about 1% of that for Kv1.5
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[20]. Electrophysiological recording also shows that the magnitude of the remaining
component of IKur in the human atria is about ~15% [21]. In mice, K+ currents
encoded by both Kv1.5 and Kv2.1 have approximately equal magnitudes [22, 23].
The effect of PKA on Kv2.1 is quite small, as it was shown experimentally [24, 25].
Therefore, the effect of isoproterenol on IKur in our mathematical model of mouse
ventricular myocytes should be also smaller by a factor 2. Indeed, in our model,
presented here, an increase in IKur upon stimulation with 1 μM isoproterenol is
~15%. We also adjusted IKur in WT model of mouse ventricular myocytes [15], and
the changes are marked by (∗) in Table 1.

Finally, we reduced the conductance of the phosphorylated and non-
phosphorylated L-type Ca2+ channels by a factor 0.85 to obtain experimentally
found moderate increase in the basal ICaL (estimated from 16% to 75% [11]) due
to increased adenylyl cyclase activity. In our model, ICaL was increased by 27%.
This value allowed for matching an experimental increase in the SR Ca2+ load
in TG mice as compared to WT mice, which was between 23% and 37.5%. Our
simulations demonstrated ~40% increase in the SR Ca2+ load, which is close to the
experimental value.

3 Method of Simulation

We used a fourth-order Runge-Kutta method with two different time steps for
the solution of the mathematical model consisting of 149 ordinary differential
equations. A relatively small time step of 0.000002 ms was used during a 10 ms
interval after the initiation of the stimulus current; for all other times we used the
time step 0.0001 ms. We used much longer time step, 0.1 ms, for simulation of the
cellular behavior without electrical stimulation. The program code was implemented
in FORTRAN 90. Computer simulations were performed on a single processor
under SUSE Linux 11 on a Dell Precision Workstation T3500 with a six-core Intel
Xeon CPU W3670 (3.2 GHz, 12 GB RAM). The model is developed for a room
temperature of 25 ◦C (T = 298◦K). Initial conditions were obtained by running
the program code without electrical stimulations for 10,000 s to achieve steady-
state solution. Action potentials and [Ca2+]i transients were initiated by a stimulus
current (Istim = 80 pA/pF, τstim = 1 ms) with the frequency ranged from 0.25 Hz to
5 Hz (electrical stimulation).

4 Results

In this paper, we developed a mathematical model of the ventricular myocyte from
TG mice overexpressing type 5 adenylyl cyclase. The model includes three major
subcellular compartments, caveolae, extracaveolae, and cytosol. It was explored
to investigate the effects of stimulation of the β-adrenergic signaling system with
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isoproterenol under different physiological conditions. Under these physiological
conditions, we investigated compartmentalization of cAMP, PKA activation, as
well as generation of the action potential and [Ca2+]i transients. Simulations of
spontaneous Ca2+ release showed larger magnitudes of pro-arrhythmic events
(DADs) in TG as compared to WT mice. Simulation data on TG mice were
compared to those obtained for WT mice.

4.1 cAMP and PKA Activation in WT and TG Myocytes
Overexpressing AC5

Experimental data shows a significant increase in the level of background adenylyl
cyclase activity in TG mice overexpressing AC5 as compared to WT mice (26-fold
overexpression, Fig. 2b) [9]. In our model, we increased concentration of AC5 by
26 fold as well (Fig. 2a). As result, we were able to match experimental background
total adenylyl cyclase activity in ventricular myocytes from TG mice (Fig. 2b).
While our simulated WT data shows larger total AC activity (16 pmol/mg/min)
than the experimental data by Lai et al. [9] (~8 pmol/mg/min), the former is
close to the experimental data obtained by others (18.8 pmol/mg/min [27]) and
(22 pmol/mg/min [26], Fig. 2b).

Upon stimulation with isoproterenol, the total AC activity increases in both WT
and TG mice, however, to different degrees at maximum stimulation with 10 μM
isoproterenol. The simulated maximum AC activity is significantly larger for TG
mice overexpressing AC5 than that for WT mice (Fig. 2c). Our simulations show
larger AC activity in TG mice without application of isoproterenol, and this relation
sustained at high dose of isoproterenol (10 μM). Simulated increase in the total
AC activity for WT mice upon application of 5 μM isoproterenol is 4.0 fold as
compared to control, which is close to the experimentally found values of 2.7 fold
[26] and 3.3 fold [27], but significantly smaller value than ~18 fold increase obtained
in [9]. Simulated increase in the total AC activity in TG mice overexpressing AC5 is
2.3 fold upon application of 5 μM isoproterenol, which is close to the experimental
value 2.0 [9, 28].

Simulated cAMP concentrations in WT and TG mouse ventricular cells display
different dynamics in the three major cellular compartments without and with stim-
ulation by 1 μM isoproterenol. cAMP dynamics is defined by cAMP production by
adenylyl cyclases, cAMP degradation by phosphodiesterases, and cAMP diffusion
between intracellular compartments. Figure 3 shows the simulated time courses of
cAMP concentrations in different subcellular compartments in control (solid black
lines for WT and solid gray lines in TG mice) and upon stimulation with 1 μM
isoproterenol (dashed black lines for WT and dashed gray lines in TG mice). The
modeling data shows different levels of cAMP in different compartments in control
both in WT and TG ventricular myocytes. The largest background levels of cAMP
are in the caveolar and cytosolic compartments in TG mice, where overexpressed
AC5 is localized (23.0 μM and 20.5 μM, respectively). The level of cAMP in
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Fig. 3 Simulated cAMP dynamics in ventricular myocytes from WT and TG mice. (a–d) show
simulations of cAMP concentration in caveolae, extracaveolae, cytosol, and the whole cell as
functions of time. Simulations were performed for four cases: WT control, WT plus 1 μM
isoproterenol, TG control, and TG plus 1 μM isoproterenol

the extracaveolar compartment of TG cells is significantly smaller, 1.0 μM; it is
determined both by the generation of cAMP by AC4/7 and by the cAMP fluxes
from the caveolar and cytosolic compartments. The background cAMP levels in WT
mouse cells are significantly smaller in all compartments, caveolae, extracaveolae,
and cytosol (0.33 μM, 0.47 μM, and 0.41 μM, respectively).

Myocyte stimulation with 1 μM isoproterenol produces cAMP transients in WT
mice with the maxima between 30 s (caveolae) and 70 s (cytosol) and with the values
of 3.25 μM, 3.09 μM, and 3.7 μM in the caveolae, extracaveolae, and cytosol,
respectively. cAMP behavior in TG mice is remarkably different and demonstrates
continuous growth during 10-min simulation interval up to 191.5 μM, 44.7 μM, and
224.5 μM in the caveolar, extracaveolar, and cytosolic compartments, respectively.
Comparison of cAMP transients in WT and TG mice in different compartments
upon stimulation with 1 μM isoproterenol demonstrates much smaller effects in
WT as compared to TG ventricular myocytes (Fig. 3).

Simulated time behavior of the catalytic subunit of PKA reflects that of cAMP
(Fig. 4). Considerably higher concentrations of the catalytic subunit of PKA are gen-
erated by the TG vs WT mouse model in the three compartments in control due to
a significantly higher concentration of cAMP in those compartments (Fig. 4). Upon
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Fig. 4 Simulated PKA dynamics in ventricular myocytes from WT and TG mice. (a–d) show
simulations of the catalytic subunit of PKA concentration in caveolae, extracaveolae, cytosol, and
the whole cell as functions of time. Simulations were performed for four cases: WT control, WT
plus 1 μM isoproterenol, TG control, and TG plus 1 μM isoproterenol

stimulation with 1 μM isoproterenol, simulations demonstrate blunted response
of the activation of PKA in the caveolae and cytosol in TG cells while in the
extracaveolae activation of PKA shows wider range. In WT myocytes, an increase
in concentration of the catalytic subunit of PKA in response to stimulation with
isoproterenol is much more significant, from a sixfold increase in the cytosol to an
11-fold increase in the caveolae.

4.2 The Effects of Isoproterenol on the Action Potential, Ca2+
and Na+ Dynamics in WT and TG Mouse Ventricular
Myocytes Overexpressing AC5

Our mathematical model allows for evaluation of the effects of overexpression of
AC5 on the action potential, ionic currents, and Ca2+ and Na+ dynamics in mouse
ventricular myocytes. Experimental data demonstrates an increase in the action
potential duration in TG mouse ventricular myocytes as compared to WT cells
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under basal (control) conditions [11]. Experimentally found increase in APD50 was
not significant, but an increase in the average value was quite large, about 25%
(the interval of variation is from 5% to 50%). Our simulated increase in APD50
is moderate, about 13.7%. The larger and significant experimental increase was
observed for APD90, which was equal on average to 38% (the interval of variation
is from 6% to 83%). Our simulated increase in APD90 was 29%.

Simulations allow for revealing the mechanism of APD prolongation in TG mice
overexpressing AC5, comparing to WT mice. Comparison of Fig. 5c, e shows a
quite significant increase in the L-type Ca2+ current (ICaL) and a reduction in the
fast transient outward K+ current (IKto,f) in TG cells as compared to WT cells. Both
effects were towards a prolongation of APDs. The effect was partially offset by a
moderate increase in the ultra-rapidly activating K+ current (IKur), which promotes
a reduction of the action potential duration.

Thus, our model reasonably well reproduced the experimental data on the
differences in the action potential durations between WT and TG mouse cells
and revealed the mechanism of the action potential prolongation in TG mice
overexpressing AC5. Increased APDs in TG mouse ventricular myocytes provide
the pro-arrhythmic substrates for their hearts.

Simulations show a significant increase in APDs in WT mice after application of
1 μM isoproterenol as compared to control. Simulated APD50 and APD90 increased
by 34% and 39%, respectively (Fig. 5). In contrast, the simulated response of TG
mouse ventricular myocytes to stimulation with 1 μM isoproterenol is blunted. Only
APD50 moderately increased by 11% in TG mice after application of isoproterenol;
the changes of other APDs were <10% (Fig. 5). Simulations revealed the major
players in the action potential prolongation in WT cells. Figure 5 shows that the
application of 1 μM isoproterenol resulted in a significant increase in the L-type
Ca2+ current (ICaL) and a significant decrease in the fast transient outward K+
current (IKto,f). Both effects were towards the prolongation of APD. The effects of
ICaL and IKto,f were partially reduced by an increase in the ultra-rapidly activating
K+ current (IKur), which tends to reduce action potential duration.

The changes in both APDs and underlying ionic currents after application
of 1 μM isoproterenol in TG mice were less apparent. At the initial stage of
repolarization, a minor decrease in IKto,f resulted in a small increase in APD50. At
the later stage of repolarization, a relatively moderate increase in ICaL and a minor
decrease in IKto,f were compensated by an increase in IKur, producing virtually no
change to APD90 (Fig. 5a).

Stimulation of the model of WT ventricular myocytes with 1 μM isoproterenol
resulted in a quite large increase in the magnitude of [Ca2+]i transient (a 3.7-
fold increase, Fig. 5b). A smaller increase in [Ca2+]i transient (a 1.9-fold increase,
Fig. 5b) was observed in TG mice overexpressing AC5. Under basal conditions, TG
mice have a 1.8-fold larger simulated [Ca2+]i transient as compared to WT mice,
which is comparable to a 1.46-fold experimental increase in [Ca2+]i [11]. The model
was able to reproduce a decrease in the time constant of [Ca2+]i transient decay.
Our simulations show a 71% decrease in the time constant of [Ca2+]i decay in TG
mice as compared to WT mice, which is comparable to the experimental value of
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Fig. 5 The effects of isoproterenol on the action potential, the underlying major ionic currents,
and [Ca2+]i transient in isolated WT and TG mouse ventricular myocyte overexpressing AC5
models. (a) Simulated action potentials for control conditions (solid lines) and after application of
1 μM isoproterenol (dashed lines) in WT (black lines) and TG (red lines) ventricular myocytes.
(b) Simulated [Ca2+]i transients for control conditions (solid lines) and after application of 1 μM
isoproterenol (dashed lines) in WT (black lines) and TG (red lines) ventricular myocytes. (c) Major
ionic currents underlying WT action potentials for control conditions. (d) Major ionic currents
underlying WT action potentials after application of 1 μM isoproterenol. (e) Major ionic currents
underlying TG action potentials for control conditions. (f) Major ionic currents underlying TG
action potentials after application of 1 μM isoproterenol. Electrical stimulation frequency is 0.5 Hz,
Istim = 80 pA/pF, τstim = 1.0 ms. Data is shown after 300 s stimulation. Isoproterenol is applied at
the beginning of 300-s stimulation

an 80% decrease. Our model also predicts 40% increase in the SR Ca2+ load in
TG mice as compared to WT mice, which is comparable to 37.5% increase found
experimentally [11].

Thus, our simulations reproduced quite well experimentally observed Ca2+
dynamics in WT and TG mouse ventricular myocytes overexpressing AC5.
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Fig. 6 Comparison of the effects of isoproterenol on the action potential in isolated WT
ventricular myocyte using model presented in this paper and the model published by Rozier and
Bondarenko [15]. Simulated action potentials are shown for control conditions (solid lines) and
after application of 1 μM isoproterenol (dashed lines) for the model presented in this paper (red
lines) and the model published by Rozier and Bondarenko [15] (black lines). Electrical stimulation
protocol is the same as in Fig. 5

We should note that the mathematical model of mouse ventricular myocytes
presented in this paper differs to some extent from the model published by Rozier
and Bondarenko [15]. As we modified the effects of isoproterenol on the ultra-
rapidly activating K+ current IKur (see section “Model development”), it would be
interesting to see how this intervention modifies the response of the action potential.
Figure 6 shows the action potentials obtained with the current model (red lines) and
with the Rozier-Bondarenko model (2017) (black lines). It is seen that the current
model demonstrates somewhat larger effects of 1 μM isoproterenol on the action
potential durations than the Rozier-Bondarenko model (2017). APD50 and APD90
obtained with the current model change from 3.20 ms to 4.28 ms (34% increase) and
from 27.20 ms to 37.75 ms (39% increase), while APD50 and APD90 obtained with
the Rozier-Bondarenko model (2017) change from 3.3 ms to 3.8 ms (15% increase)
and from 26.15 ms to 30.00 ms (15% increase). While both models describe changes
in APD50 and APD90 in response to 1 μM isoproterenol within the experimental
variability (see Table 1 from Bondarenko [12]), the current model describes more
precisely the response of IKur to isoproterenol.

We also simulated the time behavior of integral fluxes of the two major
intracellular ions, Ca2+ and Na+. Their dynamics during the first 1 s of cardiac
cycle are shown in Figs. 7 and 8 for WT and TG cells, respectively. Application of
1 μM isoproterenol produced significant increase in integral Ca2+ influx through
the L-type Ca2+ channels in WT mice, from 1.55 μM (Fig. 7a) to 3.36 μM (~117%
increase, Fig. 7c), which triggered an increase in the amount of released Ca2+, from
37.1 μM to 60.9 μM (~64% increase). In TG mice, the integral Ca2+ influx through
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Fig. 7 Simulated effects of 1 μM isoproterenol on integrated Ca2+ and Na+ fluxes (influxes) in
WT isolated mouse ventricular myocyte model during first 1 s of cardiac cycle. Simulated Ca2+
influxes are shown in (a, c). Simulated Na+ influxes are shown in (b, d). Simulations for control
(basal) conditions are shown in (a, b). Simulations for 1 μM isoproterenol are shown in (c, d).
Ca2+ and Na+ fluxes are shown after 300 s of stimulation. In (c, d), 1 μM isoproterenol is applied
at the beginning of stimulation. Here, Jrel is the Ca2+ release flux; JCaL is the Ca2+ entering the cell
through L-type Ca2+ channels; Jup – Jleak is the uptake Ca2+ from the cytosol to the network SR
with subtracted Ca2+ leak from the SR to the cytosol; Jtrpn is the flux of Ca2+ binding by troponin;
JNa is the Na+ flux through the fast Na+ channels; JNab is the Na+ flux through background
mechanism; JNaCa is the Na+ flux through the Na+/Ca2+ exchanger; JNaK is the Na+ flux through
the Na+-K+ pump. In all Panels (a–d), electrical stimulation protocol is the same as in Fig. 5

the L-type Ca2+ channels increased only from 2.52 μM (Fig. 8a) to 3.40 μM
(~35% increase, Fig. 8c). Most of the released Ca2+ was pumped back to the SR
(34.0 μM and 58.9 μM for control and 1 μM isoproterenol, respectively, in WT
mice; 50.2 μM and 54.7 μM for control and 1 μM isoproterenol, respectively, in
TG mice). In WT mice, Ca2+ extrusion by the Na+/Ca2+ exchanger increased from
3.1 to 4.4 μM at 1 μM isoproterenol (~42% increase), while in TG mice we obtained
only ~11% increase (from 3.5 μM to 3.9 μM, Fig. 8). Ca2+ balance between the
inside and outside of the cell was maintained by the sarcolemmal Ca2+ pump and
background Ca2+ influxes. Thus, our simulations suggest that the major factors that
determine the gradual response of Ca2+ dynamics to the stimulation of β-ARs in WT
mice are the L-type Ca2+ current, the Na+/Ca2+ exchanger, and the SERCA pump.
In TG mice overexpressing AC5, the effect of stimulation of β-ARs is significantly
reduced.
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Fig. 8 Simulated effects of 1 μM isoproterenol on integrated Ca2+ and Na+ fluxes (influxes) in
the model of isolated TG mouse ventricular myocyte overexpressing AC5 during first 1 s of cardiac
cycle. Simulated Ca2+ influxes are shown in (a, c). Simulated Na+ influxes are shown in (b, d).
Simulations for control (basal) conditions are shown in (a, b). Simulations for 1 μM isoproterenol
are shown in (c, d). Ca2+ and Na+ fluxes are shown after 300 s of stimulation. In (c, d), 1 μM
isoproterenol is applied at the beginning of stimulation. In all Panels (a–d), notations are the same
as in Fig. 7. Electrical stimulation protocol is the same as in Fig. 5

Simulated integral Na+ influx by the fast Na+ current without isoproterenol in
WT mice was 3.9 μM, which was increased to 4.2 μM after application of 1 μM
isoproterenol (Fig. 8). Simulated Na+ influx through the Na+/Ca2+ exchanger in
mouse cells was 9.2 μM (~16% of total Na+ influx of ~58.6 μM), which increased
to 13.2 μM after application of 1 μM isoproterenol. 45.6 μM Na+ entered the
cell through background mechanisms in WT cell (~78% of total Na+ influx). In
TG mice, the Na+ dynamics was not affected by stimulation of β-ARs. Simulated
integral Na+ influx by the fast Na+ current without isoproterenol in TG mice
was 4.26 μM, which was basically unchanged (4.23 μM) after application of
1 μM isoproterenol. Na+ influx through the Na+/Ca2+ exchanger in TG mouse
cells was only slightly increased from 10.6 μM to 11.8 μM after application of
1 μM isoproterenol. The amount of Na+ entered the cell through background
mechanisms was 46.2 μM and was not significantly changed upon stimulation with
isoproterenol. Na+ were removed from the cell through the Na+-K+ pump, the
activity of which balanced Na+ influx.
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4.3 Frequency Dependence of the Action Potential and [Ca2+]i
Transients in WT and TG Mouse Ventricular Myocytes
Overexpressing AC5

We further explored a frequency dependence of the action potential and [Ca2+]i
transients in WT and TG mice overexpressing AC5. Simulated data on APD25,
APD50, and APD90 as functions of the frequency without and with application of
1 μM isoproterenol are shown in Fig. 9. It is seen that the APD25 and APD90 in
WT mice are basically frequency-independent both without and with isoproterenol
(Fig. 9a), while APD50 demonstrates some increase with the stimulation frequency
(increase by 8% without isoproterenol and by 25% with isoproterenol when
the stimulation frequency changes from 0.25 to 5 Hz). Application of 1 μM
isoproterenol prolongs action potential durations at all levels of repolarization and
stimulation frequencies in WT mice.

In TG mice overexpressing AC5 in control, only APD25 does not demonstrate
frequency dependence (the change is <10%), but APD50 and APD90 increase by
18% and 16%, respectively, when the stimulation frequency changes from 0.25 to
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Fig. 9 Simulated frequency dependences of the action potential durations and [Ca2+]i transients
in WT and TG mouse ventricular myocytes. Simulated APD25 (circles), APD50 (squares), and
APD90 (triangles) are shown for WT (a) and TG (b) mice as functions of stimulation frequency for
control conditions (filled symbols) and after application of 1 μM isoproterenol (unfilled symbols).
Frequency dependences of diastolic (circles) and systolic (squares) [Ca2+]i concentrations in WT
(c) and TG (d) mouse ventricular myocytes are shown for control conditions (filled symbols) and
after application of 1 μM isoproterenol (unfilled symbols). Electrical stimulation protocol is the
same as in Fig. 5, except for Istim was applied at different frequencies
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5 Hz (Fig. 9b). APD25 does not change with frequency upon application of 1 μM
isoproterenol, while APD50 and APD90 increase by 16% and 37%, respectively.

If we compare the APDs in WT and TG mice at the same frequency and
intervention, we observe that the difference in APD25 is <10% without and with
application of 1 μM isoproterenol. The APD50 are greater in TG than in WT mice in
control, and the difference increases from 13% to 23% when the frequency increases
from 0.25 to 5 Hz. However, when isoproterenol is applied, the difference in APD50
between WT and TG cells decreases to <10% for all frequencies. Finally, APD90
is more prolong in TG as compared to WT mice in control; the difference changes
from 27% at 0.25 Hz to 43% at 5 Hz. Upon application of isoproterenol, the APD90
is more prolong in WT mice by ~10% at 0.25 Hz, but it becomes shorter than in TG
mice by ~22% at 5 Hz.

More dramatic changes were obtained from the simulations of [Ca2+]i transients
in WT and TG mouse ventricular myocytes (Fig. 9). Both WT and TG mice demon-
strated a moderate increase in diastolic [Ca2+]i concentration when stimulation
frequency increased from 0.25 to 5 Hz, from ~0.1 to ~0.3 μM. The change did
not depend on the mouse type and intervention.

However, frequency dependences for systolic [Ca2+]i concentrations are quite
different. In the case of control in WT mice, the peak [Ca2+]i concentration shows
a biphasic behavior; it decreases from 0.25 Hz to 1 Hz and increases further up to
5 Hz (Fig. 9c). The peak value varies only between 0.5 and 1.0 μM of [Ca2+]i.
Application of 1 μM isoproterenol increased peak [Ca2+]i values to 1.8–2.5 μM,
demonstrating biphasic behavior, starting from an increase between 0.25 and 3 Hz
to a decrease from 3 to 5 Hz.

The frequency behavior of the peak [Ca2+]i in TG mice is quite different. In
control, [Ca2+]i monotonically increased from 0.85 to 2.5 μM when stimulation
frequency increased from 0.25 to 5 Hz (Fig. 9d). The absolute values of the peak
[Ca2+]i in control in TG cells are much larger than those in WT cells (compare Fig.
9c, d). Upon stimulation with isoproterenol, we obtained more rapid increase in the
peak [Ca2+]i in TG mice, from 1.3 to 4.2 μM, when frequency increased from 0.25
to 4 Hz, with a subsequent weak decline to 4.1 μM at 5 Hz.

Thus, our simulations demonstrated significant differences in the action potential
durations and [Ca2+]i transients in WT and TG mice overexpressing AC5, when
frequency changed in wide range, from 0.25 to 5 Hz. The greater differences are
observed in the behavior of [Ca2+]i transients that suggest their prominent role in
the pro-arrhythmic behavior of TG mice.

4.4 Simulation of DADs in WT and TG Mouse Ventricular
Myocytes Overexpressing AC5

Experimental data shows that TG mouse ventricular myocytes overexpressing
AC5 are more susceptible to pro-arrhythmic triggered activities than WT cells
[11]. However, we need to note that only fraction of the myocytes demonstrated
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pro-arrhythmic events both in WT (21%) and TG (46%) mice [11] without
application of isoproterenol. To simulate the pro-arrhythmic events in WT and
TG cells, we implemented spontaneous release event by an artificial spike of the
subspace Ca2+ concentration ([Ca2+]ss), which was identical to that obtained from
electrically stimulated cell with Istim both for WT and TG mice at the stimulation
frequency 5 Hz after a 300-s stimulation interval. For both cell types, we first
electrically stimulated myocytes by a train of 1500 pulses for 300 s, and then
applied 301st Istim pulse at 20 ms after the train, which resulted in a usual action
potential and [Ca2+]i transient. We did not applied Istim further, but we applied
[Ca2+]ss transients (which were different for WT and TG cells) from the previous,
301st, pulse at 220 ms after the 1500 pulse train, together with the imitation of the
RyR opening by setting PRyR factor to its maximum value, obtained after the 301st
stimulation period, for WT (PRyR = 0.35) and TG (PRyR = 0.6) myocytes for 30 ms.
Figure 10 shows the results of simulation of the regular (first) and spontaneous
(second) [Ca2+]i transients for WT (Fig. 10a) and TG (Fig. 10b) mice. As result
of this protocol, we observed both normal action potentials and DADs in WT (Fig.
10c) and TG (Fig. 10d) cells. The magnitude of DAD in TG ventricular myocytes
(~7.0 mV) was larger by a factor ~3.5 than the DAD in WT myocytes (~2.0 mV)
(see insert in Fig. 10c). This result suggests a larger propensity of TG than WT cells
to pro-arrhythmic events, as it was observed experimentally [11].

To reveal the mechanism of DAD, we investigated the contribution of depolar-
ization and repolarization currents to the changes in the transmembrane potentials.
We found that most of the currents did not changed significantly or were not
activated during DADs, except for the time-independent K+ current, IK1, and
the current produced by the Na+/Ca2+ exchanger, INaCa. The INaCa current tends
to depolarize the membrane potential, while the IK1 current tends to repolarize
the membrane potential. Figure 10e, f show the INaCa currents in WT and TG
myocytes, respectively, after normal stimulation with Istim (first transient) and after
spontaneous Ca2+ release (second transient). It is seen that the INaCa current is much
larger in TG cells than in WT cells, and the IK1 change does not compensate the
difference in the inward INaCa currents between the two cell types (data not shown).
This result supports the conclusion that the DADs in mouse ventricular myocytes
are predominantly due to the activation of the INaCa current and the magnitude of
the DADs is larger in TG mice overexpressing AC5 as compared to WT mice due
to the larger INaCa current in TG cells.

5 Discussion

In this paper, a new compartmentalized mathematical model for TG mouse ventric-
ular myocytes overexpressing adenylyl cyclase type 5 is developed. The model is
based on the previously published model [15] and includes compartmentalization of
the β1- and β2-adrenergic signaling systems and the effects of AC5 overexpression
on the action potential, ionic currents, and Ca2+ and Na+ dynamics. The new
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Fig. 10 Simulated [Ca2+]i transients (a, b), transmembrane potentials (c, d), and INaCa currents
(e, f) under control conditions after normal electrical stimulation with Istim = 80 pA/pF and
τstim = 1.0 ms (stim) at t = 20 ms and during simulated spontaneous Ca2+ release (no stim) at
t = 220 ms. Data for WT and TG mice are shown in (a, c, e) and (b, d, f), respectively. (c, d)
demonstrate clear delayed afterdepolarizations (DADs) after simulated spontaneous Ca2+ release.
Insert in (c) compares DADs in WT (solid line) and TG (dashed line) mouse cells. Stimulation
protocols were applied after a 300-s train of Istim pulses at frequency 5 Hz

model was explored to compare the effects of isoproterenol on WT and TG mice.
The model was able to simulate prolongation of action potential duration in TG
ventricular myocytes as compared to WT cells under basal conditions and revealed
the mechanism of this prolongation. We also explained the larger [Ca2+]i transients
in TG mice due to the enhancement of the L-type Ca2+ current and increased SR
Ca2+ load. Further, we simulated the effects of stimulation of β1- and β2-ARs on the
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Ca2+ and Na+ fluxes in WT and TG myocytes. As result, we found blunted effects
of isoproterenol in TG as compared to WT cells.

Multiple experimental studies have been performed with transgenic mice with
altered expression of the ionic channels as well as the components of the β1- and β2-
adrenergic signaling system to investigate their role in healthy and diseased mouse
hearts [1–3, 29]. It was found that cardiac-specific overexpression of β1-ARs results
in hypertrophy, which lead to heart failure [5]. On the other hand, overexpression
of β2-ARs improved cardiac function [6]. Further, overexpression of downstream
components of the β1- and β2-adrenergic signaling, such as adenylyl cyclases of type
5, produces pro-arrhythmic activity in the mouse heart [11], while overexpression
of adenylyl cyclases of type 6 improved cardiac function [30]. Finally, a moderate
overexpression of Gs protein (2.8-fold) in mice did not produce a significant effect
on cardiac function [31].

Our mathematical model for WT cells that includes both β1- and β2-adrenergic
signaling systems [15] reproduced most of the experimentally observed effects
of the stimulation of the β-adrenergic signaling in mouse ventricular myocytes.
They include an increase in the magnitude of the L-type Ca2+ current, [Ca2+]i
transients, increases phosphorylation levels of phospholamban and other proteins,
and moderate prolongation of the action potential duration. Simulations revealed
mechanism of the changes in response to stimulation with β-adrenergic receptor
agonist isoproterenol in WT type mice. Further, we developed a mathematical
model of transgenic mouse ventricular myocytes overexpressing β2-ARs [32]. The
model simulated the behavior of TG cell at basal conditions and upon stimulation
with a specific β2-AR agonist zinterol. Simulations demonstrated a significantly
increased cAMP production in TG mice overexpressing β2-ARs that resulted in
almost complete phosphorylation of β2-ARs. The model also reproduced [Ca2+]i
transient magnitudes under different physiological conditions in WT and TG cells.
It was suggested that the increased Ca2+ concentrations can potentially cause
deteriorative effects on the activity of the heart during mouse life.

A mathematical model of TG mouse ventricular myocytes overexpressing AC5
presented in this paper predicts similar deterioration effects. The model described
an increased cAMP production and increased PKA activity in TG cells under
basal conditions and much larger cAMP production upon stimulation with 1 μM
isoproterenol. Even at basal conditions, the prolongation of the action potential
duration was quite significant (38% for APD90 in the experiment [11] and 29%
for simulations), which doubled a number of pro-arrhythmic cells obtained exper-
imentally [11]. Moreover, enormous growth of cAMP concentration in TG cells
overexpressing AC5 upon stimulation with 1 μM isoproterenol can potentially lead
to a significant damage of the cellular function as compared, for example, with
TG mice overexpressing β2-ARs, where stimulated cAMP production was much
smaller.

Simulations of frequency dependences of the action potential durations at dif-
ferent levels of repolarization (APD25, APD50, and APD90) and [Ca2+]i transients
in WT and TG mice showed significantly larger [Ca2+]i transients in TG mice
under control conditions and at larger stimulation frequencies upon application of
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isoproterenol. Simulated spontaneous Ca2+ release demonstrated larger amplitudes
of DADs in TG mice, suggesting their larger susceptibility to arrhythmias as
compared to WT mice. Specifically, we have demonstrated the major role of the
sodium-calcium exchanger (INaCa) in generation of pro-arrhythmic DADs in mouse
ventricular myocytes.

6 Conclusions

We developed a comprehensive experimentally-based compartmentalized math-
ematical model of the TG mouse ventricular myocyte overexpressing adenylyl
cyclase 5. The model simulated major experimental findings on the effects of
the overexpression of AC5 in mouse ventricular myocytes. The model describes
the dynamics of major signaling molecules in different subcellular compartments;
modifications of action potential shape and duration; and Ca2+ and Na+ dynamics
upon stimulation of β-adrenergic signaling system in control and after application
of isoproterenol. The TG myocyte model simulates increased cAMP and PKA
transients upon stimulation of β-ARs, as well as larger background [Ca2+]i tran-
sients and a more prolonged APD90 compared to the WT cell. We demonstrated
that the [Ca2+]i transients at most stimulation frequencies were larger for TG as
compared to WT mice. These differences led to larger magnitudes of DADs in
TG mouse myocytes than in WT cells due to larger magnitudes of the sodium-
calcium exchanger currents, which suggested larger susceptibility of TG cells
to pro-arrhythmic behavior. The simulation results of TG ventricular myocytes
overexpressing AC5 are compared to the simulations of WT ventricular myocytes
and experimental data obtained from the ventricular myocytes from TG mice.
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Abstract Assuming cause-specific hazards given by Cox’s regression model, we
provide non-parametric maximum likelihood estimator (NPMLEs) in the nested
case-control or case-cohort design with competing risks data. We propose an
iterative algorithm based on self-consistency equations derived from score functions
to compute NPMLE and compute the predicted cumulative incidence function with
their corresponding confidence intervals and bands. Consistency and asymptotic
normality are established, together with a consistent estimator of the asymptotic
variance based on the observed profile likelihood. Simulation studies show that the
numerical performance of NPMLE approach is satisfactory and compares well with
that of weighted partial likelihood. Our method is applied to the Taiwan National
Health Insurance Research Database (NHIRD) to analyze the occurrences of liver
and lung cancers in type 2 diabetic mellitus patients.
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1 Introduction

Many epidemiological cohorts are established to learn the effects of some covariates
on disease onset, disease recurrence or patient survival. When these covariates
are precious, expensive, or labor intensive to collect, for cost consideration, the
nested case-control (NCC) or case-cohort (CC) sampling, introduced respectively
by Thomas [20] and Prentice [13], are two most popular designs allowing the
covariates to be measured only in a subset of the full cohort.

The CC/NCC design uses all incident “cases”, i.e., subjects who just develop the
targeted disease, and a subsample from the time-matched “controls” or the “risk
set”, i.e., subjects who have not yet develop the disease by the time a case arises.
Compared to the matched case-control study, the CC/NCC design allows reusing
controls matched to cases [5, 15, 16]. Furthermore, recent literature indicates that
the CC/NCC design also enjoys the ability of reuse of the controls not tied to their
matched cases for the study of other endpoints; see, for example, [9, 14, 18, 19].
Reuse or share of controls among different endpoints leads to more effective
logistics and efficient statistical analysis.

Saarela et al. [14] and Støer and Samuelsen [19] reported two approaches for
the NCC design with multiple competing endpoints, namely the weighted partial
likelihood approach (WPL) and the full likelihood approach (FL). However, the
WPL approach may be subject to loss of efficiency since it uses only information
from the sampled cases and controls, and ignores information from subjects who
are not sampled into the NCC sample and hence whose covariate data are not
completely measured. On the other hand, the FL approach is based on fully
parametric models for hazards functions of the event times and the density for
the covariates, which may lead to biased estimation when the assumed models
are incorrect. Keogh and White [7] proposed a simple multiple imputation (MI)
strategy to impute the missing values for individuals outside the NCC sample based
on data available in the full cohort. The MI approach, similar to the FL approach,
is subject to biased inference owing to model misspecification. Borgan and Keogh
[1] compared the WPL with the MI methods for multiple endpoints via simulation
studies.

For a single outcome, Scheike and Juul [16] and Scheike and Martinussen [17]
considered the non-parametric maximum likelihood estimation (NPMLE) for the
CC/NCC design, and used the EM-algorithm for computation. In this work, we
extend the NPMLE method to the CC/NCC design with multiple competing risks.

In Sect. 2, we present the likelihood under the competing risks with the CC/NCC
design. Contrary to the parametric likelihood considered in [14], the likelihood in
our work is based on the semiparametric Cox’s proportional hazards model. We
develop the NPMLE in this setting and consider the self-consistency equations
derived from score functions. The computation algorithm based on the self-
consistency equations is then developed. In Sect. 3, we establish the large sample
theorems of NPMLE, together with asymptotic properties of the profile likelihood,
and a consistent estimator of the asymptotic variance. In Sect. 4, we provide



NPMLE for CC/NCC Designs with Competing Risks Data 383

simulation results for comparing the NPMLE with the WPL approach in terms of
estimation bias and efficiency. In Sect. 5 we illustrate the use of the NPMLE method
in the analysis of the incidence of liver and lung cancers in type 2 diabetic mellitus
(DM) patients with data from Taiwan National Health Insurance Research Database
(NHIRD). We conclude this work in Sect. 6 with brief discussion.

2 Likelihood Function, Score Function and NPMLE

2.1 Likelihood Function

We first define some notations for developing the likelihood function of the CC/NCC
sampling with competing risks under the Cox’s proportional hazards model. Let
the cohort R = {1, · · · ,M} consist of M independent subjects. We consider
independent CC/NCC studies for each of the K different endpoints in the same
cohort. At each event time, m controls are sampled from the individuals still at risk.
We collect all cases and sampled controls in the cohort; define the collection Ō

as a CC/NCC sample. The covariates of the subjects are measured in the CC/NCC
sample.

For the ith individual in the cohort, let Ti be the time-to-event, Ci the censoring
time, Xi = min(Ti, Ci) the observed (censored) time-to-event, Yi the always
observed covariates which are observed for the full cohort, Zi the covariates
which are observed only in the CC/NCC sample and are missing for the cohort
members not in the CC/NCC sample, and Ei is the failure indicator taking values in
{0, 1, · · · ,K}, with 0 indicating censoring and k the failure from the kth competing
event k = 1, · · · ,K . We assume Ti ≥ 0, Ci ≥ 0, Yi ∈ #q and Zi ∈ #d . We assume
that the cause-specific proportional hazard of subject i for Ei = k given Zi = z and
Yi = y is

λik (t |Zi = z,Y i = y) = λ0k(t) exp
(
yT ηk

)
exp

(
zT βk

)
. (1)

Here λ0k (·) is an event-specific, non-negative deterministic baseline function, and
ηk ∈ #q , βk ∈ #d . In this paper, a superscript T denotes transpose of a vector
or a matrix. Following conventional survival analysis, we assume that T and C

are conditionally independent given covariates, and the censoring time C is non-
informative on covariates, that is, the censoring distribution is non-informative on
the parameters of interest.

Using a fully parametric approach, Saarela et al. [14] considered the full
likelihood under the CC/NCC design with competing risks data given by

L (θ, μ) ∝
∏

i∈Ō
p
(
Xi,Ei |Zi , yi; θ

)
p
(
Zi |yi;μ

)

×
∏

i∈R\Ō

∫

p
(
Xi,Ei |Zi , yi; θ

)
p
(
Zi |yi;μ

)
dz.
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Here, i ∈ {1, 2, · · · ,M} indexes the subjects in a cohort. That Oi = 1 if
i belongs to Ō. The observed data in the CC/NCC sample can be defined as
{(Xi, Ei,Y i ,Zi ·Oi,Oi) |i = 1, 2, · · · ,M}. The model p (X,E|z, y; θ) is for the
joint density of (X,E) given (z, y), which can be determined by the cause-specific
hazard model (1) with E = 1, · · · ,K , θ = (θ1, · · · , θK) with θk the parameters
involved in the cause-specific hazard model (1) for the kth competing event. The
model p (Z|y;μ) is for the density of the incompletely observed covariate Z given
the completely observed covariate Y , and μ is the associated parameter.

For ease of exposition, we will describe the proposed procedure by omitting the
always observed covariates Y tentatively, although in simulation studies and real
data analysis we still consider the analysis with such covariates since it can be
implemented by simply modifying the following procedure. The more details of
how to modify the proposed approach when Y exists and is discrete are given in
Appendix 6.

Let f (z) denote the marginal density of Z. Then the marginal survival function

of T is G(t) = pr (T ≥ t) = ∫
exp

{
−∑K

k=1 Λk (t) exp
(
zT βk

)}
f (z) dz, where

Λk (t) =
∫ t

0 λk(s)ds. The likelihood of the CC/NCC data with competing risks
under the Cox’s regression model (1) is

L̃M
(
β1, · · · ,βK, f,Λ1, · · · ,ΛK

)
(2)

=
M∏

i=1

[
K∏

k=1

(
λk (Xi) exp

(
ZT
i βk

))I(Ei=k) exp

(

−
K∑

k=1

Λk (Xi) exp
(
ZT
i βk

)
)

f (Zi )

]I(oi=1)

× [G(Xi)]
I(oi=0) ,

whereOi = 1 if Zi is observed (in the CC/NCC sample) andOi = 0 if not. Because
the full likelihood (2) could become arbitrarily large within the class of absolutely
continuous Λk (·) and continuous density f , the likelihood function we consider is

LM
(
β1, · · · ,βK, fe,Λ1, · · · ,ΛK

)
(3)

=
M∏

i=1

[
K∏

k=1

(
ΔΛk (Xi) exp

(
ZT
i βk

))I(Ei=k) exp

(

−
K∑

k=1

Λk (Xi) exp
(
ZT
i βk

)
)

fe (Zi )

]I(oi=1)

× [Ge (Xi)]
I(oi=0) .

Here, ΔΛk (t) = Λk (t) − Λk (t−) and fe and Ge are defined as follows. Assume
there are J distinct values for the observed covariates and they are denoted by
(W 1,W 2, · · · ,W J ). Let 0 ≤ pj ≤ 1 and

∑J
j=1 pj = 1. The distribution fe is

defined by

fe (Z) =
J∑

j=1

pj IZ=W j
, (4)
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and the corresponding marginal survival function G of T is

Ge (t) =
J∑

l=1

(

exp

(

−
K∑

k=1

Λk (t) exp
(
W T

l βk

)
))

pl.

This empirical approach to the covariate distribution is similar to that in [4].
The NPMLE we propose is the maximizer of (3) over B×· · ·×B×P×L∗×

· · · × L∗, where B is a compact subset of #d , L∗ ⊂ L comprises step
functions, and P consists of all the empirical distribution of the form in (4), namely

P =
[
p = (p1, · · · , pJ )T : pj ≥ 0,

∑J
j=1 pj = 1

]
. In fact, Λ̂k has positive

jumps precisely at all Xi with Ei = k, for k = 1, · · · ,K .

2.2 Score Functions

In this subsection, we will present the score functions and some integral equations
for the NPMLE. From (3), we obtain the log likelihood function

logLM
(
β1, · · · ,βK,p,Λ1, · · · ,ΛK

) = lM
(
β1, · · · ,βK,p,Λ1, · · · ,ΛK

)

=
M∑

i=1

I(oi=1)

[
K∑

k=1

I(Ei=k) log
(
ΔΛk (Xi) exp

(
ZT
i βk

))
]

−
M∑

i=1

I(oi=1)

⎡

⎣
K∑

k=1

Λk (Xi) exp
(
ZT
i βk

)
+ log

⎛

⎝
J∑

j=1

pj IZi=W j

⎞

⎠

⎤

⎦

+
M∑

i=1

I(oi=0)

⎡

⎣log

⎛

⎝
J∑

j=1

exp

(

−
K∑

k=1

Λk (Xi) exp
(
W T

j βk

)
)

pj

⎞

⎠

⎤

⎦ .

Let BV [0, τ ] denote the set of all real-valued functions on [0, τ ] with finite
variation. See Sect. 3.1 for the discussions of how to determine τ . For k = 1, · · · ,K ,
h1k ∈ #d ,h2 ∈ #J and h3k ∈ BV [0, τ ], let Λkε (t) =

∫ t
0 (1+ εh3k (u)) dΛk (u).

We define score functions as follows.

l1k,θ [h1k] (X1, E1,Z1 ·O1,O1)

= d

dε
logL1

(
β1, · · · ,βk + εh1k, · · · ,βK,p,Λ1, · · · ,ΛK

)
∣
∣
∣
∣
ε=0

,

l2,θ [h2] (X1, E1,Z1 ·O1,O1)

= d

dε
logL1

(
β1, · · · ,βK,p+εh2,Λ1, · · · ,ΛK

)
∣
∣
∣
∣
ε=0

,
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l3k,θ [h3k] (X1, E1,Z1 ·O1,O1)

= d

dε
logL1

(
β1, · · · ,βK,p,Λ1, · · · ,Λkε, · · · ,ΛK

)
∣
∣
∣
∣
ε=0

,

where θ = (
β1, · · · ,βK,p,Λ1, · · · ,ΛK

)
. Straight-forward calculations, given the

following expressions for these score functions.
The score function of βk, k = 1, · · · ,K , is

l1k,θ [h1k] (X1, E1,Z1 ·O1,O1)

= I(o1=1)

[
hT1k

(
I(E1=k)Z1 −Λk (X1)Z1 exp

(
ZT

1 βk

))]

+I(o1=0)

⎡

⎣−Λk (X1)h
T
1k

J∑

j=1

W j exp
(
W T

j βk

)
pr

(
Z1 = W j

∣
∣ T1 ≥ X1

)
⎤

⎦ .

Here pr
(
Zi = W j

∣
∣ Ti ≥ Xi

) = exp
(
−∑K

k=1 Λk(Xi) exp
(
WT

j βk

))
pj

∑J
l=1 exp

(
−∑K

k=1 Λk(Xi) exp
(
WT

l βk
))
pl

.

The score function of p is

l2,θ [h2] (X1, E1,Z1 ·O1,O1) = I(o1=1)

(
μT

1 h2

μT
1 p

)

+ I(o1=0)

(
φT1 h2

φT1 p

)

,

where p = (p1, p2, · · · , pJ )T ,μi =
(
IZi=W 1, IZi=W 2 , · · · , IZi=W J

)T and φi =(
exp

(
−∑K

k=1 Λk (Xi) exp
(
W T

1 βk
))
, · · · , exp

(
−∑K

k=1 Λk (Xi) exp
(
W T

J βk
)))T

.

The score function of Λk, k = 1, · · · ,K is

l3k,θ [h3k] (X1, E1,Z1 ·O1,O1)

= I(o1=1)

[

I(E1=k)h3k (X1)− exp
(
ZT

1 βk

) ∫ X1

0
h3k (t) dΛk (t)

]

+I(o1=0)

⎡

⎣
∫ X1

0
h3k (t) dΛk (t)

J∑

j=1

[
− exp

(
W T

j βk

)]
pr

(
Z1=W j

∣
∣ T1 ≥ X1

)
⎤

⎦.

2.3 The NPMLE

It is clear that a necessary condition for θ̂M = (
β̂1M, · · · , β̂KM, p̂M, Λ̂1M, · · · , Λ̂KM

)

to be the NPMLE is

PMlj,̂θM

[
hj

] = 0,
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for all large M . Here PM means taking expectation with respect to the empirical
measure for the data {(Xi, Ei,Zi ·Oi,Oi) |i = 1, 2, · · · ,M}. Based on the self-
consistency equations derived from the score functions given above, we provide an
iterative algorithm to calculate the NPMLE.

The NPMLE β̂kM of βk, k = 1, · · · ,K is given as follows. From
PMl1k,̂θM [h1k] = 0, we get

0 =
M∑

i=1

I(oi=1)h
T
1k

[
I(Ei=k)Zi − Λ̂kM (Xi)Zi exp

(
ZT
i β̂kM

)]

+
M∑

i=1

I(oi=0)

⎡

⎣−Λ̂kM (Xi)h
T
1k

J∑

j=1

[
W j exp

(
W T

j β̂kM

)]
α̂ijM

⎤

⎦ ,

where α̂ijM =
exp

(
−∑K

k=1 Λ̂kM(Xi) exp
(
WT

j β̂kM

))
p̂jM

∑J
l=1 exp

(
−∑K

k=1 Λ̂kM(Xi) exp
(
WT

l β̂kM
))
p̂lM

.

Let h1k = el =
(
0, · · · , 0, 1(l), 0, · · · , 0

)T
1×d , we obtain

0 =
M∑

i=1

I(oi=1)

[
I(Ei=k)Zi,l − Λ̂kM (Xi) Zi,l exp

(
ZT
i β̂kM

)]

+
M∑

i=1

I(oi=0)

⎡

⎣−Λ̂kM (Xi)

J∑

j=1

[
Wj,l exp

(
W T

j β̂kM

)]
α̂ijM

⎤

⎦ .

We can utilize a modified Newton-Raphson method to solve the above equation,
namely, the NPMLE of βk is updated by

β
(q+1)
k = β

(q)
k − V −1

(
θ (q)

)
U

(
θ (q)

)
, (5)

where

U
(
θ (q)

)
=

M∑

i=1

I(oi=1)

[
I(Ei=k)Zi −Λ

(q)
k (Xi)Zi exp

(
ZT
i β

(q)
k

)]

+
M∑

i=1

I(oi=0)

⎡

⎣−Λ(q)
k (Xi)

J∑

j=1

[
W j exp

(
W T

j β
(q)
k

)]
α
(q)
ij

⎤

⎦ .

V
(
θ (q)

)
=

M∑

i=1

I(oi=1)

[
−Λ(q)

k (Xi)ZiZ
T
i exp

(
ZTi β

(q)
k

)]
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+
M∑

i=1

I(oi=0)

⎡

⎣−Λ(q)
k (Xi)

J∑

j=1

[(
W jW

T
j exp

(
WT
j β

(q)
k

))
α
(q)
ij

]
⎤

⎦

+
M∑

i=1

I(oi=0)

⎡

⎣−Λ(q)
k (Xi)

J∑

j=1

[
(
W j exp

(
WT
j β

(q)
k

)) [
∂

∂βk
αij

](q)
]⎤

⎦ .

The NPMLE of p is given as the following updating step. Let αij (p) =
exp

(
−∑K

k=1 Λ
(q)
k (Xi) exp

(
WT

j β
(q)
k

))
pj

∑J
l=1 exp

(
−∑K

k=1 Λ
(q)
k (Xi) exp

(
WT

l β
(q)
k

))
pl

, and α (p) be the M × J matrix with (i, j)

entry being αij (p). To facilitate the proposed computation algorithm, we consider
results summarized in the following three lemmas.

Lemma 1 PMl2,
(
β
(q)
1 ,··· ,β(q)K ,p,Λ

(q)
1 ,··· ,Λ(q)

K

) [h2] = 0 for every h2 ∈ #J satisfying

∑J
j=1 h2,j = 0 if and only if p =

(
1
M

1T α (p)
)T

, where 1 = (1, · · · , 1)T1×M .

By Lemma 1, we obtain updated value of p at the (q + 1)th step as

p(q+1) =
(

1

M
1T α

(
p(q)

))T
. (6)

The NPMLE for Λk, k = 1, · · · ,K , is given by the integral equations given as
follows.

Lemma 2

Λ̂kM (t) =
∫ t

0

1

AkM
(
θ̂M ; u

)dBkM (u) , k = 1, · · · ,K. (7)

Here BkM (u) = 1
M

∑M
i=1 I(Ei=k)I(0,u] (Xi) and AkM (θ; u) = 1

M

∑M
i=1{

I(oi=1)
[
I(0,Xi ] (u)

(
exp

(
ZT
i βk

))]+I(oi=0)

[
I(0,Xi ] (u)

∑J
j=1

[
exp

(
W T

j βk

)]
αij

]}
.

Lemma 3

Λk0 (t) =
∫ t

0

1

Ak (θ0; u)dBk (u) , k = 1, · · · ,K.

where Ak (θ; u) = EAk1 (θ; u) and Bk (u) = EBk1 (u) with expectation taken
under the true parameter θ0.

Lemma 1 will be proved in Appendix 1, and Lemmas 2 and 3 can be proved
using the same methods in proving Lemma 2.1 of Chang et al. [2], we hence omit.

We now present the iterative algorithm for computing the NPMLE. Without
loss of generality, we assume there are K = 2 types of endpoints. Let B1

(
θ̂M

)
,
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B2
(
θ̂M

)
, P

(
θ̂M

)
, L1

(
θ̂M

)
(t), and L2

(
θ̂M

)
(t) denote respectively the right-hand

side of Eqs. (5)–(7). The algorithm consists of the following steps:

(1) Set q = 0 and choose a starting value
(
β
(0)
1 ,β

(0)
2 ,p(0), Λ

(0)
1 ,Λ

(0)
2

)
.

(2) β
(q+1)
1 = B1

(
β
(q)
1 ,β

(q)
2 ,p(q),Λ

(q)
1 ,Λ

(q)
2

)
.

(3) β
(q+1)
2 = B2

(
β
(q+1)
1 ,β

(q)
2 ,p(q),Λ

(q)
1 ,Λ

(q)
2

)
.

(4) p(q+1) = P
(
β
(q+1)
1 ,β

(q+1)
2 ,p(q),Λ

(q)
1 ,Λ

(q)
2

)
.

(5) Λ
(q+1)
1 (t) = L1

(
β
(q+1)
1 ,β

(q+1)
2 ,p(q+1), Λ

(q)
1 ,Λ

(q)
2

)
(t) .

(6) Λ
(q+1)
2 (t) = L2

(
β
(q+1)
1 ,β

(q+1)
2 ,p(q+1), Λ

(q+1)
1 ,Λ

(q)
2

)
(t) .

(7) q = q + 1.
(8) Repeat steps (2)–(7) until q = Q when there is evidence of convergence.

2.4 The Predicted Cumulative Incidence Function

The model (1) we consider is a regression model based on cause-specific hazards
of competing risks under the CC/NCC sampling. In the analysis of competing risks
data, it is often of interest to also obtain the cumulative incidence function (CIF)
for a particular cause of failure with a given set of covariates Z = z0, which is
defined as

Fk (t; z0) = pr (T ≤ t, E = k|Z = z0) , k = 1, · · · ,K.
Under the Cox’s proportional hazards model (1) with the always observed

covariates y omitted, the CIF is given by

Fk (t; z0) =
∫ t

0
λk (s) exp

(
zT0 βk

)
exp

(

−
K∑

k=1

Λk (s) exp
(
zT0 βk

)
)

ds,

which can be estimated by

∫ t

0
exp

(

−
K∑

k=1

Λ̂k (s) exp
(
zT0 β̂k

)
)

dΛ̂k (s|z0) ,

where dΛ̂k (s|z0) = ΔΛ̂k (s) exp
(
zT0 β̂k

)
.

Combining Theorem 3 with the functional delta method, we conclude that for a
known, monotone, absolutely continuous transformation h (·),

√
M

(
h
(
F̂k (t; z0)

)− h (Fk (t; z0))
)

converges weakly to a Gaussian process.
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In order to compute the pointwise confidence interval and simultaneous
confidence band for predicted CIF, we need to get the variance estimate
of
√
M

(
h
(
F̂k (t; z0)

)− h (Fk (t; z0))
)
. The variance estimate based on the

asymptotic theory above mentioned is rather complicated. We thus instead apply
the re-sampling method of Lu and Peng [10] to estimate the asymptotic variance
for h

(
F̂k (t; z0)

)
. In the re-sampling algorithm, we first generate M i.i.d positive

random variable ξ = {ξi, i = 1, · · · ,M} with mean 1 and variance 1. Fixing
the data at their observed values, θ∗ is obtained as the solution of

PMξ lj,θ∗
[
hj

] = 0.

Generating ξ = {ξi, i = 1, · · · ,M} J times repeatedly, we obtain J realizations
of θ∗, and hence the simulated distribution of

√
M

(
h
(
F ∗k (t; z0)

)− h
(
F̂k (t; z0)

))
,

where F ∗k (t; z0) is Fk (t; z0) evaluated at θ∗. Next, use the simulated distribution
of
√
M

(
h
(
F ∗k (t; z0)

)− h
(
F̂k (t; z0)

))
to compute an estimate of the variance

function, σ 2 (t; z0) = V ar
{√

M
(
h
(
F̂k (t; z0)

)− h (Fk (t; z0))
)}

, given as

σ̂ 2 (t; z0) = V ar
{√

M
(
h
(
F ∗k (t; z0)

)− h
(
F̂k (t; z0)

))}
.

The (1− 2α) × 100% pointwise confidence interval for Fk (t; z0) can then be
constructed using,

h−1
(
h
(
F̂k (t; z0)

)±M−1/2φασ̂ (t; z0)
)
,

where φα is the α × 100% quantile of the standard normal distribution. Further, the
(1− 2α)× 100% simultaneous confidence band for Fk (t; z0) is obtained by

h−1
(
h
(
F̂k (t; z0)

)±M−1/2c (α; z0) σ̂ (t; z0)
)
,

where the critical value c (α; z0) satisfies

Pr

⎡

⎣ sup
t∈[o,τ ]

∣
∣
∣
√
M

(
h
(
F ∗k (t; z0)

)− h
(
F̂k (t; z0)

))∣∣
∣

σ̂ (t; z0)
≤ c (α; z0)

⎤

⎦ = 1− 2α.

3 Large Sample Theory

This section presents asymptotic theory for the NPMLE. Section 3.1 states the
identifiability proposition; Sect. 3.2 gives the consistency of the NPMLE; Sect. 3.3
presents the asymptotic normality of the NPMLE; Sect. 3.4 contains the second
order expansion of profile likelihood and a consistent estimator of the asymptotic
variance. Without loss of generality, we assume the number of endpoints K = 2 in
developing the following asymptotic properties.
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3.1 Identifiability

The parameter space is Θ = {(β1,β2, f,Λ1,Λ2
) |β1 ∈ B,β2 ∈ B, f ∈ F,Λ1 ∈

L, Λ2 ∈ L}. Here L = {Λ : [0, τ ] → [0,∞)|Λ(0) = 0}, Λ is non-decreasing and
right continuous, B is a compact subset of #d and F is the set of density functions
defined on the non-negative functions. The analysis in this paper is restricted to the
interval [0, τ ]; in accordance with standard survival analysis, an ideal τ should be
large enough but still satisfy the property that there are subjects whose survival times
are larger than τ . Elements of L are the cumulative hazards functions restricted to
the interval [0, τ ].

The true parameters β10 and β20 are assumed to be interior points of B, and the
true cumulative hazard functions Λ10 and Λ20 are assumed to have positive and
bounded derivatives on [0, τ ]. We assume that pr (Ti ≥ τ, Ei = j |Zi ) > 0, j =
1, 2, and pr (Ci ≤ τ |Zi ) < 1 almost surely. We further assume that the support of
Z is bounded. Further, we need the following Identifiability proposition.

Proposition 1 (Identifiability) If Λ1 is absolutely continuous with respect to Λ10,
and Λ2 is absolutely continuous with respect to Λ20, then L̃1,θ = L̃1,θ0 a.s. implies
θ = θ0.

We omit the proof of Proposition because the detail of the proof can be proved
using the same argument in proving “Identifiability” property of Cox-gene model in
[2]. Using the arguments in [2], we can show that the identifiability of the likelihood
function follow from there exists 0 < t

′
< τ in the support of the conditional

distribution of C1 given Z1 such that if

(

a1
∂

∂y10
+ a2

∂

∂y20
+ a3

∂

∂y1
+ a4

∂

∂y2

)∣
∣
∣
∣
(y10,y20,y1,y2)=

(
Λ10

(
t
′)
,Λ20

(
t
′)
,1,1

)

[
log

(
2∏

k=1

y
I(E1=k)
k exp

(

−
2∑

k=1

yk0 exp
(
ZT

1 βk0

)
))I(o1=1)

+ log

(∫

exp

(

−
2∑

k=1

yk0 exp
(
ZT

1 βk0

)
)

f0 (Z1) dZ1

)I(o1=0) ]
= 0,

for every possible value of (E1,Z1 ·O1,O1), then a1 = a2 = a3 = a4 = 0 in #.

3.2 Consistency of NPMLE

This subsection presents consistency theorem for the NPMLE.

Theorem 1 (Existence of NPMLE) The NPMLE
(
β̂1M, β̂2M, p̂M, Λ̂1M, Λ̂2M

)

exists and Λ̂jM (τ)’s are bounded.
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The existence of NPMLE follows from the compactness of B×B×P andΛ1 andΛ2
are of finite dimension. The boundedness of Λ̂jM (τ)’s follows from Lemma 2, and
the boundedness of AjM ’s and BjM ’s, which is shown in the proof of Theorem 2.

Theorem 2 (Consistency)
∥
∥β̂1M − β10

∥
∥
d
,
∥
∥β̂2M − β20

∥
∥
d
,
∥
∥p̂M − p0

∥
∥
J
,supt∈[0,τ ]∣

∣Λ̂1M (t)−Λ10 (t)
∣
∣, and supt∈[0,τ ]

∣
∣Λ̂2M (t)−Λ20 (t)

∣
∣ converge to 0 almost surely,

asM tends to infinity.

Here and in the following, ‖•‖n stands for Euclidean norm on #n.
We omit the proof of Theorem 2 because the detail of the proof is very long

and can be proved using the same argument in proving “Consistency” property of
Cox-gene model in [2].

3.3 Asymptotic Normality of NPMLE

We will prove the asymptotic normality by verifying the conditions in Theo-
rem 3.3.1 and Lemma 3.3.5 of van der Vaart and Wellner [22], henceforth V&W
[22]; details are relegated to Appendix 5.

Let H = H 1×H 2×H 3×BV [0, τ ]×BV [0, τ ], where H 1 =
{
h1 ∈ #d

}
, H 2 =

{
h2 ∈ #d

}
and H 3 =

{
h3 =

(
h3,1, · · · , h3,J

)T ∈ #J
∣
∣
∣
∑J

j=1 h3,j = 0
}

. For

h = (h1,h2,h3,h4,h5) ∈ H. We introduce the norm ‖(h1,h2,h3,h4,h5)‖H =
‖h1‖d + ‖h2‖d + ‖h3‖J + ‖h4‖V + ‖h5‖V , where ‖h‖V is the sum of the
absolute value of h (0) and the total variation of h on [0, τ ]. Let Hp be the
subset of H with ‖(h1,h2,h3,h4,h5)‖H ≤ p if p < ∞. If p = ∞, then
the previous inequality is strict. Define θ (h) = (

β1,β2,p,Λ1,Λ2
)
(h) =

hT1 β1 + hT2 β2 + hT3 p + ∫ τ
0 h4dΛ1 +

∫ τ
0 h5dΛ2, and the parameter space

Θ = {(
β1,β2,p,Λ1,Λ2

)∣
∣β1 ∈ B,β2 ∈ B,p ∈ P,Λ1 ∈ L,Λ2 ∈ L

}
can be

considered to be a subset of l∞
(
Hp

)
, which is the space of all bounded real-

valued functions on Hp equipped with the norm ‖θ‖l∞(Hp) = suph∈Hp
|θ (h)|. We

note that

(
p/
√
d
) (∥

∥β1−β10
∥
∥
d
∨ ∥
∥β2 − β20

∥
∥
d
∨ ∥
∥p−p0

∥
∥
J
∨ ‖Λ1−Λ10‖∗ ∨ ‖Λ2 −Λ20‖∗

)

≤ ‖θ − θ0‖l∞(Hp) = sup
h∈Hp

|(θ − θ0) (h)|

≤ (5p)
(∥
∥β1 − β10

∥
∥
d
∨ ∥
∥β2 − β20

∥
∥
d
∨ ∥
∥p − p0

∥
∥
J
∨ ‖Λ1 −Λ10‖∗ ∨ ‖Λ2 −Λ20‖∗

)
,

where ‖Λ−Λ0‖∗ = sup‖h‖v≤1

∣
∣
∫ τ

0 hd (Λ−Λ0)
∣
∣ is the natural norm for a bounded

linear operator on the normed space BV [0, τ ].
Define ΨM : Θ → l∞

(
Hp

)
by

ΨM
(
β1,β2,p,Λ1,Λ2

)
(h1,h2,h3,h4,h5)
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= PM

5∑

j=1

lj,(β1,β2,p,Λ1,Λ2)

[
hj

]
(Xi, Ei,Zi ·Oi,Oi)

= 1

M

M∑

i=1

5∑

j=1

lj,θ
[
hj

]
(Xi, Ei,Zi ·Oi,Oi) .

To simplify the notation, we let

φθ ,h =
5∑

j=1

lj,θ
[
hj

]
(Xi, Ei,Zi ·Oi,Oi) .

Let Ψ : Θ → l∞
(
Hp

)
be defined by Ψ (θ) (h) = EΨ1 (θ) (h). Let linΘ denote

the set of all finite linear combinations of θ − θ0, for θ ∈ Θ . Then we obtain the
following analytic condition on Ψ .

Lemma 4
√
M (ΨM (θ0)− Ψ (θ0)) converges weakly to a Gaussian processW in

l∞
(
Hp

)
for every 0 < p <∞.

Lemma 4 can be proved using the same methods in proving Lemma 4.1 of Chang
et al. [2], we hence omit.

Lemma 5
{
φθ ,h − φθ0,h : ‖θ − θ0‖l∞(Hp) < δ,h ∈ Hp

}
is Donsker.

We omit the proof of Lemma 5, because it requires only a more complicated
version of the proof for Lemma 4.

Lemma 6 limθ→θ0 suph∈Hp
E
(
φθ ,h − φθ0,h

)2 = 0.

The proof of Lemma 6 can be seen in Appendix 2.

Lemma 7 (Fréchet Differentiability) Let p < ∞. There is a continuous linear
map Ψ̇θ0 : linΘ → l∞

(
Hp

)
satisfying

∥
∥Ψ (θ)− Ψ (θ0)− Ψ̇θ0 (θ − θ0)

∥
∥
l∞(Hp)

=
o
(
‖θ − θ0‖l∞(Hp)

)
. In addition, Ψ̇θ0 has a continuous inverse on its range, and

Ψ̇θ0 (θ − θ0) (h)

= − σ1 (h)
T
(
β1 − β10

)+ σ2 (h)
T
(
β2 − β20

)+ σ3 (h)
T
(
p − p0

)

+
∫ τ

0
σ4 (h) (t) d (Λ1 (t)−Λ10 (t))+

∫ τ

0
σ5 (h) (t) d (Λ2 (t)−Λ20 (t))

for a linear map σ = (σ1, σ2, σ3, σ4, σ5) from H∞ to H∞.

Lemma 7 can be proved using the same methods in proving Lemma 4.4 of Chang
et al. [2], we hence omit.
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We note that σ is usually called the information operator. Using Lemma 7 and
the negative second directional derivative of the log-likelihood of the parametric
submodel

(ε1, ε2) %→
(
β10 + ε1h1 + ε2h

′
1,β20 + ε1h2 + ε2h

′
2,p0 + ε1h3 + ε2h

′
3,

Λ10 + ε1

∫ .

0
h4dΛ10 + ε2

∫ .

0
h
′
4dΛ10,Λ20 + ε1

∫ .

0
h5dΛ20 + ε2

∫ .

0
h
′
5dΛ20

)

for (ε1, ε2) near 0, we obtain the following equation connecting the information and
the score:

σ1 (h)
T h

′
1 + σ2 (h)

T h
′
2 + σ3 (h)

T h
′
3 (8)

+
∫ τ

0
σ4 (h) (t)h

′
4 (t) dΛ10 (t)+

∫ τ

0
σ5 (h) (t)h

′
5 (t) dΛ20 (t)

= E

⎧
⎨

⎩

⎡

⎣
5∑

j=1

lj,θ0

[
hj

]
(X1, E1,Z1 ·O1,O1)

⎤

⎦

⎡

⎣
5∑

j=1

lj,θ0

[
h
′
j

]
(X1, E1,Z1 ·O1,O1)

⎤

⎦

⎫
⎬

⎭
,

for (h1,h2,h3,h4,h5) and
(
h
′
1,h

′
2,h

′
3,h

′
4,h

′
5

)
are in H∞.

It follows from Lemmas 5 and 6, and the consistency in Theorem 2 that the
conditions in Lemma 3.3.5 of V&W [22] are satisfied, and thus the stochastic
condition in Theorem 3.3.1 of V&W [22] is satisfied. This together with Lemmas 4
and 7 shows that all the other conditions in Theorem 3.3.1 of V&W [22] are
satisfied. Thus

√
M

(
θ̂M − θ0

) = − (
Ψ̇(θ0)

)−1√
M (ΨM − Ψ ) (θ0)+ op (1)

on l∞
(
Hp

)
.

Theorem 3 (Asymptotic Normality)
√
M

(
θ̂M − θ0

)
converges weakly to a tight

Gaussian process g ≡ −Ψ̇−1
(θ0)

W on l∞
(
Hp

)
with mean zero and covariance

process

cov
(
g (h) , g

(
h̃
))

= hT1 σ
−1
1

(
h̃
)
+hT2 σ

−1
2

(
h̃
)
+hT3 σ−1

3

(
h̃
)
+
∫ τ

0
h4σ

−1
4

(
h̃
)
dΛ10+

∫ τ

0
h5σ

−1
5

(
h̃
)
dΛ20,

where
(
h, h̃

)
is in H∞, and

(
σ−1

1 , σ−1
2 , σ−1

3 , σ−1
4 , σ−1

5

)
= σ−1 : H∞ → H∞ is

the inverse of (σ1, σ2, σ3, σ4, σ5).

We omit this proof, because it can be proved using the same arguments in proving
the “Asymptotic normality” of Cox-gene model in [2].
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3.4 A Profile Likelihood Theory for the Estimation of β

In this subsection, we present a profile likelihood theory for β = (
β1,β2

)
, focusing

our attention on the estimation of β. One motivation of using profile likelihood
theory is to prove the asymptotic normality and efficiency of the NPMLE of β. Also,
we provide variance estimation of the NPMLE of β through the profile likelihood
and an algorithm to calculate the variance estimator. The corresponding efficient
score function, the efficient Fisher information, and the asymptotic normality
of

(
β̂1M, β̂2M

)
are established. We also apply the theory of observed profile

information, developed in [11, 12], to obtain a consistent estimator of the asymptotic
variance.

For h ∈ H∞, let
(
σ−1

12 (h)
)T =

((
σ−1

1 (h)
)T

,
(
σ−1

2 (h)
)T

)

, and ei be the

D (≡ 2d)-dimensional column vector with 1 in the ith position and zeros elsewhere.
Define the D ×D matrix Σ by

Σ−1 =
(
σ−1

12 (e1, 0, 0, 0) , σ−1
12 (e2, 0, 0, 0) , · · · , σ−1

12 (eD, 0, 0, 0)
)
.

We note that Σ is positive definite and symmetric (see Appendix 3).
Also, l12,θ [h1,h2] (X1, E1,Z1 ·O1,O1) = l1,θ [h1] (X1, E1,Z1 ·O1,O1) +

l2,θ [h2] (X1, E1,Z1 ·O1,O1) for h1,h2 ∈ #d . Viewing
(
hT1 ,h

T
2

)
as a

D-dimensional row vector, we can consider l12,θ [·] (X1, E1,Z1 ·O1,O1) a D-
dimensional column vector and abbreviate it as l12,θ .

Define

π3 = −Σ

⎛

⎜
⎜
⎜
⎝

σ−1
3 (e1, 0, 0, 0)T

σ−1
3 (e2, 0, 0, 0)T

...

σ−1
3 (eD, 0, 0, 0)T

⎞

⎟
⎟
⎟
⎠

D×J

;

π4 = −Σ

⎛

⎜
⎜
⎜
⎝

σ−1
4 (e1, 0, 0, 0)
σ−1

4 (e2, 0, 0, 0)
...

σ−1
4 (eD, 0, 0, 0)

⎞

⎟
⎟
⎟
⎠

D×1

;π5 = −Σ

⎛

⎜
⎜
⎜
⎝

σ−1
5 (e1, 0, 0, 0)
σ−1

5 (e2, 0, 0, 0)
...

σ−1
5 (eD, 0, 0, 0)

⎞

⎟
⎟
⎟
⎠

D×1

.

Then we have the following lemmas concerning the efficient score function and the
efficient Fisher information; see also [21].

Lemma 8 The efficient score function for the estimation of β = (
β1,β2

)
is

l̃0 = l12,θ0 −
(
l3,θ0 [π3]+ l4,θ0 [π4]+ l5,θ0 [π5]

)
.
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Lemma 9 Σ = El̃0 l̃
T
0 .

Lemmas 8 and 9 can be proved using the same ways in proving Lemmas 5.1 and
5.2 of Chang et al. [2], we hence omit.

Then, setting h = σ−1 (ek, 0, 0, 0) in Lemma 7, we obtain

ek
√
M

(
β̂M − β0

)

= √M (PM − P0)

⎛

⎝
5∑

j=1

lj,θ0

[
σ−1
j (ek, 0, 0, 0)

]
(Xi, Ei,Zi ·Oi,Oi)

⎞

⎠+ op (1)

= √M (PM − P0)
(
eTk Σ

−1 l̃0

)
+ op (1) ,

which means that
√
M

(
β̂M − β0

) = Σ−1
√
M (PM − P0) l̃0 + op (1) . (9)

It follows from (9) that
√
M

(
β̂M − β0

)
has asymptotic variance Σ−1, which is

proved in Appendix 4. Therefore,Σ is called the efficient Fisher information matrix.
Because the exact from of Σ−1 is very complex, we apply the theory of observed
profile information to obtain a consistent estimate of the asymptotic variance. First
we introduce the least favourable submodel. For ζ ∈ #D , we define

p (ζ , θ) = p +
(
(β − ζ )T π3

)T
,

Λ1 (ζ , θ; t) =
∫ t

0

(
1+ (β − ζ )T π4

)
(u) dΛ1 (u) ,

Λ2 (ζ , θ; t) =
∫ t

0

(
1+ (β − ζ )T π5

)
(u) dΛ2 (u) .

Given θ , the path ζ %→ (ζ ,p (ζ , θ) ,Λ1 (ζ , θ; ·) ,Λ2 (ζ , θ; ·)) defines a para-
metric submodel, referred to as the submodel indexed by θ . Its log likelihood
for the data (X1, E1,Z1 ·O1,O1) is denoted by l (ζ , θ;X1, E1,Z1 ·O1,O1) ≡
logL1 (ζ ,p (ζ , θ) ,Λ1 (ζ , θ; ·) ,Λ2 (ζ , θ; ·) ;X1, E1,Z1 ·O1,O1) . Denote by l̇

and l̈ the first and second derivatives of l in ζ , respectively.
Thus, the score function at ζ of the submodel indexed by θ , denoted by l̇ (ζ , θ),

is equal to

l12,(ζ ,p(ζ ,θ),Λ1(ζ ,θ;·),Λ2(ζ ,θ;·)) − l3,(ζ ,p(ζ ,θ),Λ1(ζ ,θ;·),Λ2(ζ ,θ;·)) [π3]

− (
l4,(ζ ,p(ζ ,θ),Λ1(ζ ,θ;·),Λ2(ζ ,θ;·)) [π4]+ l5,(ζ ,p(ζ ,θ),Λ1(ζ ,θ;·),Λ2(ζ ,θ;·)) [π5]

)
.

Hence,

l̇
(
β0, θ0

) = l̃0,
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which implies that the score function at ζ = β0 of the submodel indexed by
θ0 =

(
β10,β20,p0,Λ10,Λ20

)
is equal to the efficient score function l̃0. Denote

by Iθ (ζ , θ) the Fisher information matrix at ζ of the submodel indexed by θ . Then

Iθ
(
β0, θ0

) = −El̈ (β0, θ0
) = El̇

(
β0, θ0

)
l̇
(
β0, θ0

)T = E
(
l̃0 l̃

T
0

)
= Σ.

Denote the profile likelihood function for β by pLM (β), which is equal to

pLM (β) = sup
p∈P,Λ1∈L∗,Λ2∈L∗

LM (β,p,Λ1,Λ2) .

Theorem 4 (Expansion of Profile Likelihood) For every random sequence βM
that converges to β0 in probability,

logpLM
(
βM

)− logpLM
(
β0

)
(10)

= (
βM − β0

)T
M∑

i=1

l̃0 (Xi, Ei,Zi ·Oi,Oi)− 1

2
M

(
βM − β0

)T
Σ

(
βM − β0

)

+op
(√

M

∥
∥
∥
(
βM − β0

)T
∥
∥
∥+ 1

)2

We omit the proof of Theorem 4 because the detail of the proof is long and can be
proved using the same argument in proving “Observed profile information” property
of Cox-gene model of Chang et al. [2, 3].

Utilizing the consistency of β̂M given in Theorem 2, the invertibility of the
efficient Fisher information matrix Σ , and the second order expansion of the profile
likelihood (10), we obtain the following theorems following immediately from the
profile likelihood theory of Murphy and van der Vaart [12].

Theorem 5 The NPMLE β̂M =
(

β̂1M

β̂2M

)

is asymptotically normal and asymptoti-

cally efficient at θ0; that is

√
M

(
β̂M − β0

) = Σ−1
√
MPMl̃0 + op (1)

d−→ N
(

0,Σ−1
)
.

3.4.1 A Consistent Estimator of the Asymptotic Variance for β

Theorem 6 For all sequences υM
p−→ υ ∈ #D and ωM

p−→ 0 such that
(√

MωM

)−1 = Op (1),

−2
logpLM

(
β̂M + ωMυM

)− logpLM
(
β̂M

)

Mω2
M

p−→ υT Συ. (11)
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Using (11), we can obtain that

−1

Mω2
M

[
logpLM

(
β̂M + ωMei + ωMej

)+ logpLM
(
β̂M

)]

+ 1

Mω2
M

[
logpLM

(
β̂M + ωMei

)+ logpLM
(
β̂M + ωMej

)]
.

converges in probability to the (i, j)th entry of Σ .
To compute the profile log-likelihood, we perform the following iterative algo-

rithm [3]. Let P (θ), L1 (θ) (t), and L2 (θ) (t) denote respectively the right-hand
side of Eqs. (6) and (7), and

logpLM (β) = sup
p∈P,Λ1∈L∗,Λ2∈L∗

lM (β,p,Λ1,Λ2) ,

the algorithm consists of the following steps:

(1) Set q = 0 and choose a starting value
(
p(0), Λ

(0)
1 ,Λ

(0)
2

)
and set

log_profile_likelihood(0) = lM

(
β1,β2,p

(0), Λ
(0)
1 ,Λ

(0)
2

)
.

(2) p(q+1) = P
(
β1,β2,p

(q),Λ
(q)
1 ,Λ

(q)
2

)
.

(3) Λ
(q+1)
1 (t) = L1

(
β1,β2,p

(q+1), Λ
(q)
1 ,Λ

(q)
2

)
(t) .

(4) Λ
(q+1)
2 (t) = L2

(
β1,β2,p

(q+1), Λ
(q+1)
1 ,Λ

(q)
2

)
(t) .

(5) Set q = q+1. and log_profile_likelihood(q+1) = lM

(
β1,β2,p

(q+1), Λ
(q+1)
1 ,

Λ
(q+1)
2

)

(6) Repeat steps (2)–(5) until q = Q when there is evidence of convergence. Then

we set logpLM (β) to be lM
(
β1,β2,p

(Q),Λ
(Q)
1 ,Λ

(Q)
2

)
.

Furthermore, we compute the variance estimator of β,

(1) Given the NPNLE β̂M .

(2) Denote e1 = (1, 0, · · · , 0)T , e2 = (0, 1, 0, · · · , 0)T , · · · , eD = (0, · · · , 0, 1)T ,
and set ωM = 1√

M
.

(3) The (i, j)th-entry of Σ̂ is

−1

Mω2
M

[
logpLM

(
β̂M + ωMei + ωMej

)+ logpLM
(
β̂M

)]

+ 1

Mω2
M

[
logpLM

(
β̂M + ωMei

)+ logpLM
(
β̂M + ωMej

)]
.
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4 Simulation Study

In the simulation study, we would like to investigate the performances of the
proposed NPMLE analysis, and compared them with those from the WPL analysis
and the “Full cohort” analysis assuming that all data are observed for the full cohort
and then the Cox regression is performed with the full data.

4.1 Multiple Outcomes with Time Matching

In this subsection, we consider the simulation study under the NCC sampling with
two competing events and with a cohort of size 2000. The cause-specific hazards
functions for the two event times follow the Cox’s proportional hazards models

λ1 ( t | z, y) = λ01 exp
(
zT β1

)
;

λ2 ( t | z, y) = λ02 exp
(
zT β2

)
.

Here (λ01, λ02) = (0.15, 0.3), the log-relative risk β1 = (0.5,−0.5)T , β2 =
(−1, 1)T , and the two covariates (Z1, Z2) jointly follow a standard bivariate normal
with correlation corr (Z1, Z2) = 0.5. The censoring time distribution follows a
uniform U(0, 1) distribution. We randomly sample one subject from the risk set as
a control when a case arises. Simulations are based on 200 simulated cohorts. The
mean numbers of the two endpoints are 145 and 349, respectively, and the mean
number of sampled subjects is 836 over 200 simulations.

4.2 Multiple Outcomes with Stratified Matching

The setup in this simulation is similar to that in the previous one, except that here
data on an additional covariate Y are observed for all subjects in the cohort. The
cause-specific hazards functions of the two events follow the Cox’s proportional
hazards models

λ1 ( t | z, y) = λ01 exp
(
yT η1 + zT β1

)
;

λ2 ( t | z, y) = λ02 exp
(
yT η2 + zT β2

)
.

Here (λ01, λ02) = (0.1, 0.35), β1 = (0.5,−0.5)T ,β2 = (−0.8, 0.8)T , and the
always observed covariate Y follows a Bernoulli(0.5) distribution and its effects
(η1, η2) = (1,−1). Given Y = y, the covariates (Z1, Z2) follow independent
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normal distributions with means of 0.5(y+1) and variances of 1. When a case occurs,
we randomly sample one control from the risk set with the same value of Y as the
case has, i.e., the case and control are matched on their Y value. The mean numbers
of the two endpoints are 197 and 303, respectively, and the mean number of sampled
subjects is 844 over 200 simulations.

4.3 Results

The simulation results are summarized as Mean est., which is mean of the estimates
over simulations, Mean est. se, which is mean of estimated standard errors over
simulations, sd est. se, which is standard deviation of estimated standard errors
over simulations, Emp. Se, which is empirical standard deviation of the estimates
over simulations, and CP, which is the converge probability of the 95% confidence
intervals over simulations based on the normal approximation.

From Tables 1 and 2, we can see that most of the differences between Mean est.
se and Emp. se are less than twice of sd est. se for the NPMLE approach, and the
CP values for the NPMLE approach are close to 0.95, implying that the proposed
standard error formula (11) and the normal approximation perform well. Also, the
values of Mean est. se and Emp. se for the NPMLE approach are smaller than those
of the WPL approach, implying that the NPMLE approach is more efficient than
WPL approach. In addition, our further simulation reveals that the MI approach
is sensitive to the assumed covariate distribution. When the covariate distribution
is misspecified in the MI procedure, the bias for the regression parameter may be
unacceptably large (results not shown).

5 Example: Application to Liver Cancer in Type 2
DM Patients

Both diabetes mellitus and cancer are common diseases for humans; and both occur
more frequently in the same individual. DM has been found to be associated with
an increased risk of cancers of liver, pancreas and endometrium [23]. Thiazolidine-
diones (TZDs), including pioglitazone and rosiglitazone, are often used to treat type
2 DM patients. We would like to investigate the relative risks of liver and lung
cancers in type 2 DM patients who received the TZDs treatment (pioglitazone or
rosiglitazone) compared with those type 2 DM patients who did not receive the
TZDs treatment.

By analyzing the 2000 Longitudinal Health Insurance Database (LHID) based
on the Taiwan National Health Insurance Research Database (NHIRD), we first
selected 7851 newly diagnosed diabetic patients without cancer between January
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Table 1 Simulation results for the full cohort, WPL, and NPMLE methods in the first simulation
study (Sect. 4.1)

Mean est. se

Method Mean est. (sd est. se) Emp. se CP (%)

Event1
Full cohort

β11 0.4922 0.0996(0.0050) 0.1014 94.5

β12 −0.4889 0.0995(0.0046) 0.0997 93.0

WPL

β11 0.4914 0.1134(0.0081) 0.1115 95.5

β12 −0.4920 0.1141(0.0098) 0.1129 95.0

NPMLE

β11 0.4907 0.1118(0.0058) 0.1085 95.0

β12 −0.4906 0.1113(0.0057) 0.1092 94.5

Event2
Full cohort

β21 −1.0074 0.0671(0.0023) 0.0639 97.5

β22 1.0085 0.0670(0.0023) 0.0701 93.0

WPL

β21 −1.0176 0.0872(0.0079) 0.0889 94.5

β22 1.0172 0.0872(0.0079) 0.0912 92.0

NPMLE

β21 −1.0093 0.0815(0.0036) 0.0782 95.5

β22 1.0108 0.0815(0.0038) 0.0817 94.5

1, 2000 and December 31, 2000. These patients then were followed from the DM
diagnosed dates to the earliest of lung or liver cancer diagnosis, dropout, or the date
of December 31, 2010.

During the follow-up period, 251 and 206 of the 7851 subjects were identified
as liver and lung cancer patients, respectively. In addition to the covariates corre-
sponding to TZDs treatment groups (none, pioglitazone, and rosiglitazone, with the
none-TZDs treatment used as the baseline group), we also consider the covariate
corresponding to the presence or absence of the chronic liver disease, and that of
the chronic lung disease.

Our analysis is based on competing risks consisting of two competing events
of liver cancer and lung cancer, with the cause specific hazards for the two events
given by Cox’s proportional hazards models. At each time where a liver cancer or
lung cancer case arose, we randomly sampled 2 subjects from the risk set, i.e., the
subjects had not experienced either liver cancer or lung cancer by the time where
the case arose, so that the controls were matched on time for the case. A total of
1277 subjects, including the cases and controls, were selected as the NCC sample.
The covariate values were observed in the NCC sample, but were missing outside the
NCC sample. The hazard ratio parameters of the proportional cause-specific hazards
models based respectively on the partial likelihood using only the NCC data, the
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Table 2 Simulation results for the full cohort, WPL, and NPMLE methods in the second
simulation study (Sect. 4.2)

Mean est. se

Method Mean est. (sd est. se) Emp. se CP (%)

Event1
Full cohort

η1 0.9939 0.1676(0.0081) 0.1622 97.0

β11 0.5074 0.0738(0.0030) 0.0787 94.0

β12 −0.5037 0.0738(0.0033) 0.0665 97.0

WPL

η1 1.0040 0.1959(0.0098) 0.1713 97.5

β11 0.5150 0.0915(0.0066) 0.0960 94.0

β12 −0.5177 0.0913(0.0066) 0.0922 95.5

NPMLE

η1 1.0010 0.1744(0.0126) 0.1630 93.5

β11 0.5086 0.0874(0.0051) 0.0899 96.0

β12 −0.5048 0.0871(0.0050) 0.0970 94.0

Event2
Full cohort

η2 −1.0073 0.1320(0.0048) 0.1286 95.5

β21 −0.8088 0.0619(0.0027) 0.0712 89.5

β22 0.8064 0.0615(0.0026) 0.0628 94.0

WPL

η2 −1.0154 0.1686(0.0081) 0.1604 95.0

β21 −0.8167 0.0792(0.0068) 0.0889 91.5

β22 0.8086 0.0784(0.0060) 0.0815 93.5

NPMLE

η2 −1.0160 0.1454(0.0083) 0.1460 96.5

β21 −0.8138 0.0744(0.0041) 0.0835 88.5

β22 0.8023 0.0737(0.0039) 0.0773 94.0

conditional logistic regression (CLR, 20), the WPL, and the NPMLE, adjusted for
chronic liver and lung diseases, were assessed. We note that the CLR approach is a
traditional method used to analyze NCC data.

According to the results of Table 3, we see that all the methods considered
identify pioglitazone as a significant protecting factor, and the presence of chronic
liver disease as a significant risk factor, for the incidence of liver cancer among
type 2 DM patients. The effect of rosiglitazone on the incidence of liver cancer
is insignificant, while the effect of the presence of chronic lung disease on the
incidence of liver cancer is marginal. Also, we see that pioglitazone is a significant
protecting factor for the incidence of lung cancer, while the presence of chronic lung
disease is a significant risk factor. The effects of rosiglitazone and the chronic liver
disease on the incidence of lung cancer are not statistically significant.
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Table 3 Liver and lung cancers in type 2 DM patients: coefficient estimates (p-value)

Parameters CLR.β(p-value) WPL.β(p-value) NPMLE.β(p-value)

Liver cancer
Chronic liver diseases 0.681(1.0e−04) 0.704(2.1e−06) 0.706(1.7e−06)

Chronic lung diseases 0.417(3.5e−02) 0.301(7.2e−02) 0.310(6.1e−02)

Pioglitazone −1.530(2.6e−06) −1.380(4.2e−06) −1.387(3.9e−06)

Rosiglitazone −0.402(0.1080) −0.301(0.1630) −0.296(0.1680)

Lung cancer
Chronic liver diseases −0.223(0.2806) −0.238(0.1790) −0.234(0.1840)

Chronic lung diseases 0.715(4.0e−04) 0.763(4.4e−06) 0.762(4.5e−06)

Pioglitazone −1.226(8.0e−04) −1.351(3.0e−05) −1.356(3.0e−05)

Rosiglitazone −0.259(0.3606) −0.475(0.0490) −0.466(0.0536)

The conditional logistic regression (CLR) approach to the NCC data

Liver Cancer Lung Cancer
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Fig. 1 Predicted cumulative incidence functions for liver and lung cancers with and without TZDs

Figure 1 shows the predicted CIFs of liver and lung cancers based on the NPMLE
for type 2 DM patients with TZDs treatment versus those without any TZDs
treatments, in the absence of both chronic liver and lung diseases. From Fig. 1, we
clearly observe the pattern of a significant rise in the CIFs of liver and lung cancers
for patients without taking TZDs.

6 Discussion

We develop the full likelihood approach for the case-cohort and nested case-control
designs with multiple competing events under the Cox’s regression model. We
present a self-consistency iterative algorithm for the computation of NPMLE and
its variance estimator. Large sample theory for the NPMLE under the competing
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risks case-cohort/nested case-control designs is derived. We show by simulation
studies that the proposed NPMLE performs better than the WPL estimator, which is
as expected since the former method utilizes all the available data in the cohort while
the latter method does not. In addition, we derive the predicted cumulative incidence
functions for the multiple competing risks under the case-cohort/nested case-
control designs, together with the corresponding pointwise confidence intervals and
simultaneous confidence bands.

Although we only consider right-censored competing risks data in this paper,
our method can be extended naturally to left-truncated data, in a manner similar to
Saarela et al. [14]. One limitation of our NPMLE method is that it cannot handle
time-dependent covariates. The extension of the NPMLE method to general time-
dependent covariate data deserves further studies. In general, such an extension
requires full histories for the time-dependent covariates of the cases and controls.

In this work we focus on the cause-specific models for competing risks. The
alternative modeling strategies, such as the subdistribution hazard regression [6]
and the mixture regression [3] are available for analyzing competing risks data. It is
worthwhile to develop the NPMLE for these alternative models for competing risks
data under the case-cohort/nested case-control designs.

Finally, the case-cohort and nested case-control designs have been popular
strategies for reducing the costs of exposure assessment in cohort studies. Although
the likelihood approach in such designs for the estimation of exposure effect is
statistically efficient, it is in fact not widely used in practice, partly due to the
computational burden [8]. We have developed computer software (R package)
for implementing the NPMLE in the case-cohort and nested case-control designs
that can accommodate multiple competing risks events. We hope that such a
development will be useful for efficient inference in cost-effective epidemiologic
studies conducted by case-cohort and nested case-control designs.

Acknowledgements We are very grateful to the Editors and referees for their very valuable
comments that helped to improve the manuscript.

Appendix 1: Proof of Lemma 1

PMl2,
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β
(q)
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μTi p
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)T and
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Λ
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J β
(q)
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)
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Setting h2 = (0, · · · , 0, 1, 0, · · · ,−1)T , having the lth and Jth coordinate equal to
1 and −1 respecting and all the other coordinates being 0, we know

M∑

i=1

{

I(oi=1)

(
μi,l

μT
i

p

)

+I(oi=0)

(
φi,l

φT
i
p

)}

=
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p

)

+I(oi=0)
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φi,J

φT
i

p
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.

Then

M∑

i=1

[
I(oi=1)IZi=W l

+ I(oi=0)αil
] = pl
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i=1
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I(oi=1)

(
IZi=W J

pJ

)

+ I(oi=0)

(
αiJ

pJ

)}

.

Straight-forward simplification shows that

M=
J∑

l=1

M∑

i=1

[
I(oi=1)IZi=W l

+ I(oi=0)αil
]=

M∑

i=1

{

I(oi=1)

(
IZi=W J

pJ

)

+I(oi=0)

(
αiJ

pJ
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,

then we get that

pl = 1

M

M∑

i=1

[
I(oi=1)IZi=W l

+ I(oi=0)αil
]
.

This shows that

p =
(

1

M
1T α (p)

)T
,

and the proof is complete.
Making use of Lemma 1, we define

p(q+1) =
(

1

M
1T α

(
p(q)

))T
.

Appendix 2: Proof of Lemma 6

For any h ∈ Hp. If we can show that φθ ,h is continuous at θ0, then we have, for
arbitrary ε > 0, there is some δ = δ (ε, θ0) > 0 such that

∥
∥φθ ,h − φθ0,h

∥
∥ < ε

whenever ‖θ − θ0‖ < δ. Hence, whenever ‖θ − θ0‖ < δ,

∣
∣
∣E

(
φθ ,h − φθ0,h

)2
∣
∣
∣ ≤ E

∥
∥φθ ,h − φθ0,h

∥
∥2 ≤ ε2,
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which means that E
(
φθ ,h − φθ0,h

)2 → 0 as θ → θ0 for any h ∈ Hp. Thus,

sup
h∈Hp

E
(
φθ ,h − φθ0,h

)2 → 0

as θ → θ0.

Now, we want to show that φθ ,h is continuous at θ0, for any h ∈
Hp. It is clearly that the following functions exp

(
ZT

1 βk
)
, exp

(
W T

j βk

)
,

exp
(
−∑2

k=1 Λk (X1) exp
(
W T

j βk

))
and pr

(
Z1 = W j |T1 ≥ X1

)
are continuous

and we know
∑J

j=1 exp
(
−∑2

k=1 Λk (X1) exp
(
W T

j βk

))
pj is bounded and

bounded away from zero. Finally, we may see that
∫ X1

0 h (t) dΛk (t) is continuous
at Λk0, since

sup
h∈BV [0,τ ]

∫ τ

0
|h (t)| d |Λk (t)−Λk0 (t)| ≤ c

∫ τ

0
d |Λk (t)−Λk0 (t)| ,

we know ‖Λk −Λk0‖V → 0, which means

∫ τ

0
d |Λk (t)−Λk0 (t)| =

∫ τ

0

∣
∣(Λk (t)−Λk0 (t))

/
∣
∣ dt → 0.

This completes the proof.

Appendix 3: � is Positive Definite and Symmetric

(i) Σ is positive definite.
(ii) Σ is symmetric.

Proof of (i) Note that Σ−1=
(
σ−1

12 (e1, 0, 0, 0) , σ−1
12 (e2, 0, 0, 0) , · · · , σ−1

12

(eD, 0, 0, 0)). Here we want to show Σ−1 is positive definite. Let h12 =
(y1, y2, · · · , yD)T be given. Consider

hT12Σ
−1h12

= y1σ
−1
12 (e1, 0, 0, 0)1 y1 + y2σ

−1
12 (e1, 0, 0, 0)2 y1 + · · · + yDσ

−1
12 (e1, 0, 0, 0)D y1

+y1σ
−1
12 (e2, 0, 0, 0)1 y2 + y2σ

−1
12 (e2, 0, 0, 0)2 y2 + · · · + yDσ

−1
12 (e2, 0, 0, 0)D y2

+ · · ·
+y1σ

−1
12 (eD, 0, 0, 0)1 yD + y2σ

−1
12 (eD, 0, 0, 0)2 yD + · · · + yDσ

−1
12 (eD, 0, 0, 0)D yD
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= y1σ
−1
12 ((y1, y2, · · · , yD) , 0, 0, 0)1 + y2σ

−1
12 ((y1, y2, · · · , yD) , 0, 0, 0)2

+ · · ·
+yDσ−1

12 ((y1, y2, · · · , yD) , 0, 0, 0)D

= hT12σ
−1
12 (h12, 0, 0, 0) > 0,

for h12 nonzero. This completes the proof.

Proof of (ii) We want to show that Σ−1 is symmetric. Fix i. Choose h
′

such
that Let h

′
1 = σ−1

1 (ei , 0, 0, 0), h
′
2 = σ−1

2 (ei , 0, 0, 0), h
′
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3 (ei , 0, 0, 0),
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5 = σ−1

5 (ei , 0, 0, 0). Choose h such that
h1 = σ−1
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from (8), we can obtain

σ1 (h)
T h

′
1 + σ2 (h)

T h
′
2 + σ3 (h)

T h
′
3

+
∫ τ

0
σ4 (h) (t)h

′
4 (t) dΛ10 (t)+

∫ τ

0
σ5 (h) (t)h

′
5 (t) dΛ20 (t)

= eTk σ
−1
12 (ei , 0, 0, 0) .

σ1

(
h
′)T

h1 + σ2

(
h
′)T

h2 + σ3

(
h
′)T

h3

+
∫ τ

0
σ4

(
h
′)
(t)h4 (t) dΛ10 (t)+

∫ τ

0
σ5

(
h
′)
(t)h5 (t) dΛ20 (t)

= eTi σ
−1
12 (ek, 0, 0, 0) .

Hence eTk σ
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12 (ei , 0, 0, 0) = eTi σ

−1
12 (ek, 0, 0, 0). This completes the proof.

Appendix 4:
√
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This completes the proof.

Appendix 5: Two Results Due to V&W [22]

We quote two important results used in this paper.

Theorem 3.3.1 of V&W [22] Let Ψn and Ψ be random maps and a fixed map,
respectively, from Θ into a Banach space such that

√
n (Ψn − Ψ )

(
θ̂n
)−√n (Ψn − Ψ ) (θ0) = op∗

(
1+√n ∥∥θ̂n − θ0

∥
∥
)
,

and such that the sequence
√
n (Ψn − Ψ ) (θ0) converges in distribution to a tight

random element Z. Let θ → Ψ (θ) be Fréchet differentiable at θ0 with a contin-
uously invertible derivative Ψ̇0. If Ψ (θ0) = 0, θ̂n satisfies Ψn

(
θ̂n
) = op∗

(
n−1/2

)
,

and converges in outer probability to θ0, then

√
nΨ̇θ0

(
θ̂n − θ0

) = −√n (Ψn − Ψ ) (θ0)+ op∗ (1) .

Consequently,
√
n
(
θ̂n − θ0

)→−Ψ̇−1
θ0
Z.

In the case of independent and identically distributed observations, the theorem
may be applied with Ψn (θ) h = Pnφθ,h and Ψ (θ) h = Pφθ,h for given
measurable functions φθ,h, indexed by Θ and arbitrary index set H . In this case,√
n (Ψn − Ψ ) (θ) = {

Gnφθ,h : h ∈ H
}

is the empirical process indexed by the
classes of functions

{
φθ,h : h ∈ H

}
.
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Lemma 3.3.5 of V&W [22] Suppose that the class of functions

{
φθ,h − φθ0,h : ‖θ − θ0‖ < δ, h ∈ H}

is P-Donsker for some δ > 0 and

sup
h∈H

P
(
φθ,h − φθ0,h

)2 → 0

as θ → θ0.
If θ̂n converges in outer probability to θ0, then

∥
∥Gn

(
φθ̂n,h − φθ0,h

)∥
∥
H
= op∗

(
1+√n ∥∥θ̂n − θ0

∥
∥
)
.

Appendix 6: The Conditional Distribution of Z Given Y

In modeling the conditional distribution of Z given Y when Y is of discrete type,
denote the stratified levels of Y as SY = (1, · · · , S) and describe Y by using dummy
variable according to stratified levels.

Assume that there are Js distinct values among the observed covariates under
Y -stratum s and they are denoted by

(
W s1,W s2, · · · ,W sJs

)
. Let 0 ≤ psj ≤ 1 and

∑Js
j=1 psj = 1 be given. Then the conditional distribution fe (Z|SY ) is given by

fe (Z|SY ) =
S∏

s=1

⎡

⎣
Js∑

j=1

psj IZ=W sj

⎤

⎦

I(SY=s)

,

and the corresponding marginal survival function G of T is given by

Ge (t |SY ) =
S∏

s=1

⎡

⎣
Js∑

j=1

(

exp

(

−
K∑

k=1

Λk (t) exp
(
Y T ηk +W T

sjβk

)
))

psj

⎤

⎦

I(SY=s)

.

This approach to modeling the covariate distribution is also taken by Scheike
and Juul [16]. The proposed NPMLE then applies with the conditional covariate
distribution and the marginal survival function of T .

When Y is of continuous type, we can apply kernel smoothing techniques to
obtain the estimate for the conditional density of Z given Y . But this is beyond the
scope of this paper and deserves further research.
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Variable Selection in Partially Linear
Proportional Hazards Model with
Grouped Covariates and a Diverging
Number of Parameters

Arfan Raheen Afzal and Xuewen Lu

Abstract In regression models with a grouping structure among the explanatory
variables, variable selection at the group and within group individual variable
level is desired to improve model accuracy and interpretability. In this article, we
propose a hierarchical bi-level variable selection approach for censored survival
data in the linear part of a partially linear proportional hazards model where the
covariates are naturally grouped. The proposed method is capable of conducting
simultaneous group selection and individual variable selection within selected
groups. Computational algorithms are developed. Rate of convergence, selection
consistency and asymptotic normality of the proposed estimators are established.
Simulation studies indicate that the hierarchical regularized method outperforms
several existing variable selection including LASSO, adaptive LASSO, and SCAD.
Application of the proposed method is illustrated with the primary biliary cirrhosis
(PBC) data.

Keywords Bi-level selection · B-spline · Group variable selection · Partially
linear proportional hazards model · Selection consistency

1 Introduction

The proportional hazards model [7] has been widely used to study the relationship
between multiple covariates and censored event times. The model assumes that the
hazard function of a subject related to the covariates X is given by
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h(t |X) = h0(t) exp
(
β&X

)
, (1)

where h0(t) is an unspecified baseline hazard function, β = (
β1, . . . , βp

)& is

the vector of regression coefficients, and X = (
X1, . . . , Xp

)& is a p-dimensional
covariate vector.

In practice, it is possible that not all covariates are linearly related to the
hazard, i.e., some of them have a nonlinear effect on the hazard. Considering a
purely parametric model is too stringent in this case, while a purely nonparametric
model suffers from the so called “curse of dimensionality”. Partially linear models
(PLMs) in such cases combine the flexibility of nonparametric modeling with
the parsimony and easy interpretability of parametric modeling, and avoid the
curse of dimensionality of a purely nonparametric model [12, 36]. To incorporate
the nonlinear effect of a covariate in a linear model, we consider a partially linear
proportional hazards model (PL-PHM) in the same vein as that of Huang [20]. More
specifically, we assume that the conditional hazard function is given by

h(t |W,X) = h0(t) exp
{
φ(W)+ β&X

}
, (2)

where φ(W) =∑q

m=1 φm(Wm), W = (W1, . . . ,Wq)
& is a q dimensional covariate

vector, φm(·) (m = 1, . . . , q) are unknown possibly nonlinear smooth functions.
This model contains both a nonparametric component φ(W) and a parametric
component β&X. In reality, rarely all covariates are important in predicting the
response, i.e., some components of β are in fact zero. Efficient variable selection in
such cases leads to parsimonious models with better prediction accuracy and easier
interpretation.

In this paper, we investigate the variable selection problem in the linear part of
the PL-PHM given in (2) when covariates in X can be naturally grouped and the
dimension of W is fixed and low. The data and model settings are partly motivated
by cancer prognosis studies reported in [33] and the variable selection method
introduced by Ma and Du [32] in the partly linear accelerated failure time (AFT)
model with diverging dimensions in X for right censored data. In their studies, two
distinct sets of covariates are measured. The first set X represents high-dimensional
genomic measurements such as microarray gene expression or SNPs. The second
set W represents low-dimensional clinical and environmental risk factors. For
better interpretability and easier computation, the effect of X is usually modeled
in a parametric way and the effect of W is modeled with more flexible additive
nonparametric functions, since many biological processes are nonlinear. However,
variable selection based on such model settings mainly focuses on individual
variables such as that in [33]. In some applications, groups of measurements may
be taken in the hopes of capturing unobservable latent variables or of measuring
different aspects of complex entities [4]. Examples include measurements of gene
expression, which can be grouped by gene pathways, and genetic markers, which
can be grouped by the gene or haplotype (a set of genetic determinants located
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on a single chromosome) that they belong to. For example, as Wang et al. [44]
explained, when analyzing microarray gene expression data, one can group genes
into functionally similar sets as in The Gene Ontology Consortium (2000), or into
known biological pathways such as the Kyoto encyclopedia of genes and genomes
pathways [25]. In these settings, methods for individual variable selection may
perform inefficiently by ignoring the information present in the grouping structure,
while making use of the group information, as shown in Wang et al. [44] and [22],
can help to identify both pathways and genes within the pathways related to the
phenotypes, and hence improves understanding of biological processes.

Many variable selection methods originally proposed for uncensored data later
have been extended to the survival models such as the PH model. Examples include
LASSO [42], SCAD [14], adaptive LASSO [50], Elastic Net penalty [39], among
others, where the focus is on individual variable selection. Since grouping structures
are natural in many important practical problems, several authors recently tackled
the problem of variable selection with grouped covariates in the PHM. Ma et al. [34]
proposed supervised group LASSO in an attempt to select important genes and build
predictive model in microarray gene expression data. Kim et al. [26] used group
LASSO in gene data to combine clinical and genomic covariates effectively. In these
group selection methods, covariates belonging to the same group are either selected
or deleted from the model together. However, in gene expression data, a biological
pathway can be related to a certain biological outcome although some genes in that
pathway may not be related to the same biological outcome. A variable selection
method, that can identify important pathways and important genes within important
pathways simultaneously, is much more attractive in this case than selecting the
entire group. Such a method is popularly known as a bi-level selection method and
well studied with uncensored data [3, 4, 15, 23, 40]. Zhou and Zhu [53] proposed a
hierarchically penalized method, which is a special case of the group bridge method
[23] in the linear regression model. Later, Wang et al. [44] extended the hierarchical
penalty to the PHM and established the oracle property of the estimators.

When linear models are extended to partially linear models (PLMs), variable
selection in the linear part of a partially linear model has been extensively studied
for uncensored data. Examples include [24, 29, 31, 35, 45–47, 51], among others.
Relatively fewer works are seen on variable selection in the PL-PHM. Du et al.
[11] performed variable selection in the linear part of a PL-PHM using SCAD
and adaptive LASSO penalty where they approximated the nonparametric function
using smoothing spline ANOVA. Hu and Lian [19] and Lian et al. [28] also
performed variable selection applying SCAD penalty in diverging and ultra-high
dimensional linear covariates in the PL-PHM, respectively. The latter two papers
approximated the nonparametric functions using B-splines. However, all of these
above researchers only considered individual variable selection in the linear part.

To the best of our knowledge, in the literature, group selection has not been
considered for the partially linear survival models, particularly, for the PL-PHM.
To bridge this gap, in this paper, we propose a bi-level variable selection method in
the PL-PHM with a diverging number of covariatesX, assuming a group structure in
the linear part and a fixed and low dimensional W for clinical and/or environmental
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covariates in the nonparametric part. We consider the number of zero coefficients in
X is diverging with the sample size. Typically, although the number of covariates
collected is large, only a subset of covariates are important in predicting the event
times. Therefore, we assume the numbers of non-zero coefficients and non-zero
groups are fixed. Such an assumption is often reasonable with high dimensional
data.

The remainder of the paper is organized as follows. In Sect. 2, we describe the
group variable selection procedure for the PL-PHM. Asymptotic theories and further
improvements are discussed in Sect. 3. Section 4 presents the numerical results.
Concluding remarks are made in Sect. 5. All the technical proofs are contained in
the Appendix.

2 Group Variable Selection in the PL-PHM

Suppose a random sample of n subjects is observed. For the i-th subject, let T ei and
T ci be the event time and the censoring time respectively, where the hazard function
of T ei is given by (2). Assume that T ei and T ci are independent given the covariates,
and the censoring mechanism is noninformative. The true nonparametric functions
and parameters will be denoted using a superscript 0. The i.i.d. observable random
variables are (Ti,&i,Wi,Xi) where Ti = min(T ei , T

c
i ) and &i = I [T ei ≤ T ci ],

I [A] is the indicator function of a set A, Wi =
(
Wi1, . . . ,Wiq

)& ∈ R
q , and Xi =

(
Xi1, . . . , Xip

)& ∈ R
p are the covariates in the nonparametric and the parametric

part, respectively. Define the at-risk processes Yi(t) = I [Ti ≥ t] and the counting
processes Ni(t) = &iI [Ti ≤ t]. Note that, φm is identifiable only up to a constant
and thus we assume E {φm(Wm)} = 0, m = 1, . . . , q.

Following similar strategy of Wang et al. [44], we assume that the p variables in
the linear partX can be divided intoG groups. Let the g-th group have pg variables.

We use Xi,(g) =
(
Xi,g1, . . . , Xi,gpg

)& to denote the pg variables in the g-th group

for the i-th observation, Xi =
(
X&i,(1), . . . , X

&
i,(G)

)&
to denote the total p variables,

and β(g) =
(
βg1, . . . , βgpg

)& to represent the regression coefficients for the g-th
group. We assume that the G groups do not overlap, i.e., each variable belongs to
only one group. Thus, the partially linear proportional hazards model (2) can be
written as

h(t |W,X) = h0(t) exp

⎧
⎨

⎩
φ(W)+

G∑

g=1

pg∑

j=1

βgjXgj

⎫
⎬

⎭

= h0(t) exp
{
φ(W)+ β&(1)X(1) + · · · + β&(G)X(G)

}
. (3)
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Consequently, the partial likelihood is written as

Ln(φ, β) =
∏

i∈D

exp
(
φ(Wi)+∑G

g=1 β
&
(g)Xi,(g)

)

∑
l∈Ri exp

(
φ(Wl)+∑G

g=1 β
&
(g)Xl,(g)

) , (4)

where D is the set of indices of observed failures, Ri is the set of indices of the
subjects who are at risk at time Ti , and φ(Wi) = φ1(Wi1) + · · · + φq(Wiq). The
logarithm of model (4) in counting process notation can be written as

ln(φ, β) =
n∑

i=1

&i

⎧
⎨

⎩
φ(Wi)+

G∑

g=1

β&(g)Xi,(g)

− log
n∑

l=1

Yl(Ti) exp

⎛

⎝φ(Wl)+
G∑

g=1

β&(g)Xl,(g)

⎞

⎠

⎫
⎬

⎭
. (5)

To estimate parameter (φ, β) in the model (3), since φ is an infinitely dimensional
nonparametric function, we use the sieve method in maximizing the log-likelihood
ln(φ, β) with respect to (φ, β), and construct sieve space for φ. To do that, we use
polynomial splines to approximate the nonparametric components. Without loss of
generality, we assume Wm (m = 1, . . . , q) have a common support [0, 1]. For each
non-parametric component φm(Wm), assume τ0 = 0 < τ1 < · · · < τk′ < 1 = τk′+1
partition [0, 1] into subintervals [τk, τk+1), k = 0, . . . , k′, with k′ internal knots.
A polynomial spline of order r is a function whose restriction to each subinterval is
a polynomial of degree r − 1 and globally r − 2 times continuously differentiable
on [0, 1]. The collection of splines with a fixed sequence of knots has a normalized

B-spline basis
{
B̃m1(x), . . . , B̃mk̃(x)

}
with k̃ = k′+r . As φm is identifiable only up

to a constant, we put a centering constraintE{φm(Wm} = 0, and use the subspace of

spline functions: S0
m := {S : S =

∑k̃−1
k=1 αmkBmk(x),

∑n
i=1 S(Wim) = 0} with basis{

Bmk(x) =
√
K(B̃mk(x)−∑n

i=1 B̃mk(Wim)/n), k = 1, . . . , K = k̃ − 1
}

(the sub-

space has a degree = k̃ − 1 due to the normalization constraint
∑k̃

k=1 B̃mk(x) ≡ 1).
The multiplicative constant

√
K is incorporated in the basis definition to simplify

some expression later in the proofs, as done in [43]. Using spline expansions, we can
model the nonparametric components by φm(x) =∑K

k=1 αmkBmk(x), 1 ≤ m ≤ q.
Therefore, the problem of estimating φm is now transformed to the problem of
estimating the coefficients α(m) = (αm1, . . . , αmK)

&.

Let Z = (
B11(W1), . . . , B1K(W1), . . . , Bq1(Wq), . . . , BqK(Wq)

)& denote
the q × K basis functions and α = (α11, . . . , α1K, . . . , αq1, . . . , αqK)

& denote
the corresponding coefficients. Since the m-th nonparametric component can be
approximated by

∑K
k=1 αmkBmk(x) (m = 1, . . . , q), it is reasonable to assume that
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Bm1(x), . . . , BmK(x) are K variables belonging to one group. Therefore, the q×K
variables in Z can be divided into q groups, where each of the m-th group has K
variables. We use Zi,(m) =

(
Bi,m1, . . . , Bi,mK

)&
(m = 1, . . . , q; k = 1, . . . , K)

to denote the K basis functions in the m-th group for the i-th observation. Similarly,

we use Zi =
(
Z&i,(1), . . . , Z

&
i,(q)

)&
to denote the total q × K variables for

the i-th observation, and α(m) = (αm1, . . . , αmK)
& to represent the regression

coefficients for the m-th group. We assume that the number of variables in each
group is K , i.e., we consider the same number of basis functions to approximate
each nonparametric function. To simplify computation, since we have assumed
Wm (m = 1, . . . , q) have the same support [0,1], we can assume Bmk(x) = Bm′k(x)
for m �= m′, 1 ≤ m,m′ ≤ q, 1 ≤ k ≤ K .

The partial likelihood in (5) is then equivalent to

ln(α, β) =
n∑

i=1

&i

⎡

⎣
q∑

m=1

α&(m)Zi,(m) +
G∑

g=1

β&(g)Xi,(g)

− log
n∑

l=1

⎧
⎨

⎩
Yl(Ti) exp

⎛

⎝
q∑

m=1

α&(m)Zl,(m) +
G∑

g=1

β&(g)Xl,(g)

⎞

⎠

⎫
⎬

⎭

⎤

⎦ . (6)

To conduct variable selection in the PL-PHM, Hu and Lian [19] and Lian et al.
[28] considered individual variable selection in the linear part by maximizing the
penalized log partial likelihood objective function for estimating both α and β

defined in the following:

pln(α, β) = 1

n
ln(α, β)−

G∑

g=1

pg∑

j=1

pλn(βgj ),

where pλn(βgj ) is a penalty function. Let (α̂, β̂) be the maximizer of the above
penalized partial likelihood, then, the penalized estimators of φm (m = 1, . . . , q)
and β are φ̂m = ∑K

k=1 α̂mkBmk and β̂, respectively. In this paper, our focus is on
group selection, and the above individual variable selection is a special case of the
following group selection problem.

To conduct group selection, we introduce notations similar to those in Wang et
al.’s [44] procedure. We reparameterize βgj as

βgj = γgθgj (g = 1, . . . ,G; j = 1, . . . , pg),

where γg ≥ 0 for identifiability. This decomposition indicates that all βgj (j =
1, . . . , pg) belong to the g-th group as it treats βgj hierarchically. For each g,
parameter γg explains βgj (j = 1, . . . , pg) at the group level and θgj ’s explain
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differences among individuals within the g-th group. Let θ(g) = (θg1, . . . , θgpg )
&,

then β(g) = γgθ(g). The partial likelihood function thus can be written as

Ln(α, γ, θ) =
∏

i∈D

exp(
∑q

m=1 α
&
(m)Zi,(m) +

∑G
g=1 γgθ

&
(g)Xi,(g))

∑
l∈Ri exp(

∑q

m=1 α
&
(m)Zl,(m) +

∑G
g=1 γgθ

&
(g)Xl,(g))

.

where γ = (γ1, . . . , γG)
& and θ = (θ11, . . . , θ1p1 , . . . , θG1, . . . , θGpG)

&. Let
ln(α, γ, θ) denote log {Ln(α, γ, θ)}. For group selection in the linear part, we
consider maximizing the penalized log partial likelihood given by

max
α(m),γg,θgj

⎧
⎨

⎩

1

n
ln(α, γ, θ)− λγ

G∑

g=1

γg − λθ

G∑

g=1

pg∑

j=1

|θgj |
⎫
⎬

⎭
, (7)

subject to γg ≥ 0 (g = 1, . . . ,G), where λγ ≥ 0 and λθ ≥ 0 are two tuning
parameters, which control the sparsity of the estimation at the group level and within
group level, respectively. Similar to the result in [44] for the linear PHM, for fixed
(α, β) and given values of λγ and λθ , we obtain that the maximizer of (7) with
respect to (γ, θ), where ln(α, γ, θ) is constant, is unique. To simply computation
and theoretical developments, we combine λγ and λθ into one tuning parameter
λ = λγ λθ such that (7) is equivalent to

max
α(m),γg,θgj

⎧
⎨

⎩

1

n
ln(α, γ, θ)−

G∑

g=1

γg − λ

G∑

g=1

pg∑

j=1

|θgj |
⎫
⎬

⎭
, (8)

subject to γg ≥ 0 (g = 1, . . . ,G). Lemma 1 illustrates the meaning of the
equivalence.

Lemma 1 Let (α̂∗, γ̂ ∗, θ̂∗) be a local maximizer of (7). Then there exists a local
maximizer (α̂†, γ̂ †, θ̂†) of (8) such that α̂∗ = α̂† and γ̂ ∗g θ̂∗gj = γ̂

†
g θ̂

†
gj . Similarly,

if (α̂†, γ̂ †, θ̂†) is a local maximizer of (8), then there exists a local maximizer
(α̂∗, γ̂ ∗, θ̂∗) of (7) such that α̂∗ = α̂† and γ̂ ∗g θ̂∗gj = γ̂

†
g θ̂

†
gj .

This lemma indicates that the final fitted models from (7) and (8) are the same,
although they may provide different γg and θgj . This also implies that in practice,
we only need to tune one parameter λ = λγ λθ as in (8), instead of tuning two
parameters λγ and λθ in (7) separately. Actually, as we can see in the proof, λγ is
absorbed into γ̂ † and θ̂†, only λ appears in (8). Both Wang et al. [44] and Zhou and
Zhu [53] proved similar results. Furthermore, criterion (8) can be written into an
equivalent form using the regression coefficients α and β.
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Lemma 2 If (α̂, γ̂ , θ̂ ) is a local maximizer of (8), then (α̂, β̂), where β̂gj = γ̂gθ̂gj ,
is a local maximizer of

max
α(m),βgj

⎧
⎪⎨

⎪⎩

1

n
ln(α, β)− 2λ1/2

G∑

g=1

⎛

⎝
pg∑

j=1

|βgj |
⎞

⎠

1/2
⎫
⎪⎬

⎪⎭
. (9)

On the other hand, if (α̂, β̂) is a local maximizer of (9), then (α̂, γ̂ , θ̂ ) is a local
maximizer of (8), where γ̂g = (λ

∑pg
j=1 |β̂gj |)1/2 and θ̂gj = β̂gj /γ̂g if γ̂g �= 0 and

zero otherwise.

The numerical computation is based on (8) while the proof of asymptotic
properties is based on (9). Instead of using L2-norm which performs group LASSO
[48], we used L1-norm to the within group coefficients in (9). In addition, the
group coefficients are penalized by a bridge-type penalty [16], i.e., L1/2-norm.
So, the hierarchical penalty can remove unimportant groups and some unimportant
variables in the important groups.

To estimate α, γ and θ in (8), we use an iterative algorithm. First, we fix γ and
estimate (α, θ); then fixing θ , we estimate (α, γ ). We iterate between these steps
until convergence is achieved. Precisely, the algorithm is written as

Step 0 Center and normalize Xgj , and obtain an initial value γ (0)g for each γg; for

example, γ (0)g = 1. Let s = 1.

Step 1 At the s-th iteration, let X̃i,gj = γ
(s−1)
g Xi,gj (g = 1, . . . ,G; j =

1, . . . , pg) and obtain estimate (α(s), θ (s)) by

(α(s), θ (s)) =arg max
αsk,θgj

1

n
log

{
∏

i∈D

exp(
∑q

m=1

∑K
k=1 αmkZi,mk +

∑G
g=1

∑pg
j=1 θgj X̃i,gj )

∑
l∈Ri exp(

∑q

m=1

∑K
k=1 αmkZl,mk +

∑G
g=1

∑pg
j=1 θgj X̃l,gj )

}

− λ

G∑

g=1

pg∑

j=1

|θgj |.

Step 2 Let X̃i,g = ∑pg
j=1 θ

(s)
gj Xi,gj (g = 1, . . . ,G) and obtain estimate

(α(s), γ (s)) by

(α(s), γ (s))=arg max
αsk,γg≥0

1

n
log

{
∏

i∈D

exp(
∑q

m=1

∑K
k=1 αmkZi,mk +

∑G
g=1 γgX̃i,gj )

∑
l∈Ri exp(

∑q

m=1

∑K
k=1 αmkZl,mk +

∑G
g=1 γgX̃l,gj )

}

−
G∑

g=1

γg.

In this step, α(s) is updated from α(s) in step 1.

Step 3 Repeat Steps 1 and 2 until α(s), γ (s), and θ(s) converge at them∗-th iteration.
Let α̂ = α(m

∗) and β̂(g) = γ
(m∗)
g θ

(m∗)
(g) be the final solutions.
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Since at each step, the value of objective function (8) is non-decreasing, this
algorithm always converges. Step 1 is a LASSO-type problem without penalizing
α, and the algorithms proposed in [14, 18, 50] or [37] can be used to solve for θ .
Step 2 is a nonnegative garrote algorithm without penalizing α, and we can use Fan
and Li [14] or Yuan and Lin’s [49] algorithm to solve for γ .

3 Asymptotic Theory

3.1 A General Theorem

For theoretical analysis, we will consider the counting process representation of the
partial likelihood. We denote the true risk score by m0(W,X) = φ0(W) + β0&X
where φ0(W) = φ0

1(W1)+· · ·+φ0
q(Wq). Let R& = (W&, X&) be all the covariates

and g, h be any functions of R (h can be vector valued). We define

S(0)n (g, t) = n−1
n∑

i=1

Yi(t) exp[g(Ri)],

S(1)n (g, t)[h] = n−1
n∑

i=1

Yi(t)h(Ri) exp[g(Ri)],

S(2)n (g, t)[h] = n−1
n∑

i=1

Yi(t)h(Ri)
⊗2 exp[g(Ri)],

Gn(g, t)[h] = S(1)n (g, t)[h]/S(0)n (g, t),

Vn(g, t)[h] = S(2)n (g, t)[h]/S(0)n (g, t)−Gn(g, t)[h]G&n (g, t)[h],

where for any vector ξ , ξ⊗2 simply means ξξ&. Let s(0)(g, t) = E(S
(0)
n (g, t)),

s(j)(g, t)[h] = E(S
(j)
n (g, t)[h]), j = 1, 2, G(g, t)[h] = s(1)(g, t)[h]/s(0)(g, t),

V (g, t)[h] = s(2)(g, t)[h]/s(0)(g, t) − G(g, t)[h]G&(g, t)[h]. Also, let Pn be the
empirical measure of (Ti,&i, Ri), 1 ≤ i ≤ n and let P be the probability measure
of (T ,&,R). Let P&n be the empirical subprobability measure of (Ti,&i =
1, Ri), 1 ≤ i ≤ n and let P& be one subprobability measure of (T ,& = 1, R).
It is convenient to use linear functional notation, for example, P&nf =

∫
f dP&n =∫

&fdPn = n−1 ∑
i &if (Ti,&i, Ri) for any f such that this integral is well

defined. Let ‖a‖ denotes the L2 norm of a column vector a. The log partial
likelihood can be rewritten as

ln(α, β) =
n∑

i=1

∫ τ

0

{
ω&Li − log(S(0)n (g, t))

}
dNi(t),
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where ω = (α&, β&)&, Li = L(Ri) = (Z&i , X&i )& is a vector-valued
function of R&i = (W&

i , X
&
i ) and g is a function of R defined by g(R) =

∑q

m=1 α
&
mBm(Wm) + β&X, which contains (α, β), and Zm(Wm) = Bm(Wm) =

(Bm1(Wm), . . . , BmK(Wm))
&. We only consider events over a finite interval [0, τ ].

The score function and the observed information are given by

Un(α, β) =
n∑

i=1

∫ τ

0
{Li −Gn(g, t)[L]} dNi(t),

and

�n(α, β) =
n∑

i=1

∫ τ

0
Vn(g, t)[L]dNi(t),

respectively. We first consider the penalized log partial likelihood function with a
general penalty function. Let the objective function be

Qn(α, β) = 1

n
ln(α, β)−

G∑

g=1

p
(g)
λn
(|β(g)|), (10)

where p(g)λn
(|β(g)|) = p

(g)
λn
(|βg1|, . . . , |βgpg |) is a general pg-variate penalty func-

tion for the linear parameters in the g-th group. The penalty functions p(g)λn
(·) (g =

1, . . . ,G) in (10) vary between groups and depend on the tuning parameter
λn that varies with n. We write the true parameter vector in the sparse lin-

ear part as β0 = (β0&A , β0&B , β0&C )&, where A =
{
(g, j) : β0

gj
�= 0

}
, B =

{
(g, j) : β0

gj
= 0, β0

(g) �= 0
}

, and C =
{
(g, j) : β0

(g) = 0
}

. Here A, B, C contain

the indices of nonzero coefficients, indices of zero coefficients that belong to
nonzero groups, and indices of zero coefficients that belong to zero groups,
respectively. Thus, A, B and C are disjoint and partition the set of all indices of
coefficients. We write D = B∪C, which contains the indices of all zero coefficients.
Let

an = max
(g,j)

⎧
⎨

⎩

∂p
(g)
λn
(|β0

g1|, . . . , |β0
gpg
|)

∂|βgj | : β0
gj �= 0

⎫
⎬

⎭
,

bn = max
(g,j)

⎧
⎨

⎩

∂2p
(g)
λn
(|β0

g1|, . . . , |β0
gpg
|)

∂|βgj |2 : β0
gj �= 0

⎫
⎬

⎭
.
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Lastly, let s be the number of nonzero groups. Without loss of generality, we assume
that β0

(g) �= 0 (g = 1, . . . , s) and β0
(g) = 0 (g = s+1, . . . ,G). Let sg be the number

of nonzero coefficients in group g (g = 1, . . . , s). Again, without loss of generality,
we assume that β0

gj �= 0 (g = 1, . . . , s; j = 1, . . . , sg) and β0
gj = 0 (g =

1, . . . , s; j = sg + 1, . . . , pg).
The following technical conditions are used in the study of asymptotic proper-

ties:

(B1) The covariate vector R& = (W&, X&) has a bounded support: without loss
of generality, the support of W is assumed to be [0, 1]q , with the marginal
density of each covariate in W being continuous and bounded away from zero
and infinity, and the covariate vector X is also bounded.

(B2) (i) Only observations with event or censored event times in a finite interval
[0, τ ] are used in the partial likelihood. At this point τ , the baseline cumulative
hazard function �0(τ ) ≡

∫ τ
0 λ0(s)ds < ∞. (ii) Pr(& = 1|R) and Pr(T c >

τ |R) are both bounded away from zero with probability one.
(B3) Let Hd be the collection of all functions on support [0, 1] whose a-th

order derivative satisfying the Hölder condition of order r with d ≡ a + r .
That is, for each h ∈ Hd , there exists a constant M0 ∈ (0,∞) such that∣
∣h(a)(s)− h(a)(t)

∣
∣ ≤ M0|s−t |r , for any s, t ∈ [0, 1]. Assume ϕ0

m ∈Hd (m =
1, . . . , q), for some d > 1/2. The order of the spline satisfies r > d + 1/2.

(B4) For L = L(R) = (Z&, X&)&, E

{

sup
t∈[0,τ ]

Y (t) ‖L‖2 exp
(
ω&L

)
}

= O(K +
p).

(B5) Let � = ∫ τ
0 V (m0, t)[L]s(0)(m0, t)λ0(t)dt , where m0 = m0(W,X). The

eigenvalues of � are positive and bounded below O(K−1).
(B6) The pg-variate penalty function for parameters in the g-th group satisfies the

following two conditions:

p
(g)
λn
(|β(g)|) ≥ 0 (β(g) ∈ R

pg ), p
(g)
λn
(0) = 0; (11)

p
(g)
λn
(|β(g)|) ≥ p

(g)
λn
(|β∗(g)|) (|βgj | ≥ |β∗gj |; j = 1, . . . , pg). (12)

Similar conditions to those listed above have been considered in the literature
[19, 44] and are quite reasonable. Condition (B1) places the boundedness condition
on the covariates. It is unpleasant, but not too restrictive because in many practical
situations continuous covariates may be typically rescaled to fall between 0 and
1. (B2)(i) avoids the unboundedness of the loss function and pseudo-score functions
at the end point of the support of the observed event time. (B2)(ii) ensures that the
probability of being right censored at τ and the probability of being observed events
are positive and bounded away from zero regardless of the covariate values. (B3)
ensures the uniform continuity of the functions. A condition similar to (B4) was
considered by Bradic et al. [2] for diverging number of parameters. The positive-
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definiteness of � and boundedness of its eigenvalues in (B5) is a reasonable
assumption by the following discussion. The term LL& appears in the definition
of D. We see that

LL& =
(
Z

X

)

(Z&, X&) =
(
ZZ& ZX&
XZ& XX&

)

.

Under mild assumptions, Huang et al.’s [21] Lemma 3 showed that the eigenvalues
ofE(ZZ&) are bounded below and upper from a positive value proportional toK−1,
we can expect that the eigenvalues of E(LL&) are bounded below from a positive
value proportional toK−1 as well if the eigenvalues of E(XX&) are bounded below
away from zero, and Z and X are linearly independent. Wang et al. [44] used the
condition (B6) for hierarchical group variable selection in the PHM. Under these
conditions, to emphasize the dependence on n, in the sequel, we denote Kn ≡ K

and pn ≡ p, we have the following theoretical results.

Theorem 1 Let γn = √(Kn + pn)/n+K−dn . Under the regularity conditions (B1)–
(B6), assume that q, s and sg is fixed, Kn → ∞, pn → ∞, (Kn + pn)/n → 0,
γn(Kn + pn)

3/2 = O(1), an = Op(γn) and bn → 0, as n → ∞, then there

exists a local maximizer (α̂&, β̂&)& in (10) and φ̂m = ∑Kn

k=1 α̂mkBmk , φ̂(w) =
∑q

m=1 φ̂m(wm) such that
∥
∥
∥φ̂ − φ0

∥
∥
∥+

∥
∥
∥β̂ − β0

∥
∥
∥ = Op

(√
(Kn + pn)/n+K−dn

)
.

Theorem 2 Let γn = √(Kn + pn)/n+K−dn and (α̂&, β̂&A, β̂&B, β̂&C )& be the local

maximizer of Qn(α, β) in (10). For (g, j) ∈ D, i.e., β0
gj = 0, under the same

conditions as in Theorem 1, if γ−1
n ∂p

(g)
λn
(|β̂g1|, . . . , |β̂gpg |)/∂|βgj | → ∞ as n →

∞, then we have β̂gj = 0 with probability approaching 1.

In the following section, we show how to construct penalty functions p(g)λn
such

that the conditions in Theorem 2 are satisfied.

3.2 Adaptive Hierarchical Penalty

The results in Theorems 1 and 2 are obtained for a general penalty. Following [44],
here we will show the asymptotic results hold for the hierarchically penalized PL-
PHM based on criterion (9). If we write λn = 2λ1/2 in (9), then based on Theorems 1
and 2 we have

Corollary 1 Let γn = √
(Kn + pn)/n + K−dn . If λn = Op(γn), then there

exists a local maximizer (α̂&, β̂&)& = (α̂&, β̂&A, β̂&B, β̂&C )& for the hierarchically

penalized PL-PHM in (9) such that
∥
∥
∥φ̂ − φ0

∥
∥
∥ +

∥
∥
∥β̂ − β0

∥
∥
∥ = Op (γn); if further

p
−1/2
n γ

−3/2
n λn →∞ as n→∞, then β̂C = 0 with probability tending to 1.
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Comparing Corollary 1 with Theorem 2, we see that although the hierarchical
penalty can effectively remove unimportant groups because β̂C = 0 with probability
approaching to 1, it cannot effectively remove unimportant variables within the
important groups as β̂D = 0 with probability tending to 1 may not hold. To
understand this intuitively, as Zou [54] showed, the Lasso procedure does not in
general have the oracle properties (selection consistency), while adaptive Lasso
is an oracle procedure. In the hierarchical penalty method, we applied the bridge
penalty to L1 norm, it inherits the property of Lasso, which in general does not
have selection consistency at the individual level. To tackle this limitation, we apply
the adaptive idea used in [5, 30, 38, 44, 50, 52, 54, 55], and others, which is to
penalize different coefficients differently. To do so, we maximize the following
objective function

Qw
n (α, β) =

1

n
ln(α, β)− λn

G∑

g=1

⎧
⎨

⎩

pg∑

j=1

wn,gj |βgj |
⎫
⎬

⎭

1/2

, (13)

where wn,gj ’s are pre-specified non-negative weights. The next theorem shows that,
by controlling weights properly, the adaptive hierarchically penalized PL-PHM has
the selection consistency as stated in Theorem 2.

Theorem 3 Let us define

wAn,max = max
{
wn,gj : (g, j) ∈ A}

, wAn,min = min
{
wn,gj : (g, j) ∈ A} ;

wDn,max = max
{
wn,gj : (g, j) ∈ D}

, wDn,min = min
{
wn,gj : (g, j) ∈ D}

.

Let γn = √
(Kn + pn)/n + K−dn . Under the same conditions as assumed in

Theorem 1, if γ−1
n λnw

A
n,max

(
wAn,min

)−1/2 → 0, λn
(
wAn,max

)2 (
wAn,min

)−3/2 →
0, and γ−1

n λnw
D
n,min/(w

A
n,max + wDn,max)

1/2 → ∞ as n → ∞, there exists a local

maximizer (α̂&, (β̂&A, β̂&D))& in (13) such that
∥
∥
∥φ̂ − φ0

∥
∥
∥ +

∥
∥
∥β̂ − β0

∥
∥
∥ = Op (γn)

and β̂D = 0 with probability tending to 1.

Finally, we specify the tuning parameter λn and the weights wn,gj that satisfy
conditions in Theorem 3, which are given by the following corollary.

Corollary 2 Let γn = √
(Kn + pn)/n + K−dn and β̃n be an estimator such that,∥

∥
∥β̃n − β0

∥
∥
∥ = Op(γn). If λn = γn/log(n) and wn,gj = 1/|β̃n,gj |r , where r > 0,

then there exists a local maximizer (α̂&, (β̂&A, β̂&D))& in (13) such that
∥
∥
∥φ̂ − φ0

∥
∥
∥+

∥
∥
∥β̂ − β0

∥
∥
∥ = Op (γn) and β̂D = 0 with probability tending to 1.

In practice, we choose (α̃n, β̃n) = arg maxα,β ln(α, β), the estimator from
the unpenalized score function when p is diverging with n and p < n. From
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Corollaries 1 and 2, we notice that the rates of convergence of the estimators are
the same but the selection performance of the adaptive hierarchically penalized
method is superior to that of the hierarchically penalized method, because the
adaptive method possesses the individual variable selection consistency, while the
non-adaptive method holds only group selection consistency.

In the following theorem, we provide the asymptotic normality of the estimator
for the linear coefficients. Further notation and assumptions are required to obtain
the theorem. To do that, we follow the lines in [19]. Let a∗ and h∗ be R-
valued L2 functions that minimize E{& ‖X − a(T )− h(W) ‖2}. Define �∗ =
E{& ‖X − a∗(T )− h∗(W)‖⊗2}. Then �∗ can be written as

∫ τ
0 V (m0, t)[X −

h∗(W)]S(0)(m0, t)λ0(t)dt , which is thus the information matrix for the linear part
derived by Huang [20]. The p = pn components of h∗ are denoted by h∗j ,
1 ≤ j ≤ pn. We make the following additional assumption:

(B7) All h∗, 1 ≤ j ≤ pn, are in Hd . The eigenvalues of �∗ are bounded away
from zero below and bounded by a positive constant upper.

Theorem 4 Under the same conditions as in Theorem 2, further, (B7) holds and
p3
n/n→ 0, let s∗ =∑s

g=1 sg = the cardinality of the set A, then

√
nν&n �

∗1/2
11 (β̂A − β0A) −→ N(0, 1),

where �∗11 is the s∗ × s∗ principal submatrix of �∗ and νn is a unit s∗-vector.

Theorem 4 indicates that the estimator β̂A for the nonzero coefficients has the
same asymptotic distribution as it would have if the zero coefficients were known in
advance, therefore, it possesses the oracle property of Fan and Li [13].

4 Numerical Results

4.1 Simulation Studies

To evaluate the finite-sample performance of the hierarchically penalized (HP)
method and its adaptive version (AHP) in the PL-PHM, we conducted two
simulation studies. In Example 1, the number of groups is moderately large, the
group sizes are equal and relatively large, and within each group the coefficients are
either all nonzero or all zero. In Example 2, the group sizes vary and there are zero
coefficients in a nonzero group. In each example, we set sample size n = 200 and
baseline hazard functions h0(t) = 1.0. The censoring variable is generated from a
uniform distribution over [0, C0], where C0 is chosen to yield censoring rate = 30%.
For each of these settings, we replicate 500 simulations.
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We compared the results with those based on some existing individual (LASSO,
Adaptive LASSO, SCAD, MCP) and group (Group SCAD or G-SCAD, Group
MCP or G-MCP) variable selection methods developed for linear models. LASSO,
Adaptive LASSO (A-LASSO) and SCAD have been used for variable selection in
the PLMs [19, 32]. The asymptotic theory for G-SCAD and G-MCP under PLMs
has not studied in the literature, we used them only for comparison purpose and
leave the asymptotic theory for future research. We expect that similar results
to those for AHP method will also hold for G-SCAD and G-MCP penalties. In
our simulation studies we used R packages ncvreg and Coxnet for individual
variable selection penalties and grpreg for computing G-SCAD and G-MCP
estimates. We used these penalties for variable selection in the linear part after
linearizing the nonparametric functions φ(·) using B-splines where the tuning
parameter λn is chosen by the built-in fivefold cross validation method. For
computation of our AHP group selection method in the PL-PHM, we used the R
package penalized and R program written by Wang et al. [44] for the linear
PHM, where the tuning parameter λn is chosen to be 10 for HP and 20 for AHP
methods based on a trial and error method. Five performance measures are used to
compare different group selection methods: number of true groups selected (TG),
number of zero group selected (FG), number of true nonzero variables selected
as nonzero (TP), number of true zero variables selected as nonzero (FP), and L2-
prediction error (PE) in the excess risk defined as

∥
∥
∥
{
β̂&Z + φ̂1(W1)+ φ̂2(W2)

}
−

{
β&Z + φ1(W1)+ φ2(W2)

}∥
∥
∥ .

As a benchmark, we compute the oracle estimates, which are obtained by max-
imizing (6) for model (3) which includes only important variables and groups.
To estimate nonparametric functions, we use B-splines, see details in Sect. 2 for
centering the B-splines in general. Specifically, we centered φ1(W1) and φ2(W2)

such that E {φ1 (W1)} = E {φ2 (W2)} = 0. We approximated the nonlinear
functions using cubic B-spline functions. Lian et al. [28] used 5–8 basis functions
in their simulations and found similar results. They reported the results only for 6
basis functions. To ease the computational burden, we also choose K = 6 as the
number of basis functions in B-splines. This choice of K is small enough to avoid
overfitting and big enough to flexibly approximate the smooth functions [6, 17].

Example 1 In this example, there are 7 groups in the linear part, each with 5
covariates, and two nonparametric functions. For the linear covariates, the covariate
vector is X& = (X&1 , . . . , X&7 ). The subvector of covariates that belong to
the same group is X&j = (X5(j−1)+1, . . . , X5(j−1)+5); j = 1, . . . , 7. To generate
the covariates X1, . . . , X35, we first simulate 35 random variables R1, . . . , R35
independently from the standard normal distribution. Then Zj (j = 1, . . . , 7) are
simulated from a multivariate normal distribution with mean zero and an AR(1)
covariance structure such that cov(Zj1, Zj2) = 0.4|j1−j2| for j1, j2 = 1, . . . , 7.
The covariates X1, . . . , X35 are generated as Xj = (Zgj + Rj )/6 (j = 1, . . . , 35),
where gj is the smallest integer greater than (j − 1)/5 and the Xj ’s with the
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same value of gj belong to the same group. Similar correlation structure was
considered in [23]. The nonparametric functions are φ1(W1) = W 2

1 − (25/12)
and φ2(W2) = exp(−W2) − 2 sinh(5/2)/5, where the covariates W ’s are sampled
from U (−2.5, 2.5). Such nonparametric functions were considered in [8] in a
nonparametric additive regression model. The event times in Example 1 are
generated from an exponential distribution with a hazard rate given as follows:

h(t |X,W) = h0(t) exp
{
β&X + φ1(W1)+ φ2(W2)

}
,

where β = (1.2, . . . , 1.2
︸ ︷︷ ︸

5

, 3.6, . . . , 3.6
︸ ︷︷ ︸

5

, 2.4, . . . , 2.4
︸ ︷︷ ︸

5

, 0, . . . , 0
︸ ︷︷ ︸

5

, 0, . . . , 0
︸ ︷︷ ︸

5

, 0, . . . , 0
︸ ︷︷ ︸

5

,

0, . . . , 0
︸ ︷︷ ︸

5

)&.

In this example, there exist three important groups and all variables within each
group are important. This example illustrates that the proposed group selection
methods have the ability to identify important groups.

Example 2 In this example, the group size differs across groups and some
groups have a mixture of important and unimportant variables. There are
seven groups: three groups each of size 8 and four groups each of size 4.
The covariate vector is X& = (X&1 , . . . , X&7 ), where the seven subvectors
of covariates are X&j = (X8(j−1)+1, . . . , X8(j−1)+8), for j = 1, 2, 3, and

X&j = (X4(j−1)+13, . . . , X4(j−1)+16), for j = 4, 5, 6, 7. To generate the covariates
X1, . . . , X40, we first simulate Zi (i = 1, . . . , 7) and R1, . . . , R40 independently
from the standard normal distribution. For j = 1, . . . , 24, let gj be the largest
integer less than j/8 + 1 and, for j = 25, . . . , 40, let gj be the largest
integer less than (j − 24)/4 + 1. The covariates X1, . . . , X40 are obtained as
Xj = (Zgj + Rj )/6 (j = 1, . . . , 40). The nonparametric functions are generated
in the same way as of Example 1. Therefore, the corresponding coefficients in
Example 2 are

β = (1.2, . . . , 1.2
︸ ︷︷ ︸

8

, 3.6, 3.4, 3.2, 3.0, 2.8, 0, 0, 0
︸ ︷︷ ︸

8

, 0, . . . , 0
︸ ︷︷ ︸

8

, 2.4, 0, 0, 0
︸ ︷︷ ︸

4

, 0, . . . , 0
︸ ︷︷ ︸

4

,

0, . . . , 0
︸ ︷︷ ︸

4

, 0, . . . , 0
︸ ︷︷ ︸

4

)&.

This example considers three important groups in a more complex structure than
that in Example 1. These three groups represent three different settings: all variables
within the group are important, many variables within the group are important and
very few variables within the group are important, respectively.

Tables 1 and 2 summarize variable selection results for Examples 1 and 2 by
using the LASSO, A-LASSO, SCAD, MCP, G-SCAD, G-MCP, HP and AHP,
respectively. The first four penalties perform individual variable selection, the
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Table 1 Example 1: Simulation results with median and standard deviations (in parentheses) of
L2-PE, TG, FG, TP and FP over 500 simulations

L2-PE TG FG TP FP

LASSO 18.79 (5.76) 3 (0.00) 4 (0.73) 15 (0.09) 6 (2.49)

A-LASSO 10.45 (3.95) 3 (0.00) 2 (1.16) 15 (0.37) 3 (2.18)

SCAD 11.18 (4.77) 3 (0.00) 2 (1.17) 15 (0.50) 3 (2.50)

MCP 11.24 (4.75) 3 (0.00) 1 (1.14) 15 (0.71) 1 (1.82)

HP 9.39(3.89) 3 (0.00) 2 (0.99) 15 (0.06) 5 (3.27)

G-SCAD 9.45 (4.53) 3 (0.00) 0 (0.75) 15 (0.00) 0 (3.73)

G-MCP 9.42 (4.45) 3 (0.00) 0 (0.39) 15 (0.00) 0 (1.93)

AHP 8.63 (3.67) 3 (0.60) 0 (0.60) 15 (0.22) 0 (1.00)

Oracle 8.87 (4.26) 3 (0.00) NA 15 (0.00) NA

Table 2 Example 2: Simulation results with median and standard deviations (in parentheses) of
L2-PE, TG, FG, TP and FP over 500 simulations

L2-PE TG FG TP FP

LASSO 15.74 (4.68) 3 (0.00) 3 (0.92) 14 (0.08) 7 (2.89)

A-LASSO 10.05 (3.33) 3 (0.00) 2 (1.09) 14 (0.49) 4 (2.45)

SCAD 10.84 (4.10) 3 (0.00) 2 (1.24) 14 (0.66) 3 (2.94)

MCP 10.80 (3.84) 3 (0.00) 1 (1.19) 13 (0.95) 2 (2.05)

HP 10.02 (3.82) 3 (0.00) 2 (1.00) 14 (0.06) 10 (3.84)

G-SCAD 9.73 (4.00) 3 (0.00) 0 (0.67) 14 (0.00) 6 (3.39)

G-MCP 9.55 (4.19) 3 (0.06) 0 (0.36) 14 (0.06) 6 (1.70)

AHP 8.55 (3.27) 3 (0.00) 0 (0.64) 14 (0.28) 2 (1.60)

Oracle 8.14 (3.79) 3 (0.00) NA 14 (0.00) NA

next three perform group variable selection, and AHP performs adaptive bi-level
group selection. From Table 1 we see that the group variable selection methods
perform significantly better than individual variable selection methods with lower
L2-prediction error and chose more important and less unimportant variables.
However, the hierarchical penalty is not performing satisfactorily, it is selecting
more groups and more unimportant variables although it has the second lowest L2-
prediction error. This performance has been significantly improved in the adaptive
version of the penalty, resulting in lowest L2-prediction error, also, the group
and individual variable selection performance is very comparable with the other
group selection penalties, G-SCAD and G-MCP. Nonetheless, the superiority of the
adaptive hierarchical method stood out with a complex grouping structure among
the covariates as shown in Table 2. Here, this penalty not only has the smallest
L2-prediction error but also selects significantly lower number of unimportant
variables than any other group selection penalties. Hence, if there is known grouping
structure available among the covariates, group selection methods are preferable
over individual variable selection methods, furthermore, adaptive bi-level group
selection should be considered over non-adaptive group selection method especially
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Fig. 1 Estimation of φ(·)’s in Example 1: 95% point-wise confidence bands for φ(·)’s based
on 500 replicates. The solid lines stand for the true curves. The dashed lines are the average
estimated curves. The dot-dashed lines represent the 95% point-wise confidence bands based on
500 estimated values. (a) φ1(·). (b) φ2(·)
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Fig. 2 Estimation of φ(·)’s in Example 2: 95% point-wise confidence bands for φ(·)’s based
on 500 replicates. The solid lines stand for the true curves. The dashed lines are the average
estimated curves. The dot-dashed lines represent the 95% point-wise confidence bands based on
500 estimated values. (a) φ1(·). (b) φ2(·)

with a complex grouping structure. The fitted curves and 95% point-wise confidence
bands for φ1(·) and φ2(·) are shown in Figs. 1 and 2 for Examples 1 and 2,
respectively. It is evident that the average estimated curves capture the true curves
very well and that the true curves lie in the 95% point-wise confidence bands which
are quite narrower.
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4.2 Application to a Real Data Set

In this section, we illustrate application of our proposed method with a real data
example. The Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver,
a fatal chronic liver disease, was conducted between 1974 and 1984. The data is
available in R package ‘survival’. A total of 424 PBC patients who met eligibility
criteria for the randomized placebo controlled trial of the drug D-penicillamine were
referred to Mayo Clinic during that 10-year interval. At the end, a total of 312 PBC
patients participated in the randomized trial of whom 158 were assigned to the drug
D-penicillamine while the rest were assigned to a control group with placebo drug.
During the follow-up 125 patients died due to PBC disease. The primary interest
of the study was to investigate the effectiveness of D-penicillamine in curing PBC
disease. Several other covariates such as age, gender, albumin etc. were recorded as
baseline covariates at the beginning of the study. Detailed account of the PBC data
can be found in [10].

The PBC data has been analyzed by Huang et al. [22] for group selection in PHM.
We analyze this data using our proposed adaptive hierarchical penalty (AHP) to
identify a smaller set of significant covariates that contribute to the hazards of dying
from PBC under a PL-PHM. Our interest is on the main effects of the observed 17
risk factors using 276 complete cases in the full model. Huang et al. [22] described
that these risk factors are clustered into nine categories with 10 continuous and
7 categorical variables (Table 3). We observe that age (Z1) and platelet (Z17) are
the only covariates in groups with a single continuous variable, we model their
effects with nonparametric functions and perform bi-level selection in the rest of
the covariates by treating them as linear covariates. We compute the maximum
likelihood estimate (MLE), LASSO, A-LASSO, G-SCAD, G-MCP, HP and AHP
estimates. The results are summarized in Table 4. All of the methods suggest
that gender and treatment should be excluded from the final model which implies
treatment (D-penicillamine) has no effect on curing PBC disease. The performance
of group SCAD and group MCP is very similar. The HP selects more variables than
AHP. AHP suggests deleting Groups 5 and 8 in addition to gender (Group 2) and
treatment (Group 7).

The two estimated curves for φ1 (Age), φ2 (Platelet) are shown in Fig. 3,
indicating nonlinear effects of age and platelet count on the hazards rate. The age
effect φ̂1(Age) shows that the hazards of death from PBC increases steadily up to
about 66 years, and then drops sharply. PBC is a disease of middle aged people,
mostly women, with a median age of disease onset is 50 years [41], which explains
the increase in risk with aging. The drop in the risk for older population might
be due to the fact that as the patients get older, they are more probable of dying
from other causes before the incidence of liver failure [27]. On the other hand,
PBC is associated with low platelet counts [1]. Since all of our participants are
PBC patients, it is expected that the hazard of death will decrease as the platelet
count increases, as shown in the estimated curve φ̂1(Platelet). However, normal
platelet count ranges from 150 to 450 (per cubic microliter/1000) (https://www.

https://www.hopkinsmedicine.org
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Table 3 PBC data analysis

Group Variable Type Definition

G1: Age Z1 C Age (years)

G2: Gender Z2 D Female gender (0 male and 1 female)

G3: Phenotype Z3 D Ascites (0 absence and 1 presence)

Z4 D Hepatomegaly (0 absence and 1 presence)

Z5 D Spiders (0 absence and 1 presence)

Z6 D Edema (0 no edema, 0.5 untreated
or successfully treated and 1 edema
despite diuretic therapy)

G4: Liver function damage
Z7 C Alkaline phosphatase (units/litre)

Z8 C Sgot (liver enzyme in units/ml)

G5: Excretory function of the liver
Z9 C Serum bilirubin (mg/dl)

Z10 C Serum cholesterol (mg/dl)

Z11 C Triglycerides (mg/dl)

G6: Liver reserve function Z12 C Albumin (g/dl)

Z13 C Prothrombin time (seconds)

G7: Treatment Z14 D D-Penicillamine vs.
placebo (1 treatment
and 2 control)

G8: Reflection Z15 D Stage (histological
stage of disease,
graded 1,2,3 or 4)

Z16 C Urine copper (μg/day)

G9: Haematology Z17 C Platelets (per cubic ml/1000)

Dictionary of covariates
Type type of variable, C continuous, D discrete

hopkinsmedicine.org) and one of the reason of higher hazard beyond the normal
limits is inflammatory diseases like liver cirrhosis; which explains the two tails
of the curve where the hazard increases with abnormally lower or higher platelet
count. Therefore, our analysis provides more detailed nonlinear profiles regarding
the effects of age and platelet counts, both of which are of clinical importance.

5 Concluding Remarks

In this paper, we proposed a hierarchically penalized method for variable selection
in the PL-PHM with diverging number of parameters. Our model allows high
dimensional linear covariates and fixed low dimensional nonlinear covariates to
be included in the same model to predict the hazard of failure time, which is
more appealing and useful than models with only a linear term or with a large
number of nonlinear functions of covariates. We modelled the nonparametric
functions using B-splines and performed adaptive bi-level variable selection in the

https://www.hopkinsmedicine.org
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Table 4 Estimation results of PBC data

Group Covariates MLE LASSO A-LASSO G-SCAD G-MCP HP AHP

G2 gender −0.4458 0 0 0 0 0 0

G3 asc 0.6470 0.3665 0 0 0 0.4093 1.1869

hep 0.0935 0 0 0 0 0.0208 0

spid 0.2690 0 0 0 0 0.0973 0.5382

oed 0.2482 0.1931 0.1175 0 0 0.2423 0.4513

G4 alk −0.000002 0 0 0 0 0 0

sgot 0.0038 0 0.0015 0 0 0 0

G5 bill 0.0963 0.0904 0.1025 0.1289 0.1149 0.0969 0

chol 0.0004 0 0 0.0006 0.0005 0.0006 0

trig −0.0021 0 0 −0.0011 −0.0012 −0.0008 0

G6 alb −0.7478 −0.4189 −0.8033 −0.1227 −0.9658 −0.6672 −0.7547

prot 0.1784 0 0.1004 0.0247 0.2104 0.1126 0

G7 trt −0.1476 0 0 0 0 0 0

G8 stage 0.3517 0.1235 0.3232 0.5835 0.4222 0.3158 0

cop 0.0039 0.0033 0.0038 0.0052 0.0052 0.0046 0
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Fig. 3 Estimated curves (a) φ1 (Age) and (b) φ2 (P latelet) in the analysis of PBC data

linear covariates. Our proposed method can effectively select important groups and
important variables within a group in the linear part, and estimate both parametric
and nonparametric components simultaneously. We used the theory of counting
processes and martingales to establish rate of convergence, selection consistency
and asymptotic normality of the proposed estimators. We developed computational
algorithm for our proposed estimators and presented simulation studies along with
an example of real data analyses. Numerical studies indicate that the adaptive
hierarchically penalized method performs better than existing individual variable
selection methods (LASSO, Adaptive LASSO, SCAD, MCP) as well as non-
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adaptive group variable selection methods (group SCAD, group MCP and HP),
especially in the cases with a complex grouping structure among the covariates.
Although our method can handle a diverging number of parameters, but it is
restricted to an order of o(n), i.e., pn = O(nζ ), for some 0 < ζ < 1. It
would be interesting to explore the same problems in our future research when
pn = exp(O(n)), which represents ultra-high dimensional data.
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Appendix

In this Appendix, we provide proofs of the lemmas, theorems, and corollaries that
are presented in the paper. First, the proofs of Lemmas 1 and 2 follow those of Wang
et al. [44] closely.

Proof of Lemma 1 Let Q∗(λγ , λθ , α, γ, θ) denote the criterion that we would like
to maximize in Eq. (7), let Q†(λ, α, γ, θ) denote the corresponding criterion in
Eq. (8), and let (α̂∗, γ̂ ∗, θ̂∗) denote a local maximizer of Q∗(λγ , λθ , α, γ, θ). We
will prove that (α̂† = α̂∗, γ̂ †

g = λγ γ̂
∗
g , θ̂

†
(g) = θ̂∗(g)/λγ ) is a local maximizer of

Q†(λ, α, γ, θ).
Replacing γ ∗ = γ †/λγ and θ∗ = θ†λγ in (7), we immediately have

Q∗(λγ , λθ , α, γ, θ) = Q†(λ, α, λγ γ, θ/λγ ). Since (α̂∗, γ̂ ∗, θ̂∗) is a local maxi-
mizer of Q∗(λγ , λθ , α, γ, θ), therefore, by the definition of local maximizer there
exists δ > 0 such that if (α

′
, γ

′
, θ

′
) satisfies |α′ − α̂∗| + |γ ′ − γ̂ ∗| + |θ ′ − θ̂∗| < δ,

then Q∗(λγ , λθ , α
′
, γ

′
, θ

′
) ≤ Q∗(λγ , λθ , α̂∗, γ̂ ∗, θ̂∗). We choose δ

′
such that

δ
′
/min(λγ , 1/λγ ) ≤ δ/2. Then, min(λγ , 1/λγ ) ≤ 1 and δ

′ ≤ min(λγ , 1/λγ )δ/2 ≤
δ/2. Thus, for any (α

′′
, γ

′′
, θ

′′
) satisfying |α′′−α̂†|+|γ ′′−γ̂ †|+|θ ′′−θ̂†| < δ

′ ≤ δ/2,
we have, |α′′ − α̂†| = |α′′ − α̂∗| ≤ δ/2. Also,

∣
∣
∣
∣
∣

γ
′′

λγ
− γ̂ ∗

∣
∣
∣
∣
∣
+

∣
∣
∣λγ θ

′′ − θ̂∗
∣
∣
∣ ≤

λγ

∣
∣
∣
∣
γ
′′
λγ
− γ̂ ∗

∣
∣
∣
∣+ 1

λγ

∣
∣
∣λγ θ

′′ − θ̂∗
∣
∣
∣

min(λγ , 1
λγ
)

=
∣
∣
∣γ

′′ − λγ γ̂
∗
∣
∣
∣+

∣
∣
∣θ
′′ − θ̂∗

λγ

∣
∣
∣

min(λγ , 1
λγ
)

= |γ ′′ − γ̂ †| + |θ ′′ − θ̂†|
min(λγ , 1

λγ
)

<
δ
′

min(λγ , 1
λγ
)
≤ δ

2
.



Variable Selection in Partially Linear Proportional Hazards Model with. . . 433

Therefore,
∣
∣
∣α
′′ − α̂∗

∣
∣
∣+

∣
∣
∣γ

′′
/λγ − γ̂ ∗

∣
∣
∣+

∣
∣
∣λγ θ

′′ − θ̂∗
∣
∣
∣ < δ/2+ δ/2 = δ. Hence,

Q∗(λγ , λθ , α̂
′′
, γ̂

′′
/λγ , λγ θ̂

′′
) ≤ Q∗(λγ , λθ , α̂∗, γ̂ ∗, θ̂∗),

which gives us

Q†(λ, α̂
′′
, γ̂

′′
, θ̂

′′
) ≤ Q†(λ, α̂†, γ̂ †, θ̂†).

So, (α̂† = α̂∗, γ̂ † = λγ γ̂
∗, θ̂† = θ̂∗/λγ ) is a local maximizer of Q†(λ, α, γ, θ).

Similarly, we can prove that for any local maximizer (α̂†, γ̂ †, θ̂†) of
Q†(λ, α, γ, θ), there is a corresponding local maximizer (α̂∗, γ̂ ∗, θ̂∗) of
Q∗(λγ , λθ , α, γ, θ) such that α̂∗ = α̂† and γ̂ ∗g θ̂∗gj = γ̂

†
g θ̂

†
gj . ��

Proof of Lemma 2 Suppose (α̂, γ̂ , θ̂ ) is a local maximizer of (8). Let β̂ satisfy
β̂gj = γ̂gθ̂gj . It is trivial that γ̂g = 0 if and only if θ̂(g) = 0. Hence, if γ̂g �= 0,
then |β̂(g)| �= 0.

Let (α, β) be fixed at (α̂, β̂). Then maximizing Q†(λ, α, γ, θ) in (8) only
depends on the penalty. For some g with |β̂(g)| �= 0, the corresponding penalty
term is −γg − λ

∑pg
j=1 |β̂gj |/γg , which is maximized at γ̂g = (λ|β̂(g)|)1/2, and

θ̂(g) = β̂(g)/γ̂g .
Let Q(λ, α, β) be the corresponding criterion to be maximized in Eq. (9). By

Lemma 1, the local maximizer α̂ of α in (7) and (8) are the same, so we only need
to consider other parameters, e.g., β, and fix α at α̂ in both (7) and (8). We first
show that (α̂, β̂) is a local maximizer of Q(λ, α, β), i.e., there exists a δ

′
> 0 such

that if |&α| + |&β| < δ
′
, then Q(λ, α̂ +&α, β̂ +&β) ≤ Q(λ, α̂, β̂). Particularly,

taking &α = 0, it becomes |&β| < δ
′
, then Q(λ, α̂, β̂+&β) ≤ Q(λ, α̂, β̂). Denote

&β = &β(1) +&β(2), where &β(1)(g) = 0 if |β̂(g)| = 0 and &β(2)(g) = 0 if |β̂(g)| �= 0.

We thus, have |&β| = |&β(1) +&β(2)| = |&β(1)| + |&β(2)|.
We first show Q(λ, α̂, β̂ + &β(1)) ≤ Q(λ, α̂, β̂) for some δ

′
. We already

have γ̂g = (λ|β̂(g)|)1/2 and θ̂(g) = β̂(g)/γ̂g if |γ̂g| �= 0, and θ̂(g) = 0 if

|γ̂g| = 0. Let γ̂
′
g = (λ|β̂(g) + &β

(1)
(g)|)1/2 and θ̂

′
(g) = (β̂(g) + &β

(1)
(g))/γ̂

′
g

if |γ̂g| �= 0, and let γ̂
′
g = 0 and θ̂

′
(g) = 0 if |γ̂g| = 0. Then we have

Q†(λ, α̂, γ̂
′
, θ̂

′
) = Q(λ, α̂, β̂ + &β(1)) and Q†(λ, α̂, γ̂ , θ̂ ) = Q(λ, α̂, β̂). Hence,

we only need to show Q†(λ, α̂, γ̂
′
, θ̂

′
) ≤ Q†(λ, α̂, γ̂ , θ̂ ). As (α̂, γ̂ , θ̂ ) is a local

maximizer of Q†(λ, α, γ, θ), for fixed α̂, there exists a δ such that for any (γ
′
, θ

′
)

satisfying |γ ′ − γ̂ | + |θ ′ − θ̂ | < δ, we have Q†(λ, α̂, γ
′
, θ

′
) ≤ Q†(λ, α̂, γ̂ , θ̂ ).

Let a = min
{
|β̂(g)| : |β(g)| �= 0, g = 1, . . . ,G

}
, b = max

{
|β̂(g)| : |β(g)| �= 0,

g = 1, . . . ,G} and δ
′
< a/2. It is seen that,

∣
∣
∣|β̂(g) +&β

(1)
(g)| − |β̂(g)|

∣
∣
∣ ≤

∣
∣
∣&β

(1)
(g)

∣
∣
∣ ,
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∣
∣
∣(|β̂(g) +&β

(1)
(g)|1/2)2 − (|β̂(g)|1/2)2

∣
∣
∣ ≤

∣
∣
∣&β

(1)
(g)

∣
∣
∣ ,

∣
∣
∣(|β̂(g) +&β

(1)
(g)|1/2 − |β̂(g)|1/2)(|β̂(g) +&β

(1)
(g)|1/2 + |β̂(g)|1/2)

∣
∣
∣ ≤

∣
∣
∣&β

(1)
(g)

∣
∣
∣ ,

∣
∣
∣|β̂(g)+&β(1)(g)|1/2−|β̂(g)|1/2

∣
∣
∣ ≤

∣
∣
∣&β

(1)
(g)

∣
∣
∣

|β̂(g)+&β(1)(g)|1/2+|β̂(g)|1/2
.

Since when min
g

{
|β̂(g)|

}
= a �= 0, and when |&β(1)(g)| < δ

′
< a/2, we have

|β̂(g) +&β
(1)
(g)| ≥ |β̂(g)| − |&β(1)(g)| ≥ a − a

2
= a

2
> 0,

and

|β̂(g)+&β(1)(g)|1/2+|β̂(g)|1/2 ≥
(a

2

)1/2+a1/2=(2−1/2+1)a1/2 ≥ 21/2a1/2 = (2a)1/2.

Therefore,

∣
∣
∣|β̂(g) +&β

(1)
(g)|1/2 − |β̂(g)|1/2

∣
∣
∣ ≤

|&β(1)(g)|
(2a)1/2 .

Hence,

|γ̂ ′g − γ̂g| =
∣
∣
∣(λ|β̂(g) +&β

(1)
(g)|)1/2 − (λ|β̂(g)|)1/2

∣
∣
∣ ≤

λ|&β(1)(g)|
(2λa)1/2 .

Next, if |γ̂g| = 0, then θ̂
′
(g) = θ̂(g) = 0, and |θ̂ ′(g) − θ̂(g)| = 0. If |γ̂g| �= 0, then

θ̂
′
(g) − θ̂(g) =

(β̂(g) +&β
(1)
(g))

γ̂
′
g

− β̂(g)

γ̂g

= β̂(g)γ̂g +&β
(1)
(g)γ̂g − β̂(g)γ̂

′
g

γ̂
′
gγ̂g

= β̂(g)[γ̂g − γ̂
′
g] +&β

(1)
(g)γ̂g

γ̂
′
gγ̂g

. (14)

We already have |β̂(g)| ≤ b and |γ̂ ′g − γ̂g| ≤ λ|&β(1)(g)|/(2λa)1/2. Consider

γ̂
′
gγ̂g = (λ|β̂(g) +&β

(1)
(g)|)1/2(λ|β̂(g)|)1/2.
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Since |γ̂g| = (λ|β̂(g)|)1/2 ≥ λ1/2a1/2, when |&β(1)(g)| < δ
′

and δ
′
< a/2, if γ̂g �= 0,

then |β̂(g)| �= 0, &β(2)(g) = 0, it implies, |&β(1)(g)| ≤ |&β(1)| < δ ⇒ |&β(1)(g)| < δ
′
<

a/2 and |β̂(g) + &β
(1)
(g)| ≥ |β̂(g)| − |&β(1)(g)| ≥ a − a/2 = a/2 > 0. Therefore,

|γ̂ ′g| = (λ|β̂(g) +&β
(1)
(g)|)1/2 ≥ λ1/2(a/2)1/2 and |γ̂ ′gγ̂g| ≥ λ1/2a1/2λ1/2(a/2)1/2 =

λa2−1/2. From (14) we have,

|θ̂ ′(g) − θ̂(g)| ≤ |β̂(g)|
|γ̂ ′gγ̂g|

|γ̂ ′g − γ̂g| + |&β(1)(g)|
|γ̂g|
|γ̂g||γ̂ ′g|

≤ bλ|&β(1)(g)|
(2λa)1/2(λa2−1/2)

+ |&β(1)(g)|
1

λ1/2(a/2)1/2

≤
[

bλ

(2λa)1/2(λa)2−1/2
+ 1

(λa/2)1/2

]

|&β(1)(g)|

= |&β(1)(g)|
[

1

(λa/2)1/2 +
b

a(λa)1/2

]

.

Therefore, we are able to choose a δ
′
> 0 satisfying δ

′
< a/2 such that |γ̂ ′g − γ̂g| +

|θ̂ ′g− θ̂g| < δ when |&β(1)(g)| < δ
′
. Hence we have Q†(λ, α̂, γ̂

′
, θ̂

′
) ≤ Q†(λ, α̂, γ̂ , θ̂ )

due to the local maximality, that is, Q(λ, α̂, β̂ +&β(1)) ≤ Q(λ, α̂, β̂).
Next we show Q(λ, α̂, β̂+&β(1)+&β(2)) ≤ Q(λ, α̂, β̂+&β(1)). This is trivial

when &β(2) = 0. If &β(2) �= 0, then &β(1) = 0 and we have

Q(λ, α̂, β̂ +&β(1) +&β(2))−Q(λ, α̂, β̂ +&β(1)) = (&β(2))&n−1 ∂ln(α̂,β∗)
∂β

−2
∑G

g=1(λ|&β(2)(g)|)1/2,

where β∗ is a vector between β̂+&β(1)+&β(2) and β̂+&β(1). Since |&β(2)| < δ
′
,

for a small enough δ
′
, the second term in the above equality dominates the first term,

hence we have Q(λ, α̂, β̂ +&β(1) +&β(2)) ≤ Q(λ, α̂, β̂ +&β(1)). Thus we have
shown that there exists a δ

′
> 0 such that if |&β| < δ

′
, then Q(λ, α̂, β̂ + &β) ≤

Q(λ, α̂, β̂), which implies that β̂ is a local maximizer of Q(λ, α̂, β).
Similarly, we can prove that if (α̂, β̂) is a local maximizer of Q(λ, α, β), then

(α̂, γ̂ , θ̂ ) is a local maximizer ofQ†(λ, α, γ, θ), where γ̂g = (λ|β̂(g)|)1/2 and θ̂(g) =
β̂(g)/γ̂g if |β̂(g)| �= 0, and γ̂g = 0 and θ̂(g) = 0 if |β̂(g)| = 0. ��
Proof of Theorem 1 Let α0 = (α0&

1 , . . . , α0&
q )& be a q × K dimensional vector

that satisfies
∥
∥
∥φ0

j − α0&
j Bj

∥
∥
∥∞ = O(K−d), 1 ≤ j ≤ q. Then,

∥
∥
∥φ0 − α0&B

∥
∥
∥∞ =

O(K−d) and
∥
∥
∥φ0 − α0&B

∥
∥
∥ = O(K−d) since q is fixed. Such approximation rates

are possible due to our smoothness assumption (B2) and well known approximation
properties of B-spline [9].
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Let γn = √
(K + p)/n + K−d and u ∈ R

q×K+p with ‖u‖ = D, where u =
(u1, u2), u1 is a q × K-vector, and u2 is a p-vector. To prove Theorem 1, we first

show that
∥
∥
∥φ̂ − α0&B

∥
∥
∥ = Op(γn), and

∥
∥
∥β̂ − β0

∥
∥
∥ = Op(γn) where φ̂ = α̂0&B.

Then it is sufficient to show that for any ε > 0, there exists a constant D such that

P

{

sup
‖u‖=D

Qn((α
0, β0)+ γnu) < Qn(α

0, β0)

}

≥ 1− ε, (15)

when n is big enough. This implies that with probability of at least 1 − ε, there
exists a local maximum in the ball

{
(α0, β0)+ γnu : ‖u‖ ≤ D

}
. Hence, there exists

a local maximizer such that
∥
∥
∥φ̂ − α0&B

∥
∥
∥+

∥
∥
∥β̂ − β0

∥
∥
∥ = Op (γn).

Since pλn satisfies conditions (11) and (12), we have,

Qn((α
0, β0)+ γnu)−Qn(α

0, β0)

= n−1
{
ln((α

0, β0)+ γnu)− ln(α
0, β0)

}

−
s∑

g=1

{
p
(g)
λn
(

∣
∣
∣β0
g1+γnu2,g1

∣
∣
∣ , . . . ,

∣
∣
∣β0
gsg
+γnu2,gsg

∣
∣
∣ ,

∣
∣
∣β0
g(sg+1)+γnu2,g(sg+1)

∣
∣
∣ , . . . ,

∣
∣
∣β0
gpg
+ γnu2,gpg

∣
∣
∣
)
−p(g)λn

(∣
∣
∣β0
g1

∣
∣
∣ , . . . ,

∣
∣
∣β0
gsg

∣
∣
∣ ,

∣
∣
∣β0
g(sg+1)

∣
∣
∣ , . . . ,

∣
∣
∣β0
gpg

∣
∣
∣
)}

−
G∑

g=s+1

{
p
(g)
λn

(∣
∣
∣β0
g1+γnu2,g1

∣
∣
∣ , . . . ,

∣
∣
∣β0
gpg
+γnu2,gpg

∣
∣
∣
)
−p(g)λn

(∣
∣
∣β0
g1

∣
∣
∣ , . . . ,

∣
∣
∣β0
gpg

∣
∣
∣
)}

≤ n−1
{
ln((α

0, β0)+ γnu)− ln(α
0, β0)

}

−
s∑

g=1

{
p
(g)
λn

(∣
∣
∣β0
g1+γnu2,g1

∣
∣
∣ , . . . ,

∣
∣
∣β0
gsg
+γnu2,gsg

∣
∣
∣ ,

∣
∣
∣β0
g(sg+1)+γnu2,g(sg+1)

∣
∣
∣ , . . . ,

∣
∣
∣β0
gpg
+γnu2,gpg

∣
∣
∣
)

−p(g)λn

(∣
∣
∣β0
g1

∣
∣
∣ , . . . ,

∣
∣
∣β0
gsg

∣
∣
∣ ,

∣
∣
∣β0
g(sg+1)

∣
∣
∣ , . . . ,

∣
∣
∣β0
gpg

∣
∣
∣
)}

≤ n−1
{
ln((α

0, β0)+ γnu)− ln(α
0, β0)

}

−
s∑

g=1

{
p
(g)
λn

(∣
∣
∣β0
g1 + γnu2,g1

∣
∣
∣ , . . . ,

∣
∣
∣β0
gsg
+ γnu2,gsg

∣
∣
∣ , 0

)
− p

(g)
λn

(∣
∣
∣β0
g1

∣
∣
∣ , . . . ,

∣
∣
∣β0
gsg

∣
∣
∣ , 0

)}

= A− B.

For A, denote ω0 = (α0, β0). By Taylor expansion at γn = 0, we have

n−1 ln(ω
0 + γnu) = n−1 ln(ω

0)+ n−1 γnU(ω
0)&u+ (2n)−1γ 2

n u
& ∂U(ω0)

∂ω0 u+ An

A = n−1
{
l(ω0 + γnu)− ln(ω

0)
}

= n−1 γnU(ω
0)&u+ (2n)−1γ 2

n u
& ∂U(ω0)

∂ω0 u+ An

� A1 + A2 + An, (16)
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where An = (6n)−1 ∑
j,k,l(ωj −ω0

j )(ωk −ω0
k)(ωl −ω0

l )(∂
2Ul(ω̃)/∂ωj∂ωk), Ul is

the l-th component of U , and ω̃ is a value between ω0 and ω = ω0 + γnu. We first
consider

U(ω0) =
∑

i

∫ τ

0

{

Li − S
(1)
n (m0

n, t)[L]
S
(0)
n (m0

n, t)

}

dNi(t), where m0
n(R) = α0&Z+β0&X.

Observe,

∑

i

{

Li − S
(1)
n (m0

n, t)[L]
S
(0)
n (m0

n, t)

}

Yi(t) exp
{
ω&Li

}
h0(t)

=
∑

i

{

Li −
∑

i LiYi(t) exp
{
ω&Li

}

∑
i Yi(t) exp

{
ω&Li

}

}

Yi(t) exp
{
ω&Li

}
h0(t)

= 0.

Since

Mi(t) = Ni(t)−
∫ τ

0
Yi(t) exp

{
ω&Li

}
h0(t)dt,

this implies that,

U(ω0) =
∑

i

∫ τ

0

{

Li − S
(1)
n (m0

n, t)[L]
S
(0)
n (m0

n, t)

}

dMi(t). (17)

Similar to Lemma 5.3 of Huang [20], we have

P&n

[
S
(1)
n (m0

n, t)[L]
S
(0)
n (m0

n, t)
−S

(1)
n (m0, t)[L]
S
(0)
n (m0, t)

]

=P&
[
s(1)(m0

n, t)[L]
s(0)(m0

n, t)
− s

(1)(m0, t)[L]
s(0)(m0, t)

]

+op(n−1/2), (18)

where m0(R) = φ0(W) + β0&X. Let s(m0
n, t) = s(1)(m0

n,t)[L]/s(0)(m0
n, t) and

s(m0, t) = s(1)(m0, t)[L]/s(0)(m0, t).
By Taylor series expansion, for some ξ between m0 and m0

n we have

s(m0
n, t)− s(m0, t) = ∂s(m0, t)

∂m0 (m0
n −m0)+ 1

2

∂2s(ξ, t)

∂ξ2 (m0
n −m0)2,

∣
∣
∣s(m0

n, t)− s(m0, t)

∣
∣
∣ ≤

∣
∣
∣
∣
∂s(m0, t)

∂m0 d0

∣
∣
∣
∣+

∣
∣
∣
∣
1

2

∂2s(ξ, t)

∂ξ2 d2
0

∣
∣
∣
∣ ,
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where d0 = m0
n − m0. Let W(t) = Y (t) exp

(
m0, t

)
/s(0)(m0, t). Then, by Lemma

A.4 of Huang [20], we have

∣
∣
∣
∣
∂s(m0, t)

∂m0 d0

∣
∣
∣
∣

2

≤ |E {W(t)h(R)d0(R)} − E {W(t)h(R)}E {W(t)d0(R)}|2

= |E [W(t) {h(R)− E(W(t)h(R))} {d0(R)− E(W(t)d0(R))}]|2

= [E {K1d0(R)−K1E(K2d0(R))}]2

≤ 2E {K1d0(R)}2 + 2E {K1E(K2d0(R))}2

≤ 2E
{
K2

1

}
E
{
d2

0 (R)
}
+ 2E

{
K2

3

}
E
{
d2

0 (R)
}

= K4E
{
d2

0 (R)
}

= K4 ‖d0‖2

= K4

∥
∥
∥m0

n −m0

∥
∥
∥

2

= Op

(∥
∥
∥m0

n −m0

∥
∥
∥

2
)

.

Therefore, from the approximation rate given in the beginning of the proof of
Theorem 1, we have,

∣
∣
∣
∣
∂s(m0, t)

∂m0 d0

∣
∣
∣
∣ ≤ Op

(∥
∥
∥m0

n −m0

∥
∥
∥
)
= Op(K

−d).

Similarly, using Lemma A.4 of Huang [20] gives us

∣
∣
∣
∣
1

2

∂2s(ξ, t)

∂ξ2 d2
0

∣
∣
∣
∣ = Op(K

−2d).

Therefore, from (18) we have,

P&n

[
S
(1)
n (m0

n, t)[L]
S
(0)
n (m0

n, t)
− S

(1)
n (m0, t)[L]
S
(0)
n (m0, t)

]

= O(K−d)+ op(n
−1/2) = Op(K

−d).

Consequent, from (17), we obtain

U(ω0) =
∑

i

∫ τ

0

{

Li − S
(1)
n (m0, t)[L]
S
(0)
n (m0, t)

}

dMi(t)+Op

(
nK−d

)
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=
∑

i

∫ τ

0

{
Li −Gn(m

0, t)[L]
}
dMi(t)+Op

(
nK−d

)

= ξn +Op(nK
−d),

where ξn = ∑
i

∫ τ
0

{
Li −Gn(m

0, t)[L]} dMi(t). Direct algebraic calculations
show that, E

{‖ξn‖2} = E
{
tr

(
ξ&n ξn

)} = tr
{
E
(
ξ&n ξn

)}
= tr

{
E
(‖ξn‖2)}. Let

ξn =
∑

i

∫ τ

0

{
Li −Gn(m

0, t)[L]
}
dMi(t) =

∑

i

∫ τ

0
Hi(t)dMi(t),

where Hi(t) =
{
Li −Gn(m

0, t)[L]} . Since ξn is a martingale integral, we have
E(ξn|F−t ) = 0, where F−t denotes the past up to the beginning of the small time
interval [t, t + dt), and

V (ξn|F−t ) = E(ξ⊗2
n |F−t )

= E(ξnξ
&
n |F−t )

= E
∑

i

∫ τ

0
Var

{
Hi(t)dMi(t)|F−t

}

= E
∑

i

∫ τ

0
Hi(t)

⊗2d 〈M〉 (t)

= E

∫ τ

0

∑

i

{
Li −Gn(m

0, t)[L]
}⊗2

�i(t)dt,

where �i(t) = h0(t)Yi(t) exp
{
φ0(W)+X&β0

}
. We can show that

∑

i

{
Li −Gn(m

0, t)[L]
}⊗2

Yi(t) exp
{
m0(Ri)

}

=
∑

i

L⊗2
i Yi(t) exp

{
m0(Ri)

}
−

∑

i

Gn(m
0, t)[L]⊗2Yi(t) exp

{
m0(Ri)

}

≤
∑

i

L⊗2
i Yi(t) exp

{
m0(Ri)

}
.

Then, V (ξn|F−t ) ≤ E
∫ τ

0

∑
i L

⊗2
i �i(t)dt . Assume sup

t,W,X

|h0(t) exp
{
φ0(W)

+β0&X
}
| ≤ M̃ . Therefore,
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E
{
‖ξn‖2

}
= tr

[

E

{∫ τ

0

∑

i

(
Li −Gn(m

0, t)[L]
)⊗2

�i(t)dt

}]

≤ M̃

[

E

{∫ τ

0

∑

i

(
Li −Gn(m

0, t)[L]
)⊗2

Yi(t)dt

}]

≤ nE
{

trL⊗2
i Yi(t)

}
.

By condition (B4), we have,

‖ξn‖ = Op(
√
n(K + p)),

and
∥
∥
∥U(ω0)

∥
∥
∥ = Op(

√
n(K + p)+ nK−d). (19)

Consequently, from (16),

A1 = γnOp(γn) ‖u‖ = Op(γ
2
n ) ‖u‖ .

Next, for A2, we already have,

U(ω0) =
∑

i

∫ τ

0

{

Li − S
(1)
n (m0, t)[L]
S
(0)
n (m0, t)

}

dNi(t)

+Op(nK
−d),

∂U(ω0)

∂ω0
= −

∑

i

∫ τ

0

⎡

⎢
⎣
S
(0)
n (m0, t)S

(2)
n (m0, t)[L] −

{
S
(1)
n (m0, t)[L]

}⊗2

{
S
(0)
n (m0, t)

}2

⎤

⎥
⎦ dNi(t)

+Op(nK
−d)

= −
∑

i

∫ τ

0
V (m0, t)[L] {dMi(t)+ λ(t |L)dt} +Op(nK

−d)

=−
⎧
⎨

⎩

∑

i

∫ τ

0
Vn(m

0, t)[L]dMi(t)+
∑

i

∫ τ

0
Vn(m

0, t)[L]S(0)n (m0, t)λ0(t)dt

⎫
⎬

⎭

+Op(nK
−d)

= −n (ϑω0 +�n
)+Op(nK

−d),

where ϑω0 = n−1 ∑
i

∫ τ
0 Vn(m

0, t)[L]dMi(t) and �n = n−1 ∑
i

∫ τ
0 Vn(m

0, t)

[L]S(0)(m0, t)λ0(t)dt . Thus,
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A2 = −(1/2)γ 2
n

{

u&
(

n−1 ∂U(ω
0)

∂ω0

)

u

}

= −(1/2)γ 2
n

[
u&�u+ u&

{
(�n −�)+ ϑω0

}
u+ u&O(K−d)u

]
.

By Lemmas 2.3 and 4.1 of Bradic et al. [2],

∥
∥(�n −�)+ ϑω0

∥
∥ ≤ ‖�n −�‖ + ∥

∥ϑω0

∥
∥ = op(1).

Since � is positive definite and its eigenvalues are bounded below by O(1/K), we
have,

A2 = −(1/2)γ 2
n (1/K + op(1)+O(K−d)) ‖u‖2 .

Finally, since
∥
∥ω − ω0

∥
∥

2 ≤ γn and the average of i.i.d. terms, n−1 ∂2Ul(ω̃)
∂ωj ∂ωk

, is of order

Op(1), by the Cauchy-Schwarz inequality and condition γn(K+p)3/2 = O(1) from
Theorem 1, we have An = (K + p)3/2Op(γ

3
n ) = Op(γ

2
n ).

For the penalty part, by Taylor expansion of the penalty function we have,

B =
s∑

g=1

{
p
(g)
λn

(
|β0
g1 + γnu2,g1|, . . . , |β0

gpg
+ γnu2,gsg , 0|

)

−p(g)λn

(
|β0
g1|, . . . , |β0

gpg
, 0|

)}

=
s∑

g=1

⎧
⎨

⎩

sg∑

j=1

∂p
(g)
λn

(
|β0
g1|, . . . , |β0

gpg
|
)

∂|βgj |
sgn(β0

gj )γnu2,gj

+1

2

sg∑

i=1

sg∑

j=1

∂2p
(g)
λn

(
|β0
g1|, . . . , |β0

gpk
|
)

∂|βgi |∂|βgj | γ 2
n u2,giu2,gj

⎫
⎬

⎭

+ op

{
γ 2
n (u

2
2,g1 + · · · + u2

2,gsg )
}

≤ q
1/2
1 anγn ‖u2‖ + 1

2
γ 2
n bn ‖u2‖2 + op(γ

2
n ‖u2‖2)

= q
1/2
1 Op(γn)γn ‖u2‖ + op(γ

2
n ‖u2‖2) as bn → 0

= q
1/2
1 Op(γ

2
n ) ‖u2‖ + op(γ

2
n ‖u2‖2)

� B1 + B2,

where q1 =∑s
g=1 sg .
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We see that for fixed K, by choosing a sufficiently large D, A2 dominates
A1, An, B1, B2 uniformly in ‖u‖ = D. Thus, we have shown that

∥
∥α̂ − α0

∥
∥ +∥

∥
∥β̂ − β0

∥
∥
∥ = Op(γn). Then,

∥
∥
∥φ̂ − α0&B

∥
∥
∥ = Op(γn) and

∥
∥
∥β̂ − β0

∥
∥
∥ = Op(γn). By

∥
∥
∥φ0 − α0&B

∥
∥
∥∞ = O(K−d) and the triangle inequality, we have

∥
∥
∥φ̂ − φ0

∥
∥
∥ ≤

∥
∥
∥φ̂ − α0&B

∥
∥
∥+

∥
∥
∥α0&B − φ0

∥
∥
∥

= Op(γn)+O(K−d)

= Op(γn).

Hence,
∥
∥
∥φ̂ − φ0

∥
∥
∥+

∥
∥
∥β̂ − β0

∥
∥
∥ = Op(γn). ��

Proof of Theorem 2 Here we will prove the sparsity: Pr(β̂D = 0)→ 1 as n→∞.
By Taylor expansion, we have

∂Qn(α̂, β̂)

∂βgj
= n−1 ∂ln(α̂, β

0)

∂βgj
+

∑

g′,j ′
n−1 ∂

2ln(α
0, β∗)

∂βg′j ′∂βgj
(β̂g′j ′ − β0

g′j ′)

−
∂p

(g)
λn

(
|β̂g1|, . . . , |β̂gpg |

)

∂|βgj | sgn(β̂gj )

= C1 + C2 + C3, (20)

where β∗ lies between β̂ and β0. Using the result from (19), we have |C1| =
Op(γn). By the convergence rate in Theorem 1 and n−1 ∑

g′,j ′ ∂
2ln(α̂, β

∗)/∂
βg′j ′∂βgj = Op(1), we have |β̂g′j ′ − β0

g′j ′ | = Op(γn). Thus, |C2| = Op(γn). It

follows from the definition of β̂gj that, if β̂gj �= 0,

∂Qn(α̂, β̂)

∂βgj
= Op(γn)+Op(γn)−

∂p
(g)
λn

(
|β̂g1|, . . . , |β̂gpg |

)

∂|βgj | sgn(β̂gj )

= γn

⎧
⎨

⎩
Op(1)− γ−1

n

∂p
(g)
λn

(
|β̂g1|, . . . , |β̂gpg |

)

∂|βgj | sgn(β̂gj )

⎫
⎬

⎭
. (21)

Next, we show that there is a contradiction in (21) if Pr
{
β0D = 0

}
does not tend to 1

when n→∞, then there exist (g, j) ∈ D, such that β̂gj �= 0. By the condition given

in Theorem 2, that is, γ−1
n ∂p

(g)
λn

(
|β̂g1|, . . . , |β̂gpg |

)
/∂|βgj | → ∞ with probability

tending to 1 as n→∞, for an arbitrary ε > 0, when n is large we have
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∂Qn(α̂, β̂)

∂βgj
< 0, 0 < β̂gj < ε,

∂Qn(α̂, β̂)

∂βgj
> 0, −ε < β̂gj < 0.

This is in conflict with ∂Qn(α̂, β̂)/∂βgj = 0 and results in a contradiction when
β̂gj �= 0. Therefore, Pr(β̂gj = 0)→ 1 as n→∞. ��
Proof of Corollary 1 We only need to check that the conditions in Theorem 1 hold
for the penalty function p(g)λn

(|β(g)|) = λn(|βg1| + · · · + |βgpg |)1/2, g = 1, . . . ,G.

For βgj ∈ A, i.e., β0
gj �= 0, we have,

an = max
(g,j)∈A

δpλn(|β0
g1|, . . . , |β0

gpg
|)

δ|βgj |

= max
(g,j)∈A

δλn(|β0
g1| + · · · + |β0

gpg
|)1/2

δ|βgj |

= max
(g,j)∈A

1

2
λn(|β0

g1| + · · · + |β0
gpg
|)−1/2

≤ 1

2
λnM

−1/2 = Op(γn),

and

bn = max
(g,j)∈A

∣
∣
∣
∣
∣

δ2pλn(|β0
g1|, . . . , |β0

gpg
|)

δ|βgj |2
∣
∣
∣
∣
∣

= max
(g,j)∈A

∣
∣
∣
∣
∣

δ2λn(|β0
g1| + · · · + |β0

gpg
|)1/2

δ|βgj |2
∣
∣
∣
∣
∣

= max
(g,j)∈A

1

4
λn(|β0

g1| + · · · + |β0
gpg
|)−3/2

≤ 1

4
λnM

−3/2 → 0,

where M = ming(|β0
g1| + · · · + |β0

gpg
|). Therefore, the rate of convergence follows

from Theorem 1.
For sparsity, suppose there exists (g, j) ∈ C for which β̂gj �= 0. Since for all

(g, j) ∈ C, β0
gj = 0; j = 1, . . . , pg , we have

γ−1
n

∂pλn

(
|β̂g1|, . . . , |β̂gpg |

)

∂|βgj | = γ−1
n

δλn(|β̂g1| + · · · + |β̂gpg |)1/2

δ|βgj |
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= γ−1
n λn

2(|β̂g1| + · · · + |β̂gpg |)1/2
.

According to the first conclusion of Corollary 1, there exists a γ−1
n consistent

local maximizer β̂ = (β̂&A, β̂&B, β̂&C )& for the non-adaptive hierarchically penalized

likelihood (9), which implies
∥
∥
∥β̂C − β0C

∥
∥
∥ ≤ M∗γn or for β̂gj �= 0, we have

|β̂gj − β0
gj | = |β̂gj | ≤ M∗γn for some constant M∗. Thus,

γ−1
n λn

2(|β̂g1| + · · · + |β̂gpg |)1/2
≥ γ−1

n λn

2(M∗γn + · · · +M∗γn)1/2

= 1

2M∗1/2 ×
γ−1
n λnγ

−1/2
n

p
1/2
g

≥ γ
−3/2
n λnp

−1/2

2M∗1/2 (since p ≥ pg).

Therefore, for γ−3/2
n λnp

−1/2 →∞ when n→∞, we have, γ−1
n δλn(|β̂g1| + · · · +

|β̂gpg |)1/2/δ|βgj | → ∞, which results in a contradiction when β̂gj �= 0. So, for all

(g, j) ∈ C, β̂gj = 0. ��
Proof of Theorem 3 We only need to check that the conditions in Theorem 1 hold
for the penalty function p(g)λn

(|β(g)|) = λn(wn,g1|βg1| + · · · + wn,gpg |βgpg |)1/2.

For βgj ∈ A, i.e., β0
gj �= 0, we have,

an = max
(g,j)∈A

δpλn(|β0
g1|, . . . , |β0

gpg
|)

δ|βgj |

= max
(g,j)∈A

δλn(wn,g1|β0
g1| + · · · + wn,gpg |β0

gpg
|)1/2

δ|βgj |

= max
(g,j)∈A

1

2
λnwn,gj (wn,g1|β0

g1| + · · · + wn,gpg |β0
gpg
|)−1/2

≤ 1

2
λnw

A
n,max

(
wAn,min

)−1/2
M−1/2 = Op(γn),

and

bn = max
(g,j)∈A

∣
∣
∣
∣
∣

δ2pλn(|β0
g1|, . . . , |β0

gpg
|)

δ|βgj |2
∣
∣
∣
∣
∣
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= max
(g,j)∈A

∣
∣
∣
∣
∣

δ2λn(wn,g1|β0
g1| + · · · + wn,gpg |β0

gpg
|)1/2

δ|βgj |2
∣
∣
∣
∣
∣

= max
(g,j)∈A

1

4
λn(wn,gj )

2(wn,g1|β0
g1| + · · · + wn,gpg |β0

gpg
|)−3/2

≤ 1

4
λn

(
wAn,max

)2 (
wAn,min

)−3/2
M−3/2 → 0,

where M = ming(|β0
g1| + · · · + |β0

gpg
|). Thus, the consistency follows from

Theorem 1.
Next, we prove the sparsity. Assume β̂gj is a local maximizer ofQw

n (α, β) in (13)

with
∥
∥
∥β̂gj − β0

gj

∥
∥
∥ = Op(γn). We can find a constant M∗, such that |β̂gj | ≤ M∗ for

all (g, j) with probability tending to 1. Then for (g, j) ∈ D, i.e., β0
gj = 0, we have

γ−1
n

∂pλn

(
|β̂g1|, . . . , |β̂gpg |

)

∂|βgj | = δλn(wn,g1|β̂g1| + · · · + wn,gpg |β̂gpg |)1/2

δ|βgj |

= γ−1
n λnwn,gj

2(wn,g1|β̂g1| + · · · + wn,gpg |β̂gpg |)1/2

≥ γ−1
n λnw

D
n,min

2M∗1/2(wAn,max + wDn,max)
1/2

.

Therefore, when γ−1
n λnw

D
n,min/(w

A
n,max+wDn,max)

1/2 →∞ as n→∞, then β̂gj =
0 with probability approaching to 1, and by Theorem 2, we have Pr(β̂D = 0)→ 1.

��
Proof of Corollary 2 We only need to verify that wn,gj = |β̃n,gj |−r satisfy the con-

ditions in Theorem 3. Let A = max
g,j

{
β0
gj

}
and B = min

g,j

{
β0
gj
: β0

gj
�= 0

}
. Then by

the consistency of β̃n, wAn,max → B−r and wAn,min → A−r . Thus, if λn = γn/log(n),

we have γ−1
n λnw

A
n,max

(
wAn,min

)−1/2 → 0 and λn
(
wAn,max

)2 (
wAn,min

)−3/2 → 0, as
n→∞.

For each (g, j) with β0
n,gj = 0, we have β̃gj = Op(γn). Therefore,

wDn,min/(w
A
n,max + wDn,max)

1/2 = Op(γ
−1/2
n ). Thus, for λn = γn/log(n), we have

γ−1
n λnw

D
n,min/(w

A
n,max + wDn,max)

1/2 →∞. ��
Proof of Theorem 4 Given that β̂C = 0 with probability tending to 1, the proof of
asymptotic normality of β̂A is similar to that of Theorem 2 in [19], we omit the
details. ��
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Inference of Transition Probabilities in
Multi-State Models Using Adaptive
Inverse Probability Censoring Weighting
Technique

Ying Zhang and Mei-Jie Zhang

Abstract Inverse probability censoring weighting (IPCW) technique is often used
to adjust for right censoring or recover information for censored individuals in
survival analysis and in multi-state modeling. A simple IPCW (SIPCW) technique
which does not consider the intermediate states, has been proposed for analyzing
multi-state data. However, our simulation studies show that the SIPCW technique
may lead to biased estimates when being applied in complex multi-state models.
We thereby propose a model-specific, state-dependent adaptive IPCW (AIPCW)
technique for estimating transition probabilities in multi-state models. Intensive
simulation results verified that the proposed AIPCW technique improves the accu-
racy of transition probability estimates compared to the SIPCW technique and leads
to asymptotic unbiased estimates. We applied the proposed technique to a real-world
hematopoietic stem cell transplant (HSCT) data to assess the acute and chronic
graft-versus-host disease (GVHD) effects on disease relapse rates and mortality
rates.

Keywords Inverse probability censoring weighting · IPCW · Probability · Stem
cells · Stem cell transplant · Graft-versus-host disease · AIPCW

1 Introduction

Multi-state models are often used to analyze complicated event history data, where
the health history for the ith individual are represented by {Γi(t), t ≥ 0}which gives
the state for the ith individual at time t , and the final states are represented by δi =
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State 0 (N=667):
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cGVHD in
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Relapse after
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State 4 (N=469):
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Relapse after
cGVHD

α35(t)

α34(t)

Fig. 1 Events after HSCT in a three-level six-state model

Γi(∞). The transition intensities αhj (t) represent the instantaneous risk of moving
from state h to state j at time t , and the transition probabilities are Phj (s, t) =
P {Γ (t) = j |Γ (s) = h}, for s ≤ t . States can be either transient or absorbing, if
no transitions can emerge from the state (for example, death). Our motivation for
this study is to gain insights into the effect of GVHD on clinical outcomes after
HSCT for leukemia patients. Although HSCT is a life-saving procedure for many
cancer patients, GVHD after HSCT is one of the major causes of treatment-related
mortality. On the other hand, GVHD may have beneficial graft-verse-leukemia
(GVL) effect which helps to reduce the cancer relapse rate. Clinically, it is critical to
estimate and summarize the clinical outcomes with and without GVHD. The clinical
outcomes after HSCT can be described with multi-state models. For example, the
data from an allogeneic HSCT study [11] can be represented by a three-level six-
state model (see Fig. 1): Patients who undergo transplantation for hematological
malignancies may experience death (State 1) or relapse (State 2) before developing
chronic GVHD (cGVHD) (State 3), or experience death (State 4) or relapse (State
5) after the occurrence of cGVHD. Moreover, investigators can always construct
the model as needed depending on their research interests. For instance, researchers
may be interested in investigating the effects of both acute GVHD (aGVHD) and
cGVHD on treatment-related mortality and relapse rate. In such a case, a four-
level twelve-state model can be employed to model aGVHD and cGVHD effects
separately (see Fig. 2).

The non-cyclical and non-reversible multi-state models are considered in this
study. The standard approach to estimating transition probabilities is the product-
integral method which estimates all transition intensities based on Nelson-Aalen
estimates [1, 12, 13] and then combines them into transition probabilities by product
integration of the transition intensities [2]. Recently, Datta and Satten [6, 7] showed
that the Aalen and Johansen [2] product limit estimator of transition probabilities
is valid for non-Markov models as well as under state-dependent censoring.
Andersen et al. [3] provided the estimates for the variance and covariances of
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Fig. 2 Events after HSCT in a four-level twelve-state model

transition probabilities. The variance estimates are relatively complicated, especially
when being used to estimate the variances of composite endpoints [10].

Recently, Scheike and Zhang [15] and Scheike et al. [16] considered an alter-
native approach for estimating and modelling all the transition probabilities based
on binomial outcomes using IPCW technique. The key with their approach is to
adjust the binomial responses by the corresponding censoring distributions which
are estimated by the Kaplan-Meier estimators assuming they are independent of
covariates. To estimate the censoring distributions used in the weighting process,
Scheike and Zhang [15] considered individuals in all transient states at the end of
study as censored individuals. We refer their approach as simple IPCW (SIPCW)
technique. However, they pointed out the estimated transition probabilities are not
identical to the standard product-integral estimates, and the estimated transition
probabilities do not add up to 1. Our simulation studies also showed that the
transition probabilities estimates based on the SIPCW technique can be severely
biased. Scheike and Zhang [15] suggested to consider state-dependent censoring
weighting approaches, but without a detailed study of the potential bias introduced
by the SIPCW technique.

In this work, we adopted their idea of state-dependent censoring and proposed
using an adaptive IPCW (AIPCW) technique to estimate the transition probabilities
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directly for non-Markov models which takes the model structures into account
when being applied to estimate the censoring distributions. We conduct simulation
studies to investigate the performance of our proposed method. The simulation
studies indicate that the SIPCW estimates could be biased for complicated multi-
state models, and the AIPCW-based estimates are virtually unbiased. In Sect. 2, we
demonstrate how to construct such an AIPCW for estimating transition probabilities
and derive their variance estimators. Since the construction of AIPCW is model-
specific, we chose to illustrate the construction procedure in two models that we
specified above (Fig. 1 as an example for a three-level model and Fig. 2 as an
example for a four-level model). Section 3 includes summaries of simulation studies
for comparing the performance of AIPCW with SIPCW, and for evaluating the
overall performance of the AIPCW technique. In Sect. 4, we apply the proposed
method to the real HSCT data [11]. Finally, Sect. 5 concludes this work and presents
the planned future works.

2 AIPCW in Multi-State Models

The SIPCW technique estimates the transition probability to absorbing state k by

P̂0k(0, t) = F̂ SIPCW
k (t) = 1

n

n∑

i=1

I (Ti ≤ t, Γi(t) = k)

ĜC(Ti)
,

where Ti is the observed time and 1/{nGC(Ti)} is the weight carried by individual
i at time t . The SIPCW technique combines all transient states and calculates
the censoring survival distributions GC(t) by Kaplan-Meier estimators where
individuals in all transient states by the end of study are treated as censored (see
Fig. 3). Although the calculation is simple, the SIPCW approach fails to consider
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remission

State 2 (n=1242):
Relapse w/o
cGVHD

State 3 (n=1026):
Develop GVHD

State 1
(n=1172): Death
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and relapse

α02(t)

α03(t)

α01(t)

State 5 (n=344):
Relapse

after GVHD

State 4 (n=496):
Death w/o

Relapse after
cGVHD

α35(t)

α34(t)

State 0 & 3
(N=1693):
In Remis-

sion(Censored
individuals)

State 2 (N=1242):
Relapse w/o
cGVHD

State 1 (N=1172):
Death w/o
cGVHD

or Relapse

α02(t)

α01(t)

State 5 (N=344):
Relapse after

cGVHD

State 4 (N=469):
Death w/o

Relapse after
cGVHD

α35(t)

α34(t)

Fig. 3 Illustrate simple IPCW technique for estimating censoring distributions
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the complex transition paths and will lead to biased estimates: Since the HSCT
model is not reversible, the transition probability of P03(t) can be considered as a
competing event when we estimate P01(t) and P02(t), thus individuals who have
already entered state 3 are no longer in the ‘risk set’ in estimating the censoring
weight and should not be considered as censored.

Thus, we propose the AIPCW technique where the censoring distributions are
model- and state-dependent, to potentially reduce the bias introduced by the SIPCW
technique. The states of multi-state models can be categorized into distinct levels
according to their transition paths and the number of states traveled. For instance,
the six-state multi-state model can be dissected into three levels: level I is ‘being
alive’ at state 0, level II is staying in state 1, 2, or 3, and level III is entered states 4
and 5. The key with the AIPCW approach is to estimate the censoring distributions
distinctively for individuals at different levels of states, since their risk sets are
different.

The AIPCW weights are derived based on the following conditional probabilities,
which is essential to achieve asymptotic unbiased estimators: E{Ri,k(t)/Wi,k(t)} =
P0k(t), where Ri,k(t) is the indicator of individual i being in state k at time t ,
and Wi,k(t) is the state- and time-dependent weight function corresponding to
individual i. When the weight function Wi,k(t) is known, the transition probability
P0k(t) can be estimated by

∑
i Ri,k(t)/nWi,k(t). Thus individual i carries a weight

of 1/{nWi,k(t)} at time t if Ri,k(t) = 1.
Since the AIPCW weights depend on the model and the states of interests, there is

no general formula for estimating the weights. Therefore, we focused on illustrating
the construction of the AIPCW technique in a three-level model (see Fig. 1) using
the six-state HSCT model as an example, and briefly extended the AIPCW technique
to a four-level model (see Fig. 2), and similar weighting technique can be extended
to a more complicated higher level multi-state model.

2.1 Estimate Transition Probabilities For a Three-Level Model

Let Ci denote the censoring time, T ∗i,k denote the transition time to state k and
assume Ci to be independent of Γi(t). Let T ∗i,123 = (T ∗i,1 ∧ T ∗i,2 ∧ T ∗i,3) for δi ≥ 1.
For δi = 0, set T ∗i,123 = Ci , which is the end of follow-up time. The transition
probability P0k(0, t) can be estimated by

P̂AIPCW
0k (0, t) = 1

n

n∑

i=1

Ri,k(t)

ĜC00(T
∗
i,123)

, (1)

where Ri,0(t) = I (Γi(t) = 0)I (Ci > t), Ri,k(t) = I (T ∗i,k ≤ t, Γi(T
∗
i,k) =

k)I (Ci > T ∗i,k) for k = 1, 2, and the censoring survival distribution GC00 is
estimated by a Kaplan-Meier estimator using observations I {(Ci∧T ∗i,123), ΔC00,i =
I (Ci ≤ T ∗i,123), i = 1, . . . , n}. Zhang et al. [17] showed that P̂AIPCW

0k (0, t) is
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identical to the corresponding Kaplan-Meier estimator for k = 0 and is identical
to the Aalen-Johansen estimator for k = 1, 2.

For k = 3, P03(0, t) is the probability of being in state 3 at time t . Let T ∗i,45 =
(T ∗i,4 ∧ T ∗i,5) for δi ≥ 4 and T ∗i,45 = Ci for δi = 3. Individuals in state 3 are censored
if {δi ≥ 3, T ∗i,3 ≤ Ci < T ∗i,45}. The indicator of being in state 3 at time t is

Ri,3(t) = I (Γi(t) ∈ {3})I (Ci > t) = I (T ∗i,3 ≤ t < T ∗i,45, δi ≥ 3)I (Ci > t)

= I (T ∗i,3 ≤ t < T ∗i,45, δi ≥ 3)I (T ∗i,3 ≤ t < Ci, δi ≥ 3).

Since E{I (T ∗i,3 ≤ t < T ∗i,45, δi ≥ 3)} = P03(0, t) and

E{I (T ∗i,3 ≤ t < Ci, δi ≥ 3)} = E[E{I (T ∗i,3 ≤ t < Ci, δi ≥ 3)|T ∗i,3 ≤ t, δi ≥ 3}]
=E[(Ci > T ∗i,3, δi ≥ 3)E{I (Ci > t)|T ∗i,3 ≤ t, δi ≥ 3}]
= GC00(T

∗
i,3)GC33(t),

where T ∗i,3 is observed only when δi ≥ 3. We can estimate P03(0, t) by:

P̂AIPCW
03 (0, t) = 1

n

n∑

i=1

Ri,3(t)

ĜC00(T
∗
i,3)ĜC33(t)

. (2)

We can understand this estimator from a redistribution-to-the-right (RTR) per-
spective where individuals in state 3 at time t carry a weight of 1/{nGC00(T

∗
i,3)

GC33(t)}. Individuals with I (T ∗i,3 ≤ t, δi ≥ 3) carry initial weights of w3
i =

1/{nĜC00(T
∗
i,3)} when they enter state 3 at time T ∗i,3 and the subsequent conditional

censoring probability GC33(t) = P(Ci > t |T ∗i,3 ≤ t, δi ≥ 3) can be estimated by

ĜC33(t) =π
v≤t

{

1− dNC33• (v)

Y
C33• (v)

}

,

where

NC33• (v) =
n∑

i=1

N
C33
i (v) =

n∑

i=1

I (T ∗i,45 ≤ v, δi = 3)w3
i

Y C33• (v) =
n∑

i=1

Y
C33
i (v) =

n∑

i=1

I (T ∗i,3 ≤ v ≤ T ∗i,45, δi ≥ 3)w3
i .

Similarly, the indicators of being in state 4 or 5 at time t are

Ri,k(t) = I (T ∗i,45 ≤ t, δi = k)I (Ci > T ∗i,45) = I (T ∗i,45 ≤ t, δi = k)I (T ∗i,3 ≤ t, Ci >
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T ∗i,45, δi ≥ 3)

E{I (T ∗i,3 ≤ t, Ci > T ∗i,45, δi ≥ 3)} = GC00(T
∗
i,3)GC33(T

∗
i,45)

The weights carried by those individuals when they enter state 4 or 5 at time T ∗i,45
are 1/{nGC00(T

∗
i,3)GC33(T

∗
i,45)}. Thus we estimate of P0k(0, t) by:

P̂AIPCW
0k (0, t) = 1

n

n∑

i=1

Ri,k(t)

ĜC00(T
∗
i,3)ĜC33(T

∗
i,45)

, for k = 4, 5. (3)

Under regularity conditions [8, 9, 15], it can be shown that

√
n
{
P̂AIPCW

0k (0, t)− P0k(0, t)
}
= n−1/2

∑

i

Wi,0k(t)+ oP (1),

which converges in distribution to a mean zero Gaussian process with asymptotic
variance that can be estimated by

Σ̂0k(t) = n−1
∑

i

{
Ŵi,0k(t)

}2
,

where explicit expressions for Wi,0k(t) and Ŵi,0k(t) can be found in the Appendix.
The variance estimators contain two parts: the first part is from the transition
probability estimator itself as if the censoring distributions are known; the second
part is from the uncertainty of the estimated censoring distributions. In most of our
simulation settings, the second part is negligible.

2.2 Estimate Transition Probabilities For a Four-Level Model

If we are interested in estimating P0,10(0, t) or P0,11(0, t), and if we are interested
in estimating all transition probabilities simultaneously, we need to derive the
AIPCW technique for a four-level model (Fig. 2). In this section, we only illustrate
the AIPCW estimators for the fourth-level transition probabilities P0k(0, t), k =
9, 10, 11, because other transition probabilities can be estimated analogous to a
three-level model.

Let T ∗i,L4
= (T ∗i,10∧T ∗i,11) for δi ≥ 10 and Ti,L4 = Ci for δi = 9. Let ηi,3 and ηi,4

be the indicators of transiting from state 3 and 4 respectively. For k = 9, the binary
outcomes of subject i entered and remaining in state 9 at time t are

Ri,9(t) = I {Γi(t) ∈ 9}I {Ci > t} = I {T ∗i,9 ≤ t < T ∗i,L4
, δi ≥ 9}I {Ci > t}

= I {T ∗i,9 ≤ t < (T ∗i,L4
∧ Ci), δi ≥ 9}
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= Ri,39(t)+ Ri,49(t),

where Ri,s9(t) = I {Γi(t) ∈ 9, ηi,s = 1}I {Ci > t} for s = 3, 4.
Individuals entered in state 9 carry initial weights of wi;9,3 = 1/{nĜC00(T

∗
i,3)

ĜC33(T
∗
i,9)} if they enter from 3, and wi;9,4 = 1/{nĜC00(T

∗
i,4)ĜC44(T

∗
i,9)} if they

enter from 4. Let GC99,s (t) for s = 3, 4 be the conditional censoring process in state
9, so GC99,s (t) = P {Ci > t |(T ∗i,9 ≤ t, δi ≥ 9, ηi,s = 1)} and the Kaplan-Meier
estimate for GC99,s (t) can be written as

ĜC99,s (t) =π
v≤t

{

1− dN
C99,s• (v)

Y
C99,s• (v)

}

where

N
C99,s• (v) =

n∑

i=1

N
C99,s
i (v) =

n∑

i=1

I (T ∗i,L4
≤ v, δi = 9, ηi,s = 1)wi;9,s

Y
C99,s• (v) =

n∑

i=1

Y
C99,s
i (v) =

n∑

i=1

I (T ∗i,9 ≤ v ≤ T ∗i,L4
, δi ≥ 9, ηi,s = 1)wi;9,s

The censoring distributions are {GC00(T
∗
i,3)GC33(T

∗
i,9)GC99,3(t)} for individuals who

enter in state 9 from state 3, and {GC00(T
∗
i,4)GC44(T

∗
i,9)GC99,4(t)} for individuals

who enter state 9 from state 4. The transition probabilities to state 9 can be
estimated by

P̂AIPCW
09 (0, t) = 1

n

∑n
i=1

{
Ri,39(t)

ĜC00 (T
∗
i,3)ĜC33 (T

∗
i,9)ĜC99,3 (t)

+ Ri,49(t)

ĜC00 (T
∗
i,4)ĜC44 (T

∗
i,9)ĜC99,4 (t)

}

For k = 10, 11, s = 3, 4, the binary outcomes are also specified according to
their transition paths:

Ri,sk(t)=I {T ∗i,L4
≤ t, ηi,s=1, δi=k}I {Ci > T ∗i,L4

}=I {T ∗i,L4
≤ t, ηi,s=1, δi=k}.

The transition probabilities P0k(0, t), k = 10, 11 can be estimated by

P̂AIPCW
0k (0, t) = 1

n

∑n
i=1

{
Ri,3k(t)

ĜC00 (T
∗
i,3)ĜC33 (T

∗
i,9)ĜC99,3 (T

∗
i,L4

)

+ Ri,4k(t)

ĜC00 (T
∗
i,4)ĜC44 (T

∗
i,9)ĜC99,4 (T

∗
i,L4

)

}

.
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State 0: Alive
in remission

State 3&4:
aGVHD

or cGVHD

State 1: Death
without GVHD
and relapse

State 2:
Relapse

without GVHD

State 6&8:
Relapse after

aGVHD
or cGVHD

State 5&7:
Death without
relapse after
aGVHD

or cGVHD

State 9:
aGVHD

and cGVHD

State 11:
Relapse after

aGVHD
and cGVHD

State 10:
Death without
relapse after
aGVHD

and cGVHD

α02

α0,34

α01

α34,57

α34,68

α34,9

α9,10

α9,11

Fig. 4 Reconfigure the twelve-state model

Depend on the state of interest, one may reconstruct the model to simplify the
estimates. For instance, a simpler way to estimate P0k(0, t), k = 9, 10, 11, is to
reconfigure the data and combine state 3 and 4 as a single transient state (see Fig. 4)
before applying the AIPCW technique.

Under regularity conditions [8, 9, 15], the variance of
√
n
{
P̂AIPCW

0k (0, t)
−P0k(0, t)}, for k = 9, 10, 11, can be estimated by

Σ̂0k(t) = n−1
∑

i

{
Ŵi,0k(t)

}2
,

where explicit expressions for Ŵi,0k(t) can be found in the Appendix.

3 Simulation Studies and Results

3.1 Compare SIPCW and AIPCW

In this section, two scenarios are considered to compare the transition probability
estimates and their variances obtained using the SIPCW and AIPCW techniques.
The data were generated in a setting of the six-state HSCT model. The event and
censoring times were assumed to follow independent exponential distributions with
constant transition intensities αhk(t). Due to the similarities of state 1 and 2, 4 and
5, we only present the simulation results for state {0, 1, 3, 4}. The simulation results
are based on 1000 samples each with sample size N = 300.

We created scenarios A and B with the same transition intensities but different
censoring rates. The pre-specified transition intensities are (0.08, 0.03, 0.15, 0.08,
0.03) respectively for states 1–5. In scenario A, the two-piece constant censoring
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rates are set to be 0.01 at state 0, and 0.10 at state 3, so that the overall censoring per-
centage is 30%. In scenario B, the censoring rates are set to be 0.05 and 0.20, so that
the overall censoring percentage reaches 50%. The average number of patients in
state 0–5 by the end of study are {11, 90, 33, 80, 63, 24} and {48, 78, 29, 93, 38, 14}
for scenario A and B, respectively. The average of estimated transition probabilities,
their standard deviations (SD), average of estimated standard errors (SE), bias, and
95% coverage probabilities at four different time points t = (5, 7, 10, 16) are shown
in Table 1. In Table 1, T denotes the time points, Phj (t) denotes the true transition
probabilities, K is the estimable number among 1000 samples. S and A indicate
that the results are based on the SIPCW and AIPCW estimators, respectively. The
coverage probabilities are based on 95% confidence intervals with respect to the log
transformation of transition probabilities [4, 5].

Table 1 shows that the estimates obtained using the SIPCW technique overall
have larger bias compared to those obtained using the AIPCW technique in both
scenarios with 30% and 50% censoring. Due to similarity, simulation results for
P02(t) and P05(t) are not showing here. In the meantime, the SIPCW technique
turns out to overestimate P00(t), P01(t) and their variances, while underestimating
P03(t), P04(t) and their variances. This result is not surprising, because the SIPCW
technique underestimates the censoring probabilities that are being used to estimate
P00(t), P01(t) and vice versa. We also observed that the 95% coverage probabilities
of SIPCW estimates are not close to 0.95 in most cases, especially for P01(t)

and P03(t).
On the other hand, the bias is much smaller when the AIPCW technique was

applied, the estimated SEs are close to the SDs, and the coverage probabilities are
reasonably around 0.95. In conclusion, the AIPCW technique reduces bias and
improves the accuracy of variance estimates compare to the SIPCW technique.
Although the bias is larger when the censoring proportion gets higher, the scale
of the bias is small and reasonable when using the AIPCW technique.

3.2 Evaluate the Performance of AIPCW

We further conduct intensive simulation studies with various sample size (100, 500,
1200, 1500) and different censoring proportions (30% vs. 50%) to evaluate the
performance of the AIPCW technique in estimating the transition probabilities and
their variances. Only the results for state {0, 1, 3, 4} are presented. The pre-specified
transition intensities are set to be (0.05, 0.02, 0.15, 0.02, 0.02) respectively for states
1–5. The two-piece constant censoring rates are set to be 0.01 at state 0, 0.03 at state
3 to achieve 30% overall censoring, and 0.04 at state 0, 0.06 at state 3 to reach 50%
overall censoring.

Table 2 shows the simulation results with sample size 100 and 500. Table 3 shows
the simulation results with sample size 1200 and 1500. The simulation results in
Tables 2 and 3 show that the bias of AIPCW estimates are small in all scenarios
regardless of the sample size and censoring proportion.



Adaptive Inverse Probability Censoring Weighting for Multi-State Model 459

Ta
bl

e
1

SI
PC

E
vs

.A
IP

C
W

fo
r

es
tim

at
in

g
tr

an
si

tio
n

pr
ob

ab
ili

tie
s

w
ith

30
%

an
d

50
%

ce
ns

or
in

g

(h
,
j
)

T
P
h
j

K
P̂
S h
j
(S
D
)

B
ia

sS
SE

C
ov

.p
S

K
P̂
A h
j
(S
D
)

B
ia

sA
SE

C
ov

.p
A

30
%

ce
ns
or
in
g
an
d
sa
m
pl
e
si
ze
=
30
0

(0
,0

)
5

0.
27

3
10

00
0.

30
7

(0
.0

29
)

0.
03

4
0.

03
5

0.
86

8
10

00
0.

27
2

(0
.0

26
)

−0
.0

01
0.

02
6

0.
94

3

(0
,0

)
7

0.
16

2
10

00
0.

19
9

(0
.0

26
)

0.
03

7
0.

03
5

0.
84

4
10

00
0.

16
1

(0
.0

22
)

−0
.0

01
0.

02
2

0.
95

0

(0
,0

)
10

0.
07

4
10

00
0.

10
8

(0
.0

23
)

0.
03

4
0.

03
5

0.
86

8
10

00
0.

07
4

(0
.0

16
)

−0
.0

01
0.

01
6

0.
94

5

(0
,0

)
16

0.
01

6
10

00
0.

03
4

(0
.0

16
)

0.
01

8
0.

03
4

0.
94

6
10

00
0.

01
5

(0
.0

07
)

0.
00

0
0.

00
7

0.
98

1

(0
,1

)
5

0.
22

4
10

00
0.

23
3

(0
.0

25
)

0.
00

9
0.

02
5

0.
93

2
10

00
0.

22
5

(0
.0

25
)

0.
00

2
0.

02
4

0.
94

5

(0
,1

)
7

0.
25

8
10

00
0.

27
3

(0
.0

27
)

0.
01

5
0.

02
7

0.
92

4
10

00
0.

26
0

(0
.0

26
)

0.
00

2
0.

02
6

0.
94

2

(0
,1

)
10

0.
28

5
10

00
0.

30
9

(0
.0

29
)

0.
02

4
0.

02
9

0.
88

1
10

00
0.

28
7

(0
.0

26
)

0.
00

2
0.

02
6

0.
94

2

(0
,1

)
16

0.
30

3
10

00
0.

34
0

(0
.0

30
)

0.
03

7
0.

03
1

0.
77

7
10

00
0.

30
5

(0
.0

27
)

0.
00

2
0.

02
7

0.
94

5

(0
,3

)
5

0.
30

4
10

00
0.

27
0

(0
.0

27
)

−0
.0

35
0.

01
5

0.
42

5
10

00
0.

30
8

(0
.0

28
)

0.
00

4
0.

03
1

0.
96

6

(0
,3

)
7

0.
30

1
10

00
0.

26
3

(0
.0

29
)

−0
.0

38
0.

01
6

0.
42

5
10

00
0.

30
8

(0
.0

29
)

0.
00

7
0.

03
4

0.
97

2

(0
,3

)
10

0.
25

9
10

00
0.

22
4

(0
.0

30
)

−0
.0

35
0.

01
7

0.
48

3
10

00
0.

27
0

(0
.0

31
)

0.
01

1
0.

03
4

0.
95

7

(0
,3

)
16

0.
15

6
10

00
0.

13
8

(0
.0

28
)

−0
.0

19
0.

01
9

0.
72

5
10

00
0.

17
1

(0
.0

30
)

0.
01

4
0.

03
3

0.
94

6

(0
,4

)
5

0.
08

4
10

00
0.

07
7

(0
.0

17
)

−0
.0

07
0.

01
6

0.
92

9
10

00
0.

08
1

(0
.0

18
)

−0
.0

03
0.

01
7

0.
93

8

(0
,4

)
7

0.
13

3
10

00
0.

11
9

(0
.0

20
)

−0
.0

14
0.

02
0

0.
89

2
10

00
0.

12
7

(0
.0

22
)

−0
.0

05
0.

02
1

0.
93

7

(0
,4

)
10

0.
20

0
10

00
0.

17
8

(0
.0

24
)

−0
.0

23
0.

02
5

0.
86

2
10

00
0.

19
2

(0
.0

26
)

−0
.0

08
0.

02
7

0.
93

4

(0
,4

)
16

0.
29

9
10

00
0.

26
4

(0
.0

30
)

−0
.0

35
0.

03
1

0.
79

7
10

00
0.

28
8

(0
.0

33
)

−0
.0

11
0.

03
4

0.
94

2

(c
on

tin
ue

d)



460 Y. Zhang and M.-J. Zhang

Ta
bl

e
1

(c
on

tin
ue

d)

(h
,
j
)

T
P
h
j

K
P̂
S h
j
(S
D
)

B
ia

sS
SE

C
ov

.p
S

K
P̂
A h
j
(S
D
)

B
ia

sA
SE

C
ov

.p
A

50
%

ce
ns
or
in
g
an
d
sa
m
pl
e
si
ze
=
30
0

(0
,0

)
5

0.
27

3
10

00
0.

32
9

(0
.0

33
)

0.
05

6
0.

03
8

0.
70

6
10

00
0.

27
2

(0
.0

28
)

−0
.0

01
0.

02
8

0.
95

3

(0
,0

)
7

0.
16

2
10

00
0.

22
5

(0
.0

33
)

0.
06

3
0.

04
1

0.
63

4
10

00
0.

16
2

(0
.0

24
)

−0
.0

01
0.

02
4

0.
94

9

(0
,0

)
10

0.
07

4
10

00
0.

13
4

(0
.0

33
)

0.
05

9
0.

04
5

0.
68

3
10

00
0.

07
4

(0
.0

18
)

0.
00

0
0.

01
8

0.
95

7

(0
,0

)
16

0.
01

6
99

7
0.

05
0

(0
.0

34
)

0.
03

4
0.

05
5

0.
78

5
99

7
0.

01
6

(0
.0

10
)

0.
00

0
0.

00
9

0.
94

9

(0
,1

)
5

0.
22

4
10

00
0.

23
7

(0
.0

28
)

0.
01

3
0.

02
7

0.
91

0
10

00
0.

22
5

(0
.0

26
)

0.
00

1
0.

02
5

0.
93

6

(0
,1

)
7

0.
25

8
10

00
0.

28
1

(0
.0

30
)

0.
02

3
0.

03
0

0.
88

4
10

00
0.

25
9

(0
.0

27
)

0.
00

1
0.

02
7

0.
94

9

(0
,1

)
10

0.
28

5
10

00
0.

32
2

(0
.0

33
)

0.
03

7
0.

03
3

0.
80

5
10

00
0.

28
6

(0
.0

29
)

0.
00

1
0.

02
8

0.
94

8

(0
,1

)
16

0.
30

3
99

7
0.

36
2

(0
.0

40
)

0.
06

0
0.

03
8

0.
67

0
99

7
0.

30
4

(0
.0

30
)

0.
00

1
0.

02
9

0.
94

5

(0
,3

)
5

0.
30

4
10

00
0.

24
7

(0
.0

30
)

−0
.0

58
0.

01
7

0.
23

1
10

00
0.

31
1

(0
.0

29
)

0.
00

6
0.

04
0

0.
99

0

(0
,3

)
7

0.
30

1
10

00
0.

23
6

(0
.0

34
)

−0
.0

65
0.

02
0

0.
26

8
10

00
0.

31
4

(0
.0

34
)

0.
01

3
0.

04
6

0.
98

8

(0
,3

)
10

0.
25

9
10

00
0.

19
8

(0
.0

37
)

−0
.0

60
0.

02
4

0.
38

9
10

00
0.

28
0

(0
.0

38
)

0.
02

1
0.

05
3

0.
98

3

(0
,3

)
16

0.
15

6
99

7
0.

12
2

(0
.0

45
)

−0
.0

35
0.

03
2

0.
70

2
99

7
0.

18
9

(0
.0

52
)

0.
03

2
0.

06
7

0.
93

4

(0
,4

)
5

0.
08

4
10

00
0.

07
3

(0
.0

16
)

−0
.0

11
0.

01
7

0.
92

8
10

00
0.

08
0

(0
.0

18
)

−0
.0

04
0.

01
9

0.
96

5

(0
,4

)
7

0.
13

3
10

00
0.

11
2

(0
.0

21
)

−0
.0

21
0.

02
2

0.
85

1
10

00
0.

12
3

(0
.0

24
)

−0
.0

09
0.

02
5

0.
94

1

(0
,4

)
10

0.
20

0
10

00
0.

16
5

(0
.0

28
)

−0
.0

36
0.

02
8

0.
75

6
10

00
0.

18
5

(0
.0

31
)

−0
.0

15
0.

03
3

0.
92

6

(0
,4

)
16

0.
29

9
99

7
0.

24
2

(0
.0

40
)

−0
.0

57
0.

04
0

0.
69

3
99

7
0.

27
8

(0
.0

49
)

−0
.0

22
0.

05
0

0.
90

8

N
ot

e:
S

:S
IP

C
W

;A
:A

IP
C

W
;K

:n
um

be
r

of
es

tim
ab

le
sa

m
pl

es
;C

ov
.p

:9
5%

co
ve

ra
ge

pr
ob

ab
ili

ty



Adaptive Inverse Probability Censoring Weighting for Multi-State Model 461

Ta
bl

e
2

R
es

ul
ts

fr
om

sc
en

ar
io

s
in

th
e

si
x-

st
at

e
m

od
el

(h
,
j
)

T
P
h
j

K
¯̂ P h
j
(S
D
)

B
ia

s
¯̂ σ

¯̂ σM
C

ov
.p

C
ov

.p
M

K
¯̂ P h
j
(S
D
)

B
ia

s
¯̂ σ

¯̂ σM
C

ov
.p

C
ov

.p
M

30
%

ce
ns
or
in
g
an
d
sa
m
pl
e
si
ze
=
10
0

30
%

ce
ns
or
in
g
an
d
sa
m
pl
e
si
ze
=
50
0

(0
,0

)
5

0.
33

3
10

00
0.

33
3

(0
.0

45
)

0.
00

0
0.

04
8

0.
04

9
0.

96
1

0.
96

3
10

00
0.

33
2

(0
.0

21
)

0.
00

0
0.

02
1

0.
02

2
0.

95
4

0.
95

8

(0
,0

)
7

0.
21

4
10

00
0.

21
6

(0
.0

40
)

0.
00

1
0.

04
2

0.
04

3
0.

95
9

0.
96

7
10

00
0.

21
4

(0
.0

18
)

0.
00

0
0.

01
9

0.
01

9
0.

95
8

0.
96

3

(0
,0

)
10

0.
11

1
99

8
0.

11
0

(0
.0

33
)
−0

.0
01

0.
03

2
0.

03
3

0.
94

4
0.

94
8

10
00

0.
11

1
(0

.0
14

)
0.

00
0

0.
01

4
0.

01
5

0.
96

3
0.

96
7

(0
,0

)
16

0.
03

0
99

4
0.

02
9

(0
.0

18
)
−0

.0
01

0.
01

6
0.

01
7

0.
90

4
0.

90
4

10
00

0.
03

0
(0

.0
08

)
0.

00
0

0.
00

8
0.

00
8

0.
95

7
0.

96
4

(0
,1

)
5

0.
15

2
10

00
0.

15
4

(0
.0

36
)

0.
00

3
0.

03
6

0.
03

6
0.

95
1

0.
95

1
10

00
0.

15
2

(0
.0

16
)

0.
00

1
0.

01
6

0.
01

6
0.

95
0

0.
95

0

(0
,1

)
7

0.
17

9
10

00
0.

18
2

(0
.0

40
)

0.
00

3
0.

03
9

0.
03

9
0.

94
2

0.
94

3
10

00
0.

17
9

(0
.0

17
)

0.
00

1
0.

01
7

0.
01

7
0.

95
4

0.
95

4

(0
,1

)
10

0.
20

2
99

8
0.

20
7

(0
.0

42
)

0.
00

5
0.

04
1

0.
04

1
0.

94
0

0.
94

0
10

00
0.

20
3

(0
.0

18
)

0.
00

1
0.

01
8

0.
01

8
0.

94
6

0.
94

6

(0
,1

)
16

0.
22

1
99

4
0.

22
5

(0
.0

44
)

0.
00

4
0.

04
2

0.
04

3
0.

93
5

0.
93

5
10

00
0.

22
1

(0
.0

20
)

0.
00

1
0.

01
9

0.
01

9
0.

93
6

0.
93

7

(0
,3

)
5

0.
40

5
10

00
0.

40
4

(0
.0

48
)
−0

.0
01

0.
05

2
0.

05
3

0.
96

3
0.

96
6

10
00

0.
40

6
(0

.0
22

)
0.

00
1

0.
02

3
0.

02
4

0.
96

5
0.

96
8

(0
,3

)
7

0.
45

1
10

00
0.

45
0

(0
.0

52
)
−0

.0
01

0.
05

4
0.

05
7

0.
95

3
0.

96
2

10
00

0.
45

2
(0

.0
23

)
0.

00
1

0.
02

4
0.

02
5

0.
95

5
0.

96
9

(0
,3

)
10

0.
46

6
99

8
0.

46
6

(0
.0

52
)

0.
00

0
0.

05
6

0.
06

1
0.

96
7

0.
98

3
10

00
0.

46
9

(0
.0

23
)

0.
00

3
0.

02
5

0.
02

7
0.

96
1

0.
97

3

(0
,3

)
16

0.
41

5
99

4
0.

41
7

(0
.0

54
)

0.
00

2
0.

05
8

0.
06

7
0.

96
3

0.
98

6
10

00
0.

42
0

(0
.0

24
)

0.
00

5
0.

02
6

0.
03

0
0.

96
2

0.
99

0

(0
,4

)
5

0.
02

5
10

00
0.

02
4

(0
.0

16
)
−0

.0
01

0.
01

4
0.

01
4

0.
86

4
0.

86
4

10
00

0.
02

5
(0

.0
08

)
0.

00
0

0.
00

7
0.

00
7

0.
94

3
0.

94
3

(0
,4

)
7

0.
04

2
10

00
0.

04
2

(0
.0

21
)

0.
00

0
0.

02
0

0.
02

0
0.

96
0

0.
96

0
10

00
0.

04
2

(0
.0

10
)

0.
00

0
0.

00
9

0.
00

9
0.

94
5

0.
94

6

(0
,4

)
10

0.
07

0
99

8
0.

06
9

(0
.0

26
)
−0

.0
01

0.
02

6
0.

02
6

0.
94

9
0.

95
0

10
00

0.
06

8
(0

.0
12

)
−0

.0
02

0.
01

2
0.

01
2

0.
94

1
0.

94
2

(0
,4

)
16

0.
12

3
99

4
0.

12
2

(0
.0

35
)
−0

.0
02

0.
03

6
0.

03
6

0.
95

6
0.

95
7

10
00

0.
12

0
(0

.0
16

)
−0

.0
03

0.
01

6
0.

01
6

0.
94

2
0.

94
5

(c
on

tin
ue

d)



462 Y. Zhang and M.-J. Zhang

Ta
bl

e
2

(c
on

tin
ue

d)

(h
,
j
)

T
P
h
j

K
¯̂ P h
j
(S
D
)

B
ia

s
¯̂ σ

¯̂ σM
C

ov
.p

C
ov

.p
M

K
¯̂ P h
j
(S
D
)

B
ia

s
¯̂ σ

¯̂ σM
C

ov
.p

C
ov

.p
M

50
%

ce
ns
or
in
g
an
d
Sa
m
pl
e
si
ze
=
10
0

50
%

ce
ns
or
in
g
an
d
sa
m
pl
e
si
ze
=
50
0

(0
,0

)
5

0.
33

3
10

00
0.

33
3

(0
.0

50
)

0.
00

0
0.

05
0

0.
05

4
0.

94
9

0.
95

8
10

00
0.

33
3

(0
.0

23
)

0.
00

0
0.

02
2

0.
02

4
0.

95
1

0.
96

6

(0
,0

)
7

0.
21

4
99

9
0.

21
3

(0
.0

45
)
−0

.0
02

0.
04

4
0.

04
8

0.
95

0
0.

96
5

10
00

0.
21

4
(0

.0
21

)
0.

00
0

0.
02

0
0.

02
2

0.
94

4
0.

96
5

(0
,0

)
10

0.
11

1
99

7
0.

11
0

(0
.0

36
)
−0

.0
01

0.
03

5
0.

03
9

0.
95

3
0.

97
3

10
00

0.
11

1
(0

.0
17

)
0.

00
0

0.
01

6
0.

01
7

0.
93

8
0.

95
9

(0
,0

)
16

0.
03

0
98

6
0.

02
9

(0
.0

22
)

0.
00

0
0.

01
9

0.
02

1
0.

78
6

0.
79

3
10

00
0.

03
0

(0
.0

10
)

0.
00

0
0.

01
0

0.
01

1
0.

96
5

0.
97

3

(0
,1

)
5

0.
15

2
10

00
0.

15
3

(0
.0

37
)

0.
00

2
0.

03
7

0.
03

7
0.

95
7

0.
95

7
10

00
0.

15
2

(0
.0

16
)

0.
00

0
0.

01
7

0.
01

7
0.

95
3

0.
95

5

(0
,1

)
7

0.
17

9
99

9
0.

18
2

(0
.0

41
)

0.
00

3
0.

04
0

0.
04

1
0.

95
8

0.
95

9
10

00
0.

17
9

(0
.0

17
)

0.
00

1
0.

01
8

0.
01

8
0.

95
8

0.
95

9

(0
,1

)
10

0.
20

2
99

7
0.

20
6

(0
.0

44
)

0.
00

4
0.

04
3

0.
04

4
0.

95
6

0.
95

9
10

00
0.

20
3

(0
.0

19
)

0.
00

0
0.

01
9

0.
02

0
0.

95
3

0.
95

9

(0
,1

)
16

0.
22

1
98

6
0.

22
3

(0
.0

46
)

0.
00

3
0.

04
5

0.
04

6
0.

95
2

0.
95

7
10

00
0.

22
1

(0
.0

20
)

0.
00

0
0.

02
0

0.
02

1
0.

95
8

0.
96

0

(0
,3

)
5

0.
40

5
10

00
0.

40
5

(0
.0

52
)

0.
00

1
0.

05
7

0.
06

0
0.

97
7

0.
98

5
10

00
0.

40
6

(0
.0

23
)

0.
00

2
0.

02
6

0.
02

7
0.

96
9

0.
97

6

(0
,3

)
7

0.
45

1
99

9
0.

45
1

(0
.0

56
)

0.
00

0
0.

06
0

0.
06

7
0.

96
4

0.
98

4
10

00
0.

45
3

(0
.0

25
)

0.
00

2
0.

02
7

0.
03

0
0.

96
5

0.
98

1

(0
,3

)
10

0.
46

6
99

7
0.

46
9

(0
.0

56
)

0.
00

2
0.

06
4

0.
07

7
0.

97
4

0.
99

3
10

00
0.

47
1

(0
.0

27
)

0.
00

5
0.

03
0

0.
03

4
0.

97
8

0.
99

2

(0
,3

)
16

0.
41

5
98

6
0.

41
9

(0
.0

61
)

0.
00

4
0.

06
8

0.
09

5
0.

97
0

0.
99

8
10

00
0.

42
3

(0
.0

28
)

0.
00

8
0.

03
2

0.
04

2
0.

96
2

0.
99

8

(0
,4

)
5

0.
02

5
10

00
0.

02
5

(0
.0

17
)

0.
00

0
0.

01
5

0.
01

5
0.

86
1

0.
86

1
10

00
0.

02
5

(0
.0

08
)

0.
00

0
0.

00
7

0.
00

7
0.

94
4

0.
94

4

(0
,4

)
7

0.
04

2
99

9
0.

04
3

(0
.0

22
)

0.
00

0
0.

02
1

0.
02

1
0.

95
0

0.
95

0
10

00
0.

04
2

(0
.0

10
)
−0

.0
01

0.
01

0
0.

01
0

0.
95

0
0.

95
1

(0
,4

)
10

0.
07

0
99

7
0.

06
8

(0
.0

28
)
−0

.0
02

0.
02

8
0.

02
9

0.
95

8
0.

96
0

10
00

0.
06

8
(0

.0
13

)
−0

.0
02

0.
01

3
0.

01
3

0.
95

9
0.

96
0

(0
,4

)
16

0.
12

3
98

6
0.

11
9

(0
.0

42
)
−0

.0
04

0.
04

1
0.

04
2

0.
93

0
0.

93
7

10
00

0.
12

0
(0

.0
18

)
−0

.0
04

0.
01

9
0.

01
9

0.
94

5
0.

95
1

N
ot

e:
Sa

m
pl

e
si

ze
fo

r
ea

ch
sc

en
ar

io
is

10
00

;K
:e

st
im

ab
le

nu
m

be
r

of
si

m
ul

at
io

ns
;C

ov
.p

:9
5%

co
ve

ra
ge

pr
ob

ab
ili

tie
s;
M

:e
st

im
at

es
ar

e
ba

se
d

on
th

e
m

ai
n-

pa
rt

es
tim

at
or

s



Adaptive Inverse Probability Censoring Weighting for Multi-State Model 463

Ta
bl

e
3

R
es

ul
ts

fr
om

sc
en

ar
io

s
w

ith
sa

m
pl

e
si

ze
N
=

12
00

vs
.N

=
15

00

Sa
m

pl
e

si
ze

=
12

00
Sa

m
pl

e
si

ze
=

15
00

(h
,
j
)

T
P
h
j

K
¯̂ P h
j
(S
D
)

B
ia

s
¯̂ σM

C
ov

.p
M

K
¯̂ P h
j
(S
D
)

B
ia

s
¯̂ σM

C
ov

.p
M

30
%

ce
ns
or
in
g

(0
,0

)
5

0.
33

3
10

00
0.

33
3

(0
.0

14
)

0.
00

0
0.

01
4

0.
95

8
10

00
0.

33
3

(0
.0

13
)

0.
00

0
0.

01
3

0.
95

1

(0
,0

)
7

0.
21

4
10

00
0.

21
4

(0
.0

12
)

0.
00

0
0.

01
2

0.
95

8
10

00
0.

21
5

(0
.0

11
)

0.
00

0
0.

01
1

0.
95

7

(0
,0

)
10

0.
11

1
10

00
0.

11
1

(0
.0

09
)

0.
00

0
0.

01
0

0.
95

7
10

00
0.

11
1

(0
.0

08
)

0.
00

0
0.

00
9

0.
95

3

(0
,0

)
16

0.
03

0
10

00
0.

03
0

(0
.0

05
)

0.
00

0
0.

00
5

0.
96

0
10

00
0.

03
0

(0
.0

04
)

0.
00

0
0.

00
5

0.
96

8

(0
,1

)
5

0.
15

2
10

00
0.

15
2

(0
.0

10
)

0.
00

1
0.

01
0

0.
95

3
10

00
0.

15
2

(0
.0

09
)

0.
00

0
0.

00
9

0.
95

8

(0
,1

)
7

0.
17

9
10

00
0.

17
9

(0
.0

11
)

0.
00

1
0.

01
1

0.
95

0
10

00
0.

17
9

(0
.0

10
)

0.
00

0
0.

01
0

0.
95

9

(0
,1

)
10

0.
20

2
10

00
0.

20
3

(0
.0

12
)

0.
00

1
0.

01
2

0.
95

4
10

00
0.

20
2

(0
.0

10
)

0.
00

0
0.

01
1

0.
94

9

(0
,1

)
16

0.
22

1
10

00
0.

22
1

(0
.0

12
)

0.
00

1
0.

01
2

0.
95

3
10

00
0.

22
1

(0
.0

11
)

0.
00

0
0.

01
1

0.
94

5

(0
,3

)
5

0.
40

5
10

00
0.

40
5

(0
.0

14
)

0.
00

0
0.

01
5

0.
95

9
10

00
0.

40
5

(0
.0

13
)

0.
00

0
0.

01
4

0.
96

7

(0
,3

)
7

0.
45

1
10

00
0.

45
2

(0
.0

15
)

0.
00

0
0.

01
6

0.
96

2
10

00
0.

45
2

(0
.0

13
)

0.
00

1
0.

01
5

0.
97

0

(0
,3

)
10

0.
46

6
10

00
0.

46
8

(0
.0

15
)

0.
00

2
0.

01
8

0.
97

9
10

00
0.

46
8

(0
.0

13
)

0.
00

2
0.

01
6

0.
97

6

(0
,3

)
16

0.
41

5
10

00
0.

41
8

(0
.0

16
)

0.
00

3
0.

01
9

0.
98

2
10

00
0.

41
8

(0
.0

14
)

0.
00

4
0.

01
7

0.
98

9

(0
,4

)
5

0.
02

5
10

00
0.

02
5

(0
.0

05
)

0.
00

0
0.

00
5

0.
94

8
10

00
0.

02
5

(0
.0

04
)

0.
00

0
0.

00
4

0.
94

5

(0
,4

)
7

0.
04

2
10

00
0.

04
2

(0
.0

06
)

0.
00

0
0.

00
6

0.
95

1
10

00
0.

04
2

(0
.0

05
)

0.
00

0
0.

00
5

0.
95

2

(0
,4

)
10

0.
07

0
10

00
0.

06
9

(0
.0

08
)

−0
.0

01
0.

00
8

0.
95

4
10

00
0.

06
9

(0
.0

07
)

−0
.0

01
0.

00
7

0.
94

7

(0
,4

)
16

0.
12

3
10

00
0.

12
1

(0
.0

11
)

−0
.0

02
0.

01
1

0.
93

2
10

00
0.

12
1

(0
.0

09
)

−0
.0

02
0.

00
9

0.
93

4

(c
on

tin
ue

d)



464 Y. Zhang and M.-J. Zhang

Ta
bl

e
3

(c
on

tin
ue

d)

Sa
m

pl
e

si
ze

=
12

00
Sa

m
pl

e
si

ze
=

15
00

(h
,
j
)

T
P
h
j

K
¯̂ P h
j
(S
D
)

B
ia

s
¯̂ σM

C
ov

.p
M

K
¯̂ P h
j
(S
D
)

B
ia

s
¯̂ σM

C
ov

.p
M

50
%

ce
ns
or
in
g

(0
,0

)
5

0.
33

3
10

00
0.

33
3

(0
.0

15
)

0.
00

0
0.

01
6

0.
96

4
10

00
0.

33
3

(0
.0

13
)

0.
00

0
0.

01
4

0.
97

4

(0
,0

)
7

0.
21

4
10

00
0.

21
5

(0
.0

13
)

0.
00

0
0.

01
4

0.
96

5
10

00
0.

21
5

(0
.0

11
)

0.
00

0
0.

01
3

0.
97

5

(0
,0

)
10

0.
11

1
10

00
0.

11
1

(0
.0

11
)

0.
00

0
0.

01
1

0.
96

4
10

00
0.

11
1

(0
.0

09
)

0.
00

0
0.

01
0

0.
96

5

(0
,0

)
16

0.
03

0
10

00
0.

03
0

(0
.0

06
)

0.
00

0
0.

00
7

0.
96

5
10

00
0.

03
0

(0
.0

06
)

0.
00

0
0.

00
6

0.
96

4

(0
,1

)
5

0.
15

2
10

00
0.

15
2

(0
.0

10
)

0.
00

0
0.

01
1

0.
96

1
10

00
0.

15
1

(0
.0

09
)

0.
00

0
0.

01
0

0.
96

6

(0
,1

)
7

0.
17

9
10

00
0.

17
9

(0
.0

11
)

0.
00

0
0.

01
2

0.
95

5
10

00
0.

17
9

(0
.0

10
)

0.
00

0
0.

01
1

0.
96

1

(0
,1

)
10

0.
20

2
10

00
0.

20
2

(0
.0

12
)

0.
00

0
0.

01
3

0.
95

6
10

00
0.

20
2

(0
.0

11
)

0.
00

0
0.

01
1

0.
95

0

(0
,1

)
16

0.
22

1
10

00
0.

22
1

(0
.0

13
)

0.
00

0
0.

01
3

0.
95

4
10

00
0.

22
1

(0
.0

11
)

0.
00

0
0.

01
2

0.
94

6

(0
,3

)
5

0.
40

5
10

00
0.

40
6

(0
.0

15
)

0.
00

1
0.

01
7

0.
97

7
10

00
0.

40
6

(0
.0

14
)

0.
00

1
0.

01
6

0.
98

2

(0
,3

)
7

0.
45

1
10

00
0.

45
3

(0
.0

16
)

0.
00

2
0.

01
9

0.
98

8
10

00
0.

45
3

(0
.0

14
)

0.
00

2
0.

01
7

0.
98

8

(0
,3

)
10

0.
46

6
10

00
0.

47
0

(0
.0

17
)

0.
00

4
0.

02
2

0.
99

1
10

00
0.

47
0

(0
.0

16
)

0.
00

4
0.

02
0

0.
98

8

(0
,3

)
16

0.
41

5
10

00
0.

42
2

(0
.0

18
)

0.
00

7
0.

02
7

0.
99

5
10

00
0.

42
2

(0
.0

16
)

0.
00

7
0.

02
4

0.
99

6

(0
,4

)
5

0.
02

5
10

00
0.

02
5

(0
.0

05
)

0.
00

0
0.

00
5

0.
95

7
10

00
0.

02
5

(0
.0

04
)

0.
00

0
0.

00
4

0.
94

8

(0
,4

)
7

0.
04

2
10

00
0.

04
2

(0
.0

06
)

−0
.0

01
0.

00
6

0.
94

8
10

00
0.

04
2

(0
.0

06
)

−0
.0

01
0.

00
6

0.
94

7

(0
,4

)
10

0.
07

0
10

00
0.

06
8

(0
.0

08
)

−0
.0

02
0.

00
9

0.
96

0
10

00
0.

06
8

(0
.0

08
)

−0
.0

02
0.

00
8

0.
94

9

(0
,4

)
16

0.
12

3
10

00
0.

12
0

(0
.0

12
)

−0
.0

04
0.

01
2

0.
94

4
10

00
0.

12
0

(0
.0

11
)

−0
.0

03
0.

01
1

0.
94

4

N
ot

e:
Sa

m
pl

e
si

ze
fo

re
ac

h
sc

en
ar

io
is

10
00

;K
:e

st
im

ab
le

nu
m

be
ro

fs
im

ul
at

io
ns

;C
ov

.p
:9

5%
co

ve
ra

ge
pr

ob
ab

ili
tie

s;
M

:e
st

im
at

es
ar

e
ba

se
d

on
th

e
m

ai
n-

pa
rt

es
tim

at
or

s



Adaptive Inverse Probability Censoring Weighting for Multi-State Model 465

In Table 2, we present two types of variance estimates for each transition

probability: ¯̂σ is the full standard error estimate, while ¯̂σM is the main-part standard
error estimate which assumes the censoring distributions are known. According to

the simulation results, the main-part variance ¯̂σM are slightly conservative compare

to ¯̂σ , and the 95% coverage probabilities based on ¯̂σM are bigger than its 95%
nominal range [0.9365, 0.9635] in transient states 3.

In Table 3, only the simulation results based on ¯̂σM are presented for larger

sample size 1200 and 1500. The coverage probabilities based on ¯̂σM are still slightly
larger for the transient state. The reasons are possibly the higher flowability in the
transient states and the bias of K-M estimators of censoring distributions. Further
studies are desirable to determine the actual reasons for this observed phenomenon.

Despite that ¯̂σM are larger in transient states, the difference between ¯̂σ and ¯̂σM are
generally negligible for large sample size and small censoring proportion, moreover,
the computation time can be significantly reduced by using the main-part variance
when sample size is large.

We notice that several coverage probabilities are much smaller than 0.95 when
sample size is small, such as P00(t = 16), and P04(t = 5) when sample size is
100. The reason is that the corresponding true probabilities are very small (P00(t =
16) = 0.03, P04(t = 5) = 0.025), it is difficult to obtain accurate tail estimates
because of the lack of enough events and ‘at risk’ subjects to make inferences.

By comparing the coverage probabilities from scenarios with different censoring
proportions, we observed that the coverage probabilities are closer to 0.95 in
scenarios with less censoring. This observation is rational because we do expect
more accurate estimates with more information. Moreover, when the sample size
gets larger, those coverage probabilities also get closer to 0.95. Based on these
results, we argue that a sample size less than 500 is maybe too small to provide
accurate estimates for the transition probabilities in this specified six-state model
when the censoring proportion is relatively high.

3.3 Evaluate the Performance of AIPCW in a Four-Level
Twelve-State Model

We conduct simulation studies to evaluate the performance of the proposed AIPCW
technique in the specified four-level twelve-state model. We create simulation sce-
narios with different sample sizes (300, 500, 1000, 1500) and 30% censoring. The
transition intensities α01 − α08, α39, α49, α9,10, α9,11 are set to be (0.02, 0.03, 0.10,
0.15, 0.03, 0.04, 0.02, 0.03, 0.10, 0.05, 0.03, 0.05), and the censoring intensities
for transient states 0, 3, 4, 9 are set to be (0.02, 0.03, 0.03, 0.03) respectively
to meet the desired percentage of censoring. The average number of patients in
state 0–11 by the end of study are {19, 19, 28, 14, 33, 14, 19, 21, 33, 27, 27, 46},
{31, 32, 47, 23, 54, 24, 31, 36, 54, 46, 46, 76}, {63, 63, 94, 47, 108, 46, 62, 72, 108,
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92, 92, 153}, and {94, 94, 141, 71, 161, 70, 94, 108, 162, 138, 138, 229}, for
N = 300, 500, 1000 and 1500, respectively. We only report results for transition
probabilities P09(0, t), P0,10(0, t), P0,11(0, t). Only the main-part variances and the
corresponding coverage probabilities are considered for large simple size of 1000
and 1500 to reduce the computation time.

Table 4 summarizes the simulation results. Overall, the estimated biases are
relatively small, the variance estimates are consistent, and the estimated standard
errors are close to the standard deviations. The coverage probabilities fall into the
nominal range [0.9365, 0.9635] for almost all the cases. Specifically, the biases
of estimated transition probabilities of P09(0, t) are slightly larger than bias of
estimating P0,10(0, t) and P0,11(0, t), however, the biases get reduced when the
sample size gets larger. In summary, the AIPCW technique performs well in
estimating transition probabilities in complex multi-state models.

4 Real Data Example: The HSCT Data

In this section, we study the cumulative incidences of relapse and death with or
without development of chronic GVHD (cGVHD) by analyzing the real data from
the HSCT study [11]. The data were initially collected to compare the survival
outcomes of patients with high-risk acute myeloid leukemia or myelodysplasia
when they were treated with myeloablative (MA) procedures versus reduced-
intensity conditioning or nonmyeloablative (RIC/NMA) conditioning regimens.
Primary endpoints were hematopoietic recovery, GVHD, treatment related mortality
(TRM), clinical disease relapse (hematological or extramedullary), overall survival
and disease-free survival (DFS). TRM was defined as death during continuous
complete remission without relapse after transplant. Relapse was defined as clinical
or hemotological recurrence. For the purposes of the analysis, the date of the
transplant was the starting time point, and surviving patients were censored at the
date of last contact. The data contain a total of 5179 patients who received an HLA-
identical sibling or an unrelated HCT transplant (3731 MA and 1448 RIC/NMA)
procedures performed at 217 centers between 1997 and 2004. For illustrative
purposes, we consider a cohort of 4920 patients with complete information.

4.1 Quantify Transition Probabilities

In a multi-state framework, the data from [11] can be configured into a six-state
model (see Fig. 1). In the following contents, we estimate the transition probabilities
and explore the cGVHD effect within this model applying the proposed AIPCW
technique. The transition probabilities at every 12 months are summarized in
Table 5. From the analysis output, we learn that the 1-year cGVHD and relapse-
free survival (cGRFS) is P00(12) = 0.180, the DFS is P00(12)+ P03(12) = 0.449,
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Table 5 Estimated transition probabilities at every 12 months

P̂jk(t)(se)

Month P̂00(t) P̂03(t) P̂01(t) P̂04(t) P̂02(t) P̂05(t)

12 0.180 (0.075) 0.269 (0.081) 0.229 (0.078) 0.052 (0.057) 0.235 (0.078) 0.036 (0.052)

24 0.134 (0.072) 0.246 (0.082) 0.236 (0.078) 0.075 (0.062) 0.250 (0.079) 0.059 (0.059)

36 0.120 (0.074) 0.229 (0.085) 0.240 (0.078) 0.089 (0.065) 0.254 (0.079) 0.068 (0.061)

48 0.111 (0.078) 0.211 (0.091) 0.242 (0.079) 0.103 (0.068) 0.258 (0.080) 0.074 (0.063)
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Fig. 5 Estimated transition probabilities. (a) Transition probability curves. (b) Proportions of
transition probabilities

and the incidence of cGVHD at 1-year is P03(12)+P04(12)+P05(12) = 0.357. The
estimated transition probabilities are also plotted in Fig. 5a, b. Figure 5b illustrates
the proportion of each transition probability at all time points. We observe that most
of the TRM and relapse happen at the early stage after transplant without developing
cGVHD, this is partially because cGVHD typically occurs after 100 days from
transplant.

The transition probabilities of relapse and TRM are plotted and compared
in Fig. 6. The upper plots show the cumulative incidence functions of disease
relapse with and without cGVHD (P02(t) vs. P05(t)), and the lower plots show
the cumulative incidence functions of TRM with and without cGVHD (P01(t) vs.
P04(t)). These plots provide direct perceptions of TRM and relapse incidences
from both transition paths. At 48-month after transplant, the proportion of disease
relapse after cGVHD is 22.3% (0.074/(0.074+ 0.258)) of the total relapse, and the
proportion of treatment-related mortality after cGVHD is 29.9% (0.103/(0.103 +
0.242)) of the total treatment-related mortality.

In addition, the transition probabilities of adverse events with and without
cGVHD are plotted and compared in Fig. 7. The upper plots show the cumulative
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Fig. 6 CIF of relapse and TRM for patients with and without cGVHD

incidence functions of TRM and Relapse (P01(t) vs. P02(t)) among patients without
cGVHD, and the lower plots show TRM and Relapse (P04(t) vs. P05(t)) among
patients with cGVHD. These plots provide direct perceptions of proportions of
adverse events with and without cGVHD. The results show that, at 48-month after
transplant, relapse counts for 51.6% (0.258/(0.258 + 0.242)) of total observed
adverse events among patients without cGVHD, while this percentage is only 41.8%
(0.074/(0.074 + 0.103)) among patients with cGVHD. These results indicate that
cGVHD has graft-verse-leukemia (GVL) effect to reduce the cancer recurrence rate.
Also, these results are useful for disease prognostic. Given whether a patient has
developed cGVHD or not at a certain time after transplantation, we can predict the
mortality or relapse rate.

Moreover, we have discussed earlier that the same dataset can be represented by
different multi-state models depending on the research interests. If both aGVHD
and cGVHD are considered, the data from [11] can be re-configured into a four-
level of a twelve-state model (see Fig. 2). We want to investigate the TRM and
relapse probabilities under different health conditions after transplant, thereby we
estimated and presented the TRM probabilities to state 1 (without GVHD), state 5
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Fig. 7 Proportions of adverse events with and without cGVHD

Table 6 Estimated TRM probability from different transition paths at every 12 months

P̂jk(t)(se)

Month P̂01(t) P̂05(t) P̂07(t) P̂0,10(t)

12 0.100 (0.066) 0.129 (0.069) 0.013 (0.041) 0.038 (0.003)

24 0.106 (0.066) 0.131 (0.070) 0.023 (0.047) 0.051 (0.003)

36 0.108 (0.067) 0.132 (0.070) 0.027 (0.049) 0.062 (0.004)

48 0.110 (0.067) 0.132 (0.070) 0.033 (0.053) 0.070 (0.004)

(with the only aGVHD), state 7 (with only cGVHD), and state 10 (with both types
of GVHD) at every 12 months in Table 6, and the relapse probabilities to state 2
(without GVHD), state 6 (with the only aGVHD), state 8 (with the only cGVHD),
and state 11 (with both types of GVHD) at every 12 months in Table 7.

The analysis results show that at 48-month after transplant, the total relapse
probability is 33.2% (0.169 + 0.089 + 0.035 + 0.039). The proportion of relapse
among patients with the only aGVHD is 26.8% (0.089/0.332) of the total relapse;



472 Y. Zhang and M.-J. Zhang

Table 7 Estimated relapse probability from different transition paths at every 12 months

P̂jk(t)(se)

Month P̂02(t) P̂06(t) P̂08(t) P̂0,11(t)

12 0.152 (0.005) 0.083 (0.004) 0.014 (0.002) 0.021 (0.002)

24 0.163 (0.005) 0.086 (0.004) 0.025 (0.002) 0.034 (0.003)

36 0.167 (0.005) 0.088 (0.004) 0.031 (0.002) 0.037 (0.003)

48 0.169 (0.005) 0.089 (0.004) 0.035 (0.003) 0.039 (0.003)
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Fig. 8 Proportion of adverse events under different disease conditions

this proportion among patients with the only cGVHD is 10.5% (0.035/0.332), and
among patients with both types of GVHD is 11.7% (0.039/0.332).

On the other hand, relapse counts for 60.6% (0.169/(0.169 + 0.110)) of all
adverse events among patients without any type of GVHD; this proportion is 40.2%
(0.089/(0.089+0.132)) among patients with only aGVHD, 51.5% (0.035/(0.035+
0.033)) among patients with only cGVHD, and 35.8% (0.039/(0.039 + 0.070))
among patients with both types of GVHD (also see Fig. 8). Simultaneously, relapse
counts for 41.0% (0.163/0.398) among patients with any type of GVHD. These
results may show that both aGVHD and cGVHD have GVL effect and patients
experienced both type of GVHD has strongest GVL effect.
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5 Discussion

This work has been committed to investigate the estimation of the transition
probabilities in multi-state models using the proposed AIPCW. Simulation studies
show that the proposed AIPCW technique provides more accurate estimates for
the censoring distributions which lead to asymptotic unbiased estimates of the
transition probabilities. The proposed AIPCW technique can be extended to more
complicated multi-level models, and it can be applied to directly model the transition
probabilities. More detailed study will be needed to study the performance of
estimates for the regression parameters using the AIPCW technique in direct
binomial modeling.

The drawback of any inverse probability censoring weighting approach is that
one needs to estimate the censoring distribution for each individual. Beside, one
additional disadvantage of our proposed AIPCW method is the lack of universal
formulas for constructing the censoring distributions, because they are model- and
state-specific. We did not explore the scenarios with covariate-dependent censoring
in this work, but previous studies have indicated that regression modeling of the
censoring distributions may further improve the efficiency of the AIPCW estimating
procedures [9, 14, 16], even when the censoring is independent of covariates. Proper
regression adjustments for the censoring distributions may be worth pursuing in
future work.

In addition, we only studied using AIPCW method for analyzing right censored
multi-state model data. Application of AIPCW method in left-truncated and right
censored multi-state model data, and in data with other types of censoring, like
interval censoring and current status, may be worth pursuing in future works.

Appendix 1

Large sample property of IPCW-based estimator has been studied extensively [8, 9,
16]. We present a brief derivation for the variance estimations. Let Ti,123 = (T ∗i,123∧
Ci), N

C00
i (t) = I (Ti,123 ≤ t, ΔC00,i = 1), YC00

i (t) = I (Ti,123 ≥ t), and YC00• (t) =
∑

i Y
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i (t). Under regularity condition [9], we have that
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Thus, variance of
{
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ĜC00(T
∗
i,k)

− P̂AIPCW
0k (0, t)

}

+
∫ t

0

⎧
⎨

⎩

n∑

j=1

Rj,k(t)
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, for k = 1, 2.
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ĜC33(t)

{
1

ĜC00(T
∗
i,3)

− 1

GC00(T
∗
i,3)

}

+ 1√
n

n∑

i=1

Ri,3(t)

GC00(T
∗
i,3)

{
1
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where MC33
i (u) can be estimated by
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Similarly for k = 4, 5, variance of
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The derived moment-type variance estimates have two parts. For example, there
are two parts in Ŵi,00(t) = Ŵi1,00(t) + Ŵi2,00(t) for estimating variance of
PAIPCW

00 (0, t). The second part

Ŵi2,00(t) =
⎧
⎨

⎩

n∑

j=1

Rj,0(t)
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is needed due to the estimation of the censoring distributions. In other words,
when the censoring distributions are known, Ŵi2,00(t) becomes zero, and Ŵi,00(t)

reduces to

Ŵi1,00(t) =
{
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. (8)

In most situations, Ŵi2,00(t) is negligible. The variance estimates estimated from
Ŵi,00(t) are close to that estimated from Ŵi1,00(t) alone, but not necessarily larger,
because the covariance of Wi1,00(t) and Wi2,00(t) are not necessarily positive.
Similar arguments are true for the variances of transition probabilities to other states.
We presented both variance estimates in the simulation studies.

Appendix 2

For a four-level twelve-state model, we here only present the variance estimates
of P09(t), P0,10(t), P0,11(t), one can refer to Appendix 1 for the variance of other
transition probabilities. We have
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where M
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ĜC00(T
∗
j,3)ĜC33(T
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j,9)ĜC99,3(t)

I {u ≤ T ∗j,9 ≤ t, ηj,3 = 1}
⎫
⎬

⎭

∫ t

0

dM̂
C99,3
i (u)

Y
C99,3• (u)

+
∫ t

0

⎧
⎨

⎩

n∑

j=1

Rj,49(t)
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j,3)ĜC33(T

∗
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