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Abstract. In this paper, we investigate the problem of separation of
a mixed production batch of semiconductor devices of space application
into homogeneous production batches. The results of the mandatory test-
ing for each item contain a large number of parameters. Many optimiza-
tion models and algorithms were developed for solving this clustering
problem in the most efficient way. However, due to a rather high data
dimensionality, such algorithms take significant computational resources.
We analyzed methods of reducing the dimensionality of the data set with
the use of factor analysis based on Pearson matrix in order to improve
the accuracy of the separation. We investigated efficiency of the pro-
posed method for separating a mixed lot of semiconductor devices which
consists of two, three, four and seven homogeneous batches, with vari-
ous methods of selection and rotation of factors. It was shown on real
data that with any orthogonal rotation, with an increasing number of
homogeneous batches in the sample, the clustering accuracy decreases.
Moreover, it was impossible to identify a universal clustering model with
a limited number of factors for dividing a mixed lot composed from an
arbitrary number of homogeneous batches. Thus, the use of the multidi-
mensional data was shown to be inevitable.
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1 Introduction

In order to supply space equipment with highly reliable electronic components,
specialized testing centers conduct a variety of tests for each installed semicon-
ductor device. Electronic component base (ECB) designed for installation in
spacecraft equipment, along with the input testing is subjected to additional
rejection tests, including a selective destructive physical analysis (DPA). DPA
allows us to confirm the good quality of the batches of ECB, or to identify the
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batches, having defects due to manufacturing technology and are not detected
during conventional rejection tests and additional non-destructive testing. In
order to be able to transfer the results of DPA of several devices to the entire
batch of semiconductor devices, the following requirement is put forward for the
ECB intended for installation in space equipment: all devices from the same
batch must be made from the same raw materials. Equipment manufacturers for
general consumption (not designed solely for use in spacecraft) can not guaran-
tee the implementation of this requirement. Therefore the problem of automatic
grouping of semiconductor devices by production batches is very relevant.

It was shown [1], that the problem of allocation of homogeneous batches
can be further reduced to a problem of cluster analysis. Authors [1] consider
k-means, p-median and other optimization models for solving such a problem.
Each group (cluster) must represent a homogeneous batch. To solve the problem
of identifying homogeneous batches, in papers [2–4], the application of the clus-
tering optimization algorithm k-means is proposed. In [5], authors consider the
clustering method based on the EM algorithm which maximizes the log likeli-
hood function. A model of separation of homogeneous production batches based
on a mixture of Gaussian distributions was proposed in [6]. In [7], authors pro-
pose using ensembles of optimization models (k-means, k-medoids, k-medians),
EM, as well as their optimized versions. In [1], authors consider the application
of genetic optimization algorithms with greedy heuristic procedures, in combi-
nation with the EM algorithm for the separation of homogeneous batches of
electronic devices. The advantage of the new algorithms over classical clustering
algorithms for multidimensional data is shown.

In this paper, the initial data are represented by multidimensional sets
(arrays) of parameters of electronic radio components (ERC), measured as the
results of several hundred mandatory non-destructive tests [8]. In order to reduce
the dimensionality of the input parameter sets for clustering devices into homo-
geneous batches, we propose the application of factor analysis methods. The aim
of factor analysis is to find a simple structure that would accurately reflect and
reproduce the real dependencies existing in nature [9]. Factor analysis is based
on the definition of the factor model

Xi =
m∑

j=1

aijFj + ui (1)

where Xi is a vector of values of measured parameter (i = 1, . . . , n), Fj are
primary factors (j = 1, . . . , m), aij are coefficients named factor loadings, ui are
characteristic (specific) factors describing the part of the parameter that is not
included in any primary factor. If m < n, the reduction of the original problem
dimensionality takes place. By reducing the dimension of the data in the article
we mean reducing the number of input variables due to the introduction of
factors.

The quality improvement is achieved both by more coordinated function-
ing of radio elements with identical characteristics (from a single production
batch), and by improving the quality and reliability of the results of destructive
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testing, for which it is possible to select elements from each production batch [1].
This paper is devoted to the problem of reducing the dimension of the original
data for the corresponding problems of cluster analysis and attempts to find an
optimal set of the informative features used in such cluster analysis optimization
problems.

2 Data and Preprocessing

As an example of real data, in this paper we consider a sample consisting of
seven different homogeneous batches. The sample is deliberately composed of
homogeneous batches, some of which are extremely difficult to separate by known
methods of cluster analysis.

One of the largest samplings, which the specialized test center was faced with,
is presented in this paper. The total number of all devices in all batches is 3987:
batch 1 contains 71 devices, 116 in batch 2, 1867 in batch 3, 1250 in batch 4, 146
in batch 5, 113 in batch 6, 424 in batch 7. Each batch contains information about
205 input measured parameters of the device. Input parameters for which the
data vector contains only zero values or for which the number of non-zero values
does not exceed 10% were excluded from consideration. For further processing,
67 input parameters remain to be considered.

At the first step, the analysis of the input parameters showed that the con-
sidered set of parameters can be divided into three groups:

1. parameters for which the histograms represent the normal Gaussian distribu-
tion (In21 - In28, In39 - In46, In92 - In107);

2. parameters for which the histograms represent a Gaussian distribution with
frequency gaps (In84 - In91);

3. parameters for which the histogram does not correspond to Gaussian distri-
butions (In 57 - In64, In75 - In82, In10-In20).

For each group, the histograms of observed frequencies and graphs of adjust-
ment of distributions are given on the example of several input parameters
(Figs. 1, 2 and 3).

Fig. 1. Histogram of observed frequencies and graphs of the fit of the distributions.
Normal Gaussian distribution
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Fig. 2. Histogram of observed frequencies and graphs of the fit of the distributions.
Gaussian distribution with frequency gaps

In the second step, the parameters were normalized according to the Eq. (2),

ai,k =
a∗
i,k − a∗

k

δmax
k − δmin

k

(2)

where a∗
ik is the value of the measuared parameter before normalization, a∗

k are
average values of the parameter, δmin

k and δmax
k are the lower and upper bounds

of the parameter drift, respectively. The drift means the amount of change of
parameters of ERC arising during the additional non-destructive testing, simu-
lating extreme operating conditions. This method of normalization by the drift
bounds was proposed in [1]. It is shown experimentally that this method of nor-
malization gives a separation by production batches with a much smaller number
of errors.

Fig. 3. Histogram of observed frequencies and graphs of the fit of the distributions.
The histogram does not correspond to Gaussian distribution
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3 Factor Analysis Using Pearson’s Correlation Matrix

In the first step, we determine the Pearson correlation coefficient matrix [9] for
input parameters. In the second step, we determine the matrix of factor loadings.
Assuming the orthogonality of the factors, we obtain

R = A · AT (3)

where R is the correlation matrix, A - factor loadings matrix.
The number of factors in the factor model was determined by two crite-

ria. The first of them, the Kaiser criterion [10], selects factors with eigenvalues
greater than one. However, the number of sufficient factors also depends on the
total share of variance reproduced by these factors. The second of them, Cattel
screening criterion [11], selects factors by scree plot based on eigenvalues of fac-
tors. The number of factors defined at the point on the chart where the decrease
of eigenvalues from left to right slows down as much as possible. Since the Kaiser
criterion selects factors with eigenvalues greater than one, and the Cattel screen-
ing criterion involves visual observation of the scree plot, there is no need to use
any software to calculate these criteria.

Also, to simplify the factor structure, rotation is used to find one of the
possible coordinate systems in the space of factors. The consequence of this is the
maximization of high correlations and the minimization of low correlations. The
problem of rotation is formulated as follows [9]: need to find the transformation
matrix T corresponding to:

A· = A · T R = A · AT = A· · A·T (4)

The following methods of orthogonal rotation are used in this paper: the
Varimax with Kaiser normalization and the Quartimax with Kaiser normaliza-
tion [12]. Varimax rotation maximizes the total variance of the loadings squares
of the common factors for each input attribute. Quartimax rotation based on
the fact that the sum of squares of pairwise products of the matrix A elements
will decrease as the values of the loading tend to zero.

Various combinations of parties were subjected to factor analysis: full mixed
lot and its subsets lots from four, three and two batches. The full mixed lot
consists of seven homogeneous batches. The mixed four-batch lot consists of
batch 1, batch 2, batch 5, and batch 6. The mixed three-batch lot consists of
batch 1, batch 2, and batch 6. The mixed two-batch lot consists of batch 1 and
batch 2.

In this paper, the number of factors was determined by the Kaiser criterion,
and the total proportion of variance reproduced by these factors should be at
least 70%.
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4 Computational Experiments with Various
Compositions of the Mixed Lot

To extract factors, we used the principal components method, the principal
factor method with multiple R-square, principal axes method, maximum likeli-
hood factors method, iterated communalities method (MINRES) and centroid
method [9]. In further consideration, we used principal components method since
it describes the maximum variance of input parameters.

For the whole mixed lot, the method based on Cattel criterion recommends to
select 4 factors in the model, and this number does not change with any rotation
(Fig. 4). According to Kaiser criterion, taking into account the total share of
variance of at least 70%, there are five factors selected. Uberla [9] recommends
in cases of dispute to select a larger number, therefore we allocate 5 factors
for further consideration. Factor 1 corresponds to the highest loadings on the
parameters In92-In107. This factor describes 22.779–23.954% of total variance.
Factor 2 corresponds to the highest loadings on the parameters In58-In64, In76-
In82. This factor describes an additional 19.335–21.265% of the total variance.
Factor 3 corresponds to highest loadings on the parameters In39-In46, This factor
describes an additional 12.300–14.776% of total variance. Factor 4 (parameters
In10, In11, In13, In14, In18) describes 9.003–9.375% of total variance. Factor 5
(parameters In21 - In28) describes 6,781% (unrotated), 11.928% (Varimax) and
11.993% (Quartimax) of total variance. Regardless of the rotation method, the
final solution has a cumulative percent of the total variance 75.794% (Table 1).

Table 1. Rotation of factor structure. Full mixed lot

Factor Eigenvalues Percent of the total variance (%) Cumulative percent of

the total variance (%)

Varimax Quartimax Unrotated Varimax Quartimax Unrotated Varimax Quartimax Unrotated

Factor 1 15.26 15.37 16.05 22.78 22.94 23.95 22.78 22.94 23.95

Factor 2 12.95 13.11 14.25 19.34 19.56 21.27 42.12 42.5 45.22

Factor 3 8.29 8.24 9.9 12.38 12.3 14.78 54.49 54.8 60

Factor 4 6.28 6.03 6.04 9.38 9 9.02 63.87 63.8 69.01

Factor 5 7.99 8.04 4.54 11.93 11.99 6.78 75.79 75.79 75.79

The total number of devices in a mixed lot composed of four batches is
446. For further processing 62 input parameters remain. The Cattel criterion,
regardless of the rotation, recommends to select 4 factors in the model (Fig. 5),
however, according to the Kaiser criterion, taking into account the total per-
centage of variance at least 70%, we allocate 6 factors. Substantial loadings on
the Factor 1 appear for the parameters In21 - In28, In39 - In46. This factor
describes 23.304–38.622% of total variance. Factor 2 shows substantial loadings
for the parameters In58-In64, it describes in additional 13.220–17.761% of the
total variance. Factor 3 has substantial loadings for In91-In107, Factor 4 for
In79 - In82, Factor 6 for In57, In78. Regardless of the rotation method, the
final solution has a cumulative percent of the total variance equal to 70.364%
(Table 2).



414 G. S. Shkaberina et al.

Fig. 4. Scree plot for whole mixed lot. Adv.Grapher

Table 2. Rotation of factor structure. Four-batch mixed lot

Factor Eigenvalues Percent of the total variance (%) Cumulative percent of

the total variance (%)

Varimax Quartimax Unrotated Varimax Quartimax Unrotated Varimax Quartimax Unrotated

Factor 1 15.07 16.92 23.95 24.3 27.3 38.62 24.3 27.3 38.62

Factor 2 11.01 10.36 8.2 17.76 16.7 13.22 42.07 44 51.84

Factor 3 12.27 11.41 6.96 19.8 18.41 11.23 61.86 62.41 63.07

Factor 4 2.42 2.07 1.9 3.9 3.34 3.06 65.76 65.75 66.13

Factor 5 1.41 1.48 1.38 2.28 2.38 2.22 68.05 68.13 68.35

Factor 6 15.07 16.92 23.95 24.3 27.3 38.62 24.3 27.3 38.62

Fig. 5. Scree plot for four-batch mixed lot. Software - Adv.Grapher
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The total number of devices in a mix of three batches is 300. The Cattel
criterion, regardless of the rotation, recommends selecting 3 factors in the model
(Fig. 6). According to the Kaiser criterion, taking into account the total per-
centage of variance at least 70%, we also allocate 3 factors. Substantial loadings
on the Factor 1 appear for the parameters In21-In28, In39-In46. This factor
describes 37.09–46.39% of total variance. Factor 2 has substantial loadings for
In92-In107 and describes 22.03–26.61% of total variance. Factor 3 has substantial
loadings for In84-In91 and describes in addition 9.192-13.905% of the total vari-
ance. Regardless of the rotation, the total solution has a cumulative percentage
of the total variance 77.61% (Table 3).

Fig. 6. Scree plot for three-batch mixed lot. Adv.Grapher

Table 3. Rotation of factor structure. Three-batch mixed lot

Factor Eigenvalues Percent of the total variance (%) Cumulative percent of

the total variance (%)

Varimax Quartimax Unrotated Varimax Quartimax Unrotated Varimax Quartimax Unrotated

Factor 1 15.21 15.89 19.02 37.09 38.74 46.38 37.09 38.74 46.38

Factor 2 10.91 10.89 9.03 26.61 26.57 22.03 63.7 65.31 68.41

Factor 3 5.7 5.04 3.77 13.91 12.3 9.19 77.61 77.61 77.61

The number of devices in the simplest mixed lot of two batches is 187. Accord-
ing to the Kaiser criterion, taking into account the total percentage of variance
at least 70%, we allocate 2 factors. Factor 1 shows the highest loadings for the
parameters In21 - In28, In39 - In46 and describes 45.41–66.20% of the total
variance. Factor 2 shows the highest loadings for the In92-In95, In100-In102,
In106, and describes in addition 7.28–28.07% of total variance. Regardless of the
rotation, the solution has a cumulative percentage of the total variance 73.48%
(Table 4).
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Table 4. Rotation of factor structure. Two-batch mixed lot

Factor Eigenvalues Percent of the total variance (%) Cumulative percent of

the total variance (%)

Varimax Quartimax Unrotated Varimax Quartimax Unrotated Varimax Quartimax Unrotated

Factor 1 18.62 26.61 27.14 45.41 64.91 66.2 45.41 64.91 66.2

Factor 2 11.51 3.51 2.99 28.07 8.57 7.28 73.48 73.48 73.48

5 Adequacy of the Factor Model

Verification of the factors number sufficiency in the model was performed using
The Kaiser and Cattel criteria. Verification the adequacy of the factor model is
reduced to checking the achievement of a simple structure. A simple structure
is a configuration of vectors that rotates to the state when the vast majority of
vectors will be on or near hyperplanes of coordinates [9]. In addition, the sim-
ple structure is “contrast”: factor loadings are high for variables that determine
this factor, and close to zero for all others. To test the significance of a sim-
ple structure in various areas of research, modern scientific literature offers the
Bargmann test [9], the Lawley-Bartlett’s test [9], the Bartlett-Wilks test [9], the
Burt’s test [9]. In this paper, we use the Bargmann’s test [13] due to the ability
of this criterion to show that main axis rotation procedure is not completed and
control the density of variables positions. It is necessary to calculate the number
of zero loadings for each factor:

∣∣∣∣
aij

hi

∣∣∣∣ < 0.1 (5)

where aij are factor loadings on each parameter, hi - square root of communality
(communality refers to the variance of a parameter due to common factors). If
the number of zero loadings is not lower than the table value, the simple structure
is considered to be achieved.

For the full mixed lot Bargmann test is satisfied for 3 of 5 factors in case
of unrotated structure and for all factors in case of rotation with α <= 0, 05
(where α is a level of significance). For four-batch mixed lot test is satisfied for
3 from 6 factors in case of unrotated structure and for 4 from 6 factors in case of
rotated structure with α <= 0.25. For three-batch mixed lot test satisfied just
for 1 factor in case of unrotated structure and for 2 factors in case of rotated
structure with α <= 0, 25. And for two-batch mixed lot test is satisfied in one
case with α <= 0.25 (Table 5).

Analysis of the percentage of zero loadings shows, that with increasing the
number of batches and at any rotation the number of cases for which test
Bargmann is satisfied also increases.

Factor values obtained by orthogonal rotations described above are consid-
ered as input data for clustering algorithms. Clustering was performed with
Deductor Studio Academic tool. EM algorithm applied with lower bound of
likelihood = 0.2, level of accuracy = 10−5, maximum of iterations = 100. Self-
organizing Kohonen maps (SOM) [14] applied with linear initialization with



Identification of the Optimal Set of Informative Features 417

Table 5. Bargmann test

Factor no. Table value for

α <= 0, 05

Table value for

α <= 0.25

The number of

zero loading

Percent of

zero loading

Full mixed lot

(67 parameters)

Unrotated 1 17 14 9 13%

2 6 8%

3 18 27%

4 31 46%

5 26 39%

Varimax 1 43 64%

2 26 39%

3 33 49%

4 33 49%

5 42 63%

Quartimax 1 41 61%

2 24 36%

3 33 49%

4 33 49%

5 43 64%

Four-batch mixed

lot (62

parameters)

Unrotated 1 20 17 3 5%

2 8 13%

3 14 23%

4 45 73%

5 36 58%

6 51 82%

Varimax 1 14 23%

2 10 16%

3 18 29%

4 44 71%

5 37 60%

6 51 82%

Quartimax 1 14 23%

2 9 15%

3 17 27%

4 52 84%

5 36 58%

6 50 81%

Three-batch

mixed lot (41

parameters)

Unrotated 1 9 7 0 0%

2 0 0%

3 8 20%

Varimax 1 7 17%

2 0 0%

3 10 24%

Quartimax 1 7 17%

2 0 0%

3 15 37%

Two-batch mixed

lot (41

parameters)

Unrotated 1 6 4 0 0%

2 3 7%

Varimax 1 1 2%

2 0 0%

Quartimax 1 0 0%

2 5 12%
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eigenvalues, bubble neighborhood function, significance level = 0,1%. The clus-
tering accuracy for considered mixed lots with different orthogonal rotations is
presented in Table 6.

The analysis of Table 6 showed that for any orthogonal rotations and clus-
tering algorithms, the clustering accuracy increases with a decrease the number
of homogeneous batches in the sample from 39% up to 98%.

Clustering results on three-batch and two-batch mixed lots are shown in
Figs. 7 and 8, respectively. Separating batches takes place exclusively on Factor
1 in both cases.

Table 6. Clustering results

Unrotated Varimax Quartimax

EM SOM EM SOM EM SOM

Two-batch mixed lot

Batch 1 n=71 Number of hits 71 (100%) 71 (100%) 71 (100%) 42 (59%) 71 (100%) 71 (100%)

Number of errors 0 (0%) 0 (0%) 0 (0%) 29 (41%) 0 (0%) 0 (0%)

Batch 2 n=116 Number of hits 113 (97%) 113 (97%) 104 (90%) 114 (98%) 116 (100%) 116 (100%)

Number of errors 3 (3%) 3 (3%) 12 (10%) 2 (2%) 0 (0%) 0 (0%)

Three-batch mixed lot

Batch 1 n=71 Number of hits 71 (100%) 36 (51%) 71 (100%) 41 (58%) 71 (100%) 40 (56%)

Number of errors 0 (0%) 35 (49%) 0 (0%) 30 (42%) 0 (0%) 31 (44%)

Batch 2 n=116 Number of hits 113 (97%) 110 (95%) 110 (95%) 60 (52%) 111 (96%) 116 (100%)

Number of errors 3 (3%) 6 (5%) 6 (5%) 56 (48%) 5 (4%) 0 (0%)

Batch 6 n=113 Number of hits 106 (94%) 102 (90%) 93 (82%) 102 (90%) 98 (87%) 91 (81%)

Number of errors 7 (6%) 11 (10%) 20 (18%) 11 (10%) 15 (13%) 22 (19%)

Four-batch mixed lot

Batch 1 n=71 Number of hits 70 (99%) 71 (100%) 70 (99%) 71 (100%) 70 (99%) 71 (100%)

Number of errors 1 (1%) 0 (0%) 1 (1%) 0 (0%) 1 (1%) 0 (0%)

Batch 2 n=116 Number of hits 108 (93%) 108 (93%) 108 (93%) 116 (100%) 108 (93%) 86 (74%)

Number of errors 8 (7%) 8 (7%) 8 (7%) 0 (0%) 8 (7%) 30 (26%)

Batch 5 n=146 Number of hits 146 (100%) 68 (41%) 146 (100%) 116 (79%) 146 (100%) 38 (26%)

Number of errors 0 (0%) 78 (59%) 0 (0%) 20 (21%) 0 (0%) 108 (74%)

Batch 6 n=113 Number of hits 107 (95%) 107 (95%) 107 (95%) 107 (95%) 108 (96%) 103 (91%)

Number of errors 6 (5%) 6 (5%) 6 (5%) 6 (5%) 5 (4%) 10 (9%)

Full mixed lot

Batch 1 n=71 Number of hits 68 (96%) 71 (100%) 70 (99%) 71 (100%) 63 (89%) 71 (100%)

Number of errors 3 (4%) 0 (0%) 1 (1%) 0 (0%) 8 (11%) 0 (0%)

Batch 2 n=116 Number of hits 108 (93%) 106 (91%) 60 (52%) 114 (98%) 81 (70%) 113 (97%)

Number of errors 8 (7%) 10 (9%) 56 (48%) 2 (2%) 35 (30%) 3 (3%)

Batch 3 n=1867 Number of hits 487 (35%) 1337 (72%) 618 (33%) 1453 (78%) 699 (37%) 781 (42%)

Number of errors 1380 (65%) 530 (28%) 1249 (67%) 414 (22%) 1168 (63%) 1086 (58%)

Batch 4 n=1250 Number of hits 537 (43%) 721 (58%) 462 (37%) 583 (47%) 467 (37%) 571 (46%)

Number of errors 713 (57%) 529 (42%) 788 (63%) 667 (53%) 783 (63%) 679 (54%)

Batch 5 n=146 Number of hits 121 (83%) 79 (54%) 135 (92%) 102 (70%) 133 (91%) 73 (50%)

Number of errors 25 (17%) 67 (46%) 11 (8%) 44 (30%) 13 (9%) 73 (50%)

Batch 6 n=113 Number of hits 107 (95%) 113 (100%) 107 (95%) 113 (100%) 105 (93%) 113 (100%)

Number of errors 6 (5%) 0 (0%) 6 (5%) 0 (0%) 8 (7%) 0 (0%)

Batch 7 n=424 Number of hits 314 (74%) 369 (87%) 256 (60%) 421 (99%) 255 (60%) 284 (70%)

Number of errors 110 (26%) 55 (13%) 168 (40%) 3 (1%) 169 (40%) 140 (30%)
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Fig. 7. Clustering results for three-batch mixed lot

Fig. 8. Clustering results for two-batch mixed lot

6 Conclusions

The possibility of using factor analysis for the separation of a mixed lot, consist-
ing of an arbitrary number of homogeneous batches of electronic radio compo-
nents, has been proposed and described in the paper. Thus, the use of the factor
model is appropriate to improve the accuracy of batch separation, regardless
of the clustering algorithm used. It is shown, that the optimal number of the
selected factors depends on the number of considered devices in the mixed lot,
as well as on the input measured parameters of the device in a given sample.
Regardless of the type of orthogonal rotation, the clustering accuracy decreases
with the increase of the number of homogeneous batches in the mixed lot. A
similar result was shown earlier in [6,7] when using the ensemble approach
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of cluster algorithms and [5], where efficiency of EM algorithm at the small
volume of input data was demonstrated. At the same time, the considered fac-
tor analysis methods do not allow us to obtain a universal set of a small number
of features for the separation of mixed lot consisting of an arbitrary number
of the homogeneous batches. Thus, despite the fact that the proposed method
makes it possible to somewhat reduce the dimensionality of the data, for reliable
separation of homogeneous batches with cluster analysis methods, the use of
multidimensional data is inevitable.
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