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Abstract. The article outlines a brief history and applications of the
committee theory. The use of committees in the problems of recognition
and optimization is discussed. The application of the committee struc-
tures, ambiguous interpretation of non-formalized and contradictory data
are given. The ways of rational regard on environmental factors in the
context of a lack of resources are considered. The question of the numer-
ical finding of committee structures is discussed, and these results are
directly related to the theory of voting. The class of non-classical logics
also contains MK-logic (Mazurov, Khachay). This section of non-classical
logic includes the works by N. A. Vasiliev, L. Wittgenstein, J. Lukashe-
vich, and Latin American mathematicians having a wrong term in their
titles parainconsistent logic. One of the important results achieved by
M. Yu. Khachay: For arbitrary positive integers q and k, k < q, the min-
imum estimate of the subsystem power is given that is resolvable by a
committee of k-elements for the inconsistent system having a committee
of q-elements. Further the history of this field will be mentioned.
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1 Introduction

In 1965, S.B. Stechkin and I.I. Eremin set a problem of substantiating the neces-
sary and sufficient condition for the existence of a linear inequalities system com-
mittee. We solved this problem in 1966, and further ways were opened to continue
the research and applications. First, we obtained the results on the conditions
for the existence of various modifications of the committees and their applica-
tions in economics, engineering, medicine and biology (see. e.g. [17–19]). Further,
some of them were extended by Khachay [11,13], Rybin [9,20,24], Kobylkin [15],
Gainanov [5] who obtained a number of valuable results in the field of the algo-
rithmic analysis of the committee constructions.

1.1 Some Applications

As the examples of applications the following ones can be referred to:
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– Issues of substantiation and application of numerous specific problems of
mathematical programming and recognition solved by us with post-optimal
solutions analysis;

– tasks of researching operations with the Ural theme (geology, mining, metal-
lurgy);

– algebraic factor analysis;
– factors and their names;
– design issues;
– mathematical structuralism;
– morphology and structural analysis;
– applied structuralism.

1.2 Non-classical Logics

MK-logic (logic of Mazurov-Khachay);
Vasiliev logic;
Lukashevich logic;
parainconsistent logic;
post-optimization analysis and MK-logic.

By its very nature, recognition is associated with mathematical epistemology,
mathematical theory of neural networks. Within these disciplines, we voluntarily
or involuntarily approach to the questions of the essence of human intelligence,
human mentality, formal or informal logic. What is absolutely certain is the fact
that we at least imitate human mentality as much as we can. In this case, we
use the following scheme of operation of neural networks:

? → S → A → R,

where “?” denotes the reality that is unknown for us. This reality affects the
S-layer—the network sensor unit, and we obtain the pixel array x. It arrives
at the input of the block A—the block of associative neurons. The result of
the work of these neurons is received on the R-block – the block of resulting
neurons. If the experimental data diverges from the ones constructed according
to the S → A → R → x scheme, then a network correction is done. A. Novikov
investigated the linear correction method, having proved that if there is a solution
x, then the result is obtained through a finite number of corrections. Researchers
of neural networks unintentionally seek to interpret the work of the network as
a learning process of artificial intelligence. It is characteristic that Rosenblatt
entitled his book Principles of Neurodynamics [23], Nilson—Learning Machines
[21], and Vapnik in his book “Statistical Learning Theory” [25] entitled the
philosophical section “Some General Remarks”.

Vapnik poses a question why the pattern recognition problem arouses such
a great interest among scientists of various specialties. It seems that the answer
to this question was obtained both in the works of Zhuravlev [27,28] and in the
seminal works of Vapnik (see, e.g. [26]).

The third direction, close to the theory of Yu.I. Zhuravlev, is the analysis of
collective decisions—the method of committees.
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2 Committee Solutions: Basic Concepts

Let we be given by a ground set X and a family of its non-empty subsets
D1,D2, . . . , Dm. Let us consider the system of abstract inclusions

x ∈ Dj (j ∈ [m]), (1)

where [m] is the integer segment {1, 2, . . . ,m}. If
⋂m

j=1 Dj = ∅, system (1) is
known as infeasible. Any non-empty subset L ⊂ [m] induces a subsystem of
system (1). Without loss of generality, we do not distinguish a subset L and
the appropriate subsystem. If D(L) =

⋂
j∈L Dj �= ∅, the subsystem is known

as feasible. Any subsystem maximal by inclusion of system (1) is known as its
maximal feasible subsystem or m.f.s.

Definition 1. A finite sequence Q = (x1, . . . , xq), xi ∈ X, such that, for any
j ∈ [m],

|{i : xi ∈ Dj}| > q/2

is known as a committee generalized solution of system (1).

The number q is called a length of the committee Q, and we state that system
(1) has a committee solution (or is solvable by a committee) of length q. A
committee of minimal length q (for a given system (1)) is known as its minimum
committee solution or just a minimum committee.

We can easily represent the set of all committee solutions of the system (1)
as follows. Introduce the vector-function

ϕ : X → {−1, 1}m, where ϕj(x) =
{

1, if x ∈ Dj ,
−1, otherwise.

By its construction, the image ϕ(X) is a finite set. Let ϕ(X) = {ϕ1, . . . , ϕs}.
Without loss of generality, we can suppose that, the vectors ϕi are incomparable,
i.e., for any i1 and i2, the equation ϕi1 ≥ ϕi2 implies i1 = i2. This implies that
any ϕi is a characteristic vector of some m.f.s. of system (1).

According to Definition 1, a finite sequence Q is a committee solution of (1)
if and only if, by some permutation, Q can be represented in the form

(y1,1, . . . , y1,z1

︸ ︷︷ ︸
z1

, . . . , ys,1, . . . , ys,zs

︸ ︷︷ ︸
zs

), (2)

where ϕ(yi,l) = ϕi and z1, . . . , zs are nonnegative integers, such that
s∑

i=1

ziϕ
i ≥ e = [1, 1, . . . , 1]T .

It can be easily verified that a sequence Q is a minimum committee of system (1)
if and only if the vector z is an optimal solution in the following integer linear
program

min

{
s∑

i=1

zi :
s∑

i=1

ziϕ
i ≥ e, z ∈ Z

s
+

}

.
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Evidently, if a system (1) is feasible, its minimum committees are of length 1 and
coincide with regular solutions. In other circumstances, any minimum committee
has more than 1 entry.

Existence conditions for committee solutions of system (1) can be easily
represented in terms of graph and hypergraph of its m.f.s.

Definition 2. A finite graph G = (V,E) is known as the m.f.s. graph of sys-
tem (1) if its nodeset V consists of index sets J1, J2, . . . , Js of the system, and

{Ji, Jj} ∈ E ⇐⇒ Ji ∪ Jj = [m].

Assertion 1. Let s be a natural number, J1, . . . , J2s−1 be a cycle in the m.f.s.
graph of system (1), and xi ∈ D(Ji). Then, the sequence Q = (x1, . . . , x2s−1) is
a committee solution of system (1).

To obtain necessary and sufficient conditions we need to introduce a more
general notion (see, e.g. [10]).

Definition 3. A finite hypergraph G = (V,E), whose nodeset V coincides with
the family {J1, . . . , Js} of index sets of the m.f.s. of system (1) such that

{Ji1 , . . . , Jit
} ∈ E ⇐⇒

t⋃

k=1

= [m],

is known as a m.f.s. hypergraph of system (1).

Theorem 1. Let Γ = (V Γ,EΓ ) be a non-empty1 finite hypergraph without mul-
tiple edges. Γ is isomorphic to a m.f.c. hypergraph G = (V,E) of an inclusions
system

x ∈ Dj(Γ ) (j ∈ [m]) (3)

for some m = m(Γ ) if and only if Γ satisfies the following conditions

if |V Γ | > 1, then EΓ has no loops (4)

(u ∈ EΓ, u ⊂ w) ⇒ w ∈ EΓ. (5)

Definition 4. For a m.f.s. hypergraph Γ = (V Γ,EΓ ) and natural numbers σ
and τ , a finite sequence of nodes S = (vi1 , . . . , viσ+1) is known as (σ, τ)-simplex
in the hypergraph Γ , if the following inclusion

{vij
: j ∈ L} ∈ EΓ

is valid for any L ⊂ [σ + 1], |L| = τ + 1.

The concept of (σ, τ)-simplex takes its origin from the geometric reasonings.
It can be easily verified that (2, 1)-simplex induces a triangle (a cycle of length
3) in the hypergraph Γ .

Theorem 2. System (1) has a committee generalized solution of length q if and
only if its m.f.s. hypergraph has a (σ, τ)-simplex for σ = q−1 and τ = 
(q−1)/2�.
1 i.e. EΓ �= ∅.
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3 Game Theoretic Conditions of Committee Existence

In this section, we set forth a series of necessary existence conditions for com-
mittee generalized solutions in terms of optimal strategies for the appropriate
antagonistic games between the Nature and the Researcher. For any natural
numbers q, k < q and any system of abstract inclusions which has a general-
ized committee solution of length q, we set forth an attainable relative lower
cardinality bound for the maximum subsystem having a committee solution of
length k. To obtain the result, we calculate an upper value of the corresponding
zero-sum two-player game.

For any setting of the game under discussion, the first player, we will call
him or her Researcher, tries to choose a finite sequence of length k attempting to
enlarge the subsystem resolved by the sequence as a generalized committee solu-
tion. The second player, Nature, tries to stop these attempts proposing infeasible
systems, which can hardly be solved with committees of length less than q.

We demonstrate that, almost always, this game does not have any value when
being set in pure strategies, but has a value in mixed ones. Further, we research
the asymptotic behavior of our bound in the case of k = q − h for any fixed h
and q → ∞. Here, we mainly follow the papers [11,12].

3.1 Problem Statement

By some non-empty ground let we be given a set X and a family of its subsets
D1,D2, . . . , Dm defining the following abstract system of inclusions

x ∈ Dj (j ∈ [m]), (6)

and natural numbers q and k < q. We suppose that system (6) has a generalized
committee solution of length q and is meant to provide a lower cardinality bound
for a maximum subsystem (of system (6)) satisfied by a committee of length k.

To obtain the bound, we consider an arbitrary committee solution Q =
(x1, . . . , xq) of system (6). In the same manner as in Sect. 2, we assign to the
committee Q an incidence m × q-matrix A = A(Q) with entries

aji =

{
1, if xi ∈ Dj

−1, otherwise.

Denote by aj the j-th row of the matrix A. By construction, for any aj ,

q∑

i=1

aji ≥ 1. (7)

Subsequently, we denote the set of m × q-matrices A satisfying equation (7) by
M(q).

To any subset I ⊂ [q] of cardinality k, we assign
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– the characteristic vector τ = τ(I) =
∑

e∈I eq
i , where eq

i is the i-th orth of the
q-dimensional Euclidean space Eq;

– the subcommittee Q(I) = (xi : i ∈ I) of length k that is defined by the
subset I;

– maximal subsystem of system (6) that is resolved by the subcommittee
Q(ISuffi); without loss of generality, subsequently, we do not distinguish
by construction this subsystem and its index set J(I), which satisfies the
equation J(I) = {j : (aj , τ(I)) ≥ 1};

– the relative cardinality of the subsystem J(I)

δq,k(I,A) =
|J(I)|

m
.

To any matrix A ∈ M(q), we assign the number

δq,k(A) = max{δq,k(I,A) : I ⊂ [q], |I| = k}. (8)

Let us consider the following zero-sum two-player game Γ = (X,Y,K), where
the strategy sets of the first and second players are

X = {I ⊂ [q] : |I| = k} and Y = M(q)

respectively and the payoff function is K(I,A) = δq.k(I,A). To answer the prin-
cipal question of this Section, we need to calculate an upper value

δq,k = min
A∈M(q)

δq,k(A) = min
A∈M(q)

max
J⊂[q],|I|=k

δq,k(I,A)

of this game. For the ensuing constructions, we need the following standard
notation:

(
n

i

)

=
n!

i!(n − i)!
the binomial coefficient

b(i;n, p) =
(

n

i

)

pi(1 − p)n−i the binomial distribution mass function,
i.e. probability of i successes in n trials

ϕ(x) =
1√
2π

e−x2/2 the standard Gaussian density


x� and �x� the floor and ceiling functions of real
argument.

Also, we call real-valued sequences {ξn} and ηn asymptotically equivalent and
use the notation ξn ∼ ηn, if

lim
n→∞

ξn

ηn
= 1.

Let s = � q+1
2 � and t = �k+1

2 �. Similarly to τ(I), to any subset S ⊂ [q]
of size s, we assign the characteristic vector σ(S) =

∑
i∈S eq

i . Without loss
of generality, we suppose that the vector sets Σ = {σ(S)} and Θ = {τ(I)} are
ordered lexicographically by descending and their elements σi and τ j are labelled
by natural numbers i = 1, 2, . . . ,

(
q
s

)
and j = 1, 2, . . . ,

(
q
k

)
, respectively.
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3.2 Upper Value

In this subsection, we prove the exact formulas for calculating δq,k. Then, we
find a mixed strategy equilibrium for the game in question.

Theorem 3. For any natural numbers k < q, the following equations

δq,k =
s

q

k−1∑

l=t−1

(
l

t − 1

)(
(q − 1) − l

(s − 1) − (t − 1)

)

(
q − 1
s − 1

)

=
k

q

s−1∑

l=t−1

(
l

t − 1

)(
(q − 1) − l

(k − 1) − (t − 1)

)

(
q − 1
k − 1

) (9)

are valid.

Theorem 3 generalizes several known results. For example, when substituting
in (9) k = t = 1, we easily obtain the following.

Corollary 1. Any system (6) that has a committee solution of length q contains
a feasible subsystem of relative size at least � q+1

2 �/q.

3.3 Mixed Strategy Equilibrium

To prove the existence of a mixed strategy equilibrium of the game Γ , we demon-
strate that its mixed extension coincides with a mixed extension of a correspond-
ing matrix game.

By construction the pure strategy set of Researcher is finite. His or her set
X̄ of mixed strategies is

X̄ =

⎧
⎪⎨

⎪⎩
x ∈ R

(q
k) :

(q
k)∑

j=1

xj = 1, x ≥ 0

⎫
⎪⎬

⎪⎭
.

Let us consider the pure strategy set M(q) of the Nature. We begin with exclusion
from M(q) the matrices containing a row with more than � q+1

2 � ones, since these
matrices are dominated by some other pure strategies of the second player. Then,
because of the evident invariance of the payoff function to any permutation of
rows in a matrix and simultaneous cloning of them, we proceed with exclusion
of one matrix from any couple of equivalent strategies.

3.4 Asymptotic Bounds

In this section we introduce approximate formulas to calculate δq,k for large
values of q assuming that k = q − n for some fixed integer n.
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Theorem 4. Let λ be an arbitrary natural number.

(i) If n = 2λ, then

lim
q→∞ δq,q−n =

1
2

(1 + b(λ; 2λ − 1, 0.5)). (10)

(ii) If n = 2λ − 1, then the limit limq→∞ δq,q−n does not exist, since

lim
s→∞ δ2s,2(s−λ)+1 =

1
2

+ b(λ; 2λ − 1, 0.5) (11)

lim
s→∞ δ2s−1,2(s−λ) =

1
2
. (12)

Corollary 2. For any fixed natural k and q > k the following equations

δq,k ≥ 1/2 and lim
q→∞ δq,k =

1
2

are valid.

Corollary 3. Limit Eqs. (10) and (11) depend asymptotically on λ as follows

lim
q→∞ δq,q−2λ ∼ 1

2
+

1√
2λ − 1

ϕ

(
1√

2λ − 1

)

and

lim
s→∞ δ2s,2(s−λ)+1 ∼ 1

2
+

2√
2λ − 1

ϕ

(
1√

2λ − 1

)

.

Proof. The given asymptotic equations follow straight-forwardly from the
famous De Moivre – Laplace theorem. According to it, the equation

b(i;n, p) ∼ 1
√

np(1 − p)
ϕ

(
i − np

√
np(1 − p)

)

.

holds uniformly by i. In our case,

n = 2λ − 1, i = λ, p =
1
2
,

which completes the proof.

It is remarkable that the Gaussian approximation for the biggest value of the
binomial distribution probability mass function performs well even for rather
small values of the parameter λ. In particular, this is fortified by the following
numeric data (Tables 1 and 2).
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Table 1. Numeric evaluation, part 1

λ 1 2 3 4 5 6 7 8 9 10

lim
q→∞

δq,q−2λ 0.750 0.688 0.656 0.637 0.623 0.613 0.605 0.598 0.593 0.588

Gaussian appr. 0.742 0.695 0.661 0.640 0.626 0.615 0.606 0.600 0.594 0.589

Relative error 0.011 0.010 0.008 0.005 0.005 0.003 0.003 0.003 0.002 0.002

Table 2. Numeric evaluation, part 2

λ 1 2 3 4 5 6 7 8 9 10

lim
s→∞ δ2s,2(s−λ)+1 1.000 0.875 0.812 0.773 0.746 0.726 0.709 0.696 0.685 0.676

Gaussian appr. 0.984 0.891 0.823 0.781 0.752 0.730 0.713 0.699 0.688 0.678

Relative error 0.016 0.018 0.014 0.010 0.008 0.006 0.006 0.004 0.004 0.003

4 Affine Separating Committees and Ensembles of Linear
Classifiers

In this section we study the properties of committee solutions of infeasible system
of linear inequalities, which is a special kind of an abstract system of constraints
(1). In this case, committee solutions are closely connected with the special type
of learning algorithms known in literature as ensemble learning techniques.

We begin with the common setting of the two-pattern classification problem
(see, e.g. [3]). Suppose, we are given a probabilistic triple (X × Y,A, P ). Here
the feature space X and the set Y = {−1, 1} of class labels. In many cases,
we can suppose that X is a subset of the n-dimensional Euclidean space En.
It is required, in the preliminary given family of classifiers H ⊂ [X → Y ], to
find “the most accurate” h̄. Numerous formalizations are admitted due to an
accuracy criterion. For simplicity, we focus on the following one

h̄ = arg min{P (f(x) �= y) : h ∈ H},

i.e. on finding a classifier that minimizes the misclassification probability.
If the probabilistic measure is known, this problem has the well-known closed

form solution—the Bayes classifier. In the general case studied in this section,
when all information about the unknown measure P is exhausted by the finite
i.i.d. training sample

(x1, y1), . . . , (xm, ym), (13)

the goal is to propose an efficient learning algorithm that could find a good
approximation to the desired optimal classifier. Within the famous Vapnik-
Chervonenkis structural risk minimization learning approach, it is important to
design learning algorithms minimizing frequency of misclassification on sample
(13) regularized by a capacity of the family H in terms of its VC-dimension.



12 V. D. Mazurov and E. Yu. Polyakova

We consider the setting of such a learning problem, where it is needed to fit
a piecewise linear classifier

h(x) = sign
k∑

j=1

αj sign(cT
j x − dj) (14)

for some non-negative weights αj , which without loss of generality can be
assumed as integers, vectors cj and real biases dj . In literature (see, e.g. [13],
classifier (14) is called an affine separating committee. The motivation to study
such classifiers arises from the following points:

(i) for any non-contradictory2 sample (13), there exists a perfect affine commit-
tee classifier that makes no classification errors on this sample [17]

(ii) the family of affine committees (14) defined over the n-dimensional feature
space En and sharing the property

∑k
j=1 αj = q has bounded VC-dimension

[14].

We continue with the following notation. Let subsets A and B be defined (by
sample (13)) as follows

A = {xi : yi = 1}, B = {xi : yi = −1}. (15)

Any classifier h determined by Eq. (14) can be equivalently represented by the
following finite sequence K = K(h) = (f1, . . . , fq), such that q =

∑k
j=1 αj and

f1(x) ≡ . . . ≡ fα1(x) ≡ cT
1 x − d1,

fα1+1(x) ≡ . . . ≡ fα1+α2(x) ≡ cT
2 x − d2,

. . .

fq−αk+1(x) ≡ . . . ≡ fq(x) ≡ cT
k x − dk.

It can be easily seen that an affine separating committee is a natural general-
ization of the concept of a separating hyperplane in Euclidean spaces. By means
of the famous Hyperplane Separation Theorem (see, e.g. [4]), for any finite sets
A and B, the equation

conv(A) ∩ conv(B) = ∅

presumes the existence of a linear function f(x) = cT x − d such that the hyper-
plane H = {x ∈ En : cT x − d = 0} separates these sets, i.e., f(a) > 0 and
f(b) < 0 for any a ∈ A and b ∈ B, respectively. Therefore, if the sets A and B
are separable in the regular case, then there exists an affine committee of length
1 that separates them. For the general case, the following criterion is valid.

Theorem 5 ([17]). Finite subsets A,B ⊂ En can be separated by an affine
committee if an only if A ∩ B = ∅.

2 For which the condition xi1 = xi2 implies yi1 = yi2 .
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Problem 1 (Minimum Affine Separating Committee (MASC)). For the given sets
A,B ⊂ En it is necessary to find an affine separating committee of the minimum
length.

In the conclusion of this section, we give a brief outline of the recent results
concerning algorithmic analysis of the MASC problem following the paper [13].

Theorem 6 ([8]). The Minimum Affine Separating Committee problem is
strongly NP-hard and remains intractable even in the case, when

A ∪ B ⊂ {x ∈ {0, 1, 2}n : ‖x‖2 ≤ 2}.

The MASC problem does not refer to the APX approximability class, unless
P �= NP .

According to Theorem 6, the MASC problem is hard to solve not only in the
class of exact algorithms but even with any constant approximation ratio. The
following theorem extends this result to the spaces of any fixed dimension.

Theorem 7 ([14]). The MASC problem is polynomially solvable in the real line
and strongly NP-hard in n-dimensional Euclidean space for any fixed dimension
n > 1.

It is noteworthy that the claim of Theorem 7 remains valid even in the case,
when the set A ∪ B is in the general position. Usually, a finite set D ⊂ En of
size |D| > n is said to be in general position, if, for any D′ ⊂ D, |D′| = n + 1,
dimension of the affine hull aff(D′) is equal to n. The special setting of the MASC
problem given in the n-dimensional Euclidean space with additional condition
on general position of A ∪ B is known as MASC-GP(n).

Nearly all known results in the scope of efficient algorithm construction for
the MASC problem are based on the following theorem, which can be considered
as a specification of Theorem 1 to the case, when training sets are in general
position.

Theorem 8 ([9]). For any finite subsets A,B ⊂ En being in general position,
for which A∩B = ∅ and |A∪B| = m, there exists an affine separation committee
of length

q ≤ 2
⌈
(m − n)�

n

⌉

+ 1. (16)

Two subsequent geometric properties of finite dimensional Euclidean spaces lead
to the proof of Theorem 8 mainly.

Property 1. Let Z be a finite subset of En and ∅ �= Z ′ ⊂ Z such that |Z ′| ≤ n
and be in general position. Then, there exist open half-spaces L1 = {x : cT

1 −d1 <
0} and L2 = {x : cT

2 − d2 < 0} such that Z ⊂ L1 ∪ L2 and Z ′ ⊂ L1 ∩ L2.
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Property 2. Let A and B be non-empty finite subsets of En, where A ∪ B is in
general position and of size m > n. Then, for any subsets A′ ⊂ A and B′ ⊂ B
of common size A′ ∪ B′ = n there exist A′′ ⊇ A′ and B′′ ⊇ B′ and a function
f(x) = cT x − d, such that f(a) > 0 and f(b) < 0 for any a ∈ A′′ and b ∈ B′′

respectively, and |A′′ ∪ B′′| ≥ �(m + n)/2�.
Indeed, the proof of Theorem 8 extends the proof of Theorem 5 and propose

a polynomial time approximation algorithm for the problem MASC-GP(n) with
time complexity bound O(m/n×Tn) and the approximation ratio O(m/n). Here,
Tn signifies the difficulty of solving a Kramer system of linear equations over n
variables.

Remark 1. Bound (16) is tight. In particular, it is attained on sets mentioned in
[6] and called uniformly distributed sets. In [7], the MASC problem is shown to
be polynomially solvable over such sets. The formal definition is as follows

Definition 5. A finite set Z = A ∪ B ⊂ En is known as uniformly distributed
(by Gale), if A ∩ B = ∅, |A ∪ B| = n + 2k for some natural k and, for any
non-trivial hyperplane H = {x ∈ En : f(x) ≡ cT x − d = 0}, there exist A′ ⊂ A
and B′ ⊂ B, |A′ ∪ B′| ≥ k, such that f(a) > 0 and f(b) < 0 for any a ∈ A′ and
b ∈ B′, respectively.

It is known that, for any natural numbers n and k, there exists a uniformly
distributed subset Z = A ∪ B ⊂ En of size 2k + n. Thus, in terms of machine
learning, it can be stated that, any time, when a training sample is defined by
a uniformly distributed subset, the algorithm proposed in the proof of Theo-
rem 5, in the family of the smallest VC dimension, in linear time with respect
to the sample length, will obtain a committee classifier (14) without making any
classification errors.

Nowadays, the advanced approximation algorithms for the MASC problem
are based on the synthesis of the mentioned above approach and the famous
Multiple Weights Update technique (see, e.g. [2]). Characteristics of the Boosted-
GreedyCommittee algorithm [13] which has the best known approximation factor
are shown in the following theorem.

Theorem 9. BoostedGreedyCommittee finds an O(((m ln m)/n)1/2)-approxi-
mate solution for the MASC problem in time mO(n). If, for the given sets A and B,
there is a minimum committee (f0, f1, . . . , fq−1) such that, for any t = 1, . . . , (q −
1)/2 and any a ∈ A, b ∈ B the following equation

(f2t−1(a) > 0 ∨ f2t(a) > 0) ∧ (f2t−1(b) < 0 ∨ f2t(b) < 0)

is valid, then the approximation factor of this algorithm is O(ln m).

5 Conclusion

This survey does not pretend to be called exhaustive. We intentionally restrict
ourselves to some theoretic results concerning the committees, leaving without
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considering their applications to numerous practical decision making problem
in economy, industry, and medicine forwarding the interested reader to recent
papers presenting interesting results in procatice, e.g. [1,5,16,22].
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