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Abstract. We present a weakly supervised deep learning method to
perform instance segmentation of cells present in microscopy images.
Annotation of biomedical images in the lab can be scarce, incomplete,
and inaccurate. This is of concern when supervised learning is used for
image analysis as the discriminative power of a learning model might be
compromised in these situations. To overcome the curse of poor label-
ing, our method focuses on three aspects to improve learning: (i) we
propose a loss function operating in three classes to facilitate separating
adjacent cells and to drive the optimizer to properly classify underrepre-
sented regions; (ii) a contour-aware weight map model is introduced to
strengthen contour detection while improving the network generalization
capacity; and (iii) we augment data by carefully modulating local inten-
sities on edges shared by adjoining regions and to account for possibly
weak signals on these edges. Generated probability maps are segmented
using different methods, with the watershed based one generally offering
the best solutions, specially in those regions where the prevalence of a
single class is not clear. The combination of these contributions allows
segmenting individual cells on challenging images. We demonstrate our
methods in sparse and crowded cell images, showing improvements in
the learning process for a fixed network architecture.

Keywords: Instance segmentation · Weakly supervised · Cell
segmentation · Microscopy cells · Loss modeling

1 Introduction

In developmental cell biology studies, one generally needs to quantify temporal
signals, e.g. protein concentration, on a per cell basis. This requires segmenting
individual cells in many images, accounting to hundreds or thousands of cells per

We thank the financial support from the Beckman Institute at Caltech to the Center
for Advanced Methods in Biological Image Analysis – CAMBIA (FAG, AC) and from
the Brazilian funding agencies FACEPE, CAPES and CNPq (FAG, PF, TIR).

c© Springer Nature Switzerland AG 2019
Q. Wang et al. (Eds.): DART 2019/MIL3ID 2019, LNCS 11795, pp. 216–224, 2019.
https://doi.org/10.1007/978-3-030-33391-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33391-1_25&domain=pdf
https://doi.org/10.1007/978-3-030-33391-1_25


Weakly Supervised Cell Segmentation 217

Fig. 1. Incomplete (A) and inaccurate (B) annotations of training images might be
harmful for supervised learning as the presence of similar regions with erratic annota-
tions might puzzle the optimization process. Our formulation is able to segment well
under uncertainty as shown in the examples in the right panels of A and B above.

experiment. Such data availability suggests carrying on large annotation efforts,
following the common wisdom that massive annotations are beneficial for fully
supervised training to avoid overfitting and improve generalization. However,
full annotation is expensive, time consuming, and it is often inaccurate and
incomplete when it is done at the lab, even by specialists (see Fig. 1).

To mitigate these difficulties and make the most of limited training data,
we work on three fronts to improve learning. In addition to the usual data aug-
mentation strategies (rotation, cropping, etc.), we propose a new augmentation
scheme which modulates intensities on the borders of adjacent cells as these
are key regions when separating crowded cells. This scheme augments the con-
trast patterns between edges and cell interiors. We also explicitly endow the
loss function to account for critically underrepresented and reduced size regions
so they can have a fair contribution to the functional during optimization. By
adopting large weights on short edges separating adjacent cells we increase the
chances of detecting them as they now contribute more significantly to the loss.
In our experience, without this construction, these regions are poorly classified
by the optimizer – weights used in the original U-Net formulation [9] are not
sufficient to promote separation of adjoining regions. Further, adopting a three
classes approach [4] has significantly improved the separation of adjacent cells
which are otherwise consistently merged when considering a binary foreground
and background classification strategy. We have noticed that complex shapes,
e.g. with small necks, slim invaginations and protrusions, are more difficult to
segment when compared to round, mostly convex shapes [10]. Small cells, tiny
edges, and slim parts, equally important for the segmentation result, can be eas-
ily dismissed by the optimizer if their contribution is not explicitly accounted
for and on par with other more dominant regions.

Previous Work. In [6] the authors propose a weakly semantic segmentation
method for biomedical images. They include prior knowledge in the form of con-
straints into the loss function for regularizing the size of segmented objects. The
work in [11] proposes a way to keep annotations at a minimum while still captur-
ing the essence of the signal present in the images. The goal is to avoid excessively
annotating redundant parts, present due to many repetitions of almost identi-
cal cells in the same image. In [8] the authors also craft a tuned loss function
applied to improve segmentation on weakly annotated gastric cancer images.
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The instance segmentation method for natural images Mask R-CNN [5] uses
two stacked networks, with detection followed by segmentation. We use it for
comparisons on our cell images. Others have used three stacked networks for
semantic segmentation and regression of a watershed energy map allowing sep-
arating nearby objects [1].

2 Segmentation Method

Notation. Let S = {(xj , gj)}N
j=1 be a training instance segmentation set where

xj : Ω → R+ is a single channel gray image defined on the regular grid Ω ∈ R2,
and gj : Ω → {0, . . . , mj} its instance segmentation ground truth map which
assigns to a pixel p ∈ Ω a unique label gj(p) among all mj + 1 distinct instance
labels, one for each object, including background, labeled 0. For a generic (x, g),
Vi = {p | g(p) = i} contains all pixels belonging to instance object i, hence
forming the connected component of object i. Due to label uniqueness, Vi ∩Vj =
Ø, i �= j, i.e. a pixel cannot belong to more than one instance thus satisfying
the panoptic segmentation criterion [7]. Let h : Ω → {0, . . . , C} be a semantic
segmentation map, obtained using g, which reports the semantic class of a pixel
among the C + 1 possible semantic classes, and y : Ω → RC+1 its one hot
encoding mapping. That is, for vector y(p) ∈ RC+1 and its l-th component yl(p),
we have yl(p) = 1 iff h(p) = l, otherwise yl(p) = 0. We call nl =

∑
p∈Ω yl(p) the

number of pixels of class l, and ηk(p), k � 1, the (2k+1)×(2k+1) neighborhood
of a pixel p ∈ Ω. In our experiments we adopted k = 2.

From Instance to Semantic Ground Truth. We formulate the instance
segmentation problem as a semantic segmentation problem where we obtain
object segmentation and separation of cells at once. To transform an instance
ground truth to a semantic ground truth, we adopted the three semantic classes
scheme of [4]: image background, cell interior, and touching region between cells.
This is suitable as the intensity distribution of our images in those regions is
multi-modal. We define our semantic ground truth h as

h(p) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if g(p) = 0 − background

2 if
∑

p′∈ηk(p)
[g(p′) �= g(p)] · [g(p′) �= 0] > 1 − touching

1 otherwise − cell

(1)

where [·] refers to Iverson bracket notation [2]: [b] = 1 if the boolean condition b
is true, otherwise [b] = 0. Equation 1 assigns class 0 to all background pixels, it
assigns class 2 to all pixels whose neighborhood ηk contains at least one pixel of
another connected component, and it assigns class 1 to cell pixels not belonging
to touching regions.

Touching Region Augmentation. Touching regions have the lowest pixel
count among all semantic classes, having few examples to train the network. They
are in general brighter than their surroundings, but not always, with varying val-
ues along its length. To train with a larger gamut of touching patterns, including
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Fig. 2. Contrast modulation around touching regions. Separating adjacent cells is one
of the major challenges in crowded images. To leverage learning, we feed the network
with a variety of contrasts around touching regions. We do so by modulating their
intesities while keeping adjacencies the same. In this example, an original image (a = 0)
has its contrast increased (decreased) around shared edges when we set a < 0 (a > 0).
- see our formulation in Sect. 2.

weak edges, we augment existing ones by modulating their pixel values according
to the expression xa(p) = (1 − a) · x(p) + a · x̃(p), only applied when h(p) = 2,
where x̃ is the 7 × 7 median filtered image of x. When a < 0 (a > 0) we increase
(decrease) contrast. During training, we have random values of a ∼ U(−1, 1).
An example of this modulation is shown in Fig. 2.

Loss Function. U-Net [9] is an encoder–decoder network for biomedical image
segmentation with proven results in small datasets, and with cross entropy being
the most commonly adopted loss function. The weighted cross entropy [9] is
a generalization where a pre–computed weight map assigns to each pixel its
importance for the learning process,

L(y, z) = −
C∑

l=0

∑

p∈Ω

ωβ,ν,σ(p) · yl(p) · log zl(p) (2)

where ωβ,ν,σ(p) is the parameterized weight at pixel p, and zl(p) the computed
probability of p belonging to class l for ground truth yl(p).

Let R(u) = u+ be the rectified linear function, ReLu, and ϕβ(u) = R(1 −
u/β), u ∈ R, a rectified inverse function saturated in β ∈ R+. We propose the
Triplex Weight Map, W 3, model

ωβ,ν,σ(p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ν/n0 + ν · ϕβ (φh(p)) /n1 if h(p) = 0
ν/n1 + ν · ϕβ (φK(p)) if h(p) = 1, p ∈ Γ

ν/n1 + ωβ,ν,σ(ζΓ (p)) · exp(−φ2
Γ (p)/σ2) if h(p) = 1, p /∈ Γ

ν/n2 if h(p) = 2

(3)

where Γ represents cell contour; nl is the number of pixels of class l; φh is
the distance transform over h that assigns to every pixel its Euclidean distance
to the closest non-background pixel; φK and φΓ are, respectively, the distance
transforms with respect to the skeleton of cells and cell contours; and ζΓ : Ω → Ω
returns the pixel in contour Γ closest to a given pixel p, thus ζΓ (p) ∈ Γ . The
W 3 model sets ωβ,ν,σ(p) = ν/n0 for all background pixels distant at least β to a
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cell contour. This way, true cells that are eventually not annotated and located
beyond β from annotated cells have very low importance during training – by
design, weights on non annotated regions are close to zero.

The recursive expression for foreground pixels (third line in Eq. 3) creates
weights using a rolling Gaussian with variance σ2 centered on each pixel of the
contour. These weights have amplitudes which are inversely proportional to their
distances to cell skeleton, resulting in large values for slim and neck regions. The
parameter ν is used for setting the amplitude of the Gaussians. The weight at a
foreground pixel is the value of the Gaussian at the contour point closest to this
pixel. The touching region is assigned a constant weight for class balance, larger
than all other weights.

From Semantic to Instance Segmentation. After training the network for
semantic segmentation, we perform the transformation from semantic to panop-
tic, instance segmentation. First, a decision rule ĥ over the output probability
map z is applied to hard classify each pixel. The usual approach is to classify
with maximum a posteriori (MAP) where the semantic segmentation is obtained
with ĥ(p) = arg maxl zl(p). However, since pixels in the touching and interior
cell regions share similar intensity distributions, the classifier might be uncertain
in the transition zone between these regions, where it might fail to assign the
right class for some, sometimes crucial, pixels in these areas. A few misclassified
pixels can compromise the separation of adjacent cells (see Fig. 3). Therefore,
we cannot solely rely on MAP as our hard classifier. An alternative is to use
a thresholding (TH) strategy as a decision rule, where parameters γ1 and γ2
control, respectively, the class assignment of pixels: ĥ(p) = 2 if z2(p) ≥ γ2, and
ĥ(p) = 1 if z1(p) ≥ γ1 and z2(p) < γ2, and 0 otherwise. Finally, the estimated
instance segmentation ĝ labels each cell region V̂i and it distributes touching
pixels to their closest components,

ĝ(p) =

⎧
⎪⎨

⎪⎩

0 if ĥ(p) = 0
i if ĥ(p) = 1 and p ∈ V̂i

ĝ(ζΓ (p)) if ĥ(p) = 2
(4)

Another alternative for post-processing is to segment using the Watershed Trans-
form (WT) with markers. It is applied on the topographic map formed by the
subtraction of touching and cell probability maps, z2−z1. Markers are comprised
of pixels in the background and cell regions whose probabilities are larger than
given thresholds τ0 and τ1, {p|z0(p) ≥ τ0 or z1(p) ≥ τ1}. High values for these
should be safe, e.g. τ0 = τ1 = 0.8.

3 Experiments and Results

Training of our triplex weight map method, W 3, is done using U-Net [9] ini-
tialized with normally distributed weights according to the Xavier method [3].
We compare it to the following methods: Lovász-Softmax loss function ignoring
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Image Segmentation MAP Prob. map Prob. values

Fig. 3. Poor classification. Maximum a posteriori, MAP, does not separate adjacent
cells due to poor probabilities in the junctions shown above. The misclassification of
just a few pixels renders a wrong cell topology. Probability maps are shown as RGB
images with Background (red), Cell (green) and Touching (blue) classes. (Color figure
online)

the background class, LSMAX [2]; weighted cross entropy using class balance
weight map, BWM; U-Net with near object weights [9] adapted to three classes,
UNET; and the per-class average combination of the probability maps from
BWM, UNET, and W 3, followed by a softmax, named COMB. We also com-
pared our results with those obtained by Mask R-CNN, MRCNN [5]. The use of
COMB is motivated by ensenble classifiers where one tries to combine the pre-
dictions of multiple classifiers to achieve a prediction which is potentially better
than each individual one. We plan to explore other choices beyond averaging.

We trained all networks over a cell segmentation dataset containing 28 images
of size 1024 × 1024 with weak supervision in the form of incomplete and inaccu-
rate annotations. We use the optimizer Adam with initial learning rate lr = 10−4.
The number of epochs and minibatch size were, respectively, 1000 and 1. We aug-
mented data during training by random mirroring, rotating, warping, gamma
correction, and touching contrast modulation, as in Fig. 2.

We follow [7] to assess results. For detection, we use the Precision (P05)
and the Recognition Quality (RQ) of instances with Jaccard index above 0.5.
For segmentation, we use Segmentation Quality (SQ) computed as the average
Jaccard of matched segments. For an overall evaluation of both detection and
segmentation, we use the Panoptic Quality (PQ) metric, PQ = RQ · SQ.

Maximum A Posterior Threshold Watershed

Fig. 4. Panoptic Quality (PQ) training values for all methods we compare to W 3,
except COMB, using Maximum a Posteriori (MAP), Thresholded Maps (TH) and
Watershed Transform (WT) post-processing. W 3 converges faster to a better solution.
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Panoptic Segmentation Performance. We performed an exploration over
the parameter space for the two parameters used in the TH and WT postpro-
cessing methods. Table 1 shows a comparison of different post-processing strate-
gies considering the best combination of parameters for Thresholds (TH) and
Watershed (WT). For Mask R-CNN we used the same single threshold TH on
the instance probability maps of all boxed cells. We performed watershed WT on
each boxed cell region with seeds extracted from the most prominent background
and foreground regions in the probability maps. Although Lovász-Softmax seems
to be a promising loss function, we believe that the small training dataset and
minibatch size negatively influenced its performance. For most values of thresh-
olds used in the TH post-processing, the average combination (COMB) improved
the overall result due to the reduction of False Positives (see P05 column). Also,
in most cases, our W 3 approach obtained better SQ values than other methods
suggesting a better contour adequacy. Because touching and cell intensity distri-
butions overlap, a softer classification was obtained for these regions. MAP did
not achieve the same performance of other approaches (Fig. 3). The behavior in
Table 1 remained the same during training as shown in Fig. 4.

Image LSMAX MRCNN U-Net BWM W 3 COMB Annotation

Fig. 5. Segmentation results for packed cell clusters obtained using methods described
in Sect. 3. Colors serve to show cell separation. Note the superiority of our W 3.

Examples of segmenting crowded cells with various methods are shown in
Fig. 5. In our experiments, MRCNN was able to correctly segment isolated and
nearly adjacent cells (second row), but it sometimes failed in challenging high-
density clusters. BWM and U-Net tend to misclassify background pixels in neigh-
boring cells (second row) with estimated contours generally beyond cell bound-
aries. W 3 had a better detection and segmentation performance with improve-
ment of contour adequacy over COMB.

We believe our combined efforts of data augmentation, loss formulation with
per pixel geometric weights, and multiclass classification enabled our trained
neural networks to correctly segment cells even from domains it has never seen.
For example, we have never trained with images of meristem and sepal cells but
we still obtain good quality cell segmentation for these as shown in Fig. 6. These
solutions might be further improved by training with a few samples from these
domains.



Weakly Supervised Cell Segmentation 223

Table 1. Metric values for different post processing schemes and segmentation meth-
ods. Numbers are average values obtained for the best combination of threshold param-
eters for both TH and WT post processing methods. Tests were done on 7 images,
totaling 138 cells, with 14 clusters containing from 2 to approximately 32 cells. Metric
values obtained with TH and WT are higher than those obtained with MAP showing
that our post procesing schemes improve results. Overall, our W 3 and COMB outper-
form other segmentation methods for almost all metrics, except P05, when thresholding
and watershed classification schemes are adopted.

Methods MAP TH WT

P05 RQ SQ PQ P05 RQ SQ PQ P05 RQ SQ PQ

MRCNN 0.9188 0.8617 0.8002 0.6892 0.9343 0.8767 0.8012 0.7019 0.9343 0.8767 0.8019 0.7026

LSMAX 0.3871 0.3236 0.7455 0.2408 0.4348 0.3119 0.7171 0.2286 0.4000 0.3149 0.7073 0.2237

BWM 0.6756 0.5580 0.8674 0.4858 0.8583 0.8504 0.8769 0.7476 0.8193 0.8405 0.8831 0.7437

U-Net 0.6801 0.5381 0.8418 0.4556 0.8413 0.8508 0.8791 0.7492 0.8708 0.8600 0.8850 0.7621

W3 (Ours) 0.7384 0.6305 0.8721 0.5513 0.8477 0.8439 0.8994 0.7604 0.9028 0.8775 0.8995 0.7896

COMB (Ours) 0.7587 0.6129 0.8698 0.5351 0.8952 0.8851 0.8908 0.7889 0.8925 0.8759 0.8944 0.7837

Meristem Segmentation Sepal Segmentation

Fig. 6. Zero-shot panoptic segmentation of meristem and sepal images with our W 3

method exclusively trained with cell images from different domains.

4 Conclusions

We proposed a weakly supervised extension to the weighted cross entropy loss
function that enabled us to effectively segment crowded cells. We used a semantic
approach to solve a panoptic segmentation task with a small training dataset of
highly cluttered cells which have incomplete and inaccurate annotations. A new
contrast modulation was proposed as data augmentation for touching regions
allowing us to perform an adequate panoptic segmentation. We were able to
segment images from domains other than the one used for training the network.
The experiments showed a better detection and contour adequacy of our method
and a faster convergence when compared to similar approaches.
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