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 I. Introduction

Cyanobacteria, eukaryotic algae and vascu-
lar plants ultimately depend on the enzyme 
ribulose-1,5-bisphosphate carboxylase oxy-

genase (Rubisco) for assimilation of CO2 
into organic matter, initially, via a 6C car-
boxyketone intermediate, in the form of 
3-phosphoglycerate (Eq. 7.1).
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The 3-phosphoglycerate so formed 
undergoes a series of reactions, leading to 
the net production of one molecule of tri-
ose phosphate for every 3 CO2 assimilated, 
in the Calvin-Benson-Bassham Cycle 
(Photosynthetic Carbon Reduction Cycle; 
PCRC) and the regeneration of one 
ribulose- 1,5-bisphosphate. Each turn of the 
PCRC uses 2 NADPH plus 3 ATP per CO2 
assimilated, involving at least 9  mol pho-
tons absorbed per mol CO2 assimilated 
(Raven et  al. 2014) although, as will be 
described below, the precise energetic costs 
involved in net incorporation of CO2 into 
carbohydrate usually exceed this.

There are a number of alternative path-
ways leading to net CO2 assimilation in 
autotrophs (Raven et al. 2011, 2012) but, as 
discussed later in this chapter, cyanobacteria 
and algae appear to use only the PCRC 
(Beardall and Raven 2016). Indeed, 99% of 
primary productivity on the planet is carried 
out by processes that involve Rubisco and 
the PCRC (Raven 2009; Beardall and Raven 
2016).

In this chapter, we examine the biochemi-
cal and structural constraints on carbon 
assimilation in cyanobacteria and eukaryotic 
algae and discuss the need for CO2 concen-
trating mechanisms (CCMs) if these photo-
autotrophs are to achieve significant rates of 
net photosynthesis. In order to determine 
whether cells possess a capacity for CCMs, a 
number of criteria need to be satisfied, but 
there are currently misconceptions in the lit-
erature about what comprises proof of CCM 
activity. Accordingly, we discuss the mecha-
nisms of biochemical and biophysical CCMs 
and the strengths and weaknesses of the vari-
ous criteria that have been employed as yard-
sticks for CCM determination.

 II. Carbon Assimilation

 A.  The Characteristics of Most Rubiscos 
Necessitate Operation of a CCM

In addition to the, relatively low catalytic 
rate, carboxylase activity shown in Eq. 7.1, 
Rubisco also possesses an oxygenase activ-
ity, leading, via a 5C peroxyketone interme-
diate, to the formation of one molecule of 
phosphoglycerate and one molecule of phos-
phoglycolate (Eq. 7.2).

O D ribulose bisphosphate
phosphoglycerate phosph

2 1 5
3 2

+ - - -
® - + -

,
ooglycolate

 (7.2)

The phosphoglycolate so formed can be 
acted upon by 2-phosphoglycolate phospha-
tase, leading to formation of glycolate. The 
latter can be excreted from cyanobacteria or 
plastids, leading to a net loss of 2 organic 
C. Alternatively 2 molecules of glycolate can 
enter the sequence of reactions known as the 
photorespiratory carbon oxidation cycle 
(PCOC, photorespiration) leading to forma-
tion of one molecule of 3-phosphoglycerate 
and the net loss of 1 C (Beardall and Raven 
2016; Raven et  al. 2011; Beardall et  al. 
2003). Eisenhut et al. (2008) showed that a 
cyanobacterium has two alternative path-
ways of glycolate metabolism in addition to 
the PCOC; deletion of all three of the path-
ways is lethal, so in this organism glycolate 
excretion alone is not an adequate sink for 
glycolate. The role of photorespiration as 
well as alternative pathways of electron flow 
and oxygen consumption in algae and cyano-
bacteria are discussed in a separate chapter 
in this volume (Raven et al. 2019).

CO2 and O2 compete for the same active 
site on Rubisco, and the achieved rates of the 
two carboxylase and oxygenase activities 
depends on the O2:CO2 ratio at the active site 
of the enzyme, according to the Selectivity 
Factor Srel shown in Eq. 7.3.
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where kcat(CO2) is the CO2-saturated specific 
rate of carboxylase activity of Rubisco (mol 
CO2 mol−1 active sites s−1), K1/2 (CO2) is the 
concentration of CO2 at which the CO2 fixa-
tion rate by Rubisco is half of kcat(CO2), 
kcat(O2) is the O2-saturated specific rate of 
oxygenase activity of Rubisco (mol O2 mol−1 
active sites s−1) and K1/2 (O2) is the 
 concentration of O2 at which the O2 fixation 
rate by Rubisco is half of kcat(O2).

Autotrophs contain a broad range of differ-
ent forms of Rubisco. These have been dis-
cussed extensively in the literature (Badger 
et  al. 1998; Raven and Beardall 2003; 
Beardall and Raven 2016; Tcherkez et  al. 
2006; Whitney et al. 2011; Raven et al. 2011, 
2012; Studer et al. 2014; Griffiths et al. 2017; 
Bathellier et al. 2018), so their characteristics 
are only summarised briefly here. There are 3 
known main forms of Rubisco, referred to as 
Forms I, II and III. A fourth group Form IV) 
consists of Rubisco-like proteins which lack 
carboxylase activity and which may instead 
function in S metabolism (Hanson and Tabita 
2001). Cyanobacteria and many algae have 
Form I Rubisco with 8 large and 8 small sub-
units (L8S8). Form I Rubiscos can be further 
categorised into Form IA and Form IB. 
Prochlorococcus and many marine 
Synechococcus species produce Form IA 
Rubisco, obtained by lateral gene transfer 
from an autotrophic proteobacterium (Raven 
et al. 2012). The vast majority of marine and 
freshwater cyanobacteria however possess 
the ancestral Form IB Rubisco, which was 
transferred in primary endosymbiosis to 
glaucocystophyte and thence chlorophyte 
algae and then by secondary endosymbiosis 
to chlorarachniophyte and euglenophyte 
algae (Raven et al. 2012). All red algae on the 
other hand possess Form ID RUBISCO, 
obtained by lateral gene transfer from an 
autotrophic proteobacterium (displacing the 
Form IB Rubisco transferred in primary 
endosymbiosis). Through secondary endo-
symbiosis this form of Rubisco appears, at 

least in those species that have been exam-
ined, to have been passed on to cryptophytes, 
haptophytes (e.g. cocolithophores) and het-
erokonts (= stramenopiles or ochristans, 
e.g. diatoms). Some Form IB Rubiscos have 
the very high selectivity for CO2 over O2 
(Raven et  al. 2012), though Tcherkez et al. 
(2006) suggest that Form 1D has the highest 
affinity for carbon dioxide and the highest 
carbon dioxide:oxygen selectivity.

On the other hand, the ancestral dinofla-
gellates and Chromera veria, both alveo-
lates, possess Form II Rubisco, believed to 
have been obtained by lateral gene transfer 
from an autotrophic proteobacterium; Form 
II Rubisco comprises only 2 large subunits 
(L2). Form III Rubiscos also lack small sub-
units (but can have more complex structures 
based on the L2 basal structure ((L2)4, (L2)5), 
but are found only in Archaea so will not be 
considered further here.

These various forms of Rubisco have dif-
fering kinetic properties and in particular 
differing selectivity factors. Form IBc 
Rubiscos, found in most marine and fresh-
water β-cyanobacteria, have high K1/2(CO2) 
values of 105–290 (with most values falling 
in the range of 200–260 μM). Selectivity fac-
tors vary from 38 to 56 mol mol−1 and CO2- 
saturated specific reaction rates (kcat) values 
range from 2.6 to 11.4 mol CO2 mol−1 active 
sites s−1. In contrast, the Form IAc Rubisco 
of the marine α-cyanobacterium 
Prochlorococcus MIT9313 has the highest 
known K1/2(CO2) of a Form I Rubisco of 
750  μM, combined with a moderate CO2- 
saturated specific reaction rate of 4.7  mol 
CO2 mol−1 active sites s−1 (Scott et al. 2007). 
On the other hand, green algae have Form 1B 
Rubiscos with higher affinity with K0.5(CO2) 
values of 29–38  μM and higher Srel of 
61–83  mol  mol−1 being reported, but with 
lower kcat values (Raven and Beardall 2003).

The Form 1D Rubiscos found in hetero-
kont and haptophyte algae (see Chap. 2) show 
values that are very variable. This can even be 
the case for the same organism; values of 
K0.5(CO2) for partially purified Rubisco of the 
coccolithophore Emiliana huxleyi have been 
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reported as 72  μM (Boller et  al. 2011), or 
200 μM (Shiraiwa et al. 2004). Diatom Form 
ID Rubiscos are also variable (Boller et  al. 
2015; Young et al. 2016) with K0.5(CO2) val-
ues varying from 23 to 68 μM, CO2 selectiv-
ity from 57 to 116  mol  mol−1 and specific 
reaction rates of 2.1 to 3.7 site−1 s−1. Form 1D 
Rubiscos in the Synurophyceae have reported 
K0.5(CO2) values in  vitro of 18.2  μM 
(Mallomonas papulosa), 28.4  μM (Synura 
petersenii) and 41.8  μM (Synura uvella) 
(Bhatti and Colman 2008; Raven and 
Giordano 2017). These K0.5(CO2) should be 
taken in context of typical air-equilibrium 
CO2 concentrations of 10–25 μM, depending 
on temperature, salinity etc.

Dinoflagellates (see Chap. 2) are unusual 
in being the only eukaryotic organisms pos-
sessing Form II Rubiscos. These enzymes 
are unstable in vitro and are thus poorly char-
acterized, but appear to have very low selec-
tivity factors (~37). Some idea of their 
kinetic properties can be obtained from work 
on Form II Rubiscos from photosynthetic 
proteobacteria, from which it is believed the 
dinoflagellate Form II Rubiscos originated 
by lateral gene transfer (Badger et al. 1998; 
Whitney et  al. 1995). These have very low 
Srel values (Whitney and Andrews 1998; 
Leggat et al. 1999; Raven and Beardall 2003) 
and dinoflagellates would thus struggle to 
perform net CO2 assimilation at air-equilib-
rium CO2 levels (Tortell 2000).

The general trend across all autotrophs is 
that a low K½(CO2), and a high Srel are cor-
related with a low kcat(CO2), and vice versa 
(Tcherkez et  al. 2006; Raven et  al. 2012). 
Given the relatively low affinities and selec-
tivity factors of most of the algae and cyano-
bacteria as discussed above, achievement of 
significant rates of net photosynthesis neces-
sitates the operation of a CO2 concentrating 
mechanism (CCM) to elevate CO2 concen-
trations, and increase CO2:O2 ratios at the 
active site of Rubisco. The various forms 
which these mechanisms can take are dis-
cussed in more detail below.

It is worth noting in the context of enhance-
ment of photosynthetic rates that, in contrast 
to terrestrial C3 vascular plants, Rubisco in 
algae and cyanobacteria represents a rela-
tively small proportion (~2–6%) of the total 
protein pool and hence investment in N (Losh 
et al. 2013; Raven 2013a; Flynn and Raven 
2017), a resource which is frequently in limit-
ing supply in aquatic, especially marine, sys-
tems. This may be related to CCM activity as 
terrestrial plants possessing a C4 biochemi-
cal CCM have lower Rubisco N:Total leaf N 
than C3 plants lacking CCMs (see Raven 
2013a and references within). Furthermore 
N-limitation has been shown to cause upreg-
ulation of CCMs in some algae (Beardall 
et al. 1982, 1991; Young and Beardall 2005; 
Hu and Zhou 2010), improving N-use effi-
ciency, though this is apparently not so in 
Chlamydomonas reinhardtii (Giordano et al. 
2003; Chap. 4) or the diatom Phaeodactylum 
tricornutum (Li et al. 2012; Chap. 16).

 B.  The PCRC and Other Pathways 
for C Assimilation

Six pathways for the assimilation of CO2 into 
organic matter have been identified in auto-
trophs, including those (C4 photosynthesis 
among them) relying on activity of Rubisco 
in the PCRC.  However, of those pathways 
found in nature, the only example that is not 
inhibited by oxygen, while exhibiting car-
boxylase activity with an ecologically rele-
vant (at least in terms of the photic zone in 
marine and freshwater systems) affinity for 
CO2 and has a lower energy (absorbed pho-
ton) cost than the PCRC, is the 
3- hydroxypropionate bi-cycle (Bar-Even 
et al. 2010, 2011, 2012; Raven et al. 2012; 
Raven and Beardall 2016). However, fixation 
of CO2 via the PCRC acting alone is the 
dominant pathway for carbon assimilation in 
cyanobacteria and algae. There is some evi-
dence for C4 photosynthesis in the marine 
ulvophycean alga Udotea flabellum 
(Reiskind et  al. 1988; Reiskind and Bowes 
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1991) and, controversially, there are also 
reports of C3-C4 single cell intermediate 
photosynthesis in one species of a marine 
diatom (Thalassiosira weisflogii) (Reinfelder 
et al. 2000; Morel et al. 2002; Roberts et al. 
2007a, b; Reinfelder 2011; Haimovich- 
Dayan et al. 2013), and although there is bet-
ter evidence for C4 photosynthesis in 
freshwater macrophytes and in seagrasses 
(Holaday and Bowes 1980; Salvucci and 
Bowes 1983; Magnin et  al. 1997; Reiskind 
et al. 1997; Bowes et al. 1978; Bowes et al. 
2002; Maberly and Madsen 2002; Bowes 
2011; Koch et al. 2013; Larkum et al. 2017; 
Raven and Giordano 2017), the five alterna-
tive pathways for C assimilation described in 
Raven et  al. (2012) are not represented in 
algal photosynthetic C assimilation.

Although the basic reactions of the PCRC 
are similar across the range of cyanobacteria 
and algae examined, recent work is indicat-
ing that there is considerable phylogenetic 
variation in the way the cycle is regulated. In 
terrestrial vascular plants, enzymes of the 
PCRC such as phosphoribulokinase (PRK), 
glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH), fructose-1,6-bisphosphatase, and 
sedoheptulose-1,7-bisphosphatase are inac-
tivated in the dark and activated in the light, 
while the key enzyme of the oxidative pen-
tose phosphate (OPP) pathway, glucose- 6- 
phosphate dehydrogenase shows the reverse. 
Of these, the two key enzymes in PCRC reg-
ulation are PRK and GAPDH. In green algae 
regulation of these 2 enzymes is under redox 
control, but PRK is not redox-regulated in 
the marine centric diatom Odontella sinensis 
(Michels et al. 2005) or the freshwater pen-
nate diatom Asterionella formosa (Boggetto 
et  al. 2007). In contrast A. formosa does 
show redox-activation of NADPH-dependent 
GAPDH (Boggetto et  al. 2007), but this is 
lacking in O. sinensis GAPDH (Michels 
et  al. 2005). Maberly et  al. (2010) investi-
gated the redox regulation of PRK and 
GAPDH in more detail, including the role of 
the protein CP12, and have been able to show 
considerable variation across different algal 

groups with the cryptophytes and hapto-
phytes studied showing differing regulatory 
properties to another clade containing chro-
malveolates and a third with a mix of vascu-
lar plants, a diatom, a xanthophycean and an 
eustigmatophycean. Though the phyloge-
netic trends in regulation of the PCRC across 
photoautotrophs as discussed by Maberly 
et  al. (2010) and more recently by Jensen 
et  al. (2017) are not clear cut, the signifi-
cance to the evolutionary history of algae is 
worthy of further investigation.

 III. Occurrence of CCMs

It is apparent from the discussion above that 
the kinetics of Rubisco in most cyanobacteria 
and algae operating at, or below, air- 
equilibrium levels of CO2 require operation 
of a CO2 concentrating mechanism (CCM) to 
improve the supply of CO2 to the active site, 
minimise photorespiration and improve net 
rates of carbon assimilation. Notable excep-
tions appear to be species that occur where 
CO2 levels are high, such as in the 
Chrysophyceae and Synurophyceae (Maberly 
et al. 2009; Raven and Giordano 2017), fresh-
water red algae belonging to the 
Batrachospermales (Raven et al. 1982; Raven 
et  al. 2005), as well as some marine algae 
where low light levels constrain photosynthe-
sis so that CO2 diffusion is sufficient to satisfy 
demand (Kübler and Raven 1994, 1995). In 
this regard it is interesting to note that the 
florideophycean red alga Heminura frondosa, 
thought to lack CCM activity on the basis of 
work on fresh material isolated from low 
light environments, expressed a CCM capac-
ity when exposed to high light (Catriona 
Hurd, personal communication). Other 
exceptions are the coccoid symbiotic treboux-
iophycean green alga Coccomyxa, using CO2 
from soil or host cell respiration (Raven and 
Colmer 2016), though this is apparently not 
the case for the Antarctic species Coccomyxa 
subellipsoiea (Blanc et  al. 2012), and the 
aerophytic, terrestrial trebouxiophycean spe-
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cies Stichococcus minor (Munoz and Merrett 
1989). All other species examined, admit-
tedly a small fraction of the conservative esti-
mate of >70, 000 extant algal species (Guiry 
2012), appear to have CCMs. Reports of a 
lack of CCM activity in the coccolithophore 
Emiliania huxleyi are now believed to be 
unfounded (Rost et  al. 2007; Reinfelder 
2011; Stojkovic et  al. 2013). It could be 
expected that size might play a role in whether 
a CCM is expressed or not, as decreasing size 
would decrease diffusion resistance of CO2 
potentially diminishing the need for CCMs in 
smaller species (Raven 1986; Raven 1999). 
However, Micromonas pusilla (cell volume 
2.1 × 10−18 m3) has an active CCM (Iglesias- 
Rodriguez et  al. 1998) and contains pyre-
noids (Meyer and Griffiths 2013), and 
although Ostreococcus (cell volume ~ 
0.48 × 10−18 m3) lacks pyrenoids (Meyer and 
Griffiths 2013) and has an unclear CCM sta-
tus (Schaum and Collins 2014); as discussed 
below an absence of pyrenoids does not 
equate with absence of CCM activity (see 
Chap. 9).

However, the expression of CCM activity 
varies greatly. Cyanobacteria with the low 
CO2 affinity Form IA or Form IB Rubisco 
show highly expressed CCMs, while dia-
toms with Form ID Rubiscos with higher 
CO2 affinity (Young et al. 2016) show lower 
CCM activity and green algae with relatively 
high affinity (see above) show relatively low 
capacity for CCM expression. Tortell (2000) 
and Griffiths et  al. (2017) showed a broad 
inverse relationship between carbon concen-
tration factor and Rubisco specificity factor, 
and a positive relationship between specific-
ity factor and paleo CO2 levels, though the 
data need to be interpreted carefully and 
expression of CCM activity is modulated 
by a range of environmental factors includ-
ing CO2 concentration, light level, tempera-
ture and nutrient availability (Beardall and 
Giordano 2002). The role of CCM activity in 
controlling competition between species is 
complex and involves interactions between 
Rubisco characteristics, dissolved inorganic 

carbon concentrations, CO2 concentrating 
capacity and other environmental factors 
such as light (Ji et  al. 2017; Beardall and 
Raven 2017). As stated above, members of the 
Chrysophyceae and Synurophyceae, lacking 
CCMs, became dominant when aqueous CO2 
concentrations were significantly above air 
equilibrium (Maberly 1996; Maberly et  al. 
2009). Van de Waal et al. (2011) showed that 
two strains of Microcystis aeruginosa, with 
differing affinities for DIC, were shown to 
sequentially dominate a culture based on 
the available CO2 and Lines and Beardall 
(2018) attributed the success of the cyano-
bacterium Cylindrospermopsis raciborskii 
(= Raphidiopsis raciborskii: Aguilera et  al. 
2018) in a reservoir in Queensland Australia 
to its high CCM activity and affinity for 
CO2 at low environmental concentrations. 
Shapiro (1990, 1997) and Low-Décarie et al. 
(2011, 2015) have shown from ecological 
observations and competition experiments 
that cyanobacteria have the capacity to out-
compete other groups of photoautotrophs 
in freshwater phytoplankton communities. 
However, Ji et al. (2017) have shown that this 
is not always the case (see also Beardall and 
Raven 2017).

 IV.  Mechanisms of CCMs 
Versus Diffusive CO2 Fluxes

 A.  Definition of CCMs and What Do 
We Need in Order to Demonstrate 
Operation of CCMs?

Unfortunately, despite many years of CCM- 
related research, there is still a good deal of 
misunderstanding about what comprises 
reliable and robust evidence for CCM activ-
ity. In general, irrespective of the mecha-
nisms discussed below, CCM activity is 
characterised by several cellular physiological 
properties. (i) By definition, there needs to be 
a net positive gradient of CO2  in  >  CO2 out 
Simple measurements showing intercellular 
[DIC] is higher than extracellular [DIC] are 
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insufficient as gradients in DIC could sim-
ply be a consequence of CO2 equilibration 
between inside and outside the cell with 
higher pH internally than externally. Thus 
proof of CCM activity requires it to be dem-
onstrated that dissolved CO2 in the cells is 
higher than outside. Such measurements 
were originally done using radioisotopes 
measuring [DIC]in, [DIC]out and internal 
(and external) pH (see e.g. Badger et  al. 
1980; Kaplan et al. 1980), but more recent 
approaches involve measurements using 
mass spectroscopy (see e.g. Sültemeyer 
et al. 1991) and are the preferred approach 
for laboratories with access to such instru-
mentation. (ii) Characteristically cells with 
active CCMs have K0.5CO2 values for DIC-
dependent photosynthesis less than that for 
their Rubiscos and measurements of K0.5CO2 
are useful and relatively simple approaches 
to measuring CCM capacity of cells. This 
approach requires that the CO2- saturated in 
vivo Rubisco activity is not so high as to 
account for the ratio of in vivo to in vitro 
K0.5CO2. (iii) Diffusive supply of CO2 fol-
lowed by assimilation by Rubisco leads to a 
discrimination against heavier isotopes of C 
by about 30‰. Consequently, measuring 
carbon isotope discrimination δ13C (or more 
accurately Δ13C if measurements of source 
discrimination are made) in the organic 
component of algae can give an indication 
of possible CCM activity. Thus cells using 
CO2 diffusion alone show Δ13C values ~ 
−30‰ and discrimination values become 
less negative as CCM activity increases 
(Raven et al. 2005; Stepien 2015). However, 
this method depends on a known and con-
stant discrimination between 13CO2 and 
12CO2 in fixation by Rubisco, and it is known 
that there is significant variation in this dis-
crimination in cyanobacteria and algae 
(Tcherkez et  al. 2006; Scott et  al. 2007; 
Boller et  al. 2011; Boller et  al. 2015). 
Furthermore, the ability of cells to express 
the full RubisCO fractionation factor also 
depends on the extent to which diffusive 
CO2 supply exceeds cellular demand. As 

demand approaches the supply rates the 
effective fractionation factor is reduced 
(Laws et al. 1995).

Other parameters, more specific to partic-
ular mechanisms involved in CCMs, have 
often been mis-interpreted. These include 
using the presence of sequences for enzymes 
such as PEP carboxylase in genomes of algae 
as prima facie evidence for C4 metabolism 
and the misconception that possession of 
external carbonic anhydrase can alone result 
in CO2 accumulation. ‘C4 genes’ are wide-
spread in organisms lacking CCMs, or even 
photosynthesis (Aubry et al. 2011; Chi et al. 
2014), so more than genomics is needed to 
show that C4 photosynthesis occurs. The use 
of transcriptomics in combination with phys-
iological measurements and pulse-chase 
labelling can, however, be informative 
(Roberts et al. 2007a).

Thus, in order of increasing importance, 
genomic information, transcriptomics and 
proteomics, enzyme activity measurements 
and short-term labelling experiments are 
required in order to distinguish between bio-
chemical C4 CCMs and biophysical CCMs 
based on active transport of inorganic carbon 
species (Fig. 7.1).

 B.  CCMs Based on Active Transport 
of Inorganic C Species

There are five variants of inorganic carbon 
transport in cyanobacteria, each with differ-
ent physiological characteristics (Table 7.1). 
CO2 can diffuse across the plasma membrane 
of cyanobacteria, probably with a least some 
CO2 uptake effected by aquaporins 
(Kaldenhoff et al. 2014; Raven and Beardall 
2016). However, on either the cytosolic face 
of the plasma membrane or on the thylakoid 
membrane there is an energized conversion 
of CO2 to HCO3

− via a NAD(P)H dehydroge-
nase, which effectively acts like a Ci-pump, 
even though direct active transport of CO2 
has not occurred. There are two NAD(P)H 
dehydrogenase systems: an inducible, high-
 CO2 affinity, system (NDH-I3) at the thyla-
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koid membrane and a constitutive, low 
affinity, one (NDH-I4, located probably at the 
plasma membrane) (Price et  al. 2008). 
Cyanobacteria can also actively take up 
HCO3

− from the medium using a number of 
different HCO3

− pumps. In freshwater 
β-cyanobacteria only, the genes for a low-
 CO2 inducible, high affinity HCO3

− trans-
porter, BCT1, are encoded by the cmpABCD 
operon which belongs to the traffic ATPase 
family (Omata et al. 1999). These genes are 
absent from the genomes of all marine α- 
and β-cyanobacteria so far sequenced. In 
Synechocystis 6803 and various other 
β-cyanobacteria, a high affinity, inducible, 

Na+-dependent, HCO3
− transporter (SbtA) is 

present (Shibata et al. 2002). BicA is another 
Na+-dependent HCO3

− transporter, and this 
is aligned with the SulP family of transport-
ers (Price et al. 2004). Unlike SbtA though, 
this is a low affinity system. BicA and SbtA 
may both be forms of Na+/HCO3

− symport-
ers, although to date this there is no conclu-
sive evidence for this. Whatever the form of 
inorganic carbon transported, the outcome is 
for HCO3

− delivered, directly or indirectly, to 
the cytosol. The HCO3

− then diffuses into the 
polyhedral protein-walled bodies termed 
carboxysomes, which contain all the cell 
quota of Rubisco and show the only carbonic 

Fig. 7.1. Basic mechanisms of CCMs in a cyanobacterium (left) and a eukaryotic alga (right). No attempt has 
been made to represent the role of the pyrenoid in those algae that possess them (see Chap. 9). (See the text for 
details. Redrawn after Giordano et al. 2005)

Table 7.1. Inorganic carbon transporters in cyanobacteria

Transporter Substrate Affinity Flux Comments

BCT1 HCO3
− High Low ABC-type transporter found exclusively in freshwater 

β-cyanobacteria; low-CO2 inducible
SbtA HCO3

− High Low Sodium-dependent transporter
BicA HCO3

− Low High Sodium-dependent transporter
NDH-13 CO2 High Low Energized conversion of CO2 to HCO3

−

NDH-14 CO2 Low High Energized conversion of CO2 to HCO3
−
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anhydrase (CA) activity in the cell. CO2 gen-
erated within the carboxysomes by this CA 
leads to the build-up to a higher steady state 
concentration than in the bulk medium, thus 
strongly favouring the carboxylase over the 
oxygenase activity of Rubisco (Smith and 
Ferry 2000; Price et al. 2002).

The mechanisms of CCMs in eukaryotic 
algae are not as well defined as they are in 
cyanobacteria and are more complicated 
because of the additional membranes the 
DIC needs to traverse. Inorganic carbon 
needs to be transported across the plasma-
lemma, then across the membranes of the 
chloroplast envelope and CO2 then needs to 
be provided at a higher than ambient concen-
tration to the active site of Rubisco, which is 
within the pyrenoids in those cells that pos-
sess them and in the stroma in cells without 
pyrenoids. Although all pyrenoid-containing 
algae have CCMs (Badger et al. 1998; Raven 
1997a, b; Raven and Beardall 2003), not all 
algae with CCMs have pyrenoids (Badger 
et al. 1998; Morita et al. 1998, 1999; Raven 
1997b, c; Raven and Beardall 2003; 
Kevekordes et al. 2006; Raven and Giordano 
2017). Active transport mechanisms for DIC 
could thus be based on the plasma mem-
brane, or the inner plastid envelope mem-
brane, or both.

More recent molecular evidence has 
begun to characterise the various bicarbon-
ate transporters in algal cells and a large 
number of candidate proteins have been 
identified. In diatom genomes there are 
genes for a number of solute carrier (SLC)-
type transporters, also found in mammalian 
systems (Bonar and Casey 2008). Several of 
these have been implicated in bicarbonate 
transport in diatoms with, in Phaeodactylum 
tricornutum, the plasmalemma associated 
PtSLC4-2 being low-CO2 inducible and hav-
ing a high requirement for Na+ (Nakajima 
et al. 2013). Similar transporters (PtSLC4-1, 
and PtSLC4-4) are also plasmalemma- 
located in P. tricornutum and likewise appear 
to be involved with HCO3

− influx from low-
 CO2 environments. Nakajima et  al. (2013) 

also showed the existence of orthologous 
SLC4 genes in another diatom species, 
Thalassiosira pseudonana. Recent evidence 
(Tsuji et al. 2017a) suggests that in these dia-
toms plasmalemma HCO3

− transport is 
driven, directly or indirectly, by energy gen-
erated by linear electron flow from photosys-
tem II to photosystem I, contrasting with 
previous work suggesting a role for ATP 
from cyclic photophosphorylation (Ogawa 
and Ogren 1985; Ogawa et  al. 1985; 
Palmqvist et al. 1990; Spalding et al. 1984), 
with some eustigmatophycean algae appear-
ing to be unusual in having a CCM driven by 
respiratory ATP (Huertas et  al. 2002). 
Plasmalemma-based bicarbonate transport-
ers have also been demonstrated in the green 
alga Chlamydomonas reinhardtii (Ohnishi 
et al. 2010; Yamano et al. 2015) though the 
genes for these transporters (HLA3 and 
LCI1) do not appear to share homology with 
the SLC systems in diatoms (Tsuji et  al. 
2017a, b).

Physiological investigations have shown 
that algae can also take up CO2 and this, in 
the absence of hard evidence for an active 
CO2 transporter, is assumed to take place by 
passive diffusion (Patel and Merrett 1986; 
Colman and Rotatore 1995; Mitchell and 
Beardall 1996; Johnston and Raven 1996; 
Korb et al. 1997; Burkhardt et al. 2001; Rost 
et al. 2003; Trimborn et al. 2008; Kaldenhoff 
et al. 2014; Raven and Beardall 2016), pos-
sibly assisted by aquaporin channels, though 
a high permeability of cell membranes to 
CO2, can have consequences for leakage 
(Tchernov et  al. 2003; Raven and Beardall 
2016).

Though there are some species in which 
CCM activity appears to be based solely at 
the plasmalemma (Rotatore and Colman 
1990, 1991), there is also evidence for a role 
of the plastid envelope in CCMs in a range of 
other species, based on a demonstrable 
capacity for active transport of DIC. Thus, 
photosynthetically active chloroplasts from 
high- and low-CO2 grown cells of two spe-
cies of the Chlorophyceae have been shown 
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to possess low- and high-affinity DIC uptake 
systems respectively, as do the correspond-
ing intact cells (Amoroso et al. 1998). Active 
uptake of both CO2 and HCO3

−, and CO2 
accumulation, have been demonstrated in 
isolated chloroplasts of Chlamydomonas 
reinhardtii and Dunaliella tertiolecta 
(Amoroso et  al. 1998) and Tetraedon mini-
mum and Chlamydomonas noctigama (van 
Hunnik et al. 2002). Molecular studies have 
identified genes for SLC4- type transporters 
associated with the chloroplast envelope 
membranes in diatoms (Nakajima et  al. 
2013; Tsuji et  al. 2017b) and a number of 
putative transporters (LCIA, CCP1 and 
CCP2) have been suggested for the chloro-
plast envelope of Chlamydomonas (Wang 
et al. 2015; Yamano et al. 2015; Machingura 
et al. 2017), though the work of Mackinder 
et  al. (2017) suggests CCP1 and CCP2 are 
less important. Matsuda et  al. (2017) have 
also postulated a range of transporters for 
inorganic carbon transport across all 4 of the 
diatom chloroplast envelope membranes and 
the pyrenoid-penetrating thylakoids, though 
such transport systems remain uncharacter-
ised and speculative at present.

CCMs also involve a range of CAs that 
maintain equilibrium between CO2 and 
bicarbonate in the various cellular compart-
ments (see De Mario et al. 2017 for a recent 
review). Importantly, in many algae an extra-
cellular carbonic anhydrase (CAext) associ-
ated with the cell wall converts bicarbonate 
to CO2, assisting the diffusion of the latter 
across the cell wall. Within the cell, internal 
CAs facilitate the interconversion of bicar-
bonate and CO2 with active inorganic trans-
port across the chloroplast envelope then 
occurring as described above. In green algae 
such as Chlamydomonas, the external CA is 
an α-CA, while in some diatoms this role is 
carried out by a β-CA.  In other diatoms a 
ζ-CA is involved (Hopkinson et  al. 2013) 
and δ-CAext has been reported in a dinofla-

gellate (Lapointe et al. 2008). The full range 
of carbonic anhydrases found in algae and 
cyanobacteria is discussed in DiMario et al. 
(2017). CAext activity is inducible by low 
CO2 levels and in some cases is only found 
when rates of CO2 consumption exceed the 
rate of uncatalysed supply from bicarbonate 
(Smith-Harding et  al. 2018), which may 
explain in part at least the contradictory 
reports of external CA presence/absence in 
some species (John-McKay and Colman 
1997).

As well as being involved in the supply 
of inorganic carbon across the plasma-
lemma, CAs may also be involved in CCMs 
based on acidification in the thylakoid. An 
α-CA (Cah3) is based on the inner side of 
the thylakoid membrane and is involved in 
the conversion of bicarbonate to CO2 fol-
lowing transport of bicarbonate to the thyla-
koid lumen, the CO2 thus produced could 
then leak out of the lumen to the site of 
Rubisco in the stroma or pyrenoid. However, 
direct evidence for such a mechanism is not 
yet available, though in Chlamydomonas 
there is CA compartmentalization evidence 
that is at least consistent with such a pro-
cess (Pronina and Semenenko 1992; 
Pronina and Borodin 1993; Raven 1997c; 
Sinetova et al. 2012).

Acidification can also play a role in 
enhancing inorganic carbon supply in mac-
roalgae and aquatic vascular plants where 
localised low pH and external carbonic 
anhydrase(s) at the cell surface shifts the 
bicarbonate:CO2 ratio in favour of CO2, 
increasing its concentration and enhancing 
its diffusion (or in some cases active trans-
port) into the cell (Raven and Hurd 2012; 
Raven 2013a, b; Raven et  al. 2014; Raven 
and Beardall 2016). Similar mechanisms are 
unlikely in microalgae due to the thinner dif-
fusive boundary layer and enhanced CO2 and 
proton leakage in small cells (Flynn et  al. 
2012; Raven and Beardall 2016).
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 C. C4 Photosynthesis as a CCM in Algae?

In some vascular plants photosynthetic car-
bon assimilation is based on an initial assim-
ilation of bicarbonate, catalysed by the 
enzyme PEP carboxylase, which has a high 
affinity for its inorganic carbon substrate. 
The initial stable resulting products are the 
C4 dicarboxylic acids malate or aspartate 
(depending on species) and these compounds 
are then transported from mesophyll cells to 
another type of cell, the bundle sheath cells, 
where their decarboxylation leads to 
enhanced supply of CO2 at the active site of 
Rubisco, located therein (Sage 2004; Sage 
et al. 2011). This process thus acts as a bio-
chemical CO2 pump improving CO2 supply. 
Studies in the late 1970’s by Beardall and co- 
workers proposed the existence of single-cell 
C4-like photosynthetic metabolism in dia-
toms (Beardall et  al. 1976), though later 
work (Morris et  al. 1978) ascribed their 
labelling patterns and other data to high rates 
of anaplerotic β-carboxylation through 
PEPCase. Such reactions are necessary to 
top up the intermediates of the TCA cycle as 
these are used to support biosynthetic pro-
cesses such as protein synthesis (Aubry et al. 
2011; Chi et  al. 2014). Subsequently, 
Reinfelder et  al. (2000) and Morel et  al. 
(2002) revisited the topic and proposed that 
the marine diatom Thalassiosira weisflogii 
was also capable of C4 photosynthesis. 
Subsequent work (Morel et  al. 2002; 
Reinfelder et al. 2004; Roberts et al. 2007a, 
b) has provided better evidence for some 
form of C4 (or more likely C3-C4 intermedi-
ate) mechanism in Thalassiosira weisflogii, 
though operation of a similar mechanism in 
other diatoms (T. pseudonana and 
Phaeodactylum tricornutum) has not been 
substantiated (Haimovich-Dayan et al. 2013; 
Clement et  al. 2017; Ewe et  al. 2018). 
Similarly, high levels of enzymes putatively 
involved in C4 photosynthesis in the hapto-
phyte Emiliania huxleyi were shown by pulse 
chase labeling experiments to instead be 
associated with anaplerotic β-carboxylation 

(Tsuji et al. 2009). Thus T. weisflogii remains 
the only microalga to date for which C4 pho-
tosynthesis is a possibility, though it is more 
likely better aligned with C3-C4 intermediate 
metabolism (Roberts et  al. 2007a). 
Nonetheless, C4 metabolism in the mac-
roalga Udotea flabellum, using PEP car-
boxykinase as the carboxylase, is well 
established (Reiskind et  al. 1988; Reiskind 
and Bowes 1991).

 V.  Structural Aspects of CO2 
Acquisition

The role of carboxysomes in cyanobacterial 
inorganic carbon acquisition has been dealt 
with in detail recently by Kerfeld and 
Melnicki (2016) so will only be mentioned 
briefly here.

The polyhedral bodies known as carboxy-
somes are present in all cyanobacteria and 
contain most of the cyanobacterial cell’s 
Rubisco and carbonic anhydrase, enclosed 
within a semi-permeable proteinaceous shell 
(Kinney et  al. 2011; Espie and Kimber 
2011). Details of carboxysomal structure 
and function can be found in Kerfeld and 
Melnicki (2016), but in brief HCO3

− is trans-
ported into the carboxysome lumen and con-
verted to CO2 via carbonic anhydrase, 
thereby elevating CO2 concentrations at the 
active site of Rubisco. The protein shell is 
thought to act in minimising CO2 leakage, 
though as discussed by Raven and Beardall 
(2016) leakage is still likely to be significant 
given the large accumulation factor for CO2 
found in cyanobacteria. Indeed, Hopkinson 
et al. (2014) showed that approximately 50% 
of the inorganic carbon transported into cells 
of a species of Prochloroccus that lacks CO2 
recovery capacity was lost as CO2 efflux.

In eukaryotic algae, the analogous struc-
ture to the carboxysome is the pyrenoid, a 
microcompartment within the chloroplast 
(see Chap. 9). Clearly, in algae that possess 
pyrenoids, the majority of the Rubisco is 
found there, with only a small portion of cel-
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lular Rubisco in the stroma (McKay and 
Gibbs 1991). Green algal pyrenoids also con-
tain Rubisco activase, supporting the notion 
that Rubisco in pyrenoids is catalytically 
active (McKay and Gibbs 1991). Non-green 
algal species do not express Rubisco activase, 
but utilise another protein, CbbX, which has 
activase-like properties (see Kroth 2015).

In contrast, in species without pyrenoids 
Rubisco is found throughout the stroma 
(McKay and Gibbs 1991 and references 
therein). Interestingly, if Chlamydomonas 
reinhardtii is grown at elevated CO2 in 
order to down-regulate CCM expression, 
increased levels of Rubisco (and a three 
fold higher proportion of cellular Rubisco) 
appear in the stroma, though pyrenoid 
Rubisco levels remain high and similar to 
those in low-CO2 grown cells (Borkhsenious 
et al. 1998). It is clear however, that posses-
sion of a pyrenoid is not a prerequisite of a 
CCM. While all algae with pyrenoids have 
CCMs, not all algal species with CCMs 
have pyrenoids (Giordano et  al. 2005; 
Kevekordes et  al. 2006), though pyrenoid 
loss from Chlamydomonas results in loss of 
CCM function (Meyer et al. 2012; Mitchell 
et al. 2017).

The fine structure, development and com-
position of pyrenoids in Chlamydomonas 
reinhardtii have been dealt with recently in 
the excellent reviews by Meyer et al. (2017), 
Meyer and Griffiths (2013), Mackinder 
(2018) and Mackinder et  al. (2017) and so 
are not dealt with here in detail. The pyre-
noid is surrounded by a starch sheath 
(although mutant studies suggest that this is 
not essential for the CCM: Villarejo et  al. 
1996) and, important for CCM activity, is 
traversed by membrane tubules, sometimes 
termed pyrenoid lamellae, or transpyrenoid 
thylakoids, that are contiguous with the pho-
tosynthetic thylakoid membranes (Engel 
et al. 2015). However, these tubules are dis-
tinct from stromal thylakoids in lacking O2- 
evolving PSII centres and light harvesting 
antenna, and this is the case in red algae and 
diatoms as well as in the green algae (McKay 

and Gibbs 1991; Mustardy et  al. 1990; 
Pyszniak and Gibbs 1992; Tsekos et  al. 
1996). The pyrenoid tubules do however, 
contain the α-CA (Cah3) described above, 
and this could be responsible for conversion 
of bicarbonate to CO2 within the lumen of 
the pyrenoid tubules, which would then dif-
fuse out of the lumen to the Rubisco in the 
bulk of the pyrenoid. A similar protein, 
Pt43233, is found in the diatom 
Phaeodactylum tricornutum (Kikutani et al. 
2016), suggesting this could be a wide- 
spread mechanism in pyrenoid-containing 
algae.

Such a mechanism would also require 
transport of bicarbonate into the transpyre-
noid thylakoid lumen; this could be down-
hill (passive) transport driven by the 
proton- motive force across the thylakoid 
(Raven 1997c), but no such transporter has 
been identified to date. It is important to 
note that many pyrenoids lack thylakoid 
tubules or lamellae (Dodge 1973; Badger 
et al. 1998).

In addition to the pyrenoid tubules as dis-
cussed above, for green and red algae with 
CCMs, the plasma membrane, or the inner 
plastid envelope membrane, or both, could 
be the location of the active transport 
mechanism(s) (Amoroso et  al. 1998; 
Moroney and Chen 1998; Kaplan and 
Reinhold 1999; Villarejo et al. 2001; Young 
et  al. 2001; Giordano et  al. 2005). Other 
algae have one (dinophytes, euglenoids) or 
two (chlorarachniophytes, cryptophytes, 
haptophytes and heterokonts) additional 
chloroplast envelope membranes which are 
frequently, but incorrectly, termed the chlo-
roplast endoplasmic reticulum (Cavalier- 
Smith 2000). The involvement of these 
additional envelope membranes in a CCM 
based on active transport processes as dis-
cussed above has not yet been examined. 
Hopkinson et al. (2011) and Matsuda et al. 
(2017) have suggested that, with 4 bound-
ing membranes, diatoms might require a 
HCO3

− transporter at each membrane, 
which would be a large energetic constraint 
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both in terms of running costs and capital 
investment. Gee and Niyogi (2017) showed 
that the carbonic anhydrase CAH1, 
expressed in the space between the outer 
and next innermost of the membranes round 
the plastids of Nannochloropsis oceanica, 
is essential for operation of the CCM in this 
alga with active HCO3

− influx at the 
plasmalemma.
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