
Variable Neighborhood Search
for the Resource Constrained Project

Scheduling Problem

Evgenii N. Goncharov1,2(B)

1 Sobolev Institute of Mathematics, prosp. Akad. Koptyuga, 4, Novosibirsk, Russia
2 Novosibirsk State University, str. Pirogova, 1, Novosibirsk, Russia

gon@math.nsc.ru

http://www.math.nsc.ru/

Abstract. We consider the resource-constrained project scheduling
problem (RCPSP) with respect to the makespan minimization criterion.
The problem accounts for technological constraints of activities prece-
dence together with resource constraints. Activities preemptions are not
allowed. The problem with renewable resources is NP-hard in the strong
sense. We propose a variable neighborhood search algorithm with two
neighborhoods. Numerical experiments based on standard RCPSP test
dataset j120 from the PCPLIB library demonstrated that the proposed
algorithm produces better results than existing algorithms in the litera-
ture for large-sized instances. For some instances from the dataset j120
the best known heuristic solutions were improved.

Keywords: Project management · Resource-constrained project
scheduling problem · Renewable resources · Variable neighborhood
search

1 Introduction

We consider the resource constrained project scheduling problem (RCPSP) with
precedence and resource constraints. The RCPSP can be defined as a combina-
torial optimization problem. A partial order on the set of activities is defined
with a directed acyclic graph. We know duration, the set and amounts of con-
sumed resources, for every activity. We assume that at every unit interval of the
planning horizon T̂ the same number of resources is allotted, and the resources
are assumed to be unbounded outside the project horizon T̂ . All resources are
renewable. Activities preemptions are not allowed. The objective is to schedule
the activities of a project so as to minimize the project makespan. Accord-
ing to the classification scheme proposed in [19] this problem is denoted as
m, 1|cpm|Cmax. According to the classification proposed in [3], this problem is

The work was supported by the program of fundamental scientific researches of the SB
RAS, project No. 0314-2019-0014.

c© Springer Nature Switzerland AG 2019
I. Bykadorov et al. (Eds.): MOTOR 2019, CCIS 1090, pp. 39–50, 2019.
https://doi.org/10.1007/978-3-030-33394-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33394-2_4&domain=pdf
http://orcid.org/0000-0001-6843-8971
https://doi.org/10.1007/978-3-030-33394-2_4

40 E. N. Goncharov

denoted as PS | prec | Cmax. As a generalization of the job-shop scheduling
problem the RCPSP is NP-hard in the strong sense [1] and is actually one of the
most intractable classical problems in practice. Worth noting that introducing
cumulative resources into the same problem makes the problem solvable with
polynomial complexity [9].

It may be conceivable to use optimal methods only for projects of small size.
An exact-solution approaches have been developed in [2,8,27,31]. For larger
problems, one needs heuristics to get the best solution within a convenient
response time, and heuristics remain the best way to solve these problems effi-
ciently. The construction methods are based on a scheduling scheme and an
activity selection mechanism made by one or more priority rules or sampling
techniques. Papers by Brucker [3], Kolisch and Hartmann [23], Herroelen et
al. [18], Kolisch and Padman [21], Kolisch and Hartmann [22], Hartmann and
Briskorn [15] survey the RCPSP, its numerous variants, and the solution tech-
niques.

Many local search methods have been proposed to solve the RCPSP. These
methods provide, in most cases, solutions better than construction methods as
they proceed with a starting feasible schedule generated by one or many con-
struction methods. As the local search methods are more effective than construc-
tion methods for large problems, this paper introduces a new hybrid approach
combining concepts of tabu search [10] and variable neighborhood search [14]
algorithm that uses the activity sequence encoding as a basis to search a neigh-
borhood. This allows fast computation strategies in order to provide very good
schedules in a real-time environment. The neighborhood search (NS) algorithm
is used to improve one feasible solution by fixing the start times of some activ-
ities and rescheduling other activities. Palpant et al. [29] proposed five selec-
tion methods. Their numerical experiments showed that the “Block” selection
method clearly outperformed other methods. Therefore, we use only the Block
selection method to form the sub-problem in all NS operators. In this paper we
propose a variable neighborhood search [14]. We use two alternative versions of
neighborhoods. In fact, one of them is a modification of that proposed in [29],
and the other is a modification of that proposed in [20]. The quality of the pro-
posed algorithm has been examined for dataset j120 from the electronic library
PSPLIB [25]. We provide results of the numerical experiments. For the dataset
j120 (50000 and 500000 iterations) we have obtained one of the best average
deviations from the critical path value. For 8 instances from the dataset j120 we
have found the best (previously unknown) heuristic solutions.

2 Problem Setting

The RCPSP problem can be defined as follows. A project is taken as a directed
acyclic graph G = (N,A). We denote by N = {1, ..., n} ∪ {0, n + 1} the set
of activities in the project where activities 0 and n + 1 are dummy. The latter
activities define the start and the completion of the project, respectively. The
precedence relation on the set N is defined with a set of pairs A = {(i, j) | i −

Variable Neighborhood Search for the Resource Constrained Project 41

−precedes j}. If (i, j) ∈ A, then activity j cannot start before activity i has
been completed. The set A contains all pairs (0, j) and (j, n + 1), j = 1, ..., n.

We have a set of renewable resources K, for each resource type k ∈ K there
is a constant availability Rk ∈ Z+ throughout the project horizon T̂ . Activity
j has deterministic duration pj ∈ Z+. The profile of resource consumption is
assumed to be constant for every activity. So, activity j requires rjk ≥ 0 units of
resource of type k, k ∈ K at every time instant when it is processed. We assume
that rjk ≤ Rk, j ∈ N, k ∈ K.

Now, we introduce the problem variables. We denote by sj ≥ 0 the starting
time of activity j ∈ N . Since activities are executed without preemptions, the
completion time of activity j is equal to cj = sj+pj . We define a schedule S as an
(n+2)-vector (s0, ..., sn+1). The completion time T (S) of the project corresponds
to the moment when the last activity n + 1 is completed, i.e., T (S) = cn+1. We
denote by J(t) = {j ∈ N | sj < t ≤ cj} the set of activities which are executed
in the unit time interval [t − 1, t) under schedule S. The problem is to find a
feasible schedule S = {sj} respecting the resource and precedence constraints
so that the completion time of the project is minimized. It can be formalized as
follows: minimize the makespan of the project

T (S) = max
j∈N

(sj + pj) (1)

under constraints
si + pi ≤ sj , ∀(i, j) ∈ A; (2)

∑

j∈J(t)

rjk ≤ Rk, k ∈ K, t = 1, ..., T̂ ; (3)

sj ∈ Z+, j ∈ N. (4)

Inequalities (2) define activities precedence constraints. Relation (3) corre-
sponds to the resource constraints. Finally, (4) defines the variables in question.

3 Variable Neighborhood Search

3.1 Solution Representation

We represent a feasible solution as an activity list [23]. Feasible solution is
encoded by the list of activities L = (j0, ..., jn+1). All lists under consideration
are assumed to be compatible with the precedence relations. For an arbitrary
list L, the serial decoding procedure (S-SGS) calculates the active schedule S(L)
[23]. It is known that there is an optimal schedule among the active schedules.
A schedule is called active if the starting times of the activities are such that
no activity can be started earlier of its starting time without violating either
a precedence relation or a resource constraint. The parallel decoder (P-SGS)
sequentially considers increasing moments of time, and schedules a subset of the
eligible activities to start at this moment.

42 E. N. Goncharov

3.2 Resource Weights

We use the following heuristic rule to operate with a solution being evaluated.
In the preliminary stage, before VNS algorithm has started, we find the degree
of scarcity for each resource and rank them, assigning them with a weight. We
denote wk the weight of a resource of type k, k = 1, ...,K. If we have resources
weights, we can compare them, giving priority to those where the higher priority
(scarce) resources are used rationally, i.e., give less surplus of unused resources.
We denote the weight vj of activity j as

vj =
∑

k∈K

rjkwk/Rk.

We determine the degree of relative scarcity for the resources by solving a
relaxed problem. For this purpose, we weaken the renewability condition for the
resources and consider a problem with cumulative resources.

T (S) = max
j∈N

(sj + pj) (5)

under constraints
si + pi ≤ sj , ∀(i, j) ∈ A; (6)

t∑

t′=1

∑

j∈J(t′)

rjk ≤
t∑

t′=1

Rk, k ∈ K, t = 1, ..., T̂ . (7)

sj ∈ Z+, j ∈ N. (8)

The fast approximated algorithm to solve problem (5)–(8) is known, it’s
computational complexity depends on the number n of activities as a function
of order n2. In the case of real-valued activity durations, the algorithm is asymp-
totically exact with absolute error that tends to zero as the problem dimension
grows [7]. In addition, for integer-valued activity durations the exact algorithm is
developed [8,9]. In this work we consider a problem with integer-valued activity
durations, so we can use any one of these two algorithms to solve the relaxed
problem (5)–(8). We choose the first one. By applying this algorithm, in addition
to the solution of the relaxed problem, we also get the residue for each cumula-
tive resource that allows us to define the degree of scarcity for all resources: the
less is a resource’s surplus the scarcer it is. As a final step we apply the resulting
resource ranking rule obtained in the relaxed problem to the original problem
(1)–(4).

3.3 Block of Activities

For a given feasible schedule S = (s0, ..., sn+1) and a core activity j = 1, ..., n,
the NS operator reschedules a set of activities, As

j , while keeping the start times
of all other activities. Let P be a predetermined number of activities that will
be rescheduled. The value of P influences the computational time to obtain a

Variable Neighborhood Search for the Resource Constrained Project 43

neighborhood solution by rescheduling. Smaller value of P usually means fewer
activities to be rescheduled and less time to obtain the new schedule. The fol-
lowing Block selection method is used to create As

j [29].

CreateBlock(j, S) → As
j .

1. As
j = j; b = 0; create a random order for all activities in A/{j}. Let i is the

first activity in the order.
2. If sj − pi − b ≤ si ≤ sj + pj + b, As

j = As
j

⋃{i}.
3. If |As

j | = P , go to Step 6.
4. If i is the last activity among the ones not belonging to As

j based on the order
defined in Step 1, b = b + 1.

5. Let i be the next activity among the ones not belonging to As
j based on the

order defined in Step 1. Go to Step 2.
6. END.

The Block selection method basically selects a set of P activities that are over-
lapped or close to activity j in a given feasible schedule.

3.4 The Initial Solution

We can use any available method to generate a good initial solution rapidly. The
choice of the algorithm for the initial solution is not critical for the local search
methods. Gagnon et al. [6] noted that there is some dilemma concerning the
choice of the initial solution used by a NS method adaptation. Starting with a
very good solution doesn’t let enough space to find a significant improvement. On
the other side, it may take a long computation time to improve a bad starting
solution. We can use, for example, the S-SGS and P-SGS schemes, stochastic
methods with the forward-backward improvement procedure (FBI) [32], greedy
algorithms. In this paper we use the stochastic greedy algorithm [13] to build up
a starting schedule solution.

3.5 Tabu List Management

The NS method exploits the knowledge gained from the solutions considered
previously. This knowledge is maintained in a tabu list used as a memory in order
to avoid cyclicality, i.e. repeating of recent transformations applied to obtain the
solutions under evaluation. Recency tabu tenure is recorded by keeping at each
entry of the tabu list, of attributes on the last visited solutions. We use tabu list
of the constant length. As a tabu status of an arbitrary solution L we consider
the sum of the starting times:

TS(L) =
n∑

j=1

sj

for the schedule S(L).

44 E. N. Goncharov

3.6 Neighborhood A

The first neighborhood NA(S) is the modification of the scheme proposed in
[30]. For a given feasible schedule S = {s0, s1, ..., sn, sn+1} and a core activity
j ∈ A, we determine the block of activities As

j . The NS operator reschedules
a set of activities As

j , while keeping the start times of other activities. The
rescheduling sub-problem is formed by the following steps. We fix the start times
of all the activities not belonging to the set As

j and release resources used by all
the activities from As

j in each time period t. The available amount of resource
k for activities from As

j in period t is Rk minus the resource used by all the
activities not belonging to the set As

j in period t. Then we derive an earliest
start time (EST) and a latest finish time (LFT) for each activity i ∈ As

j as
ESTi = max{sl + pl, ∀ l �∈ As

j and (l, i) ∈ A} and LFTi = max{sl, ∀ l �∈
As

j and (l, i) ∈ A}.
(ESTi, LFTi) defines a time window for activity i that could be rescheduled

in order to guarantee that the new schedule is still feasible for all activities that
will not be rescheduled. The rescheduling problem is to reschedule all the activ-
ities from As

j to minimize their makespan while meeting the resource restriction
of each period and time window constraints defined by (ESTi, LFTi).

Palpant et al. [29] used a commercial integer linear programming solver to
obtain the optimal solution for the rescheduling problem. Proon and Jin [30]
adopts the forward or backward serial scheduling generation schemes (S-SGS)
[23] to solve the rescheduling sub-problem. In this paper we propose a modifica-
tion of this algorithm [30]. In each iteration, a new random vector is produced
for the activities i ∈ As

j as a priority list. We order the activities in As
j by

decreasing their weights vj . The vector is created iteratively by randomly pick-
ing the next activity from the ordered list among all unselected activities whose
precedent activities in As

j have been selected. Following the priority list, one
activity by one is moved to the earliest (latest) start time that is precedence-
and resource-feasible and satisfies the time window (ESTi, LFTi). Once all the
activities i ∈ As

j are rescheduled, the activities that do not belong to As
j are

added to form a complete feasible solution. A global left shift is then performed
on all the activities in A to possibly reduce the makespan. The resulting new
schedule is compared with the previous solution before applying the NS oper-
ator. If the makespan is improved, the resulting schedule replaces the previous
schedule and the NS operator stops. If there is no improvement, as long as the
number of iterations has not reached a predefined limit, λ, the S-SGS is applied
on the schedule with a new random priority list as the next iteration.

3.7 Neighborhood B

As the neighborhood NB(S) we use the modification of the scheme proposed
in [20]. For a given list of activities L (and a correspondent active schedule
S = {s0, ..., sn+1}) and a core activity j ∈ A, we determine the block of activity
As

j . If the block contains at least one predecessor of the activity j then we put

Variable Neighborhood Search for the Resource Constrained Project 45

As
j to be empty. We represent the list L in the form of three consecutive lists

L = A1, As
j , A

2.
The element L′ of the neighborhood NB(S) is constructed for each activity

j ∈ A by using the non-empty block As
j . The list L′ is obtained from the list L

by the following steps. We fix the start times of all the activities from the set A1

and release resources used by all the activities from set A1 in each time period
t. We calculate a partial schedule for the activities belonging to set A1 via the
serial decoding procedure. Then we extend the partial schedule by scheduling
activities belonging to set As

j via the parallel decoding procedure. According
to the procedure for each schedule time t we have the corresponding eligible
set Et, i.e. a set of activities which could be started at t without violation of
any constraints. There are exponentially many possibilities to select a subset of
activities from the eligible set to include into the schedule. We solve the multi-
dimensional knapsack problem with objective function maximizing the weighted
resource utilization ratio [35]

max
∑

j∈Et

xj

∑

k∈K

wkrjk
Rk

, (9)

∑

j∈Et

rjkxj ≤ Rk −
∑

j∈J(t)

rjk k ∈ K, (10)

xj ∈ {0, 1}, j ∈ N. (11)

The right-hand side of the restriction is a remaining capacity of the resource
type k at the time t. We use Greedy Randomized Adaptive Search Procedures
(GRASP) to solve the problem. Note that in the process of solving the problem
(9)–(11), the advantage may be gained not by the activities that make the best
use of resources, but by those that make the best use of more scarced resources.

Finally, we construct the list L′ as follows. We put the activities ∈ As
j into

the list L′ in non-decreasing order of its starting times in the partial schedule.
Remaining activities are listed in the list L′ at the same order as in the list L.
The schedule S(L′) is called the neighbor sample for the schedule S. The set
that contains all neighbor samples is called a neighborhood of the schedule S
and is denoted by NB(S).

3.8 Algorithm Outline

Step 1. Generate the initial schedule S, and set T ∗ := T (S), S∗ := S. Tabu list
TL is set empty.

Step 2. Until the stopping criterion is satisfied, the following is done.
Step 2.1. Choose a neighborhood equally probable.
Step 2.2. Find the neighbor sample S′, not prohibited by the tabu list TL.
Step 2.3. If T (S′) < T ∗, then we assume T ∗ := T (S′), S∗ := S′.
Step 2.4. Update the tabu list TL and set S := S′.

46 E. N. Goncharov

As a stopping criteria we consider reaching the maximum number of
sequences evaluated, denoted as λ. The value of T ∗ is the result of the algo-
rithm. If the value of T ∗ does not change for a certain (predefined) iterations
limit, then we change the block size (parameter P). We make this change of
parameter P a predefined number of times. Finally, if the value of T ∗ does not
change a predefined number of times, we generate a new initial schedule.

4 Numerical Experiments

The VNS algorithm was coded in C++ in the Visual Studio system and run on
a 3.4 GHz CPU and 8 Gb RAM computer under the operating system Windows
7. In order to evaluate the performance of the proposed VNS algorithm, we use
the standard set presented in Kolisch and Sprecher [25] referred as j120. These
instances are available in the project scheduling library PSPLIB along with
their the best-known values. The dataset j120 contains 60 series of instances,
10 instances in each series, 600 instances in total. Each instance considers four
types of resources. Three parameters: network complexity (NC), resource factor
(RF) and resource strength (RS) are combined together to define the full factorial
experimental design. The NC defines the average number of precedence relations
per activity. The RF sets the average percent of various resource type demand
by activities. The RS measures scarcity of the resources. Zero value of the RS
factor corresponds to the minimum need for each resource type to execute all
activities while the RS value of one corresponds to the required amount of each
resource type obtained from the early start time schedule. The parameter values
used to built up these instances for the set j120 are: NC ∈ {1.5, 1.8, 2.1}, RF ∈
{0.25, 0.5, 0.75, 1} and RS ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. It is known [37] that values of
the parameters RF = 4, RS = 0.2 match hard enough series. Identifiers j12016,
j12036, j12056, j12011, j12031, j12051 with n = 120 correspond to the series with
the largest gap between the best solutions found and the length of the critical
path. Each triplet of such identifications matches values NC = {1.5; 1.8; 2.1},
respectively.

See Kolisch et al. [24] for the process of how the instances were created. The
instances can be found in Kolisch and Sprecher [25] and are downloadable at
http://www.om-db.wi.tum.de/psplib/.

The measure of the solution quality is the average percent deviation (APD)
from the lower bounds obtained by the critical path algorithm [24] for instances
in the dataset j120 which optimal solutions are unknown. It is customary to
compare the heuristic efficiency by restricting to the same number of schedules
evaluated. In Table 1 one can find comparison the VNS algorithm performance
with the previous results of experimental evaluation of competitive heuristics for
the dataset j120. Limit of schedules λ we set at 50000 and 500000. The scrutiny
of the presented results clearly shows the good performance of the proposed
VNS algorithm: for λ = 50000 it was the third, and for λ = 500000 it shows the
second result.

Furthermore, for 8 instances from the dataset j120 we obtained the best
(previously unknown) heuristic solutions, they are currently presented in the

http://www.om-db.wi.tum.de/psplib/

Variable Neighborhood Search for the Resource Constrained Project 47

Table 1. Average deviations from the critical path for dataset j120.

Algorithm Reference APD, %

λ = 50000 λ = 500000

GA Goncharov and Leonov [12] 30,50 29,74

VNS This paper 30,56 29,88

Biased random-key GA Goncalves [11] 32,76 30,08

GANS Proon and Jin [30] 30,45 30,78

ACOSS Chen et al. [36] 30,56 –

DBGA Debels and Vanhoucke [5] 30,69 –

GA Debels and Vanhoucke [5] 30,82 –

GA - Hybrid, FBI Valls et al. [34] 31,24 30,95

Enhanced SS Mobini et al. [28] 31,37 –

Scatter search - FBI Debels et al. [4] 31,57 30,48

GAPS Mendes et al. [26] 31,44 31,20

GA, FBI Valls et al. [33] 31,58 –

GA, TS-Path re-linking Kochetov and Stolyar [20] 32,06 –

GA-Self adapting Hartmann [17] 33,21 –

GA-Activity list Hartmann [16] 34,04 –

Sampling-LFT, FBI Tormos and Lova [32] 35,01 –

SGE-Priority rule, FBI Goncharov [13] 35,08 –

GA-Priority rule Hartmann [16] 36,51 –

PSPLIB library. We provide the list of the mentioned instances in Table 2.As
one can see from Table 1, the VNS algorithm conceded to the genetic algorithm
on the whole dataset j120. But at the same time, as one can see from Table 2,
the VNS algorithm has found the previously unknown best heuristic solutions
exclusively on the series with the largest gap between the best solutions found
and the length of the critical path. Therefore, we can conclude that on such “hard
series” of instances, the VNS algorithm shows better results in comparison with
the GA algorithm.

Average processing time is 16 s for λ = 50000 and 150 s for λ = 500000.

Table 2. List of instances for which new heuristic solutions are obtained.

Dataset Series Instances

j120 11 3

j120 16 8

j120 31 4

j120 36 3

j120 51 3, 4

j120 56 7, 8

48 E. N. Goncharov

5 Conclusion

Authors have proposed a variable neighborhood search algorithm for the
resource-constrained project scheduling problem with respect to the makespan
minimization criterion. We have developed two versions of the neighborhoods.
The algorithm uses a heuristic that takes into account the degree of criticality
(scarcity) of the resources, which is derived from the solution of the relaxed prob-
lem with a constraint on the cumulative resources. We have conducted numerical
experiments on sets of instances from the PSPLIB electronic library. The results
of the computational experiments suggest that the proposed VNS algorithm is a
very competitive heuristic and yields better results than several heuristics pre-
sented in the literature. For some instances from the dataset j120 the best known
heuristic solutions were improved.

Further studies will be focused on constructing hybrid algorithms for the
RCPSP problem.

References

1. Blażewicz, J., Lenstra, J.K., Rinnoy Kan, A.H.G.: Scheduling subject to resource
constraints: classification and complexity. Discrete Appl. Math. 5(1), 11–24 (1983)

2. Brucker, P., Knust, S., Schoo, A., Thiele, O.: A branch and bound algorithm for the
resource-constrained project scheduling problem. Eur. J. Oper. Res. 107, 272–288
(1998)

3. Brucker, P., Drexl, A., Möhring, R., et al.: Resource-constrained project scheduling:
notation, classification, models, and methods. Eur. J. Oper. Res. 112(1), 3–41
(1999)

4. Debels, D., De Reyck Leus, B.R., Vanhoucke, M.: A hybrid scatter search electro-
magnetism meta-heuristic for project scheduling. Eur. J. Oper. Res. 169, 638–653
(2006)

5. Debels, D., Vanhoucke, M.: Decomposition-based genetic algorithm for the
resource-consrtained project scheduling problem. Oper. Res. 55, 457–469 (2007)

6. Gagnon, M., Boctor, F.F., d’Avignon, G.: A Tabu Search Algorithm for the
Resource-constrained Project Scheduling Problem. ASAC (2004)

7. Gimadi, E.Kh.: On some mathematical models and methods for planning large-
scale projects. models and optimization methods. In: Proceedings AN USSR Sib.
Branch, Math. Inst., Novosibirsk. Nauka, vol. 10, pp. 89–115 (1988)

8. Gimadi, E.Kh., Goncharov, E.N., Mishin, D.V.: On some implementations of solv-
ing the resource-constrained project scheduling problem. Yugoslav J. Oper. Res.
29(1), 31–42 (2019)

9. Gimadi, E.Kh., Zalyubovskii, V.V., Sevast’yanov, S.V.: Polynomial solvability of
scheduling problems with storable resources and deadlines. Diskretnyi Analiz i
Issledovanie Operazii, Ser. 2 7(1), 9–34 (2000)

10. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)
11. Goncalves, J., Resende, M.G.C., Mendes, J.: A biased random key genetic

algorithm with forward-backward improvement for resource-constrained project
scheduling problem. J. Heuristics 17, 467–486 (2011)

12. Goncharov, E.N., Leonov, V.V.: Genetic algorithm for the resource-constrained
project scheduling problem. Autom. Remote Control 78(6), 1101–1114 (2017)

Variable Neighborhood Search for the Resource Constrained Project 49

13. Goncharov, E.N.: Stochastic greedy algorithm for the resource-constrained project
scheduling problem. Diskret. Anal. Issled. Oper. 21(3), 10–23 (2014)

14. Hansen, P., Mladenovic, N.: Developments of variable neighborhood search. In:
Ribeiro, C., Hansen, P. (eds.) Essays and Surveys of Metaheuristics, pp. 415–440.
Kluwer Academic Publishers, Boston (2002)

15. Hartmann, S., Briskorn, D.: A survey of variants and extentions of the resource-
constrained project scheduling problem. Eur. J. Oper. Res. 207, 1–14 (2010)

16. Hartmann, S.: A competitive genetic algorithm for the resource-constrained project
scheduling. Naval Res. Logistics. 45, 733–750 (1998)

17. Hartmann, S.: A self-adaptive genetic algorithm for project scheduling under
resource constraints. Naval Res. Logistics. 49, 433–448 (2002)

18. Herroelen, W., De Reyck, B., Demeulemeester, E.: Resource-constrained project
scheduling: a survey of recent developments. Comput. Oper. Res. 25(4), 279–302
(1998)

19. Herroelen, W., Demeulemeester, E., De Reyck, B.: A classification scheme for
project scheduling. In: Weglarz, J. (Ed.) Project Scheduling-Recent Models, Algo-
rithms and Applications, International Series in Operations Research and Man-
agement Science, vol. 14(1), pp. 77–106. Kluwer Academic Publishers, Dordrecht
(1998)

20. Kochetov, Yu., Stolyar, A.: Evolutionary local search with variable neighborhood
for the resource-constrained project scheduling problem. In: Proceedings of 3rd
International Workshop of Computer Science and Information Technologies. Rus-
sia, pp. 96–99 (2003)

21. Kolisch, R., Padman, R.: An integrated survey of deterministic project scheduling.
Omega 49(3), 249–272 (2001)

22. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-
constrained project scheduling: an update. Eur. J. Oper. Res. 174, 23–37 (2006)

23. Kolisch, R., Hartmann, S.: Heuristic algorithms for solving the resource-constrained
project scheduling problem: classification and computational analysis. In: Weglarz,
J. (ed.) Project Scheduling: Recent Models, Algorithms and Applications, pp. 147–
178. Kluwer Academic Publishers (1999)

24. Kolisch, R., Sprecher, A., Drexl, A.: Characterization and generation of a general
class of resource-constrained project scheduling problems. Manage. Sci. 41, 1693–
1703 (1995)

25. Kolisch, R., Sprecher, A.: PSPLIB - a project scheduling problem library. Eur. J.
Oper. Res. 96, 205–216 (1996). http://www.om-db.wi.tum.de/psplib/

26. Mendes, J.J.M., Goncalves, J.F., Resende, M.G.C.: A random key based genetic
algorithm for the resource constrained project scheduling problem. Comput. Oper.
Res. 36, 92–109 (2009)

27. Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L.: An exact algorithm for
the resource-constrained project scheduling problem based on a new mathematical
formulation. Manage. Sci. 44, 715–729 (1998)

28. Mobini, M.D.M., Rabbani, M., Amalnik, M.S., et al.: Using an enhanced scat-
ter search algorithm for a resource-constrained project scheduling problem. Soft
Comput. 13, 597–610 (2009)

29. Palpant, M., Artigues, C., Michelon, P.: LSSPER: solving the resource-constrained
project scheduling problem with large neighborhood search. Ann. Oper. Res. 131,
237–257 (2004)

30. Proon, S., Jin, M.: A genetic algorithm with neighborhood search for the resource-
consrtained project scheduling problem. Naval Res. Logist. 58, 73–82 (2011)

http://www.om-db.wi.tum.de/psplib/

50 E. N. Goncharov

31. Sprecher, A.: Scheduling resource-constrained projects competitively at modest
resource requirements. Manage. Sci. 46, 710–723 (2000)

32. Tormos, P., Lova, A.: A competitive heuristic solution techniques for resource-
consrtained project scheduling. Ann. Oper. Res. 102, 65–81 (2001)

33. Valls, V., Ballestin, F., Quintanilla, M.S.: Justification and RCPSP: a technique
that pays. Eur. J. Oper. Res. 165, 375–386 (2005)

34. Valls, V., Ballestin, F., Quintanilla, S.: A hybrid genetic algorithm for the resource-
consrtained project scheduling problem. Eur. J. Oper. Res. 185(2), 495–508 (2008)

35. Valls, V., Ballestin, F., Quintanilla, S.: A population-based approach to the
resource-constrained project scheduling problem. Ann. Oper. Res. 131, 305–324
(2004)

36. Chen, W., Shi, Y.J., Teng, H.F., et al.: An efficient hybrid algorithm for resource-
constrained project scheduling. Inf. Sci. 180(6), 1031–1039 (2010)

37. Weglarz, J.: Project Scheduling. Recent Models, Algorithms and Applications.
Kluwer Academic Publishers, Boston (1999)

	Variable Neighborhood Search for the Resource Constrained Project Scheduling Problem
	1 Introduction
	2 Problem Setting
	3 Variable Neighborhood Search
	3.1 Solution Representation
	3.2 Resource Weights
	3.3 Block of Activities
	3.4 The Initial Solution
	3.5 Tabu List Management
	3.6 Neighborhood A
	3.7 Neighborhood B
	3.8 Algorithm Outline

	4 Numerical Experiments
	5 Conclusion
	References

