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Abstract. We consider a new real-world application of vehicle routing
planning in a finite time horizon. A company has a set of capacitated
vehicles in some depots and must serve a set of clients. There is a fre-
quency for each client stating how often this client must be visited. Time
intervals between two consecutive visits must be the same but the vis-
iting schedule is flexible. To get some competitive advantage, the com-
pany tries to increase its service quality. To this end, each client should
be visited by one driver only. The goal is to minimize the total length
of vehicles’ paths over the planning horizon under the frequency con-
straints and driver shift length constraints. We present an integer linear
programming model for this new consistent capacitated vehicle routing
problem. To find near-optimal solutions, we design the Variable Neigh-
borhood Search metaheuristic with eleven neighborhood structures. The
driver shift length and capacity constraints are penalized and included
into the objective function. Empirical results for real test instances from
Orenburg region in Russia with up to 900 clients and four weeks in the
planning horizon are discussed.

Keywords: Operations research · Mathematical models ·
Optimization problems · Time scheduling · Search methods · Routing
algorithms · Computer experiments

1 Introduction

The literature on vehicle routing problems has become very rich and covers nowa-
days a variety of applications, modeling approaches, and solution methods [16].
Due to their huge importance in practice, these problems have attracted atten-
tion of many researchers and motivate a large number of collaborations between
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companies and academia. In addition, vehicle routing problems lead to challeng-
ing formulations that require the development of sophisticated solution strategies
and motivates the design of clever heuristics and meta-heuristics.

Earlier [25] we considered the uncapacitated variant of our problem, and
now we consider a more general case. We have a capacitated heterogeneous fleet
of vehicles and a finite set of clients with their demand. Our goal is to find a
set of routes for the vehicles to service all clients with minimal total distance.
This optimization problem and its variants have been extensively studied for
nearly 60 years (see the early work of [6]). It is the consistent vehicle routing
problem (ConVRP) where the companies focus on client satisfaction to get some
competitive advantage [23,24]. Over a given time horizon we need to construct
a set of routes for the vehicles such that to service all clients. The consistency is
modeled as follows:

– a client can be visited by one driver only, and split deliveries are not allowed;
– a client should be visited at about the same time of a specific day selected by

the client in advance.

Thus, a company can increase client satisfaction by providing consistent ser-
vice [12,23]. In this paper, we consider a new ConVRP assuming that each client
is served by the same vehicle, and a frequency is given for each client indicating
how often this client should be visited. Each client is visited on the same day of
the week one, two or four times a month. These consistency requirements were
suggested by a Russian logistics company interested in results. Each vehicle has
a maximum capacity that limits the number of clients it can visit before return-
ing to the depot. All vehicles start from and return to their depot in the given
working interval. Our goal is to find a visiting schedule for each client and a
set of routes for each vehicle that jointly service all clients under the frequency
constraints and driver shift length constraints. The objective is to minimize the
total traveling distance for all vehicles over the planning horizon.

In [5], a similar periodic VRP was studied without consistency requirements.
In [12,24], the ConVRP was studied with fixed visiting scheduling for clients and
unlimited fleet. In our problem, we consider ConVRP with a flexible schedule
and limited fleet. To solve this real-world routing problem, we design the Vari-
able Neighborhood Search heuristic (VNS) [26,27]. We use eleven neighborhood
structures for local search including four large neighborhoods of Kernighan–Lin
[17,22]. To enlarge the search space, we relax the shift length and capacity con-
straints and include them into the objective function with non-negative penal-
ties that are modified during the search [5,10]. Intensification and diversification
strategies are applied in the VNS framework as well.

The rest of this paper is structured as follows. We first introduce the mathe-
matical model in Sect. 2. Neighborhood structures are presented in Sect. 3. The
framework of the VNS heuristic is described in Sect. 4. Computational results
for real-world instances are discussed in Sect. 5. The last Sect. 6 concludes the
paper.
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2 Mathematical Model

Let us consider a complete directed graph G = (V,A) with the set of nodes V
and the set of arcs A. The set V is the union of the set of depots M and the set
of clients I. Each depot m ∈ M has a heterogeneous fleet of vehicles. The set K
defines the total vehicle park. For each vehicle k ∈ K, we know its depot m(k)
and its capacity vk. For each arc (i, j) ∈ A, we have two parameters: the length
of arc dij and traveling time tij . We denote the length of a driver’s shift by T .
Each client i ∈ I has a given frequency of visits μi in the planning horizon D.
Time intervals between two consecutive visits of client i should be the same and
equal to τi = �|D|/μi�. A demand qi for each client i is given. By si we denote
the service time which is positive for each client and 0 for each depot.

We introduce the following binary decision variables:

xijkd =
{

1, if vehicle k on day d traverses arc (i, j),
0, otherwise,

yikd =
{

1, if vehicle k on day d visits client i,
0, otherwise,

wid =
{

1, if client i is visited on day d,
0, otherwise.

The auxiliary non-negative variables uikd will be used for subtour elimination.
Now we can present the consistent capacitated vehicle routing problem under

the shift length constraints as the mixed integer linear program:

min
∑
d∈D

∑
k∈K

∑
i∈V

∑
j∈V

dijxijkd (1)

subject to ∑
i∈I

qiyikd ≤ vk, k ∈ K, d ∈ D, (2)

ymkd =
{

1,m = m(k),
0,m �= m(k), m ∈ M,k ∈ K, d ∈ D, (3)

∑
k∈K

yikd = wid, i ∈ I, d ∈ D, (4)

∑
d∈D

wid = μi, i ∈ I, (5)

τi−1∑
t=0

wi(d+t) = 1, i ∈ I,d ∈ {0, . . . , (μi − 1)τi}, (6)

wiα + wiβ − 2 ≤ yikα − yikβ ,
i ∈ I, k ∈ K,α, β ∈ D,α �= β,

(7)

∑
i∈V

xijkd =
∑
i∈V

xjikd = yjkd, j ∈ V, k ∈ K, d ∈ D, (8)

uikd − ujkd + nxijkd ≤ n − 1, i, j ∈ I, k ∈ K, d ∈ D, (9)
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∑
i∈V

∑
j∈V

xijkd(tij + sj) ≤ T, k ∈ K, d ∈ D, (10)

uikd ≥ 0, i ∈ I, k ∈ K, d ∈ D, (11)

wid, xijkd, yikd ∈ {0, 1}, i, j ∈ V , k ∈ K,d ∈ D. (12)

The objective function (1) minimizes the total traveling distance for all vehi-
cles and all days of the planning horizon. In constraint (2), the total load of
vehicle k should not exceed its capacity. Equalities (3) show the distribution of
vehicles by depots. Equations (4) and (5) ensure that each client is visited accord-
ing to its frequency. Constraints (6) guarantee that time intervals between two
consecutive visits of each client are the same. Driver consistency is guaranteed in
(7). Constraints (8) make sure that each client has exactly one predecessor and
one successor and each vehicle returns to its own depot. Inequalities (9) prevent
subtours on the set of clients, n = |I|. The completion of the routes within the
driver shift is enforced by inequalities (10). The last two constraints define the
types of variables.

It is easy to see that variables uikd can be replaced by new variables uid

without loss of generality and dimension of the program can be reduced. Note
that the problem (1)–(12) can be infeasible because of the limited fleet of vehi-
cles in each depot and the driver shift constraints. To overcome this, we relax
the constraints (2) and (10) and include them into the objective function with
penalties γkd ≥ 0, λkd ≥ 0, k ∈ K, d ∈ D. As a result, we have got a relaxation
of the original problem (1)–(12) as follows:

L(x, γ, λ) = min
∑
d∈D

∑
k∈K

∑
i∈V

∑
j∈V

dijxijkd

+
∑
d∈D

∑
k∈K

(γkdκkd + λkdεkd) (13)

subject to (3)–(9), (11), (12) and additional constraints for new variables
κkd, εkd ≥ 0 which indicate the excess capacity in kilograms and the over-hours
in minutes for each pair (k, d):

κkd ≥
∑
i∈V

qiyikd − vk, k ∈ K, d ∈ D, (14)

εkd ≥
∑
i∈V

∑
j∈V

xijkd(tij + sj) − T, k ∈ K, d ∈ D. (15)

Now the relaxed problem (3)–(9), (11)–(15) is feasible even if there is just one
vehicle at any depot, and we can solve it by local search metaheuristics [28]. The
penalties γkd, λkd will be modified during the search in order to get a feasible
solution.
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3 Neighborhoods

In the past four decades, local search has grown from a simple heuristic idea into
a mature field of research in combinatorial optimization [1]. Local search is often
used to solve NP-complete problems since it provides a reliable approach for
obtaining high-quality solutions for realistic-size problems in a reasonable time.
For partition and permutation problems, many small and large neighborhoods
are introduced and studied from a theoretical and an empirical point of views [2,
3,11,13,14,16,21]. Below we present eleven neighborhoods for the problem which
is a special case of partition and permutation problems. We already considered
all these neighborhoods in [25].

Fig. 1. Moving the client to another route

Let us denote by σ a feasible solution to the problem. For each vehicle k ∈ K
and each day d ∈ D we have a route (the order of clients). We say that a driver
of vehicle k is happy on day d if κkd = εkd = 0 and unhappy if these constraints
are violated. We want to move clients from unhappy pairs (k, d) to happy ones.

Now we define the following neighborhood structures for solution σ.
The move neighborhood Nmove(σ) consists of some feasible solutions resulting

from σ by moving a client to another vehicle or the same vehicle but another
day (Fig. 1). If the client must be visited several times, we move all his visits
respectively. Moreover, we move an unhappy pair to a happy one only. In order to
find the best permutation for new schedules, we select the best positions of new
visits in previous schedules. The cardinality of this neighborhood is O(|I||D||K|).
It is a large set. Thus, we will use a randomized neighborhood Nq

move(σ), 0 < q <
1, which is a random part of the neighborhood Nmove(σ). Each element of the
set Nmove(σ) is included in the set Nq

move(σ) with probability q independently
of other elements.

The neighborhood Ñq
move(σ) has the same structure but includes the solutions

for all moves, except those from happy pairs to unhappy.
The swap neighborhood Nswap(σ) consists of some feasible solutions resulting

from σ by swapping two clients with the same frequency for the same or different
vehicles (Fig. 2). We consider only the clients which are close enough to each
other, the mutual distance between them is at most R, where R is a parameter
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of the neighborhood. The cardinality of the neighborhood is O(|I|2). Thus, we
apply the same randomization trick and use Nq

swap(σ) neighborhood instead of
the deterministic case.

Fig. 2. Swapping the two clients

The neighborhood Ñq
swap(σ) has the same structure but includes the solutions

for swapping clients with different frequency. Thus, we can swap client with 4
visits with two clients with 2 visits or four clients with 1 visits or another client
with 4 visits and so on.

Now we are ready to define four large Kernighan–Lin neighborhoods for a
feasible solution σ. The main idea of these neighborhood structures is similar
to the truncated Tabu Search method by a small neighborhood, say N(σ). The
neighborhood KL(σ) consists of l solutions resulting from σ by the following
rule [17,19]:

1. Find the best feasible solution σ′ in the neighborhood N(σ).
2. Set σ := σ′, even if σ′ is worse than σ.
3. Repeat steps 1 and 2 l times, if a move or swap is used at step 1 or 2 of

previous iterations, it can not be used anymore.

The sequence of σ1, . . . , σl defines l neighbors of the solution σ. We say that
σb is a local minimum with respect to the KL–neighborhood if σb is the best
solution of σ1, . . . , σl.

Using the six basic neighborhoods Nmove(σ), Nq
move(σ), Ñq

move(σ), Nswap(σ),
Nq

swap(σ), and Ñq
swap(σ) instead of the neighborhood N(σ), we may have

four Kernighan–Lin neighborhoods KLmove(σ), K̃Lmove(σ), KLswap(σ), and
K̃Lswap(σ) respectively. We illustrate the idea of the Kernighan–Lin neighbor-
hoods in Fig. 3.

As we have mentioned above, the position of a new client in scheduling is
selected without reordering other clients for the same pair (k, d). For improving
the final scheduling, we apply local descent algorithm by the well-known 2-opt
neighborhood for each pair (k, d). The idea of this neighborhood is to choose two
non-adjacent arcs and replace them by two other arcs for creating a new tour.
The main goal is removing intersections of arcs (see Fig. 4). In fact, we divide the
problem into |K||D| the traveling salesman subproblems, and a local optimum
by the 2-opt neighborhood is obtained for each subproblem independently [15].
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Fig. 3. The Kernighan–Lin neighborhood

Fig. 4. Neighborhood 2-opt. Removing the intersection

4 Optimization Method

Variable Neighborhood Search is an efficient framework of local search invented
about 20 years ago by Pierre Hansen and Nenad Mladenovich [26]. It is based
upon a simple, but a strong principle: a systematic change of a neighborhood
within the search. Its development has been rapid and successful in many real-
world applications [27], including hard routing problems [18,20] and games [7–9].
The main idea is to focus on local optima and change the landscape of search
assuming that the local optimum for one neighborhood may not be the local
optimum for another neighborhood. Below we apply this method to the relaxed
problem. We used this method for a simpler problem in [25].

To start the method, we need to create an initial solution σ and define the
penalties. The VNS method can start from an arbitrary solution, but we use a
greedy solution to get a uniform distribution of clients through all pairs (k, d),
k ∈ K, d ∈ D. We start from clients with high frequency and wish to minimize
the maximal number of clients per day and per vehicle [4]. We put identical initial
values of all penalties, λkd = 2.5, γkd = 3 in such a way to get approximately
the same values of the items in the objective function L(x, γ, λ).
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In each iteration of the local search, we select a neighborhood and move from
the current solution to the best neighboring solution. For the Kernighan–Lin
neighborhoods, we generate l solutions and select the best one. The pseudo-code
of the VNS algorithm is presented below.

Algorithm 1. VNS
Require: initial solution σ, neighborhoods N1, . . . , N8, stopping criterion, shaking and

intensification rules
1: Define parameters λ, γ, q1, . . . , q4, l, R
2: while stopping criterion is not reached do
3: k = 1
4: while k ≤ 8 do
5: Apply local search by neighborhood Nk

6: k = k + 1

7: Apply local descent by 2-opt neighborhood for each pair (k, d)
8: Update the penalties
9: Intensification

10: if shaking condition is true then
11: Shaking

12: Apply local descent by two swap neighborhoods with q = 1
13: Apply local descent by 2-opt neighborhood for each pair (k, d)
14: return the best found feasible solution

At the initialization step, we generate an initial solution by a greedy algo-
rithm and define the parameters of the method (line 1). Note that a randomiza-
tion of the first four neighborhoods may be different and qi �= qj , 1 ≤ i �= j ≤ 4.
We define these values in such a way that the cardinality of each randomized
neighborhood is the same and equal to 200 on average. Thus, we accelerate the
search, reduce the running time per iteration, and add a diversification aspect
into the search process. The shaking procedure (line 11) is an additional diver-
sification rule. We use some random steps by the swap or move neighborhoods
in this procedure if the best found solution does not change for a long time.

The stopping criterion (line 2) is the total number of iterations which depends
on the number of clients and their frequency. We use up to O(n2

1) iterations in
our experiments, where n1 =

∑
i∈I μi.

Local search (lines 5, 6) is applied by the move and swap neighborhoods
and then by the Kernighan–Lin neighborhoods. In the latter case, we use local
descents only and terminate the process in a local optimum. For the four basic
neighborhoods, we terminate the process after a prescribed number of itera-
tions. Further (line 7), we get a local optimum by 2-opt neighborhood for each
pair (k, d) of vehicle and day. As a rule, we discover a new best solution at this
stage. If we find a solution with κkd > 0 for some pair (k, d) then we increase
the penalties γkd := 1.05γkd. If a new solution has εkd = 0 for all pairs (k, d),
then we decrease the penalties λ. Otherwise, we increase them. In general case,
we modify the penalties by the following rule (line 8):
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γkd =
{

1.05γkd, if κkd > 0,
γkd, if κkd = 0,

λkd =
{

1.03λkd, if εkd > 0,
0.97λkd, if εkd = 0.

In the intensification procedure (line 9), we return to the best found solution
and increase all randomization parameters q1, . . . , q4 and the value of penal-
ties λkd again to check the most promising area more carefully. If we discover a
new best solution, we return to the previous values of these parameters. In the
shaking procedure (line 11), we do the same for q1, . . . , q4 and λkd to start the
search in a new area of the feasible domain. Finally, we apply deterministic local
descent (lines 12, 13) by Nswap and Ñswap neighborhoods (q3 = q4 = 1) and get
local optima by 2-opt neighborhood for each pair (k, d).

5 Computational Results

The described VNS algorithm was implemented in C++ with MSVC++ 14.16 com-
piler using standard release options. All experiments were conducted on a com-
puter with an AMD Ryzen 5 2600 3.4 GHz processor and 16 GB of RAM running
under Microsoft Windows 10 (64-bit).

The data set used to test the algorithm is proposed by a Russian logistics
company with 892 clients from Orenburg region. Among them, one third are
clients of frequency 1, and slightly more than half are clients of frequency 2.
There are three depots located at a distance of 250 km from each other. We
randomly select a part of the large instance to get small ones. For this purpose, we
varied certain parameters used during client selection. These parameters include
a number necessary for localization of the depots (radius), selection probabilities
different for different depots, and a number specifying the random shift of the
vehicles relative to their initial position. For the client selection and further in
the algorithm, a 32-bit Mersenne Twister pseudo-random number generator was
used. As a result, we generated 10 various instances with 600–700 clients. This
range of the number of clients allows obtaining diverse large instances with the
same number of vehicles in each depot. Besides, this range is close to the actual
number of clients served by the company in one region. We assigned two vehicles
in each depot for these test instances.

Also, to compare the algorithm with an optimization solver, data set with 672
clients from Orenburg region was used. Slightly less than three-quarters of these
clients have a frequency of 1, while the numbers of clients of frequency 2 and 4
are approximately equal. There are the same three depots for this set. Using the
same method as for the larger data set, we generated instances with 320–350 and
130–150 clients. We assigned one vehicle in each depot for the former instances
and one vehicle in a single depot for the latter ones.

Client attributes include name, GPS coordinates (latitude and longitude), the
frequency of visits, service time, and demand. The shift length is 8 h, including
40 min for a break. The time for a break is not fixed in drivers’ schedules, and
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they can spend it at any free from client service time of the working day. The
problem we are investigating does not include time windows. Hence, we can just
adjust the shift length to T = 7 h 20 min.

Vehicles can leave the depot starting at 8:30, but must arrive at the first
client no earlier than 9:00. The last client must be serviced before 17:00, but the
vehicle must return to the depot no later than 18:00. To include these additional
requirements into the model, we modify the matrix (tij) by the following rule:

tij =

⎧⎨
⎩

tij , if i, j ∈ I,
max{0, tij − 30′}, if i ∈ M, j ∈ I,
max{0, tij − 60′}, if i ∈ I, j ∈ M.

The planning horizon is 20 days. The speed of each vehicle is 50 km/h. For
Kernighan–Lin neighborhoods we generate l = 25 neighboring solutions. The
threshold R for the swap neighborhoods is defined as 20 km. Local search by the
all basic neighborhoods of the VNS algorithm (line 5) is set as 1300 iterations.
Results are obtained by running the VNS in 10 min 10 times per instance.

Figure 5 illustrates the typical behavior of the method. The initial value of
the objective function L(x, γ, λ) is huge with excess capacity κ =

∑
kd κkd and

total over-hours ε =
∑

kd εkd. And after 2000 iterations we found a solution
with κ =

∑
kd κkd = 0. Note that the total over-hours and overload decrease as

iterations grow. We denoted by × new record values of the objective function for
a feasible solution. We see that the value decreases for a feasible solution too.

In Tables 1, 2, 3 and 4, we show computational results for these 10 small
instances. The purpose is to study the impact of the capacity constraint on
the solution. Each instance was run 10 times and the minimal, average, and
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maximum values for these runs are presented in the tables. To compare the
obtained solutions the objective function (13) with penalties γkd = 50, λkd = 40
was used.

Table 1. Capacity vk ∈ [800, 1000]

Instance Min Avg Max

ε Distance ε Distance ε Distance

1 0 15360 0 15867.6 0 16195

2 0 16060 0 16298.4 0 16586

3 4 16282 9 16357.6 28 16260

4 0 16961 0 17203 0 17370

5 0 15434 3.5 15803.1 0 16796

6 0 14334 0 14639.4 0 15204

7 0 15521 0 16118.5 0 16704

8 0 16324 0 16695.3 0 16993

9 0 16381 5 16886.3 10 17519

10 4 17158 6.4 17572.5 0 18443

At first (Tables 1, 2 and 3), we used the model which does not allow violation
of the capacity constraint at any step of the algorithm (including shakes). Table 1
show results for the case when the vehicles have enough capacity for all clients
they may need to serve. By doing this, we were able to get an average daily load
for the vehicles from different depots. For most of the instances, this number
turned out to be 400–500 kg. From Tables 2 and 3 we see that the results become
worse with the tightening of the capacity. Also, Table 3 shows that the search
space can become so narrow that for some vehicles there will be no other options
but to serve clients intended for another depot (instances 2–4).

Next, the relaxed formulation of the problem with capacity penalties was
used (Table 4). This allowed us to find much better solutions in most of the
instances. It confirms the need for the penalties.

It should be taken into account that despite the presence of penalties in some
solutions, in most of the instances they are small enough to be neglected.

In order to study the efficiency of the algorithm, we compared it with the
results obtained by metaheuristic solver LocalSolver. We chose it instead of such
classical MILP solvers as CPLEX and Gurobi, since the latter cannot find the
exact solution in a reasonable time for even quite small instances of the problem.
The results are presented in Tables 5, 6, 7 and 8.
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Table 2. Capacity vk ∈ [500, 600]

Instance Min Avg Max

ε Distance ε Distance ε Distance

1 0 15467 0 16125.4 0 16686

2 0 17354 17.3 17446.5 20 18271

3 13 16319 29.9 17295.2 75 18631

4 0 17308 0 17546.5 0 17905

5 0 16207 4.8 16489 0 17241

6 0 14599 0 14986.9 0 15324

7 0 15896 0.6 16513.6 0 16900

8 0 16798 6.5 17347.1 48 18106

9 33 16180 45 16362 101 16201

10 1 17667 1.9 18149.1 1 18464

Table 3. Capacity vk ∈ [450, 500]

Instance Min Avg Max

ε Distance ε Distance ε Distance

1 0 16083 0 16373.6 0 16700

2 326 17968 1236.7 19365.9 1693 19335

3 1023 18604 1651.5 18985.9 1992 18722

4 389 18886 1400.2 20205.4 2309 20979

5 0 16704 2.1 17420.2 1 18091

6 0 15893 22.8 16584.8 162 16623

7 18 16529 14.5 17306.4 51 18197

8 2 17822 28 17718.9 126 18523

9 104 16073 111.7 16314.3 101 17389

10 36 19520 87.8 19101.7 111 19416

Since LocalSolver did not allow us to obtain satisfactory solutions to the
problem with all the hard constraints, we decided to use the minimized objec-
tive function (16) for it. The main challenges for the solver were caused by
the constraints (5)–(7) of the problem. We include constraints (6)–(7) into the
objective function (16) with penalty ψ, while constraints (5) remained hard.
Variable ζ in (16) denotes the total number of constraints (6)–(7) violations. We
used penalties γkd = 100, λkd = 200, ψ = 105 for this objective function. The
constant φ necessary for determining the variable χ was set to 3 · 105 for Table 6
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Table 4. Capacity vk ∈ [450, 500] with the penalties

Instance Min Avg Max

ε κ Distance ε κ Distance ε κ Distance

1 4 0 15388 6.1 0 15896.2 36 0 16411

2 178 0 17449 270.5 11 18472.9 468 0 18909

3 280 0 17978 276.5 88 18606.8 595 0 19204

4 0 0 19710 24.7 0 19920.5 34 0 20324

5 0 0 16335 9.3 0 16560.7 31 0 16563

6 22 0 14638 26.5 0 15131.6 79 0 14767

7 7 0 16092 2.5 0 16700 0 0 17212

8 0 0 16883 0.3 0 17200.3 1 0 17930

9 114 0 16208 115.7 0 16338.7 130 0 16084

10 11 20 18837 21.5 18 19037.7 18 20 19503

and 8 ·104 for Table 8. To provide non-deterministic results for LocalSolver runs,
we added to the model one excessive constraint repeating already contained one.

χ =
{

1000, L(x, γ, λ) > φ,
1, otherwise.

Ls(x, γ, λ, ψ) = min

⎛
⎝∑

d∈D

∑
k∈K

∑
i∈V

∑
j∈V

dijxijkd

+
∑
d∈D

∑
k∈K

(γkdκkd + λkdεkd)

)
χ + ψζ (16)

In Tables 5, 6, 7 and 8, we show computational results obtained by our VNS
algorithm and by LocalSolver. There were 10 runs for each instance. For Tables 5
and 8, computational time was set to 5 min, and for Tables 6 and 7, it was set to
10 and 2 min, respectively. To compare the obtained solutions, penalties λkd = 40
for Tables 5 and 7 and γkd = 25, λkd = 20, ψ = 300 for Tables 6 and 8 were used.
All the solutions obtained for the former tables have κ = 0.

It is clearly visible that the results obtained by our algorithm are better than
those of LocalSolver in all instances. It is also worth noting the decrease in the
difference between the maximum and minimum objective values of the results
with a decrease in the dimension of the problem.
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Table 5. The results for instances with 320–350 clients for VNS algorithm

Instance Min Avg Max

ε Distance ε Distance ε Distance

1 0 10473 0.1 10486 1 10483

2 0 10543 2.1 10643 0 10874

3 0 10821 0 10853.3 0 10892

4 2 9950 3 10018.5 3 10141

5 0 8834 0.7 9042.2 0 9399

6 0 8830 0 8913.4 0 9301

7 0 9748 1.4 9867.3 11 9870

8 0 9204 0.6 9266.5 0 9383

9 0 10904 0.8 11014.9 6 11134

10 0 10217 0 10243.7 0 10277

Table 6. The results for instances with 320–350 clients for LocalSolver

Instance Min Avg Max

ε κ ζ Distance ε κ ζ Distance ε κ ζ Distance

1 48 0 0 10673 307.2 2 16.9 11713.1 312 0 73 12336

2 316 0 0 11094 404.7 3 46.7 11490.6 236 0 243 11874

3 120 0 0 10659 304.3 1 67.3 11525.5 377 0 219 11586

4 163 0 0 10790 326 0 17 11708.9 294 0 96 12603

5 12 0 0 11309 223.2 2 2.1 10722.3 474 20 3 10730

6 189 0 0 9980 329.9 10 3.7 10120 567 0 14 10240

7 145 0 0 11016 381 4 4.2 11163.1 585 20 11 10929

8 296 0 0 9827 482.1 7 29.5 10531.7 502 0 78 10452

9 374 0 0 11202 405.1 1 47.6 11993 240 10 124 12520

10 67 0 0 10974 216.2 0 4.3 11258.5 361 0 14 11891

The large instance with 892 clients can be effectively solved using developed
VNS algorithm as well. However, to achieve an acceptable value of the variance
for the results of applying the algorithm for an instance with such a number
of clients, more computational time is required. Although smaller instances are
usually examined in the literature, large-scale ones are also of interest to study,
as they are often applicable in the real world.
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Table 7. The results for instances with 130–150 clients for VNS algorithm

Instance Min Avg Max

ε Distance ε Distance ε Distance

1 0 3199 0 3205.5 0 3217

2 0 3388 0 3394.8 0 3405

3 0 2747 0 2759.4 0 2769

4 0 1657 0 1666.7 0 1687

5 0 3040 0.2 3053.6 2 2992

6 0 2110 0 2115.5 0 2126

7 0 2818 1.1 2819.3 11 2818

8 0 2960 0 2972.8 0 2987

9 0 2879 0 2883.5 0 2894

10 0 3061 3 2994.1 5 2958

Table 8. The results for instances with 130–150 clients for LocalSolver

Instance Min Avg Max

ε κ ζ distance ε κ ζ Distance ε κ ζ Distance

1 0 0 0 3430 20.4 4 0.4 3626.4 98 40 0 3650

2 65 0 0 3382 123.9 3 1 3683 241 0 6 3668

3 0 0 0 3130 40 0 0.7 3309.9 236 0 7 3357

4 0 0 0 1784 1.6 0 0.7 2481.8 16 0 3 3074

5 2 0 0 3207 129.4 8 1.3 3440.3 305 0 9 3502

6 0 0 0 2273 2.3 0 0.9 2637 23 0 4 2281

7 0 0 0 3212 89.6 1 0 3238.8 277 0 0 3223

8 0 0 0 3219 87.5 2 3.2 3258.5 321 0 32 3475

9 0 0 0 3128 17.9 0 0.5 3413.8 62 0 5 3451

10 61 0 0 3373 150.5 17 2 3286.5 265 0 13 3515

6 Conclusion

In this paper, we have studied a new consistent capacitated vehicle routing prob-
lem and designed the VNS algorithm for real-world instances. This algorithm is
able to solve large-scale instances and reduce the total traveling distance.

Companies today are increasingly focused on customer satisfaction to achieve
a competitive advantage. One of the components of these customer-first strate-
gies is service consistency [12,23]. Thus, it is important to study problems
with consistency requirements addressing real-world challenges. In our version of
ConVRP, it is required that the same driver visit the same clients on the same
day of the week according to their frequency of visits. We presented our program
to the logistics company, and they were satisfied with it.
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One of the new research directions is the control of time for client visits. As
we have mentioned before, a logistics company can get an additional competitive
advantage if each client is visited at about the same time. Such type of constraints
can be incorporated into the model to improve the service of clients. Sure, new
constraints will increase the total traveling distance and may require additional
vehicles. The optimal balance here is an important line for research as well.
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