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Abstract. We consider the well-known cutting stock problem (CSP).
An instance of CSP possesses IRUP (the integer round up property) if
difference (the gap) between its optimal function value and optimal value
of its continuous relaxation is less than 1. If the gap is 1 or greater, then
an instance is non-IRUP. Constructing non-IRUP instances is very hard
and a question about how large the gap can be is an open theoretical
problem. Aim of our research is to find non-IRUP instances with minimal
capacity. We have found a non-IRUP instance with integer sizes of items
having capacity L = 16, while a previously known instance of such kind
had capacity L = 18. We prove that all instances with capacity L ≤ 10
have IRUP.

Keywords: Cutting stock problem · Integer round up property ·
Capacity · Linear programming

1 Introduction

In classic formulation, the cutting stock problem (CSP) is stated as follows:
there are m ∈ N groups of items of different lengths l1, · · · , lm and availabilities
b1, · · · , bm. The goal is to pack all items into the minimal number of containers
of the same capacity L (the total length of all items inside any container should
not exceed L).

The cutting stock problem is one of the earliest problems that have been stud-
ied through methods of operational research [10]. This problem has many real-
world applications, especially in industries where high-value material is being
cut [6] (steel industry, paper industry). No exact algorithm is known that solves
practical problem instances optimality, so there are lots of heuristic approaches.
Each year the number of publications about this problem increases, so we refer
the reader to bibliography [20] and the most resent survey [4].

Throughout this paper we abbreviate an instance of CSP as E := (L, l, b).
The total number of items is n =

∑m
i=1 bi. Without loss of generality, we assume
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that all numbers in the input data are positive integers and 0 < l1 < · · · < lm ≤
L.

The classical approach for solving CSP is based on the formulation of Gilmore
and Gomory [9]. Any subset of items (called a pattern) is formalized as a vector
a = (a1, · · · , am)� ∈ Z

m
+ where ai ∈ Z+ denotes the number of items i in the

pattern a. A pattern a of E is feasible if a�l ≤ L. So, we can define the set of
all feasible patterns P f (E) = {a ∈ Z

m
+ | a�l ≤ L}. For a given set of patterns

P = {a1, · · · , ar}, let A(P ) be the (n × r)-matrix whose columns are given by
the patterns ai. Then the CSP can be formulated as follows:

z(E) :=
r∑

i=1

xi → min subject to A(P f (E))x = b, x ∈ Z
r
+.

The common approximate solution approach involves considering the contin-
uous relaxation of CSP

zC(E) :=
r∑

i=1

xC
i → min subject to A(P f (E))xC = b, xC ∈ R

r
+.

Here x and xC are called the optimal solutions for the integer and continuous
problems respectively, and z(E) and zC(E) are called the optimal function values.

The difference Δ(E) = z(E)−zC(E) is called the gap of instance E. Practical
experience and numerous computations have shown that for most instances the
gap is very small. An instance E has the integer round up property (IRUP)
if Δ(E) < 1. Otherwise, E is called a non-IRUP instance. This notation was
introduced by Baum and Trotter [1]. Subsequently, the largest known gap was
increased [7,8,14,15,17,19]. Currently, the largest gap known is 6

5 , and there is
no example of a gap of at least 2.

The first known constructions of non-IRUP instances were rather huge.
The example of Marcotte [14] having L = 3397 386 355 was decreased to
L = 1111 139 by Chan [3]. The authors of [2,5] gave an example with L = 100.
In [13] an example with L = 18 has been found using so-called equivalence of
instances (see also [11,12]). In this paper we focus on improving bounds for
minimal possible L.

The paper has the following structure. In Sect. 2 we describe some theory
related to our model which is presented in Sect. 3. In Sect. 4 we present compu-
tational results and, finally, we draw a conclusion in Sect. 5.

2 Preliminaries

In this section we describe some theory we use throughout the paper. We believe
that results presented in this section are well-known, but we present their proofs
for the sake of completeness. Anyway, the reader may be referred to [16,18]
where some results are mentioned.

Given an instance E = (L, l, b), let xC be an optimal continuous solution
of E. Then x is the integer part of xC and x∗ is the fractional part of xC , so
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xC = x + x∗ and 0 ≤ x∗
i < 1 for all 1 ≤ i ≤ r. Also zC(E) = e�x + e�x∗ where

e = (1, · · · , 1) ∈ R
m
+ . Replacing b by b = b − A(P f (E))x yields the residual

instance E = (L, l, b). An instance E is called reducible if there exists an optimal
continuous solution of E with non-zero integer part.

Lemma 1. x∗ is an optimal continuous solution of E.

Proof. On one hand, zC(E) ≤ e�x∗ because x∗ is a feasible solution for
A(P f (E))x = b. On the other hand zC(E) ≤ e�x + zC(E) which is equiva-
lent to zC(E) ≥ e�x∗. So, zC(E) = e�x∗.

Lemma 2. Δ(E) ≤ Δ(E).

Proof. z(E) − zC(E) ≤ (e�x + z(E)) − (e�x + e�x∗) = z(E) − zC(E).

Consider a set of instances E(L, l) = {E(L, l, b) | b ∈ Z
m
+} where L and l are

fixed. Now we are interested in maximal possible the gap Δ(E) over all instances
E ∈ E(L, l).

Lemma 3. The maximal gap Δ(E) occurs over instances E ∈ E(L, l) with
zC(E) < m.

Proof. Consider an instance E ∈ E(L, l) with zC(E) ≥ m. There exists an
optimal continuous solution xC of E which has at most m non-zero components
because all feasible patterns form a m-dimensional vector space. Then by the
pigeonhole principle, xC

i ≥ 1 for some 1 ≤ i ≤ r. Therefore E is reducible.

Using Lemma 3 we already can find the maximal possible gap over E(L, l)
in finite time iterating over all instances E ∈ E(L, l) with zC(E) < m. However,
we are going to improve this result.

Lemma 4. The maximal gap Δ(E) occurs over instances E ∈ E(L, l) with
z(E) ≤ m.

Proof. Consider the m-dimensional vector space S induced by all feasible pat-
terns. Let us build a convex hull H over all the feasible patterns and let
F = {(f1, · · · , fm)�} be a set of facets of H, where fi ∈ P f (E).

Consider some facet f = (f1, · · · , fm)� ∈ F . The linear combination x�f
where x ∈ R

m
+ covers some subspace S′ of S. Every integer point b ∈ S′ corre-

sponds to an instance E = (L, l, b), and a vector x such that b = x�f can always
be transformed into an optimal continuous solution xC of E by inserting zero
elements. Now consider a m-dimensional parallelepiped S′

1 ⊂ S′ ⊆ S formed by
linear combination x1�

f where x1 ∈ R
m
+ and 0 ≤ x1

i ≤ 1 for all 1 ≤ i ≤ m. All
integer points b inside S′

1 correspond to instances E with z(E) ≤ m. And all
integer points b from S′ outside S′

1 correspond to reducible instances E.

We remark that Lemma 3 does not imply Lemma 4 directly because there
exist instances E with z(E) ≥ m + 1 and zC(E) < m (and with Δ(E) > 1).
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3 Model

Consider an instance E = (L, l, b) which possesses all possible item lengths:
l = (1, · · · , L). When L is fixed, l is fixed too. The matrix of patterns A(P f (E))
depends on L and l only, so it is also fixed. Availabilities of the item types b we
consider as variables.

Now we build the following ILP model:

k −
∑

xi → max,

A(P f (E))x = b, (1)
A(P f (E))y = b, (2)

∑
yi = k,

x ∈ R
r
+,

y ∈ Z
r
+,

b ∈ Z
m
+ ,

where k is the fixed value of z(E) for an optimal integer solution, x is the optimal
continuous solution, and y is the optimal integer solution.

Now we have to ensure that k is indeed the optimal integer function value
of E, i.e. a solution of the system where

∑
yi < k is impossible. To this end we

add special constraints to bound the vector b:

bi ≥ u + 1 − wu
i (u + 1) ∀0 ≤ u ≤ (k − 1)L, 1 ≤ i ≤ m,

w ∈ B
(k−1)L+1 × B

m.

Here, bi ≤ u implies wu
i = 1. Now consider all integer solutions of size k − 1

Ck−1(E) := {A(P f (E))y | y ∈ Z
r
+ ∧ ∑

yi = k − 1}. To ensure that all integer
solutions of the system are not less than k, we add the following constraints:

m∑

i=1

wci
i ≤ m − 1, ∀c ∈ Ck−1(E).

The latter constraint works as follows: for fixed c ∈ Ck−1(E), if bi ≤ ci for
all 1 ≤ i ≤ m, then

∑
wci

i = m and we have an integer function value less than
k.

For small values of L and k the model is small enough to be solved in
reasonable time. However, the model can be reduced by the following obser-
vation: l can be (1, · · · , L − 1) because any number of items of size L does
not change the value of Δ(E). Also, the model can be further reduced by
replacing the set of feasible patterns P f (E) with a set of inextensible patterns
P f

∗ (E) = {a ∈ Z
m
+ | a�l ≤ L ∧ a�l + l1 > L}. To this end we also have to

transform equations (1) and (2) into inequalities with the “≥” sign. The final
model is the following:
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k −
∑

xi → max,

A(P f
∗ (E))x ≥ b,

A(P f
∗ (E))y ≥ b,

∑
yi = k,

bi ≥ u + 1 − wu
i (u + 1) ∀0 ≤ u ≤ (k − 1)L, 1 ≤ i ≤ m,

m∑

i=1

wci
i ≤ m − 1, ∀c ∈ Ck−1(E),

w ∈ B
(k−1)L+1 × B

m, x ∈ R
r
+, y ∈ Z

r
+, b ∈ Z

m
+ .

Now, using this model we can find instances with the maximal gap for fixed
L and k, and using Lemma 4 we can build the lower bound for minimal possible
L of non-IRUP instance by solving the model for all k < L for some fixed L.

4 Results

We implemented our model as C++ program using CPLEX 12.7. The program
was run on machine Intel Core i7-5820K 4.2 GHz with 6 cores 32 Gb RAM.
Results are presented in Table 1.

Table 1. Computational results

L\k 1 2 3 4 5 6 7 8 9

2 0.50000

3 0.66667 0.66667

4 0.75000 0.75000 0.75000

5 0.80000 0.80000 0.80000 0.80000

6 0.83333 0.83333 0.83333 0.83333 0.83333

7 0.85714 0.85714 0.85714 0.85714 0.85714 0.85714

8 0.87500 0.87500 0.87500 0.87500 0.87500 0.87500 0.87500

9 0.88889 0.88889 0.88889 0.88889 0.88889 0.88889 0.88889 0.88889

10 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000

11 0.90909 0.90909 0.91667 0.91667 0.91667

12 0.91667 0.91667 0.93750 0.93750 0.93750

13 0.92308 0.92308 0.93333 0.93333 0.93333

14 0.92857 0.92857 0.94444 0.94444 0.94444

15 0.93333 0.93333 0.96667 0.96667 0.96667

16 0.93750 0.93750 1.00000 1.00000

17 0.94118 0.94118 0.96667 0.97222
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For L = 10 and k = 9 the ILP program had ≈ 600 000 constraints and the
running time was about 52 h. The following non-IRUP instances were found:
(16, (2, 3, 7, 8, 10)�, (2, 1, 1, 1, 1)�) and (16, (2, 3, 7, 8, 10)�, (2, 1, 1, 3, 1)�).

It is possible to prove a more general result; namely, that a series of instances
Et = (16, (2, 3, 7, 8, 10)�, (2, 1, 1, 2t + 1, 1)�) is non-IRUP for every t. z(Et) =
t + 3, because it is easy to pack all the items into t + 3 containers, but it is
impossible to pack them into t + 2 ones. Indeed, suppose it is possible, then all
containers should be fully filled. By a parity argument, items of sizes 3 and 7
should be in a single container, but then there is no way to fill this container
completely. zC(Et) ≤ t + 2 because there is a feasible solution 1

2 (0, 2, 0, 0, 1)� +
1
2 (3, 0, 0, 0, 1)� + 2t+1

2 (0, 0, 0, 2, 0)� + 1
2 (1, 0, 2, 0, 0)�. So, Δ(Et) ≥ 1.

5 Conclusion

We have suggested a model to calculate the maximal possible gap for the fixed
capacity L and the optimal integer function value k and have run it for small
values of L and k. We have improved the best known bound for minimal capacity
of non-IRUP instance from L = 18 to L = 16. Also we have computationally
proved that all instances with L ≤ 10 have IRUP.

We conjecture that L = 16 is the sharp bound for the minimal possible L
and we plan to improve our model to prove this conjecture.

Acknowledgements. The authors would like to thank the anonymous referees for
valuable remarks.
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