
Using Sat Solvers for Synchronization
Issues in Partial Deterministic Automata

Hanan Shabana1,2 and Mikhail V. Volkov2(B)

1 Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt
hananshabana22@gmail.com

2 Institute of Natural Sciences and Mathematics, Ural Federal University,
Ekaterinburg, Russia
m.v.volkov@urfu.ru

Abstract. We approach the task of computing a carefully synchroniz-
ing word of minimum length for a given partial deterministic automaton,
encoding the problem as an instance of SAT and invoking a SAT solver.
Our experimental results demonstrate that this approach gives satisfac-
tory results for automata with up to 100 states even if very modest
computational resources are used.

Keywords: Nondeterministic automaton · Deterministic automaton ·
Partial deterministic automaton · Careful synchronization · Carefully
synchronizing word · SAT · SAT solver

1 Introduction

A nondeterministic finite automaton (NFA) is a triple 〈Q,Σ, δ〉, where Q and Σ
are finite non-empty sets called the state set and the input alphabet respectively,
and δ is a subset of Q × Σ × Q. The elements of Q and Σ are called states and
letters, respectively, and δ is referred to as the transition relation1. For each pair
(q, a) ∈ Q × Σ, we denote by δ(q, a) the subset {q′ | (q, a, q′) ∈ δ} of Q; this way
δ can be viewed as a function Q × Σ → P(Q), where P(Q) is the power set of
Q. When we treat δ as a function, we refer to it as the transition function.

Let Σ∗ stand for the collection of all finite words over the alphabet Σ,
including the empty word ε. The transition function extends to a function
P(Q) × Σ∗ → P(Q), still denoted δ, in the following inductive way: for every
subset S ⊆ Q and every word w ∈ Σ∗, we set

δ(S,w) :=

{
S if w = ε,⋃

q∈δ(S,v) δ(q, a) if w = va with v ∈ Σ∗ and a ∈ Σ.

1 The conventional concept of an NFA includes distinguishing two non-empty subsets
of Q consisting of initial and final states. As these play no role in our considerations,
the above simplified definition well suffices for the purpose of this paper.

Supported by the Ministry of Science and Higher Education of the Russian Federa-
tion, projects no. 1.580.2016 and 1.3253.2017, and the Competitiveness Enhancement
Program of Ural Federal University.

c© Springer Nature Switzerland AG 2019
I. Bykadorov et al. (Eds.): MOTOR 2019, CCIS 1090, pp. 103–118, 2019.
https://doi.org/10.1007/978-3-030-33394-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33394-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-33394-2_9

104 H. Shabana and M. V. Volkov

(Here the set δ(S, v) is defined by the induction assumption since v is shorter
than w.) We say that a word w ∈ Σ∗ is undefined at a state q ∈ Q if the set
δ(q, w) is empty; otherwise w is said to be defined at q.

When we deal with a fixed NFA, we suppress the sign of the transition
relation, introducing the NFA as the pair 〈Q,Σ〉 rather than the triple 〈Q,Σ, δ〉
and writing q.w for δ(q, w) and S.w for δ(S,w).

A partial (respectively, complete) deterministic automaton is an NFA 〈Q,Σ〉
such that |q.a| ≤ 1 (respectively, |q.a| = 1) for all (q, a) ∈ Q × Σ. We use the
acronyms PFA and CFA for the expressions ‘partial deterministic automaton’
and ‘complete deterministic automaton’, respectively.

A CFA A = 〈Q,Σ〉 is called synchronizing if there exists a word w ∈ Σ∗

whose action leaves the automaton in one particular state no matter at which
state in Q it is applied: q.w = q′.w for all q, q′ ∈ Q. Any w with this property is
said to be a synchronizing word for the automaton.

Synchronizing automata serve as simple yet adequate models of error-
resistant systems in many applied areas (system and protocol testing, infor-
mation coding, robotics). At the same time, synchronizing automata surpris-
ingly arise in some parts of pure mathematics and theoretical computer science
(symbolic dynamics, theory of substitution systems, formal language theory).
We refer to the survey [39] and the chapter [20] of the forthcoming ‘Hand-
book of Automata Theory’ for a discussion of synchronizing automata as well
as their diverse connections and applications. From both applied and theoreti-
cal viewpoints, the key question is to find the optimal, i.e., shortest reset word
for a given synchronizing automaton. Under standard assumptions of complex-
ity theory, this optimization question is known to be computationally hard; see
[20, Section 2] for a summary of various hardness results in the area. As it is
quite common for hard problems of applied importance, there have been many
attempts to develop practical approaches to the question. These approaches have
been based on certain heuristics [1,17,18] and/or popular techniques, including
(but not limiting to) binary decision diagrams [29], genetic and evolutionary
algorithms [19,32], satisfiability solvers [38], answer set programming [12], hier-
archical classifiers [30], and machine learning [31].

The present authors [36,37] have initiated an extension to the realm of NFAs
of the approach of [38]. Here we consider a more restricted class, namely, that of
PFAs, where studying synchronization issues appears to be much better moti-
vated. While we follow the general strategy of and re-use some technical tricks
from [36,37], our present constructions heavily depend on the specifics of partial
automata and have not been obtained via specializing the constructions of those
earlier papers.

The rest of the paper is structured as follows. In Sect. 2 we describe and
motivate the version of PFA synchronization that we have studied. In Sect. 3 we
first outline the approach based on satisfiability solvers and then explain in detail
how we encode PFAs and their synchronization problems as instances of the
Boolean satisfiability problem. In Sect. 4 we provide samples of our experimental
results and conclude in Sect. 5 with a brief discussion of the future work.

Using Sat Solvers for Synchronization Issues 105

We have tried to make the paper, to a reasonable extent, self-contained,
except for a few discussions that involve some basic concepts of computational
complexity theory. These concepts can be found, e.g., in the early chapters of
the textbook [28].

2 Synchronization of NFAs and PFAs

The concept of synchronization of CFAs as defined in Sect. 1 was extended to
NFAs in several non-equivalent ways. The following three nowadays popular
versions were suggested and analyzed in [13] in 1999 (although, in an implicit
form, some of them appeared in the literature much earlier, see, e.g., [5,11]). For
i ∈ {1, 2, 3}, an NFA A = 〈Q,Σ〉 is called Di-synchronizing if there exists a
word w ∈ Σ∗ that satisfies the condition (Di) from the list below:

(D1): |q.w| = |Q.w| = 1 for all q ∈ Q;
(D2): q.w = Q.w for all q ∈ Q;
(D3):

⋂
q∈Q q.w �= ∅.

Any word satisfying (Di) is called Di-synchronizing for A . The definition readily
yields the following properties of Di-synchronizing words:

Lemma 1. (a)A D1- or D3-synchronizing word is defined at each state.
(b) A D2-synchronizing word is either defined at each state or undefined at each

state.
(c) Every D1-synchronizing word is both D2- and D3-synchronizing; every D2-

synchronizing word defined at each state is D3-synchronizing.

In [37] we adapted the approach based on satisfiability solvers to finding D3-
synchronizing words of minimum length for NFAs. The first-named author used
a similar method in the cases of D1- and D2-synchronization; results related to
D2-synchronization were reported in [36].

Yet another version of synchronization for NFAs was introduced in [15] and
systematically studied in [23–27], which terminology we adopt. An NFA A =
〈Q,Σ〉 is called carefully synchronizing if there is a word w = a1 · · · a�, with
a1, . . . , a� ∈ Σ, that satisfies the condition (C), being the conjunction of (C1)–
(C3) below:

(C1): the letter a1 is defined at every state in Q;
(C2): the letter at with 1 < t ≤ � is defined at every state in Q.a1 · · · at−1,
(C3): |Q.w| = 1.

Any w satisfying (C) is called a carefully synchronizing word (c.s.w., for short)
for A . Thus, when a c.s.w. is applied at any state in Q, no undefined transition
occurs during the course of application. Every carefully synchronizing word is
clearly D1-synchronizing but the converse is not true in general; moreover, a
D1-synchronizing NFA may admit no c.s.w.

In this paper we focus on carefully synchronizing words for PFAs. There are
several theoretical and practical reasons for this.

106 H. Shabana and M. V. Volkov

On the theoretical side, it is easy to see that each of the conditions (C),
(D1), (D3) leads to the same notion when restricted to PFAs. As for D2-
synchronization, if a word w is D2-synchronizing for a PFA A , then w carefully
synchronizes A whenever w is defined at each state. Otherwise w is nowhere
defined by Lemma 1b, and such ‘annihilating’ words are nothing but usual syn-
chronizing words for the CFA obtained from A by adding a new sink state and
making all transitions undefined in A lead to this sink state. Synchronization of
CFAs with a sink state is relatively well understood (see [35]), and therefore, we
may conclude that D2-synchronization also reduces to careful synchronization
in the realm of PFAs. On the other hand, there exists a simple transformation
that converts every NFA A = 〈Q,Σ〉 into a PFA B = 〈Q,Σ′〉 such that A
is D3-synchronizing if and only if so is B and the minimum lengths of D3-
synchronizing words for A and B are equal; see [14, Lemma 8.3.8] and [16,
Lemma 3]. These observations demonstrate that from the viewpoint of optimal
synchronization, studying carefully synchronizing words for PFAs may provide
both lower and upper bounds applicable to arbitrary NFAs and all aforemen-
tioned kinds of synchronization.

Probably even more important is the fact that careful synchronization of
PFAs is relevant in numerous applications. Due to the page limit, we mention
only two examples here.

In industrial robotics, synchronizing automata are widely used to design feed-
ers, sorters, and orienters that work with flows of certain objects carried by a
conveyer. The goal is achieved by making the flow encounter passive obstacles
placed appropriately along the conveyer belt; see [21,22] for the origin of this
automata approach and [2] for an illustrative example. Now imagine that the
objects to be oriented or sorted have a fragile side that could be damaged if
hitting an obstacle. In order to prevent any damage, we have to forbid ‘dan-
gerous’ transitions in the automaton modelling the orienter/sorter so that the
automaton becomes partial and the obstacle sequences must correspond to care-
fully synchronizing words. (Actually, the term ‘careful synchronization’ has been
selected with this application in mind.)

Our second example relates to so-called synchronized codes2. Recall that a
prefix code over a finite alphabet Σ is a set X of words in Σ∗ such that no word
of X is a prefix of another word of X. Decoding of a finite prefix code X over
Σ can be implemented by a finite deterministic automaton AX whose state Q
is the set of all proper prefixes of the words in X (including the empty word ε)
and whose transitions are defined as follows: for q ∈ Q and a ∈ Σ,

q.a =

⎧⎪⎨
⎪⎩

qa if qa is a proper prefix of a word of X,

ε if qa ∈ X,

undefined otherwise.

In general, AX is a PFA (it is complete if and only if the code X is not contained in
another prefix code over Σ). It can be shown that if AX is carefully synchronizing,
2 We refer the reader to [4, Chapters 3 and 10] for a detailed account of profound

connections between codes and automata.

Using Sat Solvers for Synchronization Issues 107

the code X has a very useful property: whenever a loss of synchronization between
the decoder and the coder occurs (because of a channel error), it suffices to transmit
a c.s.w. w of AX such that w sends all states in Q to the state ε to ensure that the
following symbols will be decoded correctly.

We may conclude that the problems of determining whether or not a given
PFA is carefully synchronizing and of finding its shortest carefully synchronizing
words are both natural and important. The bad news is that these problems turn
out to be quite difficult: it is known that the first problem is PSPACE-complete
and that the minimum length of carefully synchronizing words for carefully syn-
chronizing PFAs can be exponential as a function of the number of states. (These
results were found in [33,34] and later rediscovered and strengthened in [25].)
Thus, one has to use some tools that have proved to be efficient for dealing with
computationally hard problems. As mentioned in Sect. 1, in this paper we make
an attempt to employ a satisfiability solver as such a tool.

3 Encoding

For completeness, recall the formulation of the Boolean satisfiability problem
(SAT). An instance of SAT is a pair (V,C), where V is a set of Boolean variables
and C is a collection of clauses over V . (A clause over V is a disjunction of
literals and a literal is either a variable in V or the negation of a variable in V .)
Any truth assignment on V , i.e., any map ϕ : V → {0, 1}, extends to a map
C → {0, 1} (still denoted by ϕ) via the usual rules of propositional calculus:
ϕ(¬x) = 1 − ϕ(x), ϕ(x ∨ y) = max{ϕ(x), ϕ(y)}. A truth assignment ϕ satisfies
C if ϕ(c) = 1 for all c ∈ C. The answer to an instance (V,C) is YES if (V,C)
has a satisfying assignment (i.e., a truth assignment on V that satisfies C) and
NO otherwise.

By Cook’s classic theorem (see, e.g., [28, Theorem 8.2]), SAT is NP-complete,
and by the very definition of NP-completeness, every problem in NP reduces to
SAT. On the other hand, over the last score or so, many efficient SAT solvers, i.e.,
specialized programs designed to solve instances of SAT have been developed.
Modern SAT solvers can solve instances with hundreds of thousands of variables
and millions of clauses within a few minutes. Due to this progress, the following
approach to computationally hard problems has become quite popular nowadays:
one encodes instances of such problems into instances of SAT that are then fed
to a SAT solver3. It is exactly the strategy that we want to apply.

We start with the following problem:

CSW (the existence of a c.s.w. of a given length):
Input: a PFA A and a positive integer � (given in unary);
Output: YES if A has a c.s.w. of length �;

NO otherwise.

3 We refer the reader to the survey [10] or to the handbook [6] for a detailed discussion
of the approach and examples of its successful applications in various areas.

108 H. Shabana and M. V. Volkov

We have to assume that the integer � is given in unary because with � given
in binary, a polynomial time reduction from CSW to SAT is hardly possible.
(Indeed, it easily follows from [25] that the version of CSW in which the integer
parameter is given in binary is PSPACE-hard, and the existence of a polyno-
mial reduction from a PSPACE-hard problem to SAT would imply that the
polynomial hierarchy collapses at level 1.) In contrast, the version of CSW with
the unary integer parameter is easily seen to belong to NP: given an instance
(A = 〈Q,Σ〉, �) of CSW in this setting, guessing a word w ∈ Σ∗ of length � is
legitimate. Then one just checks whether or not w is carefully synchronizing for
A , and time spent for this check is clearly polynomial in the size of (A , �).

Now, given an arbitrary instance (A , �) of CSW, we construct an instance
(V,C) of SAT such that the answer to (A , �) is YES if and only if so is the answer
to (V,C). Our encoding follows general patterns presented in [6, Chapters 2
and 16] but has some specific features so that we describe it in full detail and
provide a rigorous proof of its adequacy. In the following presentation of the
encoding, precise definitions and statements are interwoven with less formal
comments explaining the ‘physical’ meaning of variables and clauses.

So, take a PFA A = 〈Q,Σ〉 and an integer � > 0. Denote the sizes of Q
and Σ by n and m respectively, and fix some numbering of these sets so that
Q = {q1, . . . , qn} and Σ = {a1, . . . , am}.

We start with introducing the variables used in the instance (V,C) of SAT
that encodes (A , �). The set V consists of two sorts of variables: m� letter vari-
ables xi,t with 1 ≤ i ≤ m, 1 ≤ t ≤ �, and n(� + 1) state variables yj,t with
1 ≤ j ≤ n, 0 ≤ t ≤ �. We use the letter variables to encode the letters of a
hypothetical c.s.w. w of length �: namely, we want the value of the variable xi,t

to be 1 if and only if the t-th letter of w is ai. The intended meaning of the state
variables is as follows: we want the value of the variable yj,t to be 1 whenever
the state qj belongs to the image of Q under the action of the prefix of w of
length t, in which situation we say that qj is active after t steps. We see that
the total number of variables in V is m� + n(� + 1) = (m + n)� + n.

Now we turn to constructing the set of clauses C. It consists of four groups.
The group I of initial clauses contains n one-literal clauses yj,0, 1 ≤ j ≤ n, and
expresses the fact that all states are active after 0 steps.

For each t = 1, . . . , �, the group L of letter clauses includes the clauses

x1,t ∨ · · · ∨ xm,t, ¬xr,t ∨ ¬xs,t, where 1 ≤ r < s ≤ m. (1)

Clearly, the clauses (1) express the fact that the t-th position of our hypo-
thetical c.s.w. w is occupied by exactly one letter in Σ. Altogether, L contains
�
(

m(m−1)
2 + 1

)
clauses.

For each t = 1, . . . , � and each triple (qj , ai, qk) in the transition relation of
A , the group T of transition clauses includes the clause

¬yj,t−1 ∨ ¬xi,t ∨ yk,t. (2)

Invoking the basic laws of propositional logic, one sees that the clause (2) is
equivalent to the implication yj,t−1 & xi,t → yk,t, that is, (2) expresses the fact

Using Sat Solvers for Synchronization Issues 109

that if the state qj has been active after t − 1 steps and ai is the t-th letter
of w, then the state qk = qj .ai becomes active after t steps. Further, for each
t = 1, . . . , � and each pair (qj , ai) such that ai is undefined at qj in A , we add
to T the clause

¬yj,t−1 ∨ ¬xi,t. (3)

The clause is equivalent to the implication yj,t−1 → ¬xi,t, and thus, it expresses
the requirement that the letter ai should not be occur in the t-th position of w if
qj has been active after t−1 steps. Obviously, this corresponds to the conditions
(C1) (for t = 0) and (C2) (for t > 0) in the definition of careful synchronization.
For each t = 1, . . . , � and each pair (qj , ai) ∈ Q × Σ, exactly one of the clauses
(2) or (3) occurs in T , whence T consists of �mn clauses.

The final group S of synchronization clauses includes the clauses

¬yr,� ∨ ¬ys,�, where 1 ≤ r < s ≤ n. (4)

The clauses (4) express the requirement that at most one state remains active
when the action of the word w is completed, which corresponds to the condition
(C3) from the definition of careful synchronization. The group S contains n(n−1)

2
clauses.

Summing up, the number of clauses in C := I ∪ L ∪ T ∪ S is

n + �
(

m(m−1)
2 + 1

)
+ �mn + n(n−1)

2 = �
(

m(m−1)
2 + mn + 1

)
+ n(n+1)

2 . (5)

In comparison with encodings used in our earlier papers [36,37], the encoding
suggested here produces much smaller SAT instances. Since in the applications
the size of the input alphabet is a (usually small) constant, the leading term
in (5) is Θ(�n) while the restriction to PFAs of the encodings from [36,37] has
Θ(�n2) clauses.

Theorem 2. A PFA A has a c.s.w. of length � if and only if the instance (V,C)
of SAT constructed above is satisfiable. Moreover, the carefully synchronizing
words of length � for A are in a 1-1 correspondence with the restrictions of
satisfying assignments of (V,C) to the letter variables.

Proof. Suppose that A has a c.s.w. of length �. We fix such a word w and denote
by wt its prefix of length t = 1, . . . , �. Define a truth assignment ϕ : V → {0, 1}
as follows: for 1 ≤ i ≤ m, 0 ≤ j ≤ n, 1 ≤ t ≤ �, let

ϕ(xi,t) :=

{
1 if the t-th letter of w is ai,

0 otherwise;
(6)

ϕ(yj,0) := 1; (7)

ϕ(yj,t) :=

{
1 if the state qj lies in Q.wt,

0 otherwise.
(8)

110 H. Shabana and M. V. Volkov

In view of (6) and (7), ϕ satisfies all clauses in L and respectively I. As w� = w
and |Q.w| = 1, we see that (8) ensures that ϕ satisfies all clauses in S. It remains
to analyze the clauses in T . For each fixed t = 1, . . . , �, these clauses are in a 1-1
correspondence with the pairs in Q × Σ. We fix such a pair (qj , ai), denote the
clause corresponding to (qj , ai) by c and consider three cases.

Case 1 : the letter ai is not the t-th letter of w. In this case ϕ(xi,t) = 0 by
(6), and hence, ϕ(c) = 1 since the literal ¬xi,t occurs in c, independently of c
having the form (2) or (3).

Case 2 : the letter ai is the t-th letter of w but it is undefined at qj . In this
case the clause c must be of the form (3). Observe that t > 1 in this case since
the first letter of the c.s.w. w must be defined at each state in Q. Moreover, the
state qj cannot belong to the set Q.wt−1 because ai must be defined at each
state in this state. Hence ϕ(yj,t−1) = 0 by (8), and ϕ(c) = 1 since the literal
¬yj,t−1 occurs in c.

Case 3 : the letter ai is the t-th letter of w and it is defined at qj . In this
case the clause c must be of the form (2), in which the literal yk,t corresponds to
the state qk = qj .ai. If the state qj does not belong to the set Q.wt−1, then as in
the previous case, we have ϕ(yj,t−1) = 0 and ϕ(c) = 1. If qj belongs to Q.wt−1,
then the state qk belongs to the set (Q.wt−1).ai = Q.wt, whence ϕ(yk,t) = 1 by
(8). We conclude that ϕ(c) = 1 since the literal yk,t occurs in c.

Conversely, suppose that ϕ : V → {0, 1} is a satisfying assignment for (V,C).
Since ϕ satisfies the clauses in L, for each t = 1, . . . , �, there exists a unique i ∈
{1, . . . , m} such that ϕ(xi,t) = 1. This defines a map χ : {1, . . . , �} → {1, . . . , m}.
Let w := aχ(1) · · · aχ(�). We aim to show that w is a c.s.w. for A , i.e., to verify
that w fulfils the conditions (C1)–(C3) from the definition of a c.s.w. For this,
we first prove two auxiliary claims. Recall that a state is said to be active after
t steps if it lies in Q.wt, where, as above, wt is the length t prefix of the word w.
(By the length 0 prefix we understand the empty word ε).

Claim 1 . For each t = 0, 1, . . . , �, there are states active after t steps.
Claim 2 . If a state qk is active after t steps, then ϕ(yk,t) = 1.
We prove both claims simultaneously by induction on t. The induction basis

t = 0 is guaranteed by the fact that all states are active after 0 steps and ϕ
satisfies the clauses in I. Now suppose that t > 0 and there are states active
after t − 1 steps. Let qr be such a state. Then ϕ(yr,t−1) = 1 by the induction
assumption. Let i := χ(t), that is, ai is the t-th letter of the word w. Then
ϕ(xi,t) = 1, whence ϕ cannot satisfy the clause of the form (3) with j = r.
Hence this clause cannot appear in T as ϕ satisfies the clauses in T . This means
that the letter ai is defined at qr in A , and the state qs := qr.ai is active after
t steps. Claim 1 is proved.

Now let qk be an arbitrary state that is active after t > 0 steps. Since ai is
the t-th letter of w, we have Q.wt = (Q.wt−1).ai, whence qk = qj .ai for same
qj ∈ Q.wt−1. Therefore the clause (2) occurs in T , and thus, it is satisfied by ϕ.
Since qj is active after t − 1 steps, ϕ(yj,t−1) = 1 by the induction assumption;
besides that, ϕ(xi,t) = 1. We conclude that in order to satisfy (2), the assignment
ϕ must fulfil ϕ(yk,t) = 1. This completes the proof of Claim 2.

Using Sat Solvers for Synchronization Issues 111

We turn to prove that the word w fulfils (C1) and (C2). This amounts to
verifying that for each t = 1, . . . , �, the t-th letter of the word w is defined at
every state qj that is active after t − 1 steps. Let, as above, ai stand for the
t-th letter of w. If ai were undefined at qj , then by the definition of the set T of
transition clauses, this set would include the corresponding clause (3). However,
ϕ(xi,t) = 1 by the construction of w and ϕ(yj,t−1) = 1 by Claim 2. Hence ϕ does
not satisfy this clause while the clauses from T are satisfied by ϕ, a contradiction.

Finally, consider (C3). By Claim 1, some state is active after � steps. On
the other hand, the assignment ϕ satisfies the clauses in S, which means that
ϕ(yj,�) = 1 for at most one index j ∈ {1, . . . , n}. By Claim 2 this implies that
at most one state is active after � steps. We conclude that exactly one state is
active after � steps, that is, |Q.w| = 1. ��

4 Experimental Results

We have successfully applied the encoding constructed in Sect. 3 to solve CSW
instances with the help of a SAT solver. As in [12,36–38], we have used MiniSat
2.2.0 [8,9]. In order to find a c.s.w. of minimum length for a given PFA A ,
we have considered CSW instances (A , �) with fixed A and performed binary
search on �. Even though our encoding is different from those we used in [36,37],
it shares with them the following useful feature: when presented in DIMACS
CNF format, the ‘primary’ SAT instance that encodes the CSW instance (A , 1)
can be easily scaled to the SAT instances that encode the CSW instances (A , �)
with any value of �. Due to this feature, one radically reduces time needed to
prepare the input data for the SAT solver; we refer the reader to [36, Sect. 3] for
a detailed explanation of the trick and an illustrative example. Thus, we encode
(A , 1), write the corresponding SAT instance in DIMACS CNF format, and scale
the instance to the instances encoding (A , �) with � = 2, 4, 8, . . . until we reach
an instance on which the SAT solver returns YES4. The corresponding value of
� serves as the right border �max of the binary search while the previous value
of � serves as the left border �min. Then we test the SAT instance corresponding
to (A , �max+�min

2), etc.
We implemented the algorithm outlined above in C++ and compiled with

GCC 4.9.2. In our experiments we used a personal computer with an Intel(R)
Core(TM) i5-2520M processor with 2.5 GHz CPU and 4 GB of RAM. The code
can be found at https://github.com/hananshabana/SynchronizationChecker.

4 In principle, it may happen that we never reach such an instance (which indicates
that either A is not carefully synchronizing or the minimum length of carefully
synchronizing words for A is too big so that MiniSat cannot handle the resulting
SAT instance) but we have not observed such “bad” cases in our experiments with
randomly generated PFAs.

https://github.com/hananshabana/SynchronizationChecker

112 H. Shabana and M. V. Volkov

As a sample of our experimental findings, we present here our results on syn-
chronization of PFAs with a unique undefined transition. Observe that the prob-
lem of deciding whether or not a given PFA is carefully synchronizing remains
PSPACE-complete even if restricted to this rather special case [25]. We consid-
ered random PFAs with n ≤ 100 states and two input letters. The condition
(C1) in the definition of a carefully synchronizing PFA implies that such a PFA
must have an everywhere defined letter. We denoted this letter by a and the
other letter, called b, was chosen to be undefined at a unique state. Further, it
is easy to see that for a PFA 〈Q, {a, b}〉 with a, b so chosen to be carefully syn-
chronizing, it is necessary that |Q.a| < |Q|. Therefore, we fixed a state qa ∈ Q
and then selected a uniformly at random from all nn−1 maps Q → Q \ {qa}.
Similarly, to ensure there is a unique undefined transition with b, we fixed a
state qb ∈ Q (not necessarily different from qa) and then selected b uniformly at
random from all (n − 1)n maps Q \ {qb} → Q. For each fixed n, we generated
up to 1000 random PFAs this way and calculated the average length �(n) of
their shortest carefully synchronizing words. We used the least squares method
to find a function that best reflects how �(n) depends on n, and it turned out
that our results are reasonably well approximated by the following expression:

�(n) ≈ 3.92 + 0.49n − 0.005n2 + 0.000024n3.

20 40 60 80 100

10

15

20

25

Number of states n

�(
n
)

Observed
Our estimation

The next graph shows the relation between the relative standard deviation
of our datasets and the number of states. We see that the relative standard
deviation gradually decreases as the number of states grows.

Using Sat Solvers for Synchronization Issues 113

20 40 60 80 100

0.15

0.2

0.25

0.3

0.35

0.4

Number of states

R
el
at
iv
e
st
an

da
rd

de
vi
at
io
n

We performed similar experiments with random PFAs that have two or three
undefined transition. We also tested our algorithm on PFAs from the series Pn

suggested in [7]. The state set of Pn is {1, 2, . . . , n}, n ≥ 3, on which the input
letters a and b act as follows:

q.a :=

{
q + 1 if q = 1, 2,

q if q = 3, . . . , n;
q.b :=

⎧⎪⎨
⎪⎩

undefined if q = 1,

q + 1 if q = 2, . . . , n − 1,

1 if q = n.

We examined all automata Pn with n = 4, 5, . . . , 11, and for each of them,
our result matched the theoretical value predicted by [7, Theorem 3]. The time
consumed ranges from 0.301 s for n = 4 to 4303 s for n = 11. Observe that in the
latter case the shortest c.s.w. has length 116 so that the “honest” binary search
started with (P11, 1) required 14 calls of MiniSat, namely, for the encodings
of (P11, �) with � = 1, 2, 4, 8, 16, 32, 64, 128, 96, 112, 120, 116, 114, 115. Of course,
if one just wants to confirm (or to disprove) a theoretical prediction � for the
minimum length of carefully synchronizing words for a given PFA A , two calls
of a SAT solver—on the encodings of (A , �) and (A , � − 1)—suffice.

In our experiments, we kept track of “slowly synchronizing” PFAs, that is,
PFAs with the minimum length of carefully synchronizing words close to the
square of the number of states. Whenever we encountered such examples, we
made an attempt to generalize them in order to get infinite series of provably
“slowly synchronizing” PFAs. The following statements present two of the results
we found this way.

114 H. Shabana and M. V. Volkov

Proposition 3. For each n > 4, let H ′
n be the PFA with the state set

{0, 1, . . . , n − 1} on which the input letters a and b act as follows:

q.a :=

{
0 if q ≤ 2,

q if q ≥ 3;
q.b :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3 if q = 0,

0 if q = 1,

undefined if q = 2,

q + 1 if q = 3, . . . , n − 2,

1 if q = n − 1.

The automaton H ′
n is carefully synchronizing and the minimum length of care-

fully synchronizing words for H ′
n is equal to (n − 2)2.

Proposition 4. For each n > 4, let H ′′
n be the PFA with the state set

{0, 1, . . . , n − 1} on which the input letters a and b act as follows:

q.a :=

{
q + 1 if q ≤ n − 2,

1 if q = n − 1;
q.b :=

{
undefined if q = 0,

q + 1 (mod n) if q ≥ 1.

The automaton H ′′
n is carefully synchronizing and the minimum length of care-

fully synchronizing words for H ′
n is equal to n2 − 3n + 3.

We omit the proofs of Propositions 3 and 4 due to space constraints. The
proofs (which are not difficult) can be obtained by a suitable adaptation of the
approach developed for the case of CFAs in [3, Section 4].

From the viewpoint of our studies, the series H ′
n and H ′′

n are of interest as
they exhibit two extremes with respect to amenability of careful synchronization
to the SAT solver approach. The series H ′

n has turned to be a hard nut to crack
for our algorithm: the maximum n for which the algorithm was able to find a
c.s.w. of minimum length is 13, and computing this word (of length 121) took
almost 4 h. In contrast, automata in the series H ′′

n turn out to be quite amenable:
for instance, the algorithm found a c.s.w. of length 343 for H ′′

20 in 13.38 s. At
present, we have no explanation for what causes such a strong contrast: is this
an intrinsic structure of the PFAs under consideration, or the nature of the
algorithm built in MiniSat, or just a peculiarity of our implementation?

We made also a comparison with the only approach to computing carefully
synchronizing words of minimum length that we had found in the literature,
namely, the approach based on partial power automata; see [27, p. 295]. Given
a PFA A = 〈Q,Σ〉, its partial power automaton P(A) has the subsets of Q as
the states, the same input alphabet Σ, and the transition function defined as
follows: for each a ∈ Σ and each P ⊆ Q,

P.a :=

{
{q.a | q ∈ P} provided q.a is defined for all q ∈ P,

undefined otherwise.

It is easy to see that w ∈ Σ∗ is a c.s.w. of minimum length for A if and only if
w labels a minimum length path in P(A) starting at Q and ending at a single-
ton. Such a path can be found by breadth-first search in the underlying digraph
of P(A).

Using Sat Solvers for Synchronization Issues 115

The result of the comparison is presented in the picture on the next page. In
this experiment we had to restrict to PFAs with at most 16 states since beyond
this number of states, our implementation of the method based on partial power
automata could not complete the computation due to memory restrictions (recall
that we used rather modest computational resources). However, we think that
the exhibited data suffice to demonstrate that the approach based on SAT solvers
shows a by far better performance.

6 8 10 12 14 16

0

100

200

300

Number of states n

ti
m
e
(s
ec
)

SAT
Partial power automaton

5 Conclusion and Future Work

We have presented an attempt to approach the problem of computing a c.s.w.
of minimum length for a given PFA via the SAT solver method. For this, we
have developed a new encoding, which, in comparison with encodings used in
our earlier papers [36,37], requires a more sophisticated proof but leads to more
economic SAT instances. In our future experiments, we plan to employ more
advanced SAT solvers. Using more powerful computers constitutes other obvi-
ous direction for improvements. Clearly, the approach is amenable to paralleliza-
tion since calculations needed for different automata are completely independent
so that one can process in parallel as many automata as many processors are
available.

Now we are designing new experiments. For instance, it appears to be inter-
esting to compare the minimum lengths of a synchronizing word for a synchro-
nizing CFA and of carefully synchronizing words for PFAs that can be obtained
from the CFA by removing one or more of its transitions. We also plan to extend
the SAT solver approach to so-called exact synchronization of PFAs which is of
interest for certain applications.

116 H. Shabana and M. V. Volkov

Acknowledgements. The authors are very much indebted to the referees for their
valuable remarks.

References

1. Altun, Ö.F., Atam, K.T., Karahoda, S., Kaya, K.: Synchronizing heuristics: speed-
ing up the slowest. In: Yevtushenko, N., Cavalli, A.R., Yenigün, H. (eds.) ICTSS
2017. LNCS, vol. 10533, pp. 243–256. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-67549-7 15

2. Ananichev, D.S., Volkov, M.V.: Some results on Černý type problems for trans-
formation semigroups. In: Araújo, I.M., Branco, M.J.J., Fernandes, V.H., Gomes,
G.M.S. (eds.) Semigroups and Languages, pp. 23–42. World Scientific, Singapore
(2004). https://doi.org/10.1142/9789812702616 0002

3. Ananichev, D.S., Volkov, M.V., Gusev, V.V.: Primitive digraphs with large expo-
nents and slowly synchronizing automata. J. Math. Sci. 192(3), 263–278 (2013).
https://doi.org/10.1007/s10958-013-1392-8

4. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press, Cambridge (2009). https://doi.org/10.1017/CBO9781139195768

5. Burkhard, H.-D.: Zum Längenproblem homogener Experimente an determinierten
und nicht-deterministischen Automaten. Elektronische Informationsverarbeitung
und Kybernetik 12, 301–306 (1976)

6. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook on Satisfiability.
IOS Press, Amsterdam (2009)

7. de Bondt, M., Don, H., Zantema, H.: Lower bounds for synchronizing word lengths
in partial automata. Int. J. Foundations Comput. Sci. 30(1), 29–60 (2019). https://
doi.org/10.1142/S0129054119400021

8. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

9. Eén, N., Sörensson, N.: The MiniSat Page. http://minisat.se
10. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: van

Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Represen-
tation, vol. I, pp. 89–134. Elsevier, Amsterdam (2008). https://doi.org/10.1016/
S1574-6526(07)03002-7

11. Goralč́ık, P., Hedrĺın, Z., Koubek, V., Ryšlinková, J.: A game of composing binary
relations. RAIRO Inform. Théor. 16(4), 365–369 (1982)

12. Güniçen, C., Erdem, E., Yenigün, H.: Generating shortest synchronizing sequences
using answer set programming. In: Fink, M., Lierler, Y. (eds.) Answer Set Program-
ming and Other Computing Paradigms, 6th International Workshop, ASPOCP
2013, pp. 117–127 (2013). https://arxiv.org/abs/1312.6146

13. Imreh, B., Steinby, M.: Directable nondeterministic automata. Acta Cybernetica
14, 105–115 (1999)

14. Ito, M.: Algebraic Theory of Automata and Languages. World Scientific, Singapore
(2004). https://doi.org/10.1142/4791

15. Ito, M., Shikishima-Tsuji, K.: Some results on directable automata. In: Karhumäki,
J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol.
3113, pp. 125–133. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27812-2 12

16. Ito, M., Shikishima-Tsuji, K.: Shortest directing words of nondeterministic
directable automata. Discrete Math. 308(21), 4900–4905 (2008). https://doi.org/
10.1016/j.disc.2007.09.010

https://doi.org/10.1007/978-3-319-67549-7_15
https://doi.org/10.1007/978-3-319-67549-7_15
https://doi.org/10.1142/9789812702616_0002
https://doi.org/10.1007/s10958-013-1392-8
https://doi.org/10.1017/CBO9781139195768
https://doi.org/10.1142/S0129054119400021
https://doi.org/10.1142/S0129054119400021
https://doi.org/10.1007/978-3-540-24605-3_37
http://minisat.se
https://doi.org/10.1016/S1574-6526(07)03002-7
https://doi.org/10.1016/S1574-6526(07)03002-7
https://arxiv.org/abs/1312.6146
https://doi.org/10.1142/4791
https://doi.org/10.1007/978-3-540-27812-2_12
https://doi.org/10.1007/978-3-540-27812-2_12
https://doi.org/10.1016/j.disc.2007.09.010
https://doi.org/10.1016/j.disc.2007.09.010

Using Sat Solvers for Synchronization Issues 117

17. Karahoda, S., Erenay, O.T., Kaya, K., Türker, U.C., Yenigün, H.: Paralleliz-
ing heuristics for generating synchronizing sequences. In: Wotawa, F., Nica, M.,
Kushik, N. (eds.) ICTSS 2016. LNCS, vol. 9976, pp. 106–122. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47443-4 7

18. Karahoda, S., Kaya, K., Yenigün, H.: Synchronizing heuristics: speeding up the
fastest. Expert Syst. Appl. 94, 265–275 (2018). https://doi.org/10.1016/j.eswa.
2017.10.054

19. Kowalski, J., Roman, A.: A new evolutionary algorithm for synchronization. In:
Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 620–635.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3 40

20. Kari, J., Volkov, M.V.: Černý’s conjecture and the road coloring problem. In: Pin,
J.-É (ed.) Handbook of Automata Theory, vol. I. EMS Publishing House (in print)

21. Natarajan, B.K.: An algorithmic approach to the automated design of parts ori-
enters. In: Proceedings 27th Annual Symposium Foundations Computer Science,
pp. 132–142. IEEE Press (1986). https://doi.org/10.1109/SFCS.1986.5

22. Natarajan, B.K.: Some paradigms for the automated design of parts feeders. Int.
J. Robot. Res. 8(6), 89–109 (1989). https://doi.org/10.1177/027836498900800607

23. Martyugin, P.V.: Lower bounds for the length of the shortest carefully synchroniz-
ing words for two- and three-letter partial automata. Diskretn. Anal. Issled. Oper.
15(4), 44–56 (2008)

24. Martyugin, P.V.: A lower bound for the length of the shortest carefully syn-
chronizing words. Russian Math. 54(1), 46–54 (2010). https://doi.org/10.3103/
S1066369X10010056. (Iz. VUZ)

25. Martyugin, P.V.: Synchronization of automata with one undefined or ambiguous
transition. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 278–
288. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31606-7 24

26. Martyugin, P.V.: Careful synchronization of partial automata with restricted
alphabets. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp.
76–87. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38536-0 7

27. Martyugin, P.V.: Complexity of problems concerning carefully synchronizing words
for PFA and directing words for NFA. Theor. Comput. Syst. 54(2), 293–304 (2014).
https://doi.org/10.1007/s00224-013-9516-6

28. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)
29. Pixley, C., Jeong, S.-W., Hachtel, G.D: Exact calculation of synchronization

sequences based on binary decision diagrams. In: Proceedings 29th Design Automa-
tion Conference, pp. 620–623. IEEE Press (1992)

30. Podolak, I.T., Roman, A., Jȩdrzjczyk, D.: Application of hierarchical classifier to
minimal synchronizing word problem. In: Rutkowski, L., Korytkowski, M., Scherer,
R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol.
7267, pp. 421–429. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29347-4 49

31. Podolak, I.T., Roman, A., Szyku�la, M., Zieliński, B.: A machine learning approach
to synchronization of automata. Expert Syst. Appl. 97, 357–371 (2018). https://
doi.org/10.1016/j.eswa.2017.12.043

32. Roman, A.: Genetic algorithm for synchronization. In: Dediu, A.H., Ionescu, A.M.,
Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 684–695. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-00982-2 58

33. Rystsov, I.K.: Asymptotic estimate of the length of a diagnostic word for a
finite automaton. Cybernetics 16(1), 194–198 (1980). https://doi.org/10.1007/
bf01069104

https://doi.org/10.1007/978-3-319-47443-4_7
https://doi.org/10.1016/j.eswa.2017.10.054
https://doi.org/10.1016/j.eswa.2017.10.054
https://doi.org/10.1007/978-3-319-55849-3_40
https://doi.org/10.1109/SFCS.1986.5
https://doi.org/10.1177/027836498900800607
https://doi.org/10.3103/S1066369X10010056
https://doi.org/10.3103/S1066369X10010056
https://doi.org/10.1007/978-3-642-31606-7_24
https://doi.org/10.1007/978-3-642-38536-0_7
https://doi.org/10.1007/s00224-013-9516-6
https://doi.org/10.1007/978-3-642-29347-4_49
https://doi.org/10.1007/978-3-642-29347-4_49
https://doi.org/10.1016/j.eswa.2017.12.043
https://doi.org/10.1016/j.eswa.2017.12.043
https://doi.org/10.1007/978-3-642-00982-2_58
https://doi.org/10.1007/bf01069104
https://doi.org/10.1007/bf01069104

118 H. Shabana and M. V. Volkov

34. Rystsov, I.K.: Polynomial complete problems in automata theory. Inf. Process.
Lett. 16(3), 147–151 (1983). https://doi.org/10.1016/0020-0190(83)90067-4

35. Rystsov, I.K.: Reset words for commutative and solvable automata. Theor. Comput.
Sci. 172(1), 273–279 (1997). https://doi.org/10.1016/s0304-3975(96)00136-3

36. Shabana, H.: D2-synchronization in nondeterministic automata. Ural Math. J.
4(2), 99–110 (2018). https://doi.org/10.15826/umj.2018.2.011

37. Shabana, H., Volkov, M.V.: Using Sat solvers for synchronization issues in non-
deterministic automata. Siberian Electron. Math. Rep. 15, 1426–1442 (2018).
https://doi.org/10.17377/semi.2018.15.117

38. Skvortsov, E., Tipikin, E.: Experimental study of the shortest reset word of random
automata. In: Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D.
(eds.) CIAA 2011. LNCS, vol. 6807, pp. 290–298. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22256-6 27

39. Volkov, M.V.: Synchronizing automata and the Černý Conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4 4

https://doi.org/10.1016/0020-0190(83)90067-4
https://doi.org/10.1016/s0304-3975(96)00136-3
https://doi.org/10.15826/umj.2018.2.011
https://doi.org/10.17377/semi.2018.15.117
https://doi.org/10.1007/978-3-642-22256-6_27
https://doi.org/10.1007/978-3-540-88282-4_4

	Using Sat Solvers for Synchronization Issues in Partial Deterministic Automata
	1 Introduction
	2 Synchronization of NFAs and PFAs
	3 Encoding
	4 Experimental Results
	5 Conclusion and Future Work
	References

