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Preface

This volume contains the refereed and selected papers presented at the 18th
International Conference on Mathematical Optimization Theory and Operations
Research (MOTOR 2019) (http://motor2019.uran.ru) held during July 8–12, 2019, in
the picturesque Obukhovky resort near Ekaterinburg, Russia. This scientific forum
brought together a wide research community in the fields of mathematical program-
ming and global optimization, discrete optimization, complexity theory and
combinatorial algorithms, optimal control and games, and their applications to relevant
practical issues that require the use of operations research, mathematical economics,
and data analysis.

The conference featured ten invited lectures:

– Prof. Olga Battaïa (ISAE-SUPAERO, France): “Decision Under Ignorance: A
Comparison of Existing Criteria in a Context of Linear Programming”

– Prof. Oleg Burdakov (Linköping University, Sweden): “Node Partitioning and
Cycles Creation Problem”

– Prof. Christoph Dürr (Sorbonne Université, France): “Bijective Analysis of Online
Algorithms”

– Prof. Alexander Grigoriev (Maastricht University, The Netherlands): “A Survey on
Possible and Impossible Attempts to Solve the Treewidth Problem via ILPs”

– Prof. Mikhail Kovalyov (United Institute of Informatics Problems NASB, Belarus):
“No-Idle Scheduling of Unit-Time Jobs with Release Dates and Deadlines on
Parallel Machines”

– Prof. Vadim Levit (Ariel University, Israel): “Critical and Maximum Independent
Sets Revisited”

– Prof. Bertrand M. T. Lin (National Chiao Tung University, Taiwan): “An Overview
of the Relocation Problem”

– Prof. Natalia Shakhlevich (University of Leeds, UK): “On a New Approach to
Optimization Under Uncertainty”

– Prof. Angelo Sifaleras (University of Macedonia, Greece): “Exterior Point
Simplex-Type Algorithms for Linear and Network Optimization Problems”

– Prof. Vitaly Strusevich (University of Greenwich, UK): “Design of
Fully-Polynomial Time Approximation Schemes for Non-linear Boolean
Programming Problems”

The following seven tutorials were given by the outstanding scientists:

– Prof. Tatjana Davidović (Mathematical Institute of the Serbian Academy of
Sciences and Arts, Serbia): “Distributed Memory-Based Parallelization of
Metaheuristic Methods”

– Prof. Stephan Dempe (TU Bergakademie Freiberg, Germany): “Bilevel
optimization: The Model and its Transformations”

http://motor2019.uran.ru


– Prof. Oleg Khamisov (Melentiev Energy Systems Institute SB RAS, Russia): “The
Fundamental Role of Concave Programming in Continuous Global Optimization”

– Prof. Alexander Kononov (Sobolev Institute of Mathematics, Russia): “Primal-dual
Method and Online Problems”

– Prof. Nenad Mladenovic (Mathematical Institute SANU, Serbia): “Solving
Non-linear System of Equations as an Optimization Problem”

– Prof. Evgeni A. Nurminski (Far Eastern Federal University, Russia): “Projection
Problems and Problems with Projection”

– Prof. Alexander Strekalovsky (Matrosov Institute for System Dynamics and Control
Theory SB RAS, Russia): “Modern Methods of Non-convex Optimization”

MOTOR 2019 was a successor of the following well-known series of international
and Russian conferences, which were previously organized in Ural, Siberia, and the Far
East regions of the Russian Federation:

– Baikal International Triennial School Seminar on Methods of Optimization and
Their Applications (BITSS MOPT) was established in 1969 by academician
N. N. Moiseev; the 17th event in this series was held in 2017, in Buryatia (http://
isem.irk.ru/conferences/mopt2017/en/index.html)

– All-Russian Conference on Mathematical Programming and Applications,
(MPA) was established in 1972 by academician I. I. Eremin; the 15th conference in
this series was held in 2015, near Ekaterinburg (http://mpa.imm.uran.ru/96/en)

– International Conference on Discrete Optimization and Operations Research,
(DOOR) was organized nine times from 1996, and the most recent event was held
in 2016 in Vladivostok (http://www.math.nsc.ru/conference/door/2016/)

– International Conference on Optimization Problems and Their Applications,
(OPTA) has been organized regularly in Omsk since 1997, the 7th event in this
series was held in 2018 (http://opta18.oscsbras.ru/en/)

Starting from different origins, today these conference series have grown very close
to each other, having much in common in their research topics, scientific community,
and organizers. Therefore, this year the united Program Committee (PC) decided to
organize a joint meeting inheriting the long history of all the events and to call it the
18th International Conference on Mathematical Optimization Theory and Operations
Research (MOTOR). This name will be given to the subsequent conferences of the
chain, and the 19th MOTOR conference will take place in July 2020 at some beautiful
place near Novosibirsk, Russia.

Following the tradition, the main conference scope includes but is not limited to
mathematical programming, bi-level and global optimization, integer programming and
combinatorial optimization, approximation algorithms with theoretical performance
guarantees and approximation schemes, heuristics and meta-heuristics, optimal control
and game theory, optimization problems in function approximation, optimization in
machine learning and data analysis, and valuable practical applications to operations
research and economics.

In response to the call for papers, MOTOR 2019 received 232 submissions. Out of
170 full papers considered for reviewing (62 abstracts and short communications were
excluded because of formal reasons), 48 papers were selected by the PC for publication
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in the first volume of proceedings (published in Springer LNCS, Vol. 11548). Out
of the remaining submissions the PC selected 44 revised papers for publication in this
volume. Thus, the acceptance rates for the two volumes are about 28% and 36%
respectively. Each submission was reviewed by at least three PC members or invited
reviewers, experts in their fields, in order to supply detailed and helpful comments.

We would like to thank all the authors for their submissions, as well as all members
of the PC and external reviewers for their efforts in providing exhaustive reviews. We
thank our sponsors, the Russian Foundation for Basic Research, Higher School of
Economics (Campus Nizhny Novgorod), Ural Federal University, and Novosibirsk
State University. In addition, we are grateful to Alfred Hofmann, Aliaksandr Birukou,
Anna Kramer, and their colleagues from Springer LNCS and CCIS editorial board for
their kind and helpful support.

September 2019 Igor Bykadorov
Vitaly Strusevich

Tatiana Tchemisova
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Abstract. The article outlines a brief history and applications of the
committee theory. The use of committees in the problems of recognition
and optimization is discussed. The application of the committee struc-
tures, ambiguous interpretation of non-formalized and contradictory data
are given. The ways of rational regard on environmental factors in the
context of a lack of resources are considered. The question of the numer-
ical finding of committee structures is discussed, and these results are
directly related to the theory of voting. The class of non-classical logics
also contains MK-logic (Mazurov, Khachay). This section of non-classical
logic includes the works by N. A. Vasiliev, L. Wittgenstein, J. Lukashe-
vich, and Latin American mathematicians having a wrong term in their
titles parainconsistent logic. One of the important results achieved by
M. Yu. Khachay: For arbitrary positive integers q and k, k < q, the min-
imum estimate of the subsystem power is given that is resolvable by a
committee of k-elements for the inconsistent system having a committee
of q-elements. Further the history of this field will be mentioned.

Keywords: Committee · Existence · Linear inequalities · Affine case

1 Introduction

In 1965, S.B. Stechkin and I.I. Eremin set a problem of substantiating the neces-
sary and sufficient condition for the existence of a linear inequalities system com-
mittee. We solved this problem in 1966, and further ways were opened to continue
the research and applications. First, we obtained the results on the conditions
for the existence of various modifications of the committees and their applica-
tions in economics, engineering, medicine and biology (see. e.g. [17–19]). Further,
some of them were extended by Khachay [11,13], Rybin [9,20,24], Kobylkin [15],
Gainanov [5] who obtained a number of valuable results in the field of the algo-
rithmic analysis of the committee constructions.

1.1 Some Applications

As the examples of applications the following ones can be referred to:
c© Springer Nature Switzerland AG 2019
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– Issues of substantiation and application of numerous specific problems of
mathematical programming and recognition solved by us with post-optimal
solutions analysis;

– tasks of researching operations with the Ural theme (geology, mining, metal-
lurgy);

– algebraic factor analysis;
– factors and their names;
– design issues;
– mathematical structuralism;
– morphology and structural analysis;
– applied structuralism.

1.2 Non-classical Logics

MK-logic (logic of Mazurov-Khachay);
Vasiliev logic;
Lukashevich logic;
parainconsistent logic;
post-optimization analysis and MK-logic.

By its very nature, recognition is associated with mathematical epistemology,
mathematical theory of neural networks. Within these disciplines, we voluntarily
or involuntarily approach to the questions of the essence of human intelligence,
human mentality, formal or informal logic. What is absolutely certain is the fact
that we at least imitate human mentality as much as we can. In this case, we
use the following scheme of operation of neural networks:

? → S → A → R,

where “?” denotes the reality that is unknown for us. This reality affects the
S-layer—the network sensor unit, and we obtain the pixel array x. It arrives
at the input of the block A—the block of associative neurons. The result of
the work of these neurons is received on the R-block – the block of resulting
neurons. If the experimental data diverges from the ones constructed according
to the S → A → R → x scheme, then a network correction is done. A. Novikov
investigated the linear correction method, having proved that if there is a solution
x, then the result is obtained through a finite number of corrections. Researchers
of neural networks unintentionally seek to interpret the work of the network as
a learning process of artificial intelligence. It is characteristic that Rosenblatt
entitled his book Principles of Neurodynamics [23], Nilson—Learning Machines
[21], and Vapnik in his book “Statistical Learning Theory” [25] entitled the
philosophical section “Some General Remarks”.

Vapnik poses a question why the pattern recognition problem arouses such
a great interest among scientists of various specialties. It seems that the answer
to this question was obtained both in the works of Zhuravlev [27,28] and in the
seminal works of Vapnik (see, e.g. [26]).

The third direction, close to the theory of Yu.I. Zhuravlev, is the analysis of
collective decisions—the method of committees.
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2 Committee Solutions: Basic Concepts

Let we be given by a ground set X and a family of its non-empty subsets
D1,D2, . . . , Dm. Let us consider the system of abstract inclusions

x ∈ Dj (j ∈ [m]), (1)

where [m] is the integer segment {1, 2, . . . ,m}. If
⋂m

j=1 Dj = ∅, system (1) is
known as infeasible. Any non-empty subset L ⊂ [m] induces a subsystem of
system (1). Without loss of generality, we do not distinguish a subset L and
the appropriate subsystem. If D(L) =

⋂
j∈L Dj �= ∅, the subsystem is known

as feasible. Any subsystem maximal by inclusion of system (1) is known as its
maximal feasible subsystem or m.f.s.

Definition 1. A finite sequence Q = (x1, . . . , xq), xi ∈ X, such that, for any
j ∈ [m],

|{i : xi ∈ Dj}| > q/2

is known as a committee generalized solution of system (1).

The number q is called a length of the committee Q, and we state that system
(1) has a committee solution (or is solvable by a committee) of length q. A
committee of minimal length q (for a given system (1)) is known as its minimum
committee solution or just a minimum committee.

We can easily represent the set of all committee solutions of the system (1)
as follows. Introduce the vector-function

ϕ : X → {−1, 1}m, where ϕj(x) =
{

1, if x ∈ Dj ,
−1, otherwise.

By its construction, the image ϕ(X) is a finite set. Let ϕ(X) = {ϕ1, . . . , ϕs}.
Without loss of generality, we can suppose that, the vectors ϕi are incomparable,
i.e., for any i1 and i2, the equation ϕi1 ≥ ϕi2 implies i1 = i2. This implies that
any ϕi is a characteristic vector of some m.f.s. of system (1).

According to Definition 1, a finite sequence Q is a committee solution of (1)
if and only if, by some permutation, Q can be represented in the form

(y1,1, . . . , y1,z1

︸ ︷︷ ︸
z1

, . . . , ys,1, . . . , ys,zs

︸ ︷︷ ︸
zs

), (2)

where ϕ(yi,l) = ϕi and z1, . . . , zs are nonnegative integers, such that
s∑

i=1

ziϕ
i ≥ e = [1, 1, . . . , 1]T .

It can be easily verified that a sequence Q is a minimum committee of system (1)
if and only if the vector z is an optimal solution in the following integer linear
program

min

{
s∑

i=1

zi :
s∑

i=1

ziϕ
i ≥ e, z ∈ Z

s
+

}

.
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Evidently, if a system (1) is feasible, its minimum committees are of length 1 and
coincide with regular solutions. In other circumstances, any minimum committee
has more than 1 entry.

Existence conditions for committee solutions of system (1) can be easily
represented in terms of graph and hypergraph of its m.f.s.

Definition 2. A finite graph G = (V,E) is known as the m.f.s. graph of sys-
tem (1) if its nodeset V consists of index sets J1, J2, . . . , Js of the system, and

{Ji, Jj} ∈ E ⇐⇒ Ji ∪ Jj = [m].

Assertion 1. Let s be a natural number, J1, . . . , J2s−1 be a cycle in the m.f.s.
graph of system (1), and xi ∈ D(Ji). Then, the sequence Q = (x1, . . . , x2s−1) is
a committee solution of system (1).

To obtain necessary and sufficient conditions we need to introduce a more
general notion (see, e.g. [10]).

Definition 3. A finite hypergraph G = (V,E), whose nodeset V coincides with
the family {J1, . . . , Js} of index sets of the m.f.s. of system (1) such that

{Ji1 , . . . , Jit
} ∈ E ⇐⇒

t⋃

k=1

= [m],

is known as a m.f.s. hypergraph of system (1).

Theorem 1. Let Γ = (V Γ,EΓ ) be a non-empty1 finite hypergraph without mul-
tiple edges. Γ is isomorphic to a m.f.c. hypergraph G = (V,E) of an inclusions
system

x ∈ Dj(Γ ) (j ∈ [m]) (3)

for some m = m(Γ ) if and only if Γ satisfies the following conditions

if |V Γ | > 1, then EΓ has no loops (4)

(u ∈ EΓ, u ⊂ w) ⇒ w ∈ EΓ. (5)

Definition 4. For a m.f.s. hypergraph Γ = (V Γ,EΓ ) and natural numbers σ
and τ , a finite sequence of nodes S = (vi1 , . . . , viσ+1) is known as (σ, τ)-simplex
in the hypergraph Γ , if the following inclusion

{vij
: j ∈ L} ∈ EΓ

is valid for any L ⊂ [σ + 1], |L| = τ + 1.

The concept of (σ, τ)-simplex takes its origin from the geometric reasonings.
It can be easily verified that (2, 1)-simplex induces a triangle (a cycle of length
3) in the hypergraph Γ .

Theorem 2. System (1) has a committee generalized solution of length q if and
only if its m.f.s. hypergraph has a (σ, τ)-simplex for σ = q−1 and τ = 
(q−1)/2�.
1 i.e. EΓ �= ∅.
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3 Game Theoretic Conditions of Committee Existence

In this section, we set forth a series of necessary existence conditions for com-
mittee generalized solutions in terms of optimal strategies for the appropriate
antagonistic games between the Nature and the Researcher. For any natural
numbers q, k < q and any system of abstract inclusions which has a general-
ized committee solution of length q, we set forth an attainable relative lower
cardinality bound for the maximum subsystem having a committee solution of
length k. To obtain the result, we calculate an upper value of the corresponding
zero-sum two-player game.

For any setting of the game under discussion, the first player, we will call
him or her Researcher, tries to choose a finite sequence of length k attempting to
enlarge the subsystem resolved by the sequence as a generalized committee solu-
tion. The second player, Nature, tries to stop these attempts proposing infeasible
systems, which can hardly be solved with committees of length less than q.

We demonstrate that, almost always, this game does not have any value when
being set in pure strategies, but has a value in mixed ones. Further, we research
the asymptotic behavior of our bound in the case of k = q − h for any fixed h
and q → ∞. Here, we mainly follow the papers [11,12].

3.1 Problem Statement

By some non-empty ground let we be given a set X and a family of its subsets
D1,D2, . . . , Dm defining the following abstract system of inclusions

x ∈ Dj (j ∈ [m]), (6)

and natural numbers q and k < q. We suppose that system (6) has a generalized
committee solution of length q and is meant to provide a lower cardinality bound
for a maximum subsystem (of system (6)) satisfied by a committee of length k.

To obtain the bound, we consider an arbitrary committee solution Q =
(x1, . . . , xq) of system (6). In the same manner as in Sect. 2, we assign to the
committee Q an incidence m × q-matrix A = A(Q) with entries

aji =

{
1, if xi ∈ Dj

−1, otherwise.

Denote by aj the j-th row of the matrix A. By construction, for any aj ,

q∑

i=1

aji ≥ 1. (7)

Subsequently, we denote the set of m × q-matrices A satisfying equation (7) by
M(q).

To any subset I ⊂ [q] of cardinality k, we assign
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– the characteristic vector τ = τ(I) =
∑

e∈I eq
i , where eq

i is the i-th orth of the
q-dimensional Euclidean space Eq;

– the subcommittee Q(I) = (xi : i ∈ I) of length k that is defined by the
subset I;

– maximal subsystem of system (6) that is resolved by the subcommittee
Q(ISuffi); without loss of generality, subsequently, we do not distinguish
by construction this subsystem and its index set J(I), which satisfies the
equation J(I) = {j : (aj , τ(I)) ≥ 1};

– the relative cardinality of the subsystem J(I)

δq,k(I,A) =
|J(I)|

m
.

To any matrix A ∈ M(q), we assign the number

δq,k(A) = max{δq,k(I,A) : I ⊂ [q], |I| = k}. (8)

Let us consider the following zero-sum two-player game Γ = (X,Y,K), where
the strategy sets of the first and second players are

X = {I ⊂ [q] : |I| = k} and Y = M(q)

respectively and the payoff function is K(I,A) = δq.k(I,A). To answer the prin-
cipal question of this Section, we need to calculate an upper value

δq,k = min
A∈M(q)

δq,k(A) = min
A∈M(q)

max
J⊂[q],|I|=k

δq,k(I,A)

of this game. For the ensuing constructions, we need the following standard
notation:

(
n

i

)

=
n!

i!(n − i)!
the binomial coefficient

b(i;n, p) =
(

n

i

)

pi(1 − p)n−i the binomial distribution mass function,
i.e. probability of i successes in n trials

ϕ(x) =
1√
2π

e−x2/2 the standard Gaussian density


x� and �x� the floor and ceiling functions of real
argument.

Also, we call real-valued sequences {ξn} and ηn asymptotically equivalent and
use the notation ξn ∼ ηn, if

lim
n→∞

ξn

ηn
= 1.

Let s = � q+1
2 � and t = �k+1

2 �. Similarly to τ(I), to any subset S ⊂ [q]
of size s, we assign the characteristic vector σ(S) =

∑
i∈S eq

i . Without loss
of generality, we suppose that the vector sets Σ = {σ(S)} and Θ = {τ(I)} are
ordered lexicographically by descending and their elements σi and τ j are labelled
by natural numbers i = 1, 2, . . . ,

(
q
s

)
and j = 1, 2, . . . ,

(
q
k

)
, respectively.
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3.2 Upper Value

In this subsection, we prove the exact formulas for calculating δq,k. Then, we
find a mixed strategy equilibrium for the game in question.

Theorem 3. For any natural numbers k < q, the following equations

δq,k =
s

q

k−1∑

l=t−1

(
l

t − 1

)(
(q − 1) − l

(s − 1) − (t − 1)

)

(
q − 1
s − 1

)

=
k

q

s−1∑

l=t−1

(
l

t − 1

)(
(q − 1) − l

(k − 1) − (t − 1)

)

(
q − 1
k − 1

) (9)

are valid.

Theorem 3 generalizes several known results. For example, when substituting
in (9) k = t = 1, we easily obtain the following.

Corollary 1. Any system (6) that has a committee solution of length q contains
a feasible subsystem of relative size at least � q+1

2 �/q.

3.3 Mixed Strategy Equilibrium

To prove the existence of a mixed strategy equilibrium of the game Γ , we demon-
strate that its mixed extension coincides with a mixed extension of a correspond-
ing matrix game.

By construction the pure strategy set of Researcher is finite. His or her set
X̄ of mixed strategies is

X̄ =

⎧
⎪⎨

⎪⎩
x ∈ R

(q
k) :

(q
k)∑

j=1

xj = 1, x ≥ 0

⎫
⎪⎬

⎪⎭
.

Let us consider the pure strategy set M(q) of the Nature. We begin with exclusion
from M(q) the matrices containing a row with more than � q+1

2 � ones, since these
matrices are dominated by some other pure strategies of the second player. Then,
because of the evident invariance of the payoff function to any permutation of
rows in a matrix and simultaneous cloning of them, we proceed with exclusion
of one matrix from any couple of equivalent strategies.

3.4 Asymptotic Bounds

In this section we introduce approximate formulas to calculate δq,k for large
values of q assuming that k = q − n for some fixed integer n.
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Theorem 4. Let λ be an arbitrary natural number.

(i) If n = 2λ, then

lim
q→∞ δq,q−n =

1
2

(1 + b(λ; 2λ − 1, 0.5)). (10)

(ii) If n = 2λ − 1, then the limit limq→∞ δq,q−n does not exist, since

lim
s→∞ δ2s,2(s−λ)+1 =

1
2

+ b(λ; 2λ − 1, 0.5) (11)

lim
s→∞ δ2s−1,2(s−λ) =

1
2
. (12)

Corollary 2. For any fixed natural k and q > k the following equations

δq,k ≥ 1/2 and lim
q→∞ δq,k =

1
2

are valid.

Corollary 3. Limit Eqs. (10) and (11) depend asymptotically on λ as follows

lim
q→∞ δq,q−2λ ∼ 1

2
+

1√
2λ − 1

ϕ

(
1√

2λ − 1

)

and

lim
s→∞ δ2s,2(s−λ)+1 ∼ 1

2
+

2√
2λ − 1

ϕ

(
1√

2λ − 1

)

.

Proof. The given asymptotic equations follow straight-forwardly from the
famous De Moivre – Laplace theorem. According to it, the equation

b(i;n, p) ∼ 1
√

np(1 − p)
ϕ

(
i − np

√
np(1 − p)

)

.

holds uniformly by i. In our case,

n = 2λ − 1, i = λ, p =
1
2
,

which completes the proof.

It is remarkable that the Gaussian approximation for the biggest value of the
binomial distribution probability mass function performs well even for rather
small values of the parameter λ. In particular, this is fortified by the following
numeric data (Tables 1 and 2).
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Table 1. Numeric evaluation, part 1

λ 1 2 3 4 5 6 7 8 9 10

lim
q→∞

δq,q−2λ 0.750 0.688 0.656 0.637 0.623 0.613 0.605 0.598 0.593 0.588

Gaussian appr. 0.742 0.695 0.661 0.640 0.626 0.615 0.606 0.600 0.594 0.589

Relative error 0.011 0.010 0.008 0.005 0.005 0.003 0.003 0.003 0.002 0.002

Table 2. Numeric evaluation, part 2

λ 1 2 3 4 5 6 7 8 9 10

lim
s→∞ δ2s,2(s−λ)+1 1.000 0.875 0.812 0.773 0.746 0.726 0.709 0.696 0.685 0.676

Gaussian appr. 0.984 0.891 0.823 0.781 0.752 0.730 0.713 0.699 0.688 0.678

Relative error 0.016 0.018 0.014 0.010 0.008 0.006 0.006 0.004 0.004 0.003

4 Affine Separating Committees and Ensembles of Linear
Classifiers

In this section we study the properties of committee solutions of infeasible system
of linear inequalities, which is a special kind of an abstract system of constraints
(1). In this case, committee solutions are closely connected with the special type
of learning algorithms known in literature as ensemble learning techniques.

We begin with the common setting of the two-pattern classification problem
(see, e.g. [3]). Suppose, we are given a probabilistic triple (X × Y,A, P ). Here
the feature space X and the set Y = {−1, 1} of class labels. In many cases,
we can suppose that X is a subset of the n-dimensional Euclidean space En.
It is required, in the preliminary given family of classifiers H ⊂ [X → Y ], to
find “the most accurate” h̄. Numerous formalizations are admitted due to an
accuracy criterion. For simplicity, we focus on the following one

h̄ = arg min{P (f(x) �= y) : h ∈ H},

i.e. on finding a classifier that minimizes the misclassification probability.
If the probabilistic measure is known, this problem has the well-known closed

form solution—the Bayes classifier. In the general case studied in this section,
when all information about the unknown measure P is exhausted by the finite
i.i.d. training sample

(x1, y1), . . . , (xm, ym), (13)

the goal is to propose an efficient learning algorithm that could find a good
approximation to the desired optimal classifier. Within the famous Vapnik-
Chervonenkis structural risk minimization learning approach, it is important to
design learning algorithms minimizing frequency of misclassification on sample
(13) regularized by a capacity of the family H in terms of its VC-dimension.
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We consider the setting of such a learning problem, where it is needed to fit
a piecewise linear classifier

h(x) = sign
k∑

j=1

αj sign(cT
j x − dj) (14)

for some non-negative weights αj , which without loss of generality can be
assumed as integers, vectors cj and real biases dj . In literature (see, e.g. [13],
classifier (14) is called an affine separating committee. The motivation to study
such classifiers arises from the following points:

(i) for any non-contradictory2 sample (13), there exists a perfect affine commit-
tee classifier that makes no classification errors on this sample [17]

(ii) the family of affine committees (14) defined over the n-dimensional feature
space En and sharing the property

∑k
j=1 αj = q has bounded VC-dimension

[14].

We continue with the following notation. Let subsets A and B be defined (by
sample (13)) as follows

A = {xi : yi = 1}, B = {xi : yi = −1}. (15)

Any classifier h determined by Eq. (14) can be equivalently represented by the
following finite sequence K = K(h) = (f1, . . . , fq), such that q =

∑k
j=1 αj and

f1(x) ≡ . . . ≡ fα1(x) ≡ cT
1 x − d1,

fα1+1(x) ≡ . . . ≡ fα1+α2(x) ≡ cT
2 x − d2,

. . .

fq−αk+1(x) ≡ . . . ≡ fq(x) ≡ cT
k x − dk.

It can be easily seen that an affine separating committee is a natural general-
ization of the concept of a separating hyperplane in Euclidean spaces. By means
of the famous Hyperplane Separation Theorem (see, e.g. [4]), for any finite sets
A and B, the equation

conv(A) ∩ conv(B) = ∅

presumes the existence of a linear function f(x) = cT x − d such that the hyper-
plane H = {x ∈ En : cT x − d = 0} separates these sets, i.e., f(a) > 0 and
f(b) < 0 for any a ∈ A and b ∈ B, respectively. Therefore, if the sets A and B
are separable in the regular case, then there exists an affine committee of length
1 that separates them. For the general case, the following criterion is valid.

Theorem 5 ([17]). Finite subsets A,B ⊂ En can be separated by an affine
committee if an only if A ∩ B = ∅.

2 For which the condition xi1 = xi2 implies yi1 = yi2 .
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Problem 1 (Minimum Affine Separating Committee (MASC)). For the given sets
A,B ⊂ En it is necessary to find an affine separating committee of the minimum
length.

In the conclusion of this section, we give a brief outline of the recent results
concerning algorithmic analysis of the MASC problem following the paper [13].

Theorem 6 ([8]). The Minimum Affine Separating Committee problem is
strongly NP-hard and remains intractable even in the case, when

A ∪ B ⊂ {x ∈ {0, 1, 2}n : ‖x‖2 ≤ 2}.

The MASC problem does not refer to the APX approximability class, unless
P �= NP .

According to Theorem 6, the MASC problem is hard to solve not only in the
class of exact algorithms but even with any constant approximation ratio. The
following theorem extends this result to the spaces of any fixed dimension.

Theorem 7 ([14]). The MASC problem is polynomially solvable in the real line
and strongly NP-hard in n-dimensional Euclidean space for any fixed dimension
n > 1.

It is noteworthy that the claim of Theorem 7 remains valid even in the case,
when the set A ∪ B is in the general position. Usually, a finite set D ⊂ En of
size |D| > n is said to be in general position, if, for any D′ ⊂ D, |D′| = n + 1,
dimension of the affine hull aff(D′) is equal to n. The special setting of the MASC
problem given in the n-dimensional Euclidean space with additional condition
on general position of A ∪ B is known as MASC-GP(n).

Nearly all known results in the scope of efficient algorithm construction for
the MASC problem are based on the following theorem, which can be considered
as a specification of Theorem 1 to the case, when training sets are in general
position.

Theorem 8 ([9]). For any finite subsets A,B ⊂ En being in general position,
for which A∩B = ∅ and |A∪B| = m, there exists an affine separation committee
of length

q ≤ 2
⌈
(m − n)�

n

⌉

+ 1. (16)

Two subsequent geometric properties of finite dimensional Euclidean spaces lead
to the proof of Theorem 8 mainly.

Property 1. Let Z be a finite subset of En and ∅ �= Z ′ ⊂ Z such that |Z ′| ≤ n
and be in general position. Then, there exist open half-spaces L1 = {x : cT

1 −d1 <
0} and L2 = {x : cT

2 − d2 < 0} such that Z ⊂ L1 ∪ L2 and Z ′ ⊂ L1 ∩ L2.



14 V. D. Mazurov and E. Yu. Polyakova

Property 2. Let A and B be non-empty finite subsets of En, where A ∪ B is in
general position and of size m > n. Then, for any subsets A′ ⊂ A and B′ ⊂ B
of common size A′ ∪ B′ = n there exist A′′ ⊇ A′ and B′′ ⊇ B′ and a function
f(x) = cT x − d, such that f(a) > 0 and f(b) < 0 for any a ∈ A′′ and b ∈ B′′

respectively, and |A′′ ∪ B′′| ≥ �(m + n)/2�.
Indeed, the proof of Theorem 8 extends the proof of Theorem 5 and propose

a polynomial time approximation algorithm for the problem MASC-GP(n) with
time complexity bound O(m/n×Tn) and the approximation ratio O(m/n). Here,
Tn signifies the difficulty of solving a Kramer system of linear equations over n
variables.

Remark 1. Bound (16) is tight. In particular, it is attained on sets mentioned in
[6] and called uniformly distributed sets. In [7], the MASC problem is shown to
be polynomially solvable over such sets. The formal definition is as follows

Definition 5. A finite set Z = A ∪ B ⊂ En is known as uniformly distributed
(by Gale), if A ∩ B = ∅, |A ∪ B| = n + 2k for some natural k and, for any
non-trivial hyperplane H = {x ∈ En : f(x) ≡ cT x − d = 0}, there exist A′ ⊂ A
and B′ ⊂ B, |A′ ∪ B′| ≥ k, such that f(a) > 0 and f(b) < 0 for any a ∈ A′ and
b ∈ B′, respectively.

It is known that, for any natural numbers n and k, there exists a uniformly
distributed subset Z = A ∪ B ⊂ En of size 2k + n. Thus, in terms of machine
learning, it can be stated that, any time, when a training sample is defined by
a uniformly distributed subset, the algorithm proposed in the proof of Theo-
rem 5, in the family of the smallest VC dimension, in linear time with respect
to the sample length, will obtain a committee classifier (14) without making any
classification errors.

Nowadays, the advanced approximation algorithms for the MASC problem
are based on the synthesis of the mentioned above approach and the famous
Multiple Weights Update technique (see, e.g. [2]). Characteristics of the Boosted-
GreedyCommittee algorithm [13] which has the best known approximation factor
are shown in the following theorem.

Theorem 9. BoostedGreedyCommittee finds an O(((m ln m)/n)1/2)-approxi-
mate solution for the MASC problem in time mO(n). If, for the given sets A and B,
there is a minimum committee (f0, f1, . . . , fq−1) such that, for any t = 1, . . . , (q −
1)/2 and any a ∈ A, b ∈ B the following equation

(f2t−1(a) > 0 ∨ f2t(a) > 0) ∧ (f2t−1(b) < 0 ∨ f2t(b) < 0)

is valid, then the approximation factor of this algorithm is O(ln m).

5 Conclusion

This survey does not pretend to be called exhaustive. We intentionally restrict
ourselves to some theoretic results concerning the committees, leaving without
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considering their applications to numerous practical decision making problem
in economy, industry, and medicine forwarding the interested reader to recent
papers presenting interesting results in procatice, e.g. [1,5,16,22].
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Abstract. We consider the traffic lights optimization problem which
arises in city management due to continuously growing traffic. Given a
road network and predictions (or statistical data) about the traffic flows
through the arcs of this network the problem is to define the offsets and
phase length for each traffic light in order to improve the overall quality of
the service. The latter can be defined through a number of criteria, such
as average speed, average trip duration, total waiting time etc. For this
problem, we present an evolutionary based heuristic approach. We use a
simulation model on the basis of the SUMO modeling system to evaluate
the quality of obtained solutions. The results of numerical experiments
on real data confirm the efficiency of the proposed approach.

Keywords: Simulation modeling · Evolutionary algorithm · SUMO ·
Traffics lights sheduling

1 Introduction

Due to the continuous growth of traffic in urban area a number of various prob-
lems arise. In order to avoid serious congestions on the roads only a few solutions
may be applied. Among them we can mark three most effective. The first one is
to restrict the possibility of personal car owners to enter the urban area of the
city. It can be done in different ways: reduced parking space, paid parking in the
central area, paid entrance to the central area on working days, etc. Although
this is a very efficient way to reduce the traffic jams and the pollution level, this
is usually quite unpopular step for the citizens. It can only be considered in case
of a perfectly organized public transportation system, as it should provide the
carrying service almost equal to a private one. The second approach consists in
the development of the road network. New crossings, bridges, roads, additional
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lanes can significantly reduce the congestion. On the cons this approach is quite
expensive. Also it can hardly be applied in the historical centers of big cities,
with its narrow streets and buildings standing close to each other. The last but
not the least way to improve the quality of the city road network is to perform a
fine tuning of all of its existing components. This includes a possible redefining
of the routes and lane connections on the intersections, assigning special lanes,
prohibiting parking in rush hours etc. One out of the most effective steps in this
area is the precise tuning of the traffic lights (TL for short). While this procedure
is almost free of charge, if made in an optimal way, it provides quite efficient
results. Depending on the initial setup and current load of the network in some
cases total travel time might be reduced by 20% and even more.

A number of studies have been done on this topic. Majority of the papers
can be roughly divided into three sets. The first ones consider the problem
of optimal schedule for isolated crossing. In [13] authors propose a dual step
approach for fine tuning of TL on the intersection. Using a number of mobility
patterns on intersection an off-line scheme is applied first. The resulting optimal
schedules are used then in the on-line settings. In [4] it is supposed that flow is
unstable and may be different from hour to hour. To overcome this problem, the
authors intend to estimate the quality of a traffic light schedule according to the
worst case traffic scenario. It is assumed that for each lane the maximal and the
minimal flow values are known, and the total deviation from the median values is
bounded from above. A proposed dynamic programming approach allows finding
an optimal schedule, although the computational time can exceed 10 hours on
an average PC. Solution evaluation is made according to the model, described
in Highway Capacity Manual [8]. Synchronization of such isolated crossings is
sometimes considered as a problem itself. In [11] authors propose a differential
evolution approach and investigate the benefits of parallelism for this complex
problem. In [12] authors propose two models to tackle traffic signal coordination
problems for long arterials and grid networks.

The second direction of research deals with more complicated systems which
consist of several intersection. In [3] a cell-type road network is considered
(although the approach can be generalized). It is assumed that the traffic loads
are known and fixed. Green lights and offsets for each traffic light are under
optimization together with the cycle length, unique for all TL objects. To tackle
the problem the authors propose a heuristic approach, based on a Bee Colony
algorithm. Although the authors claim the effectiveness of the approach, the
tests were implemented only on artificially generated data, so it is impossible
to compare the solution provided by the approach with the real life behaviour.
The common point in all such works is a formulation of the problem in terms
of mathematical programming. It means that the quality of the road network is
somehow measured via explicit functions, while the possibility itself to create a
model, truthful enough, to simulate the real traffic is quite doubtful.

In order to overcome this difficulty, one can use a simulation model. In gen-
eral a simulation model is a kind of “black box” for a goal function calculation.
Given an input, it performs a number of calculations, and provides clear and
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understandable output. A concept of simulation modelling is widely applied
nowadays in operations research, when the problem under consideration deals
with complex systems with many agents. The reason is that inside a sophisti-
cated simulation model a lot of different relationships between the agents of the
problem might be incorporated. Being applied to the traffic problems, this app-
roach allows simulating every vehicle, pedestrian, lane of the road, traffic light
independently from the other objects, assign unique properties to this object
and provide a detailed specification of its interaction with other objects. The
result is a microscopic simulation, which can easily be tuned in order to provide
simulation as close to reality as needed. Among other simulation tools, SUMO -
Simulation of Urban Mobility [10] appears to be both quite accessible and pop-
ular among researchers. In [7] the authors propose an evolution approach, based
on a Particle Swarm heuristic to tackle the traffic light optimization problem.
The criterion to be optimized is the function, which depends on a number of flow
measurements, like the number of cars that have reached their destination within
the simulation scenario, total travel time, total delay, etc. The components of
this criterion were obtained during the SUMO simulation run. Test results on
the road networks of Malaga and Sevilla showed that a reasonable tuning of the
traffic lights may bring up to 15% raise in the efficiency of the road network.

In this paper we continue the efforts aimed at producing a good union of
evolution approaches and SUMO. In order to rise the outcome of the simulation
model we have incorporated a set of detectors into the simulated road network.
These detectors provide additional data on the traffic flows. This information is
then used to make a local improvement of the solution during the search process.

The paper is organized as follows. The second section provides a detailed for-
mulation of the problem. The description of the proposed PSO-based approach
is given in Sect. 3. Section 4 contains the results of the computational exper-
iment. Section 5 concludes the research and provides the directions for future
investigations.

2 Problem Formulation

We consider the traffic light optimization problem as follows. We are given a road
network and an information about the traffic flows. The road network is described
via set of arcs and edges. The road network is presented in a OpenStreetMaps
format, and contains all the information, including the number of lanes, road
marking, crosswalks, etc. There is also a set of traffic light objects given. It is
assumed that the number of phases, and their order are predescribed and fixed
for every TL. The values of the flows are presented as a statistical data and
contain the information on the type, speed and the number of vehicles, that
are passing through the measuring sensor. We distinguish between two types
ov vehicles: long heavy trucks and private cars. The instance of the problem
(scenario) consists of a road network with specified intersection, traffic lights,
lane connections, crosswalks and road signs. The second term is a set of vehicles.
Each vehicle has its own predefined route and a specified departure time. A traffic
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lights schedule defines the number of the vehicles that cross the intersections and
their order. The aim is to define a schedule for the traffic lights, specifying the
length of the green light for each phase of each traffic light, cycle length and
phase shift time (offset) in order to minimize the cost function.

We assume that each intersection is controlled by one traffic light, although
physically there might be more than one device per crossing. Also, it is assumed
that the number of different states of TL and its order is fixed. Thus, the setting
of an isolated TL can be encoded as an integer vector. The number of components
of this vector corresponds to the number of phases. Each phase itself is also a k-
vector, where k is the number of connections, controlled by a particular TL. Each
connection represents a possible direction of movement. An example, provided in
Fig. 1 demonstrates the concept. Here the number of connections is k = 12, and
they are ordered in a clockwise direction. During the first phase eight of them
are “green” while the other four are “red”. Thus each phase of the TL can be
denoted by a string of k characters. “GGggrrrGGGg” denotes the phase in which
4 connections have a green light, next 4 are red, and the other 4 are green once
again. The difference between the small “g” and the capital “G” denotes that,
although both connections are allowed and “green”, vehicles moving along “G”
connections have higher priority. Phase durations, written in a specified order,
like 60, 6, 31, 6, 30, 6 define the regime of the whole TL object. Here 6 phases
follow one after another in a cycle. Thus, the length of a whole cycle is defined
as a sum of its phases (139 s for the case). While the cycle length can be excluded
from the set of variables, it is not the case for the offset. The latter defines the
shift between the beginning of cycles of different TL objects. This option is
highly likely to be used, while managing big systems, since it introduces another
level of interaction between the TL objects. The set of variables related to one
intersection consist of the lengths of the phases and the offset value. Solution of
the whole problem can be encoded as a vector which contains an ordered list of
all TL’s phases and offsets, one for each TL. We assume that both the phase
length and the offset can take only integer values. The minimal value of the
greenred phase is limited by 8 s due to the safety reasons. The maximal value of
the cycle is also bounded, and that induces the boundaries on the length of each
phase. The offset value is between zero and the total cycle time. While the choice
of the offsets is usually considered as a stand-alone problem, it might cause an
inappropriate interrelation between the crossings, so in this model finding the
offset values is incorporated into an optimization process.

The second part of the problem which should be defined as well is the opti-
mization criterion. A number of different parameters can be used to estimate
the efficiency of the TL schedule. Among them are the number of cars that have
reached their destination within a scenario, total travel time and total delay. In
[7] the authors propose the following fitness function as a measure of quality:

fitness =
TT + SW + (NV · ST )

V 2 + P
.

Here TT denotes total travel time of the vehicles, ST stands for simulation
time. SW represents the amount of time that vehicles had to spend waiting on



An Evolutionary Based Approach for the Traffic Lights 23

Fig. 1. Phase distribution

the red light. NV is the number of cars that have not reached their destination
during the simulation. The denominator is the sum of squared number V of
vehicles that have reached their destination within a simulation run and an
additional parameter P , standing for phase balance. This parameter is defined
as follows

P =
tl∑

k=0

ph∑

j=0

sk,j
Gk,j

rk,j
,

where Gk,j is the number of traffic lights in green and rk,j is the number of
traffic lights in red in the phase state j of duration sk,j on the intersection k.

3 PSO Based Heuristic

Particle Swarm Heuristic firmly took its place in the list of the most simple
and at the same time effective evolutionary based approaches. It simultaneously
combines the advantages of the trajectory based approaches together with pluses
of the evolutionary methods. It was first proposed in [9] as a concept for opti-
mization of nonlinear functions. The idea of the approach was inspired by the
behaviour of the organisms in a bird flock or fish school. Being initially designed
for continuous optimization problems nowadays PSO is efficiently applied to the
discrete problems as well. It is a population-based iterative approach. In each
step of the algorithm a number of particles (represent solutions) form a popu-
lation, a swarm. Each particle corresponds to an encoded solution xi. In each
iteration k each particle i updates the corresponding solution xi according to its
velocity of movement vi:

xi := xi + vi.
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The velocity and direction of movement of each particle is guided by its own
best known position as well as the best known position of the whole swarm:

vi := ωvi + φpU(0, 1)(pi − xi) + φbU(0, 1)(b − xi).

Here pi denotes the best known position of particle i during the history of
the search, b denotes the best known position of the whole swarm. Coefficients
ω, φp and φb corresponds to the inertia force, and an impact of the personal
and the swarm best position on the direction of movement. As a matter of fact
these coefficients represent the only possible tuning parameters in PSO. U(0, 1)
represents a random number drawn from the uniform distribution over the open
interval (0, 1), independently for each particle in each iteration. The pseudocode
of the whole approach can be presented as follows:

Algorithm 1. PSO
1: Initialization. Generate particles xi, their initial velocity vi.
2: Evaluate particles, calculate f(xi) . Put pi = xi, b = pm, m = arg maxi(pi)
3: while a termination criterion is not met do:
4: for each particle i = 1, ..., S do
5: Pick random numbers: rp, rb from U(0, 1)
6: Update the particle’s velocity:vi := ωvi + φprp(pi − xi) + φbrb(b − xi)
7: Update the particle’s position: xi := xi + vi
8: Evaluate particles, calculate f(xi)
9: if f(xi) < f(pi) then

10: update the particle’s best known position pi := xi

11: end if
12: if f(xi) < f(b) then
13: update the swarm’s best known position b := xi

14: end if
15: end for
16: end while
17: Return b as best solution found

Algorithm 1 describes the pseudo-code of PSO. The algorithm starts by ini-
tializing the swarm. Each component of each particle is generated at random
using a uniform distribution over a predefined interval. The same is then done
with the velocities. Then all particles are evaluated via a simulation run. Then
the main cycle is started. During a predefined number of iterations the following
cycle is processed: particles velocities are updated and each particles position is
updated according to its velocity. There are three forces that drive each particle
- its own inertia weight which draws the particle in the same direction, traction
for the best position of this particle and for the best position found by all parti-
cles in the swarm. The values of the coefficients ω, φp and φb should be chosen
accordingly. Higher values of ω correspond to the exploration search, while lower
values lead to exploitation of the promising region. The balance between φp and
φb defines the advantage of individual solution over the general one. Optimal
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values of the parameters can be found during a meta-optimization process, or
optimized during the search process. After the movement each particle is eval-
uated during the simulation run. Then the best known positions of particles
and the whole swarm are updated and the process repeats. As no convergence
is guaranteed the algorithm terminates after a predefined number of steps. The
best particle found so far is taken as an answer.

The idea of a union between heuristics and simulation modelling is not new.
But, when dealing with complex systems the simulation run becomes an expen-
sive procedure which requires a lot of computational time. While simulation
itself is unavoidable being the only way to estimate the solution quality, it can
be used more efficiently. In this work we propose the following local search proce-
dure aimed at improving the outcome from a simulation. Among other options,
SUMO allows installing virtual detecting loops on selected sections of road net-
work. These loops serves as detectors and accumulate traffic data on the segment
of the road. The quantity of such loops does not affect the simulation runtime,
so one is able to use this feature during every run of SUMO. Being placed before
and after the intersection these detectors can provide a precise information on
the number of cars, that have passed the crossing on green or stopped on red.
This information, collected from all the directions of the intersection is then used
to improve the schedule of a particular TL. If we observe that one direction is
overcrowded and the queue on the stop line is only growing, we redistribute the
green time in favor of this direction in a predefined proportion. The schema of
this improvement for Energetikov roundabout can be presented as follows.

Algorithm 2. Local improvement
1: Initialization. Collect data on the vehicles flows from all directions Q1, Q2, Q3.
2: if Q1 ≥ Q2 + Q3 then add 2s to the 1st phase
3: for i ≤ 2 do
4: subtract 1sec from the 4th phase with probability p = Q2/(Q2 + Q3),

subtract 1sec from the 3rd phase otherwise
5:6: end for
7: end if
8: if Q3 ≥ Q1 + Q2 then subtract 2s from the 1st phase
9: for i ≤ 2 do

10: add 1sec to the 3rd phase with probability p = Q1/(Q1 + Q2),
add 1sec to the 4th phase otherwise

11:12: end for
13: end if
14: if Q2 ≥ Q1 + Q3 then subtract 2s from the 4th phase
15: for i ≤ 2 do
16: add 1sec to the 1st phase with probability p = Q1/(Q1 + Q3),

add 1sec to the 3rd phase otherwise
17:18: end for
19: end if
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4 Numerical Experiments

The proposed approach was implemented in Python environment and tested on
a real data instances. We considered the Stancionnaya street and Energeticov
roundabout, city of Novosibirsk, Russia, for our setting. The Softline company
provided us with the measurements of the real traffic flow on this road network,
which is known to be one of the most congestioned part of the city. Together with
the traffic flow we have obtained a real-life schedule for all of the TL objects on
the segment under consideration. On the basis of this data a set of instances was
created, representing different times of the day - morning rush hour, evening jams
and mid-day traffic. We considered a 30-min simulation settings. The values of
the total traffic flow for a usual Friday on the considered segment are respectively
3820, 3660 and 1672 vehicles. Initial simulation runs showed that while in small
to normal traffic conditions the real static schedule performs mostly satisfactory
it is not the case for the morning and evening rush hours. Also, we noted that the
most overloaded part of the considered network is the Energetikov roundabout.
Despite its size, this TL regulated junction is unable to carry its functions during
rush hours under the current TL schedule. Figure 2 represents the morning jams
on this roundabout.

Fig. 2. Morning congestion on the Energetikov roundabout.
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Fig. 3. Optimized scheduling reduces the congestion.

During the first computational experiment we considered only the round-
about itself in a setting of the morning rush hour. For this setting the value of
the fitness function with real TL schedule equals 1328 with 2166 vehicles being
able to finish their route during the simulation run. We performed 10 runs of
our approach, each starting from a randomly generated solution (schedule) and
obtained the following results. 9 out of 10 runs converged to the same solution
with the value of the fitness function of 964, which gives a 27% improvement. The
number of vehicles that arrived to their destination also increased by 13% and
reached 2452 vehicles. Similar improvement was also achieved for other instances.
The fitness function for the evening hours gained 23%, mid-day case gained 11%
rise. Figure 3 demonstrates the resulting improvement. The screenshot is taken
in the same moment of the simulation as in Fig. 2. We observe no queue from
the south direction and a reduced queue from the west direction.

In the second computational experiment we have considered the whole Stan-
cionnaya str. together with Energeticov roundabout. The results showed that
a total improvement of the fitness function value, reached on this segment is
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close to the results achieved for an isolated roundabout. Although the street
itself contains more than 20 crossings and 11 TL objects, the most challenging
roundabout junction still remains its bottleneck.

5 Conclusion

We have considered a traffic lights optimization problem. In this work we have
proposed an optimization approach, based on Particle Swarm optimization tech-
nique in combination with SUMO microsimulation environment. We have tested
the proposed approach on an extensive network in Novosibirsk city, Russia. The
results shows that the traffic lights schedules provided by our approach out-
performs the existing ones and allows to improve the overall quality of traffic
in the city. The results of this study may further be used in the planning and
constructing of VANET networks.
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Abstract. We give an approximation deterministic algorithm for solv-
ing the Random MST with given diameter of directed graph. The prob-
lem is NP-hard. Algorithm has a quadratic time complexity. A probabilis-
tic analysis was performed under conditions that edge weights of given
graph are identically independent uniformly distributed random vari-
ables on an interval with positive ends. Sufficient conditions of asymp-
totic optimality are presented.

Keywords: Graph · Minimum spanning tree · Asymptotically optimal
algorithm · Probabilistic analysis · Performance guarantees · Random
inputs · Uniform

1 Introduction

The Minimum Spanning Tree (MST) problem is a one of the classic discrete
optimization problems. Given weighted graph G = (V,E), MST is to find a
spanning tree of a minimal weight. The polynomial solvability of the problem
was shown in the classic algorithms by Boruvka (1926), Kruskal (1956) and
Prim (1957). These algorithms have complexity O(n2) and O(M log n), where
M = |E| and n = |V |.

It is interesting to note that the mathematical expectation of weight MST
on a random graph can be unexpectedly small. So for example on a complete
graph with weights of edges from class UNI(0; 1), the weight of a MST w.h.p.
(with high probability) is close to the constant 2,02... [3]. Similar results were
obtained in [1,2].

A generalization of the problem is a diameter-bounded MST problem. The
diameter of a tree is the maximum number of edges within the tree connecting
a pair of vertices. For this problem, given a graph and a number d = dn, the
goal is to find in the graph a spanning tree Tn of minimal total weight having its
diameter bounded above to given number d (this problem we call d-BAMST),
or from below to given number d (this problem we call d-BBMST).

Both problems are NP -hard in general.
c© Springer Nature Switzerland AG 2019
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The problem d-BAMST is polynomially solvable for diameters two or three,
and NP-hard for any diameter between 4 and (n − 1), even for the edge weights
equal to 1 or 2 (see in [4], p. 206).

The problem d-BBMST is NP -hard, because its particular case for d =
n − 1 is the problem “Hamiltonian Path” [4]. In the papers [7–9] it was studied
a problem d-BBMST on undirected complete graphs. In the earliest of these
articles, the asymptotically optimal approach was presented by an algorithm ˜A
with time-complexity O(n2) for graphs which belong to UNI(an; bn)-class. It is a
class of complete n-vertex graphs where edge weights are independent identically
distributed random variables with uniform distribution on a segment (an; bn).

Next, we recall two important concepts: an algorithm with estimates and an
asymptotically optimal algorithm.

By FA(I) and OPT (I) we denote respectively the approximate (obtained
by some approximation algorithm A) and the optimum value of the objective
function of the problem on the input I. An algorithm A is said to have per-
formance guarantees

(

εA(n), δA(n)
)

on the set of all random inputs I for the
n-sized problem, if

Pr
{

FA(I) >
(

1 + εA(n)
)

OPT (I)
}

≤ δA(n), (1)

where εA(n) is an estimation of the relative error of the solution obtained by
algorithm A, δA(n) is an estimation of the failure probability of the algorithm,
which is equal to the proportion of cases when the algorithm does not hold the
relative error εA(n) or does not produce any answer at all.

Following [6], we say that an algorithm A is called asymptotically optimal
on the n-sized problem, if there are exist such performance guarantees that
εA(n) → 0 and δA(n) → 0 as n → ∞. Apparently, judging by the review article
[11], the first examples of asymptotically optimal algorithms were presented in
the works [5,10] for the traveling salesman problem on random input data.

In current paper we study a given-diameter minimum spanning tree prob-
lem (d-MST) on the directed complete graph Gn. We introduce a polynomial-
time algorithm to solve this problem and provide sufficient conditions for this
algorithm to be asymptotically optimal. A probabilistic analysis was performed
under conditions that edge weights of given graph are identically independent
distributed random variables.

Next, let’s proceed to the description of the Algorithm A for solving the MST
problem with given diameter (d-MST).

2 An Algorithm A for Finding d-MST

Let d = dn be a parameter of the tree diameter.

Stage 1. On the first stage we build a path P (d) = (v0, v1, . . . , vd) of d edges.
For v0 start with an arbitrary vertex of a graph and let P (0) = (v0). On the
(k + 1)-th step, having path P (k) = (v0, v1, . . . , vk), a vertex vk+1 not laying in
P (k) is taken, which is closest to the vk.
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Let P = P (d), V1 = V \ {v0, v1, . . . , vd}, V2 = V \ V1.

Stage 2. Every vertex u ∈ V2 is connected by the shortest possible edge with a
vertex v(u) ∈ P \ {v0, vd}. By S we denote the set of edges (u, v(u)), u ∈ V2.

As a result we obtain n-vertex spanning tree TA with a diameter which equal
to d = dn which is an approximate solution of the problem.

Statement 1. The diameter of spanning tree TA is equal to d, since when
connecting any vertex from V2 to path P \ {v0, vd} during the Stage 2, the
diameter does not change.

Further, we denote by W (G′) the weight of the subgraph G′ of the given
graph G.

The weight WA = W (TA) of the resulting spanning tree is equal to

WA = W (P ) + W (S),

where W (P ) =
d
∑

k=1

c(vk−1, vk), W (S) =
∑

u∈V2

c(u, v(u)).

3 Analysis of Algorithm A
The algorithm has polynomial complexity O(n2), since the construction of the
path P in Stage 1 is done by greedy algorithm in time O((n − d)2), and in the
Stage 2 it takes about d(n − d) comparison operations.

A probabilistic analysis we perform under conditions that weights of graph
edges are random variables η from the class UNI(an, bn), namely, are identically
independent distributed random variables with uniform distribution on a set
(an, bn), 0 < an ≤ bn < ∞. Obviously, normalized variables ξ = η−an

bn−an
∈ {0; 1}

belong to the class UNI(0; 1).
Further we suppose that the parameter d is defined on the set of values d in

the range ln n ≤ d < n.
Put ψ = 1

e − 1 ≈ 0, 63.
By ηk (correspondingly, ξk) we denote random variable equal to minimum

over k variables from the class UNI(an, bn) (correspondingly, from UNI(0; 1)).
According to the description of the algorithm A, the weight WA of the con-

structed spanning tree TA is a random value equal to

WA = W (P ) + W (S) =
n−1
∑

k=n−d

ηk +
∑

v∈V2

ηd−1

=
n−1
∑

k=n−d

ηk + (n − d − 1)ηd−1 = (n − 1)an + (bn − an)W ′
A,

where

W ′
A =

n−1
∑

k=n−d

ξk + (n − d − 1)ξd−1.
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Statement 2.
EW ′

A ≤ ˜EW
′
A = ln

n

n − d
+

n − d − 1
d

.

Since
n−1
∑

k=n−d

ξk =
n−1
∑

k=1

ξk −
n−d−1
∑

k=1

ξk,

and Eξk = 1/(k + 1), 0 ≤ k < n, we have

EW ′
A =

n
∑

k=1

1
k

−
n−d
∑

k=1

1
k

+
n − d − 1

d
≤ ˜EW

′
A = ln

n

n − d
+

n − d − 1
d

.

Statement 3. In the case d < nψ

ln
n − 1
n − d

< 1.

Proof. It follows from d < ψn and ψ = 1
e − 1:

ln
n

n − d
< ln

n

n − ψn
= ln e = 1.

From Statements 2 and 3 we have

Statement 4. In the case 1 (d < nψ) the following inequality holds:

EW ′
A ≤ ˜EW

′
A =

n − 1
d

.

Statement 5. In the case 2 (ψn ≤ d < n) the following estimate is correct:

EW ′
A ≤ ˜EW

′
A = ln n.

Proof. Show that for all ψn ≤ d < n the following inequality holds:

ln(n − d) ≥ n − d − 1
d

. (2)

Indeed:
For d = n − 1 we have the equality ln(n − d) = n−d−1

d = 0.
For d = n − 2 the inequality is true, because we have ln 2 − 1

n−2 > 0,
For ψn ≤ d ≤ n − 3 the inequality is true, since on the one hand ln(n − d) ≥

ln 3 > 1, and on the other hand n−d−1
d < 1 because

n − d − 1
d

≤ n − nψ − 1
nψ

=
1

e − 1
− 1

nψ
< 1.

Taking into account Statement 2 we obtain

EW ′
A ≤ ln

n

n − d
+

n − d − 1
d

= ln n −
(

ln(n − d) − n − d − 1
d

)

≤ ˜EW
′
A = ln n.

Statement 5 proved.
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Lemma 1. The Algorithm A For solving the d-MST on entries UNI(an; bn) has
the following estimates of the relative error εn and the fault probability δn:

εn = (1 + λn)
(bn − an)
(n − 1)an

˜EW
′
A, (3)

where λn > 0:

δn = λn
˜EW

′
A. (4)

Proof.

P
{

WA > (1 + εn)OPT

}

≤ P
{

WA > (1 + εn)(n − 1)an

}

= P
{

(n − 1)an + (bn − an)W ′
A > (1 + εn)(n − 1)an

}

= P
{

W ′
A − EW ′

A >
εn(n − 1)an

(bn − an)
− EW ′

A

}

= P
{

˜W ′
A >

εn(n − 1)an

(bn − an)
− EW ′

A

}

≤ P
{

˜W ′
A >

εn(n − 1)an

(bn − an)
− ˜EW

′
A

}

= λn
˜EW

′
A = δn.

Further for the probabilistic analysis of Algorithm A we need the following
probabilistic statement

Petrov’s Theorem. [12] Consider independent random variables X1, . . . , Xn.
Let there be constants T and h1, . . . , hn > 0 such that for all k = 1, . . . , n and
0 ≤ t ≤ T

EetXk ≤ exp
{hkt2

2

}

. (5)

Define S =
∑n

k=1 Xk and H =
∑n

k=1 hk. Then

Pr{S > x} ≤
{

exp
{− x2

2H

}

, for 0 ≤ x ≤ HT,
exp

{−Tx
2

}

, if x ≥ HT.

Theorem 1. Let the parameter d = dn be defined so that

ln n ≤ d < n, (6)

Then Algorithm A solves the problem d-MST on entries UNI(an; bn) asymp-
totically optimal w.h.p., if

bn

an
=

{

o(d), for ln n ≤ d < nψ,
o( n

lnn ), if nψ ≤ d < n.
(7)



On Given Diameter MST Problem 35

Proof. We will carry a proof for two cases of possible values of the parameter d:
ln n ≤ d < nψ and nψ ≤ d < n.

Case 1: ln n ≤ d < nψ.

According to the formula (3) and Statement 4 for the relative error we have

εn = (1 + λn)
(bn − an)
(n − 1)an

˜EW
′
A

= (1 + λn)
(bn − an)
(n − 1)an

(n − 1)
d

≤ (1 + λn)
bn/an

d
.

Within considered Case 1, we set λn =
√

2 lnn
n−d−1 . Since ln n ≤ d < nψ, it is true:

λn < 1, and we see that εn → 0 under condition

bn

an
= o(dn).

Now using Petrov’s Theorem and Statement 4, estimate the fault probability

δn = Pr
{

W ′
A > λn

˜EW
′
A

}

= Pr
{

W ′
A > λn

(n − 1)
d

}

.

Set constants

hk =
{

1
k2 , if n − d ≤ k < n,
1
d2 , if 1 ≤ k < n − d.

Summing the constants hk, k = 1, . . . , n − 1, we obtain :

H =
n−d−1
∑

k=1

hk +
n−1
∑

k=n−d

hk =
n−d−1
∑

k=1

1
d2

+
n−1
∑

k=n−d

1
k2

=
n − d − 1

d2
+

n−1
∑

k=n−d

1
k2

.

We see that
H ≥ n − d − 1

d2
.

Set T = d; x = λn
(n−1)

d .

Taking into account the values λn, T, H, and x, the following inequality is
satisfied:

TH ≥ n − d − 1
d

≥ λn
n − 1

d
= x

According to Petrov’s Theorem, we have an estimate for the failure proba-
bility of the algorithm A:

δn = Pr{˜W ′
A > x} ≤ exp

{

− x2

2H

}

.
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Now show that
x2

2H
≥ ln n.

Indeed, since n − d ≥ n(1 − ψ), according to the inequality (6), we get

x2

2H
≥ (λn

(n−1)
d )2

2 (n−d−1)
d2

≥
(

λn
(n−d−1)

d

)2

2 (n−d−1)
d2

=
(n − d − 1)

2
λ2

n =
(n − d − 1)

2
2 ln n

(n − d − 1)
= lnn.

From this it follows that

δn = Pr{W ′
A > x} ≤ exp

{

− x2

2H

}

≤ exp(− ln n) =
1
n

→ 0,

as n → ∞. So in the Case 1 Algorithm A solves the problem d-MST on entries
UNI(an; bn) asymptotically optimal.

Case 2 : nψ ≤ d < n.

According to the formula (3) and Statement 5 for the relativ error we have

εn = (1 + λn)
(bn − an)
(n − 1)an

˜EW
′
A = (1 + λn)

(bn − an)
(n − 1)an

ln n ≤ (1 + λn)
(bn/an) ln n

(n − 1)
.

Within considered Case 2, we set λn = 2
d . From this λn < 1, and we see that

εn → 0 under condition
bn

an
= o

( n

ln n

)

.

Now using Petrov’s Theorem and Statement 5, estimate the fault probability

δn = Pr
{

W ′
A > λn

˜EW
′
A

}

= Pr
{

W ′
A > λn ln n

}

,

Set constants

hk =
{ 1

k2 , if n − d ≤ k < n,
1
d2 , if 1 ≤ k < n − d.

Summing the constants hk, k = 1, . . . , n − 1, we obtain:

H =
n−d−1
∑

k=1

hk +
n−1
∑

k=n−d

hk =
n−d−1
∑

k=1

1
d2

+
n−1
∑

k=n−d

1
k2

=
n − d − 1

d2
+

n−1
∑

k=n−d

1
k2

.

We see that
H <

n − d − 1
d2

+ 1,
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because

n−1
∑

k=n−d

1
k2

≤
n−1
∑

k=n−d

1
k(k − 1)

≤
n−1
∑

k=2

1
k(k − 1)

=
n−1
∑

k=2

( 1
k − 1

− 1
k

)

=
(

1 − 1
2

)

+
(1

2
− 1

3

)

+ . . . +
( 1

n − 2
− 1

n − 1

)

< 1.

Set T = d; x = λn ln n.
Taking into account the values λn, T, H, and x, the following inequality is

satisfied:
TH ≤ n − d − 1

d
+ 1 ≤ λn ln n = x.

According to Petrov’s Theorem, we have an estimate for the failure proba-
bility of the algorithm A:

δn = Pr{˜W ′
A > x} ≤ exp

{

− Tx

2

}

.

Since T = d, λn = 2
d , x = λn ln n, we have

Tx

2
= ln n.

From this it follows that

δn = Pr{W ′
A > x} ≤ exp

{

− Tx

2

}

= exp(− ln n) =
1
n

→ 0,

as n → ∞. So in the Case 2 Algorithm A also solves the problem d-MST on
entries UNI(an; bn) asymptotically optimal.

We conclude that within the values of the parameter d for both cases, under
conditions (7) we have estimates of the relative error εn → 0 and the fault
probability δn → 0 as n → ∞.

Theorem 1 is completely proved.

Conclusion. It would be interesting to investigate

(a) the Random d-MST problem on input data with infinite support like expo-
nential or trunketed-normal distribution;

(b) the Random d-MST problem on input data on undirected graph;
(c) the problem of finding several edge-disjoined spanning trees with a diameter

which is given or bounded above.
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Abstract. We consider the resource-constrained project scheduling
problem (RCPSP) with respect to the makespan minimization criterion.
The problem accounts for technological constraints of activities prece-
dence together with resource constraints. Activities preemptions are not
allowed. The problem with renewable resources is NP-hard in the strong
sense. We propose a variable neighborhood search algorithm with two
neighborhoods. Numerical experiments based on standard RCPSP test
dataset j120 from the PCPLIB library demonstrated that the proposed
algorithm produces better results than existing algorithms in the litera-
ture for large-sized instances. For some instances from the dataset j120
the best known heuristic solutions were improved.

Keywords: Project management · Resource-constrained project
scheduling problem · Renewable resources · Variable neighborhood
search

1 Introduction

We consider the resource constrained project scheduling problem (RCPSP) with
precedence and resource constraints. The RCPSP can be defined as a combina-
torial optimization problem. A partial order on the set of activities is defined
with a directed acyclic graph. We know duration, the set and amounts of con-
sumed resources, for every activity. We assume that at every unit interval of the
planning horizon T̂ the same number of resources is allotted, and the resources
are assumed to be unbounded outside the project horizon T̂ . All resources are
renewable. Activities preemptions are not allowed. The objective is to schedule
the activities of a project so as to minimize the project makespan. Accord-
ing to the classification scheme proposed in [19] this problem is denoted as
m, 1|cpm|Cmax. According to the classification proposed in [3], this problem is
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denoted as PS | prec | Cmax. As a generalization of the job-shop scheduling
problem the RCPSP is NP-hard in the strong sense [1] and is actually one of the
most intractable classical problems in practice. Worth noting that introducing
cumulative resources into the same problem makes the problem solvable with
polynomial complexity [9].

It may be conceivable to use optimal methods only for projects of small size.
An exact-solution approaches have been developed in [2,8,27,31]. For larger
problems, one needs heuristics to get the best solution within a convenient
response time, and heuristics remain the best way to solve these problems effi-
ciently. The construction methods are based on a scheduling scheme and an
activity selection mechanism made by one or more priority rules or sampling
techniques. Papers by Brucker [3], Kolisch and Hartmann [23], Herroelen et
al. [18], Kolisch and Padman [21], Kolisch and Hartmann [22], Hartmann and
Briskorn [15] survey the RCPSP, its numerous variants, and the solution tech-
niques.

Many local search methods have been proposed to solve the RCPSP. These
methods provide, in most cases, solutions better than construction methods as
they proceed with a starting feasible schedule generated by one or many con-
struction methods. As the local search methods are more effective than construc-
tion methods for large problems, this paper introduces a new hybrid approach
combining concepts of tabu search [10] and variable neighborhood search [14]
algorithm that uses the activity sequence encoding as a basis to search a neigh-
borhood. This allows fast computation strategies in order to provide very good
schedules in a real-time environment. The neighborhood search (NS) algorithm
is used to improve one feasible solution by fixing the start times of some activ-
ities and rescheduling other activities. Palpant et al. [29] proposed five selec-
tion methods. Their numerical experiments showed that the “Block” selection
method clearly outperformed other methods. Therefore, we use only the Block
selection method to form the sub-problem in all NS operators. In this paper we
propose a variable neighborhood search [14]. We use two alternative versions of
neighborhoods. In fact, one of them is a modification of that proposed in [29],
and the other is a modification of that proposed in [20]. The quality of the pro-
posed algorithm has been examined for dataset j120 from the electronic library
PSPLIB [25]. We provide results of the numerical experiments. For the dataset
j120 (50000 and 500000 iterations) we have obtained one of the best average
deviations from the critical path value. For 8 instances from the dataset j120 we
have found the best (previously unknown) heuristic solutions.

2 Problem Setting

The RCPSP problem can be defined as follows. A project is taken as a directed
acyclic graph G = (N,A). We denote by N = {1, ..., n} ∪ {0, n + 1} the set
of activities in the project where activities 0 and n + 1 are dummy. The latter
activities define the start and the completion of the project, respectively. The
precedence relation on the set N is defined with a set of pairs A = {(i, j) | i −
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−precedes j}. If (i, j) ∈ A, then activity j cannot start before activity i has
been completed. The set A contains all pairs (0, j) and (j, n + 1), j = 1, ..., n.

We have a set of renewable resources K, for each resource type k ∈ K there
is a constant availability Rk ∈ Z+ throughout the project horizon T̂ . Activity
j has deterministic duration pj ∈ Z+. The profile of resource consumption is
assumed to be constant for every activity. So, activity j requires rjk ≥ 0 units of
resource of type k, k ∈ K at every time instant when it is processed. We assume
that rjk ≤ Rk, j ∈ N, k ∈ K.

Now, we introduce the problem variables. We denote by sj ≥ 0 the starting
time of activity j ∈ N . Since activities are executed without preemptions, the
completion time of activity j is equal to cj = sj+pj . We define a schedule S as an
(n+2)-vector (s0, ..., sn+1). The completion time T (S) of the project corresponds
to the moment when the last activity n + 1 is completed, i.e., T (S) = cn+1. We
denote by J(t) = {j ∈ N | sj < t ≤ cj} the set of activities which are executed
in the unit time interval [t − 1, t) under schedule S. The problem is to find a
feasible schedule S = {sj} respecting the resource and precedence constraints
so that the completion time of the project is minimized. It can be formalized as
follows: minimize the makespan of the project

T (S) = max
j∈N

(sj + pj) (1)

under constraints
si + pi ≤ sj , ∀(i, j) ∈ A; (2)

∑

j∈J(t)

rjk ≤ Rk, k ∈ K, t = 1, ..., T̂ ; (3)

sj ∈ Z+, j ∈ N. (4)

Inequalities (2) define activities precedence constraints. Relation (3) corre-
sponds to the resource constraints. Finally, (4) defines the variables in question.

3 Variable Neighborhood Search

3.1 Solution Representation

We represent a feasible solution as an activity list [23]. Feasible solution is
encoded by the list of activities L = (j0, ..., jn+1). All lists under consideration
are assumed to be compatible with the precedence relations. For an arbitrary
list L, the serial decoding procedure (S-SGS) calculates the active schedule S(L)
[23]. It is known that there is an optimal schedule among the active schedules.
A schedule is called active if the starting times of the activities are such that
no activity can be started earlier of its starting time without violating either
a precedence relation or a resource constraint. The parallel decoder (P-SGS)
sequentially considers increasing moments of time, and schedules a subset of the
eligible activities to start at this moment.
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3.2 Resource Weights

We use the following heuristic rule to operate with a solution being evaluated.
In the preliminary stage, before VNS algorithm has started, we find the degree
of scarcity for each resource and rank them, assigning them with a weight. We
denote wk the weight of a resource of type k, k = 1, ...,K. If we have resources
weights, we can compare them, giving priority to those where the higher priority
(scarce) resources are used rationally, i.e., give less surplus of unused resources.
We denote the weight vj of activity j as

vj =
∑

k∈K

rjkwk/Rk.

We determine the degree of relative scarcity for the resources by solving a
relaxed problem. For this purpose, we weaken the renewability condition for the
resources and consider a problem with cumulative resources.

T (S) = max
j∈N

(sj + pj) (5)

under constraints
si + pi ≤ sj , ∀(i, j) ∈ A; (6)

t∑

t′=1

∑

j∈J(t′)

rjk ≤
t∑

t′=1

Rk, k ∈ K, t = 1, ..., T̂ . (7)

sj ∈ Z+, j ∈ N. (8)

The fast approximated algorithm to solve problem (5)–(8) is known, it’s
computational complexity depends on the number n of activities as a function
of order n2. In the case of real-valued activity durations, the algorithm is asymp-
totically exact with absolute error that tends to zero as the problem dimension
grows [7]. In addition, for integer-valued activity durations the exact algorithm is
developed [8,9]. In this work we consider a problem with integer-valued activity
durations, so we can use any one of these two algorithms to solve the relaxed
problem (5)–(8). We choose the first one. By applying this algorithm, in addition
to the solution of the relaxed problem, we also get the residue for each cumula-
tive resource that allows us to define the degree of scarcity for all resources: the
less is a resource’s surplus the scarcer it is. As a final step we apply the resulting
resource ranking rule obtained in the relaxed problem to the original problem
(1)–(4).

3.3 Block of Activities

For a given feasible schedule S = (s0, ..., sn+1) and a core activity j = 1, ..., n,
the NS operator reschedules a set of activities, As

j , while keeping the start times
of all other activities. Let P be a predetermined number of activities that will
be rescheduled. The value of P influences the computational time to obtain a
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neighborhood solution by rescheduling. Smaller value of P usually means fewer
activities to be rescheduled and less time to obtain the new schedule. The fol-
lowing Block selection method is used to create As

j [29].

CreateBlock(j, S) → As
j .

1. As
j = j; b = 0; create a random order for all activities in A/{j}. Let i is the

first activity in the order.
2. If sj − pi − b ≤ si ≤ sj + pj + b, As

j = As
j

⋃{i}.
3. If |As

j | = P , go to Step 6.
4. If i is the last activity among the ones not belonging to As

j based on the order
defined in Step 1, b = b + 1.

5. Let i be the next activity among the ones not belonging to As
j based on the

order defined in Step 1. Go to Step 2.
6. END.

The Block selection method basically selects a set of P activities that are over-
lapped or close to activity j in a given feasible schedule.

3.4 The Initial Solution

We can use any available method to generate a good initial solution rapidly. The
choice of the algorithm for the initial solution is not critical for the local search
methods. Gagnon et al. [6] noted that there is some dilemma concerning the
choice of the initial solution used by a NS method adaptation. Starting with a
very good solution doesn’t let enough space to find a significant improvement. On
the other side, it may take a long computation time to improve a bad starting
solution. We can use, for example, the S-SGS and P-SGS schemes, stochastic
methods with the forward-backward improvement procedure (FBI) [32], greedy
algorithms. In this paper we use the stochastic greedy algorithm [13] to build up
a starting schedule solution.

3.5 Tabu List Management

The NS method exploits the knowledge gained from the solutions considered
previously. This knowledge is maintained in a tabu list used as a memory in order
to avoid cyclicality, i.e. repeating of recent transformations applied to obtain the
solutions under evaluation. Recency tabu tenure is recorded by keeping at each
entry of the tabu list, of attributes on the last visited solutions. We use tabu list
of the constant length. As a tabu status of an arbitrary solution L we consider
the sum of the starting times:

TS(L) =
n∑

j=1

sj

for the schedule S(L).
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3.6 Neighborhood A

The first neighborhood NA(S) is the modification of the scheme proposed in
[30]. For a given feasible schedule S = {s0, s1, ..., sn, sn+1} and a core activity
j ∈ A, we determine the block of activities As

j . The NS operator reschedules
a set of activities As

j , while keeping the start times of other activities. The
rescheduling sub-problem is formed by the following steps. We fix the start times
of all the activities not belonging to the set As

j and release resources used by all
the activities from As

j in each time period t. The available amount of resource
k for activities from As

j in period t is Rk minus the resource used by all the
activities not belonging to the set As

j in period t. Then we derive an earliest
start time (EST) and a latest finish time (LFT) for each activity i ∈ As

j as
ESTi = max{sl + pl, ∀ l �∈ As

j and (l, i) ∈ A} and LFTi = max{sl, ∀ l �∈
As

j and (l, i) ∈ A}.
(ESTi, LFTi) defines a time window for activity i that could be rescheduled

in order to guarantee that the new schedule is still feasible for all activities that
will not be rescheduled. The rescheduling problem is to reschedule all the activ-
ities from As

j to minimize their makespan while meeting the resource restriction
of each period and time window constraints defined by (ESTi, LFTi).

Palpant et al. [29] used a commercial integer linear programming solver to
obtain the optimal solution for the rescheduling problem. Proon and Jin [30]
adopts the forward or backward serial scheduling generation schemes (S-SGS)
[23] to solve the rescheduling sub-problem. In this paper we propose a modifica-
tion of this algorithm [30]. In each iteration, a new random vector is produced
for the activities i ∈ As

j as a priority list. We order the activities in As
j by

decreasing their weights vj . The vector is created iteratively by randomly pick-
ing the next activity from the ordered list among all unselected activities whose
precedent activities in As

j have been selected. Following the priority list, one
activity by one is moved to the earliest (latest) start time that is precedence-
and resource-feasible and satisfies the time window (ESTi, LFTi). Once all the
activities i ∈ As

j are rescheduled, the activities that do not belong to As
j are

added to form a complete feasible solution. A global left shift is then performed
on all the activities in A to possibly reduce the makespan. The resulting new
schedule is compared with the previous solution before applying the NS oper-
ator. If the makespan is improved, the resulting schedule replaces the previous
schedule and the NS operator stops. If there is no improvement, as long as the
number of iterations has not reached a predefined limit, λ, the S-SGS is applied
on the schedule with a new random priority list as the next iteration.

3.7 Neighborhood B

As the neighborhood NB(S) we use the modification of the scheme proposed
in [20]. For a given list of activities L (and a correspondent active schedule
S = {s0, ..., sn+1}) and a core activity j ∈ A, we determine the block of activity
As

j . If the block contains at least one predecessor of the activity j then we put
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As
j to be empty. We represent the list L in the form of three consecutive lists

L = A1, As
j , A

2.
The element L′ of the neighborhood NB(S) is constructed for each activity

j ∈ A by using the non-empty block As
j . The list L′ is obtained from the list L

by the following steps. We fix the start times of all the activities from the set A1

and release resources used by all the activities from set A1 in each time period
t. We calculate a partial schedule for the activities belonging to set A1 via the
serial decoding procedure. Then we extend the partial schedule by scheduling
activities belonging to set As

j via the parallel decoding procedure. According
to the procedure for each schedule time t we have the corresponding eligible
set Et, i.e. a set of activities which could be started at t without violation of
any constraints. There are exponentially many possibilities to select a subset of
activities from the eligible set to include into the schedule. We solve the multi-
dimensional knapsack problem with objective function maximizing the weighted
resource utilization ratio [35]

max
∑

j∈Et

xj

∑

k∈K

wkrjk
Rk

, (9)

∑

j∈Et

rjkxj ≤ Rk −
∑

j∈J(t)

rjk k ∈ K, (10)

xj ∈ {0, 1}, j ∈ N. (11)

The right-hand side of the restriction is a remaining capacity of the resource
type k at the time t. We use Greedy Randomized Adaptive Search Procedures
(GRASP) to solve the problem. Note that in the process of solving the problem
(9)–(11), the advantage may be gained not by the activities that make the best
use of resources, but by those that make the best use of more scarced resources.

Finally, we construct the list L′ as follows. We put the activities ∈ As
j into

the list L′ in non-decreasing order of its starting times in the partial schedule.
Remaining activities are listed in the list L′ at the same order as in the list L.
The schedule S(L′) is called the neighbor sample for the schedule S. The set
that contains all neighbor samples is called a neighborhood of the schedule S
and is denoted by NB(S).

3.8 Algorithm Outline

Step 1. Generate the initial schedule S, and set T ∗ := T (S), S∗ := S. Tabu list
TL is set empty.

Step 2. Until the stopping criterion is satisfied, the following is done.
Step 2.1. Choose a neighborhood equally probable.
Step 2.2. Find the neighbor sample S′, not prohibited by the tabu list TL.
Step 2.3. If T (S′) < T ∗, then we assume T ∗ := T (S′), S∗ := S′.
Step 2.4. Update the tabu list TL and set S := S′.
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As a stopping criteria we consider reaching the maximum number of
sequences evaluated, denoted as λ. The value of T ∗ is the result of the algo-
rithm. If the value of T ∗ does not change for a certain (predefined) iterations
limit, then we change the block size (parameter P ). We make this change of
parameter P a predefined number of times. Finally, if the value of T ∗ does not
change a predefined number of times, we generate a new initial schedule.

4 Numerical Experiments

The VNS algorithm was coded in C++ in the Visual Studio system and run on
a 3.4 GHz CPU and 8 Gb RAM computer under the operating system Windows
7. In order to evaluate the performance of the proposed VNS algorithm, we use
the standard set presented in Kolisch and Sprecher [25] referred as j120. These
instances are available in the project scheduling library PSPLIB along with
their the best-known values. The dataset j120 contains 60 series of instances,
10 instances in each series, 600 instances in total. Each instance considers four
types of resources. Three parameters: network complexity (NC), resource factor
(RF) and resource strength (RS) are combined together to define the full factorial
experimental design. The NC defines the average number of precedence relations
per activity. The RF sets the average percent of various resource type demand
by activities. The RS measures scarcity of the resources. Zero value of the RS
factor corresponds to the minimum need for each resource type to execute all
activities while the RS value of one corresponds to the required amount of each
resource type obtained from the early start time schedule. The parameter values
used to built up these instances for the set j120 are: NC ∈ {1.5, 1.8, 2.1}, RF ∈
{0.25, 0.5, 0.75, 1} and RS ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. It is known [37] that values of
the parameters RF = 4, RS = 0.2 match hard enough series. Identifiers j12016,
j12036, j12056, j12011, j12031, j12051 with n = 120 correspond to the series with
the largest gap between the best solutions found and the length of the critical
path. Each triplet of such identifications matches values NC = {1.5; 1.8; 2.1},
respectively.

See Kolisch et al. [24] for the process of how the instances were created. The
instances can be found in Kolisch and Sprecher [25] and are downloadable at
http://www.om-db.wi.tum.de/psplib/.

The measure of the solution quality is the average percent deviation (APD)
from the lower bounds obtained by the critical path algorithm [24] for instances
in the dataset j120 which optimal solutions are unknown. It is customary to
compare the heuristic efficiency by restricting to the same number of schedules
evaluated. In Table 1 one can find comparison the VNS algorithm performance
with the previous results of experimental evaluation of competitive heuristics for
the dataset j120. Limit of schedules λ we set at 50000 and 500000. The scrutiny
of the presented results clearly shows the good performance of the proposed
VNS algorithm: for λ = 50000 it was the third, and for λ = 500000 it shows the
second result.

Furthermore, for 8 instances from the dataset j120 we obtained the best
(previously unknown) heuristic solutions, they are currently presented in the

http://www.om-db.wi.tum.de/psplib/
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Table 1. Average deviations from the critical path for dataset j120.

Algorithm Reference APD, %

λ = 50000 λ = 500000

GA Goncharov and Leonov [12] 30,50 29,74

VNS This paper 30,56 29,88

Biased random-key GA Goncalves [11] 32,76 30,08

GANS Proon and Jin [30] 30,45 30,78

ACOSS Chen et al. [36] 30,56 –

DBGA Debels and Vanhoucke [5] 30,69 –

GA Debels and Vanhoucke [5] 30,82 –

GA - Hybrid, FBI Valls et al. [34] 31,24 30,95

Enhanced SS Mobini et al. [28] 31,37 –

Scatter search - FBI Debels et al. [4] 31,57 30,48

GAPS Mendes et al. [26] 31,44 31,20

GA, FBI Valls et al. [33] 31,58 –

GA, TS-Path re-linking Kochetov and Stolyar [20] 32,06 –

GA-Self adapting Hartmann [17] 33,21 –

GA-Activity list Hartmann [16] 34,04 –

Sampling-LFT, FBI Tormos and Lova [32] 35,01 –

SGE-Priority rule, FBI Goncharov [13] 35,08 –

GA-Priority rule Hartmann [16] 36,51 –

PSPLIB library. We provide the list of the mentioned instances in Table 2.As
one can see from Table 1, the VNS algorithm conceded to the genetic algorithm
on the whole dataset j120. But at the same time, as one can see from Table 2,
the VNS algorithm has found the previously unknown best heuristic solutions
exclusively on the series with the largest gap between the best solutions found
and the length of the critical path. Therefore, we can conclude that on such “hard
series” of instances, the VNS algorithm shows better results in comparison with
the GA algorithm.

Average processing time is 16 s for λ = 50000 and 150 s for λ = 500000.

Table 2. List of instances for which new heuristic solutions are obtained.

Dataset Series Instances

j120 11 3

j120 16 8

j120 31 4

j120 36 3

j120 51 3, 4

j120 56 7, 8
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5 Conclusion

Authors have proposed a variable neighborhood search algorithm for the
resource-constrained project scheduling problem with respect to the makespan
minimization criterion. We have developed two versions of the neighborhoods.
The algorithm uses a heuristic that takes into account the degree of criticality
(scarcity) of the resources, which is derived from the solution of the relaxed prob-
lem with a constraint on the cumulative resources. We have conducted numerical
experiments on sets of instances from the PSPLIB electronic library. The results
of the computational experiments suggest that the proposed VNS algorithm is a
very competitive heuristic and yields better results than several heuristics pre-
sented in the literature. For some instances from the dataset j120 the best known
heuristic solutions were improved.

Further studies will be focused on constructing hybrid algorithms for the
RCPSP problem.
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Abstract. We consider a new real-world application of vehicle routing
planning in a finite time horizon. A company has a set of capacitated
vehicles in some depots and must serve a set of clients. There is a fre-
quency for each client stating how often this client must be visited. Time
intervals between two consecutive visits must be the same but the vis-
iting schedule is flexible. To get some competitive advantage, the com-
pany tries to increase its service quality. To this end, each client should
be visited by one driver only. The goal is to minimize the total length
of vehicles’ paths over the planning horizon under the frequency con-
straints and driver shift length constraints. We present an integer linear
programming model for this new consistent capacitated vehicle routing
problem. To find near-optimal solutions, we design the Variable Neigh-
borhood Search metaheuristic with eleven neighborhood structures. The
driver shift length and capacity constraints are penalized and included
into the objective function. Empirical results for real test instances from
Orenburg region in Russia with up to 900 clients and four weeks in the
planning horizon are discussed.

Keywords: Operations research · Mathematical models ·
Optimization problems · Time scheduling · Search methods · Routing
algorithms · Computer experiments

1 Introduction

The literature on vehicle routing problems has become very rich and covers nowa-
days a variety of applications, modeling approaches, and solution methods [16].
Due to their huge importance in practice, these problems have attracted atten-
tion of many researchers and motivate a large number of collaborations between
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companies and academia. In addition, vehicle routing problems lead to challeng-
ing formulations that require the development of sophisticated solution strategies
and motivates the design of clever heuristics and meta-heuristics.

Earlier [25] we considered the uncapacitated variant of our problem, and
now we consider a more general case. We have a capacitated heterogeneous fleet
of vehicles and a finite set of clients with their demand. Our goal is to find a
set of routes for the vehicles to service all clients with minimal total distance.
This optimization problem and its variants have been extensively studied for
nearly 60 years (see the early work of [6]). It is the consistent vehicle routing
problem (ConVRP) where the companies focus on client satisfaction to get some
competitive advantage [23,24]. Over a given time horizon we need to construct
a set of routes for the vehicles such that to service all clients. The consistency is
modeled as follows:

– a client can be visited by one driver only, and split deliveries are not allowed;
– a client should be visited at about the same time of a specific day selected by

the client in advance.

Thus, a company can increase client satisfaction by providing consistent ser-
vice [12,23]. In this paper, we consider a new ConVRP assuming that each client
is served by the same vehicle, and a frequency is given for each client indicating
how often this client should be visited. Each client is visited on the same day of
the week one, two or four times a month. These consistency requirements were
suggested by a Russian logistics company interested in results. Each vehicle has
a maximum capacity that limits the number of clients it can visit before return-
ing to the depot. All vehicles start from and return to their depot in the given
working interval. Our goal is to find a visiting schedule for each client and a
set of routes for each vehicle that jointly service all clients under the frequency
constraints and driver shift length constraints. The objective is to minimize the
total traveling distance for all vehicles over the planning horizon.

In [5], a similar periodic VRP was studied without consistency requirements.
In [12,24], the ConVRP was studied with fixed visiting scheduling for clients and
unlimited fleet. In our problem, we consider ConVRP with a flexible schedule
and limited fleet. To solve this real-world routing problem, we design the Vari-
able Neighborhood Search heuristic (VNS) [26,27]. We use eleven neighborhood
structures for local search including four large neighborhoods of Kernighan–Lin
[17,22]. To enlarge the search space, we relax the shift length and capacity con-
straints and include them into the objective function with non-negative penal-
ties that are modified during the search [5,10]. Intensification and diversification
strategies are applied in the VNS framework as well.

The rest of this paper is structured as follows. We first introduce the mathe-
matical model in Sect. 2. Neighborhood structures are presented in Sect. 3. The
framework of the VNS heuristic is described in Sect. 4. Computational results
for real-world instances are discussed in Sect. 5. The last Sect. 6 concludes the
paper.
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2 Mathematical Model

Let us consider a complete directed graph G = (V,A) with the set of nodes V
and the set of arcs A. The set V is the union of the set of depots M and the set
of clients I. Each depot m ∈ M has a heterogeneous fleet of vehicles. The set K
defines the total vehicle park. For each vehicle k ∈ K, we know its depot m(k)
and its capacity vk. For each arc (i, j) ∈ A, we have two parameters: the length
of arc dij and traveling time tij . We denote the length of a driver’s shift by T .
Each client i ∈ I has a given frequency of visits μi in the planning horizon D.
Time intervals between two consecutive visits of client i should be the same and
equal to τi = �|D|/μi�. A demand qi for each client i is given. By si we denote
the service time which is positive for each client and 0 for each depot.

We introduce the following binary decision variables:

xijkd =
{

1, if vehicle k on day d traverses arc (i, j),
0, otherwise,

yikd =
{

1, if vehicle k on day d visits client i,
0, otherwise,

wid =
{

1, if client i is visited on day d,
0, otherwise.

The auxiliary non-negative variables uikd will be used for subtour elimination.
Now we can present the consistent capacitated vehicle routing problem under

the shift length constraints as the mixed integer linear program:

min
∑
d∈D

∑
k∈K

∑
i∈V

∑
j∈V

dijxijkd (1)

subject to ∑
i∈I

qiyikd ≤ vk, k ∈ K, d ∈ D, (2)

ymkd =
{

1,m = m(k),
0,m �= m(k), m ∈ M,k ∈ K, d ∈ D, (3)

∑
k∈K

yikd = wid, i ∈ I, d ∈ D, (4)

∑
d∈D

wid = μi, i ∈ I, (5)

τi−1∑
t=0

wi(d+t) = 1, i ∈ I,d ∈ {0, . . . , (μi − 1)τi}, (6)

wiα + wiβ − 2 ≤ yikα − yikβ ,
i ∈ I, k ∈ K,α, β ∈ D,α �= β,

(7)

∑
i∈V

xijkd =
∑
i∈V

xjikd = yjkd, j ∈ V, k ∈ K, d ∈ D, (8)

uikd − ujkd + nxijkd ≤ n − 1, i, j ∈ I, k ∈ K, d ∈ D, (9)
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∑
i∈V

∑
j∈V

xijkd(tij + sj) ≤ T, k ∈ K, d ∈ D, (10)

uikd ≥ 0, i ∈ I, k ∈ K, d ∈ D, (11)

wid, xijkd, yikd ∈ {0, 1}, i, j ∈ V , k ∈ K,d ∈ D. (12)

The objective function (1) minimizes the total traveling distance for all vehi-
cles and all days of the planning horizon. In constraint (2), the total load of
vehicle k should not exceed its capacity. Equalities (3) show the distribution of
vehicles by depots. Equations (4) and (5) ensure that each client is visited accord-
ing to its frequency. Constraints (6) guarantee that time intervals between two
consecutive visits of each client are the same. Driver consistency is guaranteed in
(7). Constraints (8) make sure that each client has exactly one predecessor and
one successor and each vehicle returns to its own depot. Inequalities (9) prevent
subtours on the set of clients, n = |I|. The completion of the routes within the
driver shift is enforced by inequalities (10). The last two constraints define the
types of variables.

It is easy to see that variables uikd can be replaced by new variables uid

without loss of generality and dimension of the program can be reduced. Note
that the problem (1)–(12) can be infeasible because of the limited fleet of vehi-
cles in each depot and the driver shift constraints. To overcome this, we relax
the constraints (2) and (10) and include them into the objective function with
penalties γkd ≥ 0, λkd ≥ 0, k ∈ K, d ∈ D. As a result, we have got a relaxation
of the original problem (1)–(12) as follows:

L(x, γ, λ) = min
∑
d∈D

∑
k∈K

∑
i∈V

∑
j∈V

dijxijkd

+
∑
d∈D

∑
k∈K

(γkdκkd + λkdεkd) (13)

subject to (3)–(9), (11), (12) and additional constraints for new variables
κkd, εkd ≥ 0 which indicate the excess capacity in kilograms and the over-hours
in minutes for each pair (k, d):

κkd ≥
∑
i∈V

qiyikd − vk, k ∈ K, d ∈ D, (14)

εkd ≥
∑
i∈V

∑
j∈V

xijkd(tij + sj) − T, k ∈ K, d ∈ D. (15)

Now the relaxed problem (3)–(9), (11)–(15) is feasible even if there is just one
vehicle at any depot, and we can solve it by local search metaheuristics [28]. The
penalties γkd, λkd will be modified during the search in order to get a feasible
solution.
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3 Neighborhoods

In the past four decades, local search has grown from a simple heuristic idea into
a mature field of research in combinatorial optimization [1]. Local search is often
used to solve NP-complete problems since it provides a reliable approach for
obtaining high-quality solutions for realistic-size problems in a reasonable time.
For partition and permutation problems, many small and large neighborhoods
are introduced and studied from a theoretical and an empirical point of views [2,
3,11,13,14,16,21]. Below we present eleven neighborhoods for the problem which
is a special case of partition and permutation problems. We already considered
all these neighborhoods in [25].

Fig. 1. Moving the client to another route

Let us denote by σ a feasible solution to the problem. For each vehicle k ∈ K
and each day d ∈ D we have a route (the order of clients). We say that a driver
of vehicle k is happy on day d if κkd = εkd = 0 and unhappy if these constraints
are violated. We want to move clients from unhappy pairs (k, d) to happy ones.

Now we define the following neighborhood structures for solution σ.
The move neighborhood Nmove(σ) consists of some feasible solutions resulting

from σ by moving a client to another vehicle or the same vehicle but another
day (Fig. 1). If the client must be visited several times, we move all his visits
respectively. Moreover, we move an unhappy pair to a happy one only. In order to
find the best permutation for new schedules, we select the best positions of new
visits in previous schedules. The cardinality of this neighborhood is O(|I||D||K|).
It is a large set. Thus, we will use a randomized neighborhood Nq

move(σ), 0 < q <
1, which is a random part of the neighborhood Nmove(σ). Each element of the
set Nmove(σ) is included in the set Nq

move(σ) with probability q independently
of other elements.

The neighborhood Ñq
move(σ) has the same structure but includes the solutions

for all moves, except those from happy pairs to unhappy.
The swap neighborhood Nswap(σ) consists of some feasible solutions resulting

from σ by swapping two clients with the same frequency for the same or different
vehicles (Fig. 2). We consider only the clients which are close enough to each
other, the mutual distance between them is at most R, where R is a parameter
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of the neighborhood. The cardinality of the neighborhood is O(|I|2). Thus, we
apply the same randomization trick and use Nq

swap(σ) neighborhood instead of
the deterministic case.

Fig. 2. Swapping the two clients

The neighborhood Ñq
swap(σ) has the same structure but includes the solutions

for swapping clients with different frequency. Thus, we can swap client with 4
visits with two clients with 2 visits or four clients with 1 visits or another client
with 4 visits and so on.

Now we are ready to define four large Kernighan–Lin neighborhoods for a
feasible solution σ. The main idea of these neighborhood structures is similar
to the truncated Tabu Search method by a small neighborhood, say N(σ). The
neighborhood KL(σ) consists of l solutions resulting from σ by the following
rule [17,19]:

1. Find the best feasible solution σ′ in the neighborhood N(σ).
2. Set σ := σ′, even if σ′ is worse than σ.
3. Repeat steps 1 and 2 l times, if a move or swap is used at step 1 or 2 of

previous iterations, it can not be used anymore.

The sequence of σ1, . . . , σl defines l neighbors of the solution σ. We say that
σb is a local minimum with respect to the KL–neighborhood if σb is the best
solution of σ1, . . . , σl.

Using the six basic neighborhoods Nmove(σ), Nq
move(σ), Ñq

move(σ), Nswap(σ),
Nq

swap(σ), and Ñq
swap(σ) instead of the neighborhood N(σ), we may have

four Kernighan–Lin neighborhoods KLmove(σ), K̃Lmove(σ), KLswap(σ), and
K̃Lswap(σ) respectively. We illustrate the idea of the Kernighan–Lin neighbor-
hoods in Fig. 3.

As we have mentioned above, the position of a new client in scheduling is
selected without reordering other clients for the same pair (k, d). For improving
the final scheduling, we apply local descent algorithm by the well-known 2-opt
neighborhood for each pair (k, d). The idea of this neighborhood is to choose two
non-adjacent arcs and replace them by two other arcs for creating a new tour.
The main goal is removing intersections of arcs (see Fig. 4). In fact, we divide the
problem into |K||D| the traveling salesman subproblems, and a local optimum
by the 2-opt neighborhood is obtained for each subproblem independently [15].



The VNS Approach for a Consistent Capacitated Vehicle Routing Problem 57

L()

iterations








m

N

l

......

Fig. 3. The Kernighan–Lin neighborhood

Fig. 4. Neighborhood 2-opt. Removing the intersection

4 Optimization Method

Variable Neighborhood Search is an efficient framework of local search invented
about 20 years ago by Pierre Hansen and Nenad Mladenovich [26]. It is based
upon a simple, but a strong principle: a systematic change of a neighborhood
within the search. Its development has been rapid and successful in many real-
world applications [27], including hard routing problems [18,20] and games [7–9].
The main idea is to focus on local optima and change the landscape of search
assuming that the local optimum for one neighborhood may not be the local
optimum for another neighborhood. Below we apply this method to the relaxed
problem. We used this method for a simpler problem in [25].

To start the method, we need to create an initial solution σ and define the
penalties. The VNS method can start from an arbitrary solution, but we use a
greedy solution to get a uniform distribution of clients through all pairs (k, d),
k ∈ K, d ∈ D. We start from clients with high frequency and wish to minimize
the maximal number of clients per day and per vehicle [4]. We put identical initial
values of all penalties, λkd = 2.5, γkd = 3 in such a way to get approximately
the same values of the items in the objective function L(x, γ, λ).
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In each iteration of the local search, we select a neighborhood and move from
the current solution to the best neighboring solution. For the Kernighan–Lin
neighborhoods, we generate l solutions and select the best one. The pseudo-code
of the VNS algorithm is presented below.

Algorithm 1. VNS
Require: initial solution σ, neighborhoods N1, . . . , N8, stopping criterion, shaking and

intensification rules
1: Define parameters λ, γ, q1, . . . , q4, l, R
2: while stopping criterion is not reached do
3: k = 1
4: while k ≤ 8 do
5: Apply local search by neighborhood Nk

6: k = k + 1

7: Apply local descent by 2-opt neighborhood for each pair (k, d)
8: Update the penalties
9: Intensification

10: if shaking condition is true then
11: Shaking

12: Apply local descent by two swap neighborhoods with q = 1
13: Apply local descent by 2-opt neighborhood for each pair (k, d)
14: return the best found feasible solution

At the initialization step, we generate an initial solution by a greedy algo-
rithm and define the parameters of the method (line 1). Note that a randomiza-
tion of the first four neighborhoods may be different and qi �= qj , 1 ≤ i �= j ≤ 4.
We define these values in such a way that the cardinality of each randomized
neighborhood is the same and equal to 200 on average. Thus, we accelerate the
search, reduce the running time per iteration, and add a diversification aspect
into the search process. The shaking procedure (line 11) is an additional diver-
sification rule. We use some random steps by the swap or move neighborhoods
in this procedure if the best found solution does not change for a long time.

The stopping criterion (line 2) is the total number of iterations which depends
on the number of clients and their frequency. We use up to O(n2

1) iterations in
our experiments, where n1 =

∑
i∈I μi.

Local search (lines 5, 6) is applied by the move and swap neighborhoods
and then by the Kernighan–Lin neighborhoods. In the latter case, we use local
descents only and terminate the process in a local optimum. For the four basic
neighborhoods, we terminate the process after a prescribed number of itera-
tions. Further (line 7), we get a local optimum by 2-opt neighborhood for each
pair (k, d) of vehicle and day. As a rule, we discover a new best solution at this
stage. If we find a solution with κkd > 0 for some pair (k, d) then we increase
the penalties γkd := 1.05γkd. If a new solution has εkd = 0 for all pairs (k, d),
then we decrease the penalties λ. Otherwise, we increase them. In general case,
we modify the penalties by the following rule (line 8):
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γkd =
{

1.05γkd, if κkd > 0,
γkd, if κkd = 0,

λkd =
{

1.03λkd, if εkd > 0,
0.97λkd, if εkd = 0.

In the intensification procedure (line 9), we return to the best found solution
and increase all randomization parameters q1, . . . , q4 and the value of penal-
ties λkd again to check the most promising area more carefully. If we discover a
new best solution, we return to the previous values of these parameters. In the
shaking procedure (line 11), we do the same for q1, . . . , q4 and λkd to start the
search in a new area of the feasible domain. Finally, we apply deterministic local
descent (lines 12, 13) by Nswap and Ñswap neighborhoods (q3 = q4 = 1) and get
local optima by 2-opt neighborhood for each pair (k, d).

5 Computational Results

The described VNS algorithm was implemented in C++ with MSVC++ 14.16 com-
piler using standard release options. All experiments were conducted on a com-
puter with an AMD Ryzen 5 2600 3.4 GHz processor and 16 GB of RAM running
under Microsoft Windows 10 (64-bit).

The data set used to test the algorithm is proposed by a Russian logistics
company with 892 clients from Orenburg region. Among them, one third are
clients of frequency 1, and slightly more than half are clients of frequency 2.
There are three depots located at a distance of 250 km from each other. We
randomly select a part of the large instance to get small ones. For this purpose, we
varied certain parameters used during client selection. These parameters include
a number necessary for localization of the depots (radius), selection probabilities
different for different depots, and a number specifying the random shift of the
vehicles relative to their initial position. For the client selection and further in
the algorithm, a 32-bit Mersenne Twister pseudo-random number generator was
used. As a result, we generated 10 various instances with 600–700 clients. This
range of the number of clients allows obtaining diverse large instances with the
same number of vehicles in each depot. Besides, this range is close to the actual
number of clients served by the company in one region. We assigned two vehicles
in each depot for these test instances.

Also, to compare the algorithm with an optimization solver, data set with 672
clients from Orenburg region was used. Slightly less than three-quarters of these
clients have a frequency of 1, while the numbers of clients of frequency 2 and 4
are approximately equal. There are the same three depots for this set. Using the
same method as for the larger data set, we generated instances with 320–350 and
130–150 clients. We assigned one vehicle in each depot for the former instances
and one vehicle in a single depot for the latter ones.

Client attributes include name, GPS coordinates (latitude and longitude), the
frequency of visits, service time, and demand. The shift length is 8 h, including
40 min for a break. The time for a break is not fixed in drivers’ schedules, and
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they can spend it at any free from client service time of the working day. The
problem we are investigating does not include time windows. Hence, we can just
adjust the shift length to T = 7 h 20 min.

Vehicles can leave the depot starting at 8:30, but must arrive at the first
client no earlier than 9:00. The last client must be serviced before 17:00, but the
vehicle must return to the depot no later than 18:00. To include these additional
requirements into the model, we modify the matrix (tij) by the following rule:

tij =

⎧⎨
⎩

tij , if i, j ∈ I,
max{0, tij − 30′}, if i ∈ M, j ∈ I,
max{0, tij − 60′}, if i ∈ I, j ∈ M.

The planning horizon is 20 days. The speed of each vehicle is 50 km/h. For
Kernighan–Lin neighborhoods we generate l = 25 neighboring solutions. The
threshold R for the swap neighborhoods is defined as 20 km. Local search by the
all basic neighborhoods of the VNS algorithm (line 5) is set as 1300 iterations.
Results are obtained by running the VNS in 10 min 10 times per instance.

Figure 5 illustrates the typical behavior of the method. The initial value of
the objective function L(x, γ, λ) is huge with excess capacity κ =

∑
kd κkd and

total over-hours ε =
∑

kd εkd. And after 2000 iterations we found a solution
with κ =

∑
kd κkd = 0. Note that the total over-hours and overload decrease as

iterations grow. We denoted by × new record values of the objective function for
a feasible solution. We see that the value decreases for a feasible solution too.

In Tables 1, 2, 3 and 4, we show computational results for these 10 small
instances. The purpose is to study the impact of the capacity constraint on
the solution. Each instance was run 10 times and the minimal, average, and
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maximum values for these runs are presented in the tables. To compare the
obtained solutions the objective function (13) with penalties γkd = 50, λkd = 40
was used.

Table 1. Capacity vk ∈ [800, 1000]

Instance Min Avg Max

ε Distance ε Distance ε Distance

1 0 15360 0 15867.6 0 16195

2 0 16060 0 16298.4 0 16586

3 4 16282 9 16357.6 28 16260

4 0 16961 0 17203 0 17370

5 0 15434 3.5 15803.1 0 16796

6 0 14334 0 14639.4 0 15204

7 0 15521 0 16118.5 0 16704

8 0 16324 0 16695.3 0 16993

9 0 16381 5 16886.3 10 17519

10 4 17158 6.4 17572.5 0 18443

At first (Tables 1, 2 and 3), we used the model which does not allow violation
of the capacity constraint at any step of the algorithm (including shakes). Table 1
show results for the case when the vehicles have enough capacity for all clients
they may need to serve. By doing this, we were able to get an average daily load
for the vehicles from different depots. For most of the instances, this number
turned out to be 400–500 kg. From Tables 2 and 3 we see that the results become
worse with the tightening of the capacity. Also, Table 3 shows that the search
space can become so narrow that for some vehicles there will be no other options
but to serve clients intended for another depot (instances 2–4).

Next, the relaxed formulation of the problem with capacity penalties was
used (Table 4). This allowed us to find much better solutions in most of the
instances. It confirms the need for the penalties.

It should be taken into account that despite the presence of penalties in some
solutions, in most of the instances they are small enough to be neglected.

In order to study the efficiency of the algorithm, we compared it with the
results obtained by metaheuristic solver LocalSolver. We chose it instead of such
classical MILP solvers as CPLEX and Gurobi, since the latter cannot find the
exact solution in a reasonable time for even quite small instances of the problem.
The results are presented in Tables 5, 6, 7 and 8.
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Table 2. Capacity vk ∈ [500, 600]

Instance Min Avg Max

ε Distance ε Distance ε Distance

1 0 15467 0 16125.4 0 16686

2 0 17354 17.3 17446.5 20 18271

3 13 16319 29.9 17295.2 75 18631

4 0 17308 0 17546.5 0 17905

5 0 16207 4.8 16489 0 17241

6 0 14599 0 14986.9 0 15324

7 0 15896 0.6 16513.6 0 16900

8 0 16798 6.5 17347.1 48 18106

9 33 16180 45 16362 101 16201

10 1 17667 1.9 18149.1 1 18464

Table 3. Capacity vk ∈ [450, 500]

Instance Min Avg Max

ε Distance ε Distance ε Distance

1 0 16083 0 16373.6 0 16700

2 326 17968 1236.7 19365.9 1693 19335

3 1023 18604 1651.5 18985.9 1992 18722

4 389 18886 1400.2 20205.4 2309 20979

5 0 16704 2.1 17420.2 1 18091

6 0 15893 22.8 16584.8 162 16623

7 18 16529 14.5 17306.4 51 18197

8 2 17822 28 17718.9 126 18523

9 104 16073 111.7 16314.3 101 17389

10 36 19520 87.8 19101.7 111 19416

Since LocalSolver did not allow us to obtain satisfactory solutions to the
problem with all the hard constraints, we decided to use the minimized objec-
tive function (16) for it. The main challenges for the solver were caused by
the constraints (5)–(7) of the problem. We include constraints (6)–(7) into the
objective function (16) with penalty ψ, while constraints (5) remained hard.
Variable ζ in (16) denotes the total number of constraints (6)–(7) violations. We
used penalties γkd = 100, λkd = 200, ψ = 105 for this objective function. The
constant φ necessary for determining the variable χ was set to 3 · 105 for Table 6
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Table 4. Capacity vk ∈ [450, 500] with the penalties

Instance Min Avg Max

ε κ Distance ε κ Distance ε κ Distance

1 4 0 15388 6.1 0 15896.2 36 0 16411

2 178 0 17449 270.5 11 18472.9 468 0 18909

3 280 0 17978 276.5 88 18606.8 595 0 19204

4 0 0 19710 24.7 0 19920.5 34 0 20324

5 0 0 16335 9.3 0 16560.7 31 0 16563

6 22 0 14638 26.5 0 15131.6 79 0 14767

7 7 0 16092 2.5 0 16700 0 0 17212

8 0 0 16883 0.3 0 17200.3 1 0 17930

9 114 0 16208 115.7 0 16338.7 130 0 16084

10 11 20 18837 21.5 18 19037.7 18 20 19503

and 8 ·104 for Table 8. To provide non-deterministic results for LocalSolver runs,
we added to the model one excessive constraint repeating already contained one.

χ =
{

1000, L(x, γ, λ) > φ,
1, otherwise.

Ls(x, γ, λ, ψ) = min

⎛
⎝∑

d∈D

∑
k∈K

∑
i∈V

∑
j∈V

dijxijkd

+
∑
d∈D

∑
k∈K

(γkdκkd + λkdεkd)

)
χ + ψζ (16)

In Tables 5, 6, 7 and 8, we show computational results obtained by our VNS
algorithm and by LocalSolver. There were 10 runs for each instance. For Tables 5
and 8, computational time was set to 5 min, and for Tables 6 and 7, it was set to
10 and 2 min, respectively. To compare the obtained solutions, penalties λkd = 40
for Tables 5 and 7 and γkd = 25, λkd = 20, ψ = 300 for Tables 6 and 8 were used.
All the solutions obtained for the former tables have κ = 0.

It is clearly visible that the results obtained by our algorithm are better than
those of LocalSolver in all instances. It is also worth noting the decrease in the
difference between the maximum and minimum objective values of the results
with a decrease in the dimension of the problem.
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Table 5. The results for instances with 320–350 clients for VNS algorithm

Instance Min Avg Max

ε Distance ε Distance ε Distance

1 0 10473 0.1 10486 1 10483

2 0 10543 2.1 10643 0 10874

3 0 10821 0 10853.3 0 10892

4 2 9950 3 10018.5 3 10141

5 0 8834 0.7 9042.2 0 9399

6 0 8830 0 8913.4 0 9301

7 0 9748 1.4 9867.3 11 9870

8 0 9204 0.6 9266.5 0 9383

9 0 10904 0.8 11014.9 6 11134

10 0 10217 0 10243.7 0 10277

Table 6. The results for instances with 320–350 clients for LocalSolver

Instance Min Avg Max

ε κ ζ Distance ε κ ζ Distance ε κ ζ Distance

1 48 0 0 10673 307.2 2 16.9 11713.1 312 0 73 12336

2 316 0 0 11094 404.7 3 46.7 11490.6 236 0 243 11874

3 120 0 0 10659 304.3 1 67.3 11525.5 377 0 219 11586

4 163 0 0 10790 326 0 17 11708.9 294 0 96 12603

5 12 0 0 11309 223.2 2 2.1 10722.3 474 20 3 10730

6 189 0 0 9980 329.9 10 3.7 10120 567 0 14 10240

7 145 0 0 11016 381 4 4.2 11163.1 585 20 11 10929

8 296 0 0 9827 482.1 7 29.5 10531.7 502 0 78 10452

9 374 0 0 11202 405.1 1 47.6 11993 240 10 124 12520

10 67 0 0 10974 216.2 0 4.3 11258.5 361 0 14 11891

The large instance with 892 clients can be effectively solved using developed
VNS algorithm as well. However, to achieve an acceptable value of the variance
for the results of applying the algorithm for an instance with such a number
of clients, more computational time is required. Although smaller instances are
usually examined in the literature, large-scale ones are also of interest to study,
as they are often applicable in the real world.



The VNS Approach for a Consistent Capacitated Vehicle Routing Problem 65

Table 7. The results for instances with 130–150 clients for VNS algorithm

Instance Min Avg Max

ε Distance ε Distance ε Distance

1 0 3199 0 3205.5 0 3217

2 0 3388 0 3394.8 0 3405

3 0 2747 0 2759.4 0 2769

4 0 1657 0 1666.7 0 1687

5 0 3040 0.2 3053.6 2 2992

6 0 2110 0 2115.5 0 2126

7 0 2818 1.1 2819.3 11 2818

8 0 2960 0 2972.8 0 2987

9 0 2879 0 2883.5 0 2894

10 0 3061 3 2994.1 5 2958

Table 8. The results for instances with 130–150 clients for LocalSolver

Instance Min Avg Max

ε κ ζ distance ε κ ζ Distance ε κ ζ Distance

1 0 0 0 3430 20.4 4 0.4 3626.4 98 40 0 3650

2 65 0 0 3382 123.9 3 1 3683 241 0 6 3668

3 0 0 0 3130 40 0 0.7 3309.9 236 0 7 3357

4 0 0 0 1784 1.6 0 0.7 2481.8 16 0 3 3074

5 2 0 0 3207 129.4 8 1.3 3440.3 305 0 9 3502

6 0 0 0 2273 2.3 0 0.9 2637 23 0 4 2281

7 0 0 0 3212 89.6 1 0 3238.8 277 0 0 3223

8 0 0 0 3219 87.5 2 3.2 3258.5 321 0 32 3475

9 0 0 0 3128 17.9 0 0.5 3413.8 62 0 5 3451

10 61 0 0 3373 150.5 17 2 3286.5 265 0 13 3515

6 Conclusion

In this paper, we have studied a new consistent capacitated vehicle routing prob-
lem and designed the VNS algorithm for real-world instances. This algorithm is
able to solve large-scale instances and reduce the total traveling distance.

Companies today are increasingly focused on customer satisfaction to achieve
a competitive advantage. One of the components of these customer-first strate-
gies is service consistency [12,23]. Thus, it is important to study problems
with consistency requirements addressing real-world challenges. In our version of
ConVRP, it is required that the same driver visit the same clients on the same
day of the week according to their frequency of visits. We presented our program
to the logistics company, and they were satisfied with it.
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One of the new research directions is the control of time for client visits. As
we have mentioned before, a logistics company can get an additional competitive
advantage if each client is visited at about the same time. Such type of constraints
can be incorporated into the model to improve the service of clients. Sure, new
constraints will increase the total traveling distance and may require additional
vehicles. The optimal balance here is an important line for research as well.

References

1. Aarts, E., Lenstra, J.: Local Search in Combinatorial Optimization. Wiley, New
York (1997)
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Abstract. In this paper, we consider the competitive p-median facility
location and design problem with elastic demand that we have earlier
formulated based on the problem with elastic demand and the classical
p-median problem. The situation that arises in a new company planning
to enter the existing market of goods and services is considered. The firm
wants to locate its businesses in p points, capturing as much of the prof-
its from competitors as possible. The problem has a mathematical model
with a non-linear objective function. Searching the optimal solution to
the constructed problem is difficult. The CPU-time of commercial soft-
ware is significant even for not too large dimension. For the new model,
we have previously proposed variants of local search algorithms, and cre-
ated a series of test instances based on real data. In this paper, an ant
colony algorithm is developed, and an artificial ant algorithm is pro-
posed. The algorithm’s parameters are adjusted taking into account the
specifics of the problem. Experimental studies and comparison of the ant
colony optimization algorithm with the simulated annealing are carried
out.

Keywords: Discrete optimization · Location problem · p-Median ·
Elastic demand · Nature-inspired algorithm · Ant colony

1 Introduction

At the present time it is often necessary to solve the applied problems with large
data volume. Their size makes the usage of the commercial software more compli-
cated. Moreover, the theoretical difficulty of such problems testifies the creation
of the multi-purpose effective algorithm to be impossible. That is why the cre-
ation of a problem-specific method for approximate calculation has become more
important. During the last twenty years the nature inspired methods (based on
the natural processes and events) have been actively developed. Those algorithms
comprise one of the artificial intelligence branches. Its subject is modelling multi-
agent systems, evolutionary processes, physical phenomena and others from the
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problem solving point of view. Collective intelligence methods take special place
among the artificial intelligence methods. Swarm intelligence systems usually
consist of a set of agents interacting with each other and with the environment.
They are represented by some self-organizing systems, the agents of which are
relatively simple but, at the same time, able to make collective decisions. The
Ant Colony algorithm, the Firefly algorithm, The Bee Colony optimization, the
Bat algorithm, Intellectual Water Drops algorithm and others are among them
[2,10]. During some years the development of different approximation algorithms
for the discrete Location problems has been held in Sobolev Institute of Math-
ematics SB RAS [3,5,6,8]. Special attention should be paid to the development
of the Ant Colony algorithm, which helped to gain the quality solutions rather
fast. In this paper we continue that line of research and offer the Ant Colony
Optimization Algorithm for competitive p-median facility location and design
problem with elastic demand. The special aspects of the algorithm development
are described, the results of research are included, and the obtained results are
discussed.

2 Competitive p-Median Problem with Elastic Demand

Let us consider the situation in which some new company is to locate a fixed
number of its facilities in the market according to the amount of finances. It can
define the locations and the types of the facilities, for instance, a supermarket,
a market, etc. It has to rival for the demand with the competitors existing in
the market. The utility of facilities depends on the distance, their attractiveness
and other factors. The serviced share of the demand changes flexibly depending
on the new company’s decisions and the choice of the customers. The company’s
aim is to define the locations and types of its facilities in order to attract the
largest share of total demand. Customers choose the facilities depending on the
distance, attractiveness and other factors. That is why the share of the serviced
demand changes elastically depending on the companys and customers decisions.
The problem was formulated in this form by Aboolian, Berman, Krass [1].

In this paper, we consider the p-median competitive facility location and
design problem (CPFLDP) that we have formulated in [9], combining the con-
ditions of the problem with elastic demand and the classical p-median problem.
Let us construct a mathematical CPFLDP model. Introduce the following nota-
tion, considering [1]: N is a discrete set of demand points, where a facility can
be located; C ⊂ N are the competitor’s points; S = N \C are the points of pos-
sible location of the new company; R is set of facility types; wi is the demand
weight at point i ∈ N ; cjr is the opening cost of a facility in case r ∈ R at point
j ∈ S; p is a number of facilities to be opened; p ≤ |S|. The problem variables
take the value xjr = 1, if a facility of the type r ∈ R is located in point i ∈ N ,
xjr = 0 otherwise. The utility uij =

∑R
r=1 kijrxjr, where the supplementary

coefficients kijr = ajr(dij + 1)−β take into account the distance dij between
the points i, j ∈ N , the customers’ sensitivity to it β and the attractiveness
ajr of the facility type r. The total utility Ui(S) from the facilities opened by
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the company in points i ∈ N is determined by the formula Ui(C) =
∑

j∈C uij .
The notation for the competitors are similar. The demand function is nonlinear:

g(Ui) = 1 − exp
(

− λiUi

)

, where Ui is the total utility from all the company’s

and competitor’s facilities for a customer at i ∈ N , λi is the characteristic of the
elastic demand in point i, λi > 0. The company’s total share of facility i ∈ N is
measured by:

MSi =
Ui(S)

Ui(S) + Ui(C)
=

∑
j∈S

∑R
r=1 kijrxjr

∑
j∈S

∑R
r=1 kijrxjr +

∑
j∈C uij

.

According to the notations above, the mathematical model can be written as:

max
∑

i∈N

wi ·
(

1 − exp
(

− λi

(∑

j∈S

∑

r∈R

kijrxjr +
∑

j∈C

∑

r∈R

kijrxjr

)))

· MSi (1)

∑

j∈S

∑

r∈R

cjrxjr ≤ B, (2)

∑

r∈R

xjr ≤ 1, j ∈ S, (3)

∑

j∈S

∑

r∈R

xjr = p, (4)

xjr ∈ {0, 1}, j ∈ S, r ∈ R. (5)

The objective function (1) reproduces the company’s goal to maximize its share
of the demand. The inequality (2) allows the facilities’ allocation based on the
available budget. The conditions (3) show the possibility of opening only one
type of the facility in each point j ∈ S. The equation (4) sets the condition for
the number of facilities to be opened.

3 Ant Colony Algorithm

Ant Colony algorithm (AC) appeared due to the investigation of life ants behav-
ior while searching for the shortest route between a source of food and the
anthill [4]. It was discovered that while moving an ant produces a substance
called pheromone which is left behind as a track. The pheromone track is used
by the other members of the colony in searching for the food source. Moreover,
the probability of choosing the way increases with the pheromone concentration
on it. Such ants’ behavior can be interpreted as an optimization process. The
pheromone contains the information about the quality of the route and is used
as a data transfer method. The Ant Colony algorithm uses an artificial ant to
represent the probability greedy algorithm which constructs solutions. During
the construction of those solutions the useful data is accumulated and processed
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in the Ant Colony algorithm. It influences the further search and can be inter-
preted as analogue of life ants’ pheromone. Thus, the behavior of some ants is
modeled in the Ant Colony algorithm. The stopping criterion can be expressed
by a number of iterations, computational time and other. During last few decades
the Ant Colony algorithms have been continually developed and used in discrete
optimization problems [4]. In this paper we present the development of the Ant
Colony algorithm for the p-median competitive facility location and design prob-
lem. The specifics of the problem have been taken into account while developing
the algorithm. We have constructed the artificial ant algorithm using an original
greedy algorithm; considered the special types of neighborhoods; and offered the
rules for the attractiveness evaluation, the pheromone value, the probability of
the facility opening and etc.

The Ant Colony algorithm is based on the Artificial Ant algorithm (AA). Let
us introduce the AA algorithm first in order to describe the AC algorithm. The
AA is represented as an original greedy algorithm. Its main idea can be described
as follows: at first, possible facility locations with the highest objective function
value are defined. After that the search of the best type for the open facilities is
carried out. Let us introduce the following notations: t is the iteration number,
bt is the available budget at the current iteration t. Lt is a set of facilities which
can be opened in iteration t. It consists of pairs (j, r), where j ∈ S is a possible
facility location and r ∈ R is the type of facility at this location. Let Dt be
the current set of located facilities. It consists of pairs (j, r), where j ∈ S is
the location of the opened facility and r ∈ R is the type of facility at the given
location;

f(Dt) be the objective function value at set Dt;
ρjr(Dt) = f(Dt ∪ (j, r)) − f(Dt) be the objective function improvement if

the pair (j, r) ∈ Lt is added into the current location Dt;
Vector Δjr = cj(r+1) − cj(r), r > 0, shows how many budget units have to be

spent if a facility of type r is substituted by a facility of type r + 1.
Assume that the number of types R is equal for all the facilities. It

is assumed that for any subset Z ⊂ S of cardinality p the budget size
B ≥ ∑

j∈Z

cj1, otherwise the problem is unsolvable. The greedy algorithm con-

structs the feasible solution that defines the location and the type of a facility
to be opened with the limited budget B. Scanning of all the possible locations
set S takes considerable time, that is why the subset Z1 ⊂ S will be browsed.
The cardinal number Z1 is equal to 2p (|Z1| = 2p). The proposed algorithm con-
sists of two stages. In the first stage the facility locations are defined. For this
purpose p facilities of the first type are opened. Thereby the number of budget
units

∑

j∈Z1

cj1 is spent. In the second stage, a subset Z2 ⊂ Z1 of cardinality p

(|Z2| = p) is formed. During the second stage the left budget units B − ∑

j∈Z1

cj1

are assigned to improve the types of the facilities opened in the first stage.
Let us describe a scheme of the artificial ant algorithm for competitive p-

median problem with elastic demand (AACP).
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First Stage
0. Identify the initial set of possible locations L0 := {(j, 1)|j ∈ Z1}. Elements
of set S are included into set Z1 with the probability ϕ (see below). Define the
set of located facilities D0 = ∅, the auxiliary subset Z0

2 = ∅, the initial budget
volume b0 = B, the number p of the facilities to be opened, and the initial value
of the first stage iteration counter t := 0.

Iteration t
Execute the following steps until t ≤ p.

1. Search for a pair (j, 1) out of set Lt where the objective function gains its
best improvement, specifically

(ĵ, 1) = argmax(j,1)∈Lt−1{ρj1(Dt)}.

2. Move the chosen pair away from the set of possible locations Lt and add it to
the subset of opened facilities Dt, i.e. Lt+1 = Lt\(ĵ, 1), Dt+1 = Dt ∪ (ĵ, 1). If
the improvement of the facility type in the location ĵ is possible, i.e. |R| � 2,
then add the new pair into the subset Zt+1

2 = Zt
2 ∪ (ĵ, 2).

3. Reduce the current budget by the spent amount bt+1 := bt −cĵ,1, t := t+1. If
t ≤ p then move to the next iteration of the first stage, otherwise B1 = bt+1

move to the second stage.

Second Stage
0. If Z2 = ∅ or B1 = 0, then the greedy algorithm completes its work. That
means it is impossible to improve the functional variant of the opened facilities
in the second stage or all the budget has been spent. Otherwise the initial sets
L0 := Z2, D0 = D are to be formed, the initial budget volume b0 := B1 and
value of the second stage iteration counter t := 0 are to be defined.

Iteration t
Implement the following steps until bt > 0.

1. Search for a pair (j, r) out of set Lt where the objective function gains its
best improvement, specifically

(ĵ, r̂) = argmax(j,r)∈Lt−1{ρjr(Dt)}.

2. Move the chosen pair away from the set of possible locations Lt and add it to
the subset of opened facilities Dt, i.e. Lt+1 = Lt\(ĵ, r̂), Dt+1 = Dt ∪ (ĵ, r̂). If
a facility has already been placed in the location ĵ, then remove the previous
location from Dt:

Dt+1 = Dt\(ĵ, r̂ − 1).

If the improvement of the facility type in the location ĵ is possible, i.e. r̂+1 �
|R|, then add the new pair into the subset Lt+1 = Lt ∪ (ĵ, r̂ + 1).
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3. Reduce the size of the available budget by the spent amount
bt+1 := bt −Δĵ,r̂. If bt+1 = 0, then all the budget has been spent and the per-
missible solution has been found. The algorithm finishes its work. Otherwise
go to the next iteration of the second stage t := t + 1.

The following parameters are used in the Ant Colony algorithm:
G is the quantity of artificial ants;
g is the quantity of better solutions found by the artificial ants;
αt = (αt

j) is the numeric vector which contains some information about
the solution search at the iteration t. This vector is an analogue of the real
ants pheromone and is traditionally called ’pheromone vector’. Its components
αt

j , j ∈ S contain the values of this parameter (the pheromone level) and are
calculated using the formula

αt
j =

αmin + q1−γt
j (αt−1

j − αmin)
ρ

, j ∈ S, (6)

where γt
j is the frequency of the facility j appearance in g best solutions; ρ ∈ (0, 1)

is the decay coefficient (pheromone evaporation); q ∈ (0, 1) is the algorithm
parameter; αmin is the minimal pheromone level value.

The possibility for the facility j to be included into set Z1 on iteration t is
calculated the following way:

ϕt
j =

αt
j(Δf t

j + ε)
∑

k∈S αt
k(Δf t

j + ε)
, j ∈ S, (7)

where Δf t
j is the objective function change as a result of the functional improve-

ment in the location j ∈ S at iteration t; ε > 0 excludes 0 division.
Let us introduce the Ant Colony algorithm scheme for the problem under

consideration.

Ant Colony Algorithm
0. Set the initial values ρ, αmin, αj , ϕ

1
j , γ

1
j , j ∈ S; the best objective function

value F = 0, iteration counter value t := 1.
Repeat the following steps until the stopping criterion is achieved.

Iteration t

1. Build G possible solutions by the artificial ant algorithm AACP, namely find
Dt

1, . . . , D
t
G and f(Dt

1), . . . , f(Dt
G).

2. Arrange the solutions in non-increasing order of the objective function f
values and choose g best of them; define f∗ as the best objective function
value at the current iteration t.

3. Renew αt
j using g best solutions according to the formula (6).

4. Recalculate ϕt
j based on αt

j according to the formula (7).
5. If f∗ > F , then F := f∗.

Move to the next iteration t := t + 1.
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In order to check the algorithm’s quality, a computational experiment has
been carried out. It consisted of the two stages: (1) setting up the algorithms
and parameters; (2) an experimental evaluation of the algorithms defined in (1).
The results are described further in Sects. 4 and 5.

4 Algorithms and Parameters Turning

The specifics of the problem under consideration should be taken into account
in the process of developing the ant colony algorithm. It is necessary to build an
original artificial ant algorithm and adjust the set of parameters of it.

All the experimental studies of tuning and determining the quality of the
proposed algorithm were carried out for two series of test cases constructed using
real data from [1]. In the first series (Series 1) the distances among the points
were generated by the uniform distribution of distances in the interval [0; 30];
this corresponds to the case when the distance between the points is measured by
the road network. In the second series (Series 2), the distances are measured on
a straight line and therefore satisfy the triangle inequality. Each series consists
of the set of 16 instances with the dimension |N | = 60, 80, 100, 150, 200, 300 with
three possible projects and budget limits of 3, 5, 7 and 9 units. The demand is
elastic, its parameter λ = 1. The customers are sensitive to the distance, β = 2.
The number p of the facilities to be opened was selected in such a way, that the
set of possible solutions was not empty. That is why the following combinations
of the budget values with the numbers of facilities to be opened were used in the
experimental design: (B, p) = {(3, 2), (5, 3), (7, 4), (9, 6)}.

In many cases, it is possible to compare the obtained solution with the opti-
mal solution or with the best known solution for other tasks. Anyway, it is often
impossible to find even a feasible solution for our problem. Therefore, we have to
use the upper bounds constructed in [7] and the results of the Simulated Anneal-
ing (SA) algorithm proposed by us in the article [9]. SA is currently known for
its successful usage for a wide range of optimization problems [8]. Before starting
the SA algorithm, the initial values of the parameters are set. At each value of
temperature a certain number of iterations is carried out. On each iteration a
new solution is selected from neighborhood of the current solution randomly.
This solution is accepted as a new current one according to some probabilistic
law and the value of the temperature parameter decreases. The process continues
until the system reaches the frozen state or until other stopping criteria are met.
On the basis of the competitive p-median facility location and design problem
specificity the special kinds of neighborhoods have been built. Best parameter
values for the simulated annealing algorithm have been found [9].

In the process of tuning the algorithms, it is necessary to choose the param-
eter values for the best behaviour of the algorithm in most instances. Based on
our previous experience of the ant colony algorithm developing, as well as the
current numerical experiments, the following parameter values were chosen: the
pheromone evaporation coefficient ρ = 0.95; the initial pheromone level α0 = 0.5,
the minimal pheromone level αmin = 0.3; the number of ants at each iteration is
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L = 20; the maximal number of iterations is equal to Tmax = 10. The probability
of the facility choice used in the AACP is changed by the formula (7).

The tuning of the Ant Colony algorithm were carried out. Two Artificial
Ant algorithm modifications were proposed. In variation AACP1 the points are
sorted by not increasing of the values ϕi. After that a number of 2 ·p best points
are chosen with the given probability and included in set Z1. However, for such
organization of the artificial ant the maximal deviations of the AC for N = 300
is 7% for Series 1 (27%, Series 2) (Tables 1), the calculation time for the both
Series took about 700 s. That is why the 2nd modification of the Ant Colony
algorithm was constructed. In the second variation AACP2 points are chosen
with a given probability alternately: first, out of the front part of the arranged
list; second, from its rare part its end; and then included in the set Z1. The
iterations are repeated until there are 2 · p elements in the set Z1. The second
modification turned out to be better than the first one. That is why AACP2
was used in the main experiment. More detailed information about the maximal
(max), average (aver) and minimal (min) deviations and the calculation time is
given in Tables.

Table 1. Ant Colony with AACP1, deviations from upper bounds, %

Series 1 Series 2

N Min Aver Max Min Aver Max

60 0.000 0.630 5.713 19.274 29.987 49.883

80 0.000 0.545 7.306 18.802 27.285 37.001

100 0.000 0.779 7.057 10.027 22.180 33.692

150 0.000 1.194 6.992 18.648 26.692 35.501

200 0.000 0.991 6.756 10.271 17.049 25.030

300 0.000 1.133 7.313 9.330 17.108 27.483

5 Main Stage of Computational Experiments

In the main stage of the experimental studies, the numerical experiments were
conducted using the algorithms with the selected settings. The algorithms were
implemented, the computational experiments were carried out on a computer
with CPU Intel R© Xeon R© X5675 @ 3.07 GHz, 32 GB RAM. In connection with
the probabilistic nature of the ant colony algorithm, 100 runs of the algorithm
were performed on each test instance. Table 2 contains information about the
deviations of the ant colony algorithm for the series of the test cases with max-
imum dimension of 300 points. It can be seen that the average deviation of the
ant colony algorithm for the first series is 0.758%, the maximal deviation does
not exceed 4.959%. For the simulated annealing algorithm the average deviation
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Table 2. Deviation from upper bounds, %

Uniform distribution distances (Series 1) Euclidean distances (Series 2)

AC(AACP2) SA AC(AACP2) SA

N Min Aver Max Min Aver Max Min Aver Max Min Aver Max

60 0.000 0.480 3.699 0.000 0.483 3.326 13.222 29.891 49.883 19.274 29.695 49.883

80 0.000 0.169 1.128 0.000 0.101 0.825 19.607 26.876 33.252 18.802 26.495 33.252

100 0.000 0.569 4.954 0.000 0.450 2.421 14.927 22.135 31.747 10.027 21.577 33.029

150 0.000 0.660 5.241 0.000 0.263 2.212 19.244 26.483 32.986 18.349 25.666 32.189

200 0.000 0.640 3.338 0.000 0.190 3.011 10.884 16.430 22.535 10.178 16.123 22.535

300 0.000 0.758 4.959 0.000 0.384 3.162 9.330 16.443 20.247 9.330 15.775 18.912

for the first series instances of 300 locations is 0.384%, and the maximal devi-
ation not exceeds 3.162%. The minimal deviation is less then 0.001% for both
algorithms. This result is very good for the problems of such dimension. As for
the second series, we can see a different situation. Even the minimal deviation
from the upper bound is 9.330% for AC. Here the average algorithm deviation
is 16.443%, the maximal deviation is 20.247%. The average deviations for the
simulated annealing algorithm in this case for the same dimension is 15.775%,
the maximal deviation is 18.912%. Anyway, that is not a failure and can be
explained by different reasons. We assume that the estimate is sufficiently inac-
curate for this case. This is partially confirmed by our research for other test
data. For Series 1, the 95% confidence interval for the probability of obtaining
the deviations less than 0.001% for the ant colony algorithm is between [0.441;
0.461]. For Series 2, the 95% confidence interval for the probability of obtaining
the deviations less than 20% for colony algorithm is [0.341; 0.360].

Table 3. Comparison of CPU time, sec

AC(AACP1) AC(AACP2) SA

N Min Aver Max Min Aver Max Min Aver Max

60 5.441 17.377 39.255 3.336 9.376 20.724 5.238 12.174 24.052

80 8.337 29.085 69.263 4.686 14.831 31.555 9.126 18.855 33.777

100 11.224 43.385 102.504 7.578 20.597 49.377 12.972 25.287 48.124

150 32.589 94.605 187.371 16.582 52.049 120.010 28.346 51.234 106.724

200 48.695 148.818 287.950 29.767 81.436 177.184 43.980 75.961 146.520

300 127.028 362.436 704.494 72.948 201.838 412.701 94.818 166.465 312.111

The CPU time for both series was mostly the same, that is why there is the
computation time for the first series only in Table 3. On average, the Ant Colony
algorithm is faster than other algorithms for various difficult problems (for exam-
ple, [5,6]). Ant colony algorithm faster then simulated annealing algorithm on
dimensions N = 60, 80, 100. Note that well-known commercial software is rather
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time-consuming. Solver CoinBonmin of system GAMS was used for both series.
For instance, for one of the instances of 60 locations the CPU time of CoinBon-
min was 63 h and the objective function deviation from the upper bounds was
12.919%.

6 Conclusion

The paper is devoted to the study of one of the decision-making situations in
the competitive environment. A new p-median competitive facility location and
design problem with elastic demand is considered. The problem-oriented version
of the ant colony algorithm is proposed. The adjustment of its parameters is
carried out with the help of a special numerical experiment. In the main stage
of the experimental studies the numerical experiments were conducted using the
algorithms with selected settings, interesting data were obtained. In particular,
the minimum deviation from the upper bounds did not exceed 0.001% for the
series of test cases with uniform distribution of distances. However, this value
was not less than 9% for the other series with Euclidean distances. The maxi-
mum computational time for the largest problem of 300 facilities did not exceed
400 s, which is comparable to the time of Simulated Annealing algorithm and
it is significantly less than the time of the CoinBonmin (GAMS). It would be
interesting to continue the research in this direction. At the present moment, we
are investigating the multi-thread implementation of the algorithm. This should
improve the running time of the algorithm. In general, the research results, as
well as the relative simplicity of the proposed algorithm implementation, indicate
applicability of these methods to the class of problems under consideration.

Acknowledgement. This research was supported by the Russian Foundation for
Basic Research, grant 18-07-00599.

References

1. Aboolian, R., Berman, O., Krass, D.: Competitive facility location and design
problem. Eur. J. Oper. Res. 182(1), 40–62 (2007)

2. Davidović, T., Teodorović, D., Šelmić, M.: Bee colony optimization - part I: the
algorithm overview. Yug. J. Oper. Res. 25(1), 33–56 (2015)

3. Davydov, I.A., Kochetov, Y.A., Mladenovic, N., Urosevic, D.: Fast metaheuris-
tics for the discrete r|p-centroid problem. Autom. Remote Control 75(4), 677–687
(2014)
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Abstract. We consider the well-known cutting stock problem (CSP).
An instance of CSP possesses IRUP (the integer round up property) if
difference (the gap) between its optimal function value and optimal value
of its continuous relaxation is less than 1. If the gap is 1 or greater, then
an instance is non-IRUP. Constructing non-IRUP instances is very hard
and a question about how large the gap can be is an open theoretical
problem. Aim of our research is to find non-IRUP instances with minimal
capacity. We have found a non-IRUP instance with integer sizes of items
having capacity L = 16, while a previously known instance of such kind
had capacity L = 18. We prove that all instances with capacity L ≤ 10
have IRUP.

Keywords: Cutting stock problem · Integer round up property ·
Capacity · Linear programming

1 Introduction

In classic formulation, the cutting stock problem (CSP) is stated as follows:
there are m ∈ N groups of items of different lengths l1, · · · , lm and availabilities
b1, · · · , bm. The goal is to pack all items into the minimal number of containers
of the same capacity L (the total length of all items inside any container should
not exceed L).

The cutting stock problem is one of the earliest problems that have been stud-
ied through methods of operational research [10]. This problem has many real-
world applications, especially in industries where high-value material is being
cut [6] (steel industry, paper industry). No exact algorithm is known that solves
practical problem instances optimality, so there are lots of heuristic approaches.
Each year the number of publications about this problem increases, so we refer
the reader to bibliography [20] and the most resent survey [4].

Throughout this paper we abbreviate an instance of CSP as E := (L, l, b).
The total number of items is n =

∑m
i=1 bi. Without loss of generality, we assume
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that all numbers in the input data are positive integers and 0 < l1 < · · · < lm ≤
L.

The classical approach for solving CSP is based on the formulation of Gilmore
and Gomory [9]. Any subset of items (called a pattern) is formalized as a vector
a = (a1, · · · , am)� ∈ Z

m
+ where ai ∈ Z+ denotes the number of items i in the

pattern a. A pattern a of E is feasible if a�l ≤ L. So, we can define the set of
all feasible patterns P f (E) = {a ∈ Z

m
+ | a�l ≤ L}. For a given set of patterns

P = {a1, · · · , ar}, let A(P ) be the (n × r)-matrix whose columns are given by
the patterns ai. Then the CSP can be formulated as follows:

z(E) :=
r∑

i=1

xi → min subject to A(P f (E))x = b, x ∈ Z
r
+.

The common approximate solution approach involves considering the contin-
uous relaxation of CSP

zC(E) :=
r∑

i=1

xC
i → min subject to A(P f (E))xC = b, xC ∈ R

r
+.

Here x and xC are called the optimal solutions for the integer and continuous
problems respectively, and z(E) and zC(E) are called the optimal function values.

The difference Δ(E) = z(E)−zC(E) is called the gap of instance E. Practical
experience and numerous computations have shown that for most instances the
gap is very small. An instance E has the integer round up property (IRUP)
if Δ(E) < 1. Otherwise, E is called a non-IRUP instance. This notation was
introduced by Baum and Trotter [1]. Subsequently, the largest known gap was
increased [7,8,14,15,17,19]. Currently, the largest gap known is 6

5 , and there is
no example of a gap of at least 2.

The first known constructions of non-IRUP instances were rather huge.
The example of Marcotte [14] having L = 3397 386 355 was decreased to
L = 1111 139 by Chan [3]. The authors of [2,5] gave an example with L = 100.
In [13] an example with L = 18 has been found using so-called equivalence of
instances (see also [11,12]). In this paper we focus on improving bounds for
minimal possible L.

The paper has the following structure. In Sect. 2 we describe some theory
related to our model which is presented in Sect. 3. In Sect. 4 we present compu-
tational results and, finally, we draw a conclusion in Sect. 5.

2 Preliminaries

In this section we describe some theory we use throughout the paper. We believe
that results presented in this section are well-known, but we present their proofs
for the sake of completeness. Anyway, the reader may be referred to [16,18]
where some results are mentioned.

Given an instance E = (L, l, b), let xC be an optimal continuous solution
of E. Then x is the integer part of xC and x∗ is the fractional part of xC , so
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xC = x + x∗ and 0 ≤ x∗
i < 1 for all 1 ≤ i ≤ r. Also zC(E) = e�x + e�x∗ where

e = (1, · · · , 1) ∈ R
m
+ . Replacing b by b = b − A(P f (E))x yields the residual

instance E = (L, l, b). An instance E is called reducible if there exists an optimal
continuous solution of E with non-zero integer part.

Lemma 1. x∗ is an optimal continuous solution of E.

Proof. On one hand, zC(E) ≤ e�x∗ because x∗ is a feasible solution for
A(P f (E))x = b. On the other hand zC(E) ≤ e�x + zC(E) which is equiva-
lent to zC(E) ≥ e�x∗. So, zC(E) = e�x∗.

Lemma 2. Δ(E) ≤ Δ(E).

Proof. z(E) − zC(E) ≤ (e�x + z(E)) − (e�x + e�x∗) = z(E) − zC(E).

Consider a set of instances E(L, l) = {E(L, l, b) | b ∈ Z
m
+} where L and l are

fixed. Now we are interested in maximal possible the gap Δ(E) over all instances
E ∈ E(L, l).

Lemma 3. The maximal gap Δ(E) occurs over instances E ∈ E(L, l) with
zC(E) < m.

Proof. Consider an instance E ∈ E(L, l) with zC(E) ≥ m. There exists an
optimal continuous solution xC of E which has at most m non-zero components
because all feasible patterns form a m-dimensional vector space. Then by the
pigeonhole principle, xC

i ≥ 1 for some 1 ≤ i ≤ r. Therefore E is reducible.

Using Lemma 3 we already can find the maximal possible gap over E(L, l)
in finite time iterating over all instances E ∈ E(L, l) with zC(E) < m. However,
we are going to improve this result.

Lemma 4. The maximal gap Δ(E) occurs over instances E ∈ E(L, l) with
z(E) ≤ m.

Proof. Consider the m-dimensional vector space S induced by all feasible pat-
terns. Let us build a convex hull H over all the feasible patterns and let
F = {(f1, · · · , fm)�} be a set of facets of H, where fi ∈ P f (E).

Consider some facet f = (f1, · · · , fm)� ∈ F . The linear combination x�f
where x ∈ R

m
+ covers some subspace S′ of S. Every integer point b ∈ S′ corre-

sponds to an instance E = (L, l, b), and a vector x such that b = x�f can always
be transformed into an optimal continuous solution xC of E by inserting zero
elements. Now consider a m-dimensional parallelepiped S′

1 ⊂ S′ ⊆ S formed by
linear combination x1�

f where x1 ∈ R
m
+ and 0 ≤ x1

i ≤ 1 for all 1 ≤ i ≤ m. All
integer points b inside S′

1 correspond to instances E with z(E) ≤ m. And all
integer points b from S′ outside S′

1 correspond to reducible instances E.

We remark that Lemma 3 does not imply Lemma 4 directly because there
exist instances E with z(E) ≥ m + 1 and zC(E) < m (and with Δ(E) > 1).
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3 Model

Consider an instance E = (L, l, b) which possesses all possible item lengths:
l = (1, · · · , L). When L is fixed, l is fixed too. The matrix of patterns A(P f (E))
depends on L and l only, so it is also fixed. Availabilities of the item types b we
consider as variables.

Now we build the following ILP model:

k −
∑

xi → max,

A(P f (E))x = b, (1)
A(P f (E))y = b, (2)

∑
yi = k,

x ∈ R
r
+,

y ∈ Z
r
+,

b ∈ Z
m
+ ,

where k is the fixed value of z(E) for an optimal integer solution, x is the optimal
continuous solution, and y is the optimal integer solution.

Now we have to ensure that k is indeed the optimal integer function value
of E, i.e. a solution of the system where

∑
yi < k is impossible. To this end we

add special constraints to bound the vector b:

bi ≥ u + 1 − wu
i (u + 1) ∀0 ≤ u ≤ (k − 1)L, 1 ≤ i ≤ m,

w ∈ B
(k−1)L+1 × B

m.

Here, bi ≤ u implies wu
i = 1. Now consider all integer solutions of size k − 1

Ck−1(E) := {A(P f (E))y | y ∈ Z
r
+ ∧ ∑

yi = k − 1}. To ensure that all integer
solutions of the system are not less than k, we add the following constraints:

m∑

i=1

wci
i ≤ m − 1, ∀c ∈ Ck−1(E).

The latter constraint works as follows: for fixed c ∈ Ck−1(E), if bi ≤ ci for
all 1 ≤ i ≤ m, then

∑
wci

i = m and we have an integer function value less than
k.

For small values of L and k the model is small enough to be solved in
reasonable time. However, the model can be reduced by the following obser-
vation: l can be (1, · · · , L − 1) because any number of items of size L does
not change the value of Δ(E). Also, the model can be further reduced by
replacing the set of feasible patterns P f (E) with a set of inextensible patterns
P f

∗ (E) = {a ∈ Z
m
+ | a�l ≤ L ∧ a�l + l1 > L}. To this end we also have to

transform equations (1) and (2) into inequalities with the “≥” sign. The final
model is the following:
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k −
∑

xi → max,

A(P f
∗ (E))x ≥ b,

A(P f
∗ (E))y ≥ b,

∑
yi = k,

bi ≥ u + 1 − wu
i (u + 1) ∀0 ≤ u ≤ (k − 1)L, 1 ≤ i ≤ m,

m∑

i=1

wci
i ≤ m − 1, ∀c ∈ Ck−1(E),

w ∈ B
(k−1)L+1 × B

m, x ∈ R
r
+, y ∈ Z

r
+, b ∈ Z

m
+ .

Now, using this model we can find instances with the maximal gap for fixed
L and k, and using Lemma 4 we can build the lower bound for minimal possible
L of non-IRUP instance by solving the model for all k < L for some fixed L.

4 Results

We implemented our model as C++ program using CPLEX 12.7. The program
was run on machine Intel Core i7-5820K 4.2 GHz with 6 cores 32 Gb RAM.
Results are presented in Table 1.

Table 1. Computational results

L\k 1 2 3 4 5 6 7 8 9

2 0.50000

3 0.66667 0.66667

4 0.75000 0.75000 0.75000

5 0.80000 0.80000 0.80000 0.80000

6 0.83333 0.83333 0.83333 0.83333 0.83333

7 0.85714 0.85714 0.85714 0.85714 0.85714 0.85714

8 0.87500 0.87500 0.87500 0.87500 0.87500 0.87500 0.87500

9 0.88889 0.88889 0.88889 0.88889 0.88889 0.88889 0.88889 0.88889

10 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000 0.90000

11 0.90909 0.90909 0.91667 0.91667 0.91667

12 0.91667 0.91667 0.93750 0.93750 0.93750

13 0.92308 0.92308 0.93333 0.93333 0.93333

14 0.92857 0.92857 0.94444 0.94444 0.94444

15 0.93333 0.93333 0.96667 0.96667 0.96667

16 0.93750 0.93750 1.00000 1.00000

17 0.94118 0.94118 0.96667 0.97222



84 A. V. Ripatti and V. M. Kartak

For L = 10 and k = 9 the ILP program had ≈ 600 000 constraints and the
running time was about 52 h. The following non-IRUP instances were found:
(16, (2, 3, 7, 8, 10)�, (2, 1, 1, 1, 1)�) and (16, (2, 3, 7, 8, 10)�, (2, 1, 1, 3, 1)�).

It is possible to prove a more general result; namely, that a series of instances
Et = (16, (2, 3, 7, 8, 10)�, (2, 1, 1, 2t + 1, 1)�) is non-IRUP for every t. z(Et) =
t + 3, because it is easy to pack all the items into t + 3 containers, but it is
impossible to pack them into t + 2 ones. Indeed, suppose it is possible, then all
containers should be fully filled. By a parity argument, items of sizes 3 and 7
should be in a single container, but then there is no way to fill this container
completely. zC(Et) ≤ t + 2 because there is a feasible solution 1

2 (0, 2, 0, 0, 1)� +
1
2 (3, 0, 0, 0, 1)� + 2t+1

2 (0, 0, 0, 2, 0)� + 1
2 (1, 0, 2, 0, 0)�. So, Δ(Et) ≥ 1.

5 Conclusion

We have suggested a model to calculate the maximal possible gap for the fixed
capacity L and the optimal integer function value k and have run it for small
values of L and k. We have improved the best known bound for minimal capacity
of non-IRUP instance from L = 18 to L = 16. Also we have computationally
proved that all instances with L ≤ 10 have IRUP.

We conjecture that L = 16 is the sharp bound for the minimal possible L
and we plan to improve our model to prove this conjecture.

Acknowledgements. The authors would like to thank the anonymous referees for
valuable remarks.
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Abstract. In the present paper we describe new heuristic technique,
which can be applied to the optimization of pseudo-Boolean functions
including Black-Box functions. This technique is based on a simple pro-
cedure which consists in transition from the optimization problem over
Boolean hypercube to the optimization problem of auxiliary function in a
specially constructed metric space. It is shown that there is a natural con-
nection between the points of the original Boolean hypercube and points
from new metric space. For a Boolean hypercube with fixed dimension
it is possible to construct a number of such metric spaces. The proposed
technique can be considered as a special case of Variable Neighborhood
Search, which is focused on pseudo-Boolean optimization. Preliminary
computational results show high efficiency of the proposed technique on
some reasonably hard problems. Also it is shown that the described tech-
nique in combination with the well-known (1+1)-Evolutionary Algorithm
allows to decrease the upper bound on the runtime of this algorithm for
arbitrary pseudo-Boolean functions.

Keywords: Pseudo-Boolean optimization · Local search · Variable
Neighborhood Search · (1+1)-Evolutionary Algorithm · Boolean
satisfiability problem

1 Basic Notions and Methods

Let {0, 1}n be a set of all possible binary vectors (strings) of length n. The set
{0, 1}n is sometimes called a Boolean hypercube. Let us associate with {0, 1}n a
set consisting of n symbols: X = {x1, . . . , xn}. The elements of X will be referred
to as Boolean variables. Further we will consider {0, 1}n as a set of all possible
assignments of variables from X. For an arbitrary X ′ ⊆ X by {0, 1}|X′| we will
denote a set of all possible assignments of variables from X ′.

A pseudo-Boolean function (PBF) [1] is an arbitrary total function of the kind

f : {0, 1}n → R. (1)

Example 1. Consider an arbitrary Conjunctive Normal Form (CNF) C, where
X = {x1, . . . , xn} is a set of Boolean variables from this CNF. Let us associate
with an arbitrary α ∈ {0, 1}n the number of clauses that take the value of 1 when
c© Springer Nature Switzerland AG 2019
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their variables take the values from α. Denote the resulting function by fC . It is
easy to see that fC is a function of the kind fC : {0, 1}n → N0 (N0 = {0, 1, 2, . . .})
and max

{0,1}n
fC ≤ m, where m is the number of clauses in C. Then CNF C is

satisfiable if and only if max
{0,1}n

fC = m. The problem fC →
{0,1}n

max represents

the optimization formulation of the Boolean Satisfiability problem (SAT) and is
often referred to as MaxSAT [2]. This problem is NP-hard, so there is a huge
class of combinatorial problems, which can be effectively reduced to it.

The main result of the present paper is a technique applicable in the context
of several common metaheuristic schemes. Before proceeding to its description,
let us briefly describe the basic metaheuristics used below.

First, we will consider the simplest computational scheme, which belongs to
the class of the local search methods. The concept of a neighborhood in a search
space is at the core of the algorithms from this class. With each point of a
search space the neighborhood function [3] associates a set of neighboring points.
This set is called the neighborhood of the considered point. For an n-dimensional
Boolean hypercube the neighborhood function is of the following kind:

ℵ : {0, 1}n → 2{0,1}n

. (2)

A simple way to define function (2) is to associate an arbitrary α ∈ {0, 1}n

with all points from {0, 1}n for which the Hamming distance [4] from α is not
greater than certain d. The number d is referred to as a radius of Hamming
neighborhood. Hereinafter by ℵd(α) we denote a neighborhood of radius d of an
arbitrary point α of a search space. By 〈{0, 1}n,ℵ1〉 we denote a space {0, 1}n

in which a neighborhood of an arbitrary point α is ℵ1(α).
Below we give a simple example of the local search algorithm which is some-

times referred to as Hill Climbing (HC). We can use this algorithm to maximize
the functions of the kind (1). One iteration of the HC algorithm consists of the
following steps.

Input: an arbitrary point α ∈ {0, 1}n, a value f(α);
1. α – current point;
2. traverse the points from ℵ1(α) \ {α}, computing for each point α′ from this

set a value f(α′). If there is such a point α′, that f(α′) > f(α) then go to
step 3, otherwise, go to step 4;

3. α ← α′, f(α) ← f(α′), go to step 1;
4. α∗ ← α; (α∗, f(α∗)) is a local extremum of f on {0, 1}n;

Output: (α∗, f(α∗)).

By itself, Hill Climbing is a basic heuristic and, generally speaking, it does not
guarantee that the global extremum of the considered function will be achieved
(except for some specific cases). Usually, during the optimization of an arbitrary
function (1) one attempts to go through a number of local extrema. As a result,
a point with the best value of the objective function (1) is considered to be an
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output. The best value of this function found at the current moment is called
Best Known Value (BKV).

Without any exaggeration it can be said that over the past half century a
huge number of papers have been devoted to describing ways of escaping local
extrema. Listing the key papers in this direction would take up too much space.
A good review of the relevant results can be found in [3,5].

In some sense, one can view the evolutionary algorithms [5] as the alternative
to local search methods. This class of algorithms can be described as “a varia-
tion on a theme of random walk”. The simplest example of such algorithms is
the (1+1)-Evolutionary Algorithm shortly denoted as (1+1)-EA [6]. Below we
present the description of one iteration of this algorithm, which will be referred
to as (1+1)-random mutation.

Input: an arbitrary point α ∈ {0, 1}n, a value f(α);

– make (1+1)-random mutations of α: by going through α in fixed order, change
every bit to the opposite with probability p; let α′ be a result of a random
mutation of α;

– if for a point α′ it holds that f(α′) ≥ f(α) (assuming that the maximization
problem for function (1) is considered), then the next (1+1)-random muta-
tion is applied to α′, otherwise, (1+1)-random mutation is applied to α (this
situation is called stagnation);
Output: (α′, f(α′)), where α′ is the result of several random mutations.

The probability p is usually determined as p = 1/n. It should be noted, that
for any function of the kind (1) and points α, α′ ∈ {0, 1}n the probability of
transition α → α′ is non-zero. Let α# be the point of the global extremum
of function (1). According to [7], the expected running time of the (1+1)-EA,
denoted further as E(1+1)−EA, is defined as the mean of the (1+1)-random muta-
tions needed to achieve α# from an arbitrary initial point α ∈ {0, 1}n.

The value E(1+1)−EA can be considered as a measure of efficiency for (1+1)-
EA. If the value of function (1) is given by the oracle, the nature of which is not
taken into account, then it could be shown (see [7]), that E(1+1)−EA ≤ nn. It
is important that this bound is reached (with minor reservations) for explicitly
specified functions [7]. On the other hand, for an equiprobable choice of points
from a hypercube {0, 1}n the expected value for the number of checked points
before achieving α# is not greater than 2n. Thus, in the worst case scenario,
(1+1)-EA is extremely inefficient. However, when applied to many practical
tasks (1+1)-EA can be surprisingly productive.

2 Merging Variables Principle (MVP)

In this section we describe a simple technique which can be applied to the prob-
lems of optimization of arbitrary functions of the kind (1), including Black-Box
functions.
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Consider an arbitrary function (1) and the problem f →
{0,1}n

max (or f →
{0,1}n

min). Let us associate with {0, 1}n a set of Boolean variables X = {x1, . . . , xn}
(considering {0, 1}n as a set of all possible assignments of variables from X).

Let us fix an arbitrary positive integer r : 1 ≤ r < n and define a new set
of variables Y = {y1, . . . , yr}. Consider an arbitrary surjection μ : X → Y .
With an arbitrary yj ∈ Y , j ∈ {1, . . . , r} we associate a set Xj of preimages
of yj in the context of mapping μ. Let us link with yj a set Dj , which consists
of 2|Xj | different symbols of some alphabet: Dj = {βj

1, . . . , β
j

2|Xj |}, and fix an
arbitrary bijection ωj : Dj → {0, 1}|Xj |. Consider a set

Dμ = D1 × . . . × Dr.

Definition 1. The elements of Dj are called the values of variable yj, j ∈
{1, . . . , r} and Dj is called the domain of this variable. An arbitrary string
β ∈ Dμ is called an assignment of variables from Y . Implying all notions which
were introduced above we will say that merging mapping μ is defined. The ele-
ments of Y are referred to as merged variables.

Regarding the set Dμ we note that the Hamming metric is naturally defined
on Dμ and thus Dμ is a metric space.

Lemma 1. An arbitrary merging mapping μ : X → Y defines a bijective map-
ping

τμ : Dμ → {0, 1}n.

Proof. Assume that for a set of Boolean variables X, |X| = n, a merging mapping
μ, μ : X → Y , |Y | = r, 1 ≤ r < n is given. The fact that μ is surjection means
that sets Xj , j ∈ {1, . . . , r} do not intersect, and any variable from X turns out
to be in some set of the kind Xj . Consider an arbitrary assignment β ∈ Dμ.
Let βj be a symbol, located in the coordinate with the number j, j ∈ {1, . . . , r}
of β. Consider set Xj . Let αj be a binary string associated with an element βj

by bijection ωj . Let us view αj as an assignment of variables from Xj . Thus,
bijections ωj , j ∈ {1, . . . , r} associate all coordinates of β with binary strings
thereby setting the values of all variables from X. Consequently, an arbitrary
string β ∈ Dμ is associated with some string α ∈ {0, 1}n. Denote the resulting
function by τμ : Dμ → {0, 1}n. Note that Range τμ = {0, 1}n. If we assume that
there is a vector α ∈ {0, 1}n, which does not have a preimage in Dμ for a given
τμ, then it contradicts with the properties of bijections ωj , j ∈ {1, . . . , r}. Thus,
τμ is a surjection. Also it is easy to see, that two arbitrary different elements
from Dμ have different images for a given τμ (injection). Consequently, τμ is
bijection. The Lemma 1 is proved.

Definition 2. Function τμ, defined in the proof of Lemma 1, is called a bijection
induced by a merging mapping μ.



90 A. A. Semenov

Example 2. Assume that X = {x1, x2, x3, x4, x5}. Let us define the mapping
μ : X → Y , Y = {y1, y2, y3} as follows:

X1 = {x1, x4},X2 = {x2},X3 = {x3, x5}.

The domains of variables y1, y2, y3 are the following: D1 = {β1
1 , β

1
2 , β

1
3 , β

1
4}, D2 =

{β2
1 , β

2
2}, D3 = {β3

1 , β
3
2 , β

3
3 , β

3
4 , }. Bijections ωj , j ∈ {1, 2, 3} are defined as it is

shown in Fig. 1. Thus, the mapping τμ : Dμ → {0, 1}5 is defined. By Lemma 1
it is a bijection. For example, τμ(β1

3 , β
2
2 , β

3
4) = (11101).

ω1 ω2 ω3

β1
1 00

β1
2 01

β1
3 10

β1
4 11

β2
1 0

β2
2 1

β3
1 00

β3
2 01

β3
3 10

β3
4 11

Fig. 1. Bijections ωj , j ∈ {1, 2, 3} which define the mapping τµ : Dµ → {0, 1}5

The main idea of the technique presented below consists in transitioning
from the optimization problem of the original function (1) on {0, 1}n to the
optimization problem of specially constructed function on Dμ (for a given merg-
ing mapping μ : X → Y ).

Definition 3. Consider an optimization problem for an arbitrary function (1).
Let μ : X → Y be an arbitrary merging mapping. Consider the function

Ff,μ : Dμ → IR,

defined in the following way: Ff,μ(β) = f(τμ(β)), in which τμ is a bijection
induced by μ. Function Ff,μ is called μ-conjugated with f .

Lemma 2.
extr{0,1}nf = extrDμFf,μ.

(here extr can be understood as min or max).

Proof. In the context of Lemma 1 this equality is in fact evident. Indeed, there is
a bijection τμ between {0, 1}n and Dμ. The value of function Ff,μ in an arbitrary
point β ∈ Dμ is equal to the value of f in point α = τμ(β). Thus, the smallest
(largest) value of Ff,μ on Dμ is equal to the smallest (largest) value of f on
{0, 1}n. The Lemma 2 is proved.

The following property gives us the exact value of the number of different
merging mappings for the set X of power n.

Lemma 3. Let f be an arbitrary function of the kind (1). Then, the number of
different merging mappings of the kind μ : X → Y is

∑n−1
r=1 r! · S(n, r), where

S(·, ·) – is a Stirling number of the second kind.
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Proof. Assume that X = {x1, . . . , xn}. For an arbitrary merging mapping
μ : X → Y a set Y can contain 1, 2, . . . , n − 1 variables. An arbitrary merg-
ing mapping is constructed in two steps. The first step is to divide X into r
parts (the order of the elements in each part does not matter). As a result
there is a composition of sets X1, . . . , Xr. At the second step each set Xj ,
j ∈ {1, . . . , r} is associated with a variable from Y = {y1, . . . , yr}. The num-
ber of unordered partitionings of n-element set into r parts is S(n, r) (see, for
example, [8]). Each unordered partitioning of X into r parts can be mapped to
Y (|Y | = r) in r! ways. The Lemma 3 is proved.

Let us summarize the contents of the present section. The Merging Variables
Principle (MVP) consists in the transition from the optimization of an arbitrary
function f of the kind (1) over a Boolean hypercube to the optimization problem
of a function which is μ-conjugated with f over metric space Dμ. The main goal
of the further sections is to demonstrate the benefits of MVP.

3 Combining MVP with Local Search

For an arbitrary function f of the kind (1) consider a problem f →
{0,1}n

max.

Assume, that {0, 1}n is a set of all possible assignments of variables from set
X = {x1, . . . , xn}. Consider a merging mapping μ : X → Y , Y = {y1, . . . , yr},
1 ≤ r < n and a metric space (with Hamming metric) Dμ = D1 × . . . × Dr.
Let τμ : Dμ → {0, 1}n be a bijection induced by μ. We solve the maximization
problem of function Ff,μ on Dμ. Let us define the neighborhood function over
Dμ in the following way. For an arbitrary β ∈ Dμ assume that

ℵμ
1 (β) = {γ ∈ Dμ : dH(β, γ) ≤ 1}.

In other words, the neighborhood of an arbitrary point β contains all points from
Dμ, for which the Hamming distance dH between them and β is at most 1. Let us
denote a metric space Dμ with the neighborhood structure ℵμ

1 by 〈Dμ,ℵμ
1 〉.

Below we will use a term “random merging mapping”, which refers to any
construction of mapping μ : X → Y by means of a random experiment. The most
natural is a scheme of random arrangements of particles in boxes [9]. Specifically,
for a fixed r, 1 ≤ r < n assume that an arbitrary variable yj , j ∈ {1, . . . , r} is
associated with a box which can accommodate n particles. A set X is considered
as a set containing n particles which are randomly scattered in r boxes according
to the sampling without replacement.

Below we present a variant of Hill Climbing algorithm, which uses MVP
(Merging Variable Hill Climbing algorithm, MVHC).

Input: an arbitrary point α ∈ {0, 1}n, f(α);

1. define a random merging mapping μ : X → Y , Y = {y1, . . . , yr}, 1 ≤ r < n;
2. construct a point β = τ−1

μ (α) in 〈Dμ,ℵμ
1 〉, Dμ = D1 × . . . × Dr, where Dj ,

j ∈ {1, . . . , r} are domains of yj ;
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3. run HC in 〈Dμ,ℵμ
1 〉 starting from point β for an objective function Ff,μ; let

β∗ be a local maximum, achieved in one iteration of HC;
4. construct a point α∗ = τμ(β∗) (α∗ ∈ {0, 1}n);

Output: (α∗, f(α∗)).

Theorem 1. In the context of the MVHC scheme described above let β =
τ−1
μ (α) be a point in 〈Dμ,ℵμ

1 〉 which is not a local maximum. Then f(α∗) > f(α),
where α∗ = τμ(β∗) and β∗ is a local maximum, achieved by HC in 〈Dμ,ℵμ

1 〉 in
one iteration, starting from point β.

Proof. Let μ, τμ,Dμ, α, α∗, β, β∗ be the objects from the description of the
MVHC algorithm and the theorem formulation. Since β is not a local maxi-
mum in the space 〈Dμ,ℵμ

1 〉, then Ff,μ(β∗) > Ff,μ(β). Thus, (by the definition
of function Ff,μ) it follows that f(τμ(β∗)) > f(τμ(β)). Therefore, f(α∗) > f(α).
The Theorem is proved.

The MVHC algorithm can be used to construct an iterative computational
scheme in which the random merging mapping is launched multiple times: in
particular, the output α∗ of an arbitrary iteration can be used as an input for
the following iteration.

Below we would like to comment on a number of features of the proposed
algorithm and show the techniques that can improve the practical effectiveness
of MVHC. The proofs for the properties described below are not shown due to
their simplicity and limitations on the volume of the paper.

a. Note that point α can be a local maximum of function (1) in the space
〈{0, 1}n,ℵ1〉, while point β = τ−1

μ (α) is simultaneously not a local maximum
of function μ-conjugated with (1) in 〈Dμ,ℵμ

1 〉. This fact makes it possible
to view MVHC as a special case of Variable Neighborhood Search (VNS)
metaheuristic strategy [10–12]. Indeed, let α be an arbitrary point in {0, 1}n,
μ : X → Y be an arbitrary merging mapping and τμ : Dμ → {0, 1}n be a
bijection induced by μ. Define the neighborhood of α in {0, 1}n as follows:

ℵ̃(α) = {τμ(γ)|γ ∈ ℵμ
1 (τ−1

μ (α))}, (3)

where ℵμ
1 (β) is the Hamming neighborhood of radius 1 for the point β in Dμ.

Note that (3) defines the neighborhood function over {0, 1}n. The different
merging mappings will yield different neighborhood structures in the context
of (3). From this point of view, the Theorem 1 is the variant of the main
VNS principle saying that the local extremum of a function with regard to
one neighborhood structure may not be a local extremum of this function
with regard to a different neighborhood structure. The Lemma 3 says that in
the context of MVHC there exist numerous ways to construct neighborhood
structures even for small n and r (say, n = 100 and r = 10).

b. Let μ : X → Y , |X| = n, |Y | = r be an arbitrary random mapping.
Let X1, . . . , Xr be the sets of preimages of variables from Y with respect
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to μ, and |X1| = l1, . . . , |Xr| = lr; l1 + . . . + lr = n. Then for an arbitrary
point β ∈ Dμ the following holds:

|ℵμ
1 (β)| =

r∑

j=1

2lj + (1 − r). (4)

This fact means that for domains of relatively large size the traversal of points
from the neighborhood ℵμ

1 (β) can be naturally performed in parallel: each
domain should be processed by an individual computing process. In more
detail, assume that we have t independent computing processes. Consider an
arbitrary β ∈ Dμ and let β1 be an arbitrary point from Dμ, which differs from
β in coordinate number 1 while coinciding with β in the remaining coordi-
nates. It is clear that in total there are 2l1 − 1 points of this kind. Let us
traverse such points and compute the corresponding values of function Ff,μ

using a computing process number 1. We can treat the points which differ
from β only in the second coordinate in the similar fashion, etc. For t < r
once the computing process finished the current task it can take any domains
which have not yet been processed. One process should perform the super-
visor function and track whether the current Best Known Value have been
improved.

c. Let μ be an arbitrary merging mapping and β∗ be a local extremum of Ff,μ in
〈Dμ,ℵμ

1 〉. It is easy to show that in this case α∗ = τμ(β∗) is a local extremum
of f in 〈{0, 1}n,ℵ1〉. Assume that μk, k ∈ {1, . . . , K} are random merging
mappings and α∗ ∈ {0, 1}n is such a local extremum that points β∗

k = τ−1
μk

(α∗)
are local extrema in the spaces Dμk , k ∈ {1, . . . , K} for a large enough K.
Then let us call the point α∗ strong local extremum.

d. Consider an arbitrary merging mapping μ : X → Y . Let α be an arbitrary
point in {0, 1}n and ℵ̃(α) be the neighborhood of α defined (with respect
to fixed μ) in accordance with (3). Assume that l∗ = max{l1, . . . , lr}. It is
easy to show that for r ≥ 2 it holds that ℵ̃(α) ⊂ ℵl∗(α). The power ℵ̃(α)
(it is expressed by the number in the right part of (4)) can be significantly
smaller than the power of ℵl∗(α). For example, if n = 100, r = 10 then
l1 = . . . = l10 = 10, |ℵ̃(α)| = 10×210−9 = 10231, while |ℵ10(α)| > 1, 5×1013.

The property d essentially means that the merging mapping technique may
be useless if the algorithm reached such a local extremum α∗, that the closest
point (Hamming distance-wise) from {0, 1}n with the better objective function
value is at a distance > l∗ from α. On the first glance it might seem that this
fact significantly limits the applicability of the proposed method. However, it is
possible to describe the supplementary technique for MVHC which is based on
the idea to store strong local extrema and use them to direct the search process.
In this context we will use the tabu lists concept which serves as a basis of the
tabu search strategy [13].

So, a strong local extremum is such a local extremum in {0, 1}n, for which
it was not possible to improve BKV even after a significant number of different
merging mappings μk, k ∈ {1, . . . , K}. Let us denote such a point as α∗

1. The goal
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is to move from α∗
1 to a point with the better BKV. Since we do not employ

any knowledge about function f , it means that such transitions should rely on
heuristic arguments. The first of the arguments is to escape the neighborhood
of the kind ℵl∗1 (α

∗
1) in {0, 1}n, where l∗1 is a “critical” domain size that is known

from the search history. On the other hand, due to various reasons appealing
to the “locality principle” it is undesirable to move “too far” from α∗

1. It is
especially relevant if during the transition to α∗

1 the BKV have been improved
multiple times. Thus, the simplest step is to move to an arbitrary point situated
at a distance of l∗1 + 1 from α∗

1. Let α2 be such a point. Assume that we launch
MVHC from this point and α∗

2 is the resulting strong local extremum of f , which
is different from α∗

1. Similar to l∗1 we can define critical domain size l∗2 used during
the transition from α2 to α∗

2, critical domain size l∗3 and etc.
As a result, assume that we have strong local extrema α∗

1, . . . , α
∗
R and our

goal is to construct a point αR+1 ∈ {0, 1}n to launch the R + 1-th iteration of
MVHC from it. Taking into account the above, we have a problem of choosing
next current point αR+1 as a point which satisfies a system of constraints of the
following kind:

(dH(αR+1, α
∗
1) = L1) ∧ . . . ∧ (dH(αR+1, α

∗
R) = LR). (5)

The numbers L1, . . . , LR can be chosen according to different criteria. Let us
describe the simplest one. Consider the following system of constraints:

(dH(αR+1, α
∗
1) = l∗1 + 1) ∧ . . . ∧ (dH(αR+1, α

∗
R) = l∗R + 1). (6)

If there exists a point αR+1 that satisfies (6) then it is chosen as a starting
point for the next MVHC iteration. If such a point does not exist, then we call
(6) incompatible. In this case it is possible to relax some of the constraints of
the kind dH(αR+1, α

∗
q) = l∗q + 1 by replacing them with constraints of the kind

dH(αR+1, α
∗
q) = Lq, where Lq ≥ l∗q + 2, q ∈ {1, . . . , R}. The resulting system of

constraints of the kind (5) is again to be tested for compatibility.
Let us consider the problem of testing the compatibility of an arbitrary sys-

tem of the kind (5). Consider an arbitrary constraint of the kind dH(αR+1, α
∗) =

L, where α∗ = (α1, . . . , αn) is a known Boolean vector and L is a known nat-
ural number. Let us represent the unknown components of vector αR+1 using
Boolean variables z1, . . . , zn. Now consider the expression

(z1 ⊕ α1) + . . . + (zn ⊕ αn) = L, (7)

where ⊕ is the sum mod2, and + is an integer sum.
We can consider (7) as an equation for unknown variables z1, . . . , zn. It is easy

to see that a set of vectors αR+1, which satisfy the constraint dH(αR+1, α
∗) = L,

coincides with the set of solutions of the Eq. (7). To solve the systems of equations
of the kind (7) or to prove the inconsistent of such systems we can use any
complete algorithm for solving SAT. The corresponding reduction to SAT is
performed effectively using the procedures described, for example, in [14].

Thus, to choose new current points in the context of MVHC we can employ
a strategy in which SAT oracles are combined with the tabu lists containing
strong local extrema.
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4 Combining MVP with Evolutionary Computations

Now let us consider how MVP can be combined with evolutionary algorithms.
In particular, let us study the MV-variant of (1+1)-EA. As it was stated above,
for an arbitrary function of the kind (1) in [7] there was obtained the following
upper bound: E(1+1)−EA ≤ nn. Also in [7] there was given an example of a
function (the Trap function) for which this bound is asymptotically achieved
(in terms of [7]).

In the description of the MV-variant of (1+1)-EA (we denote the correspond-
ing algorithm as (1+1)-MVEA) we want to preserve the following property of
the original algorithm: that the expected value of the number of bits in which
the Boolean vector is different from its (1+1)-random mutation should be 1.

Assume that there is an arbitrary merging mapping μ : X → Y , |X| = n,
|Y | = r, 1 ≤ r < n. For an arbitrary point α ∈ {0, 1}n perform the following
steps.

Input: arbitrary point α ∈ {0, 1}n, f(α);
1. construct a point β = τ−1

μ (α); perform r Bernoulli trials with probability of
success p = 1/r; let {i1, . . . , iq} ⊆ {1, . . . , r} be the numbers of successful
trials; for each j ∈ {i1, . . . , iq} consider the domain Dj of a variable yj , let
Xj be the set of preimages of yj for the mapping μ, ωj : Dj → {0, 1}|Xj | is a
fixed bijection, βj is the value of yj in β;

2. consider the Boolean vector αj = ωj(βj) of size lj = |Xj |; perform (1+1)-
random mutation on αj with probability of success equal to 1

lj
, let α′

j be the
result of the mutation, β′

j = ω−1
j (α′

j);
3. construct a point β′ in Dμ: in the coordinate with number j ∈ {i1, . . . , iq}

the point β′ has β′
j ; in the remaining coordinates with numbers from the set

{1, . . . , r} \ {i1, . . . , iq} the point β′ coincides with β;
4. construct a point α′ = τμ(β′) (α′ ∈ {0, 1}n);

Output: (α′, f(α′)).

Definition 4. To the described sequence of actions the result of which is the
transition α → α′ we will refer as (1+1)-merging variable random mutation.

Lemma 4. For an arbitrary merging mapping μ the expected value of the num-
ber of bits in which the points α and α′ differ is 1.

Proof. Indeed, for an arbitrary merging mapping μ the expected value of the
number of successful trials among r Bernoulli trials with success probability
1/r is equal to 1. For an arbitrary Boolean vector of the kind αj = ωj(βj) of
size lj the expected value of the number of flipped bits as a result of (1+1)-
random mutation, where the probability of flipping is 1

lj
, is equal to 1. The

considered random variables are obviously independent, thus in the context of
a single (1+1)-merging variable random mutation the expected value of the
random variable dH(α, α′) is equal to 1. The Lemma 4 is proved.
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Definition 5. For a fixed merging mapping μ, the (1+1)-merging variable evo-
lutionary algorithm ((1+1)-MVEA) is a sequence of (1+1)-merging variable ran-
dom mutations. In the context of maximization problem of an arbitrary function
(1): the next mutation is applied to α′ if f(α′) ≥ f(α). Otherwise, the next
mutation is applied to α (stagnation).

The following definition is a variant of the Definition 5 from [7] with relation to
(1+1)-MVEA.

Definition 6. Let f be an arbitrary function of the kind (1) and α# be a global
extremum of function f on {0, 1}n. Let μ be an arbitrary merging mapping.
We will define the expected running time of (1+1)-MVEA as the mean of the
number of (1+1)-merging variable random mutations that have to be applied to
an arbitrary point α ∈ {0, 1}n until it transforms into α#. Denote this value by
Eμ

(1+1)−MV EA.

Theorem 2. Assume that f is an arbitrary function of the kind (1), μ : X → Y
is an arbitrary merging mapping: X = {x1, . . . , xn}, Y = {y1, . . . , yr}, 1 ≤ r <
n, lj = |Xj | ≥ 2 for all j ∈ {1, . . . , r} and l = max{l1, . . . , lr}. Then the following
estimation holds:

Eμ
(1+1)−MV EA ≤ rr · ln. (8)

Proof. Let μ be an arbitrary merging mapping for which all the conditions of
the theorem are satisfied. Now let us reason in a way similar to the proof of
the Theorem 6 in [7]. Let α ∈ {0, 1}n be an arbitrary point and α# be a global
extremum of the function (1) on {0, 1}n. Denote by Pα→α# the probability
that α will transition into α# as a result of one iteration of the (1+1)-MVEA-
algorithm. Consider the points β = τ−1

μ (α), β# = τ−1
μ (α#) from the space Dμ.

In this context, for an arbitrary j ∈ {1, . . . , r} with the coordinates βj , β#
j there

will be associated the binary strings αj , α#
j .

Now let us construct the lower bound for the probability of an event that
as a result of one (1+1)-MVEA iteration there will take place a transition from
α to α#. It is clear that this may happen if and only if there takes place the
transition from β to β#. Let q = dH(β, β#) be the Hamming distance between
β and β# in the space Dμ. Assume that the set J = {i1, . . . , iq} ⊆ {1, . . . , r}
contains the numbers of coordinates in β, in which this point differs from β#, and
U = {1, . . . , r} \ J . Let us denote by σ = (σ1, . . . , σr), σi ∈ {0, 1}, i ∈ {1, . . . , r}
the set of results of a sequence of r Bernoulli trials with success probability 1/r
(as usually, we assume that σ1 = 1 corresponds to success).

The transition β → β# takes place if and only if within one (1+1)-merging
variable random mutation the following two events denoted by Aj and Bu happen
simultaneously:

a. for an arbitrary j ∈ J the event Aj takes place if and only if βj → β#
j ;

b. for an arbitrary u ∈ U the event Bu takes place if and only if βu → βu.
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It is easy to see that all the events of the kind Aj , Bu, j ∈ J, u ∈ U are indepen-
dent, thus

Pα→α# =

⎛

⎝
∏

j∈J

Pr{Aj}
⎞

⎠ ·
(

∏

u∈U

Pr{Bu}
)

.

For an arbitrary k ∈ {1, . . . , r} let us denote by pk the probability that the
result of the random (1+1)-mutation with probability of success 1

lk
of the string

αk = ωk(βk) is the string α#
k . Then for any j ∈ J it holds that Pr{Aj} = 1

r · pj .
For an arbitrary u ∈ U the event Bu can happen in one of the two cases: first

if σu = 0, and, second, if σu = 1, but the result of the (1+1)-random mutation
with the probability of success 1

lu
of the string αu = ωu(βu) is the string αu.

In the first case, Pr{Bu} = (1 − 1
r ). In the second case, Pr{Bu} = 1

r · (1 − 1
lu

)lu .
Thus, in any case when r ≥ 2, lu ≥ 2 it holds that Pr{Bu} ≥ 1

r · 1

lluu
. Taking this

fact into account the following bound holds:

Pα→α# ≥
⎛

⎝ 1
rq

·
∏

j∈J

pj

⎞

⎠ ·
(

1
rr−q

·
∏

u∈U

1
lluu

)

. (9)

In accordance with [7] for an arbitrary k ∈ {1, . . . , r}, such that lk ≥ 2, the
following holds: pk ≥ 1

l
lk
k

. Together with (9) this fact gives us the next bound:

Pα→α# ≥ 1
rr

·
∏

k∈{1,...,r}

1
llkk

. (10)

Let us emphasize that (10) holds for an arbitrary α ∈ {0, 1}n. Assume that
l = max{l1, . . . , lr}. Then, taking into account that

∑r
k=1 lk = n, it follows

from (10):

Pα→α# ≥ 1
rr

· 1
ln

.

The bound (8) follows from the latter inequality. The Theorem 2 is thus proved.

The bound (8) looks a little surprising since it is actually easy to determine
the merging mappings with such parameters r and l that the corresponding
variant of the bound (8) becomes significantly better than the similar bound for
(1+1)-EA shown in [7].

Definition 7. Assume that |X| = n, |Y | = r, 1 ≤ r < n and n = �n
r � · r + b,

where b, b ∈ {0, . . . , r − 1} is the remainder from the division of n by r. Let
μ : X → Y be an arbitrary merging mapping, such that for b sets of the kind Xj,
j ∈ {1, . . . , r} it holds that |Xj | = �n

r � + 1, and for the remaining r − b sets of
such kind |Xj | = �n

r �. Let us refer to such μ as uniform merging mapping.

Corollary 1. Let μ : X → Y be an arbitrary uniform merging mapping such
that lj ≥ 2 for all j ∈ {1, . . . , r}. Then there exists such a function δ(n) : 1 <
δ(n) ≤ n, that the following evaluation holds:

Eμ
(1+1)−MV EA ≤ n

n·
(

1
δ(n)− logn δ(n)

δ(n) +logn(δ(n)+1)
)
. (11)
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Proof. Let μ : X → Y be an arbitrary uniform merging mapping. By definition
it means that l ≤ n

r + 1. Since lj ≥ 2 for all j ∈ {1, . . . , r}, let us use the
evaluation (9):

Eμ
(1+1)−MV EA ≤ rr ·

(n

r
+ 1

)n

. (12)

Now introduce δ(n) : δ(n) = n/r. Then 1 < δ(n) ≤ n. Taking this into account
we can transform (12) as follows:

Eμ
(1+1)−MV EA ≤

(
n

δ(n)

) n
δ(n)

· (δ(n) + 1)n = n
n

δ(n) · (δ(n))− n
δ(n) · (δ(n) + 1)n =

= n
n

δ(n) · n− n
δ(n) ·logn δ(n) · nn·logn(δ(n)+1) = n

n·
(

1
δ(n)− logn δ(n)

δ(n) +logn(δ(n)+1)
)
.

Thus the Corollary 1 is proved.

Based on (11) it is possible to give a number of examples of uniform merging
mappings, that provide better worst-case-estimations of (1+1)-MVEA for an
arbitrary function of the kind (1) compared to the similar estimation for (1+1)-
EA from [7]. Indeed, for example for δ(n) ∼ 3

√
n and for any n ≥ 27 it follows

from (11) that Eμ
(1+1)−MV EA � n

n·( 1
3√n

− 1
3 3√n

+ 1
2 ) (here it is taken into account

that for n ≥ 27 it holds that logn( 3
√

n + 1) < 1
2 ). Thus in this case the following

holds Eμ
(1+1)−MV EA � n(n

2 + 2
3n2/3).

5 Preliminary Computational Results

The MVHC was implemented in the form of a multi-threaded C++ application.
It employs the parallel variant of the procedure for traversing the neighborhoods
in the search space (see Sect. 3).

In the role of test instances we considered the problems of finding preimages
of some cryptographic functions reduced to the Boolean Satisfiability problem
(SAT). Such instances are justified to be hard, thus they can be viewed as a
good test suite to compare the effectiveness of combinatorial algorithms. At the
current stage we considered the problems of finding preimages of a well-known
MD4 cryptographic hash function [15] with additional constraints on the hash
value. In particular, the goal was to find such 512-bit inputs that yield MD4
hash values with leading zeros. This problem can be reduced to SAT effectively.
For this purpose we employed the Transalg software system [16].

Let {0, 1}512 → {0, 1}128 be a function which is defined by the MD4 algo-
rithm. Let C be a CNF which encodes this algorithm. In the set of variables
from C let us select two sets. First set is Xin, which consists of 512 Boolean
variables encoding an input of MD4. Second one is Xout – a set of 128 Boolean
variables encoding the output of MD4. In the set Xout select k variables encod-
ing the leading bits of the hash value, and assign these variables with value 0.
Denote the resulting CNF as Ck. This CNF is satisfiable and from any satisfying
assignment one can effectively extract such α ∈ {0, 1}512 for which the leading
k bits of corresponding MD4 hash value are equal to zero.
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To find the satisfying assignment for Ck we used two approaches. First we
applied to Ck the multithreaded solvers, based on the CDCL algorithm [17],
that won the yearly SAT competitions in recent years. In the second approach
we used the MVHC algorithm described in the Sect. 3 of the present paper.
Consider, a set of variables Xin, |Xin| = 512 in CNF Ck. Associate an arbitrary
vector α ∈ {0, 1}512 with a set of literals over variables from Xin. Recall, that a
literal is either the variable itself or its negation. If a component of vector α corre-
sponding to a variable xi, i ∈ {1, . . . , 512} takes value 1, then the corresponding
literal is xi. Otherwise, the literal is ¬xi. All such literals are conjunctively added
to CNF Ck and the resulting CNF is denoted by Ck(α). It is well known that
set Xin is a Strong Unit Propagation Backdoor Set (SUPBS) for CNF Ck [18].
This means that the satisfiability of CNF Ck(α) can be checked in time linear on
the size of this CNF using a simple procedure of Boolean constraints propagation
called Unit Propagation Rule [17]. Thus, we consider function of the kind (1)
which associates with an arbitrary α ∈ {0, 1}512 a number of clauses in Ck(α)
that take the value of 1 as a result of application of Unit Propagation rule to
CNF Ck(α). If the value of this function is equal to the number of clauses that
are satisfied in Ck(α), then α is a MD4 preimage of a hash value with k leading
zero bits. For this function the problem of maximization on {0, 1}512 was solved
using MVHC algorithm, in which uniform merging mapping was employed.

All tested algorithms were run on a personal computer (Intel Core i7, 16
GB RAM) in 8 threads. Since these algorithms are randomized, the result of
each test is an average time of three independent launches for each algorithm.
The obtained results are presented in Table 1.

Table 1. An average time (in seconds) of finding a MD4 preimage for hash value with
k leading zero bits. For MVHC algorithm an uniform merging mapping was used

Solver k = 18 k = 20 k = 22

MVHC (l = 4) 244.8 1028 2126

MVHC (l = 8) 490.1 1044.8 2003.1

MVHC (l = 12) 30 105.9 1882.8

cryptominisat [19] 429.1 1197.9 3197.5

plingeling [20] 2175.1 1840.3 4218.4

6 Related Work (Briefly)

As it was mentioned above, there is a large set of metaheuristics and corre-
sponding discussion contained in the monograph [5] by S. Luke. One of the
first papers in which some complexity estimations of the simplest evolutionary
algorithm (1+1)-EA were presented was G. Rudolf’s dissertation [6].



100 A. A. Semenov

Variable Neighborhood Search method (VNS) was first proposed in [10] and
developed in subsequent papers: [11,12] and a number of others. Also we would
like to note that the ideas underlying the MVP are similar in nature to those pre-
viously used in papers dedicated to the application of Large Scale Neighborhood
Search [21,22].

A number of results on the complexity estimation of evolutionary algo-
rithms originates in [7]. These studies are actively conducted to the present
day. From the latest results in this area one should note [23].

We emphasize that MaxSAT is not the main object of study of the present
paper. The special case of MaxSAT, related to the preimage finding problem of
cryptographic functions, was considered only as an example of the maximization
problem of pseudo-Boolean function. Listing the key papers devoted to SAT and
MaxSAT would take up too much space. In this context, we refer only to the
well-known handbook [2] and, in particular, to its chapter on MaxSAT [24].
It should be noted that in a number of papers various metaheurists were used to
solve MaxSAT, employing both local search (see [25,26], etc.) and the concept
of evolutionary computations (see, for example, [26,27]).

7 Conclusion and Acknowledgements

In the present paper we described a metaheuristic technique focused on the
problem of pseudo-Boolean optimization. Arguments were given for using this
technique both in combination with local search methods and in conjunction
with evolutionary algorithms. The proposed technique when applied to local
search methods can be considered as a special case of Variable Neighborhood
Search. The first program implementation of the technique turned out to be quite
effective in application to some reasonably hard problems of pseudo-Boolean
optimization.

The author expresses deep gratitude to Ilya Otpuschennikov for the program
implementation of MVHC algorithm. The author also thanks Maxim Buzdalov
for productive discussion and useful advice.

The research was funded by Russian Science Foundation (project No. 16-11-
10046).
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Abstract. We approach the task of computing a carefully synchroniz-
ing word of minimum length for a given partial deterministic automaton,
encoding the problem as an instance of SAT and invoking a SAT solver.
Our experimental results demonstrate that this approach gives satisfac-
tory results for automata with up to 100 states even if very modest
computational resources are used.

Keywords: Nondeterministic automaton · Deterministic automaton ·
Partial deterministic automaton · Careful synchronization · Carefully
synchronizing word · SAT · SAT solver

1 Introduction

A nondeterministic finite automaton (NFA) is a triple 〈Q,Σ, δ〉, where Q and Σ
are finite non-empty sets called the state set and the input alphabet respectively,
and δ is a subset of Q × Σ × Q. The elements of Q and Σ are called states and
letters, respectively, and δ is referred to as the transition relation1. For each pair
(q, a) ∈ Q × Σ, we denote by δ(q, a) the subset {q′ | (q, a, q′) ∈ δ} of Q; this way
δ can be viewed as a function Q × Σ → P(Q), where P(Q) is the power set of
Q. When we treat δ as a function, we refer to it as the transition function.

Let Σ∗ stand for the collection of all finite words over the alphabet Σ,
including the empty word ε. The transition function extends to a function
P(Q) × Σ∗ → P(Q), still denoted δ, in the following inductive way: for every
subset S ⊆ Q and every word w ∈ Σ∗, we set

δ(S,w) :=

{
S if w = ε,⋃

q∈δ(S,v) δ(q, a) if w = va with v ∈ Σ∗ and a ∈ Σ.

1 The conventional concept of an NFA includes distinguishing two non-empty subsets
of Q consisting of initial and final states. As these play no role in our considerations,
the above simplified definition well suffices for the purpose of this paper.

Supported by the Ministry of Science and Higher Education of the Russian Federa-
tion, projects no. 1.580.2016 and 1.3253.2017, and the Competitiveness Enhancement
Program of Ural Federal University.

c© Springer Nature Switzerland AG 2019
I. Bykadorov et al. (Eds.): MOTOR 2019, CCIS 1090, pp. 103–118, 2019.
https://doi.org/10.1007/978-3-030-33394-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33394-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-33394-2_9


104 H. Shabana and M. V. Volkov

(Here the set δ(S, v) is defined by the induction assumption since v is shorter
than w.) We say that a word w ∈ Σ∗ is undefined at a state q ∈ Q if the set
δ(q, w) is empty; otherwise w is said to be defined at q.

When we deal with a fixed NFA, we suppress the sign of the transition
relation, introducing the NFA as the pair 〈Q,Σ〉 rather than the triple 〈Q,Σ, δ〉
and writing q.w for δ(q, w) and S.w for δ(S,w).

A partial (respectively, complete) deterministic automaton is an NFA 〈Q,Σ〉
such that |q.a| ≤ 1 (respectively, |q.a| = 1) for all (q, a) ∈ Q × Σ. We use the
acronyms PFA and CFA for the expressions ‘partial deterministic automaton’
and ‘complete deterministic automaton’, respectively.

A CFA A = 〈Q,Σ〉 is called synchronizing if there exists a word w ∈ Σ∗

whose action leaves the automaton in one particular state no matter at which
state in Q it is applied: q.w = q′.w for all q, q′ ∈ Q. Any w with this property is
said to be a synchronizing word for the automaton.

Synchronizing automata serve as simple yet adequate models of error-
resistant systems in many applied areas (system and protocol testing, infor-
mation coding, robotics). At the same time, synchronizing automata surpris-
ingly arise in some parts of pure mathematics and theoretical computer science
(symbolic dynamics, theory of substitution systems, formal language theory).
We refer to the survey [39] and the chapter [20] of the forthcoming ‘Hand-
book of Automata Theory’ for a discussion of synchronizing automata as well
as their diverse connections and applications. From both applied and theoreti-
cal viewpoints, the key question is to find the optimal, i.e., shortest reset word
for a given synchronizing automaton. Under standard assumptions of complex-
ity theory, this optimization question is known to be computationally hard; see
[20, Section 2] for a summary of various hardness results in the area. As it is
quite common for hard problems of applied importance, there have been many
attempts to develop practical approaches to the question. These approaches have
been based on certain heuristics [1,17,18] and/or popular techniques, including
(but not limiting to) binary decision diagrams [29], genetic and evolutionary
algorithms [19,32], satisfiability solvers [38], answer set programming [12], hier-
archical classifiers [30], and machine learning [31].

The present authors [36,37] have initiated an extension to the realm of NFAs
of the approach of [38]. Here we consider a more restricted class, namely, that of
PFAs, where studying synchronization issues appears to be much better moti-
vated. While we follow the general strategy of and re-use some technical tricks
from [36,37], our present constructions heavily depend on the specifics of partial
automata and have not been obtained via specializing the constructions of those
earlier papers.

The rest of the paper is structured as follows. In Sect. 2 we describe and
motivate the version of PFA synchronization that we have studied. In Sect. 3 we
first outline the approach based on satisfiability solvers and then explain in detail
how we encode PFAs and their synchronization problems as instances of the
Boolean satisfiability problem. In Sect. 4 we provide samples of our experimental
results and conclude in Sect. 5 with a brief discussion of the future work.
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We have tried to make the paper, to a reasonable extent, self-contained,
except for a few discussions that involve some basic concepts of computational
complexity theory. These concepts can be found, e.g., in the early chapters of
the textbook [28].

2 Synchronization of NFAs and PFAs

The concept of synchronization of CFAs as defined in Sect. 1 was extended to
NFAs in several non-equivalent ways. The following three nowadays popular
versions were suggested and analyzed in [13] in 1999 (although, in an implicit
form, some of them appeared in the literature much earlier, see, e.g., [5,11]). For
i ∈ {1, 2, 3}, an NFA A = 〈Q,Σ〉 is called Di-synchronizing if there exists a
word w ∈ Σ∗ that satisfies the condition (Di) from the list below:

(D1): |q.w| = |Q.w| = 1 for all q ∈ Q;
(D2): q.w = Q.w for all q ∈ Q;
(D3):

⋂
q∈Q q.w �= ∅.

Any word satisfying (Di) is called Di-synchronizing for A . The definition readily
yields the following properties of Di-synchronizing words:

Lemma 1. (a)A D1- or D3-synchronizing word is defined at each state.
(b) A D2-synchronizing word is either defined at each state or undefined at each

state.
(c) Every D1-synchronizing word is both D2- and D3-synchronizing; every D2-

synchronizing word defined at each state is D3-synchronizing.

In [37] we adapted the approach based on satisfiability solvers to finding D3-
synchronizing words of minimum length for NFAs. The first-named author used
a similar method in the cases of D1- and D2-synchronization; results related to
D2-synchronization were reported in [36].

Yet another version of synchronization for NFAs was introduced in [15] and
systematically studied in [23–27], which terminology we adopt. An NFA A =
〈Q,Σ〉 is called carefully synchronizing if there is a word w = a1 · · · a�, with
a1, . . . , a� ∈ Σ, that satisfies the condition (C), being the conjunction of (C1)–
(C3) below:

(C1): the letter a1 is defined at every state in Q;
(C2): the letter at with 1 < t ≤ � is defined at every state in Q.a1 · · · at−1,
(C3): |Q.w| = 1.

Any w satisfying (C) is called a carefully synchronizing word (c.s.w., for short)
for A . Thus, when a c.s.w. is applied at any state in Q, no undefined transition
occurs during the course of application. Every carefully synchronizing word is
clearly D1-synchronizing but the converse is not true in general; moreover, a
D1-synchronizing NFA may admit no c.s.w.

In this paper we focus on carefully synchronizing words for PFAs. There are
several theoretical and practical reasons for this.
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On the theoretical side, it is easy to see that each of the conditions (C),
(D1), (D3) leads to the same notion when restricted to PFAs. As for D2-
synchronization, if a word w is D2-synchronizing for a PFA A , then w carefully
synchronizes A whenever w is defined at each state. Otherwise w is nowhere
defined by Lemma 1b, and such ‘annihilating’ words are nothing but usual syn-
chronizing words for the CFA obtained from A by adding a new sink state and
making all transitions undefined in A lead to this sink state. Synchronization of
CFAs with a sink state is relatively well understood (see [35]), and therefore, we
may conclude that D2-synchronization also reduces to careful synchronization
in the realm of PFAs. On the other hand, there exists a simple transformation
that converts every NFA A = 〈Q,Σ〉 into a PFA B = 〈Q,Σ′〉 such that A
is D3-synchronizing if and only if so is B and the minimum lengths of D3-
synchronizing words for A and B are equal; see [14, Lemma 8.3.8] and [16,
Lemma 3]. These observations demonstrate that from the viewpoint of optimal
synchronization, studying carefully synchronizing words for PFAs may provide
both lower and upper bounds applicable to arbitrary NFAs and all aforemen-
tioned kinds of synchronization.

Probably even more important is the fact that careful synchronization of
PFAs is relevant in numerous applications. Due to the page limit, we mention
only two examples here.

In industrial robotics, synchronizing automata are widely used to design feed-
ers, sorters, and orienters that work with flows of certain objects carried by a
conveyer. The goal is achieved by making the flow encounter passive obstacles
placed appropriately along the conveyer belt; see [21,22] for the origin of this
automata approach and [2] for an illustrative example. Now imagine that the
objects to be oriented or sorted have a fragile side that could be damaged if
hitting an obstacle. In order to prevent any damage, we have to forbid ‘dan-
gerous’ transitions in the automaton modelling the orienter/sorter so that the
automaton becomes partial and the obstacle sequences must correspond to care-
fully synchronizing words. (Actually, the term ‘careful synchronization’ has been
selected with this application in mind.)

Our second example relates to so-called synchronized codes2. Recall that a
prefix code over a finite alphabet Σ is a set X of words in Σ∗ such that no word
of X is a prefix of another word of X. Decoding of a finite prefix code X over
Σ can be implemented by a finite deterministic automaton AX whose state Q
is the set of all proper prefixes of the words in X (including the empty word ε)
and whose transitions are defined as follows: for q ∈ Q and a ∈ Σ,

q.a =

⎧⎪⎨
⎪⎩

qa if qa is a proper prefix of a word of X,

ε if qa ∈ X,

undefined otherwise.

In general, AX is a PFA (it is complete if and only if the code X is not contained in
another prefix code over Σ). It can be shown that if AX is carefully synchronizing,
2 We refer the reader to [4, Chapters 3 and 10] for a detailed account of profound

connections between codes and automata.
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the code X has a very useful property: whenever a loss of synchronization between
the decoder and the coder occurs (because of a channel error), it suffices to transmit
a c.s.w. w of AX such that w sends all states in Q to the state ε to ensure that the
following symbols will be decoded correctly.

We may conclude that the problems of determining whether or not a given
PFA is carefully synchronizing and of finding its shortest carefully synchronizing
words are both natural and important. The bad news is that these problems turn
out to be quite difficult: it is known that the first problem is PSPACE-complete
and that the minimum length of carefully synchronizing words for carefully syn-
chronizing PFAs can be exponential as a function of the number of states. (These
results were found in [33,34] and later rediscovered and strengthened in [25].)
Thus, one has to use some tools that have proved to be efficient for dealing with
computationally hard problems. As mentioned in Sect. 1, in this paper we make
an attempt to employ a satisfiability solver as such a tool.

3 Encoding

For completeness, recall the formulation of the Boolean satisfiability problem
(SAT). An instance of SAT is a pair (V,C), where V is a set of Boolean variables
and C is a collection of clauses over V . (A clause over V is a disjunction of
literals and a literal is either a variable in V or the negation of a variable in V .)
Any truth assignment on V , i.e., any map ϕ : V → {0, 1}, extends to a map
C → {0, 1} (still denoted by ϕ) via the usual rules of propositional calculus:
ϕ(¬x) = 1 − ϕ(x), ϕ(x ∨ y) = max{ϕ(x), ϕ(y)}. A truth assignment ϕ satisfies
C if ϕ(c) = 1 for all c ∈ C. The answer to an instance (V,C) is YES if (V,C)
has a satisfying assignment (i.e., a truth assignment on V that satisfies C) and
NO otherwise.

By Cook’s classic theorem (see, e.g., [28, Theorem 8.2]), SAT is NP-complete,
and by the very definition of NP-completeness, every problem in NP reduces to
SAT. On the other hand, over the last score or so, many efficient SAT solvers, i.e.,
specialized programs designed to solve instances of SAT have been developed.
Modern SAT solvers can solve instances with hundreds of thousands of variables
and millions of clauses within a few minutes. Due to this progress, the following
approach to computationally hard problems has become quite popular nowadays:
one encodes instances of such problems into instances of SAT that are then fed
to a SAT solver3. It is exactly the strategy that we want to apply.

We start with the following problem:

CSW (the existence of a c.s.w. of a given length):
Input: a PFA A and a positive integer � (given in unary);
Output: YES if A has a c.s.w. of length �;

NO otherwise.

3 We refer the reader to the survey [10] or to the handbook [6] for a detailed discussion
of the approach and examples of its successful applications in various areas.
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We have to assume that the integer � is given in unary because with � given
in binary, a polynomial time reduction from CSW to SAT is hardly possible.
(Indeed, it easily follows from [25] that the version of CSW in which the integer
parameter is given in binary is PSPACE-hard, and the existence of a polyno-
mial reduction from a PSPACE-hard problem to SAT would imply that the
polynomial hierarchy collapses at level 1.) In contrast, the version of CSW with
the unary integer parameter is easily seen to belong to NP: given an instance
(A = 〈Q,Σ〉, �) of CSW in this setting, guessing a word w ∈ Σ∗ of length � is
legitimate. Then one just checks whether or not w is carefully synchronizing for
A , and time spent for this check is clearly polynomial in the size of (A , �).

Now, given an arbitrary instance (A , �) of CSW, we construct an instance
(V,C) of SAT such that the answer to (A , �) is YES if and only if so is the answer
to (V,C). Our encoding follows general patterns presented in [6, Chapters 2
and 16] but has some specific features so that we describe it in full detail and
provide a rigorous proof of its adequacy. In the following presentation of the
encoding, precise definitions and statements are interwoven with less formal
comments explaining the ‘physical’ meaning of variables and clauses.

So, take a PFA A = 〈Q,Σ〉 and an integer � > 0. Denote the sizes of Q
and Σ by n and m respectively, and fix some numbering of these sets so that
Q = {q1, . . . , qn} and Σ = {a1, . . . , am}.

We start with introducing the variables used in the instance (V,C) of SAT
that encodes (A , �). The set V consists of two sorts of variables: m� letter vari-
ables xi,t with 1 ≤ i ≤ m, 1 ≤ t ≤ �, and n(� + 1) state variables yj,t with
1 ≤ j ≤ n, 0 ≤ t ≤ �. We use the letter variables to encode the letters of a
hypothetical c.s.w. w of length �: namely, we want the value of the variable xi,t

to be 1 if and only if the t-th letter of w is ai. The intended meaning of the state
variables is as follows: we want the value of the variable yj,t to be 1 whenever
the state qj belongs to the image of Q under the action of the prefix of w of
length t, in which situation we say that qj is active after t steps. We see that
the total number of variables in V is m� + n(� + 1) = (m + n)� + n.

Now we turn to constructing the set of clauses C. It consists of four groups.
The group I of initial clauses contains n one-literal clauses yj,0, 1 ≤ j ≤ n, and
expresses the fact that all states are active after 0 steps.

For each t = 1, . . . , �, the group L of letter clauses includes the clauses

x1,t ∨ · · · ∨ xm,t, ¬xr,t ∨ ¬xs,t, where 1 ≤ r < s ≤ m. (1)

Clearly, the clauses (1) express the fact that the t-th position of our hypo-
thetical c.s.w. w is occupied by exactly one letter in Σ. Altogether, L contains
�
(

m(m−1)
2 + 1

)
clauses.

For each t = 1, . . . , � and each triple (qj , ai, qk) in the transition relation of
A , the group T of transition clauses includes the clause

¬yj,t−1 ∨ ¬xi,t ∨ yk,t. (2)

Invoking the basic laws of propositional logic, one sees that the clause (2) is
equivalent to the implication yj,t−1 & xi,t → yk,t, that is, (2) expresses the fact
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that if the state qj has been active after t − 1 steps and ai is the t-th letter
of w, then the state qk = qj .ai becomes active after t steps. Further, for each
t = 1, . . . , � and each pair (qj , ai) such that ai is undefined at qj in A , we add
to T the clause

¬yj,t−1 ∨ ¬xi,t. (3)

The clause is equivalent to the implication yj,t−1 → ¬xi,t, and thus, it expresses
the requirement that the letter ai should not be occur in the t-th position of w if
qj has been active after t−1 steps. Obviously, this corresponds to the conditions
(C1) (for t = 0) and (C2) (for t > 0) in the definition of careful synchronization.
For each t = 1, . . . , � and each pair (qj , ai) ∈ Q × Σ, exactly one of the clauses
(2) or (3) occurs in T , whence T consists of �mn clauses.

The final group S of synchronization clauses includes the clauses

¬yr,� ∨ ¬ys,�, where 1 ≤ r < s ≤ n. (4)

The clauses (4) express the requirement that at most one state remains active
when the action of the word w is completed, which corresponds to the condition
(C3) from the definition of careful synchronization. The group S contains n(n−1)

2
clauses.

Summing up, the number of clauses in C := I ∪ L ∪ T ∪ S is

n + �
(

m(m−1)
2 + 1

)
+ �mn + n(n−1)

2 = �
(

m(m−1)
2 + mn + 1

)
+ n(n+1)

2 . (5)

In comparison with encodings used in our earlier papers [36,37], the encoding
suggested here produces much smaller SAT instances. Since in the applications
the size of the input alphabet is a (usually small) constant, the leading term
in (5) is Θ(�n) while the restriction to PFAs of the encodings from [36,37] has
Θ(�n2) clauses.

Theorem 2. A PFA A has a c.s.w. of length � if and only if the instance (V,C)
of SAT constructed above is satisfiable. Moreover, the carefully synchronizing
words of length � for A are in a 1-1 correspondence with the restrictions of
satisfying assignments of (V,C) to the letter variables.

Proof. Suppose that A has a c.s.w. of length �. We fix such a word w and denote
by wt its prefix of length t = 1, . . . , �. Define a truth assignment ϕ : V → {0, 1}
as follows: for 1 ≤ i ≤ m, 0 ≤ j ≤ n, 1 ≤ t ≤ �, let

ϕ(xi,t) :=

{
1 if the t-th letter of w is ai,

0 otherwise;
(6)

ϕ(yj,0) := 1; (7)

ϕ(yj,t) :=

{
1 if the state qj lies in Q.wt,

0 otherwise.
(8)
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In view of (6) and (7), ϕ satisfies all clauses in L and respectively I. As w� = w
and |Q.w| = 1, we see that (8) ensures that ϕ satisfies all clauses in S. It remains
to analyze the clauses in T . For each fixed t = 1, . . . , �, these clauses are in a 1-1
correspondence with the pairs in Q × Σ. We fix such a pair (qj , ai), denote the
clause corresponding to (qj , ai) by c and consider three cases.

Case 1 : the letter ai is not the t-th letter of w. In this case ϕ(xi,t) = 0 by
(6), and hence, ϕ(c) = 1 since the literal ¬xi,t occurs in c, independently of c
having the form (2) or (3).

Case 2 : the letter ai is the t-th letter of w but it is undefined at qj . In this
case the clause c must be of the form (3). Observe that t > 1 in this case since
the first letter of the c.s.w. w must be defined at each state in Q. Moreover, the
state qj cannot belong to the set Q.wt−1 because ai must be defined at each
state in this state. Hence ϕ(yj,t−1) = 0 by (8), and ϕ(c) = 1 since the literal
¬yj,t−1 occurs in c.

Case 3 : the letter ai is the t-th letter of w and it is defined at qj . In this
case the clause c must be of the form (2), in which the literal yk,t corresponds to
the state qk = qj .ai. If the state qj does not belong to the set Q.wt−1, then as in
the previous case, we have ϕ(yj,t−1) = 0 and ϕ(c) = 1. If qj belongs to Q.wt−1,
then the state qk belongs to the set (Q.wt−1).ai = Q.wt, whence ϕ(yk,t) = 1 by
(8). We conclude that ϕ(c) = 1 since the literal yk,t occurs in c.

Conversely, suppose that ϕ : V → {0, 1} is a satisfying assignment for (V,C).
Since ϕ satisfies the clauses in L, for each t = 1, . . . , �, there exists a unique i ∈
{1, . . . , m} such that ϕ(xi,t) = 1. This defines a map χ : {1, . . . , �} → {1, . . . , m}.
Let w := aχ(1) · · · aχ(�). We aim to show that w is a c.s.w. for A , i.e., to verify
that w fulfils the conditions (C1)–(C3) from the definition of a c.s.w. For this,
we first prove two auxiliary claims. Recall that a state is said to be active after
t steps if it lies in Q.wt, where, as above, wt is the length t prefix of the word w.
(By the length 0 prefix we understand the empty word ε).

Claim 1 . For each t = 0, 1, . . . , �, there are states active after t steps.
Claim 2 . If a state qk is active after t steps, then ϕ(yk,t) = 1.
We prove both claims simultaneously by induction on t. The induction basis

t = 0 is guaranteed by the fact that all states are active after 0 steps and ϕ
satisfies the clauses in I. Now suppose that t > 0 and there are states active
after t − 1 steps. Let qr be such a state. Then ϕ(yr,t−1) = 1 by the induction
assumption. Let i := χ(t), that is, ai is the t-th letter of the word w. Then
ϕ(xi,t) = 1, whence ϕ cannot satisfy the clause of the form (3) with j = r.
Hence this clause cannot appear in T as ϕ satisfies the clauses in T . This means
that the letter ai is defined at qr in A , and the state qs := qr.ai is active after
t steps. Claim 1 is proved.

Now let qk be an arbitrary state that is active after t > 0 steps. Since ai is
the t-th letter of w, we have Q.wt = (Q.wt−1).ai, whence qk = qj .ai for same
qj ∈ Q.wt−1. Therefore the clause (2) occurs in T , and thus, it is satisfied by ϕ.
Since qj is active after t − 1 steps, ϕ(yj,t−1) = 1 by the induction assumption;
besides that, ϕ(xi,t) = 1. We conclude that in order to satisfy (2), the assignment
ϕ must fulfil ϕ(yk,t) = 1. This completes the proof of Claim 2.
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We turn to prove that the word w fulfils (C1) and (C2). This amounts to
verifying that for each t = 1, . . . , �, the t-th letter of the word w is defined at
every state qj that is active after t − 1 steps. Let, as above, ai stand for the
t-th letter of w. If ai were undefined at qj , then by the definition of the set T of
transition clauses, this set would include the corresponding clause (3). However,
ϕ(xi,t) = 1 by the construction of w and ϕ(yj,t−1) = 1 by Claim 2. Hence ϕ does
not satisfy this clause while the clauses from T are satisfied by ϕ, a contradiction.

Finally, consider (C3). By Claim 1, some state is active after � steps. On
the other hand, the assignment ϕ satisfies the clauses in S, which means that
ϕ(yj,�) = 1 for at most one index j ∈ {1, . . . , n}. By Claim 2 this implies that
at most one state is active after � steps. We conclude that exactly one state is
active after � steps, that is, |Q.w| = 1. ��

4 Experimental Results

We have successfully applied the encoding constructed in Sect. 3 to solve CSW
instances with the help of a SAT solver. As in [12,36–38], we have used MiniSat
2.2.0 [8,9]. In order to find a c.s.w. of minimum length for a given PFA A ,
we have considered CSW instances (A , �) with fixed A and performed binary
search on �. Even though our encoding is different from those we used in [36,37],
it shares with them the following useful feature: when presented in DIMACS
CNF format, the ‘primary’ SAT instance that encodes the CSW instance (A , 1)
can be easily scaled to the SAT instances that encode the CSW instances (A , �)
with any value of �. Due to this feature, one radically reduces time needed to
prepare the input data for the SAT solver; we refer the reader to [36, Sect. 3] for
a detailed explanation of the trick and an illustrative example. Thus, we encode
(A , 1), write the corresponding SAT instance in DIMACS CNF format, and scale
the instance to the instances encoding (A , �) with � = 2, 4, 8, . . . until we reach
an instance on which the SAT solver returns YES4. The corresponding value of
� serves as the right border �max of the binary search while the previous value
of � serves as the left border �min. Then we test the SAT instance corresponding
to (A , �max+�min

2 ), etc.
We implemented the algorithm outlined above in C++ and compiled with

GCC 4.9.2. In our experiments we used a personal computer with an Intel(R)
Core(TM) i5-2520M processor with 2.5 GHz CPU and 4 GB of RAM. The code
can be found at https://github.com/hananshabana/SynchronizationChecker.

4 In principle, it may happen that we never reach such an instance (which indicates
that either A is not carefully synchronizing or the minimum length of carefully
synchronizing words for A is too big so that MiniSat cannot handle the resulting
SAT instance) but we have not observed such “bad” cases in our experiments with
randomly generated PFAs.

https://github.com/hananshabana/SynchronizationChecker


112 H. Shabana and M. V. Volkov

As a sample of our experimental findings, we present here our results on syn-
chronization of PFAs with a unique undefined transition. Observe that the prob-
lem of deciding whether or not a given PFA is carefully synchronizing remains
PSPACE-complete even if restricted to this rather special case [25]. We consid-
ered random PFAs with n ≤ 100 states and two input letters. The condition
(C1) in the definition of a carefully synchronizing PFA implies that such a PFA
must have an everywhere defined letter. We denoted this letter by a and the
other letter, called b, was chosen to be undefined at a unique state. Further, it
is easy to see that for a PFA 〈Q, {a, b}〉 with a, b so chosen to be carefully syn-
chronizing, it is necessary that |Q.a| < |Q|. Therefore, we fixed a state qa ∈ Q
and then selected a uniformly at random from all nn−1 maps Q → Q \ {qa}.
Similarly, to ensure there is a unique undefined transition with b, we fixed a
state qb ∈ Q (not necessarily different from qa) and then selected b uniformly at
random from all (n − 1)n maps Q \ {qb} → Q. For each fixed n, we generated
up to 1000 random PFAs this way and calculated the average length �(n) of
their shortest carefully synchronizing words. We used the least squares method
to find a function that best reflects how �(n) depends on n, and it turned out
that our results are reasonably well approximated by the following expression:

�(n) ≈ 3.92 + 0.49n − 0.005n2 + 0.000024n3.
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The next graph shows the relation between the relative standard deviation
of our datasets and the number of states. We see that the relative standard
deviation gradually decreases as the number of states grows.



Using Sat Solvers for Synchronization Issues 113

20 40 60 80 100

0.15

0.2

0.25

0.3

0.35

0.4

Number of states

R
el
at
iv
e
st
an

da
rd

de
vi
at
io
n

We performed similar experiments with random PFAs that have two or three
undefined transition. We also tested our algorithm on PFAs from the series Pn

suggested in [7]. The state set of Pn is {1, 2, . . . , n}, n ≥ 3, on which the input
letters a and b act as follows:

q.a :=

{
q + 1 if q = 1, 2,

q if q = 3, . . . , n;
q.b :=

⎧⎪⎨
⎪⎩

undefined if q = 1,

q + 1 if q = 2, . . . , n − 1,

1 if q = n.

We examined all automata Pn with n = 4, 5, . . . , 11, and for each of them,
our result matched the theoretical value predicted by [7, Theorem 3]. The time
consumed ranges from 0.301 s for n = 4 to 4303 s for n = 11. Observe that in the
latter case the shortest c.s.w. has length 116 so that the “honest” binary search
started with (P11, 1) required 14 calls of MiniSat, namely, for the encodings
of (P11, �) with � = 1, 2, 4, 8, 16, 32, 64, 128, 96, 112, 120, 116, 114, 115. Of course,
if one just wants to confirm (or to disprove) a theoretical prediction � for the
minimum length of carefully synchronizing words for a given PFA A , two calls
of a SAT solver—on the encodings of (A , �) and (A , � − 1)—suffice.

In our experiments, we kept track of “slowly synchronizing” PFAs, that is,
PFAs with the minimum length of carefully synchronizing words close to the
square of the number of states. Whenever we encountered such examples, we
made an attempt to generalize them in order to get infinite series of provably
“slowly synchronizing” PFAs. The following statements present two of the results
we found this way.
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Proposition 3. For each n > 4, let H ′
n be the PFA with the state set

{0, 1, . . . , n − 1} on which the input letters a and b act as follows:

q.a :=

{
0 if q ≤ 2,

q if q ≥ 3;
q.b :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3 if q = 0,

0 if q = 1,

undefined if q = 2,

q + 1 if q = 3, . . . , n − 2,

1 if q = n − 1.

The automaton H ′
n is carefully synchronizing and the minimum length of care-

fully synchronizing words for H ′
n is equal to (n − 2)2.

Proposition 4. For each n > 4, let H ′′
n be the PFA with the state set

{0, 1, . . . , n − 1} on which the input letters a and b act as follows:

q.a :=

{
q + 1 if q ≤ n − 2,

1 if q = n − 1;
q.b :=

{
undefined if q = 0,

q + 1 (mod n) if q ≥ 1.

The automaton H ′′
n is carefully synchronizing and the minimum length of care-

fully synchronizing words for H ′
n is equal to n2 − 3n + 3.

We omit the proofs of Propositions 3 and 4 due to space constraints. The
proofs (which are not difficult) can be obtained by a suitable adaptation of the
approach developed for the case of CFAs in [3, Section 4].

From the viewpoint of our studies, the series H ′
n and H ′′

n are of interest as
they exhibit two extremes with respect to amenability of careful synchronization
to the SAT solver approach. The series H ′

n has turned to be a hard nut to crack
for our algorithm: the maximum n for which the algorithm was able to find a
c.s.w. of minimum length is 13, and computing this word (of length 121) took
almost 4 h. In contrast, automata in the series H ′′

n turn out to be quite amenable:
for instance, the algorithm found a c.s.w. of length 343 for H ′′

20 in 13.38 s. At
present, we have no explanation for what causes such a strong contrast: is this
an intrinsic structure of the PFAs under consideration, or the nature of the
algorithm built in MiniSat, or just a peculiarity of our implementation?

We made also a comparison with the only approach to computing carefully
synchronizing words of minimum length that we had found in the literature,
namely, the approach based on partial power automata; see [27, p. 295]. Given
a PFA A = 〈Q,Σ〉, its partial power automaton P(A ) has the subsets of Q as
the states, the same input alphabet Σ, and the transition function defined as
follows: for each a ∈ Σ and each P ⊆ Q,

P.a :=

{
{q.a | q ∈ P} provided q.a is defined for all q ∈ P,

undefined otherwise.

It is easy to see that w ∈ Σ∗ is a c.s.w. of minimum length for A if and only if
w labels a minimum length path in P(A ) starting at Q and ending at a single-
ton. Such a path can be found by breadth-first search in the underlying digraph
of P(A ).
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The result of the comparison is presented in the picture on the next page. In
this experiment we had to restrict to PFAs with at most 16 states since beyond
this number of states, our implementation of the method based on partial power
automata could not complete the computation due to memory restrictions (recall
that we used rather modest computational resources). However, we think that
the exhibited data suffice to demonstrate that the approach based on SAT solvers
shows a by far better performance.
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5 Conclusion and Future Work

We have presented an attempt to approach the problem of computing a c.s.w.
of minimum length for a given PFA via the SAT solver method. For this, we
have developed a new encoding, which, in comparison with encodings used in
our earlier papers [36,37], requires a more sophisticated proof but leads to more
economic SAT instances. In our future experiments, we plan to employ more
advanced SAT solvers. Using more powerful computers constitutes other obvi-
ous direction for improvements. Clearly, the approach is amenable to paralleliza-
tion since calculations needed for different automata are completely independent
so that one can process in parallel as many automata as many processors are
available.

Now we are designing new experiments. For instance, it appears to be inter-
esting to compare the minimum lengths of a synchronizing word for a synchro-
nizing CFA and of carefully synchronizing words for PFAs that can be obtained
from the CFA by removing one or more of its transitions. We also plan to extend
the SAT solver approach to so-called exact synchronization of PFAs which is of
interest for certain applications.
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12. Güniçen, C., Erdem, E., Yenigün, H.: Generating shortest synchronizing sequences
using answer set programming. In: Fink, M., Lierler, Y. (eds.) Answer Set Program-
ming and Other Computing Paradigms, 6th International Workshop, ASPOCP
2013, pp. 117–127 (2013). https://arxiv.org/abs/1312.6146

13. Imreh, B., Steinby, M.: Directable nondeterministic automata. Acta Cybernetica
14, 105–115 (1999)

14. Ito, M.: Algebraic Theory of Automata and Languages. World Scientific, Singapore
(2004). https://doi.org/10.1142/4791

15. Ito, M., Shikishima-Tsuji, K.: Some results on directable automata. In: Karhumäki,
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Abstract. Most commonly used clustering algorithms are those aimed
at solving the well-known k-median problem. Their main advantage is
that they are simple to implement and use, and they are flexible in
choosing dissimilarity measures (not necessarily metrics). K-median algo-
rithms are also known to be more robust to noise and outliers in compar-
ison with k-means algorithms. In spite of that, they have been of limited
use for large-scale clustering problems due to their high computational
and space complexity. This work aims at computational comparison of k-
median clustering algorithms in a specific large-scale setting—clustering
large image collections. We implement distributed versions of the most
common k-median clustering algorithms and compare them with our
parallel heuristic for solving large-scale k-median problem instances. We
analyze clustering results with respect to external evaluation measures
and run time.

Keywords: k-median problem · Clustering · Facility location ·
k-medoids clustering · Parallel computing · Exemplar-based clustering

1 Introduction

Clustering is one of the main unsupervised machine learning task widely used
in numerous applications (from bioinformatics to the analysis of blockchains).
Among many clustering approaches, one of the most common techniques are
the so-called partition-based clustering algorithms relying upon solving some
optimization problems, e.g. k-means and k-median (p-median). Given a set I =
{1, . . . , m} of data items that are supposed to be clustered into the prespecified
number of disjoint groups and d(·, ·) measuring dissimilarity between data items.
Note that d(·, ·) may be a distance-metric on I if data items are given in the
form of feature vectors. The k-median objective is to find at most k data items
(medians) from I, such that the total sum of dissimilarities between each data
item and their closest median is minimized.
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The k-median problem is known to be NP-hard on network and plane [19,23].
Despite that, there are several popular clustering algorithms based on finding
solutions of the k-median problem, e.g. k-medoids, PAM, CLARA, CLARANS,
and affinity propagation. The main advantage of most k-median clustering algo-
rithms are their simplicity, the robustness to noise and outliers in comparison
to k-means-based algorithms, and their flexibility in choosing dissimilarity mea-
sures. Thus, dissimilarities may be asymmetric and need not satisfy the triangle
inequality. On the other hand, the main disadvantage of such algorithms is their
high time complexity and memory load. For example, a serious bottleneck is
to calculate and store the whole pairwise dissimilarity matrix. For example, to
store the dissimilarities between one million data items, we actually need 4 TB of
memory, which is not available on a general-purpose computer. Moreover, most
of k-median clustering algorithms are heuristics that in general converge only
to local optimal solutions. Some algorithms (like CLARANS and k-medoids)
are heavily dependent on the choice of initial solutions, thus they may require
multiple reruns to find good clusterings. Many studies are focused on mitigating
time and memory complexity of k-median clustering algorithms, e.g. via sam-
pling procedures (CLARA) and/or distributed computing. However, this usually
results in a much lower clustering accuracy in comparison with the base k-median
clustering algorithms.

The k-median problem can be expressed as an integer program. Let G(I,A)
be a weighted complete simple directed graph with the arc set A = {(i, j) : i, j ∈
I; i �= j}. Each arc (i, j) ∈ A is assigned the weight dij corresponding to the
measure of dissimilarity between data items i and j. Let us also introduce the
binary variables yi which is 1 if node i ∈ I is a median, 0 otherwise; and the
variables xij which is equal to 1 if node i is the closest median to node j. We
also introduce two sets of nodes δ−(j) = {i ∈ I| (i, j) ∈ A} and δ+(i) = {j ∈
I| (i, j) ∈ A}. Then, the k-median clustering problem is written as follows

min
(x,y)

∑

(i,j)∈A

dijxij , (1)

∑

i∈δ−(j)

xij + yj = 1, j ∈ I, (2)

xij � yi, i ∈ I, j ∈ δ+(i), (3)
∑

i∈I

yi = k, (4)

yi, xij ∈ {0, 1}, i ∈ I, (i, j) ∈ A. (5)

The objective function (1) is to minimize the overall sum of dissimilarities
between nodes and their closest medians. Constraints (2) ensure that either
a node j is a median (cluster representative) or it is assigned to a median.
Constraints (3) impose that each node can only be assigned to medians. Con-
straint (4) enforces that the number of medians must be equal to k.

Apart from the k-median clustering algorithms commonly used in diverse
applications, there are exact, approximation, and heuristic methods for finding
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near-optimal solutions of the k-median problem (for a comprehensive reviews
see [2,11,24]). For example, for more than ten years, the best approximation
algorithm for the metric problem with factor 3 + ε was the local search heuris-
tic based on multiple swaps. Lately, this approximation ratio was improved to
1+

√
3+ε in [21] and finally fine tuned, using a dependent-rounding approach, to

2.675+ε [7], which is the best-known approximation ratio for the k-median prob-
lem to date. Among the most efficient exact algorithms are the branch-and-cut-
and-price method [6,22] and the column-and-row generation algorithm [14]. The
most effective heuristics are the Lagrangian heuristic with aggregation [4] and
the primal-dual variable neighborhood search [18]. These approaches are capa-
ble of finding sub-optimal solutions of problem instances with hundred thousand
data items. Moreover, they provide a dual bound for the objective value, which
allows ascertaining the optimality of a particular solution found. Nevertheless,
the high complexity and memory usage still remains the main disadvantage of
these approaches preventing them from the application to large-scale cluster-
ing problems. Some researchers have attempted to reduce computational burden
of some metaheuristics by leveraging parallel and distributed computing. Thus,
parallel implementations of the variable neighborhood search, tabu search, and
the scatter search employing multistart and domain decomposition strategies are
developed in [3,10,15,16], respectively. However, low accuracy or high memory
load of these algorithms remain their main bottlenecks.

In this paper, we develop a distributed Lagrangian relaxation-based app-
roach based on [27] and distributed implementations of several most commonly
used k-median clustering algorithms. Though these algorithms are very popu-
lar in pattern analysis and computer vision (see e.g. [13]), our main motivation
for this paper was to assess their accuracy, speed, and effectiveness in a spe-
cific setting—clustering large-scale imageries. In particular, we study the ability
of common k-median clustering algorithms to reveal clusters in large collec-
tions of face images from the large number of identities, when faces are repre-
sented using deep features. The remainder of the paper is structured as follows.
In Sect. 2, we describe the most popular k-median clustering algorithms and
the details of our particular distributed implementations. In Sect. 3, we briefly
discuss our distributed Lagrangian relaxation-based heuristic for the k-median
problem. Finally, in Sect. 4, we report computational results and a comparison
of the developed clustering algorithms on the VGGFace benchmark.

2 Parallel K-median Clustering Algorithms

In this section, we review most widely-used k-median clustering algorithms and
present our particular distributed implementations. Thus, we consider the fol-
lowing algorithms:

PAM is probably the best known k-median (or k-medoids) clustering algo-
rithm, first proposed in [20]. The algorithm is a simple two-step heuristic, where,
in the first step, the greedy search is applied to find an initial set of medians.
In the second step, PAM tries to improve the greedy solution with the local
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search heuristic (also known as Teitz and Bart’s heuristic and vertex substitu-
tion) combined with the fast interchange technique. PAM is notorious for its
high time and space requirements. Indeed, it relies on searching the whole 1-
swap neighborhood of each incumbent, which may be extremely challenging in
the case of large-scale problems. The dissimilarity matrix may be precomputed
but it obviously results in a large memory footprint. On the other hand, the use
of the fast interchange technique can substantially reduce the memory load of
PAM (as only two closest medians are retained for each data item), but may
require a lot of extra computation for updating medians when the numbers of
both clusters and features are large.

We use PAM as a subroutine, hence we have implemented its shared-memory
version, using OpenMP interface. In our implementation, we improved the first
step of PAM by embedding the fast greedy approach from [29]. We keep the whole
dissimilarity matrix in RAM to speed up computations and median updates. The
matrix can easily be computed by parallel threads that find dissimilarities only
between their specific disjoint chunks of data items and the whole dataset. The
first step of PAM can then be parallelized by assigning separate chunks of data
items to different threads and finding closest medians for each data item in
parallel. In step 2 of PAM, each thread processes only a subset of columns of
the dissimilarity matrix to compute the objective value and update medians.

CLARA. The time and space complexity of PAM motivated the same authors
to develop CLARA, which is a variant of PAM applicable to large-scale datasets.
CLARA is rested upon drawing multiple relatively small samples from a dataset,
which are then clustered with PAM. The final clustering is selected as a set of
medians providing the minimal objective value over the whole dataset. Obvi-
ously, the quality of the final clustering is mostly dependent on the size of the
samples. Despite its advantages, CLARA is known to be less effective when the
number of clusters is relatively large.

Nowadays, most of distributed k-median clustering algorithms rely on space-
partitioning techniques or sampling approaches similar to one embedded in
CLARA (e.g. see [26] and references therein). However, such techniques usu-
ally results in developing fast distributed algorithms at the expense of loosing
solution quality in comparison to the base algorithms (PAM and CLARA). Since
CLARA relies on clustering multiple samples, we developed a distributed version
of CLARA leveraging a simple multi-search strategy. Note that such a strategy
will help us to assess the performance of the basic CLARA algorithm. We use the
MPI-OpenMP hybrid programming model to implement a distributed CLARA
algorithm. In our implementation, each MPI process independently draws a ran-
dom sample from the dataset and simultaneously runs the parallel PAM algo-
rithm to find a clustering of the sample. The final solution is then selected among
all solutions found by MPI processes.

CLARANS is another common clustering algorithm based on top of PAM.
It simply performs a multistart hill-climbing over the 1-swap neighborhood, each
time starting from a random solution. Its two main parameters are the number of
restarts and the number of consecutive iterations without a sufficient improvement
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of the objective value. The main drawback of CLARANS is the same as of PAM: In
order to calculate the value of the objective function, it has to either keep the whole
dissimilarity matrix in the memory or compute pairwise dissimilarities every time
they are needed. Thus, for large-scale datasets, it is either too memory consum-
ing or may require too much computation (especially, when the number of features
is large). Another disadvantage is that the 1-swap neighborhood may become too
large for the large number of data items. To parallelize CLARANS, we employ the
same multi-search strategy as for CLARA. Thus, each MPI process runs an inde-
pendent hill climbing search starting from a random solution. We employ OpenMP
to parallelize hill climbing by sharing the work among parallel threads. The only
computationally intensive operation of the hill climbing is the calculation of the
objective value.Weparallelize it by assigningdistinct chunks of data items toparal-
lel threads. They independently find closest median for each item from their chunk
and compute the corresponding part of the objective value.

k-medoids is a neighborhood improvement heuristic for the k-median prob-
lem, similar to k-means. It starts with a random solution and assigns all data
items to their closest medians. In contrast to k-means, it solves the 1-median
problem within each cluster, i.e. it finds a data item that minimizes the over-
all dissimilarity between data items in the cluster. If the current medians are
changed, the k-medoids algorithm reassigns data items and solves the 1-median
problem for each cluster again. It stops when any further improvements are
not available. Despite the relocation scheme similar to k-means, the k-medoids
algorithm requires much more computation to update cluster representatives.
Indeed, the computation of cluster means is performed in linear time in the clus-
ter size, while solving the 1-median problem requires quadratic time. We use
the same MPI-OpenMP hybrid model. OpenMP is employed to concurrently
compute the value of the objective function for a current clustering. Multiple
1-median problems can also be solved in parallel by assigning each cluster to a
separate thread.

3 Distributed Lagrangian Relaxation-Based Heuristic

Here, we recall the main steps of the Lagrangian heuristic for the k-median
problem proposed in [4] and then describe how it can efficiently be implemented
in distributed environments.

3.1 Sequantional Algorithm

We use the most common Lagrangian relaxation of the k-median problem
obtained by relaxing the constraints (2) and adding them to the objective func-
tion together with Lagrange multipliers λ ∈ R

m:

L(λ) = min
(x,y)

{ ∑

ij∈A

dijxij −
∑

j∈I

λj

( ∑

i∈δ−(j)

xij + yj − 1
)

: subject to (3)-(5)
}

,
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The value of the Lagrangian dual function L(λ) is a dual (lower) bound for the
k-median objective value for any set of Lagrange multipliers λ.

We denote μij(λ) = dij−λj and ρi(λ) =
∑

j∈δ+(i)

μij(λ)−−λi to be the reduced

costs of the variables xij and yj , respectively. Let ρi(λ) be ordered increasingly,
i.e. there is a permutation i1, . . . , im such that ρi1(λ) ≤ · · · ≤ ρim(λ).

Thus, the value of the Lagrangean dual function is obtained by summing-
up the smallest reduced costs of the variables yi(λs) plus the sum of all the
multipliers λj [12], i.e.

L(λ) =
p∑

k=1

ρik(λ) +
∑

i∈I

λi,

The best dual bound is then sought by finding the optimal solution of the fol-
lowing Lagrangian dual problem max

λ
L(λ). This problem is convex and non-

differentiable, hence we adapt a subgradient optimization algorithm with a
heuristic step-size rule, which is especially suitable in the case of large-scale
problem instances. Indeed, we compute the step-size of the subgradient algo-
rithm at iteration s as

αs =
βs(UB − L(λs))

‖g(λs)‖22
,

where βs is a gradually decreasing parameter and UB is an primal bound for the
k-median objective. Note that we also use the value of the parameter βs as a
stopping criterion. We find the initial upper bound by assigning each data item
to the closest medoid i ∈ I: y(λ0) = 1.

To increase the efficiency of the subgradient algorithm, we use a delayed
column generation approach and the Lagrange multipliers stabilization technique
that make the sequence of Lagrangian dual function values monotonic [4,18].

After the subgradient algorithm halts, it returns a set of Lagrange multipliers
λ̄ and the corresponding dual bound. To improve the initial primal bound and
find the corresponding good feasible clustering solution, we leverage the so-called
core heuristic [4,9,28]. It consists in finding a set of promising (core) decision
variables yi and xij of the k-median problem and fixing all remained variables
to zero. The k-median problem is then solved only over the core variables (the
core problem), and its optimal solution provides a primal bound for the original
k-median problem. The core variables are selected with respect to their reduced
costs, i.e. we set thresholds Δ and γ such that only the variables yi and xij

satisfying

i ∈ I(λ̄,Δ) � {i ∈ I : ρi(λ̄) ≤ Δ},

(i, j) ∈ W (λ̄, γ) � {(i, j) : i ∈ I(λ̄,Δ), j ∈ δ+(i), μij(λ̄) ≤ γ}.

are not fixed to zero. The core problem is much smaller than the original problem,
thus one usually uses exact methods or commercial solvers to find its optimal



A Computational Comparison of Parallel and Distributed K-median 125

solution [4,5]. However, in the case of large-scale problem instances, the core
problem may become too difficult to be solved exactly. On the other hand, we can
solve the core problem with a fast heuristic that finds a good feasible solution and
a primal bound. Following [27], we use a simple simulated annealing algorithm
over 1-swap neighborhood. We adapted a simple cooling rule T (t + 1) = qT (t),
where q = (t0/tmin)1/(Mout−1), Mout—a fixed number of temperature reductions,
t0 and tmin are initial and final temperature, respectively.

3.2 Implementation in Distributed Environments

To implement a distributed version of the Lagrangian relaxation-based heuristic
for the k-median problem, we use a hybrid MPI-OpenMP programming model.
Our hybrid version of the subgradient algorithm is similar to the purely MPI
implementation from [17] that, however, was not effective for large numbers of
data items and processes due to communication overheads. We suppose that we
are given a distributed environment encompassing a number of computing nodes
connected by a network. Thus, MPI is used to perform inter-node communica-
tions, while OpenMP is employed to parallelize intra-node computations. Our
implementation is rested upon data parallelism paradigm, i.e. each MPI process
handles only a part of the data needed to fulfill an iteration of the subgradient
algorithm. At first, we distributedly compute the dissimilarity matrix, each MPI
process calculates only a subset of matrix columns and keeps it in local mem-
ory. Storing the dissimilarity matrix distributedly helps considerably reduce the
memory usage of the algorithm. All processes then deal with parts of reduced
costs ρi(λs), Lagrange multipliers λs, and subgradients s(λs) that “correspond”
to the subset of columns stored in their local memory. Communications between
processes occur to compute and sort the reduced costs, calculate the overall norm
of a subgradient and distribute the stepsize αs.

In order to find the core variables, each MPI process traverses its subset of
columns of the dissimilarity matrix and identify variables with reduced costs less
than the given thresholds. The core problem is then stored distributedly. Since
the computation of the k-median objective is the most computationally inten-
sive operation of the simulated annealing, we leverage a low-level parallelization
strategy. The selection of neighbors of a current incumbent and the test for their
acceptance are performed sequentially. The only task executed in parallel is the
computation of the core problem objective.

4 Experiments

We implemented all the clustering algorithms using C++ programming language
and tested them on the HPC-cluster “Akademik V.M. Matrosov” [1]. The cluster
includes 60 nodes of dual 18-core Intel Xeon E5-2695 v4 processors and 120 Gb
of DDR4-2400 memory. The nodes connected via QDR Infiniband network. Since
a node consists of two processors, we run our distributed algorithms using two
MPI processes per node and 18 OpenMP threads per MPI process.
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Fig. 1. Example face images from the VGGFAce dataset. Each row contains pictures
labeled in the dataset as corresponding to the same person.

One application of unsupervised machine learning algorithms that assumes
handling large number of data items is clustering and analysis of large collections
of social media data (e.g. images). Indeed, in recent years, we have witnessed a
fast growing popularity of social media and, hence, a fast grow of data volumes.
For example, in 2013, Facebook reported about more than 350 million images
uploaded every day. Large collections of face images are also subject of analysis
in forensic investigations and surveillance applications, where one may expect
large number of both images and subjects.

In this section, we aim at the performance analysis of k-median clustering
algorithms in this specific setting, where, apart from large numbers of both face
images and identities, we may expect unbalanced clusters and the large number
of near-duplicates, which is challenging for partition-based clustering algorithms.

As abenchmark,weutilize theVGGFacedataset [25]. It is a semi-automatically
collected face dataset commonly used for training deep networks. The dataset con-
tains URL links to 2.6 million images from 2622 subjects (celebrities and public fig-
ures). A final manually filtered collection obtained by involving human annotators
consists of 982,803 images (375 images per person in average). Unfortunately, we
could not download all images but only 880,501 out of 982,803 due to a lot of web
links being broken. Moreover, some of the images turned out to be placeholders
that replace the original image which is no longer available. After excluding place-
holders, we have a collection of 690,761 images of 2510 identities from the original
filtered VGGFace dataset. Even after manual filtering, VGGFace contains a rel-
atively large number of duplicates and mis-labeled face images that can bias the
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accuracy analysis. Example face images from the VGGFace dataset are presented
in Fig. 1.

To extract features from the VGGFace dataset, we leverage a ResNet-50 net-
work from [8] pre-trained on MS-Celeb-1M dataset and fine-tuned on VGGFace2.
We excluded overlap between VGGface and VGGFace2 during feature extrac-
tion. We detect faces using MTCNN [30] and apply the same cropping and
alignment procedure to keep consistency between training and evaluation. Each
image is passed as an input to the ResNet-50 network, then 2048-dimensional
vector is extracted from the layer adjacent to the classifier layer. Each feature
vector is then normalized into unit Euclidean norm.

Since we have to cluster the VGGFace dataset into groups of face images
corresponding to the same person, we can estimate the accuracy of the k-median
clustering algorithms with external evaluation measures. In our experiments, we
employ pairwise precision, recall, and F-measure:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

where TP are true positive pairs of data items (correctly clustered), FP—false
positive pairs, and FN—false negative pairs. The F-measure is then computed
as a harmonic mean of precision and recall:

F (i, j) =
2 · Precision · Recall

Precision + Recall
,

We also evaluate our clustering results according to Purity, which calculated as

Purity =
k∑

i=1

1
m

max
j

nj
i ,

where nj
i is the number of face images of the subject j that are assigned to

cluster i.
The results of computational experiments are presented in Table 1. Note that

we report the best solution found by each algorithm over 20 runs. We use the
Euclidean distance as the dissimilarity measure. The column “Objective” presents
the value of the k-median objective function, the column “Time” reports the run
time measured when running the competing algorithms on 5 computing nodes of
“Akademik Matrosov”. Recall that the accuracy of CLARA is strongly depen-
dent of the sample size. In the literature, the most commonly used sample size is
2k + 40, where k is the number of clusters. We also tested CLARA over larger
samples with 4k data items. For CLARANS, each MPI process performed only
one run of the parallel hill climbing. Thus, as we run CLARANS on 5 nodes, there
are 10 parallel hill climbing searches run simultaneously. The parallel hill climb-
ing halts when 100 gradually examined neighbors of a current incumbent give an
objective improvement less than 1. The parallel k-medoids is terminated when the
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Fig. 2. Example clusters. In each row, the first images are medians, while the last two
are wrongly clustered

value of the k-median objective is improved for less than 0.01 in some iteration. In
our computational experiments we set the number of clusters to be equal to the
number of identities.

Table 1. Experiment results for the VGGFace dataset. Each row contains the results
for the best clustering found by the corresponding algorithm

Objective Prec. Recall F-measure Purity Time (sec.)

Our algorithm 491394.90 0.82 0.80 0.81 0.90 17094

CLARA (2k) 564172.90 0.52 0.58 0.55 0.68 4572

CLARA (4k) 545375.02 0.62 0.65 0.63 0.75 32593

CLARANS 525851.07 0.69 0.71 0.69 0.82 27868

k-medoids 531334.46 0.51 0.57 0.53 0.66 7698

We can see that the distributed Lagrangian relaxation-based algorithm pro-
vides a clustering solution which has the best objective value and considerably out-
performs all the k-median clustering algorithms. The relative difference between
the found dual and primal bounds is only 0.03%. We can see that the k-median
solution found by our algorithm also has the best accuracy according to all the
external evaluation metrics. CLARA (2k) finds one of the worst solutions. This is
consistent with the observation about its low effectiveness for datasets with large
number of clusters. Nevertheless, we observe that CLARA (2k) has the best run
time, which can be viewed as a trade of quality for speed. CLARANS provides a
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better solution than both CLARA implementations and the k-medoids algorithm.
Moreover, it runs faster than CLARA (4k), which makes CLARANS more prefer-
able for large multidimensional datasets with large number of clusters. Providing
a much better clustering, our approach demonstrates the competitive run time,
which is superior to CLARANS and CLARA (4k).

Figure 2 presents an example clusters generated by our approach. Each row
represents separate impure clusters. The first face image in each row is the
corresponding cluster representative (median), while the last two images are
incorrectly clustered, i.e. they are not of the same class as that the corresponding
median belongs to.
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clustering problems by primal-dual variable neighborhood search. Data Min.
Knowl. Discov. 19(3), 351–375 (2009)

19. Kariv, O., Hakimi, S.: An algorithmic approach to network location problems. II:
The p-medians. SIAM J. Appl. Math. 37(3), 539–560 (1979)

20. Kaufman, L., Rousseeuw, P.J.: Clustering by means of medoids. In: Dodge, Y.
(ed.) Statistical Data Analysis Based on the L1-Norm and Related Methods, pp.
405–416. North-Holland (1987)

21. Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. SIAM J.
Comput. 45(2), 530–547 (2016). https://doi.org/10.1137/130938645

22. Mancini, E.P., Marcarelli, S., Vasilyev, I., Villano, U.: A grid-aware MIP solver:
implementation and case studies. Futur. Gener. Comp. Syst. 24(2), 133–141 (2008)

23. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location
problems. SIAM J. Comput. 13(1), 182–196 (1984)
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Abstract. In this paper we consider a generalization of the One–
Dimensional Space Allocation Problem (ODSAP). It is a well–known
optimization problem. The classical formulation of the problem is as
follows. It is required to place rectangular connected objects (linear seg-
ments) on a line with the minimal total cost of connections between
them. The generalization of the problem is that there are fixed objects
(forbidden zones) on the line and between the objects a partial order of
their placement on the line is given. It is impossible to place the objects
in the forbidden zones. The area in which the placement is allowed con-
sists of disjoint segments (blocks). Centers of the placed objects are con-
nected among themselves and with centers of the zones. The structure
of connections between the objects is defined using a graph. A review of
the formulations and methods for solving the classical ODSAP is given.
We propose a polynomial–time algorithm for finding a local optimum
for a fixed partition of the objects into the blocks when the graph of
connections between the objects is a composition of rooted trees and
parallel–serial graphs.

Keywords: Optimal placement · Connected rectangles · Partial
order · Forbidden zones

1 Introduction

Optimization problems have many practical applications and they are interesting
from the mathematical point of view. Many of these problems are NP–hard.
Therefore, the promising areas of research of such problems are the development
of algorithms for local optimization [5], heuristics [2], approximation schemes [6].
This paper is devoted to a search for a local optimum to one of the problems of
optimal placement of objects.
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To date, the problems of optimal placement of the objects with different
sizes are intensively studied both theoretically and in connection with practical
applications. In particular, for such problems, there are two main directions
of applications: placement of elements of electronic devices and placement of
units of technological equipment. In the first direction, not only the problem of
placing elements is solved, but also the tracing of connections between them is
performed, see, e.g., the technology of a very–large–scale integration [3].

In the design of electronic devices, the problem consists in the determination
of the optimal spatial arrangement of elements on a given surface (switching
field). Criteria and constraints in the problem can be divided into metric and
topological ones. The metric criteria take into account the size of the elements
and the distance between them, the size of the switching zero, the distance
between the terminals of the elements, the allowable length of the connections.
The topological ones deal with the number of spatial intersections of connections
and interlayer transitions.

The problem of tracing is to determine the geometry of connections of struc-
tural elements of electronic devices. The optimization criterion for the optimal
solution of the trace problem can be, e.g., the total length of connections, or the
number of layers of installation.

In the second direction of applications of optimal placement problems, the
focus is usually on the placement of the equipment and the valuation of the
links between them. Such problems should be solved not only in the design of
technological equipment placement but also at the stage of preliminary design
(planning) in other industries. As an example, we can mention here the place-
ment of shops of an enterprise, elements of a hydraulic system of a machine,
facilities for laying oil and gas pipelines and so on. At the stage of planning, a
preliminary valuation of the connections between the placed elements is usually
performed. In particular, this applies to the stage of installation of production,
as a result of which the problem of equipment placement is solved. Here, unlike
electronic devices, the tracing stage is not so important, as everything is done in
three–dimensional space. The placement choice is influenced by several factors.
Often, the creation of direct driveways, ease of operation and maintenance of
equipment may require the “regularity” of placement [17], e.g., placement along
so–called “red” lines.

In these areas of practical application of the problems of placement, it is
often necessary to take into account the size of objects. Taking into account this
factor in an automated solution allows one to choose the best option for the
equipment’s placement, which more adequately reflects the real situation. The
objects involved in the placement process are usually approximated by simple
geometric shapes, for example, rectangles. This reduces geometric complexity
when solving problems, for example, when checking conditions of mutual non–
intersected of the objects.

Different approaches are developed for solving problems of optimal placement
of rectangular objects [3,10,12,14,17]. The placement of rectangular parts on
rectangular blanks, so–called cutting and packing problems is widely applicable
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in practice and well–developed from the mathematical point of view. To solve
such problems, exact methods of linear programming [9], as well as heuristic
methods, such as evolutionary methods, are usually used.

One of the directions of the rectangles’ placing is “regular placement”, for
example, placing them on a line. To construct a set of Pareto–optimal solutions
to the problem of the rectangles’ placing on parallel lines, aimed to minimize the
length and width of the area occupied by the equipment, the apparatus of integer
optimization and dynamic programming were used [17]. A dynamic programming
algorithm was proposed for placing interconnected rectangular objects on the
line with the criterion of the minimal total cost of connections [14]. One of a
well–known problems of placing the connected dimensional objects on the line
is the One–Dimensional Space Allocation Problem (ODSAP).

In recent years, the described above direction of research is gaining popularity
for the problems of placing objects in the presence of the forbidden zones and
barriers [13,19,20]. It is not allowed to place objects in the forbidden zones. In the
case of reconstruction of a plant, forbidden zones may occur, for example, because
of existing premises and technological equipment. Barriers can be considered as
some regions described above where the placement of objects is not allowed. It
is also forbidden to make connections inside a barrier.

This paper is devoted to the problem of placement of connected objects on
a line with forbidden zones (for short “zones”) and with partial order of object
placement on the line. The placed objects and the forbidden zones have a form of
rectangles. Note that in one–dimensional space the rectangular objects are linear
segments. The area in which the placement of the objects is allowed consists
of the linear segments (blocks). Centers of the objects are connected between
themselves and with centers of the zones. The structure of connections between
the objects and the partial order of their placement on the line are given in the
form of a directed graph. It is required to place the objects outside the forbidden
zones so that the partial order was satisfied and the total cost of the connections
was minimal. It is known that the original continuous problem for the arbitrary
undirected graph can be reduced to discrete subproblems of smaller dimension
[19]. In our case, the subproblem was reduced to the problem of placement of
vertices of a directed graph on a line so that the given partial order was satisfied
and the weighted sum of lengths of all arcs was minimal. A review of the research
of the classical ODSAP is provided. A polynomial–time algorithm for finding a
local optimum for a fixed partition of the objects into blocks when the graph of
connections between objects is a composition of rooted trees and parallel–serial
graphs is proposed.

2 Statement of the ODSAP and Review of Research

Let n be a number of objects which should be placed, and let I = {1, . . . , n} be
a set of indices of these objects. Let m be the number of forbidden zones with
numbers from the set J = {1, . . . ,m}. Each object and each zone is a rectangle
with dimensions li × hi and pj × dj , where i ∈ I and j ∈ J , respectively.
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Fig. 1. The scheme of placing of objects and passing connections between objects.

The centers of the objects are connected between themselves and with the
centers of the zones and the connections pass as it is shown in Fig. 1. Note that
the lengths of the vertical components of connections between object i and object
k, and between object i and zone j are equal to hi/2 + hk/2 and hi/2 + dj/2
respectively, and they do not depend on the placement of objects. The minimal
feasible distances li/2 + lk/2 and li/2 + pj/2 are set between nearest points of
the objects and zones. We can include the dimensions of objects and zones in
minimal feasible distances and assume that there are restrictions between the
projections of the centers of the objects and the zones. The problem is reduced
to the placement of the point objects, i.e. projections of geometric centers of
rectangles on the line. Let rik, (rii = 0), i, k ∈ I, and tij , (tii = 0), i ∈ I,
j ∈ J , denote the minimal feasible distances between object i and object k and
between object i and zone j, respectively. We denote by R = (rik), T = (tij) the
symmetric matrices of the minimal feasible distances between the objects and
between the objects and zones, respectively.

The structure of connections between the objects is defined using a graph
G = (V,E), where V = {1, . . . , n} and E is a edge set. The edge (i, k) ∈ E
exists if there is a connection between object i and object k. If an order of the
placement for the connected objects on the line is given, for example, object i lies
to the left of the object k, then (i, k) is an arc. In this case, the directed graph
G also sets the partial order of the objects’ placement on the line. Let uik ≥ 0
(uik = uki), wij ≥ 0 (wij = wji) be the specific costs of connections between
object i and object k, and between object i and zone j for i, k ∈ I, j ∈ J , and
i < k, respectively. If G is an undirected graph, then it is necessary to place
the objects on the line so that the restrictions on the minimal feasible distances
between the objects and between the objects and zones are satisfied and the
total cost of connections between the objects and between the objects and zones
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is minimal [19]. If the graph G is directed, then it is additionally necessary to
respect restrictions on the partial order of the objects’ placement on the line.

Consider a straight–line segment of length LS containing some fixed rectilin-
ear forbidden zones with centers at bj , j ∈ J . Without loss of generality, we can
assume that the left border of the segment of length LS is the origin. Denote
by xi the coordinate of center of object i, i ∈ I; let x = (x1, . . . , xn) be the
placement of objects. It is needed to minimize the function:

F (x) =
n∑

i=1

m∑

j=1

wij |xi − bj | +
n−1∑

i=1

n∑

k=i+1

uik|xi − xk| → min, (1)

under constraints
|xi − bj | ≥ tij , i ∈ I, j ∈ J, (2)

|xi − xk| ≥ rik, i, k ∈ I, i < k, (3)

li
2

≤ xi ≤ LS − li
2

, i ∈ I. (4)

Note that if (i, k) is an arc, one can omit the absolute value sign in the
expression |xi − xk|.

Introduce matrixes R = (rik), i, k ∈ I, and T = (tij), i ∈ I, j ∈ J , respec-
tively. The following conditions for the elements of the matrix R are considered:

(a) rik = li+lk
2 , i, k ∈ I, i �= k (non–intersected conditions);

(b) rij + rjk ≥ rik, i, j, k ∈ I, i �= j �= k (in the case of metric problem);
(c) rik is arbitrary, i, k ∈ I, (in the case of non–metric problem).

Similar conditions can be considered for the elements of the matrix T .
Problem (1), (3) without forbidden zones (J = ∅) with conditions (a) and

undirected graph G is the classical ODSAP. The classical ODSAP is NP–hard
for the case when G is an arbitrary undirected graph of connections between
objects [4,16].

The classical ODSAP problem (1), (3) without forbidden zones is formulated
as follows in terms of permutations. Let π = (π(1), . . . , π(n)) denote a permu-
tation of the objects; i.e. the first (leftmost) object is π(1), the second object
is π(2) and so on. Denote by π−1 the inverse of this permutation: π−1(i) is the
position of object i in the permutation π. Consider the permutation π and two
objects i and j. The distance between i and j with respect to this permutation,
is assumed to be equal to the distance between their centers. It is equal to the
half–length of object i, plus the lengths of all objects which are situated between
objects i and j in π, plus the half–length of object j:

d(i, j, π) = li/2 + lj/2 +
∑

k∈B(i,j,π)

lk, (5)

where B(i, j, π) is a set of the objects between objects i and j in π.
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The ODSAP is the problem of finding a permutation π which minimizes the
weighted sum of the distances between all pairs of objects, i.e.

Z(π) =
∑

i∈I

∑

j∈I,j �=i

uijd(i, j, π). (6)

Defining
d′(i, j, π) =

∑

k∈B(i,j,π)

lk, (7)

it turns out that
Z ′(π) =

∑

i∈I

∑

j∈I,j �=i

uijd
′(i, j, π) + K, (8)

where
K =

∑

i∈I

∑

j∈I,j �=i

uij
li + lj

2
(9)

is a constant, independent of π.
Note that the following property is true for the classical ODSAP. There is a

symmetry of the solutions to the problem. Let π
′
be the symmetric to π, i.e.

π
′
(t) = π(n − t + 1) forall t = 1, . . . , n. (10)

Then clearly Z(π′) = Z(π). In other words, we can exchange the right and the
left–hand sides of the line in our definition. Hence, we could somewhat sim-
plify the problem by only considering, for instance, the permutations in which
π−1(1) ≤ n/2, i.e. object 1 is situated on the left half of the line. This remark will
be applied to reduce the computational requirements of the solution method.

To solve the ODSAP, polynomial–time algorithms were proposed for the
cases when G is a rooted tree [1] and when G is a parallel–serial graph [16]. If
the minimal feasible distances satisfy the constraints (b), then, for the specified
graphs, the problem becomes NP–hard [15].

In [7], the classical ODSAP was formulated in terms of Integer Programming.
Such formulation for ODSAP has n(n − 1)/2 binary variables and 3[n(n − 1)/2]
constrains. This Integer Programming approach gives a possibility to obtain
optimal solutions to small problems. It is not efficient in general since does not
take into account the structure of the connections between objects.

In [11], the ODSAP was formulated as a generalization of the Linear
and Quadratic Assignment Problems (QAP). An interesting placement prob-
lem closely related to the ODSAP is one–dimensional version of the QAP of
Koopmans–Beckman type: given n points (locations) P1, . . . , Pn with coordi-
nates a1, . . . , an on a line, and given n objects and a matrix of connections
between objects, find a one–to–one assignment of the objects to the locations in
order to minimize the total weighted distance. This problem is called the Gener-
alized Linear Ordering Problem (GLOP). The generalization consists in the fact
that conditions |ai−aj | �= 1 are satisfied in this problem. Dynamic programming
was used to solve the problem.
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Amongst all possible formulations for the component location problem, the
chosen one creates an instance of the extensively studied QAP. On the design one
needs to place electronic components to established locations in a printed circuit
card, building the complete electronic board. It is necessary to minimize the
distance among the components that have greater levels of either interactivity
and energy or data flow, to avoid excessive signal delays. This location problem
can be modeled as an instance of the QAP [8,18].

The NP–hard problem (1)–(4) with conditions (a) of non–intersected of
objects with each other and with forbidden zones but without partial order
between objects, that is for the case when G is an undirected graph, was consid-
ered in [19,20]. A heuristic for one–line variant was described in [19]. A review
of the properties and a branch and bound method for solving the problem was
proposed in [20]. The results of computational experiments on comparison of the
branch and bound method and a heuristic were reported. In the experiments,
an integer programming model and IBM ILOG CPLEX package were used.

In this paper, problem (1)–(4) with conditions (a) and with forbidden zones
for the case when G is a directed acyclic graph is considered. A polynomial–time
algorithm for finding a local optimum of the problem for the case when G is a
composition of rooted trees and parallel–serial graphs is proposed.

3 Local Search Algorithm

3.1 Subproblems for Rooted Trees and Parallel–Serial Graphs

Problem (1)–(4) with conditions (a) of non–intersection of objects among them-
selves and with forbidden zones is considered. The structure of connections
between objects is defined by the directed acyclic graph G = (V,E). Fix a par-
tition of the objects into blocks that satisfies the partial order between objects.

Denote a range of feasible solutions of problem (1)–(4) by B. Range B is
disconnected and it consists of r separate blocks Bk of length Lk that must
contain the placed objects, B =

⋃
k=1,r Bk. Then a feasible solution to the

problem (1)–(4) corresponds to some partition of objects into blocks.
Suppose that x = (x1, . . . , xn) is a feasible solution to problem (1)–(4); Ik(x)

is a set of object numbers in the block Bk; nk is a cardinality of the set Ik(x). We
note that x can be represented as x = (x1, . . . , xr), where xk are the coordinates
of objects allocated in Bk with numbers from the set Ik(x). If G is an arbitrary
undirected graph, then, as it was shown in [19], the original continuous problem
reduces to r discrete subproblems. The subproblem is the problem in the block
Bk on the set of variables Ik(x).

We will call a feasible solution x to the problem (1)–(4) a local minimum of
the problem if F (x) ≤ F (x′) for every x′ : Ik(x) = Ik(x′), k = 1, . . . , r and the
given partial order between objects is satisfied. Since describing algorithms we
need only a permutation of objects, then instead of Ik(x) we will write Ik.

Since Ik

⋂
Il = ∅ for every k, l = 1, . . . , r, to find a local optimum of the

problem for some fixed partition of objects into blocks, it is sufficient to solve
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r independent subproblems. So, in each block Bk it is possible to consider the
subproblem of placement of nk + 2 objects. In Bk, the subproblem contains nk

placed objects with numbers from Ik and two imaginary objects s and t which
correspond to the left and the right borders of Bk with coordinates LBk and
RBk respectively. Denote by IL(Bk) and IR(Bk) the sets of objects on the left
and on the right of the block Bk; JL(Bk) and JR(Bk) being the sets of zones on
the left and on the right of Bk respectively.

Introduce the necessary definitions.
Denote by D(s, t) a directed graph that consists of two or more chains going

from the vertex s to the vertex t and having no other common vertices except s
and t.

The class of parallel–serial graphs is defined inductively as follows:

(a) a directed chain is the parallel–serial graph;
(b) a graph that is obtained from the parallel–serial graph by replacing any arc

(s, t) with the graph D(s, t) is parallel–serial.

If in a rooted tree some arbitrary arcs are replaced by the parallel–serial
graph, then a resulting graph we will call a composition of rooted trees and
parallel–serial directed graphs.

An example of the composition of rooted trees and parallel–serial directed
graphs is shown in Fig. 2.

Fig. 2. The composition of rooted trees and parallel–serial directed graphs.

Consider the graph D(s, t) with an arbitrary number of chains. We will call
the graph D(s, t) a bipolar directed graph (BDG). An example of the BDG is
shown in Fig. 3.

Let G be the BDG. In the case when the area of placement on the line is
bounded on the left and the right by zones, we consider an arbitrary block Bk.
Denote by G′ = (V ′, E′) the weighted graph of connections between objects in
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Fig. 3. Example of the BDG.

Bk, where V ′ is the set of vertices of G′, E′ is the set of its arcs. Note that
V ′ = Ik

⋃{s, t}.
Since the graph G has the BDG structure, then set Ik can be represented as a

union of non–intersection chains. Let G′ have a chains, and ci denote the number
of vertices of chain i in block Bk, i = 1, · · · , a. For simplicity of notation, let set
Ik include the following numbers of vertices of the chains: Ik = {(1, · · · , c1); (c1+
1, · · · , c1 + c2); · · · ; (c1 + c2 + · · · + ca−1 + 1, · · · , c1 + c2 + · · · + ca)}.

We describe the following algorithm for constructing the arcs of the graph G′.

1. If the vertices i, j ∈ Ik and the arc (i, j) ∈ E, then (i, j) ∈ E′.
2. Draw the arcs (s, i) ∈ E′, i = {1, c1 + 1, · · · ,

∑a−1
y=1 cy + 1}, from vertex s to

the initial vertices of the chains of G′.
3. Draw the arcs (j, t) ∈ E′, j = {c1, c1 + c2, · · · ,

∑a
y=1 cy}, from the final

vertices of the chains to vertex t of G′.

Denote by u′
ij the weight of the arc (i, j) ∈ E′. Denote by l(i) and r(i) the

vertices of the graph G such that the arcs (l(i), i) and (i, r(i)) are adjacent.
Let Sy be the number of the last vertex in the chain whose number is y. Then
Sy =

∑y
i=1 ci, and we assume that c0 = 0. Define the weights of the arcs in the

graph G′ as follows.

1. u′
ij = uij +

∑cb

p=j

∑
q∈JL(Bk)

wpq +
∑i

p=1

∑
q∈JR(Bk)

wpq,

for ∀i, j ∈ Ik, (i, j) ∈ E, b = 1, · · · , a;
2. u′

si = ui l(i) +
∑Sb

p=Sb−1+1

∑
q∈JL(Bk)

wpq,

where b = 1, · · · , a, i ∈ {1, c1 + 1, · · · , Sa−1 + 1};
3. u′

jt = uj r(j) +
∑Sb

p=Sb−1+1

∑
q∈JR(Bk)

wpq,

where b = 1, · · · , a, j ∈ {c1, c1 + c2, · · · , Sa}.

Thus, we have constructed the graph G′ in the block Bk.

Proposition 1. If a graph G is the BDG then the graph G′ also is the BDG.

By construction, G′ differs from G in block Bk in arcs (s, j), (i, t) which are
added to the set of arcs E for some i, j ∈ Ik. Other arcs are not added to the
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graph G′ and the structure of the graph is preserved. So, by construction, G′ is
also the BDG.

Suppose that any order of the objects in Bk is fixed. The placement of the
objects is given by a permutation π of the vertices of the graph G′. Denote by
lπ(i) and rπ(i) the numbers of the nearest vertices to the left and the right for
the vertex i from the other chain in π. In an arbitrary block Bk, the value of
the objective function over arbitrary adjacent objects (vertices π(i), π(i + 1))
in the permutation π in the graph G (G′), is denoted by Fk(π(i), π(i + 1))
(F ′

k(π(i), π(i+1))). For simplicity, assume that the objects are located at a unit
distance from each other. Then the value of the objective function in the block
F ′

k for G′ can be written as

F ′
k =

nk−1∑

i=1

F ′
k(π(i), π(i + 1)) + F ′

k(s, π(1)) + F ′
k(π(nk), t). (11)

Denote by Pk(G′) and Pk(G) the subproblems in the block Bk for the graphs
G′ and G respectively.

Proposition 2. For a fixed π, the value of the objective function of the problem
Pk(G) over an arbitrary pair (π(i), π(i+1)) is equal to the value of the objective
function of the problem Pk(G′) over (π(i), π(i + 1)), i.e. Fk(π(i), π(i + 1)) =
F ′

k(π(i), π(i + 1)).

Proof. Let G′ be the BDG graph with two chains. For simplicity of notation, let
Ik = I1 ∪ I2 = {(1, · · · , c1); (c1 + 1, · · · , c1 + c2)} = {(1, · · · , c1); (1′, · · · , c′

1)}.
Given the structure of the graph G′, over any pair (π(i), π(i + 1))=(i, j), there
will always be two arcs connecting either the vertices of the same chain or the
vertices of different chains. Then, for a fixed π in G′

F ′
k(π(i), π(i + 1)) ≡ F ′

k(i, j) =

{
u′

ij + u′
lπ(i)rπ(i), if u′

ij �= 0,

u′
lπ(i)rπ(i) + u′

lπ(j)rπ(j), if u′
ij = 0.

We describe the value of the objective function over the pair (i, j) for each of
these cases separately.

In the case when the arc (i, j) connects the vertices of the same chain (i ∈ I1,
j = i + 1 ∈ I1 and u′

ij �= 0), the value of the objective function over the pair
(i, j) is:

F ′
k(i, j) = u′

ij + u′
lπ(i)rπ(i).

Using formulas u′
ij for the BDG graph, we obtain

F ′
k(i, j) = uii+1 +

c1∑

p=i+1

∑

q∈JL(Bk)

wpq +
i∑

p=1

∑

q∈JR(Bk)

wpq

+uj′j′+1 +
c′
1∑

p=j′+1

∑

q∈JL(Bk)

wpq +
j′∑

p=1′

∑

q∈JR(Bk)

wpq.
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It is easy to check that for Fk(π(i), π(i + 1)), the formula will be the same, i.e.
F ′

k(π(i), π(i + 1)) = Fk(π(i), π(i + 1)).
In the case when the vertices π(i) and π(i+1) belong to different chains, the

proof is similar.

Let G be a rooted tree. Denote a subtree with root in vertex i by G(i), and
the set of its vertices by V (G(i)). In the block Bk, we construct the graph G′ by
analogy with the BDG graph. Define the weights of the arcs in G′. To do this,
the set of vertices included in the path from vertex s to vertex k is denoted by
V ′(k). Then

1. u′
ij = uij +

∑
p∈V (G′(j))

∑
q∈JL(Bk)

wpq +
∑

p∈V ′(i)
∑

q∈JR(Bk)
wpq;

2. u′
si = uil(i) +

∑
p∈V (G′(i))

∑
q∈JL(Bk)

wpq;
3. u′

jt = ujr(j) +
∑

p∈V ′(j)
∑

q∈JR(Bk)
wpq.

Proposition 3. If a graph G is a rooted tree then the graph G′ is a collection
of BDG graphs.

The proof is similar to Proposition 1.
As a result, we conclude that if the graph G is the rooted tree or the BDG

graph, then the graph G′ is the set of BDG graphs. We consistently replace BDG
on chains according to the algorithm described below. We start with specified
graphs, which are the terminal subrooted trees of the graph G in the block.

3.2 Solution of Subproblems for BDG Graph

An algorithm for finding an optimal placement of vertices of BDG graph on a
line consists of the following steps [16].

Step 1. In each of the chains connecting s and t, we find the arc with minimal
weight. If several arcs are having this property, choose an arbitrary one.

Step 2. Divide the graph G′ into two rooted trees LT and RT with the help of
the arcs which found in step 1. The first tree LT has the root in the vertex
s, the second tree RT has the root in the vertex t (previously changed to
the opposite orientation in the tree RT ), respectively.

Step 3. The optimal placement of each of the trees is found taking into account
the weight of the arcs used for the cut [1].

Step 4. The resulting placement of the vertices of G′ is combined as follows:
first, the vertices of the tree LT are placed, and then the vertices of the tree
RT are placed in the reverse order.

3.3 Search of Local Optimum

Suppose that the objects are divided into blocks satisfying a given partial order
between the objects. In the case, when G is the composition of rooted trees and
parallel–serial directed graphs, the algorithm for search of a local optimum is
proposed. This algorithm consists of the following steps.
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Step 1. Construct the sequence of the graphs G′
1, . . . , G

′
r using the algorithm

described in 3.1.
Step 2. In each block, find the optimal placement of objects using the algorithm

from 3.2.

The complexity of the algorithm of the optimal placement of the graph’s
vertices on the line in each block is O(n · log n) [16]. So, the complexity of the
algorithm for search of local optimum does not exceed O(r · n · log n), where r
is the number of blocks. Since r ≤ m, then any local optimum of the problem
can be found by O(m · n · log n) operations.

4 Conclusion

In this paper, we consider a generalization of the One–Dimensional Space Alloca-
tion Problem (ODSAP) with forbidden zones. The structure of the connections
between the objects is defined using a directed acyclic graph. A review of the for-
mulations and methods for solving the classical ODSAP is given. A polynomial–
time algorithm for finding a local optimum for a fixed partition of objects into
blocks when the graph of connections between the objects is a composition of
rooted trees and parallel–serial graphs, is proposed.

As the challenges for further research of this problem, we can specify the
following.

1. Development of an algorithm for constructing of feasible partitions of the
objects into blocks, taking into account a given partial order between objects.
Here it is possible to modify an algorithm for constructing of feasible parti-
tions of the objects into blocks from the work [19].

2. Search for different structures of the graph of connections between objects,
for which it is possible to construct polynomial–time algorithms to find a
local optimum of the problem.

3. Development of exact methods (for example, of Dynamic Programming) and
heuristics for arbitrary directed graphs of connections between objects.
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Abstract. This paper addresses the coordination of interaction between
various types of consumers and a load serving entity to manage electricity
consumption by using several models: the Nash equilibrium pricing, and
the adverse selection model based on the contract theory. We propose
a method to form rate options for load curve optimization for different
types of consumers and a load serving entity for different market con-
figurations. The utility functions describe the real situation sufficiently
well and allow the implementation of a system of incentives for load
curve optimization (load shifting from a peak time of the day). The
rates providing a separating equilibrium are determined. We compare
the effectiveness of different retail market models. We use the pricing
scheme that implies the change in electricity prices depending on the
electricity consumption by all users during every hour so that all users
are financially motivated.

Keywords: Load-controlled consumer · Load serving entity ·
Coordination of interaction · Adverse selection model

1 Introduction

This paper considers interactions in the retail market in view of encouraging
consumers to optimize their load. This issue has remained relevant since the
1970s. At present, the solutions have been found for the wholesale market [1],
as well as for the retail market [2–7], and the wholesale market mechanisms are
simpler than those of the retail market. This is stipulated by the greater behavior
predictability of large industrial consumers or load serving entities (LSEs) that
operate in the wholesale market. Currently, online pricing methods associated
with the use of the smart grid have been actively developed. In the retail mar-
ket, we deal with the interaction between several parties that have their own,
sometimes opposite, interests. This can be described by game-theoretic problem
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statements. The state-of-the-art models that encourage consumers to optimize
their load curve can be found in [8,9]. In [8] the authors propose an on-line pric-
etaking model that targets consumers with different characteristics of the utility
function known to the LSE. They describe a game where consumers change
consumption in response to the price offered. In turn, the LSE adjust prices to
gain the biggest profit. The mechanism for finding equilibrium was proposed and
tested for several consumers. The key features of the model are: the retailer has
no competitors in the market and operates taking into account the costs of total
consumption, the price function is defined explicitly via the cost function, the
price is the same for all consumers.

Models focused on finding prices to achieve the maximum welfare are given in
[6], where the solution is found on the basis of bi-level programming. There are
also works that propose uniform pricing for all consumers, detailing a variety
of electrical appliances and their possible load shift during the off-peak time
[10]. Development of modern means of communications between users and the
LSE assumes different pricing for different consumers [2,3]. In this situation,
we can consider pricetaking and equilibrium models. The work [9] describes
pricing mechanisms based on the mechanism design (Vickrey auction) that form
welfare optimum equilibrium. All works listed above deal with situations that
lack arbitration: the possibility for consumers to switch to the rates offered by
the LSE to other users. This cannot fully describe the behavior strategies of
users. In this paper, we show a situation when all consumers are interested in
choosing one rate, reducing market efficiency. We propose a problem statement
with such pricing that each consumer chooses their own rate, despite the switch
option. Herewith the needs of users have met at the greatest extent and the LSE
profit increases.

2 Equilibrium Pricing Model

We consider the interaction between several consumers of electricity and the
LSE (retailer). Consumers are divided by types, which is reflected in their utility
function. The assumptions that describe economic entities in the retail electricity
market are standard.

Consumer. We have N users. The consumer n, n = 1, N has a utility function
un (x, θ) for each time zone t ∈ T = {1, ..., T} – un (xt

n, θn), where xt
n is the

power consumption level of user n in the time zone t, θn is a parameter that
represents the valuation of electricity for each n-th consumer. Each consumer
utility function un (x, θ) satisfies the following standard conditions. The utility
function un (x, θ) is three times differentiable. Moreover, w.r.t. first variable x it
is increasing and concave1

∂un (xt
n, θn)

∂x
≥ 0, n = 1, N, t ∈ T. (1)

1 It means that a marginal utility of users is a nonincreasing function.
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and

∂2un (xt
n, θn)

(∂x)2
≤ 0, n = 1, N, t ∈ T. (2)

Besides, un (x, θ) satisfies the boundary conditions un(0, θn) = 0,∀θn, n =
1, N .

Additionally, the Spence-Mirrlees condition [11] is satisfied. This is the con-
dition for the increase of the total and marginal utility with respect to the
parameter θ, as well as the condition for single-crossing of the utility functions
or for the non-intersection of the consumer demands. The parameter θ provides
some homogeneity for the set of utility functions with respect to θ. Usually, these
conditions are required for the solvability of models with imperfect information
from the contract theory.

∂un (xt
n, θn)

∂θ
> 0,

∂2un (xt
n, θn)

∂x∂θ
≥ 0, n = 1, N, t ∈ T. (3)

Retailer (Load Serving Entity). The cost functions are Ct (Qt), t ∈ T, where
Qt are the units of electricity offered by the LSE in each time zone t. The cost
functions Ct (Qt) satisfy the following standard conditions. The cost functions
are differentiable, increasing with respect to the total energy capacity Qt

Ct

(
Q̃t

)
< Ct

(
Q̂t

)
, Q̃t < Q̂t, t ∈ T,

and strictly convex: for Q̃t and Q̂t for each t ∈ T and 0 < ρ < 1 we have

Ct

(
ρ · Q̃t + (1 − ρ) · Q̂t

)
< ρ · Ct

(
Q̃t

)
+ (1 − ρ) · Ct

(
Q̂t

)
, t ∈ T.

A quadratic cost functions is often used in electricity market models. We consider
quadratic functions in the following form:

Ct

(
Qt

)
= at + bt · Qt +

ct

2
· (

Qt
)2

, t ∈ T,

where at, bt, ct ≥ 0 for each t ∈ T.

Consumer’s Problem. Consider the profit that a consumer receives by changing
their load curve, shifting part of the peak load to off-peak time. We can deter-
mine the win/loss of utility depending on changes of the curve. The initial load
curve is the most convenient for the consumer and the utility of this load is the
largest. Then any shift from the peak time decreases the total utility. This can
be explained by the increasing of the utility function: a decrease by a certain
amount of electricity consumed at peak times reduces utility, and this reduction
is bigger than the increase of utility resulting from the addition of the same
amount of electricity at off-peak times. Therefore, the gain in price should cover
this loss in utility.

The problem is formulated under the assumption that (i) each type will have
its own amount and price (rate) (x, P ) and (ii) there can be several consumers
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of this type. For the LSE, these consumers are aggregated into a single user and
then the rates are offered. Thus, the problem of the consumer of type n is to
maximize the surplus Vn (xn, Pn) s.t. xt

n ≥ 0, xn =
(
x1

n, ..., xT
n

)
with the prices

Pn =
(
P 1

n , ..., PT
n

)
:

Vn (xn, Pn) =
T∑

t=1

un

(
xt

n, θn

) −
T∑

t=1

xt
n · P t

n → maxxn
, n = 1, N, (4)

T∑
t=1

xt
n ≥ Xn, (5)

where Xn is a minimum total load during the day for the consumer n.
According to (2) un (xt

n, θn) is concave w.r.t. first variable, the second part
of the function (4) is linear w.r.t. xt

n; therefore Vn (xn, Pn) is concave and there
exists a unique maximum. Write down the FOC conditions (the utility maximum
is reached if the marginal utility in the time zone t for the consumer θn is equal
to the price)2:

P t
n =

∂un (xt
n, θn)

∂x
. (6)

Equilibrium Pricing. Assume that the retailer forms prices taking into account
that consumers will adjust their consumption at certain hours in accordance to
their profit. The consumption vector xn in the period t is xn, the offer vector in
t is Qt =

∑N
n=1 qt

n. Then the profit function takes the form

πLSE (x) =
N∑

n=1

T∑
t=1

P t
n · xt

n −
T∑

t=1

Ct

(
N∑

n=1

qt
n

)
→ maxq,x,P , (7)

under the conditions (4)–(5) and

N∑
n=1

xt
n =

N∑
n=1

qt
n, ∀t ∈ T. (8)

In what follows, we will search for the solution only in the variables x. Herein,
xt

n ≥ xt
n, ∀n, t means that consumers consume a minimum amount each time.

Since electricity cannot be stocked (here we do not consider the use of batteries),
optimization in each price zone can be considered as a separate problem. Then,
substituting (6) into (7) for each time zone ∀t ∈ T, we have

πt
LSE (x) =

N∑
n=1

∂un (xt
n, θn)

∂xt
· xt

n − Ct

(
N∑

n=1

xt
n

)
→ maxxn

. (9)

2 Here the condition (5) is taken into account as equality, which makes sense for
the problem under consideration due to the following reasons. We consider some
variant of distribution of the same load over different time intervals. Therefore, the
assumption that the user, by shifting part of the load from the peak time, will
increase its consumption, does not look realistic. Therefore, we can ignore it by
reducing the number of variables in the main problem (4)
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For the existence of the maximum, it is necessary and sufficient that the util-
ity function, in addition to the conditions (3), satisfies the following properties:

run
(z) < 1, ru′

n
(z) < 2, ∀z ≥ 0, (10)

and

lim
z→0

[
∂un(z, θ)

∂z

]
> 0 lim

z→∞

[
∂un(z, θ)

∂z
+ z

∂2un(z, θ)
(∂z)2

]
≤ 0,

where

run
(z) ≡ run

(z, θ) = −∂2un(z, θ)
∂z2

· z
∂un(z,θ)

∂z

> 0, (11)

ru′
n
(z) ≡ −∂3un(z, θ)

∂z3
· z

∂2un(z,θ)
∂z2

. (12)

Here run
(z) is the Arrow-Pratt measure [12] of concavity of the elemen-

tary utility and concavity of ∂un(z,θ)
∂z (‘of risk aversion’). The popular utility

are quadratic function (we use it in this paper) and CARA in [13]: u (z, θn) =
1 − exp(−θn · z) which entails run

(z) = θn · z. The boundary conditions indi-
cate positive marginal utility at zero and saturable demand at infinity, for
the equilibria existence. The condition imposed on run

means that we need
a greater than 1 demand elasticity for monopolistic pricing. The condition
imposed on ru′

n
means that the profit is concave, i.e., the second-order con-

dition 2∂2un(z,θ)
∂z2 + z · ∂3un(z,θ)

∂z3 ≤ 0. Further we assume that these conditions are
satisfied. See Appendix 1 for details.

We have connected problems of maximizing the concave functions (9) on
a set of time intervals t under the condition (6). As a result, we obtain the
Nash equilibrium: the prices Pn =

(
P 1

n , ..., PT
n

)
and the amounts of consumption

xn =
(
x1

n, ..., xT
n

)
in each time zone t = 1, T in the rate (xn, Pn), offered to

each consumer n = 1, N . Users optimize the load and maximize utility, the
company maximizes utility. Further, in Sect. 4, we calculate the Nash equilibrium
for consumers with different characteristics of the utility function θn, and propose
rates that realize this equilibrium under the conditions of complete awareness.

3 Equilibrium Model with the Individual
Rationality Condition

A weaker equilibrium variant than the one we have discussed, where consumers
do not get the maximum function (4), but have some level of satisfaction. In our
problem, we consider the same for everyone users n level of the received utility
U . It can be called an alternative level of utility. U =

∑T
t=1 U t, where U t is level

of alternative utility in time zone t. There are several reasons to discuss this
approach. First, by considering the condition

Vn (xn, Pn) ≥ U ∀n = 1, N, (13)
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we provide an individual rationality (IR) constraint, when the consumer changes
their consumption to increase their profit. Second, if there is competition between
load serving entities at the market, then the alternative utility is the utility
provided by another company (retailer).

πLSE (x) =
N∑

n=1

T∑
t=1

P t
n · xt

n −
T∑

t=1

Ct

(
N∑

n=1

xt
n

)
→ maxx,P , (14)

T∑
t=1

un

(
xt

n, θn

) −
T∑

t=1

xt
n · P t

n ≥ U, ∀n = 1, N, (15)

T∑
t=1

xt
n ≥ Xn,∀n = 1, N, (16)

xt
n ≥ 0, ∀n = 1, N, t = 1, T . (17)

The constraints (13) are fulfilled as equality due to the interest of the LSE to
set the highest possible prices. Only for the low prices we have Vn (xn, Pn) > U
and the LSE loses extra profit. Then the objective function is a sum of concave
functions with respect to the variable xt

n and there exists a unique maximum.
With certain utility functions and costs, we can estimate the welfare loss during
the transition from the general market equilibrium to the equilibrium with the
individual rationality condition. There exists another type of loss, not related to
the imperfection of market relations. This is the imperfection of information.

4 Arbitrage Opportunity Model

The model described in the previous section could be realized in the market only
if we did not have to deal with an arbitrage opportunity It might happen that
one of the users is offered prices which are systematically lower than the prices
offered to another user. Then this second user is interested in concealing their
own real utility to get another offer or an option to choose a rate offered to the
first user. Such situations should be avoided.

To avoid the situation when everyone chooses the same rate, the problem (7)
should be reformulated. Now we do not simply look for equilibrium prices for
each type in accordance with marginal utilities and marginal costs. It is necessary
that the user, who would rather prefer to select an alternative someone else’s
rate, chooses prices that provide the utility of the alternative rate. Then the
LSE profit will be bigger than in the situation when all users go for the same
rate, but smaller than in the equilibrium described in Sect. 2. As has been done
before, we simultaneously solve the demand side management problem.
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The utility of the user n when they choose the rate formed for them with the
prices Pn =

(
P 1

n , ..., PT
n

)
has the form:

Vn (xn, Pn) =
T∑

t=1

un

(
xt

n, θn

) −
T∑

t=1

xt
n · P t

n. (18)

The utility of the user n when they choose the rate formed for another user
m with the prices Pm =

(
P 1

m, ..., PT
m

)
has the form:

Vn (xm, Pm) =
T∑

t=1

un

(
xt

m, θn

) −
T∑

t=1

xt
m · P t

m. (19)

When solving the problem outlined in the previous section, we assume that
any consumer will be satisfied at some level, which is the same for everyone. This
is a legitimate assumption if we consider all users to be in approximately the
same position with respect to each other, while having different utility functions.
Then for ∀n, m the individual rationality constraint (13) is satisfied.

Two types of constraints are developed to avoid the situation of adverse
selection. They set an interval that meets the criteria of separating equilibrium.
First, neither consumer type refuses to consume electricity at the offered rates
(individual rationality (IR) constraint). Second, both types choose different rates
(incentive compatibility (IC) condition).

The IR constraint for each consumer type is based on the utility U which is
obtained by a consumer in the equilibrium case (4), (5), (8). The IR constraint
for each user n has the form:

Vn (xn, Pn) ≥ U, ∀n = 1, N. (IR) (20)

The IC condition for each user n is

Vn (xn, Pn) ≥ Vn (xm, Pm) , ∀n,m = 1, N. (IC) (21)

The problem of the load serving entity is (7) under the conditions (8), (5),
(20), (21). Assume that all users can be divided into two groups. The first group
has a higher utility estimate with respect to the unit of electricity (this group
will be included into the set H). The second group has a lower utility estimate
(group L) in comparison to the first group H. In view of the importance of each
user to choose “their own” rate, we replace the utility maximization problem
with a system of constraints.

The efficiency of the user H choosing the rate offered to the user L.
Find out what happens if consumers can choose from a range of rates formed

in the equilibrium from the problem (14)–(17). If the consumer of type L chooses
the rate of the consumer of type H, then

VL (xH , PH) =
T∑

t=1

uL

(
xt

H , θL

) −
T∑

t=1

xt
H · P t

H . (22)
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Using (3), we have that uL (xt
H , θL) < uH (xt

H , θH). Then

T∑
t=1

uL

(
xt

H , θL

) −
T∑

t=1

xt
H · P t

H <

T∑
t=1

uH

(
xt

H , θH

) −
T∑

t=1

xt
H · P t

H = U. (23)

Then VL (xH , PH) < U and consumers of type L have no incentives to choose the
rate with prices PH offered by the retailer in the equilibrium from the problems
(4), (5), (7).

If the consumer of type H chose the equilibrium rate of the consumer L, we
have:

T∑
t=1

uH

(
xt

L, θH

) −
T∑

t=1

xt
L · P t

L >

T∑
t=1

uL

(
xt

L, θL

) −
T∑

t=1

xt
L · P t

L = U. (24)

Here we employed the fact that uH (xt
L, θH) > uL (xt

L, θL) in accordance with
the property of the utility function (3).

Fig. 1. Equilibria obtained in problems of interaction between consumers and retailers
according to models with individual rationality constraint and with possible arbitra-
tion. (Color figure online)

We see that it is profitable for the consumer H to choose someone else’s rate.
This indicates an imbalance of equilibrium in the general case and reduces the
retailer’s profit and the total economic benefit. This situation is illustrated by
Fig. 1 that shows two indifference curves of the utility functions un (xt

n, θn) of two
consumers: the green and blue solid lines. The utility level of these consumers is
the same (at the figure it is equal to 0). The red lines are the indifference curves
of the cost function of the LSE of the different level Ct (Qt).3 The points 1 and
3 Here, the level of customer satisfaction increases with the shift of the lines of the

utility function level down, and the profit level increases with the shift of indifference
curves of costs upwards.
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2 determine the equilibrium values found when solving the problem (14)–(17).
The blue dotted line indicates the utility level that the user H will reach by
choosing the rate L at the point 1. This level is higher than that reached by the
user at the point 2. We obtain a new equilibrium once we have solved the new
problem of maximizing the profit under the conditions that the utility obtained
by the user H is not less than the utility obtained when choosing the point 1
rate.

Individual rationality constraint and incentive compatibility conditions.

Proposition 1. (i) For the type of consumer L the IR-condition is satisfied as
equality, but (ii) for the type of consumer H the IR-condition is satisfied as
an inequality. (iii) For the type of consumer H the IC-condition is satisfied as
equality, but (iv) for the type of consumer L the IC-condition is satisfied as an
inequality.

Proof.

i. Any reduction of the price P t
L by a small amount ε will increase the utility

of the users of type L in the period t. On the other hand, the price reduction
by the amount of ε reduces the retailer’s profit πLSE (x). Since users L agree
to choose the rate (xL, PL) while already having PL, the retailer will offer
exactly this rate.

T∑
t=1

uL

(
xt

L, θL

) −
T∑

t=1

xt
L · P t

L = U. (25)

ii. We have already checked that in (24).
iii. The reasoning behind this is the same as in the entry (i). If this constraint

is satisfied as a strict inequality

T∑
t=1

uH

(
xt

H , θH

) −
T∑

t=1

xt
H · P t

H >

T∑
t=1

uH

(
xt

L, θH

) −
T∑

t=1

xt
L · P t

L. (26)

However, in this case the load serving entity can raise the rate to the situation
of equality and receive an extra benefit, while the consumer will still remain
interested to choose their own rate. Therefore,

T∑
t=1

uH

(
xt

H , θH

) −
T∑

t=1

xt
H · P t

H =
T∑

t=1

uH

(
xt

L, θH

) −
T∑

t=1

xt
L · P t

L. (27)

iv.

T∑
t=1

uL

(
xt

L, θL

) −
T∑

t=1

xt
L · P t

L >

T∑
t=1

uL

(
xt

H , θL

) −
T∑

t=1

xt
H · P t

H . (28)

The proof of this statement is given in Appendix 2.
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When the IC conditions for the user L and the IR conditions for the user H
turn into inequality, it means that they are generally ineffective for the market.
It follows from (24) that the consumer H receives a portion of additional utility
that a retailer would receive in the case Model with the individual rationality
condition. The consumer would receive a negative utility from (28) and (23).
It means that the LSE can neglect these two conditions when solving the con-
ditional profit maximization problem and use only the effective conditions: the
IR condition for L (25) and the IC conditions for H (27). If the entire system
comprises only two users, the profit maximization problem for the LSE has the
form

πLSE (x) =
T∑

t=1

P t
L · xt

L +
T∑

t=1

P t
H · xt

H −
T∑

t=1

Ct

(
xt

L + xt
H

) → maxx,P , (29)

subject to (25), (27), (16) and (17).
In this case, the profit function is the sum of two concave functions with

respect to x in accordance with the properties listed above. Therefore, we have
maximization of a concave function with linear constraints.

5 Efficiency Evaluation

We carried out computations for all three models and compared the results by
the welfare criterion. Compare prices of the models: the Pricing Equilibrium
Model (Model I) (4), (5), (8), the Equilibrium with the individual rationality
condition Model (14)–(17) (Model II) and the Arbitrage opportunity Model
(Model III).

1. The model I – (4), (5), (8), is the Nash equilibrium model, therefore,
it does not have incentives for all participants to change the situation.
At the same time, it does not coincide with welfare maximum W =∑N

n=1

∑T
t=1 un (xt

n, θn) − ∑T
t=1 Ct

(∑N
n=1 xt

n

)
.

2. The solution to model II is defined as the “first best”: marginal utility equals
marginal cost.

T∑
t=1

u′
n

(
xt

n, θn

)
=

T∑
t=1

C ′
t

(
N∑

n=1

xt
n

)
, n = 1, ..., N.

We will get a similar solution when solving the problem of maximizing social
welfare.
Model I solution is determined

T∑
t=1

u′
n

(
xt

n, θn

) (
1 − run

(
xt

n

))
=

T∑
t=1

C ′
t

(
N∑

n=1

xt
n

)
, n = 1, ..., N.
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If we consider the natural utility function when r′
un

(·) ≥ 0, (1 − run
(xt

n)) is
a decreasing function. The product of two decreasing functions u′

n (xt
n, θn)

and (1 − run
(xt

n)) is the decreasing function, besides on FOC we have
1 − run

(xt
n) < 1. Then for ∀xt

n is true that u′
n (xt

n, θn) (1 − run
(xt

n)) ≤
u′

n (xt
n, θn). Thus, the consumption in the model I at peak time is less than in

model II and prices are higher. The resulting equilibrium in model I differs
from the socially optimal.
When we determine the equilibrium in model III, we obtain that for a high
type of consumer H, the equilibrium is determined by (5), and for a low type
of consumer, it is obtained from the following relationship and is ineffective:

2
T∑

t=1

u′
L

(
xt

L, θL

) −
T∑

t=1

u′
L

(
xt

H , θL

)
=

T∑
t=1

C ′
t

(
xt

L + xt
H

)
.

It is not difficult to show that, based on the Spence-Merlis property, we have
2
∑T

t=1 u′
L (xt

L, θL) − ∑T
t=1 u′

L (xt
H , θL) <

∑T
t=1 u′

L (xt
L, θL). Accordingly, the

equilibrium volumes of model III are lower and prices are higher than in
model II.
The design of the retail market can be structured so that the interaction is
carried out either by model I or by model III (the equilibrium in model II
is not stable). But these outcomes are not optimal and the maximum welfare
is not achieved. Below, in the example, we calculate the described equilibria
and compare the outcomes.
Therefore, the model II is welfare better than the model I. However, the
consumer is stimulated to leave this equilibrium. In particular, a possible
change of behavior can be seen in the arbitrage situation from the model III.

3. The arbitrage model equilibrium is different from the welfare optimal one,
but it offers less incentives to the consumer to change their behavior.

As an example, we consider an electricity supply system in the campus of Irkutsk
Technical University. Three equivalent consumers N = 3 represent all the con-
sumers making up the load curve of the campus. The first equivalent consumer
includes polyclinics and loads of sanatorium. The second consumer includes food
production facilities and hostels. The third consumer is a cafe. They receive elec-
tricity from a municipal load serving entity. The day of the winter peak load
(December 28, 2016) that was observed at the Technical University campus is
assumed as a calculation day. The initial data include a time-of-use rate. We
have two time zone: peak and night T = 2.

In this paper, we consider quadratic utility functions [9] corresponding to
the linear inverse demand function. These functions fully satisfy the conditions
(1)–(2) and are easily interpretable. For several parameters θn (where example,
θ1 < θ2 < θ3) they satisfy the condition (3). Electricity demand is traditionally
described as linear functions with low elasticity.

pt
n = θn − γ · xt

n, n = 1, N, t ∈ T, (30)

This function satisfies the properties (10): run
(z) = ru′

n
(z) = 0. More precisely
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Fig. 2. The utility function of different types of consumers.

un

(
xt

n, θn

)
=

{
θn · xt

n − γ
2 · (xt

n)2 if 0 ≤ xt
n < θn/γ,

θ2n/2γ if xt
n ≥ θn/γ,

t ∈ T. (31)

The several examples of utility functions from this class (31) are shown in
Fig. 2. The point where the utility function gets saturated and does not change
corresponds to the maximum power requirement of the user.

The utility functions of users (31) with coefficients θ during nighttime {0.2,
0.3, 0.3} and {0.4, 0.6, 0.7} during daytime. The study of load of these users
helped determine the necessary load. We set the parameter a of the cost function
equal to 0.02 and 0.5 for the night and on-peak hours, respectively.

Fig. 3. a. The load of the second consumer during the day optimized at a flat rate and
a rate of model II. b. The load of the second consumer during the day optimized at a
rate of model II and a rate of model III.

Figure 3a shows the load of the second consumer who belongs to the group
that has a higher valuation of the electricity unit and better solvency, than the
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first user. The dark blue color indicates the flat rate load during the daytime,
the light blue color shows the load corresponding to the solution of the max-
imum welfare problem (individual rationality constraint). Figure 3b shows the
comparison between the loads for the model II and the arbitrage model III.
Figure 4 is the comparison of the total load for various techniques of modeling. It
can be seen that the smallest values during peak time correspond to the individ-
ual rationality constraint model II. In this realization, the pricing equilibrium
model has the worst characteristics.

Therefore, the individual rationality constraint model appears to be most
effective and the arbitrage opportunity model comes second best, while the gen-
eral equilibrium model reduces the efficiency even more. However, our testing
showed that the efficiency loss is small, which is partly caused by the data.

Fig. 4. The load of the electricity system (three users) during the day optimized by
the rates of the three models (I, II, III).

6 Conclusions

In this paper, we have considered the infrastructure of intellectual power sys-
tems, where the load serving entity and its users are offered to optimize their
load curves in accordance with their strategies. One of the goals is the peak
load reduction with respect to the average value during the daytime. We use
the pricing scheme that implies the change in electricity prices depending on
the electricity consumption by all users during every hour so that all users are
financially motivated. We considered three possible models describing the retail
market and compare their efficiency. Each model has its reasons to be used. The
pricing equilibrium model (I) realizes an effective scheme for all participants who
do not have incentives to change their behavior (stable equilibrium). However,
this model has high demands for the quality of information. The model with the
individual rationality constraint (II) is less demanding for consumers and every
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consumer receives the same profit. This model realizes the welfare maximum
but does not provide a stable equilibrium. The last model (III) describes the
situation of a possible arbitrage between users. We consider a situation when
some users switch to the rate of other users, thereby increasing their utility and
reducing the retailer’s profit. We propose a model that takes this effect into con-
sideration, partly compensating for the loss of the LSE. In practice, the pricing
equilibrium model (I) and a model of a possible arbitrage (III) can be realized,
because they have a stable equilibrium. At the same time, interaction accord-
ing to the model of pricing equilibrium (I) does not require a regulation unlike
the model of a possible arbitrage (III). In the regulation of rates in the case of
model III, the resulting equilibrium is close to the maximum social welfare. The
models have been tested on the data of several users from the student campus.

Appendix 1

πLSE (x) =
N∑

n=1

T∑
t=1

∂un (xt
n, θn)

∂x
· xt

n −
T∑

t=1

Ct

(
N∑

n=1

xt
n

)
→ maxx,P .

The function Ct

(∑N
n=1 xt

n

)
is concave. Consider the first term of the expression

πLSE (x). For this function to be concave, the following condition should be
satisfied for ∀t ∈ T:

∂

(∑N
n=1

∂un(xt
n,θn)·xt

n

∂x

)

∂x
≡

N∑
n=1

∂un (xt
n, θn) · xt

n

∂x
+

N∑
n=1

∂2un (xt
n, θn)

∂x2
· xt

n ≥ 0

(32)
Or

ru(z) < 1, ru′(z) < 2, ∀z ≥ 0, (33)

where

run
(z) ≡ run

(z, θ) = −∂2un(z, θ)
∂z2

· z
∂un(z,θ)

∂z

> 0, ru′
n
(z) ≡ −∂3un(z, θ)

∂z3
· z

∂2un(z,θ)
∂z2

.

(34)

Appendix 2

Assume that the condition IC is satisfied as a strict inequality for the con-
sumer H:

T∑
t=1

uL

(
xt

L, θL

) −
T∑

t=1

xt
L · P t

L >
T∑

t=1

uL

(
xt

H , θL

) −
T∑

t=1

xt
H · P t

H .
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Then

T∑
t=1

xt
H · P t

H −
T∑

t=1

xt
L · P t

L >

T∑
t=1

uL

(
xt

H , θL

) −
T∑

t=1

uL

(
xt

L, θL

)
.

It follows from (26) that

T∑
t=1

xt
H · P t

H −
T∑

t=1

xt
L · P t

L =
T∑

t=1

uH

(
xt

H , θH

) −
T∑

t=1

uH

(
xt

L, θH

)
.

Then

T∑
t=1

uH

(
xt

H , θH

) −
T∑

t=1

uH

(
xt

L, θH

)
>

T∑
t=1

uL

(
xt

H , θL

) −
T∑

t=1

uL

(
xt

L, θL

)
,

or

T∑
t=1

uH

(
xt

H , θH

) −
T∑

t=1

uL

(
xt

H , θL

)
>

T∑
t=1

uH

(
xt

L, θH

) −
T∑

t=1

uL

(
xt

L, θL

)
.

The last equality is indeed always valid in a strict form in accordance with the
condition imposed on the utility function (3). Consequently, the assumption (27)
is true.
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Abstract. We study the homogeneous model of international trade
under the monopolistic competition of producers. The utility function
assumes additive separable. The transport costs are of “iceberg types”.
It is known that, in the situation of market equilibrium, under linear pro-
duction costs, the social welfare, as a function of transport costs, decreases
near free trade while (counter-intuitively!) increases near total autarky.
Instead, we study the situation of social optimality. We show that total
welfare decreases. We restrict our study by the case of two countries,
“big” and “small”. Moreover, we study two important “limited” situa-
tions: near free trade and near total autarky. We show that near free trade,
the welfare in the small country decreases; as to the big country, we find
examples when (1) the welfare decreases and (2) the welfare (counter-
intuitively!) increases. Besides, in the autarky case, we describe the sit-
uations of decreasing/increasing of welfare in each country.

Keywords: Monopolistic competition · International trade · Social
optimality · Comparative Statics

1 Introduction

The concept of monopolistic competition, introduced by Chamberlin [17,18],
widely develops now, starting with the famous paper by Dixit and Stiglitz [23]
for the case of a closed economy, by Krugman [26,27] for the international trade
and Melitz [29] for the heterogeneous case.

It seems that now a paper in this area can recognize as an interesting one
only if it contains counter-intuitive (unexpected) results.

Usually, monopolistic competition models study the market equilibrium, see,
e.g. [5,6,14,21,24,28,36]. One of the most interesting topic in these studies is
the influence of the models’ parameters (market size, transport costs, etc.) on
the social welfare, see, e.g. [3,4,13,15,30,31,33,34]. In particular, in [3,4,31] the
authors get that the gain from trade “is not so much”. Besides, in [15] the case
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of free trade and the case autarky study carefully; one of the (counterintuitive!)
result is that the social welfare, as function of transport costs, increases near
total autarky.

Instead, in this paper we study social optimality case, cf. [1,2,7,8,22]. It can
be interpreted as the problem of “social planer” who optimize a scalarization
of multi-criteria to find Pareto-optimal solution.1 We show that total welfare
decreases. We restrict our study by the case of two countries. Moreover, we study
two important “limited” situations: near free trade and near total autarky, cf.
[15]. We show that near free trade, the welfare in the small country decreases;
as to the big country, we find examples when (1) the welfare decreases and (2)
the welfare (counter-intuitively!) increases. As to the total autarky, we restrict
our study by the case of linear production costs and show that the total wel-
fare achieves the minimum, increasing in one country and decreasing in another
country.

The paper is organized as follows. Section 2 lays out the model and contains
some preliminary considerations. Here we describe the consumers and producers
(Sect. 2.1), Social welfare and Social optimality (Sect. 2.2). Moreover, in Sect. 2.3
we consider the symmetric case of social optimality: get First and Second Order
Conditions, and also the structure the Hesse matrix for general production costs
(Proposition 1) and for linear production costs (Corollary 1). Section 3 provides
the Comparative Statics w.r.t. transport costs. First, we find that the total
welfare function decreases w.r.t. transport costs (Proposition 2). Further, we
represent the derivative of gradient of total utility w.r.t. transport costs in terms
of elasticities and Arrow-Pratt measure for general (Proposition 3) and for linear
(Corollary 2) production costs. These allow to get in Sect. 3.1 the elasticities of
consumptions, of firm sizes and of the mass of firms (Proposition 4); moreover,
we get the derivatives (Proposition 5) and elasticities (Corollary 3) of welfare in
each countries and total welfare, and an example showing that in big country the
monotonicity of welfare can not be guaranteed. Section 3.2 contains the autarky
study (Proposition 6). Section 4 concludes.

2 Problem

We study a homogeneous monopolistic competition model of trade between two
asymmetric countries.

As it is usual in monopolistic competition, we assume that (cf. [7,18,23])

– consumers are identical, each endowed with one unit of labor;
– labor is the only production factor; consumption, output, etc. are measured

in labor;
– firms are identical (have the same cost function), but produce “varieties”

(“almost identical”) of good;
1 In welfare economics [25,32], a social planner is a decision-maker who attempts to

achieve the best result for all parties involved. Usually this means or the maxi-
mization of a social welfare function (in neo-classical welfare economics), or Pareto
optimality (in modern welfare economics).
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– each variety is produced by one firm that produces a single variety;
– each demand function results from additive utility function;
– number (mass) of firms is big enough to ignore the firm’s influence on the

whole industry/economy;
– labor supply/demand in each country is balanced.

Let be two countries, H (“big”) and F (“small”).

2.1 Consumers and Producers

Let

– L be the number of consumers in country H,
– l be the number of consumers in country F .

As usual, we assume that L ≥ l. Analogously, let

– N be the number (mass) of firms in country H,
– n be the number (mass) of firms in country F .

Note that L and l are parameters (the known constants) while N and n are the
variables determined endogenously. Moreover, let us recall that, in monopolistic
competition models, number of firms is big enough. Therefore, instead of stan-
dard “number of firms is N (or n)” we consider the intervals [0, N ] and [0, n]
with uniformly distributed firms.2

Now we introduce four kinds of the individual consumption. Let3

– Xi be the amount of the variety produced in country H by firm i ∈ [0, N ]
and consumed by a consumer in country H,

– Zi be the amount of the variety produced in country H by firm i ∈ [0, N ] and
consumed by a consumer in country F ,

– xi be the amount of the variety produced in country F by firm i ∈ [0, n] and
consumed by a consumer in country F ,

– zi be the amount of the variety produced in country F by firm i ∈ [0, n] and
consumed by a consumer in country H.

To introduce the production amount of the firms (the “size” of the firm), let
us introduce the parameter τ ≥ 1 as transport costs of “iceberg type”.4 Each
firm in each country produces for consumers in each country. This way

Qi = L · Xi + τ · l · Zi, i ∈ [0, N ], (1)
2 A popular interpretation is as follows: gas stations are equally spaced on the “long”

road; we are not interested in the number of these stations, but the length of the
road. In this case, N and n are called not “the number of firms”, but “the mass of
firms”. This mass is determined endogenously and does not have to be an integer at
all.

3 Hereinafter, due to the tradition of monopolistic competition, we use the notation
Xi for the function X(i), etc.

4 To sell in another country y units of the goods, the firm must produce τ · y units.
“During transportation, the product melts like an iceberg ...”.
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is the size of firm i ∈ [0, N ] in country H, while

qi = l · xi + τ · L · zi, i ∈ [0, n], (2)

is the size of firm i ∈ [0, n] in country F .
Besides, let the production costs be determined for each firm in each country

by the increasing twice differentiable function V .
Thus, the labor balances in countries H and F are, correspondingly,

N∫

0

V (Qi) di = L, (3)

n∫

0

V (qi) di = l. (4)

2.2 Social Welfare and Social Optimality

The total utility (social welfare function) in country H is

SWH = L ·
⎛
⎝

N∫

0

u (Xi) di +

n∫

0

u (zi) di

⎞
⎠ (5)

while the social welfare function in country F is

SWF = l ·
⎛
⎝

n∫

0

u (xi) di +

N∫

0

u (Zi) di

⎞
⎠ . (6)

Here u (·) is sub-utility function. As usual, we assume that u (·) is twice differ-
entiable (at least near social optimality) and satisfies the conditions

u(0) = 0, u′ (ξ) > 0, u′′ (ξ) < 0, (7)

i.e., it is strictly increasing5 and strictly concave.

5 Usually function u (·) is assumed to be increasing (not necessarily strictly increasing).
For example, in the case of quadratic sub-utility

u (ξ) =

{
Aξ − B

2
· ξ2, ξ ∈ [

0, A
B

]
;

A2

2B
, ξ ≥ A

B
;

with

u′ (ξ) =

{
A − B · ξ, ξ ∈ [

0, A
B

]
;

0, ξ ≥ A
B

.

We assume strictly increase only for convenient.
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Now let us formulate the social optimality problem:

– maximize the total social welfare function SWH +SWF (see (5) and (6)) with
respect to {Xi}i∈[0,N ] , {Zi}i∈[0,N ] , {xi}i∈[0,n] , {zi}i∈[0,n] subject to labor bal-
ances (3) and (4).

2.3 Social Optimality: Symmetric Case

Let us recall that the consumers are assume identical, the producer are assumed
identical. Thus, as usual, we consider the symmetric case. More precisely, we
omit index i in consumption: Xi = X,Zi = Z, xi = x, zi = z for any i. This way
(1)–(6) are

Q = L · X + τ · l · z, (8)

q = l · x + τ · L · Z, (9)

N · V (Q) = L, (10)

n · V (q) = l, (11)

SWH = L · (N · u (X) + n · u (z)) , (12)

SWF = l · (n · u (x) + N · u (Z)) , (13)

By substituting (10) and (11) in (12) and (13), the symmetric social welfare
in countries H and F are, correspondingly,

W = L ·
(

L · u (X)
V (Q)

+ l · u (z)
V (q)

)
, (14)

w = l ·
(

l · u (x)
V (q)

+ L · u (Z)
V (Q)

)
, (15)

while the total symmetric social welfare is

U = W + w = L · L · u (X) + l · u (Z)
V (Q)

+ l · l · u (x) + L · u (z)
V (q)

. (16)

Thus, the symmetric social optimality problem is6

U → max
X,Z,x,z

. (17)

6 It may seem more appropriate to maximize W and w separately. But here comes
the problem of reconciling the resulting solutions, because of

∂W

∂Z
= 0 ⇐⇒ X = 0,

∂W

∂x
= 0 ⇐⇒ z = 0,

∂w

∂X
= 0 ⇐⇒ Z = 0,

∂w

∂z
= 0 ⇐⇒ x = 0.

Hence, we maximize the sum of welfares as a special case of scalarization in multiple-
objective optimization. Of course, another linear combinations of the items can be
considered and lead to the similar results.



168 I. Bykadorov

The First Order Conditions (FOC) are

∂U

∂X
≡ L2

V (Q)
·
(

u′ (X) − V ′ (Q)
V (Q)

· (L · u (X) + l · u (Z))
)

= 0, (18)

∂U

∂Z
≡ L · l

V (Q)
·
(

u′ (Z) − τ · V ′ (Q)
V (Q)

· (L · u (X) + l · u (Z))
)

= 0, (19)

∂U

∂x
≡ l2

V (q)
·
(

u′ (x) − V ′ (q)
V (q)

· (l · u (x) + L · u (z))
)

= 0, (20)

∂U

∂z
≡ L · l

V (q)
·
(

u′ (z) − τ · V ′ (q)
V (q)

· (l · u (x) + L · u (z))
)

= 0, (21)

while the Hesse matrix of function U is block-diagonal

U ′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2U

∂X2

∂2U

∂X∂Z
0 0

∂2U

∂X∂Z

∂2U

∂Z2
0 0

0 0
∂2U

∂x2

∂2U

∂x∂z

0 0
∂2U

∂x∂z

∂2U

∂z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (22)

Thus, the Second Order Conditions (SOC) are

∂2U

∂X2
< 0,

∂2U

∂X2
· ∂2U

∂Z2
−

(
∂2U

∂X∂Z

)2

> 0, (23)

∂2U

∂x2
< 0,

∂2U

∂x2
· ∂2U

∂z2
−

(
∂2U

∂x∂z

)2

> 0. (24)

Under FOC (18)–(21), we can calculate the elements of matrix (22).7

Proposition 1. Under FOC (18)–(21),

∂2U

∂X2
=

L2

V (Q)
·
(

u′′ (X) − L · u′ (X) · V ′′ (Q)
V ′ (Q)

)
, (25)

∂2U

∂X∂Z
= −τ ·L2 ·l · V ′′ (Q)

V ′ (Q) · V (Q)
·u′ (X) = −L2 ·l · V ′′ (Q)

V ′ (Q) · V (Q)
·u′ (z) , (26)

∂2U

∂Z2
=

L · l

V (Q)
·
(

u′′ (Z) − τ · l · u′ (Z) · V ′′ (Q)
V ′ (Q)

)
, (27)

∂2U

∂x2
=

l2

V (q)
·
(

u′′ (x) − l · u′ (x) · V ′′ (q)
V ′ (q)

)
, (28)

7 Usually in this paper we omit the proofs, they are rather technical.
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∂2U

∂x∂z
= −τ · L · l2 · V ′′ (q)

V (q) · V ′ (q)
· u′ (x) = −L · l2 · V ′′ (q)

V (q) · V ′ (q)
· u′ (z) , (29)

∂2U

∂z2
=

L · l

V (q)
·
(

u′′ (z) − τ · L · V ′′ (q)
V ′ (q)

· u′ (z)
)

. (30)

Moreover, in the case of linear production costs, i.e., if

V ′′ (Q) = V ′′ (q) = 0, (31)

matrix U ′′ is diagonal. More precisely,

Corollary 1. Under FOC (18)–(21) and linear production costs (31), SOC hold
and, moreover,

∂2U

∂X2
=

L2

V (Q)
· u′′ (X) < 0, (32)

∂2U

∂X∂Z
= 0, (33)

∂2U

∂Z2
=

L · l

V (Q)
· u′′ (Z) , (34)

∂2U

∂x2
=

l2

V (q)
· u′′ (x) , (35)

∂2U

∂x∂z
= 0, (36)

∂2U

∂z2
=

L · l

V (q)
· u′′ (z) . (37)

Due to (32)–(37), SOC (23), (24) hold automatically.

3 Comparative Statics w.r.t. Transport Costs

Total differentiation of the system (18)–(21), i.e., the system

U ′ =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠

w.r.t. τ gives us

dU ′

dτ
=

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ ,
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i.e.,

U ′′ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dX

dτ

dZ

dτ

dx

dτ

dz

dτ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2U

∂X∂τ

∂2U

∂Z∂τ

∂2U

∂x∂τ

∂2U

∂z∂τ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (38)

First of all, let us show a simple fact.

Proposition 2. Under FOC (18)–(21),

dU

dτ
= −L · l

τ
·
(

u′ (Z) · Z

V (Q)
+

u′ (z) · z

V (q)

)
≤ 0. (39)

Proof. Due to (18)–(21), (8), (9),

dU

dτ
=

∂U

∂X
· dX

dτ
+

∂U

∂Z
· dZ

dτ
+

∂U

∂x
· dx

dτ
+

∂U

∂z
· dz

dτ
+

∂U

∂τ
=

∂U

∂τ

= −L · L · u (X) + l · u (Z)

(V (Q))2
· V ′ (Q) · ∂Q

∂τ
− l · l · u (x) + L · u (z)

(V (q))2
· V ′ (q) · ∂q

∂τ

= −L · l ·
(

L · u (X) + l · u (Z)

(V (Q))2
· V ′ (Q) · Z +

l · u (x) + L · u (z)

(V (q))2
· V ′ (q) · z

)

= −L · l

τ
·
(

u′ (Z) · Z

V (Q)
+

u′ (z) · z

V (q)

)
≤ 0.

Hence (39) holds.

Hence, now we are interesting of only the behavior of the welfare in each
country.

For function g(·), let us introduce the elasticity and Arrow-Pratt measure:

Eg (η) ≡ g′ (η)
g (η)

· η, rg (η) ≡ −g′′ (η)
g′ (η)

· η ≡ −Eg′ (η) . (40)

Proposition 3. Under FOC (18)–(21),

∂2U

∂X∂τ
=

L2 · l · Z

V (Q) · Q
· (EV (Q) + rV (Q)) · u′ (X) , (41)

∂2U

∂Z∂τ
=

L · l2 · Z

V (Q) · Q
·
(

− Q

τ · l · Z
+ EV (Q) + rV (Q)

)
· u′ (Z) , (42)

∂2U

∂x∂τ
=

L · l2 · z

V (q) · q
· (EV (q) + rV (q)) · u′ (x) , (43)
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∂2U

∂z∂τ
=

L2 · l · z

V (q) · q
·
(
− q

τ · L · z
+ EV (q) + rV (q)

)
· u′ (z) . (44)

Corollary 2. Under FOC (18)–(21) and linear production costs (31),

∂2U

∂X∂τ
=

L2 · l · Z

V (Q) · Q
· EV (Q) · u′ (X) , (45)

∂2U

∂Z∂τ
=

L · l2 · Z

V (Q) · Q
·
(

− Q

τ · l · Z
+ EV (Q)

)
· u′ (Z) , (46)

∂2U

∂x∂τ
=

L · l2 · z

V (q) · q
· EV (q) · u′ (x) , (47)

∂2U

∂z∂τ
=

L2 · l · z

V (q) · q
·
(
− q

τ · L · z
+ EV (q)

)
· u′ (z) . (48)

3.1 Free Trade

Let us consider the situation in free trade point, i.e., when τ = 1. Then

X = Z = x = z,

Q = q = Γ · X,

where Γ = L + l.
Let us denote u = u (X) , V = V (Q). We get from (18)–(21)

∂U

∂X
=

L2

V
·
(

u′ − V ′

V
· Γ · u

)
=

l

L
· ∂U

∂Z
=

l2

L2
· ∂U

∂x
=

l

L
· ∂U

∂z
.

So FOC is
Eu = EV . (49)

As to SOC, we have from Proposition 1, see (25)–(30),

∂2U

∂X2
= L2 · u′

V · Q
· (L · rV − Γ · ru) =

L

l
· ∂2U

∂z2
,

∂2U

∂Z2
= L · l · u′

V · Q
· (l · rV − Γ · ru) =

L

l
· ∂2U

∂x2
,

∂2U

∂X∂Z
= L2 · l · u′

V · Q
· rV =

L

l
· ∂2U

∂x∂z
,

∂2U

∂X2
· ∂2U

∂Z2
−

(
∂2U

∂X∂Z

)2

= L3 · l · ru ·
(

u′

V · X

)2

· (ru − rV ) ,

∂2U

∂x2
· ∂2U

∂z2
−

(
∂2U

∂x∂z

)2

= L · l3 · ru ·
(

u′

V · X

)2

· (ru − rV ) .
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So SOC is
ru > rV . (50)

Besides, we have from Proposition 3, see (41)–(44),

∂2U

∂X∂τ
=

L2 · l

V · Γ
· Eu · u′ =

L

l
· ∂2U

∂x∂τ
,

∂2U

∂Z∂τ
=

L · l2

V · Γ
·
(

−Γ

l
+ Eu

)
· u′,

∂2U

∂z∂τ
=

L2 · l

V · Γ
·
(

−Γ

L
+ Eu

)
· u′.

Let us introduce the elasticity of a variable η w.r.t. τ (cf. (40))

Eη ≡ Eη/τ =
dη

dτ
· τ

η
. (51)

In terms of (51), due to (38) and SOC (50), we get

Proposition 4. In Free Trade, the elasticities of social optimal individual con-
sumptions are

EX =
l

Γ
· Eu · ru − rV

ru · (ru − rV )
=

l

L
· Ex, (52)

EZ =
1

Γ · ru
·
(

l · (Eu − 1) · ru

ru − rV
− L

)
<

l

Γ
· Eu − 1
ru − rV

< 0, (53)

Ez =
1

Γ · ru
·
(

L · (Eu − 1) · ru

ru − rV
− l

)
<

L

Γ
· Eu − 1
ru − rV

< 0. (54)

Moreover, the elasticities of social optimal sizes and masses of firms are

EQ = − l

Γ
· 1 − Eu − ru + rV

ru − rV
=

l

L
· Eq, (55)

EN = Eu · l

Γ
· 1 − Eu − ru + rV

ru − rV
=

l

L
· En. (56)

Note that, in the case of linear production costs (31), SOC is ru > 0 (i.e.,
holds automatically), while we get from (52)–(56)8

EX =
l

Γ
· Eu

ru
=

l

L
· Ex > 0,

8 Note that concavity of sub-utility u restricts its elasticity as Eu (ξ) < 1 ∀ξ > 0.
Indeed, for every ∀ξ > 0,

Eu (ξ) < 1 ⇐⇒ u′ (ξ) · ξ − u (ξ) < 0 ∀ξ > 0.

Consider the function g (ξ) = u′ (ξ) · ξ − u (ξ). One has g′ (ξ) ≡ u′′ (ξ) · ξ < 0 ∀ξ > 0
due to strictly concavity of u. But g (0) = u (0) = 0. Hence g (ξ) < 0 ∀ξ > 0, i.e.,
u′ (ξ) · ξ − u (ξ) < 0 ∀ξ > 0.



Social Optimality in Monopolistic Competition 173

EQ = − l

Γ
· EEu

ru
=

l

L
· Eq = −EN

Eu
= − l

L
· En

Eu
.

Thus, in the case of linear production costs, we now not only the signs of EZ , Ez

but also the signs of EX , Ex; moreover, signs of EQ, Eq, EN , En are uniquely
determined by the sign of E ′

u.
Now, we can calculate the derivatives w.r.t. τ of social welfare (14) in country

H, social welfare (15) in country F and total social welfare (16).

Proposition 5. In Free trade, the derivatives w.r.t. τ of social welfare in each
country are

dW

dτ
= − (2 · L · ru + l − L) · L · l

Γ · V
· u′ · X

ru
, (57)

dw

dτ
= − (2 · l · ru + L − l) · L · l

Γ · V
· u′ · X

ru
< 0. (58)

Moreover, the derivatives w.r.t. τ of total social welfare is

dU

dτ
= −2 · L · l · Eu · u

V
< 0. (59)

Note that formulas (57)–(59) does not contain the second derivative of the
production costs. So they are the same for the cases of linear and nonlinear
production costs.

Further, in Free Trade,

U = Γ 2 · u

V
=

Γ

L
· W =

Γ

l
· w. (60)

In terms of elasticities, formulas (57), (58) and especially (59) can be written,
using (60), in more short form.

Corollary 3. In Free trade, the elasticities w.r.t. τ of social welfare in each
country are

EW = − l

Γ 2
· (2 · L · ru + l − L) · Eu

ru
, (61)

Ew = − L

Γ 2
· (2 · l · ru + L − l) · Eu

ru
< 0, (62)

the elasticity w.r.t. τ of total social welfare is

EU = −2 · L · l

Γ 2
· Eu = − 2 · L · l

(L + l)2
· Eu ∈ (−Eu, 0) ⊆ (−1, 0) . (63)

Due to Proposition 5, the total welfare and the welfare in the “small” country
F decrease w.r.t. τ near Free Trade, see (63) and (62). As to the welfare in the
“big” country H, the monotone the decrease/increase property depends on the
sign of the expression 2 · L · ru + l − L, see (61). The example below shows that
it is not possible to guarantee this sign.
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Example. Let be L = 3, l = 1,

u (ξ) = 4 · (1 + ξ)0.5 − ξ − 4, V (η) = c · η + 1.

Then, in Free Trade, Q = 4 · X, FOC (Eu = EV , see (49)) is

2 · (1 + X)−0.5 − 1
4 · (1 + X)0.5 − X − 4

· X =
c · 4 · X

c · 4 · X + 1
.

Moreover,

ru =
(1 + X)−1.5 · X

2 · (1 + X)−0.5 − 1

and, due (61),

EW ≥ 0 ⇐⇒ ru ≤ 1
3

.

Let c =
21
4

, then

X =
15
49

,
√

1 + X =
8
7

, ru =
35
128

<
1
3

.

Let c =
5
2

, then

X =
11
25

,
√

1 + X =
6
5

, ru =
55
144

>
1
3

.

3.2 Autarky

In this section, we restrict our study by the case of linear production costs (31).
Then we can use (32)–(37) and (45)–(48). We are interested in various cases of
total autarky:9

1. τ1 and τ2 exist such that 1 < τ1 < τ2 and

z (τ) > 0, τ < τ1, z (τ1) = 0, Z (τ) > 0, τ < τ2, Z (τ2) = 0; (64)

2. τ1 and τ2 exist such that 1 < τ1 < τ2 and

Z (τ) > 0, τ < τ1, Z (τ1) = 0, z (τ) > 0 τ < τ2, z (τ2) = 0; (65)

3. τa exists such that

Z (τ) > 0, z (τ) > 0, τ < τa, Z (τa) = z (τa) = 0. (66)

9 In equilibrium situation (see, e.g., [15]), due to trade balance, the moving from
the trade to the total autarky is under the unique transport cost. Instead, in social
optimality situation, several kinds of partial autarky can be before the total autarky.
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The Proposition below describes the monotonicity of consumption, firm’s
sizes and welfare in each country, depending on the cases (64)–(66).

Proposition 6. Under (7), in various cases of total autarky, the various results
hold.

1. Let τ1 and τ2 exist such that 1 < τ1 < τ2 and (64) holds. Then in τ = τ2:

dX

dτ
=

dx

dτ
=

dq

dτ
= 0,

dZ

dτ
=

1
τ2

· u′ (0)
u′′ (0)

< 0,
dQ

dτ
= l · τ · dZ

dτ
< 0,

dW

dτ
= −L · l · u′ (0)

V (Q)
· dZ

dτ
= −dw

dτ
> 0.

2. Let τ1 and τ2 exist such that 1 < τ1 < τ2 and (65) holds. Then in τ = τ2:

dX

dτ
=

dx

dτ
=

dQ

dτ
= 0,

dz

dτ
=

1
τ2

· u′ (0)
u′′ (0)

< 0,
dq

dτ
= L · τ2 · dz

dτ
< 0,

dW

dτ
= L · l · u′ (0)

V (q)
· dz

dτ
= −dw

dτ
< 0.

3. Let τa exists such that (66) holds. Then in τ = τa:

dX

dτ
=

dx

dτ
= 0,

dZ

dτ
=

dz

dτ
=

1
τ2

· u′ (0)
u′′ (0)

< 0,
dQ

dτ
= l ·τ2 · dZ

dτ
=

l

L
· dq

dτ
< 0,

dW

dτ
=

dw

dτ
= 0.

4 Conclusion

In this paper, we study, in the monopolistic competition framework, the homo-
geneous model of international trade between the two countries. The utility
function for each consumer is additively separable. We consider the situation
of social optimality and consider two “limited” cases: free trade and autarky.
Although the total social welfare decreases w.r.t. transport costs, we find two
counter-intuitive results: when transport costs increase,

– near free trade, the social welfare can increase in the bigger country;
– near total autarky, the social welfare can increase as in the bigger country,

as in smaller countries.

Note that it may be interesting to consider more complicated cases:

– non-additive utility function, cf. [9,16,35];
– non-linear production costs, cf. [13,14];
– heterogeneous case, cf. [19,20,29];
– marketing models, cf. [10–12].
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Abstract. This paper is devoted to a new class of differential games
with continuous updating. It is assumed that at each time instant, players
have or use information about the game defined on a closed time inter-
val. However, as the time evolves, information about the game updates,
namely, there is a continuous shift of time interval, which determines
the information available to players. Information about the game is the
information about motion equations and payoff functions of players. For
this class of games, the direct application of classical approaches to the
determination of optimality principles such as Nash equilibrium is not
possible. The subject of the current paper is the construction of solu-
tion concept similar to Nash equilibrium for this class of differential
games and corresponding optimality conditions, in particular, modern-
ized Hamilton-Jacobi-Bellman equations.
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1 Introduction

This paper formulates a new approach to analyze differential games with uncer-
tainties and unknowns in the players’ future payoff structures. The approach
[11,13] is used for constructing game theoretical models and defining solutions
for conflict-controlled processes, where information about the process updates
continuously in time. Existing differential game models often rely on the assump-
tion of time-invariant game structures for the derivation of equilibrium solutions.
However, many events in a considerably far future are intrinsically unknown.
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Therefore, the behavior of players should as well be modeled using the assump-
tion that they use only the truncated information about the game structure. It
is supposed that players lack certain information about the motion equations
and payoff functions on the whole-time interval on which the game is played. At
each time instant information about the game structure updates, players receive
information about motion equations and payoff functions. This new approach
for the analysis of differential games via information updating provides a more
realistic and practical alternative to the study of differential games. Existing
differential game models defined on the closed time interval [1], infinite time
interval [8], random time interval [16] do not take into account the fact that in
many real-life processes, players at the initial instant do not know all the infor-
mation about the game. Thus, existing approaches cannot be directly used to
construct a range of real-life game-theoretic models.

This work aims to present optimality conditions in the form of Hamilton-
Jacobi-Bellman equations for the solution concept similar to the feedback Nash
equilibrium for a class of games with continuous updating. In the game models
with continuous updating, it is assumed that players

1. in the current time instant t ∈ [t0,+∞) have information about the motion
equations and payoff functions on the truncated time interval [t, t + T ] with
length defined by the information horizon T ,

2. continuously or at any time instant t ∈ [t0,+∞) receive updated information
about the motion equations and payoff functions and as a result continuously
adapt to the updated information (Fig. 1).

Fig. 1. Each blue oval shows the information available to players at instant t, namely
[t, t + T ], where T is the time horizon. (Color figure online)
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Obviously, it is difficult to obtainNash equilibriumdue to the lack of fundamen-
tal approaches to control problems with continuously moving information horizon.
Classical methods such as dynamic programming and Hamilton-Jacobi-Bellman
equation [2] or Pontryagin Maximum Principal [17] do not allow to directly con-
struct Nash equilibrium in problems with moving information horizon. Taking into
account the assumptions described above the two main problems arise:

1. How to define a solution concept similar to Nash equilibrium for a class of
games with continuous updating?

2. How to derive the corresponding optimality conditions?

Both questions are addressed in this work. The game model with continuous
updating and the solution technique besides the current time parameter uses an
additional one. It is used to take into account truncated information available to
players. Feedback Nash equilibrium in the game model with continuous updating
is defined using the so-called generalized feedback Nash equilibrium as a strategy
profile depending not only on the current time t and state x but also on the
additional time parameter. Special transformation is introduced to obtain Nash
equilibrium with continuous updating as a strategy profile depending only on
the current time t and state x. In order to define generalized Nash equilibrium,
we introduce a new type of Hamilton-Jacobi-Bellman equations for the class of
games with continuous updating.

Till now a class of games with dynamic updating was studied in the papers
[7,11–15,21], where authors laid a foundation for further study of the class of
games with dynamic updating. There it is assumed that the information about
motion equations and payoff functions is updated in discrete time instants, and
the interval, where players have the information is defined by the value of infor-
mation horizon. Also, the class of differential games with continuous updating
was considered in the paper [9], there it is supposed that the updating process
evolves continuously in time (Fig, 2).

The first work devoted to this class of games is [11]. In this paper, a model
of cooperative differential game with prescribed duration and dynamic updating
was constructed. The concept of truncated subgame was introduced and resulting
cooperative strategies, conditionally cooperative trajectory, resulting cooperative
solution were defined, the theorem was proved showing that an arbitrary resulting
cooperative solution is Δt-time consistent in this class of games. The paper [13]
is devoted to the games with dynamic updating, stochastic forecast, and dynamic
adaptation. In the paper [7] the dependence of players’ payoffs on the value of the
information horizon is studied. Papers [14] and [15] are devoted to the application
of game models with dynamic updating to the oligopoly model of the oil market.
Numerical modeling was performed in Matlab using the data on Brent and Light
oil prices. Further results in this field are to be published in the near future. In
the paper [12] the approach presented above was applied to the game models with
infinite horizon. The paper [21] is devoted to the construction of a special class of
Hamilton-Jacobi-Bellman equations for the noncooperative dynamic game model
defining the various types of information structure. Obtained results can be used
for constructing models, where players use different information structures. The
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Fig. 2. Each blue oval shows the information available to players over the interval
[t0 + jΔt, t0 +(j +1)Δt], namely [t0 + jΔt, t0 + jΔt+T ], j = 0, . . . , l, l = T−t0

Δt
. (Color

figure online)

results of the paper [9] are devoted to studying the class of linear-quadratic differ-
ential games with continuous updating. There the form of Nash equilibrium with
continuous updating is presented and special convergence results are obtained for
the case of dynamic and continuous updating.

The class of differential games with continuous updating has some similarities
with the Model Predictive Control (MPC) theory worked out within the frame-
work of numerical optimal control. We analyze [6,10,18,19] to get recent results in
this area. MPC is a method of control when the current control action is achieved
by solving at each sampling instant a finite horizon open-loop optimal control
problem using the current state of an object as the initial state. This type of control
is able to cope with strict limitations on controls and states, which is an advan-
tage over other methods. There is, therefore, a wide application in petrochemical
and related industries where key operating points are located close to the set of
admissible states and controls. The main problem that is solved in MPC is the
provision of movement along the target trajectory under the conditions of ran-
dom perturbations and an unknown dynamical system. At each time step, the
optimal control problem is solved for defining controls which will lead the system
to the target trajectory. The class of games with continuous updating, on the other
hand, solves the problem of modeling player behavior when information about the
process updates dynamically. This means that the class of differential games with
continuous updating does not use the target trajectory, but answers the question
of composing a trajectory which will be used by players in case of using truncated
information about the process and continuous updating.

The paper is structured as follows. In Sect. 2, the description of the initial
differential game model is presented. In Sect. 3, the game model with continu-
ous updating is defined as well as the concept of a strategy for it. In Sect. 4,
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classical optimality principal Nash equilibrium is adapted for the class of games
with continuous updating. In Sect. 5, a new type of Hamilton-Jacobi-Bellman
equations for a class of games with continuous updating is presented as well as
the procedure for defining Nash equilibrium in the class of games with continu-
ous updating. The illustrative model example is presented in Sect. 6. Numerical
results are presented at the end of Sect. 6. In Sect. 7, the conclusion is presented.

2 Initial Game Model

Consider differential n-player (|N | = n) game with prescribed duration Γ (x0, T−
t0) defined on the interval [t0, T ].

Motion equation has the form:

ẋ(t) = f(t, x, u),
x(t0) = x0,
x ∈ R

l, u = (u1, . . . , un), ui = ui(t, x) ∈ Ui ⊂ compRk, t ∈ [t0, T ].
(1)

Payoff function of player i is defined in the following way:

Ki(x0, T − t0;u) =

T∫

t0

gi[t, x(t), u(t, x)]dt, i ∈ N, (2)

where gi[t, x(t), u(t, x(t))], f(t, x, u) are the integrable functions, x(t) is the solu-
tion of Cauchy problem (1) with fixed u(t, x) = (u1(t, x), . . . , un(t, x)). The strat-
egy profile u(t, x) = (u1(t, x), . . . , un(t, x)) is called admissible if the problem
(1) has a unique and continuable solution. We use the conditions of existence,
uniqueness and continuability of Filippov [5]:

1. right-hand side of motion equations f(t, x, u) (1) is continuous on the set
[t0, T ] × X × U1 × · · · × Un

2. right-hand side of motion equations f(t, x, u) satisfies Lipschitz conditions for
x with the constant k1 > 0 uniformly regarding to u:

||f(t, x′, u) − f(t, x′′, u)|| ≤ k1||x′ − x′′||, ∀ t ∈ [t0, T ], x′, x′′ ∈ X,u ∈ U

3. exists such a constant k2 that function f(t, x, u) satisfies condition:

||f(t, x, u)|| ≤ k2(1 + ||x||), ∀ t ∈ [t0, T ], x ∈ X,u ∈ U

4. for any t ∈ [t0, T ] and x ∈ X set

G(x) = {f(t, x, u)|u ∈ U}
is a convex compact from Rl.

Using the initial differential game with prescribed duration of T , we construct
the corresponding differential game with continuous updating.
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3 Differential Game Model with Continuous Updating

Consider n-player differential game Γ (x0, t0, T ), defined on the interval [t0, t0 +
T ], where 0 < T < +∞.

Motion equation has the form:

ẋt0(s) = f(s, xt0 , u
t0),

xt0(t0) = x0,
xt0 ∈ R

l, ut0 = (ut0
1 , . . . , ut0

n ), ut0
i = ut0

i (s, x) ∈ Ui ⊂ compRk.
(3)

Payoff function of player i is defined in the following way:

Kt0
i (x0, t0, T ;ut0) =

t0+T∫

t0

gi[s, xt0(s), u
t0(s, x)]ds, i ∈ N, (4)

where xt0(s), ut0(s, x) are trajectory and strategies in the game Γ (x0, t0, T ),
ẋt0(s) is the derivative of s.

Subgame of Differential Game with Continuous Updating. Consider n-player dif-
ferential game Γ (x, t, T ), t ∈ [t0,+∞) defined on the interval [t, t + T ], where
0 < T < +∞.

Motion equation for the subgame Γ (x, t, T ) has the form:

ẋt(s) = f(s, xt, u
t),

xt(t) = x,
xt ∈ R

l, ut = (ut
1, . . . , u

t
n), ut

i = ut
i(s, x) ∈ Ui ⊂ compRk, s ∈ [t, t + T ].

(5)

Payoff function of player i for the subgame Γ (x, t, T ) has the form:

Kt
i (x, t;ut) =

t+T∫

t

gi[s, xt(s), ut(s, x)]ds, i ∈ N, (6)

where xt(s), ut(s, x) are trajectories and strategies in the game Γ (x, t, T ), ẋt(s)
is the derivative of s.

Differential game with continuous updating is developed according to the
following rule:

Current time t ∈ [t0,+∞) evolves continuously and as a result players con-
tinuously obtain new information about motion equations and payoff functions
in the game Γ (x, t, T ).

Strategy profile u(t, x) in the differential game with continuous updating has
the form:

u(t, x) = ut(t, x), t ∈ [t0,+∞), (7)

where ut(s, x), s ∈ [t, t + T ] are strategies in the subgame Γ (x, t, T ).
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Trajectory x(t) in the differential game with continuous updating is deter-
mined in accordance with

ẋ(t) = f(t, x, u),
x(t0) = x0,
x ∈ R

l,
(8)

where u = u(t, x) are strategies in the game with continuous updating (7) and
ẋ(t) is the derivative of t. We suppose that the strategy with continuous updat-
ing obtained using (7) is admissible or that the problem (8) has a unique and
continuable solution. Corresponding conditions of existence, uniqueness and con-
tinuability of Filippov [5] are presented for the system (1)–(4.).

The essential difference between the game model with continuous updating
and classic differential game with prescribed duration Γ (x0, T −t0) is that players
in the initial game are guided by the payoffs that they will eventually obtain on
the interval [t0, T ], but in the case of a game with continuous updating, at the
time instant t they orient themselves on the expected payoffs (6), which are
calculated based on the information defined on the interval [t, t + T ] or the
information that they have at the instant t.

4 Nash Equilibrium in Game with Continuous Updating

In the framework of continuously updated information, it is important to model
the behavior of players. To do this, we use the concept of Nash equilibrium in
feedback strategies. However, for the class of differential games with continuous
updating, we would like to have it the following form:

– for any fixed t ∈ [t0,+∞), uNE(t, x) = (uNE
1 (t, x), . . . , uNE

n (t, x)) coincides
with the Nash equilibrium in the game (5), (6) defined on the interval [t, t+T ]
in the instant t.

However, direct application of classical approaches for definition of the Nash
equilibrium in feedback strategies is not possible, consider two intervals [t, t+T ]
and [t + ε, t + T + ε], ε << T . Then according to the problem statement:

– uNE(t, x) in the instant t coincides with the feedback Nash equilibrium in the
game defined on the interval [t, t + T ],

– uNE(t + ε, x) in the instant t + ε must coincide with the feedback Nash equi-
librium in the game defined on the interval [t + ε, t + ε + T ].

To construct such strategies, we consider a concept of generalized Nash equi-
librium in feedback strategies as the principle of optimality

ũNE(t, s, x) = (ũNE
1 (t, s, x), . . . , ũNE

n (t, s, x)), t ∈ [t0, T ], s ∈ [t, t + T ], (9)

which we are going to use further for construction of strategies uNE(t, x).

Definition 1. Strategy profile ũNE(t, s, x) = (ũNE
1 (t, s, x), . . . , ũNE

n (t, s, x)) is
a generalized Nash equilibrium in the game with continuous updating, if for any
fixed t ∈ [t0,+∞) strategy profile ũNE(t, s, x) is the feedback Nash equilibrium
in the game Γ (x, t, T ).
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It is important to notice that the generalized feedback Nash equilibrium
ũNE(t, s, x) for a fixed t is a function of s and x, where s is defined on the
interval [t, t + T ]. Using generalized feedback Nash equilibrium it is possible to
define a solution concept for a game model with continuous updating.

Definition 2. Strategy profile uNE(t, x) is called the Nash equilibrium with con-
tinuous updating if it is defined in the following way:

uNE(t, x) = ũNE(t, s, x)|s=t = (ũNE
1 (t, s, x)|s=t, . . . , ũ

NE
n (t, s, x)|s=t),

t ∈ [t0,+∞), (10)

where ũNE(t, s, x) is the generalized feedback Nash equilibrium defined in Defi-
nition 1.

Trajectory xNE(t) corresponding to the Nash equilibrium with continuous
updating uNE(t, x) can be obtained from the system

ẋ(t) = f(t, x, uNE),
x(t0) = x0,
x ∈ R

l,
(11)

Unlike the generalized feedback Nash equilibrium, uNE(t, x) does not con-
tain feedback Nash equilibrium strategies for any s ∈ [t, t + T ]. Strategy profile
uNE(t, x) only contains strategies of players that they perform according to the
procedure described in Sect. 3, i.e. continuous updating procedure, where s = t.
uNE(t, x) will be used as a solution concept in the game with continuous updat-
ing. The notion of Nash equilibrium with continuous updating uNE(t, x) is close
to the subgame perfect Nash equilibrium. In the sense of the expected payoff
(6) for any fixed current time t individual deviation from Nash equilibrium with
continuous updating is not beneficial for the players or for any subgame of the
game with continuous updating individual deviation is not beneficial due to the
information structure.

5 Hamilton-Jacobi-Bellman Equations with Continuous
Updating

To define strategy profile uNE(t, x), it is necessary to determine the generalized
Nash equilibrium in feedback strategies ũNE(t, s, x) in the game with continuous
updating Γ (x0, t0, T ). To do this, we will use a modernized version of dynamic
programming. In the framework of this approach, the Bellman function V i(t, s, x)
is defined as the payoff of player i in feedback Nash equilibrium ũNE(t, s, x) in
the subgame starting at the instant s in the state x in the game defined on the
interval [t, t + T ]:

V i(t, s, x) =

t+T∫

s

gi[τ, xt(τ), ũNE(t, τ, x)]dτ, i ∈ N (12)
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subject to

ẋ(τ) = f(τ, x, u),
x(s) = x. (13)

The following theorem takes place:

Theorem 1. ũNE(t, s, x) is the generalized Nash equilibrium in feedback strate-
gies in the differential game with continuous updating Γ (x0, t0, T ), if there exist
functions V i(t, s, x) : [t0,+∞)× [t, t+T ]×R → R, i ∈ N continuously differen-
tiable by s and x, satisfying the following system of partial differential equations:

− V i
s (t, s, x) = max

φi

{
gi(s, x, ũNE

−i ) + V i
x(t, s, x)f(s, x, ũNE

−i )
}

= gi(s, x, ũNE) + V i
x(t, s, x)f(s, x, ũNE), (14)

V i(t, t + T , x) = 0, i ∈ N,

where ũNE
−i (φi) = (ũNE

1 , . . . , φi, . . . , ũ
NE
n ).

Proof. According to the definition of generalized Nash equilibrium ũNE(t, s, x),
ũNE(t, s, x) should be the feedback Nash equilibrium for any fixed t.

By fixing t in the formulation of the Theorem1 and in particular in (14)
we obtain classical sufficient conditions for feedback Nash equilibrium in the
differential game with prescribed duration [t, t + T ] presented in [1]. Therefore
for any fixed t, the conditions for the definition of generalized Nash equilibrium
are satisfied. The Theorem is proved.

We consider only the class of generalized Nash equilibrium such that for
the Nash equilibrium with continuous updating the solution of the system (11)
satisfies the conditions of existence, uniqueness, and continuability of Filippov
[5]. In the case, if it is possible to obtain generalized Nash equilibrium ũNE(t, s, x)
using equations (14), then by using the procedure (10) we obtain desired strategy
profile uNE(t, x).

6 Differential Game of Investment in Public Goods

As an illustrative example consider a two-player differential game of investment
in public goods. Two players are investing in a public stock of knowledge. It is
assumed that knowledge is pure public good and every individual has access to
it. The model of such type was firstly formulated in [4] (see also [3,20]). In these
models, it was assumed that each player has a quadratic utility and that the
cost of investment increases quadratically with the investment effort. Here we
use other functions to define players’ payoffs.
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6.1 Initial Game Model

Let x(t) be the stock of knowledge at time t and ui(t, x) is the investment of
player i in public knowledge at time t. Assume that the stock of knowledge
evolves according to the accumulation equation

ẋ(t) = −βx(t) + u1(t, x) + u2(t, x), x(0) = x0, (15)

where β is the depreciation rate, x0 > 0 is a given initial stock of knowledge.
Let possible states at each time t satisfies the condition x(t) > 0. Assume that
each individual i faces costs of investment which are state-dependent and given
by function u2

i

x . Suppose that the utility of each player is a linear function of
knowledge stock consumption qix(t), where qi > 0. That is, the payoff function
of each player is

Ki(x0, T ;u) =
∫ T

0

(
qix(t) − u2

i (t, x)
x(t)

)
dt. (16)

In order to define the feedback Nash equilibrium u∗(t, x) we use the sufficient
conditions in the form of HJB equations:

−V i
t (t, x) = max

ui

(qix − u2
i

x + V i
x(t, x)(−βx + ui + u∗

j )), i �= j,

Vi(T, x) = 0, i = 1, 2.
(17)

Suppose that the Bellman function has the following form:

V i(t, x) = ai(t)x, i = 1, 2.

The maximization problem in (17) yields a strategy for player i:

u∗
i (t, x) =

xV i
x(t, x)
2

=
ai(t)x

2
. (18)

Substituting (18) into (17) we obtain the following system of differential equa-
tions for ai(t):

ȧi(t) = βai(t) + a2
i (t)
4 − ai(t)aj(t) − qi, i �= j, i = 1, 2,

ai(T ) = 0.
(19)

As an example consider the symmetric case when q1 = q2 = q, then the solution
of (19) is

ai(t) =
2q(ev(t−T ) − 1)

(β − v)ev(t−T ) − β − v
, i = 1, 2,

where v =
√

β2 − 3q. Here we assume, that β2 > 3q. The interval of validity to
the solution of (19) is (−∞;T + 1

v lnβ+v
β−v ). Note that [0;T ] ⊂ (−∞;T + 1

v lnβ+v
β−v ).

Then the feedback Nash equilibrium strategies are

u∗
i (t, x) =

q(ev(t−T ) − 1)
(β − v)ev(t−T ) − β − v

x(t), i = 1, 2.
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Resulting equilibrium trajectory is

x∗(t) = xoe
− 1

3 (β+2v)t

(
(β − v)evt − (β + v)evT

β − v − (β + v)evT

) 4
3

.

The state constraint x∗(t) > 0 is satisfied for all t ∈ [0;T ] when x0 > 0.

6.2 Game Model with Continuous Updating

Now consider this model as a game with continuous updating. It is assumed
that information about motion equations and payoff functions is updated con-
tinuously in time. At every instant t ∈ [0,+∞) players have information only
the interval [t, t + T ]. It means that because of the possibility of changing the
number of investors or utilities of players at each time instant they can count
for the stability of process only over period T .

According to the Theorem 1 Hamilton-Jacobi-Bellman equations for gener-
alized feedback Nash equilibrium are

−V i
s (t, s, x) = max

ui

(qix − u2
i

x + V i
x(t, s, x)(−βx + ui + ũNE

j )), i �= j,

Vi(t, t + T , x) = 0, i = 1, 2.
(20)

Suppose that the Bellman function is defined in the form:

Vi(t, s, x) = ai(t, s)x.

Maximization problem in (20) yields a strategy for player i:

ũNE
i (t, s, x) =

xV i
x(t, s, x)

2
=

xai(t, s)
2

. (21)

Substituting (21) into (20) we obtain the following system of differential equa-
tions for ai(t, s):

ȧi(t, s) = βai(t, s) + a2
i (t,s)
4 − ai(t, s)aj(t, s) − qi, i �= j, i = 1, 2,

ai(t, t + T ) = 0.
(22)

Taking into account the symmetry of players we obtain the solution:

ai(t, s) =
2q(ev(s−t−T ) − 1)

(β − v)ev(s−t−T ) − β − v
, i = 1, 2,

where v =
√

β2 − 3q.
Finally we get the generalized feedback Nash equilibrium strategies:

ũNE
i (t, s, x) =

q(ev(s−t−T ) − 1)
(β − v)ev(s−t−T ) − β − v

x(t).
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Fig. 3. Nash equilibrium with continuous updating uNE(t, x) (red dashed line), Nash
equilibrium strategies in the initial game u∗(t) (blue solid line). (Color figure online)

Fig. 4. Resulting equilibrium trajectory xNE(t) with continuous updating (red dashed
line), resulting equilibrium trajectory x∗(t) in the initial game (blue solid line). (Color
figure online)

According to the procedure (10) we construct the feedback Nash equilibrium
with continuous updating:

uNE
i (t, x) = ũNE

i (t, s, x) |s=t=
q(e−vT − 1)

(β − v)e−vT − β − v
x(t).
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The equilibrium trajectory xNE(t) with continuous updating is

xNE(t) = xoe

(
−β+

2q(e−vT −1)

(β−v)e−vT −β−v

)
t
.

The state constraint xNE(t) > 0 is satisfied for all t ∈ [0;T ] when x0 > 0.
Figures 3 and 4 represent the form of solutions obtained for the following

parameters:
β = 1/2, q = 1/15, T = 10, T = 1/2, x0 = 5.

Results of numerical simulation show that in the case of continuous updating,
players are more cautious, their investments are less than in the case of the initial
game (Fig. 3). As a result, the knowledge stock is reduced compared to the initial
game (Fig. 4).

7 Conclusion

A differential game model with continuous updating is presented and described
in the first time. The concept of Nash equilibrium for the new class of games
is defined. A new type of Hamilton-Jacobi-Bellman equations are presented and
the technique for defining Nash equilibrium in the game model with continuous
updating is described. The theory of differential games with continuous updating
is demonstrated in the game model of investments in public goods. The compar-
ison of Nash equilibrium and corresponding trajectory in the initial game model
and in the game model with continuous updating is presented, conclusions are
drawn.
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Abstract. The paper is devoted to the circle covering problem with
unequal circles. The number of circles is given. Also, we know a func-
tion, which determines a relation between the radii of two neighboring
circles. The circle covering problem is usually studied in the case when
the distance between points is Euclidean. We assume that the distance
is determined by means of some special metric, which, generally speak-
ing, is not Euclidean. The special numerical algorithm is suggested and
implemented. It based on optical-geometric approach, which is developed
by the authors in recent years and previously used only for circles of the
equal radius. The results of a computational experiment are presented
and discussed.

Keywords: Circle covering problem · Non-Euclidean metric ·
Incongruent circles · Optical-geometric approach

1 Introduction

The circles packing (CPP) and covering (CCP) problems are well-known classical
location problems. The aim of CPP is to pack a certain number of circles, each
one with a maximal radius (not necessary the same for each circle) inside a
container. The task of CCP is to answer the question: how large can be the
acreage of a container that is completely covered with given circles. The shape
of the container may be “simple” like a circle, a square, a rectangular, or, for
example, consists of combination of line and arc segments. In most cases, we are
talking about the single covering problem, which is considered in a large number
of papers (see, for example, [6,13,25–27]).

It is considered that the problem of covering is more complicated than the
packing one. Optimal packings of equal circles in a unit square were found up to 36
circles [19,20,24], and optimal coverings were proved only up to 12 circles [12,14].
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Optimal packings in a unit circle are known up to 19 circles [9–11,21], and optimal
coverings were obtained up to 11 circles [29].

There are a lot of computational results for the circle covering problem.
In part, the best packings of equal circles in regular polygons were found by
computational methods up to 10,000 circles, and the best coverings were found
only up to 100 circles.

Algorithms for covering of simply connected sets by congruent circles employ-
ing quasi-differentiability of the objective function are presented in [15], heuristic
and metaheuristic methods can be found in [1,2,32], algorithms of integer and
continuous optimization are proposed by [5,22,23,25], geometric methods are
suggested in [31]. A modification of feasible directions’ method appears in [26],
where optimal coverings are given for different n ≤ 100.

There are considerably fewer works devoted to covering the plane with dif-
ferent circles. The article [30] states that this problem was first investigated in
1958 by Toth and Molnar. They presented a hypothesis about the lower bound
of the covering density. Then, this hypothesis was proven by Toth in 1995 [28].
Florian and Heppes [8] established a sufficient condition for such a covering to
be solid in the sense of [30]. Banhelyi et al. [3] suggested a special branch and
bound algorithm for CCP with prescribed centres. It allows one to check if a
given polygon is covered by a set of circles. Dorninger [7] presented an analytical
description the general case (covering by unequal circles) in such a way that the
conjecture can easily be numerically verified and upper and lower limits for the
asserted bound can be gained.

Note that the most of known results are obtained for the case when a covered
set is a subset of the Euclidean plane or a multi-dimensional Euclidean space. In
the case of a non-Euclidean metric, covering and packing problems are relatively
poorly studied.

In this paper, we expand a technique proposed in [16,17] for solving the
problem of covering a simply connected container by unequal circles when the
distance between two points is defined as minimal time of moving from one of
them to another. This formulation appears in logistics when the time of moving
is more important than the physical distance. The suggested algorithm is based
on the fundamental physical principles of Fermat and Huygens, which makes it
possible to use the non-Euclidean metric [16].

2 Formulation

Assume we are given a metric space X, a bounded domain M ⊂ X with a
continuous boundary ∂M , and n of covering circles Ci(Oi, ri) with centers Oi =
(xi, yi), i = 1, ..., n and radii ri. Let 0 < f(x, y) ≤ β be a continuous function,
which makes sense of the instantaneous speed of movement at every point of M .
The distance in space X is determined as follows:

ρ(a, b) = min
Γ∈G(a,b)

∫

Γ

dΓ

f(x, y)
, (1)
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where G(a, b) is the set of all continuous curves, which belong to X and connect
the points a and b. It is easy to see, that in this case the shortest route between
two points is a curve, that requires the least time to be spent.

We have the following minimization problem:

r1 → min, (2)

ri = ikr1, k ∈ R, (3)

M ⊆
n⋃

i=1

Ci(Oi, ri). (4)

The objective function (2) minimizes the radius associated with the circles.
Constraint (3) fixes the radius ratio, and (4) guarantees that each point of M
belongs to at least one circle.

Note, if k = 0, we have the classic circle covering problem.

3 Solution Method

In this section, we propose a heuristic method for solving problem (2)–(4), based
on the analogy between the propagation of the light wave and finding the mini-
mum of integral functional (1). This analogy is a consequence of physical princi-
ples of Fermat and Huygens. This approach is described more detail in [16,18].

The following algorithm includes the basic steps: constructing the Dirichlet
tessellation for the initial set of centers; moving Oi to the point O∗

i that is the
center of the covering circle, which has the minimal radius for each part of the
tessellation; revising radius ratio and returning to the first step with the new
centers. Now we describe the idea in details:

Algorithm

1. Randomly generate initial coordinates of the circles centers Oi ∈ M , i = 1, n.
2. From Oi, i = 1, n, we initiate the light waves using the algorithm [16]. It

allows us to divide set M on n segments Mi and to find their boundaries
∂Mi, i = 1, n. Note, that because of unequal radii we have to deal with
different waves. The wave velocity vi directly depends on the source number
vi = ik.

3. Boundary ∂Mi of segment Mi is approximated by the closed polygonal line
with nodes at the points Al, l = 1, q.

4. From Al, l = 1, q, we initiate the light waves using the algorithm [16] as well.
5. Every point (x, y) ∈ Di, first reached by one of the light waves is marked

(here and further on, we assume using an analytical grid for x and y). We
memorize time T (x, y), which is required to reach (x, y).

6. Find Ōi = arg max
(x,y)∈Mi

T (x, y). Then, the minimum radius of a circle that covers

Mi, is given by
rimin = max

l=1,q
ρ(Ōi, Al).
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Steps 3–6 are carried out independently for each segment Mi, i = 1, n. As a
result we obtain a covering

P =
n⋃

i=1

Ci(Ōi, rimin).

To ensure equality (3) we should include in the algorithm an additional
procedure:

7. Fix radius of the first circle r1min and calculate radii of other circles according
to (3). Then we obtain set

S1 =
{
r11 = r1min, r

1
2 = 2kr1min, ..., r

1
2 = nkr1min

}
.

Similarly, we construct sets for the remaining circles

Sj = {rj
i }, rj

i =
ik

jk
rimin, i, j = 1, n.

8. Find j∗ = arg min
j=1,...,n

rj
1 and check inequalities rj∗

i ≥ rimin, i = 1, n. If the

inequalities hold, then the current covering

P̄ =
n⋃

i=1

Ci(Ōi, r
j∗
i )

is memorized as a solution.
Otherwise, find q∗ = arg min

j=1,...,n,j �=j∗
rj
1 and so on. It is easy to see, that at least

one of Sj satisfies (3). Then go to step 2 with Oi = Ōi, i = 1, n.
Steps 2–8 are being carried out as long as radii decreases.

9. The counter of initial coordinates generations Iter is incremented. If Iter
becomes equal to some preassigned value, then the algorithm is terminated
and P ∗ = P̄ be a solution. Otherwise, go to step 1.

A drawback of the algorithm is that it does not guarantee a solution that globally
minimizes the circles radii. This feature is inherited from the constructing of
Voronoi diagram. We use multiple generating of initial positions (Step 1) to
increase the probability of finding a global solution.

4 Computational Experiment

Testing of the algorithm proposed in the previous section was carried out using
the PC of the following configuration: Intel (R) Core i5-3570K (3.4 GHz, 8 GB
RAM) and Windows 10 operating system. The algorithm is implemented in C#
using the Visual Studio 2013.
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Example 1. This example illustrates how the proposed in the previous section
algorithm works in the case of the Euclidean metric f(x, y) ≡ 1. The covered
set is the unit square, ri =

√
i. The number of random generations of initial

positions Iter = 25. The best solutions are shown in Table 1. Here and further
n is a number of circles, r1 is the best radius of the first circle, rav is the best
average radius of the covering, R is the best of known radius of equal circles
covering given from [26], Δr = R−rav

R , t is executing time in seconds.

From Table 1 you can see that, despite the strict condition on the ratio of
the radii, the average radius of covering with unequal circles is significantly less
than with equal ones. From a practical point of view, this means that if we
assume that the cost of opening a logistics facility is directly proportional to
its service radius, then to minimize costs, it is preferable to use covering with
unequal circles. In addition, the operating time of the proposed algorithm is not
very long.

Table 1. Covering of a unit square by incongruent circles with Euclidean metric

n r1 rav R Δr(%) t

2 0.70640003 0.60295014 0.55901699 −7.86 11

3 0.55769705 0.42467832 0.50389111 15.72 17

4 0.51618795 0.35932579 0.35355339 −1.63 25

5 0.46641399 0.30145928 0.32616058 7.57 34

6 0.44904231 0.27241293 0.29872706 8.81 47

7 0.43561451 0.25003547 0.27429189 8.84 55

8 0.42131935 0.23022136 0.26030011 11.56 71

9 0.41160175 0.21516574 0.23063693 6.71 86

10 0.40459856 0.20314885 0.21823351 6.91 102

11 0.39910399 0.19311224 0.21251602 9.13 109

12 0.39503544 0.18471806 0.20227589 8.68 122

13 0.38898972 0.17619841 0.19431237 9.32 146

14 0.38594560 0.16970016 0.18551055 8.52 184

15 0.37985769 0.16242701 0.17966176 9.59 202

16 0.37210886 0.15498321 0.16942705 8.53 235

17 0.36783828 0.14944036 0.16568093 9.80 251

18 0.36434208 0.14456755 0.16063966 10.01 283

19 0.36388468 0.14118052 0.15784198 10.56 311

20 0.36203423 0.13748712 0.15224681 9.69 353

21 0.35913406 0.13362306 0.14895379 10.29 346

22 0.35894706 0.13096140 0.14369318 8.86 381

23 0.35546027 0.12727314 0.14124482 9.89 403

(continued)
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Table 1. (continued)

n r1 rav R Δr(%) t

24 0.35454054 0.12466993 0.13830288 9.86 469

25 0.35313405 0.12203341 0.13354871 8.62 503

26 0.34935082 0.11871785 0.13176488 9.90 536

27 0.34901851 0.11669988 0.12863353 9.28 590

28 0.34738931 0.11435139 0.12731755 10.18 606

29 0.34618477 0.11224213 0.12555351 10.60 623

30 0.34505797 0.11024752 0.12203687 9.66 650

40 0.32937213 0.09278123 0.10546620 12.03 1106

50 0.32736524 0.08349368 0.09308878 10.31 1828

60 0.31629417 0.07430825 0.08434634 11.90 2503

70 0.31502516 0.06900192 0.07842673 12.02 3090

100 0.30895469 0.05743345 0.06481289 11.39 5631

Figure 1 shows the dependence of the first circle radius on the number of
circles.

Example 2. Now we turn to non-Euclidean metrics. The covered set M is fol-
lowing

M = {(x, y) : (x − 2.5)2 + (y − 2.5)2 ≤ 4}.

The radii ratio ri =
√

i, the instantaneous speed of movement f(x, y) = x+y+1
increases linearly with both coordinates. The number of random generations of
initial positions Iter = 25. The best solutions are shown in Table 2.

Figure 5 shows the solutions associated with Table 2 for n = 10, 15.

Fig. 1. The dependence of the first circle radius on the number of circles for n ≤ 30
(left) and 30 ≤ n ≤ 100 (right).

S10 = {(3.680, 3.941), (3.979, 3.190), (1.959, 2.821), (2.318, 1.200), (1.769, 4.227),

(0.889, 2.818), (3.372, 2.042), (1.108, 1.802), (2.623, 3.868), (1.262, 3.527)},
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S15 = {(1.198, 3.984), (4.125, 2.721), (3.349, 4.050), (2.180, 3.441), (3.849, 3.491),

(1.158, 1.182), (3.030, 3.061), (0.722, 2.851), (3.500, 1.801), (0.990, 2.192),

(1.802, 2.924), (2.591, 4.102), (1.083, 3.459), (2.393, 1.621), (1.783, 4.072)}.

Borovskikh [4] proved that in this case the wave fronts also have the form of
a circle, as in the Euclidean metric, but the source of the wave (the center of the
circle) is displaced. Recall that the radius here means the time of moving from
center to the boundary of the circle (Fig. 2).

Fig. 2. The best covering of the circle by 10 (left) and 15 (right) incongruent circles
with a linear metric

Table 2. The best coverings for Example 2

n r1 t

5 0.16338 51

10 0.07871 143

15 0.05336 301

20 0.04042 435

25 0.03266 568

30 0.02725 703
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Example 3. The covered set M and the radii ratio ri are the same as in the
Example 2. The instantaneous speed of movement

f(x, y) =
(x − 2)2 + (y − 2.5)2 + 4
(x − 2)2 + (y − 2.5)2 + 1

+ 0.5.

Figure 3 shows function f(x, y) level lines. From the lowest to the highest point,
the speed of the wave increases (Table 3).

Fig. 3. Level lines of function f(x, y)

Table 3. The best coverings for Example 3

n r1 t

5 28.94242 65

10 14.03740 161

15 9.44260 290

20 7.06655 417

25 5.63607 605

30 4.74689 731
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The best solutions are shown in Table 4.
Figure 4 shows the solutions associated with Table 2 for n = 10, 15. Note that

here the boundary of the covering circle is a continuous closed line, and its shape
is not known in advance.

S10 = {(3.439, 4.212), (1.531, 4.158), (1.190, 1.189), (4.222, 2.320), (0.819, 2.161),

(3.692, 1.253), (3.841, 3.360), (1.162, 3.239), (2.443, 1.649), (2.508, 3.833)},

S15 = {(2.907, 3.727), (2.173, 0.639), (3.265, 4.122), (2.961, 2.584), (4.355, 2.760),

(0.831, 2.959), (2.682, 4.218), (1.920, 4.138), (1.420, 1.158), (1.300, 3.603),

(2.311, 3.064), (3.855, 1.976), (3.743, 3.507), (1.153, 2.169), (3.109, 1.213)}.

Fig. 4. The best covering of the circle by 10 (left) and 15 (right) incongruent circles

Table 4. The best covering of Danang city

Number of BS The minimum radius of
the service area of the
first BS (km)

The total area of all
service areas of the BS
system (km2)

Executed time (s)

2 10.616 1 062.155 19

3 7.049 936.535 32

4 5.625 994.186 55

5 4.444 930.543 81

6 3.777 941.137 106

7 3.263 936.537 139

8 3.034 1 041.076 185
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Example 4. The problem of locating the system of base transceiver stations (BS)
with minimal capacity covering the city of Da Nang (Vietnam) is considered. The
Table 4 below presents the calculation results. In this case, it is proposed that
the BS signal propagates in a straight line at the same speed throughout the
city. It is easy to see, that the covering by 5 circles gives the minimal total area
(Fig. 5).

Fig. 5. The best covering of Danang city by 5 (left) and 8 (right) incongruent circles

5 Conclusion

In this article, we propose the computational algorithm that allows to solve the
problem of constructing coverings of a closed simply-connected set by unequal
circles on a plane. We operate with a specific distance function. The feature of
this metrics, arising in certain practical problems of logistics, is as follows: the
physical distance is replaced by the time, required for reaching one point from
another.

The results of the computational experiment show that the algorithm is sen-
sitive to the initial positions, but it is applicable to solve the considered problem.
In this regard, further research will be aimed at creating algorithms with special
procedure of initial positions generation and adaptive grids.
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3. Bánhelyi, B., Palatinus, E., Lévai, B.: Optimal circle covering problems and their
applications. CEJOR 23(4), 815–832 (2015)



On the Thinnest Covering by Incongruent Circles 205

4. Borovskikh, A.: The two-dimensional eikonal equation. Siberian Math. J. 47(2),
813–834 (2006)

5. Brusov, V., Piyavskii, S.: A computational algorithm for optimally covering a plane
region. USSR Comput. Math. Math. Phys. 11(2), 17–27 (1971)

6. Conway, J., Sloane, N.: Sphere Packing. Lattices and Groups. Springer Science and
Business Media, New York (1999)

7. Dorninger, D.: Thinnest covering of the euclidean plane with incongruent circles.
Anal. Geom. Metr. Spaces 5(1), 40–46 (2017)

8. Florian, A., Heppes, A.: Solid coverings of the euclidean plane with incongruent
circles. Discrete Comput. Geom. 23(2), 225–245 (2000)

9. Fodor, F.: The densest packing of 19 congruent circles in a circle. Geom. Dedicata.
74(2), 139–145 (1999)

10. Fodor, F.: The densest packing of 12 congruent circles in a circle. Beitr. Algebra
Geom. 41(2), 401–409 (2000)

11. Fodor, F.: The densest packing of 13 congruent circles in a circle. Contrib. Algebra
Geom. 44(2), 431–440 (2003)

12. Friedman, E.: Circles covering squares. http://www2.stetson.edu/∼efriedma/
circovsqu/. Accessed 7 Feb 2019

13. Heppes, A., Melissen, J.: Covering a rectangle with equal circles. Periodica Math.
Hung. 34, 65–81 (1997)

14. Heppes, A., Melissen, J.: Covering a rectangle with equal circles. Periodica Math.
Hung. 34(1–2), 65–81 (1997)

15. Jandl, H., Wieder, A.: A continuous set covering problem as a quasi differentiale
optimization problem. Optim. J. Math. Program. Oper. Res. 19(6), 781–802 (1988)

16. Kazakov, A., Lempert, A.: An approach to optimization in transport logistics.
Autom. Remote Control 72(7), 1398–1404 (2011)

17. Kazakov, A., Lempert, A.: On mathematical models for optimization problem of
logistics infrastructure. Int. J. Artif. Intell. 13(1), 200–210 (2015)

18. Kazakov, A., Lempert, A., Le, Q.: An algorithm for packing circles of two types in
a fixed size container with non-euclidean metric. In: Supplementary Proceedings
of the Sixth International Conference on Analysis of Images, Social Networks and
Texts, vol. 1975, pp. 281–292. CEUR-WS (2017)

19. Kirchner, K., Wengerodt, G.: Die dichteste packung von 36 kreisen in einem
quadrat. Beitr. Algebra Geom. 25, 147–159 (1987)

20. Markot, M.: Interval methods for verifying structural optimality of circle packing
configurations in the unit square. J. Comput. Appl. Math. 199, 353–357 (2007)

21. Melissen, J.: Densest packings of eleven congruent circles in a circle. Geom. Dedi-
cata. 50, 15–25 (1994)

22. Melissen, J., Schuur, P.: Covering a rectangle with six and seven circles. Discrete
Appl. Math. 99, 149–156 (2000)

23. Nurmela, K.: Conjecturally optimal coverings of an equilateral triangle with up to
36 equal circles. Exp. Math. 9(2), 241–250 (2000)

24. Nurmela, K., Ostergard, P.: Packing up to 50 circles in a square. Discrete Comput.
Geom. 18, 111–120 (1997)

25. Nurmela, K., Ostergard, P.: Covering a square with up to 30 equal circles. Technical
report Res. rept A62., Lab. Technol. Helsinki Univ. (2000)

26. Stoyan, Y., Patsuk, V.: Covering a compact polygonal set by identical circles.
Comput. Optim. Appl. 46, 75–92 (2010)

27. Tarnai, T., Gaspar, Z.: Covering a square by equal circles. Elem. Math. 50, 167–170
(1995)

http://www2.stetson.edu/~efriedma/circovsqu/
http://www2.stetson.edu/~efriedma/circovsqu/


206 A. Kazakov et al.

28. Toth, G.: Covering the plane with two kinds of circles. Discrete Comput. Geom.
13, 445–457 (1995)

29. Toth, G.: Thinnest covering of a circle by eight, nine, or ten congruent circles.
Comb. Comput. Geom. 52, 361–376 (2005)

30. Toth, L.F.: Solid circle-packings and circle-coverings. Studia Sci. Math. Hungar. 3,
401–409 (1968)

31. Ushakov, V., Lebedev, P.: Algorithms of optimal set covering on the planar R2.
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki 26(2), 258–270 (2016)

32. Watson-Gandy, C.D.T.: An electromagnetism metaheuristic for the unicost set
covering problem. Eur. J. Oper. Res. 205(2), 290–300 (2010)



The Problem K-Means and Given
J-Centers: Polynomial Solvability

in One Dimension

Alexander Kel’manov1,2 and Vladimir Khandeev1,2(B)

1 Sobolev Institute of Mathematics, 4 Koptyug Ave., 630090 Novosibirsk, Russia
{kelm,khandeev}@math.nsc.ru

2 Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia

Abstract. We consider a problem of partitioning a finite set of points in
Euclidean space into clusters so as to minimize the sum over all clusters of
the intracluster sums of the squared distances between clusters elements
and their centers. The centers of one part of the clusters are given as
an input, while the centers of the other part of the clusters are defined
as centroids (geometrical centers). It is known that in the general case
this problem is strongly NP-hard. We prove constructively that the one-
dimensional case of this problem is solvable in polynomial time. This
result is based, first, on the proved properties of the problem optimal
solution and, second, on the justified dynamic programming scheme.

Keywords: Minimum sum-of-squares clustering · Euclidean space ·
Strongly NP-hard problem · One-dimensional case · Polynomial-time
algorithm

1 Introduction

The subject of this study is one strongly NP-hard problem of partitioning a finite
set of points in Euclidean space into clusters. Our goal is to analyze the compu-
tational complexity of the problem in the one-dimensional case. The research is
motivated by the openness of the specified mathematical question, as well as by
the importance of the problem for some applications, in particular, for Data anal-
ysis, Data mining, Pattern recognition, Machine learning, and Big data processing.

The paper has the following structure. In Sect. 2, we give the problem formu-
lation and establish a connection with a well-known problem that is the closest
to we consider one. The next section presents auxiliary statements that reveal
the structure of the optimal solution to the problem. These statements allow us
to prove the main result. In Sect. 4, we prove our main result, i.e., the polynomial
solvability of the problem in the one-dimensional case.
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2 Problem Formulation, Its Sources and Related
Problems

In the well-known clustering K-Means problem, an N -element set Y of points in
d-dimension Euclidean space and a positive integer K are given. It is required to
find a partition of the input set Y into non-empty clusters C1, . . . , CK minimizing
the sum

K∑

j=1

∑

y∈Ck

‖y − y(Ck)‖2,

where y(Ck) = 1
|Ck|

∑
y∈Ck

y is the centroid of the k-th cluster.
Another common name of K-Means problem is MSSC (Minimum Sum-of-

Squares Clustering). In statistics, this problem is known from the last century
and is associated with Fisher (see, for example, [1,2]). In practice (in a wide
variety of applications), this problem arises when there is the following hypoth-
esis on a structure of some given numerical data. Namely, one has assumption
that the set Y of sample (input) data contains K homogeneous clusters (sub-
sets) C1, . . . , CK , and in all clusters, the points are scattered around the corre-
sponding unknown mean values y(C1), . . . , y(CK). However, the correspondence
between points and clusters is unknown. Obviously, in this situation, for the cor-
rect application of classical statistical methods (hypothesis testing or parameter
estimating) to the processing of sample data, at first it is necessary to divide the
data into homogeneous groups (clusters). This situation is typical, in particular,
for the above-mentioned applications.

The authors of [3] relatively recently proved K-Means strong NP-hardness.
The paper [4] proposed the result on the problem solvability in exponential
O(NdK+1) time. The authors of [5] proved that the problem is NP-hard even on
a plain (when d = 2). However, even earlier in the last century, the authors of [6]
proved the polynomial solvability of this problem on a line. The cited paper [6]
presents an algorithm that implements a dynamic programming scheme. This
algorithm running time is O(KN2). This well-known algorithm relies on an exact
polynomial algorithm for solving the well-known Nearest neighbor search prob-
lem [7]. In recent years, for the one-dimensional case of the K-Means problem, a
number of exact algorithms with improved running time have been constructed.
The paper [8] presents an overview of these algorithms and their properties.

The object of our research is the following problem that is close in its formu-
lation to K-Means and is poorly studied.

Problem 1 (K-Means and Given J-Centers). Given an N -element set Y of points
in d-dimension Euclidean space, a positive integer K, and a tuple {c1, . . . , cJ}
of points. Find a partition of Y into non-empty clusters C1, . . . , CK , D1, . . . ,DJ

such that

F =
K∑

k=1

∑

y∈Ck

‖y − y(Ck)‖2 +
J∑

j=1

∑

y∈Dj

‖y − cj‖2 → min,

where y(Ck) is the centroid of the k-st cluster.
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On the one hand, Problem 1 may be considered as some modification of K-
Means. On the other hand, the introduced notation allows us to call Problem 1
as K-Means and Given J-Centers.

Unlike K-Means, Problem 1 models an applied clustering problem in which
for a part of clusters (i.e., for D1, . . . ,DJ ) the quadratic scatter data centers
(i.e., c1, . . . , cJ ) are known in advance, i.e., they are given as input instance.
This applied problem is also typical for data analysis and its interpretation, pat-
tern recognition, and machine learning. In particular, the two-cluster Problem 1,
i.e., 1-Mean and Given 1-Center, is related to the solution of the applied signal
processing problem. Namely, this two-clusters problem is related with the prob-
lem of joint detecting a quasi-periodically repeated pulse of unknown shape in
a pulse train and evaluating this shape under Gaussian noise with given zero
value (see [9–11]). In this two-cluster Problem 1, the zero mean corresponds
to the cluster with the center specified at the origin. Apparently, the paper [9]
mentioned this two-cluster Problem 1 for the first time. It should be noted that
simpler optimization problems induced by the applied problems of noise-proof
detection and discrimination of impulses of specified shapes are typical, in partic-
ular, for radar, electronic reconnaissance, hydroacoustics, geophysics, technical
and medical diagnostics, and space monitoring (see, for example, [12–14]).

The strong NP-hardness of problem 1-Mean and Given 1-Center follows
from [15,16]. From this result follows the strong NP-hardness of Problem 1 in
the general case when K and J are the part of the input. Obviously, Problem 1
is not easier than K-Means. However, the solvability question of Problem 1 on
a line until now remained open.

Our main result is the proof of Problem 1 polynomial solvability in the one-
dimensional case.

3 Auxiliary Statements

Everywhere further we assume that d = 1. Let Problem 1D be the one-
dimensional case of Problem 1.

Our proof is based on the few given below auxiliary statements, which reveal
the structure of Problem 1 optimal solution.

Denote by C∗
1 , . . . , C∗

K , D∗
1 , . . . ,D∗

J the optimal clusters in Problem 1.

Lemma 1. If in Problem 1D cm < c�, where 1 ≤ m ≤ J , 1 ≤ � ≤ J , then for
each x ∈ D∗

m and z ∈ D∗
� the inequality x ≤ z holds.

Proof. Let there exist x ∈ D∗
m and z ∈ D∗

� such that x > z. Then, for the points
x, z and cm, c� we have

(x − cm)2 + (z − c�)2 − ((z − cm)2 + (x − c�)2)
= ((x − z) + (z − cm))2 + (z − c�) − ((z − cm)2 + ((x − z) + (z − c�))2)
= 2(x − z)(x − cm) − 2(x − z)(x − c�)
= 2(x − z)(c� − cm) > 0. (1)
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Let D′
m = D∗

m \ {x}⋃{z}, D′
� = D∗

� \ {z}⋃{x}. Then by using (1) we get
∑

y∈D∗
m

(y − cm)2 +
∑

y∈D∗
�

(y − c�)2

=
∑

y∈D∗
m\{x}

(y − cm)2 +
∑

y∈D∗
� \{z}

(y − c�)2 + (x − cm)2 + (z − c�)2

>
∑

y∈D∗
m\{x}

(y − cm)2 +
∑

y∈D∗
� \{z}

(y − c�)2 + (z − cm)2 + (x − c�)2

=
∑

y∈D′
m

(y − cm)2 +
∑

y∈D′
�

(y − c�)2 , (2)

which contradicts our assumption about optimality of C∗
1 , . . . , C∗

K , D∗
1 , . . . ,D∗

J .
��

Lemma 2. For the optimal solution of Problem 1D the following is true:

(1) if y(C∗
m) < c�, where 1 ≤ m ≤ K, 1 ≤ � ≤ J , then for each x ∈ C∗

m and
z ∈ D∗

� the inequality x ≤ z holds;

(2) if y(C∗
m) > c�, where 1 ≤ m ≤ K, 1 ≤ � ≤ J , then for each x ∈ C∗

m and
z ∈ D∗

� the inequality x ≥ z holds.

Proof. Let us prove the lemma for the case when y(C∗
m) < c�. As in proof of

Lemma 1, suppose that there exist such x ∈ C∗
m and z ∈ D∗

� for which x > z.
Then, in a similar way to (1), for the points x, z and y(C∗

m), c�, we have

(x − y(C∗
m))2 + (z − c�)2 > (z − y(C∗

m))2 + (x − c�)2. (3)

Let C′
m = C∗

m \ {x}⋃{z}, D′
� = D∗

� \ {z}⋃{x}. Then, in a similar way to (2),
we get

∑

y∈C∗
m

(y − y(C∗
m))2 +

∑

y∈D∗
�

(y − c�)2 >
∑

y∈C′
m

(y − y(C∗
m))2 +

∑

y∈D′
�

(y − c�)2

≥
∑

y∈C′
m

(y − y(C′
m))2 +

∑

y∈D′
�

(y − c�)2 ,

which contradicts our assumption about optimality of C∗
1 , . . . , C∗

K , D∗
1 , . . . ,D∗

J .
The case when y(C∗

m) > c� is proved in the similar way. ��
Lemma 3. If in Problem 1D y(C∗

m) < y(C∗
� ), where 1 ≤ m ≤ K, 1 ≤ � ≤ K,

then for each x ∈ C∗
m and z ∈ C∗

� the inequality x ≤ z holds.

Proof. As in proof of Lemmas 1 and 2, suppose that there exist such x ∈ C∗
m

and z ∈ C∗
� for which x > z.

Then, in a similar way to (1) and (3), for the points x, z and y(C∗
m), y(C∗

� ),
we have

(x − y(C∗
m))2 + (z − y(C∗

� ))2 > (z − y(C∗
m))2 + (x − y(C∗

� ))2.
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Let C′
m = C∗

m \ {x}⋃{z}, D′
� = D∗

� \ {z}⋃{x}. Then
∑

y∈C∗
m

(y − y(C∗
m))2 +

∑

y∈D∗
�

(y − y(C∗
� )2 >

∑

y∈C′
m

(y − y(C∗
m))2 +

∑

y∈D′
�

(y − y(C∗
� ))2

≥
∑

y∈C′
m

(y − y(C′
m))2 +

∑

y∈D′
�

(y − y(C′
�))

2 ,

which contradicts our assumption about optimality of C∗
1 , . . . , C∗

K , D∗
1 , . . . ,D∗

J .
��

Lemma 4. If d = 1 in Problem 1, then for each k ∈ {1, . . . , K} and j ∈
{1, . . . , J} it is true that y(C∗

k) 	= cj.

Proof. Let there exist such m ∈ {1, . . . , K} and � ∈ {1, . . . , J} for which y(C∗
m) =

c�.
Consider arbitrary points x ∈ Cm and z ∈ D�. Let C′

m = C∗
m \ {x}⋃{z},

D′
� = D∗

� \ {z}⋃{x}. Then
∑

y∈C∗
m

(y − y(C∗
m))2 +

∑

y∈D∗
�

(y − c�)2 =
∑

y∈C′
m

(y − y(C∗
m))2 +

∑

y∈D′
�

(y − c�)2. (4)

Further, because Y is the set, x 	= z and y(C∗
m) 	= y(C′

m). Therefore for the
centroids y(C∗

m) and y(C′
m) we have

∑

y∈C′
m

(y − y(C∗
m))2 =

∑

y∈C′
m

(y − y(C′
m) + y(C′

m) − y(C∗
m))2

=
∑

y∈C′
m

(y − y(C′
m))2 + 2

∑

y∈C′
m

(
(y − y(C′

m)) · (y(C′
m) − y(C∗

m))
)

+ |C′
m| · (y(C′

m) − y(C∗
m))2 . (5)

Since
∑

y∈C′
m

(y − y(C′
m)) = 0, we have

∑

y∈C′
m

(
(y − y(C′

m)) · (y(C′
m) − y(C∗

m)
)

= 0,

and (5) implies
∑

y∈C′
m

(y − y(C∗
m))2 =

∑

y∈C′
m

(y − y(C′
m))2 + |C′

m| · (y(C′
m) − y(C∗

m))2

>
∑

y∈C′
m

(y − y(C′
m))2. (6)

Finally, by applying (6) to right part of (4), we get
∑

y∈C∗
m

(y − y(C∗
m))2 +

∑

y∈D∗
�

(y − c�)2 >
∑

y∈C′
m

(y − y(C′
m))2 +

∑

y∈D′
�

(y − c�)2,

which contradicts our assumption about optimality of C∗
1 , . . . , C∗

K , D∗
1 , . . . ,D∗

J .
��
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Lemma 5. For each k, j ∈ {1, . . . , K} such that k 	= j, the following holds in
Problem 1D: y(C∗

k) 	= y(C∗
j ).

Proof. As in proof of Lemma 4, let us assume that there exist such m, � ∈
{1, . . . , K} for which y(C∗

m) = y(C∗
� ).

Consider arbitrary points x ∈ Cm and z ∈ C�. Let C′
m = C∗

m \ {x}⋃{z}, C′
� =

C∗
� \ {z}⋃{x}. Then

∑

y∈C∗
m

(y − y(C∗
m))2 +

∑

y∈C∗
�

(y − c�)2 =
∑

y∈C′
m

(y − y(C∗
m))2 +

∑

y∈C′
�

(y − c�)2. (7)

In a similar way to (6), we have
∑

y∈C′
m

(y − y(C∗
m))2 >

∑

y∈C′
m

(y − y(C′
m))2 (8)

and ∑

y∈C′
�

(y − y(C∗
� ))2 >

∑

y∈C′
�

(y − y(C′
�))

2. (9)

Applying (8) and (9) to right part of (7), we get
∑

y∈C∗
m

(y − y(C∗
m))2 +

∑

y∈C∗
�

(y − y(C∗
� ))2 >

∑

y∈C′
m

(y − y(C′
m))2 +

∑

y∈C′
�

(y − y(C′
�))

2,

which contradicts our assumption about optimality of C∗
1 , . . . , C∗

K , D∗
1 , . . . ,D∗

J .
��

Lemmas 1–5 establish the relative position of the optimal clusters D∗
1 , . . . ,D∗

J

and C∗
1 , . . . , C∗

K on a line.
The following theorem is true.

Theorem 1. Let in Problem 1D points y1, . . . , yN of Y and points c1, . . . , cJ be
ordered so that

y1 < . . . < yN ,

c1 < . . . < cJ .

Then optimal partition of Y into clusters C∗
1 , . . . , C∗

K ,D∗
1 , . . . ,D∗

J corresponds to
a partition of the positive integer sequence 1, . . . , N into disjoint segments.

The validity of the theorem follows from Lemmas 1–5.

4 Polynomial Solvability of the Problem in 1D Case

The following theorem is the main result of the paper.

Theorem 2. There exists a polynomial algorithm that finds the optimal solution
of Problem 1D in O(KJN2) time.
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Our proof of Theorem 1 is constructive. Namely, we justify an algorithm
that implements a dynamic programming scheme and allows us to find an exact
solution of Problem 1D in polynomial time.

The idea of the proof is as follows. Without loss of generality, we assume
that the points y1, . . . , yN of Y, as well as the points c1, . . . , cJ are ordered as in
Theorem 1.

Let Ys,t = {ys, . . . , yt}, where 1 ≤ s ≤ t ≤ N , be a subset of s − t + 1 points
of Y with numbers from s to t.

Let

f j
s,t =

t∑

i=s

(yi − cj)2, j = 1, . . . , J,

fs,t =
t∑

i=s

(yi − y(Ys,t))2,

where y(Ys,t) is the centroid of the subset Ys,t.
In accordance with Theorem 1, let {i∗, i∗ + 1, . . . , N} be the indexes of the

elements of the optimal cluster containing the point yN .
Note that for the optimal value F ∗ of the Problem 1D objective function it

is true that

F ∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

K−1∑
k=1

∑
y∈C∗

k

(y − y(Ck))2 +
J∑

j=1

∑
y∈D∗

j

(y − cj)2 + fi∗,N ,

if C∗
K = {yi∗ , yi∗+1, . . . , yN};

K∑
k=1

∑
y∈C∗

k

(y − y(C∗
k))2 +

J−1∑
j=1

∑
y∈D∗

j

(y − cj)2 + fJ
i∗,N ,

if D∗
J = {yi∗ , yi∗+1, . . . , yN}.

(10)

Denote Problem 1D by 〈K,J,N〉. This problem is embedded in the fam-
ily of subproblems {〈k, j, n〉, k = 0, . . . ,K; j = 0, . . . , J ; n = 1, . . . , N},
where 〈k, j, n〉 is the subproblem of searching the partition of {y1, . . . , yn} into
nonempty clusters C1, . . . , Ck, D1, . . . ,Dj such that

k∑

m=1

∑

y∈Cm

(y − y(Cm))2 +
j∑

�=1

∑

y∈D�

(y − c�)2 → min .

Let Fk,j(n) be the optimal value of subproblem 〈k, j, n〉 objective function.
Then in a similar way to (10),

Fk,j(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

k−1∑
m=1

∑
y∈C∗

m

(y − y(Cm))2 +
j∑

�=1

∑
y∈D∗

�

(y − c�)2 + fi∗,n,

if C∗
k = {yi∗ , yi∗+1, . . . , yn};

k∑
m=1

∑
y∈C∗

m

(y − y(C∗
m))2 +

j−1∑
�=1

∑
y∈D∗

�

(y − c�)2 + f j
i∗,n,

if D∗
j = {yi∗ , yi∗+1, . . . , yn},

(11)
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where C∗
1 , . . . , C∗

k , D∗
1 , . . . ,D∗

j are the optimal clusters in subproblem 〈k, j, n〉,
and {i∗, i∗ + 1, . . . , n} are the indexes of the elements of the optimal cluster
containing the point yn.

Let

Fk,j(n) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if n = k = j = 0;
+∞, if n = 0; k = 0, . . . ,K; j = 0, . . . , J ; k + j 	= 0;
+∞, if k = −1; j = −1, . . . , J ; n = 0, . . . , N ;
+∞, if j = −1; k = −1, . . . , K; n = 0, . . . , N.

(12)

Then in accordance with (11) and Bellman’s principle of optimality, we have

Fk,j(n) =
n

min
i=1

{
Fk−1,j(i− 1) + fi,n

}
,

k = 0, . . . ,K; j = 0, . . . , J ; n = 1, . . . , N, (13)

if C∗
k = {yi∗ , yi∗+1, . . . , yn}. If however D∗

j = {yi∗ , yi∗+1, . . . , yn}, then

Fk,j(n) =
n

min
i=1

{
Fk,j−1(i− 1) + f j

i,n

}
,

k = 0, . . . ,K; j = 0, . . . , J ; n = 1, . . . , N. (14)

Combining (13) and (14), we get that for Fk,j(n) the following is true

Fk,j(n) = min
{ n

min
i=1

{
Fk−1,j(i − 1) + fi,n

}
,

n
min
i=1

{
Fk,j−1(i − 1) + f j

i,n

}}
,

k = 0, . . . ,K; j = 0, . . . , J ; n = 1, . . . , N. (15)

Thus, the optimal value of the Problem 1D objective function is found by
the following formula

F ∗ = FK,J(N),

and the values

Fk,j(n), k = −1, 0, 1, . . . ,K; j = −1, 0, 1, . . . , J ; n = 0, . . . , N,

are calculated by the formula (12) and the recurrent formula (15). In general,
the formulas (12), (15) implement the forward running of the algorithm.

Further, Bellman’s principle of optimality implies that the optimal clusters
C∗
1 , . . . , C∗

K ,D∗
1 , . . . ,D∗

J may be found using the following recurrent rule, that
implements the backward running of the algorithm.

The step-by-step rule looks as follows:
Step 0. k := K, j := J , n := N .
Step 1. If

n
min
i=1

(
Fk−1,j(i − 1) + fi,n

)
≤

n
min
i=1

(
Fk,j−1(i − 1) + f j

i,n

)
,
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then
C∗

k = {yi∗ , yi∗+1, . . . , yn},

where
i∗ = arg

n
min
i=1

(
Fk−1,j(i − 1) + fi,n

)
;

k := k − 1; n := i∗ − 1.
If, however,

n
min
i=1

(
Fk−1,j(i − 1) + fi,n

)
>

n
min
i=1

(
Fk,j−1(i − 1) + f j

i,n

)
,

then
D∗

j = {yi∗ , yi∗+1, . . . , yn},

where
i∗ = arg

n
min
i=1

(
Fk,j−1(i − 1) + f j

i,n

)
;

j := j − 1; n := i∗ − 1.
Step 2. If k > 0 or j > 0, then go to Step 1; otherwise—the end of calcula-

tions.
The validity of this rule we have proved by induction.
From the above proving we have the following algorithm for Problem 1.
Algorithm A.
Input: an N -element set Y of 1D points, a positive integer K, and a tuple

{c1, . . . , cJ} of points.
Step 1. Sort the points y1, . . . , yN and the points c1, . . . , cJ .
Step 2. Calculate the values f j

s,t and fs,t.
Step 3. Find the optimal values of Fk,j(n) using formulas (12) and (15).
Step 4. Find the optimal clusters C∗

1 , . . . , C∗
K ,D∗

1 , . . . ,D∗
J using the backward

rule.
Output: clusters C∗

1 , . . . , C∗
K ,D∗

1 , . . . ,D∗
J .

Finally, we have proved that the running time of the algorithm is O(KJN2),
that is, the algorithm is polynomial. Indeed, Step 1 requires O(N log N) opera-
tions. Step 2 can be done in O(JN2) time by using prefix sums. The running time
of Step 3 is defined by the complexity of implementation of formula (15). This
formula is calculated O(KJN) times and every calculation of Fk,j(n) requires
O(N) operations. Finally, Step 4 requires O((K + J)N) operations.

5 Conclusion

In the present paper, we have proved the polynomial solvability of the one-
dimensional case of one strongly NP-hard problem of partitioning a finite set of
points in Euclidean space. The construction of faster exact algorithms for this
case seems to be the direction of future studies. The construction of approximate
efficient algorithms with guaranteed accuracy bounds for the general case of the
problem is also of great interest.
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Abstract. The known Iterative Closest Point (ICP) algorithm utilizes
point-to-point or point-to-plane approaches. The point-to-plane ICP
algorithm uses points coordinates and normal vectors for aligning of
3D point clouds, whereas point-to-point approach uses point coordinates
only. This paper proposes a new algorithm for orthogonal registration
of point clouds based on a generalized point-to-point ICP algorithm for
orthogonal transformations. The algorithm uses the known Horn’s algo-
rithm and combines point coordinates and normal vectors.

Keywords: Iterative Closest Points (ICP) · Rigid ICP ·
Point-to-point · Point-to-plane · Orthogonal transformations · Surface
reconstruction

1 Introduction

The algorithm ICP (Iterative Closest Points) is the most important method of
“alignment” of three-dimensional models based on the use of exclusively geomet-
ric characteristics. The alignment is a geometric transformation that connects
two data sets (clouds) of points in R3 in the best way with respect to the norm
L2. The algorithm is widely used to record data obtained with 3D scanners.
The ICP algorithm, originally described by Besl and Mackay [1], and Chen and
Medioni [2] consists of the following iteratively applied steps:

1. Selection of a subset of points in both clouds.
2. Determin the correspondence between the points of the selected subsets.
3. Compare weight coefficients obtained pairs.
4. Drop some pairs based on various criteria.
5. Select error metrics for pairs of points.
6. Minimize error metrics (variational subproblem of the ICP algorithm).
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The key element of the ICP algorithm [3] is the search for an orthogonal or affine
transformation, which is the best in sense of a quadratic metric combining two
clouds of points with a given correspondence between the points (variational
subproblem of the ICP algorithm).

There are two main approaches to choice error metrics for pairs of points.
The first approach (point-to-point) [1] uses the distance between the elements
of a pair in R3. The second approach (point-to-plane) [2] takes into account
the distance between a point of the first cloud and the tangent plane to the
corresponding point of the second cloud. For orthogonal transformations, the
solution to this problem in closed form was obtained by Horn in [4] and [5]. In
the first paper, the solution is based on the use of quaternions; in the second one,
the solution is obtained with orthogonal matrices. Computational complexity of
the solution is linear in time with respect to the number of pairs of points. The
original ICP algorithm is widely used for registering rigid objects, but it does
not work works well non-rigid objects. Variants of the ICP algorithm for affine
transformations and non-rigid registration were proposed in [6–17].

It is known that the point-to-plane metric shows a better performance than
that of the point-to-point metric in terms of accuracy and convergence rate
[18]. In this paper we propose an approach to the ICP variational subproblem
that utilizes the information about coordinates of both points and the normal
vectors of the point clouds. The proposed approach is intermediate between
common point-to-point and the point-to-plane methods. The results of numerical
simulations show that the proposed method is more accurate than a common
point-to-point ICP.

2 Formulation of the Variation Problem

Let P = {p1, . . . , ps} be a template point cloud, and Q = {q1, . . . , qs} be a target
point cloud in R3. Suppose that the relationship between points in P and Q is
given in such a manner that for each point pi exists a corresponding point qi.
Denote by S(P ) and S(Q) the surfaces constructed from the clouds P and Q
respectively; by TP (pi) and TQ(qi) we denote the tangent planes of S(P ) and
S(Q) at points pi and qi, respectively.

The ICP algorithm is commonly considered as a geometrical transformation
for the rigid objects, mapping P to Q

Rpi + T, (1)

R =

⎛
⎝

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎞
⎠ , pi = (pi

1 pi
2 pi

3)
t, qi = (qi

1 qi
2 qi

3)
t, (2)

where R is a rotation (orthogonal) matrix, T is a translation vector, i = 1, . . . , s.
Denote by Jh(R, T ) the following functional:

Jh(R, T ) =
s∑

ı=1

‖ Rpi + T − qi ‖2 . (3)
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The point-to-point variational problem is formulated as follows:

arg min
R,T

Jh(R, T ). (4)

Denote by ni
p and ni

q the normal vectors to planes TP (pi) and TQ(qi), respec-
tively, i = 1, . . . , s. Consider the functional Jg(R, T ) as

Jg(R, t) =
s∑

ı=1

‖ Rpi + T − qi ‖2 +λ

s∑
ı=1

‖ Rni
p − ni

q ‖2, (5)

where λ is a parameter. Consider the generalized point-to-point variational prob-
lem as follows:

arg min
R,T

Jg(R, T ). (6)

2.1 Translation Vector Exclusion

Let us apply to all points of the cloud P the following transformation:
⎧⎪⎨
⎪⎩

(p′)i
1 = pi

1 − 1
s

∑s
ı=1 pi

1

(p′)i
2 = pi

2 − 1
s

∑s
ı=1 pi

2

(p′)i
3 = pi

3 − 1
s

∑s
ı=1 pi

3

, (7)

and the corresponding transformation to the points of the cloud Q,
⎧⎪⎨
⎪⎩

(q′)i
1 = qi

1 − 1
s

∑s
ı=1 qi

1

(q′)i
2 = qi

2 − 1
s

∑s
ı=1 qi

2

(q′)i
3 = qi

3 − 1
s

∑s
ı=1 qi

3

, (8)

where i = 1, . . . , s. We get new clouds P ′ and Q′ that are obtained from P and
Q by translations. For clouds P ′ and Q′ the functional (5) takes the form

Jg(R) =
s∑

ı=1

‖ Rpi − qi ‖2 +λ
s∑

ı=1

‖ Rni
p − ni

q ‖2, (9)

where pi and qi are the points of the clouds P ′ and Q′, i = 1, . . . , s. The varia-
tional problem (6) takes the following form:

arg min
R

Jg(R). (10)
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3 Reduction of the Variational Problem

We reduce of the variational problem (10) to such a problem that can be solved
by the Horn’s method [5]. Rewrite functional (9) as

Jg(R) =
s∑

ı=1

<Rpi − qi, Rpi − qi> + λ

s∑
ı=1

<Rni
p − ni

q, Rni
p − ni

q>

=
s∑

ı=1

<Rpi, Rpi> − 2<Rpi, qi> + <qi, qi> (11)

+ λ
s∑

ı=1

<Rni
p, Rni

p> − 2<Rni
p, n

i
q> + <ni

q, n
i
q>,

where <·, ·> denotes the inner product. Note that expressions <qi, qi> and
<ni

q, n
i
q> do not depend on R. Therefore, these expressions do not affect the

variational problem (10). The functional Jg(R) takes the form

Jg(R) =
s∑

ı=1

<Rpi, Rpi> − 2<Rpi, qi>

+ λ
s∑

ı=1

<Rni
p, Rni

p> − 2<Rni
p, n

i
q> (12)

=
s∑

ı=1

<RtRpi, pi> − 2<Rpi, qi>

+ λ

s∑
ı=1

<RtRni
p, n

i
p> − 2<Rni

p, n
i
q>.

Since R is an orthogonal matrix, we get that RtR = E. The inner products
<pi, pi> and <ni

p, n
i
p> do not depend on R. It follows that the functional Jg(R)

takes the form

Jg(R) = −2(
s∑

ı=1

<Rpi, qi> + λ
s∑

ı=1

<Rni
p, n

i
q>). (13)

The variational problem (10) can be rewritten as

arg max
R

s∑
ı=1

<Rpi, qi> + λ

s∑
ı=1

<Rni
p, n

i
q>. (14)

Note that the inner product <Rpi, qi> can be expressed by the matrix trace

<Rpi, qi> = tr(R · (pi(qi)t)). (15)
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Denote the matrix pi(qi)t by M i. It means that

s∑
ı=1

<Rpi, qi> =
s∑

ı=1

tr(R · (pi(qi)t)) =
s∑

ı=1

tr(R · M i)

= tr(
s∑

ı=1

(R · M i)) = tr(R ·
s∑

ı=1

M i). (16)

Let denote the matrix Dp as

Dp =
s∑

ı=1

M i. (17)

Then we can write
s∑

ı=1

<Rpi, qi> = tr(R · Dp). (18)

Note that the following condition holds:
s∑

ı=1

<Rpi, qi> = tr(R · Dp) = <R, (Dp)t>. (19)

Denote the matrix ni
p(n

i
q)

t by M i
n, and let Dn be the following matrix:

Dn =
s∑

ı=1

M i
n. (20)

In a similar way, we get
s∑

ı=1

<Rni
p, n

i
q> = tr(R · Dn) = <R, (Dn)t>. (21)

The variational problem (14) can be rewritten as

arg max
R

s∑
ı=1

<Rpi, qi> + λ

s∑
ı=1

<Rni
p, n

i
q>

= arg max
R

<R, (Dp)t> + λ<R, (Dn)t>. (22)

Let D be the following matrix:

D = (Dp)t + λ(Dn)t. (23)

Then the variational problem (22) takes the form

arg max
R

<R,D>. (24)

Remark 1. The variational problem (24) can be solved by the Horn’s method [5].
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4 Closed Form Solution to the Variational Problem

The orthogonal matrix R in (24) can be computed in the following way [5]:

R = DC

⎛
⎜⎝

1√
λ1

0 0
0 1√

λ2
0

0 0 1√
λ3

⎞
⎟⎠ C�, (25)

where C is an orthogonal matrix consisting of columns, that are eigenvectors of
the matrix D�. Coefficients λi, i = 1, 2, 3, are eigenvalues of the matrix D�D.

4.1 Return from the Clouds P ′ and Q′ to the Clouds P and Q

Let matrix R∗ be a solution to the variational problem (24). Then R∗ is also a
solution to the variational problem (10)

arg min
R

s∑
ı=1

‖ R(p′)i − (q′)i ‖2 +λ
s∑

ı=1

‖ Rni
p − ni

q ‖2 . (26)

Denote by vp and vq the following vectors:

vp = (
s∑

ı=1

pi
1

s∑
ı=1

pi
2

s∑
ı=1

pi
3)

t, vq = (
s∑

ı=1

qi
1

s∑
ı=1

qi
2

s∑
ı=1

qi
3)

t. (27)

Rewrite (7) and (8) as

(p′)i = pi − 1
s
vp, (28)

(q′)i = qi − 1
s
vq. (29)

The functional in (26) can be rewritten taking into account (28) and (29) as

s∑
ı=1

‖ R(pi − 1
s
vp) − (qi − 1

s
vq) ‖2 +λ

s∑
ı=1

‖ Rni
p − ni

q ‖2

=
s∑

ı=1

‖ Rpi − qi +
1
s
(vq − Rvp) ‖2 +λ

s∑
ı=1

‖ Rni
p − ni

q ‖2 . (30)

In such a way, the matrix R∗ minimizes both the left and the right sides of the
Eq. (30). It means that the optimal translation vector T∗ is defined as

T∗ =
1
s
(vq − R∗vp). (31)

The matrix R∗ and the vector T∗ are solutions to the variational problem (6).
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5 Computer Simulation

We consider two variants of the ICP algorithm. The first one is the point-to-
point ICP based on the Horn’s algorithm. The second one is the generalized
point-to-point ICP based on the proposed approach. Other parameters of the
ICP algorithm are the same. The computational experiments are organized as
follows. We apply to the points’ cloud P a rigid geometrical transformation
defined by an orthogonal matrix Rtrue and a translation vector Ttrue. The points’
cloud Q is obtained from the point cloud P

Q = RtrueP + Ttrue. (32)

Remark 2. The information on the matrix Rtrue and the translation vector Ttrue

is contained in the matrix Mtrue in homogenious coordinates.

We apply to the clouds P and Q the ICP algorithm based on the Horn method
(H-PPt). The result of the H-PPt algorithm is a matrix Mh. Also we use for the
clouds P and Q the ICP algorithm based on the proposed generalized point-to-
point ICP algorithm (G-PPt). The result of the G-PPt algorithm is a matrix
Mg. The figures show the clouds P and Q, clouds MhP and Q, clouds MgP and
Q (here the coordinates of the points are homogeneous).

The value of the regularization parameter λ in all experiments is equal to
0.3.

The tested ICP algorithms were implemented in C++ in a conventional PC
with an Intel Core i7-6700 3.4 GHz CPU and 8 GB of RAM with the same
optimization and skill levels.

5.1 Experiments with Cube

Let us consider here the 3D model of the cube surface. The cloud P consists of
386 points.

1. Figure 1(a) shows the cloud P (yellow) and Q (red). The cloud Q is obtained
from P by transformation Mtrue. Figure 1(b) shows the cloud MhP (blue)
and Q (red). Figure 1(c) shows the cloud MgP (green) and Q (red).

(a) (b) (c)

Fig. 1. (a) Test cloud P (yellow), resultant cloud Q (red); (b) alignment result of the
algorithm H-PPt; (c) alignment result of the algorithm G-PPt. (Color figure online)
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The results of the experiment are as follows:

Mtrue =

⎛
⎜⎜⎝

0.945116 −0.229849 0.232219 2.72449
0.204079 0.970308 0.129821 −2.766

−0.255163 −0.0753047 0.963961 1.01888
0 0 0 1

⎞
⎟⎟⎠ ,

Mh =

⎛
⎜⎜⎝

0.972361 −0.024245 0.232219 2.724490
−0.006281 0.991518 0.129821 −2.766001
−0.233397 −0.127691 0.963961 1.018876

0 0 0 1

⎞
⎟⎟⎠ ,

Mg =

⎛
⎜⎜⎝

0.945116 −0.229849 0.232219 2.724490
0.204078 0.970309 0.129821 −2.766001

−0.255163 −0.075305 0.963961 1.018876
0 0 0 1

⎞
⎟⎟⎠ .

The processing time of the H-PPt algorithm is 20 ms, the processing time of
the proposed G-PPt algorithm is 20 ms.

2. Figure 2(a) shows the cloud P (yellow) and Q (red). The cloud Q is obtained
from P by transformation Mtrue. Figure 2(b) shows the cloud MhP (blue)
and Q (red). Figure 2(c) shows the cloud MgP (green) and Q (red).

(a) (b) (c)

Fig. 2. (a) Test cloud P (yellow), resultant cloud Q (red); (b) alignment result of the
algorithm H-PPt; (c) alignment result of the algorithm G-PPt. (Color figure online)

The results of the experiment are as follows:

Mtrue =

⎛
⎜⎜⎝

0.941415 0.0455463 −0.334161 −1.64269
−0.0255698 0.997626 0.0639404 −0.855317

0.33628 −0.05165 0.940344 1.67539
0 0 0 1

⎞
⎟⎟⎠ ,

Mh =

⎛
⎜⎜⎝

0.970507 0.970507 −0.237248 −1.55909
−0.029447 0.997798 0.059429 −0.691539
0.239268 −0.05069 0.96963 1.62716

0 0 0 1

⎞
⎟⎟⎠ ,
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Mg =

⎛
⎜⎜⎝

0.941415 0.045546 −0.33416 −1.64269
−0.02557 0.997626 0.06394 −0.855317
0.336279 −0.05165 0.940345 1.67539

0 0 0 1

⎞
⎟⎟⎠ .

The processing time of the H-PPt algorithm is 14 ms, the processing time of
the proposed G-PPt algorithm is 16 ms.

5.2 Experiments with Stanford Bunny

The cloud P consists of 34817 points.

1. Figure 3(a) shows the cloud P (yellow) and Q (red). The cloud Q is obtained
from P by transformation Mtrue. Figure 3(b) shows the cloud MhP (blue)
and Q (red). Figure 3(c) shows the cloud MgP (green) and Q (red).

(a) (b) (c)

Fig. 3. (a) Test cloud P (yellow), resultant cloud Q (red); (b) alignment result of the
algorithm H-PPt; (c) alignment result of the algorithm G-PPt. (Color figure online)

The results of the experiment are as follows:

Mtrue =

⎛
⎜⎜⎝

0.556337 −0.778256 −0.291217 −0.281807
0.14472 0.43585 −0.888308 0.442844
0.818257 0.452054 0.355109 −0.490603

0 0 0 1

⎞
⎟⎟⎠ ,

Mh =

⎛
⎜⎜⎝

0.824945 −0.481528 0.295968 −0.472856
−0.351158 −0.026325 0.935946 0.27693
−0.442893 −0.876035 −0.190809 0.214402

0 0 0 1

⎞
⎟⎟⎠ ,

Mg =

⎛
⎜⎜⎝

0.556337 −0.778256 −0.291217 −0.281807
0.14472 0.43585 −0.888308 0.442844
0.818257 0.452054 0.355109 −0.490603

0 0 0 1

⎞
⎟⎟⎠ .

The processing time of the H-PPt algorithm is 18463 ms, the processing time
of the proposed G-PPt algorithm is 9105 ms.
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2. Figure 4(a) shows the cloud P (yellow) and Q (red). The cloud Q is obtained
from P by transformation Mtrue. Figure 4(b) shows the cloud MhP (blue)
and Q (red). Figure 4(c) shows the cloud MgP (green) and Q (red).

(a) (b) (c)

Fig. 4. (a) Test cloud P (yellow), resultant cloud Q (red); (b) alignment result of the
algorithm H-PPt; (c) alignment result of the algorithm G-PPt. (Color figure online)

The results of the experiment are as follows:

Mtrue =

⎛
⎜⎜⎝

0.906518 0.0434237 −0.419928 0.464897
−0.415595 0.266619 −0.869594 −0.070553

0.0742 0.962823 0.259742 −0.160154
0 0 0 1

⎞
⎟⎟⎠ ,

Mh =

⎛
⎜⎜⎝

0.045591 −0.831211 0.554085 0.697217
−0.204511 0.535147 0.81963 −0.546255
−0.977802 −0.150684 −0.145594 0.372149

0 0 0 1

⎞
⎟⎟⎠ ,

Mg =

⎛
⎜⎜⎝

0.906518 0.043424 −0.419928 0.464897
−0.415595 0.266619 −0.869594 −0.070553

0.0742 0.962823 0.259742 −0.160154
0 0 0 1

⎞
⎟⎟⎠ .

The processing time of the H-PPt algorithm is 16715 ms, the processing time
of the proposed G-PPt algorithm is 6696 ms.

5.3 Experiments with Dragon

The cloud P consists of 22998 points.

1. Figure 5(a) shows the cloud P (yellow) and Q (red). The cloud Q is obtained
from P by transformation Mtrue. Figure 5(b) shows the cloud MhP (blue)
and Q (red). Figure 5(c) shows the cloud MgP (green) and Q (red).
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(a) (b) (c)

Fig. 5. (a) Test cloud P (yellow), resultant cloud Q (red); (b) alignment result of the
algorithm H-PPt; (c) alignment result of the algorithm G-PPt. (Color figure online)

The results of the experiment are as follows:

Mtrue =

⎛
⎜⎜⎝

0.556762 0.0501222 −0.829158 −1.94604
−0.739748 0.48399 −0.467468 0.0424149
0.377873 0.873637 0.306545 1.07446

0 0 0 1

⎞
⎟⎟⎠ ,

Mh =

⎛
⎜⎜⎝

0.71438 0.698225 0.046308 −2.10059
−0.582702 0.556931 0.59185 −0.654277
0.387454 −0.449789 0.804717 0.001504

0 0 0 1

⎞
⎟⎟⎠ ,

Mg =

⎛
⎜⎜⎝

0.556762 0.050122 −0.829158 −1.94603
−0.739748 0.48399 −0.467468 0.042415
0.377873 0.873637 0.306545 1.07446

0 0 0 1

⎞
⎟⎟⎠ .

The processing time of the H-PPt algorithm is 7022 ms, the processing time
of the proposed G-PPt algorithm is 2647 ms.

2. Figure 6(a) shows the cloud P (yellow) and Q (red). The cloud Q is obtained
from P by transformation Mtrue. Figure 6(b) shows the cloud MhP (blue)
and Q (red). Figure 6(c) shows the cloud MgP (green) and Q (red).
The results of the experiment are as follows:

Mtrue =

⎛
⎜⎜⎝

0.938224 −0.119789 0.324633 1.5113
0.340453 0.487297 −0.804135 2.32942

−0.0618666 0.864981 0.497976 −2.92058
0 0 0 1

⎞
⎟⎟⎠ ,

Mh =

⎛
⎜⎜⎝

0.746991 0.551314 0.371562 1.08177
−0.213773 0.728377 −0.650975 2.32943
−0.629528 0.406842 0.661947 −2.67112

0 0 0 1

⎞
⎟⎟⎠ ,
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(a) (b) (c)

Fig. 6. (a) Test cloud P (yellow), resultant cloud Q (red); (b) alignment result of the
algorithm H-PPt; (c) alignment result of the algorithm G-PPt. (Color figure online)

Mg =

⎛
⎜⎜⎝

0.938224 −0.119789 0.324633 1.5113
0.340453 0.487297 −0.804135 2.32942

−0.061867 0.864981 0.497976 −2.92058
0 0 0 1

⎞
⎟⎟⎠ .

The processing time of the H-PPt algorithm is 3106 ms, the processing time
of the proposed G-PPt algorithm is 6393 ms.

5.4 Experiments with Armadillo

The cloud P consists of 21259 points.

1. Figure 7(a) shows the cloud P (yellow) and Q (red). The cloud Q is obtained
from P by transformation Mtrue. Figure 7(b) shows the cloud MhP (blue)
and Q (red). Figure 7(c) shows the cloud MgP (green) and Q (red).

(a) (b) (c)

Fig. 7. (a) Test cloud P (yellow), resultant cloud Q (red); (b) alignment result of the
algorithm H-PPt; (c) alignment result of the algorithm G-PPt. (Color figure online)
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The results of the experiment are as follows:

Mtrue =

⎛
⎜⎜⎝

0.714482 0.69945 −0.016872 −1.96075
−0.273847 0.257379 −0.926695 0.930376
−0.643834 0.666727 0.375435 0.465303

0 0 0 1

⎞
⎟⎟⎠ ,

Mh =

⎛
⎜⎜⎝

0.859435 0.207441 −0.467269 −1.04969
0.356691 0.411477 0.838724 0.991471
0.366257 −0.887499 0.279646 1.54364

0 0 0 1

⎞
⎟⎟⎠ ,

Mg =

⎛
⎜⎜⎝

0.714482 0.69945 −0.016872 −1.96075
−0.273847 0.257379 −0.926695 0.930376
−0.643834 0.666727 0.375435 0.465303

0 0 0 1

⎞
⎟⎟⎠ .

The processing time of the H-PPt algorithm is 2675 ms, the processing time
of the proposed G-PPt algorithm is 1834 ms.

2. Figure 8(a) shows the cloud P (yellow) and Q (red). The cloud Q is obtained
from P by transformation Mtrue. Figure 8(b) shows the cloud MhP (blue)
and Q (red). Figure 8(c) shows the cloud MgP (green) and Q (red).

(a) (b) (c)

Fig. 8. (a) Test cloud P (yellow), resultant cloud Q (red); (b) alignment result of the
algorithm H-PPt; (c) alignment result of the algorithm G-PPt. (Color figure online)

The results of the experiment are as follows:

Mtrue =

⎛
⎜⎜⎝

0.616773 −0.680801 0.395097 −0.352557
−0.0448522 0.470728 0.881138 2.00338
−0.785863 −0.561183 0.259797 1.01968

0 0 0 1

⎞
⎟⎟⎠ ,

Mh =

⎛
⎜⎜⎝

0.907628 0.416241 −0.054365 −1.20154
−0.171592 0.486082 0.856901 2.10575
0.383103 −0.768419 0.512606 1.04612

0 0 0 1

⎞
⎟⎟⎠ ,
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Mg =

⎛
⎜⎜⎝

0.616773 −0.680801 0.395097 −0.352557
−0.044852 0.470728 0.881138 2.00338
−0.785863 −0.561183 0.259796 1.01968

0 0 0 1

⎞
⎟⎟⎠ .

The processing time of the H-PPt algorithm is 1507 ms, the processing time
of the proposed G-PPt algorithm is 1480 ms.

Remark 3. The proposed algorithm G-PPt shows best fidelity than standard
point-to-point ICP algorithm (H-PPt). Also, H-PPt cannot work better than
G-PPt, because G-PPt is reduced to H-PPt for λ = 0.

6 Conclusion

In this paper we proposed a new algorithm for orthogonal registration of point
clouds based on a generalized point-to-point ICP algorithm. The algorithm uses
the known Horn’s algorithm and combines point coordinates and normal vectors.
The computer simulation indicates that the proposed algorithm yields the best
fidelity comparing with that of a common point-to-point ICP algorithm. It was
shown that the common point-to-point ICP algorithm is a particular case of the
proposed algorithm for λ = 0.
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Abstract. In this paper, new integer programming models of the prob-
lem of irregular polyomino tiling are introduced. We consider tiling of
finite, square, NxN-sized structure with L-shaped trominoes without any
restriction on their number. Each polyomino can be rotated 90◦, so there
are four orientations of the L-tromino. Developed models are effective
for small-size instances. For medium- and large-size instances we suggest
dividing the initial structure into several equally sized parts and com-
bine the solutions of optimized tilings. We tried to apply new models
to the existing information-theoretic entropy-based approach. We con-
ducted computational experiments using IBM ILOG CPLEX package.
The problem of irregular polyomino tiling can be applied to the design
of phased array antennas where polyomino-shaped subarrays are used to
reduce the cost of the array antenna and to reduce the undesired side-
lobes radiation. Computational results along with antenna simulation
results are presented in the paper.

Keywords: Optimization problems · Integer programming ·
Polyomino tiling · Phased array antenna

1 Introduction

In this paper, we consider the two-dimensional irregular polyomino tiling prob-
lem. Term polyomino was introduced by Golomb in 1954 as the shape made by
connecting certain numbers of equal-sized squares, each joined together with at
least one other square along an edge [1] (Fig. 1). Polyomino tiling has various
fields of application from computer graphics [2,3] to mechanical engineering.
One of them refers to the phased array antennas design. Phased array anten-
nas consist of multiple stationary antenna elements, which are fed coherently
and use variable phase or time-delay control at each element to scan a beam
to given angles in space [4]. This phase controls and time-delay devices are the
most important parts of phased array antennas, which make it possible to con-
trol the beam direction and to keep array pattern stationary. But for economical
reasons, it is better to reduce the number of these devices in an antenna array.
c© Springer Nature Switzerland AG 2019
I. Bykadorov et al. (Eds.): MOTOR 2019, CCIS 1090, pp. 235–243, 2019.
https://doi.org/10.1007/978-3-030-33394-2_18
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a

b

d

ec

Fig. 1. Examples of polyominoes: monomino (a), domino (b), L-tromino (c), T-
tetromino (d), L-tetromino (e).

To resolve this problem, the subarray technology can be used. This means that
array elements are grouped into subarrays and controls are introduced at the
subarray level. But using rectangular subarrays causes periodicity and radiate
discrete sidelobes called the quantization sidelobes. Sidelobe is a beam that rep-
resents undesirable radiation in a direction different from the main direction of
the antenna. Mailloux et al. argue that using irregular polyomino subarrays can
result in a major decrease in sidelobes while presenting only a few tenths of a
dB gain reduction compared to rectangular subarrays [5].

The problem of polyomino packing and tiling with polyominoes has been
investigated by many researchers [6–10]. In our work, we consider the irregular
polyomino tiling problem which has several approaches to its solution. Among
recent publications in the field of irregular polyomino tiling we highlight the ones
with the heuristic approach and the mathematical programming approach.

One of the many approaches to the polyomino tiling problem is using heuris-
tic methods like the genetic algorithm. It was shown in Gwee and Lim stud-
ies [11]. Their algorithmwas tested in the phased array antennas design byChirikov
et al. [12]. Who also presented their own approach called the Snowball algorithm
which showed better results.

Another kind of approaches refers to the mathematical programming. For
example, we used an integer programming approach to the problem of optimal
layout [13]. There are examples of using ILP models to d-dimensional Orthogonal
Packing Problem [14]. Karademir et al. used an integer programming in the
phased array antenna design application. He formulated the irregular polyomino
tiling problem as a nonlinear exact set covering model, where the irregularity of a
tiling is incorporated into the objective function using the information-theoretic
entropy concept [15].

This article is devoted to the new integer programming model for irregular
polyomino tiling and to comparing this new model with the model built on the
information-theoretic entropy-based approach.
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Fig. 2. NxN-sized structure

2 Model Formulation

We consider the tiling of the finite, square NxN-sized structure with L-shaped
trominoes without any restriction on their number. L-tromino is a polyomino
consisting of three equal squares joined at the edges to form a shape resembling
the capital letter L. Each tromino can be rotated 90◦. So there are four orienta-
tions of L-tromino. Let an NxN element structure be represented as the board G
with the squares G(i, j), i ∈ {1, . . . , n}, j ∈ {1, . . . , n} of monomino size, where
(i, j) is the coordinate of each square (Fig. 2). The problem is to place L-shaped
trominoes on the given NxN-size board G.

To each orientation of an L-tromino, we put into correspondence a binary
variable as illustrated in Fig. 3. Assume that each L-tromino has the center C
in the corner square. The value of each tromino variable z, s, w, d depends on
containing the center C in the corresponding coordinate of G(i, j), thus:

zi,j , wi,j , si,j , di,j =
{

1, C ∈ G(i, j)
0, C /∈ G(i, j) (1)

Fig. 3. Four orientations of L-tromino
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2.1 Integer Programming Models

Basic Model T1. The objective of the basic model is to fill the whole structure
with trominoes, i.e. to maximize the sum of variables while keeping the shape
of given trominoes.

n∑
i=1

n∑
j=1

(zi,j + wi,j + si,j + di,j) → max (2)

zi,j , wi,j , si,j , di,j ∈ {0, 1} ∀i, j
The following constraint ensures the non-overlapping of given trominoes for all
cells of the structure except those on borders:

wi,j + wi+1,j + wi,j−1 + zi,j + zi−1,j + zi,j−1

+ si,j + si+1,j + si,j+1 + di,j + di−1,j + di,j+1 ≤ 1, (3)

i, j ∈ {2, . . . , n − 1}
Since some trominoes cannot be placed at the border of the structure, the

following inequality reduces overlapping along the border:
Right border constraint:

si,n + si+1,n + di,n + di−1,n + wi,n−1 + zi,n−1 ≤ 1, i ∈ {2, . . . , n − 1} (4)

Bottom border constraint:

dn−1,j + wn,j + wn,j−1 + zn−1,j + sn,j + sn,j+1 ≤ 1, j ∈ {2, . . . , n − 1} (5)

Left border constraint:

wi,1 + wi+1,1 + zi,1 + zi−1,1 + si,2 + di,2 ≤ 1, i ∈ {2, . . . , n − 1} (6)

Upper border constraint:

w2,j + z1,j + z1,j−1 + s2,j + d1,j + d1,j+1 ≤ 1, j ∈ {2, . . . , n − 1} (7)

Additional constraints for borders:

zi,n = 0, wi,n = 0, di,1 = 0, si,1 = 0, i ∈ {1, . . . , n}

zn,j = 0, dn,j = 0, s1,j = 0, w1,j = 0, j ∈ {1, . . . , n}

Improved Model T2. This next model includes constraints described in the
previous model T1 but with the following additional constraint:

wi,j + zi,j + zi−1,j + si,j + si,j+1 + di−1,j+1 + di−1,j + di,j+1 ≤ 1, (8)

i, j ∈ {2, . . . , n − 1}
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Fig. 4. Figure z coverig the first element

This constraint is not dominated by other constraints and improves the con-
tiguous relaxation of our model. This constraint can be obtained as a mixed
integer rounding cut by the following steps.

Let us find the sum of all possible ways to cover each element of the shape
illustrated in Fig. 4, where the example of a figure z covering the first element is
also shown.

wi,j + wi+1,j + wi,j−1 + si,j + si,j+1 + si+1,j

+ zi,j + zi,j−1 + zi−1,j + di,j + di,j+1 + di−1,j ≤ 1 (9)

wi−1,j + wi−1,j−1 + wi,j + si,j + si−1,j + si−1,j+1

+ zi−1,j + zi−2,j + zi−1,j−1 + di−1,j + di−2,j + di−1,j+1 ≤ 1 (10)

wi,j+1 + wi,j + wi+1,j+1 + si,j+1 + si,j+2 + si+1,j+1

+ zi,j + zi,j+1 + zi−1,j+1 + di,j+1 + di,j+2 + di−1,j+1 ≤ 1 (11)

Now the sum of the three inequalities will be as follows:

3wi,j + 2zi,j + 2zi−1,j + 2si,j + 2si,j+1 + 2di−1,j+1 + 2di−1,j + 2di,j+1 ≤ 3 (12)

We already eliminated all entries with a coefficient less than 2. Then dividing
by 2 with rounding half down gives the final constraint:

wi,j + zi,j + zi−1,j + si,j + si,j+1 + di−1,j+1 + di−1,j + di,j+1 ≤ 1, (13)

i, j ∈ {2, . . . , n − 1}
Each tromino contained in this inequality covers at least two elements of the

shape shown in Fig. 4. Since two trominoes would cover at least one element
twice, only one of such tromino can be used.

2.2 Entropy Based Models E1 and E2

In the previous two models, the notion of irregularity was not implemented in the
objective of the model. The next model is an attempt to implement the entropy
concept, where the polyomino’s center C is considered as the gravity center for
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this polyomino. A thorough explanation can be found in [15]. The main idea of
this research is the following: the lower the entropy of a tiling B is, the more
periodic B must be, and vice versa. This means that regular tilings have the
centers of gravity accumulated on certain rows and columns. So we implement
the following integer programming model introduced by Karademir [15]:

−
n∑

i=1

T∑
t=1

(
t

2T
log2(

t

2T
)ri,t) −

n∑
j=1

T∑
t=1

(
t

2T
log2(

t

2T
)cj,t) → max (14)

Subject to

T∑
t=1

t · ri,t =
n∑

j=1

(zi,j + wi,j + si,j + di,j) i ∈ {1, . . . , n} (15)

T∑
t=1

t · cj,t =
n∑

i=1

(zi,j + wi,j + si,j + di,j) j ∈ {1, . . . , n} (16)

T∑
t=1

ri,t = 1 i ∈ {1, . . . , n} (17)

T∑
t=1

cj,t = 1 j ∈ {1, . . . , n} (18)

zi,j , wi,j , si,j , di,j , ri,t, cj,t ∈ {0, 1} ∀i, j, t
We combined this model with constraints (3–7) from model T1 and constraint
(8) from model T2 to obtain two models E1 and E2 respectively.

3 Computational Results

The computational experiments are devoted to an evaluation of the quality of
developed integer programming models. We have implemented described models
in Python code using the API of IBM ILOG CPLEX 12.6 [16]. The machine with
Intel(R) Core(TM) i5-2450M CPU @2.50GHz with 6 Gb RAM is used for all
computations.

Table 1 shows computational results for models T1 and T2 without any seg-
mentation used and no random shapes in the structure. It is clear that for some
instances the second model T2 shows increasingly better results regarding the
running time and the number of nodes created. The most significant fact is that
CPLEX is capable of solving instances of board dimension beyond 32× 32. The
computational results for entropy based models are in Table 2, where X means
that the time limit of 10000 s was exceeded. These models are more challenging
for structure sizes greater than 16× 16.
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Table 1. Computational results for models T1 and T2 (no segmentation, no random).

Size (Rows * Cols) Nodes Total running time (s)

T1 T2 T1 T2

Created Processed Created Processed

12 * 12 0 0 0 0 0.19 0.28

16 * 16 0 0 0 0 0.20 0.31

20 * 20 225 127 0 0 0.95 1.03

24 * 24 2284 1296 5418 4929 1.63 5.44

28 * 28 46566 24828 3686 2035 20.11 6.22

30 * 30 48036 24782 1738 1208 25.84 9.45

32 * 32 47336 24327 0 0 28.8 3.27

40 * 40 48202 24893 47496 25081 46.88 126.0

48 * 48 896182 481331 231651 124323 800.5 1439.36

Table 2. Computational results for models E1 and E2 (no segmentation, no random).

Size (Rows * Cols) Nodes Total running time (s)

E1 E2 E1 E2

Created Processed Created Processed

12 * 12 2 0 2 0 0.64 0.52

16 * 16 50244 49894 15603 13137 468.16 X

20 * 20 – – – – X X

The next set of computational experiments is aimed at evaluating the models
regarding a practical application and at estimating the irregularity of obtained
structures. The simulation of phased array antennas can show the irregularity
of obtained structures and compare designed models. The structure with the
size 30 × 30 was taken into consideration. In order to add more irregularity to
the instances we decided to add randomly placed L-trominoes on the structure
before optimization. The set of random coordinates was generated in advance
and applied to all the models. Only the instances that could be solved within
5 min by each model were selected. The model E1 could not be solved with the
structure of 30 × 30, therefore it was divided into four parts of equal size 15× 15.
Models T1 and T2 were not divided into segments. The second entropy model
E2 was not tested due to the incapability of being solved even for the size of
16 × 16.

As seen from Table 3, no individual model shows a distinct advantage. The
model based on the entropy approach E1 has more structures with 3 holes, while
T1 and T2 show better optimization results.
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Table 3. Computational results for models T1, T2, E1 (size 30 * 30).

N of
instance

Number
of
random
shapes

SLL (dB) Number
of holes

T1 T2 E1 T1 T2 E1

r = 1.300 r = 1.818 r = 1.300 r = 1.818 r = 1.300 r = 1.818

1 5 −25.76 −18.63 −27.99 −20.95 −25.79 −18.61 0 0 0

2 5 −27.11 −20.32 −26.38 −19.20 −25.99 −19.18 0 0 3

3 5 −26.09 −19.06 −27.32 −20.27 −27.47 −20.38 0 0 0

4 5 −27.46 −20.31 −25.54 −18.30 −26.00 −18.85 0 0 0

5 5 −26.96 −20.46 −27.00 −20.16 −25.19 −18.16 0 0 0

6 10 −25.07 −18.02 −25.22 −18.05 −26.22 −19.31 0 0 3

7 10 −27.08 −19.77 −27.27 −20.22 −25.22 −18.00 0 0 0

8 10 −27.41 −20.36 −25.59 −18.41 −26.40 −19.25 3 3 3

9 10 −26.22 −19.09 −27.64 −20.49 −27.28 −20.14 0 0 0

10 10 −26.38 −19.22 −27.15 −20.00 −26.16 −19.04 0 0 0

4 Conclusions

In this paper we study the problem of irregular polyomino tiling, considering
tiling with L-trominoes. To solve this problem we propose an approach using
integer programming and we present several models. We implemented ILP mod-
els as a Python program using CPLEX. One of the practical applications of this
method could be in the phased array antennas design. Computational results
show that the approach can be trusted. We intend to extend this approach to
other complex shapes like octomino or pentomino.
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Abstract. The paper proposes algorithms for the iterative construction
of optimal coverings of nonconvex flat figures using sets of circles. These
algorithms are based on the procedures of dividing the figure into zones
of influence of points that serve as the centers of the initial coverings
and finding the Chebyshev centers of these zones. To generate the initial
array of points, we use stochastic procedures based on the synthesis of
optimal hexagonal grids and random vectors.

Keywords: Optimal covering · Chebyshev center · Voronoi diagram ·
Dirichlet domain · Nonconvex polygon

1 Introduction

In various areas of mathematics, it is necessary to approximate sets by tuples
of elements of the same type. One of the simplest and most convenient ways
to do this is to construct a set of congruent balls that reflect the geometry of
the set. In the case of flat figures, one may talk of two types of approxima-
tion, namely, coverings (external approximations covering the set) and packings
(internal approximations embedded in the set). For practical applications, cov-
erings generally play a major role, since they ensure that, for each point of the
figure, there is an element covering it. This is of great importance, for example,
in the design of networks of communication centers, technical service centers
or warehouses (for more details, see [1]). Earlier, theoreticians studied mostly
coverings of convex figures of a regular shape (for example, circles [2] or regular
polygons [3]). However, one often has to deal with nonconvex figures, especially
in the problems of regional transport networking [4] and distribution network-
ing in architecture [5, Chap. 3]. The necessity arises to develop algorithms that
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allow us to construct coverings for figures of a rather general form, for exam-
ple, arbitrary nonconvex simply connected polygons. This requires the use of
computational geometry [6] and nonsmooth optimization [7] methods.

2 Optimal Covering Problem

Let M be a closed bounded simply connected set on the Euclidean plane. The
union of n ∈ N disks O(si, r), i = 1, n, of the same radius r > 0 is called a
covering of the set M, if the condition

M ⊆ O(s1, r) ∪ O(s1, r) ∪ . . . ∪ O(si, r)

holds. We assume that the covering of the set M for which the value of r is
minimal, is optimal. Let us consider the problem of finding the optimal covering
for the set M for given n.

Let us introduce the auxiliary notations.

Definition 1. Let A and B be closed and bounded sets in R2. The Hausdorf
semideviation of A from B [8] is the value

h(A,B) = max {ρ(a, B) : a ∈ A} ,

where ρ(a, B) = min{‖a− b‖ : b ∈ B} is the Euclidean distance from the point
a to the set B.

Definition 2. The Chebyshev center of a closed bounded set M ∈ R2 is the
point c(M) that satisfies the equality

h(M, {c(M)}) = min
{
h(M, {x}) : x ∈ R2

}
. (1)

For more information about the properties of the Chebyshev center, see the
papers of A.L. Garkavi, for example, [9,10]. For any M ∈ comp(R2), the Cheby-
shev center c(M) exists, is unique, and belongs to the convex hull coM of the
set M . The quantity (1) is called the Chebyshev radius r(M) of the set M .

Definition 3. A nonempty set consisting of at most n points in R2 is called an
n-network [9,10] on the plane R2.

Definition 4. Denote by Σn the set of all n-networks of the space R2. An n-
network S∗ is called the best Chebyshev n-network of the set M ∈ R2 if

h(M,S∗) = min {h(M,S) : S ∈ Σn} .

The solution of the optimal covering problem for a figure M with an n-tuple
is the construction of its best n-network. In the simplest case, for n = 1, the
optimal coverage consists of a circle centered at c(M) with radius r(M).
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3 Algorithms for Solving the Problem

Consider a compact set M being nonconvex in the general case. We assume
that some n-network S is originally given, possibly generated with the help of a
random number generator or taken as a set of points from a lattice superimposed
on the figure M . Based on this network, we can construct a new n-network Ŝ
for which h(M, Ŝ) ≤ h(M,S).

We introduce some definitions before describing the algorithms.

Definition 5. The Voronoi cell [11, Chap. 3] of a point si ∈ S in an n-network
S is the set

Wi(S) =
{
w ∈ R2 : ‖w − si‖ = min{‖w − sj‖ : sj ∈ S}}

.

Note that, by construction, the Voronoi cell is either a convex polygon or an
unbounded convex part of the plane bounded by segments and rays of straight
lines, or a half-plane.

Definition 6. Let a compact set M ∈ R2 and a n-network S be given. The
Dirichlet domain [12] of a point si ∈ S in the set M is the subset Di(M,S) =
M ∩ Wi(S).

A new network Ŝ = {ŝi}ni=1 is constructed according to the scheme proposed
in [13]:

ŝi =

{
c
(
Di(M,S)

)
, Di(M,S) �= ∅,

si, Di(M,S) = ∅.
. (2)

In [1] it was shown that scheme (2) yields a new n-network Ŝ, the Hausdorff
semideviation h(M, Ŝ) of the set M from which is not large than h(M,S). The
authors constructed the coverings using formula (2) for some basic geometric
shapes, such as a square and a circle, in [14, § 8]. The obtained results are close
enough to the known optimal covering given in [15]. The paper [16] presents
methods for calculating the Chebyshev center of a polygon, and [17] presents
methods for constructing the Dirichlet domains.

We note that the construction of the Dirichlet domains for nonconvex sets
is significantly hampered by the fact that they can be not only nonconvex but
also unconnected. Therefore, for convenience, it is necessary to replace the set
Di(M,S) by the set Hi = {h(j)

i }Jj=1 with a finite number J of points such that
the condition c

(
Di(M,S)

)
= c(Hi) holds. As the latter set, one can consider

the union of points h(j)
i ∈ Di(M,S) satisfying one of the three conditions:

• h(j)
i is a vertex of the polygon M ;

• h(j)
i belongs to the boundary ∂M of the polygon M and to at least one more

Dirichlet domain Dk(M,S), k �= i;

• h(j)
i belongs to at least two more Dirichlet domains Dk(M,S) and Dl(M,S),

k �= i, l �= i, k �= l.
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By construction, the set Hi is the union of all vertices of the polygons that
constitute the Dirichlet domain Di(M,S); therefore, their Chebyshev centers
and radii coincide. Moreover, in the set Hi there is a set of at most three
elements (i.e., a simplex on the plane) such that all of them lie on the circle
∂O

(
c
(
Di(M,S)

)
, r

(
Di(M,S)

))
of the Chebyshev radius, with its center coin-

ciding with c
(
Di(M,S)

)
. Note that the points of Hi include, by construction,

possible maxima of the function f(x) = h({x}, S) on the compact set M . There-
fore, to find the radius of the covering circles for a given array of their centers,
it suffices to calculate the maximum of f(x) on Hi, i = 1, n; in more detail, see
[12,18].

An important element of the algorithms under consideration is the construc-
tion of the Chebyshev center of the compact set Hi. In the general case, the
Chebyshev center for a set can be constructed only by numerical methods. There-
fore, it is important to know how close the value computed by the software pack-
age to the exact value. This is especially true for iterative algorithms where we
need some termination conditions.

Theorem 1. Let compact sets M and M0 ⊆ M be given in R2. If the Chebyshev
center c(M0) of the compact set M is found, then the estimate

‖c(M) − c(M0)‖ ≤
√

2h (M, {c(M0)}) (h (M, {c(M0)}) − r(M0)) (3)

is true.

Proof. Suppose that estimate (3) does not hold. Denote the distance between
the Chebyshev centers by d = ‖c(M) − c(M0)‖. Suppose that d > 0. Then we
can draw through c(M) a perpendicular line to the segment [c(M), c(M0)]. It
divides the circle ∂O

(
c(M), r(M)

)
in two halves. Moreover, according to the

properties of the Chebyshev center of a closed set, there must be points of the
set M on both halves of the circle ∂O

(
c(M), r(M)

)
(otherwise, it would be

possible to find a circle of radius less than r(M), in which M can be embedded).
Let m∗ denote an arbitrary point that belongs to M and to a half of the circle
∂O

(
c(M), r(M)

)
not containing c(M0). Consider a triangle formed by the points

m∗, c(M), and c(M0). By construction, the angle at the vertex c(M) is not less
than π/2; hence, the cosine theorem implies the estimate

‖m∗ − c(M0)‖2 ≥ ‖m∗ − c(M)‖2 + ‖c(M) − c(M0)‖2,

which can be rewritten as

d2 ≤ ‖m∗ − c(M0)‖2 − ‖m∗ − c(M)‖2.

It follows from the definition of the Chebyshev center that ‖m∗ − c(M)‖ =
r(M). The definition of the Hausdorff deviation implies ‖m∗ − c(M0)‖ ≤
h (M, {c(M0)}). We get the estimate

d2 ≤ h (M, {c(M0)})2 − r(M)2.
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The embedding M0 ⊆ M implies the estimates r(M0) ≤ r(M) and r(M0) ≤
h (M, {c(M0)}). Thus, we can write as follows

d2 ≤ h (M, {c(M0)})2 − r(M0)2 =
(
h (M, {c(M0)}) + r(M0)

)×

×(
h (M, {c(M0)}) − r(M0)

) ≤ 2h (M, {c(M0)}) · (
h (M, {c(M0)}) − r(M0)

)
.

After extracting the square roots from the first and last part of the equality, we
get estimate (3). �

To construct Dirichlet domains, it is required to construct the median per-
pendiculars to the segments connecting the points of S and look for their inter-
sections with each other and with the sides of the polygon M . This procedure
requires a lot of computational costs, especially if the set M is nonconvex. This
is connected with the need to check whether a certain point belongs to the poly-
gon, for which additional constructions should be done. Therefore, it is important
to reduce the exhaustive search of points that can be vertices of the polygons
contained in the Dirichlet domain.

Theorem 2. Let a compact set M in R2 and a n-network S be given. Then two
Dirichlet domains Di(M,S), i ≤ n, and Dj(M,S), j ≤ n, may have common
points only if

‖si − sj‖ ≤ 2h (M,S) . (4)

Proof. Consider an arbitrary point m∗ ∈ Di(M,S) ∩ Dj(M,S). By the triangle
inequality, we estimate

‖si − sj‖ ≤ ‖si − m∗‖ + ‖sj − m∗‖.

Since m∗ belongs to Di(M,S) and Dj(M,S), we have ‖si − m∗‖ = ‖sj − m∗‖.
Then we can write

‖si − m∗‖ ≥ ‖si − sj‖/2.

If the estimate (4) is not satisfied, then we have

‖si − m∗‖ > h (M,S) .

Since, by the definition of the Dirichlet domain, the point si is one of the closest
to any point of Di(M,S), then

ρ(m∗, S) > h (M,S) .

We came to a contradiction. �

Theorem 3. Let a compact set M in R2 and a n-network S be given. Then three
Dirichlet domains Di(M,S), i ≤ n, Dj(M,S), j ≤ n, and Dk(M,S), k ≤ n, may
have a common point only if the condition

min{‖si − sj‖, ‖si − sk‖, ‖sj − sk‖} ≤
√

3 h (M,S) (5)

is true.
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Proof. Consider a point m∗ ∈ Di(M,S)∩Dj(M,S)∩Dk(M,S). It follows from
the definition of the Dirichlet domain that this point is equidistant from the
points si, sj , and sk. This means that the latter three points lie on a circle of
radius r∗ centered at m∗. Consider the angles formed by the vectors si − m∗,
sj −m∗, and sk −m∗. The sum of these three angles does not exceed 2π. Hence,
the smallest of them does not exceed 2π/3. Without loss of generality, we assume
that

α = ∠
(
(si − m∗), (sj − m∗)

) ≤ 2π/3. (6)

By construction, we have

‖si − sj‖ = 2r∗ sin(α/2).

Since the sine function increases on the interval [0, π/2], then inequality (6)
implies the estimate

‖si − sj‖ ≤ 2r∗ sin ((2π/3)/2) = 2r∗ sin(π/3) =
√

3r∗.

The definitions of the Dirichlet domain and the Hausdorff deviation imply the
estimate r∗ ≤ h(M,S); hence, the latter inequality implies (5). �

The results of Theorems 2 and 3 can be applied starting from the second
cycle of correction of the network S according to (2). If the Hausdorff deviation
h0 of the set M from the previous network S0 = {s(0)i }ni=1 is known, then the
following estimate for h(M,S) can be used:

h(M,S) ≤ h(M,S0) − (
√

2 − 1)
min
i=1,n

∥
∥
∥si − s(0)i

∥
∥
∥

h(M,S0)
,

the proof of which is given in [17].

4 Examples of Building Coverings

The software package for constructing approximations of optimal coverings by
repeatedly improving the randomly generated n-network S using formula (2) has
been developed in MATLAB. The original Chebyshev n-network was constructed
on the basis of imposing a hexagonal lattice [19] on the figure M with stochastic
changes in the coordinates of its nodes. Then exactly n elements were randomly
selected among the arrays of points.

It is difficult to assess how close the result is to optimal. Therefore, the
software package was running many times for each example.

Example 1. Consider a nonconvex octagon M defined by the array of its vertices

(−1,−1), (0,−0.5), (1,−1), (0.5, 0),

(1, 1), (0, 0.5), (−1, 1), (−0.5, 0).

It is required to construct its optimal coverings by circles with the number of
elements n = 10 and n = 13.
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Fig. 1. Covering of the octagon M in Example 1 with the union of 10 disks.

The results are obtained by multiple launching the software package. For
n = 10, the array of the disk centers is as follows:

S = {(−0.7519,−0.7471), (−0.3473,−0.3501), (−0.1826, 0.0618),

(−0.7748, 0.7265), (0.2525,−0.4863), (0.4279,−0.1204), (−0.3372, 0.3662),

(0.3348, 0.4312), (0.8416,−0.6831), (0.8416, 0.6831)}.

The best radius is found to be equal to r ≈ 0.3543. The covering disks of 10
elements (thin lines), the tuple S of their centers (in the form of “bubbles”), and
the set M (bold lines) are shown in Fig. 1.

For n = 13, the array of the disk centers is as follows:

S = {(−0.8581,−0.7161), (−0.4428,−0.0605), (−0.5781, 0.4094),

(−0.7162, 0.8581), (−0.4039,−0.489), (−0.0612,−0.0823), (−0.2154, 0.4847),

(0.8318, 0.7309), (0.1726,−0.5599), (0.4694,−0.3213),

(0.2950, 0.2288), (0.4011, 0.4617), (0.7526,−0.8012)}.

The best found radius is r ≈ 0.3174. The covering disks of 13 elements, the
tuple S of their centers, and the set M are presented in Fig. 2.

Example 2. Consider a nonconvex polygon M defined by the array of its vertices

(−1,−1), (−0.5,−0.5), (−0.5,−1), (0,−1), (0.5,−0.5),

(0.5,−1), (1,−1), (1,−0.5), (0.5, 0), (1, 0),

(1, 1), (0.5, 1), (0.5, 0.5), (0, 0.5), (0, 1),

(−0.5, 1), (−0.5, 0.5), (−1, 0.5), (−0.5, 0), (−1, 0).
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Fig. 2. Covering of the octagon M in Example 1 with the union of 13 disks.

It is required to construct its optimal coverings by circles with the number of
elements n = 11 and n = 12.

The results are obtained by multiple launching the software package. For
n = 11, the array of the disk centers is as follows:

S = {(−0.6843 − 0.7603) (−0.7172 − 0.2667), (−0.65280.3088), (−0.25, 0.7346),

(−0.0569 − 0.7551), (−0.1041 − 0.2238), (0.05780.2759), (0.75, 0.7276),

(0.6924 − 0.75), (0.5668,−0.3155), (0.6924, 0.25)}.

The best found radius is to be equal to r ≈ 0.3964. The covering disks of 11
elements, the tuple S of their centers, and the set M are shown in Fig. 3.

For n = 12, the array of the disk centers is as follows:

S = {(−0.0713,−0.6042), (−0.7171,−0.75), (−0.7171,−0.25), (−0.6311, 0.4199),

(−0.177,−0.927), (0.17740.2336), (−0.1682,−0.0258), (−0.25, 0.7171),

(0.75,−0.7171), (0.7301, 0.248), (0.4776,−0.3799), (0.7206, 0.75)}.

The best radius is found r ≈ 0.3775. The covering disks of 12 elements, the tuple
S of their centers, and the set M are presented in Fig. 4.

The software complex has been launched for solving the problems around
10÷ 15 times with the exit condition for the iteration cycle so as, after applying
formula (2), the coordinates of the points must change by a quantity no more
than Δr = 10−4. The number of cycles varied within 200 ÷ 500 and the runtime
was from 10 to 20 min.
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Fig. 3. Covering of the polygon M in Example 2 with the union of 11 disks.
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Fig. 4. Covering of the polygon M in Example 2 with the union of 12 disks.

5 Conclusions

The software complex for constructing optimal coverings of nonconvex flat
sets M has been developed and tested by the authors for several examples.
The centers of the covering circles are found as the Chebyshev centers of the
zones of influence of points from the current array S of points. The accuracy
of computing the Chebyshev center is estimated using Theorem 1. In turn, the
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zones of influence are constructed as the Dirichlet domains of the current array
of points of the given figure M . To save computational costs of the search, we
apply the results of Theorems 2 and 3. This significantly reduces the number of
the considered intersections of the median perpendiculars to the segments with
endpoints from S with each other and with the sides of the polygon M that
can be included in the Dirichlet domains. When modeling the solution of prob-
lems, we considered various flat nonconvex figures (both having symmetry axes
and irregular shaped) as a compact M which has to be covered. The multiple
generation of the initial position of the points has been performed, including a
combination of the previously found configuration close to optimal and a ran-
dom vector array. The results are visualized and allow us to evaluate the pattern
formed by the centers of the covering elements. This pattern differs significantly
from the regular hexagonal lattice, which is optimal for covering the whole plane
[19, Chap. III].
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Abstract. In the clique partition problem (CPP), we need to find a
spanning family of pairwise vertex-disjoint cliques of minimum total
weight in a complete edge-weighted graph. In this paper, we consider
the special case of the CPP, the so-called graph approximation problem
(GAP), where the weights of edges are 1 or −1. It is one of the most
computationally difficult cases of the CPP. We present our polyhedral
approach to this problem based on the facet inequalities and the branch
and cut framework. Computational experiments on the randomly gener-
ated instances indicate simple and hard classes of the GAP and maximal
dimension for exact and an approximate solution with a given accuracy.

Keywords: Branch and cut · Facet inequality · Local search ·
Rounding

1 Introduction

Let us consider a simple graph D. We say that a simple graph is a matroidal
graph or M -graph if each of its connected components is a complete graph [23].
In the graph approximation problem (GAP), we need to find an M -graph H
with the minimal symmetric difference on the edge sets for graphs H and D.
In other words, we wish to transform graph D into a vertex-disjoint union of
cliques by a minimum number of edge modifications. This optimization problem
seems to have been first studied by Harary in 1955 [11]. Now this problem is
known as the graph correlation clustering [14], cluster editing [20], and tran-
sitive graph projection [19]. The problem is NP-hard [15] and some nontrivial
polynomially solvable cases are found [6,25]. Approximation algorithms with
performance guarantee are reviewed in [14].

The GAP is a special case of the clique partition problem (CPP) [7]. It is an
important problem in cluster analysis when we need to divide a set of objects
into disjoint clusters and optimize a measure of intergroup relations. Recently,
there are many results devoted to the approximation methods for the problem
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including heuristics and metaheuristics [3,13]. Interest to this problem deals
with its real–life applications in community detection [5], group technology [10],
and aggregation of binary relations (ABRP) [16,24]. The last application will be
studied here as well.

In this paper, we are interested in the exact solution methods for the CPP
and GAP based on the polyhedral approach. Up to now, the branch and cut
method is the most powerful framework for this goal. Properties of the polyhe-
dron and structure of the facet inequalities play a crucial role in this method.
The first results in this direction were obtained in [7,8] where the integer lin-
ear programming formulation is presented for the CPP. Note that the GAP has
the same set of constraints and slightly different objective function. The cut-
ting plane methods are based on the facet inequalities. The first classes of facets
so-called triangle inequalities, 2-partition inequalities, 2-chorded cycle inequali-
ties, and 2-chorded wheel inequalities are described in [8]. For the aggregation
of binary relations problem, this approach can find an optimal solution for the
special type of voting graphs with 158 vertices. Later, new facet inequalities
were discovered in [9,18,21] and computational complexity of the corresponding
separation problems are studied [18,22]. Comparison of lower bounds obtained
by some facets is illustrated for the CPP in [18]. In the weighted cluster editing
problem, we consider the case similar to GAP but with arbitrary weights on the
edges. In [2], a special reduction procedure is suggested to reduce the dimension
of the problem. For the graphs from real-world applications and random graphs
with large cliques, this reduction procedure combined with the branch and cut
method can find the optimal solutions for the large scale instances with up to
1000 vertices. Nevertheless, in the general case, the branch and cut approach is
still not so effective and allows us to solve the small size instances only [13].

In this paper, we apply a new polyhedral attack to the GAP in the gen-
eral setting. We use the branch and cut method with triangle inequalities and
1-parachutes inequalities [18,21] for improving the lower bounds. These inequal-
ities are the most useful in the polyhedral approach for the CPP [2,7,18]. We
guess that they are a golden mean in known classes of facets between the degree
of approximation to the polytope and the cost of finding the cuts. We use ran-
domized local search heuristic to collect 1-parachutes inequalities and select a
small subset of them for including into the current set of the problem constraints.
We believe that this trick is crucial for the separation problem and used for the
GAP for the first time.

The paper is organized as follows. Section 2 contains the basic concepts and
some known results on the polyhedral structure of the CPP and GAP. Section 3
provides a brief description of our branch and cut method including the lower
and upper bounds of the optimum, and randomized local search heuristic for
discovering facet inequalities. The results of computational experiments are pre-
sented in Sect. 4. The first part of the experiments is devoted to studying of
the cutting plane procedure. The second part is devoted to the branch and cut
method for the GAP. We indicate the difficult and simple cases of this problem.
The last Sect. 5 concludes the paper.
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2 Notations and Basic Concepts

A set P is called a polytope if it is the convex hull of a finite set of points in the
Euclidean space. The linear inequality aTx ≤ a0 where a �= 0, is called the valid
inequality for the polytope P if it is satisfied for all points from the polytope.
The valid inequality is called the support inequality if there exists at least one
point x from the polytope which satisfies the equality aTx = a0. Each support
inequality generates a face {x ∈ P |aTx = a0} for the polytope P . It is called
a facet if it is the maximal face by inclusion. It is easy to see that each facet
has the dimension which is less by 1 than the dimension of the polytope. The
support inequality which produces a facet is called the faceted inequality.

Polyhedron in the Euclidean space is the set of all solutions for the system
of linear equations and inequalities if it is bounded. By the Weyl-Minkowski
theorem, there is a polyhedron for each polytope and vice versa.

For arbitrary subgraph D of a complete simple graph Kn with n vertices, we
denote by V D and ED the sets of its vertices and edges respectively. For edge
e ∈ ED, we will use the notation uv if vertices u and v from V D incident to the
edge e. The operations of union and intersection of graphs will be understood in
the edge sense.

For the graph Kn, we consider the Euclidean space RE with dimension n2−n
2 .

For each edge of the graph, we define an axis in this space. The incident vector
for a spanning graph D ⊆ Kn is a vector xD ∈ RE where xD

e = 1 if e ∈ ED
and xD

e = 0 otherwise. Thus, we have the one–to–one correspondence between
spanning subgraphs in Kn and vertices of the 0-1 cube in RE . Now we can
introduce the polytope for the CPP as the following

Pn = conv{xH ∈ RE | H is M -graph }

and the CPP is the minimization problem over the vertices of the polytope Pn:

min{cTx | x is a vertex of Pn}, (1)

where the vector c defines the weights for the edges in the graph Kn.
If x ∈ RE and E′ ⊆ E, then x(E′) is the linear function

∑
e∈E′ xe. Now

the GAP can be presented as the minimization problem over the vertices of the
polytope Pn:

min{|ED| + x(ED̄) − x(ED) | x ∈ Pn ∩ ZE}, (2)

where ED̄ is the complement of the set ED and ZE is the 0-1 lattice in RE [21].
Each (0, 1)-vector x ∈ RE is the incidence vector of the M -graph if and only

if it satisfies the system

−xuv + xuw + xvw ≤ 1,
xuv − xuw + xvw ≤ 1,
xuv + xuw − xvw ≤ 1,

(3)
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xuv ≥ 0,∀ uv ∈ E, (4)

where u, v, w ∈ V are all triples of pairwise different vertices [8,21]. The polyhe-
dron defined by the system (3)–(4) is denoted by Mn. It may contain non-integer
vertices [21]. Thus, the inclusion Pn ⊂ Mn is strict one and each integer vertex
of Mn is an incidence vector of the M -graph. The constraints (3) will be called
the triangle inequalities [7].

In [8], some classes of faceted inequalities for Pn are presents. In particular,
all constraints (3), (4) are faceted. Computational experiments for the ABRP
indicate that we can get an optimal solution by the cutting plane method using
constraints (3), (4) and the 2-partition inequalities only [8].

In [21], a new class of support inequalities for Pn was introduced. Let U =
{u1, u2, . . . , uk} and W = {v1, v2, . . . , vp} are non-empty subsets of the set V
and U ∩ W = ∅, k ≥ 1, p ≥ 2. We denote by Ti, i = 1, 2, . . . , k, the star in Kn

with center at the vertex ui and rays uivj , j = 1, 2, . . . , p. By Kp, we denote
a clique on the set W . We define T = ∪k

i=1Ti. The graph T ∪ Kp we called
k-parachute. We associate with this graph the following inequality

x(ET ) − x(EKp) ≤ k2 + k

2
.

The inequality induced by the k-parachute T ∪Kp is a support inequality if and
only if p ≥ k and it is a faceted inequality if and only if k = 1 [21]. Thus, the
1-parachutes will be important in our exact method.

3 The Branch and Cut Method

We implement the classical branch and cut a framework to solve the problem.
Below we describe some specific features of this implementation. The 0-1 cube
in RE is taken as the initial relaxation [7] to reduce the number of triangle
constraints (3). In each node of branching tree we get the optimal solution for
linear programming relaxation and choose either a fractional coordinate, say xu,
or an integer one that does not participate in the formation of the current node.
Then we create two new nodes in the branching tree for xu = 0 and xu = 1,
respectively. For each node, we generate at most n2 −n+1 cutting planes to get
lower bound.

3.1 Lower Bound

Our cutting plane procedure uses triangle inequalities (3) and inequalities gener-
ated by 1-parachutes only. At the initial step, we ignore all triangle inequalities
and use the 0-1 cube as the initial relaxation. If the optimal solutions are an
integer, we check all triangle inequalities. If these inequalities are not violated
then the current optimum is the exact solution of the problem. Otherwise, we
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look for inequalities that strictly separate it from the Pn. Using these inequali-
ties, we form another relaxation of the convex hull of M -graphs from the current
face. All the constraints of the previous relaxation which are not basic (except
for the constraints of the unit cube) are discarded. We limit the running time
for each node of the branching tree by a small threshold. As a result, we get
either an exact solution or a lower bound on the weights of the M -graphs con-
tained in the current node. The IBM ILOG CPLEX package is used as the linear
programming solver.

Now we show how to discover the 1-parachutes inequalities to cut off the
current optimum x̄ of the linear programming relaxation. It is a very important
problem in the polyhedral approach which is called the separation problem. Let
the point x̄ satisfies all the triangle inequalities. Is there a 1-parachute that
strictly separates this point from the polytope Pn? In other words, we want to
find a 1-parachute T ∪ Kp with the following property

∑

e∈ET

x̄e −
∑

e∈EKp

x̄e > 1.

To this end, we introduce new 0-1 variables:

xu ∈ {0, 1} defines the center of the star T ;
yu ∈ {0, 1} defines the vertices in the clique Kp;
zuv ∈ {0, 1} defines the edges in the clique Kp;
tuv ∈ {0, 1} defines the rays in the star T .

Now the separation problem can be presented as the integer linear program:

max
1
2
(

∑

u,v∈V

x̄uvtuv −
∑

u,v∈V

x̄uvzuv) (5)

s.t. zuv ≥ yu + yv − 1, u, v ∈ V ; (6)

zuv ≤ yu, zuv ≤ yv, u, v ∈ V ; (7)

tuv ≥ xu + yv − 1, u, v ∈ V ; (8)

tuv ≤ xu, tuv ≤ yv, u, v ∈ V ; (9)

xu + yu ≤ 1, u ∈ V ; (10)
∑

u∈V

xu = 1; (11)

∑

u∈V

yu ≥ 1; (12)

xu, yu, zuv, tuv ∈ {0, 1}, u, v ∈ V. (13)
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Constraints (6), (7) guarantee the equality zuv = yuyv and constraints (8),
(9) guarantee the equality tuv = xuyv. Constraints (10) prohibit the center of
the star T to be in the clique Kp. Constraint (11) allows one center only for the
star T . Constraint (12) indicates that the clique Kp is not empty.

Since the separation problem for 1-parachutes is NP-complete [18,22], we use
the local search heuristic for it. We generate a starting solution for the problem
(5)–(13) by a greedy heuristic and define the Flip+Swap neighborhood [1,12].
This set of neighboring solutions consists of all feasible solutions for the problem
which can be obtained by two rules: (1) we can add or remove one vertex from
the clique, (2) we can replace one vertex in the current 1-parachute. It is a
well–known neighborhood for the facility location problems [12,17]. To reduce
the running time of the search, we use the randomized neighborhood [4] with
parameter κ. Each element of the Flip+Swap neighborhood is included in this
randomized neighborhood with probability κ independently from other elements.

Our computational experiments show that this local search heuristic discovers
a lot of cuts. If we add all of them into the current relaxation of the problem, the
number of constraints grows rapidly. Thus, we apply two strategies. In the first
case, we add at most q inequalities aTx ≤ 1 with the largest values h(x̄, a) =
aT x̄−1. In the second case, we add at most q inequalities with the largest values
d(x̄, a) = aT x̄−1

‖a‖ . In our computational experiments, the comparison of these
strategies is carried out with a time limit for the lower bound.

3.2 Upper Bound

To find near–optimal incumbent solution at the initial step of the branch and cut
method, we apply local search heuristic again [13]. In each node of the branching
tree, we try to improve it by the rounding procedures. We used two methods
of rounding the point x̄. Let Gc ⊂ Kn be the spanning subgraph induced by
the set of edges EGc = {e ∈ E | ce < 0} and Tx̄ be a subgraph in Kn induced
by the set of edges ETx̄ = {e ∈ E | x̄e = 1}. In the first rounding method,
we complement each connected component of the graph Gc ∩ Tx̄ to a clique. In
the second rounding method, we do the same, but the graph Sx̄ with the set of
edges ESx̄ = {e ∈ E | x̄e > 0} is used instead of the graph Tx̄. Note that these
procedures are applied for non-integer solutions and for integer solutions that
are not an M -graph. Moreover, if x̄ is integer then Tx̄ = Sx̄.

3.3 Approximate Solution with a Given Accuracy

In our computational experiments, we apply this branch and cut method for find-
ing approximate solutions with a priori accuracy also. The M -graph x∗ is called
the α-approximate solution of the problem, α ≥ 0, if cTx∗ ≤ (1 + α)cTxopt,
where xopt is the optimal solution of the problem. At each iteration of the
method, we compare the current optimum x̄ and the incumbent solution x∗.
If (1 + α)cT x̄ > cTx∗, then x∗ is an α-approximate solution.
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4 Computational Experiments

The computational experiments are conducted on the random test instances for
the GAP and real–world instances for the ABRP taken from [7]. For the GAP,
we generate the coefficients of the objective function as follows. For a given value
of density β, each edge of the graph Kn has weight −1 with probability β and
weight +1 with probability 1 − β. As we will see later, the value of density is
crucial for our exact method.

In the first computational experiment, we study the cutting plane procedure
to improve the lower bounds by 1-parachutes inequalities. We wish to identify
the best values of parameter κ for solving the separation problem by local search.
For graph K100, five values of κ are tested: 0.25, 0.4, 0.5, 0.6 and 0.75. The best
values for the objective function (5) are obtained for κ = 0.6 and κ = 0.75.
Moreover, these values are the best for other random test instances with n from
20 to 80. We tested 5 random graphs for each dimension and added the 1-
parachute inequalities one by one to constraints (3)–(4). Again, we see the best
growth of the lower bounds in average for these values. Thus, we use κ = 0.6 in
the rest part of our experiments.

In the second computational experiment, we try to select the best combi-
nation of the strategies from Sect. 3.1 to select the most strong cutting planes
and identify the number of inequalities for including into the linear program.
We tested three values of the parameter q = n

10 , n
5 , n

2 and two strategies:
h(x̄, a) = aT x̄ − 1 and d(x̄, a) = aT x̄−1

‖a‖ , where a is vectors of coefficients of
the 1-parachute inequality. Comparison of these combinations was carried out
under the time limit equals 10 min. The best combination shows the highest
value of the objective function. In average, the combination (q = n

2 ; d(x̄, a)) is
the best and we use it in all our experiments.

The third computational experiment is devoted to the branch and cut
method. We have tested it on the ABRP benchmarks from [7] and new bench-
marks. The structure of the objective function is as follows. Let Hi, i =
1, 2, . . . , p, is a family of M -graphs in Kn. The weight of an edge e ∈ E is defined
as ce = p − 2|{k ∈ {1, . . . , p} | e ∈ EHk}|. The graphs Hi are called characteris-
tics and the ABRP is NP-hard [24]. All data in these instances have real content
and concern politics, business, and social processes. The maximum dimension of
the instances from [7] is n = 158. Our algorithm is similar to the algorithm from
[7]. The main difference lies in solving the separation problem and the choice
of cuts. It is not clear why the authors did not attempt to solve the problems
of a higher dimension. For all instances, the exact solution was obtained in a
sufficiently short time and without the branching stage. In [7], some the ABRP
instances with random data were also solved, but their dimension did not exceed
n = 34. We solved all these random instances as well. Moreover, all the charac-
teristics of the method almost completely coincide with [7]. We also considered
several new instances of the ABRP with random data. All of them were solved
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without branching. Our computational results for new instances of the ABRP
are given in Table 1.

Table 1. The ABRP with random data

n Number of characteristics
of the ABRP

fopt Time (sec.) Number of iterations

160 3 −7175 1033 5

160 4 −7732 1399 7

200 3 −7174 1971 5

200 4 −8572 1525 7

300 3 −7175 1756 5

300 4 −3209 7210 19

Further investigation of the branch and cut method was carried out on the
GAP instances. We study the influence of the graph density on the running time
of the method and ability to find exact and α-approximate solutions. The com-
putational results are presented in Table 2. For each instance, the running time
of the method is limited by three hours. The first column of the table indicates
the type of the instance and its dimension. The second column shows the density
of the graph. The third column presents the approximation parameter α. The
fourth column (FC) contains the results for solving the GAP without branching,
that is, by pure the cutting plane method. The fifth column (BFC) presents
the running time of the branch and cut method. Finally, the last sixth column
shows the objective function value of the α-approximate solution obtained. As
we can see, the cutting plane method can solve the problem instances with small
dimensions only, n ≤ 30. The dash means that the problem is not solved in 3 h.

The most important result of our empirical study deals with the density
of random graphs. We observe that this parameter defines the computational
difficulty of the GAP instances for exact branch and cut method. In Table 3,
we show our results for small, mean, and high density. Column fopt in the table
presents the objective function value for the optimal solution of the problem.
Column Time indicates the running time of the branch and cut method in
seconds. Column FC shows the number of calls for the local search heuristic to
solve the separation problem for 1-parachutes, 0 means that we use the triangle
inequalities only in each node of the branching tree. Column FBC presents the
total number of nodes in the branching tree. Again, the running time of the
method is limited by three hours for each instance. As we can see, all instances
with small and high density are easy for our exact method. The case 0.2 ≤ β ≤
0.6 is the most difficult.
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Table 2. Computational results for the GAP

Problem Density α FC (sec.) BFC (sec.) α-approximate solution

f1 − 20 0,47 0,00 20,95 7,18 58

f2 − 20 0,56 0,00 17,55 9,55 65

f3 − 20 0,46 0,00 13,21 7,19 53

f4 − 20 0,52 0,00 9,21 9,3 59

f5 − 20 0,48 0,00 18,39 12,2 58

f1 − 30 0,53 0,00 2493,49 1785,3 155

f2 − 30 0,46 0,00 1318,22 652,29 138

f3 − 30 0,52 0,00 1157,13 693,32 151

f4 − 30 0,49 0,00 1818,56 1398,12 148

f5 − 30 0,51 0,00 1595,42 1271,09 152

f1 − 40 0,49 0.05 – 1540,13 330

f2 − 40 0,51 0.05 – 1600,08 327

f3 − 40 0,51 0.05 – 1671,02 330

f4 − 40 0,49 0.05 – 1586,45 315

f5 − 40 0,51 0.05 – 1652,34 321

f1 − 50 0,26 0.10 – 3534,12 267

f2 − 50 0,25 0.10 – 2976,31 263

f3 − 50 0,27 0.10 – 4985,07 279

f4 − 50 0,25 0.10 – 3109,43 269

f5 − 50 0,27 0.10 – 3988,16 276

f1 − 60 0,25 0.15 – 9720,38 398

f2 − 60 0,26 0.15 – 10681,14 396

f3 − 60 0,26 0.15 – 9307,46 407

f4 − 60 0,26 0.15 – 10142,09 407

f5 − 60 0,24 0.15 – 9223,27 366

f1 − 70 0,27 0.15 – 13980,09 565

f2 − 70 0,25 0.15 – 13320,54 548

f3 − 70 0,26 0.15 – 14400,05 562

f4 − 70 0,24 0.15 – 11,520,31 517

f5 − 70 0,24 0.15 – 12180,24 519

Table 3. The influence of density

n Density fopt Time (sec.) FC BFC n Density fopt Time (sec.) FC BFC

50 0,95 71 4 0 3 60 0,2 –

50 0,85 132 8 0 5 60 0,15 256 882 3 396

50 0,7 375 35 2 16 60 0,1 160 798 7 355

50 0,6 – 60 0,05 83 2840 31 220

50 0,3 – 70 0,95 161 20 0 4

50 0,2 3 569 7 344 70 0,85 338 73 0 13

50 0,15 174 868 21 350 70 0,7 788 347 0 26

50 0,1 111 1896 54 419 70 0,6 –

50 0,05 64 379 10 351 70 0,2 –

60 0,95 92 12 0 4 70 0,1 237 4401 6 700

60 0,85 202 26 0 9 70 0,05 99 2859 23 508

60 0,7 537 59 0 17 80 0,95 202 7 0 7

60 0,6 – 80 0,85 504 232 0 19
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5 Conclusion

In this paper, we present computational results for the polyhedral attack to the
ABRP and GAP instances. We design the exact branch and cut method where
the most strong cutting plane inequalities are generated and collected by local
search heuristic. We show that our method can find an optimal solution for pre-
viously studied benchmarks of the ABRP and new high dimensional graphs. For
the GAP instances, we observe that the efficiency of the approach is depended
on the graph density. The randomly generated instances with small and high
density are easy for the method. Instances with mean density are the most diffi-
cult. Moreover, the method cannot solve the GAP without branching for n > 30
and can do that for the ABRP. Note, that both problems are NP-hard, have the
same polytope and differ only in the structure of the objective functions. Thus,
we need additional research in this direction to understand the influence of this
aspect to the polyhedral methods.
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Abstract. The bicriteria problem of academic load distribution (ALD)
and its integer linear programming (ILP) model are considered. Earlier
it was shown that the search for a feasible solution to this problem is
NP-hard and the cardinality of the complete set of alternatives is poly-
nomial. For the ALD problem, the problem of finding a Pareto-optimal
solution can be formulated as a weighted bin packing problem with color
constraints and lower bounds on the load of the bins. In this problem, the
number of bins is given and items have volume and color. For each bin,
there is an upper bound on the number of different colors and this bound
depends on the bin volume. For each item, coefficients of the efficiency
of placing in any bin are set. In this paper, we study the ILP model for
finding a Pareto-optimal solution. Parametric families of ALD instances
are constructed and the L-coverings of these instances are studied. These
instances have a small duality gap, in particular, it can be equal to one.
We investigate the complexity of solving these families by the Land and
Doig algorithm for some known branching rules. It is shown, that the
iterations number grows exponentially with the number of bins.

Keywords: Teachers assignment · Weighted bin packing · General
assignment problem · Integer linear programming · Land and Doig
Algorithm · L-partition

1 Introduction

Distribution of academic load among teachers at an university department is one
of the actual organization problems of the learning process. Problem formulations
can be diverse and largely depend on the requirements of a particular university.
In [1–3], some optimization models for this problem are proposed. In [1], the
average load of a teacher at the department is minimized. The presented mixed
integer programming model is a special variant of the fixed charge transportation
problem. The NP-hardness of this problem is also shown. For the equivalent
combinatorial statement of the problem, the branch and bound algorithm has
been proposed there as well. However, the use of this model can lead to a solution
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whereby one course can be distributed arbitrarily among several teachers, which
is contrary to the practice of Russian universities. In [2,3], each training course
consists of parts that correspond to some type of academic load, such as lectures,
seminars, exams, etc. Each part is indivisible and can be assigned to only one
teacher.

In [3], the bicriteria ALD problem was considered in which it is required to
reduce the diversity of courses assigned to each teacher and to maximize the
total effectiveness of the distribution. Shown that finding a feasible solution to
this problem is NP-hard and the cardinality of the full set of alternatives is poly-
nomial. Note that the bicriteria model of the ALD problem can be interpreted
as a supply management problem with the discrete sizes of the batches [4].

Finding a Pareto-optimal solution to the ALD problem can be described
using the terminology of the bin packing problem with color constraints. In
considered problem, all items have volume and color and any bin has an upper
and a lower bounds on total volume of items loaded into it. For any bin, there
is an upper bound on the number of different colors. This bound is directly
proportional to the volume of a bin. In addition, for each item, there is a set of
the effectiveness coefficients (or weights) of placing it in any bin. Any placement
of items is characterized by a total weight which should be maximized. Bin
packing problems with color constraints are studied, for example, in [5,6]. For
these problems, the number of bins should be minimized in contrast to the
considered problem in which the number of bins is given.

In this paper, we investigate the ILP model of finding a Pareto-optimal solu-
tion to the ALD problem. We propose two parametric families of instances that
have the duality gap equal to one. It is shown that these families are difficult for
the Land and Doig algorithm with some branching rules. Namely, it is shown,
that the iterations number grows exponentially with the number of bins. On the
basis of these families, a generalized family of instances for the ALD problem
was constructed. These instances have a small duality gap and are difficult for
the Land and Doig algorithm with the considered branching rules.

For the Land and Doig algorithm, families of difficult instances are known for
the one-dimensional knapsack problem, the set covering problem, the set pack-
ing problem, the supply management problem, etc [7–10]. Analysis of difficult
instances properties may be useful to increase the efficiency of integer program-
ming algorithms. In addition, such families can be used for the theoretical study
of other algorithms, for example, evolutionary ones [11].

To analyze the behavior of some other ILP algorithms when solving the
proposed families, we study relaxation polytopes of proposed instances. We use
the regular partitions approach, suggested by A.A. Kolokolov for analysis and
solving the integer programming (IP) problems [12,13]. It is based on using
some special partitions of space R

n, in particular, L-partition. The fractional
covering of a problem is defined as a special subset of the relaxation polytope
of the problem. All points of the fractional covering must be excluded from the
relaxation polytope in a process of solving the problem when some well-known
algorithms are applied. The L-covering cardinality is a characteristic of fractional
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covering of the IP problems and plays an important role in analysis of efficiency of
many algorithms based on continuous optimization techniques. In particular, it is
an upper bound on the iterations number for a class of cutting plane algorithms
introduced in [13] which includes the first Gomory algorithm [14,15].

The paper is organized as follows: in Sect. 2, we give the formulation of the
ALD problem. In Sect. 3, we construct parametric families of instances for this
problem and their generalization and study solving these families by the Land
and Doig algorithm. In Sect. 4, we give the necessary information about the L-
partition method and analyze the L-structure of the instances of constructed
families.

2 Problem Formulation

The ALD problem and its model from [3] are described below. Let I = {1, ...,m}
be a set of teachers. The values ai, ci set the upper and the lower bounds
of the possible load for teacher i where i ∈ I. Let J = {1, ..., n} be a set of
training courses. We denote by tj a number of individual units of j-th course.
Let bk

j be volume (i.e., the hours number) of k-th unit of j-th course where
k ∈ Kj = {1, ..., tj}.

We denote by lkij efficiency coefficient of assignment of unit k of course j to
teacher i for all i, j, k. Let sj be a maximum number of units of one train-
ing course that can be assigned to one teacher (sj ≤ tj). Parameters sj are
introduced to avoid the formation of monotonous load for the teachers.

It is necessary to assign each unit of any training course to a certain teacher
so that a total load of each teacher satisfies the given bounds. The first goal
of optimization is to minimize the number of the assigned courses for a teacher
with the highest upper bound on his/her allowable load. For other teachers, an
individual upper bound on the courses number is set. This value is proportional
to the upper bound on the allowable load of the teacher. The second optimization
goal is to maximize the total efficiency of assignments of units to the teachers.

We introduce Boolean variables xij and zk
ij where i ∈ I, j ∈ J, k ∈ Kj .

Here xij = 1 if teacher i gives course j and xij = 0, otherwise; zk
ij = 1 if teacher i

gives k-th unit of course j and zk
ij = 0, otherwise. Denote the vector of variables

zk
ij by Z and the vector of variables xij by X.

Let amax = maxi∈I ai and imax be the index where this maximum is reached.
Let pi = ai

amax
for i ∈ I. We introduce a non-negative integer variable y. It is the

upper bound on the number of courses assigned to teacher imax.
The ALD problem can be formulated as a bicriteria ILP problem as follows

minimize y (1)

maximize L(Z) =
m∑

i=1

n∑

j=1

tj∑

k=1

lkijz
k
ij (2)
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subject to

ci ≤
n∑

j=1

tj∑

k=1

bk
j zk

ij ≤ ai, i ∈ I, (3)

m∑

i=1

zk
ij = 1, j ∈ J, k ∈ Kj , (4)

xij ≤
tj∑

k=1

zk
ij ≤ sjxij , i ∈ I, j ∈ J, (5)

n∑

j=1

xij ≤ piy + q, i ∈ I, (6)

y ≥ 0, y ∈ Z, xij , z
k
ij ∈ {0, 1}, i ∈ I, j ∈ J, k ∈ Kj . (7)

Conditions (3) describe the allowable ranges of the total load of each teacher.
Equalities (4) show that each unit of any course should be assigned to just one
teacher. Inequalities (5) describe the relationship of the variables xij and zk

ij . The
variable xij = 1 if and only if there exists index k such that zk

ij = 1, i.e., course
j is assigned to teacher i if and only if at least one unit of this course is assigned
to him/her. Restrictions (6) set the greatest number of courses for each teacher,
depending on the value of his/her maximum permissible load. Here q ∈ [0, 1) is a
constant that controls the rounding of the values on the right side. Optimization
criterion (1) means the minimization of the number of courses assigned to the
teacher with the highest upper bound on allowable load. Criterion (2) maximizes
the value of function L(Z), i.e., the total efficiency of the load distribution.

It was shown that finding a feasible solution of (1)–(7) is NP-hard [3].
The values of function (1) belong to set {1, 2, ..., n}, i.e., the cardinality of

the full set of alternatives does not exceed n.
Let integer parameter ymax takes values from 1 to n. The problem of finding

a Pareto-optimal solution is (2)–(7) with the additional constraint

y ≤ ymax. (8)

Notice that when problems (2)–(8) are being solved in order of decreasing of
ymax, then some values ymax can be skipped [4].

3 Analysis of Parametric Families of ALD Problem

We construct some families of instances of the ALD problem and study the
branch and bound algorithm (Land and Doig scheme) for solving these instances.
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3.1 Family F1(n)

Let α, β be positive integers and α ≥ 3. Consider the ALD instances with n
teachers and n courses with the following input data. All courses consist of one
unit of volume α, i.e., tj = 1 for all j. Since index k takes a single value, we
will omit it in the notation of variables and parameters, i.e., bj = b1j , lij = l1ij ,
zij = z1ij for all i, j. For teachers, the following lower and upper bounds on the
possible load are set: ci = α − 1, ai = α for i < n and cn = α, an = α + 1. Also,
the efficiency coefficients are given: lij = β, lnj = α + β for i < n and all j. By
F1(n) we denote the family of these instances.

From sj ≤ tj , it follows that sj = 1 and conditions (5) transform into xij =
zij for all i, j. Next, we replace the variables vector (Z,X) with Z = (zij)n×n.
Let q ∈ [ 1α , 1) for ymax = 1 and q ∈ [0, 1], otherwise.

The problem of finding a Pareto-optimal solution may be written as

maximize L(Z̄) = β

n−1∑

i=1

n∑

j=1

zij + (α + β)
n∑

j=1

znj (9)

subject to

α − 1 ≤
n∑

j=1

αzij ≤ α, i < n, (10)

α ≤
n∑

j=1

αznj ≤ α + 1, (11)

n∑

i=1

zij = 1, j ∈ J, (12)

zij ∈ {0, 1}, i ∈ I, j ∈ J. (13)

In fact, constraints (6) are converted to

n∑

j=1

zij ≤ α

α + 1
ymax + q, i < n,

n∑

j=1

znj ≤ ymax + q.

For ymax = 1, these constraints are a consequence of the right-hand inequal-
ities from (10), (11). Therefore these restrictions are not included in the ILP
model for F1(n). When ymax > 1, this property is kept for all q ∈ [0, 1).

Note that problem (9)–(13) can be considered as an instance of the gener-
alized assignment problem with additional lower bounds on the total volume of
items placed into each knapsack.

Denote by Z∗ and Z̃ the optimal solutions of problem (9)–(13) and its linear
relaxation which is obtained if restrictions (13) are replaced by zij ≥ 0 for all
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i, j. From (10)–(12) it follows that the matrix Z∗ contains exactly one element
equal to one in each row and each column. Another elements of Z∗ are zeros.
The number of such solutions is n! and L(Z∗) = nβ + α.

The maximum of the objective function of the linear relaxation will be
achieved when teacher n is fully loaded. Really this teacher has the maximum
efficiency coefficients and the highest upper bound on the allowable load. The
other teachers have efficiency coefficients equal to each other and with a lower
value. Thus condition

∑n
j=1 z̃nj = 1 + 1

α is satisfied for any Z̃. From (12), it
follows that the sum of all z̃ij is equal to n. So there is the left-hand inequal-
ity from (10) which is satisfied as equality for some index i. For the remaining
indexes, the right-hand inequalities are satisfied as equalities. Consequently, Z̃
satisfies the conditions of a balanced transportation problem. If the continuous
optimal solution Z̃ is obtained by the simplex method, then it is a vertex of the
polytope of the linear relaxation and this solution has the following property: it
is impossible to construct a cycle for non-zero elements of the plan or for subsets
of these elements.

The matrix Z̃ can have a different structure. For any of them, condition∑n
j=1 z̃nj = 1 + 1

α is satisfied and there are j ∈ J such that z̃nj = 1
α and i �= n

such that z̃ij = α−1
α (see Fig. 1). Clearly, L(Z̃) = nβ + α + 1. The duality gap

for the instances from F1(n) is equal to 1.

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 α−1
α

1 0 . . . 0 0 0
0 1 . . . 0 0 0
. . . . . . . . . . . . . . . . . .
0 0 . . . 1 0 0
0 0 . . . 0 1 1

α

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 1
α

α−1
α

0
0 0 . . . 1

α
α−1

α
0 0

0 0 . . . α−1
α

0 0 0
. . . . . . . . . . . . . . . . . . . . .
1
α

α−1
α

. . . 0 0 0 0
α−1

α
0 . . . 0 0 0 0

0 0 . . . 0 0 1
α

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Fig. 1. Examples of ˜Z with a minimum and maximum number of non-integer elements.

3.2 Analysis of Land and Doig Algorithm

We study the branch and bound algorithm (Land and Doig scheme) for solving
instances from F1(n). Denote this algorithm by LD. It is based on the sequential
partition of the feasible set into subsets and on a calculation for each subset
bounds on the objective function. These bounds are used to exclude subsets that
do not contain optimal solutions for the integer problem. The bound is equal
to the optimal value of the objective linear relaxation function and calculated
by the simplex method. Algorithm LD constructs a binary search tree. Variable
zkl corresponding to a fractional element of the optimal solution to the linear
relaxation is chosen as a branching variable. At the current iteration, the subset
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of feasible solutions is divided into two subsets by adding one of the constraints
zkl = 0 (left branch) or zkl = 1 (right branch). Such variables are called fixed,
and other variables are called free. Different branching rules are applied when
solving ILP problems (see, for example, [16–18]). The number of iterations of
algorithm LD determined as the number of solved linear programming (LP)
problems.

Let A1 be algorithm LD with a branching rule for which k �= n holds for any
branching variable zkl when solving instances from F1(n). Suppose the variables
of the problem are ordered as follows: z11, ..., z1n, z21, ..., z2n, ..., zn1, ..., znn then,
for example, the rules are possible: the first fractional element, the fractional
element that is closest to one, the fractional element with the lowest value lij .

Theorem 1. Algorithm A1 requires at least 2n − 1 iterations to solve any
instance from F1(n).

Proof. Let us analyze a part of the search tree that occurs during the running
of the algorithm A1. We will be interested in branches (i.e. paths from the tree
root to the current node) that have the length not less than n − 1. Each such
branch corresponds to not less than n − 1 fixed variables.

Let zkl = 1. From (10), it follows that variables z̃kj equal to 0 for j �= l in
any feasible solution of the corresponding LP subproblem. From (12), it results
that z̃il = 0 for i �= k. So, variables of row k and column l of matrix Z cannot
be selected below for branching. The LP subproblem has an integer optimal
solution Z∗ and L(Z∗) = nβ + α when assigning n − 1 variables equal to ones.
The tree branch breaks off.

Now we prove that all other nodes of the search tree at the level n − 1 have
the upper bounds on the objective function equal to L(Z̃) = nβ + α + 1.

Let n − 1 variables from some row of the matrix Z be fixed at 0. Then we
obtain an optimal continuous solution Z̃, in which the single non-zero element
in this row is equal to a−1

a or 1. Assigning n − 1 zeros in some column j leads
to an optimal continuous solution Z̃ in which z̃nj = 1.

Suppose that n − 1 fixed zeros are located in arbitrary rows, excluding the
row n. Note that for the linear relaxation of problem (9)–(13), the value n(n −
1)(n−1)! is the number of optimal solutions having the structure shown in Fig. 1
left. Here n(n − 1) is the number of location variants of fractional elements and
(n − 1)! is the number of location variants of ones. If some variable zkl (k < n)
is equal to 0, then (n − 1)! matrices Z̃ of specified type are excluded from the
relaxation set, namely, those for which z̃kl = α−1

α . If n − 1 zeros are fixed, then
the number of excluded solutions is (n − 1)(n − 1)!. Therefore, there are at least
n optimal solutions with the specified structure for such LP subproblem and
L(Z̃) = nβ + α + 1.

Consider the general case when t ones and n− t− 1 zeros are assigned where
1 ≤ t ≤ n − 2. If t variables are fixed at 1 then the linear relaxation of problem
(9)–(13) is converted to a similar LP subproblem of dimension (n − t) × (n − t).
As follows from the case discussed above, the assignment of n − t − 1 zeros does
not break the branch.



Analysis of Integer Programming Model of Academic Load Distribution 273

Thus, when solving instances from F1(n), algorithm A1 builds the search
tree of depth at least n − 1, and this corresponds to solve at least 2n − 1 LP
problems. The theorem is proved.

Remark 1. Consider algorithm LD with any branching rule by which a branching
variable is selected only from the last row of the matrix Z when solving instances
from F1(n). As an example, we give the following rule: the fractional element
with the highest coefficient lij . In this case, we can show that algorithm LD
requires n2 + n − 1 iterations to solve problems from F1(n).

3.3 Families F2(n) and G(2n)

For the ALD problem, consider the family F2(n) of instances which differ from
the instances from F1(n) only by the parameters. We have ci = α, ai = α + 1
for i < n and cn = α − 1, an = α, lij = α + β and lnj = β for i < n and all j.
Here α ≥ 3, β > 0 are integers.

The ILP problem to find a Pareto-optimal solution takes the following form

maximize L(Z) = (α + β)
n−1∑

i=1

n∑

j=1

zij + β
n∑

j=1

znj (14)

subject to

α ≤
n∑

j=1

αzij ≤ α + 1, i < n, (15)

α − 1 ≤
n∑

j=1

αznj ≤ α, (16)

n∑

i=1

zij = 1, j ∈ J, (17)

zij ∈ {0, 1}, i ∈ I, j ∈ J. (18)

Instances from F1(n) and F2(n) have the same set of optimal solutions.
Linear relaxations of instances from F2(n) also have several optimal solutions,
but these solutions have another structure. For example, one of the structures
with the minimum number of fractional elements is shown in Fig. 2.

It is clear that L(Z∗) = (n−1)α+nβ, L(Z̃) = (n−1)α+nβ +1. The duality
gap is still equal to one.

Denote by A2 the algorithm LD with a branching rule for which condition
k �= n holds for any branching variable zkl when solving instances from F2(n).
As examples of such rule, we can mention the following: the fractional element
with the highest value of lij , the fractional element that is closest to zero or the
first fractional element.

Theorem 2. Algorithm A2 requires at least 2n−1 iterations to solve any
instance from family F2(n).
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⎛
⎜⎜⎜⎜⎝

1 0 . . . 0 1
α

0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 1 0
0 0 . . . 0 α−1

α

⎞
⎟⎟⎟⎟⎠

.

Fig. 2. Example of structure of LP solution ˜Z for instances of F2(n).

Proof. Initially, we analyze the optimal solution Z̃ of the linear relaxation of
problem (14)–(18) with n − 1 fixed variables. Consider several cases.

Let n−1 variables from column j0 of matrix Z be fixed to zeros. From (17) it
follows that znj0 = 1, and from (16) it follows that znj = 0 for j �= j0. The other
variables have the efficiency coefficients equal to α+β. From here we obtain that
L(Z̃) = (n − 1)(α + β) + β for any feasible solution to the LP problem. If the
optimal solution of the LP problem is integer, then this branch breaks off.

Let n − 1 zeros are fixed in several columns of matrix Z. Then there is an
optimal solution Z̃ with the minimum number of fractional components, and
L(Z̃) = L(Z∗) + 1. This can show as in the proof of Theorem1.

Let a variable is fixed to 1, for example, zkl = 1 for k �= n. From (17) it
follows that zil = 0, i �= k, and these variables will not be selected further for
branching. Let n − 1 ones are fixed. Then the linear relaxation has an optimal
solution, which, up to a permutation of the columns, has the structure shown in
Fig. 2. Solving the problem continues on this branch.

Consider the general case when t ones and n− t− 1 zeros are assigned where
1 ≤ t ≤ n − 2. For simplicity, we put zkk = 1 for k ≤ t. In addition, we assume
that the other elements are equal to zeros in the first t rows of Z̃, i.e., the
corresponding variables are not selected for branching at the next iterations.
In this case, the assignment of t ones means the transition to a subproblem of
dimension (n− t)×n. Let zij = 0 for i ≤ t and all j in this problem then we have
the subproblem of type (14)–(18) of dimension (n− t)× (n− t). It can be shown
as in the proof of Theorem 1 that the assignment of no more than n− t−1 zeros
does not break this branch.

Therefore, all branches of the search tree have a length at least n − 1. This
tree has at least 2n − 1 nodes, i.e., the number of the solved LP subproblems is
at least 2n − 1.

Now we only need to consider the case when the branching variable zkl is
selected from the row in which some variable is already fixed to 1. If zkl =
0, then the LP subproblem is solvable and its dimension is keep and we have
L(Z̃) = L(Z∗) + 1. If zkl = 1 then the LP subproblem has no solution because
a constraint from (15) is false with i = k. For the search tree of depth n − 1,
this means the insertion of the fragments corresponding to the just mentioned
branchings. So, the number of iterations of algorithm A2 can only to increase.

The theorem is proved.
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Remark 2. Consider algorithm LD with a branching rule, in which a branching
variable is selected only from the last row of the linear relaxation solution to an
instance from F2(n), for example, it is a fractional element that is closest to one
or a fractional element with a minimum value of lij . Then, to solve instances
from F2(n), algorithm LD requires at least 2n + 1 iterations.

Using F1(n) and F2(n), we construct a family G(2n). These instances have
2n teachers and 2n courses with a single unit of volume α. Other input data is
given below

(lij)2n×2n =
(

L1 H
H L2

)
c = (c1, c2) a = (a1, a2).

Here L1, L2 are the efficiency matrices of dimension n × n; c1, a1 and c2, a2 are
vectors of the lower and the upper bounds on the allowable load of teachers for
families F1(n) and F2(n). H is a (n×n)-matrix and all of its elements are equal
to −1. For G(2n), the duality gap is equal to 2. Easy to show that this problem
is difficult for algorithm LD with branching rules from algorithms A1 and A2.

4 Analysis of L-Covering

At first, we give the necessary information about the method of regular partitions
[13]. Let Zn be the set of all integer points of space R

n. The L-partition of space
R

n is defined as follows. Points z ∈ Z
n constitute the separate L-classes, i.e., the

elements of partition. Points x, y �∈ Z
n (x � y) belong to same fractional L-class

if no z ∈ Z
n exist such that x � z � y is holds. Here � are the symbol of the

lexicographical order. Denote by X/L the quotient set induced by L-partition
for a set X ⊂ R

n. Set X/L is called L-structure of set X and its elements are
called L-classes. It is known that any fractional L-class V from X/L can be
represented as:

V = X ∩ {x | x1 = d1, ..., xr−1 = dr−1, dr < xr < dr + 1}, (19)

where dj is integer for j = 1, ..., r and r ≤ n.
We consider the following problem of finding the lexicographically maximal

integer element of a set Ω

find lexmax (Ω ∩ Z
n) (20)

where Ω be some closed subset from R
n.

Assume that the relaxation of this problem

find lexmax Ω

is solvable.
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The fractional covering of problem (20) is defined as a set

Ω∗ = {x ∈ Ω | x � z for all z ∈ (Ω ∩ Z
n)}.

The quotient set Ω∗/L is called the L-covering of problem (20), and |Ω∗/L| is
called the L-covering cardinality.

Let us investigate the L-coverings of instances from family F1(n). Denote
by M the polytope of the linear relaxation of an instance from F1(n). This
polytope is described by conditions (10)–(12) and inequalities zij ≥ 0 for all i, j.
Vector Z denotes all variables zij ordered in an arbitrary fixed way. As before,
Z∗ and Z̃ denote optimal solutions to the problem and its linear relaxation. Note
that L(Z̃) = L(Z∗) + 1. Let us introduce a new variable z0 = L(Z). It is clear
that z0 has integer value when vector Z is integer. Now we have the following
lexicographical formulation of F1(n)

find lexmax(M̂ ∩ Z
n×n+1)

where M̂ = {(z0, Z) ∈ R
n×n+1 | z0 = L(Z), Z ∈ M}.

Let M̂∗ be the fractional covering of this problem. In [14], the cardinality
of the L-covering of the lexicographic optimization problem has been described
through the L-structure of the relaxation polytope of the problem in the formula-
tion with the objective function. We put ML(˜Z) = {Z ∈ M | L(Z) = L(Z̃)}. For
problem (9)–(13), the duality gap is equal to one and the lexicographical max-
imal element of set {Z ∈ M | L(Z) = L(Z∗)} is integer. So above mentioned
relation has the form

|M̂∗/L| = |ML(˜Z)/L| + 1. (21)

The first sum term is the number of L-classes of set {Z ∈ M̂ | L(Z) = L(Z̃}).
The second term corresponds to the L-class with L(Z∗) < z0 < L(Z̃).

Theorem 3. When the order of variables is z11, ..., z1n, z21, ..., z2n, ..., zn1,
..., znn, the following estimate holds for n ≥ 4

|M̂∗/L| ≥ 1.7 · n!.

Proof. As follows from (21), it suffices to estimate the number of optimal solu-
tions of the linear relaxation of the problem (9)–(13) belonging to different L-
classes. For simplicity, we will consider only solutions with the minimum number
of fractional components. For a given order of variables, it is convenient to con-
sider the solution Z as a matrix.

Property (19) of the L-partition implies that any fractional class is deter-
mined by the index r of its first fractional component and the values of the first
r − 1 integer components. Let the first fractional element of Z̃ belongs to row i
where i < n. According to Fig. 1, other elements of this row are equal to zeros,
i.e., the number of variants of the fractional element location is equal to n. All
variables of the preceding rows take integer values. Also from (10), it follows
that each such row contains a single element equal to one and this element can-
not belong to the same column as the first fractional element. Consequently, the
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number of such L-classes is equal to P (i) = n(n − 1)...(n − i + 1) for i > 1 and
P (1) = n. Thus, we have

|M̂∗/L| > |ML( ˜Z)/L| =
n−1∑

i=1

P (i) = n!
n−1∑

i=1

1
(n − i)!

≥ 1.7 · n!.

The theorem is proved.

From this theorem, it follows that the upper bound on the number of itera-
tions of a dual fractional cutting plane processes [13] including the first Gomory
algorithm is exponential for family F1(n). The result holds for a lower bound
on the number of iterations of such processes based on totally regular cuts [15].
Note that the ILP problems, possessing exponential L-coverings, are difficult
also for the L-class enumeration method [19].

The following theorem is easy to prove.

Theorem 4. Consider the order of variables in which the variables znj are
located in the first n places. Then the L-covering cardinality does not exceed
1
2 (n − 1)(n + 2).

In this case the number of iterations for above mentioned cutting plane pro-
cess is a polynomial.

Similar statements hold for the family F2(n).

5 Conclusion

We have considered the problem of academic load distribution among teachers
as the bicriteria ILP problem and the single-criterion problem of searching for
a Pareto optimal solution. We constructed parametric families of problems with
duality gap equal to one and two. We showed that the proposed problems are
difficult with certain branching rules for the Land and Doig algorithm, although
with other branching rules the instances lose their complexity. The generaliza-
tion of families remains difficult for the same branching rules. The study of the
fractional covering of the problems showed that the cardinality of the L-covering
varies depending on the order of variables from exponential to polynomial. This
means that the constructed families of instances have the corresponding com-
plexity for the L-class enumeration algorithm and some dual cutting plane algo-
rithms. In the future, it is of interest to study more complex branching rules for
the Land and Doig algorithm when solving the considered problem.
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Abstract. The results of the study of improper linear programming
problems are presented, in which the duality theory is essentially used
and the approaches of I.I. Eremin (correction of incompatible con-
straints) and A.N. Tikhonov (creation of compatible systems of con-
straints equivalent in accuracy to given incompatible constraints). The
problem of a stable solution to an approximate (and, possibly, improper)
pair of mutually dual linear programming problems with a coefficient
matrix of size m × n is reduced to a Mathematical Programming prob-
lem of dimension m + n + 2. The necessary and sufficient conditions for
the existence of a solution and constructive formulas for its calculation
are obtained. Computational experiments were carried out on a model
Linear Programming problem with an approximate matrix and vectors
of the right-hand side and the objective function, demonstrating the con-
vergence of the obtained solutions to the normal solutions to direct and
dual problems with a decrease in the level of data error.

Keywords: Improper linear programming problems · Duality theory ·
Matrix correction · Tikhonov regularization

1 Introduction

Consider a pair of mutually dual Linear Programming problems (LPs)

L(A, b, c) : c�x → max, s.t. Ax = b, x � 0,

L∗(A, b, c) : u�b → min, s.t. u�A � c�,

where A ∈ R
m×n; b, u ∈ R

m; c, x ∈ R
n.
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The feasible sets, optimal values, and the sets of optimal solutions to these
problems are defined as

X (A, b) � {x |Ax = b, x � 0}, U(A, c) � {u
∣
∣u�A � c� },

� � sup
x∈X (A,b)

c�x, �∗ � inf
u∈U(A,b)

u�b,

Xopt(A, b, c) � {x ∈ X (A, b)
∣
∣c�x = �},

Uopt(A, b, c) � {u ∈ U(A, c)
∣
∣u�b = �∗ }.

Since both proper and improper problems will be mentioned below, it is
important to recall the relevant definitions and the main facts of duality theory.
It is convenient to present this information in the form of a theorem (see, for
example, [1,2]).

Theorem 1. The solvability or unsolvability of problems L(A, b, c) and
L∗(A, b, c) are completely characterized by the following four cases.

1. X (A, b) �= ∅, U(A, c) �= ∅. Then L(A, b, c) and L∗(A, b, c) are both solvable.
They are called proper problems and it is true that −∞ < � = �∗ < +∞.

2. X (A, b) = ∅, U(A, c) �= ∅. Then � is not defined, �∗ = −∞ and the problems
are both unsolvable. L(A, b, c) is called an improper problem of the first
type, while L∗(A, b, c) is called an improper problem of the second type.

3. X (A, b) �= ∅, U(A, c) = ∅. Then � = +∞, �∗ is not defined and the problems
are both unsolvable. L(A, b, c) is called an improper problem of the second
type, while L∗(A, b, c) is called an improper problem of the first type.

4. X (A, b) = ∅, U(A, c) = ∅. Then L(A, b, c) and L∗(A, b, c) are both unsolvable
and are called an improper problems of the third type.

Remark 1. In the cases 2–4, the sets Xopt(A, b, c) and Uopt(A, b, c) are not
defined.

Assume that the parameters A, b, c are subject to perturbations that either
make the solutions of L(A, b, c) and L∗(A, b, c) unstable and far from hypothetical
exact solutions or these problems become improper. In this case, it is reason-
able to apply regularization and parameter correction procedures, which can be
formalized, for example, in the form of the search for a Tikhonov regularized
solution to an approximate pair of mutually dual LPs.

Let us clarify the problem’s statement. Suppose that there exist matrix
A0 ∈ R

m×n and vectors b0 ∈ R
m, c0 ∈ R

n such that problems L(A0, b0, c0) and
L∗(A0, b0, c0) are proper. Define the matrix A0 and vectors b0, c0 as exact, the
matrix A and vectors b, c as approximate, and the corresponding LP problems
as problems with the precise and approximate data. Let us assume that the fol-
lowing conditions are satisfied: ‖A−A0‖ � μ, ‖b−b0‖ � δb, ‖c−c0‖ � δc, where
μ, δb, δc > 0 are some constants known a priori, and the symbol ‖ · ‖ denotes
Euclidean matrix norm (the symbol will also be used to denote an Euclidean
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vector norm through the paper). Following the logic of works [3,4], we consider
the problem R(A, b, c, μ, δb, δc):

min
x1,u1,A1,b1,c1

‖x1‖2 + ‖u1‖2,
s.t. A1 ∈ R

m×n, b1 ∈ R
m, c1 ∈ R

n, x1 ∈ R
n, u1 ∈ R

m,

‖A − A1‖ � μ, ‖b − b1‖ � δb, ‖c − c1‖ � δc,

x1 ∈ Xopt(A1, b1, c1), u1 ∈ Uopt(A1, b1, c1).

The specified problem allows the following interpretation: find vectors x1, u1,
b1, c1 and matrix A1 such that the pair of problems L(A, b, c) and L∗(A, b, c)
(maybe improper) with the approximate matrix A and vectors b, c is mapped
to the corresponding solvable problems L(A1, b1, c1) and L∗(A1, b1, c1). Matrix
A1 should be close to matrix A and vectors b1 and c1 should be close to vectors
b and c accordingly. Euclidean norm is the proximity measure of matrices and
the Euclidean norm for vectors is the proximity measure of vectors. Numerical
characteristic of proximity for the mentioned objects are μ, δb, δc. Vectors x1 and
u1 are solutions to these problems, and the sum of the squares of their Euclidean
norms is minimal.

Using a technique similar to that used by A.N. Tikhonov, for justification of
the method of stable solution to approximate systems of linear algebraic equa-
tions, it can be shown that

μ, δb, δc → 0 ⇒ A1 → A0, b1 → b0, c1 → c0, x1 → x0, u1 → u0,

where x0 and u0 are the solutions to the problems L(A0, b0, c0) and L∗(A0, b0, c0)
respectively, and the sum of the squares of the Euclidean norms of the vectors
x0 and u0 is minimal. From now on vectors that exhibit those characteristics
will be called a normal solution to a pair of mutually dual LP problems. That
is, vectors x1 and u1 are a stable approximation of the normal solution to a pair
of mutually dual LP problems with exact data.

If problems L(A, b, c) and L∗(A, b, c) are improper, then problem
R(A, b, c, μ, δb, δc) can be also interpreted as a correction problem, introduced
in studies of I.I. Eremin and his followers:

Problem C(A, b, c, μ, δb, δc) :

min
x,u,H,hb,hc

‖x‖2 + ‖u‖2,
s.t. H ∈ R

m×n, hb ∈ R
m, hc ∈ R

n, x ∈ R
n, u ∈ R

m,

‖H‖ � μ, ‖hb‖ � δb, ‖hc‖ � δc,

x ∈ Xopt(A + H, b + hb, c + hc), u ∈ Uopt(A + H, b + hb, c + hc).

It is obvious that problems R and C are solvable (not solvable) simultane-
ously, and the solutions are interrelated: A1 = A + H, b1 = b + hb, c1 = c + hc,
x1 = x, u1 = u. Hence, the problems R and C are equivalent.
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This paper is devoted to the study of the problem R, which includes the jus-
tification of the necessary and sufficient conditions for the existence of a solution,
reduction to the auxiliary problem of Mathematical Programming, constructive
formulas, and computational experiments.

The work continues the research performed by the authors earlier and devoted
to both Tikhonov’s method of solving approximate systems of linear algebraic
equations [5,6] and the problem of matrix correction and regularization of
improper LPs [7–14].

It should be noted that a detailed review of papers devoted to the con-
struction of stable solutions to improper LPs could be the subject of a separate
article. We will only mention work [15] and contemporary works close to the
subject of the article [16–20]. §§12–13 of the monography [1] and the work [21]
should be noted as fundamental and novel papers dedicated to matrix correction
of improper problems in LP. The multiparametric approximation was considered
as a correction approach for the improper problems in those papers. The term
“matrix correction” was first introduced in the paper [22] and also problems of
matrix correction for improper problems in LP were formulated as problems of
Mathematical Programming.

2 Mathematical Tools

Consider a “technical” problem, which is the inverse LP. As an example of
problems of this kind, we can mention one recent work [23], devoted to the study
of the problem of the minimal (in the Euclidean norm) change (correction) of
the vector of the objective function that guarantees the optimality of a given
vector taken from the feasible set of vectors.

The problem considered below is inverse because the solutions to the primal
and dual LPs are given, whereas the coefficient matrix is unknown.

Problem C1(x, u, b, c): Given vectors x, c ∈ R
n, u, b ∈ R

m with x, u �= 0 and
x � 0, find a matrix A ∈ R

m×n of a minimal Euclidean norm such that x ∈
Xopt(A, b, c), u ∈ Uopt(A, b, c).

The solution to problem C1(x, u, b, c) is given by the following statement,
based on duality theory (see Theorem 1) and the results of papers [7,13].

Theorem 2. [13]1 Given x, u �= 0, a solution to problem C1(x, u, b, c) exists if
and only if

c�x = u�b = α.

The solution Â to problem C1(x, u, b, c) with the minimal Euclidean norm is
unique and given by the formula

Â =
bx�

x�x
+

ug�

u�u
− α

ux�

x�x · u�u
,

1 The author of the theorem is Alexander Krasnikov.



Regularization and Matrix Correction of Improper LPs 287

where

g = (gj) ∈ R
n, gj =

{
0 if cj � 0 and xj = 0,
cj otherwise.

Moreover,

‖Â‖ =
‖b‖2
‖x‖2 +

‖g‖2
‖u‖2 − α2

‖x2‖ · ‖u‖2 .

Let’s consider one more “technical” problem.

Problem C2(A, b, c, x, u, wb, wc): Given vectors x, c ∈ R
n, u, b ∈ R

m with x � 0,
matrix A ∈ R

m×n, real scalars wb, wc > 0, find a matrix H ∈ R
m×n, vectors

hb ∈ R
m, hc ∈ R

n being a solution to optimization problem

Θ(H,hb, hc) � ‖H‖2 + ‖hb‖2 + ‖hc‖2 → min
(

= Θ̂
)

,

such that x ∈ Xopt(A+H, b+wbhb, c+wchc), u ∈ Uopt(A+H, b+wbhb, c+wchc).
The solution to problem C2(A, b, c, x, u, wb, wc) is given by the following state-

ment.

Theorem 3. The solution to problem C2(A, b, c, x, u, wb, wc) for any data A, b,
c, x, u and wb, wc > 0 exists, is unique and defined by formulas

Ĥ =
(b − Ax) x�

x�x + w2
b

+
ug�

u�u + w2
c

− α
ux�

(x�x + w2
b ) (u�u + w2

c )
, (1)

ĥb = −
(

wb (b − Ax)
x�x + w2

b

+
ωu

u�u + w2
c

− α
wbu

(x�x + w2
b ) (u�u + w2

c )

)

, (2)

ĥc = −
(

wcg

u�u + w2
c

+
υx

x�x + w2
b

− α
wcx

(x�x + w2
b ) (u�u + w2

c )

)

, (3)

Θ̂ = Θ(Ĥ, ĥb, ĥc) = ‖b−Ax‖2+υ2

‖x‖2+w2
b

+ ‖g‖2+ω2

‖u‖2+w2
c
−

− α2

(‖x‖2+w2
b)(‖u‖2+w2

c)
,

(4)

where

ζ = w2
c · x�x + w2

b · u�u + w2
bw2

c , (5)

α =
w2

c

(

c�x − u�Ax
) (

x�x + w2
b

)

+ w2
b

(

u�b − u�Ax
) (

u�u + w2
c

)

ζ
, (6)

υ =
wc

ζ
· (

w2
b

(

c�x − u�Ax
)

+ x�x
(

c�x − u�b
))

, (7)

ω =
wb

ζ
· (

w2
c

(

u�b − u�Ax
)

+ u�u
(

u�b − c�x
))

, (8)

g = (gj) ∈ R
n, gj =

{

0 if
(

c − A�u
)

j
� 0 and xj = 0,

(

c − A�u
)

j
otherwise. (9)
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Proof. Consider the problem C̃1(x̃, ũ, b̃, c̃), which is a modification of the prob-
lem C(x, u, b, c): Given: vectors x, c ∈ R

n, u, b ∈ R
m with x � 0, real scalars

wb, wc > 0 and the vectors

x̃ =
[

x
wb

]

∈ R
n+1, ũ =

[
u
wc

]

∈ R
m+1,

b̃ =
[

b − Ax
υ

]

∈ R
m+1, c̃ =

[

c − A�u
ω

]

∈ R
n+1,

(10)

where υ, ω ∈ R are some parameters.
Find: a matrix

G =
[

H̃ −h̃b

−h̃�
c 0

]

∈ R
(m+1)×(n+1), where H̃ ∈ R

m×n, h̃b ∈ R
m, h̃c ∈ R

n, (11)

having minimal Euclidean norm and such that

x̃ ∈ Xopt

(

G, b̃, c̃
)

, ũ ∈ Uopt

(

G, b̃, c̃
)

. (12)

Suppose that problems C2(A, b, c, x, u, wb, wc) and C̃1(x̃, ũ, b̃, c̃) are solvable.
In this case, the following equivalences take place:

x ∈ Xopt

(

A + H̃, b + wbh̃b, c + wc + h̃c

)

⇔
[

x
wb

]

∈ Xopt

(

G, b̃, c̃
)

, (13)

u ∈ Uopt

(

A + H̃, b + wbh̃b, c + wc + h̃c

)

⇔
[

x
wb

]

∈ Uopt

(

G, b̃, c̃
)

. (14)

From formulas (13)–(14), it follows that the optimal solutions to problems
C2 (A, b, c, x, u, wb, wc) and C̃1(x̃, ũ, b̃, c̃) are connected by the relations

Ĥ = H̃, ĥb = h̃b, ĥc = h̃c, (15)

which, in turn, allow to write

‖G‖2 = ‖H̃‖2 + ‖h̃b‖2 + ‖h̃c‖2 = ‖Ĥ‖2 + ‖h̃b‖2 + ‖h̃c‖2 = Θ̂. (16)

Thus, to prove the theorem, it suffices to verify that the solution to the
problem C̃1(x̃, ũ, b̃, c̃) exists for any values of parameters A, b, c, x, u and wb, wc >
0, further obtain constructive formulas for parameters H̃, h̃b, h̃c and to apply
formulas (15), (16).

Let’s note that due to (10) inequations x̃ �= 0, ũ �= 0 hold for any x, u, among
which x = 0, u = 0. By Theorem 2, a solution to a problem C̃1(x̃, ũ, b̃, c̃) exists
if and only if the following relation is carried out:

c̃�x̃ = ũ�b̃ = α. (17)

The condition (17), by virtue of (10), is equivalent to the following system
of equations:

c�x − u�Ax + wbω = α, (18)
u�b − u�Ax + wcυ = α. (19)
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This system contains two uncertain parameters υ and ω. The fulfillment of
condition (17) can be achieved for any values of A, b, c, x, u and wb, wc > 0
with the appropriate set of these parameters. Thus, by Theorem 2, the matrix
W providing the fulfillment of conditions (12), exists at any values of the indi-
cated above parameters. Also, by Theorem 2, for all values of the referred above
parameters the corresponding matrix Ŵ with minimal Euclidean norm exists
and is unique:

Ŵ =
[

S p
q� θ

]

=
b̃x̃�

x̃�x̃
+

ũg̃�

ũ�ũ
− α

ũx̃�

x̃�x̃ · ũ�ũ
, (20)

‖Ŵ‖2 =
‖b̃‖2
‖x̃‖2 +

‖g̃‖2
‖ũ‖2 − α2

‖x̃‖2 · ‖ũ‖2 , (21)

where S ∈ R
m×n, p ∈ R

m, q ∈ R
n, θ ∈ R, vectors x̃, ũ, b̃ are determined by

formulas (10) for the data A, b, c, x, u, wb, wc, and vector g̃ ∈ R
n+1 is determined

as

g̃ =
[

g
ω

]

, (22)

where vector g is determined by the formula (9) for the given A, x, u and c.
Using block representation (10) for vectors x̃, ũ, b̃, g̃ from (20)–(22), one can
get

Ŵ (υ, ω, α) =

⎡
⎣ b − Ax

υ

⎤
⎦·

[
x� wb

]

x�x + w2
b

+

⎡
⎣ u

wc

⎤
⎦·

[
g� ω

]

u�u + w2
c

−

−α

⎡
⎣ u

wc

⎤
⎦·

[
x� wb

]

(

x�x + w2
b

) · (

u�u + w2
c

) ,

(23)

‖Ŵ (υ, ω, α)‖2 =
‖b − Ax‖2 + υ2

‖x‖2 + w2
b

+
‖g‖2 + ω2

‖u‖2 + w2
c

−

− α2

(

‖x‖2 + w2
b

)

·
(

‖u‖2 + w2
c

) .
(24)

The block representation (23) allows to write down a condition θ = 0 which is
necessary for the transformation of matrix Ŵ into matrix G which is a solution
to problem C̃1(x̃, ũ, b̃, c̃):

θ =
wbυ

x�x + w2
b

+
wcω

u�u + w2
c

− wbwcα

(x�x + w2
b ) · (u�u + w2

c )
= 0. (25)

Conditions (18), (19) and (25) form a system of linear algebraic equations con-
cerning variables υ, ω, and α, which can be rewritten in the following vector-matrix
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form:
⎡

⎢
⎣

wc 0 −1
0 wb −1
wb

x�x + w2
b

wc

u�u + w2
c

− wb

x�x + w2
b

· wc

u�u + w2
c

⎤

⎥
⎦ · q =

⎡

⎣

u�Ax − u�b
u�Ax − c�x

0

⎤

⎦ , (26)

where q = [υ ω α]�.
Denote by Q the matrix of system (26). The solution q∗ =

[
υ∗ ω∗ α∗ ]� to the

system (26) exists and is unique for any x, u, wb, wc, such that wb, wc �= 0. This
can be seen by analyzing the range of values of the determinant of matrix Q:

0 < det (Q) =
w2

c · x�x + w2
b · u�u + w2

bw2
c

w2
c · x�x + w2

b · u�u + w2
bw2

c + x�x · u�u
� 1.

Therefore, a solution to problem C̃1(x̃, ũ, b̃, c̃) exists, is unique and given by the
matrix Ŵ (υ∗, ω∗, α∗), that is, Ŵ (υ∗, ω∗, α∗) = G. Solving the system (26), and
comparing the expressions for υ∗, ω∗, α∗ with formulas (5)–(8), we conclude that
conditions υ = υ∗, ω = ω∗, α = α∗ are satisfied. Taking into account this fact, one
can deduce formulas (1)–(3) from (9) and (23), and (4) from (16) and (24).

3 Main Result

Problem C3(A, b, c, μ, δb, δc): Given vectors c ∈ R
n, b ∈ R

m, matrix A ∈ R
m×n,

real scalars μ, δb, δc > 0. Find a vectors x ∈ R
n, u ∈ R

m, real scalars wb,wc

being the solution to optimization problem

‖x‖2 + ‖u‖2 → min,

such that

x ∈ Xopt(A + H, b + wbhb, c + wchc),
u ∈ Uopt(A + H, b + wbhb, c + wchc),
‖H‖ � μ, ‖wbhb‖ � δb, ‖wchc‖ � δc,

where H, hb and hc are the solutions to the problem C2(A, b, c, x, u, wb, wc).
Let x∗, u∗, w∗

b , w∗
c be a solution to the problem C3(A, b, c, μ, δb, δc), and

H∗, h∗
b , h∗

c be a solution to the problem C2(A, b, c, x∗, u∗, w∗
b , w∗

c ). Based on
Theorem 3, we can prove the following assertion.

Theorem 4. Problem R(A, b, c, μ, δb, δc) has a solution in the form: A1 = A +
H∗, b1 = b + w∗

bh∗
b , c1 = c + w∗

ch∗
c , x1 = x∗, u1 = u∗. For a sufficiently small μ,

δb, δc, this solution is unique.

Numerical Example (taken from [24], the vector c0 is changed). Let the exact
data for the problems L, L∗ have the form

A0 =

⎡

⎣

2 −2 1 1 1/2
1 1 1 0 1/2
3 −1 2 1 1

⎤

⎦, b0 =

⎡

⎣

2
1
3

⎤

⎦, c0 =
[−1 −1 1 1 1

]�
,

x0 =
[
0 1/14 0 17/14 13/7

]�
, u0 =

[
1/3 1/3 2/3

]�
.
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The approximate data have the form A = A0 +
μ

‖ΔA‖ ·ΔA, b = b0 +
δb

‖Δb‖ ·Δb,

c = c0 +
δc

‖Δc‖ · Δc, where

ΔA =

⎡

⎣

0.017 0.051 −0.044 −0.304 0.001
0.449 0.347 0.239 0.339 0.073

−0.074 −0.028 0.483 0.157 −0.471

⎤

⎦ ,Δb =

⎡

⎣

−0.031
−0.343

0.158

⎤

⎦ ,

Δc =
[
0.342 −0.391 −0.186 0.214 −0.363

]�
,

ε = (μ = δb = δc) = 0.5, 0.1, 0.05, 0.01, ..., 0.000005.

The computations show that the problem L(A, b, c) is an improper prob-
lem of LP of the 1st type, and the problem L∗(A, b, c) is an improper problem
of LP of the 2nd type. The results of the numerical solution to the problem
C3(A, b, c, μ, δb, δc) obtained in the Matlab R© environment using the fmincon
solver are shown in Table 1 and Fig. 1. Note that the corresponding solutions to
problem R(A, b, c, μ, δb, δc) (in particular, matrix A1, vectors b1, c1) are easily
obtained by applying Theorem 4.

Table 1. The results of solving two C3(A, b, c, μ, δb, δc) problems.

ε 0.5 0.1

x1(ε)

0.00000000

0.04244959

0.00000000

1.29983478

1.66263558

0.00000000

0.06084441

0.00000000

1.21814139

1.82468616

u1(ε)

0.38460944

0.31771598

0.60208196

0.34637553

0.32949911

0.64607356

w∗
b (ε) 1.37492315 1.69882886

w∗
c (ε) 1.09418157 1.61027491

‖x0 − x1(ε)‖ 0.21445630 0.03435590

‖u0 − u1(ε)‖ 0.08393048 0.02467541

As can be seen from the presented table and graph, the method for solving
an approximate (and, possibly, improper) pair of dual LPs, considered in this
paper, allows us to obtain a stable approximation to the normal solution to an
exact pair of dual LPs.
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Fig. 1. The results of solving a series of C3(A, b, c, μ, δb, δc) problems.
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Abstract. We present here the set of conditions for recursive
optimization-like processes which guarantee their convergence to a given
solution set. These conditions simplify convergence studies for such pro-
cesses by essentially reducing them to the analysis of the processes behav-
ior at arbitrary small vicinity of points outside the solution set. They also
implicitly implement a rather complicated part of the logic of convergence
proofs when there is no strict monotonicity of Lyapunov function along
the process trajectory.

Keywords: Recurrent sequences · Optimization methods ·
Convergence conditions

1 Introduction

We consider recursive algorithms which can be described by relations

xk+1 = Φk(xk), k = 0, 1, . . . , (1)

where Φk(·) can be called recursive operators Φk : E → E. This model is typical
for algorithms for solution of optimization problems min{f(x), x ∈ X} for x
from finite-dimensional euclidean space E. This model of optimization process
stimulated studies of general conditions to ensure the convergence of recursive
optimization algorithms.

One of the general techniques to analyze the convergence of numerical algo-
rithms of multidimensional optimization at the early stages of development of
such algorithms was well-developed Lyapunov theory for asymptotic stability of
ordinary differential equations (ODE), see f.i. [4] and works cited there. This
idea is based first on similarities between recursive optimization processes and
finite difference versions of ODE, and second on similarities between the notion
c© Springer Nature Switzerland AG 2019
I. Bykadorov et al. (Eds.): MOTOR 2019, CCIS 1090, pp. 294–303, 2019.
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of asymptotic stability of ODE and convergence of optimization algorithms. This
technique still remains popular, see f.i. [14] and references there. The latest devel-
opments in this area include the use of Lyapunov technique for the estimation
of the rate of convergence.

Nevertheless, there is an essential difference between ODE and optimization
processes, as the latter are of essentially recursive nature and their rate of con-
vergence is defined in terms of the number of function/gradient calculations,
not in terms of anything like running time for ODE. Moreover, optimization
algorithms, in fact, have very little in common with methods of numerical inte-
gration where the main goal is to keep accurate discrete approximation of the
whole trajectory of ODE.

Therefore the different convergence theories for convergence of optimization
algorithms were developed which use convergence indicators, analogies to Lya-
punov functions but with different convergence conditions of essentially finite
nature. Within this framework, the algorithm for solving a particular problem
is considered as a rule for construction of a sequence of approximate solutions
{xk}, which has to converge to a certain set X� which by definition is a set of
desirable solutions. Typically this set is defined by optimality conditions (for
optimization problems), and the like. We refer to the case when the sequence
{xk} has at least one cluster point in X� as weak convergence.

The most general form of these conditions belongs probably to Zangwill [16]
who formulated necessary and sufficient (!) conditions for weak convergence of
recursive models of optimization algorithms. These conditions were relaxed by
Huard [6], Hu [5] and probably by others. Other forms of convergence condi-
tions were proposed by [8,13]. Eremin [3] suggested the algorithmic model based
on Fejer processes, where the Euclidean distance to solution set is used as the
Lyapunov function for convex feasibility problems and others. For the state-of-
the-art development of this model see [1].

Even if these approaches were quite successful in many areas the problem
of finding the relevant and practically computable convergence indicator which
behaves monotonically on algorithm trajectory remains the hardest part of the
analysis of advanced algorithms. It is especially true for non-differentiable and
stochastic optimization where even descent directions are hard to find. So the
new approach was suggested in the early publication [11] which was further
extended in the number of follow-up works, see [9] for the references. As these
papers are published mainly in Russian and are almost impossible to read in
translation the present paper is intended to popularize this technique for proving
convergence of non-monotone algorithms. It also provides some extension to
this technique to deal with algorithms for approximate solutions of optimization
problems and alike.

2 Notations and Preliminaries

Let E denotes a finite-dimensional vector space with the inner product xy for
x, y ∈ E, and the standard Euclidean norm ‖x‖ =

√
xx. The one-dimensional E
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is denoted nevertheless as R and R∞ = R ∪ {∞}. The unit ball in E is denoted
as B = {x : ‖x‖ ≤ 1}. The linear vector space of bounded closed convex subsets
of E with Minkowski addition and standard multiplication by real numbers is
denoted as C(E). For any X ⊂ E we denote its interior as int(X). The closure
of a set X is denoted as cl{X} and its boundary as ∂X. The distance function
ρ(x,X) between point x and set X ⊂ E is defined as ρ(x,X) = infy∈X ‖x − y‖.
The norm of a set X is defined as ‖X‖ = supx∈X ‖x‖.

3 Convergence Theory

Zangwill [16] very early suggested the following conditions under which an opti-
mizing sequence {xk} converges to a bounded solution set X�. Namely, conver-
gence is guaranteed if the sequence {xk} has the following properties:

Z1 The sequence {xk} is bounded.
Z2 There exists continuous function V (x) : E → R such that

Z2.1 V (x�) = 0 for any x� ∈ X� and V (x) > 0 otherwise;
Z2.2 if {xk} has a cluster point x′ /∈ X� then this sequence has another

cluster point x′′ such that V (x′′) < V (x′).

We can call function V (x) a Lyapunov function by analogue with Lyapunov
stability theory for ordinary differential equations.

The following theorem holds.

Theorem 1. For the sequence {xk} to have a cluster point x� ∈ X� it is neces-
sary and sufficient to have conditions Z1, Z2 satisfied.

Proof. The necessity is obvious for V (x) = dist(x,X�) where dist(·, ·) is the
distance function (see Sect. 2 for definition). The sufficiency is also practically
obvious: consider a sub-sequence {xkt , t = 0, 1, . . . } such that {xkt , t = 0, 1, . . . }
converges to certain x̄ such that

lim
t→∞ V (xkt) = lim inf

n→∞ V (xm) = V (x̄) = V̄ > 0

due to continuity of V on any bounded closed set containing {xk, k = 0, 1, . . . }.
Then x̄ ∈ X� and V̄ = 0 otherwise using Z2.1 we arrive to contradiction.

These conditions are very easy to apply to descent algorithms for optimiza-
tion problems with unique solutions since in these cases the objective functions
of optimization problems normally substitutes the Lyapunov function and con-
ditions Z1, Z2 are easy to check. However, in non-differentiable optimization,
it is not so easy to guarantee monotone property of optimization sequences and
in non-convex cases it is hardly possible to construct a Lyapunov function with
zero value on a potential solution sets.

Therefore the more specific conditions are to be used which were suggested
first in [11] with their more advanced variant from [10]. We formulate them here
as follows.
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A1 The sequence {xk} is bounded;
A2 If {xnt} → x′ /∈ X� then there exists such ε > 0 that for any t

mt = inf{s : ‖xnt − xs‖ > ε, s > nt} < ∞; (2)

A3 There exists continuous function V (x) : E → R such that:
A3.1 The set V� = {V (x�), x� ∈ X�} has everywhere dense complement;
A3.2 For any sequences {xnt}, {xmt}, defined in condition A2

lim sup
t→∞

V (xmt) = V ′′ < V ′ = lim
t→∞ V (xnt) = V (x′); (3)

A4 If {xnt} → x� ∈ X� then ‖xnt+1 − xnt‖ → 0 when t → ∞.

Theorem 2. If conditions A1–A4 are satisfied then every cluster point of the
sequence {xk} belongs to X�.

Proof. Assume, contrary to the statement of the theorem, that the sequence
{xk} has a cluster point x′ /∈ X�. It means that there is a sub-sequence {xnt}
which converges to x′ when t → ∞. Then according to A2 there is an ε > 0 such
that ‖xnt − xmt‖ > ε for some mt > nt and ‖xnt − xs‖ ≤ ε for nt < s < mt.

By condition A3.2 there is a continuous function V (x) such that

lim sup
t→∞

V (xmt) = V ′′ < V ′ = V (x′) = lim
t→∞ V (xnt).

It can be assumed without any loss of generality that the sequence {V (xmt)}
converges to V ′′ when t → ∞. Denote ε = 1

3 (V ′ − V ′′) > 0. Then

V (xmt) < V ′′ + ε = Va < V ′ (4)

and
V (xnt) > V ′ − ε = Vb > Va (5)

for all t large enough.
As Va + γ < Vb for any γ ∈ (0, ε) it is then clear that the sequence {V (xk)}

down-crosses the interval (Va + γ, Vb) infinitely many times and hence it up-
crosses the same interval infinitely many times as well.

It means that there are infinite sub-sequences {pt}, {qt}, t = 1, 2, . . . such
that

V (xpt) ≤ Va + γ < Vb ≤ V (xqt), pt < qt, t = 1, 2, . . . (6)

and
Va + γ < V (xs) < Vb, pt < s < qt, t = 1, 2, . . . . (7)

It can be assumed without any loss of generality that {xpt} converges to a
certain x̃ with {V (xpt)} → V (x̃) ≤ Va + γ. If x̃ ∈ X� then according to A4
|V (xpt+1) − V (xpt)| → 0 and eventually V (xpt+1) becomes smaller than Vb and
hence pt < pt +1 < qt. It implies that V (xpt) < Va +γ < V (xpt+1) and therefore
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V (xpt) → Va + γ. Due to A3.1 the correction γ ∈ (0, ε) can be chosen such that
limt→∞ V (xpt) = Va + γ /∈ V� and hence x̃ /∈ X�. But in this case

rt = min
s>pt

{‖xpt − xs‖ > δ > 0} ∈ (pt, qt) (8)

for δ small enough and

V (xrt) > V (xpt) for all t large enough (9)

or
lim sup

t→∞
V (xrt) ≥ lim

t→∞ V (xpt) = V (x̃); (10)

which contradicts A3.2 and hence proves the theorem.
We complete the paper with the model proof of convergence for quasi-

gradient method of minimization of weakly convex functions.

4 Subgradient Method for Weakly Convex Functions

One of the frequently used classes of non-convex non-differentiable functions is
the class of weakly convex functions. They are becoming popular in the area
of non-convex optimization, mostly because the set of such functions contains
common differentiable ones without convexity requirements. This class is also
closed with respect to maximum operation, at least finite and in many cases
continuous. The review of applications and algorithmic approaches for solving
optimization problems with weakly convex functions can be found for instance
in [2].

The definition of weakly convex function [12] goes like following.

Definition 1. Function f : E → R is called weakly convex if for any x there
exists a set ∂f(x) such that for all y

f(y) − f(x) ≥ g(y − x) + r(x, y) (11)

for arbitrary g ∈ ∂f(x) where the reminder term is such that r(x, y)/‖x−y‖ → 0
when y → x locally uniformly in x.

By locally uniform we mean that for any ε > 0 there is δ > 0 such that
r(z, y)/‖z − y‖ ≤ ε when ‖z − x‖ ≤ δ, ‖y − x‖ ≤ δ. By analogy with con-
vex functions the set ∂f(x) can be called a sub-differential of f at point x. It
is immediately can be seen that ∂f(x) is a convex set and that due to locally
uniform smallness of r(x, y) with respect to ‖x − y‖ the sub differential ∂f(x)
considered as a multi-function of x is upper-semicontinious. As in convex case the
directional derivative f ′(x, d) of weakly convex f(·) at point x in the direction
d can be computed from the sub-differential ∂f(x) as

f ′(x, d) = lim
δ→+0

δ−1(f(x + δd) − f(x)) = sup
g∈∂f(x)

gd = (∂f(x))d (12)
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It remains to notice that the similar, but slightly less general, notion of general-
ized differentiability was suggested in [7] and later studied in [15, see Definition
8.3, page 301] under the name of the regular sub-gradient.

From the point of view of optimization theory the necessary condition for the
minimization problem minx f(x) = f(x�) is the expected 0 ∈ ∂f(x�). Therefore
it is quite natural to consider a sub-gradient method

xk+1 = xk − λkgk, k = 0, 1, . . . (13)

with certain initial point x0 and step multipliers λk > 0 for minimization prob-
lems with weakly convex functions. The subgradient gk used in this recursive
relationship is picked up in an arbitrary way from subdifferential ∂f(xk). Analy-
sis of convergence of the algorithm (13) is complicated however by the fact that
the direction gk is not generally a descent direction and moreover contrary to the
convex case ∂f(x) is not a monotone set-valued mapping. It excludes monotonic-
ity of two common convergence indicators for the optimizing trajectories {xk}:
values of objective function f(xk) and distances dist(xk,X�) to the solution set
X�. Hence traditional means to prove convergence of (13) are hardly suitable and
we use this algorithm to demonstrate application of the convergence conditions
A1–A4. To simplify the demonstration we focus on key steps A2, A3, which
are the most difficult conditions to prove.

We need also one auxiliary result on the “averaging” effect of iterations
between nt and mt from A2. In fact, the ability to take this effect into account
is one of the attractive features of condition A3. The effect can be described by
the following lemma.

Lemma 1. Let D is a closed convex bounded subset of E with dist(0,D) = δ > 0
and {σk} ⊂ (0, 1] is a sequence of scalar weights such that σk → 0 when k → ∞
and

∑
k σk = ∞. Then there is such N that for any sequence {xk} ⊂ D there is

m ≤ N that
ymxm+1 ≥ δ2/2, (14)

where {yk} is a Cesare-like averaging of {xk}:
y1 = x1; yk+1 = (1 − σk)yk + σkxk+1, k = 1, 2, . . . (15)

The number N depends on D and on the sequence of weights {σk}.
Proof. Assume contrary to the lemma statement that there is a sequence {xk}
such that yk+1xk ≤ δ2/2 for all k = 1, 2, . . . where the sequence {yk} is defined
by (15).

Notice that in any case {yk} ⊂ D and therefore δ ≤ ‖yk‖ ≤ ‖D‖. Then

‖yk+1‖2 ≤ ‖(1 − σk)yk + σkxk+1‖2
= ‖yk‖2 + 2σkyk(xk+1 − yk) + σ2

k‖xk+1 − yk‖2
≤ ‖yk‖2 + 2σkyk(xk+1 − yk) + σ2

k‖xk+1 − yk‖2 (16)
≤ ‖yk‖2 + 2σk(δ2/2 − ‖yk‖2) + 4σ2

k‖D‖2
≤ ‖yk‖2 + 2σk(δ2/2 − δ2) + 4σ2

k‖D‖2
≤ ‖yk‖2 − σkδ2 + 4σ2

k‖D‖2 ≤ ‖yk‖2 − σkδ2/2,
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for sufficiently large k such that −σkδ2 + 4σ2
k‖D‖2 ≤ −σkδ2/2. The universal

lower bound K for such k which does not depend on a sequence {xk} may be
defined from the inequality

sup
k≥K

σ2
k ≤ δ2/8‖D‖2. (17)

Summing up the last inequality in (16) with respect to k > K obtain

δ2 ≤ ‖yK+L‖2 ≤ ‖yK‖2 − δ2/2
∑L

t=0
σK+t

≤ ‖D‖2 − δ2/2
∑L

t=0
σK+t → −∞

when L → ∞. As this is impossible the upper bound for L follows from the
inequality

L̂∑

s=0

σK+s ≤ 2(‖D‖2 − δ2)/δ2. (18)

Summing estimates (17) and (18) together we may ensure that for any N ≥ K+L
with K and L defined by their respective lower bounds there must be m ≤ N
such that ymxm+1 ≥ δ2/2. Notice that both estimates (17) and (18) do not
depend upon sequence {xk} which finally proves the lemma.

With this lemma, we are ready to show that conditions A2, A3 holds pro-
viding that the other conditions are already satisfied. So we assume that there
is a sub-sequence {xnt} → x′ /∈ X�, where X� is a set of stationary points
x� : 0 ∈ ∂f(x�). Due to convexity of ∂f(x′) and upper semi-continuity of ∂f(·)
it implies that

0 /∈ P = co(∂f(x), x ∈ U1 = {x : ‖x′ − x‖ ≤ 4ε}) (19)

for ε > 0 but small enough. If we assume that {xk}K ⊂ U1 for K large enough,
then all {gk}K ⊂ P and hence by separation theorem there is a vector p such
that gkp ≥ δ > 0. Then

xk+1p = xkp − λkgkp ≤ xkp − λkδ → −∞ when k → ∞. (20)

which is contradiction. Therefore the sequence {xk} must leave U1 and hence
must leave U2 = {x : ‖xnt − x‖ ≤ ε} ⊂ U1 where t is large enough that xnt ∈
U3 = {x : ‖x′ − x‖ ≤ ε}. It means that A2 is satisfied and the sequence {mt}
such that

mt = inf{s : ‖xnt − xs‖ > ε, s > nt} (21)

is well defined. Now we use the objective function f(x) as Lyapunov function
and demonstrate that A3 is satisfied.

To simplify notations we assume nt = 0, ρτ = λnt+τ , τ = 0, 1, . . .. Then t
iteration of (13) can be represented as (Fig. 1)

xt − x0 = (
t∑

τ=0

ρτ )zt
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x′

xnt

xmt

U1

U3

U2

Fig. 1. U1, U2, U3 neighborhoods of x′ and xnt . xnt → x′, ‖xmt − xnt‖ > ε

where zt can be obtained by the averaging process

zτ+1 = (1 − στ )zτ + στgτ , τ = 1, 2, . . . , t

where στ = ρτ/(
∑τ

t=0 ρt). Of course στ → 0 when τ → ∞ and it is easy to
check that

∑
τ στ = ∞. Also as λt+1/λt → 1 then στ → 1/τ and according to

Lemma 1 there is t0 ≤ N such that

0 < δ2 ≤ zt0gt0+1 = gt0+1(xt0 − x0)/(
∑

s

ρs)

or

f(xt0) − f(x0) ≤ gt0+1(xt0 − x0) + r(x0, xt0) ≤ −δ2(
t0∑

s=0

λs) + r(x0, xt0).

The reminder term can be estimated from above as

|r(xt0 , x0)| ≤ (δ2/‖P‖2)‖xt0 − x0‖ ≤ (δ2/2‖P‖)(
t0∑

s=0

λs)‖P‖ ≤ (δ2/2)
t0∑

s=0

λs

which gives

f(xt0) − f(x0) ≤ −(δ2/2)
t0∑

s=0

λs.

By substituting x0 with xt0 we can determine in the same manner t1 such that

f(xt1) − f(xt0) ≤ −(δ2/2)
t1∑

s=t0

λs.
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After summation of two last inequalities we have

f(xt1) − f(x0) ≤ −(δ2/2)
t1∑

s=0

λs

and can continue in the same manner by constructing the indices t2, t3, . . . as far
as tl ≤ mk, l = 1, 2, . . . , L with 0 < tl+1 − tl ≤ N and

f(xtl) − f(x0) ≤ −(δ2/2)
tl∑

s=0

λs, l = 1, 2, . . . (22)

Clear enough this process stops after a finite number L of steps and we obtain
the following inequality (getting back to original notations):

f(xmt) − f(xnt) = f(xtL) − f(xnt) + f(xmt) − f(xtL)

≤ −(δ2/2)
∑tL

s=0
λs + f(xmt) − f(xtL)

= −(δ2/2)
∑mt

s=0
λs + f(xmt) − f(xtL)

+(δ2/2)
∑mt

s=0
λs − (δ2/2)

∑tL

s=0
λs.

As 0 < mt − tL ≤ N both |f(xmt) − f(xtL)| → 0 and

(δ2/2)|
mt∑

s=0

λs −
tL∑

s=0

λs| = (δ2/2)|
mt∑

s=tL+1

λs| → 0.

when t → ∞.
At the same time

ε < ‖xmt − xnt‖ ≤
mt∑

s=nt

λs‖gs‖ ≤ ‖D‖
mt∑

s=nt

λs

so
∑mt

s=nt
λs ≥ ε/‖D‖ and finally we obtain the key inequality

f(xmt) − f(xnt) ≤ − δ2

2‖D‖ε + ξt

where ξt → 0 when t → ∞. By passing to the limit we obtain A3:

lim sup
t→∞

f(xmt) ≤ f(x′) − δ2

2‖D‖ε < f(x′)

and therefore confirms convergence of (13) at least to stationary points.
Notice that namely the analysis of the cumulative effect of iterations in the

vicinity of x′ ∈ X� allowed to demonstrate asymptotic local monotonicity of
{f(xk)} aka Lyapunov function of this algorithm.
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Abstract. Walsh–Vries approach to matrix games with mixed strate-
gies is considered. According to this approach, the payment function is
defined not as the mathematical expectation of a random gain in a long
series of parties, but as its quantile (VaR-estimate) for a given level of
risk. The properties of such games are studied, and the methods for their
solution are suggested.

Keywords: Matrix games · Mixed strategies · VaR-criterion · Linear
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1 Introduction

The matrix game is the simplest mathematical model of the antagonistic conflict
of two persons each of which has a finite set of possible strategies [1–3]. It is
completely determined by its payoff matrix

A =

⎛
⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

. . .
am1 am2 . . . amn

⎞
⎟⎟⎠ .

Each row of this matrix corresponds to one of the admissible strategies of the
first player (from his strategy set I = {1, . . . , m}), and each of its columns
corresponds to one of the admissible strategies of the second player (from his
strategy set J = {1, . . . , n}). The elements of the matrix aij determine the
winning of the first player and, at the same time, the losses of the second one, if
the players use the strategies i and j, respectively. Row and column indexes are
called pure strategies of the players.

Following the principle of guaranteed result, the first player seeks a row index
i0, such that

max
i

min
j

{ai,j} = min
j

{ai0,j}
(

=: v∗
)
.
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Using this strategy, he gets win at least v∗ (this is the lower value of the game).
Analogously, the second player is interested in finding a column index j0, such
that

min
j

max
i

{ai,j} = max
i

{ai,j0}
(

=: v∗ ≥ v∗
)
.

Using this strategy, he gets loss no more than v∗ (this is the upper value of the
game). The selected row and column are called minimax pure strategies of the
players.

Usually v∗ > v∗. If the lower and upper values of the game coincide, then
the game has an equilibrium (in pure strategies), and the player who deviates
from his minimax strategy alone will only worsen his result and improve the
result of the opponent. Unfortunately, the matrix game in pure strategies has
rarely equilibrium, so if the players play it only once, then the result can’t be
predicted.

When, however, the players have to repeat the game many times (potentially
an infinite number of times), they can use so-called mixed strategies. It means
that to disorient the opponent, the players can alternate their pure strategies
in every new party according to some random rule and aim not at winning (or
losses) in a one party, but at some criterion like average return in a long series
of such parties.

Let us denote by

X = {x ∈ Rm
+ : x1 + x2 + . . . + xn = 1}

the set of all mixed strategies of the first player (all of them are the probability
distributions on the set I), and by

Y = {y ∈ Rn
+ : y1 + y2 + . . . + yn = 1}

the set of all mixed strategies of the second player (all of them are the probability
distributions on the set J ). If the players choose their strategies x ∈ X and
y ∈ Y respectively, then the income of the first player ξ(x, y) (and the losses of
the second player) is random value with discrete distributions function

F (z;x, y) = P
(
ξ(x, y) < z

)
=

∑
ij:aij<z

P
(
ξ(x, y) = aij

)
=

∑
ij:aij<z

xiyj .

The classic approach to mixed strategies exploits the average payoff, which
is equal to

E(x, y) := xT Ay =
∑
i,j

aijxiyj .

In this instance, the first player looks for his optimal mixed strategy x̄ ∈ X, such
that

max
x∈X

min
y∈Y

xT Ay = min
y∈Y

x̄T Ay
(

=: v̄∗
)
.

Similarly, the second player is interested in finding his optimal mixed strategy
ȳ ∈ Y , for which

min
y∈Y

max
x∈X

xT Ay = max
x∈X

xT Aȳ
(

=: v̄∗).
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By the von Neumann theorem, every matrix game in mixed strategies and aver-
age income always has an equilibrium [1], so the average result of the game is
known in advance.

Unfortunately, the classic approach does not take into account the risk of
too much deviation of the random payoff from its average (i.e., its variance).
This deficiency was overcome in [4], where games with a median criterion were
considered, and in [5,6], where a quantile criterion corresponding to a certain
specified level of confidence was also investigated. Among the closest topics in
making decision area, we note the works [7–11].

In this paper we continue a line [5,6] and deal with quantile criterion. Let the
strategies x ∈ X and y ∈ Y be chosen, and the acceptable risk level α ∈ (0; 1) be
given close to 0. The quantile (or VaR-estimate) of random payoff ξ(x, y) of the
game corresponding to this level is defined as the greatest value ξ̄α(x, y) such
that

P(ξ(x, y) < ξ̄α(x, y)) < α.

This means that the random income ξ(x, y) of the first player will take unfavor-
able to him values, namely, less than ξ̄α(x, y), with probability less than α, that
is quite rare, and conversely, the value of ξ(x, y) will be greater or equal to the
VaR-estimate with probability greater than 1 − α, that is, almost always.

Thus, to maximize quantile of his payoff the first player must seek his strategy
x̄α ∈ X such that

min
y∈Y

VaRα(x̄α, y) = max
x∈X

min
y∈Y

VaRα(x, y)
(

=: v̌∗
)
. (1)

Similarly, the second player seeks the opponent strategy ȳα ∈ X such that

max
x∈X

VaRα(x, ȳα) = min
y∈Y

max
x∈X

VaRα(x, y)
(

=: v̌∗ ≥ v̌∗
)
; (2)

here VaRα(x, y) = ξ̄α(x, y).
Below, to find v̌∗ and v̌∗, we develop some methods other than the methods

proposed in [6]. The distinction is discussed in the next section.

2 Two Different Classes of the Methods

In what follows, it will be convenient to range various elements of matrix A in
ascending order. We denote the elements of the resulting array as

ξ1 < ξ2 < . . . < ξN−1 < ξN , N ≤ mn. (3)

Here, each ξk matchs one or more equal elements of the payout matrix. So we
have a very interesting detailed grid. It is easy to see that our var-score always
coincides with one of the elements of this grid. Namely,

VaRα(x, y) = max{ξk : P
(
ξ(x, y) < ξk

)
< α}.
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As a consequence,

P
(
ξ(x, y) < z

) ≥ α ∀z > VaRα(x, y).

Due to a general ideas from [5], instead of direct solving the problems (1),
(2), it is natural to consider the following array of the inverse instances: for every
ξk from the series (3) to find a minimum of corresponding acceptable risk

αk = min
x∈X

max
y∈Y

P
(
ξ(x, y) < ξk

)
. (4)

These elements form an auxiliary array

0 = α1 ≤ α2 ≤ · · · ≤ αN ≤ 1.

To solve (1), (2) now it is sufficiently to find index K such that αK < α ≤ αK+1.
Remark that to find αk from (4) one can use linear programming methods.
Since series (3) may be too long, in [6] a more compact grid was constructed

which approximates the initial one. Let S denote an arbitrary subset of the rows
of the matrix A, |S| denote the number of elements of S. The elements of the
compact grid are

βk = max
S:|S|=k

[
min

j
max
i∈S

{aij}
]
, k = 1, . . . ,m.

For any β from interval βk−1 < β ≤ βk a series of simple estimates were proposed
like that

1/k ≤ max
x∈X

min
y∈Y

P(ξ(x, y) ≥ β) ≤ 1 − (k − 1)/m

and others.
Though usually m < N , and pure strategies are the more simple object for

investigation than mixed strategies, nevertheless it is not so easy to work with
a triplet of max-min operations.

Counterpoise, we return to a series of exact games (4) and try to construct
a more efficient algorithm to solve them. For this purpose, we generate a series
of linear programs which differ each other only in a few coefficients of constraint
matrix. Then we adopt standard simplex-technology to analyze these programs
in a consecutive mode, as it takes place in parametric programming. Also, we
give some additional estimates for optimal values in (4). These estimates help
us to drop some points of the grid (3).

3 Description of the Auxiliary Matrix Games

Let us associate with (3) the following auxiliary series

Q1 ≤ Q2 ≤ . . . ≤ QN ≤ QN+1, (5)
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composed of Boolean matrices of special type

Qk =

⎛
⎜⎜⎝

0 1 0 . . . 0
1 0 1 . . . 0

. . .
0 1 0 . . . 1

⎞
⎟⎟⎠

m×n

.

These matrices consist only of 0 and 1 and are built according to the payoff
matrix so that units are in those positions, where aij < ξk. The rest of the
positions are 0. Besides, let us add into consideration the zero matrix Q1 and
the matrix QN+1 which is completely filled with 1.

Using the new notation, we can rewrite F (ξk;x, y) = xT Qky. Therefore
(recall that α is very small),

(
VaRα(x, y) = ξk

)
⇐⇒

(
xT Qky < α ≤ xT Qk+1y

)
.

Thus, since all ξk are strictly increasing, we can first find

Kα(x, y) = max{k : from any k, such that xT Qky < α},

and only then take VaRα(x, y) = ξKα(x,y).
Similarly, we can replace tasks (1), (2) with reformulated search tasks

K∗ := min
y∈Y

Kα(x̄α, y) = max
x∈X

min
y∈Y

Kα(x, y), (6)

K∗ := max
x∈X

Kα(x, ȳα) = min
y∈Y

max
x∈X

Kα(x, y). (7)

Here v̌∗ = ξK∗ and v̌∗ = ξK∗ . Of course, K∗ ≤ K∗.
Along with matrices from the set (5) let us consider a series of auxiliary

matrix games with mixed strategies

Γ (Q1), Γ (Q2), . . . , Γ (QN ). (8)

In contrast to the classical setting, we assume that in these games, players have
switched roles, so that the first player minimizes his winnings, and the second
one maximizes his loss. Each such game, however, have an equilibrium, and its
lower and upper values coincide.

We denote the values of the auxiliary games by −∞ < vk < +∞ and the
corresponding optimal strategies of the players by x̄(k) ∈ X and ȳ(k) ∈ Y ,
respectively. We repeat once more that

vk = min
x∈X

max
y∈Y

xT Qky = max
y∈Y

min
x∈X

xT Qky = x̄(k)T
Qkȳ(k), 1 ≤ k ≤ K + 1.

Remark 1. Note that the first several matrices from series (5) will have at least
one zero-row and therefore the corresponding matrix games will have zero value
and a trivial Wald-like solution.
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In the general case, when all the rows of the matrix Qk contain at least one
unit, a solution of the introduced auxiliary game can be found by reducing this
game to an equivalent dual pair of linear programming problems of the form

0 <
1
vk

= max{‖x‖1 : QT
k x ≤ e, x ≥ 0} = min{‖y‖1 : Qky ≥ e, y ≥ 0}. (9)

Here (1/vk)x̄(k) is a solution of the first (primal) problem and (1/vk)ȳ(k) is
a solution of the second (dual) one; e = (1, 1, . . . , 1)T is a vector of suitable
dimension, composed of units; ‖z‖1 = |z1| + |z2| + · · · + |zs| for z ∈ Rs.

Lemma 1. The sequence of numbers vk does not decrease.

Proof. As already mentioned, for positive vk+1 we have

0 <
1

vk+1
= max{‖x‖1 : QT

k+1x ≤ e, x ≥ 0}.

The optimal vector ¯̄x of this problem is nonnegative and Qk+1 ≥ Qk. There-
fore the same optimal vector turns out to be feasible for the preceding problem

1
vk

= max{‖x‖1 : QT
k x ≤ e, x ≥ 0}.

So the optimal value of the latter cannot be less than 1/vk+1. In other words,
we have vk+1 ≥ vk. 


The Lemma 1 states that in the given sequence one can single out the number
1 ≤ K̄ < N such that

vK̄ < α ≤ vK̄+1. (10)

Recall that, for the indices k = 1, . . . , N , the inequalities hold

x̄(k)T
Qky ≤ vk = x̄(k)T

Qkȳ(k) ≤ xT Qkȳ(k), ∀x ∈ X, y ∈ Y. (11)

The question arises: how are these quantities related to the solutions of problems
(1), (2)?

Lemma 2. The inequality K̄ ≥ K∗ is valid.

Proof. Let us return to the inequalities (10), (11). From the definition of index
K̄ it follows that

α ≤ vK̄+1 ≤ xT QK̄+1ȳ(K̄ + 1) ∀x ∈ X.

Consequently,
Kα(x, ȳ(K̄ + 1)) ≤ K̄ ∀x ∈ X.

Hence
max
x∈X

Kα(x, ȳ(K̄ + 1)) ≤ K̄

and, respectively,

K∗ = min
y∈Y

max
x∈X

Kα(x, y) ≤ max
x∈X

Kα(x, ȳ(K̄ + 1)) ≤ K̄,

that is what we seek. 
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Lemma 3. The inequality K̄ ≤ K∗ holds.

Proof. Once again, let us turn to the inequalities (10), (11). By the definition of
the index K̄, we have one more relation

α > vK̄ ≥ x̄(K̄)T
QK̄y ∀y ∈ Y.

Consequently,
Kα(x̄(K̄), y) ≥ K̄ ∀y ∈ Y.

Hence
min
y∈Y

Kα(x̄(K̄), y) ≥ K̄

and, respectively,

K∗ = max
x∈X

min
y∈Y

Kα(x, y) ≥ min
y∈Y

Kα(x̄(K̄ + 1), y) ≥ K̄,

that is what we ask. 

Theorem 1. Any mixed matrix game (1), (2) with quantile-criterion always
has an equilibrium. The value of this game coincides with ξK̄ , where the index
K̄ is determined by the relations (11) . More over, the strategy x̄(K̄) is optimal
for the first player and the strategy ȳ(K̄ + 1) is optimal for the second one.

Proof. This assertion follows from the Lemmas 1, 2 and the fact that K∗ ≤ K∗.

4 How to Find the Index K̄

Let us discuss now, how we can solve the matrix games (8) with the help of the
primal simplex method taking into account a discrete variation of the coefficients
of its constraint matrix [12].

Note that the first game Γ (Q0) has a trivial solution. Also, the first few
games may have the auxiliary matrices Qk with null rows too. Such games may
be solved elementary by Wald’s principle.

Only when each row of the matrix Qk has at least one unit, the task becomes
nontrivial.

In this case, we can find a solution of the game Γ (Qk) by solving the linear
programming problem (9). Reduce the latter to standard form

max{z = x1 + x2 + · · · + xm : QT
k x + u = e, x ≥ 0, u ≥ 0}, (12)

where u is a vector of slack variables.
To solve the linear program formulated above, let us apply the so-called

revised primal simplex method. Recall, that this variant of the primal simplex
method works only with inverse basis matrix and not with a simplex-tableau as
a whole. As a starting basis, we can take one including all slack variables.

Suppose that we have already solved the nontrivial game Γ (Qk) with index k.
Proceeding to the next problem Γ (Qk+1), we see that the coefficients of (12) have
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changed (one or several additional units have added to this constraint matrix).
How can we take these changes into account in such a way that the optimal
inverse basis matrix obtained for the previous linear program will be useful for
further calculations of the simplex method?

If the modified columns of Qk do not belong to the optimal basis of the
previous step, then the calculations may be continued without any troubles.
The troubles appear only if the modified column is a basic one. In this case,
it is convenient to convert this column into an artificial one. To do this, we
replace the corresponding coefficient of the objective function by −M , where M
is very large constant. Simultaneously we add the new content of this column
to the constraint matrix. Thus the number of structural variables in (12) will
increase by one. After that, the simplex method can continue execution from
the previous basis, since the basis matrix and the matrix inverse to it remain
unchanged, while the basic solution itself remains feasible. All now needs to be
done is to calculate the new reduced costs (i.e., new simplex estimates of the
nonbasic variables).

Calculations may be continued according to the usual scheme of the primal
simplex method. After finding the next optimal basic solution, it will turn out
that all artificial variables have left it (both the former and the newly created
ones).

Thus, in the transition from one auxiliary matrix game to another, in the
current linear programming problem, new structural variables may appear, while
some of the former structural variables may become artificial. At the end of each
optimization cycle, the artificial variables become equal to zero, and we can
remove them from the current linear program.

The outlined technique can be used not only for the transition from matrices
Qs with a small index to matrices Qr with a large index but also for a transition
in the opposite direction.

Let us illustrate the proposed technique by a small numerical example.

Example 1
Consider the game Γ (Q), where Q = E, E is the identity (3 × 3)-matrix. The
corresponding linear program (12) is given by the following simplex tableau:

Basis x1 x2 x3 u1 u2 u3 r.h.s.

z −1 −1 −1 0 0 0 0

1 0 0 1 0 0 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1

Let the variables x1, x2, x3 be basic. The corresponding basis matrix coin-
cides with the identity one. To make sure that this basis is optimal, let us exclude
the basic variables from the objective function:

Thus, the value of the game Γ (Q) is equal to 3, and the optimal strategy of
the first player is x̄ = (1/3; 1/3; 1/3).
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Basis x1 x2 x3 u1 u2 u3 r.h.s.

z 0 0 0 1 1 1 3

x1 1 0 0 1 0 0 1
x2 0 1 0 0 1 0 1
x3 0 0 1 0 0 1 1

Let the auxiliary matrix of the next game differ from the previous one by one
unit into position (3.1). The corresponding simplex tableau changes as follows
(here, the extra unit is highlighted):

Basis x1 x2 x3 u1 u2 u3 r.h.s.

z −1 −1 −1 0 0 0 0

1 0 1 1 0 0 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1

In order not to start calculations with the slack basis again, we will slightly
expand the number of the variables of the program, namely, return the previous
state of the modified column to the table. We denote this column with a new
name x∗

3. Emphasize that x∗
3 will play the role of an artificial variable, that is,

it will get a large penalty constant M > 0 in the corresponding position of the
objective function:

Basis x1 x2 x∗
3 x3 u1 u2 u3 r.h.s.

z −1 −1 M −1 0 0 0 0

1 0 0 1 1 0 0 1
0 1 0 0 0 1 0 1
0 0 1 1 0 0 1 1

Now we can continue the calculation using the previous optimal basis, tak-
ing into account that both the base matrix and the matrix inverse to it are
unchanged, as well as the transformed right-hand sides:
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Basis x1 x2 x∗
3 x3 u1 u2 u3 r.h.s.

z −1 −1 M −1 0 0 0 0

x1 1 0 0 1 1 0 0 1
x2 0 1 0 0 0 1 0 1
x∗
3 0 0 1 1 0 0 1 1

To determine new reduced costs let us eliminate the basic unknowns from
the objective function:

Basis x1 x2 x∗
3 x3 u1 u2 u3 r.h.s.

z 0 0 0 −M 1 1 −M 2 −M

x1 1 0 0 1 1 0 0 1
x2 0 1 0 0 0 1 0 1
x∗
3 0 0 1 1 0 0 1 1

Next, we apply the usual rules of the simplex method to chose an incremental
variable and a blocking constraint. These will be the column x3 and the row x∗

3

respectively (they are shown below in bold):

Basis x1 x2 x∗
3 x3 u1 u2 u3 r.h.s.

z 0 0 0 −M 1 1 −M 2 −M

x1 1 0 0 1 1 0 0 1
x2 0 1 0 0 0 1 0 1
x3 0 0 1 1 0 0 1 1

The variable x3 enters a basis and the artificial variable x∗
3 leaves it. Now

we can remove the variable x∗
3 from the tableau. After the corresponding pivot

transformation we get:

Basis x1 x2 x3 u1 u2 u3 r.h.s.

z 0 0 0 1 1 0 2

x1 1 0 0 1 0 −1 0
x2 0 1 0 0 1 0 1
x3 0 0 1 0 0 1 1

Thus, we obtain an optimal basic solution of the modified game in one step
of the procedure for improving the previous basic solution. The value of the
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updated game is equal to 1/2, this value corresponds to the optimal strategy
x̄ = (0; 1/2; 1/2) of the first player.

Remark 2. When we pass from one auxiliary matrix game to another one with a
greater number of units in the payoff matrix, the value of an auxiliary game grow
quite quickly, so very few steps will be required to achieve a given level of risk.
It also means that a nontrivial solution of the original VAR-problem with small
α ≈ 0 can occur only if a payoff matrix is of sufficiently large size m = O(α−1).

Remark 3. The process of constructing auxiliary games (8) requires a preliminary
ordering of the elements of the payoff matrix A in ascending order. However, this
regulating can be done gradually, step by step. Initially, to form Q2 it is sufficient
to find only the smallest elements of matrix A and only then expand the list of
ordered elements gradually, as the index of subsequent auxiliary linear program
grows.

Next, we present two lemmas which give us lower and upper estimates for the
value of the auxiliary games. These lemmas can help us in the implementation
of our algorithm above.

Let us introduce the notation

wR
K(i) =

n∑
j=1

qK
ij , 1 ≤ i ≤ m,

for the numbers of units in each of the rows of the matrices QK = (qK
ij ). We also

introduce the notation

wC
K(j) =

m∑
i=1

qK
ij , 1 ≤ j ≤ n,

for the numbers of units in each of the columns of the matrices QK = (qK
ij ).

Lemma 4. The value of the auxiliary game Γ (QK) satisfies the two-side
inequality

1
m

· min
1≤i≤m

{wR
K(i)} ≤ vK ≤ 1

n
· max
1≤j≤n

{wC
K(j)}.

Proof. As it is well-known, to find the value of the game G(QK), we can solve
not only the linear program (9) but another one as well, namely

vK = min{λ : λe ≥ QT
Kx, eT x = 1, x ≥ 0}.

From the system of inequalities and equations of this program, it follows that,
if λ and x are feasible, then

mλ = λeT e ≥ eT QT
Kx =

m∑
i=1

n∑
j=1

qK
ij xi =

m∑
i=1

wR
K(i)xi

≥ min
1≤i≤m

{wR
K(i)}

m∑
i=1

xi = min
1≤i≤m

{wR
K(i)}.
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Thus, in any case,

λ ≥ 1
m

· min
1≤i≤m

{wR
K(i)},

that is what we want.
The second estimate may be obtained by repeating of similar arguments for

the dual problem

vK = max{λ : λe ≤ QKy, eT y = 1, y ≥ 0}.

The proof is complete. 

Next, let us consider the transition from the game Γ (QK) to the game

Γ (QK+1). Recall that the matrix QK+1 contains one or more additional units
as compared to the matrix QK . Denote by WK+1 ⊂ {1, . . . , m} × {1, . . . , n} the
set of all pairs of indices (i, j) such that qK

ij = qK+1
ij . These are the positions in

the matrix QK+1 such that consist of the additional units in question. Also set

IK+1(j) = {i : (i, j) ∈ WK+1}, JK+1(i) = {j : (i, j) ∈ WK+1}.

Lemma 5. If the game Γ (QK) is already resolved and the optimal strategies x̄
and ȳ of the players are known, then the two-side inequality holds

vK + min
1≤i≤m

∑
j∈JK+1(i)

ȳj ≤ vK+1 ≤ vK + max
1≤j≤n

∑
i∈IK+1(j)

x̄i.

Proof. Let us again turn to the linear program

vK = min{λ : λe ≥ QT
Kx, eT x = 1, x ≥ 0}.

Obviously, the properties of the optimal strategies imply

vK = max
1≤j≤n

m∑
i=1

qK
ij x̄i.

Using this strategy in the next game, we have

vK+1 ≤ λ = max
1≤j≤n

m∑
i=1

qK+1
ij x̄i = max

1≤j≤n

(
m∑

i=1

qK
ij x̄i +

m∑
i=1

(qK+1
ij − qK

ij )x̄i

)

≤ max
1≤j≤n

m∑
i=1

qK
ij x̄i + max

1≤j≤n

m∑
i=1

(qK+1
ij − qK

ij )x̄i

= vK + max
1≤j≤n

∑
i∈IK+1(j)

x̄i.
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To obtain the second estimate, we can repeat similar arguments for the dual
problem

vK = max{λ : λe ≤ QKy, eT y = 1, y ≥ 0}.

The proof is complete. 

The above lemmas can help us to choose a good initial problem for starting

the calculations and simplifying the subsequent parametric analysis.

Example 2
Suppose, that some commercial firm needs to select a decision from the given
finite set of alternatives, to maximize its profit. A discrete random factor with
unknown law of the probability distribution also influences on the future result.
The following matrix consists of the initial data about the possible profit

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 2 0 1 0 0 0 0 1 −1 1
1 0 0 0 −4 0 1 −1 0 0 0
0 0 −2 0 1 1 0 0 1 0 1
0 0 1 0 0 −1 0 1 −3 0 1
1 1 0 1 −1 0 0 0 0 1 −3
0 0 1 0 0 5 −2 1 0 0 2
0 −3 0 −1 1 0 2 0 1 0 0
0 0 1 1 −1 0 0 1 0 −3 0
0 0 −1 0 1 −3 1 0 1 1 0
1 0 0 1 0 0 1 −2 1 0 0
0 3 0 −2 1 0 0 0 2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Its rows correspond to the possible variants of the firm’s decision, and the
columns correspond to various realizations of the random factor.

If the number of the game parties to be played is sufficiently large (poten-
tially infinite), then we can focus not on winning in a one party, but on some
average return. However, negative winnings mean the ruin of the firm and are
unacceptable (at least the probability of such an outcome should be small).

The application of the classical approach associated with maximiza-
tion of average outcome leads to minimax strategies x̄ = (0.039; 0.002;
0.014; 0.137; 0.147; 0.166; 0.087; 0.052; 0.189; 0.107; 0.059) for the first player
and ȳ = (0.074; 0.097; 0.014; 0.136; 0.006; 0.068; 0.27; 0.179; 0.019; 0.06; 0.074)
for the second player. These strategies provide a positive average outcome
E(x̄, ȳ) = 0.140 for the first player. Note that the corresponding ruin proba-
bility equal to P(ξ(x̄, ȳ) < 0) = 0.186.

Next, let us find the strategy of the company, which minimize the probability
of ruin. We construct an auxiliary 0–1 matrix with the units located in the
positions of the outcomes associated with ruin. The matrix looks as



Methods for Matrix Games with Mixed Strategies 317

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The solution of the problem (12) with matrix Q gives us the optimal strategy
of the first player x̄ = (0.143; 0; 0.143; 0.143; 0.143; 0.143; 0.143; 0; 0; 0.143; 0)
and the inequality P(ξ(x̄, y) < 0) ≤ 0.1428 for all y ∈ Y . It is less than what
was obtained with the classical approach to the problem.

The next auxiliary matrix is

Q′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 1 1 1 0 1 0
0 1 1 1 1 1 0 1 1 1 1
1 1 1 1 0 0 1 1 0 1 0
1 1 0 1 1 1 1 0 1 1 0
0 0 1 0 1 1 1 1 1 0 1
1 1 0 1 1 0 1 0 1 1 0
1 1 1 1 0 1 0 1 0 1 1
1 1 0 0 1 1 1 0 1 1 1
1 1 1 1 0 1 0 1 0 0 1
0 1 1 0 1 1 0 1 0 1 1
1 0 1 1 0 1 1 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Solving the dual problem to (12) with matrix Q′, we find the optimal strategy
of the second player ȳ = (0; 0; 0; 0; 0.167; 0.333; 0; 0; 0.167; 0.167; 0.167) and
get the inequality P(ξ(x, ȳ) ≤ 0) ≥ 0.666 for all x ∈ X. Thus, x̄ is optimal
strategy for the firm that guarantees its non-bankruptcy for any y ∈ Y with any
acceptable risk level from interval 0.143 < α < 0.6667.

5 Conclusion

Matrix games in mixed strategies are considered, in which the payoff function
is defined not as the mathematical expectation of a random return in a long
series of game parties, but as its guaranteed VaR-estimate at a given risk level.
The properties of such games are studied, and novel methods for their solution
additional to known ones are proposed.
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Simulation of Flow Regimes
of Non-isothermal Liquid Films
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Abstract. For moderate Reynolds numbers, a nonlinear partial differ-
ential equation of the free surface state of a non-isothermal liquid film
is presented. The algorithm was developed and the program was writ-
ten in Matlab R2017b using the Symbolic Math Toolbox module. The
wave characteristics of the liquid film under heat and mass transfer are
calculated. The flow regimes of a vertical liquid film with a maximum
perturbation growth rate are distinguished, and the effect of temperature
gradients and surface viscosity on them is investigated.

Keywords: Liquid film · Non-linear mathematical model ·
Instability · Increment

1 Introduction

Studies of thin viscous liquid layers (liquid film) flows are carried out both the-
oretically [1–3,9,11,12,18,21] and experimentally [2,4–8,10]. The relevance and
practical significance of these studies are associated with the implementation of
liquid film flows in numerous devices, for example, in evaporators, absorbers,
distillation columns, crystallizers, refrigeration equipment, as well as liquid film
is the basis of many technological processes in chemical, petrochemical, food
and other industries [14,15]. Low thermal resistance and a large contact sur-
face at low specific fluid flow rates make liquid film a very effective tool in the
process of interfacial heat and mass transfer. In addition, in many cases there
is an additional intensification of transport processes due to wave formation.
Various physical and chemical factors, such as temperature effects (temperature
gradients) and the presence of insoluble surfactants (surface viscosity) on the
free surface of the film affect the wave characteristics of the liquid film and the
process of wave formation [5,13,14,19,20,22]. Experimental studies of the flow
regimes of liquid films [14,16] show that the regimes with the maximum value of
the increment are the most stable with respect to small perturbations. The max-
imum value of the increment and the corresponding wave number determine the
optimal flow regime of the liquid film. Mathematical modeling of optimal flow
regimes of liquid films allows us to determine the influence of various physical
and chemical factors on the corresponding wave characteristics.

The novelty of the study is related to the effect of temperature gradients and
surface viscosity on the wave characteristics of the liquid film.
c© Springer Nature Switzerland AG 2019
I. Bykadorov et al. (Eds.): MOTOR 2019, CCIS 1090, pp. 319–328, 2019.
https://doi.org/10.1007/978-3-030-33394-2_25
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2 Mathematical Model

We consider the flow of a thin viscous liquid layer with a free surface under the
action of gravity on a solid impermeable surface with a temperature T in the
coordinate system OXY (Fig. 1), where the OX axis is directed in the direction of
the layer flow and the OY is directed perpendicular to the liquid layer. Presence
of insoluble surfactants on the free surface of the liquid film was also taken into
account. Liquid film is described by the system of Navier-Stokes equations and
the continuity equation with boundary conditions [20,22].

Fig. 1. Flow of liquid film.

The nonlinear mathematical model of the state of the free surface of the
liquid film for moderate Reynolds numbers has the form [20]:
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The coefficients of Eq. (1) include physical and chemical parameters: Re—
Reynolds number, Fx—Froude number, σ—surface tension, M—temperature
gradients, N—surface viscosity.

a1 = −Reσ

3
, a4 = −Re2FxN

2
,

a6 = −ReFy

3
− ReM

2
+

3
40

Re3F 2
x , a7 =

5
24

Re2Fx,

a11 = −ReFx, a13 = −1, a14 = −2ReFx,

a16 = −ReFy − ReM +
9
20

Re3F 2
x , a17 =

5
6
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2
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2
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Re2Fx, a44 = 2a40, a45 = −2ReFy, a49 = −Re2FxN,

a51 = −2Reσ, a55 =
1
2
a54, a58 = −3

2
Re2FxN.

(2)

We consider the linear part of Eq. (1). Using the solution type ψ (x, t) =
A exp i (kxx − ωt), we obtain the dispersion equation

ω (a7kx + i) + a1k
4
x − a4ik

3
x − a6k

2
x + a11ikx = 0. (3)

Let us split real and imaginary parts of Eq. (3) and get the solutions for increment
ωi and phase velocity cr

ωr =
Y − XZ

1 + Z2
, (4)

ωi = X + ωrZ, (5)

cr =
ωr

kx
, (6)

where X = a1k
4
x − a6k

2
x, Y = a4k

3
x − a11kx, Z = a7kx.

Numerical study of liquid film flows for the range of Reynolds numbers [1,15]
in the framework of Eq. (3) allows to solve a number of important problems:

1. Finding areas of instability of the flow of non-isothermal liquid films under
the influence of various physical and chemical factors, such as temperature
gradients and surface viscosity.
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2. Selection of optimal flow regimes of liquid films. Optimal modes are flow
regimes of liquid film with a maximum value of the increment. Optimal flow
regimes are needed for correct operation of heat and mass transfer devices.

3. Calculation of phase velocity and wavelength for wave numbers corresponding
to optimal flow regimes.

We present a model of the algorithm for calculating the wave characteristics.
1: for Re = 5 to 15 do
2: Compute equation coefficients a1, a2, ..., a58

3: Construct symbolic expressions for ωi, cr
4: Get first derivatives for ωi, cr
5: Compute roots of derivatives
6: print kxmax

, ωimax
, crmin

7: end for

3 Computational Experiments

Unstable modes of liquid films are characterized by positive values of incre-
ment. On the increment curve (Fig. 2), the following points could be noted:
the maximum value of the increment and the zero value of the increment with
the corresponding wave numbers. The set of points kmax for the studied range
of Reynolds numbers form the curve of the maximum growth of disturbances
(Fig. 3) and the set of points k0—neutral stability curve.

For the free flow of a liquid film of water, Table 1 presents maximum values
of the increment, wave number and wavelength.

Phase velocity of the liquid film in the region of instability varies within the
limits 2 ≤ cr ≤ 3, which corresponds to the experimental data of the authors [4–
7]. Figure 4 shows values of minimal phase velocity that correspond to the regime
with the maximum value of increment.

Table 1. Optimal regimes of the flow

Re ωimax kmax λ

5 0.015357 0.072459 86.713455
6 0.023877 0.083407 75.331313
7 0.033763 0.093321 67.328672
8 0.044279 0.102114 61.531077
9 0.054640 0.109758 57.245706
10 0.064189 0.116292 54.029236
11 0.072502 0.121807 51.583077
12 0.079388 0.126422 49.700115
13 0.084838 0.130264 48.234194
14 0.088956 0.133455 47.080929
15 0.091903 0.136103 46.164965

Table 2. Optimal flow regimes of film
falling over the heated surface

Re ωimax kmax λ

5 0.030210 0.085813 73.219488
6 0.046217 0.098381 63.865784
7 0.063997 0.109499 57.381366
8 0.081920 0.119092 52.759059
9 0.098542 0.127194 49.398544
10 0.112905 0.133926 46.915380
11 0.124586 0.139461 45.053350
12 0.133577 0.143985 43.637913
13 0.140113 0.147671 42.548412
14 0.144543 0.150675 41.700353
15 0.147236 0.153122 41.033778
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Table 3. Optimal flow regimes of film with insoluble surfactants

Re ωimax kmax λ

5 0.029069 0.084120 74.693091

6 0.043593 0.095363 65.887001

7 0.059045 0.104714 60.003557

8 0.073901 0.112144 56.027958

9 0.086995 0.117757 53.357396

10 0.097706 0.121748 51.608198

11 0.105892 0.124356 50.525784

12 0.111732 0.125823 49.936514

13 0.115556 0.126373 49.719269

14 0.117740 0.126199 49.787755

15 0.118636 0.125465 50.079185

Fig. 2. Increment of liquid film.

We investigate the effect of temperature gradients arising during the flow of
the liquid film over the heated surface. This flow is characterized by increase
in values of the increment (Fig. 5) and a decrease in the values of phase veloc-
ity (Fig. 6). Table 2 shows wave characteristics of optimal film flow regimes. In
region of instability of the liquid film, depending on the magnitude of the tem-
perature gradients, rupture of film is possible. In Fig. 7 critical values of the
temperature gradients are presented, where possible gaps in film structure could
lead to emergency modes [17].
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The presence of insoluble surfactants (oils, fats) on the free surface of film
leads to stabilization of the flow. The increment value is significantly reduced
(Fig. 8), while phase velocity increased (Fig. 9). Table 3 shows wave characteris-
tics of optimal water film flow with insoluble surfactants present.

Fig. 3. Curve of the maximum growth of disturbances.

Fig. 4. Phase velocity of liquid film.
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Fig. 5. Increment of liquid film flowing over the heated surface.

Fig. 6. Phase velocity of liquid film flowing over the heated surface.
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Fig. 7. Critical values of temperature gradients.

Fig. 8. Increment of liquid film with insoluble surfactants
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Fig. 9. Phase velocity of liquid film with insoluble surfactants

4 Conclusion

In the framework of free surface state differential Eq. (1), numerical simulation
of unstable flow regimes of a vertical liquid water film at moderate Reynolds
numbers is carried out.

Optimal flow regimes of the liquid film characterized by the maximum incre-
ment and the minimum phase velocity are revealed.

The destabilizing effect of temperature gradients on the wave characteristics
of the liquid film was studied. Critical values of the temperature gradients that
lead to destruction of film are calculated.

Presence of insoluble surfactants on the free surface of film leads to the
appearance of surface viscosity forces that stabilize the film flow. Wave charac-
teristics of the liquid film with the combined effect of temperature gradients and
surface viscosity are calculated.

Results of computational experiments are aimed at improving the technolo-
gies in liquid films and operation of film devices.

The main contribution of this article is pointing out optimal liquid flow
regimes. That includes adding insoluble surfactants into the liquid film in order
to achieve more stable flow when liquid films are used in different heated devices.
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Abstract. The paper considers α-sets that are the generalization of
convex sets. This concept was introduced by V.N. Ushakov in the 2000s
to classify the reachable sets of controlled systems according to the degree
of their nonconvexity. Since then a lot of properties of such sets have
been discovered and proven. However, not all the “natural” properties
are fulfilled. We have proved two “unnatural” properties for such sets in
the paper. Firstly, we provide an example of a non-self-intersecting curve,
a connected segment of which is “less convex” than the entire curve in
terms of α-sets. Secondly, we show that there is an α-curve which is not
representable as a graph of the function for all α > 0.

Keywords: α-Set · Nonconvexity · α-Curve

1 Introduction

The α-sets are the generalization of the convex sets along with E. Michael’s
paraconvex sets [1], and with the weakly convex sets according to Vial, Efimov
and Stechkin [2]. Note that each generalized-convex set of these classes is associ-
ated with a numerical parameter, a measure of nonconvexity, and these measures
satisfy certain relationships [2,3].

The following notations are used [4]:
co M is the convex hull of set M ;〈
x∗, x∗〉 is the scalar product of x∗ and x∗ from R

n;

||x∗|| =
〈
x∗, x∗

〉1/2 is the standard norm (generated by the scalar product) in
the Euclidean space;

∠(x∗, x∗) = arccos

〈
x∗, x∗〉

||x∗|| · ||x∗|| ∈ [0, π] is the angle between vectors x∗ and x∗;

con M = {y = λx : λ � 0, x ∈ M} is the cone in R
n spanned by set M and with

the vertex at zero.
Projection p∗ of the point x∗ onto set M is the closest to x∗ point from M .
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Definition 1. Let A be a closed set in the n-dimensional Euclidean space R
n

and z∗ ∈ R
n\A. By ΩA(z∗) we denote the set of all projections of point z∗

onto A, and by HA(z∗) = con(co ΩA(z∗) − z∗) we denote the cone spanned by
co ΩA(z∗) − z∗ = {z − z∗ : z ∈ co ΩA(z∗)}.

Let us define the function αA(z∗) = max
h∗,h∗∈HA(z∗)

∠(h∗, h∗) ∈ [0, π] and sup-

pose that αA = sup
z∗∈Rn\A

αA(z∗) ∈ [0, π].

Then the set A is called α-set, where α = αA.

2 Results Statement

The α-sets have the following properties (Lemmas 1 and 2).

Lemma 1. [5] Let a � c < d � b, f ∈ C[a, b], Γ = {(x, y) : y = f(x), a � x �
b}, γ = {(x, y) : y = f(x), c � x � d}.

Then αΓ = sup
z∗∈R2\Γ

αΓ (z∗) � αγ = sup
z∗∈R2\γ

αγ(z∗).

Lemma 1 shows that any single connected segment γ of the graph Γ of the
continuous function has the measure of nonconvexity αγ not exceeding αΓ . In
the next section, the counterexample 1 is given, which implies that this lemma
cannot be applied to an arbitrary non-self-intersecting curve.

Lemma 2. [6] Let scalar function f(·), defined on the closed set M ⊂ R
n, be

Lipschitz with constant L � 0. Then the sets hypo f(·), epi f(·), and gr f(·) are
βα-sets, where βα ≤ α, α = 2arctan L.

The following new result (counterexample 2) indicates that the converse is
wrong in some sense. It will be constructively proved in Sect. 4, and the following
theorem can be formulated.

Theorem 1. There exists a such non-self-intersecting curve γ ⊂ R
2 with an

arbitrarily small αγ > 0 that it is not a graph of some function in any rectangular
coordinate system.

3 Counterexample 1

Let’s consider a non-self-intersecting curve consisting of two arcs of circles and
its simply connected segment consisting of one semicircle (Fig. 1).

Let’s describe these curves in detail and define the curve Γ = γ ∪ ω, where

γ = {(x, y) : x2 + y2 = 1, y ≤ 0},

ω =
{

(x, y) :
(
x − 1

2

)2

+
(
y − 1

4

)2

≤ 5
16

, y ≤ 0, x ≥ 1
2

}
.

In other words, γ is the lower half of the unit radius circle centered at O =
(0, 0), where the end points of this curve are points A = (−1, 0) and B = (1, 0).
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Fig. 1. Curve Γ and its single connected segment γ.

The curve ω is an arc of the circle with radius
√

5
4

centered at O1 =
(1

2
,
1
4

)

with the endpoints at B = (1, 0) and C =
(1

2
,
1 − √

5
4

)
.

The purpose of the counterexample 1 is to prove that αΓ < αγ .
It is obvious that αγ = α(γ)(O) = π. It is more difficult to calculate the

value of αΓ . Firstly, a bisector [7] β of the curve Γ (Fig. 2) will be constructed.

Fig. 2. Bisector β.

The bisector β is represented by the raw DK =
{

(x, y) : x = 0, y ≥
2 +

√
5

4

}
at a large distance from the curve Γ . The coordinates of the point

D =
(
0,

2 +
√

5
4

)
can be easily calculated from the equality of the lengths

|AD| = |CD| = |BD| =
1
4

√
25 + 4

√
5. Next, the bisector is divided into two

segments DO1 and DE. The point E =
(

− 3 +
√

5
24

, 0
)

is the last bisector’s

point, for which ρ(E, γ) = ρ(E,A). Next, an arbitrary point F of the bisector β
satisfies the equality of the distances ρ(F, γ) = |FC| on the curvilinear segment
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EG. On the last curvilinear segment GB, an arbitrary point X of the bisector
β satisfies the equality ρ(X, γ) = ρ(X,ω).

It is quite obvious that all other points of the plane do not belong to the
bisector of the curve Γ , so, they have only one projection onto Γ . It is possible
to prove this fact more accurately by dividing the remaining parts of the plane
into the sectors and examining each of them.

Now we estimate the function αΓ (X), where X is a point of the bisector β,
on each segment of the bisector.

(1) The raw DK. It’s obvious that max
X∈DK

αΓ (X) = αΓ (D) = ∠(
−→
DA,

−→
DB) =

arccos

〈 −→
DA,

−→
DB

〉

|DA|2 = arccos
(128

√
5 − 255
545

)
≈ 1.513 < π.

(2) The segment DO1\{D}. It’s obvious that max
X∈DO1\{D}

αΓ (X) = αΓ (O1) =

∠(
−→

O1C,
−→

O1B) = arccos

〈 −→
O1C,

−→
O1B

〉

|O1C|2 = arccos
(√

5
5

)
≈ 1.107.

(3) The segment DE\{D}. On this segment, max
X∈DE\{D}

αΓ (X) = αΓ (E) =

∠(
−→
EA,

−→
EC) = arccos

〈 −→
EA,

−→
EC

〉

|EA|2 = arccos
(

− 80 + 9
√

5
109

)
≈ 2.735.

(4) The segment EG. First, we calculate the coordinates of the point G =
(xG, yG) from the equation

|GC| = |GH|, (1)

where the point H is the projection of the point G onto the semicircle γ, and
consequently |GH| = |OH| − |OG|. At the same time, the point C is also the

projection of the point G onto the circle
{

(x, y) :
(
x − 1

2

)2

+
(
y − 1

4

)2

≤ 5
16

}
.

Therefore, the segment CG is the perpendicular to this circle at the point C,

which means that the respective coordinates are xG = xC =
1
2
. In order to

calculate yG, rewrite the Eq. (1) in the coordinate form:

1 − √
5

4
− yG = 1 −

√
1
4

+ y2
G.

Hence, G =
(1

2
,−

√
5

4

)
.

Now, rewrite the equation of the curve EG in the coordinate form. Let arbi-
trary point F = (x, y) belong to the segment EG of the bisector, which implies
that the equation ρ(F, γ) = |FC| holds. This equation has the following coordi-
nate form:

1 −
√

x2 + y2 =

√
(
x − 1

2

)2

+
(
y − 1 − √

5
4

)2

or, after transformation,

3x2 + (
√

5 − 1)xy +
5 +

√
5

2
y2 − 3 +

√
5

4
x +

1 +
√

5
4

y − 7 + 3
√

5
32

= 0. (2)
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We provide this equation in the canonical form. The coefficients of the cor-
responding quadratic form

a11x
2 + 2a12xy + a22y

2

are a11 = 3, a12 =
√

5 − 1, and a22 =
5 +

√
5

2
. It is known that, in order to

exclude the mixed product, the required rotation angle of the coordinate plane
can be calculated from the equation

tan(2ϕ) =
2a12

a11 − a22

or, equally,

tan2 ϕ +
a11 − a22

a12
tan ϕ − 1 = 0.

A suitable solution of this equation is ϕ = arctan
(1 − √

5
2

)
. Accordingly, the

Eq. (2) will not contain the mixed product in the new coordinate system Ox1y1,
associated with the old coordinate system Oxy by the change of coordinates

{
x = cos ϕ · x1 − sinϕ · y1,
y = sin ϕ · x1 + cos ϕ · y1,

or ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x =

√
5 − √

5
10

· x1 −
√

5 +
√

5
10

· y1,

y =

√
5 +

√
5

10
· x1 +

√
5 − √

5
10

· y1.

In the new coordinates, the Eq. (2) takes the form:

4x2
1 +

3 +
√

5
2

y2
1 +

√
5 + 2

√
5

2
y1 =

7 + 3
√

5
32

.

By extracting the full squares, we obtain the following canonical equation of
an ellipse:

4x2
1 +

(1 +
√

5
2

)2

·
(

y1 +

√
10 − 2

√
5

8

)2

=
(1 +

√
5

4

)2

.

It can be written in the parametric form:
⎧
⎪⎪⎨

⎪⎪⎩

x1 =
1 +

√
5

8
cos τ,

y1 = −
√

10 − 2
√

5
8

+
1
2

sin τ,

τ ∈ [0, 2π].
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Accordingly, the curve EG can be parameterized in the original coordinates
as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = xF (τ) =

√
5 − √

5
10

· 1 +
√

5
8

cos τ −
√

5 +
√

5
10

(
−

√
10 − 2

√
5

8
+

1
2

sin τ
)
,

y = yF (τ) =

√
5 +

√
5

10
· 1 +

√
5

8
cos τ +

√
5 − √

5
10

(
−

√
10 − 2

√
5

8
+

1
2

sin τ
)
,

τ ∈
[

− arctan
(9 − √

5
2

)
+ π, arctan

(1 +
√

5
2

)
+ π

]
.

Thus, αΓ (F ) = ∠(
−→
FC,

−→
OF ) =

〈 −→
FC,

−→
OF

〉

|FC| · |OF | = f(τ), where

f(τ) =

(1
2

− xF (τ)
)

· ( − xF (τ)
)

+
(1 − √

5
4

− yF (τ)
)

· ( − yF (τ)
)

√(1
2

− xF (τ)
)2

+
(1 − √

5
4

− yF (τ)
)2

· √
x2

F (τ) + y2
F (τ)

.

By analyzing f ′(τ) in the interval
[
−arctan

(9 − √
5

2

)
+π, arctan

(1 +
√

5
2

)
+π

]
,

we find that the maximum of the function f(τ) is attained at the point τ0 =

− arctan
(9 − √

5
2

)
+ π.

So, we have established that

max
F∈EG

αΓ (F ) = αΓ (E) = arccos
(

− 80 + 9
√

5
109

)
≈ 2.735.

(5) Let us consider the last curvilinear segment GB. We present its equation in
the coordinate form. Assume that X ∈ GB. Then ρ(X, γ) = ρ(X,ω). Since

ρ(X, γ) = |XO1| −
√

5
4

, and ρ(X,ω) = 1 − |XO|, the equation of the curve
GB will have the following form:

√(
x − 1

2

)2

+
(
y − 1

4

)2

−
√

5
4

= 1 −
√

x2 + y2

or

17 + 8
√

5
4

x2 − xy + (5 + 2
√

5)y2 − (2 +
√

5)x − 2 +
√

5
2

y − 9 + 4
√

5
4

= 0.

After the substitution ⎧
⎪⎨

⎪⎩

x =
2√
5
x1 − 1√

5
y1,

y =
1√
5
x1 +

2√
5
y1,
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and the segregation of the complete squares, we get the canonical equation of
the ellipse:

(4 + 2
√

5)
(
x1 −

√
5

8

)2

+
(21

4
+ 2

√
5
)
y2
1 =

82 + 37
√

5
32

.

This equation has the following parametric form:
⎧
⎪⎪⎨

⎪⎪⎩

x1 =
√

5
8

+
4 +

√
5

8
cos τ,

y1 =

√
4 + 2

√
5

4
sin τ.

The segment GB of the bisector has the following parameterizations in the
original coordinates:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x = x(τ) =
2√
5

·
(√

5
8

+
4 +

√
5

8
cos τ

)
− 1√

5
·
√

4 + 2
√

5
4

sin τ,

y = y(τ) =
1√
5

·
(√

5
8

+
4 +

√
5

8
cos τ

)
+

2√
5

·
√

4 + 2
√

5
4

sin τ,

τ ∈
[
arctan(2

√
11 + 5

√
5) − π,− arctan

( 2
11

√
10

√
5 − 4

)]
.

Let us introduce the function

g(τ) = αΓ (X) = ∠(
−→
OX,

−→
XO1) = arccos

〈 −→
OX,

−→
XO1

〉

|OX| · |XO1|

= arccos
x
(1

2
− x

)
+ y

(1
4

− y
)

√
x2 + y2 ·

√(1
2

− x
)2

+
(1

4
− y

)2
.

By analyzing its derivative g′(t) (note that g′
(

− π

2

)
= 0, g′′

(
− π

2

)
< 0), we

can conclude that

sup
X∈GB\{B}

αΓ (X) = g
(

− arctan
( 2

11

√
10

√
5 − 4

)
= ∠(

−→
OB,

−→
BO1)

= arccos
(

− 2√
5

)
≈ 2.678.

So, we have constructed an example of the non-self-intersecting curve Γ , for

which αΓ = arccos
(

− 80 + 9
√

5
109

)
≈ 2.735, but its simply connected segment γ

has a value αγ = π.
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4 Counterexample 2 (Proof of Theorem 1)

With the purpose of convenience, the following definition will be used.

Definition 2. Any curve γ, for which αγ = α, will be called α-curve.

As an α-curve, which can not be represented as a graph, we consider a spiral
σ parametrically defined as follows:

σ =
{
(x, y) : x = ekϕ cos ϕ, y = ekϕ sinϕ,−∞ < ϕ < ∞)

} ∪ {(0, 0)},

where the point O = (0, 0) is added to σ with the purpose of the closure, since
we are able to calculate its measure α of the nonconvexity only for the closed
sets.

The curve σ cannot be represented as a graph of the function for some k.
Let us prove that having chosen some parameter k, we can ensure that ασ

takes any value from the interval (0, π).
Let us take an arbitrary point P0 = (x0, y0) ∈ σ corresponding to the param-

eter value ϕ = ϕ0, and formulate the tangent equation at the point P0:
{

x = x0 + x′(ϕ0)t,
y = y0 + y′(ϕ0)t,

t ∈ (−∞,∞).

Since
x′(ϕ0) = kekϕ0 cos ϕ0 − ekϕ0 sin ϕ0 = kx0 − y0,

y′(ϕ0) = kekϕ0 sin ϕ0 − ekϕ0 cos ϕ0 = ky0 + x0,

then the tangent equation can be represented in the form:
{

x = x0 + (kx0 − y0)t,
y = y0 + (ky0 + x0)t,

t ∈ (−∞,∞).

By using this form, we can write out the parametrization of the normal to
curve σ at the same point P0:

{
x = x0 + (x0 + ky0)t,
y = y0 + (y0 − kx0)t,

t ∈ (−∞,∞).

Having expressed the parameter t in both equations, we obtain the canonical
normal equation:

x − x0

x0 + ky0
=

y − y0
y0 − kx0

. (3)

Let P1 = (x1, y1) be the some other point on the curve σ. Then we can draw
a normal passing through the point P1 to the curve σ described by the same
kind equation, namely, the equation

x − x1

x1 + ky1
=

y − y1
y0 − kx1

. (4)
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Suppose that these two normals intersect at some point P = (x, y), and this
point belongs to the bisector. If points P0 and P1 are the projections of the point
P onto σ, then the following equality should be true:

√
(x − x0)2 + (y − y0)2 =

√
(x − x1)2 + (y − y1)2,

which after the transformation will take the following form:

2x(x1 − x0) + 2y(y1 − y0) = x2
1 + y2

1 − x2
0 − y2

0 . (5)

The Eqs. (3)–(5) are the necessary conditions for the point P to belong to the
bisector of the curve σ. The solution of the system (3)–(5) contains the bisector
of curve σ.

From (3) and (4) it follows that the coordinates of point P = (x, y) are
expressed through the coordinates of the points P0 and P1 as follows:

x =
k

1 + k2

(x2
1 + y2

1)(x0 + ky0) − (x2
0 + y2

0)(x1 + ky1)
x1y0 − x0y1

,

y =
k

1 + k2

(x2
1 + y2

1)(y0 − kx0) − (x062 + y2
0)(y1 − kx1)

x1y0 − x0y1
.

Including them into Eq. (5), we get the following equation

2k

(1 + k2)(x1y0 − x0y1)

(
−2(x2

0 +y2
0)(x

2
1 +y2

1)+(x0x1 +y0y1)(x2
0 +y2

0 +x2
1 +y2

1)
)

=
1 − k2

1 + k2
(x2

1 + y2
1 − x2

0 − y2
0).

Since x0 = ekϕ0 cos ϕ0, y0 = ekϕ0 sin ϕ0, x1 = ekϕ1 cos ϕ1, y1 = ekϕ1 sin ϕ1,
then our equation can be represented as follows:

2k
(
2e(ϕ1−ϕ0)−cos(ϕ1−ϕ0)(1+e2k(ϕ1−ϕ0))

)
(1−k2)(e2k(ϕ1−ϕ0)−1) sin(ϕ1−ϕ0).

Denote β = ϕ1 − ϕ0. Then the last equation is converted to the form:

2k

1 − k2
· 2ekβ − cos β(1 + e2kβ)

e2kβ − 1
= sin β. (6)

If P0 and P1 are the projections of the point P onto σ, then the sections PP0

and PP1 can not intersect the curve σ by the definition of the projection. We
assume that ϕ1 > ϕ0. Based on this additional information, we conclude that
the points from the bisector of the curve σ correspond to the smallest positive
root of the Eq. (6).

The dependence of the roots of the Eq. (6) on parameter k is shown in Fig. 3.
Here, we will omit the cumbersome asymptotic analysis of the Eq. (6). How-

ever, note that since the roots of the Eq. (6) continuously depend on its coeffi-
cients, then, by decomposing them into the Taylor series we can prove that one
of its roots β → π as k → ∞ and β → 2π as k → 0. We can also notice that
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Fig. 3. The roots of the Eq. (6).

β0 = 0 is a root of Eq. (6) for any value of parameter k. This root corresponds
to the two coincident projections.

Consider the quadrilateral OP0PP1 (Fig. 4).
By direct calculation, it is easy to show that ∠(

−→
OP0,

−→
PP0) = ∠(

−→
OP1,

−→
PP1) =

arccos

〈 −→
OP0,

−→
PP0

〉

|OP0| · |PP0| = arccos
√

1 + k2. Indeed,
−→

OP0= (x0, y0) and the normal

Eq. (3) implies that
−→

PP0= t · (x0 + ky0, y0 − kx0), wherein
〈 −→

OP0,
−→

PP0

〉
=

t(x2
0 + y2

0), and |OP0| · |PP0| = t(x2
0 + y2

0)
√

1 + k2.
Next, note that ∠OP0P = π − ∠(

−→
OP0,

−→
PP0) can be considered as an adjoin-

ing corner, and ∠OP1P = ∠(
−→

OP1,
−→

PP1) can be considered as a cross corner.
Therefore, ∠OP0P +∠OP1P = π. Since the sum of the angles in the quadrangle
OP0PP1 equals ∠P1OP0 + ∠OP0P + ∠P0PP1 + ∠OP1P = 2π, then

ασ(P ) = ∠P0PP1 = π − ∠P1OP0 = π − (2π − (ϕ1 − ϕ0)) = β − π.

Taking into account the asymptotic of angle β at k → 0 and k → ∞, as well
as the continuous dependence of β on k, we see that ασ(P ) → 0 at k → ∞ and
ασ(P ) → π at k → 0. The value of ασ(P ) depends only on the value of the
parameter k. It follows that ασ = ασ(P ) for any point P of the bisector σ.

So, ασ equals to any value from the interval (0, π) with the proper choice of
the parameter k. Theorem 1 has been proved.
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Fig. 4. Curve σ.

5 Conclusion

Using the counterexample 1, we have shown that a simply connected segment
γ of α-curve Γ may be less convex than the entire curve. However, the value of
αγ is quite close to π in the constructed example. In this regard, the hypothesis
arises that if αΓ is sufficiently small then it is impossible to identify the simply
connected less convex segment. If so, then it is interesting to find the largest
critical value of αΓ for which this property is still relevant.

In the second counterexample, we have constructed an α-curve, which can not
be represented as a graph of the function, regardless of the coordinate rotation.
However, the constructed curve has one end at the point (0, 0). It can be supposed
that the α-curve, without the ends and with a sufficiently small α, can still be
represented as a graph of the function in some coordinate system.
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Abstract. Medicine is one of the rich sources of data, generating and
storing massive data, begin from description of clinical symptoms and
end by different types of biochemical data and images from devices. Man-
ual search and detecting biomedical patterns is complicated task from
massive data. Data mining can improve the process of detecting patterns.
Stomach disorders are the most common disorders that affect over 60% of
the human population. In this work, the classification performance of four
non-linear supervised learning algorithms i.e. Logit, K-Nearest Neigh-
bour, XGBoost and LightGBM for five types of stomach disorders are
compared and discussed. The objectives of this research are to find trends
of using or improvements of machine learning algorithms for detecting
symptoms of stomach disorders, to research problems of using machine
learning algorithms for detecting stomach disorders. Bayesian optimiza-
tion is considered to find optimal hyperparameters in the algorithms,
which is faster than the grid search method. Results of the research
show algorithms that base on gradient boosting technique (XGBoost
and LightGBM) gets better accuracy more 95% on the test dataset. For
diagnostic and confirmation of diseases need to improve accuracy, in the
article, we propose to use optimization methods for accuracy improve-
ment with using machine learning algorithms.

Keywords: Stomach disorder · Machine learning algorithm · Decision
support system · Bayesian optimization

1 Introduction

Computer applications and tools are being used in almost every field to assist the
work on a daily basis and the medicine is not an exception to that [1]. Currently,
there are various Machine Learning (ML) methods that are being applied for
disease diagnosis. It is strongly believed that it will be more widely used in
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biomedical systems in this century [2]. This is because of the high complexity
included in the clinical data. The aim of the work is, to perform a comparative
study between four ML methods on stomach disorders and identify the top ones
according to performance metrics which can be incorporated into the clinical
decision support system. Gastrointestinal diseases are considered to be one of the
most common disorders which affect more than 46% of the human population,
where over 60% of the population is affected by stomach disorders [3]. Generally,
it is easier to find medical data related to digestive system disorders and ethical
reports are more likely to be accepted and permission is more likely to be granted
to conduct research. Due to the aforementioned reasons, five stomach diseases
were selected: stomach flu, gastroesophageal reflux (heartburn), gastritis, peptic
ulcer, and stomach cancer [4]. Currently, there is continuous on-going research
in the field of medical diagnosis and treatment. Tremendous work has been done
by applying the supervised learning methods i.e., Neural Networks, Regression
models, and Support Vector Machines for diagnosis diseases like diabetes, heart
attack, cancer, and kidney diseases [2,5,6]. Further, the methods of background
information and implications in the medical field are described.

2 Background Information and Implications

This section provides brief information on four ML algorithms i.e., Logistic
Regression (Logit), K-Nearest Neighbour, XGBoost and LightGBM. The two
last algorithms are similar and built under a gradient boosting method. Light-
GBM differs from XGBoost by specific features, especially the process of creation
trees. Parameters for tuning models are almost similar for both algorithms. Each
section also describes the implications of algorithms and provides plausible out-
comes.

2.1 Logistic Regression Model

In statistics, the Logit has wide range implications in medical areas which are
generally used to create models for the classification of the attributes that might
determine the happening of the resulting outcome. The distinctive feature of
the Logit is that the resulting outcome is dichotomous. Generally, patients data
is being used to develop a proper logistic regression model by identifying the
important attributes in the data, which are important in predicting the given
outcome. As a result, the created model can be used to classify newly provided
patient data through placing in the Logit model to calculate the probability
P (Yi) of a given outcome [2].

There are several research studies that use regression models for classification
and prediction in the biomedical field. In this work [7] authors applied the logistic
regression method to predict the probability of a fail outcome in the Tuberculosis
treatment course that might be used to determine the level of patients’ supervi-
sion and support. They proved that the developed model-based of Logit achieved
95% prediction accuracy based on optimal sensitivity and specificity. In another
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study [8] researchers talk about dichotomous diagnostic tests and advantages of
using logistic regression models in terms of sensitivity, specificity, and likelihood
ratios (LRs). The exerted model allows calculating the LRs of diagnostic test
results which is conditional on these covariates with an accuracy of 90%. The
intended logistic regression approach proves an efficient method to determine
the performance of tests at the level of the individual patient risk profile and
to examine the effect of patient’s characteristics on diagnostic test features. In
another study, the authors applied regression models in the biomechanics field.

2.2 Metric Algorithm K-Nearest Neighbour

K nearest neighbour (KNN) is a very simple, the most popular, highly efficient
and effective pattern recognition algorithm. KNN is a direct classifier, where a
choice is classified based on the class of their nearest neighbour. The marked
data is provided to the algorithm for the training process when the training
algorithm gets a new object, it is assigned to a class that is most common
among k neighbours of the element whose classes are already known.

KNN is also widely used in medicine for various types of tasks. In the arti-
cle [9], authors propose a new algorithm that is based on KNN with a genetic
algorithm for detecting heart disease.

In the article [10] considers a combination of decision tree algorithms and
the classifier of k-nearest neighbors as an assessment of the selected features for
the diagnosis of Parkinson’s disease at an early stage. Training data included:
speech with several types of sound recordings and Parkinson Handwriting sample
datasets used to evaluate the proposed model. In this study, authors used one
of the approaches to solving the problem of automatic segmentation of discrete
speech signal for the diagnosis of disease, in [11] authors consider one of the new
approaches to solving this problem. For this purpose, a new type of information
functions called TAC-coefficients (throat and acoustic correlation coefficients)
is used, which provides sufficient accuracy, the efficiency of segmentation for
diagnosis of Parkinson’s disease.

2.3 Algorithms Based on Gradient Boosting: XGBoost
and LightGBM

In this study, we propose to use algorithms based on the idea of gradient boost-
ing: XGBoost and LightGBM.

XGBoost main features are easy parallelization and impressive prediction
accuracy compared to other methods. XGBoost is an efficient and scalable ver-
sion of the gradient boosting method [12], which has proven itself in several
recent machine learning competitions. The authors reported that XGBoost is
an ensemble of classification and regression trees that can capture non-linear
dependents. The idea of the algorithm is to add a classifier in interaction and
next iteration the classifier has been trained on how to improve accuracy base
on a trained ensemble of trees. In the article [13], several machine learning algo-
rithms are used to determine the rule for predicting the diagnosis of influenza
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by combining clinical signs and symptoms in patients and further assessing the
accuracy of the prediction model developed using the machine learning algo-
rithm. The XGBoost algorithm showed AUC results: 0.87 on the train dataset,
0.79 in the test dataset.

LightGBM is a relatively new library [14] and is not widely used in the
scientific area [15], but it is widely used in machine learning competitions. The
main problem faced by gradient boosting algorithms is that for each function
they need to scan all data instances in order to evaluate the gain in information
about all possible separation points, which takes a very long time when the
dimension of the object is high and the size of the data is large. In the article, the
authors proposed a new gradient boosting algorithm, which contains two new
techniques: a gradient sampling on one side and an exclusive set of functions
for solving a large number of data instances and a large number of functions,
respectively. Experimental and theoretical results according to have shown that
using the LightGBM algorithm can significantly outpace XGBoost in computing
speed.

3 The Issue of Tuning Hyper Parameters in Models

One relative disadvantage of these algorithms (XGBoost and LightGBM) is a
large number of hyperparameters that are provided to the end-user, which in turn
can affect the problems of the practical use of machine learning algorithms in
clinics for diagnosing diseases. Therefore, there is a great attraction for automatic
approaches that can optimize the performance of any given learning algorithm
for the problem in question. Training time can take considerable time with large
amounts of data. To maximize the predictive power of gradient boosting models,
you must manually configure the hyperparameters or use automated methods,
such as those based on Bayesian optimization.

Bayesian optimization is an effective method for global optimization of objec-
tive functions f : X → R, where X ⊂ Rd. Where we decide:

x∗ = argmax
x∈X

f(x) (1)

Where X is a compact and convex set. Often, you can access only the per-
turbed estimates of the function f(), which further complicates the optimization.
Below we provide a brief description of Bayesian optimization. A more detailed
formulation of the Bayes optimization problem is described in [16].

There are two basic steps that must be made when performing Bayesian
optimization. The first is to select prior functions that will express assumptions
about the function being optimized. To do this, we will pre-select the Gaussian
process, due to its flexibility and controllability. Secondly, it is necessary to
choose the data collection function that is used to construct the utility function
from the posterior model, which allows us to determine the next point to be
estimated.

The properties of the Gaussian distribution allow us to calculate predictive
averages and variances in closed form [17]. It is determined by the mean function
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μ(x) and the covariance function k(x, x′). A sample of the Gaussian process is
a function, given in the form:

f(x) ∼ GP (μ(x), k(x, x′)) (2)

where the value of the function at an arbitrary point x is a random variable
distributed according to Gauss. Without any loss in generality, it can be assumed
that the previous middle function is a zero function, which makes the Gaussian
process a completely definable covariance function. A popular choice for the
covariance function is the square exponential function, represented as:

k(x, x′) = (− 1
2θ

||x − x′||2) (3)

where θ is the length scale parameter. We assume that the length scale is
isotropic in our method. Other popular covariance functions include the Mattern
kernel, a rational quadratic kernel. In Bayesian optimization, there is the concept
of a utility function as a receiving function. The data collection function helps
us achieve the optimum of the base function by examining areas where the
uncertainty about the function is high and exploring areas where the expected
function values can be higher.

Data collection functions can be defined either using criteria based on
improvement, or using criteria based on confidence. The upper confidence limit
of the predictive GP distribution as a function of data collection. However,
paper [16] suggests using a combination of these data collection functions.

The upper limit of the reliability of the Gaussian process:

αt(x) = μt−1(x) + β
1
2
t σt−1(x) (4)

where βt = 2 + 2 · d · log(t2 · d · b · r
√

log( 4da
δ )),

∑
t≥1

π−1
t = 1, πt ≥ 0

a, b are constants, and d is the dimension of the problem and are given as
a > 0, b > 0, d > 0, r > 0, δ ∈ (0, 1), t ≥ 1. The constants a, b are related to the
Lipschitz constant of the objective function f(x).

Now we have discussed the use of a prior over smooth functions using the
kernel Mattern, we will focus our attention on computing Bayesian optimiza-
tion. The role of the data collection function is to find the optimal value.
Typically, data collection functions are defined in such a way that high data
acquisition corresponds to potentially high values of the target function. Max-
imization function is used to select the next point at which to evaluate the
function. We consider maximizing the probability of improvement f(x+), where
x+ = argmaxx∈X f(xi). The improvement function is defined as:

I(x) = max{0, f(x) − f(x+)} (5)

The new point will be found by maximizing the expected improvement:

x = argmax
x

E(max{0, f(x)i+1 − f(x+)}|Di + 1) (6)
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The expected improvement is similar with an analytical solution:

E(I) =

{
(μ(x) − f(x+))Φ(Z) + σ(x)φ(Z), if σ(x) > 0
0, if σ(x) = 0.

(7)

where Z =
μ(x) − f(x+)

σ(x)
. Φ(.) and φ(.) are the cumulative distribution and

probability distribution functions respectively.
Bayesian optimization is a powerful tool for machine learning, where often

the problem is not in getting data, but in getting tags. In many ways, this is
similar to the usual active learning, but instead of obtaining training data for
classification or regression, it allows us to develop structures to effectively solve
new types of learning problems. Nevertheless, Bayesian optimization is also a
fairly recent addition to machine learning algorithms, and not yet sufficiently
studied in user applications.

4 Materials and Methods

4.1 Problem Description

The objective of this study is to find a better algorithm for machine learning,
which will improve the diagnosis of the disease of gastric disorders and provide a
result in an acceptable time. In the previous section, we gave a description of the
selected algorithms for research on data. We have identified two main points from
these studies; the first one is, used XGBoost and LightGBM gradient boosting
algorithms, these algorithms performed well on data science (Kaggle) competi-
tion platforms. LightGBM did not use for similar medical data. LightGBM did
not use for similar medical data. The second one is, proving that moderate ML
algorithms can outperform by performing several genuine preprocessing on clini-
cal data. The third is, 90% of the work, which is being done in disease diagnosis,
especially in the areas related to health are not open source and being kept
secret. The objective is to implement the mentioned algorithms from scratch
and make them suitable for integration in any clinical decision support system.

4.2 Description of Data

In the retrospective analysis study, the medical data related to five digestive
systems disorders is considered. The medical data were collected from 1999 to
2014 in the process of routine endoscopic practice for over 1000 subjects, in
two hospitals i.e., Samatya and Frunze located in different countries i.e., Turkey
and Kyrgyzstan. Patients data selected for those who were confirmed as having
mentioned stomach disorders. The disorders prevalence in the dataset is 65%
that is close to WHO statistics.

In the present study, the patient’s data has 26 independent attributes of dif-
ferent types described in Table 1. The attributes are organized into three groups;
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the first group shows the patient’s history, the second group shows symptoms,
and the last group shows the lab test results. The correlation and significance
levels for the attributes are provided Table 1. Prior to applying any ML algo-
rithm, the dataset has undergone several normalizations and standardization
changes. Only those patients data who gave their permission for use had been
used in the research in this retrospective study and those patients kept strictly
anonymous and confidential.

Table 1. Medical data attributes.

Attributes Value ranges Comp. groups

History

Dental probs. [0.01/1.00] Comp 1

Sleep disorders [0.01/1.00] Comp 1

Constipation [0.01/1.00] Comp 1

Age [0 to 100] Comp 1

NSAIDs [0.01/0.5/1.00] Comp 3

Appetite [0.01/1.00] Comp 3

Stress [0.01/1.00] Comp 4

Gender [0/1] Comp 4

Breakfast [0.01/1.00] Comp 4

Smoking [0.01/1.00] Comp 5

Alcohol [0.01/1.00] Comp 5

Symptoms

Swelling [0.01/1.00] Comp 1

Burning [0.01/1.00] Comp 1

Souring [0.01/1.00] Comp 1

Abdom. pain [0.01/1.00] Comp 2

Nausea [0.01/1.00] Comp 2

Weakness [0.01/1.00] Comp 2

Vomiting [0.01/1.00] Comp 2

Diarrhea [0.01/1.00] Comp 2

Weightloss [0.01/1.00] Comp 3

Lab tests

Leukocytes (mcL) [4.0/10.0] Comp 2

Hemoglobin (g/dl) [9.0/17.0] Comp 3

Stool blood test [0.00/1.00] Comp 3

CLO test [0.00/1.00] Comp 4
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4.3 Disease Groups

The defined disease groups metrics are shown in Table 3. The disease groups
are related to five stomach disorders, that are commonly occur in the Middle
East and Central Asian populations with a prevalence of 65%. There are two
final disease conditions for the ML models in order to perform classification,
which is 0 representing patients without disorder and 1 representing patients
with the defined condition suffering from any stomach disorder. Also, several
types of disorders were detected in several patients at the same time, these
types of diseases were matched into separate classes for subsequent diagnosis
of dual diseases in patients. Figure 1 shows a histogram of the distribution of
diseases and such dual diseases as gastritis - reflux and cancer - an ulcer has 16
and 33 patients, respectively (Table 2).

Table 2. Basic statistics for selected features of dataset.

Age HPTEST WBC HMG PLT SBT RBC Stomach diseases

Count 1041 1041 1041 1041 1041 1041 1041 1041

Mean 33.99 0.19 6.05 12.62 160.89 0.07 4.57 1.85

Std 17.40 0.39 1.56 0.90 13.58 0.25 0.41 1.99

Min 6 0 4.2 9.8 148 0 3.5 0

25% 22 0 4.8 12.2 152 0 4.3 0

50% 32 0 5.4 12.5 155 0 4.6 1

75% 48 0 7.3 13.2 162 0 4.8 4

Max 78 1 9.8 16.2 220 1 5.6 6

Table 3. Stomach disorders condition metrics.

Stomach disorders Model classification metrics

Cancer [0.00/1.00]

Ulcer [0.00/1.00]

Gastritis [0.00/1.00]

Reflux [0.00/1.00]

Flu [0.00/1.00]

Gastritis and Reflux [0.00/1.00]

Cancer and Ulcer [0.00/1.00]

To determine how the various features are related to each other, we con-
structed two plots: correlation and pair plot, Figs. 2 and 3 respectively. The pair
plot allows us to see a distribution of individual variables and the relationship
between two variables. Paired charts are an excellent method for determining
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trends for further data analysis. To determine the dependencies between fea-
tures, 5 features (Age, WBC, HMG, PLT, RBC) have been selected which val-
ues are not binary. In Fig. 2 it is possible to separate 5–6 features that have a
correlation above 60%, this gives us the opportunity to reduce the dimension of
features in the dataset.

4.4 Performance Measure Metrics

For the comparison of the ML algorithms, several performance metrics are used.
The selected metrics are briefly described in this section. The experimental results

Fig. 1. The histogram of stomach diseases distribution.

Fig. 2. Correlation matrix between features.
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Fig. 3. Dependency between features by classes.

are divided into two groups according to types and provided in Tables 4 and 5
respectively. Based on these metrics results the ultimate conclusions are made
about each algorithm. To estimate the accuracy of learning algorithms for selected
data, the following metrics were selected: accuracy, precision, recall, and f1.

5 Experimental Result and Discussions

In this experimental work, the classification performance of three non-linear ML
algorithms is compared and discussed. The medical dataset shown in Table 1,
contains patients with five stomach disorders. The prevalence of the disease in the
dataset is 65%, which is with the accordance of WHO reports on gastrointestinal
disorders. By using the dataset with such prevalence a robust and accurate
classification model can be created. The resulting models can be integrated into
any clinical decision support system which can assist doctors in a more precise
disease diagnosis.

After the model development, the algorithms were given a task to classify
patients with stomach disorders. In order to compare the models’ performances,
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we were concentrated on ten metrics shown in Tables 4 and 5. The underlined
metric values indicate which technique is good with respect to which measure.

During the model’s simulations, the 5-fold cross-validation used, where the
dataset divided into 5 randomly equal parts, out of which 3 parts used for train-
ing and the remaining part used to test the model. A learning rate was fixed to
0.3 for assessing the performance of the models

As demonstrated in Table 4, the proposed LightGBM model has the best
performance in terms of testing accuracy. The Logit showed lower performance
results as compared to other models. There is no single champion model in
classification problems and the best model in terms of accuracy is different from
one case to another. Thus we recommend that one should try all alternative
models to determine which one will perform best for an underlined data set.

Table 4. Classification performance of models for test dataset.

Logit KNN XGBoost LightGBM

Accuracy 0.947 0.958 0.971 0.980

Precision 0.930 0.944 0.816 0.959

Recall 0.920 0.958 0.971 0.980

F1 0.925 0.958 0.971 0.980

As shown in the Table 5, all models are non-linear but the Logit is more
moderate in terms of complexity. The three methods i.e., KNN, XGBoost and
LightGBM outperforms Logit according to marginal error making a more accu-
rate learning process.

Table 5. Classification performance of models for test dataset.

Logit KNN XGBoost LightGBM

Runtime (sec) 0.05 0.15 0.81 0.14

Marginal error 0.013 0.003 0.003 0.003

Complexity Moderate Complex Complex Complex

Type Non-linear Non-linear Non-linear Non-linear

As can be seen from Table 5, the Logit algorithm is still the best result in
terms of execution time. LightGBM algorithm suits by two indicators. This fact
requires confirmation of the authors of the article [14], where the author claims
that the proposed algorithm shows that the LightGBM shows the best indicators
of accuracy and speed of execution.
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6 Conclusion

In recent years computer-based disease diagnosis by using machine learning
methods have played an important role in improving the quality of medical
services. In addition, using computer-based disease diagnosis makes the diagno-
sis more reliable and therefore increases patient satisfaction. In this study, we
developed predictive models using four machine learning algorithms to diagnose
stomach disorders. In this study, we studied the capabilities of machine learning
algorithms for the diagnosis of diseases of the stomach. The study showed that
there is no single method that clearly surpasses all methods in all problem situ-
ations. Therefore, one recommendation from this study is to try all alternative
models to determine which one will perform best for particular clinical data set.
However, the performances varied slightly between models, XGBoost and Light-
GBM achieved better prediction results (test dataset 97% and 98% respectively).
One novelty of this paper was LightGBM, which has never been implemented
in medical or diagnosis problems. According to results, LoghGBM model tree
performed quite competitively with other algorithms. The results of our study
suggest that stomach disease can be classified with an accuracy of approximately
94% with all four machine learning methods. Which is really good in real-life
problems and we can comfortably suggest that computer-based disease diagnosis
can use these four implemented algorithms in their diagnosis problems.

In addition to testing the selected machine learning algorithms on medical
data, we highlight a problem of tuning hyperparameters for algorithms. We con-
sidered the promising direction of Bayesian optimization for the tuning param-
eters, but this method also has disadvantages, such as Gaussian processes are
not always the best or the simplest solution but even when it is, you need to be
very careful when developing a kernel. It can go through a lot of iteration with-
out improvement. These problems are exacerbated by the increasing of dataset
dimension—more dimensionality means that more samples are required to cover
a space, therefore more hyperparameters also need to be tuned.

These studies will continue in this direction - optimization and tuning hyper-
parameters for machine learning algorithms with a practical bias on big dataset
dimensions and data specifics.
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Abstract. The problem of conflict-free data aggregation in an arbitrary
graph is NP-hard. On a square unit grid, in each node of which a sensor
is located, the problem is polynomially solvable. For the case when the
graph is a regular triangular grid, the upper bound on the length of the
schedule of conflict-free data aggregation was previously known. In this
paper, the refined estimates are given for the length of the schedule of
conflict-free data aggregation on a triangular grid, as well as polynomially
solvable cases are found and algorithms for constructing optimal and
approximate schedules are proposed.
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1 Introduction

In wireless sensor networks (WSNs), the data collected by the sensors is trans-
mitted to the center, which is called the base station (BS) [2]. In this case, the
data transmission is carried out over the edges of the communication graph,
which connects the sensors [6]. If the information obtained by an arbitrary ver-
tex can be generalized and a single aggregated data packet is then sent, then
this process of data transmission to the BS is called aggregation. In the TDMA
(Time Division Multiple Access) standard, time is discrete. It is divided into
such equal time rounds (or slots) that the duration of one round is sufficient
to transmit a data packet along every edge of the graph. The aggregation time,
equal to the number of time rounds, during which the aggregated data from all
sensors will fall into the BS, is the most important criterion in many networks.

The communication graph is usually synthesized based on the criterion of
minimum transmission energy consumption [6]. Therefore, it is highly sparse,
and not all nodes (sensors) can transmit information directly to the BS. Packages
from most sensors go through other sensors.
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The aggregation time in a WSN depends on various constraints caused by
conflicts. Thus, in most WSNs, the sensor cannot receive and transmit a data
packet at the same time, and it cannot simultaneously receive or transmit more
than one packet. Violation of these conditions is called a conflict of the first type.
The transmission energy consumption depends on the transmission distance to
a power of 2–6, so this is a very power-consuming operation. Therefore, for the
reason of energy efficiency, each sensor sends a packet only once during the whole
aggregation session. This means that packets are transmitted along the edges of
some desired aggregation tree (AT) rooted in the BS, and an arbitrary vertex
must first receive packets from all its children (in the AT) and only after that
can send an aggregated packet to its parent vertex. Moreover, in most WSNs
transmitters share one common radio frequency. Therefore, if more than one
transmitter is operating in the sensor’s receiving area, then due to the interfer-
ence of radio waves, the receiver cannot get the data packet intended for it [2].
The situation when more than one transmitter is operating in the reception area
is the second type of conflict.

In the problem of conflict-free data aggregation, it is necessary to find an
AT, as well as a schedule (a time round, when each sensor transmits) of conflict-
free data transmission of the minimum length [1,2,13]. This problem is known
as Convergecast Scheduling Problem (CSP) and it is NP-hard even for the case
when AT is given [7].

The CSP is intensively investigated. To construct an approximate solution,
a number of heuristic algorithms have been proposed [1,2,9,11–13,17]. For some
of them, guaranteed accuracy estimates were found in terms of the degree and
radius of the communication graph [14,18]. To assess the quality of other heuris-
tics, numerical experiments were carried out [2,11,16]. Special cases of the prob-
lem are also considered. For example, when conflicts arise only between children
of a common parent in AT. This situation occurs when sensors use different
radio frequencies to transmit data [9,11,16]. Such a problem is also NP-hard in
general, but in the case when AT is known, it is solved in polynomial time.

In [8], a special case of communication graph is considered in the form of a
unit square grid with a sensor in each node, and the transmission distance of
each sensor is 1. A polynomial algorithm for constructing an optimal solution
to this problem is proposed. In [4,7] a similar grid graph is considered with an
arbitrary transmission distance d ≥ 2. On the one hand, an increase of d may
reduce the length of the schedule. On the other hand, the number of conflicts of
the second type is increasing (due to interference). Several methods are proposed
for constructing a schedule of conflict-free data transmission with a guaranteed
estimate of accuracy depending on d. In particular, for the case when d = 2 a
proposed algorithm on the (n+1)× (m+1) grid with the BS at the origin (0, 0)
builds a schedule whose length does not exceed (n + m)/2 + 3. Later in [3] the
optimality of the constructed schedule was proved.

In this paper, we consider a special case of the CSP on a regular triangular
grid, in which all the vertices are to the left and above the BS. This is due to the
fact that for the problem of energy-efficient sensor coverage of the area, regular
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covers are often used, in which the sensors are located at the nodes of a regular
grid, in particular, a triangular grid [19]. A polynomial algorithm is proposed
for constructing an optimal schedule in the case when there is exactly one most
remote vertex (MRV) from the BS is in the grid. If there is more than one MRV,
then the proposed algorithm builds a feasible schedule. For this case, another
polynomial algorithm is also proposed, which becomes more accurate than the
first algorithm with an increase in the number of the MRVs.

The paper is organized as follows. In Sect. 2, the CSP problem is formulated
for an arbitrary graph. Section 3 is devoted to the consideration of the problem
on a complete triangular grid. The linear-time algorithm HCA is proposed for
constructing a feasible schedule and it is proved that in the case under consider-
ation it builds an optimal schedule. The incomplete grid is considered in Sect. 4,
where a linear-time complexity algorithm SCA is proposed for constructing an
approximate solution and the accuracy of this algorithm is estimated. Section 5
concludes the paper.

2 Formulation of the CSP

A communication graph is specified in which the vertices are images of the
sensors, and two vertices are linked by an edge if the transmission between them
can be carried out in both directions. Among the vertices of the graph, we select
the BS to which it is necessary to transmit data from all the vertices of the
graph. Let’s suppose that:

– time is discrete, and a data packet can pass each edge during a one-time slot;
– the sensor cannot simultaneously receive and transmit, as well as receive or

transmit more than one packet. Otherwise, a conflict of the first type arises;
– each sensor during the aggregation session transmits a data packet only once

(except the sink which always can only receive messages), i.e. once a sensor
sends a message, it can no longer be a destination of any transmission;

– the subset of vertices can transmit at the same time unless there is a conflict
of the second type associated with the interference of radio waves.

A schedule satisfying these properties is called feasible. Thus, a feasible schedule
is a conflict-free schedule with additional constraints associated with energy
savings. In the CSP, it is required to find a feasible schedule (i.e. to find a
transmission time slot for each vertex), the length of which is minimal.

As noted above, the CSP in general, as well as in many special cases, is NP-
hard [2,7]. However, in some special cases, the problem is polynomially solvable.
This is the case, for example, when the communication graph is a square unit
grid, and the transmission distance is 1 [8] or 2 [3]. In this paper, we are interested
in the case when the communication graph is a regular triangular grid.

3 Complete Triangular Grid

Let’s consider a grid graph (Fig. 1a), in each node of which (x, y), x = 0, 1, . . . , n,
y = 0, 1, . . . ,m, except the vertex (0, 0), is a sensor. At the node (0,0) is the BS.
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Two different nodes (xi, yi) and (xj , yj), for which conditions xi ≥ 0, yi ≥ 0,
xj ≥ 0, yj ≥ 0 and |xi − xj | + |yi − yj | = 1, or xi − xj + yi − yj = 0 and
|yi − yj | = 1 are fulfilled, are connected by an edge (i, j) (see Fig. 1a). All
vertices with coordinates (x, y), x = 0, 1, . . . , n, y = 0, 1, . . . ,m are included in
this grid, therefore we call it complete. The transmission distance of each vertex
is 1. This means that each vertex hears only adjacent vertices. Every sensor
should send the collected data to the BS, which is placed at the origin (yellow
vertex in Fig. 1). In this case, the data packet is transmitted to the parent node,
aggregation of the received data occurs there, and then one packet is sent further.
The time slot number when the last packet arriving at the BS is the aggregation
time or the length of the schedule. Denote the minimum length of the schedule
by L(n,m).

Fig. 1. (a) Grid graph; (b) Conflict transmissions; (c) Conflict-free transmissions.
(Color figure online)

The restrictions indicated in the previous section, of course, must also be sat-
isfied here. Thus, Fig. 1b shows examples of invalid transmissions (transmissions
shown by arrows of the same color cannot be performed simultaneously, because
the red vertices hear more than one transmitter). And Fig. 1c shows examples
of conflict-free transmissions (arrows of the same color), they can be carried out
during the same time round.

3.1 Preliminary Considerations

Definition 1. The distance to the vertex is the minimum number of edges in
the path connecting it to the base station.

Then the vertex (x, y) is at a distance x + y from the BS. The length of the
schedule cannot be less than n+m, since the most remote vertex (red vertex in
Fig. 1a) is at a distance of n+m, and the packet from this vertex cannot arrive
at the BS before the time slot n + m. Due to the fact that the BS (as, indeed,
any other vertex) can receive no more than one packet during one time slot, the
fairly obvious

Property 1. If at least two vertices of an arbitrary graph are located at a distance
R from the BS, then the aggregation time cannot be less than R + 1.
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Lemma 1. The minimal length of the schedule of conflict-free aggregation
L(n,m) on a complete triangular grid cannot be less than n + m + 1.

Proof. The most remote vertex (MRV) (n,m) is at a distance of n + m. If it
does not transmit during time slot 1, then the length of the schedule will be at
least n + m + 1. If it transmits during the first time round, then both adjacent
to it vertices at distance n + m − 1 cannot transmit because of the emerging
conflict. This means that they can transmit no earlier than during the 2nd time
round. The distance from both vertices (n − 1,m) and (n,m − 1) is equal to
n+m−1. Therefore, (according to Property 1), the aggregation time from these
vertices is at least n + m. Therefore, the total aggregation time cannot be less
than n + m + 1. The lemma is proved.

Definition 2. Let’s call the set of vertices (x, y), x = 0, 1, . . . , n, having the
same ordinates y, a layer y, and the set of vertices (x, y), y = 0, 1, . . . ,m, having
the same abscissas x, a column x.

In a square grid, an optimal schedule of conflict-free aggregation can be
constructed in various ways [8]. For example, during the time round t = 1, . . . ,m,
all vertices of the layer m + 1 − t send data packets down to the corresponding
vertices of the layer m − t. After m steps, we get a linear graph with n + 1
vertices. Aggregation of data in a linear graph is carried out in n time rounds
by the sequential transmission of packets from the vertices, starting with the
most remote one. The length of the constructed schedule is equal to n + m and
coincides with the lower bound. Therefore, this is the optimal schedule.

In a triangular grid, the use of such an algorithm is unacceptable, since the
simultaneous transmission of neighboring vertices of one layer or one column
leads to conflicts. To transmit packets from all vertices of one layer, at least two
time rounds are required, and as a result, a similar algorithm will construct a
schedule of at least 2m + n length. In the next subsection, we present the poly-
nomial Hexagonal Corridor Algorithm (HCA), which builds an optimal schedule
on a complete grid, whose length coincides with the lower bound n + m + 1.

3.2 The HCA

Definition 3. We call a hexagonal corridor (HC) the subgrid of a complete
triangular grid consisting of hexagons (each of which consists of six triangles)
touching each other, in which the two common sides of two adjacent hexagons
coincide and are at an angle of 120◦ to the horizontal (the angle is counted from
the horizontal axis counterclockwise). In Fig. 2, the HCs are highlighted in one
color.

Definition 4. We call the HC hollow if vertices at the centers of the hexagons
constituting HC are removed.

Property 2. Two vertices of a hollow HC with positive ordinates located at the
same distance from the BS or at a distance differing by more than 1 can transmit
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data packets along the edges of the hollow HC simultaneously without conflict
between them. If not all ordinates of two nodes are positive, then when passing
along two paths of the same length, a conflict will arise at the junction point of
the paths.

Fig. 2. Several time iterations of the HCA. (Color figure online)

We use this property to build a schedule of conflict-free data aggregation of
minimum length. To do this, we construct a central hollow HC, which includes
the MRV (n,m) (in Fig. 2, this is the green corridor). During each time slot,
nodes that do not belong to the central corridor will transmit packets towards
the central HC. In Fig. 2 arrows show transmissions of several time rounds.
For convenience, the transmitting vertices are colored green. If a vertex has
transmitted a packet, then it is excluded and is not considered in the following
time rounds, since each vertex must transmit a packet only once. Since the
distance to the MRV limits the length of the schedule from below, we will build
a schedule in which the transmissions along the longest path are carried out
without extra delay. If we want to build a schedule of length n + m + 1, then
during the transmission along the longest path, a delay of no more than one
time round is possible. That is, only once the most remote current vertex can
be silent. Moreover, it is necessary that the distance to the two MRVs of the
central corridor differ by at least 2. Otherwise, the conflict will inevitably arise
at the junction point of these paths. We give a formal description of the HCA
(without loss of generality, we assume that n ≥ m).

Algorithm HCA (see Fig. 2)
Step 1. t := 1;
Green colored vertex (n − 1,m) sends a packet to the vertex (n,m).
Green colored vertex (n − 2,m) transmits to the vertex (n − 3,m).
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Each internal vertex (n − k,m − k), k = 1, . . . ,m − 1 of the central (green)
corridor transmits to the vertex (n − k + 1,m − k − 1); paint it green.

Every third vertex of the layer m (counting from right to left and starting
from the vertex (n − 5,m)) is colored green; it transmits to the vertex of the
adjacent lower layer and the adjacent right column.

Every third vertex of the layer m (counting from right to left and starting
from the vertex (n − 6,m)) transmits to the vertex of the adjacent lower layer
in the same column; we paint it in green color.

Each third vertex of the column n (counting from top to bottom and starting
from the node (n,m− 5)) transmits to the vertex of the adjacent left column of
the top layer; we paint it in green color.

Each third vertex of the column n (counting from top to bottom and starting
from the node (n,m − 6)) transmits to the vertex of the left adjacent column
from the same layer; we paint it in green color.

Remove all green vertices.
Step 2. t := 2;
All remaining vertices of the layer m transmit packets without conflicts to

the corresponding vertices of the layer m − 1; paint them green.
All remaining vertices of the column n transmit packets without conflicts to

the corresponding vertices of the adjacent left column n − 1; paint them green
(see Fig. 2b).

Remove all green vertices.
Step 3. t := t + 1;
Starting on the right from the vertices of the central corridor, we paint all

the vertices of the layer m− [t/2], the transmission of which to the corresponding
vertices of the layer m − [t/2] − 1 does not lead to conflicts, in green.

We paint all the vertices of the n− [t/2] column not belonging to the central
corridor, the transmission of which to the corresponding vertices of the n−[t/2]−
1 column does not lead to conflicts, in green (see Fig. 2c).

Remove all green vertices.
t := t + 1;
We paint all the remaining vertices of the layer m − [t/2] in green; they

transmit to the corresponding vertices of the layer m − [t/2] − 1.
Paint the node of the column n − [t/2] + 2 in green; it passes the packet

horizontally to the left.
We paint all the remaining vertices of the column n − [t/2] in green; they

transmit to the corresponding vertices of the column n − [t/2] − 1.
If t < 2m, then goto Step 3.
Step 4.
Carry out the aggregation in a linear graph with n − m vertices by passing

the packets to the left, starting with the right-most remaining vertex (n−m, 0).
Stop.

Theorem 1. The HCA builds an optimal schedule of conflict-free data aggrega-
tion in a complete triangular grid of dimension (n+ 1)× (m+ 1) with BS at the
origin (0, 0), whose length coincides with the lower bound n + m + 1.
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Proof. In the HCA, the MRV (n,m) begins to transmit with a delay of 1 time
round. During the first time slot, a hollow central HC is created. In subsequent
time rounds, two vertices of a hollow central HC, the distance between which is
at least 2, simultaneously transmit packets. Therefore, according to Property 2,
such transmissions do not lead to conflicts and, consequently, to delays.

It remains to show that the most remote current vertex (vertices that have
already transmitted packets are deleted), starting from the second time slot,
transmits packets without delay. To do this, make sure that all the vertices
outside the central (green) corridor do not interfere with the transmission of two
vertices along the edges of the hollow central corridor. Indeed, during the second
round, the vertex (n,m) transmits the packet along with the remaining vertices
of layer m and column n. As a result, during the first 2 rounds, all vertices
of layer m will transmit packets, and in column n there will remain vertices
(n,m − 1) and (n,m − 2) (Fig. 2b). Next, for every two time rounds, packets
are transmitted from all the vertices of the current upper layer (including the
vertices of central HC). Vertices located to the right transmit packets as early as
possible. All vertices below the central corridor belonging to the same rightmost
column transmit packets during two consecutive time rounds. Moreover, the
vertices located above transmit as early as possible (Fig. 2c). As a result, at
each subsequent time slot, both the most distant nodes of the central corridor
located at least 2 edges apart from each other transmit packets.

After the time slot t = 2m we get the situation shown in Fig. 2f, after which it
remains to aggregate in a linear graph consisting of n−m vertices (not counting
the BS). For this, obviously, n−m time rounds are enough. As a result, for the
linear time, we built a schedule of non-conflict data aggregation, the length of
which coincides with the lower bound n + m + 1. The theorem is proved.

In conclusion of this section, we note that the HCA also works in the case of
n = m, constructing a schedule of length 2n + 1, as well as in cases where the
BS is located in some other places. However, if the BS is located, for example, in
the lower right corner of the triangular grid, then the situation changes funda-
mentally. The fact is that in this case, for example, when n = m, the number of
MRV is 2n + 1, and the distance to them is equal to n. Obviously, in this case,
layer-by-layer aggregation can be performed in 3n time rounds. The trivial lower
bound for the length of the conflict-free aggregation schedule is n+ 1. This case
will be the subject of another paper.

4 Incomplete Triangular Grid

Let, as before, the BS is on the lower left, but there is more than one MRV
in the grid (in Fig. 4 there are five MRVs at the distance n + m − 4). In this
case, from the complete grid, all vertices are removed, the distance to which
from the BS is greater than n + m − 3. We call such a grid incomplete. If we
save the transmission schedule that was built by the HCA for the complete grid,
for the remaining vertices, it is obvious that we will get a feasible schedule of
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length n + m + 1. However, if the incomplete grid has k MRVs, then the trivial
lower bound for the length of the schedule is n + m − k + 2, and, therefore, the
constructed schedule may not be optimal.

Let’s see whether it is possible to find a more accurate lower bound for the
length of the schedule, depending on the number of MRVs k. Let the distance
to the MRVs be R, so each of MRV can transmit a packet in R time rounds.
However, the BS can receive no more than one packet at a time. If packets from
all MRVs arrive at different vertices adjacent to the BS at time R−1, then at time
R can transmit the packet to the BS only one adjacent vertex. The remaining
vertices will transmit packets in turn, and the last adjacent vertex will transmit
the packet to the BS at time R+k. However, some conflicts can be solved earlier
(further away from the BS). For this, it is necessary that several paths from
MRVs join earlier. Then, due to the conflicts, the transmission time along the
shared path (after the merge) will increase, but the number of the longest paths
will decrease. Suppose a transmission from the MRVs is organized in such a way
that packets from them come in BS at different time slots R,R + 1, . . . , R + a.
Let us estimate the value of a. A packet from the some MRV may arrive at the
BS at time R if it is transmitted along a path that does not intersects with other
paths from the MRVs (left path in Fig. 3). What is the maximum number of
MRVs that packets from them can be delivered to the BS at time round R+ 1?
This, of course, depends on R. The vertex adjacent to the BS transmits at time
R+ 1. Consequently, packets can come into it from two vertices, at time R (say,
from vertex i) and at time R − 1 (from vertex j) (the second left branch of the
paths in Fig. 3). Then, only one packet can arrive at the vertex j at time R− 2.
And at the vertex i, one packet can arrive at time R− 1, and another – at time
R − 2. Figure 3 shows the maximum possible number of MRVs in fragment of
AT, when R = 4, and a = 2. The number inside the circle corresponds to the
time round when the vertex sends a message.

Fig. 3. Illustration of an AT fragment for transmitting packets from the maximum
number of MRVs during R + a time rounds (R = 4, a = 2).

If in the AT there are several fragments similar to those shown in Fig. 3, then
a will increase. But it can be argued that if the number of MRVs is at least 2,
then a ≥ 1. If the number of MRVs is at least 6, and R ≤ 4, then a ≥ 2. If the
number of MRVs is not less than 16, but R ≤ 4, then a ≥ 3. That is, a grows
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slowly, and the lower bound of the length of the schedule is slightly differs from
R + 1 (especially for large R).

Let n ≥ m. To accelerate the aggregation, let us not use the HCs, but select
the straight corridors (SCs), inclined to the horizontal at an angle of 60◦, consist-
ing of four triangles in the layers (in Fig. 4 different SCs are painted in different
colors). If we delete internal vertices in SC, leaving only the boundary vertices,
then we call this SC hollow. In the hollow SC, two nodes located on different
sides of the corridor can transmit simultaneously. The paths that go along oppo-
site sides of the corridor intersect at the layer y = 0. In this case, a conflict
may arise if the right vertex sends to the left, and the left sends down-left, and
the distance between them is no more than 2 (see Figs. 4e and 4f ). If a conflict
arises, then suppose that the left vertex sends, and the right one waits. Then
the current MRV will always be the rightmost vertex.

Fig. 4. An example of the operation of the SCA. The length of the schedule is n+m−1.
(Color figure online)

Without describing the operation of the Straight Corridor Algorithm (SCA)
in detail, we illustrate it in Fig. 4 where the number of MRVs is 5. In order for
vertices lying on different sides of hollow SC to be able to transmit messages
simultaneously, it is necessary that the internal vertices of SC transmit packets
earlier than the MRVs located on SC boundaries. To organize this, two first time
slots are enough. Starting from time round 3, only the MRVs prevent each other
from transmitting without conflicts. Not all, but only half of them, because the
internal MRVs in SCs have already sent the packets and deleted. For example,
in Figs. 4e and 4f due to conflicts the nodes circled in red cannot transmit.

Lemma 2. If in an incomplete grid the number of the MRVs equals k, then
SCA builds a schedule of length, not more than n + m − k + 5.
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Proof. Starting from the third time slot, the remaining (non-internal) MRVs can
transmit without delay. If a conflict arises between the two rightmost MRVs, then
in the SCA the right vertex is waiting. It needs to wait no more than two time
rounds. During this time, all possible conflicts between the vertices located to the
left can be solved, giving the first opportunity to transmit those MRVs, which
are to the left. Then in total, 4 additional time rounds are enough to transmit
packets from all MRVs. The distance to the MRVs is n+m− k+ 1. The lemma
is proved.

So, we proved that the length of the schedule constructed by SCA exceeds
the length of the optimal schedule by no more than 4 time rounds. If we use
HCA, then the length of the schedule is equal to n+m+1. Therefore, for k ≥ 4,
the SCA is preferable to HCA.

5 Conclusion

The paper considers the problem of constructing the optimal schedule of conflict-
free data aggregation on a regular triangular grid, in each node of which there
is a sensor, the data from which should be delivered in an aggregated form to
the base station. In the process of aggregation, data goes to each transit node
from other nodes, is shared with the data of the node itself, and then one data
packet is sent. In order to save energy, each vertex transmits a packet only once
during an aggregation session. The time is divided into equal time rounds, and
the data packet is transmitted along every edge of the grid during one time
round. Situations where more than one vertex is attempting to transmit data
to one recipient during the same time round, or if more than one transmitter
is operating in the recipient’s area are called conflicts. Moreover, in a feasible
schedule, each vertex during one time round can either receive, or transmit, or
be idle.

In this paper, we consider the case when the base station is at the origin,
and the regular triangular grid is located in the first quarter. For the case of a
complete grid (when it contains all points with coordinates (x, y), x = 0, . . . , n,
y = 0, . . . ,m), an algorithm HCA of linear complexity is proposed for construct-
ing an optimal schedule whose length coincides with the lower bound. This is the
first polynomial algorithm known to us that builds an optimal solution to such
a problem. If the grid is incomplete (vertices are removed from the complete
grid, the distance to which exceeds a certain integer), then we cannot guaran-
tee the optimality of the schedule under construction. For this case, the HCA is
also applicable, but with a sufficiently large number of MRVs, another algorithm
(SCA) developed by us builds a shorter schedule.

In further studies, we plan to consider various options for the location of
the BS. In some cases, nothing new happens, and in some situation changes
dramatically. For example, if the BS is in the lower right corner of the grid and,
for example, n = m, then the distance to the MRVs becomes equal to n (hence,
the trivial lower bound for the length of the schedule is n+1), and the number of
MRVs is 2n+1. Building a feasible schedule of length less than 2n is not so easy.
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Abstract. The paper is devoted to the construction and investigation
of mathematical models of economic processes in a local product mar-
ket. The problem of optimization of prices at outlets of an autonomous
network of wholesale under additional restrictions is in focus. The math-
ematical model of this problem belongs to the class of linear problems
of vector optimization. The main properties of the multicriteria problem
are studied. An optimal plan is defined. The necessary and sufficient con-
ditions for optimality are established. The theorem of the existence and
uniqueness of the optimal plan is formulated. A finite iterative procedure
for the problem solution is developed on the base of the obtained the-
oretical results. The suggested numerical algorithm is based on specific
variations of model parameters. The results are illustrated by examples
of numerical solutions of some intuitive economic problems with using
model data.
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1 Introduction

The paper is devoted to the construction and investigation of mathematical
models of economic processes in an autonomous commodity market. The prob-
lem of price optimization at interconnected outlets of a certain uniform good
under additional restrictions is in focus. The mathematical model of this prob-
lem belongs to the class of linear problems of vector optimization. A large number
of works (see, for example, [4,6,8,11,14] are devoted to the investigation of such
problems. The questions discussed here deal with earlier investigations conducted
by the authors [12]. In this paper, it is managed to remove some restrictions on
an admissible solution of the problem, which were taken into account in [12].

Properties of the multicriteria optimization problem are examined in the
research. A finite iterative procedure for solving the problem is developed on
the base of established properties. This procedure takes into account the specific
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properties of the problem. The numerical algorithm is based on special varia-
tions of parameters of the mathematical model. The findings are illustrated by
examples of numerical solving of some model problems with economic content.

2 Price Optimization Problem in an Autonomous
Wholesale Market

A local autonomous market of wholesale trades of certain uniform goods (for
example, of some energy resource) is considered. It is supposed that this mar-
ket consists of a finite number of interconnected outlets. The only connection
between two various outlets can be defined. This connection is interpreted as
a canal of the transportation of goods from one outlet to another using one of
possible transport methods chosen in advance (for example, power lines, road
haulage, railway transport, etc.). It is assumed that the transportation of goods,
possibly transit transportation, from each outlet to any other outlet is feasible
in the considered market. Costs of the transportation of goods from one out-
let of the market to any other outlet are known. Each outlet of the market is
characterized by the goods price.

The problem of setting optimal prices at the network points consists in the
following. Suppose that costs of the goods transportation from one outlet to any
other are fixed. Under the assumption that the prices at some outlets are fixed, it
is necessary to find maximal possible price values at other outlets in such a way
that the following condition is fulfilled. For any pair of interconnected outlets,
the price at each of them should not exceed the price at another one plus the
cost of transportation between them.

In our opinion, such a condition creates objective reasons for those consumers
who are geographically or economically “fastened” to a concrete outlet of the
market to acquire goods exactly at this outlet. Such reasons form a grounded
base for the long-term planning of goods deliveries to the outlets of the market.

3 Mathematical Model of the Market

Under the assumptions above, the market can be interpreted as a connected
undirected graph (see Fig. 1). Each node of this graph is associated with some
outlet of the market and all edges of the graph are interpreted as the connections
between outlets corresponded to nodes.

Let V = {vi ∈ R
2 | i = 1, 2, . . . , n} denote a finite set of points from two-

dimensional Euclidean space R
2, and let E denote the set of segments that con-

nect some pairs of different points from the set V . Thus, E = {eij = [vi,vj ] | 1 ≤
i ≤ n, 1 ≤ j ≤ n : i �= j}. Note that, in the general case, there exist two different
points vk and vs in V such that they are not connected directly, i.e., the set E
does not contain elements eks and esk (see Fig. 1).

Let us consider a flat arcwise connected nonoriented graph G = (V,E) [2].
This graph consists of n interconnected nodes connected by edges eij ∈ E
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Fig. 1. An example of a flat graph with twelve interconnected nodes.

(see Fig. 1). It is known [2] that any pair of different nodes can be connected
by a simple chain in a arcwise connected graph. A path that connects two
arbitrary nodes of the graph G is called a chain [2]. A chain that consists of
different nodes is called a simple chain. Any chain is identified with the set
of its nodes ri0il = {vi0 ,vi1 ,vi2 , . . . ,vil} that are consequently connected by
edges of the graph G. Thus, for a simple chain, we have vij �= vik for every
j, k = 0, 1, 2, . . . , l : j �= k. The first node vi0 in the chain ri0il is called the
initial node of the chain ri0il , and the last node vil , the end node of the chain
ri0il . The length of the chain is the number of edges of the graph that connect
the nodes defining the chain. In this notation, the length of the chain ri0il is
equal to l.

Let us assign numerical characteristics pi ≥ 0 and cij > 0 to all nodes vi

and edges eij of the graph G. Here, pi is the goods price, cij are the costs of
transportation connection. Let us make the following assumptions regarding the
transportation costs cij . First, there is a constant c0 > 0 such that cij ≥ c0 for
all i, j = 1, 2, . . . , n. Second, let cks = c > 0 for those pairs of values of indices
k and s for which there is no any corresponding element in E (there is no any
edge eks in the graph G). In addition, c >> cmax, cmax = max{cij | eij ∈ E}.
Third, cij = cji. Let us fix the values of all parameters cij and values of a part
of parameters pk = sk < +∞ (k = m + 1, . . . , n, m < n). All other parameters
pi (i = 1, . . . , m) are nonnegative variables. The nodes corresponding to variable
goods prices are called free nodes, and the nodes corresponding to fixed prices,
basic nodes. Here, it is supposed that the first m (1 ≤ m < n) nodes are
considered as free ones (otherwise, the nodes of the graph can be renumbered).
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4 Statement of Vector Optimization Problem

Let us consider the following vector optimization problem on the graph G:

F (P ) → max
P∈U

(1)

Here, P = (p1, p2, . . . , pn)� ∈ R
n, F (P ) = P , and the set U ⊆ R

n of admis-
sible solutions is defined by the linear inequalities

pi ≤ pj + cij ∀i = 1, 2, . . . ,m, ∀j = 1, 2, . . . , n : j �= i, (2)

pi ≥ 0 ∀i = 1, 2, . . . , n, (3)

pj = sj < +∞ ∀j = m + 1,m + 2, . . . , n. (4)

Optimization problem (1)–(4) belongs to the class of linear problems of vector
optimization (see, for example, [21]).

It is necessary to notice that ideal solutions providing maximal values to all
criteria simultaneously can be found very rarely in multicriteria optimization
problems. But if it is found then, naturally, this solution should be considered
as an optimal one. Definitions of vector preferences with the help of effective
solutions or Pareto optimal solutions lead to common and well-designed methods
for solving vector optimization problems. In what follows, vector inequalities
P ≥ P � are understood coordinate-wise.

Definition 1. A vector P � = (p�
1, p

�
2, . . . , p

�
n)� ∈ U is called a Pareto optimal

solution of problem (1)–(4), if there is no any vector P = (p1, p2, . . . , pn)� ∈ U
such that P ≥ P �, P �= P �.

From formulas (2)–(4) it follows that the objective space U in problem (1)–
(4) is convex and compact. Hence, the set UP of Pareto optimal solutions is
not empty. It is known [18] that the Pareto set UP has the property of external
stability (for any P ∈ U , there exists an estimate P � ∈ UP such that P � ≥ P ),
which is formulated as the following definition.

Definition 2. A vector P � = (p�
1, p

�
2, . . . , p

�
n)� ∈ U is called an ideal solution

of problem (1)–(4) (an optimal plan for problem (1)–(4)) if

P � ≥ P (p�
i ≥ pi ∀i = 1, 2, . . . , n) (5)

for every P = (p1, p2, . . . , pn)� ∈ U .

The goal is to find an ideal solution (see Definition 2) that maximizes the prices
at all outlets simultaneously under specified conditions (2)–(4).
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5 Main Properties of Optimization Problem

Note that problem (1)–(4) degenerates under condition m = n, since in this case
optimal values of the parameters pi are reached at infinity (pi = +∞, i =
1, 2, . . . , n). Therefore, the existence of base nodes in the graph G is of principal
importance. In this case (m < n), the following statements are true.

Lemma 1. The set U ⊆ R
n defined by system of linear inequalities (2)–(4) is

bounded, i.e. ∃ p > 0 : pi ≤ p ∀i = 1, 2, . . . , n.

Proof. Let us consider an arbitrary node vi0 .
There exists a simple chain ri0il = {vi0 ,vi1 ,vi2 , . . . ,vil} connected this node

with a base node vil . Obviously, the length of this chain satisfies inequality
l ≤ n − 1. Hence, taking into account (2), the following inequalities

pi0 ≤ pi1+ci0i1 ≤ pi2+ci1i2+ci0i1 ≤ pi3+ci2i3+ci1i2+ci0i1 ≤ . . . ≤ pil+
l−1∑

j=0

cijij+1

are fulfilled. Taking into account (4), we obtain

pi0 ≤ sl + (n − 1)cmax. (6)

Let p = (n−1)cmax +max{si | i = m+1, . . . , n}. Then, inequality (6) leads
to pi ≤ p ∀i = 1, 2, . . . , n.

The lemma is proved.

The structure of conditions (2) provides a necessary condition of optimality
of the plan P �.

Lemma 2. (Necessary condition of optimality)
Let P � = (p�

1, p
�
2, . . . , p

�
n)� ∈ U be an optimal plan for problem (1)–(4). Then,

∀i = 1, 2, . . . , m ∃j = 1, 2, . . . , n, j �= i : p�
i = p�

j + cij . (7)

Proof. Assume the contrary.
Let ∃ 1 ≤ i ≤ m : ∀j = 1, 2, . . . , n, j �= i ⇒ p�

i < p�
j + cij .

Let us define Δpi = min{p�
j + cij − p�

i | j = 1, 2, . . . ,m : j �= i} and consider
the vector PΔ = (p�

1, . . . , p
�
i−1, p

�
i + Δpi, p

�
i+1, . . . , p

�
n)�. It is easy to see that

PΔ ∈ U . This contradicts to the optimality of P � since p�
i + Δpi > p�

i .
The lemma is proved.

Let us introduce the additional definitions.

Definition 3. A chain ri0il = {vi0 ,vi1 ,vi2 , . . . ,vil} connecting the nodes vi0

and vil of the graph G is called a limit chain for P = (p1, p2, . . . , pn)� ∈ U if
pik = pik+1 + cikik+1 ∀k = 0, 1, . . . , l − 1.

Definition 4. A limit chain ri0il = {vi0 ,vi1 ,vi2 , . . . ,vil} is called a basic limit
chain for P = (p1, p2, . . . , pn)� ∈ U if the end node vil of the chain ri0il is a
base node.
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One can specify the following useful properties of a limit chain.
First, it is easy to prove that any limit chain ri0il = {vi0 ,vi1 ,vi2 , . . . ,vil}

for any plan P of problem (1)–(4) is a simple chain. Obviously, it is enough to
show that the nodes vi0 and vil are different. Indeed, assuming the opposite, i.e.
vi0 = vil , it is easy to get a contradiction with the positivity of the parameters
cijij+1 (j = 0, 1, . . . , l − 1) corresponded to edges connecting the nodes of this
chain. This follows from the equalities

pi0 = pi1 + ci0i1 = pi2 + ci1i2 + ci0i1

= pi3 + ci2i3 + ci1i2 + ci0i1 = . . . = pil +
l−1∑

j=0

cijij+1 .

If vi0 = vil then the equality pi0 = pi0 +
∑l−1

j=0 cijij+1 means that
∑l−1

j=0 cijij+1 = 0. This contradicts to the positivity of cijij+1 .
Second, it is evident that the limit chain ri0il = {vi0 ,vi1 ,vi2 , . . . ,vil} is an

oriented chain in the sense that, unlike the original limit chain ri0il , the chain
rili0 = {vil ,vil−1 ,vil−2 , . . . ,vi0} is not a limit chain.

Theorem 1. (Existence and uniqueness of an ideal solution)
Problem (1)–(4) has a unique ideal solution (the optimal plan P �).

Proof. We prove the theorem by two steps. First, we prove the existence of a
stationary point in problem (1)–(4) that meets necessary condition of optimality
(7). Then we prove the uniqueness of such point and show that this point is an
ideal solution.

1. The existence of a stationary point.
Let us construct the sequence of points Σ = {P (t) = (p(t)1 , p

(t)
2 , . . . , p

(t)
n )�} ⊂

R
n as follows. The initial point is defined as P (t) = (0, 0, . . . , 0, sm+1, . . . , sn)� ∈

U . The subsequent elements of the sequence are determined recursively:

P (t+1) = P (t) + ΔP (t),

ΔP (t) = (Δp
(t)
1 ,Δp

(t)
2 , . . . , Δp

(t)
n )� ∈ R

n :
Δp

(t)
i = 0 ∀i = 1, 2, . . . , n : i �= k, 1 ≤ k ≤ m,

Δp
(t)
k = Δp,

t = 0, 1, 2, . . . ,

(8)

where

k = Arg maxj=1,2,...,m{min{p
(t)
i + cij − p

(t)
j | cij < c, i = 1, 2, . . . , n}},

Δp = min{p
(t)
i + cik − p

(t)
k | cik < c, i = 1, 2, . . . , n} ≥ 0.

(9)

Thus, each successor P (t+1) of the sequence Σ is a result of such variation of
the antecedent P (t) that leads to the increase of the value of only one coordi-
nate of the point P (t). According to (9), the number k of this coordinate and
the increment value Δp

(t)
k are defined in the following way. The number k cor-

responds to a free node vk of the graph G such that the current value of its
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characteristic p
(t)
k can be increased more than at other free nodes. Hence, the

value Δp
(t)
k is defined as a maximal possible value that meets the condition

P (t+1) = P (t) + ΔP (t) ∈ U . As a result, we obtain the sequence satisfying the
conditions P (t+1) ∈ U, P (t+1) ≥ P (t) ∀t = 0, 1, 2, . . ..

Due to the completeness of the space R
n and the boundedness of the objec-

tive set U ⊆ R
n, there exists limt→∞ P (t) = P �. Herewith, limt→∞ ΔP (t) =

(0, 0, . . . , 0)� by definition (8), (9) of the sequence Σ.
Let us prove that P � is a unique optimal plan for problem (1)–(4).
2. The optimality and uniqueness of plan P �.
It is easy to show that the plan P � meets necessary condition of optimality

(7). Otherwise, according to rule (9), one can find a vector ΔP �= 0 such that
P �+ΔP ≥ P �. This contradicts to the fact that P � is the limit of the sequence Σ.

Now, we show that the plan P � satisfies condition (5), i.e., it is an opti-
mal plan for problem (1)–(4). Suppose the opposite. Let there is a point P̃ =
(p̃1, p̃2, . . . , p̃n)� ∈ U such that ∃ 1 ≤ i0 ≤ m : p̃i0 > p�

i0
. Obviously, by virtue of

condition (7), for each free node vj0 (1 ≤ j0 ≤ m) of the graph G, there is a limit
base chain rj0jl = {vj0 ,vj1 ,vj2 , . . . ,vjl} for P � connecting a node vj0 with some
base node vjl . Consider the limit base chain ri0il = {vi0 ,vi1 ,vi2 , . . . ,vil}. Then,
the conditions p�

ij
= p�

ij+1
+ cijij+1 , p̃ij ≤ p̃ij+1 + cijij+1 (j = 0, 1, . . . , l − 1)

leads to the inequalities p̃ij > p�
ij

∀j = 0, 1, 2, . . . , l. This contradicts to the
fact that p̃il = sil = p�

il
for the base node vil .

Let us prove the uniqueness of an optimal plan for problem (1)–(4). Suppose
the opposite, i.e. there are two different optimal plans P̃ �, P

�
for this problem.

Then, P̃ � ≥ P and P
� ≥ P ∀P ∈ U . Thus, P̃ � ≥ P

�
and P

� ≥ P̃ �. Hence,
P̃ � = P

�
.

The theorem is proved.

The proof of Theorem 1 implies the fact that necessary optimality condition
(7) of the plan P � is also a sufficient condition for its optimality in problem
(1)–(4).

6 Solution Algorithm for Vector Optimization Problem

The well-known rather general methods [5,7,9,16,17] for solving vector opti-
mization problems can be used for constructing the optimal plan P � for prob-
lem (1)–(4).

In addition, it should be noted that constructing an optimal plan for multi-
criteria problem (1)–(4) can be reduced to solving a linear programming problem
with one scalar criterion. In particular, it is known [15] that there exists a vector
H = (h1, h2, . . . , hn)� ∈ R

n: hi > 0 ∀i = 1, 2, . . . , n, such that the problem

f(P ) =
m∑

i=1

hipi → max
P∈U

(10)

is equivalent to problem (1)–(4).
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Koopmans [13] was the first who obtained the analogous result of reducing
a specialized linear problem with a vector criterion to a standard linear pro-
gramming problem by means of the convolution technique. Charnes and Cooper
[3] obtained the analogous result with the help of duality theorems for linear
programming problems. Later, the equivalence of a linear vector optimization
problem and a linear programming problem whose objective function is pre-
sented as the sum of scalar coordinates with positive coefficients was established
by Bod, Focke, Isermann, Podinovskii, and Steuer [18].

Thus, an optimal plan for problem (1)–(4) can be found as a solution of
standard problem of linear programming (10). The traditional methods [19] for
solving linear programming problems (for example, the simplex-method) can
be used. However, the implementation of this approach is connected with the
inevident construction of the vector H, which provides the equivalence of original
multicriteria problem (1)–(4) and auxiliary one-criterion problem (10).

In this paper, another solving method, which essentially takes into account
the specific properties of problem (1)–(4), is proposed. In essence, the proof of
Theorem 1 contains a numerical algorithm for solving the vector optimization
problem. A modification of this algorithm is described below. This modifica-
tion is an iterative procedure that allows to obtain both exact and approximate
solutions of problem (1)–(4) for a finite number of steps.

We make the following simple observations. Let us choose an arbitrary free
node vk (1 ≤ k ≤ m) of the graph G (see Fig. 2).

Let {k1, k2, . . . , ks} denote the set of indices of the nodes connected with this
node (see Fig. 2). Let us select from constraints (2) the inequalities that include
the parameter pk:

pk ≤ pkj
+ ckkj

∀j = 1, 2, . . . , s, (11)

pkj
≤ pk + ckjk ∀j = 1, 2, . . . , s. (12)

Fig. 2. The k-th node of the graph and its “neighborhood”.

From (11) it follows that, for fixed values of the variables pk1 , pk2 , . . . , pks
,

the maximal admissible value pk of the variable pk can be calculated by the
following rule

pk = min{pkj
+ ckkj

| j = 1, 2, . . . , s}. (13)
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Thus, relations (11)–(13) reflect the following tendency. The increase of the
value of one variable gives the possibility to increase the values of other variables.
This tendency entirely corresponds to the purposes of solving problem (1)–(4).

These observations form the basis for constructing a numerical algorithm
for calculating the vector P � = (p�

1, p
�
2, . . . , p

�
n)� that is the optimal plan for

problem (1)–(4). The main idea consists in the iterative maximum increment of
price values pk (k = 1, 2, . . . , m) at free nodes of the graph from some admissible
initial values until this increment is possible.

The following iterative numerical procedure for calculating the optimal plan
P � is suggested.

1. Let us fix the initial approximation P (0) for the plan P � as

P (t) = (0, 0, . . . , 0, sm+1, sm+2, . . . , sn)�,

where t = 0. Obviously, P (t) ∈ U .
2. The values of all components p

(t)
k (k = 1, 2, . . . ,m) of the current plan

P (t) = (p(t)1 , p
(t)
2 , . . . , p(t)m , sm+1, sm+2, . . . , sn)�

that correspond to the free nodes of the graph G are sequentially redefined
by formula (13).

3. The next approximation P (t+1) for the plan P � is defined as

P (t+1) = (p(t+1)
1 , p

(t+1)
2 , . . . , p

(t+1)
m , sm+1, sm+2, . . . , sn)�

= (p(t)1 , p
(t)
2 , . . . , p

(t)
m , sm+1, sm+2, . . . , sn)�.

4. The terminal condition for the calculations is checked:

Δp(t+1) = max{p
(t+1)
i − p

(t)
i | i = 1, 2, . . . ,m} ≤ ε. (14)

Here, ε ≥ 0 is an accuracy of the calculation of P � defined in advance. If condi-
tion (14) is fulfilled, then we accept P � ≈ P (t+1). Otherwise, the procedure of
calculating the next approximation of the optimal plan P � described above is
repeated from the second step.

One can show, for example, using the method of mathematical induction by
the number of free nodes in the graph G, that any required accuracy (condition
(14)) can be reached in a finite number of iterations.

Note that iterative procedures are often used for solving problems in mathe-
matical economics. Like in this research, they are applied to problems of pricing.
Here, one can refer to the Walras “tatonnement” process [10,20]. It is a well-
known iterative procedure in economic theory [1] for defining balance prices at
a competitive market.
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Fig. 3. Results of optimization of prices
at petroleum storage depots under restric-
tions (15).

Fig. 4. Results of optimization of prices at
petroleum storage depots without restric-
tions (15).

7 Results of Numerical Modeling

The intuitive examples of problem (1)–(4) are considered in [12]. Model data
on local petroleum products markets in Sverdlovsk region are used in these
examples. The results of the numerical solution of this problem given in [12]
were obtained with taking into account additional restrictions, which simplify
the problem, on admissible values of variables pi (i = 1, 2, . . . ,m) corresponded
to free nodes of the graph G:

pi ≤ si < +∞ i = 1, 2, . . . ,m. (15)

In this case, in many free nodes of the considered graph the optimal (max-
imal) values of the variables pi can reach the corresponding limit values si

(i = 1, 2, . . . ,m) specified by restrictions (15).
Figure 3 presents the optimization results with taking into account restric-

tions (15) for one of intuitive examples of problem (1)–(4) considered in [12].
In this example, the graph G consists of seventeen nodes connected by twenty
six edges. One of these nodes is a base node. In Fig. 3, the base node N0 is
highlighted by color and a thicker ellipse. As seen in Fig. 3, for ten of sixteen
free nodes, the maximal values of prices coincide with the limit values given by
restrictions (15) corresponded to these nodes. For the same intuitive example,
the optimization results with the help of the suggested algorithm without taking
into account restrictions (15) in problem (1)–(4) are presented in Fig. 4.

In both cases, the exact solutions of the problem were obtained. Here, it was
supposed that ε = 0 in condition (14) for stopping the iterative procedure. Note
that a fewer number of iterations was required to determine the optimal plan P �

for this problem without taking into account restrictions (15), see Figs. 3 and 4.
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8 Conclusion

The results of computational experiment for model examples of problem (1)–
(4) emphasize the effectiveness of the suggested algorithm for solving the vector
optimization problem under consideration.

On the basis of the mathematical model of the intuitive economic problem in
question, the statements of other applied management problems (for example,
the dispatching problem) are possible.
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Abstract. The paper researches the model of profit maximization for
a commercial company, taking into account the intensity of the sale of
goods, the cost of purchase, the cost of delivery, the cost of storage and
the cost of sale of goods. The alternative investments of available capital
are also taken into account. It is shown that the profit function, depend-
ing on the period of delivery of goods, has a single maximum point. A
model of the problem of the profit maximization in multi-product sys-
tems with limited working capital has been built and an algorithm for
solving it has been developed.

Keywords: Logistics · NP-hardness · Pseudo-polymonial algorithm

1 Introduction

Let us consider the problem of the activity optimization of a trading company
that buys goods on a commodity exchange and retails them. The company
has a modern warehouse. It is equipped with a warehouse management sys-
tem. The latest technology and efficient organization of the warehouse allowed
the company to reduce the costs substantially. Classical models based on cost
minimization, such as [1–5], do not always reflect the situation adequately. The
high mobility of the economy, great competition and the introduction of modern
logistics systems have created the need to develop new models. These models
are aimed at the efficient use of capital and receiving a better return on their
investments [6–9]. It is especially important when optimizing the procurement
of the goods for which the ratio of volume/price is a small value. They are, for
example, radio components, medicines, etc [10,11]. Therefore, the rate of capital
circulation is greater importance for the company. Delivery and storage costs are
becoming less important. Using such models gives the company a good chance
to use automation to optimize procurement processes.

There is another problem: the limitation of the working capital of a company.
The automated system determines the optimal volume of procurement of goods.
Sometimes it happens that the total value of the requested goods may be greater
than the available money to invest. In this situation, a company has to either
reduce the order or take a loan. The loan changes the value of money. Therefore,
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the optimal volume of procurement should be changed. Order reduction also
leads to additional costs: additional delivery costs and lost profits due to unmet
demand. A company needs to solve the problem of adjusting a multi-product
order taking into account the local limit on working capital.

In paragraph 2, we consider the model of inventory management, which takes
into account the alternative use of capital. Paragraph 3 describes the model of
the problem of optimizing current procurement in multi-product systems with
limited working capital and with the possibility of using loans. An algorithm for
solving this problem has been developed.

2 Task of Maximizing Net Present Value

This paragraph discusses the classical model of inventory management and its
development, taking into account the factors of the modern economy. The focus
is on the efficient use of capital when there are alternative opportunities for its
use. We will consider the model under the assumption that there is a guaran-
teed possibility of an alternative risk-free capital allocation at the interest rate
of r0. Then money at different points in time will have different value. To com-
pare receipts received in different time, the following approach is used. If at the
moment t1 some capital K1 is available, then it can always be placed on the
market under the current market interest rate of r0. With this placement by
the time t2 capital will increase to K1(1 + r0)t2−t1 . And vice versa, if at the
moment t2 capital K2 is needed, then at the moment t1 it is enough to have it
in quantity K2/(1 + r0)t2−t1 . Therefore, to compare the capital of K1 in time
point t1 and K2 at time point t2, it is necessary to compare the values of K1

and K2/(1+r0)t2−t1 . This operation is called the coercion operation by the time
point t1 or discounting.

The process of purchasing and selling goods will be considered as in the
classical model: we buy goods in the amount of v at the price of β and sell it
with the intensity of λ at the price of c. Delivery costs are defined by the function
α + βv, where α are the fixed costs including the cost of purchase and product
delivery. The cost of storing a unit of goods per unit of time is denoted by cxp.

The implementation time of the purchased goods will be T = v
λ . The intensity

of the proceeds from the sale is cλ. Taking discounting into account, the intensity
of the cash flow is expressed by the function cλ

(1+r0)t
. For the period of the sale

of goods [0, T ] total revenues discounted to the initial point in time will be equal
to

Q(T ) =

T∫

0

cλ

(1 + r0)t
dt =

cλ

ln(1 + r0)
· (1 + r0)T − 1

(1 + r0)T
,

and the cost of storing the goods, taking into account discounting, is

Z(T ) =

T∫

0

(Tλ − tλ)cxp

(1 + r0)t
dt =

cxpλ

ln2(1 + r0)
·
(

T · ln(1 + r0) +
1

(1 + r0)T
− 1

)
.
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Thus, for the specified period [0, T ] net present value (NPV) will be received in
the amount of NPV = Q(T ) − (α + βv) − Z(T ). The task requires to maximize
profit per unit, which is expressed by the following function:

U(T ) =
Q(T ) − (α + βTλ) − Z(T )

T
→ max.

The Fig. 1 shows an example of the function U(T ) depending from the period
of delivery of goods with the following input data λ = 1, α = 2, β = 0, 25, c = 1,
r0 = 0, 1, cxp = 0, 03. The optimal value of the specific net profit is 0, 109 and is
reached at T = 7, 02.

Fig. 1. The dependence of the specific profit from T

Let us investigate the extremal values of this function U(T ). Denote

γ =
cλ

ln(1 + r0)
+

cxpλ

ln2(1 + r0)
> 0, δ =

1
1 + r0

, 0 < δ < 1.

Then
U(T ) =

1
T

(γ(1 − δT ) − α − βTλ) − const,

where const = cxpλ
ln2(1+r0)

.

lim
T→+0

U(T ) = −∞, lim
T→+∞

U(T ) = −βλ.

Let us investigate the zeros of the derivative

U ′(T ) =
−γδT ln δT − γ(1 − δT ) + α

T 2
= 0.



384 S. A. Malakh and V. V. Servakh

We get the following equation

δT (1 − T ln δ) = 1 − α

γ
.

We will solve this graphically. Denote W (T ) = δT (1 − T ln δ).

W (0) = δ0 = 1;

W ′(T ) = δT ln δ − δT T ln2 δ − δT ln δ = −δT T ln2 δ < 0;

lim
T→∞

W (T ) = 0.

Therefore, the function W (T ) is always positive and monotonically decreases.
Its graph is shown in the Fig. 2. The graph of the right side of the equation is a
straight line parallel to the Ox axis. For α < γ the graphs intersect and there is
a unique solution to the equation δT (1 − T ln δ) = 1 − α

γ . Obviously, this is the
point of maximum. This proves the following theorem.

Fig. 2. Changing the function W (T ) depending from T

Theorem. For α < cλ
ln(1+r0)

+ cxpλ
ln2(1+r0)

the profit function has a single point

of maximum. For α ≥ cλ
ln(1+r0)

+ cxpλ
ln2(1+r0)

the profit function monotonously
increases on all the interval (0,∞), and the profit value is always negative and
less than −βλ − cλ

ln(1+r0)
.

Thus, under certain conditions, there is a period of delivery of products in
which the money invested is used as efficiently as possible, bringing the greatest
profit. The point of maximum is found as the single solution to the equation
δT (1 + T ln δ) = 1 − α

γ .
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3 Problem with Working Capital Limits

The approach described above is the mathematical basis of the models imple-
mented in practice in chain trading companies. In multi-product systems, it is
determined which goods have to be imported and in what amounts, taking into
account current demand, purchase and sale prices, delivery and storage costs.
The criterion is to maximize the profit margins. This model allows taking into
account various additional restrictions on the insurance stocks of goods, time
lags, and so on. The dates and volumes of orders are calculated automatically
by the robot program. The company’s employees do not participate in the pro-
cess of calculation.

Difficulties can arise when, during the order formation, the total price of the
ordered goods may be higher than the available money for investment. First,
the value of a purchase order fluctuates, as different types of goods are imported
at different points in time. Secondly, the amount of working capital may be
reduced. This may happen in the period of payment of taxes or because of the
immobilization of current assets. In this situation, you have to either reduce the
order or take a loan. Reducing the order leads to additional costs. A loan reduces
profits due to interest payments. In the task presented below, we have built a
model and developed an algorithm that makes it possible to minimize costs if
the amount of working capital is limited.

Let us describe the task parameters:

N – the number of types of goods;
αi – the cost of one consignment of goods i;
βi – the purchase price per unit of output i;
αi + βivi – the cost of ordering and consignment of goods i with a volume of
vi;
λi – the intensity of sale of goods i;
ci – sale price per unit i;
cxp
i – the cost of storing a unit of good i per unit of time;

r0 – the rate of alternative risk-free liquid capital allocation.

At the current time, for each item i with zero balance in stock, it is required to
find a delivery period of Ti, when the profit margins

Ui(Ti) =
1
Ti

⎛
⎝

Ti∫

0

ciλi

(1 + r0)t
dt − αi − βiTiλi −

Ti∫

0

(Tiλi − tλi)c
xp
i

(1 + r0)t
dt

⎞
⎠

are maximum.
We make some natural assumptions that do not affect the generality of the

model under consideration. Orders cannot be made at any time. The discreteness
of planning in time is natural for economic tasks. If you select the appropriate
unit of measurement, you can consider only integer moments. We will not take
into account temporary lags during shipment and delivery of goods since this
does not affect the essence of the task. Therefore, we will assume that the pay-
ment and delivery of goods are carried out when its balance is equal to zero.
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Under these conditions, it suffices to consider only integer values of Ti. Indeed, if
Ti is not an integer, once �Ti� you will have to make another delivery, since the
remaining goods (Ti −�Ti�)λi are not enough until the next delivery. The integer
optimum Ui(Ti) is denoted by T ∗

i . The corresponding amount of imported goods
equal to v∗

i = T ∗
i λi.

The next order is being formed at the current moment t ∈ Z+. We are
buying only the products that are running out at this point and there is a
non-zero demand. For the convenience of presentation, we number them with
numbers 1, 2, . . . , n. From the database we take the current parameters for these
positions, then for each product i = 1, 2, . . . , n we find the integer optima T ∗

i

and the corresponding value of the delivered volumes v∗
i = T ∗

i λi. To purchase
them you need

n∑
i=1

(αi + βiv
∗
i )

units of capital. Where the necessary financial resources are available, the order
is paid and the goods are delivered.

3.1 Problem with Order Reduction

Problems arise when the current capital K is not enough to pay the whole order.
In practice, three options are possible: order reduction, bank short-term loan,
commodity loan. The last two options differ only in the way they are organized.
As for the maximization of NPV, there is no difference between them, a part of
the income has to be given. We first look at the problem of reducing the order,
and then we generalize it in case we need to use loans.

We introduce the variable xi ≤ v∗
i – the order quantity of the product i =

1, 2, . . . , n. Order reduction to the level of xi leads to a loss of profit in the
amount of Hi(xi) = Ui

(
v∗
i

λi

)
− Ui

(
xi

λi

)
. To build an algorithm for finding the

optimal solution of the problem, the following statement is important.

Statement 1. On the interval xi ∈ (0, v∗
i ), the function Hi(xi) decreases mono-

tonically.
The proof follows from the type of the function U(T ) and its investigation

in Sect. 2.

Statement 2. Variables xi can take only values from the set {λi, 2λi, . . . , v
∗
i }.

The arguments are the same as at the end of the previous paragraph. If xi

is not a multiple of λi, then at some moment the remainder will be xi − �xi

λi
�λi

and it will not be enough until the next delivery. By removing this residue,
the objective function can be improved. Also, xi cannot be equal to zero, since
demand must be satisfied at least in the amount of λi to the nearest delivery.

Thus, if
n∑

i=1

(αi + βiv
∗
i ) > K0, then you need to solve the problem of reducing

the application to minimize costs. We get the following model:
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n∑
i=1

Hi(xi) → min,

n∑
i=1

(αi + βixi) ≤ K0,

xi ∈ {λi, 2λi, 3λi, . . . , v
∗
i }, i = 1, 2, . . . , n.

Note that in this model K0 ≥
n∑

i=1

(αi + βiλi), since minimum demand must

be satisfied before the next delivery. The value
n∑

i=1

(αi + βiλi) is denoted by

Kmin.
A dynamic programming scheme is used to solve this problem. Denote by

ϕ(m, k) the optimal value of the objective function for the current capital k and
the subset of products {1, 2, . . . ,m}, where m = 1, 2, . . . , n, k = Kmin, . . . , K.
Purchase of m in the amount of xm is allowed if xm ∈ {λm, 2λm, 3λm, . . . , v∗

m}
and

m−1∑
i=1

(αi + βiλi) + αm + βmxm ≤ k. The set of admissible values of xm is

denoted by D(m, k).
We look through all the values of xm ∈ D(m, k) to calculate ϕ(m, k). If the

m product is purchased in the amount of xm, then we get a subtask:

m−1∑
i=1

Hi(xi) − Hm(xm) → min,

m−1∑
i=1

(αi + βixi) ≤ k − (αm + βmxm),

xi ∈ {λi, 2λi, 3λi, . . . , v
∗
i }, i = 1, 2, . . . , m − 1.

The optimal solution to this problem is ϕ(m−1, k−αm−βmxm). The optimal
solution to this problem is

ϕ(m, k) = min
xm∈D(m,k)

{Hm(xm) + ϕ(m − 1, k − αm − βmxm)}.

To find ϕ(n,K) this recurrence relation must be implemented in a dou-
ble cycle m = 2, 3, . . . , n, k = Kmin, . . . , K, with initial conditions ϕ(1, k) =
Hm(x1), where x1 = �k−α1

β1λ1
�λ1. Restoration of the optimal solution is carried

out by the reverse course of the standard scheme. Note that the implementa-
tion of the algorithm requires the integer values of αm + βmxm, which can be
ensured by the selection of units of capital measurement. The complexity of the
algorithm depends pseudo-polynomially on the length of the input data record

and amounts to O(K ·
n∑

m=1
T ∗

m) operations, where K is the available capital in

the selected units, T ∗
m – the optimal period of delivery of goods m.
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3.2 Forming Orders Using Credits

Let us generalize the written model in case of using credits. The loan rate of r
is known. The variable D will denote the size of the loan. As before, Kmin =
n∑

i=1

(αi + βiλi) is the minimum required amount of working capital. We also

introduce the value Kmax =
n∑

i=1

(αi + βiλiT
∗
i ) – the amount of funds sufficient

to fully support the application.
In case the minimum required the amount of working capital Kmin is more

than cash capital K, the loan amount cannot be less than the value of Kmin−K.
The maximum loan value D does not exceed Kmax−K. The costs of loan reduced
to the current point in time will be D(1+r)

1+r0
− D. Size available capital will be

equal to K + D. We obtain the following model:

n∑
i=1

Hi(xi) +
D(1 + r)
1 + r0

− D → min,

n∑
i=1

(αi + βixi) ≤ K + D,

max{0,Kmin − K} ≤ D ≤ Kmax − K,

xi ∈ {λi, 2λi, 3λi, . . . , v
∗
i }.

If the variable D is fixed the value of D(1+r)
1+r0

− D will be constant and we
will get the problem described in the previous section with the initial capital
K + D. We solve it by the algorithm described there and find all ϕ(m, k) for
m = 1, 2, . . . , n and k = Kmin, . . . , Kmax. After that, it remains to go through all
the integer values of D ∈ [max{0,Kmin −K},Kmax −K] and find the minimum

min
D∈[max{0,Kmin−K},Kmax−K]

{
ϕ(n,K + D) − D +

D(1 + r)
1 + r0

}
.

The complexity of the algorithm is O(Kmax ·
n∑

i=1

T ∗
i ) operations. Calculations

on real data allow us to show the relevance of the model with credits. Often the
optimum for D is reached within the interval [max{0,Kmin − K},Kmax − K],
that is, the application is still reduced, but its part is paid for credit.

4 Conclusion

The paper investigates the problem of maximizing profits, taking into account
the alternative use of capital. The theorem on the uniqueness of the maximum
point of the profit function is proved. A model of the task of generating a profit
maximization application has been built, taking into account the limitation of
working capital, its properties have been identified and justified, an algorithm
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for solving the problem based on a dynamic programming scheme has been
proposed and implemented. An algorithm for solving the problem of forming an
application with the possibility of using loans is proposed and implemented. The
models and algorithms were tested when solving the problem of bidding for the
purchase and sale of goods for large wholesale and retail trading company in the
pharmaceutical market.
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Abstract. We consider a problem of constructing an energy-efficient
bounded diameter communication spanning tree when the vertices are
located on a plane, and the energy required to transmit a message
between a pair of vertices is proportional to the squared distance between
them. For this NP-hard problem, we have developed several approximate
heuristic algorithms. The results of a posteriori analysis of solutions con-
structed by the proposed algorithms are presented.
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1 Introduction

Due to the prevalence of wireless sensor networks (WSNs) in human life, the
different optimization problems aimed to increase their efficiency remain actual.
Since usually WSN consists of elements with the non-renewable power supply,
one of the most important issues related to the design of WSN is prolongation
of its lifetime by minimizing the energy consumption of its elements. A sig-
nificant amount of sensor’s energy is consumed on communication. Therefore,
modern sensors often can adjust their transmission ranges changing the transmit-
ter’s power. Herewith, usually, the energy consumption of a network’s element is
assumed to be proportional to ds, where s ≥ 2 and d is the transmission range
[1].

The problem of the optimal power assignment in WSN is well-studied. The
most general problem is the Range Assignment Problem where the goal is to find
a strongly connected subgraph in a given directed graph has been considered
in [2,3]. Its subproblem, the Minimum Power Symmetric Connectivity Prob-
lem (MPSCP), was first studied in [4]. The authors proved that the Minimum
Spanning Tree (MST) is a 2-approximate solution to this problem. Also, they
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proposed a polynomial-time approximation scheme with a performance ratio
1 + ln 2 + ε ≈ 1.69 and a 15/8-approximation polynomial algorithm. In [5] a
greedy heuristic Incremental Power: Prim (IPP) was proposed. IPP is similar to
the Prim’s algorithm for MST constructing. A Kruscal-like heuristic Incremental
Power: Kruscal was studied in [6]. Both of these incremental power heuristics
have been proposed for the Minimum Power Asymmetric Broadcast Problem,
but they are suitable for the MPSCP too. It is proved in [7] that these algorithms
have an approximation ratio 2, and it was shown in the same paper that in prac-
tice they yield a significantly more accurate solution than MST. Also, in a series
of papers different heuristic algorithms have been proposed for the MPSCP and
the experimental studies have been done: local search procedures [7–9], methods
based on iterative local search [10], hybrid genetic algorithm that uses a variable
neighborhood descent as mutation [11], variable neighborhood search [12], and
variable neighborhood decomposition search [13].

Another measure of WSN’s efficiency is a transmission delay, the required
time for transmitting a message from one sensor to another. As a rule, the delay
is proportional to the number of hops (edges) between two nodes of a network.
In the general case, when the network is represented as a directed arc-weighted
graph and the goal is to find a strongly connected subgraph with minimum total
power consumptions and bounded path length, the problem is called the Min-
Power Bounded-Hops Strong Connectivity Problem. In [3] a special case of this
problem, when sensors are spread equidistantly on the line, was considered. In
[14] the approximation algorithms with guaranteed estimates have been proposed
for the Euclidean case of this problem. The bi-criteria approximation algorithm
for the general case (not necessarily Euclidian) has been proposed in [15]. The
authors of [16] propose improved constant factor approximation for the planar
Euclidian case of the problem.

In this paper, we consider the symmetric case of the Min-Power Bounded-
Hops Strong Connectivity Problem, when the network is represented as an
undirected edge-weighted graph. Such a problem is known as the Min-Power
Bounded-Hops Symmetric Connectivity Problem (MPBHSCP) [15]. We also
assume that sensors are positioned on the Euclidian plane. Energy consump-
tion for the data transmission from one node to another is assumed to be pro-
portional to the squared distance between them. This problem is still NP-hard
[17], and, therefore, the approximation heuristic algorithms that construct the
near-optimal solution in a short time, are required for it.

Although the MPBHSCP is known to be NP-hard, to the best of our knowl-
edge, none research has been done to find the efficient in practice approxima-
tion algorithms. This paper is aimed to fill this gap. We propose six differ-
ent constructive heuristics for the approximation solution of the MPBHSCP.
We employ the ideas of the most natural and widely spread heuristics for the
Bounded-Diameter Minimum Spanning Tree (BDMST). We conducted an exten-
sive numerical experiment where these algorithms have been compared. In small
size cases, we compared our algorithms with CPLEX, that was run with our
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mixed integer linear programming (MILP) formulation, which is also proposed
in this paper.

The rest of the paper is organized as follows. In Sect. 2 the problem is for-
mulated, in Sect. 3 descriptions of the proposed algorithms are given, Sect. 4
contains results and analysis of an experimental study, and Sect. 5 concludes the
paper.

2 Problem Formulation

Mathematically, the MPBHSCP can be formulated as follows. Given a connected
edge-weighted undirected graph G = (V,E) and an integer D ≥ 2, find such
spanning tree T ∗ in G, which is the solution to the following problem:

W (T ) =
∑

i∈V

max
j∈Vi(T )

cij → min
T

,

distT (u, v) ≤ D ∀u, v ∈ V,

where Vi(T ) is the set of vertices adjacent to the vertex i in the tree T , cij ≥ 0
is the weight of the edge (i, j) ∈ E and distT (u, v) is the number of edges in a
path between the vertices u ∈ V and v ∈ V in T .

Obviously, this problem may not have any feasible solution. In this paper,
we consider a planar Euclidian case, where an edge weight equals the squared
distance between the corresponding points, and G is a complete graph. Therefore,
a solution always exists. Also, we assume that the sensors are randomly uniformly
distributed on a square with fixed side. Therefore, the density of a network grows
with increase of the number of its elements.

3 Heuristic Algorithms

We propose several heuristic algorithms that construct an approximate solution
to the MPBHSCP. Many of these algorithms use ideas that previously have been
applied to the solution of the BDMST. As well as it is done in many efficient
heuristic algorithms for the BDMST, we use a center-based approach, where the
center (one vertex if D is even or two vertices if it is odd) is chosen, and after
that, a tree is constructed taking care of the depth of each vertex (the number of
edges in the path from the center). The main difference between the algorithms
applied to the BDMST and our methods is a calculation of the objective function
increment after the modifications of a partial solution. An objective function of
the MST problem is additive, that is, adding (or removing) an edge increases (or
decreases) the objective value exactly by the weight of an edge, which is not held
for the objective function of the MPSCP: if one wants to calculate the change of
an objective function value for the MPSCP after adding or removing an edge,
then he has to take into account the weights of all adjacent edges of a tree.

Let us define the notations that will be used further. For convenience pur-
poses, we will construct a directed tree rooted in a center. If the center contains
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two vertices then one of them will be referred to as a root, and the second
one—as its child. Let’s call the number of edges between a vertex and center in
a tree the depth of a vertex and call the maximum depth in a tree the height
of a tree. Let VT ⊂ V be the set of vertices of T , and let ET be the set of
edges of T . Let ParT (v) ∈ VT be the parent vertex of v ∈ VT . If v /∈ VT then
ParT (v) = ∅. Let depthT (v) be the depth of the vertex v in T . If v /∈ VT then
depthT (v) = −1. Let Pow(v, u) = Pow(u, v) be the power consumption of the
direct communication between the vertices u and v. As it was mentioned before,
we assume that Pow(u, v) is a squared Euclidian distance between the vertices
u and v. Of course, these values may be calculated in advance since the positions
of the nodes are known. Let PowT (v) be the total power consumption for the
communication of the vertex v in T . Let NT (v) ⊂ VT {v} be the set of neighbors
of v ∈ VT in T . Then, PowT (v) = maxu∈NT (v) Pow(u, v), and the total power
consumption of T (the objective function), is W (T ) =

∑
v∈VT

PowT (v).

3.1 Prim-Like Heuristics

Many of known greedy approaches for the BDMST use the Prim’s strategy
[18] for tree building. Starting from a tree with one vertex, these algorithms
repeatedly add a new edge that connects a non-tree vertex with a vertex in
a tree satisfying the requirement on the diameter. Herewith, criteria of choos-
ing a new non-tree vertex may vary while the in-tree vertex is always chosen
greedily. A way of choosing the center vertex (or two center vertices in a case
of odd value of D), which is rather essential, may vary too. The general scheme
of the Prim-Like Heuristic (PLH) is presented in Appendix A, Algorithm 1.
Below we consider three different heuristics that are based on the Prim’s strat-
egy: Min-Power Center-Based Tree Construction, Min-Power Randomized Tree
Construction, and Min-Power Center-Based Least Sum-of-Costs. The difference
between these algorithms lies in the different implementations of the methods
ChooseF irstCenters, ChooseSecondCenter, and ChooseEachV ertex.

Min-Power Center-Based Tree Construction. The first algorithm based
on the PLH is Min-Power Center-Based Tree Construction (MPCBTC) which is
similar to the Center-Based Tree Construction (CBTC) [19] for the BDMST. In
this algorithm, the procedure ChooseF irstCenters chooses each vertex, that is,
the algorithm starts n times with each vertex selected as a center. The method
ChooseSecondCenter(v0) returns the vertex v1 = argminv∈V \{v0}PowT (v, v0).
And, finally, the method ChooseEachV ertex(U, V0, wBestNeighbor) finds such
vertex u ∈ U that wBestNeighbor(u) (the minimum contribution to the objec-
tive function of addition an arc between u and its neighbor to the tree) is mini-
mum. CBTC is known to perform worse with a decrease of the maximum number
of hops and increase of the density of the points, since the nodes that lie far from
the center (let’s call them far nodes) often have the maximum allowable depth
and, therefore, once added, they cannot be connected with any other node. So,
far nodes cannot be connected with any node in their proximity without violat-
ing the restriction on the number of hops, and they are forced to be connected
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with a tree by long arcs. Obviously, in MPCBTC, as well as in CBTC, the clos-
est to the center nodes are added sooner, and in a case of large density and
small D MPCBTC will have the same disadvantage as CBTC: far nodes will be
connected with a tree using long edges. Due to this fact solution obtained by
MPCBTC should appear extremely inefficient for the cases when n is large and
D is small. The time complexity of MPCBTC is O(n3) since it is repeated n
times for each vertex chosen as a center, and each iteration has an O(n2) time
complexity.

Min-Power Randomized Tree Construction. One simple approach aimed
to overcome the mentioned disadvantage of the CBTC is the Randomized Tree
Construction (RTC) proposed in [19]. As well as CBTC, RTC chooses a center
vertex (or two center vertices if D is odd), then it iteratively selects a vertex
outside a tree and connects it with some vertex in a tree. But, in contrast to
MPCBTC, each time the vertex is taken at random. The process is repeated n
times, and the best tree is returned. We adapted this algorithm to the MPBH-
SCP. Let’s denote our heuristic as Min-Power Randomized Tree Construction
(MPRTC). Since this algorithm is also based on the PLH, the only procedures
that should be mentioned are the special implementations of the subroutines
ChooseF irstCenters, ChooseSecondCenter, and ChooseEachV ertex, which
are extremely simple in this case: the method ChooseF irstCenters n times
chooses a vertex v ∈ V at random, as well as it is done in RTC [19]. The both
methods ChooseSecondCenter and ChooseEachV ertex take a vertex v ∈ U at
random (where U is a set of non-tree vertices, see Appendix A, Algorithm 1).
This circumstance theoretically should cause better results of MPRTC compar-
ing with MPCBTC on high-dense graphs constructed on uniformly spread set of
points, because on each step of MPRTC the constructed partial solution consists
of a random subset of V . Because of the fact that MPRTC is repeated n times
with different randomly chosen center, its time complexity is O(n3).

Min-Power Center-Based Least Sum-of-Costs. Another greedy algorithm
for the BDMST was proposed in [21], it is called Center-based Least Sum-of-
Costs. In similar manner to the CBTC and RTC, it constructs a tree iteratively
adding a vertex and an edge to the current tree. The difference of this algorithm
from the mentioned above heuristics is that it chooses a vertex outside a tree with
the minimum sum of costs of edges that connect it with other non-tree vertices.
We employed a similar strategy and called the proposed algorithm Min-Power
Center-based Least Sum-of-Costs (MPCBLSoC). But instead of minimizing the
sum of the edge weights, we minimized the sum of the vertices power costs in
a star-like subgraph with a center in a given vertex what is more suitable for
the MPBHSCP. As well as the methods described above, MPCBLSoC is based
on PLH. In this case, the methods ChooseF irstCenters, ChooseSecondCenter,
and ChooseEachV ertex have the same implementation: given an already con-
structed partial tree T , there is selected a such vertex v ∈ V \ VT , that a star-
graph on remaining vertices rooted in v has a minimum total power. The algo-
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rithm that chooses the best star-graph center is called FindBestStarCenter, and
its pseudo-code is given in Appendix A, Algorithm 2. Thus, from the one hand,
since ChooseF irstCenters returns a single vertex, the algorithm MPCBLSoC
contains one iteration. But, from the other hand, FindBestStarCenter runs in
time O(n2), and, therefore, the total computational complexity of MPCBLSoC
is O(n3).

3.2 Min-Power Center-Based Recursive Clustering

Authors of [20] suggest another greedy heuristic called Center-based Recursive
Clustering (CBRC) for the BDMST. This algorithm starts with a spanning
star-tree rooted in the center, selected in such a way that the sum of edge
weights is minimum. Then the leaves, whose depth is less than 
D/2�, are reor-
ganized into a cluster with a center in some node. At each iteration, the leaves
are reattached to a center if this improves the solution and the restriction on
the number of hops is held. We called our implementation for the MPBHSCP
Min-Power Center-based Recursive Clustering (MPCBRC). As a center choos-
ing subroutine the previously described algorithm FindBestStarCenter is used.
The pseudo-code of MPCBRC is presented in Appendix A, Algorithm 3. Each
iteration of the algorithm takes O(n2) operations because of the complexity of
FindBestStarCenter, and, since there are O(n) iterations, the algorithm runs
in time O(n3).

3.3 Min-Power Quadrant Center-Based Heuristic

One of the most efficient heuristics applied to the BDMST in planar Euclid-
ian case with uniformly distributed vertices consists of recursive splitting the
given region into equal parts (quadrants) and search of their centers [20]. We
implemented a variant of the similar approach to the MPBHMSCP and called
it Min-Power Quadrant Center-based Heuristic (MPQCH). The pseudo-code
of this algorithm is given in Appendix A, Algorithm 4. As well as in some
of the previous heuristics, it starts with choosing a center by the algorithm
FindBestStarCenter. But this time in order to reach central symmetry we
select one start center despite the parity of D. Then inside the main loop, the
region is iteratively split into the squared cells of equal size. For each cell, its
center is chosen by the algorithm FindBestStarCenter and then it is added to
the tree with an edge that connects it with a center of a previous iteration’s cell
that contains it, or with v0 at the first iteration. After each iteration, the num-
ber of cells four times greater than the number of cells in the previous iteration,
that is, each cell consists of four cells of the next iteration. At each iteration, the
height of a constructed tree is increased by 1, and, since stepsCount is bounded
by 
D/2�, the diameter constraint is not violated.
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In our implementation, for the speed purposes, a regular rectangular grid of
size qsize×qsize is initially set on the given region, and a corresponding grid cell
is assigned to each vertex. Then, due to this grid, during the main loop the subset
of vertices that belong to each cell c ∈ C are found in constant time. Actually,
qsize is a parameter of the algorithm, and the greater value of qsize allows
to obtain better solution but increases the running time. The computational
complexity of the algorithm is O(qsize2 + min{
D/2�, log(qsize)}n2).

3.4 Min-Power Iterative Refinement

Another efficient approach for building a spanning tree with bounded diam-
eter is the following. At first, a tree without restriction on diameter is con-
structed. Then, it is iteratively modified in such way that the depths of its ver-
tices decrease. This procedure is performed until the restriction on tree diameter
is satisfied. The iterative algorithm that reduces the diameter of an input span-
ning tree for the BDMST has been proposed in [22]. We propose the heuristic for
the MPBHSCP called Min-Power Iterative Refinement (MPIR), which is based
on the similar idea. The pseudo-code of this algorithm is presented in Appendix
A, Algorithm 5. At first, a center v0 is chosen by the FindBestStarCenter sub-
routine. Then, a near-optimal solution for an unbounded problem rooted in v0
is constructed by IPP [5]. If D is odd, then the most remote neighbor of v0 in T
is selected as second center. The algorithm works with a set of vertices U whose
depth exceeds 
D/2�. For each u ∈ U the best removing of an edge from the path
from u to v0 and subsequent adding another edge that decreases a depth of u and
minimally increases the value of objective function are found. The best of such
edge exchanges among all vertices of U is performed. After each modification
of a tree depth of some vertices in U may be decreased, therefore, the vertices
whose depth is less than 
D/2� are removed from U . The time complexity of the
algorithm is O(n3).

4 Simulation

We have implemented all the described algorithms in C++ programming lan-
guage and run them on the data sets that are given in Beasley’s OR-Library for
the Euclidian Steiner Problem (http://people.brunel.ac.uk/∼mastjjb/jeb/orlib).
These test cases present the random uniformly distributed points in the unit
square. For the same size 15 different instances are provided. The experiment
was launched on the Intel Core i5-4460 3.2 GHz processor with 8 Gb RAM. For
the algorithm MPQCH we chose qsize = n since choosing such value does not
slow down the algorithm much, while the objective function on the obtained solu-
tion becomes significantly greater than, for example, in the case qsize =

√
n.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib
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We have tested our algorithms on two groups of test instances: small and
large. The first group contains the instances when n is 20, 30, 40, or 50, and
D is 4, 5, or 6. In Appendix B we propose a MILP model of the BHMPSCP
that uses the ideas of integer linear programming (ILP) model of the BDMST
from [23]. We have launched CPLEX with MILP models of small size instances.
The results are presented in Appendix C, Table 1. In this table, in the first
two columns, correspondingly, diameter of a tree D and problem size n are
presented, the third column contains the numbers of instances in the OR-Library.
In the next 7 columns the objective function values on solutions obtained by
different algorithms are shown, and the last column shows the running time
of CPLEX in seconds. We bounded the calculation time for CPLEX by 1 h. In
cases when CPLEX constructed an optimal solution within the allotted time, the
corresponding objective function value is marked by an asterisk, in other cases
CPLEX built some feasible solution, not necessarily optimal. The least objective
function values are marked bold. It is seen that MPRTC often appeared to be
the best in these small size cases. On the 1st instance with n = 50, and d = 5,
MPRTC outperforms CPLEX. In all tested cases the objective value on the best
solution constructed by the new fast heuristics never exceeds the optimal value
by more than 40%, and, in most cases, this gap is significantly less: for example,
it is often less than 15% in cases when n = 20.

Within the second group we tested 4 variants of size: n = 100, 250, 500, and
1000, 15 instances for each. We also took different values of D for each size.
The results of the experiment are presented in Appendix C, Table 2. For each
algorithm and each tested pair of n and D the average objective value (av), aver-
age time in seconds (time), and standard deviation (err) are shown. In average,
when the diameter bound is low, the best solution is constructed by MPRTC.
With large values of D MPIR constructs the best solution. Note that MPBTC
and MPCBLCoS results are very poor when D is small, but with large values of
D their average objective values are close to minimum. MPBTC and MPRTC
appeared to be the most time consuming on large size cases, while MPQCH
always runs significantly faster than other algorithms. Besides, MPQCH per-
formance almost does not depends on D. Most probably, this is because the
maximum diameter of the constructed solution is much less than D,—this gives
us a possibility for the further improvements of this algorithm.

Of course, CPLEX is not applicable in reasonable time for the large size
instances. In order to obtain a lower bound of the objective function we launched
CPLEX on the LP-relaxation of the problem, but the obtained bounds appeared
to be too small, so we decided not to include them into the table.
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(f) MPQCH. W (T ) = 2.35

Fig. 1. Algorithms results on the same instance. D = 15, n = 250 (Color figure online)

As an illustration, we also present in Fig. 1 the solutions that were obtained
by different algorithms on the same instance when D = 15, n = 250. For the
convenience, the edges that remote from a center by an equal distance (i.e., hops
count) are colored in the same color. Since the diameter bound is odd in this
case, there are two centers (linked by a black edge) in solutions constructed
by all algorithms except MPQCH, which always builds a tree with only one
center. The difference of solutions obtained by the algorithms is seen in these
figures. The diameter bound is still not enough for MPCBTC and MPCBLSoC to
construct good solutions: in both cases the edges of a backbone (i.e., a subgraph
induced by all the tree’s non-leaf vertices) are often too short and there are
many leaves far from a center that are coincident with long edges (colored in red).
MPCBRC constructs a tree with big amount of long edges in backbone, since the
backbone vertices are always chosen as center of the current set of leaves during
the tree construction. MPIR result contains a lot of vertices with a large degree
that are coincident with rather long edges, that slightly deteriorate solution.
The remained two algorithms, MPRTC and MPQCH, that performed the best,
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have the following common features: (1) the number of vertices increases with
increasing of their depths; (2) the average edge weight decreases with increase
of the depth. MPRTC always chooses a vertex at random, and, in average,
the distance to the closest in-tree vertex becomes less while the constructed
tree size grows. MPQCH constructs a tree whose backbone vertices are located
close to the quadrants geometric centers. Note that MPQCH built a tree with
maximum depth equal 6 while the depth upper bound is 7. This allows to improve
solution in this case: each of the longest edges that connect a center with its four
children could be replaced by two shorter edges with intermediate vertex that is
located close to edge’s geometric center. We assume that such modification will
significantly improve the solution, and we plan to implement it in future.

5 Conclusion

In this paper, the NP-hard Min-Power Bounded Hops Symmetric Connectivity
Problem is considered. We propose six different constructive heuristics for its
approximation solution. As the main ideas of our approaches, we used some of
the known heuristics that were previously developed for the Bounded-Diameter
Minimum Spanning Tree problem. We implemented all the proposed algorithms
and conducted a numerical experiment on different randomly generated test
instances. The simulation shows that in cases with large diameter the algorithm
Min-Power Iterative Refinement yields the best results, while the usage of the
Min-Power Randomized Tree Construction is more preferable when the diameter
is small. If one needs to obtain a solution of rather good quality in shortest time,
then the Min-Power Quadrant Center-based Heuristic could be the best choice.
Besides, the experiment results show that the Min-Power Quadrant Center-based
Heuristic can be significantly improved. As the experiment results on small size
instances show, the best solution obtained by the proposed heuristics always
differs from the optimal one by not more than 40% in terms of objective function.
In the future, we plan to develop different variants of local search and other
metaheuristics that appeared to be efficient for the Bounded-Diameter Minimum
Spanning Tree problem, such as variable neighborhood search, genetic algorithm,
and ant colony optimization, where the trees obtained by different algorithms
proposed in this paper will serve as start solutions.
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Appendix A: Algorithm Descriptions

Algorithm 1. Prim-Like Heuristic
C[.] ← ChooseF irstCenters(); W ∗ ← ∞;
for all v0 ∈ C[.] do

V0 ← {v0}; U ← V \ {v0};
depthT [.] ← an array of size n filled with -1;
bestNeighbor[.] ← an array that stores the best neighbor in V0 for each vertex in U ;
wBestNeighbor[.] ← an array that stores the total power increase if the vertex will be

connected with its best neighbor;
depth(v0) ← 0; T ← (v0, ∅);
if D is odd then

v1 ← ChooseSecondCenter(v0); depthT (v1) ← 0;
Add a vertex v1 and an edge (v0, v1) to T ;

end if
V0 ← VT ;
for all u ∈ U do

bestNeighbor(u) ← argminv∈VT
{Pow(u, v)}; wBestNeighbor(u) ←

Pow(u, bestNeighbor(u));
end for
while U is not empty do

u ← ChooseEachV ertex(U, V0, wBestNeighbor);
Add a vertex u and an edge (u, bestNeighbor(u)) to T ;
depthT (u) ← depthT (bestNeighbor(u) + 1);
PowT (u) ← Pow(u, bestNeighbor(u));
PowT (bestNeighbor(u)) ← max{PowT (bestNeighbor(u)), Pow(u, best

Neighbor(u))};
U ← U \ {u};
for all v ∈ U do

w ← Pow(bestNeighbor(u), v) + max{0, Pow(bestNeighbor(u), v) − PowT (v)};
if w < wBestNeighbor(v) then

wBestNeighbor(v) ← w; bestNeighbor(v) ← bestNeighbor(u);
end if

end for
if depthT (u) < �D/2� then

V0 ← V0 ∪ {u};
for all v ∈ U do

w ← Pow(u, v) + max{0, Pow(u, v) − PowT (v)};
if w < wBestNeighbor(v) then

wBestNeighbor(v) ← w; bestNeighbor(v) ← u;
end if

end for
end if

end while
if W (T ) < W ∗ then

W ∗ ← W (T ); T ∗ ← T ;
end if

end for
return T ∗;
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Algorithm 2. FindBestStarCenter
Input: U ⊂ V ;

Output: center ∈ U ;

center ← ∅;
minCost ← ∞;

for all u ∈ U do

leavesCostSum ← 0;

centerCost ← 0;

for all v ∈ U \ u do

leavesCostSum ← leavesCostSum+ Pow(u, v);

centerCost ← max(Pow(u, v), centerCost);

end for

if centerCost+ leavesCostSum < minCost then

center ← u;

minCost ← centerCost+ leavesCostSum;

end if

end for

return center;

Algorithm 3. Min-Power Center-based Recursive Clustering
v0 ← FindBestStarCenter(V );
V0 ← {v0};
T ← a star-graph rooted in v0;
U ← V \ {v0};
depthT [.] ← an array of size n that stores a depth for each vertex in a tree, filled
with -1;
depth(v0) ← 0;
if D is odd then

v1 ← FindBestStarCenter(V0);
depthT (v1) ← 0;
Add a vertex v1 and an edge (v0, v1) to T ;

end if
while U is not empty do

U0 ← {v ∈ U : depthT (v) < �D/2�}
center ← FindBestStarCenter(U0);
if center == ∅ then

break;
end if
U ← U \ {center};
for all u ∈ U do

Set powerIncrease ← {power increase after reassigning a parent of u from
ParT ((u) to center};

if powerIncrease < 0 then
T ← (T \ {(u, ParT ((u))}) ∪ {(u, center)};
depthT (u) = depthT (center) + 1;

end if
end for

end while
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Algorithm 4. Min-Power Quadrant Center-based Heuristic
v0 ← FindBestStarCenter(V );

T ← ({v0}, ∅);
U ← V \ {v0};
Construct rectangular grid of size qsize × qsize on a given square;

stepsCount ← min(�D/2�, log2(qsize));
cellCenter—an array of size n that stores a cell center for each vertex;

Fill cellCenter with v0 (initially the whole square is a single cell and the root is a center);

for all step ∈ {1, ..., stepsCount} do

Split grid into 2step × 2step cells C of equal size;

for all c ∈ C do

Uc ← vertices of U located in c;

center ← FindBestStarCenter(Uc);

T ← T ∪ {(bestCenter, cellCenter(center))};
U ← U \ {center};
for all u ∈ Uc \ {center} do

cellCenter(u) ← center;

end for

end for

end for

Algorithm 5. Min-Power Iterative Refinement
v0 ← FindBestStarCenter(V );

Construct spanning tree T rooted in v0 by IPP;

V0 ← {v0};
U ← V \ {v0};
depth(v0) ← 0;

if D is odd then

v1 ← most remote neighbor of v0 in T ;

depthT (v1) ← 0;

Add a vertex v1 and an edge (v0, v1) to T ;

end if

Calculate the values of depthT ;

U ← {v ∈ V \ {s} : depthT (v) > h};
while U is not empty do

bestChild ← ∅;
bestParent ← ∅;
minPowerIncrease ← ∞;

Mark all vertices in U as not considered;

for all u ∈ U do

C ← {u} ∪ {v ∈ V : depthT (v) > 1 & v is predecessor of u in T}
for all c ∈ {not considered elements of C} do

if c is considered then

continue;

end if

Mark c as considered;

P ← {v ∈ V : depthT (v) < min(�D/2� − 1, depthT (c) − 1)};
for all p ∈ P do

powerIncrease ←maximum power costs change of vertices c, ParT ((c), and p after assigning p

as a parent of c in T ;

if powerIncrease < minPowerIncrease then

minPowerIncrease ← powerIncrease;

bestChild ← c;

bestParent ← p;

end if

end for

end for

end for

T ← T \ ({(bestChild, ParT ((bestChild))}) ∪ {(bestChild, bestParent)};
Decrease LevelT for all the vertices in the branch rooted in bestChild by LevelT (bestChild) −

depthT (bestParent) − 1;

U ← U \ {v ∈ U : depthT (v) ≤ �D/2�};
end while



Constructive Heuristics for MPBHSCP 403

Appendix B: MILP Formulation

We propose a MILP formulation of the BHMPSCP that is generally based on
the ILP formulation of the BDMST from [23]. Let us construct such directed
graph G′ = (V,A) from the given graph G = (V,E), that each edge (i, j) ∈ E
corresponds to two oppositely directed arcs (i, j) ∈ A and (j, i) ∈ A with the
same weight cij = cji. Let us introduce the following variables:

– uil = 1 if the depth of vertex i in a tree equals l and uil = 0 otherwise,
i = 1, ..., n; l = 0, ..., 
D/2�;

– xij = 1 if the arc (ij) ∈ A belongs to the tree and xij = 0 otherwise,
i, j = 1, ..., n;

– Ci ≥ 0—maximum weight of an arc adjacent to the vertex i in the tree,
i = 1, ..., n;

– rij = 1 if (i, j) ∈ E, and the vertices i and j are the centers in the solution
to the problem, i, j = 1, ..., n. These variables are used only in the case when
D is odd.

We propose two different formulations depending on the parity of D. If D is
even then the problem is formulated in a following way:

n∑

i=1

Ci → min (1)

xijcij ≤ Ci, i, j = 1, ..., n (2)

xijcij ≤ Cj , i, j = 1, ..., n (3)

�D/2�∑

l=1

uil = 1, i = 1, ..., n (4)

∑

i:(i,j)∈A

xij = 1 − uj0, j = 1, ..., n (5)

xij ≤ 1 − ujl + ui,l−1, i, j = 1, ...n : (i, j) ∈ A, l = 1, ..., 
D/2� (6)
n∑

i=1

ui0 = 1 (7)
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In this formulation, constraints (2)–(3) bound the maximum weight of the arc
in a tree for each vertex i by the corresponding variable Ci which is used in the
minimized function (1). Equation (4) guarantee that for each vertex the only
value of depth is assigned. Equations (5) imply that each vertex, except the
center, has the only incoming arc and only the center has the depth assigned
to 0. Inequalities (6) reflect the fact that for each in-tree arc (i, j), the depth of i
is less by 1 than the depth of j. Equation (7) ensures that the tree has the only
center.

Formulation for the case when D consists of the same minimized function
(1) and constraints (2)–(6). But it does not contain the equality (7) since in this
case solution should have two centers. In addition, the following constraints are
included to the problem formulation in the case when D is odd:

rijcij ≤ Ci, i, j = 1, ..., n (8)

rijcij ≤ Cj , i, j = 1, ..., n (9)
∑

j:(i,j)∈E

rij = ui0, j = 1, ..., n (10)

n∑

i=1

ui0 = 2 (11)

In this formulation, the inequalities (8)–(9) bound below the appropriate vari-
ables Ci by the weight of the edge that connects two centers. Equations (10)
imply that only the centers (i.e., the vertices with zero depth) are connected by
the special edge that is defined by the variables rij . And, finally, the equality
(11) guarantees that there are two centers in solution.
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Appendix C: Tables with Experiment Results

Table 1. Comparison of the experiment’s results obtained by different heuristics with
CPLEX.

D n nr Objective Time

MPCBTC MPRTC MPCBLSoC MPCBRC MPQCH MPIR CPLEX CPLEX

4 20 1 1.83 1.38 1.66 1.86 1.50 2.06 1.28* 8.55

2 1.86 1.54 1.77 3.15 1.32 2.04 1.24* 6.83

3 1.59 1.02 1.63 1.40 1.07 1.69 0.94* 7.50

30 1 2.06 1.75 2.43 3.11 1.92 2.33 1.51* 175.00

2 2.11 1.77 2.11 3.94 2.28 2.63 1.58* 79.47

3 2.15 2.16 2.51 2.83 1.91 3.93 1.70* 91.25

40 1 3.14 1.88 3.16 3.21 1.99 3.57 1.69 3620.21

2 3.01 2.15 3.66 2.94 2.28 4.16 1.67 3620.71

3 4.09 2.46 4.17 4.89 2.42 4.90 1.97 3613.03

50 1 4.85 2.77 3.59 4.63 3.10 7.12 2.85 3602.64

2 3.89 2.80 3.63 6.32 3.27 6.21 2.28 3600.38

3 4.51 2.83 4.68 4.55 2.99 5.09 2.42 3602.34

5 20 1 1.49 1.22 1.61 1.97 1.50 1.53 1.08* 39.94

2 1.62 1.25 1.35 1.89 1.32 2.01 1.04* 17.25

3 1.29 0.97 1.60 1.51 1.07 1.60 0.77* 16.61

30 1 2.35 1.54 2.43 2.51 1.92 2.16 1.15 3606.57

2 2.22 1.54 2.22 2.06 2.28 2.52 1.28 2344.61

3 1.99 1.71 1.86 2.43 1.91 3.05 1.31 3613.91

40 1 2.94 1.58 2.91 3.09 1.99 3.47 1.37 3614.71

2 2.51 1.79 2.49 3.13 2.28 3.22 1.53 3610.20

3 3.56 2.22 3.30 3.31 2.42 4.12 1.69 3600.80

50 1 3.86 2.44 3.59 4.11 3.10 7.76 2.16 3620.42

2 4.41 2.43 4.37 6.24 3.27 6.42 2.35 3612.53

3 4.10 2.25 3.88 3.28 2.99 5.09 2.04 3620.67

6 20 1 1.15 1.11 1.25 1.86 1.22 1.17 0.97* 12.41

2 1.17 1.16 1.24 1.89 1.12 1.26 0.97* 15.14

3 0.82 0.81 0.91 1.06 0.75 0.82 0.69* 12.63

30 1 1.65 1.31 1.40 2.38 1.59 1.54 1.00* 222.75

2 1.73 1.38 2.26 1.31 1.38 1.28 1.02* 127.82

3 1.48 1.35 1.64 2.22 1.60 1.66 1.08* 156.61

40 1 2.34 1.38 2.93 1.95 1.32 1.40 1.07 3605.49

2 1.70 1.66 1.55 2.94 1.45 1.68 1.06 3601.24

3 2.69 1.64 2.79 3.09 1.65 1.93 1.31 3608.30

50 1 2.88 2.00 2.40 3.15 1.89 7.75 1.53 3614.82

2 2.77 1.77 2.63 3.69 2.03 5.73 1.49 3611.65

3 2.66 1.77 2.72 5.78 1.79 2.69 1.41 3600.79
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Table 2. Comparison of the experiment’s results obtained by different heuristics.

n D MPCBTC MPRTC MPCBLSoC MPCBRC MPQBH MPIR

av err time av err time av err time av err time av err time av err time

100 5 8.17 0.47 0 3.6 0.13 0 8.8 0.66 0 8.41 0.79 0 5.04 0.17 0 12.1 0.48 0

10 3.38 0.21 0 1.88 0.06 0 3.5 0.31 0 3.07 0.29 0 2.06 0.07 0 1.84 0.14 0

15 1.87 0.16 0 1.75 0.07 0 1.62 0.18 0 2.39 0.17 0 2.06 0.07 0 1.19 0.05 0

25 0.92 0.05 0 1.74 0.07 0 0.96 0.03 0 2.36 0.17 0 2.06 0.07 0 0.89 0.02 0

250 10 13.2 0.93 0.07 2.32 0.07 0.09 14.1 1.56 0.02 6.98 1.28 0.02 2.44 0.04 0 5.41 0.43 0.04

15 8.17 0.65 0.08 2 0.03 0.1 7.94 0.97 0.02 3.85 0.29 0.02 2.47 0.04 0 2.6 0.46 0.05

20 4.3 0.5 0.08 2.03 0.05 0.11 3.49 0.42 0.02 3.31 0.25 0.02 2.47 0.04 0 1.48 0.22 0.04

40 0.96 0.05 0.1 2.03 0.05 0.11 0.91 0.02 0.02 3.32 0.22 0.02 2.47 0.04 0 1.04 0.26 0.02

500 15 26 1.89 0.65 2.26 0.03 1 26.6 2.5 0.14 6.24 0.78 0.14 2.62 0.03 0.03 5.1 0.49 0.33

30 6.37 0.52 0.78 2.2 0.04 1.04 4.23 0.61 0.14 3.88 0.27 0.15 2.62 0.03 0.03 1.41 0.17 0.34

45 1.87 0.19 0.8 2.2 0.04 0.94 1.1 0.09 0.13 3.89 0.25 0.15 2.62 0.03 0.03 1.04 0.11 0.23

60 0.91 0.04 0.95 2.2 0.04 1.04 0.89 0.01 0.14 3.88 0.27 0.16 2.62 0.03 0.04 0.857 0.04 0.16

1000 20 50.4 1.98 6.27 2.45 0.04 13.5 49.4 3.01 1.13 6 0.57 1.23 2.81 0.02 0.15 5.26 0.43 2.94

40 14.6 1.39 8.4 2.43 0.03 14.6 8.87 1.02 1.16 4.52 0.32 1.32 2.81 0.02 0.16 1.52 0.16 3.07

60 4.02 0.33 9.88 2.42 0.03 15.2 1.25 0.09 1.16 4.52 0.32 1.34 2.81 0.02 0.16 1.12 0.11 2.43

100 0.81 0.02 11.7 2.44 0.02 14.1 0.9 0 1.15 4.52 0.32 1.29 2.81 0.02 0.16 0.85 0.05 1.25
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Abstract. In this paper, we investigate the problem of separation of
a mixed production batch of semiconductor devices of space application
into homogeneous production batches. The results of the mandatory test-
ing for each item contain a large number of parameters. Many optimiza-
tion models and algorithms were developed for solving this clustering
problem in the most efficient way. However, due to a rather high data
dimensionality, such algorithms take significant computational resources.
We analyzed methods of reducing the dimensionality of the data set with
the use of factor analysis based on Pearson matrix in order to improve
the accuracy of the separation. We investigated efficiency of the pro-
posed method for separating a mixed lot of semiconductor devices which
consists of two, three, four and seven homogeneous batches, with vari-
ous methods of selection and rotation of factors. It was shown on real
data that with any orthogonal rotation, with an increasing number of
homogeneous batches in the sample, the clustering accuracy decreases.
Moreover, it was impossible to identify a universal clustering model with
a limited number of factors for dividing a mixed lot composed from an
arbitrary number of homogeneous batches. Thus, the use of the multidi-
mensional data was shown to be inevitable.

Keywords: Clustering · Factor analysis · Semiconductor devices

1 Introduction

In order to supply space equipment with highly reliable electronic components,
specialized testing centers conduct a variety of tests for each installed semicon-
ductor device. Electronic component base (ECB) designed for installation in
spacecraft equipment, along with the input testing is subjected to additional
rejection tests, including a selective destructive physical analysis (DPA). DPA
allows us to confirm the good quality of the batches of ECB, or to identify the
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batches, having defects due to manufacturing technology and are not detected
during conventional rejection tests and additional non-destructive testing. In
order to be able to transfer the results of DPA of several devices to the entire
batch of semiconductor devices, the following requirement is put forward for the
ECB intended for installation in space equipment: all devices from the same
batch must be made from the same raw materials. Equipment manufacturers for
general consumption (not designed solely for use in spacecraft) can not guaran-
tee the implementation of this requirement. Therefore the problem of automatic
grouping of semiconductor devices by production batches is very relevant.

It was shown [1], that the problem of allocation of homogeneous batches
can be further reduced to a problem of cluster analysis. Authors [1] consider
k-means, p-median and other optimization models for solving such a problem.
Each group (cluster) must represent a homogeneous batch. To solve the problem
of identifying homogeneous batches, in papers [2–4], the application of the clus-
tering optimization algorithm k-means is proposed. In [5], authors consider the
clustering method based on the EM algorithm which maximizes the log likeli-
hood function. A model of separation of homogeneous production batches based
on a mixture of Gaussian distributions was proposed in [6]. In [7], authors pro-
pose using ensembles of optimization models (k-means, k-medoids, k-medians),
EM, as well as their optimized versions. In [1], authors consider the application
of genetic optimization algorithms with greedy heuristic procedures, in combi-
nation with the EM algorithm for the separation of homogeneous batches of
electronic devices. The advantage of the new algorithms over classical clustering
algorithms for multidimensional data is shown.

In this paper, the initial data are represented by multidimensional sets
(arrays) of parameters of electronic radio components (ERC), measured as the
results of several hundred mandatory non-destructive tests [8]. In order to reduce
the dimensionality of the input parameter sets for clustering devices into homo-
geneous batches, we propose the application of factor analysis methods. The aim
of factor analysis is to find a simple structure that would accurately reflect and
reproduce the real dependencies existing in nature [9]. Factor analysis is based
on the definition of the factor model

Xi =
m∑

j=1

aijFj + ui (1)

where Xi is a vector of values of measured parameter (i = 1, . . . , n), Fj are
primary factors (j = 1, . . . , m), aij are coefficients named factor loadings, ui are
characteristic (specific) factors describing the part of the parameter that is not
included in any primary factor. If m < n, the reduction of the original problem
dimensionality takes place. By reducing the dimension of the data in the article
we mean reducing the number of input variables due to the introduction of
factors.

The quality improvement is achieved both by more coordinated function-
ing of radio elements with identical characteristics (from a single production
batch), and by improving the quality and reliability of the results of destructive
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testing, for which it is possible to select elements from each production batch [1].
This paper is devoted to the problem of reducing the dimension of the original
data for the corresponding problems of cluster analysis and attempts to find an
optimal set of the informative features used in such cluster analysis optimization
problems.

2 Data and Preprocessing

As an example of real data, in this paper we consider a sample consisting of
seven different homogeneous batches. The sample is deliberately composed of
homogeneous batches, some of which are extremely difficult to separate by known
methods of cluster analysis.

One of the largest samplings, which the specialized test center was faced with,
is presented in this paper. The total number of all devices in all batches is 3987:
batch 1 contains 71 devices, 116 in batch 2, 1867 in batch 3, 1250 in batch 4, 146
in batch 5, 113 in batch 6, 424 in batch 7. Each batch contains information about
205 input measured parameters of the device. Input parameters for which the
data vector contains only zero values or for which the number of non-zero values
does not exceed 10% were excluded from consideration. For further processing,
67 input parameters remain to be considered.

At the first step, the analysis of the input parameters showed that the con-
sidered set of parameters can be divided into three groups:

1. parameters for which the histograms represent the normal Gaussian distribu-
tion (In21 - In28, In39 - In46, In92 - In107);

2. parameters for which the histograms represent a Gaussian distribution with
frequency gaps (In84 - In91);

3. parameters for which the histogram does not correspond to Gaussian distri-
butions (In 57 - In64, In75 - In82, In10-In20).

For each group, the histograms of observed frequencies and graphs of adjust-
ment of distributions are given on the example of several input parameters
(Figs. 1, 2 and 3).

Fig. 1. Histogram of observed frequencies and graphs of the fit of the distributions.
Normal Gaussian distribution
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Fig. 2. Histogram of observed frequencies and graphs of the fit of the distributions.
Gaussian distribution with frequency gaps

In the second step, the parameters were normalized according to the Eq. (2),

ai,k =
a∗
i,k − a∗

k

δmax
k − δmin

k

(2)

where a∗
ik is the value of the measuared parameter before normalization, a∗

k are
average values of the parameter, δmin

k and δmax
k are the lower and upper bounds

of the parameter drift, respectively. The drift means the amount of change of
parameters of ERC arising during the additional non-destructive testing, simu-
lating extreme operating conditions. This method of normalization by the drift
bounds was proposed in [1]. It is shown experimentally that this method of nor-
malization gives a separation by production batches with a much smaller number
of errors.

Fig. 3. Histogram of observed frequencies and graphs of the fit of the distributions.
The histogram does not correspond to Gaussian distribution
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3 Factor Analysis Using Pearson’s Correlation Matrix

In the first step, we determine the Pearson correlation coefficient matrix [9] for
input parameters. In the second step, we determine the matrix of factor loadings.
Assuming the orthogonality of the factors, we obtain

R = A · AT (3)

where R is the correlation matrix, A - factor loadings matrix.
The number of factors in the factor model was determined by two crite-

ria. The first of them, the Kaiser criterion [10], selects factors with eigenvalues
greater than one. However, the number of sufficient factors also depends on the
total share of variance reproduced by these factors. The second of them, Cattel
screening criterion [11], selects factors by scree plot based on eigenvalues of fac-
tors. The number of factors defined at the point on the chart where the decrease
of eigenvalues from left to right slows down as much as possible. Since the Kaiser
criterion selects factors with eigenvalues greater than one, and the Cattel screen-
ing criterion involves visual observation of the scree plot, there is no need to use
any software to calculate these criteria.

Also, to simplify the factor structure, rotation is used to find one of the
possible coordinate systems in the space of factors. The consequence of this is the
maximization of high correlations and the minimization of low correlations. The
problem of rotation is formulated as follows [9]: need to find the transformation
matrix T corresponding to:

A· = A · T R = A · AT = A· · A·T (4)

The following methods of orthogonal rotation are used in this paper: the
Varimax with Kaiser normalization and the Quartimax with Kaiser normaliza-
tion [12]. Varimax rotation maximizes the total variance of the loadings squares
of the common factors for each input attribute. Quartimax rotation based on
the fact that the sum of squares of pairwise products of the matrix A elements
will decrease as the values of the loading tend to zero.

Various combinations of parties were subjected to factor analysis: full mixed
lot and its subsets lots from four, three and two batches. The full mixed lot
consists of seven homogeneous batches. The mixed four-batch lot consists of
batch 1, batch 2, batch 5, and batch 6. The mixed three-batch lot consists of
batch 1, batch 2, and batch 6. The mixed two-batch lot consists of batch 1 and
batch 2.

In this paper, the number of factors was determined by the Kaiser criterion,
and the total proportion of variance reproduced by these factors should be at
least 70%.



Identification of the Optimal Set of Informative Features 413

4 Computational Experiments with Various
Compositions of the Mixed Lot

To extract factors, we used the principal components method, the principal
factor method with multiple R-square, principal axes method, maximum likeli-
hood factors method, iterated communalities method (MINRES) and centroid
method [9]. In further consideration, we used principal components method since
it describes the maximum variance of input parameters.

For the whole mixed lot, the method based on Cattel criterion recommends to
select 4 factors in the model, and this number does not change with any rotation
(Fig. 4). According to Kaiser criterion, taking into account the total share of
variance of at least 70%, there are five factors selected. Uberla [9] recommends
in cases of dispute to select a larger number, therefore we allocate 5 factors
for further consideration. Factor 1 corresponds to the highest loadings on the
parameters In92-In107. This factor describes 22.779–23.954% of total variance.
Factor 2 corresponds to the highest loadings on the parameters In58-In64, In76-
In82. This factor describes an additional 19.335–21.265% of the total variance.
Factor 3 corresponds to highest loadings on the parameters In39-In46, This factor
describes an additional 12.300–14.776% of total variance. Factor 4 (parameters
In10, In11, In13, In14, In18) describes 9.003–9.375% of total variance. Factor 5
(parameters In21 - In28) describes 6,781% (unrotated), 11.928% (Varimax) and
11.993% (Quartimax) of total variance. Regardless of the rotation method, the
final solution has a cumulative percent of the total variance 75.794% (Table 1).

Table 1. Rotation of factor structure. Full mixed lot

Factor Eigenvalues Percent of the total variance (%) Cumulative percent of

the total variance (%)

Varimax Quartimax Unrotated Varimax Quartimax Unrotated Varimax Quartimax Unrotated

Factor 1 15.26 15.37 16.05 22.78 22.94 23.95 22.78 22.94 23.95

Factor 2 12.95 13.11 14.25 19.34 19.56 21.27 42.12 42.5 45.22

Factor 3 8.29 8.24 9.9 12.38 12.3 14.78 54.49 54.8 60

Factor 4 6.28 6.03 6.04 9.38 9 9.02 63.87 63.8 69.01

Factor 5 7.99 8.04 4.54 11.93 11.99 6.78 75.79 75.79 75.79

The total number of devices in a mixed lot composed of four batches is
446. For further processing 62 input parameters remain. The Cattel criterion,
regardless of the rotation, recommends to select 4 factors in the model (Fig. 5),
however, according to the Kaiser criterion, taking into account the total per-
centage of variance at least 70%, we allocate 6 factors. Substantial loadings on
the Factor 1 appear for the parameters In21 - In28, In39 - In46. This factor
describes 23.304–38.622% of total variance. Factor 2 shows substantial loadings
for the parameters In58-In64, it describes in additional 13.220–17.761% of the
total variance. Factor 3 has substantial loadings for In91-In107, Factor 4 for
In79 - In82, Factor 6 for In57, In78. Regardless of the rotation method, the
final solution has a cumulative percent of the total variance equal to 70.364%
(Table 2).
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Fig. 4. Scree plot for whole mixed lot. Adv.Grapher

Table 2. Rotation of factor structure. Four-batch mixed lot

Factor Eigenvalues Percent of the total variance (%) Cumulative percent of

the total variance (%)

Varimax Quartimax Unrotated Varimax Quartimax Unrotated Varimax Quartimax Unrotated

Factor 1 15.07 16.92 23.95 24.3 27.3 38.62 24.3 27.3 38.62

Factor 2 11.01 10.36 8.2 17.76 16.7 13.22 42.07 44 51.84

Factor 3 12.27 11.41 6.96 19.8 18.41 11.23 61.86 62.41 63.07

Factor 4 2.42 2.07 1.9 3.9 3.34 3.06 65.76 65.75 66.13

Factor 5 1.41 1.48 1.38 2.28 2.38 2.22 68.05 68.13 68.35

Factor 6 15.07 16.92 23.95 24.3 27.3 38.62 24.3 27.3 38.62

Fig. 5. Scree plot for four-batch mixed lot. Software - Adv.Grapher
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The total number of devices in a mix of three batches is 300. The Cattel
criterion, regardless of the rotation, recommends selecting 3 factors in the model
(Fig. 6). According to the Kaiser criterion, taking into account the total per-
centage of variance at least 70%, we also allocate 3 factors. Substantial loadings
on the Factor 1 appear for the parameters In21-In28, In39-In46. This factor
describes 37.09–46.39% of total variance. Factor 2 has substantial loadings for
In92-In107 and describes 22.03–26.61% of total variance. Factor 3 has substantial
loadings for In84-In91 and describes in addition 9.192-13.905% of the total vari-
ance. Regardless of the rotation, the total solution has a cumulative percentage
of the total variance 77.61% (Table 3).

Fig. 6. Scree plot for three-batch mixed lot. Adv.Grapher

Table 3. Rotation of factor structure. Three-batch mixed lot

Factor Eigenvalues Percent of the total variance (%) Cumulative percent of

the total variance (%)

Varimax Quartimax Unrotated Varimax Quartimax Unrotated Varimax Quartimax Unrotated

Factor 1 15.21 15.89 19.02 37.09 38.74 46.38 37.09 38.74 46.38

Factor 2 10.91 10.89 9.03 26.61 26.57 22.03 63.7 65.31 68.41

Factor 3 5.7 5.04 3.77 13.91 12.3 9.19 77.61 77.61 77.61

The number of devices in the simplest mixed lot of two batches is 187. Accord-
ing to the Kaiser criterion, taking into account the total percentage of variance
at least 70%, we allocate 2 factors. Factor 1 shows the highest loadings for the
parameters In21 - In28, In39 - In46 and describes 45.41–66.20% of the total
variance. Factor 2 shows the highest loadings for the In92-In95, In100-In102,
In106, and describes in addition 7.28–28.07% of total variance. Regardless of the
rotation, the solution has a cumulative percentage of the total variance 73.48%
(Table 4).
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Table 4. Rotation of factor structure. Two-batch mixed lot

Factor Eigenvalues Percent of the total variance (%) Cumulative percent of

the total variance (%)

Varimax Quartimax Unrotated Varimax Quartimax Unrotated Varimax Quartimax Unrotated

Factor 1 18.62 26.61 27.14 45.41 64.91 66.2 45.41 64.91 66.2

Factor 2 11.51 3.51 2.99 28.07 8.57 7.28 73.48 73.48 73.48

5 Adequacy of the Factor Model

Verification of the factors number sufficiency in the model was performed using
The Kaiser and Cattel criteria. Verification the adequacy of the factor model is
reduced to checking the achievement of a simple structure. A simple structure
is a configuration of vectors that rotates to the state when the vast majority of
vectors will be on or near hyperplanes of coordinates [9]. In addition, the sim-
ple structure is “contrast”: factor loadings are high for variables that determine
this factor, and close to zero for all others. To test the significance of a sim-
ple structure in various areas of research, modern scientific literature offers the
Bargmann test [9], the Lawley-Bartlett’s test [9], the Bartlett-Wilks test [9], the
Burt’s test [9]. In this paper, we use the Bargmann’s test [13] due to the ability
of this criterion to show that main axis rotation procedure is not completed and
control the density of variables positions. It is necessary to calculate the number
of zero loadings for each factor:

∣∣∣∣
aij

hi

∣∣∣∣ < 0.1 (5)

where aij are factor loadings on each parameter, hi - square root of communality
(communality refers to the variance of a parameter due to common factors). If
the number of zero loadings is not lower than the table value, the simple structure
is considered to be achieved.

For the full mixed lot Bargmann test is satisfied for 3 of 5 factors in case
of unrotated structure and for all factors in case of rotation with α <= 0, 05
(where α is a level of significance). For four-batch mixed lot test is satisfied for
3 from 6 factors in case of unrotated structure and for 4 from 6 factors in case of
rotated structure with α <= 0.25. For three-batch mixed lot test satisfied just
for 1 factor in case of unrotated structure and for 2 factors in case of rotated
structure with α <= 0, 25. And for two-batch mixed lot test is satisfied in one
case with α <= 0.25 (Table 5).

Analysis of the percentage of zero loadings shows, that with increasing the
number of batches and at any rotation the number of cases for which test
Bargmann is satisfied also increases.

Factor values obtained by orthogonal rotations described above are consid-
ered as input data for clustering algorithms. Clustering was performed with
Deductor Studio Academic tool. EM algorithm applied with lower bound of
likelihood = 0.2, level of accuracy = 10−5, maximum of iterations = 100. Self-
organizing Kohonen maps (SOM) [14] applied with linear initialization with
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Table 5. Bargmann test

Factor no. Table value for

α <= 0, 05

Table value for

α <= 0.25

The number of

zero loading

Percent of

zero loading

Full mixed lot

(67 parameters)

Unrotated 1 17 14 9 13%

2 6 8%

3 18 27%

4 31 46%

5 26 39%

Varimax 1 43 64%

2 26 39%

3 33 49%

4 33 49%

5 42 63%

Quartimax 1 41 61%

2 24 36%

3 33 49%

4 33 49%

5 43 64%

Four-batch mixed

lot (62

parameters)

Unrotated 1 20 17 3 5%

2 8 13%

3 14 23%

4 45 73%

5 36 58%

6 51 82%

Varimax 1 14 23%

2 10 16%

3 18 29%

4 44 71%

5 37 60%

6 51 82%

Quartimax 1 14 23%

2 9 15%

3 17 27%

4 52 84%

5 36 58%

6 50 81%

Three-batch

mixed lot (41

parameters)

Unrotated 1 9 7 0 0%

2 0 0%

3 8 20%

Varimax 1 7 17%

2 0 0%

3 10 24%

Quartimax 1 7 17%

2 0 0%

3 15 37%

Two-batch mixed

lot (41

parameters)

Unrotated 1 6 4 0 0%

2 3 7%

Varimax 1 1 2%

2 0 0%

Quartimax 1 0 0%

2 5 12%
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eigenvalues, bubble neighborhood function, significance level = 0,1%. The clus-
tering accuracy for considered mixed lots with different orthogonal rotations is
presented in Table 6.

The analysis of Table 6 showed that for any orthogonal rotations and clus-
tering algorithms, the clustering accuracy increases with a decrease the number
of homogeneous batches in the sample from 39% up to 98%.

Clustering results on three-batch and two-batch mixed lots are shown in
Figs. 7 and 8, respectively. Separating batches takes place exclusively on Factor
1 in both cases.

Table 6. Clustering results

Unrotated Varimax Quartimax

EM SOM EM SOM EM SOM

Two-batch mixed lot

Batch 1 n=71 Number of hits 71 (100%) 71 (100%) 71 (100%) 42 (59%) 71 (100%) 71 (100%)

Number of errors 0 (0%) 0 (0%) 0 (0%) 29 (41%) 0 (0%) 0 (0%)

Batch 2 n=116 Number of hits 113 (97%) 113 (97%) 104 (90%) 114 (98%) 116 (100%) 116 (100%)

Number of errors 3 (3%) 3 (3%) 12 (10%) 2 (2%) 0 (0%) 0 (0%)

Three-batch mixed lot

Batch 1 n=71 Number of hits 71 (100%) 36 (51%) 71 (100%) 41 (58%) 71 (100%) 40 (56%)

Number of errors 0 (0%) 35 (49%) 0 (0%) 30 (42%) 0 (0%) 31 (44%)

Batch 2 n=116 Number of hits 113 (97%) 110 (95%) 110 (95%) 60 (52%) 111 (96%) 116 (100%)

Number of errors 3 (3%) 6 (5%) 6 (5%) 56 (48%) 5 (4%) 0 (0%)

Batch 6 n=113 Number of hits 106 (94%) 102 (90%) 93 (82%) 102 (90%) 98 (87%) 91 (81%)

Number of errors 7 (6%) 11 (10%) 20 (18%) 11 (10%) 15 (13%) 22 (19%)

Four-batch mixed lot

Batch 1 n=71 Number of hits 70 (99%) 71 (100%) 70 (99%) 71 (100%) 70 (99%) 71 (100%)

Number of errors 1 (1%) 0 (0%) 1 (1%) 0 (0%) 1 (1%) 0 (0%)

Batch 2 n=116 Number of hits 108 (93%) 108 (93%) 108 (93%) 116 (100%) 108 (93%) 86 (74%)

Number of errors 8 (7%) 8 (7%) 8 (7%) 0 (0%) 8 (7%) 30 (26%)

Batch 5 n=146 Number of hits 146 (100%) 68 (41%) 146 (100%) 116 (79%) 146 (100%) 38 (26%)

Number of errors 0 (0%) 78 (59%) 0 (0%) 20 (21%) 0 (0%) 108 (74%)

Batch 6 n=113 Number of hits 107 (95%) 107 (95%) 107 (95%) 107 (95%) 108 (96%) 103 (91%)

Number of errors 6 (5%) 6 (5%) 6 (5%) 6 (5%) 5 (4%) 10 (9%)

Full mixed lot

Batch 1 n=71 Number of hits 68 (96%) 71 (100%) 70 (99%) 71 (100%) 63 (89%) 71 (100%)

Number of errors 3 (4%) 0 (0%) 1 (1%) 0 (0%) 8 (11%) 0 (0%)

Batch 2 n=116 Number of hits 108 (93%) 106 (91%) 60 (52%) 114 (98%) 81 (70%) 113 (97%)

Number of errors 8 (7%) 10 (9%) 56 (48%) 2 (2%) 35 (30%) 3 (3%)

Batch 3 n=1867 Number of hits 487 (35%) 1337 (72%) 618 (33%) 1453 (78%) 699 (37%) 781 (42%)

Number of errors 1380 (65%) 530 (28%) 1249 (67%) 414 (22%) 1168 (63%) 1086 (58%)

Batch 4 n=1250 Number of hits 537 (43%) 721 (58%) 462 (37%) 583 (47%) 467 (37%) 571 (46%)

Number of errors 713 (57%) 529 (42%) 788 (63%) 667 (53%) 783 (63%) 679 (54%)

Batch 5 n=146 Number of hits 121 (83%) 79 (54%) 135 (92%) 102 (70%) 133 (91%) 73 (50%)

Number of errors 25 (17%) 67 (46%) 11 (8%) 44 (30%) 13 (9%) 73 (50%)

Batch 6 n=113 Number of hits 107 (95%) 113 (100%) 107 (95%) 113 (100%) 105 (93%) 113 (100%)

Number of errors 6 (5%) 0 (0%) 6 (5%) 0 (0%) 8 (7%) 0 (0%)

Batch 7 n=424 Number of hits 314 (74%) 369 (87%) 256 (60%) 421 (99%) 255 (60%) 284 (70%)

Number of errors 110 (26%) 55 (13%) 168 (40%) 3 (1%) 169 (40%) 140 (30%)
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Fig. 7. Clustering results for three-batch mixed lot

Fig. 8. Clustering results for two-batch mixed lot

6 Conclusions

The possibility of using factor analysis for the separation of a mixed lot, consist-
ing of an arbitrary number of homogeneous batches of electronic radio compo-
nents, has been proposed and described in the paper. Thus, the use of the factor
model is appropriate to improve the accuracy of batch separation, regardless
of the clustering algorithm used. It is shown, that the optimal number of the
selected factors depends on the number of considered devices in the mixed lot,
as well as on the input measured parameters of the device in a given sample.
Regardless of the type of orthogonal rotation, the clustering accuracy decreases
with the increase of the number of homogeneous batches in the mixed lot. A
similar result was shown earlier in [6,7] when using the ensemble approach
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of cluster algorithms and [5], where efficiency of EM algorithm at the small
volume of input data was demonstrated. At the same time, the considered fac-
tor analysis methods do not allow us to obtain a universal set of a small number
of features for the separation of mixed lot consisting of an arbitrary number
of the homogeneous batches. Thus, despite the fact that the proposed method
makes it possible to somewhat reduce the dimensionality of the data, for reliable
separation of homogeneous batches with cluster analysis methods, the use of
multidimensional data is inevitable.

References

1. Orlov, V.I., Kazakovtsev, L.A., Masich, I.S., Stashkov, D.V.: Algorithmic support
of decision-making on selection of microelectronics products for space industry.
Siberian State Aerospace University, Krasnoyarsk (2017)
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Abstract. The problem of cost minimizing at laser cutting of sheet
parts on CNC machines is considered in this paper. As an objective
function the cost function of cutting process is used. The model of exact
cost function calculation is presented depending on the number of frames
(commands) in the NC program. The each command is written using
G-code. In order to most correctly construct optimal cutting path the
accurate value of objective function basic parameters should be cal-
culated. To this end, the accurate calculation methodologies of basic
parameters values are presented. The methodologies relate to calculation
of cost parameters and cutting speed. Based on proposed methodology
the subsystem of cutting cost calculation was developed by using .Net
Framework technology. In order to solve optimization problem the spe-
cial cutting techniques are used. There are some multi-contour and multi-
segment cutting techniques. In this paper special cutting techniques for
common geometrical types of contours widely used in blank production
are presented. In order to verify the proposed methodologies on prac-
tice the computational experiments which show a statistically significant
improvement of the objective function value compared with using stan-
dard cutting techniques are presented.

Keywords: CNC laser cutting machines · Thermal cutting · Tool
path optimization · Cost of cutting process · Cutting techniques

1 Introduction

One of the complex optimization problem arising in technical applications is
the cutting path optimization problem for CNC sheet cutting machines. This
problem belongs to the class of NP-hard problems of continuous-discrete opti-
mization equivalent to some types of traveling salesman problem with additional
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restrictions that do not allow the use of known algorithms to solve them. As an
objective function of the problem, the cost of parts cutting process for the result-
ing cutting path is considered.

Recently the CNC sheet cutting machines are widely used in order to manu-
facture sheet metal products. In particular, such machines include thermal cut-
ting machines (laser, flame and plasma cutting). During development of NC pro-
grams there is need to take into account some important technological features
and constraints arising in the process of part sheet cutting on CNC equipment.

Before cutting of part contour the piercings must be selected (Fig. 1). Pierc-
ings are operations where the laser cutting tool initiates the material. Piercings
is selected according to the material type, its thickness and cutting parameters.
In order to avoid material beading and part deformation the piercings must be
selected by some distance from contour.

During thermal cutting the “burning out” and “sweeping” of material are
occurred. Due to the fact the contour of parts and cutting tool path are not
matched. The cutting tool is moved by equidistant curve of contour (Fig. 1).

The precedence constraint is taken into account which is due to the features
of portal type machine [15,19]. If the contour is fully cut, one detaches from
the rest of the material and can possibly shift its position, and thus it will be
impossible to continue cutting in this area [2]. The constraint ties to inner-outer
contour relation which means that an inner contour needs to be completely cut
before the outer contour is cut. Figure 1 presents example of cutting precedence
of contour by number 1–3.

Fig. 1. Cutting scheme example of two parts using standard cutting technique

The objective function (cutting cost Fcost) is calculated by [16]:

Fcost = Lon · Con + Loff · Coff + Npt · Cpt → min (1)

Loff is length of air tool path; Lon is length of working tool path; Coff is
cost of air tool path unit; Con is cost of working tool path unit; Npt is numbers
of piercing; Cpt is cost of one piercing.
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In general when using different types (j = 1, k) of piercing the Fcost is cal-
culated by:

Fcost = Lon · Con + Loff · Coff +
k∑

j=1

Lj
pt · Cj

pt → min (2)

The problem of cost function minimization is considered as generalized trav-
elling salesman problem (GTSP) with restrictions [16,17]. The formalization of
minimization problem of cutting time and cost for CNC sheet cutting machines
is presented in [16].

In [3,9,20] the following classes of cutting tool routing problems for CNC
sheet cutting machines are allocated:

– The Traveling Salesman Problem – TSP;
– The Generalized Traveling Salesman Problem – GTSP;
– The Continuous Cutting Problem – CCP;
– The End Point Cutting Problem – ECP;
– Intermittent Cutting Problem – ICP;
– Based on conception of contours cutting by segment [20] the new class of

optimization tool routing problem is presented: Segment Continuous Cutting
Problem (SCCP).

The detailed analysis of existing methods, which are solving the optimization
problem of cutting tool route, was presented in [3]. A few algorithms of tool rout-
ing for other technological equipments are particularly described in [7,8]. In these
articles there are questions relating to cutting time optimization. The present
methods of cutting time optimization relate to minimization of idle moves time
and slightly to minimization of cutting time. The analysis of current methods is
provided below.

Analysis of existing methods of cost function minimizing showed that airtime
and length of air motion are usually minimized during cutting path optimiz-
ing. The following researchers present algorithms for idle moves optimization.
Yang et al. [28] describe the airtime optimization problem in leather cutting.
They proposed the hybrid intelligence algorithm. Castelino et al. [4] describe an
algorithm for airtime minimizing by optimally connecting the tool path. They
consider heuristic methods that are used in order to obtain the optimal or near
optimal solutions. Murzakaev et al. [14] consider problem of idle moves length
minimization. The model is presented for standard cutting technique. In order to
minimize cutter idle moves length the three metaheuristics (Simulated Anneal-
ing, Threshold Accepting, Great Deluge Algorithm) were chosen. They propose
the generalized scheme of problem solving. The algorithm of idle moves minimiz-
ing is proposed by Chen et al. [1]. They divide into two sub-optimal problems
(pattern cutting order and entry/exit cutting point) and solve ones using an ant
colony optimization algorithm (min-max ant system). Lee and Kwon [11] con-
sider tool path problem and proposed two-step genetic algorithm. The aim is to
minimize the idle moving of cutting tool. They combine global search for piercing
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optimization and local search for part sequencing. The two stage of sequential
optimization procedure for nesting and cutting sequence are presented by Sherif
et al. [22]. The objectives are maximizing the material utilization and minimiz-
ing the cutter idle moves. They consider simulated annealing algorithm in order
to find the near optimal cutting tool path.

Analysis of existing methods shows the deficiency of research in the field of
piercing numbers Npt reducing and length of cutting tool motion Lon in solv-
ing the optimization problem (2). In [12] authors consider the problem of Npt

reducing in thermal cutting of sheet material in terms of graph theory. It should
be noted that the precedence constrain was not taken into account and the
intersection of the existing cuts is allowed. The problem of cutting path opti-
mization in terms of cutting of parts group with one of pierce point is considered
in [6]. The last stage of solving the problem (cutter routing optimization at idle
moves) is reduced to the TSP. The problem of cutter routing optimization at
CNC machines is formulated and the mathematical model of total cutting time
minimization is proposed by using standard and special cutting techniques by
Faizrahmanov et al. [5]. Verhoturov et al. [27] present “chain” cutting technique
in order to minimize the numbers of pierce points.

The one of cutting time and cost minimization methods is application of
special cutting techniques. In order to optimize the cutting parameters and to
observe the necessary cutting requirements the some special cutting techniques
are used. There are “chain” cutting [23], common cut [18], partial cutting of
contour with the subsequent completion of the contour cutting after cutting the
contour of another part and some others. Petunin and Krotov [18] proposed the
classification of various cutting techniques used to form the cutting tool path.
The cutting techniques are classified into three main classes: standard cutting,
multi-contour cutting and multi-segment cutting technique. Every contour is
cut with pierce point by using standard cutting technique. The numbers of pierce
points equal numbers of contours. The several contours are cut in one cutting
segment with one pierce point by using multi-contour cutting technique. For
example, the multi-contour cutting includes “chain” cutting, common cut. The
several cutting segments are cut with several pierce points by using multi-segment
technique.

Analysis of optimization problem solutions shows that there are no or are
negligible considered the questions about cutting cost optimization in addressed
articles. To this end the methodology of exact calculation of cutting cost objec-
tive function is conducted in this article. In optimization problem (2) there
are difficulties in calculating the basic parameters Con, Coff , Cpt depending on
many factors in order to exact computation of Fcost and construct the exact
optimal cutting path. For CNC laser cutting machines Con, Coff , Cpt depend
on the type of laser used in CNC machine, type and thickness of treatment
material. The selected factors depend on analytically or tabular functions. The
formulas of Con, Coff , Cpt calculation and their values may significantly differ
for various CNC sheet cutting machines. The analysis of existing methods for
cutting cost calculation shown the insufficiency of research in the field. The time
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per pierce in laser cutting process is calculated in [10]. In [13] the laser cutting
cost is compared with water jet, plasma and oxygen cutting costs when treat-
ment sheet material of 1.0114 (thicknesses Δ = 3–10 mm). In [21] the assessment
of plasma and CO2 laser cutting machines operating cost is performed. But it
should be noted that the calculation of cost parameters remains outside the scope
of present researches, hence the calculation of Con, Coff , Cpt values and conse-
quently exact calculation of cost function Fcost value are actual problems today,
which are solved in this article. The methodology of cost parameters calculation
in objective function Fcost is developed.

As seen from (2) Fcost also depends on Lon, Loff and Npt, in turn Lon

depends on value of working tool speed Von. The value of Von is usually constant
parameter which is programming during the NC program development, but as
the practical shows [19,26] the value of actual working speed of cutting tool is
varied by various technological factors and parameters of NC programs. Con-
sequently problem of accurate calculation of cost function (2) in optimization
problem of tool path routing is arisen. In order to solve the encountered problem
the need of correction parameters calculation for Von values is emerged. It should
be noted that the question of exact calculation of Von values remains open, then
there is a need of research in order to calculate the correction parameters of
Von values and consequently cutting cost in this article for CNC laser cutting
machines.

It is observed that Lon, Loff and Npt are interdependent. In some cases the
reduction of Npt leads to some increase of total cutting tool path length value
Lon due to cutting motion between contours. Wherein the length of air path
Loff is reduced.

The problem of cost function minimization (2) during treatment of figured
parts from sheet material at CNC cutting machines is solved by the optimization
of parameters Lon, Loff and Npt. As the practice shows the length of cutting
tool motion Lon and numbers of pierce points Npt have the greatest impact on
the cutting cost compared with the length of air tool motion Loff . Depending
on the thickness and type of material the Cpt can reach up to 33% from Con and
at the same time can exceed the Coff by three orders [24]. Consequently the
most interest are the methods of solving the problem aimed at the minimizing
Lon and Npt.

The article is organized as follows. The model of Fcost calculation and basic
parameters Con, Coff , Cpt is presented in Sect. 2.1. Exact calculation of Von val-
ues and values of correction coefficients for Von is given in Sect. 2.2. Based on the
exact computation of objective functions the cutting path and cutting cost are
evaluated as a true. The results of the computational experiment are presented
in Sect. 3.
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2 Exact Calculation of Cost Function Fcost in the Cutter
Path Optimization Problem

2.1 Model of Basic Cost Parameters Con, Coff , Cpt Calculation

The most important economic characteristic of the developed NC program qual-
ity is the cost Fcost of cutting parts at CNC machine. Fcost includes the costs of
electricity and expendable materials, maintenance of a CNC machine and other
operating costs incurred during cutting. The problem of exact calculation of cost
function Fcost in optimizing of cutting tool route related with search of adequate
value Fcost, which calculation depends on basic parameters Con, Coff , Cpt. The
allotted parameters in turn depend on values of Lon, Loff and Npt. The func-
tional dependence Con, Coff , Cpt on type and thickness of material, laser type
in CNC machine, cost of expendable materials, cost of laser and technological
gases, depreciation of equipment can be set either table functions or analyti-
cally. Frequently the cutting cost is not often considered in blank production or
is calculated based on normative is not dependent on values of Con, Coff , Cpt.
Obviously that necessity of cutting cost calculation arises on manufacturer which
provides cutting material service for the third-party firm. As a rule during cutting
cost calculation only Lon is taken into account which usually equals compound
perimeter of cutting parts edge contours that leads to inaccurate cutting cost cal-
culation. Subsequently the calculation methodology of cutting cost parameters
is actual problem today.

The calculation methodology of cutting cost parameters in optimization
problem of cutting path applied to CNC laser cutting machine (laser type is
CO2) is considered. In order to calculate Con the following notations for cost
parameters calculation on 1 m of cutting tool motion are entered: Cexp.mat - the
cost of expendable materials (for example, adjudge, protective glass, gas tubes);
Ctech - the cost of technological gas (nitrogen or oxygen depending on processed
material); Clas - the cost of cutting gas (when working on a gas flow laser); Con

elec

- the cost of electricity; Con
salary - the cost related with salary of accompanying

personnel; Con
A - amortization of equipment. In general Con is calculated by:

Con = Con
elec + Ctech + Clas + Cexp.mat + Con

salary + Con
A (3)

In order to calculate Con
elec, Ctech, Clas, Cexp.mat, C

on
salary, C

on
A the additional

notations are entered: ton - the time spent on 1 m of cutting tool motion, h.; Pon -
the electricity costs for 1 h of CNC laser machine work on cutting motion, kW/h;
Vtech - technological gas consumption, m3/h; Vlas - laser gas consumption, m3/h;
Celec - electricity cost per 1 kW; ClasM3 - the cost of 1 m3 laser gas; CtechM3 - the
cost of 1 m3 technological gas; Cexp.mat.Unit - the cost of expendable materials
unit; texp.mat.Term - serviceable life of expendable materials; Csalary - cost of
1 h work of accompanying personnel; A – amortization of 1 h work of CNC laser
cutting machine; N - useful life of equipment; Cequip - initial cost of the CNC
laser cutting machine.
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Con
elec, Ctech, Clas, Cexp.mat, C

on
salary, C

on
A are calculated by:

Con
elec = PontonCelec (4)

Ctech = VtechCtechM3ton (5)

Clas = VlasClasM3ton (6)

Cexp.mat =
Cexp.mat.Unitton
texp.mat.Term

(7)

Con
salary = Csalaryton (8)

Con
A =

1
N

Cequip

1920
ton (9)

In order to calculate Coff the following notations are entered: Poff – the
electricity costs for 1 h of CNC laser machine work on air motion, kW/h; toff –
the time spent on 1 m of air tool motion, h. Consequently Coff is calculated by:

Coff = Poff toffCelec + Csalarytoff +
1
N

Cequip

1920
toff (10)

In order to calculate Cpt the following notations for cost parameters calcu-
lation on 1 pierce point are entered: Cpt

exp.mat - the cost of expendable materials
(for example, adjudge, protective glass, gas tubes); Cpt

tech - the cost of technolog-
ical gas (nitrogen or oxygen depending on processed material); Cpt

las - the cost
of cutting gas (when working on a gas flow laser); Cpt

elec - the cost of electricity;
Cpt

salary - the cost related with salary of accompanying personnel; Cpt
A - amorti-

zation of equipment. In general Cpt is calculated by:

Cpt = Cpt
elec + Cpt

exp.mat + Cpt
las + Cpt

tech + Cpt
salary + Cpt

A (11)

In order to calculate Cpt
elec, C

pt
exp.mat, C

pt
las, C

pt
tech, Cpt

salary, C
pt
A the addi-

tional notations are entered: Ppt – the electricity costs for 1 pierce point,
kW/h; tpt – the time spent on 1 pierce point, h. Consequently Cpt

elec,

Cpt
exp.mat, C

pt
las, C

pt
tech, Cpt

salary, C
pt
A are calculated by:

Cpt
elec = PpttptCelec (12)

Cpt
exp.mat = VtechCtechM3tpt (13)

Cpt
las = VlasClasM3tpt (14)
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Cpt
exp.mat =

Cexp.mat.Unittpt
texp.mat.Term

(15)

Cpt
salary = Csalarytpt (16)

Cpt
A =

1
N

Cequip

1920
tpt (17)

During calculation of Cpt and Con the following parameters Cpt
las and Clas

must be taken into account when processing of material at flow-through gas laser
machines. The parameter Cpt

tech must be considered during calculation of Fcost

when technological gas is applied.
Consequently, Fcost can be written as follows:

Fcost = Lon

(
Con

elec + Ctech + Clas + Cexp.mat + Con
salary + Con

A

)
+ LoffCoff

+Npt

(
Cpt

elec + Cpt
exp.mat + Cpt

las + Cpt
tech + Cpt

salary + Cpt
A

)
(18)

The main expendable materials for gas laser include: swivel mirrors, focusing
lenses, protective glasses, nozzles, adjusting units, gas tubes. The main expend-
able materials for fiber laser are nozzles, protective glasses, focusing lenses. And
for the case of using solid-state lasers, the expendable materials are optical pump-
ing lamps, protective glasses, mirrors, a quantron, an active element. In [24] the
values of cost parameters Con, Coff , Cpt are presented by taken into account the
above parameters (3)–(17) for CNC laser cutting machine by example ByStar
3015. For each type of material the parameters Con, Coff , Cpt are calculated by
taken into account that Von = const. As the practical shown [19,26] the value
of actual working speed of cutting tool is varied by various technological factors
and parameters of NC programs. Consequently problem of accurate calculation
of cost function (2) in optimization problem of tool path construction is arisen.
In order to solve the encountered problem the need of correction parameters
calculation for Von values is emerged.

Based on proposed methodology the subsystem “Cutting cost calculation”
was developed by using Net. Framework technology. A subsystem may be inte-
grated with existing CAM software. Figure 2 presents interface of developed
subsystem. In order to calculate Fcost the values of basic cost parameters
Con, Coff , Cpt are added into database in XML format.
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Fig. 2. The interface of “Cutting cost calculation” subsystem

2.2 Accurate Calculation of Von in Objective Function from the
Example of the CNC Laser Cutting Machine ByStar 3015

The inaccuracy of the actual cutting time and cost calculation is due to the fact
that Von, which is programmed as constant value in NC program, is actually
varied by various technological factors. It was found that increasing of frames
numbers in NC program for various sets of parts, which have the same total
perimeter of the contours, the actual Von is decreased [19,26]. The reasons why
NC program can contain a large numbers of frames is mainly due to the contours
of complex geometry (for example, splines) when converting from CAD systems
to a CAM are divided into a large numbers of geometric primitives due to the
difference of geometric file formats (for example, on segments of straight lines and
circular arcs), i.e. approximated by simple geometric primitives. The difference
in formats is due to the fact that almost all CNC systems are equipped with
only linear and circular interpolators. As a rule the approximation of a complex
geometry reduces to a linear approximation.

The functional dependence of Von should be determined by science-based
table functions or analytically. However in practice Von = const and in this case
the accuracy of objective function calculation during cutting path optimization
is not provided The algorithmization of objective function (2) calculation based
on science–based determination of function parameters is requirement for the
development of cutting tool path optimization algorithms. The cutting tool route
is optimal only if the objective function is adequate calculated. For this reason
the exact parameters values of objective function (2) must be calculated.

Some practical results on determining dependence of cutting speed on num-
ber of NC program commands are given below. Based on received results the
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objective function (2) can exactly calculated and exact optimal cutting path can
constructed.

The research was conducted for following materials: 1.0114 (thickness Δ = 1–
10 mm) and AWAIMg3 (thickness Δ = 1–5 mm). In order to conduct experiments
the 150 NC programs for cutting of various types of parts with numbers of frames
n = 10, 5000(n ∈ N) for 1.0114 and 150 NC programs for cutting of various
types of parts with numbers of frames n = 10, 2000(n ∈ N) for AWAIMg3 were
developed.

The statistical materials were processed by using “Mathcad”. Based on
received results the following upshots were made:

1. The actual average speed of cutting tool speed Vact is monotonically decreas-
ing function depending on frames numbers of NC program (Fig. 3);

2. The predetermined cutting tool speed Von coincides with the actual aver-
age speed when the numbers of frames reaches a certain threshold value N .
When the frames numbers n < N , then the actual speed is greater than
predetermined cutting tool speed, if the frames numbers of NC program is
arisen (n > N) then the actual speed is less than predetermined cutting tool
speed of NC program (in the experiments the reduction of average actual
cutting tool speed value compared with predetermined cutting tool speed in
NC program is 70%);

3. The threshold value N is varied for different thickness and grade of material.

Fig. 3. Change of the real cutting tool speed for AWAIMg3, Δ = 1 mm
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In order to present the results of computational experiments the following
notations are introduced: n – number of NC program commands; Vact - the
actual speed of cutting tool; N – the number of commands when;

∑
ε2n - the

deviation squares sum of the original data from the values of the approximation
functions at these points.

When approximation the actual speed dependence presented on point chart
on the number of commands with approximating curves in “Mathcad”

∑
ε2n → 0

for all values of studied grade materials and thickness are achieved using loga-
rithmic approximation function. Figure 3 presents following results for material
of AWAIMg3 with Δ = 1 mm. Similar results were obtained for AWAIMg3 with
Δ = 1–5 mm and 1.0114 with Δ = 1–10 mm. The generalized formulas for calcu-
lating of cutting tool speed by example CNC laser cutting machine ByStar3015
are presented in Table 1.

Table 1. Generalized table of formulas for calculating of cutting tool speed by example
CNC laser cutting machine ByStar3015

Material Δ Formulas for cutting tool speed calculation

1.0114 1mm Von = −0.025 · ln n + 0.25

1.0114 2mm Von = −0.015 · ln n + 0.1711

1.0114 3mm Von = −0.009 · ln n + 0.1062

1.0114 3.5 mm Von = −0.006 · ln n + 0.0759

1.0114 4mm Von = −0.006 · ln n + 0.0709

1.0114 8mm Von = −0.003 · ln n + 0.0443

1.0114 10mm Von = −0.002 · ln n + 0.0359

AWAIMg3 1mm Von = −0.014 · ln n + 0.1589

AWAIMg3 2mm Von = −0.004 · ln n + 0.0641

AWAIMg3 3mm Von = −0.001 · ln n + 0.0315

AWAIMg3 5mm Von = −7 · 10−4 · ln n + 0.0182

For subsystem “Cutting cost calculation” the module, in which the complex-
ity of processed contours and consequently developed functional dependences
(presented in Table 1) may be taken into account, was developed. This enable to
exact calculate an objective function Fcost. Based on practice obtained results of
Fcost calculation considering developed formulas the values of cutting cost is sig-
nificantly differ compared with values of Fcost calculated with above developed
methodology.

In turn application of developed formulas during nesting and cutting path
construction leads to modification of cutting path. The obtained path is accurate
compared with path constrained with Von = const. For example, Fig. 4 presents
the cutting path optimization for nesting of 15 parts (material of AWAIMg3,
Δ = 1 mm). Each contour is cut used standard cutting technique (when num-
ber of piercing equals number of parts contours). In order to reduce acceptable
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solutions set the acceptable piercings set is limited with finite aggregate con-
sists of 55 points (these points are green squares in Fig. 4, in turn points of tool
switching off are X). The blue arrows are idle moves of cutter. The number of
NC program commands for this nesting is n = 120. For the case of Fig. 4(a)
Von = const = 0.1 m/s, for the case of Fig. 4(b) Von = −0.014 · ln n + 0.1589.

Based on proposed results (Fig. 4) the accurate calculation of objective func-
tion ensures not only the exact computation of function extremum value but
also the correct results of optimal cutting path search taking into account parts
complexity.

(a) Standard cutting tech-
nique

(b) Special cutting technique

Fig. 4. Optimal cutting path (Color figure online)

3 Computational Experiments

The proposed methodology of Fcost calculation taking into account dependence
of cutting speed Von on parts complexity is useful during practice technological
problems solving in terms of optimal cutting route planning on CNC thermal
machines. There is example of cutting route planning below with reduction of
Fcost for shaped parts taken into account application of special cutting techniques
with thermal deformation reduction developed in [25]. The conditions of thermal
deformation reduction during nesting and cutting route planning are considered
in [15].

Based on algorithms presented on [25] the cutting tool route for nesting is
automatically built at CAD/CAM “SIRIUS”. In order to evaluate the effective-
ness of developed special cutting techniques two nestings are obtained by using
standard (Fig. 5(a)) and special (Fig. 5(b)) cutting techniques for various types
of parts.
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Figure 5(a) presents the cutting tool path built for various geometrical types
of parts including circles using standard cutting techniques. Figure 5(b) presents
the cutting tool path built for various geometrical types of parts including circles
using special cutting techniques.

(a) Standard cutting technique (b) Special cutting technique

Fig. 5. Cutting scheme example

Table 2 presents computational results of basic cutting parameters and values
of Fcost for obtained NC programs. The calculation of Fcost was carried out by
using “Cutting cost calculation”. The results are calculated for AWAIMg3 Δ = 1
and 5 mm.

Table 2. Results of Fcost calculation

Material Δ Technique Fig. Npt Loff , m Lon, m n Fcost, rub Fn
cost, rub %

AWAIMg3 1mm Standard Fig. 5(a) 32 16.43 36.82 130 809.5 866.5 6.6

Special Fig. 5(b) 18 8.6 36.97 757.1 814.3 7

5mm Standard Fig. 5(a) 32 16.43 36.82 13121.1 16062.2 18.3

Special Fig. 5(b) 18 8.6 36.97 12748.1 15701.2 18.8

The following notations in Table 2 are used: n – numbers of frames in NC
program; Fcost - the cutting cost calculated taking into account that Von = const;
Fn
cost - the cutting cost calculated taking into account that Von = var and

depends on the frames numbers of NC program; % - value of difference between
Fcost and Fn

cost.
The results presented in Table 2 indicate that the basis cutting parameters

are reduced by using special cutting techniques compared with standard cutting.
In turn the difference between Fcost and Fn

cost. reaches to 18%.
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4 Conclusion

In this paper the following results were obtained:

1. In order to exact calculate objective function and consequently to construct
exact tool path the methodology of objective function Fcost and basic cost
parameters calculation is presented for CNC laser cutting machines. Due to
the problem of exact Fcost values calculation have arisen on many production
factories and based on proposed methodology the subsystem “Cutting cost
calculation” were developed used Net. Framework technology, which may be
integrated with existing CAM software;

2. The functional dependencies on number of NC program commands for Von are
developed. These dependencies ensure exact calculation of objective function
Fcost and exact tool optimization path construction. For subsystem “Cutting
cost calculation” the module of exact cutting cost computation of cutting
cost was developed used functional dependencies for Von;

3. In order to evaluate the developed results the computational experiments
have been conducted taking into account previously proposed special cutting
techniques compared with standard cutting. The cutting route is constructed
with taking into account the thermal deformation reduction. The correct Fcost

values calculation is carried out with developed above methodology given the
Von = var(Fn

cost) and Von = const(Fcost). The results shown that the cutting
cost is reduced by using special cutting techniques compared with standard
cutting. In turn the difference between Fcost. and Fn

cost reaches to 18%.
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1 Introduction

Automated timetabling is a challenging area in the timetabling and schedul-
ing theory and practice, intensively addressed in research papers in the last
two decades. The problem statements, its classifications, the-state-of-the-art
approaches, successful applications can be found in many surveys: Burke
et al. [9], Schaerf [34], Burke and Petrovic [14], McCollum [29], Lewis [25],
Kristiansen [23], Babaei et al. [4], Pillay [33], Bettinelli [7]. There are three
main classes of problems, which are usually studied: school timetabling, course
timetabling and examination timetabling.

In this paper we address a case study of the Curriculum-Based Course
Timetabling (CB-CTT) problem, arising at the Engineering Department of San-
nio University, a small university located in Southern Italy. In general, the prob-
lem consists of finding a feasible weekly assignment of course lectures to rooms
and to time periods whilst respecting a wide range of constraints, which have
to be either strictly satisfied (hard constraints) or satisfied as much as possible
(soft constraints). A formal definition of CB-CTT problem, has been provided
by Di Gaspero et al. [17] and McCollum et al. [30] in the Second International
Timetabling Competition (ITC-2007), along with a set of benchmark instances.
Several variants and extensions of this problem have been proposed by Bonutti
et al. [8].

The CB-CTT problem is known to be NP-hard as it was shown in Burke
et al. [11]. Real-world instances, proposed by Di Gaspero et al. [17] and Bonutti
et al. [8], are very hard to solve to optimality, so great attention has been paid
to developing heuristic approaches, as: Tabu search by Clark et al. [16], Lü et al.
[27,28]; Simulated annealing of Geiger [20], Bellio et al. [6], Tarawneh et al.
[36]; combination of different approaches in hybrid algorithms of Müller [31],
Shaker [35], Bellio et al. [6], Kiefer et al. [22].

For deeper investigation of CB-TTT problem, Integer Linear Programming
(ILP) formulations were proposed and investigated by many researchers. In gen-
eral case of ITC-2007 problem, Burke et al. [10,13] proposed a compact ILP
formulation, called Monolithic. Such formulation even if not leading to an opti-
mal solution of nontrivial instances, was successfully used in heuristic approaches
to get lower bounds [13]. It was also a base for the branch-and-cut algorithm of
Burke et al. [12], where some small instances were solved to optimality. There
are many attempts to develop exact algorithms for CB-TTT problem, but they
are only able to improve lower bounds without proving the optimality (see, for
example, the divide-and-conquer approach of Hao and Benlic [21], the column
generation method of Cacchiani et al. [15], Benders decomposition in Bagger [5]).
Exact approaches and lower bounds for different university timetabling problems
have been also presented in [3,26,32].

Problem statements and benchmark instances proposed in [8,17] are quite
general and can be applied to many real-world cases. Anyway, it is almost impos-
sible to state a CB-CTT problem that fits all local rules and requirements of
every university or department. In this paper we focus on a case study at the
Engineering Department of Sannio University, which is very challenging as it
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includes many special requirements which are not usually met in the general
CB-CTT problem. We remark that this problem also differs substantially from
the one previously considered in Avella et al. [3] more than ten years ago, as
pointed out in Sect. 2. Therefore we develop a new ILP formulation for this case
and show preliminary computational results of using a commercial ILP solver
and some simple heuristics on real instances. Finally we remark that the overall
approach was implemented using the modelling language JuMP/Julia [18], which
has turned out to be a very effective tool for fast prototyping real problems.

The remainder of the paper is organized as follows. In Sect. 2 we give a formal
statement of the problem. In Sect. 3 we outline the ILP formulation of the case
study. In Sect. 4 the ILP-based solution approach is outlined and finally in Sect. 5
we provide computational results for the case study.

2 Problem Statement

In this section, we describe the problem statement, highlighting the differences
from the ITC-2007 instances and from those previously considered in [3]. First,
let us introduce the main notations used further in the text.

– Let T = {1, . . . , t̄} be the discrete time horizon, i.e. a set of time periods in
which lectures can be given.

– Let D = {1, . . . , d̄} be the teaching days of the week. For any d ∈ D, let τd

and ιd denote, respectively, the first time slots of the morning and afternoon
session in day d.

– Let C = {1, . . . , c̄} be a set of courses. For any c ∈ C, let nc be the number
of teaching hours (lectures) to be scheduled per week and let nc

min and nc
max

be, respectively, the minimum and maximum daily number of teaching hours
(no less than nc

min and no more than nc
max lectures have to be assigned to the

day d, if the course c is scheduled in d).
– Let Π be a set of pairs of incompatible courses, i.e. if (c1, c2) ∈ Π then the

courses c1 and c2 cannot be taught in the same day.
– Let R = {1, . . . , r̄} be a set of rooms, which is divided with subsets of close

rooms R1, . . . , RK , such that ∪K
k=1Rk = R and Rk ∩ Rl = ∅ if k �= l. Usually,

the rooms from different subsets are located in different buildings.
– Let G = {1, . . . , ḡ} be a set of curricula. A curriculum is a group of courses

having common students, which we call a class to be consistent with [3]. Let
Cg ⊂ C denote the courses of class g ∈ G and lmax be the maximum daily
number of teaching hours allowed for any class g ∈ G and mg is the maximum
number of days to be involved in teaching for class g ∈ G.

– Let S = {1, . . . , s̄} be a set of teachers and, for any s ∈ S, let Cs ⊂ C be the
subset of courses taught by teacher s. Let ks denote the maximum weekly
number of teaching days allowed for the teacher s.

The problem consists of assigning course lectures to rooms and time periods,
while satisfying hard constraints and minimizing the violation of soft constraints.
The hard constraints are:
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(i) For each course c ∈ C: nc hours a week must be scheduled.
(ii) For each class g ∈ G: class g cannot attend more than one course at time

t ∈ T .
(iii) For each teacher s ∈ S: teacher s cannot teach more than one course at

time t ∈ T .
(iv) For each room r ∈ R: room r cannot host more than one course at time

t ∈ T .
(v) If a course c ∈ C is scheduled in day d ∈ D, it should take between nc

min

and nc
max hours.

(vi) No class can attend more than lmax teaching hours a day.
(vii) For each class g ∈ G: the class g cannot attend more than mg teaching

days a week.
(viii) For each teaching day d ∈ D: the class g has a “lunch break” at a time

slot between ιd − 1 or ιd.
(ix) Each pair of courses c1, c2 ∈ Π cannot be scheduled in the same day.
(x) For each course c ∈ C, the timetable should be “compact”. If two hours

of the same course c are scheduled in day d, they have to be assigned
to adjacent time periods. In other words, let t1 and t3 (t1 < t3) be time
periods belonging to the same day. If course c is assigned to the time
periods t1 and t3, the same course should be scheduled at every time
period between t1 and t3 as well, to guarantee compactness.

(xi) For each class g ∈ G, the timetable should be “compact”: for each class,
empty periods between any two courses are not allowed, except for the
lunch break.

(xii) All the hours of a course c ∈ C scheduled in a day d ∈ D should be located
in the same room r ∈ R.

(xiii) During a day, a class can move only between the rooms in the same build-
ing.

(xiv) A teacher s ∈ S cannot give lectures for more than ks days a week.
(xv) Due to the availability of equipment and capacity of the room, course

c ∈ C can be assigned to a subset of rooms Rc ⊆ R.
(xvi) A room r ∈ R is available in a subset of time slots Tr ⊆ T .
(xvii) A teacher s ∈ S is available in a subset of the time slots Ts ⊆ T .

The soft constraints whose violation have to minimized are defined as follows:

1. The number of times a class has to move to another room in the same day is
penalized with p1.

2. The number of classes that attend courses in last two hours in the afternoon
is penalized with p2.

The overall problem is depicted in Fig. 1. Due to many special requirements,
the problem does not fit with the problem stated in ITC-2007 [17], the main
difference being that the soft constraints in [17] are indeed hard in our problem.
More precisely these constraints are those named Minimum Working Days, Cur-
riculum Compactness, Room Stability and Room Capacity respectively in [17].
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Several generalizations are presented in [8], but they do not suit our case.
For example, they do not consider requirements (vii)–(ix), (xi), (1), (2). The
most similar problem is the one considered in [3]. The main difference is that
it requires that all the courses of a class in one day must be scheduled either
in the morning or in the afternoon session and the teacher’s preferences are the
soft constraints. Moreover, it does not contain requirements (viii), (xi), that the
class timetable must be compact with the time window during the lunch break,
which have a big impact on problem formulation presented in the next section.

3 Integer Linear Programming Formulation

To define an Integer Linear Programming (ILP) formulation for the timetabling
problem stated above, we introduce the following integer variables:

– xcrt = 1 if course c ∈ C is scheduled in room r ∈ R at time t ∈ T , xcrt = 0
otherwise;

– ucd = 1 if course c ∈ C is assigned to the day d ∈ D, 0 otherwise;
– ygd = 1 if class g ∈ G has lectures on the day d ∈ D, 0 otherwise;
– vgd = 1 if class g ∈ G has lectures in the morning of day d ∈ D, 0 otherwise;
– wgd = 1 if class g ∈ G has lectures in the afternoon of day d ∈ D, 0 otherwise;
– ψsd = 1 if d ∈ D is a teaching day for teacher s ∈ S, 0 otherwise.
– φgrd = 1 if class g has a lecture in room r on day d ∈ D, 0 otherwise.
– ωgd equals to the number of moves of class g ∈ G on day d ∈ D between

different rooms.

With these variables, a formulation that meets both basic and local require-
ments is:

min p1
∑

g∈G

∑

d∈D

ωgd + p2
∑

c∈C

∑

r∈R

∑

(d−1)∈D

(xcrτd−2 + xcrτd−1) (1)

∑

r∈R

∑

t∈T

xcrt = nc, c ∈ C (2)

∑

c∈Cg

∑

r∈R

xcrt ≤ 1, g ∈ G, t ∈ T (3)

∑

c∈Cs

∑

r∈R

xcrt ≤ 1, s ∈ S, t ∈ T (4)

∑

c∈C

xcrt ≤ 1, r ∈ R, t ∈ T (5)

∑

r∈R

∑

τd≤t<τd+1

xcrt ≥ nc
minucd, c ∈ C, d ∈ D (6)

∑

r∈R

∑

τd≤t<τd+1

xcrt ≤ nc
maxucd, c ∈ C, d ∈ D (7)



A Local Branching MIP Heuristic 443

Fig. 1. Timetabling problem
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∑

c∈Cg

∑

r∈R

∑

τd≤t<τd+1

xcrt ≤ lmaxygd, g ∈ G, d ∈ D (8)

∑

d∈D

ygd ≤ mg, g ∈ G (9)

∑

c∈Cg

∑

r∈R

(xcrιd−1 + xcrιd) ≤ 1, g ∈ G, d ∈ D (10)

∑

r∈R

(
xc1rt1 + xxc2rt2

)
≤ 1,

c1c2 ∈ Π, d ∈ D,
τd ≤ t1 < τd+1, τd ≤ t2 < τd+1

(11)

∑

r∈R

(xcrt1 − xcrt2 + xcrt3) ≤ 1,
c ∈ C, d ∈ D,
τd ≤ t1 < t2 < t3 < τd+1

(12)

∑

c∈Cg

∑

r∈R

(xcrt1 − xcrt2 + xcrt3) ≤ 1,
g ∈ G, d ∈ D,
τd ≤ t1 < t2 < t3 < ιd

(13)

∑

c∈Cg

∑

r∈R

(xcrt1 − xcrt2 + xcrt3) ≤ 1,
g ∈ G, d ∈ D,
ιd ≤ t1 < t2 < t3 < τd+1

(14)

∑

c∈Cg

∑

r∈R

xcrt ≤ vgd, g ∈ G, d ∈ D, τd ≤ t < ιd (15)

∑

c∈Cg

∑

r∈R

xcrt ≤ wgd, g ∈ G, d ∈ D, ιd ≤ t < τd+1 (16)

vgd + wgd −
∑

c∈Cg

∑

r∈R

xcrιd−1 −
∑

c∈Cg

∑

r∈R

xcrιd ≤ 1, g ∈ G, d ∈ D (17)

xcr1t1 + xcr2t2 ≤ 1,
c ∈ C, 1 ≤ r1 < r2 ≤ r̄,
d ∈ D, τd ≤ t1 < t2 < τd+1

(18)

∑

c∈Cg

xcrt ≤ φgrd, g ∈ G, r ∈ R, d ∈ D, τd ≤ t < τd+1 (19)

φgr1d + φgr2d ≤ 1,
g ∈ G, 1 ≤ k1 < k2 ≤ K,
r1 ∈ Rk1 , r2 ∈ Rk2 , d ∈ D

(20)

∑

r∈R

xcrt ≤ ψsd, c ∈ Cs, s ∈ S, d ∈ D, τd ≤ t < τd+1 (21)

∑

d∈D

ψsd ≤ ks, s ∈ S (22)

∑

r∈R

φgrd − ωgd ≤ 1, g ∈ G, d ∈ D (23)
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xcrt ∈ {0, 1}, c ∈ C, r ∈ R, t ∈ T
ygd ∈ {0, 1}, g ∈ G, d ∈ D
ugd ∈ {0, 1}, g ∈ G, d ∈ D
wgd ∈ {0, 1}, g ∈ G, d ∈ D
ucd ∈ {0, 1}, c ∈ C, d ∈ D
ψsd ∈ {0, 1}, s ∈ S, d ∈ D
ωgd ∈ Z+, g ∈ G, d ∈ D

(24)

The objective function (1) minimizes the violation of the soft constraints (1)
and (2) on p. x.

Constraints (2) require that the number of weekly hours for each course c
is nc (requirement (i)). Constraints (3) require that a class g cannot attend
more than one course at time t (requirement (ii)). Requirement (iii) – a teacher
cannot teach more than one course at time t – is defined by constraints (4).
Requirement (iv) – a room r cannot host more than one course at time t – is
defined by constraints (5).

Constraints (6) and (7) require that, if course c is scheduled in day d, i.e.
if ucd = 1, the number of daily hours of course c ranges between nc

min and
nc

max (requirement (v)). Inequality (8) limits the maximum number of lectures
for a class (requirement (vi)). The maximum number of teaching days (require-
ment (vii)) for a group is defined by constraints (9). The lunch breaks (require-
ment (viii)) are insured by constraints (10). Constraints (11) set that each incom-
patible pair of courses c1c2 ∈ Π cannot be scheduled in the same day (require-
ment (ix)).

Constraints (12) guarantee compactness for course c, i.e. they require that
the time slots assigned to the day d be adjacent (requirement (x)). The class
timetable compactness (requirement (xi)) is enforced by constraints (13)–(17),
actually they ensure that only one window is possible during the lunch break.
Constraints (18) require that all the teaching hours of course c scheduled in the
day d be assigned to the same room r (requirement (xii)). The requirement (xiii),
that a class can move only between the rooms in the same building is expressed
by constraints (19)–(20). Constraints (21)–(22) limit the number of working days
for each teacher (requirement (xiv)). Constraints (23) binds the number of class
moves during a day. Finally, constraints (24) define the integrality of variables.

The requirements concerning capability/availability of rooms and teachers
(requirements (xv)–(xvii)) are not expressed explicitly in the formulation (1)–
(24). However such requirements can be easily given by fixing the corresponding
variables, i.e.

xcrt = 0, c ∈ C, r ∈ R \ Rc, t ∈ T (25)
xcrt = 0, c ∈ C, r ∈ R, t ∈ T \ Tr (26)
xcrt = 0, s ∈ S, c ∈ Cs, r ∈ R, t ∈ T \ Ts (27)

This formulation is based on those presented in [3], which was further more
generalized and formalized as a “monolitic” formulation in [10,13]. In compar-
ison with monolitic formulation, we have exactly the same variables x, u and
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constraints (3)–(5), but others are more or less different due to different sets of
soft and hard constraints and local requirements.

4 Solution Approach

The problem turned out to be much harder to solve than the one addressed more
than ten years ago in [3] as it contains much more complex requirements, which
turn into a much larger size of the formulation.

State-of-the-art MIP solvers are not able to solve it to optimality, so we
used a MIP solver as a heuristic tool, setting a short time limit (10 min). More
specifically, we first set the MIP solver parameters to increase the time spent
in MIP heuristics looking for good feasible solutions. On the other hand we
introduced a customized Local Branching heuristic able to significantly improve
the solutions provided by the MIP solver.

The idea is based on wide-spread approach of fixing some elements of
timetable and solving a reduced problem, it is also known as the local branching
heuristic. Some examples of this idea can be found in [13,16,24].

The local branching heuristics are MIP heuristics integrating local search
and the outcomes of a MIP solver [19]. Given a feasible solution provided by
the built-in heuristics of a MIP solver, they attempt to improve it by exploring
a neighborhood of the current solution and iterating the procedure until the
neighbor does not return any better feasible solution. In general-purpose local
branching heuristics, neighbors for 0-1 IP problems are defined by introducing
an additional constraint imposing that the new solution must not differ from the
current one in more than k variables.

For our problem we introduce two local branching heuristics, defining two
neighbors, strictly tailored for the problem:

Local Branching (LB) Strategy 1. Given a feasible solution x̄crt, which
defines a feasible timetable, we define a neighborhood consisting of all the
solutions in which a course keeps the assignment to the time slot, but the
room can be changed. This is obtained by fixing corresponding variables and
eliminating them from the formulation. Then we run the MIP solver over the
reduced problem, within a prescribed time limit.

Local Branching (LB) Strategy 2. For a given a feasible solution x̄crt, we
define a neighborhood consisting of all the solutions in which, a course keeps
the assignment to the room and to the time slot of a day, but the day can be
changed.

As shown in Fig. 2, we run Cplex solver for 10 min on the overall formulation
to get an initial upper bound UBini and a lower bound LB. Starting from
the current solution UBini we run the two MIP heuristics described above and
we choose UBfin as the better between the two results. In our computational
experience we also tried to run the two heuristics in sequence, but we could
not get any significantly improvement. The time limit of the first stage is set to
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10 min to make the algorithm usable as a decision tool to carry out a what-if
analysis on the availability/unavailability of some rooms. Moreover, as shown in
Fig. 2, a longer time limit does not lead to significantly better solutions.

Fig. 2. Heuristic
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5 Computational Results

In this section we give the preliminary computational experiments on two real
world instances – Inst01 and Inst02 – corresponding to the I and II semester,
respectively, of the courses taught at the Engineering Department of Sannio
University. The instances are detailed in Table 1. In our tests, we set the objective
function penalties p1 = 100 and p2 = 10, i.e. the moves of a class between rooms
are much less desirable.

Table 1. Instances details

Inst01 Inst02

Number of courses 82 83

Number of classes 35 35

Number of rooms 21 20

Number of days 5 5

Number of time periods a day 9 9

Number of variables 33375 32663

Number of constraints 177198 177900

Computational experiments have been carried out on a workstation with
Intel Core i7-8700 CPU, 3.20 GHz processor and 16 Gb RAM. We have used
the MIP solver IBM ILOG Cplex 12.81 as Branch-and-Bound (B&B) framework
with JuMP/Julia programming language2 [18]. All Cplex settings are set to get
a more aggressive heuristic search strategy.

The results are presented in Tables 2 and 3 for Inst01 and Inst02 correspond-
ingly. Where Objval is the best objective value found by CPLEX within 10 min
of run time or by the corresponding strategy. # moves is the total number of
class moves between rooms during a day, # last hours is the number of lectures
scheduled in the last two periods of days.

Our preliminary experiments show that CPLEX cannot find an optimal solu-
tion within the giving time limit while the proposed heuristics are quite promis-
ing, because they are able to find good solutions with a few violations of soft
constraints. These results inspire for further research in many directions. We can
point out that this formulation can be improved with valid inequalities. As it
was mentioned above, it has a many common features with the problem studied
in [3] and this experience can be useful for the one considered in this paper
problem as well. Many valid inequalities can be derived from the structure of
set packing problem. The set packing problem relaxation have been successfully
used for solving timetabling problems [3,13] and other scheduling and location

1 https://www.ibm.com/products/ilog-cplex-optimization-studio.
2 https://julialang.org/.

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://julialang.org/
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problems [1,2,37,38]. In fact, a study of the problem polytope structure could
lead to derive new valid inequalities which are able to improve the lower bounds
as well as the outcomes of the MIP heuristics.

Table 2. Inst01 results

Objval # moves # last hours

CPLEX 1620 16 2

Strategy 1 1020 10 2

Strategy 2 620 6 2

Table 3. Inst02 results

Objval # moves # last hours

CPLEX 2320 23 2

Strategy 1 1820 18 2

Strategy 2 1420 14 2
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vol. 3867, pp. 3–23. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-77345-0 1

30. McCollum, B.: Setting the research agenda in automated timetabling: the sec-
ond international timetabling competition. INFORMS J. Comput. 22(1), 120–130
(2010). https://doi.org/10.1287/ijoc.1090.0320

31. Müller, T.: ITC 2007 solver description: a hybrid approach. Ann. Oper. Res.
172(1), 429 (2009). https://doi.org/10.1007/s10479-009-0644-y

32. Phillips, A.E., Waterer, H., Ehrgott, M., Ryan, D.M.: Integer programming meth-
ods for large-scale practical classroom assignment problems. Comput. Oper. Res.
53, 42–53 (2015). https://doi.org/10.1016/j.cor.2014.07.012

33. Pillay, N.: A review of hyper-heuristics for educational timetabling. Ann. Oper.
Res. 239(1), 3–38 (2016). https://doi.org/10.1007/s10479-014-1688-1

34. Schaerf, A.: A survey of automated timetabling. Artif. Intell. Rev. 13(2), 87–127
(1999). https://doi.org/10.1023/A:1006576209967

35. Shaker, K., Abdullah, S., Alqudsi, A., Jalab, H.: Hybridizing meta-heuristics
approaches for solving university course timetabling problems. In: Lingras, P.,
Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS
(LNAI), vol. 8171, pp. 374–384. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41299-8 36

36. Tarawneh, H., Ayob, M., Ahmad, Z.: A hybrid simulated annealing with solutions
memory for curriculum-based course timetabling problem. J. Appl. Sci. 13, 262–
269 (2013). https://doi.org/10.3923/jas.2013.262.269

37. Vasilyev, I., Klimentova, X., Boccia, M.: Polyhedral study of simple plant location
problem with order. Oper. Res. Lett. 41(2), 153–158 (2013). https://doi.org/10.
1016/j.orl.2012.12.006

38. Vasilyev, I., Avella, P., Boccia, M.: A branch and cut heuristic for a runway schedul-
ing problem. Autom. Remote Control 77(11), 1985–1993 (2016). https://doi.org/
10.1134/S0005117916110084

https://doi.org/10.1007/s10479-010-0700-7
https://doi.org/10.1007/s10479-010-0700-7
https://doi.org/10.1007/s00291-007-0097-0
https://doi.org/10.1007/s00291-007-0097-0
https://doi.org/10.1016/j.ejor.2017.09.022
https://doi.org/10.1016/j.ejor.2017.09.022
https://doi.org/10.1016/j.ejor.2008.12.007
https://doi.org/10.1007/s10732-010-9128-0
https://doi.org/10.1007/s10732-010-9128-0
https://doi.org/10.1007/978-3-540-77345-0_1
https://doi.org/10.1007/978-3-540-77345-0_1
https://doi.org/10.1287/ijoc.1090.0320
https://doi.org/10.1007/s10479-009-0644-y
https://doi.org/10.1016/j.cor.2014.07.012
https://doi.org/10.1007/s10479-014-1688-1
https://doi.org/10.1023/A:1006576209967
https://doi.org/10.1007/978-3-642-41299-8_36
https://doi.org/10.1007/978-3-642-41299-8_36
https://doi.org/10.3923/jas.2013.262.269
https://doi.org/10.1016/j.orl.2012.12.006
https://doi.org/10.1016/j.orl.2012.12.006
https://doi.org/10.1134/S0005117916110084
https://doi.org/10.1134/S0005117916110084


Optimal Control and Applications



Iterative Method with Exact Fulfillment
of Constraints in Optimal Control

Problems

Alexander Sergeevich Buldaev(B) and Ivan Dmitrievich Burlakov

Buryat State University, Ulan-Ude, Russia
buldaev@mail.ru

Abstract. A new approach is proposed for constructing a relaxation
sequence of admissible controls in the class of optimal control problems
with constraints. The approach is based on the construction of a sys-
tem of non-local conditions for improving the admissible control in the
form of a fixed point problem of the control operator. To build the con-
ditions for improving the admissible control, we apply the transition to
an auxiliary optimization problem based on the well-known principle of
extension. Sufficient conditions for the optimality of admissible control
and the existence of a minimizing sequence of admissible controls in the
considered class of problems with constraints are substantiated. A com-
parative analysis of the computational efficiency of the proposed iterative
method of fixed points with the exact implementation of constraints in
model and test optimal control problems is carried out.

Keywords: Controlled system with constraints · Conditions for
improving control · Fixed point problem

1 Introduction

A known method for solving optimal control problems with constraints is to
reduce to auxiliary problems without constraints on the basis of the extension
principle [1] in the form of a penalty functional, a regular or modified Lagrange
functional. The process of solving auxiliary problems, as a rule, is based either
on the implementation of necessary optimality conditions such as the maximum
principle [2–6], or on constructing a relaxation sequence of controls using local
methods to improve control such as gradient methods [4–6]. Moreover, at each
iteration of the control improvement, the exact execution of the constraints of
the initial problem is not guaranteed.

A new approach is proposed for constructing a relaxation sequence of con-
trols based on the principle of extension with the help of constructed systems
of conditions for a non-local improvement of control with the exact fulfillment
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of the constraints of the original problem. The construction of such conditions
is carried out with the help of non-standard increment formulas for function-
als of an auxiliary problem that does not contain residual terms of extensions.
Such formulas allow us to interpret the conditions of non-local improvement of
admissible control as the problem of a fixed point of the control operator. This
allows us to apply the developed theory and fixed point methods for the effective
search for admissible improvement controls.

The fixed point approach under consideration is the development and exten-
sion of a non-local approach to improving control, originally developed for linear
and linear-quadratic in the state of optimal control problems [6]. The methods
of fixed points were constructed and justified in classes of nonlinear optimal
control problems [7–13]. In this paper, the fixed point approach is developed for
problems with constraints.

2 Statement of the Problem with Restrictions

We consider a class of optimal control problems with terminal, phase, and mixed
constraints, including non-fixed time, reducible to the following general form:

ẋ(t) = f(x(t), u(t), ω, t), x(t0) = x0, (1)

u(t) ∈ U, ω ∈ W, t ∈ T = [t0, t1],

Φ0(σ) = ϕ0(x(t1), ω) +
∫

T

F0(x(t), u(t), ω, t)dt → inf
σ∈Ω

, (2)

Φ1(σ) = ϕ1(x(t1), ω) = 0, (3)

in which x(t) = (x1(t), ..., xn(t)) is the state vector, u(t) = (u1(t), ..., um(t)) is
the vector of the control functions, ω = (ω1, ..., ωl) is the vector of the control
parameters. The sets U ⊆ Rm and W ⊆ Rl are closed and convex. The interval
T is fixed. As the available control functions, we consider a set V of piecewise
continuous functions on T with values in the set U : V = {u ∈ PC(T ) : u(t) ∈
U, t ∈ T}. σ = (u, ω) is an available control with values in the set Ω = V × W .
The functions ϕ0(x, ω) and ϕ1(x, ω) are continuously differentiable on Rn × W ,
the functions F0(x, u, ω, t), f(x, u, ω, t) and their partial derivatives with respect
to x, u, ω are continuous in the set of arguments on the set Rn ×U ×W ×T . The
function f(x, u, ω, t) satisfies the Lipschitz condition by x in Rn × U × W × T
with the constant L > 0: ‖f(x, u, ω, t) − f(y, u, ω, t)‖ ≤ L ‖x − y‖.

The conditions guarantee the existence and uniqueness of the solution x(t, σ),
t ∈ T of the system (1) for any available control σ ∈ Ω. The available control
σ ∈ Ω is called admissible if the functional constraint (3) is satisfied. We denote
the set of admissible controls by D = {σ ∈ Ω : Φ1(σ) = ϕ1(x(t1), ω) = 0}.

The problem of improving admissible control in the class of problems (1)–(3)
is considered in the following general formulation: for a given admissible control
σI ∈ D is required to find an admissible control σ ∈ D with the condition
ΔσΦ0(σI) = Φ0(σ) − Φ0(σI) ≤ 0.
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3 The Fixed Point Problem Based on the Extension
Functional

We consider the auxiliary problem without constraints based on the extension
functional

ẋ(t) = f(x(t), u(t), ω, t), x(t0) = x0, (4)

u(t) ∈ U, ω ∈ W, t ∈ T = [t0, t1],

J(σ) = ϕ(x(t1), ω) +
∫

T

F (x(t), u(t), ω, t)dt → inf
σ∈Ω

, (5)

in which the extension functional is determined by the condition

J(σ) ≤ Φ0(σ), σ ∈ D ⊂ Ω.

As an example of the extension functional, the penalty functional for violation
of the restriction (3) can be considered. In particular, the functional with a square
penalty

Mμ(σ) = Φ0(σ) + μΦ2
1(σ) → inf

σ∈Ω
, μ > 0. (6)

Another topical example of the extension functionality is the regular Lagrange
functional

Lλ(σ) = Φ0(σ) + λΦ1(σ) → inf
σ∈Ω

, λ ∈ R. (7)

Pontryagin function with conjugate variable ψ ∈ Rn and the standard con-
jugate system in the problem (4), (5) have the form

H(ψ, x, u, ω, t) = 〈ψ, f(x, u, ω, t)〉 − F (x, u, ω, t),

ψ̇(t) = −Hx(ψ(t), x(t), u(t), ω, t), t ∈ T, ψ(t1) = −ϕx(x(t1), ω). (8)

For available control σ ∈ Ω denote ψ(t, σ), t ∈ T is a solution of the standard
conjugate system (8) with x(t) = x(t, σ) and arguments u, ω, corresponding to
the control components σ.

Consider the problem of improving the available control in the tasks (4), (5):
for a given available control σI ∈ Ω need to find available control σ ∈ Ω with the
condition ΔσJ(σI) = J(σ) − J(σI) ≤ 0. In accordance with [10], the projection
conditions for improving the available of control σI ∈ Ω based on the projection
operator has the following form.

Next, we use the following notation for a particular increment an arbitrary
vector function g(y1, ..., yl) with respect to ys1 , ys2

Δys1+Δys1 ,ys2+Δys2
g(y1, ..., yl)

= g(y1, ..., ys1 + Δys1 , ..., ys2 + Δys2 , ..., yl) − g(y1, ..., yl).

In addition, we denote Δx(t) = x(t, u) − x(t, uI), Δu(t) = u(t) − uI(t),
Δω = ω − ωI .
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PY - projection operator onset Y ⊂ Rk in the Euclidean norm

PY (z) = arg min
y∈Y

(‖y − z‖), z ∈ Rk.

We introduce a modified differential-algebraic conjugate system including an
additional phase variable y(t) = (y1(t), ..., yn(t)),

ṗ(t) = −Hx(p(t), x(t), u(t), ω, t) − r(t), (9)

〈Hx(p(t), x(t), u(t), ω, t) + r(t), y(t) − x(t)〉 = Δy(t)H(p(t), x(t), u(t), ω, t) (10)

with boundary conditions

p(t1) = −ϕx(x(t1), ω) − q, (11)

〈ϕx(x(t1), ω) + q, y(t1) − x(t1)〉 = Δy(t1)ϕ(x(t1), ω), (12)

in which by definition we set r(t) = 0, q = 0 in the case of linearity of the
functions f , F , ϕ with respect to x (problem (4), (5) linear by state), and also
in the case of y(t) = x(t) for the corresponding t ∈ T .

In the problem linear in the state (4), (5) the modified conjugate system
(9)–(12) by definition coincides with the standard conjugate system (8).

In the non-linear problem (4), (5), the algebraic equations (10) and (12) can
always be analytically resolved with respect to r(t) and q in the form of explicit
or conditional formulas (perhaps not in a unique way).

Thus, the differential-algebraic conjugate system (9)–(12) can always be
reduced (possibly not the only way) to a differential conjugate system with
uniquely determined values r(t) and q.

For the available controls σ ∈ Ω, σI ∈ Ω, let p(t, σI , σ), t ∈ T be the solution
of the modified conjugate system (9)–(12) for x(t) = x(t, σI), y(t) = x(t, σ),
u(t) = uI(t), ω = ωI . The definition implies the obvious equality p(t, σ, σ) =
ψ(t, σ), t ∈ T .

The projection conditions for improving the available control σI ∈ Ω with
the specified projection parameter α > 0 in accordance with [11] have the form:

u(t) = PU (uI(t) + α(Hu(p(t, σI , σ), x(t, σ), uI(t), ωI , t) + s1(t))), t ∈ T, (13)

Δu(t)H(p(t, σI , σ), x(t, σ), uI(t), ωI , t)

=
〈
Hu(p(t, σI , σ), x(t, σ), uI(t), ωI , t) + s1(t), u(t) − uI(t)

〉
, (14)

ω = PW (ωI + α(−ϕω(x(t1, σ), ωI)

+
∫

T

Hω(p(t, σI , σ), x(t, σ), u(t), ωI , t)dt + s2)), (15)
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Δω{−ϕ(x(t1, σ), ωI) +
∫

T

H(p(t, σI , σ), x(t, σ), u(t), ωI , t)dt}

= 〈 − ϕω(x(t1, σ), ωI)

+
∫

T

Hω(p(t, σI , σ), x(t, σ), u(t), ωI , t)dt + s2, ω − ωI 〉 , (16)

in which in Eq. (14) by definition is assumed s1(t) = 0 in the case of linearity of
the function f , F in u (problem (4), (5) linear by the control u), or in the case
u(t) = uI(t) for the corresponding t ∈ T . Similarly, in (16), by definition s2 = 0,
in the case of linearity of functions f , F , ϕ by ω (linear by the parameter ω
problem (4), (5)), and also for ω = ωI .

Equations (14) and (16) can always be uniquely resolved with respect to the
quantities s1(t) and s2 (perhaps not the only way). Thus, conditions (13)–(16)
can be reduced to a system of equations in the form (13), (15) with respect to
the vector σ = (u, ω) uniquely identifiable right side. The resulting system can
be interpreted as a fixed point problem with respect to the control σ = (u, ω)
for the control operator, uniquely defined by the right side of the system.

According to [10], the solution σ = (u, ω) of the system (13)–(16) provides
an improvement in control σI ∈ Ω for any parameter α > 0 with an estimate of
the improvement of the functional:

ΔσJ(σI) ≤ − 1
α

∫
T

∥∥u(t) − uI(t)
∥∥2

dt − 1
α

∥∥ω − ωI
∥∥2

. (17)

At the same time, control improvement is guaranteed not only in a sufficiently
small neighborhood of the initial control σI ∈ Ω, i.e. the improvement proce-
dure under consideration has the property of nonlocality, in contrast to known
gradient methods and other local methods for improving control.

We will complete the problem (13)–(16) with the condition for the exact
fulfillment of constraint (3). As a result, we obtain the conditions for improving
control with exact fulfillment of the constraint (13)–(16), (3) in the problem
(1)–(3).

Conditions for improving control (13)–(16), (3), can be considered as a fixed
point problem with an additional algebraic equation (3) with respect to control
σ. This allows you to apply and modify known fixed point search algorithms
to implement the conditions for improving control and constructing iterative
methods for approximate solving the original problem (1)–(3).

The proposed fixed point approach for constructing a relaxation sequence of
admissible controls consists of successively solving the problems of improving
admissible control in the form of constructed fixed point problems of a uniquely
defined control operator.

4 Iterative Algorithm

For the numerical solution of the fixed point problem (13)–(16), (3) various
modifications of the known methods of successive approximations can be used
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[14]. As an example, we consider an analog of the method of simple iteration
[14] with k ≥ 0 and given initial control available σ0 ∈ Ω at k = 0:

uk+1(t) = PU (uI(t)
+α(Hu(p(t, σI , σk), x(t, σk), uI(t), ωI , t) + sk

1(t))), t ∈ T, (18)

Δuk(t)H(p(t, σI , σk), x(t, σk), uI(t), ωI , t)
=

〈
Hu(p(t, σI , σk), x(t, σk), uI(t), ωI , t) + sk

1(t), u
k(t) − uI(t)

〉
,

(19)

ωk+1 = PW (ωI + α(−ϕω(x(t1, σk), ωI)

+
∫

T

Hω(p(t, σI , σk), x(t, σk), uk(t), ωI , t)dt + sk
2)), (20)

Δωk{−ϕ(x(t1, σk), ωI) +
∫

T
H(p(t, σI , σk), x(t, σk), uk(t), ωI , t)dt}

= 〈 − ϕω(x(t1, σk), ωI)
+

∫
T

Hω(p(t, σI , σk), x(t, σk), uk(t), ωI , t)dt + sk
2 , ω

k − ωI 〉 ,
(21)

Φ1(σk+1) = ϕ1(x(t1, σk+1)) = 0, (22)

where the quantities sk
1(t) and sk

2 are determined according to a given method
of a uniquely determined control operator for the fixed point problem (13)–(16).

For extension functionals (6) or (7) control σk+1, k ≥ 0, calculated by
rule (18)–(21), depends respectively on the penalty parameter μ > 0 or on
the Lagrange multiplier λ ∈ R. Thus, Eq. (22) at each iteration of the process
reduces to a scalar equation for the penalty parameter or Lagrange multiplier,
respectively. For the numerical solution of the specified equation with a given
accuracy, you can use the known methods of scalar optimization (method of
interval bisection, broken method, etc.) [4,5].

Iterations on the index k ≥ 0 with the implementation of the constraints are
carried out before the first condition:

J
(
σk+1

)
< J

(
σI

)
.

In this case, a new problem (13)–(16), (3) is built to improve the obtained
calculated control, which is taken as a new σI , and the iterative algorithm is
repeated. At the same time as the initial approximation of the control σ0 ∈ Ω at
k = 0 to iteratively process (18)–(22) can choose the obtained calculated control.

Note that the calculated control obtained satisfies the constraint with a given
accuracy. Thus, starting with the second computational improvement prob-
lem (13)–(16), (3), the sequence of computational controls forms a relaxation
sequence of controls that are admissible with a given accuracy. At the same
time, setting the accuracy of the constraint, you can achieve the desired relax-
ation accuracy for the target functional of the original problem:

Φ0(σk+1) ≈ J
(
σk+1

)
< J

(
σI

) ≈ Φ0(σI).
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If a strict improvement of control in the process of iterations is not achieved,
then a numerical calculation of the fixed point problem (13)–(16), (3) can be
carried out before the condition:

max { ∥∥uk+1 − uk
∥∥

C(T )
,
∣∣ωk+1 − ωk

∣∣ } ≤ ε,

where ε > 0 - given the accuracy of the calculation of the fixed point problem.
This concludes the construction and calculation of successive tasks of control
improvement.

As a result, we obtain a relaxation sequence of controls σk ∈ Ω, satisfying
the constraint (3) with a given accuracy.

The conditions of convergence of the iterative process (18)–(22) can be
obtained similarly to the works [7,14] based on the requirements that provide
the well-known “squeezing” property for the operator of the right-hand side of
the fixed point problem.

The conditions of convergence of the relaxation sequence of controls to the
optimal solution can be justified on the basis of sufficient conditions for the
existence of a minimizing sequence of controls in problems with constraints,
similarly to [1].

5 Conditions for Optimal Control

On the basis of the fixed point problem (13)–(16), it is possible to formulate the
necessary optimality conditions for control in the auxiliary extension problem
(4), (5), similarly to [7–13]. These necessary conditions for optimal control can
be successfully used to test control for optimality in the extension problem (4),
(5).

Sufficient conditions for optimal control in the original problem (1)–(3) can
be formulated on the basis of the extension principle [1].

Theorem 1. (Sufficient condition for optimal control based on a problem with
extension functional).

Let the admissible control σ ∈ D be optimal in the problem (4), (5) and
Φ0(σ) = J(σ). Then σ ∈ D is optimal in the problem (1)–(3).

Proof. Indeed, by virtue of optimality σ ∈ D in the problem (4), (5) we have
Φ0(σ) = J(σ) ≤ J(σ̃), σ̃ ∈ Ω. Hence, by virtue of the extension property, we get
Φ0(σ) ≤ J(σ̃) ≤ Φ0(σ̃), σ̃ ∈ D ⊂ Ω.

Corollary 1. Let the admissible control σ ∈ D be optimal in auxiliary problems
without restrictions (4), (6) with some penalty parameter μ > 0 or in problem
(4), (7) with some Lagrange multiplier λ ∈ R. Then this control will be optimal
in the initial problem with constraints (1)–(3).

Proof. Indeed, for optimal σ ∈ D by the definition of extension functionals in
auxiliary problems, we obtain Φ0(σ) = J(σ).
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The optimal control in the problem (1)–(3) may not exist, but there is always
exists a minimizing sequence of admissible controls, which is defined as a gener-
alized solution of problem (1)–(3) according to [1]. A sufficient condition for the
existence of a generalized solution in the problem (1)–(3) can also be formulated
on the basis of the extension principle.

Theorem 2. (a sufficient condition for the existence of a minimizing sequence
of controls based on a problem with an extension functional).

Let the sequence of admissible controls σk ∈ D, k ≥ 0 be minimizing in the
problem (4), (5) and Φ0(σk) → j = inf

σ̃∈Ω
J(σ̃). Then σk ∈ D is a minimizing

sequence in the problem (1)–(3). Wherein j = i = inf
σ̃∈D

Φ0(σ̃).

Proof. Indeed, for any ε > 0, by virtue of the convergence and extension prop-
erty, we obtain

Φ0(σk) ≤ j + ε ≤ inf
σ̃∈D

J(σ̃) + ε ≤ i + ε

for k → ∞.

Corollary 2. Let the relaxation sequence of admissible controls σk ∈ D, k ≥
0 be minimizing in auxiliary problem without restrictions (4), (6) with some
penalty parameter μ > 0 or in the auxiliary problem (4), (7) with some Lagrange
multiplier λ ∈ R. Then the given sequence will be minimizing in the original
problem with constraints (1)–(3).

Proof. Indeed, for any σk ∈ D by the definition of extension functionals in
auxiliary problems, we obtain Φ0(σk) = J(σk).

A generalization of Theorem 2 is the statement used to substantiate the pro-
posed fixed point approach.

Theorem 3. (a sufficient condition for the existence of a minimizing sequence
of controls based on a sequence of problems with extension functionals).

Let exist:

(1) a sequence of extension tasks without restrictions with extension functionals

Js(σ) ≤ Φ0(σ), σ ∈ D ⊂ Ωs, s ≥ 0;

(2) a sequence of lower bounds js for extension functionals

js ≤ Js(σ̃), σ̃ ∈ Ωs, s ≥ 0;

(3) the sequence of admissible controls σk ∈ D, k ≥ 0, for which the limiting
relation is satisfied

lim
k→∞

Φ0(σk) = lim
s→∞ js.

Then σk ∈ D is a minimizing sequence in the problem (1)–(3). Wherein

lim
s→∞ js = i = inf

σ̃∈D
Φ0(σ̃).
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Proof. Indeed, for any ε > 0, by virtue of the conditions of the theorem, we
obtain

Φ0(σk) ≤ lim
s→∞ js + ε ≤ inf

σ̃∈D
Js(σ̃) + ε ≤ i + ε

at k → ∞.

Corollary 3. Let there be:

(1) relaxation sequence of admissible controls σk ∈ D, k ≥ 0, obtained by the
fixed point method based on a sequence of auxiliary problems without restric-
tions (4), (6) with some penalty parameters μs > 0 or problems (4), (7) with
some Lagrange multipliers λs ∈ R at s ≥ 0;

(2) a sequence of lower bounds js, s ≥ 0 for extension functionals in the
indicated auxiliary problems without restrictions, such that lim

k→∞
Φ0(σk) =

lim
s→∞ js. Then the sequence σk ∈ D, k ≥ 0 will be minimizing in the original

problem with constraints (1)–(3).

6 Example

The work on the proposed algorithm is demonstrated in the well-known model
problem of Mehri-Davis [15,16], which “can serve as a good test for testing
numerical methods” according to the recommendations of [15].

The initial problem with the control function and the phase inequality con-
straint is reduced by the technique [16] to an equivalent problem with terminal
equality constraint:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 (t) = x2(t), x1 (0) = 0,
ẋ2 (t) = u(t) − x2 (t) , x2 (0) = −1,
ẋ3 (t) = x2

1(t) + x2
2(t) + 0.005u2 (t) , x3 (0) = 0,

ẋ4(t) = Q(x2(t), t), x4(0) = 0,

Q (x2, t) =
{

0, if Γ (x2, t) ≤ 0,
Γ 2 (x2, t) , if Γ (x2, t) > 0,

Γ (x2, t) = x2 − 8(t − 0.5)2 + 0.5, t ∈ T = [0, 1] ,

Φ (u) = x3(1) → inf
u∈V

,

x4(1) = 0, V = {u ∈ PC(T ) : u(t) ∈ R, t ∈ T}.

For the obtained problem, we consider an auxiliary problem without restriction
with the extension functional based on a regular Lagrange functional with a
factor λ ∈ R

Lλ (u) = x3(1) + λx4(1) → inf
u∈V

.

Note that when λ > 0 extension functionality can be interpreted as a penalty
functional with a linear penalty for violating the equality constraint since x4(1) ≥
0.
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The Pontryagin function and differential-algebraic conjugate system for the
auxiliary problem take the following form:

H (p, x, u, t) = p1x2 + p2 (u − x2) + p3
(
x2
1 + x2

2 + 0.005u2
)

+ p4Q (x2, t) ,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ṗ1 (t) = −2p3 (t) x1 (t) − r1(t),
ṗ2 (t) = −p1 (t) + p2 (t) − 2p3 (t) x2 (t) −
−p4 (t) G (x2(t), t) − r2(t),
ṗ3 (t) = −r3(t),
ṗ4 (t) = −r4(t),

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p1 (1) = 0,
p2 (1) = 0,

p3 (1) = −1,
p4 (1) = −λ,

where G (x2, t) =
{

0, if Γ (x2, t) ≤ 0,
2Γ (x2, t) , if Γ (x2, t) > 0.

In this case, the variable r(t) = (r1 (t) , r2 (t) , r3 (t) , r4 (t)) determined
from an algebraic equation with an additional phase variable for which the nota-
tion is used z(t) = (z1(t), z2(t), z3(t), z4 (t)):

p1 (t) (z2 (t) − x2 (t)) + p2 (t) (x2 (t) − z2 (t))
+p3 (t)

(
z21 (t) + z22 (t) − x2

1 (t) − x2
2 (t)

)
+ p4 (t) (Q(z2(t), t) − Q(x2(t), t))

= (2p3 (t) x1 (t) + r1 (t)) (z1 (t) − x1 (t))
+ (p1 (t) − p2 (t) + 2p3 (t) x2 (t) + p4 (t)G (x2(t), t) + r2 (t)) (z2 (t) − x2 (t))

+r3 (t) (z3 (t) − x3 (t)) + r4 (t) (z4 (t) − x4 (t)) .

We fix the following method of uniquely resolving the value r (t) = (r1 (t) ,
r2 (t) , r3 (t) , r4 (t)):

1. if z1 (t) = x1 (t), then r2 (t) = 0, r3 (t) = 0, r4 (t) = 0

r1 (t) =
p1 (t) (z2 (t) − x2 (t)) + p2 (t) (x2 (t) − z2 (t))

z1 (t) − x1 (t)

+
p3 (t)

(
z21 (t) + z22 (t) − x2

1 (t) − x2
2 (t)

)
z1 (t) − x1 (t)

+
p4 (t) (Q(z2(t), t) − Q(x2(t), t))

z1 (t) − x1 (t)

− (p1 (t) − p2 (t) + 2p3 (t) x2 (t) + p4 (t)G (x2(t), t)) (z2 (t) − x2 (t))
z1 (t) − x1 (t)

−2p3 (t) x1 (t) ;

2. if z1 (t) = x1 (t), then

2.1. if z2 (t) = x2 (t), then r1 (t) = 0, r3 (t) = 0, r4 (t) = 0

r2 (t) = p3 (t) (z2 (t) − x2 (t))
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+
p4 (t) (Q(z2(t), t) − Q(x2(t), t))

z2 (t) − x2 (t)
− p4 (t)G (x2(t), t) ;

2.2 if z2 (t) = x2 (t), then r1 (t) = 0, r2 (t) = 0, r3 (t) = 0, r4 (t) = 0. This
implies p3 (t) = −1, p4 (t) = −λ, t ∈ [0, 1].

Denote p(t, uI , u, λ)- solution of the conjugate system with x(t) = x(t, uI),
z(t) = x(t, u), uI ∈ V , u ∈ V .

Fixed point problem to improve a given uI ∈ V by functionality Lλ (u) has
the form:

u (t) = PU

(
uI (t) + α

(
p2

(
t, uI , u, λ

) − 0.01uI (t) + s1 (t)
))

, t ∈ [0, 1] ,

where s1 (t) determined from the equation:

p2
(
t, uI , u, λ

) (
u (t) − uI (t)

) − 0.005
(
u2 (t) − (uI)2 (t)

)

=
(
p2

(
t, uI , u, λ

) − 0.01uI (t) + s1 (t)
) (

u (t) − uI (t)
)
.

Choose the following method of unique resolution of the value s1(t) from an
algebraic equation:

1. if u (t) = uI (t), then s1 (t) = p2
(
t, uI , u, λ

) − 0.005
(
u (t) + uI (t)

)

−p2
(
t, uI , u, λ

)
+ 0.01uI (t) = 0.005

(
uI (t) − u (t)

)
;

2. if u (t) = uI (t), then s1 (t) = 0.

Thus, the problem is simplified and takes the form

u (t) = PU

(
uI (t) + α

(
p2

(
t, uI , u, λ

) − 0.005(uI (t) + u (t))
))

, t ∈ [0, 1] .

The parameter λ ∈ R is determined by the condition of exact fulfillment of the
terminal equality constraint: x4 (1, u) = 0.

To solve the fixed-point problem with exact fulfillment of the constraint, an
iteration process was considered at k ≥ 0 with initial approximation u0 ∈ V for
k = 0:

uk+1 (t) = PU

(
uI (t) + α

(
p2

(
t, uI , uk, λ

) − 0.005(uI (t) + uk (t))
))

,

at each iteration of which the equation was solved for λ ∈ R: x4

(
1, uk+1

)
= 0.

Numerical solution of the Cauchy phase and conjugate problems was per-
formed using the Runge-Kutta-Werner method of the variable (5)–(6) order
accuracy using the DVIPRK library program IMSL Fortran PowerStation 4.0
[17]. The values of the controlled, phase and conjugate variables were memorized
at the nodes of the fixed uniform grid Th with the discretization step h > 0 on
the interval T . In the intervals between neighboring grid nodes Th, the value of
the control function was assumed to be constant and equal to the value at the
left node.

The numerical solution of the equation for the parameter λ ∈ R was car-
ried out using the DUMPOL [17] program, realizes the deformable polyhedron
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Fig. 1. Calculated control u∗ = u∗(t) is a dashed line. Control û = û(t) is a solid line.

method. The accuracy of the solution of the equation was controlled by the crite-
rion Γ1 = max{Γ (x2(t, uk+1), t), t ∈ Th} ≤ ε1, where ε1 > 0 - specified accuracy
of phase limiting. The iterations of the calculation of the fixed-point problem
for k ≥ 0 continued until the first condition for improving the control uI ∈ V
was met:

Lλ
(
uk+1

)
< Lλ

(
uI

)
.

In this case, a new fixed point problem was constructed to improve the obtained
computational control, and the iterative algorithm was repeated. At the same
time, as the initial approximation of control u0 ∈ V with k = 0 for the iteration
process, the calculated control obtained was chosen.

If the improvement of control in the indicated sense was not achieved, then
the numerical calculation of the fixed point problem is carried out until the
condition max{|uk+1(t) − uk(t)|, t ∈ Th} ≤ ε2, where ε2 > 0 is given the accu-
racy of the calculation of the fixed point problem. The process of building and
calculating successive control improvement problems ended there.

For a comparative analysis of the computational efficiency of the proposed
fixed-point approach with known methods [15,16], the following calculation
parameters were chosen: h = 10−2, ε1 = 10−12, ε2 = 10−10. When calculat-
ing the initial problem of improving control, it was assumed that u0 = uI with
k = 0. The results of the calculation of successive improvement tasks by the
proposed iterative algorithm with a fixed design parameter α = 0, 1 for various
first initial (start-up) controls u0 ∈ V are presented in Table 1.

In the table Φ0 and Φ∗ is the initial and calculated values of the objective
functional of the problem; Γ 0

1 and Γ ∗
1 is the initial and calculated values of the
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Fig. 2. The calculated trajectory x2(t, u
∗) is the dashed line. The trajectory x2(t, û) is

a solid line. Parabola Γ (x2, t) is a dotted line.

Table 1. Initial and calculated indicators of numerical experiments.

u0 Φ0 Φ∗ Γ 0
1 Γ ∗

1 N

0 483,93 0,1684 6,5412 −0.0955 25108

1 49152,9957 0,1690 14.485 −0.0201 22536

5 52139,8664 0.1699 30,2017 −0.0524 24462

10 56033,8718 0,1702 21,324 −0.0840 34518

15 60106,1185 0,1702 24,547 −0,1247 43014

û 0,1719 0,1683 −0,0025 −0.0021 2004

criterion for performing the phase constraint of the task; N - the total number
of calculated phase and related Cauchy problems; u0 = u0(t), t ∈ Th is starting
control; û = û(t), t ∈ Th is the approximate optimal control obtained in [15] by
combined iterative algorithms with initial control approximation u(t) ≡ 0.

Figure 1 shows the calculated control u∗(t), obtained for the start-up control
u0 ≡ 1, and the control û(t). Figure 2 shows the corresponding phase trajectories
x2(t, u∗) and x2(t, û).

For the starting controls u0 ≡ 0 and u0 = û the calculated controls u∗(t) and
the trajectories x2(t, u∗) visually practically coincide in the figures with û(t) and
x2(t, û). With increasing u0 ≡ const > 1 the deviation of the calculated controls
u∗(t) and the trajectories x2(t, u∗) from û(t) and x2(t, û) visually quantitatively
increases with a complete analogy of the qualitative dynamics.



468 A. S. Buldaev and I. D. Burlakov

Note that the calculated values of the objective functional Φ∗ in all experi-
ments with the initial approximation u0 reach smaller values than the value Φ0

under the control u0 = û. In this case, for all computational controls u∗(t), the
phase constraint-inequality is fulfilled exactly.

The tuning parameter α > 0 regulates the speed and quality of convergence
of the iterative process and is selected experimentally for a specific optimal
control problem. As this parameter decreases, the total number N of Cauchy
computational problems increases and the rate of convergence of the iterative
process slows down. With an increase in the α > 0 parameter, the quality of
the calculated control deteriorates up to the loss of convergence. In the frame-
work of the optimal control problem under consideration, the proposed iterative
algorithm demonstrates a fairly wide range of convergence in the initial control
approximation.

7 Conclusion

The proposed approach consists of constructing a relaxation sequence of controls
with the exact fulfillment of the constraints of the problem based on solving a
system of control improvement conditions for the auxiliary extension problem
without constraints. The novelty of the proposed approach lies in presenting
the system of control improvement conditions in the constructive form of the
fixed-point problem of the control operator.

The developed form of the system for improving control in the form of a
fixed point problem allows one to apply the theory and methods of fixed points
to construct relaxation sequences for admissible improving controls in optimal
control problems with constraints.

The constructed approach is characterized by the nonlocality of improve-
ment of controls; the absence of a time-consuming procedure of needle-shaped
or convex variation of control in a small neighborhood of improved control, char-
acteristic of gradient methods; exact fulfillment of restrictions; the presence of
one main tuning parameter α > 0 regulating the speed, quality and region of
convergence of the iterative process. These properties are essential factors for
increasing the efficiency of solving nonlinear optimal control problems with con-
straints.
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Abstract. We investigate the problem of sequentially visiting a number
of megalopoleis while satisfying precedence constraints where the travel
cost functions depend on the set of pending tasks. It is supposed that the
dimension of the investigated problem is sufficiently large, therefore, an
exact solution is practically impossible; in these circumstances, heuristics
are used very widely. We investigate some possibilities for local improve-
ment of results achievable in a class of heuristics. For such improvement of
a result, optimizing insertions and finite systems of optimizing insertions
are used. We view these systems as multi-insertions. The given approach
is combined with the employment of a parallel algorithm implemented
for a multiprocessor computing system. The optimizing insertions are
designed by means of a broadly understood dynamic programming.

Keywords: Insertion · Multi-insertion · Precedence constraints ·
Route

1 Introduction

In many applied problems, settings with routing elements arise. Very often, these
settings are complicated by different constraints and task list dependence. In par-
ticular, such problems arise in nuclear power engineering and mechanical engi-
neering. In the first case, the goal is to decrease the dose loads for nuclear power
plant workers who perform complex operations in areas with increased radioac-
tivity. The second case is connected with plate cutting. In both cases, different
constraints arise; moreover, in the first case, travel cost functions depend on the
pending task set (a worker is only affected by the radiation sources that are not
dismantled yet). Some other complicated circumstances take place in the above-
mentioned applied problems. So, these problems differ from their prototype, the
Traveling Salesman Problem (TSP); see [1,2].

A specialized theory is necessary. We connect this theory with the Bellman
approach [3], although, in DP solutions of TSP, the Held–Karp scheme [4] is
prevalent. However, dynamic programming (DP) can be realized globally only for
problems of small dimension; this singularity especially develops for our problems
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with megalopoleis although precedence constraints help to significantly reduce
computational complexity; see e.g. [5,6,8,24]. Nevertheless, one can realistically
use DP for local improvement of heuristic solutions. This can be achieved by
optimizing insertions and multi-insertions; see [7–14] and other. On this base,
iterated procedures [13] and parallel algorithms [14] can be constructed. So,
DP can be used in routing problems of large dimensions for improvement of
heuristics.

Let us recall some studies connected with TSP and problems of the TSP
type: monographs [1,2,15], review article [16], and original article [17]. But, in
the considered problem, significant qualitative singularities arise, which are con-
nected with the requirements of engineering applications. Therefore, the methods
and algorithms used in TSP cannot be realized in our application-oriented task
connected with the radiation safety problem, where the complicated travel cost
functions is just one issue among many. Moreover, the construction of these
functions is a part of our solution.

Namely, to determine these functions, one must integrate over fragments of
worker’s actual trajectory to find the specific radiation dose received by him,
which results into a nonmetric routing problem. Another complication of our
formulation is the fact that the radiation dose is the sum of radiation produced
by the sources that are not dismantled at the time the worker moves, which is
the reason why travel cost functions become dependent on the list of tasks.

In addition, we consider the routing problem with megalopoleis and prece-
dence constraints (these conditions are natural for engineering problems). The
above-mentioned singularities generate serious difficulties of mathematical char-
acter and require strict formalization. In the DP constructions, we follow
[5,6,8,18,21]. We are not aware of the works of other authors that study the
DP procedures for problems of such complexity.

Let us now describe the issues that complicate a direct application of inser-
tions or multi-insertions. First, we have global precedence constraints for the
initial big problem. For insertions and multi-insertions, fragments of general
precedence constraints are required. These fragments must be coordinated with
global conditions. Namely, a new solution with optimizing insertions must be
admissible by precedence in the initial problem. Further, in our initial problem,
we have very complicated travel cost functions, which take into account the effect
of radiation. This effect is defined by sources not dismantled at the moment of
travel, giving rise to a complex dependence on the pending tasks set. However,
the insertion constructions act on fragments of the task sets. Here, it is required
to exclude the crossed influence on results. In other words, we must devise a valid
transformation of the initial route and trajectory by insertions. Therefore, these
insertions must be specially organized. For this, precise definitions are required.
We note that routing problems with cost functions admitting dependence on task
lists are practically never considered (we note only a heuristic solution for TSP
in [23]). Therefore, serious comparison with other investigations of our prob-
lem is impossible: the known works are connected with less complicated routing
problems.
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2 General Notations and Definitions

We will need a summary of the general notations, which is the essence of a valid
mathematical formulation of the problem focused on engineering applications.
We use standard set-theoretical symbolism and the notation of [5–7,12–14]; the

equality by definition is denoted
�
=. For every set T , we denote by P(T ) and

P ′(T ) the families of all and all nonempty subsets of T , respectively; in addition,
Fin(T ) denotes the family of all finite sets from P ′(T ). As usual, R is the real

line, R+
�
= {ξ ∈ R|0 � ξ}, N

�
= {1; 2; . . .}, N0

�
= {0; 1; 2; . . .} = N ∪ {0} (here and

below we denote {h} the singleton set containing the object h), and

p, q
�
= {k ∈ N0|(p � k)&(k � q)}

for any p ∈ N0 and q ∈ N0. For any two objects x and y, by (x, y) we denote the
ordered pair (OP) with the first element x and the second element y; for every
OP z, by pr1(z) and pr2(z), we denote the first and the second elements of z,

respectively. If a, b, and c are objects, then (a, b, c)
�
= ((a, b), c); therefore, for

sets A, B, and C, we have A × B × C
�
= (A × B) × C and, for u ∈ A × B and

v ∈ C, (u, v) ∈ A × B × C. For any nonempty set S, we denote the set of all
functions from S into R+ by R+[S].

3 The Initial Problem

Fix a nonempty set X, x0 ∈ X, and n ∈ N such that n � 3; the sets

L1 ∈ Fin(X), . . . ,Ln ∈ Fin(X)

are called megalopoleis. Assume that x0 /∈ Lj ∀j ∈ 1,n. Moreover, let Lp ∩Lq =
∅ under p �= q. We consider the processes of the type

x0 → (x1,1 ∈ Lα(1) � x1,2 ∈ Lα(1)) → . . .
→ (xn,1 ∈ Lα(n) � xn,2 ∈ Lα(n)),

(1)

where α is a permutation of the index set 1,n. In addition, fix the relations

L1 ∈ P ′(L1 × L1), . . . , Ln ∈ P ′(Ln × Ln).

It is required that, in (1),

(x1,1, x1,2) ∈ Lα(1), . . . , (xn,1, xn,2) ∈ Lα(n).

We have to select
α, (x1,1, x1,2), . . . , (xn,1, xn,2).

Let P denote the set of all permutations of 1,n (in (1), α ∈ P). Assume that
precedence constraints are given, specifically, let us fix the relation K ∈ P(1,n×
1,n) for which

∀K0 ∈ P ′(K) ∃z0 ∈ K0 : pr1(z0) �= pr2(z) ∀z ∈ K0;
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then,
A �

= {α ∈ P| ∀z ∈ K ∀t1 ∈ 1,n ∀t2 ∈ 1,n
(z = (α(t1), α(t2))) ⇒ (t1 < t2)} �= ∅

(2)

is the set of all routes admissible by precedence (we define routes as index permu-
tations). Our condition on K is fulfilled in typical situations of applied character;
see [18, Chap. 2]. As seen from (1), a route (index permutation) is not enough to
completely define our process. Therefore, we introduce trajectories, for which,
beforehand, we introduce the set X as the union of {x0} and all sets Lt, t ∈ 1,n;
then, X ∈ Fin(X). By Z̃, we denote the set of all mappings from 0,n into X×X.
Then, for α ∈ P,

Zα
�
= {(zi)i∈0,n ∈ Z̃|(z0 = (x0,x0))&(zt ∈ Lα(t) ∀t ∈ 1,n)} ∈ Fin(Z̃) (3)

is the set of all α–trajectories (i.e. trajectories coordinated with α). Then,

D
�
= {(α, z) ∈ A × Z̃|z ∈ Zα} ∈ Fin(A × Z̃) (4)

is the set of all admissible solutions (see (1)). So, our solutions are OPs with
components from sets (2) and (3).

4 Cost Functions

For N
�
= P ′(1,n), let

c� ∈ R+[X × X × N], c�
1 ∈ R+[X × X × N], . . . ,

c�
N ∈ R+[X × X × N], f � ∈ R+[X].

(5)

We view the sets from the family N as task lists. In terms of (5), we define an
additive criterion: for α ∈ P and (zi)i∈0,n ∈ Zα,

Ĝα[(zt)t∈0,n]
�
=

n∑

t=1

[c�(pr2(zt−1),pr1(zt), {α(k) : k ∈ t,n})

+ c�
α(t)(zt, {α(k) : k ∈ t,n})] + f �(pr2(zn)).

(6)

Here, the values of c� measure the exterior travel (i.e., the travel between mega-
lopoleis and from x0 to a megalopoleis), the values of c�

1, . . . , c
�
n measure the

interior works done when visiting a megalopolis, and the values of f � measure
the terminal state of process. As a corollary (see (2) and (6)), the following
principal problem is defined:

Ĝα[(zt)t∈0,n] → min, (α, (zt)t∈0,n) ∈ D. (7)

Clearly, for problem (3), the corresponding extremum V is well-defined: V is the
smallest of the numbers

Ĝα[(zt)t∈0,n], (α, (zt)t∈0,n) ∈ D;
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in (7), an optimal solution exists. The structure of such solutions is defined
by the DP procedure from [5,6,19], however, there are certain difficulties of
computational character. Therefore, we use the insertions and multi-insertions
methods to improve the results. Specifically, we optimize fragments of a global
solution.

5 Optimizing Individual Insertions

In construction of the local improvement procedure in the class of individual opti-
mizing insertions, we follow [7,12,13]. Let us sketch the scheme of this method;
a more detailed presentation is provided in [7,12].

We follow the notation of [7,12]. Fix N ∈ 2,n − 1 as the “length” of the
used insertion and ν ∈ 0,n − N as the “beginning” of this insertion. For s ∈
ν + 1, ν + N , we transform some initial route and trajectory by the scheme of
[7,12]. Now, we restrict ourselves to considering only the idea. First of all, we
create local precedence constraints defining the set Kν [α] ∈ P(1, N × 1, N), for
which

∀K0 ∈ P ′(Kν [α]) ∃z0 ∈ K0 : pr1(z0) �= pr2(z) ∀z ∈ K0;

here, α ∈ A. In these terms, for α ∈ A and ν ∈ 0,n − N , the nonempty set
Aν [α] of all locally admissible (by precedence) routes is defined; Aν [α] �= ∅. In
the form of Aν [α], we have the set of admissible routes for the given insertion.
If α ∈ A, ν ∈ 0,n − N , and β ∈ Aν [α], then [12, (3.4)], the glued route

(β − sew)[α; ν] ∈ A (8)

is defined; so, we indicate the replacement α → (β − sew)[α; ν] preserv-
ing admissibility. An analogous replacement is used for trajectories, thus, for
α ∈ A, (zt)t∈0,n ∈ Zα, and ν ∈ 0,n − N , we construct a set of local trajectories.
In addition, for such trajectories, coordination with local routes is essential; we
consider pr2(zν) as the starting point for the local routing problem. If β ∈ Aν [α]
and h is a trajectory coordinated with β, then the glued trajectory (we consider
the gluing for (zt)t∈0,n and h) is coordinated with (β − sew)[α; ν] (8). So, we
paste the local solution (β, h) into the initial solution (α, (zt)t∈0,n); this paste is
realized within ν + 1, ν + N . In addition, as (β, h), we use an optimal solution in
the local routing problem with additive criterion. For construction of this opti-
mal solution, a variant of DP [5,6,20] is realized; naturally, we assume that the
value of N is moderate. The concrete improvement of global result is defined by
[12, (4.9),(4.10)].

Now, we consider the basic constructions for the above-mentioned steps of our
investigation. So, for α ∈ A and ν ∈ 0,n − N , we define Λν [α] as the mapping

s 
−→ α(ν + s) : 1, N → 1,n;

this mapping forms our insertion. Clearly, Λν [α] is a bijection from 1, N onto

Γν [α]
�
= {Λν [α](s) : s ∈ 1, N} = {α(ν + s) : s ∈ 1, N} ∈ P ′(1,n).
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Here Γν [α] is the realization of the window of precedence constraints. To this
end, we cut out the following part of the set K:

Qν [α]
�
= {z ∈ K|(pr1(z) ∈ Γν [α])&(pr2(z) ∈ Γν [α])}.

Now, we form the above-mentioned set Kν [α]:

Kν [α]
�
= {(Λν [α]−1(pr1(z)), Λν [α]−1(pr2(z))) : z ∈ Qν [α]}

(here Λν [α]−1 is the inverse of the bijection Λν [α]; then,

Λν [α]−1 : Γν [α] → 1, N

forms Kν [α] in 1, N ×1, N). Finally, we define the above-mentioned set of admis-
sible local routes by the rule

Aν [α]
�
= {β ∈ P|β−1(pr1(z)) < β−1(pr2(z)) ∀z ∈ Kν [α]},

where P is the set of all permutations of the index set 1, N . Returning to (8), we
note that, by [12, (3.3)], for β ∈ Aν [α],

((β − sew)[α; ν](t)
�
= α(t) ∀t ∈ 1,n \ ν + 1, ν + N)&((β − sew)[α; ν](t)

�
= (Λν [α] ◦ β)(t − ν) ∀t ∈ ν + 1, ν + N).

So, we obtain the pasted route. Let us now define the pasted trajectory. To do
this, we need to construct a localized phase space, a local system of megalopoleis.
Indeed, (for α ∈ A and ν ∈ 0,n − N) for s ∈ 1, N , let

(Ms[α; ν]
�
= LΛν [α](s))&(Ms[α; ν]

�
= LΛν [α](s)).

In the form of M1[α; ν], ...,MN [α; ν], we obtain the local system of megalopoleis.
Now, we suppose that, for z ∈ Zα,

X[α; z; ν]
�
= {pr2(z(ν))} ∪ ( N⋃

s=1

Ms[α; ν]
)
;

X[α; z; ν] ∈ Fin(X). Then, we use the scheme of [12, (3.7)]: for β ∈ Aν [α], let
Zβ [α; z; ν] denote the set of all collections

(hi)i∈0,N : 0, N → X[α; z; ν] × X[α; z; ν]

for which h0 = (pr2(z(ν)),pr2(z(ν))) and ht ∈ Mβ(t)[α; ν] ∀t ∈ 1, N. Clearly,
Zβ [α; z; ν] is a nonempty finite set. Thus, in the form Zβ [α; z; ν], we obtain the
set of all local trajectories coordinated with the (local) route β.

Now, for α ∈ A, z ∈ Zα, and ν ∈ 0,n − N , we introduce the set D̃[α; z; ν] of
all the pairs

(β, h), β ∈ Aν [α], h ∈ Zβ [α; z; ν].

It is easy to see that D̃[α; z; ν] is a nonempty finite set. Elements of D̃[α; z; ν]
are admissible local solutions (solutions of the insertion), and there are no other
elements in this set.
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6 Local Cost Functions

Let N
�
= P ′(1, N). For all α ∈ A, z ∈ Zα, and ν ∈ 0,n − N , we form functions

c[α; z; ν] ∈ R+[X[α; z; ν] × X[α; z; ν] × N],

c1[α; z; ν] ∈ R+[X[α; z; ν] × X[α; z; ν] × N], . . . ,

. . . , cN [α; z; ν] ∈ R+[X[α; z; ν] × X[α; z; ν] × N],

f [α; z; ν] ∈ R+[X[α; z; ν]].

In addition, c[α; z; ν] is used to measure the external movements;

c1[α; z; ν], . . . , cN [α; z; ν]

measure the internal works, and f [α; z; ν] measures the terminal state of our
local problem corresponding to the considered insertion.

Like in [12], we consider two different variants of definition for the above-
mentioned functions in the cases ν < n − N and ν = n − N . Namely, for
ν < n − N , we use [14, (3.14),(3.15)], and, for ν = n − N , the representations
[14, (3.16),(3.17)] are used. For both cases, we suppose that

Bβ [h|α; z; ν] ∈ R+, β ∈ Aν [α], h ∈ Zβ [α; z; ν],

are defined by [14, (3.18)]. Namely, we use the additive criterion defined by
summing the values for our cost functions corresponding to every local solution
(β, h) ∈ D̃[α; z; ν]. As a result, we obtain the following local problem:

Bβ [h|α; z; ν] → min, (β, h) ∈ D̃[α; z; ν]

with the value V[α; z; ν] ∈ R+ [14, (3.20)] and the solution set [14, (3.21)]. The
obtained improvement of global criterion is the number κ[α; z; ν] ∈ R+; this
number is defined by [14, (3.30)]. As a result, we obtain the following estimate
for the global extremum V :

V � Ĝα[z] − κ[α; z; ν],

where κ[α; z; ν] is defined in explicit form in terms of the initial solution (α, z)
and index ν; see [12, (4.9)]. To determine V[α; z; ν] and the optimal solutions of
insertion, we use an economical version of the DP procedure corresponding to [5–
7,12], going back to [18, § 4.9] (in this connection, see also [19]). We note that the
given constructions were derived in greater detail in [12], in a somewhat different
notation. Thus, the constructions of [7,12] are a natural base of the above-
mentioned scheme. For a more tangible improvement of the global result, we use
the iterated procedure (see [13]). In addition, we vary the parameter ν: ν = ν1,
ν = ν2, etc. Note that in [13], the iterations were constructed through different
algorithms, and those algorithms were implemented on a personal computer.
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7 Optimizing Multi-insertions

Let us return to problem (7) and consider a different approach to the question
of how to optimize the fragments of the initial solution. Fix (λ,h) ∈ D; thus,
λ ∈ A and h ∈ Zλ. In other words, we have an admissible global solution for the
initial problem. Now, we form a “disjoint” system of insertions. Namely, we fix
numbers ν1 ∈ 0,n − N, . . . , νm ∈ 0,n − N , m ∈ N, for which

νj + N < νj+1 ∀j ∈ 1,m − 1.

Let us now consider insertions on the intervals νj + 1, νj + N, j ∈ 1,m. For
every such individual insertion, we use the DP procedure of [7,12] to solve the
corresponding local routing problem. As a result, we obtain a collection of local
optimal solutions (ρ1, u1), ..., (ρm, um); here, for j ∈ 1,m, ρj is the local route and
uj is the local trajectory coordinated with ρj . These constructions are realized
by scheme of Sects. 5 and 6 for individual insertions. The procedures of local
optimization are realized independently. A more detailed discussion is given in
[14, Section 5]. We only note that the construction of local optimal solutions is
implemented in parallel, specifically, each individual insertion is considered by
its own processor, and all these processors work independently. In addition, the
joint improvement of the additive criterion is realized as a sum of individual
improvements for separate insertions. So, we obtain the following property: for
solution (η, w) obtained after pasting the local solutions (ρ1, u1), . . . , (ρm, um)
into the initial solution (λ,h),

V � Ĝη[w] = Ĝλ[h] −
m∑

i=1

χ[λ;h; νi], (9)

where χ[λ;h; νk], k ∈ 1,m, are defined by [14, (3.4)] and characterize the local
improvement of results when using the DP procedure.

8 The Problem of Dismantling the Radiating Elements

We used the above-mentioned construction with iterated procedures for optimiz-
ing insertions and multi-insertions in the problem of dismantling a finite system
of radiating elements. Now, at a meaningful level, we consider the corresponding
scheme of the insertions and multi–insertions application.

Let us first note that we used the iterated procedure with insertions for a met-
ric routing problem with megalopoleis. We were able to achieve the improvement
up to 6, 5–8, 5% over the original result after 5–9 iterations (we also used a PC).
For a more complicated instance of the dismantlement problem, the analogous
improvement was 3–4% after 7–8 iterations.

Returning to the description of the dismantlement problem, we note that, for
every radiating element, the near zone stood out. For this near zone, the zone
boundary was sampled. As a result, we obtained a megalopolis. The internal
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work for each megalopolis consisted of traveling from the entry point to the
radiating element, dismantling it in a proper fashion, and traveling to the exit
point. It was assumed that, during these operations, the radiation is higher than
during external movements.

At each time, the worker is affected by radiating elements that are not dis-
mantled at the time of his movement, hence the need for travel cost functions
that depend on the list of tasks and express the radiation dose incurred by
the worker during the mentioned movements. See the formal derivation of these
functions in [20].

9 Computational Experiment

This section describes the practical implementation of a solver for the routing
problem with precedence constraints and task list-dependent travel cost func-
tions, specifically, a problem of dismantling a system of radiating elements (see
[20]). To solve this problem, we use a scheme based on the above-mentioned
construction with multi-insertions (see Sect. 7). This method allows one to solve
routing problems of significant dimension.

The following is an algorithm for solving the problem (7) with the aid of
multi-insertions.

1. At the initial stage, the source data is read, such as
– coordinates of cities in the megalopoleis and the starting point,
– coordinates of radiating elements,
– power of radiating elements,
– employee movement speed,
– precedence constraints (address pairs).

Then, the cost functions (5) are calculated using the formulas given in [20].
Since the process of calculating these functions is rather laborious for a large
number of megalopoleis, a parallel algorithm based on the OpenMP library
(shared memory) is used to speed up the calculations.

2. At this stage, the heuristic solution is constructed using the algorithm [21, § 6].
This algorithm takes into account precedence constraints and cost functions
depending on the task list.

3. Next, we attempt to improve the route found at the previous stage with the
help of a multi-insertion. To do this, we divide the obtained route into 20-
megalopoleis fragments, while leaving between the fragments the “jumpers”
consisting of one megalopolis. Each such fragment is transmitted by MPI
protocol to a separate computational node. Then, each computational node
separately builds the optimal route for the fragment allocated to it. In addi-
tion, DP is used as a tool for calculating the optimal route. To speed up
the computations, we also use the OpenMP shared memory parallelization
API. Since the originally transmitted fragments of the route were calculated
heuristically, after the calculations, the results are improved.



Optimization “In Windows” for Routing Problems with Constraints 479

4. After each computational node has processed its fragment of the original solu-
tion, it transfers the result to the main control machine, where the improved
fragments are glued into one large solution. This solution is not guaranteed
to be optimal, but it is “closer” to the optimal due to optimization of its
fragments.

Consider a model example of solving the routing problem describing disman-
tlement of radioactive equipment on a plane (see [20]). The megalopoleis simulat-
ing the possible entrances/exits of rooms with radiation sources are obtained by
discretizing the circles: on each circle, 40 points are located at an equal angular
distance starting from the point with the angular coordinate 0. Each megalopolis
corresponding to a point object then simulates a radiation source in the room.
Let the starting point (it is the base of the dismantlement process) coincide
with the origin, x0 = (0, 0). We assume that, outside a megalopolis, the workers
move 4 times faster than inside to simulate the complexity of moving within
each megalopolis, due to the presence of certain structures and mechanisms that
interfere with rapid movement inside the premises.

Fig. 1. Graphic illustration of one elementary insertion (before improvement), value of
the radiation dose was 0.49771

The following is the result of single model experiment on the URAN super-
computer. For the model experiment, we used the variant with 255 megalopoleis
and 45 address pairs corresponding to the precedence constraints, the size of the
insertion fragment was 20 megalopoleis. The following results were obtained:
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(1) the total dose rate obtained using the heuristic algorithm was 3.360531.
(2) the total value of the radiation dose obtained after the use of multi-insertion

was 2.90207.
(3) the original result was improved by 15.8%.
(4) the computation time was 25 min 55 s.

Fig. 2. Graphic illustration of one elementary insertion (after improvement), value of
the radiation dose was 0.40568

To verify the result obtained, a series of experiments was conducted. Specifi-
cally, 10 experiments were conducted with the same number of cities (n = 255),
the number of precedence constraints (|K| = 45), and the size of the optimizing
insert (N = 20). As a result of averaging the data from 10 experiments, we found
that the improvement from multi-insertions was 15.36%.

In Figs. 1 and 2, the replacement of a fragment of initial solution is repre-
sented. Moreover, in Fig. 3, the new global solution is illustrated (we keep in
mind the solution under application of multi-insertion).

To study the dependence of the improvement on the size of multi-insertion
fragments, we did another series of experiments. The fragment size ranged from
15 to 25 megalopoleis. For each fragment size of the multi-insert, 10 experiments
were run, and the average value was computed. Figure 4 shows the dependence
of improvement on the multi-insert fragment size. From this graph, it follows
that the improvement percentage increases with fragment size.
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Fig. 3. The result of the computational experiment with 255 megalopoleis after the
application of the improved multi-insertion (f(x) ≡ 0)

To test the parallel DP-based algorithm used to find the optimal route (see
[14]), which we employed to improve the result over multi-inserts, we used the
SOP instances from the TSPLIB library. Unfortunately, for our problem state-
ment (GTSP with precedence constraints and cost functions depending on the
set of pending tasks), the authors are not aware of an open library of problem
instances. There are instance libraries for SOP (sequential ordering problem),
which is the same as TSP-PC (TSP with precedence constraints), e.g. the SOP
part of TSPLIB; and GTSP (generalized TSP), e.g. the library maintained by
Karapetyan1. Both these libraries only partially correspond to our task. Since
we are more interested in problem statements with precedence constraints, it
was decided to test the algorithm on SOP instances from TSPLIB.

In order to adapt the library to our solver (and problem statement) we viewed
the SOP cities as singleton megalopoleis and removed the dependence of travel
costs function on the list of pending tasks. This approach significantly simplified
our initial formulation but still allowed us to test the performance of the proposed
algorithm for finding the optimal route.

1 see http://www.cs.nott.ac.uk/∼pszdk/gtsp.html.

http://www.cs.nott.ac.uk/~pszdk/gtsp.html
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Fig. 4. Dependence of improvement percentage over the original result on insertion
fragment size

As a result of computations, we were able to solve a significant number
of TSPLIB SOP instances (ESC07.sop, ESC11.sop, br17.12.sop, ESC12.sop,
br17.10.sop, ry48p.4.sop, rbg109a.sop, p43 .4.sop, ft53.4.sop, rbg150a.sop,
ft70.4.sop, ESC25.sop, p43.3.sop, ft53.3.sop). For all these problems, an opti-
mal solution was found, which was compared with the results available at the
TSPLIB website. We managed to solve to optimality two instances that were
listed as open on the site, and not solved in state-of-the-art paper on SOP [25],
ry48p.3 (which was apparently first solved to optimality in [24]) and kro124p.4.

The following results were obtained for ry48p.3 (48 cities and 179 precedence
constraints):

– The value of the optimal solution is V = 19,894.
– Found the best route 21,10,14,16,42,29,36,5,43,30,39,15,40,4,41,47,38,20,46,32,

45,35,26,18,27,22,2,13,24,12,31,23,9,44,34,3,25,1,28,33,11,19,6,17,37,8,7,48.
– Calculation time was 2,331 s.
– The amount of RAM used 12,003 MB.

For kro124p.4 (100 cities and 2404 precedence constraints), the following results
were obtained:

– the value of the optimal solution is V = 76,103.
– Found the best route 5,89,87,9,62,27,57,39,1,81,32,4,84,56,76,7,88,96,65,25,

64,74,48,66,68,49,47,13,54,26,11,31,20,16,44,82,83,14,10,92,29,86,50,42,59,71,
35,98,52,15,21,69,93,17,79,30,55,91,78,61,34,6,8,60,95,77,12,75,94,51,40,99,
70,2,28,33,85,22,90,73,24,67,80,97,58,37,23,18,3,41,53,63,72,43,36,38,45,19,
46,100.
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– Calculation time was 84,603 s.
– The amount of RAM used 128,248 MB.

The algorithm demonstrates good performance and efficiency, thereby prov-
ing its applicability for a certain range of tasks where other algorithms have no
way of finding the optimal solution.

10 Conclusion

The considered routing problem contains constraints and complicated travel cost
functions, which are connected with the requirements of real-life problems. Nat-
urally, the mathematical setting is complicated. However, the structure of exact
(optimal) solutions for this setting is known (see [5–8,12–14,18–21]). This struc-
ture is defined by the DP procedure, which is a variant and a development of
the Bellman procedure [3]. It is useful to recall that the above-mentioned general
procedure permits to optimize (see [11,22]) the initial state by means of a unique
DP procedure.

But, for the routing problem of a large dimension, the computation cost of
the above-mentioned global DP procedure becomes practically impossible. For
such problems, heuristics are used very widely. However, DP can be used for
local improvements. In particular, one could consider individual insertions and
iterated procedures, where local optima are obtained by means of DP.

Another approach to local improvement of the result reached by heuristics is
connected with the employment of multi-insertions and parallel algorithms. Both
approaches are reflected in this article. Along with theoretical schemes, a software
implementation is considered. It is significant that the above-mentioned imple-
mentation is connected with a very complicated real-life problem from nuclear
power generation. As the experiment shows, for a sufficiently large dimension
of the initial routing problem, our procedure with optimizing multi-insertions
significantly improves the results.

Thus, this article deals with a very general approach to solving complicated
routing problems arising from engineering applications. Specifically, we consider
the process of sequentially dismantling a number of radiation sources, during
which the worker who does gets a big dose of radiation. The dose depends on the
sequence in which the dismantlement is conducted (i.e., on the worker’s route)
and the specific trajectory of the worker’s movements. This gives rise to an actual
extremal problem, which has difficulties, as discussed in the introduction. Let us
now discuss the results.

Expression (9) is worth a separate mention. This relation means that our
insertions are realized “optimally”. It would certainly be nice to apply the global
DP procedure and obtain the (global) extremum. But, we optimize within the
limits of possible: we use exact algorithms for every insertion. Naturally, we use a
more complicated DP procedure [5–8,12,19–21]; this procedure is different from
the DP procedure for TSP and TSP-PC. It is clear that the global DP procedure
is laborious. Therefore, we apply DP procedures for every insertion. Namely, we
strive to “optimally” realize a variant of global DP. Under this realization, we
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are able to use parallel and, what is more important, independent calculation
procedure (see [14]; other parallel algorithms were considered in [10,11]). As a
result, we obtain (9). So, our approach is not only heuristic; in this approach, an
essential regular component is present. This component is connected with the
developed DP procedure and parallel algorithms. In particular, the global DP
variant was realized for 50 megalopoleis with 30 cities in each.
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Abstract. The paper considers a heuristic method for a global
extremum search in an optimal control problem based on the idea of
covering a reachable set by n-dimensional balls, including the built-in
mechanisms for Lipschitz constant estimating of the objective functional.
A step-by-step description of the coverage algorithm and the proposed
method for generating start and auxiliary controls are presented. The
proposed technique was used for solving applied optimal control prob-
lems: the problem of investment programs in Buryatia Republic and the
problem of restoring the Black Lands in Kalmykia.

Keywords: Optimal control · Numerical algorithms · Global
optimization · Control applications

1 Introduction

A global extremum search for functionals defined on dynamic systems trajecto-
ries remains one of the most difficult extremal problems. In the theory of optimal
control, it is not found approaches that guarantee to obtain a global optimal solu-
tion for nonlinear systems, based on which it is possible to build effective algo-
rithms. Application direct methods of reduction to finite-dimensional problems
lead to the appearance of approximative problems of mathematical program-
ming, including hundreds and thousands of variables. Even the local extremum
search for problems of such dimensionality in a number of cases is a serious
problem. The study this problem for searching a global extremum may turn out
to be unrealistic and require in practice the astronomical expenses of the pro-
cessor time using most modern supercomputers. According to the classification
proposed by [1], the problem of finding a global extremum of a multiextremal
functions with dimensions of 200–300 variables should be considered super-hard.
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In the theory of global optimization, it is conventionally divided methods
into “mathematical, rational”, based on a specific model of the aim functions,
and “heuristic”—all the rest (see, for example, [2]). The attitude of many spe-
cialists to heuristic methods have changed significantly: “heuristic methods: once
scorned, are highly respectable” [3,4]. The “final judge” in this multi-year dis-
cussion is the practice of applying methods in solving complex applied problems.

One of the most reliable mathematical methods for finite-dimensional prob-
lems are the coverings methods, it is based on the hypothesis of the bounded-
ness of the growth rate of the optimized function (see, for example, [1,3,5]).
Most often this hypothesis is formalized in the form of the Lipschitz constants
estimates for function or its derivatives. The algorithms constructed using this
approach are among the most reliable, although require significant computa-
tional costs.

In the terminology discussed above, all known algorithms for a global
extremum search in nonlinear optimal control problems: methods of genetic
search (see, for example, [6,7]), random multistart methods [8,9], convexifica-
tion methods [10], methods for stochastic approximations of the reachable set
[11], curvilinear search methods [12] and others should be considered heuris-
tic. In our opinion, by now no theoretical results have been obtained that can
serve as the ideological basis for constructing guaranteed algorithms for global
extremum search of functional in optimal control problems. Nevertheless, the
problem of achieving guarantees, and more precisely, to increase the reliability
of calculations (decreasing “degree heuristics”) continues to be relevant.

The paper considers a heuristic method for a global extremum search in
an optimal control problem based on the idea of covering a reachable set by
n-dimensional balls, including the built-in mechanisms for Lipschitz constant
estimating of the objective functional.

2 Statement of the Optimal Control Problem

The controlled process is described by a system of ordinary differential equations
with initial conditions

ẋ = f(x(t), u(t), t), x(t0) = x0, (1)

where t is the time from the interval [t0, t1], x(t) = (x1(t), x2(t), . . . , xn(t)) is
vector of phase coordinates, u(t) = (u1(t), u2(t), . . . , ur(t)) is control vector.
Vector function f(x(t), u(t), t) is assumed to be continuously differentiable with
respect to all arguments except t. We call piecewise-continuous control functions
u(t) belonging to set U for any time values t:

U = {u(t) ∈ Rr : ul ≤ u(t) ≤ ug}, (2)

ul, ug ∈ Rr are vectors of lower and upper constraints on control.
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The optimal control problem with a free right end is the search for an admis-
sible control u∗(t) that delivers a minimum to the objective functional

I(u) = ϕ(x(t1)). (3)

Terminal function ϕ(x) is assumed to be Lipschitz.

3 The Basic Optimization Algorithm

The creation of the stochastic coverings method in full accordance with tra-
dition is reduced to generate a sequence of test points and the corresponding
sets sequences whose union must cover the reachable set. However, unlike the
unconditional optimization problem, the generated quasi-stochastic test points
are constructed in space controls, and the covering sets are in the terminal phase
space. The main task of the numerical algorithm is the complete covering of the
system reachable set. The elementary covering sets are the balls B(R, u) in n-
dimensional Euclidean space, where R is the radius of the ball, u is the control,
the end of the corresponding trajectory is the center of the ball. On iterations
with a set of information about the problem, the estimation of Lipshitz constant
is also corrected. To increase of the covering reliability is introduced, as in clas-
sical papers (see, for example, [13]), “safety factor” Ks, multiple increasing the
value of the Lipshitz constant estimate. The sequence of records, in this case, it
turns out to be monotonically decreasing. However, the total volume of covering
can how to increase at the occurrence of new covering balls, and decrease on iter-
ations as the Lipschitz constant is corrected. The proposed algorithm is divided
into iterations, each of which is generated the specified number of test points.
At the iteration, the number of auxiliary points that enter into the already con-
structed balls of coverage, as well as the number of new samples, in the balls
of which there may be points less than the current record are calculated. These
characteristics can serve as heuristic criteria for the end of the search. Tradition-
ally, the “accuracy by functionals” εϕ is specified. Thus, it is generated stochastic
covering by different sizes balls, which depends on the value functional at the
test point, the current estimate of the Lipschitz constant and the value εϕ: the
radius of the ball Rj = (Ij − IREC + εϕ)/(Ks · L), j = 1,MX , where IREC is
the current record value, MX is the number of balls in the covering.

3.1 Turn-Based Algorithm Scheme

Step 0. Algorithmic parameters are specified:
M is the test points number on the iteration,
Mmax is the maximum number of samples,
L0 is the initial value of the Lipschitz constant estimation,
εϕ is the “accuracy by functionals”,
Ks is the “safety factor”.
Step 1. Set a record value IREC = ∞, estimate the Lipschitz constant L = L0,

an empty initial covering is specified X0, MX = 0, the value k is equal 1.
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Step 2. On the k th iteration, M test points are generated {u1, . . . , uM}.
Step 3. For all uj , the direct differential equations system is integrated, it is

remembered xj(t1), j = 1,M.
Step 4. For all xj(t1), the values of the objective functional Ij , j = 1,M are

calculated.
Step 5. The record value is improving, if
∃ j : Ij < IREC , IREC = Ij , j = 1,M .
Step 6. Calculated the samples number in the iteration My that did not fall

into any of the already available in the covering balls. Found the samples number
Mq in which the ball can improve record value: Ij < IREC + εϕ, j = 1,M .

Step 7. For all xj(t1), local estimates of the Lipschitz constant are calculated
in comparison with the samples already available in the covering balls

Lj = Ks·
∣
∣Ij − Ii

∣
∣ /

∥
∥xj(t1) − xi(t1)

∥
∥, where j = 1,M, i = 1,MX , the largest

estimate is chosen.
Step 8. The estimate of the Lipschitz constant is refined if
∃ j : Lj > L, L = Lj , j = 1,M .
Step 9. It is set Xk+1 = Xk ∪ {B(Rj , u1), . . . , B(Rj , uM )}, MX = MX + M .
The iteration is complete.
The number of algorithm iterations depends on the set value of the algo-

rithmic parameter Mmax. The parameters My and Mq allows us evaluate the
quality of the resulting coating. For this, when issuing results, their total values
are presented.

3.2 The Stopping Criteria

The stopping criterion for the algorithm can be based on the obtained at the
iterations numbers My. It is intuitively clear that the less frequently new test
points fall into the still uncovered part of the attainable set, the less probability
that a global extremum has not yet been found. An additional criterion for
evaluating the quality of the obtained solution can be the number of samples
per iteration, near which it is possible in principle to improve the values record
of Mq. At zero values of these values for a given number of the last iterations
can make a decision about the stop of the proposed algorithm.

3.3 The Algorithm Operation Modes

The full operation mode of the algorithm is described above. In many cases, it is
advisable to save the computation time, which is performed with other algorithm
operation modes. Currently, the following technologies options are implemented.

A Bounded Evaluation Mode for the Lipschitz Constant. In this mode, calcula-
tions of Lipschitz constants are estimated only on the indicated number of initial
iterations (M0 is an algorithmic parameter). In many cases, during this time the
algorithm has time to get a good estimate, which in the future does not improve,
and the calculation time increases substantially with an increase in the size of
the sampling points basis.
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Mode Without Evaluation of Lipschitz Constant. The application of this mode
is reasonable if the estimate of the constant is already known, for example, with
a linear terminal functional.

Uncoated Mode. In this mode, there is complete savings time at intermediate
calculations, but the method under consideration turns into the usual grids
method [8].

Different presented operation modes of the algorithm allow us to obtain the
minimum value or the objective functional. It was confirmed by the results of
numerical experiments. Let us give one of the test examples solved by using the
stochastic covering algorithm.

3.4 Controls Generation

We proposed algorithms for generating relay, piecewise-linear, tabular and spline
control functions to obtain quasi-random admissible controls that allow one
to construct the inner approximation of the reachable set [11,14]. Taking into
account the earlier computational experience a new algorithm for generating
relay-type functions is proposed that allows randomly obtain a different number
of switching points. Wherein the mathematical expectation of the number of
control switching points, sequentially generated at the algorithm iteration, is a
priori given algorithmic parameter.

We define a time-discretization grid from N nodes T = {t0 = τ0 < τ1 < . . . <
τN = t1}. We denote by S the next quasi-random number uniformly distributed
in the interval [0, 1], generated by the standard URAND algorithm (see [15]).

Step 0. The recommended number of the control switching Kp is given.
Step 1. The value of the “switching probability level” is computed Pp =

Kp/(N − 1).
Step 2. For i-th components of the control vector, i = 1, r it is performed:
if S < 1/2 then ui(t0) = (ul)i, else ui(t0) = (ug)i.
Step 3. For j-th grid node T , j = 1, N it is performed:
if S < Pp, then ui(τj) = ul(τj−1) (in interval [τj−1, τj ] there is no switching),

else
if ui(τj−1) = (ul)i, then ui(τj) = (ug)i,
if ui(τj−1) = (ug)i, then ui(τj) = (ul)i (in interval [τj−1, τj ] there is switch-

ing).
The algorithm is complete.
The success of the algorithm depends very much on the parameter Kp. To

obtain an acceptable approximation of the reachable set, and, consequently, the
successful operation of the algorithm, the number of recommended points switch-
ing Kp should not be either too small or too large. When a small number of Kp

algorithm can not build a sufficiently representative set of trial controls, with a
large value of Kp test points on the reachable set can be condensed in one local
area. In both cases, the approximation of the reachable set will not be too good.
Based on the computational experience by default, Kp = 5 is recommended. For
increase the reliability of the algorithm, it is advisable to perform calculations
with different Kp ∈ [2, 10].
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3.5 The Test Problem

We demonstrate the results of applying the proposed approach to a well-known
test optimal control problem of nonlinear oscillation of pendulum (see, for exam-
ple, [16–18]). The nonlinear system is described by following differential equations

ẋ1 = x2, ẋ2 = u − sin x1 (4)

The values of phase coordinates at the initial time are given x0 = (5, 0), t ∈ [0, 5],
control satisfies the parallelepiped constraints u ∈ [−1, 1]. It is necessary to
minimize functional

I(u) = x2
1(t1) + x2

2(t1) → min . (5)

The optimal value I∗ = 11.90876 is achieved by optimal control and corre-
sponding trajectories presented in Fig. 1

Fig. 1. Optimal control and corresponding trajectories in nonlinear pendulum oscilla-
tion problem

The results of the solving problem (4)–(5) by using the developed approach
on different iterations of the algorithm are shown in Fig. 2.

Fig. 2. The reachable set at 10, 100 and 10000 algorithm iterations
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Optimal trajectories and control, reachable set and minimum functional value
coincided with the result known from the original source.

4 Applied Optimal Control Problems

The developed approach is used to solve a number of applied nonlinear optimal
control problems.

4.1 Optimization Model of Investment Programs in Buryatia
Republic

The problem was posed by prof. M.P. Dyakovich (Research Institute of Occupa-
tional Health and Human Ecology, National Center of Scientific and Technical
Information of the All-Union Scientific Center of the Siberian Branch of the Rus-
sian Academy of Medical Sciences). Professor of the Institute of Mathematics,
Economics, and Informatics of ISU E.P. Bokmelder simulated of the popula-
tion mortality rate and accessibility for medical assistance, taking into account
socio-economic factors. Controlled dynamics model of the mortality rate for the
able-bodied population of Buryatia Republic from diseases of the circulatory
system, alcohol poisoning, accidents, injuries and primary care rates for medical
care is as follows [19]:

ẋj = μj(u)xj

(

1 −
3∑

i=1

xi(t)

)

, j = 1, 3 (6)

ẏk = μk+3(u)yk(t)

(

1 −
3∑

i=1

yi(t)

)

, k = 1, 2. (7)

Here x1(t) is the proportion of patients of working age (from 20 to 60 years) who
died from diseases of the circulatory system, x2(t) is the proportion of working
age patients died from accidents, poisoning and injuries, x3(t) is number of
deaths from alcohol poisoning, y1(t) is the proportion of people who for the first
time this year applied for medical help for diseases of the circulatory system,
y2(t) is the proportion of people who first applied for accidents, poisoning and
injuries among people of working age. The mortality rate is a dimensionless
quantity that varies from 0 to 1.

Socio-economic factors, the change of which can influence the mortality level:
u1(t) is per capita income, u2(t) is health expenditure per capita, u3(t) is alcohol
consumption per capita, u4(t) is a kind of conditional psychosocial factor, reflect-
ing the emotional state of a person, the level of resistance to stress, etc. Controls
u1(t) and u2(t) are measured in rubles, u3(t)—in liters, and u4(t)—in points.
The following restrictions for controls are adopted: 3000 ≤ u1(t) ≤ 100000,
3000 ≤ u2(t) ≤ 25000, 2.5 ≤ u3(t) ≤ 30, 2 ≤ u4(t) ≤ 30

The initial values, calculated using the available statistical data, are as fol-
lows: x1(0) = 0.003112, x2(0) = 0.00462, x3(0) = 0.000772, y1(0) = 0.34558,
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y2(0) = 0.091261, u1(0) = u0
1 = 5914 (rbl), u2(0) = u0

2 = 4398.9 (rbl),
u3(0) = u0

3 = 7.4 (litres), u4(0) = u0
4 = 10 (points).

The coefficient of proportionality for the mortality rate and the circulation
of medical care μp(u) is found by the formula

μp(u) = vp + lpe
−εp1u1−εp2u2 − qpe

−εp3u3−εp4u4 , (8)

here vp, lp, qp, εp1 , εp2 , εp3 , εp4 are numeric parameters, p = 1, 5.
It is necessary to minimize the total mortality and turnover rates for medical

care at the lowest total costs, so the functional will take the form

I(u) =
∫ T

0

e−0.08t

(
4∑

i=1

bi

)

dt → min, (9)

here b1 = p1 (x1(t) + x2(t) + x3(t)), b2 = p2 (y1(t) + y2(t)), b3 = p3u1(t), b4 =
p4u2(t), e−0.08t is discount multiplier, 0.08 is average bank interest rate in the
republic.

Coefficients p1 = 1.2, p2 = 0.05, p3 = 5 ∗ 10−7, p4 = 10−7 designed to
balance the scale of damage from mortality and seeking medical attention for
leading classes of diseases, were found as a result of a series of computational
experiments.

Calculations showed that alcohol consumption u3 and psycho-emotional
stress u4 so strongly affect mortality, that the optimal is always their lower
level. Increased costs on health and a slight decrease in wages allow reducing
the values of the studied indicators. At the same time, mortality from diseases
of the circulatory system x1(t), accidents x2(t) and alcohol poisoning x3(t) will
decrease by 5.24%, 5.08% and 4.55% respectively. While maintaining the same
trends of socio-economic development x1(t), x2(t) and x3(t) will increase 10.3%,
2.6% and 6%

Theobtained results testify to thenecessity of social orientation of expenditures
provided that the high rates of economic development are ensured, which will help
reduce the mortality of the working-age population of Buryatia Republic.

4.2 The Problem of Restoring the Black Lands in Kalmykia

The model of desertification dynamics, created by Professor A.K. Cherkashin
(IGSiDV, Siberian Branch of the Academy of Sciences of the USSR)—[20],
describes the dynamic process of the transition of the area of lands from one state
to another as a result of degradation of pastures and their natural restoration.

The system of differential equations has the form

ṡ1 = −α0
1s1 + α2s2 + v2 + v3 + v4 (10)

ṡ2 = α0
1s1 − α0

2s2 + α3s3 − α2s2 − v2 (11)

ṡ3 = α0
2s2 − α0

3s3 + α4s4 − α3s3 − v3 (12)

ṡ4 = α0
3s3 − α4s4 − v4 (13)
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where si(t) are the land areas that are at time t in the i-th degradation stage (s1
is intact, s2 is slightly broken, s3 is weakly fixed, s4 is loose land areas) in % of
total area 216 thousand hectares. α0

i , αi are coefficients of intensity of pastures
degradation and restoration, i = 1, 4, v2, v3, v4 are rate of phytomeliorative mea-
sures for the land restoration at the time t (% in a year) and are controls in the
presented problem. The initial conditions for the system are the land structure
at present s(0) = (2.6, 8, 37.1, 52.3) in %.

According to aerospace survey data, areas si were determined in adjacent
observation periods and the probability of transition from i-th to j-th state
during the period between two observations. After identifying the model and
scaling, the expressions for α0

i , αi have the following form

αi = Pi/Δτi, α
0
i = (1 − Pi) /Δτi, i = 1, 4, (14)

where P3 = min
{

1, exp(−8.4s1 + 5.76 − 5.76/C
(

Σ4
i=1ωisi

)

)
}

, P1 = 0, P4 = 1,
P2 = min(1, exp(8.4s1 − 5.76)), Δτ4 = exp(−8.3s4 + 7.18), Δτ1 = Δτ2 = Δτ3 =
exp(−4.4s4 + 3.04) (1 − exp(2.5Nb)), here Nb is pasture load.

Natural variables were imposed on the variables si ≥ 0, i = 1, 4, vj ≥ 0,
j = 2, 4, Nb ≥ 0.

The objective functional (profit) was described by the formula

I(u) =
∫ 20

0

[

aNb −
4∑

2

bivi(t)

]

dt, (15)

where a is average annual income from sheep maintenance, bi is the hectare
cost of land reclamation at i-th degradation stage, a = 15.4 RUR/pcs, b2 = 25,
b3 = 40, b4 = 80 RUR/hectare.

It was also assumed that all vegetation is eaten by sheep

4∑

i=1

ωisi = CNb, (16)

where ωi is vegetation cover biomass at i-th stage of pasture degradation (cent-
ners/hectare), C is average annual need of one sheep in feed (centners). These
variables take the following values C = 5, ω1 = 8.5, ω2 = 4.5, ω3 = 2.0, ω4 = 0.

A restriction s1 ≥ 68% are imposed on structure land, which was necessary
to obtain. This condition corresponds to the area of critical values of undisturbed
areas. Expressing Nb from the equality constraint and introducing penalty coor-
dinates, we reduce the problem to the standard form. Parallelepipic constraints
on three-dimensional control were given in the following form: 0 ≤ vit ≤ 1,
i = 2, 4.

At the beginning of calculations, the quality of the system discretization was
investigated and an acceptable integration grid was found. The first stage of the
solution was to overcome the “nonphysicality of the model” area by artificially
reducing the range of permissible control values and ended when direct control
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restrictions became inactive. At the second stage, the discretization was signifi-
cantly improved and the main efforts of the algorithm were directed at satisfying
the phase constraints.

The following record value of the functional is obtained I0(u) = −355.68,
with the maximum violation of the phase limitation 5.2 · 10−3. The resulting
solution means that in this way it is possible to restore the land structure within
10 years. The average income from sheep breeding, minus the cost of works on
phytomelioration, will be 2.2 million rubles in year for 20 years.

5 Conclusion

The proposed algorithm makes it possible to improve the reliability of global
extremum in the optimal control problems and get heuristic estimates of the
probability of achieving the optimal result. The simplicity of the constructed
technique allows us to hope for simple development of its modifications for par-
allel computing systems. The effectiveness of the presented approach is demon-
strated in test problems and in the solution of applied optimal control problems.
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Abstract. The work is devoted to the development of a method for
solving the stochastic programming problem with a deterministic objec-
tive function and individual probabilistic constraints. Each probabilistic
constraint is a constraint on the probability of inequality for a certain
loss function that is linear on random parameters. In this case, the loss
function may be non-linear in strategies. It is proposed to replace each
probabilistic constraint by an equivalent inequality for the quantile func-
tion. This inequality is approximated using the notion of the probability
measure kernel. The kernel is defined as the intersection of all closed
confidence half-spaces. It is known that if the kernel satisfies the regular-
ity property and the loss function is linear in random parameters then
the quantile function can be found as the maximum of the loss func-
tion in realizations of random parameters on the probability measure
kernel. To evaluate quantiles an external polyhedral approximation [1]
of the probability measure kernel is used. When replacing a kernel by
its approximation the maximum mentioned above is an upper estimate
of the exact value of the quantile function. As a result, each quantile
constraint is replaced by several deterministic inequalities.

Keywords: The probability measure kernel · The stochastic
programming · The probabilistic constraints · The quantile function

1 Introduction

First, we introduce the basic concepts and notation. Let η be a random variable
with distribution function Fη(y) = P{η ≤ y}, where P denotes probability. The
p-quantile for the distribution of the random variable η for a given level p ∈ (0, 1)
is determined by the standard relation

[η]p = min{y : Fη(y) ≥ p}.
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Let f(u, ξ) be a real loss function depending on the strategy vector u and the
random vector ξ. If the loss function is Borel-measurable in ξ, then ηu = f(u, ξ)
is a random variable. Its distribution function is called a probability function for
the loss function f(u, ξ) and the p-quantile [ηu]p as a function of u, is called
a quantile function for the same loss function. The role of the probability and
quantile functions in stochastic programming are reflected in [2]. The state of
the art in the theory of optimization problems with such functions is described
sufficiently in [3]. The quantile optimization problem is close to the stochastic
programming problems with probabilistic constraints. These constraints can be
defined in two ways. The first one is associated with so-called joint probabilistic
constraints. The strategy u is admissible for such a constraint iff

P{g(u, ξ) ≤ 0} ≥ p, (1)

where g(u, x) is a vector function, p ∈ (0, 1) is the given probability and the
inequality g(u, ξ) ≤ 0 is understood componentwise. Therefore, joint probabilis-
tic constraints restrict the probability of the system of inequalities depending
on random parameters. The second way is associated with setting individual
probabilistic constraints which form the next system of probabilistic inequalities:

P{gi(u, ξ) ≤ 0} ≥ pi, ∀i = 1, k, (2)

where the real functions gi(u, ξ) can be interpreted as components of the vector
functions g(u, ξ). Note that the joint probabilistic constraints can be converted
from the formal point of view into an individual probabilistic constraint

P
{

max
i=1,k

gi(u, ξ) ≤ 0
}

≥ p. (3)

However, in this way one can lose the “good” properties of the functions gi, e. g.
their linearity.

We should note that for the real-valued loss function g(u, ξ) the quantile
optimization problem

[g(u, ξ)]p → min
u∈U

(4)

studied in [3] is a special case of the stochastic programming problem with a
single individual probabilistic constraint

ϕ → min
u∈U,ϕ∈IR1

(5)

subject to
P{g(u, ξ) ≤ ϕ} ≥ p. (6)

For the first time, joint probabilistic constraints were introduced and studied
in [4], where the function g(u, ξ) = Tu−ξ has a linear structure and T is the tech-
nological matrix. The early study of these constraints was focused mainly on the
deterministic equivalents. Their essence is the probability transformation in (1)
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into the deterministic function of the strategy vector [5]. Unfortunately, a class
of problems in which such equivalents can be constructed, is narrow enough. The
most difficult case arises if random parameters which are the components of the
vector ξ are mutually dependent. This obstacle was overcome in [6,7] by using
methods of the integer programming and the notion of p-efficient points of multi-
variate probability distribution in the case where ξ is discrete and g(u, ξ) = Tu−ξ
has a deterministic technological matrix T. This result was later generalized to
the random technological matrix [8], see also [9].

The great breakthrough in this field is associated with the Hungarian math-
ematician Prékopa who obtained sufficient conditions for the convexity of the
feasible set given by the individual probabilistic constraints. The conditions are
based on the logarithmic concavity of many multivariate distributions. This
fact allowed to use the methods of convex programming for the construction
of numerical techniques for solving the stochastic programming problems with
probabilistic constraints. The main results on this issue are collected in the
book [10]. We would like also to note other results achieved at the end of the
last century, namely efficient verification algorithms of probabilistic constraints
fulfillment. A good survey of these algorithms can be found in [11].

Among the recent results that determine the current state of the art in the
field of the stochastic programming problems with probabilistic constraints, first
of all, it is worth noting the algorithms based on the Monte Carlo method (SAA -
Sample Average Approximation), see for example [12–19], the method of stochas-
tic approximation [20,21] and the mathematical tools based on the p-efficient
points concept [22–24]. The latter turned out to be especially constructive for
stochastic programming problems with probabilistic constraints, in which ran-
dom parameters have a discrete distribution. Note that the concept of p-efficient
points is actually an extension of the concept of the p-quantile in the multivariate
case.

We should also mention the works [25–28], where a method was developed
for solving the quantile optimization problem with a linear loss function. The
method reduces the original problem to a problem of mixed linear programming
of large dimension. In contrast to these papers, this article discusses a wider
class of loss functions, namely, the class of bilinear functions.

The motivation of authors is connected with two reasons. First, most of
the publications on probabilistic constraints consider the case where the func-
tions g(u, ξ) and gi(u, ξ) are linear in random parameters. Secondly, some recent
results of the authors in the field of stochastic programming with probabilis-
tic criteria were focused only on this class of problems. These results can be
found in [1,29]. They offer algorithms for solving the minimization problem of
the quantile function. In this paper, we consider the algorithms that are based
on the concept of the p-kernel of the probability distribution. Its definition and
properties are described below in Sect. 2. Section 3 shows that individual proba-
bilistic constraints can be written as inequalities for the quantile function(s) and
represented in the deterministic form using the p-kernel. In Sect. 4, a stochas-
tic programming problem with deterministic linear loss function and several
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individual probabilistic constraints inequalities in which are linear in random
parameters is considered. The probabilistic constraints are transformed first into
the quantile inequalities. Further these inequalities are approximated on the basis
of an external polyhedral approximation of the p-kernel [1].

2 The p-Kernel of n-Dimensional Random Vector

This section introduces the concept of p-kernel [2] for an n-dimensional ran-
dom vector ξ. This concept plays a key role in the construction of deterministic
equivalents or convex approximations of probabilistic constraints in which the
functions gi(u, ξ), i = 1, k, are linear in ξ. In the sequel, the probability measure
P is associated with distribution of the vector ξ, i.e. it is defined on all measur-
able subsets of IRn. We also assume that the vectors from IRn are columns.

The Borel measurable set S is p-confidence if P(S) ≥ p. The p-kernel K(p)
is defined as intersection of all closed convex p-confidence sets [3]. On the other
hand, the following representation is valid [3]:

K(p) =
⋂

‖c‖=1

{x ∈ IRn : cT x ≤ bp(c)} (7)

where ‖ · ‖ is the Euclidean norm of the vector and bp(c) = [cT ξ]p. Thus the
p-kernel coincides with the intersection of all closed p-confidence half-spaces
corresponding to the unit vectors of the external normal c. As shown in [1], the
set K(p) is always (that is, for any P distribution) not empty if p > n/(n + 1).
Obviously, a non-empty p-kernel is a convex compact set. Also it was proposed
in [1] to approximate K(p) by the p-kernel convex polyhedron

KN (p) =
⋂

c∈CN

{x ∈ IRn : cT x ≤ bp(c)}, (8)

where CN is a finite set of N unit vectors. In [1], there is proposed an algorithm
for setting CN . The algorithm generates a uniform dense net of N points at the
surface of the unit cube with center in the origin. Then the points of the net are
projected onto the unit sphere. The resulting points are the elements of CN .

The algorithm [1] for constructing a dense set of vectors CN is implemented
in the program module ProKer (Probabilistic Kernel) [30] for the MATLAB
package in the case of n = 2, where the components of the vector ξ are indepen-
dent and common distributed. ProKer software module is designed for research
goals. It allows us to get the visual presentations of p-kernels for various p.

In some cases the function bp(c) can be found in an analytical form. In general,
this is problematic. In such situations, we can try to use its sample estimate b̂p(c)
[3] instead of bp(c) and approximate the p-kernel by the set

K̂N (p) =
⋂

c∈CN

{x ∈ IRn : cT x ≤ b̂p(c)}. (9)

A theoretical study of such a possibility is off the scope of this article.
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A similar idea of approximating the convex p-confidence sets using polyhedra
was previously used in [26]. Note that the p-kernel is not a p-confidence set.

It is obvious that K(p) ⊆ K(q) for all p < q, since every p-confidential half-
space with the normal vector c is a subset of q-confidence half-spaces with the
same external normal vector.

The most important and fundamental property for deterministic approxima-
tion of the probability constraints by means of the p-kernel of continuous dis-
tributions is the regularity [3]. The p-kernel is regular iff every closed half-space
containing it is p-confidence.

The next result is proved in [3, Corollary 3.13].

Theorem 1. Let the random vector ξ have a regular p-kernel for some p ∈ (0, 1).
Then [

aT (u)ξ + b(u)
]
p

= b(u) + max
x∈K(p)

aT (u)x.

This theorem is a base of deterministic equivalents or approximations dis-
cussed in the next section. The regularity property implies the triangle inequality
for quantiles, i. e.

[ξ1 + ξ2]p ≤ [ξ1]p + [ξ2]p

if the distribution p-kernel of the random vector ξ = (ξ1, ξ2)T is regular. This
result follows from the following chain of inequalities:

[ξ1 +ξ2]p = max
(x1,x2)∈K(p)

(x1 +x2) ≤ max
(x1,x2)∈K(p)

x1 + max
(x1,x2)∈K(p)

x2 = [ξ1]p +[ξ2]p.

The next two lemmas are proved in [31].

Lemma 1. For any point x0 belonging to the boundary of the p-kernel K(p),
there exists a p-confidence half-space for which this point is also a boundary one.

Lemma 2. Let the quantile function bp(c) be continuous. Then the set KN (p)
constructed using the algorithm proposed in [1] converges in the Hausdorff met-
rics to the set K(p) as N → ∞.

It follows from Lemma 2 that the polyhedral model constructed using the
algorithm proposed in [1] arbitrarily accurately approximates the p-kernel in
both the regular and irregular cases.

The continuity condition for the quantile function bp(c) can be verified using
the well-known results from [3]. For example, if the random vector ξ has a
bounded support, then the quantile function bp(c) is continuous according to
[3, Theorem 2.5].

3 Stochastic Programming Problem with Individual
Probabilistic Constraints

In this section we consider the stochastic programming problem

h(u) → max
u∈U

(10)
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with individual probabilistic constraints (2), where h(u) is a deterministic real
objective function and U is a compact set. As noted in [32], individual proba-
bilistic constraints (2) are easily reduced to a system of deterministic inequalities
if the functions gi(u, ξ) are separable in u and ξ. We generalize this result for
the case, where these functions are linear only in ξ.

Consider the individual probabilistic constraints of the form (2). They are
related to inequalities for probability functions corresponding to the loss func-
tions gi(u, ξ). Let η be a random variable with the distribution function Fη(y). In
[33], it is established that the inequality Fη(y) ≥ p can be replaced by [η]p ≤ y.
Therefore, each probability constraint in (2) can be represented in the equivalent
quantile form

[gi(u, ξ)]pi
≤ 0. (11)

Consider the case where the functions gi(u, ξ) are linear in ξ, i.e.

gi(u, ξ) = αT
i (u)ξ + βi(u) (12)

and the pi-kernel of the ξ distribution are regular. Then, applying Theorem 1,
we can represent expression (11) in the following form:

βi(u) + max
x∈K(pi)

αT
i (u)x ≤ 0. (13)

Note that if the function βi(u) is convex and the function αT
i (u)x is convex in u

for every x ∈ K(pi), then the left-hand of the inequality (13) is a convex function
and, therefore, the admissible set of strategies u is convex.

Next, we replace the pi-kernel in the expression (13) with its polyhedral
approximation KN (pi) where vj

i ∈ Ji, j = 1, N , is the j-th vertex of the multi-
faceted approximation of the p-kernel for the value p = pi, Ji is the set of the
vertices of the polyhedral approximation of the p-kernel for the value p = pi. By
the linearity of the maximized function in (13), we have

max
x∈KN (pi)

αT
i (u)x = max

j∈Ji

αT
i (u)vj

i .

In consequence of this, it can be concluded that each individual probability
constraint from (2) can be approximated by the system of inequalities

βi(u) + αT
i (u)vj

i ≤ 0, j ∈ Ji. (14)

This system determines a convex admissible set if the left-hand of each inequality
is convex in u. In the particular case where the functions βi(u) and αi(u) are
linear in u, this condition is satisfied. Consider this in more detail in the next
section.

4 Approximation of the Stochastic Programming
Problem with Loss Function Linear in Random
Parameters

Consider a special case of stochastic programming problem

dT u → max
u∈U

(15)
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with individual probabilistic constraints

P{αT
i (u)ξ + βi(u) ≤ 0} ≥ pi, i = 1, k, (16)

where u is optimized strategy of IRm, d is a deterministic vector of dimension m,
pi ∈ (0, 1) is a given confidence probability, ξ is a n-dimensional random vector,
αi(u), βi(u) are deterministic functions on u. Taking into account the results of
the previous section, we approximate the problem in question by the non-linear
programming problem (NLP).

Taking into account the fact that restrictions (14) are the linear inequalities,
we conclude that the initial problem of stochastic programming (15)–(16) is
approximated by the (14)–(15).

Theorem 2. Let U be a compact set, functions αi(u) and βi(u) be continuous
in u, bpi

(c) be continuous in c, pi-kernels be regular, and αi(u) 
= 0, ∀u ∈ U.
Then the solution of the problem (14)–(15) converges w. r. t. the criterion value
to the solution of the problem (15) – (16) as N → ∞.

Proof. For the proof, it is necessary to determine the δ-neighbourhood of the set
KN (p) of radius δ:

Kδ(pi) =
⋃

x∈K(pi)

Bδ(x), (17)

where Bδ(x) = {y : ‖y − x‖ ≤ δ}. Denote gi(u, ξ) = αT
i (u)ξ + βi(u). As noted

above, the constraint (16) is equivalent to the inequality

[gi(u, ξ)]pi
≤ 0. (18)

Then, taking into account the regularity condition of the pi-kernel K(pi) and
the formula (13), we can represent the inequality (18) in the equivalent form

max
x∈K(pi)

gi(u, x) ≤ 0. (19)

Since the functions bpi
(c) are continuous, by the condition of the theo-

rem, using Lemma 2, we conclude that KN (pi) −−−−→
N→∞

K(pi) in the Haus-

dorff metric and ∀δ > 0 ∃ N0 : ∀N ≥ N0, K(pi) ⊆ KN (pi) ⊆ Kδ(pi),∀i =
1, k. Moreover, Kδ(pi) −−−→

δ→0
K(pi) in the Hausdorff metric. Denote Ui(δ) =

{u ∈ U : hi(u, δ) ≤ 0} , where hi(u, δ) = max
x∈Kδ(pi)

gi(u, x). Since the function

hi(u, δ) is continuous in u ∈ U and in δ at δ = 0, then according to [34, Lemma
1.1 (II)], to complete the proof of the theorem, it is enough to show [34, Lemma
1.1 (II)] that the multi-valued mapping Ui(δ) is continuous in the Hausdorff met-
ric δ at the point δ = 0. For this, it suffices to check that the function hi(u, δ) is
strictly monotone in δ. To do this, we show that the function gi(u, x) reaches x
on the set Kδ(pi)\K(pi) which exceeds max

x∈K(pi)
gi(u, x) for a fixed u. The gradient

of the function gi(u, x) over x does not depend on x and is equal to

∇x (gi(u, x)) = αi(u).
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By the condition of the theorem, the gradient is nonzero that ensures the ful-
fillment of the condition being proved. Thus, the solution of the non-linear pro-
gramming problem (14)–(15) converges according to the criterion value to the
solution of the problem (15)–(16).

The theorem is proved.

5 Example

Let us consider the following stochastic programming problem:

3u1 − 2u2 → max
u1,u2

(20)

subject to deterministic constraints

u1 ≥ 0, u2 ≥ 0, u1 + u2 ≤ 1 (21)

and probabilistic ones

P(2u1ξ1 − u2ξ2 − u1 ≤ 0) ≥ 0, 8, (22)

P(3u1ξ1 − u2ξ2 + 0, 5u2 ≤ 2) ≥ 0, 99, (23)
where ξ1, ξ2 are random variables which are independent and uniformly dis-
tributed over the segment [0, 1].

According to (11), the probabilistic constraints (22) and (23) can be repre-
sented in the quantile form

[2u1ξ1 − u2ξ2 − u1]0,8 ≤ 0, [3u1ξ1 − u2ξ2 + 0, 5u2]0,99 ≤ 2. (24)

Since the p-kernel for the uniform distribution over the square is regular [1],
these inequalities can be approximately replaced by

max
(x1,x2)∈KN (0,8)

(2u1x1 − u2x2 − u1) ≤ 0, (25)

max
(x1,x2)∈KN (0,99)

(3u1x1 − u2x2 + 0, 5u2) ≤ 2, (26)

As shown above, each of constraints (25) and (26) is equivalent to a system
of linear inequalities. Thus the original problem (20)–(23) is approximated by
the linear programming problem (20) with constraints (21) and

u1v
j
1 − u2v

j
2 ≤ 1 ∀j ∈ J1, (27)

3u1v
j
1 − u2v

j
2 ≤ 1 ∀j ∈ J2, (28)

where KN (p) is polyhedral approximation of the p-kernel K(p), J1, J2 are sets
of numbers of vertices of the polyhedrons KN (0, 8) and KN (0, 99).

The function bp(c) can be found in the analytical form, see e.g. [1]. For
N = 16, the optimal value of objective function is equal to 0,2376 and opti-
mal strategies are u = (0, 4475; 0, 5525). For N = 64, the optimal value
of the objective function is equal to 0,2224 and the optimal strategies are
u = (0, 4445; 0, 5555). For N = 512, the optimal value of objective function
is equal to 0,2222 and the optimal strategies are u = (0, 4444; 0, 5556).

This example illustrates the appropriate precision of the presented approach.
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6 Conclusion

We have showed that the optimization problem with individual probabilistic
constraints can be approximated by an NLP problem. The convergence theorem
proves that the NLP solution converges to the solution of the original problem
w. r. t. the criterion value. The numerical example given in the article illustrates
the convergence of the proposed method for improving the approximation of the
uncertainty set for a random vector.
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Abstract. This paper is devoted to the problem of reconstruction of
the normal control generating a realized trajectory of a dynamic control
system by using known inaccurate measurements of this trajectory. A
class of dynamic control systems with dynamics linear in controls and
non-linear in state coordinates is considered. A new method, suggested
in earlier publications, for solving such problems is discussed. This app-
roach relies on necessary optimality conditions in an auxiliary variational
problem on extremum of an integral discrepancy functional. The distin-
guishing feature of the method is using a functional which is convex in
control variables and concave in state variables discrepancy. This form
of the functional allows to obtain oscillating solutions. In this paper the
estimates of the error of the discussed method are exposed and validated.
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1 Introduction

The inverse problems of reconstruction of the normal control (that is the con-
trol with the least possible norm) generating a realized trajectory of a dynamic
control system by using known inaccurate measurements of this trajectory are
considered in this paper. Such reconstruction problems occur in many areas
of mathematics such as optimal control theory, differential games, and others.
They have applications in such areas as decision making, economics, medicine,
robotics, and others.
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The inverse problems have been considered by many authors. One of the
most well-known approaches was developed by A. V. Kryazhimskii and Yu. S.
Osipov [7,9]. The method suggested by them reconstructs the normal control by
using a regularized (a variation of Tikhonov regularization, see [14]) procedure
of extremal aiming on a stable motion. It is originated from the works of N. N.
Krasovskii’s school on the theory of optimal feedback control [2,3] and relies on
the “control with a guide” procedure. This approach was afterwards developed
also by V. I. Maximov, M. S. Blizorukova, et al. (see, in particular, [1,10]).

Another approach to construction of approximations of the normal control
has been suggested by N. N. Subbotina, E. A. Krupennikov and T. B. Tokmant-
sev. It has been previously suggested and discussed in [4–6,11–13]. This method
relies on auxiliary variational problems of optimization of a regularized inte-
gral discrepancy functional. This paper continues developing this approach. The
innovation of the suggested method consists of using in the auxiliary problem
a functional, which is convex in control variables and concave in state variables
discrepancy, instead of a functional, which convex in all variables.

The new results presented in this paper include the explicit estimate of the
method’s error. This result is obtained for control systems that are linear in
controls and non-linear in state coordinates with the dimension of the control
parameter greater than or equal to the dimension of the state coordinates. Pre-
viously, the theorem about convergence of the suggested method has been for-
mulated in [4] (where the scheme of the proof was presented). In this paper, a
detailed proof of the theorem is presented.

1.1 Notation

We adopt the following notation:

‖ · ‖ the Euclidean norm in the space IRn, n ∈ IN;
〈·, ·〉 the scalar product in IRn;
‖ · ‖C[a,b] the norm in the Banach space C[a, b] of continuous func-

tions mapping [a, b] ⊆ IR to IRn;
‖ · ‖L2[a,b] the norm in the Hilbert space L2[a, b] of functions inte-

grable with the square of norm mapping [a, b] to IRn;
‖M‖2 the spectral norm of a matrix M ;
M−1 the inverse of a square non-degenerate matrix M ;
MT the transpose of a matrix M ;
Mg = MT

(
MMT

)−1 the generalized inverse of a matrix M with linearly inde-
pendent rows;

ωf (·) the modulus of continuity of a function f(·) : [a, b] → IR.
Moreover, ωg(·) � ω‖g‖(·), g : [a, b] → IRn, ωM (·) �
ω‖M‖2(·), M(·) : [a, b] → IRn×n.

In an n × n identity matrix;
On an n × n zero matrix;
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2 Dynamics

We consider control systems with dynamics of the form

ẋ(t) = G(x(t), t)u(t) + f(x(t), t),
x(·) : [0, T ] → IRn, u(·) : [0, T ] → IRm, m ≥ n, t ∈ [0, T ], T < ∞.

(1)

The elements of the matrix function G(x, t) : IRn × [0, T ] → IRn×m and the
vector function f(x, t) : IRn × [0, T ] → IRn are continuously differentiable with
respect to each variable.

The parameter x(t) is the vector of the state coordinates and u(t) is the
vector of the control parameters. The set of admissible controls Uadm ⊆ C[0, T ]
consists of continuous functions satisfying the restriction

u(t) ∈ U, t ∈ [0, T ], (2)

where U ⊂ IRm is a convex compact set.

3 Input Data

It is supposed that some trajectory x∗(·) : [0, T ] → IRn of system (1) has been
generated by an admissible control v(·).

We assume that continuous inaccurate measurements y(·, δ) = yδ(·) : [0, T ] →
IRn of the trajectory x∗(·) are known with the error δ:

‖yδ(·) − x∗(·)‖C[0,T ] ≤ δ. (3)

Assume that the following assumptions are true:

Assumption 1. There exists a constant δ0 > 0 such that for any δ ∈ (0, δ0],
the functions yδ(·) are twice continuously differentiable and

lim
δ→0

δ(Y
1,δ

+ Y
2,δ

) → 0, Y
1,δ

= max
t∈[0,T ]

‖ẏδ(t)‖, Y
2,δ

= max
t∈[0,T ]

‖ÿδ(t)‖. (4)

Remark 1. In practice, the input data has usually the form of a set of discrete
sample points. In this case, spline interpolations of the input data can be consid-
ered as the functions yδ(·). For a finite set of sample points, spline interpolation
provides the fulfillment of Assumption 1.

Assumption 2. The rows of the matrix G(x, t) are linearly independent for
(x, t) ∈ Ψ × [0, T ], where

Ψ =
⋃

t∈[0,T ]

B2δ0 [x
∗(t)], (5)

B2δ0 [x] being the closed ball of the radius 2δ0 with the center in x.
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4 Reconstruction Problem

One can prove (see [4]) that for input data (1)–(3) satisfying Assumptions 1
and 2, there exists a unique normal control u∗(·), which is the admissible control
that generates the trajectory x∗(·) and has the least possible norm in the L2[0, T ]
space:

‖u∗(·)‖L2[0,T ] = min
u(·)∈Uadm: ẋ∗(t)=G(x∗(t),t)u(t)+f(x∗(t),t)

‖u(·)‖L2[0,T ]. (6)

Let us consider the following inverse reconstruction problem: for any given
δ ∈ (0, δ0] and a given measurement function yδ(·) satisfying inequalities (3) and
Assumption 1, find a function u(·, δ) = uδ(·) : [0, T ] → IRm that satisfies the
following conditions:

C1. uδ(·) ∈ Uadm.
C2. The function uδ(·) generates a trajectory x(·, δ) = xδ(·) : [0, T ] → IRn

of system (1) for the boundary condition xδ(0) = yδ(0) that satisfies

lim
δ→0

‖xδ(·) − x∗(·)‖C[0,T ] = 0. (7)

C3. The function uδ(·) satisfies the condition

lim
δ→0

‖uδ(·) − u∗(·)‖L2[0,T ] = 0. (8)

Let us denote the stated inverse reconstruction problem as the problem C1–C3.

5 Constructing a Solution of the Reconstruction Problem

5.1 Auxilliary Problem

To solve the problem C1–C3, we introduce an auxiliary variational problem
(AVP) for fixed parameters δ ∈ (0, δ0], α > 0, dynamics (1) satisfying Assump-
tion 2, and a given measurement function yδ(·) satisfying inequalities (3) and
Assumption 1.

We consider the set of pairs of continuously differentiable functions Fxu =
{{x(·), u(·)} : x(·) : [0, T ] → IRn, u(·) : [0, T ] → IRm} that satisfy differential
equations (1) and the following boundary conditions:

x(0) = yδ(0), ẋ(0) = ẏδ(0). (9)

Remark 2. The conditions (9) are equivalent to the conditions

x(0) = yδ(0), u(0) = Gg(yδ(0), 0)(ẏδ(0) − f(yδ(0), 0)). (10)

Due to Assumption 2, the generalised inverse Gg(yδ(0), 0) exists.
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The AVP is to find a pair of functions {x(·), u(·)} ∈ Fxu that provide an
extremum (minimum) for the integral functional

I(x(·), u(·)) =

T∫

0

[
−‖x(t) − yδ(t)‖2

2
+

α2‖u(t)‖2
2

]
dt. (11)

Here α is a small regularising (see [14]) parameter. The distinguishing feature of
the suggested approach is the use of a functional which is convex with respect to
the controls and concave with respect to the discrepancy of the state variables.
The advantage of such approach is explained in the Sect. 6.

Remark 3. The suggested below algorithm for solving the problem C1–C3 uses
only some of the constructions from the AVP. Thus, we will only derive the
necessary conditions of minimum of functional (11) without verifying if this
minimum is actually reached in the AVP.

5.2 Necessary Optimality Conditions in the AVP

The necessary optimality conditions for AVP (1), (10), (11) can be written
(see [6]) in the form of Hamiltonian equations, where the vector s(t) plays the
role of the adjoint variables vector

ẋ(t) = −α−2G(x(t), t)GT (x(t), t)s(t) + f(x(t), t),
ṡi(t) = xi(t) − yδ

i (t) + α−2〈s(t), ∂G
∂xi

(x(t), t)GT (x(t), t)s(t)〉
+〈s(t), ∂f

∂xi
(x(t), t)〉, i = 1, . . . , n

(12)

with the boundary conditions

x(0) = yδ(0),
s(0) = −α2

(
G(yδ(0), 0)GT (yδ(0), 0)

)−1(ẏδ(0) − f(yδ(0), 0)).
(13)

5.3 Solution of the Inverse Problem

In order to construct the solution of the problem C1–C3, let us first consider a
linearized version of system (12)

ẋ(t) = −α−2Gδ(t)s(t) + f(yδ(t), t),
ṡ(t) = x(t) − yδ(t), t ∈ [0, T ] (14)

with boundary conditions (13), where Gδ(·) � G(yδ(·), ·)GT (yδ(·), ·). It is a
heterogeneous linear system of ODEs with variable continuous coefficients. So,
its solution {x(·), s(·)} : [0, T ] → IR2n exists and is unique on [0, T ]. We will use
this solution as the basis for constructing a solution of the problem C1–C3.

Let us introduce the function

uδ,α(·) = −α−2GT (yδ(·), ·)s(·), (15)
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where s(·) is the solution of system (14) with boundary conditions (13). We also
introduce the so-called cut-off vector function ûδ,α(·) : [0, T ] → Rm

ûδ,α(t) =

{
uδ,α(t), uδ,α(t) ∈ U,
û ∈ U : ‖uδ,α(t) − û‖ = min

v∈U
‖uδ,α(t) − v‖, uδ,α(t) /∈ U, (16)

were U is the set from (2). Let us prove that the function ûδ,α(·) is the solution
to the problem C1–C3.

First, we introduce the following proposition and lemma.

Proposition 1. Let matrix functions M1(·) : [0, T ] → IRn×n, . . . ,Mk(·) :
[0, T ] → IRn×n, k ∈ IN have the moduli of continuity ωM1(·), . . . , ωMk

(·) and
a vector function h(·) : [0, T ] → IRn have the modulus of continuity ωh(·). Then,

their product
k∏

i=1

[
Mi(·)

]
h(·) has the modulus of continuity

ω∏(·) =
k∑

i=1

[
ωMi

(·) ∏

j=1,...,k, j �=i

[
max

t∈[0,T ]
‖Mj(t)‖2

]]
max

t∈[0,T ]
‖h(t)‖

+
h∏

i=1

[
max

t∈[0,T ]
‖Mi(t)‖2

]
ωh(·).

(17)

Lemma 1. Let Assumptions 1 and 2 hold. Then, there exist parameters

0 < α(δ) δ→0−→ 0, 0 < Rδ = Rδ(δ) δ→0−→ 0, 0 < Rδ
z = Rδ

z(δ)
δ→0−→ 0,

that depend on the constant δ0 from Assumption (1), the parameter δ, and the
properties of the functions G(x, t), f(x, t), and the given measurements yδ(t),
such that the functions uδ,α(·), defined in (15), and the solution x(·) of sys-
tem (21) with boundary conditions (13) satisfy the conditions

‖uδ,α(·) − Gg(yδ(t), t)(ẏδ(·) − f(yδ(·), ·))‖C[0,T ] ≤ Rδ,
‖x(·) − yδ(·)‖C[0,T ] ≤ 2αRδ

z,
(18)

provided that α = α(δ).

Proof. First, let us introduce some constants that will be used later in the proof.

G
0
= max

t∈[0,T ], x∈Ψ
‖G(x, t)GT (x, t)‖2, G̃0 = max

t∈[0,T ], x∈Ψ
‖ (

G(x, t)GT (x, t)
)−1 ‖2,

G
1
= max

i=1,...,n, t∈[0,T ], x∈Ψ

{∥
∥
∥ δ

δxi

[
G(x, t)GT (x, t)

]∥∥
∥
2

,
∥
∥
∥ δ

δt

[
G(x, t)GT (x, t)

]∥∥
∥
2

}
,

F
0
= max

t∈[0,T ], x∈Ψ
‖f(x, t)‖, F

1
= max

t∈[0,T ], x∈Ψ
‖ḟ(x, t)‖.

(19)

The matrix function G(x, t)GT (x, t) is positive definite for t ∈ [0, T ], x ∈ Ψ by
Assumption 2, so, G̃0 < ∞.
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We introduce new variables

z(·) = x(·) − yδ(·),
w(·) = s(·) + α2

(
Gδ(·))−1(ẏδ(·) − f(yδ(·), ·)). (20)

System (14) with boundary conditions (13) has the following form in vari-
ables (20):

ż(t) = −α−2Gδ(t)w(t),
ẇ(t) = z(t) + α2g(t),
z(0) = w(0) = 0, t ∈ [0, T ],

(21)

where

g(·) =
d

dt

[(
Gδ(·))−1

]
(ẏδ(·) − f(yδ(·), ·)) +

(
Gδ(·))−1

(ÿδ(·) − ḟ(yδ(·), ·)). (22)

System (21) is a heterogeneous linear system of ODEs with continuous coeffi-
cients. So, its solution {z(·), w(·)} : [0, T ] → IR2n exists and is unique.

We will now prove by contradiction that there exist parameters Rδ
w > 0,

Rδ
z > 0 that depend on the constant δ0 from Assumption 1, the parameter δ,

and the properties of the functions G(x, t), f(x, t), and the given measurements
yδ(t) such that

‖z(t)‖ ≤ α2Rδ
z ≤ δ0, Rδ

z
δ→0−→ 0

‖w(t)‖ ≤ α22Rδ
w, Rδ

w
δ→0−→ 0, δ ∈ (0, δ0], t ∈ [0, T ].

(23)

Based on the continuity of the solution {z(·), w(·)} and the boundary condi-
tions z(0) = w(0) = 0, we can assume that, on the contrary to (23), for any Rδ

w

and Rδ
z such that Rδ

w
δ→0−→ 0 and δ0 ≥ Rδ

z
δ→0−→ 0 it holds

∃T1 ∈ (0, T ) :

[ ‖w(T1)‖ = α22Rδ
w

‖z(T1)‖ = α2Rδ
z

,

{ ‖w(t)‖ ≤ α22Rδ
w

‖z(t)‖ ≤ α2Rδ
z

, t ∈ (0, T1]. (24)

Introduce the following partition of the interval [0, T1] with step α2:

{t0, t1, . . . , tK : t0 = 0, t1 = α2, . . . , th−1 = (h − 1)α2, th = T1, h = �T1/α2�}. (25)

We will estimate the solution of system (21) on each interval [ti, ti+1], i =
0, . . . , h − 1 subsequently beginning from [t0, t1].

Let us, first, consider a so-called frozen system for the interval [t0, t1]:

ż0(t) = −α−2Gδ
0w0(t),

ẇ0(t) = z0(t) + α2g0,
z0(0) = z(0) = 0, w0(T ) = w(0) = 0, t ∈ [t0, T ],

(26)

where Gδ
0 = Gδ(yδ(0), 0), g0 = g(0). The solution of this system will be used to

estimate the solution of system (21).
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Remark 4. Note that system (26) is considered on [t0, T ], because the estimates
of it’s solutions will be used on the next partition steps.

System (26) is a heterogeneous linear system of ODEs with constant coefficients.
So, its solution {z0(·), w0(·)} : [t0, t1] → IR2n exists and is unique. This solution
can be written in the following form with help of the Cauchy formula for solutions
of heterogenous systems of linear ODEs with constant coefficients:

(
z0(t)
w0(t)

)
= Φ0(t)

(
z0(0)
w0(0)

)
+Φ0(t)

t∫

t0

(Φ0(τ))−1

(
0

α2g0

)
dτ, t ∈ [t0, T ]. (27)

Remark 5. Hereinafter
(

a
b

)
� (a1, a2, . . . , an, b1, b2, . . . , bn)T ∈ IR2n, a, b ∈

IRn.

In (27) Φ0(·) is a 2n × 2n normalized (that is Φ0(0) = I2n) fundamental matrix
of solutions of the homogenous part of system (26). It can be chosen as

Φ0(t) = exp [(t − t0)A0]
def
=

∞∑

k=0

1
k!

((t − t0)A0)
k
, (28)

where the 2n × 2n matrix A0 can be written in the block form

A0 =
(

On −α−2Gδ
0

In On

)
. (29)

One can substitute (29) into (28). Then, after collapsing the rows by the
Maclaurin series for sin(·) and cos(·), one can obtain (see [4,8]) that

Φ0(t) =
( −Q0Λ

cos
0 (t)(Q0)T α−1Q0Λ

sqrt
0 Λsin

0 (t)(Q0)T

−αQ0(Λ
sqrt
0 )−1Λsin

0 (t)(Q0)T −Q0Λ
cos
0 (t)(Q0)T

)
(30)

(in the block form), were Q0 is an orthogonal matrix, Λsqrt
0 is a diagonal

matrix with the square roots of the positive eigenvalues Λj , j = 1, . . . , n of
the matrix Gδ

0 on the diagonal, Λcos
0 (t) and Λsin

0 (t) are diagonal matrices, where
cos(α−1

√
Λj(t − t0)) and sin(α−1

√
Λj(t − t0)), j = 1, . . . , n are the diagonal

elements, respectively. One can also check that

(Φ0(t))
−1 =

( −Q0Λ
cos
0 (t)(Q0)T −α−1Q0Λ

sqrt
0 Λsin

0 (t)(Q0)T

αQ0(Λ
sqrt
0 )−1Λsin

0 (t)(Q0)T −Q0Λ
cos
0 (t)(Q0)T

)
. (31)

So, by substituting (30) and (31) into (27), we get that

z0(t) = α2Q0

t∫

t0

[
α−1Λsqrt

0 Λsin
0 (t − τ)g0

]
dτQT

0

= −α2Q0

(
Λcos
0 (τ − t)

∣
∣t
t0

)
(Q0)T g0,

w0(t) = −
t∫

t0

[
α2Q0Λ

cos
0 (t − τ)QT

0 g0

]
dτ

= α3Q0(Λ
sqrt
0 )−1

(
Λsin
0 (τ − t)

∣
∣t
t0

)
(Q0)T g0, t ∈ [t0, T ],

(32)
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since z0(0) = w0(0) = z(0) = w(0) = 0.
We will now estimate ‖z0(t)‖ and ‖w0(t)‖. The matrix Q0 in (32) is orthog-

onal, therefore ‖Q0‖2 = 1. Moreover, by definitions,

‖Λsin
0 (t − τ)‖2 ≤ 1, ‖Λsqrt

0 ‖2 ≤ G
0
, τ, t ∈ [t0, T ]. (33)

It is known [8] that

d

dt

[(
Gδ(·))−1

]
=

(
Gδ(·))−1 d

dt

[
Gδ(·)] (

Gδ(·))−1
. (34)

Therefore, it follows from the definition (22) that

‖g0‖ ≤ (G̃0)2G
1
(Y

1
+ F

0
) + G̃0(Y

2,δ
+ F

1
). (35)

By substituting estimates (33) and (35) into (32), we get that

‖z0(t) ‖ ≤ α22
(
(G̃0)2G

1
(Y

1
+ F

0
) + G̃0(Y

2,δ
+ F

1
)
)

� α2Rz,

‖w0(t)‖ ≤ α3G̃0
(
(G̃0)2G

1
(Y

1
+ F

0
) + G̃0(Y

2,δ
+ F

1
)
)

� α3Rw, t ∈ [t0, T ].
(36)

Let us now consider the discrepancies

�z0(t) = z(t) − z0(t), �w0(t) = w(t) − w0(t), t ∈ [t0, t1] (37)

between the solutions of systems (21) and (26). The following equations hold:

�̇z0(t) = −α−2Gδ(t)w(t) + α−2Gδ
0w0(t)

= −α−2Gδ
0�w0(t) + α−2(Gδ

0 − Gδ(t))w(t),
�̇w0(t) = �z0(t) + α2(g(t) − g0),
�z0(0) = 0, �w0(0) = 0, t ∈ [t0, t1].

(38)

A solution of system (38) can be written in the form
( �z0(t)

�w0(t)

)
= Φ0(t) ·

t∫

t0

(Φ0)−1(τ)
(

α−2(Gδ
0 − Gδ(t))w(τ)

α2(g(t) − g0)

)
dτ, t ∈ [t0, t1],

(39)
where the fundamental matrix Φ0(·) can be chosen as in (28) since the homo-
geneous parts (that is the part ẋ(t) = Ax(t) of a system of the form ẋ(t) =
Ax(t) + f(t), A = const) of systems (26) and (38) coincide.

We get by substituting (30) and (31) into (39) that

�z0(t) =
t∫

t0

[
α−2Q0Λ

cos
0 (t − τ)QT

0 (Gδ
0 − Gδ(τ))w(τ)

−αQ0Λ
sqrt
0 Λsin

0 (t − τ)QT
0 (g(τ) − g0)

]
dτ,

�w0(t) =
t∫

t0

[
α−1Q0(Λ

sqrt
0 )−1Λsin

0 (t − τ)QT
0 (Gδ

0 − Gδ(τ))w(τ)

−α2Q0Λ
cos
0 (t − τ)QT

0 (g(τ) − g0)
]
dτ, t ∈ [t0, t1].

(40)
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Let us estimate ‖�z0(t)‖ and ‖�w0(t)‖. Since Gδ
0 = Gδ(0) and t1 − t0 ≤ α2,

∥
∥Gδ

0 − Gδ(τ)
∥
∥
2

≤ α2 max
t∈[t0,t1]

∥
∥
∥Ġδ(t)

∥
∥
∥
2

= α2 max
t∈[t0,t1]

∥
∥
∥
∥
∥

d
dt

[
G(yδ(t), t)GT (yδ(t), t)

]
∥
∥
∥
∥
∥
2

= α2 max
t∈[t0,t1]

∥
∥
∥
∥
∥

( n∑

i=1

[
δ

δyi

[
G(yδ(t), t)

]
ẏδ

i (t)
]

+ δ
δt

[
G(yδ(t), t)

] )
GT (yδ(t), t)

+G(yδ(t), t)
( n∑

i=1

[
δ

δyi

[
G(yδ(t), t)

]
ẏδ

i (t)
]

+ δ
δt

[
G(yδ(t), t)

] )T
∥
∥
∥
∥
∥
2

≤ α22G
0
G

1
(Y

1,δ
+ 1) � α2Rδ

G, τ ∈ [t0, t1].
(41)

Thus, by substituting (24) and (41) into (40), we get that

‖�z0(t) ‖ ≤ α3
(
2αRδ

GRδ
w + ωg(α2)G

0) � α3Rδ,α
	z,

‖�w0(t) ‖ ≤ α4
(
2αG̃0Rδ

GRδ
w + ωg(α2)

)
� α4Rδ,α

	w,

t ∈ [t0, t1],
(42)

where g(·) is defined in (22). Taking into account (34), for the continuously
differentiable matrix function

(
Gδ(·))−1, we obtain

ωGδ−1(�t) ≤ (G̃0)2G
1
(nY

1,δ
+ 1)�t. (43)

Then, Lemma 1 provides that

ωg(�t) ≤
(
2ωGδ−1(�t)G

1
G̃0(Y

1,δ
+ F

0
) + ωdG(�t)(Y

1,δ
+ 1)(G̃0)2(Y

1,δ
+ F

0
)

+G
1
(G̃0)2(Y

2,δ
+ F

1
)
)

+
(
ωGδ−1(�t)(Y

2,δ
+ F

1
)

+G̃0(ωd2y(�t) + ωdf (�t)(nY
1,δ

+ 1))
)
.

(44)
The estimates (36), (37) and (42) provide that

‖z(t)‖ ≤ α2Rz + α3Rδ,α
	z,

‖w(t)‖ ≤ α3Rw + α4Rδ,α
	w,

t ∈ [t0, t1].
(45)

Let us now proceed to the next interval [t1, t2]. We introduce the frozen
system for the interval [t1, t2] as follows:

ż1(t) = −α−2Gδ
1w1(t),

ẇ1(t) = z1(t) + α2g1,
z1(t1) = z(t1), w1(t1) = w(t1), t ∈ [t1, T ],

(46)

where Gδ
1 = Gδ(t1), g1 = g(t1).
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We can introduce auxiliary discrepancies between the solutions of frozen
systems (26) and (46):

�z1(·) = z1(·) − z0(·), �w1(·) = w1(·) − w0(·), t ∈ [t1, T ]. (47)

Consider a system of equations

�̇z1(t) = −α−2Gδ
1�w1(t) + α−2(Gδ

0 − Gδ
1)w0(t),

�̇w1(t) = �z1(t) + α2(g1 − g0),
�z1(t1) = �z0(t1), �w1(t1) = �w0(t1), t ∈ [t1, T ].

(48)

A solution of (48) is
( �z1(t)

�w1(t)

)
= Φ1(t)

( �z0(t1)
�w0(t1)

)

+Φ1(t)
t∫

t1

(Φ1)−1(τ)
(

α−2(Gδ
0 − Gδ

1)w0(τ)
α2(g1 − g0)

)
dτ, t ∈ [t1, t2],

(49)

where the matrix Φ1(·) is defined as in (28) and calculations (29)–(31) can be
applied to it, the only difference is that the second lower index changes from 0
for 1.

Since the constants (19), which define Rδ,α
	z and Rδ,α

	w, are uniform for t ∈
[0, T ], one can obtain the following estimates for (49) using formulae (40)–(42)
with (36), (42):

‖�z1(t)‖ ≤ α3
(
Rδ,α

	z + Rδ,α
	wG

0
+ αRδ

GRw + ωg(α2)G
0) � α3R	z,

‖�w1(t)‖ ≤ α4
(
Rδ,α

	zG̃
0 + Rδ,α

	w + αG̃0Rδ
GRw + ωg(α2)

)
� α4R	w,

t ∈ [t1, t2].
(50)

Taking into account (36), (47) and (50), we get

‖z1(t)‖ ≤ α2Rz + α3R	z,
‖w1(t)‖ ≤ α3Rw + α4R	w, t ∈ [t1, t2].

(51)

One can use the same algorithm as defined by (40)–(42) to obtain

‖�z1(t)‖ � ‖z(t) − z1(t)‖ ≤ α3Rδ,α
	z,

‖�w1(t)‖ � ‖w(t) − w1(t)‖ ≤ α4Rδ,α
	w, t ∈ [t1, t2].

(52)

Now, by gathering (51), (52), we get the estimates

‖z(t)‖ ≤ α2Rz + α3Rδ,α
	z + α3R	z,

‖w(t)‖ ≤ α3Rw + α4Rδ,α
	w + α4R	w, t ∈ [t1, t2].

(53)
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On the third step (t ∈ [t2, t3]) we obtain in the same way the estimates

‖�z2(t)‖ � ‖z(t) − z2(t)‖ ≤ α3Rδ,α
	z,

‖�w2(t)‖ � ‖w(t) − w2(t)‖ ≤ α4Rδ,α
	w,

‖�z2(t)‖ � ‖z2(t) − z1(t)‖ ≤ α3R	z,

‖�w2(t)‖ � ‖w2(t) − w1(t) ≤ α4R	w,
‖z2(t)‖ ≤ α2Rz + α32R	z,
‖w2(t)‖ ≤ α3Rw + α42R	w,

‖z(t)‖ ≤ α2Rz + α3Rδ,α
	z + α32R	z,

‖w(t)‖ ≤ α3Rw + α4Rδ,α
	w + α42R	w, t ∈ [t2, t3].

(54)

By building estimates of the form (54) subsequently for the intervals
[t3, t4], . . . , [th−1, th], we get that

‖z(t)‖ ≤ α2Rz + α3Rδ,α
	z + α3iR	z,

‖w(t)‖ ≤ α3Rw + α4Rδ,α
	w + α4iR	w,

t ∈ [ti, ti+1], i = 0, . . . , h − 1.

(55)

By (25), we get h ≤ Tα−2. Therefore,

‖z(t)‖ ≤ α2Rz + α3Rδ,α
	z + αTR	z,

‖w(t)‖ ≤ α3Rw + α4Rδ,α
	w + α2TR	w,

t ∈ [ti, ti+1], i = 0, . . . , h − 1.

(56)

One can check that for

Rδ
w =

αRw + α2ωg(α2) + ωg(α2)T (G̃0G
0

+ 2) + αTG̃0Rδ
GRw

1 − 2α3G̃0Rδ
G − 2αTG̃0Rδ

G

,

Rδ
z = αRz + 2α3Rδ

GRδ
w + αωg(α2)G

0
+ 2αTRδ

GRδ
w(2 + G

0
G̃0) + 2αTωg(α2)G

0

(57)
under condition

α = α(δ) : 2α3G̃0Rδ
G + 2αTG̃0Rδ

G < 1, α(δ) δ→0−→ 0, ωg(α(δ)2) δ→0−→ 0 (58)

estimates (56) provide that

‖z(t)‖ ≤ αRδ
z < 2αRδ

z, ‖w(t)‖ ≤ α2Rδ
w < 2α2Rδ

w, t ∈ [0, T1]. (59)

But this contradicts (for the moment t = T1) initial hypothesis (24). Therefore,
estimate (23) holds for Rδ

w, Rδ
z defined in (57) (provided condition (58) is true).

Since (23) holds, calculations (25)–(56) are valid for T1 = T and, therefore,

‖z(t)‖ ≤ 2αRδ
z, ‖w(t)‖ ≤ 2α2Rδ

w, t ∈ [0, T ]. (60)

Let us now return to functions (15) and express them in variables (20). Taking
into account (60) and under conditions (57), (58), we have

‖uδ,α (t) −Gg(yδ(t), t)(ẏδ(t) − f(yδ(t), t))‖
= ‖α−2GT (yδ(t), t)w(t)‖ ≤

√
G

0
2Rδ

w � Rδ δ→0−→ 0, t ∈ [0, T ].
(61)

The lemma is proven.
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Theorem 1. Let Assumptions 1 and 2 hold. Then the function ûδ,α(·), defined
in (16), satisfy conditions C1–C3 for α = α(δ) satisfying condition (58).

Proof. The condition C1 is fulfilled by definition (16).
One can use the scheme of the proof of Lemma 7.2 in [5] to prove that the

control uδ,α(·) generates a trajectory x̂(·)) such that

lim
δ→0,α→0

‖x̂(·) − x(·)‖C[0,T ] = 0, (62)

where x(·) is the solution of system (14) with boundary conditions (13). There-
fore, Lemma 1 together with (3) provide that

‖x̂(·) − x∗(·)‖C[0,T ]

≤ ‖x̂(·) − x(·)‖C[0,T ] + ‖x(·) − yδ(·)‖C[0,T ] + ‖yδ(·) − x∗(·)‖C[0,T ]
δ→0−→ 0.

(63)

Thus, the condition C2 is fulfilled.
For the clearness of notations, the following abridgments will be used in

calculations in a subsequent:

Gg(x∗(·), ·) � Gg∗, G(x∗(·), ·) � G∗, Gg(yδ(·), ·) � Gg
δ , f(yδ(·), ·)) � fδ,

f(x∗(t), t)) � f∗, u∗(·) � u∗, uδ,α(·) � uδ,α,

v(·) � v, x∗(·) � x∗, yδ(·) � yδ.
(64)

Using the scheme of the proof in [4] for the case f(x, t) ≡ 0, one can prove
that the normal control u∗ for the trajectory x∗, generated by an admissible
control v, can be found by the formula

u∗ = Gg∗G∗v. (65)

Thus,
‖u∗ − uδ,α‖L2[0,T ] ≤ ‖Gg∗G∗v − Gg

δ(ẏ
δ − fδ)‖L2[0,T ]

+ ‖uδ,α − Gg
δ(ẏ

δ − fδ)‖L2[0,T ].
(66)

The Weierstrass Approximation Theorem guarantees that for the continuous
vector function G∗v and any δ > 0, there exists a vector function ψ(·) with
polynomial elements such that

‖(G∗v + f∗ − ψ(·)‖C[0,T ] ≤ δ,

‖Ψ(·) − x∗‖C[0,T ] ≤ δT, where Ψ(t) = x∗(0) +
t∫

0

ψ(τ)dτ.
(67)
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By integration by parts, taking into account (4), we get

‖ (G∗v + f∗) − ẏδ‖L2[0,T ]

≤ ‖(G∗v + f∗) − ψ(·)‖L2[0,T ] + ‖ψ(·) − ẏδ‖L2[0,T ]

≤ δ
√

T + ‖ψ(·) − ẏδ‖L2[0,T ] =≤ δ
√

T +
T∫

0

〈ψ(τ) − ẏδ(τ)
︸ ︷︷ ︸

U

, ψ(τ) − ẏδ(τ)
︸ ︷︷ ︸

dV

〉dτ

= δ
√

T + 〈ψ(τ) − ẏδ(τ)
︸ ︷︷ ︸

U

, Ψ(t) − yδ(τ)
︸ ︷︷ ︸

V

〉
∣
∣
∣
T

0
+

T∫

0

〈Ψ(τ) − yδ(τ)
︸ ︷︷ ︸

V

, ψ̇(τ) − ÿδ(τ)
︸ ︷︷ ︸

dU

〉dτ

≤ 2(G
0
U + δ + Y

1,δ
)δ(T + 1) + Tδ(T + 1)( max

t∈[0,T ]
‖ψ̇(t)‖ + Y

2,δ
) � Rδ

y
δ→0−→ 0.

(68)
Therefore, since (3), (34) and (68), it holds

‖Gg∗G∗v − Gg
δ(ẏ

δ − fδ)‖L2[0,T ] ≤ ‖ (
Gg∗G∗ − Gg

δG
δ
)
(ẏδ − fδ)‖L2[0,T ]

+‖Gg∗G∗ (
ẏδ − (G∗v + f∗)

) ‖L2[0,T ] + ‖Gg∗G∗ (
f∗ − fδ

) ‖L2[0,T ]

≤ nδ
(
2
√

G
0
G

1
G̃0 + G

1
(G̃0)2G

1
) (

max
t∈[0,T ]

‖x∗(t)‖ + δ + F
0
)

+G̃0G
0
Rδ

y + nδG̃0G
0
F

1 � Rδ
u.

(69)

Applying formula (61) obtained in Lemma 1 and (69) to inequality (66), we
conclude that

‖u∗(·) − uδ,α(·)‖L2[0,T ] ≤ Rδ
u + Rδ δ→0−→ 0 (70)

under conditions (57), (58).
By definition (16), the inequality ‖u∗(t) − ûδ,α(t)‖ ≤ ‖u∗(t) − uδ,α(t)‖, t ∈

[0, T ] is satisfied. Therefore, under conditions (57), (58) it holds

‖u∗(·) − ûδ,α(·)‖L2[0,T ]
δ→0−→ 0. (71)

Thus, the condition C3 is also fulfilled and the theorem is proven.

Theorem 1 means that the functions ûδ,α(·), defined in (16), form a solution of
the problem C1–C3 (under conditions (58), (57)).

6 Remarks on the Suggested Method

6.1 Comparison with Another Modern Approaches. The method consid-
ered in this paper is close to another approach, which is based on A. V. Kryazhim-
skii’s and Yu. S. Osipov’s works [7,9]. This approach has been developed by V. I.
Maximov, M. S. Blizorukova, et al. as well (see, in particular, [1,10]). A survey of
algorithms based on this approach is presented in [10]. The distinguishing feature
of the new method consists in using functional (11), which is convex with respect
to the control variable and concave with respect to the discrepancy of the state
variables. Meanwhile, the approach discussed in [10] applies the minimizing of
constructions that are convex in all variables. This difference allows to obtain
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the oscillating character of the solutions instead of the exponential one. A more
accurate comparison of the effectiveness of this two approaches is the matter of
the future research.

6.2 The Problem of Dynamic Reconstrcution. The suggested approach can
be used to solve dynamic reconstruction problems, where discrete measurements
of the trajectory arrive in real-time. Spline interpolation can be used to fulfill
Assumption 1. This smaterial will be published in future papers.

6.3 Comparison with Inverse Matrices Approach. The result (68) means,
in particular, that the desired normal control u∗(·) can be approximated by the
cut-off functions

ûδ(t) =

{
uδ(t), uδ(t) ∈ U,
û ∈ U : ‖uδ(t) − û‖ = min

v∈U
‖uδ(t) − v‖, uδ(t) /∈ U,

uδ(t) = Gg(yδ(t), t)(ẏδ(t) − f(t)).
(72)

Yet, this approach reduces the inverse problem to the problem of constructing
the inverse matrices Gg(yδ(t), t), while the approach, suggested in this paper,
reduces it to the problem of integrating a system of linear heterogenous ODEs
with variable coefficients (14). In some applications, the numerical integration
can be more preferable than the numerical matrix inversion. It is illustrated by a
numerical simulation in [4]. An example of a dynamic control system, for which
the suggested approach is more effective than the matrix inversion, is suggested
in [4].

6.4 Numerical Simulations. The examples, illustrating numerical simulations
of the suggested method are exposed in [4–6]. In [5], it is shown that the suggested
method can be applied to solving the inverse problems for macroeconomic models
with real economic statistics.

7 Conclusion

This paper continues the study [4–6,11–13] of the new method for solving the
inverse normal control reconstruction problems. Namely, the estimates for the
method’s error are obtained. The detailed proof of the convergence of the method
is presented.

The perspective directions for the future research on the suggested method
include expanding the class of the admissible dynamics, including the removal of
the condition that the dimension of the controls is larger or equal than the dimen-
sion of the state variables. Accurate comparison with another known methods
for solving the inverse problems is also the matter of the future publications.
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Abstract. This paper addresses an integral model of the developing
system consisting of elements of n age groups. The model is described
by means of the Volterra equation of the first kind with variable limits
of integration. The case is considered when the moment of the system
origin coincides with the beginning of the modeling, therefore there is
no prehistory and for t = 0 all age groups of the elements are empty.
Based on this model, we set the problem of optimizing the system age
structure and the moment when the elements are decommissioned. In
order to study a new integral model of developing systems as applied to
the problem of forecasting the electric power system development, several
model examples are considered. The results of numerical calculations are
presented. They confirm the adequacy of the proposed model.

Keywords: Developing system · Age groups · Volterra equation of the
first kind · Optimization problem

1 Introduction

In models of developing systems of the Glushkov type [1,2] the Volterra operator
with variable limits of integration is used to describe the process of replacing
obsolete elements with new ones. The use of integral equations is associated with
economic models of technical progress that take into account the aging of the
production system (vintage capital models) [3–6]. Since integral models allow
us to take into account the heterogeneity of economic factors involved in the
production, this leads to the formulation of problems of optimal development
of the system [5,7–10]. The greatest interest (and the greatest complexity in
mathematical terms) is provoked by special optimal control problems of dynam-
ical systems with integral constraints and control functional parameters that fall
within the lower limits of integration. The one-sector version of the Glushkov

The research was carried out under State Assignment, Project 17.3.1 (reg. no. AAAA-
A17-117030310442-8) of the Fundamental Research of Siberian Branch of the Russian
Academy of Sciences.

c© Springer Nature Switzerland AG 2019
I. Bykadorov et al. (Eds.): MOTOR 2019, CCIS 1090, pp. 524–535, 2019.
https://doi.org/10.1007/978-3-030-33394-2_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33394-2_40&domain=pdf
http://orcid.org/0000-0003-3145-7604
http://orcid.org/0000-0002-1057-2737
https://doi.org/10.1007/978-3-030-33394-2_40


Optimization Problem in an Integral Model of the Developing System 525

model became the basis for searching optimal strategies for commissioning gen-
erating capacities in the electric power system (EPS) of Russia with varying
degrees of aggregation [11–14].

The problem of finding input capacities is reduced to solving a nonclassical
Volterra integral equation of the first kind

t∫

a(t)

K(t, s)x(s)ds = y(t), t ∈ [0, T ]. (1)

Here x(t) is the commissioning of electric capacities at time t; K(t, s) is the
efficiency coefficient of using at time t the capacity commissioned previously at
time s; t − a(t) is the lifetime of the oldest at time t capacity of the EPS; a(t) is
such non-decreasing function that a(t) < t ∀t > 0; y(t) is total available capacity
of the electric power system specified by the experts for the future. The Eq. (1)
plays a key role in integral models of developing systems as a balance equation
between the required level of system development y(t) and the possibility of
achieving it.

The specific features of (1) are largely determined by the value of a(0). If
a(0) < 0, then for the closure (1), we need to set the system prehistory:

x(t) ≡ x0(t), t ∈ [a(0), 0), (2)

so that the value of the right-hand side of (1) under t = 0 takes the form

y(0) =

0∫

a(0)

K(0, s)x0(s)ds. (3)

Precisely this form is considered in the majority of works that address integral
models of developing systems with prehistory.

A fundamentally different situation corresponds to the case a(0) = 0. It
means that the beginning of modeling coincides with the moment of the system
emergence. In this case, there is no prehistory, and y(0) = 0. The theory and
numerical methods for solving (1) for different cases are quite diverse. A detailed
analysis of the equations of the form (1), both for the case of a(0) < 0 and for
a(0) = 0, was carried out in the monograph [15].

A new integral model for the developing system was proposed in [16,17]. It
allows us to describe in greater detail the technical and economic parameters of
the generating power plants equipment, taking into account its age structure.
The equipment is divided into several age groups with different indicators of the
effectiveness of their functioning.

In [16,17] an equation that generalizes (1) is considered for the case of n age
groups

n∑
i=1

ai−1(t)∫

ai(t)

Ki(t, s)x(s)ds = y(t), t ∈ [0, T ], (4)
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a0(t) ≡ t > a1(t) > . . . > an(t) ≥ 0, ∀t > 0; Ki(t, s) is the efficiency coefficient
in age group i; t − ai(t) is the upper age limit of group i.

The values of ai(0) play an key role in (4), just like in the case of one age
group (1). If ai(0) < 0, i = 1, . . . , n, then for the correct formulation of the
problem it is necessary to set the desired function on the prehistory x(t) = x0(t),
t ∈ [an(0), 0). In particular, if ai(t) = t − Ti, 0 < T1 < . . . < Tn,

x(t) = x0(t), t ∈ [−Tn, 0). (5)

This case for n = 3 is considered in [16–18] with the reference to the problem of
finding long-term development strategies for the EPS of Russia. An equation of
type (4) had the form

t∫

t−T1

x(s)ds + 0.97

t−T1∫

t−T2

x(s)ds + 0.9

t−T2∫

t−T3

x(s)ds = y(t), t ∈ [0, T ]. (6)

It seems promising to consider the case of ai(0) = 0 for studying the problems
of developing EPS, which corresponds to the coincidence of the beginning of
modeling and the moment of the system emergence. At the same time, there
is no history, x(0) = 0, so all age groups are empty. This is the case that the
present research focuses on.

The goal of our research is to consider an integral model of the development
of the electric power system without a prehistory [19–21] and the optimization
problem of the age structure and decommissioning equipment based on it [22].
To solve this problem, we will apply the methods that were previously used to
solve the optimization problem in the model of the developing system with a
prehistory [11–14].

2 Integral Model of the EPS Development

For the purpose of modeling the EPS development, consider equations with
constant Volterra kernels. The papers [19,21,23] are devoted to the theory of
equations of the type (4) with the condition ai(0) = 0. In particular, for the
case of constant kernels Ki(t, s) = βi, i = 1, . . . , n, β1 = 1, a detailed theoretical
analysis was carried out in [19]. We will assume that 1 ≡ β1 ≥ . . . ≥ βn ≥ 0.
Also, suppose that ai(t) = αit, 1 = α0 > α1 > . . . > αn ≥ 0, so (4) has the
form

n∑
i=1

βi

αi−1t∫

αit

x(s)ds = y(t), t ∈ [0, T ]. (7)

Using the classical results of functional analysis, it was shown in [19] that if
the following inequality holds

n∑
i=2

|βi−1 − βi|αi−1 < 1 (8)
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the Eq. (7) is well-posed by Hadamard on the pair (C[0,T ],
◦
C

(1)
[0,T ]) (

◦
C

(1)
[0,T ] is

space of continuous differentiable functions on [0, T ] and y(0) = 0).
The transition to the equivalent functional equation

x(t) =
n∑

i=2

(βi−1 − βi)αi−1x(αi−1t) + y′(t), t ∈ [0, T ]. (9)

shows that inequality (8) is the contraction condition of the operator in the right-
hand side of (9), acting in the space C[0,T ]. It is essential that this condition is
completely determined by the parameters αi, βi and does not depend on the
time interval on which the Eq. (7) is considered.

Similarly (6), we set β1 = 1, β2 = 0.97, β3 = 0.9 and consider Eq. (7) [22]

t∫

α1t

x(s)ds + 0.97

α1t∫

α2t

x(s)ds + 0.9

α2t∫

α3t

x(s)ds = y(t), t ∈ [0, T ]. (10)

When applied to the EPS development problem, it can be considered as the equa-
tion of balance between the desired power consumption level y(t) and the set
of generating capacities x(t) commissioned at time t > 0. All generating equip-
ment is divided into three age groups. The monotonous decrease in the efficiency
coefficients βi, i = 1, 2, 3, reflects the natural process of aging of elements in the
middle and older age groups. The values of αi−1 − αi, i = 1, 3, determine the
share of generating capacity included in the age group i (see Fig. 1).

t

Fig. 1. Age groups of the developing system.
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The model for the EPS development is represented by Eq. (10) with restric-
tions on the commissioning of capacities

x(t) ≥ 0, t ∈ [t0, T ]. (11)

Condition α3 ≥ 0 implies the impossibility of restoring the retired capacities.
The analytical solution to Eq. (4) can be obtained only for some special cases.
For the numerical solution of (4) with the condition ai(0) = 0, modified

versions of the left and middle rectangles methods were developed [24,25].
The use of standard quadrature methods for the numerical solution of the

non-classical integral equation (4) might result in an equation with n variables,
which happens because the regular grid nodes do not match the values of the
integration limits.

Modifications of the quadrature methods of the left and middle point rules
are based on the transformation of the original equation (4) to the equivalent
one with only upper variable limits. The constructed numerical schemes have
the same order of convergence with respect to the grid step as the classical case.
Their codes were used to obtain the following results.

On the basis of the described model, it is possible to formulate various eco-
nomic problems. For example, if x(t) is the decision variable, and all other func-
tions are assumed to be known, we obtain the problem of forecasting the EPS
development.

The model (10)–(11) can be used to perform various optimization problems.

3 Optimization Problem

In [26] the authors set the optimization problem for the functional parameter
T3 (the time of equipment dismantling) on the basis of the model (5)–(6). This
parameter provides a given demand for electricity and minimum total costs of
commissioning and operating the capacities. It also shows the results of its solu-
tion on real-life data with a restriction on the commissioning of new capacities.

By analogy with [26], it is possible to set the problem of optimizing the age
structure and the equipment dismantlement moment for (10)–(11) [22]. Let the
share of “young” capacities α1 be given. We consider the problem of optimizing
the parameters α2, α3. The first one determines the dynamics of the transfer of
capacity from the second age group to the third, the second one – the dynamics
of dismantling equipment at [0, T ].

Take the cost functional as the objective functional

I
(
x, α2, α3

)
=

T∫

0

qt
3∑

i=1

βi

αi−1t∫

αit

u1(t − s)u2(s)x(s)dsdt +

T∫

0

qtk(t)x(t)dt. (12)

Here the first summand corresponds to the operating costs; the second sum-
mand corresponds to the costs of putting capacities into service during the whole
forecast period.
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The following functions are known:
βi is the efficiency coefficient in age group i;
u1(t − s) is the coefficient of increase in the costs of operating the capacities

at time t that are commissioned at time s;
u2(t) is the specific annual costs of operating the capacity commissioned at

time t;
k(t) is the specific capital costs of commissioning a capacity unit at time t;
qt is the costs discount coefficient, 0 < q < 1.
The control parameters α2 and α3 belong to the feasible set

A = {α2, α3 : 0 ≤ α3 < α2 < α1} . (13)

It is required to find

(α∗
2, α

∗
3) = arg min

α2,α3∈A
I
(
x(α2, α3)

)
(14)

under the conditions (10)–(13).
The problem (10)–(14) is nonlinear, the required parameters are within the

integration limits in (10) and (12). In addition, there are restrictions on the phase
variable (11). Therefore, we will seek a solution to the problem using numerical
algorithms.

To solve the optimal control problem, we used a heuristic algorithm based
on the discretization of all elements of the problem on a grid and replacement
of the feasible set A by the set

Ah =
{
α2, α3 : α3 = ih, i = 0, N1 − 1, α2 = α3 + jh, j = 1, N2 − 1

}
, (15)

where N1 =
[

α2
h

]
, N2 =

[
α1−α3

h

]
.

Firstly we choose the pair (α2, α3) from the feasible set Ah, substitute it into
a discrete analog of the model (10) and find the numerical solution for x(t). Then
we substitute the obtained solution into a discrete analog of (12) and find the
value of the objective functional for the given pair. Thus, we use the enumerative
technique among all possible pairs (α2, α3) from feasible set (15) and find the
optimal values (α∗

2, α
∗
3) for this class. We used the modified version of left point

rule for the approximation of integrals in (10), (12). We employ the forecast
values of economic indices provided by experts.

4 Study of the Optimal Control Problem of
Commissioning of Capacities on the Examples

To study a new integral model of developing systems with respect to the problem
of forecasting the EPS development of EPS, we consider model examples.

Let in (10) α1 = 1/2, α2 = 1/4, α3 = 1/8. This means that at any time
moment the part of capacity operating at 100% efficiency is 1/2 of the total
capacity, the part of capacity operating at 97% efficiency is 1/4, and the part
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operating at 90% efficiency is 1/8. The capacity with efficiency lower than 90%
is removed. We take these parameters as basic.

The optimization problem used the same data as the similar optimization
problem for the model (6). The specific growth functions of the operating costs
u1(t − s) ≡ u1(τ) are given:

u1(τ) =
{

1, τ � uc,
1.03τ−uc , τ > uc,

(16)

(operating costs increase with the growth rate 3% per year after uc years of
service). The functions k(t) and u2(t) were assumed to be constant: k(t) = 1000
(USD/MW), u2(t) = 189 (USD/MW) t ∈ [0, T ].

To solve the optimal control problem, we used the heuristic algorithm
described above.

Example 1. Let the right-hand side of the equation have the form y(t) = t2/2
according to the optimistic electricity demand forecast, T = 60.

Figure 2 shows the dynamics of commissioning capacities x(t) and the right-
hand side y(t), corresponding to the basic variant (without optimization by α2,
α3).
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Fig. 2. Commissioning of capacities for y(t) = t2/2 (base variant).

To begin, explore the solution to the problem, optimizing one of the param-
eters. Let α3 be fixed.
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Figure 3 shows the dynamics of the cost functional (12) for the case uc = 45
with the changing parameter α2. It can be seen that the optimal value of α∗

2

tends to α3, i.e. it is advantageous to reduce the share of capacities working
with the efficiency of 0.9 due to an increase in the share of capacities working
with the efficiency of 0.97.
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Fig. 3. Total costs I(α2, 1/8), uc = 45.

Now fix α2. Figure 4 shows the dynamics of total costs for the case uc = 45
with the changing parameter α3. It can be seen that the optimal value of α∗

3

tends to 0. This means that with a decrease of a lifetime (an increase of α3),
the capital costs of commissioning new capacities grow faster than the operating
costs decrease. With these economic indicators, it is beneficial not to dismantle
capacities.
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Fig. 4. Total costs I(1/4, α3), uc = 45.

Remark 1. In Example 1, set uc = 30, i.e. we suppose that operating costs
increase faster. For the optimization option α2 with a fixed value of α3, we get
the dynamics of the total costs similar one to Fig. 3. For the optimization option
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Fig. 5. Total costs I(1/4, α3), uc = 30.

α3 with a fixed value of α2, the dynamics of the total costs are presented in
Fig. 5. Figure shows that total costs are decreasing on [0, α∗

3]. At this interval,
the rate of increase in capital costs is less than the rate of decrease in operating
costs. Therefore, it is more profitable to introduce new equipment. Total costs
increase on [α∗

3, α2].

Example 2. Now suppose that the right-hand side has the form y(t) = 1.05ty1,
T = 60. It is similar to the right-hand side of the model (6) based on real-life
data. The value of y1 = 100 (MW), which is close to the real-life situation.
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Fig. 6. Commissioning capacities (base variant).
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Fig. 7. Commissioning capacities for (α∗
2, α

∗
3) = (0.025, 0.02).

Figure 6 demonstrates the dynamics of commissioning capacities x(t) and
y(t), corresponding to the basic case of Example 2. The jump in inputs in the
first forecast year is necessary to meet the power requirement of y1.

Figure 7 shows a graph of the solution x∗(t) to a forecast problem, corre-
sponding to the optimal (α∗

2, α
∗
3) = (0.025, 0.02). The economic benefit with

respect to the basic variant will have been 3% by 60.

5 Conclusion

The problem of optimizing the lifetime of capacities in the integral model of the
EPS development has been considered. The model describes a system consisting
of n age groups. The moment of the beginning of modeling coincides with the
moment of the system creation. To solve the optimization problem, a heuristic
algorithm based on the model discretization is used. For the study of the prob-
lem, model examples typical for the real-life situation in the EPS of Russia are
considered. The obtained numerical results show the adequacy of the model.
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Abstract. We consider an equilibrium problem for a 3D elastic body
with a crack. Inequality-type boundary conditions are considered at the
crack faces to prevent mutual penetration between them. This leads
to the formulation of a problem with an unknown contact area, which
admits a variational formulation in the form of a problem of minimization
of energy functional in a set of feasible displacements. To solve the prob-
lem, we consider the Uzawa algorithm based on the modified Lagrange
functional and compare it with the classical analog. Numerical results
illustrating the efficiency of the proposed algorithm are presented.

Keywords: Elastic problem · Crack · Duality scheme · Modified
Lagrange functional · Uzawa algorithm

1 Introduction

We consider a 3D elastic body with a planar crack. As it is known, classical linear
models of the crack theory are characterized by linear boundary conditions on the
crack faces. From the standpoint of mechanics, these models have the defect that
the opposite faces of the crack can penetrate each other. In order to guarantee
the mutual nonpenetration, the nonlinear boundary conditions of inequality type
should be imposed on the crack faces, which leads to a nonlinear boundary value
problems. The analysis of such models can be found in works [1–6].

The variational formulation of these models consists in minimizing the poten-
tial energy’s functional on a closed convex subset of the original Hilbert space,
which, in turn, is equivalent to a variational inequality. To solve variational prob-
lems we use the duality methods, in which, simultaneously with the solution of
the original problem, the solution of the dual problem is found [4,5,7]. However,
in an elastic problem with a crack, the regularity of the solution in the vicinity
of the crack ends may be insufficient for the solvability of the dual problem.
In this connection, the authors propose to use modified duality methods, the
effectiveness of which is justified theoretically and demonstrated in numerical
experiments.
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2 Problem Statement

Let Ω ⊂ R3 be a bounded domain with a Lipschitz boundary Γ , and let γ ⊂ R3

be a crack. We consider the following rectangular geometry of a solid in the unit
cube {0 < xi < 1, i = 1, 2, 3} with a planar crack γ = {0.25 < x1 < 1, 0 <
x2 < 1, x3 = 0.5}. Denote by ΓD = {x1 = 0, 0 < xi < 1, i = 2, 3} the part of
Γ where the body is clamped and by Γ±

N the parts of Γ where body is loaded
by a surface force. In Fig. 1, the parts Γ±

N are marked and the arrows indicate
the directions of the acting forces. Let ν = (0, 0, 1) be a unit normal vector on
γ. According to the vector ν, denote the positive (upper) face of the crack γ by
γ+ and the negative (lower) face by γ−. Suppose that Ωγ = Ω \ γ.

x1
x2

x3

Fig. 1. Geometry and loading of an elastic body with a crack

For the displacement vector u = (u1, u2, u3), we introduce the stress tensor
σ = {σij} and the strain tensor ε = {εij} which are related by the linear Hooke
law:

σij(u) = cijkmεkm(u), εij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j, k,m = 1, 2, 3.

Here, cijkm are the components of the elasticity tensor with usual properties
of symmetry and positive definiteness

cijkm = cjimk = ckmij , cijkmξkmξij ≥ c0|ξ|2 ∀ξij = ξji, c0 = const > 0.

Summation over repeated indices is assumed.
Let us specify the vector-function of the body and surface force f ∈ L2(Ωγ)3

and p ∈ L2(ΓN )3, respectively.
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We consider the following boundary value problem describing the equilibrium
of an elastic body Ωγ with a crack [2,3].

− divσ(u) = f in Ωγ , (1)

u = 0 on ΓD, (2)

σ(u)n = p on ΓN , (3)

[uν ] ≥ 0, [σν(u)] = 0, σν(u)[uν ] = 0 on γ, (4)

σν(u) ≤ 0, στ (u) = 0 on γ±. (5)

Here n = (n1, n2, n3) is the unit outward normal vector to Γ , [uν ] = u+
ν − u−

ν

is a jump of the function uν = uiνi on γ; u±
ν are traces of uν on γ±; σν(u) =

σij(u)νiνj , στ (u) = σ(u)ν − σν(u)ν are the normal and tangent components of
the surface traction on γ; [σν(u)] = σ+

ν (u) − σ−
ν (u).

The boundary value problem (1)–(5) belongs to the class of problems with
an unknown contact area. Conditions (4)–(5) provide the nonpenetration of the
crack faces γ+ and γ−.

Let us give a variational formulation of the problem (1)–(5). Define the func-
tional space

H1
Γ (Ωγ) =

{
v = (v1, v2, v3) ∈ H1(Ωγ)3 | v = 0 on ΓD

}

and the set of feasible displacements

K =
{
v ∈ H1

Γ (Ωγ) | [vν ] ≥ 0 on γ
}

.

Consider the energy functional on the space H1
Γ (Ωγ)

J(v) =
1
2

∫
Ωγ

σijεij(v) dΩ −
∫

Ωγ

fivi dΩ −
∫

ΓN

pivi dΓ.

The boundary value problem (1)–(5) corresponds to the following variational
problem [2,5]: {

J(v) → min,

v ∈ K.
(6)

Thus, we need to find a function u ∈ K such that

J(u) = inf
v∈K

J(v).

It is known that there exists a unique solution u ∈ K of the problem (6), which
satisfies Eq. (1) and boundary conditions (4)–(5) in a weak sense [2,3].



A Modified Duality Scheme for Solving a 3D Elastic Problem with a Crack 539

3 Classical and Modified Duality Schemes

To solve problem (6), we introduce the classical Lagrange functional on the space
H1

Γ (Ωγ) × L2(γ)

L(v, l) = J(v) +
∫
γ

l(−[vν ]) dΓ.

Denote by (L2(γ))+ the set of nonnegative on γ square integrable functions.

Definition 1. A pair (v∗, l∗) ∈ H1
Γ (Ωγ) × (L2(γ))+ is called a saddle point of

the Lagrange functional L(v, l) if the following two-sided inequality takes place
[5,7,12]

L(v∗, l) ≤ L(v∗, l∗) ≤ L(v, l∗) ∀(v, l) ∈ H1
Γ (Ωγ) × (L2(γ))+.

If (v∗, l∗) is the saddle point of L(v, l), then v∗ is a solution of the problem (6)
and l∗ is a solution of the corresponding dual problem{

L(l) → sup,

l ∈ (L2(γ))+,
(7)

where
L(l) = inf

v∈H1
Γ (Ωγ)

L(v, l).

Note that the dual problem (7) is solvable if the solution u of the initial problem
belongs to the space [H2(Ωγ)]3.

Since measure μ(ΓD) > 0, then the Lagrange functional L(v, l) is strongly
convex with respect to v ∈ H1

Γ (Ωγ) for fixed l ∈ L2(γ). Therefore,

inf
v∈H1

Γ (Ωγ)
L(v, l) = min

v∈H1
Γ (Ωγ)

L(v, l).

Also, we define the modified Lagrange functional on the space H1
Γ (Ωγ) ×

L2(γ) [4]

M(v, l) = J(v) +
1
2r

∫
γ

([
(l − r[vν ])+

]2 − l2
)

dΓ,

where r > 0 is an arbitrary positive constant.

Definition 2. A pair (v∗, l∗) ∈ H1
Γ (Ωγ) × L2(γ) is called a saddle point of the

Lagrange functional M(v, l) if the following two-sided inequality takes place:

M(v∗, l) ≤ M(v∗, l∗) ≤ M(v, l∗) ∀(v, l) ∈ H1
Γ (Ωγ) × L2(γ).

It can be shown that sets of saddle points of the classical Lagrange functional
and the modified one coincide [5,7]. So the second component of the saddle point
l∗ is the solution to the corresponding dual problem:{

M(l) → sup,

l ∈ L2(γ),
(8)
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where
M(l) = inf

v∈H1
Γ (Ωγ)

M(v, l).

We consider the following Uzawa algorithm (9)–(10) to determine the saddle
point of the classical Lagrange functional [8–11,14]. At the initial step, k = 0,
specify an arbitrary function l0 ∈ (L2(γ))+, then:

find uk ∈ H1
Γ (Ωγ) : L(uk, lk) ≤ L(v, lk) ∀v ∈ H1

Γ (Ωγ), (9)
lk+1 = P(L2(γ))+(lk − ρκ[uk

ν ]) = (lk − ρκ[uk
ν ])+, (10)

where P(L2(γ))+ is the projection operator of L2(γ) onto (L2(γ))+ with respect
to the norm in L2(γ), ρ > 0, κ is the trace operator from H1

Γ (Ωγ) to L2(γ),
(lk − ρκ[uk

ν ])+ = max
{
0, lk − ρκ[uk

ν ]
}
.

Theorem 1. The dual functional L(l) is Gateaux differentiable in L2(γ) and
its derivative is given by

∇L(l) = −κ[vν(l)], where v(l) = arg min
v∈H1

Γ (Ωγ)

L(v, l),

herewith

‖∇L(l
′
) − ∇L(l

′′
)‖L2(γ) ≤ 1

α
‖l

′ − l
′′‖L2(γ) ∀l

′
, l

′′ ∈ L2(γ),

where α is the constant of strong convexity of J(v).

Proof. For simplicity of notation, we omit the trace operator κ below. It is easy
to see that for ∀v ∈ H1

Γ (Ωγ) it holds

J(v(l)) −
∫
γ

l[vν(l)] dΓ +
α

2
‖v − v(l)‖2H1

Γ (Ωγ)
≤ J(v) −

∫
γ

l[vν ] dΓ ∀v ∈ H1
Γ (Ωγ).

Denote by v̂ = v(l̂), v̌ = v(ľ). Then

J(v̂) −
∫
γ

l̂[v̂ν ] dΓ +
α

2
‖v̌ − v̂‖2H1

Γ (Ωγ)
≤ J(v̌) −

∫
γ

l̂[v̌ν ] dΓ,

J(v̌) −
∫
γ

ľ[v̌ν ] dΓ +
α

2
‖v̌ − v̂‖2H1

Γ (Ωγ)
≤ J(v̂) −

∫
γ

ľ[v̂ν ] dΓ. (11)

Summing the above inequalities, we obtain

α‖v̌ − v̂‖2H1
Γ (Ωγ)

≤
∫
γ

(l̂ − ľ)([v̌ν ] − [v̂ν ]) dΓ,

α‖[v̌ν ] − [v̂ν ]‖2L2(γ)
≤

∫
γ

(l̂ − ľ)([v̌ν ] − [v̂ν ]) dΓ,

‖[v̌ν ] − [v̂ν ]‖2L2(γ)
≤ 1

α
‖ľ − l̂‖2L2(γ)

. (12)
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It follows from the embedding H1
Γ (Ωγ) ⊂ L2(γ) and (11) that the following

two-sided inequality holds∫
γ

l̂([v̌ν ] − [v̂ν ]) dΓ +
α

2
‖[v̌ν ] − [v̂ν ]‖2L2(γ)

≤ J(v̌) − J(v̂)

≤
∫
γ

ľ([v̌ν ] − [v̂ν ]) dΓ − α

2
‖[v̌ν ] − [v̂ν ]‖2L2(γ)

.

Together with (12) it provides

lim
ľ→l̂

J(v̌) = J(v̂).

This means that the dual concave functional L(l) is continuous in L2(γ).
Therefore, the subdifferential ∂(−L(l)) of the convex functional (−L(l)) is a
non-empty set for any l ∈ L2(γ). To prove that L(l) is differentiable, it suffices
to verify that ∂(−L(l)) consists of a single element. This element will be the
derivative of the functional L(l) [9].

Let l ∈ L2(γ) be a fixed element and t ∈ ∂(−L(l)). Then, for any m ∈ L2(γ),
it holds

L(m) ≤ L(l) −
∫
γ

t(m − l) dΓ,

i.e.

J(v(m)) −
∫
γ

m[vν(m)] dΓ ≤ J(v(l)) −
∫
γ

l[vν(l)] dΓ −
∫
γ

t(m − l) dΓ

≤ J(v(m)) −
∫
γ

l[vν(m)] dΓ −
∫
γ

t(m − l) dΓ,

∫
γ

[vν(m)](l − m) dΓ +
∫
γ

t(m − l) dΓ ≤ 0,

∫
γ

([vν(m)] − t)(l − m) dΓ ≤ 0.

We set m = l − βp, β > 0, where p ∈ L2(γ) is an arbitrary function. Then
∫
γ

([vν(l − βp)] − t)βp dΓ ≤ 0 ∀p ∈ L2(γ),

β

∫
γ

([vν(l − βp)] − t)p dΓ ≤ 0,

∫
γ

([vν(l − βp)] − t)p dΓ ≤ 0.
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Passing to the limit as β → 0, we deduce from (12) that t = [vν(l)].

�

Thus, at step (10) we obtain the gradient projection method.
It should be noted that the Uzawa algorithm with the classical Lagrange

functional converges with respect to the primal variable v and its convergence is
ensured only by a sufficiently small step size ρ for the dual variable l, namely if
the step size is chosen according to the rule

0 < ρ <
2

‖κ‖2 ,

where ‖κ‖ is the norm of the trace operator. In general, the value of this norm
is rather difficult to determine.

Using the property of weak lower semicontinuity of the sensitivity functional
[4], we can show that functional M(l) is Gateaux differentiable in L2(γ), and its

derivative ∇M(l) satisfies the Lipschitz condition with constant
1
r
, i.e., for any

l
′
, l

′′ ∈ L2(γ), it holds that

‖∇M(l
′
) − ∇M(l

′′
)‖L2(γ) ≤ 1

r
‖l

′ − l
′′‖L2(γ) ∀ l

′
, l

′′ ∈ L2(γ).

and subdifferential M(l) consists of the single element ∂M(l) = m(l)

m(l) = max{−[uν ],− l

r
} ∀l ∈ L2(γ).

Then the Uzawa algorithm with the modified Lagrange functional can be
described as follows:

find uk ∈ H1
Γ (Ωγ) : M(uk, lk) ≤ M(v, lk) ∀v ∈ H1

Γ (Ωγ), (13)
lk+1 = lk + rm(lk) = (lk − r[uk

ν ])+. (14)

So we obtain the gradient method at the step (14).
Thus, we have shown that the modified Lagrange functionals allow us to

solve a constrained minimization problems of type (6) more efficiently than their
classical analogs. First, they allow proving the theoretical convergence of the
Uzawa algorithm both with respect to the primal and dual variables. Secondly,
to find the second component of the saddle point of the Lagrange functional,
(pure) gradient method is used, which has a more faster convergence rate than
the gradient projection method.

4 Numerical Experiment

For the numerical solution of the problem, we use the finite element method. We
discretize the domain Ωγ with a crack by a nearly uniform triangulation and apply
standard piecewise affine basis functions. In zones of the maximum stress (near
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the crack), the mesh was thickened to improve the accuracy of the numerical solu-
tion. The domain Ωγ was subdivided into 1749882 tetrahedrons with N = 310636
nodes. By h = 0.01 we denote the corresponding mesh size on γ.

As in [1], we assume that a volume load f = 0, the solid occupying the
domain Ωγ is clamped at ΓD and it is loaded by a traction force at Γ±

N . The
remaining part of the boundary of Ω is assumed to be stress-free. The boundary
loading is taken as in Example 2 in [1]

−σ12(u) = −g, σ22(u) = σ32(u) = 0 on Γ±
N ,

Γ+
N = {0.1 < x1 < 1, x2 = 1, 0.6 < x3 < 1},

Γ−
N = {0.1 < x1 < 1, x2 = 1, 0 < x3 < 0.4},

with constant g = 27 MPa, the Young elasticity modulus E = 73000 MPa and
the Poisson coefficient μ = 0.34.

After a suitable discretization of (6) we have the stiffness matrix A = (aij) ∈
R

3N×3N , the column vector of right side F = (fi)T ∈ R
3N , vector t =

(t1, . . . , t3N )T ∈ R
3N of unknowns, an assembling in an appropriate way of the

components of the displacement vector (u1(xm), u2(xm), u3(xm))T at the grid
points xm with m = 1, N , αk = (αk

1 , . . . , α
k
Nγ

), the approximate value of the
dual variable lk. Then the finite-dimensional minimization problem is reduced to
finding the optimal values of ti. For this, we use the generalized Newton method
[13].

Let us introduce the gradient g(t) of the corresponding finite-dimensional
functional

g(t) = At − F + β(t), (15)

where β(t) = (bi)T ∈ R
3N . For convenience, we denote by {i+j }, {i−j }j=1,Nγ

the
numbers of the nodes lying respectively on the upper and lower faces of the
crack. Then

bi = 0, for all i �= {i+j + 2N, i−j + 2N}.

Otherwise, if
λj(t) = αk

j − r(ti+j +2N − ti−
j +2N ),

then

bi+j +2N = −δj(λj(t))+,

bi−
j +2N = δj(λj(t))+.

Here δ = (δj)T ∈ R
Nγ is the vector of coefficients obtained after discretization

of the boundary integral over γ.
The generalized Newton method is applied in the following way:

(1) At the initial step, set t0.
(2) For every m = 0, 1, 2, · · · calculate

tm+1 = tm − (∂g(tm))−1g(tm). (16)
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(3) Check
‖tm+1 − tm‖∞ < εt, εt = 10−12.

Here ∂g(t) is the generalized Jacobian of g(t):

∂g(t) = A + D(t) ,

where D(t) = (dij) ∈ R
3N×3N is a symmetric sparse matrix. If λj(t) > 0, then

matrix D will have nonzero elements:

di+j +2N,i+j +2N = rδj , di+j +2N,i−
j +2N = −rδj ,

di−
j +2N,i−

j +2N = rδj , di−
j +2N,i+j +2N = −rδj .

The components of the dual variable are computed using the formula:

αk+1
j = (αk

j − r(tk
i+j +2N

− tk
i−
j +2N

))+, j = 1, Nγ . (17)

The stop criterion for the Uzawa algorithm has the following form:

‖αk+1 − αk‖∞ < εα, εα = 10−8.

Numerical experiments were conducted on a hybrid computing cluster based
on the OpenPOWER architecture. It should be noted that the generalized New-
ton method is easy and well parallelized and its main computational complexity
consists in finding the inverse matrix. But for large sparse matrices, the matrix
inversion is not efficient, therefore, we can replace (16) with

∂g(tm)zm = −g(tm),

where zm = tm+1 − tm, and solve it using the conjugate gradient method.
The calculations were performed on NVIDIA Tesla P100 GPU using the

cuSPARSE, cuBLAS libraries. This allows to significantly accelerate the speed
of execution compared to the CPU version.

Figure 2 shows the dependence of the number of iterations (17) on the param-
eter r for the classical and modified Lagrange functionals. The experiments show
that with an increase of the parameter r, the number of iterations by dual vari-
able decreases. The number of iterations of both algorithms is almost the same
for relatively small r. But the Uzawa algorithm with the classical Lagrange func-
tional ceases to converge for the values of r > 13000, in contrast to the modified
analog.

Table 1 presents the results of the numerical solution using the modified
Lagrange functional for different values of the parameter r and shows the average
number of iterations (16) for the primal variable and the number of iterations
(17) for the dual variable.
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Table 1. Number of iterations of the Uzawa algorithm with the modified functional.

r iter. by t iter. by α

106 3 223

107 4 29

108 4 8

109 4 4

1010 5 3

=r

Fig. 2. Number of iterations depending on the parameter r.

It can be seen that the generalized Newton method converges in a small
number of iterations and as the parameter r increases, the number of iterations
for the dual variable decreases significantly.

The results of the numerical experiments are presented graphically in Fig. 3.
The graphs show the values of the components of the displacement vector u
and the dual variable l. It can be seen that there is no mutual penetration of
the crack faces and the value of the dual variable is greater than zero at the
points where the crack faces are stuck together. This indicates the presence of
the normal stress in these nodes.

Thus, the numerical calculations confirm that the modified Lagrange func-
tionals make it possible to efficiently solve equilibrium problems for a 3D elastic
body with a planar crack.
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Fig. 3. Displacement and value of the dual variable at the crack.
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Abstract. The use of nonlinear effects in the control of stationary oscil-
lations in nonlinear dynamic systems is considered. To find periodic solu-
tions of corresponding ordinary differential equation systems, an interac-
tive algorithm is used, based on minimizing the solution’s deviation from
the periodic form. The possibility of the system behavior controlling due
to the mutual nonlinear influence of various types of oscillations is con-
sidered. For nonlinear dynamical systems with one and more degrees of
freedom, examples of various types of oscillations control are given.

Keywords: Oscillations control · Nonlinear dynamical systems ·
Evolution of solutions

1 Introduction

The mathematical apparatus of nonlinear dynamical systems is a common tool
in many branches of science: physics, mechanics, oscillation theory, biology, eco-
nomics, and others [1,2].

In constructing of mathematical models that correspond to the initial prob-
lem, various systems of ordinary differential equations are used: conservative and
dissipative, autonomous and non-autonomous, systems with a different number
of degrees of freedom. In such systems, oscillations of various kinds can arise:
forced [3], parametric [4], self-oscillations [5], resonant [6] and non-resonant [7],
chaos [8], nonlinear interaction of various oscillation modes [9].

Mathematical models of dynamic systems have historically gone through sev-
eral stages of development. The first results were obtained using models based
on linear differential equations. Further development of dynamical systems stud-
ies is associated with the analysis of quasi-linear differential equations. Modern
approaches to the analysis of dynamic systems are based on the study of essen-
tial nonlinear systems of differential equations. It should be noted that in the
English-language scientific literature, different variants of terms are used: essen-
tially, strongly, highly nonlinear dynamic system.

From the whole variety of approaches and models, we will consider the deter-
ministic dynamical systems based on ordinary strongly nonlinear differential
equations. We will study the control of various steady-state oscillations in such
c© Springer Nature Switzerland AG 2019
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systems, taking into account the nonlinear interaction of various types of oscil-
lations and the possibility of chaotic solutions in deterministic systems.

As the control object, we will consider not only the amplitude and frequency
of a periodic solution but also its other characteristics, such as components of
Fourier series, stability, solutions evolution under the influence of control actions.

The system parameters and (or) external influence are considered as the
solution control tools. Also, as the solution type control tools, we will consider the
nonlinear effects and nonlinear interaction between oscillations of the different
type in systems with one or more degrees of freedom.

2 Variety of Periodic Solutions in Strongly Nonlinear
Dynamical Systems

We shall consider both stable and unstable periodic solutions x(t) of strongly
nonlinear systems of ordinary differential equations. The external influences, if
they exist, are considered to be periodic with a known period T .

The periodic solutions in the systems under consideration are generated by
various factors. First of all, let us single out autonomous and non-autonomous
systems in which there are periodic solutions that are different in their nature.

2.1 Autonomous Systems

For autonomous systems without external influences, the oscillation period is
determined by the system properties, this period is not known in advance. This
type of periodic solution is called self-oscillation (auto-oscillation, self-excited
vibration).

For a nonlinear system of ordinary differential equations in the form

dxi

dt
= Xi(x1(t), x2(t), ..., xn(t)), i = 1, 2, 3, ..., n, (1)

where Xi(x1(t), x2(t), ..., xn(t)), i = 1, 2, 3, ..., n are known functions of their
arguments, explicitly time-independent, we are looking for periodic solution
xi(t) = xi(t + T )(i = 1, 2, 3, ..., n), T being an unknown period.

2.2 Non-autonomous Systems

For a nonlinear system of ordinary differential equations in the form

dxi(t)
dt

= Xi(x1(t), x2(t), ..., xn(t), t), i = 1, 2, 3, ..., n, (2)

where Xi(x1(t), x2(t), ..., xn(t), t) are known functions of their arguments and

Xi(x1(t), x2(t), ..., xn(t), t) = Xi(x1(t), x2(t), ..., xn(t), t + T ),
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T is a known period, we are looking for one or more periodic solutions xi(t) with
period kT :

xi(t) = xi(t + kT )(k - given number, k = 1, 2, ..., k < ∞).

In this variant, the rational choice of the solution’s period multiplicity k
is of great importance. In case of an unsuccessful choice k, the user has the
option to change its value interactively. After determining the appropriate initial
conditions (Y1, Y2, ..., Yn), the periodic solution is computed numerically for one
period kT .

For non-autonomous systems, the solution period is related to the period
of the external influence. The simplest form of the periodic solution, which is
present in linear, quasilinear, and highly nonlinear models, has a period coincid-
ing with the external influence one.

But in nonlinear systems, the occurrence of ultraharmonic oscillations is pos-
sible, when the solution period Ts is less than the period of the external influence
T and is determined by the relation Ts = T/m,m = 1, 2, 3, ...,m < ∞.

There is also a possibility of the subharmonic oscillations occurrence, when
the solution period Ts is longer than the period of the external influence T :
Ts = T ∗ k, k = 1, 2, 3, ..., k < ∞.

And, finally, sub-ultraharmonic oscillations may arise when the solution’s
period Ts is related to the period of the external influence T by the relation
Ts = k ∗ T/m, k = 1, 2, 3, ..., k < ∞,m = 1, 2, 3, ...,m < ∞.

Let’s consider an example. We fix k = 12,m = 1 (see Fig. 1). In this case, the
existence of solutions with the periods T, 2T, 3T, 4T, 6T, 12T is possible. How-
ever, the solutions of other periods (5T, 7T, 8T, 9T, 10T, 11T and all solutions for
k > 12) which may exist at such fixed values of k = 12 and m = 1 cannot be
found. To find them, the appropriate values k and m should be selected. This
problem is caused by the nonlinearity of the system. Note that all ultraharmonic
periodic solutions, if exist, naturally correspond to the periods T, 2T, 3T, ..., and
to find these ultraharmonics solutions there is no need in choosing of the appro-
priate solution’s period.

Note also that different types of external influences in non-autonomous sys-
tems lead to the emergence of the steady oscillations of different nature, such as
forced, parametric, and, possibly, to their combinations.

Finally, there may be an external periodic influence on the system, where
self-oscillation are possible. In this case, a combination of forced, parametric and
self-oscillations can be considered. The solution can have both a period as close
to the period of self-oscillations as well as a period associated with the external
influence. When changing the system’s parameters and (or) the external periodic
influence, the evolution of solutions may include bifurcations, the transition from
stable states to unstable regimes and vice versa, the appearance of solutions with
different periods. In the absence of stable periodic solutions, a strange attractor
is realized in a strongly nonlinear deterministic dynamical system.

For nonlinear dynamical systems with one degree of freedom, the interaction
of various types of oscillations - forced, parametric, self-oscillation, is possible.
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Fig. 1. Subharmonic solutions of different periods

For nonlinear dynamic systems with several degrees of freedom, the possibility
of mutual influence of oscillations corresponding to different degrees of freedom
is added.

3 Search for Periodic Solutions of Strongly Nonlinear
Dynamical Systems

3.1 Finding Periodic Solutions by Minimizing the Discrepancy

The main idea [10] of the method for constructing periodic solutions is to find
the initial conditions Y1 = x1(0), Y2 = x2(0), ..., Yn = xn(0) of the Cauchy
problem corresponding to the periodic solution. This corresponds to minimizing
the distance between the beginning and the end of the trajectory on one solution
period F (Y1, Y2, ..., Yn) (see Fig. 2), where

F (Y1, Y2, ..., Yn) =

√
√
√
√

n∑

i=1

(Yi − xi(kT ))2. (3)

The Cauchy problem for one solution period is solved numerically using stan-
dard programs with a controlled error. Given a limited time interval (one period),
the solution’s computation in one period is realized with high accuracy. It is
obvious that for a periodic solution F (Y1, Y2, ..., Yn) = 0.

To determine the initial conditions corresponding to the periodic solution
Y1, Y2, ..., Yn, one can use optimization algorithms [11] to solve the problem:

F (Y1, Y2, ..., Yn) → min (4)

3.2 Finding Periodic Solutions by Solving a System of Nonlinear
Algebraic Equations

The algorithm of constructing periodic solutions used in this work has two vari-
eties: one for autonomous and another for non-autonomous systems of ordinary
differential equations.
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Fig. 2. Finding a periodic solution

For the autonomous system (1), in which the right side does not depend
explicitly on time t, we can use the substitution t = t1 + c to choose the point
t = 0 in such a way that the condition Yn = 0 is satisfied. In this case, we seek the
solution period T and the (n−1) initial condition Y1, Y2, ..., Yn−1, corresponding
to the T− periodic solution. These initial conditions Y1, Y2, ..., Yn−1 and solution
period T can be found from a nonlinear algebraic equation system in the form

{

Yi = xi(T ),
xn(T ) = 0

i = 1, 2, ..., n − 1. (5)

To solve the system of nonlinear algebraic equations (5), one can use Newton’s
method, realized in an interactive form [10,12]. Partial derivatives in the software
implementation of the Newton method are determined numerically.

For non-autonomous systems of ordinary differential equations, we solve a
system of nonlinear algebraic equations of the form [10]

Yi = xi(kT ), i = 1, 2, ..., n. (6)

Note that the functions xi(kT ), i = 1, 2, ..., n are not written analytically,
but are computed at each step using the Cauchy problem’s numerical solution
on one period of the desired solution. Also note that the systems (5) and (6)
does not decompose into separate equations.

To calculate stable and unstable periodic solutions of various types and
periods, an interactive algorithm [10,12] based on finding the initial conditions
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corresponding to different periodic solutions is used. Thus, a unified approach
has been implemented to construct periodic solutions of fundamentally different
(autonomous and non-autonomous) dynamical systems. The interactive form of
organizing the computational procedure allows the user to track the evolution
of solutions that can not be traced automatically, for example, in the bifurca-
tion point area. Also, the user can interactively modify the algorithm to find a
solution in the case when the convergence is not guaranteed. To find the initial
conditions corresponding to the periodic solution, we use Newton’s method for
solving a nonlinear system of algebraic equations (5) or (6) (or an optimization
procedure [11] for (4)). After determining the appropriate initial conditions, the
periodic solution is computed numerically in one period.

3.3 Fourier Analysis of Periodic Solutions

Given that we investigate periodic solutions, it is natural to consider their Fourier
series decomposition:

xi(t) =
a0

2
+

N∑

j=1

[aj cos(jt) + bj sin(jt)]. (7)

Initially, periodic solutions for essentially nonlinear systems of ordinary dif-
ferential equations were sought in the form of the Fourier series long segments
(7) [3]. Using the Galerkin procedure, the problem was reduced to a system of
nonlinear algebraic equations. Even in a dynamical system with one degree of
freedom, the number of the Fourier harmonics N in the solution decomposi-
tion (7) to achieve the required accuracy [13] was about hundreds. The required
number of harmonics N was determined by the nonlinearity level of the sys-
tem. After applying the Galerkin procedure, the system of nonlinear algebraic
equations for determining the coefficients of the Fourier series also had the cor-
responding dimension of hundreds of equations. Even for solving one particular
problem for a dynamic system with one degree of freedom, it was necessary to
overcome large computational problems [3].

The approach used in this paper to find periodic solutions for strongly non-
linear systems of ordinary differential equations is fundamentally different. Thus,
for example, the dimension of nonlinear algebraic equations system in the form
(6) for a non-autonomous system or (5) for an autonomous system, coincides
with the dimension of the original differential equation system. For a dynamical
system with one degree of freedom, this dimension is two. At the same time,
it is possible to calculate a sufficiently long segment of the Fourier series for
the found periodic solution. The periodic solution is calculated numerically for
several hundred or thousand points in one period. Using the standard Fourier
expansion programs for a periodic function given numerically, we can obtain
the number of Fourier coefficients which is equal to the number of points in the
function approximation. Thus, using standard computational procedures, we can
carry out a full Fourier analysis of periodic solutions for strongly nonlinear differ-
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ential equation systems. This allows us to consider dynamical systems of higher
dimension.

3.4 Stability of Periodic Solutions

In order to analyze the stability of the found kT -periodic solution [10] of the
nonautonomous system (2), we consider the perturbed motion of the system

xi(t) = xp
i (t) + δxi(t), (8)

where xi(t) are the perturbed solutions, xp
i (t) are kT -periodic solutions, δxi(t)

are small variations. Given (8) and (2), we obtain the system in variations:

dδxi(t)
dt

=
n∑

j=1

δxj(t)
∂Xi(x

p
1(t), x

p
2(t), ..., x

p
n(t), t)

∂xj
, i = 1, 2, ..., n. (9)

We note that system (9) can be constructed not numerically, but analyti-
cally, if the analytical expressions for Xi(x1(t), x2(t), ..., xn(t), t) from the initial
system (2) are known. The system (9) is a linear system of ordinary differential
equations with kT -periodic coefficients. According to the Lyapunov theorem, the
periodic solution of the system (2) is asymptotically stable if all the character-
istic exponents λj of the variational system (9) corresponding to this periodic
solution have negative real parts:

Re(λj) < 0, j = 1, 2, ..., n. (10)

In the framework of the used algorithm, it is more convenient to calculate
not Lyapunov’s characteristic exponents λj , but the multipliers ρj .

Given the relationship between λj and ρj

λj =
1

kT
Ln(ρj) =

1
kT

[ln(|ρj | + i(arg(ρj) + 2mπ)], j = 1, 2, ..., n. (11)

Here i is imaginary unit. Thus

Re(λj) < 0 ⇔ |ρj | < 1, j = 1, 2, ..., n. (12)

The multipliers ρj are the eigenvalues of the monodromy matrix M(kT ), where
M(t) is the fundamental solution’s matrix of the system in variations (9). For
the linear system in variations with kT -periodic coefficients (9), the expression
for the fundamental matrix of solutions M(t) is known:

M(t) = Φ(t) exp(Λt), (13)

where Φ(t) is a piecewise smooth kT - periodic nonsingular matrix, Φ(t)(0) = E
(E is a unit matrix, Λ is a constant matrix), all these matrices have the dimension
n*n.

Hence, we see a constructive way for calculating multipliers: fix n initial
conditions in the form of the unit matrix columns, numerically solve the Cauchy
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problem for the system (9) on the interval [0, kT] n times, and fix the columns
of the solution at the terminal point t = kT . This will form the monodromy
matrix M(kT ). And, finally, using standard programs, the eigenvalues of the
monodromy matrix M(kT ) (the multipliers ρj(j = 1, 2, ..., n)) are determined.

In order to analyze the stability of the found T - periodic solution of the
autonomous system (1), we also consider the perturbed motion of the system
(1) in the form (8) and in this case xp

i (t) are T -periodic solutions. In this variant,
the variational system has the form:

dδxi(t)
dt

=
n∑

j=1

δxj(t)
∂Xi(x

p
1(t), x

p
2(t), ..., x

p
n(t))

∂xj
, i = 1, 2, ..., n. (14)

If the initial autonomous system (1) has a nontrivial T -periodic solution xi(t),
then the corresponding system in variations (14) is a linear periodic system and
at least one of its characteristic exponents is λm = 0 (corresponding multipliers
ρm = 1.) According to the Andronov-Witt theorem, the periodic solution of the
autonomous system (1) is asymptotically stable by Lyapunov if other charac-
teristic exponents have negative real parts Re(λj) < 0, j = 1, 2, ..., n, (j �= m)
(or multipliers modules |ρj | < 1, j = 1, 2, ..., n, (j �= m)). The multipliers for
the system of variations (14) corresponding to the autonomous system (1) are
calculated in a similar way to the nonautonomous variant (2), (9). Thus, despite
the use of various theorems for analyzing the stability of autonomous and non-
autonomous systems, the algorithms for these variants are similar.

4 Strongly Nonlinear Dynamical Systems. The Use
of Nonlinear Effects to Control Oscillations

Various nonlinear effects associated with the oscillations of strongly nonlinear
dynamical systems are known [14]. In this section, we give some examples of
oscillation control using nonlinear effects.

4.1 Oscillations of a Strongly Nonlinear System with Two Degrees
of Freedom

Consider a two-dimensional nonlinear vibration isolation system (see Fig. 3). We
will consider the motion of a protected object with two degrees of freedom -
along the x axis and its rotation around the center of mass C. In general, the
vibration isolation system can be asymmetric, that is, the characteristics of the
nonlinear springs F1(x, dx

dt ) and F2(x, dx
dt ) may be different, the distances from

the center of mass C to the spring attachment points d1 and d2 may also be
different.

The protected object is subject to the influence of external periodic force
W (t) = W (t + T ), T - known period. The dynamic equations of this system
have the form:

{

md2x(t)
dt2 + F1(x(t) − d1ϕ(t)) + F2(x(t) + d2ϕ(t)) = W (t),

J d2ϕ(t)
dt2 − d1F1(x(t) − d1ϕ(t)) + d2F2(x(t) + d2ϕ(t)) = 0.

(15)
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Fig. 3. Two-dimensional asymmetric nonlinear vibration isolation system

Here m is the mass of the protected object, J is its moment of inertia about
the center of mass C, x(t) is the center of mass’s deviation from the equilibrium
position, ϕ(t) is rotation’s angle around the center of mass C. The motions along
the y axis are not considered. Without the loss of generality, in the computations
we set ⎧

⎪⎨

⎪⎩

d1 = d2 = d,

F1(x, dx
dt ) = F2(x) = cx + γx3 + bdx

dt ,

W (t) = W0 sin(ωt).
(16)

We note that these assumptions do not follow from the method used to find the
periodic solutions, but they are adopted for a clearer identification of nonlinear
effects. We also note that if conditions (16) are satisfied, the system (15) becomes
symmetric and it can be represented in the following form:

{

md2x(t)
dt2 + 2cx(t) + 2γx3(t) + 6γd2x(t)ϕ2(t) + 2bdx(t)

dt = W0 sin(ωt),

J d2ϕ(t)
dt2 + 2d2cϕ(t) + 2d4γϕ3(t) + 6d2γx2(t)ϕ(t) + 2d2bdϕ(t)

dt = 0.
(17)

The corresponding system in variations has the form:
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

md2δx(t)
dt2 + 2cδx(t) + 6γx2(t)δx(t)+

6γd2ϕ2(t)δx(t) + 12γd2x(t)ϕ(t)δϕ(t) + 2b(dδx(t)
dt ) = 0,

J d2δϕ(t)
dt2 + 2d2cδϕ(t) + 6d4γϕ2(t)δϕ(t)+

12d2γx(t)ϕ(t)δx(t) + 6d2γx2(t)δϕ(t) + 2d2bdδϕ(t)
dt = 0,

(18)

where δx(t), δϕ(t) are small variations.
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We note that the oscillations of rotation ϕ(t) around the center of mass C are
parametric, and the parametric influence is the function x(t), which is related
to the forced oscillations of the object along the x axis.

Using the above algorithm for constructing and analyzing the stability
of periodic solutions for a nonlinear model of vibration isolation (17), (18),
amplitude-frequency characteristics were calculated. Here are the results (see
Fig. 4) obtained with m = 1; c = 1; d = 1; γ = 1; W0 = 1; J = 3; b = 0, 2;
T = 2π/ω.

A non-trivial stable periodic solution for the function ϕ(t) is found in the
frequency range 0, 94 < ω < 1, 15. In this frequency range, the oscillation
amplitude in the direction of the x axis decreases, that is, the energy is redis-
tributed between different modes of oscillation. In the same frequency range
0, 94 < ω < 1, 15., an another unstable trivial solution ϕ(t) ≡ 0 is found, and
the amplitude of the unstable solution x(t) does not decrease (it is marked by
the dashed line in Fig. 4). In the range of higher frequencies (2 � ω � 3), a
stable solution with a smaller amplitude for oscillations along the x-axis without
a rotation around the center of mass was detected. Such solutions are character-
istic for nonlinear systems, and in the simplest form are found in the classical
Duffing equation with one degree of freedom.

For physical reasons, it can be expected that stable parametric oscillations of
a nonzero amplitude ϕ(t) � 0 may not occur with a smaller value of the moment
of inertia J (or at a greater dissipation b). The numerical experiment confirmed
these assumptions. For J = 1, the trivial solution ϕ(t) ≡ 0, associated with
rotation around the center of mass C is stable over the entire frequency range.
Rotation does not arise, the system with two degrees of freedom behaves like a
one-dimensional system.

Note that the discussed results are obtained from the symmetric system. It
can be expected that for the asymmetric system (d1 �= d2, F1(x) �= F2(x)) the
mutual influence of oscillation different forms will be stronger.

A similar effect was observed in the study of a more complex model of forced
strongly nonlinear oscillations with the dynamic jumping of a beam that lost
its static stability [9]. In this case, the interaction of several forms and modes
of oscillations was also observed, leading to a decrease in the amplitude of the
basic form’s oscillations. Thus, we can use the observed effect of nonlinear inter-
action of various forms and modes of oscillations in a multidimensional nonlin-
ear dynamical system for controlling its oscillations. This feature complements
the traditional methods of controlling oscillations in multidimensional nonlinear
dynamic systems.

We note the resulting reduction of the amplitude oscillations. This effect
due to the mutual influence of different types of oscillations. A similar effect
may appear in a multidimensional linear dynamic system (for example, a linear
dynamic vibration absorber).
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Fig. 4. Amplitude-frequency characteristic of two-dimensional nonlinear vibration iso-
lation system

4.2 Control of Oscillations in a One-Dimensional Dynamic
System Due to the Nonlinear Interaction of Different Types
of Oscillations

Earlier [10] it was found that in a one-dimensional dynamic system of the form

d2x(t)
dt2

+ [ω2
0 + Psin(ωt)]x(t) + b

dx(t)
dt

+ γx3(t) = W0sin(ωt) (19)

it is possible to reduce the total amplitude of the oscillations due to the non-
linear interaction of forced and parametric oscillations. In this system, x(t) is
the required periodic function of time t, Psin(ωt) corresponds to a parametric
influence with amplitude P and frequency ω, W0sin(ωt) corresponds to a simul-
taneous external influence with the same frequency ω and amplitude W0, ω0 is
the natural frequency of the corresponding linear system, γ is the coefficient of
nonlinearity, b is dissipation coefficient. The solution’s period Ts may correspond
to forced or parametric oscillations.

We also note that the interaction phenomenon of forced and parametric oscil-
lations in a nonlinear system can be used to control the oscillations of the systems
under consideration. The control tools are the amplitudes of parametric (P ) and
(or) external (W0) influences.
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Note that this effect is fundamentally impossible in a linear one-dimensional
dynamic system, in which solutions are formed in accordance with the superpo-
sition principle.

We consider a generalization of this problem when the interactions of forced,
parametric and self-oscillations are possible in a nonlinear dynamical system.
Consider a nonlinear dynamical system with one degree of freedom in the form

d2x(t)
dt2

+ [ω2
0 + Psin(ωt)]x(t) + b

dx(t)
dt

+ γx3(t)

= W0sin(ωt) + s1
dx(t)

dt
− s3(

dx(t)
dt

)3.
(20)

Simultaneous existence of the forced oscillations (excited by external influ-
ence W0sin(ωt), parametric oscillations (excited by periodic influence Psin(ωt),
and self-oscillations (determined by components s1

dx(t)
dt and s3(

dx(t)
dt )3) is possi-

ble in this system. Such equations arise in the electromechanical systems model-
ing. Various combinations of stable and unstable forced and parametric oscilla-
tions, as well as self-oscillations, may occur depending on the system parameters
values. For example, in Fig. 5 the zones corresponding mainly to forced and to
parametric oscillations are given.

Fig. 5. Zones of mostly forced and predominantly parametric stable oscillations in the
self-oscillating system with forced and parametric external influences
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In this one-dimensional nonlinear system, the same paradoxical effect of
resulting oscillation amplitude reducing with the external influence amplitude
W0 increase (with other unchanged parameters of the system) is noticed. This
phenomenon can also be used to control the oscillations. In this case the control
tools are the amplitudes of parametric (P ) and (or) external (W0) influences
and (or) self-oscillations parameters (s1 and s3). Thus, we can use the effects of
interaction between different types of oscillations in a nonlinear dynamic system
with one degree of freedom to control the oscillations.

5 Conclusion

For the analysis and control of oscillations in nonlinear dynamical systems, the
numerical-analytical method for the search and the stability analysis of periodic
solutions for autonomous and non-autonomous strongly nonlinear systems of
ordinary differential equations is presented. This method implements a unified
approach to the study of various oscillations (forced, parametric, self-oscillation,
resonant and non-resonant, chaos, nonlinear interaction of different oscillation
modes and types) for strongly nonlinear multidimensional dynamical systems.

On the basis of this approach, new methods for control of oscillations in
such systems based on the nonlinear interaction between different types of oscil-
lations are proposed. These results complement the traditional for dynamical
systems methods in which the system’s parameters and (or) external influences
are considered as the controlling parameters.
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Abstract. In article the risk management algorithm in Gaussian
stochastic system is describes. The model risk management represents
an optimization problem. The risk management algorithm is realized on
the basis of the barrier functions method. The features of this nonlinear
programming problem are not the convexity of the accessible solution
region and the presence of stochastic restrictions on the required risk.
The software implementation of the algorithm in the form of a separate
module is performed. Using the Monte Carlo statistical test method,
the algorithm was investigated. The algorithm showed stable control.
Its efficiency is proved. Results of a research are presented in article.
Recommendations on practical application of the algorithm are given.
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1 Introduction

The development of adequate techniques of monitoring and risk management
for complex systems is immediate problem. Usually, risk modeling comes down
to selection of dangerous outcomes, the quantitative assignment of consequences
from their occurrence and estimation of the probabilities of these outcomes [1].
The contribution of the components of a multidimensional system is combined
and the one-dimensional system is considered as a random variable [2–5]. For
relatively simple objects for which it is possible to specify a priori all danger-
ous outcomes in the presence of statistical information or expert estimates on
chances of their emergence in general, this approach yields the results acceptable
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in practice. Usually it is possible to accumulate sufficient statistics to assess the
probability of occurrence of dangerous outcomes, and the form of the relation-
ship between the elements of the system is quite simple and can be described, for
example, with the help of logical-probabilistic risk models [6] in the framework
of the theory of structurally complex systems [7]. However, complex systems,
for example in the economy, society, health care, etc., as a rule, are multidimen-
sional. Its functioning is largely stochastic in nature, and at them it is often
possible to allocate tens of various risk factors [8]. It is usually not possible
to single out all these dangerous outcomes. In [9] the approach to modeling of
risk management procedures of multidimensional stochastic systems based on
simultaneous use of two submodels – system effectiveness assessment model and
the risk assessment model of its functioning is described. Risk management is
reduced to solving the problem of nonlinear programming, which allows finding
the optimal management strategy in terms of efficiency and sustainability. How-
ever, this approach is difficult to implement in practice, since the interpretation
of the concept “system efficiency” is not disclosed and is, as the authors of the
article indicate, ambiguous. Secondly, it is not clear how to solve the multicri-
teria problem associated with the simultaneous use of two criteria - efficiency
and risk. The risk model of multidimensional stochastic systems according to
which the system is presented in the form of a random vector with mutually
correlative components is offered in [10]. Instead of the conventional selection of
concrete dangerous situations we will set geometrical areas of failures. Its can
look arbitrarily depending on a specific objective, and are determined on the
basis of the available a priori information. In many cases larger and improbable
deviations of selective values of any of the risk factors relative to the best safety
values are dangerous situations. This model was tested in relation to the tasks
of risk analysis in the field of energy, regional economic development and popu-
lation health [11,15]. The purpose of the article is to describe and study the risk
management algorithm based on this approach.

2 Model Risk Management in Gaussian Stochastic
Systems

Let’s present m-dimensional Gaussian stochastic system S in the form of a ran-
dom vector of X with a probability density px(x).For the Gaussian random vec-
tor X = (X1,X2, ...,Xm), the numerical characteristics are the covariance matrix
Σ = {σij}m×m and the expectations vector a = (a1, a2, .., am)T . According to
offered model we will exercise risk management of a Gaussian system by means
of the matrix of Σ and the vector of a. At the risk management it is possible to
solve two problems [12]:

1. Risk minimization when performing restrictions for Σ and a.
2. Reaching an acceptable risk level at minimum(minimal) change of Σ and a.

The first task is to reach a minimum risk level. However for its effective use
it is required to set rather “hard” restrictions for Σ and a, that is not always
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possible. Too general restrictions lead to the decisions which are a little realized
in practice. Therefore we will consider the second task – reaching acceptable risk
of r* at minimum(minimal) changes of numerical characteristics of Gaussian
system X0:{

f(a,Σ) =
∑m

j=1

∑m
k=j(σjk − σ0

jk)
2 +

∑m
i=1(ai − a0

i )
2 → min

a,Σ
,

r(X) = r∗, Σ ∈ G(Σ), a ∈ H(a).
(1)

The risk in (1) is described as [13]:

r(X) =
∫ ∫

...

Rm

∫
g(x)px(x)dx, (2)

where g(x) is a function of consequences from dangerous situations (risk func-
tion). Varying g(x) in (2) it is possible to receive various estimates of risk [12].

As it was stated above, under dangerous situations it is considered larger
and improbable deviations of selective values of any of risk factors concerning
the values, best in sense of safety. For definiteness, in (2) we will accept g(x) =
1 ∀x ∈ D and g(x) = 0 ∀x /∈ D, then r(X) = P (X ∈ D), i.e. the risk level
will be equal to failure probability. Here D is the area of dangerous situations
(failures)

D =

⎧⎨
⎩x = (x1, x2, . . . , xm) :

m∑
j=1

(xj − a′
j)

2

d2j
≥ 1

⎫⎬
⎭ , a′

j =
a−
j + a+

j

2
.

Then the problem of reaching acceptable risk of r* (1) will be rewritten
taking into account restrictions:

m∑
j=1

m∑
k=j

(
σjk − σ0

jk

)2
+

m∑
i=1

(ai − a∗
i )

2 → min
a,Σ

(3)

at restrictions⎧⎪⎪⎨
⎪⎪⎩

σjjσkk > σ2
jk, σjk = σkj , σjj > 0, 1 ≤ j, k ≤ m,

σ−
jk < σjk < σ+

jk, 1 ≤ j, k ≤ m,

a−
i < ai < a+

i , 1 ≤ i ≤ m,
ptarg = p∗(Σ,a) + ε.

Let’s note features of a task (3).
First, there is a stochastic restriction for the required risk ptarg = p∗(Σ,a)+ε.

It is bound to the fact that probability p∗(Σ,a) – isn’t calculated analytically.
Therefore this condition is checked separately.

Secondly, generally the area of admissible decisions isn’t convex. It results in
dependence of efficiency of the solution algorithm of the task (3) on the choice
of the initial point.

Thirdly, the number of managing variables in (3) grows at a quadratic rate:
m(m + 3)/2.
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3 Description of the Risk Management Algorithm

The solution algorithm of the task (3) is based on a barrier functions method
[13] and consists of 4 steps:

Step 1. Let’s set initial values of elements of the covariance matrix Σ0 and
the expectations vector of a0, bk ≥ 0, C > 1, ε > 0, ptarg.

Step 2. Let’s make support function

F (Σ,a, bk) = f(Σ, a) + P (Σ,a, bk),

where P (Σ, a, bk) – penalty function, F (Σ, a, bk) – support function.
The inverse function is selected as a penalty function: P (Σ, a, bk) =

bk
∑m

j=1
1

tj(Σ, a) , where bk – the positive value chosen randomly.
Then taking into account all restrictions the support function will take the

form:

F (Σ, a, bk) =
m∑
j=1

m∑
k=j

(
σjk − σ0

jk

)2
+

m∑
i=1

(
ai − a0

i

)2

+ bk ·
⎛
⎝ m∑

j=1

1
σjj

+
m∑
j=1

m∑
k=j

1
σjjσkk − σ2

jk

+
m∑
j=1

m∑
k=j

1
σ−
jk − σjk

+
m∑
j=1

m∑
k=j

1
σjk − σ+

jk

+
m∑
i=1

1
a−
i − ai

+
m∑
i=1

1
ai − a+

j

)
.

Step 3. Let’s find minimum point xk of the function F (Σ, a, bk) by means
of the unconstrained optimization method based on the Nelder–Mead method
[13] (see Fig. 1).

Step 4. Let’s check the fulfillment of the condition of the end:

(a) if
∣∣P (Σk, ak, bk)

∣∣ ≤ ε, process of searching is completed: Σk = Σ∗, ak = a∗,
P (Σk,ak) = p∗(Σ∗, a∗);

(b) if
∣∣P (Σk, ak, bk)

∣∣ > ε, put bk+1 = bk
C , Σk+1 = Σ∗, ak+1 = a∗, k = k + 1,

and proceed to step 2.

The Init2 function searches for the ideal point xideal and vertices of a poly-
hedron. The point at which the values of the elements of the covariance matrix
Σ are close to or equal to zero, and the values of the expectation vector a – the
best values specified earlier is chosen as the ideal point of the ideal. Changing
values of the elements of Σ, a and, calculating value p*, at some moment the
value of the probability of p* becomes equal ptarg. Infinitude number of such
sets of values of the elements Σ and a form m-dimensional convex figure on
which surface probability is equal ptarg. In the center of a figure the point xideal
with probability pideal = 0.

The BWPoint function carries out calculation of weight coefficients of points
to find minimum and maximum values. Then the “best” point of xl and “worst”



566 A. A. Surina and A. N. Tyrsin

xh points where F (xl) = min
k=1,...,m+1

F (xk) and F (xh) = max
k=1,...,m+1

F (xk), and

also the point of xs in which the second largest is reached after maximal value
of function is chosen.

Fig. 1. The block diagram of the DefPol procedure for the modified Nelder–Mead
method.

The gravCenter function finds “barycenter” of all vertices of a polyhedron
except for the “worst” xh:

xm+2 =
1

m + 1

(
m+2∑
k=1

xk − xh

)
=

1
m + 1

m+2∑
k = 1
k �= h

xk.
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The wReflect function carries out operation of reflection of the “worst” vertex
xh through the barycenter xm+2: xm+3 = xm+2 − xh in case

θ =

{
1

m + 1

m+2∑
k=1

[
F (xk) − F (xm+2)

]2} 1
2

> ε.

Let’s receive the vector xk = xm+3 − xm+2. Otherwise the algorithm leaves the
DefPol procedure, having kept the found values.

The wReplace function carries out operation of replacement of vertices after
the reflection operation.

Further carries out transition to the BWPoint function described earlier.
After the values satisfying (3) have been found, the stochastic restriction

on the required risk is checked. If the found values meet a condition, then the
algorithm finishes work and removes results. Otherwise, the barrier functions
method starts the work anew.

Let’s review the following example for check of work of the algorithm.

Example 1. Let’s set initial values of elements of the covariance matrix Σ and
expectations vector of a (for computing experiments of values of elements of the
Σ, a and area of unfavorable outcomes of D are taken from [15], the calculations
are executed by means of the program risk model calc.xlsm [16]):

Σ =

⎛
⎝397.053 27.243 3.094

27.243 18.357 0.400
3.094 0.400 1.353

⎞
⎠ ,a =

⎛
⎝133.850

25.889
5.162

⎞
⎠ , P0 = 0.99, bk = 1,

C > 1, ε1 = 0.05.

The initial point was selected at the boundary of area D. The decision is
considered found if the target risk value ptarg and for the found risk value of P* :
|P ∗ − ptarg| ≤ ε1.

Let’s check work of the algorithm offered earlier for amount of risk factors
of m = 3 on the basis of the given parameters. For this purpose let’s carry out
about 100 tests with initial value of the probability of an unfavorable outcome
of P0 = 0, 99. Let’s show that at the obviously poor value P0 = 0.99 algorithm
is efficient, and allows to achieve an acceptable risk ptarg at minimal changes of
numerical characteristics of Gaussian system X0.

Results are given below. The value ptarg changed on 0,1, i.e. ptarg = 0, 9; 0, 8;
. . . ; 0,1 and the last the value ptarg = 0, 01 was chosen:

ptarg = 0.9; P ∗ = 0.867; a =

⎛
⎝134.613

23.843
3.830

⎞
⎠ ; Σ =

⎛
⎝291.892 23.525 5.491

23.525 20.029 0.650
5.491 0.650 1.042

⎞
⎠ ;

f∗(a, Σ) = 0.241,
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ptarg = 0.8; P ∗ = 0.803; a =

⎛
⎝135.798

23.719
3.435

⎞
⎠ ; Σ =

⎛
⎝326.300 17.878 5.347

17.878 14.070 1.215
5.347 1.215 0.882

⎞
⎠ ;

f∗(a, Σ) = 0.472,

ptarg = 0.7; P ∗ = 0.707; a =

⎛
⎝134.066

22.024
3.468

⎞
⎠ ; Σ =

⎛
⎝314.673 25.512 6.570

25.512 15.491 1.207
6.570 1.207 0.882

⎞
⎠ ;

f∗(a, Σ) = 0.453,

ptarg = 0.6; P ∗ = 0.606; a =

⎛
⎝124.552

23.263
3.311

⎞
⎠ ; Σ =

⎛
⎝297.345 6.971 6.304

6.971 12.173 0.822
6.304 10.822 0.705

⎞
⎠ ;

f∗(a,Σ) = 0.722,

ptarg = 0.5; P ∗ = 0.544; a =

⎛
⎝127.645

21, 910
3, 087

⎞
⎠ ; Σ =

⎛
⎝241.987 12.697 1.759

12.697 12.439 1.292
1.759 1.292 0.992

⎞
⎠ ;

f∗(a, Σ) = 0.605,

ptarg = 0.4; P ∗ = 0.400; a =

⎛
⎝121.706

21.965
3.180

⎞
⎠ ; Σ =

⎛
⎝151.527 10.956 1.346

10.956 10.318 0.631
1.346 0.631 0.753

⎞
⎠ ;

f∗(a, Σ) = 0.973,

ptarg = 0.3; P ∗ = 0.302; a =

⎛
⎝121.540

20.675
3.065

⎞
⎠ ; Σ =

⎛
⎝318.736 10.113 4.318

10.113 7.607 0.631
4.318 0.631 0.844

⎞
⎠ ;

f∗(a, Σ) = 0.986,

ptarg = 0.2; P ∗ = 0.207; a =

⎛
⎝112.325

20.960
2.990

⎞
⎠ ; Σ =

⎛
⎝194.454 17.664 3.590

17.664 6.898 0.674
3.590 0.674 0.528

⎞
⎠ ;

f∗(a, Σ) = 1.208,

ptarg = 0.1; P ∗ = 0.100; a =

⎛
⎝111.179

19.902
2.896

⎞
⎠ ; Σ =

⎛
⎝117.745 9.342 0.798

9.342 6.898 0.674
0.978 0.674 0.528

⎞
⎠ ;

f∗(a, Σ) = 1.607,
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ptarg = 0.01; P ∗ = 0.011; a =

⎛
⎝109.351

19.483
2.734

⎞
⎠ ; Σ =

⎛
⎝91.773 1.058 0.674

1.058 2.022 0.167
0.674 0.167 0.294

⎞
⎠ ;

f∗(a, Σ) = 2.389

We see that with decrease of risk, the minimum of target function f∗(a, Σ)
grows.

As it became clear during the test, the algorithm at rather great value of P0

can reach ptarg � P0, however, significant temporary and computing resources
for this purpose are required. In addition it is necessary to investigate an algo-
rithm and to reveal what sample size it is necessary to set and how many
tests to carry out to receive necessary value ptarg with the given accuracy of
calculations ε1.

Let’s note that too sharp decrease in the value ΔP of P0 isn’t enough real-
izable in practice. it is expedient to set it no more ΔP ≤ 0.3.

4 Research of Accuracy of the Risk Management
Algorithm

The greatest difficulties at realization of the risk management algorithm are
caused by existence of stochastic restriction. For estimation of the improper
integral (2) we use the Monte Carlo statistical test method [14]. Let’s conduct
a research of dependence of calculation accuracy on a sample size of M at a
numerical integration and from the number of tests of col. Under accuracy of
calculations we will consider the value of a 95% confidence interval Δptarg for
the calculated values of the required risk value (probability of a unfavorable
outcome) ptarg.

Let’s set two risk factors (m = 2). We will take initial values of elements of
the covariance matrix Σ and expectations vector of a from the results received
in [15] for two risk factors:

Σ =
(

397.053 27.2427
27.2427 18.357

)
,a =

(
133.850
25.889

)
, P0 = 0.732.

We model samples with the number of points of M = 100. For ptarg = 0.7 we
touch values of number of tests col: 10, 20, 50 and 100. For each set M and col we
repeat calculations of 200 times and form a 95% confidence interval, discarding
5 greatest and 5 least values. Further we repeat for ptarg = 0.6; 0.5; ...; 0.1.

Similarly we find accuracy with a 95% confidence interval for M = 100, 1000,
10000, 100000 points. The received results are given in Tables 1 and 2.
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Similar tests are carried out for three (m = 3) and four (m = 4) risk factors.
The initial values of elements of the covariance matrix Σ and expectations vector
of a from the results received in [15] for three and four risk factors respectively:

m = 3 : Σ =

⎛
⎝397.053 27.243 3.094

27.243 18.357 0.400
3.094 0.400 1.353

⎞
⎠ ,a =

⎛
⎝133.85

25.889
5.162

⎞
⎠ , P0 = 0.929;

m = 4 : Σ =

⎛
⎜⎜⎝

397.053 27.243 3.094 2.777
27.243 18.357 0.400 0.291
3.094 0.400 1.353 0.046
2.777 0.291 0.046 0.766

⎞
⎟⎟⎠ ,a =

⎛
⎜⎜⎝

133.850
25.889
5.162
4.919

⎞
⎟⎟⎠ , P0 = 0.978.

Calculation results are given in Tables 3, 4, 5 and 6.
From Tables 1, 2, 3, 4, 5 and 6 we see that:

– for each M with increasing col confidence intervals are decreased,
– for each col the confidence intervals decrease with increasing M.

Thus, accuracy of calculations increases with increase in number of tests of col
and sample size of M for different ptarg. However with increase in number of risk
factors fast increase of computing cost is observed. It does necessary to set for the
given accuracy acceptable col and M values for the purpose of restriction of com-
puting cost. To set the dependence of the calculation accuracy on a sample size
and the number of tests an additional research is needed at the fixed value ptarg.

Let’s fix the value ptarg = 0.5. Let’s change a sample size of M. We find
values of calculation accuracy for risk factors of m = 2. We repeat for col = 20,
50 and 100. Results are given in Table 7 and in Fig. 2.

Let’s record value ptarg = 0, 7 for m = 3 and m = 4 risk factors. That is
change will be that is more rational at the solution of real problems. Calculation
results of accuracy for m = 3 and m = 4 respectively are given in Tables 8 and
9 and Figs. 3 and 4.

Curves in the drawing show how the calculation accuracy changed with
change of a sample size. Values of number of tests in the drawing are composed
in different colors.

On the basis of the data obtained during the researches the regression equa-
tion dependence of calculations accuracy (size of a 95% confidence interval) of
Δptarg on a sample size of M, numbers of tests of col and amount of risk factors
of m were worked out:

ln Δptarg = −3.132 − 2.13 · 10−5M − 0.439 ln col + 0.273m. (4)

The coefficients of the regression Eq. (4) were statistically significant: p-level
of the constant term is equal 3.7 • 10-6, coefficient p-level at variable M is equal
1.4 • 10-10, coefficient p-level at the ln col variable is equal 8.3 • 10-4, coefficient
p-level at variable m is equal 0.0436, the coefficient of determination is equal to
0.663.
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Table 1. Values of 95% confidence inter-
vals for calculated values ptarg for m = 2;
P0 = 0.732 for various values M at varia-
tion of col.

ptarg col

10 20 50 100

M = 100

0,1 0,0255 0,0240 0,0237 0,0168

0,2 0,0270 0,0400 0,0251 0,0245

0,3 0,0360 0,0388 0,0405 0,0312

0,4 0,0325 0,0405 0,0350 0,0289

0,5 0,0325 0,0393 0,0308 0,0249

0,6 0,0325 0,0223 0,0273 0,0219

0,7 0,0315 0,0418 0,0320 0,0247

M = 1000

0,1 0,0233 0,0165 0,0070 0,0058

0,2 0,0244 0,0165 0,0088 0,0062

0,3 0,0297 0,0217 0,0150 0,0136

0,4 0,0269 0,0241 0,0192 0,0180

0,5 0,0257 0,0214 0,0188 0,0155

0,6 0,0219 0,0164 0,0105 0,0083

0,7 0,0304 0,0207 0,0131 0,0076

M = 10000

0,1 0,0075 0,0046 0,0040 0,0028

0,2 0,0063 0,0063 0,0042 0,0033

0,3 0,0129 0,0129 0,0087 0,0069

0,4 0,0180 0,0142 0,0124 0,0059

0,5 0,0164 0,0143 0,0095 0,0043

0,6 0,0066 0,0043 0,0028 0,0023

0,7 0,0131 0,0072 0,0047 0,0035

M = 100000

0,1 0,0030 0,0016 0,0013 0,0011

0,2 0,0033 0,0038 0,0012 0,0006

0,3 0,0076 0,0034 0,0027 0,0012

0,4 0,0069 0,0049 0,0030 0,0018

0,5 0,0052 0,0036 0,0023 0,0013

0,6 0,0027 0,0019 0,0011 0,0008

0,7 0,0032 0,0019 0,0014 0,0011

Table 2. Values of 95% confidence inter-
vals for calculated values ptarg for m = 2;
P0 = 0.732 for various values col at vari-
ation of M.

ptarg M

100 1000 10000 100000

col = 10

0,1 0,0255 0,0233 0,0075 0,0030

0,2 0,0270 0,0244 0,0063 0,0033

0,3 0,0360 0,0297 0,0129 0,0076

0,4 0,0325 0,0269 0,0180 0,0069

0,5 0,0325 0,0257 0,0164 0,0052

0,6 0,0325 0,0219 0,0066 0,0027

0,7 0,0315 0,0304 0,0131 0,0032

col = 20

0,1 0,0240 0,0165 0,0046 0,0016

0,2 0,0400 0,0165 0,0063 0,0038

0,3 0,0388 0,0217 0,0129 0,0034

0,4 0,0405 0,0241 0,0142 0,0049

0,5 0,0393 0,0214 0,0143 0,0036

0,6 0,0223 0,0164 0,0043 0,0019

0,7 0,0418 0,0207 0,0072 0,0019

col = 50

0,1 0,0237 0,0070 0,0040 0,0013

0,2 0,0251 0,0088 0,0042 0,0012

0,3 0,0405 0,0150 0,0087 0,0027

0,4 0,0350 0,0192 0,0124 0,0030

0,5 0,0308 0,0188 0,0095 0,0023

0,6 0,0273 0,0105 0,0028 0,0011

0,7 0,0320 0,0131 0,0047 0,0014

col = 100

0,1 0,0168 0,0058 0,0028 0,0011

0,2 0,0245 0,0062 0,0033 0,0006

0,3 0,0312 0,0136 0,0069 0,0012

0,4 0,0289 0,0180 0,0059 0,0018

0,5 0,0249 0,0155 0,0043 0,0013

0,6 0,0219 0,0083 0,0023 0,0008

0,7 0,0247 0,0076 0,0035 0,0011
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Table 3. Values of 95% confidence inter-
vals for calculated values ptarg for m = 3;
P0 = 0.929 for various values M at varia-
tion of col.

ptarg col

10 20 50 100

M = 100

0,1 0,0210 0,0203 0,0203 0,0179

0,2 0,0345 0,0300 0,0294 0,0259

0,3 0,0465 0,0428 0,0425 0,0321

0,4 0,0500 0,0378 0,0462 0,0282

0,5 0,0505 0,0447 0,0308 0,0349

0,6 0,0555 0,0358 0,0368 0,0307

0,7 0,0315 0,0320 0,0297 0,0240

0,8 0,0200 0,0218 0,0172 0,0112

0,9 0,0240 0,0160 0,0172 0,0130

M = 1000

0,1 0,0184 0,0110 0,0076 0,0055

0,2 0,0257 0,0163 0,0059 0,0045

0,3 0,0304 0,0232 0,0091 0,0062

0,4 0,0297 0,0211 0,0090 0,0070

0,5 0,0343 0,0207 0,0153 0,0090

0,6 0,0294 0,0187 0,0128 0,0090

0,7 0,0230 0,0177 0,0096 0,0055

0,8 0,0119 0,0108 0,0060 0,0062

0,9 0,0146 0,0086 0,0052 0,0056

M = 10000

0,1 0,0073 0,0047 0,0035 0,0017

0,2 0,0039 0,0035 0,0019 0,0015

0,3 0,0079 0,0070 0,0040 0,0030

0,4 0,0125 0,0062 0,0049 0,0049

0,5 0,0107 0,0074 0,0064 0,0033

0,6 0,0112 0,0080 0,0052 0,0036

0,7 0,0096 0,0068 0,0061 0,0021

0,8 0,0052 0,0037 0,0028 0,0027

0,9 0,0048 0,0047 0,0042 0,0029

M = 100000

0,1 0,0036 0,0014 0,0009 0,0005

0,2 0,0017 0,0011 0,0008 0,0005

0,3 0,0035 0,0021 0,0013 0,0007

0,4 0,0044 0,0032 0,0019 0,0015

0,5 0,0042 0,0027 0,0018 0,0013

0,6 0,0039 0,0023 0,0013 0,0009

0,7 0,0057 0,0026 0,0010 0,0007

0,8 0,0022 0,0021 0,0012 0,0005

0,9 0,0026 0,0029 0,0017 0,0010

Table 4. Values of 95% confidence inter-
vals for calculated values ptarg for m = 3;
P0 = 0.929 for various values col at vari-
ation of M.

ptarg M

100 1000 10000 100000

col = 10

0,1 0,0210 0,0184 0,0073 0,0036

0,2 0,0345 0,0257 0,0039 0,0017

0,3 0,0465 0,0304 0,0079 0,0035

0,4 0,0500 0,0297 0,0125 0,0044

0,5 0,0505 0,0343 0,0107 0,0042

0,6 0,0555 0,0294 0,0112 0,0039

0,7 0,0315 0,0230 0,0096 0,0057

0,8 0,0200 0,0119 0,0052 0,0022

0,9 0,0240 0,0146 0,0048 0,0026

col = 20

0,1 0,0203 0,0110 0,0047 0,0014

0,2 0,0300 0,0163 0,0035 0,0011

0,3 0,0428 0,0232 0,0070 0,0021

0,4 0,0378 0,0211 0,0062 0,0032

0,5 0,0447 0,0207 0,0074 0,0027

0,6 0,0358 0,0187 0,0080 0,0023

0,7 0,0320 0,0177 0,0068 0,0026

0,8 0,0218 0,0108 0,0037 0,0021

0,9 0,0160 0,0086 0,0047 0,0029

col = 50

0,1 0,0203 0,0076 0,0035 0,0009

0,2 0,0294 0,0059 0,0019 0,0008

0,3 0,0425 0,0091 0,0040 0,0013

0,4 0,0462 0,0090 0,0049 0,0019

0,5 0,0308 0,0153 0,0064 0,0018

0,6 0,0368 0,0128 0,0052 0,0013

0,7 0,0297 0,0096 0,0061 0,0010

0,8 0,0172 0,0060 0,0028 0,0012

0,9 0,0172 0,0052 0,0042 0,0017

col = 100

0,1 0,0179 0,0055 0,0017 0,0005

0,2 0,0259 0,0045 0,0015 0,0005

0,3 0,0321 0,0062 0,0030 0,0007

0,4 0,0282 0,0070 0,0049 0,0015

0,5 0,0349 0,0090 0,0033 0,0013

0,6 0,0307 0,0090 0,0036 0,0009

0,7 0,0240 0,0055 0,0021 0,0007

0,8 0,0112 0,0062 0,0027 0,0005

0,9 0,0130 0,0056 0,0029 0,0010
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Table 5. Values of 95% confidence inter-
vals for calculated values ptarg for m = 4;
P0 = 0.978 for various values M at varia-
tion of col.

ptarg col

10 20 50 100

M = 100

0,1 0,0780 0,0920 0,0546 0,0319

0,2 0,1265 0,1093 0,0941 0,0527

0,3 0,1505 0,1178 0,0775 0,0625

0,4 0,1875 0,1448 0,1329 0,1130

0,5 0,1705 0,1605 0,1428 0,1113

0,6 0,1485 0,1448 0,1304 0,0807

0,7 0,1685 0,1503 0,0762 0,0797

0,8 0,1415 0,1405 0,1121 0,0319

0,9 0,0865 0,0787 0,0605 0,0534

M = 1000

0,1 0,0298 0,0179 0,0092 0,0071

0,2 0,0464 0,0254 0,0126 0,0246

0,3 0,0788 0,0435 0,0168 0,0105

0,4 0,0553 0,0342 0,0210 0,0228

0,5 0,0565 0,0312 0,0181 0,0087

0,6 0,0480 0,0417 0,0264 0,0131

0,7 0,0843 0,0439 0,0150 0,0127

0,8 0,0459 0,0259 0,0152 0,0100

0,9 0,0269 0,0290 0,0186 0,0101

M = 10000

0,1 0,0086 0,0057 0,0044 0,0071

0,2 0,0108 0,0110 0,0058 0,0139

0,3 0,0452 0,0415 0,0052 0,0038

0,4 0,0580 0,0429 0,0104 0,0061

0,5 0,0194 0,0100 0,0069 0,0087

0,6 0,0203 0,0174 0,0223 0,0082

0,7 0,0167 0,0122 0,0079 0,0093

0,8 0,0322 0,0077 0,0063 0,0040

0,9 0,0209 0,0141 0,0082 0,0032

M = 100000

0,1 0,0036 0,0022 0,0026 0,0028

0,2 0,0043 0,0024 0,0022 0,0027

0,3 0,0142 0,0089 0,0030 0,0019

0,4 0,0112 0,0095 0,0085 0,0027

0,5 0,0058 0,0061 0,0037 0,0042

0,6 0,0051 0,0269 0,0076 0,0038

0,7 0,0056 0,0030 0,0040 0,0051

0,8 0,0034 0,0028 0,0014 0,0019

0,9 0,0047 0,0035 0,0013 0,0019

Table 6. Values of 95% confidence inter-
vals for calculated values ptarg for m = 4;
P0 = 0.978 for various values col at vari-
ation of M.

ptarg M

100 1000 10000 100000

col = 10

0,1 0,0780 0,0298 0,0086 0,0036

0,2 0,1265 0,0464 0,0108 0,0043

0,3 0,1505 0,0788 0,0452 0,0142

0,4 0,1875 0,0553 0,0580 0,0112

0,5 0,1705 0,0565 0,0194 0,0058

0,6 0,1485 0,0480 0,0203 0,0051

0,7 0,1685 0,0843 0,0167 0,0056

0,8 0,1415 0,0459 0,0322 0,0034

0,9 0,0865 0,0269 0,0209 0,0047

col = 20

0,1 0,0920 0,0179 0,0057 0,0022

0,2 0,1093 0,0254 0,0110 0,0024

0,3 0,1178 0,0435 0,0415 0,0089

0,4 0,1448 0,0342 0,0429 0,0095

0,5 0,1605 0,0312 0,0100 0,0061

0,6 0,1448 0,0417 0,0174 0,0269

0,7 0,1503 0,0439 0,0122 0,0030

0,8 0,1405 0,0259 0,0077 0,0028

0,9 0,0788 0,0290 0,0141 0,0035

col = 50

0,1 0,0546 0,0092 0,0044 0,0026

0,2 0,0941 0,0126 0,0058 0,0022

0,3 0,0775 0,0168 0,0052 0,0030

0,4 0,1329 0,0210 0,0104 0,0085

0,5 0,1428 0,0181 0,0069 0,0037

0,6 0,1304 0,0264 0,0223 0,0076

0,7 0,0762 0,0150 0,0079 0,0040

0,8 0,1121 0,0152 0,0063 0,0014

0,9 0,0605 0,0186 0,0082 0,0013

col = 100

0,1 0,0319 0,0071 0,0071 0,0028

0,2 0,0527 0,0246 0,0139 0,0027

0,3 0,0625 0,0105 0,0038 0,0019

0,4 0,1130 0,0228 0,0061 0,0027

0,5 0,1113 0,0087 0,0087 0,0042

0,6 0,0807 0,0131 0,0082 0,0038

0,7 0,0797 0,0127 0,0093 0,0051

0,8 0,0319 0,0100 0,0040 0,0019

0,9 0,0534 0,0101 0,0032 0,0019
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Table 7. Dependence of the calculation accuracy on a sample size and number of tests
for m = 2.

lgM Number of tests for ptarg = 0.5

col = 10 col = 20 col = 50 col = 100

2 0,033 0,039 0,031 0,025

3 0,026 0,021 0,019 0,015

4 0,016 0,014 0,010 0,004

5 0,005 0,004 0,002 0,001

Fig. 2. Dependence of the calculation accuracy on a sample size of M for m = 2 risk
factors at ptarg = 0.5.

Table 8. Dependence of the calculation accuracy on a sample size and number of tests
for m = 3.

lgM Number of tests for ptarg = 0.7

col = 10 col = 20 col = 50 col = 100

2 0,032 0,032 0,030 0,024

3 0,023 0,018 0,010 0,005

4 0,010 0,007 0,006 0,002

5 0,006 0,003 0,001 0,001

Thus, the statistical significance of the Eq. (4) allows us to conclude that
depending on amount of risk factors it is possible to choose the number of tests
and a sample size according to the required accuracy.
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Table 9. Dependence of the calculation accuracy on a sample size and number of tests
for m = 4.

lgM Number of tests for ptarg = 0.7

col = 10 col = 20 col = 50 col = 100

2 0,169 0,150 0,076 0,080

3 0,084 0,044 0,015 0,013

4 0,017 0,012 0,008 0,009

5 0,006 0,003 0,004 0,005

Follows from the Eq. (4) that at constancy of other factors:

– increase in M on 100 reduces Δptarg on average by 0.213%;
– increase in col by 1% reduces Δptarg on average by 0.439%;
– increase in m on 1 increases Δptarg on average by 31.36%.

The execution time of the algorithm directly depends on the technical char-
acteristics of the personal computer. For example, on a PC with a performance
of 20 GFLOPS in single-threaded mode, execution time of the algorithm was t =
21.67 s with initial characteristics m = 2, M = 10000, col = 10, ptarg = 0.5. By
increasing the sample size M in 10 times, the execution time of the algorithm is
increasing in 10 times. Similarly for col. However, when using parallel computing
in the implementation of the algorithm, the execution speed can be increased in
times, up to the number of threads involved. Therefore, for a larger number of

Fig. 3. Dependence of the calculation accuracy on a sample size of M for m = 3 risk
factors at ptarg = 0.7.
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Fig. 4. Dependence of the calculation accuracy on a sample size of M for m = 4 risk
factors at ptarg = 0.7.

the risk factors m, a reasonable result can be obtained by using large computing
resources in the form of parallel computing on GPU or cluster computing.

5 Conclusions

1. The model risk management in Gaussian stochastic systems in the form of
an optimization problem of achievement of the required risk level at minimal
changes of numerical characteristics of a stochastic system is formulated.

2. A feature of an optimization problem is existence of stochastic restriction for
the required risk level.

3. The solution algorithm of an optimization problem on the basis of the method
of barrier functions is described. At the same time minimization of support
function is implemented by means of the modified Nelder–Mead method.

4. The conducted research of the risk control algorithm showed that its accuracy
depends on amount of risk factors, number of the tests and a sample size
demanded for realization of stochastic restriction upon reaching the required
risk level.

5. The probably significant dependence of the accuracy of risk management on
amount of risk factors, numbers of tests and a sample size is established. It
allows depending on amount of risk factors to choose the number of tests
and a sample size according to the required accuracy that allows to put the
offered risk management into practice.
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The Accuracy of Approximate Solutions
for a Boundary Value Inverse Problem

with Final Overdetermination
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Abstract. The paper aims to investigate the accuracy of the methods
for approximate solving a boundary value inverse problem with final
overdetermination for a parabolic equation. We use the technique of the
continuation to the complex domain and the expansion of the unknown
function into a Dirichlet series (exponential series) to formulate the
inverse problem as a linear operator equation of the first kind in the
appropriate linear normed spaces. This allows us to estimate the conti-
nuity module for the inverse problem through classical spectral technique
and investigate the order-optimal approximate methods for the boundary
value inverse problem under study.

Keywords: Parabolic equation · Boundary value inverse problem ·
Module of continuity of the inverse operator · Exponential series

1 Introduction

We study a boundary value inverse problem with final overdetermination (the
problem of the most accurate heating of a rod). Namely, we should recover the
boundary condition in a mixed boundary value problem for the heat transfer
equation from the knowledge of the solution at the final time moment.

Originally, the problem was formulated in [8] in the form of an optimization
problem. In applications, a large number of optimization problems associated
with parabolic equations arise. One of such problems in thermophysical terms
can be formulated as follows. Consider a homogeneous rod with a thermally
insulated lateral surface, the left end of which is thermally insulated, and the
given temperature h(t) s maintained at the right end. We need, by controlling the
temperature at the right end of the rod, make the temperature distribution in
the rod as close as possible to the specified distribution g(x) by a given point in
time. Namely, let u(x, t) = u(x, t, h) define the distribution of the temperature
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in the rod at the time moment t. It is required, by controlling the function
h ∈ L2[0.T ], to minimize the function

J(h) = ‖u(x, T ) − g(x)‖2

under the condition that u(x, t) = u(x, t, h) solves the boundary value problem

∂u

∂t
=

∂2u

∂x2
; t ∈ (0;T ), x ∈ (0; l)

u(x, 0) = 0 (0 < x < l), u(0, t) = 0, u(l, t) = h(t) (0 < t < T )

h(t) satisfies the conditions h(0) = 0; ‖h′(t)‖L2[0,T ] ≤ r.
Aviation, rocket and space technology, energy and metallurgy use experimen-

tal studies, bench and field studies of thermal conditions, the creation of effective
diagnostic methods and the results of heat exchange processes are based on the
results of experiments and tests. These methods are based on the problems
associated with inverse problems of different types, the boundary value inverse
problems being among the most important classes o the inverse problems of ther-
mal conductivity [10,11,16]. Various statements of the boundary value inverse
problems were studied also in [12].

For linear ill-posed problems, the classical spectral technique is widely used
to obtain estimates of the error for the approximate solutions on compact sets
(correctness classes) and the error of the optimal approximate methods.

For such problems, the technique of calculating the error of the optimal
method is based on the relation between the error of the optimal method and
the module of continuity of the inverse operator, which can be calculated for
specific operators and correctness classes. The continuity module for some classes
of nonlinear inverse problems was estimated, for example, in [1–3,7].

In the classical spectral technique, the commuting of the operator of the
problem with the operator defining the correctness class (reflecting a priori infor-
mation about the exact solution of the inverse problem) plays the main role but
for some important inverse problems in the classical formulation, these operators
do not commute.

We use the technique of extending of the domain to the complex domain and
expansion of the unknown function into a Dirichlet series (exponential series)
to formulate the inverse problem as an operator equation of the first kind in
the space that is isometric to the space of the initial data and the space of the
solutions. This allows us to calculate the module of continuity and investigate
the accuracy of optimal and order-optimal approximate methods for the inverse
problem under study. The obtained estimate for the modulus of continuity makes
it possible to investigate the optimal methods for the approximate solution of
the inverse problem and construct the order-optimal methods.

The paper is organized as follows.
In Sect. 2 we formulate the boundary value inverse problem and the corre-

sponding direct problem and introduce the functional spaces which will be used
in the study of the inverse problem.
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In Sect. 3 we obtain the linear operator equation which gives the equivalent
formulation of the inverse problem and the corresponding direct problem in l2
space.

Section 4 is aimed at the estimation of the function which plays the basic role
for the investigation of the accuracy of the approximate solution to the inverse
problem - its continuity module.

2 The Inverse Problem with Final Overdetermination

Direct Problem. Consider the following boundary value problem for a heat
conductivity equation. We have to determine a function u = u(x, t),

u ∈ C([0, l];W 1
2 [0;T ]) ∩ C2((0, l);L2[0;T ])

which meets the conditions

∂u

∂t
=

∂2u

∂x2
; t ∈ (0;T ), x ∈ (0; l), (1)

u(x, 0) = 0 (0 < x < l),

u(0, t) = 0, u(l, t) = h(t) (0 < t < T ).

(we will consider the case T = 2π ).

Inverse Problem. We study the following inverse problem for a parabolic equa-
tion. Suppose that u(x, t) satisfies the conditions (1) and the additional condition

u(x, T ) = g(x). (2)

We have to recover the function h ∈ L2[0;T ] (the boundary condition), g ∈
C[0; l] is the given function.

The problem was formulated and studied in [8,15] as an optimization
problem.

Recall the well-known theorem on approximation of continuous functions by
polynomials [5].

Theorem 1. Let 0 < λ1 < λ2 < ..., λi → ∞, 0 < a < b. For any function
f ∈ C[a, b]and for any ε > 0 there exists a linear combination

Pn(x) =
n∑

i=1

cix
λi

such that
‖f − Pn‖C[a,b] < ε

if and only if the condition
∞∑

i=1

1
λi

= ∞

is satisfied.
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The next lemma follows directly from the theorem and gives the possibility
to approximate continuous functions by exponential polynomials [6].

Lemma 1. Suppose that the real valued functions {ei(x)}; e0(x) = 1, ei(x) =
e−λix are defined with the help of the numerical series 0 < λ1 < λ2 < ..., λi → ∞
that satisfies the condition

∞∑

i=1

1
λi

= ∞.

Then the system of functions {ei(x)}∞
n=0 is closed in the space C[0, l].

Denote by g(x) a continuous function on [0, l] which can be expanded into
the uniformly converging exponential series

G(x) =
∞∑

n=1

bne−√
nx. (3)

If the series (3) converges for x ≥ −l, then the odd extension of g(x) defined
on the segment [−l, l] can be expanded into the uniformly converging series

g(x) =
∞∑

n=1

bn sh
√

nx. (4)

We conclude from the elementary properties of the exponential series that
the function

G0(z) =
∞∑

n=1

bn sh
√

nz (5)

is analytical and bounded in the domain −l < Rez < l.
Let a function G(z) have a Dirichlet series expansion

G0(z) =
∞∑

n=1

bn sh
√

nz,

convergent uniformly in the strip −l < Rez < l, i.e. it is an analytic almost
periodic function in the strip. Then the function p(y) = G(x + iy) for any
−l < y < l is a uniform almost periodic function, whose norm can be defined by
the formula [14]

‖p‖20 = lim
Y →∞

1
2Y

Y∫

−Y

‖p(iy)‖2dy.

Let X denote the linear space of functions G(z) which are analytical and
bounded in the domain 0 < Rez < l, equipped with the norm

‖G‖2 = lim
Y →∞

1
2Y

Y∫

−Y

‖G(iy)‖2dy.
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Suppose that for the given continuous function g(x) there exists an exact
solution h(t) to the inverse problem (1) which belongs to the set

M = {h(t) : ‖h′′(t)‖L2[0,∞) ≤ r}.

Suppose also that the values of g(x) are unknown but instead we know its approx-
imate values. That means that we know the function gδ ∈ C[0; l] such that for
the analytical extensions of this function and the exact function g(x) in the
domain 0 < Rez < l, the inequality ‖g − gδ‖X < δ holds. We have to determine
an approximate solution hδ to the boundary value inverse problem and estimate
its deviation from the exact solution.

3 Reducing the Boundary Value Inverse Problem
to the Operator Equation

We will find the solution to the direct problem in the form of the complex Fourier
series

u(x, t) =
∞∑

n=−∞
cn(x)eint = 2ReU(x, t),

where

U(x, t) =
c0(x)

2
+

∞∑

n=1

cn(x)eint.

Consider the expansion into the Fourier series

h(t) =
∞∑

n=−∞
hneint = 2ReH(t).

Here

H(t) =
h0

2
+

∞∑

n=1

hneint.

Consider the particular solution un(x, t) to the mixed boundary value problem
which corresponds to the boundary condition un(l, t) = eint. We find the partic-
ular solution in the form un(x, t) = wn(x, t) + vn(x, t) (see, for example, [13]),

wn(x, t) =
sh μ0

√
nx

sh μ0
√

nl
eint,

where μ0 = 1√
2
(1 + i) and the function vn(x, t) satisfies the conditions

∂vn

∂t
=

∂2vn

∂x2
; t ∈ (0;T ), x ∈ (0; l), (6)

vn(x, 0) = − sh μ0
√

nx

sh μ0
√

nl
(0 < x < l),
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vn(0, t) = 0, vn(l, t) = 0 (0 < t < T ).

Make sure that the function

Y (x, t) =
∞∑

n=1

hn
sh μ0

√
nx

sh μ0
√

nl
eint (7)

satisfies the conditions

∂Y

∂t
=

∂2Y

∂x2
; t ∈ (0;T ), x ∈ (0; l), (8)

Y (x, 0) = Φ(x),

Y (0, t) = 0, Y (l, t) = H(t) (0 < t < T ),

where

Φ(x) =
∞∑

n=1

hn
sh μ0

√
nx

sh μ0
√

nl
.

Actually, for 0 < x < l − δ it holds
∣∣∣∣
sh μ0

√
nx

sh μ0
√

nl

∣∣∣∣ ≤ e−
√

n
2 (l−x),

so for the series (7) the majorizing series is

∞∑

n=1

|hn|e−
√

n
2 (l−x) (9)

and for the series which we obtain by termwise differentiation of (7), the majoriz-
ing series is

∞∑

n=1

n|hn|e−
√

n
2 (l−x). (10)

The series (9) and (10) are converging, therefore the series (7) is uniformly
converging on any interval 0 < x < l − δ, and the function Y (x, t) satisfies the
conditions (8).

Hence, we can represent the solution of the boundary value problem in the
form

U(x, t) =
∞∑

n=1

hn
sh μ0

√
nx

sh μ0
√

nl
eint − Z(x, t),

Z(x, t) satisfies the conditions

∂Z

∂t
=

∂2Z

∂x2
; t ∈ (0;T ), x ∈ (0; l), (11)

Z(x, 0) = −Φ(x) (0 < x < l),
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Z(0, t) = 0, Z(l, t) = 0 (0 < t < T ).

Here

Φ(x) =
∞∑

n=1

hn
sh μ0

√
nx

sh μ0
√

nl
.

We have to recover the function G(x) = Φ(x) + Z(x, T ).
Denote by

an =
hn

sh μ0
√

nl

the coefficients of the expansion of Φ(x) in the Dirichlet series. Considering
the expansion of a hyperbolic sine in the Fourier series, we find the Fourier
coefficients of the function Φ(x):

Φ(x) =
∞∑

k=1

ϕk sin
πkx

l
,

where

ϕk = 2(−1)k+1
∞∑

n=1

an
πk sh μ0

√
nl

(πk)2 + inl2
. (12)

Consider the function

F (λ) = 2
∞∑

n=1

an
λ sh μ0

√
nl

λ2 + inl2
.

It is evident that
F (πk) = (−1)k+1ϕk.

We show that the function F (λ) is analytic in the domain

Dk =
{

0 < |λ − μ1

√
kl| <

1
k

}
,

μ1 = 1√
2
(1 − i).

Consider the series
∞∑

n=1

an
λ sh μ0

√
nl

λ2 + inl2
=

∞∑

n=1

hn
λ

λ2 + inl2
..

For n 
= k the inequalities hold

|λ| ≤
√

k +
1
k

≤
√

kl + 1;

|λ − μ1

√
nl| ≥ |μ1

√
nl − μ1

√
kl| − |λ − μ1

√
kl|

≥ l|√n −
√

k| − 1
k

.



The Accuracy of Approximate Solutions for a Boundary Value 585

Similarly,

|λ − μ1

√
nl| ≥ l|√n −

√
k| − 1

k
.

Then,
|λ2 + inl2| = |λ − μ1

√
nl||λ + μ1

√
nl|

≥
(

|√n −
√

k| − 1
k

)2

and

| hnλ

λ2 + inl2
| ≤ |hn|(√kl + 1)

(|√n − √
k| − 1

k )2
.

Note that
|hn|(√kl + 1)

(
√

n − √
k| − 1

k )2
. � |hn|(√kl + 1)

l2n

for n → ∞. Hence the majorizing series

∞∑

n=1

|hn|(√kl + 1)
(
√

n − √
k| − 1

k )2

uniformly converges in every domain Dk (k = 1, 2, ...). Hence, the function F (λ)
is analytical in the domain

D =
∞⋃

n=1

Dk.

The function F (λ) has simple poles at the points λn = μ1
√

nl. Hence, the
equality (12) implies

lim
λ→μ1

√
nl

F (λ)(λ − μ1

√
nl) = an sh μ0

√
nl. (13)

Consider the expansion in Dirichlet series of the function G(x):

G(x) =
∞∑

n=1

bn sh μ0

√
nx.

Taking into account the expansion of G(x) in the Fourier series we can con-
clude that

G(x) =
∞∑

k=1

gk sin
πkx

l
,

where
gk = ϕk(1 + e−(πk

l )2T ).

Consider the function

P (λ) = F (λ)(1 + e−λ2T ).
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The function G(λ) has simple poles at the points λn = μ1
√

nl if the condition
nl2T 
= π + 2πm is met. Similarly to the equality (13), we obtain

lim
λ→μ1

√
nl

P (λ)(λ − μ1

√
nl) = bn sh μ0

√
n. (14)

The equalities (13) and (14) imply

bn

an
= lim

λ→μ1
√

nl
(1 + e−λ2T ) = 1 + e−inT .

Let us establish a correspondence between the function G(z) ∈ X and the
sequence of coefficients of its Dirichlet series Ĝ = {bn} ∈ l1 ∩ l2. Set also a corre-
spondence between the function h(t) ∈ L2[0, T ] and the sequence of coefficients
of its Fourier series Ĥ = {hn} ∈ l2.

The mean value theorem [4] states that

‖G‖2 = lim
Y →∞

1
2Y

Y∫

−Y

‖G(iy)‖2dy =
∞∑

n=1

b2n.

That is, the operator E : X → l2 which acts according to the rule

EG = {bn}
is an isometry. Denote A : l2 → l2 a linear operator acting according to the rule

AĤ =
{

hn

2 sh μ0
√

nl

}∞

n=1

.

Thus, the inverse problem with final overdetermination can be formulated as an
operator equation

AĤ = Ĝ.

4 The Continuity Module for the Inverse Problem

Denote by

ω̂(M, δ) = sup{‖h1 − h2‖ : h1, h2 ∈ M, ‖ĝ1 − ĝ2‖ ≤ δ}
the continuity module for the boundary value inverse problem with final overde-
termination.

We use the scheme proposed in [9] to estimate the continuity module. The
following theorem holds.

Theorem 2. There exists δ0 > 0, such that for all 0 < δ < δ0 the inequalities

C1
rl2

(ln δ)2
≤ ω(M, δ) ≤ C2

rl2

(ln δ)2

are true.
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Proof. Let H = {hn}∞
n=1 ∈ l2. Consider the linear bounded operator A acting

in the space l2 according to the rule

AĤ =
{

hn

2 sh μ0
√

nl

}∞

n=1

,

B is a linear bounded operator acting in the space l2 as follows

BĤ =
{

hn

n2l

}∞

n=1

.

Denote B1 = B∗B. Then the operator B1 acts in l2 according to the rule

B1Ĥ =
{

hn

n4l

}∞

n=1

.

Denote C = AB, C1 = C∗C. Then C1 is the operator acting in l2 according to
the rule

C1Ĥ =
{

hn

4n2| sh μ0
√

nl|2
}∞

n=1

.

It follows from the definitions of the operators that C1 is a function of the
operator B1. Namely,

C1 = λ(B1),

where

λ(σ) =
σ2

4
∣∣∣sh μ0l

σ1/4

∣∣∣
2 . (15)

Calculating the module of a hyperbolic sine and denoting

s =
1

σ1/4
,

we write the equality (15) as

λ(s) =
1

s8(sh2 l
2s + sin2 l

2s)
. (16)

Further,
lim
s→0

λ(s) = +∞, lim
s→∞ λ(s) = 0,

the function λ(s) is continuous and monotone on (0,∞). Thus, the Eq. (16) has
a unique solution s = s(λ) for every λ > 0.

Consider the elementary inequalities

sh2 l

2
s + sin2 l

2
s ≤ e

√
2ls; (17)

sh2 l

2
s + sin2 l

2
s ≥ e

√
2ls

4
− 1

2
. (18)
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For s > 2
√
2

l ln 2, we obtain
e

√
2ls > 4

and inequality (18) implies

2

sh
l

2
s + sin2 l

2
s ≥ e

√
2ls

8
. (19)

Applying the inequalities (17) and (19) for s > 2
√
2

l ln 2 we obtain

e
√
2ls

8
≤ λ(s) ≤ e

√
2ls. (20)

Taking the logarithm of both sides in the inequality (20) and considering that
s > 2

√
2

l ln 2, we get the inequality

√
2

2
l − 8ε ≤ ln λ

s
≤

√
l + 8ε, (21)

where
ε(s) =

ln s

s
, ε.(s(λ)) → 0

as λ → 0. Consequently,

s � ln λ√
2l

for λ → 0. Finally,

σ = p(λ) � 4l4

(ln λ)4
. (22)

as λ → 0. The relation (20) by the Theorem proved in [9], implies

s � ln λ√
2l

as λ → 0. Hence,

ω(r, δ) � r

√

p

(
r2

δ2

)
� rl2

(ln δ)2
(23)

as δ → 0. That is, the statement of the theorem holds.
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Abstract. In the class of decision-making problems with fuzzy informa-
tion concerning criterion values, the problem of comparing fuzzy numbers
is relevant. There are various approaches to solving it. They are deter-
mined by the specific character of the problem under consideration. This
paper proposes one approach to comparing fuzzy numbers. The proposed
approach is as follows. At first, a rule is constructed for comparing a real
number with a level set of a fuzzy number. Then, with the help of a pro-
cedure for constructing the exact lower approximation for the collection
of sets, a fuzzy set is constructed. This fuzzy set determine the rule for
comparing a real number with a fuzzy number. Using this rule and the
approach based on separating two fuzzy numbers with a real number, the
procedure is chosen for comparing two fuzzy numbers. As an example,
fuzzy numbers with trapezoidal membership functions are considered,
and the geometric interpretation of the results being given.

Keywords: Fuzzy numbers · Fuzzy payoff · Fuzzy numbers
comparison

1 Introduction

For a number of economic and social problems, the information about the study
objects has fuzzy forms. For investigating these problems, the theory of fuzzy
sets is applied. Since Zadeh has published his work about fuzzy sets [1], a large
number of papers have appeared. In papers [2–4], some sections of this theory are
developed. Its applications to research problems from other fields of knowledge
are considered in [5–8].

In decision-making and in game problems [9–12], the payoff can be given
by a fuzzy number which is a special case of a fuzzy set. It raises the prob-
lem of defining operations with fuzzy numbers [13–15] and their comparison. A
large number of different methods for comparison of fuzzy numbers have been
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proposed in [16–21], no one of them being universal. There is a problem of inte-
gration of the proposed methods. When we choose a method for comparison of
fuzzy numbers, we have to bear in mind the specific character of the considered
problem.

In this paper, the research started in [10,11,19–23] is continued.

2 Construction of a Fuzzy Set

Let a set X and a function μA : X → [0; 1] be given. A fuzzy set A is [3] the
collection of pairs (x, μA(x)), x ∈ X.

The set X is called the universal set of the fuzzy set A, and the function
μA : X → [0; 1] is called the membership function of the fuzzy set A.

For each number α ∈ [0; 1] the set

A(α) = {x ∈ X : μA(x) ≥ α} (1)

is called the α-cut of the fuzzy set A.
The α-cuts have the following properties:

A(0) = X,
0 ≤ α1 ≤ α2 ≤ 1 ⇒ A(α2) ⊂ A(α1),

0 < α ≤ 1 ⇒ ⋂

0<t≤1

A(t) = A(α).
(2)

Let for every α ∈ [0; 1] the set B(α) ⊂ X be defined.

Lemma 1. If the totality of sets B(α) has the properties (2), then ∀α ∈ [0; 1]
the set B(α) is the level set of the fuzzy set B, the membership function of which
is

μB(x) = sup {α ∈ [0; 1] : x ∈ B(α)} . (3)

The proof of this fact is simple and can be found in [24].
Further we use the definition from [25, p. 45].

Definition 1. The fuzzy set A is called the lower approximation of the collection
of sets A∗(α) ⊂ X, 0 ≤ α ≤ 1 if the α-cuts A(α) of the fuzzy set A satisfy the
inclusion

A(α) ⊂ A∗(α), ∀ 0 ≤ α ≤ 1. (4)

Lemma 2. If the fuzzy set A is the lower approximation of the collection of sets
A∗(α) ⊂ X, then

A(α) ⊂ A∗(α),

where
A∗(α) =

⋂

0<t≤α

A∗(t) ∀ 0 < α ≤ 1. (5)

The collection of sets A∗(α) with 0 < α ≤ 1 has the properties (2).
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The proof is due to the inclusion (4) and from formula (5).
According to Lemmas 1 and 2, the sets A∗(α) are the α-cuts of a fuzzy set

A∗ when 0 < α ≤ 1. According to (3) and (5), its membership function is

μA∗(x) = sup {α ∈ [0; 1] : x ∈ A∗(t) ∀ 0 ≤ t ≤ α} . (6)

The fuzzy set A∗ is called [25, p. 47] the exact lower approximation of the
collection of sets A∗(α).

Further, we will consider fuzzy numbers, for which, when any 0 < α ≤ 1, the
α-cuts (1) have the form of segments

A(α) = [gA(α), GA(α)] ⊂ R. (7)

We assume that the functions gA : (0, 1] → R and GA : (0, 1] → R have the
following properties:

gA(α) ≤ gA(β) < GA(β) ≤ GA(α) ∀ 0 < α ≤ β < 1,
lim

t→α−0
gA(t) = gA(α), lim

t→α−0
GA(t) = GA(α) ∀ 0 < α ≤ 1. (8)

If these conditions are implemented, then the line segments (7) have proper-
ties (2). Note that conditions (8) imply that gA(1) ≤ GA(1).

3 Description of the Rules for Comparison Fuzzy
Numbers

For a fixed fuzzy number A, we construct a fuzzy number D(A) whose linguistic
description is D(A) = “the number y ∈ R is less than or equal to the fuzzy
number A”.

For a fixed y ∈ R and α ∈ (0, 1], we introduce the measure γ(α, y) ∈ [0, 1] of
the fact that y is less than or equal to the line segment [gA(α), GA(α)], which is
the α-cut of the fuzzy number A, assuming that

γ(α, y) =

⎧
⎨

⎩

1, if y ≤ gA(α);
0, if GA(α) ≤ y;

GA(α)−y
GA(α)−gA(α) , if gA(α) < y < GA(α).

(9)

Note that for gA(α) < y < GA(α) the number γ(α, y) determines the pro-
portion of those numbers from the line segment [gA(α), GA(α)] that are greater
than or equal to y. If y = gA(1) = GA(1), then we assume that γ(α, y) = 1.

Let us assume that Y(0) = R and for 0 < α ≤ 1

Y(α) = {y ∈ R : γ(α, y) ≥ α} . (10)

As a fuzzy number D(A) we take the exact lower approximation of the collection
of sets Y(α). From formulas (6), (9) and (10), we obtain that its membership
function is equal to

μD(A)(y) = sup {α ∈ [0, 1] : γ(t, y) ≥ t, ∀ 0 ≤ t ≤ α} . (11)
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According to formula (9), γ(α, y2) ≤ γ(α, y1) for all y1 < y2 and α ∈ (0, 1].
Then, taking into account (11), we get the inequality

μD(A)(y1) ≥ μD(A)(y2), if y1 < y2. (12)

Let us assume that

ρ(t, y) = 1 − t, if y ≤ gA(t);
ρ(t, y) = −t, if GA(t) ≤ y;
ρ(t, y) = ψ(t) − y, if gA(t) < y < GA(t).

(13)

If denote

ψ(t) = tgA(t) + (1 − t)GA(t), (14)

then the formula (11) has the form

μD(A)(y) = sup {α ∈ [0, 1] : ρ(t, y) ≥ 0, ∀ 0 ≤ t ≤ α} . (15)

Similarly, we can construct a fuzzy number F (A) the linguistic description
of which has the form F (A) = “the number y ∈ R is greater than or equal to
the fuzzy number A”. The measure β(α, y) ∈ [0, 1] with y ∈ R and α ∈ (0, 1]
that a number y is greater than or equal to the line segment [gA(α), GA(α)] is
given by the following formula:

β(α, y) = 1 − γ(α, y). (16)

Similarly to (11), we define the membership function of the fuzzy number
F (A):

μF (A)(y) = sup {α ∈ [0, 1] : β(t, y) ≥ t, ∀ 0 ≤ t ≤ α} . (17)

According to (16), β(α, y2) ≥ β(α, y1) when y1 < y2 and α ∈ (0, 1]. Therefore,
similarly to (12), we obtain from (17) the following inequality:

μF (A)(y1) ≤ μF (A)(y2), if y1 < y2. (18)

Assume that

τ(t, y) = −t, if y ≤ gA(t);
τ(t, y) = 1 − t, if GA(t) ≤ y;
τ(t, y) = ϕ(t) + y, if gA(t) < y < GA(t).

(19)

We denote here

ϕ(t) = −(1 − t)gA(t) − tGA(t). (20)

Then formula (17) has the form

μF (A)(y) = sup {α ∈ [0, 1] : τ(t, y) ≥ 0, ∀ 0 ≤ t ≤ α} . (21)
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Let us consider a fuzzy number L(A) whose linguistic description has the
form L(A) = “the number y ∈ R is less than or equal to a fuzzy number A
and the number y ∈ R is greater than or equal to the fuzzy number A”. This
fuzzy number L(A) is the intersection of the fuzzy numbers D(A) and F (A).
Therefore, [1] its membership function is equal to

μL(A)(y) = min
{
μD(A)(y), μF (A)(y)

}
.

According to the properties of monotonicity (12) and (18), it can be obtained
that if at some point yA ∈ R,

μD(A)(yA) = μF (A)(yA), (22)

then
μL(A)(yA) ≥ μL(A)(y) ∀ y ∈ R.

Therefore, applying the maximum method in the defuzzification procedure
[25, p. 87] of the fuzzy number A, we get the real number yA.

So, two fuzzy numbers A and B can be compared, for example, using real
numbers yA and yB assuming that the fuzzy number A is less than or equal to
the fuzzy number B then and only then when yA ≤ yB.

Now we describe another approach to comparing fuzzy numbers A and B.
We consider a fuzzy set G = G(A,B), which linguistic description has the form
G = “the number y ∈ R is less than or equal to the fuzzy number A and the
number y ∈ R is greater than or equal to the fuzzy number B”. This fuzzy set G
is the intersection of fuzzy numbers D(A) and F (B). Therefore, its membership
function is

μG(A,B)(y) = min
{
μD(A)(y), μF (B)(y)

}
.

As the measure d(A ≥ B) of the fact that the fuzzy number A is greater than
or equal to the fuzzy number B, we can take

d(A ≥ B) = sup
y∈R

min
{
μD(A)(y), μF (B)(y)

}
. (23)

If d(A ≥ B) ≥ d(B ≥ A), then we assume that the fuzzy number A is greater
than or equal to the fuzzy number B. We denote this A 	 B.

4 Comparison of the Trapezoidal Fuzzy Numbers

Let us consider the case of a trapezoidal fuzzy number A, for which functions
(8) have the form [25, p. 79]

gA(α) = a + (b − a)α, GA(α) = f − (f − c)α, 0 < α ≤ 1. (24)

Here a < b ≤ c < f are given real numbers. From formulas (24) and (14) we get

ψ(t) = (f − c + b − a)t2 − (2f − a − c)t + f. (25)
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Lemma 3. If y ≤ a, then ρ(t, y) = 1 − t for all 0 ≤ t ≤ 1.
If a < y ≤ b, then

ρ(t, y) = ψ(t) − y, if 0 ≤ t < y−a
b−a ,

ρ(t, y) = 1 − t, if y−a
b−a ≤ t ≤ 1.

(26)

If c < y ≤ f , then

ρ(t, y) = ψ(t) − y, if 0 ≤ t < f−y
f−c ,

ρ(t, y) = −t, if f−y
f−c ≤ t ≤ 1.

(27)

If f ≤ y, then ρ(t, y) = −t for all 0 ≤ t ≤ 1.

The proof follows from formulas (13) and (24).
According to (25), the condition of non-negativity of the discriminant of the

quadratic equation

ψ(t) − y = 0 (28)

is the inequality

y ≥ 4fb − (a + c)2

4(f − c + b − a)
= f − (2f − a − c)2

4(f − c + b − a)
. (29)

If y ≤ f and the inequality (29) is true, then the minimal positive root of the
Eq. (28) is

tD(A)(y) =
2f − a − c − √

(2f − a − c)2 − 4(f − y)(f − c + b − a)
2(f − c + b − a)

. (30)

First, we consider the case when

2b > a + c. (31)

It can be shown that if the inequality (31) is true, then

a < ε < b, where ε =
4fb − (a + c)2

4(f − c + b − a)
; (32)

0 < t∗ < 1, where t∗ =
2f − a − c

2(f − c + b − a)
. (33)

We note that at the point t∗, the derivative of function (25) vanishes. At the
point t∗, function (25) reaches its minimum value.

min
t∈R

ψ(t) = ψ(t∗) = ε. (34)
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Theorem 1. Let the inequality (31) be satisfied. Then

μD(A)(y) = 1, if y ≤ ε,
μD(A)(y) = 0, if f ≤ y,

μD(A)(y) = tD(A)(y), if ε < y < f.
(35)

Proof. Let y ≤ a. Then, according to Lemma 3, ρ(t, y) = 1 − t for all 0 ≤ t ≤ 1.
From the last equality and from the formula (15) we obtain that μD(A)(y) = 1.

Let a < y ≤ b. The function ρ(t, y) is defined by the formula (26). According
to the inequality (32), the cases a < y ≤ ε and the case ε < y ≤ b are possible.

If a < y ≤ ε, then from (34) we get that ψ(t)−y ≥ 0 for all t ∈ R. According
to (26), the inequality ρ(t, y) ≥ 0 is true for all 0 ≤ t ≤ 1. This inequality
together with (15) give μD(A)(y) = 1.

Let ε < y < f . Then from (29) and (32), it follows that the quadratic
equation (28) has a root (30). From (25) and (34), we obtain ψ(0) − y > 0 and
ψ(t∗) − y < 0. From the last inequalities and from the fact that the number
tD(A)(y) is the minimal positive root of the Eq. (28), it follows that

ψ(t) − y > 0, if 0 ≤ t < tD(A)(y) and ψ(t) − y < 0, if tD(A)(y) < t ≤ t∗. (36)

If ε < y ≤ b, then the function ρ(t, y) is given by formula (26). Using the
inequality (31) and formulas (32), (33), it can be shown that t∗ < y−a

b−a . Therefore,
substituting the function (26) into formula (21), we obtain the required equality
in (35).

For b < y ≤ c, the function ρ(t, y) = ψ(t) − y for all 0 ≤ t ≤ 1. Substituting
this function into the formula (21) and taking into account the inequalities (36),
we obtain the equality from (35).

If c < y < f , then the function ρ(t, y) is given by the formula (27). Let us
show that

ψ
(

f−y
f−c

)
− y < 0. (37)

Then from (36) it will follow that tD(A)(y) < f−y
f−c .

Substituting the function (27) into the formula (21), we obtain the equality
from (35). From (25), it follows

ψ
(

f−y
f−c

)
− y = f−y

(f−c)2 g(y),
g(y) = (f − c + b − a)(f − y) − (2f − a − c)(f − c) + (f − c)2.

We have g(f) = −(f − a)(f − c) < 0, g(c) = −(f − c)(c − b) ≤ 0. Since the
function g(y) is linear, then g(y) < 0 for all c < y < f . Therefore, inequality
(37) is true.

For y ≥ f the function ρ(t, y) = −t for all 0 ≤ t ≤ 1. Then, according to (21)
we obtain that μD(A)(y) = 0.

Let us analyze the function μD(A)(y). From (30), it follows tD(A)(f) = 0 and
tD(A)(ε) = t∗ < 1. Further, for ε < y < f the function tD(A)(y) strictly decreases
and is convex.
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Note also that for 2b = a+c from formulas (32) and (33), the equalities ε = b
and t∗ = 1 appear.

Theorem 2. Let the inequality be true

2b ≤ a + c.

Then
μD(A)(y) = 1, if y ≤ b,
μD(A)(y) = 0, if f ≤ y,

μD(A)(y) = tD(A)(y), if b < y < f.

The proof is similar to the one of Theorem 1.
Let us construct of a fuzzy number F (A). Let us substitute functions (24)

into formulas (19) and (20). We get the function in the form

ϕ(t) = (f − c + b − a)t2 − (f + b − 2a)t − a (38)

and the following lemma.

Lemma 4. If y ≤ a, then τ(t, y) = −t for all 0 ≤ t ≤ 1. If a < y ≤ b, then
τ(t, y) = ϕ(t) + y for 0 ≤ t < y−a

b−a and τ(t, y) = −t for y−a
b−a < t ≤ 1.

If b < y < c, then τ(t, y) = ϕ(t) + y for all 0 ≤ t ≤ 1.
If c ≤ y < f , then τ(t, y) = ϕ(t) + y for 0 ≤ t < f−y

f−c and τ(t, y) = 1 − t for
f−y
f−c ≤ t ≤ 1.

If f ≤ y, then τ(t, y) = 1 − t for all 0 ≤ t ≤ 1.

According to formula (38), it follows that the nonnegativity condition of the
discriminant of the quadratic equation

ϕ(t) + y = 0 (39)

takes the form

y ≤ (f + b)2 − 4ac

4(f − c + b − a)
= a +

(f + b − 2a)2

4(f − c + b − a)
. (40)

If y ≥ a and the inequality (40) holds, then the minimal positive root of the
Eq. (39) is

tF (A)(y) =
f + b − 2a − √

(f + b − 2a)2 + 4(a − y)(f − c + b − a)
2(f − c + b − a)

. (41)

First, consider the case when

f + b > 2c. (42)

It can be shown that if the inequality (42) is true, then

c < δ < f, where δ =
(f + b)2 − 4ac

4(f − c + b − a)
; (43)
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0 < t∗ < 1, where t∗ =
f + b − 2a

2(f − c + b − a)
. (44)

Note that at the point t∗, the derivative of the function (38) vanishes. At the
point t∗, the function (38) reaches its minimum value.

Theorem 3. Let inequality (42) be true. Then

μF (A)(y) = 0, if y ≤ a,
μF (A)(y) = 1, if δ ≤ y,

μF (A)(y) = tF (A)(y), if a < y < δ.

The proof of this theorem is carried out by analogy with the proof of Theorem 1.
Let us analyze the function μF (A)(y). According to (41), tF (A)(a) = 0 and

tF (A)(δ) = t∗ < 1. Further, for a < y < b, the function tF (A)(y) is strictly
increasing and convex.

Note that for f + b = 2c from formulas (43) and (44), the equalities δ = c
and t∗ = 1 follow.

Theorem 4. Let the following inequality be true:

f + b ≤ 2c.

Then
μF (A)(y) = 0, if y ≤ a,
μF (A)(y) = 1, if y ≥ c,

μF (A)(y) = tF (A)(y), if a < y < c.

The proof is similar to that of Theorem 1.

Remark 1. For the triangular fuzzy number A [25, p. 16], the equality is b = c.
In this case, inequalities (31) and (42) hold.

The graphs of the functions μD(A)(y) and μF (A)(y) for the case when the
inequalities (31) and (42) are true are shown in Fig. 1.
From (33) and (44), it follows that t∗ < t∗ if and only if b − a < f − c.

Let us proceed to comparing the trapezoidal fuzzy numbers. Equality (22)
takes the form

tD(A)(y) = tF (A)(y). (45)

Since function (30) is strictly decreasing, and function (41) is strictly increasing,
then Eq. (45) can have only one solution.

From (30) and (41) it follows that

tD(A)(yA) = tF (A)(yA) =
1
2
, if yA =

a + b + c + f

4
. (46)
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Fig. 1. μD(A)(y) and μF (A)(y) for the case 2b > a + c, f + b > 2c

Further, from (32) and (43) we obtain ε < yA < δ.
It should be noted that the number yA obtained in (46) has the following

property: a straight line passing through the point yA and perpendicular to the
y axis divides the figure formed by the y axis and the graph of the membership
function μA(y) into two equal parts [25, p. 92].

Let us consider two fuzzy trapezoidal numbers A = (a1, b1, c1, f1), B =
= (a2, b2, c2, d2) and calculate the volume d(A ≥ B) ∈ [0, 1], which is defined by
the formula (23). Let us denote

u(y) = min
{
μD(A)(y), μF (B)(y)

}
. (47)

Case 1. Let δ2 ≤ ε1. Then (see Fig. 1) at any point y ∈ [δ2, ε1], the equality
u(y) = 1 is true. According to (23) and (47), it will be d(A ≥ B) = 1.
Case 2. Let f1 ≤ a2. Then (see Fig. 1) u(y) = 0 for all y ∈ R. According to (23)
and (47), it will be d(A ≥ B) = 0.
Case 3. Let δ2 > ε1, f1 > a2 and tF (B)(ε1) ≥ tD(A)(ε1) (see Fig. 2). Then
u(y) = tF (B)(y) for y ≤ ε1 and u(y) = tD(A)(y) for ε1 < y. Therefore, d(A ≥
≥ B) = tF (B)(ε1).
Case 4. Let δ2 > ε1, f1 > a2, tF (B)(ε1) < tD(A)(ε1). In this case, the equation

tD(A)(y) = tF (B)(y) (48)

has the only solution y0 ∈ (ε1, f1) ∩ (a2, δ2). Then d(A ≥ B) = z, where z =
= tD(A)(y0).

From formulas (30), (41) and (48), it can be obtained that this number z
satisfies the quadratic equation

((f1 − c1 + b1 − a1) + (f2 − c2 + b2 − a2)) z2

− ((2f1 − a1 − c1) + (f2 + b2 − 2a2)) z + f1 − a2 = 0.
(49)
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Fig. 2. μD(A)(y) and μF (B)(y) for the case δ2 > ε1, f1 > a2, tF (B)(ε1) ≥ tD(A)(ε1)

Example 1. Let two trapezoidal fuzzy numbers A = (20, 30, 60, 100), B =
(10, 40, 70, 80) be given. Their membership functions are shown in Fig. 3.

Fig. 3. Comparison of two trapezoidal fuzzy numbers

According to (24)

gA(α) = 20 + 10α, GA(α) = 100 − 40α, 0 < α ≤ 1,

and
gB(α) = 10 + 30α, GB(α) = 80 − 10α, 0 < α ≤ 1.
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Since for the trapezoidal fuzzy number A the condition 2b1 ≤ a1 + c1 is true,
then, according to Theorem 2 and (30),

μD(A)(y) =

⎧
⎨

⎩

1, if y ≤ 30,
tD(A)(y), if 30 < y < 100,
0, if y ≥ 100,

where

tD(A)(y) =
12 − √

2y − 56
10

. (50)

Consequently, ε1 = 30.
Since the condition f2 + b2 ≤ 2c2 is true for the trapezoidal fuzzy number B,

then according to Theorem 4 and (41),

μF (B)(y) =

⎧
⎨

⎩

0, if y ≤ 10,
tF (B)(y), if 10 < y < 70,
1, if y ≥ 70,

where

tF (B)(y) =
25 − √

725 − 10y

20
. (51)

Hence, δ2 = 70.
According to (50), (51)

tD(A)(ε1) = tD(A)(30) = 1,
tF (B)(ε1) = tF (B)(30) = 5−√

17
4 .

Since δ2 > ε1, f1 > a2 and tF (B)(ε1) < tD(A)(ε1), then (see case 4)
d(A ≥ B) = z, where z is the root of Eq. (49)

90z2 − 220z + 90 = 0.

According to z ∈ [ 0, 1], we obtain

d(A ≥ B) =
11 − 2

√
10

9
≈ 0, 51949.

Now we find d(B ≥ A). Since the condition 2b2 = a2 + c2 is satisfied for the
trapezoidal fuzzy number B, then according to Theorem 2 and (30), we get

μD(B)(y) =

⎧
⎨

⎩

1, if y ≤ 40,
tD(B)(y), if 40 < y < 80,
0, if y ≥ 80,

where

tD(B)(y) = 1 −
√

10y − 400
20

. (52)
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Hence, ε2 = 40.
The condition (42), f1 + b1 > 2c1, is true for the trapezoidal fuzzy number

A. Therefore, from (43) it follows that δ1 = 601
2 . According to Theorem 3 and

(41),

μF (A)(y) =

⎧
⎨

⎩

0, if y ≤ 20,
tF (A)(y), if 20 < y < 60 1

2 ,
1, if y ≥ 60 1

2 ,

where

tF (A)(y) =
9 − √

121 − 2y

10
. (53)

According to (52), (53) we obtain

tD(B)(ε2) = tD(B)(40) = 1,
tF (A)(ε2) = tF (A)(40) = 9−√

41
10 .

Since δ1 > ε2, f2 > a1 and tF (A)(ε2) < tD(B)(ε2), then (see case 4) d(B≥A) = z,
where z is the root of Eq. (49)

90z2 − 170z + 60 = 0.

According to z ∈ [ 0, 1], we obtain

d(B ≥ A) =
17 − √

73
18

≈ 0, 46978.

Finally, since d(A ≥ B) ≥ d(B ≥ A), then A 	 B.

5 Conclusion

In this paper, we present a new approach to comparison of fuzzy numbers. We
plan to apply this approach to fuzzy games [10,11] and decision-making problem
with fuzzy uncertainty [23].

References

1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1963)
2. Zadeh, L.A.: Fuzzy logic. Computer 21(4), 83–93 (1988)
3. Zimmermann, H.J.: Fuzzy Set Theory - and its Applications. Kluwer Academic

Publishers, New York (1996)
4. Kosko, B.: Fuzzy systems as universal approximators. IEEE Trans. Comput.

43(11), 1329–1333 (1994)
5. Li, L., Lai, K.K.: A fuzzy approach to the multiobjective transportation problem.

Comput. Oper. Res. 27(1), 43–57 (2000)
6. Chen, C.T., Lin, C.T., Huang, S.F.: A fuzzy approach for supplier evaluation and

selection in supply chain management. Int. J. Prod. Econ. 102(2), 289–301 (2006)



On the Issue of Comparison of Fuzzy Numbers 603

7. Bahri, O., Talbi, E.G., Amor, N.B.: A generic fuzzy approach for multi-objective
optimization under uncertainty. Swarm Evol. Comput. 40, 166–183 (2018)

8. Korzhov, A.V., Korzhova, M.E.: A method of accounting for fuzzy operational
factors influencing 6 (10) kV power cable insulation longevity. In: 2016 2nd Inter-
national Conference on Industrial Engineering, Applications and Manufacturing
(ICIEAM), pp. 1–4. IEEE, Chelyabinsk (2016). https://doi.org/10.1109/ICIEAM.
2016.7911429

9. Larbani, M.: Non cooperative fuzzy games in normal form: a survey. Fuzzy Sets
Syst. 160(22), 3184–3210 (2009)

10. Kudryavtsev, K.N., Stabulit, I.S., Ukhobotov, V.I.: A bimatrix game with fuzzy
payoffs and crisp game. In: CEUR Workshop Proceedings 1987, pp. 343–349 (2017)

11. Kudryavtsev, K.N., Stabulit, I.S., Ukhobotov, V.I.: One approach to fuzzy matrix
games. In: CEUR Workshop Proceedings 2098, pp. 228–238 (2018)

12. Verma, T., Kumar, A.: Ambika methods for solving matrix games with Atanassov’s
intuitionistic fuzzy payoffs. IEEE Trans. Fuzzy Syst. 26(1), 270–283 (2018)

13. Dutta, P., Boruah, H., Ali, T.: Fuzzy arithmetic with and without using α-cut
method: a comparative study. Int. J. Latest Trends Comput. 2(1), 99–107 (2011)

14. Bansal, A.: Trapezoidal fuzzy numbers (a, b, c, d): arithmetic behavior. Int. J.
Phys. Math. Sci. 2(1), 39–44 (2011)

15. Gallyamov, E.R., Ukhobotov, V.I.: Computer implementation of operations with
fuzzy numbers. Bull. South Ural State Universit. 3(3), 97–108 (2014). Series
“Vychislitelnaya Matematika i Informatika”. (in Russian)

16. Yager, R.R.: A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci.
24(2), 143–161 (1981)

17. Ibanez, L.M.C., Munoz, A.G.: A subjective approach for ranking fuzzy numbers.
Fuzzy Sets Syst. 29(2), 145–153 (1989)

18. Chen, S.J., Hwang, C.L.: Fuzzy multiple attribute decision making methods. In:
Fuzzy Multiple Attribute Decision Making, pp. 289–486. Springer, Heidelberg
(1992). https://doi.org/10.1007/978-3-642-46768-4 5

19. Ukhobotov, V.I., Shchichko, P.V.: An approach to ranking fuzzy numbers. Bull.
South Ural State Universit. 10, 54–62 (2011). Series “Matematicheskoe mod-
elirovanie I programmirovanie”. (in Russian)

20. Ukhobotov, V.I., Mikhailova, E.S.: An approach to the comparison of fuzzy num-
bers in decision-making problems. Bull. South Ural State University 71, 32–37
(2015). Series “Mathematics. Mechanics. Physics”. (in Russian)

21. Ukhobotov, V.I., Mikhailova, E.S.: Comparison of fuzzy numbers in decision-
making problems. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika.
Komp’yuternye Nauki 26(1), 87–94 (2016). https://doi.org/10.20537/vm160108.
(in Russian)

22. Ukhobotov, V.I., Stabulit, I.S., Kudryavtsev, K.N.: Comparison of triangu-
lar fuzzy numbers. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika.
Komp’yuternye Nauki 29(2), 197–210 (2019). https://doi.org/10.20537/vm190205.
(in Russian)

23. Ukhobotov, V.I., Stabulit, I.S., Kudryavtsev, K.N.: On decision making under
fuzzy information about an uncontrolled factor. Procedia Comput. Sci. 150, 524–
531 (2019). https://doi.org/10.1016/j.procs.2019.02.088

24. Ramik, J., Vlach, M.: Generalized Concavity in Fuzzy Optimization and Decision
Analysis. Kluwer Academic Publishers, Boston (2001)

25. Ukhobotov, V.I.: The Selected Chapters of Fuzzy Set Theory: Study Guide.
Chelyabinsk State University, Chelyabinsk (2011). (in Russian)

https://doi.org/10.1109/ICIEAM.2016.7911429
https://doi.org/10.1109/ICIEAM.2016.7911429
https://doi.org/10.1007/978-3-642-46768-4_5
https://doi.org/10.20537/vm160108
https://doi.org/10.20537/vm190205
https://doi.org/10.1016/j.procs.2019.02.088


Author Index

Aizenberg, Natalia 147
Amirgaliyev, Yedilkhan 343
Anikin, Anton 486
Avella, Pasquale 438

Boccia, Maurizio 438
Bukharev, Dmitrii 319
Buldaev, Alexander Sergeevich 455
Burlakov, Ivan Dmitrievich 455
Bykadorov, Igor 163

Chentsov, Alexander G. 470
Chentsov, Alexey A. 470

Davydov, Ivan 19

Erokhin, Vladimir 283
Ershov, Aleksandr 329
Erzin, Adil 356, 390

Fabarisova, Aigul 235

Gimadi, Edward Kh. 30
Gnusarev, Alexander 68
Goncharov, Evgenii N. 39
Gornov, Alexander 486
Grigoryev, Alexey M. 470

Kadochnikov, Andrey 283
Kan, Yuri S. 497
Kandoba, Igor 369
Kartak, Vadim M. 79, 235
Kazakov, Alexander 195
Kazakovtsev, L. A. 408
Kel’manov, Alexander 207
Khandeev, Vladimir 207
Kober, Vitaly 217
Kochetov, Yu. A. 255
Kononova, Polina 51
Krotov, Vladimir 422
Krupennikov, Evgenii A. 508

Kudryavtsev, Konstantin 590
Kulachenko, Igor 51

Le, Quang Mung 195
Lebedev, Pavel 244
Lempert, Anna 195
Levanova, Tatyana 68

Makovetskii, Artyom 217
Malakh, Svetlana A. 381
Markova, Evgeniia 524
Mazurov, Vladimir D. 3
Merembayev, Timur 343

Namm, Robert 536
Nurminski, Evgeni 294

Orlov, V. I. 408

Pershakov, Maksim 329
Petrosian, Ovanes 178
Petrov, Lev F. 548
Petunin, Alexander 422
Plotnikov, Roman 356, 390
Polyakova, Ekaterina Yu. 3
Popov, Leonid D. 304
Prokudina, Liudmila 319

Ripatti, Artem V. 79

Semenov, Alexander A. 86
Servakh, Vladimir V. 381
Shabana, Hanan 103
Shamiluulu, Shahriar 343
Shamray, Natalia 294
Shin, Ekaterina Yu. 30
Shkaberina, G. Sh. 408
Sidler, Inna 524
Simanchev, R. Yu. 255
Sorokovikov, Pavel 486
Sotnikov, Sergey 283



Stabulit, Irina 590
Surina, Al’fiya A. 562

Tabarintseva, Elena 578
Tavaeva, Anastasia 422
Tolstykh, Daniil 19
Tovbis, E. M. 408
Tsoy, Georgiy 536
Tur, Anna 178
Tyrsin, Alexander N. 562

Ukhobotov, Viktor 590
Ukolov, Stanislav 422
Urazova, I. V. 255
Ushakov, Anton V. 119
Ushakov, Vladimir 244, 329
Uspenskii, Alexander 369

Vaganov, Alexey 283
Vasil’eva, Sofia N. 497
Vasilyev, Igor 119, 438
Veremchuk, Natalia S. 131
Viglione, Sandro 438
Volkov, Mikhail V. 103
Voronin, Aleksei 217
Voronin, Sergei 217
Voropai, Nikolai 147

Yedilkhan, Didar 343

Zabudsky, Gennady G. 131
Zaozerskaya, Lidia 266
Zarodnyuk, Tatiana 486

606 Author Index


	Preface
	Organization
	Contents
	Invited Paper
	Committees: History and Applications in Machine Learning
	1 Introduction
	1.1 Some Applications
	1.2 Non-classical Logics

	2 Committee Solutions: Basic Concepts
	3 Game Theoretic Conditions of Committee Existence
	3.1 Problem Statement
	3.2 Upper Value
	3.3 Mixed Strategy Equilibrium
	3.4 Asymptotic Bounds

	4 Affine Separating Committees and Ensembles of Linear Classifiers
	5 Conclusion
	References

	Combinatorial Optimization
	An Evolutionary Based Approach for the Traffic Lights Optimization Problem
	1 Introduction
	2 Problem Formulation
	3 PSO Based Heuristic
	4 Numerical Experiments
	5 Conclusion
	References

	On Given Diameter MST Problem on Random Input Data
	1 Introduction
	2 An Algorithm A for Finding d-MST
	3 Analysis of Algorithm A
	References

	Variable Neighborhood Search for the Resource Constrained Project Scheduling Problem
	1 Introduction
	2 Problem Setting
	3 Variable Neighborhood Search
	3.1 Solution Representation
	3.2 Resource Weights
	3.3 Block of Activities
	3.4 The Initial Solution
	3.5 Tabu List Management
	3.6 Neighborhood A
	3.7 Neighborhood B
	3.8 Algorithm Outline

	4 Numerical Experiments
	5 Conclusion
	References

	The VNS Approach for a Consistent Capacitated Vehicle Routing Problem Under the Shift Length Constraints
	1 Introduction
	2 Mathematical Model
	3 Neighborhoods
	4 Optimization Method
	5 Computational Results
	6 Conclusion
	References

	Development of Ant Colony Optimization Algorithm for Competitive p-Median Facility Location Problem with Elastic Demand
	1 Introduction
	2 Competitive p-Median Problem with Elastic Demand
	3 Ant Colony Algorithm
	4 Algorithms and Parameters Turning
	5 Main Stage of Computational Experiments
	6 Conclusion
	References

	Bounds for Non-IRUP Instances of Cutting Stock Problem with Minimal Capacity
	1 Introduction
	2 Preliminaries
	3 Model
	4 Results
	5 Conclusion
	References

	Merging Variables: One Technique of Search in Pseudo-Boolean Optimization
	1 Basic Notions and Methods
	2 Merging Variables Principle (MVP)
	3 Combining MVP with Local Search
	4 Combining MVP with Evolutionary Computations
	5 Preliminary Computational Results
	6 Related Work (Briefly)
	7 Conclusion and Acknowledgements
	References

	Using Sat Solvers for Synchronization Issues in Partial Deterministic Automata
	1 Introduction
	2 Synchronization of NFAs and PFAs
	3 Encoding
	4 Experimental Results
	5 Conclusion and Future Work
	References

	A Computational Comparison of Parallel and Distributed K-median Clustering Algorithms on Large-Scale Image Data
	1 Introduction
	2 Parallel K-median Clustering Algorithms
	3 Distributed Lagrangian Relaxation-Based Heuristic
	3.1 Sequantional Algorithm
	3.2 Implementation in Distributed Environments

	4 Experiments
	References

	On the One–Dimensional Space Allocation Problem with Partial Order and Forbidden Zones
	1 Introduction
	2 Statement of the ODSAP and Review of Research
	3 Local Search Algorithm
	3.1 Subproblems for Rooted Trees and Parallel–Serial Graphs
	3.2 Solution of Subproblems for BDG Graph
	3.3 Search of Local Optimum

	4 Conclusion
	References

	Game Theory and Mathematical Economics
	The Interaction of Consumers and Load Serving Entity to Manage Electricity Consumption
	1 Introduction
	2 Equilibrium Pricing Model
	3 Equilibrium Model with the Individual Rationality Condition
	4 Arbitrage Opportunity Model
	5 Efficiency Evaluation
	6 Conclusions
	References

	Social Optimality in International Trade Under Monopolistic Competition
	1 Introduction
	2 Problem
	2.1 Consumers and Producers
	2.2 Social Welfare and Social Optimality
	2.3 Social Optimality: Symmetric Case

	3 Comparative Statics w.r.t. Transport Costs
	3.1 Free Trade
	3.2 Autarky

	4 Conclusion
	References

	Hamilton-Jacobi-Bellman Equations for Non-cooperative Differential Games with Continuous Updating
	1 Introduction
	2 Initial Game Model
	3 Differential Game Model with Continuous Updating
	4 Nash Equilibrium in Game with Continuous Updating
	5 Hamilton-Jacobi-Bellman Equations with Continuous Updating
	6 Differential Game of Investment in Public Goods
	6.1 Initial Game Model
	6.2 Game Model with Continuous Updating

	7 Conclusion
	References

	Data Mining and Computational Geometry
	On the Thinnest Covering of Fixed Size Containers with Non-euclidean Metric by Incongruent Circles
	1 Introduction
	2 Formulation
	3 Solution Method
	4 Computational Experiment
	5 Conclusion
	References

	The Problem K-Means and Given J-Centers: Polynomial Solvability in One Dimension
	1 Introduction
	2 Problem Formulation, Its Sources and Related Problems
	3 Auxiliary Statements
	4 Polynomial Solvability of the Problem in 1D Case
	5 Conclusion
	References

	A Generalized Point-to-Point Approach for Orthogonal Transformations
	1 Introduction
	2 Formulation of the Variation Problem
	2.1 Translation Vector Exclusion

	3 Reduction of the Variational Problem
	4 Closed Form Solution to the Variational Problem
	4.1 Return from the Clouds P' and Q' to the Clouds P and Q

	5 Computer Simulation
	5.1 Experiments with Cube
	5.2 Experiments with Stanford Bunny
	5.3 Experiments with Dragon
	5.4 Experiments with Armadillo

	6 Conclusion
	References

	Integer Programming
	An Integer Programming Approach to the Irregular Polyomino Tiling Problem
	1 Introduction
	2 Model Formulation
	2.1 Integer Programming Models
	2.2 Entropy Based Models E1 and E2

	3 Computational Results
	4 Conclusions
	References

	Iterative Methods for Constructing Approximations to Optimal Coverings of Nonconvex Polygons
	1 Introduction
	2 Optimal Covering Problem
	3 Algorithms for Solving the Problem
	4 Examples of Building Coverings
	5 Conclusions
	References

	Polyhedral Attack on the Graph Approximation Problem
	1 Introduction
	2 Notations and Basic Concepts
	3 The Branch and Cut Method
	3.1 Lower Bound
	3.2 Upper Bound
	3.3 Approximate Solution with a Given Accuracy

	4 Computational Experiments
	5 Conclusion
	References

	Analysis of Integer Programming Model of Academic Load Distribution
	1 Introduction
	2 Problem Formulation
	3 Analysis of Parametric Families of ALD Problem
	3.1 Family F1(n)
	3.2 Analysis of Land and Doig Algorithm
	3.3 Families F2(n) and G(2n)

	4 Analysis of L-Covering
	5 Conclusion
	References

	Mathematical Programming
	Regularization and Matrix Correction of Improper Linear Programming Problems
	1 Introduction
	2 Mathematical Tools
	3 Main Result
	References

	Discrete Time Lyapunov-Type Convergence Conditions for Recurrent Sequences in Optimization and Subgradient Method for Weakly Convex Functions
	1 Introduction
	2 Notations and Preliminaries
	3 Convergence Theory
	4 Subgradient Method for Weakly Convex Functions
	References

	Methods for Matrix Games with Mixed Strategies and Quantile Payoff Function
	1 Introduction
	2 Two Different Classes of the Methods
	3 Description of the Auxiliary Matrix Games
	4 How to Find the Index   
	5 Conclusion
	References

	Simulation of Flow Regimes of Non-isothermal Liquid Films
	1 Introduction
	2 Mathematical Model
	3 Computational Experiments
	4 Conclusion
	References

	Counterexamples in the Theory of -Sets
	1 Introduction
	2 Results Statement
	3 Counterexample 1
	4 Counterexample 2 (Proof of Theorem 1)
	5 Conclusion
	References

	Operations Research
	Using Machine Learning Algorithm for Diagnosis of Stomach Disorders
	1 Introduction
	2 Background Information and Implications
	2.1 Logistic Regression Model
	2.2 Metric Algorithm K-Nearest Neighbour
	2.3 Algorithms Based on Gradient Boosting: XGBoost and LightGBM

	3 The Issue of Tuning Hyper Parameters in Models
	4 Materials and Methods
	4.1 Problem Description
	4.2 Description of Data
	4.3 Disease Groups
	4.4 Performance Measure Metrics

	5 Experimental Result and Discussions
	6 Conclusion
	References

	The Convergecast Scheduling Problem on a Regular Triangular Grid
	1 Introduction
	2 Formulation of the CSP
	3 Complete Triangular Grid
	3.1 Preliminary Considerations
	3.2 The HCA

	4 Incomplete Triangular Grid
	5 Conclusion
	References

	On an Applied Problem of Vector Optimization
	1 Introduction
	2 Price Optimization Problem in an Autonomous Wholesale Market
	3 Mathematical Model of the Market
	4 Statement of Vector Optimization Problem
	5 Main Properties of Optimization Problem
	6 Solution Algorithm for Vector Optimization Problem
	7 Results of Numerical Modeling
	8 Conclusion
	References

	Net Present Value Maximization in Inventory Management System
	1 Introduction
	2 Task of Maximizing Net Present Value
	3 Problem with Working Capital Limits
	3.1 Problem with Order Reduction
	3.2 Forming Orders Using Credits

	4 Conclusion
	References

	Constructive Heuristics for Min-Power Bounded-Hops Symmetric Connectivity Problem
	1 Introduction
	2 Problem Formulation
	3 Heuristic Algorithms
	3.1 Prim-Like Heuristics
	3.2 Min-Power Center-Based Recursive Clustering
	3.3 Min-Power Quadrant Center-Based Heuristic
	3.4 Min-Power Iterative Refinement

	4 Simulation
	5 Conclusion
	References

	Identification of the Optimal Set of Informative Features for the Problem of Separating of Mixed Production Batch of Semiconductor Devices for the Space Industry
	1 Introduction
	2 Data and Preprocessing
	3 Factor Analysis Using Pearson's Correlation Matrix
	4 Computational Experiments with Various Compositions of the Mixed Lot
	5 Adequacy of the Factor Model
	6 Conclusions
	References

	A Cost Minimizing at Laser Cutting of Sheet Parts on CNC Machines
	1 Introduction
	2 Exact Calculation of Cost Function Fcost in the Cutter Path Optimization Problem
	2.1 Model of Basic Cost Parameters Con, Coff, Cpt Calculation
	2.2 Accurate Calculation of Von in Objective Function from the Example of the CNC Laser Cutting Machine ByStar 3015

	3 Computational Experiments
	4 Conclusion
	References

	A Local Branching MIP Heuristic for a Real-World Curriculum-Based Course Timetabling Problem
	1 Introduction
	2 Problem Statement
	3 Integer Linear Programming Formulation
	4 Solution Approach
	5 Computational Results
	References

	Optimal Control and Applications
	Iterative Method with Exact Fulfillment of Constraints in Optimal Control Problems
	1 Introduction
	2 Statement of the Problem with Restrictions
	3 The Fixed Point Problem Based on the Extension Functional
	4 Iterative Algorithm
	5 Conditions for Optimal Control
	6 Example
	7 Conclusion
	References

	Optimization ``In Windows'' for Routing Problems with Constraints
	1 Introduction
	2 General Notations and Definitions
	3 The Initial Problem
	4 Cost Functions
	5 Optimizing Individual Insertions
	6 Local Cost Functions
	7 Optimizing Multi-insertions
	8 The Problem of Dismantling the Radiating Elements
	9 Computational Experiment
	10 Conclusion
	References

	The Stochastic Coverings Algorithm for Solving Applied Optimal Control Problems
	1 Introduction
	2 Statement of the Optimal Control Problem
	3 The Basic Optimization Algorithm
	3.1 Turn-Based Algorithm Scheme
	3.2 The Stopping Criteria
	3.3 The Algorithm Operation Modes
	3.4 Controls Generation
	3.5 The Test Problem

	4 Applied Optimal Control Problems
	4.1 Optimization Model of Investment Programs in Buryatia Republic
	4.2 The Problem of Restoring the Black Lands in Kalmykia

	5 Conclusion
	References

	Deterministic Approximation of Stochastic Programming Problems with Probabilistic Constraints
	1 Introduction
	2 The p-Kernel of n-Dimensional Random Vector
	3 Stochastic Programming Problem with Individual Probabilistic Constraints
	4 Approximation of the Stochastic Programming Problem with Loss Function Linear in Random Parameters
	5 Example
	6 Conclusion
	References

	On Estimates of the Solutions of Inverse Problems of Optimal Control
	1 Introduction
	1.1 Notation

	2 Dynamics
	3 Input Data
	4 Reconstruction Problem
	5 Constructing a Solution of the Reconstruction Problem
	5.1 Auxilliary Problem
	5.2 Necessary Optimality Conditions in the AVP
	5.3 Solution of the Inverse Problem

	6 Remarks on the Suggested Method
	7 Conclusion
	References

	Optimization Problem in an Integral Model of the Developing System Without Prehistory
	1 Introduction
	2 Integral Model of the EPS Development
	3 Optimization Problem
	4 Study of the Optimal Control Problem of Commissioning of Capacities on the Examples
	5 Conclusion
	References

	A Modified Duality Scheme for Solving a 3D Elastic Problem with a Crack
	1 Introduction
	2 Problem Statement
	3 Classical and Modified Duality Schemes
	4 Numerical Experiment
	References

	Control of the Oscillations Through Nonlinear Interactions
	1 Introduction
	2 Variety of Periodic Solutions in Strongly Nonlinear Dynamical Systems
	2.1 Autonomous Systems
	2.2 Non-autonomous Systems

	3 Search for Periodic Solutions of Strongly Nonlinear Dynamical Systems
	3.1 Finding Periodic Solutions by Minimizing the Discrepancy
	3.2 Finding Periodic Solutions by Solving a System of Nonlinear Algebraic Equations
	3.3 Fourier Analysis of Periodic Solutions
	3.4 Stability of Periodic Solutions

	4 Strongly Nonlinear Dynamical Systems. The Use of Nonlinear Effects to Control Oscillations
	4.1 Oscillations of a Strongly Nonlinear System with Two Degrees of Freedom
	4.2 Control of Oscillations in a One-Dimensional Dynamic System Due to the Nonlinear Interaction of Different Types of Oscillations

	5 Conclusion
	References

	Risk Management in Gaussian Stochastic Systems as an Optimization Problem
	1 Introduction
	2 Model Risk Management in Gaussian Stochastic Systems
	3 Description of the Risk Management Algorithm
	4 Research of Accuracy of the Risk Management Algorithm
	5 Conclusions
	References

	The Accuracy of Approximate Solutions for a Boundary Value Inverse Problem with Final Overdetermination
	1 Introduction
	2 The Inverse Problem with Final Overdetermination
	3 Reducing the Boundary Value Inverse Problem to the Operator Equation
	4 The Continuity Module for the Inverse Problem
	References

	On the Issue of Comparison of Fuzzy Numbers
	1 Introduction
	2 Construction of a Fuzzy Set
	3 Description of the Rules for Comparison Fuzzy Numbers
	4 Comparison of the Trapezoidal Fuzzy Numbers
	5 Conclusion
	References

	Author Index



