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Preface

Computer vision and medical imaging have been revolutionized by the introduction of
advanced machine learning and deep learning methodologies. Recent approaches have
shown unprecedented performance gains in tasks such as segmentation, classification,
detection, and registration. Although these results (obtained mainly on public datasets)
represent important milestones for the MICCAI community, most methods lack gen-
eralization capabilities when presented with previously unseen situations (corner cases)
or different input data domains. This limits clinical applicability of these innovative
approaches and therefore diminishes their impact. Transfer learning, representation
learning, and domain adaptation techniques have been used to tackle problems such as:
model training using small datasets while obtaining generalizable representations;
performing domain adaptation via few-shot learning; obtaining interpretable repre-
sentations that are understood by humans; and leveraging knowledge learned from a
particular domain to solve problems in another.

The first MICCAI workshop on Domain Adaptation and Representation Transfer
(DART 2019) aimed at creating a discussion forum to compare, evaluate, and discuss
methodological advancements and ideas that can improve the applicability of machine
learning (ML)/deep learning (DL) approaches to clinical settings by making them
robust and consistent across different domains.

During the first edition of DART, 18 papers were submitted for consideration and,
after peer review, 12 full papers were accepted for presentation. Each paper was
rigorously reviewed by three reviewers in a double-blind review process. The papers
were automatically assigned to reviewers taking into account and avoiding potential
conflicts of interest and recent work collaborations between peers. Reviewers have
been selected among the most prominent experts in the field from all over the world.
Once the reviews were obtained the area chairs formulated final decisions over
acceptance or rejection of each manuscript. These decisions were always taken
according to the reviews and were unappealable.

Additionally, the workshop organization granted the Best Paper Award to the best
submission presented at DART 2019. The Best Paper Award was assigned as a result
of a secret voting procedure where each member of the committee indicated two papers
worthy of consideration for the award. The paper collecting the majority of votes was
then chosen by the committee.

We believe that the paper selection process implemented during DART 2019 as well
as the quality of the submissions have resulted in scientifically validated and interesting
contributions to the MICCAI community and in particular to researchers working on
domain adaptation and representation transfer.

We would therefore like to thank the authors for their contributions, the reviewers
for their dedication and professionality in delivering expert opinions about the sub-
missions, and NVIDIA Corporation, which has sponsored DART, for the support,
resources, and help in organizing the workshop. NVIDIA Corporation has also



sponsored the prize for the best paper at DART 2019, which consisted of a NVIDIA
Titan V GPU card.

November 2018 Fausto Milletari
Nicola Rieke

Shadi Albarqouni
Ziyue Xu

Konstantinos Kamnitsas
M. Jorge Cardoso
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MIL3ID 2019 Preface

MIL3ID 2019 is the First International Workshop on Medical Image Learning with
Less Labels and Imperfect Data. The MIL3ID 2019 proceedings contain 16
high-quality papers of 8 pages each, which were selected through a rigorous
peer-review process.

We hope this workshop will create a forum for discussing best practices in medical
image learning with label scarcity and data imperfection. This forum is urgently needed
because the issues of label noises and data scarcity are highly practical but largely
under investigated in the medical image analysis community. Traditional approaches
for dealing with these challenges include transfer learning, active learning, denoising,
and sparse representation. The majority of these algorithms were developed prior to the
recent advances of deep learning and might not benefit from the power of deep
networks. The revision and improvement of these techniques in the new light of deep
learning are long overdue.

This workshop potentially helps answer many important questions. For example,
several recent studies found that deep networks are robust to massive random label
noises but more sensitive to structured label noises. What implication do these findings
have on dealing with noisy medical data? Recent work on Bayesian neural networks
demonstrates the feasibility of estimating uncertainty due to the lack of training data. In
other words, it enables our classifiers to be aware of what they do not know. Such a
framework is important for medical applications where safety is critical. How can
researchers of MICCAI community leverage this approach to improve their systems
robustness in the case of data scarcity? Our prior work shows that a variant of capsule
networks generalizes better than convolutional neural networks with an order of
magnitude fewer training data. This gives rise to an interesting question: are there better
classes of networks that intrinsically require less labeled data for learning? Humans
always have an edge over deep networks when it comes to learning with small amounts
of data. However, recent work on one-shot deep learning has surpassed humans in an
image recognition task using only a few training samples for each task. Do these results
still hold for medical image analysis tasks?

The proceedings of the workshop are published as a joint LNCS volume alongside
other satellite events organized in conjunction with MICCAI. In addition to the LNCS
volume, to promote transparency, the papers’ reviews and preprints are publicly



available on the workshop website. In addition, the papers, abstracts, slides, and posters
presented during the workshop will be made publicly available on the MIL3ID website.

August 2019 Hien V. Nguyen
Vishal Patel

Ngan Le
Badri Roysam

Steve Jiang
Kevin Zhou
Khoa Luu
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Noise as Domain Shift: Denoising Medical
Images by Unpaired Image Translation

Ilja Manakov1,2(B), Markus Rohm1,2, Christoph Kern2, Benedikt Schworm2,
Karsten Kortuem2, and Volker Tresp1,3

1 Chair for Database Systems and Data Mining, LMU Munich, Munich, Germany
ilja.manakov@med.uni-muenchen.de

2 Department of Ophthalmology, LMU Munich, Munich, Germany
3 Siemens AG, Corporate Technology, Munich, Germany

Abstract. We cast the problem of image denoising as a domain trans-
lation problem between high and low noise domains. By modifying the
cycleGAN model, we are able to learn a mapping between these domains
on unpaired retinal optical coherence tomography images. In quanti-
tative measurements and a qualitative evaluation by ophthalmologists,
we show how this approach outperforms other established methods. The
results indicate that the network differentiates subtle changes in the level
of noise in the image. Further investigation of the model’s feature maps
reveals that it has learned to distinguish retinal layers and other distinct
regions of the images.

Keywords: Optical coherence tomography · Generative Adversarial
Networks · Image denoising

1 Introduction

Medical imaging is one of the great pillars of modern diagnostics. Clinicians rely
on it to obtain information from inside the patient’s body in a non-invasive way.
However, noise in the images erodes their quality and makes their interpretation
difficult. Moreover, it can cause algorithms, designed to automatically extract
measurements from those images, to be inaccurate or fail outright. In this paper,
we focus on the domain of retinal optical coherence tomography (OCT) [11], a
standard diagnostic tool in ophthalmology. Retinal OCT produces a series of 2D
slices (b-scans) that display the depth profile of the retina, thus enabling clin-
icians to detect many sight-threatening diseases early in their progression. The
dominating type of noise in OCT is called speckle. The speckle noise pattern
depends on the imaged tissue and is highly sensitive to its position and orien-
tation. Since signal and speckle noise originate from the same physical process,

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-33391-1 1) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2019
Q. Wang et al. (Eds.): DART 2019/MIL3ID 2019, LNCS 11795, pp. 3–10, 2019.
https://doi.org/10.1007/978-3-030-33391-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33391-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-33391-1_1
https://doi.org/10.1007/978-3-030-33391-1_1
https://doi.org/10.1007/978-3-030-33391-1_1


4 I. Manakov et al.

distinguishing signal from noise is particularly challenging. Interested readers
are referred to [8] for more details.

Current popular methods for denoising OCT scans, such as BM3D [2] or
wavelet denoising [1], neither incorporate knowledge about the OCT process nor
about structures of the human eye. We argue that such knowledge should help
in this task, given the complex and sample-dependent nature of speckle noise.
On the other hand, methods emerging from the field of deep learning [4,14] have
demonstrated precisely this ability, i.e. to learn the semantic characteristics of
their input domains. We, therefore, aim to leverage deep learning to create a
method that can denoise retinal scans by utilizing knowledge it has gained about
this domain.

While writing this paper, we discovered recent work from Halupka et al. [5]
and Huang et al. [7], in which they investigated a different GAN-based approach
to retinal OCT denoising. Their approaches require paired training images, which
can lead to problems with inaccurately registered images. Additionally, in their
works, the denoised domain is constructed by registering and averaging samples
from the noisy domain. Constructing denoised samples in this manner is not
always feasible or possible and registration of images from different domains will
likely not work well.

Our approach casts denoising as a domain translation problem. We demon-
strate that, with some modifications, the cycleGAN model, introduced by Zhu
et al. [14], can learn a mapping between a low and high noise domain from
unpaired training data.

We introduce our method, the HDcycleGAN model, in Sect. 2 and evaluate
its performance quantitatively and qualitatively in Sects. 3.2 and 3.3. In Sect. 3.4,
we take a closer look at what our model has learned by inspecting its feature
maps.

2 Methodology

Initially, we started by directly applying the cycleGAN model to the problem of
learning a mapping between images of a high noise (HN) domain h ∈ H ⊂ R

h×w

and a low noise (LN) one l ∈ L ⊂ R
h×w. However, we soon discovered that this

model does not perform well on our problem as is. Therefore, we made some mod-
ifications to the existing cycleGAN framework and developed our final model, the
Hybrid Discriminator cycleGAN (HDcycleGAN). Figure 1 shows a pass through
our model, starting from an HN image. In the following, we briefly summarize
the required knowledge about the cycleGAN and highlight the changes we made
and why we made them.

The cycleGAN combines two Generative Adversarial Networks (GANs) [4]
into one two-way Autoencoder. Here, the generator of each GAN learns the
mapping from one image domain to the other. In combination, they act like
encoder and decoder of an Autoencoder. This framework allows two directions of
traversal; going from domain one to domain two and back to domain one or vice
versa. The paper also introduced the cycle consistency loss, which corresponds
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to the reconstruction loss in the standard Autoencoder setting. The goal of this
loss function is to achieve consistency when transforming an image from one
domain to the other and back. The generators in the cycleGAN down-sample
the input image using strided convolutions, pass it through a series of residual
blocks [6] and finally use fractional-strided convolutions for up-sampling. The
discriminators down-sample their inputs through strided convolutions to produce
a scalar output.

Using a cycleGAN-based approach allows us to train the network on unpaired
images. In this way, registration of images becomes obsolete and we can avoid
uncertainties that arise due to interpolation in affine transformation or in cases
of mismatch between the images. An additional benefit of this framework is the
cycle-consistency loss; although we are primarily interested in the mapping from
HN images to LN, this added loss function provides a training signal to the
network that is more stable than that of the discriminator alone.
We made three adjustments to the original cycleGAN model:

classification

real HN
real LN

fake

Discriminator

Real HN

Cycled HN

cycle-
consistency

feedback

LN
Generator

Fake LN

HN
Generator

Fig. 1. Schematic overview of the HDcycleGAN model.
The path starting from HN is shown here. Starting from
LN works analogously

Skip Connections. In our
first experiments, the vanilla
cycleGAN generated blurry
images. The sharpness of
the image and clarity
of visual features with
small spatial extent play
a crucial role when it
comes to image quality.
To address this prob-
lem, we added skip con-
nections to the genera-
tors, which concatenate
the output of each down-
sampling layer to the input of the corresponding up-sampling layer.

Resize-Convolutions. Additionally, we noticed checkerboard-like artifacts in the
generated images. Following an investigation by Odena et al. [10], we replaced
each fractional-strided convolution with a combination of bilinear up-sampling
and a padded convolution to remedy this issue.

Shared Discriminator. Even after the first two modifications and testing dif-
ferent hyper-parameters, the model failed to consistently improve image quality
when mapping from HN to LN. We then noticed that both discriminators learn
the characteristics of real OCT b-scans independently. The two image domains
are almost identical in terms of image content. Consequently, the discriminators
could not pick up on the subtle differences between the domains (see Fig. 1 in the
supplementary material). As a remedy, we utilized a single discriminator that is
shared between both generators. The discriminator can thus focus on the differ-
ences between the two domains instead of the full range of characteristics of each.
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This change resulted in the most significant improvement in visual quality of the
generated images.

This shared discriminator acts as a three-way classifier, outputting the class
probabilities for real HN, real LN and fake. As the discriminator now has to
discriminate between more samples, we increased its complexity by adding a
residual block with two convolutions in between each down-sampling layer.

The loss function of our model can thus be written as follows: Let GH : L →
H and GL : H → L denote the generators that learn a mapping from LN to
HN and from HN to LN respectively and D : Rh×w → R

3 the discriminator. Let
th, tl, tf ∈ R

3 be the one-hot encoded vectors that represent the classes real HN,
real LN and fake. Then the loss of the network is:

L = λGAN (LG (l,h) + LD (l,h)) + λcycleLcycle (l,h) , with (1)

LG(l,h) = −
3∑

j=1

thj log(D(GH(l))j) −
3∑

j=1

tlj log(D(GL(h))j) (2)

LD(l,h) = −
3∑

j=1

tfj log(D(GH(l)j) −
3∑

j=1

tfj log(D(GL(h)j)

−
3∑

j=1

thj log(D(h)j) −
3∑

j=1

tlj log(D(l)j)

(3)

Lcycle(l,h) = ‖l − GL(GH(l))‖1 + ‖h − GH(GL(h))‖1 (4)

Here λGAN and λcycle are hyper-parameters for weighting discriminator and
cycle-consistency loss respectively. For our model, we set λGAN = 1 and
λcycle = 10 following [14]. Our implementation of the described methodology
is publicly available at github.com/IljaManakov/HDcycleGAN. We also provide
implementation details in the supplementary material.

3 Experiments and Results

After training the HDcycleGAN for 245 epochs with an Adam optimizer and a
learning rate of 5 × 10−4, we performed both quantitative and qualitative anal-
yses on the test set, which we explain in Sects. 3.2 and 3.3. In the quantitative
analysis, we compared our approach to popular denoising methods using several
measurements of similarity between real LN images and denoised ones. For the
qualitative analysis, the similarity between real LN images and images produced
by BM3D [2], wavelet denoising [1] and our method was assessed by three oph-
thalmologists independently. Finally, in Sect. 3.4, we inspect the learned feature
maps of the LN generator. We start by describing our dataset.

https://github.com/IljaManakov/HDcycleGAN
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3.1 Dataset

We acquired the data for this task in-house, using a SPECTRALIS OCT+HRA
from Heidelberg Engineering, as part of the general diagnostic workflow for mac-
ular diseases. We did not select patients based on any further traits. As such,
the scans in the dataset show various kinds of diseases in all stages and are rep-
resentative of the typical imaging data generated at our hospital. To gather the
images belonging to the high noise domain, we followed the hospital protocol,
using 30◦ ART Volume acquisition with 12 frames averaged for each b-scan. The
low noise domain consists of acquisitions that follow the same protocol except
that we set the number of averaged frames to 60. We obtained both HN and LN
images from the same patients on the same visit. As the proprietary software of
the device manufacturer handles the frame averaging, we did not have access to
the individual frames. In total, we gathered 23030 b-scans in 470 volumes from
235 patients for each noise domain. We used 90% of the volumes for training and
the remaining 10% for testing. Before passing the images through our model, we
scaled the 496 × 512 images to a pixel intensity range between 0.0 and 1.0.

3.2 Quantitative Evaluation

To asses our model’s performance, we evaluated the similarity between the gen-
erated images and the ground truth LN images in the test set. Since we acquired
HN and LN scans pairwise, we registered the images employing a registration
algorithm based on discrete Fourier-transform [12]. After registration, we cal-
culated the peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) between the two images. Additionally, we used the Marching Cubes
algorithm [9] to find the contour of the retina. Inverting the selection yields a
background mask, while reapplying Marching Cubes on the retinal layers with
a different level finds contours in highly reflective parts of the retina. We desig-
nated these regions as signal. This process is illustrated in Fig. 3 of the supple-
mentary material. Using the signal and background regions, we then calculated
the mean-to-standard-deviation ratio (MSR) and contrast-to-noise ratio (CNR).
To better gauge the performance of our approach, we included median filtering,
wavelet denoising [1], bilateral filtering [13], non-local means [3] and BM3D [2]
in the comparison. The results are displayed in Table 1. We can see that our
model outperforms the other methods in all measurements except SSIM, where
BM3D is slightly ahead. Overall we find that the performance of BM3D and our
model is very close in inter-image measurements (SSIM and PSNR). In intra-
image measurements (CNR and MSR) the margin between our approach and
the others widens. It is also worth noting that our algorithm requires 30% less
time to run on CPU than BM3D and beats all other algorithms by almost an
order of magnitude on a low-end GPU (see Fig. 2 in the supplementary mate-
rial). Although PSNR, SSIM, MSR and CNR are standard metrics of image
quality, there is a caveat to these results; since HN and LN samples stem from
independent acquisitions the noise in them is uncorrelated. This might explain
why the overall improvement in these metrics is relatively low for all algorithms.
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Table 1. Results of the quantitative analysis. Values are shown as mean ± standard
deviation.

Method CNR MSR PSNR SSIM

Raw 3.66± 2.21 3.96± 1.73 21.99± 1.33 0.662± 0.055

Median 3.82± 2.36 4.25± 1.92 22.32± 1.45 0.682± 0.051

Wavelet [1] 3.81± 2.37 4.23± 1.86 22.34± 1.41 0.690± 0.053

Bilateral [13] 3.78± 2.33 4.28± 1.93 22.29± 1.40 0.690± 0.053

nl-means [3] 3.78± 2.33 4.43± 2.12 22.32± 1.40 0.702± 0.051

BM3D [2] 3.87± 2.44 4.39± 1.97 22.50± 1.45 0.708± 0.052

Ours 4.00± 2.51 4.73± 2.23 22.58± 1.41 0.706± 0.050

3.3 Qualitative Evaluation

Because of this caveat, we asked three expert ophthalmologists to visually assess
the quality of our results. We provided them with 150 real LN images from
the test set and images generated from the corresponding real HN images using
BM3D, wavelet denoising and our method. For each such sample, the clinicians
rated the methods by their similarity to the real LN images. We ordered the
images in each sample randomly and did not provide any indication as to which
model generated which image. The results of this evaluation, displayed in Fig. 2,
confirm the findings of the quantitative evaluation. The experts unanimously
agree that our approach outperforms the benchmarks.

Fig. 2. Results of the qualitative evaluation by three experts.

3.4 Feature Map Inspection

We attempted to understand how the model is approaching the task of image
enhancement by looking at the feature maps that it has learned. We did this by
passing a sample through the LN generator and extracting the neuron activations
at every layer. Due to the convolutional nature of the generator, these layer
outputs are shaped like images with many channels. Hence we can view each
channel in the activations of a layer as a gray-scale image which we refer to as
a feature map.
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Fig. 3. Example of the feature maps.
On the left, the input image is overlaid
with the map. On the right, the feature
map is shown by itself.

By up-scaling the feature maps to the size
of the input, we then checked for spatial
correlations. For visualization purposes,
we show some feature maps from differ-
ent layers, which highlight distinct regions
of the retina, in Fig. 3. Many more can
be found in the supplementary material
accompanying this paper.

We observed that the feature maps at
the output of the deeper residual blocks
become increasingly abstract and spa-
tially uncorrelated with the input. The
feature maps at the outputs of the first
four layers (initial convolution and down-
sampling 1 to 3) and shallower residual
blocks exhibit a strong spatial correla-
tion with the input. Moreover, the dif-
ferent channels seem to correspond to
anatomically distinct regions in the b-
scan, although segmentation was never
part of the training objective.

We think that this finding is relevant when viewed from two perspectives.
Firstly, it shows that the model has gained some domain specific knowledge about
the structure of macular OCT scans, which general methods such as BM3D and
wavelet denoising are lacking. Secondly, this property can prove useful from the
viewpoint of transfer learning, i.e. when applying this model to other tasks. The
feature maps themselves can also be used for other tasks.

An example of the second point can be found in Fig. 11 in the supplementary
material. We discovered a feature map that appears to track the positions of the
Inner Limiting Membrane (ILM) and the Retinal Pigment Epithelium (RPE)
(the inner- and outermost layers of the retina) (see Fig. 10 in the supplementary
material). We then multiplied the feature map with its corresponding b-scan,
applied the image mean as a threshold and skeletonized the remainder. The
resulting lines can be used to estimate retinal thickness. This method seems to
work well even in the presence of pathologies, such as myopia (row 4, col. 4) or
vitreous detachment (row 1, col. 4 and row 5, col. 3), which are typical causes
for segmentation errors in commercial segmentation algorithms.

4 Discussion

In this paper, we applied the HDcycleGAN model to the problem of image
enhancement. In medical imaging, reduced image noise typically comes at the
cost of increased acquisition time, radiation dose or other detrimental effects.
Our model can learn a mapping between domains that correspond to different
settings of those costly acquisition parameters.
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Additionally, our approach learns the structural characteristics of the medical
imaging domain, which further improves its usefulness as it can be leveraged
for other tasks in that domain. As part of future work, we wish to study the
transferability of our approach to other imaging modalities, such as Ultrasound.

As is the case with all GAN-based methods, the training of this model is not
straightforward and the performance does not appear to increase monotonically
throughout training. Nevertheless, our approach allows us to pre-train the parts
individually; the generators as Autoencoders and the discriminator as a classifier
between domains. In the future, we also plan to test if pre-training can improve
training stability and model performance.
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Abstract. There has been an increasing focus in learning interpretable
feature representations, particularly in applications such as medical image
analysis that require explainability, whilst relying less on annotated data
(since annotations can be tedious and costly). Herewe build on recent inno-
vations in style-content representations to learn anatomy, imaging char-
acteristics (appearance) and temporal correlations. By introducing a self-
supervised objective of predicting future cardiac phases we improve dis-
entanglement. We propose a temporal transformer architecture that given
an image conditioned on phase difference, it predicts a future frame. This
forces the anatomical decomposition to be consistent with the temporal
cardiac contraction in cine MRI and to have semantic meaning with less
need for annotations. We demonstrate that using this regularization, we
achieve competitive results and improve semi-supervised segmentation,
especially when very few labelled data are available. Specifically, we show
Dice increase of up to 19% and 7% compared to supervised and semi-
supervised approaches respectively on the ACDC dataset. Code is avail-
able at: https://github.com/gvalvano/sdtnet.

Keywords: Disentangled representations · Semi-supervised learning ·
Cardiac segmentation

1 Introduction

Recent years have seen significant progress in the field of machine learning and, in
particular, supervised learning. However, the success and generalization of such
algorithms heavily depends learning suitable representations [2]. Unfortunately,
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obtaining them usually requires large quantities of labelled data, which need
expertise and in many cases are expensive to obtain.

It has been argued [3] that good data representations are those separating
out (disentangling) the underlying explanatory factors into disjoint subsets. As a
result, latent variables become sensitive only to changes in single generating fac-
tors, while being relatively insensitive to other changes [2]. Disentangled represen-
tations have been reported to be less sensitive to nuisance variables and to produce
better generalization [16]. In the context of medical imaging, such representations
offer: (i) better interpretability of the extracted features; (ii) better generalization
on unseen data; (iii) and the potential for semi-supervised learning [5]. Moreover,
disentanglement allows interpretable latent code manipulation, which is desirable
in a variety of applications, such as modality transfer and multi-modal registration
[5,10,13].

Medical images typically present the spatial information about the patient’s
anatomy (shapes) modulated by modality-specific characteristics (appearance).
The SDNet framework [5] is an attempt to decouple anatomical factors from their
appearance towards more explainable representations. Building on this concept,
we introduce a new architecture that drives the model to learn anatomical factors
that are both spatially and temporally consistent. We propose a new model,
namely: Spatial Decomposition and Transformation Network (SDTNet).

The main contributions of this paper are: (1) we introduce a modality
invariant transformer that, conditioned on the temporal information, predicts
future anatomical factors from the current ones; (2) we show that the trans-
former provides a self-supervised signal useful to improve the generalization
capabilities of the model; (3) we achieve state of the art performance compared
to SDNet for semi-supervised segmentation at several proportions of labelled
data available; (4) and show for the first time preliminary results of cardiac
temporal synthesis.

2 Related Works

2.1 Learning Good Representations with Temporal Conditioning

The world surrounding us is typically affected by smooth temporal variations
and is known that temporal consistency plays a key role for the development
of invariant representations in biological vision [17]. However, despite that tem-
poral correlations have been used to learn/propagate segmentations in medical
imaging [1,12], their use as a learning signal to improve representations remains
unexplored. To the best of our knowledge, this is the first work to use spatiotem-
poral dynamics to improve disentangled representations in cardiac imaging.

Outside the medical imaging community, we find some commonalities of our
work with Hsieh et al. [7], who address the challenge of video frame prediction
decomposing a video representation in a time-invariant content vector and a
time-dependent pose vector. Assuming that the content vector is fixed for all
frames, the network aims to learn the dynamics of the low-dimensional pose vec-
tor. The predicted pose vector can be decoded together with the fixed content
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features to generate a future video frame in pixel space. Similarly, we decom-
pose the features space in a fixed and a time-dependent subset (modality and
anatomy). However, our objective is not merely predicting a future temporal
frame, but we use the temporal prediction as a self-supervised signal to ame-
liorate the quality of the representation: i.e. we constrain its temporal trans-
formation to be smooth. By doing so, we demonstrate that we can consistently
improve the segmentation capabilities of the considered baselines.

2.2 Spatial Decomposition Network (SDNet)

Here, we briefly review a recent approach for learning disentangled anatomy-
modality representations in cardiac imaging, upon which we build our model.

The SDNet [5] can be seen as an autoencoder taking as input a 2D image x ∼
X and decomposing it into its anatomical components s = fA(x) and modality
components z = fM (x). The vector z is modelled as a probability distribution
Q(z|X) that is encouraged to follow a multivariate Gaussian, as in the VAE
framework [9]. s is a multi-channel output composed of binary discrete maps. A
decoder g(·) uses both s and z to reconstruct the input image x̃ = g(s, z) ≈ x. An
additional network h(·) is supervisedly trained to extract the heart segmentation
ỹ = h(s) from s, while an adversarial signal forces ỹ to be realistic even when
few pairs of labelled data are available, enabling semi-supervised learning.

While SDNet was shown to achieve impressive results in semi-supervised
learning, it still requires human annotations to learn to decouple the cardiac
anatomy from other anatomical factors. Furthermore, it doesn’t take advantage
of any temporal information to learn better anatomical factors: as a result they
are not guaranteed to be temporally correlated.

3 Proposed Approach

Herein, we address the above limitations, by a simple hypothesis: components
s of different cardiac phases should be similar within the same cardiac cycle
and their differences, if any, should be consistent across different subjects. To
achieve this we introduce a new neural network T (·) in the SDNet framework
that, conditioned on temporal information, regularizes the anatomical factors
such that they can be consistent (e.g. have smooth transformations) across time.
Obtaining better representations will ultimately allow improved performance in
the segmentation task, too. T (·) is a modality-invariant transformer that ‘warps’
the s factors learnt by the SDNet according to the cardiac phase. Furthermore,
by combining the current z factors with the predicted s factors for future time
points, one can reconstruct the future frames in a cardiac sequence: e.g., given
time t1 < t2, we have x̃t2 = g(T (st1), zt1) ≈ xt2 . Our model is shown in Fig. 1.
Below we focus our discussion on the design of the transformer and the training
costs, all other network architectures follow that of SDNet [5]. In the following,
t, dt are scalars, while remaining variables are considered as tensors.
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Fig. 1. SDTNet block diagram. The transformer (in yellow) predicts the future anatom-
ical factors conditioned on the temporal information. The future frame can be generated
by the decoder using s̃t+dt and the current z factor. (Color figure online)

Fig. 2. Anatomical factors extracted by the SDTNet from the image on the left.

3.1 Spatial Decomposition and Transformation Network (SDTNet)

The transformer T (·) takes as input the binary anatomical factors s (Fig. 2)
and their associated temporal information t. Under the assumption that the
modality factors remain constant throughout the temporal dimension (e.g. the
heart contracting from extra-diastole to extra-systole), the transformer must
deform the current anatomy st such that, given a temporal change dt, it esti-
mates st+dt, i.e. the anatomy of image xt+dt when given as input. Using this
prediction s̃t+dt = T (st, t, dt) together with the fixed modality factors zt, we
should be able to correctly reconstruct the image at the future time point x̃t+dt.
By capturing the temporal dynamics of the anatomical factors, the transformer
guides their generation to be temporally coherent, resulting in a self-supervised
training signal, that is the prediction error of future anatomical factors.

3.2 Transformer Design

After testing several architecture designs for the transformer, we found that the
best results could be obtained by adapting a UNet [14] to work with binary
input/output conditioned on temporal information on the bottleneck.

Temporal information, the tuple (t, dt), is encoded via an MLP consisting of
3 fully connected layers, arranged as 128-128-4096, with the output reshaped to
16 × 16 × 16. This information is concatenated at the bottleneck of the UNet
where features maps have resolution 16×16×64, to condition the transformer and
control the required deformation. To encourage the use of the temporal features
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and retain the notion of the binary inputs, the features at the bottleneck and of
the MLP are bounded in [0, 1], using a sigmoid activation function.

We hypothesised that it would be easier to model differential changes to
anatomy factors. Thus, we added a long residual connection between the UNet
input and its output. We motivate this by observing that the anatomical struc-
ture that mostly changes in time is the heart: thus learning the spatial trans-
formation should be similar to learning to segment the cardiac structure in the
binary tensor s: a task that the UNet is known to be effective at solving. The
output of the transformer is binarized again (key for disentanglement), as in [5].

3.3 Cost Function and Training

The overall cost function is the following weighted sum:

Loss = λ0 · LS + λ1 · LUS + λ2 · LADV + λ3 · LTR , (1)

where λ0 = 10, λ1 = 1 and λ2 = 10 as in [5], and λ3 = 1 found experimentally.
LS is the cost associated to the supervised task (segmentation) and can be

written as LS = LDICE(y, ỹ)+0.1·LCE(y, ỹ), where y and ỹ are the ground truth
and predicted segmentation masks, respectively; LDICE is the differentiable Dice
loss evaluated on left ventricle, right ventricle and myocardium, while LCE is
the weighted cross-entropy on these three classes plus the background (with class
weights inversely proportional to the number of pixels for the class).

LUS is the cost associated to the unsupervised task and can be decomposed
as LUS = |x̃ − x| + λKL · DKL[Q(z|X)||N(0, I)] − MI(x̃, z). The first term
is the mean absolute error between the input and the reconstruction, while the
second term is the KL divergence between Q(z|X) and a Normal Gaussian (with
λKL = 0.1). The last term is the mutual information between the reconstruction
x̃ and the latent code z and is approximated by an additional neural network, as
in the InfoGAN framework [6]. By maximizing the mutual information between
the reconstruction and z, we prevented posterior collapse and constrained the
decoder g(·) to effectively use the modality factors.

LADV is the adversarial loss of a Least-Squares GAN [11], used to discrimi-
nate ground truth from predicted segmentations in the unsupervised setting.

LT R is the loss associated to the self-supervised signal, computed as the
differentiable Dice loss between s̃t+dt and st+dt. This error serves as a proxy
for the reconstruction error of future cardiac phases |xt+dt − g(T (st), zt)|. In
practice, we find it much easier to train T (·) with a loss defined in the anatomy
space rather than one on the final reconstruction: in fact, the gradients used to
update the network parameters can flow into T (·) directly from its output layer,
rather than from that of the decoder g(·).

The model was optimized using the Exponential Moving Average (EMA): we
maintained a moving average of the parameters during training, and employed
their average for testing. The learning rate was scheduled to follow a triangular
wave [15] in the range 10−4 to 10−5 with a period of 20 epochs. Both EMA and
the learning rate scheduling facilitated comparisons, allowing to detect wider and
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more generalizable minima (hence, reducing loss fluctuations). We used Adam
[8] with an early stopping criterion on the segmentation loss of a validation set.

4 Experiments and Discussion

4.1 Data and Preprocessing

Data. We used ACDC data from the 2017 Automatic Cardiac Diagnosis Chal-
lenge [4]. These are 2-dimensional cine-MR images acquired using 1.5T and 3T
MR scanners from 100 patients, for which manual segmentations for the left ven-
tricular cavity (LV), the myocardium (MYO) and the right ventricle (RV) are
provided in correspondence to the end-systolic (ES) and end-diastolic (ED) car-
diac phases. ES and ED phase instants are also provided. We used a 3-fold cross
validation and randomly divided the data to obtain 70 MRI scans for training,
15 for validation and 15 for the test sets.
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Fig. 3. Comparison of predicted segmentations obtained from the UNet, SDNet, SDT-
Net after being trained with different percentages of the labelled data.

Preprocessing. After removing outliers outside 5th and 95th percentiles of the
pixel values, we removed the median and normalized the images on the interquar-
tile range, centering each volume approximately around zero.

Training. Since our objective was to introduce temporal consistency in the
anatomical factors rather then predicting the whole cardiac cycle, we split the
cine MRI sequences in two halves: (i) temporal frames in the ED-ES interval; (ii)
temporal frames from ES to the end of the cardiac cycle. The latter frames were
reversed in their temporal order, to mimic once again the cardiac contraction: as
a result, we avoided the inherent uncertainty associated to the transformations of
frames in the middle of the cardiac cycle. Finally, we applied data augmentation
at run-time, consisting of rotations, translations and scaling of each 2D slice.
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4.2 Results

Semi-supervised Segmentation. We compared SDTNet to the fully super-
vised training of a UNet and to the semi-supervised training of SDNet in a seg-
mentation task, varying the percentage of labelled training samples. As Fig. 3
and Table 1 show, the SDTNet consistently outperforms the others, especially
at lower percentages of labelled pairs in the training set. Furthermore, SDT-
Net exhibits lower variance in its predictions, so it’s more consistent. A paired
Wilcoxon test demonstrated most of these improvements to be statistically sig-
nificant. We find that the transformer forces the anatomical decomposition to
follow more “semantic” disentanglement even with little human annotations.
This translates to better segmentation results. While secondary to the thesis of
the paper, both the SDNet and the SDTNet outperform the UNet.

Cardiac Synthesis. Figure 4 shows that it is possible to predict future cardiac
phases from ED through ES by using the predicted anatomical factors s̃t> 0

together with the modality factors zt=0. We note that this is the first attempt
of deep learning-based temporal synthesis in cardiac albeit preliminary. Note
that we train the transformer with both pathological and healthy subjects and

Table 1. DICE scores comparing SDTNet and other baselines at various proportions
of available labeled data. The last column shows the average improvement of SDTNet
over SDNet. Asterisks denote statistical significance (p < 0.01).

Labels UNet SDNet SDTNet Improvement

100% 80.03 ± 0.38 85.11 ± 0.73 85.83 ± 0.40 0.72

25% 77.55 ± 1.02 81.64 ± 0.96 83.69 ± 0.37 2.05*

12.5% 71.04 ± 1.71 78.07 ± 1.52 79.48 ± 0.82 1.41*

6% 59.20 ± 1.38 72.18 ± 1.91 74.22 ± 0.57 2.04*

3% 44.89 ± 9.52 56.89 ± 2.48 63.74 ± 1.59 6.85*

Fig. 4. Interpolation on the temporal axis between ED and ES phases. The images
are obtained by fixing the modality-dependent factors zt=0 and using the anatomical
factors s̃t> 0 predicted for future time points. In Acrobat, clicking on the rightmost
image animates frames showing the predicted cardiac contraction. (See Supplementary
material)
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it thus predicts average temporal transformations. Conditioning also with prior
pathology information and validation of synthesis are left as future work.

5 Conclusion

We introduced a self-supervised objective for learning disentangled anatomy-
modality representations in cardiac imaging. By leveraging the temporal infor-
mation contained in cine MRI, we introduced a spatiotemporal model in SDNet
[5], improving its generalization capabilities in the semi-supervised setting at
several proportions of labelled data available. Also, the resulting approach con-
siderably outperforms the fully-supervised baseline, confirming the potential for
semi-supervised and self-supervised training in medical imaging.
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Abstract. Despite their success in many computer vision tasks, con-
volutional networks tend to require large amounts of labeled data to
achieve generalization. Furthermore, the performance is not guaranteed
on a sample from an unseen domain at test time, if the network was
not exposed to similar samples from that domain at training time. This
hinders the adoption of these techniques in clinical setting where the
imaging data is scarce, and where the intra- and inter-domain variance of
the data can be substantial. We propose a domain adaptation technique
that is especially suitable for deep networks to alleviate this require-
ment of labeled data. Our method utilizes gradient reversal layers [4] and
Squeeze-and-Excite modules [6] to stabilize the training in deep networks.
The proposed method was applied to publicly available histopathology
and chest X-ray databases and achieved superior performance to existing
state-of-the-art networks with and without domain adaptation. Depend-
ing on the application, our method can improve multi-class classification
accuracy by 5–20% compared to DANN introduced in [4].

1 Introduction

Deep learning models have achieved great success in recent years on computer
vision tasks. Fully convolutional networks (FCNs) consistently achieve the state-
of-the-art performance in various tasks such as segmentation, classification and
detection. Despite their success, however, FCNs usually require large amounts of
labeled data from the domain in which the network will be deployed. As network
architectures become deeper with more trainable parameters, the requirement
for large amounts of data is further exacerbated as the networks are more prone
to overfitting. This leads to a need for even larger amounts of data to achieve
generalization. Furthermore, regardless of the size or the domain diversity of the
training set, there is no performance guarantee on an unseen dataset from a
domain that the network was not exposed to at training time. These issues are
especially problematic in medical image analysis, as the labeled data is scarce due
to the tedious and expensive data annotation process, and a large distributional
shift can be observed even if data comes from the same source.

Several methods, including network weight regularization, semi-supervised
approaches [3], meta-learning [8], and domain adaptation [4] have been pro-
posed to improve generalization performance on unseen datasets. In the present
c© Springer Nature Switzerland AG 2019
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work, we will focus on the domain adaptation. These methods aim to lever-
age large amounts of cheap unlabeled data from a target domain to improve
generalization performance using small amounts of labeled data. In past work,
[11] proposed correcting covariate shift between domains by reweighting samples
from source domain to minimize the discrepancy between source and the tar-
get. This approach was later improved by minimizing distances between feature
mappings of source and target domains instead of the samples itself [4]. Further
modifications were proposed later that improved the benchmark performances
such as tri-learning, which assumes high confidence predictions are correct [10],
or leveraging the cluster assumption, in which the decision boundaries based
on the modified feature representations should not cross the high density data
regions [12].

In the present article we propose a simple, robust method that requires min-
imal modifications to an existing deep network to achieve domain adaptation.
Our model repurposes Squeeze-and-Excite blocks, introduced by [6] for feature
selection, to perform domain classification in the intermediate layers of a large
network. We use the “squeeze” operation to get a summary statistic at the
end of each convolutional block, and use a domain adaptation technique [4] to
extract domain-independent features at each layer. The “excitation network” is
repurposed to perform domain classification. We extend this method by match-
ing distributions of source and target features at each layer via minimizing the
Wasserstein distance.

2 Methods

Due to its conceptual simplicity, we will build our model on top of the gradi-
ent reversal layer (GRL) based domain adaptation, which was first introduced
in [4]. In an FCN, convolutional layers extract salient features layer by layer
as the feature maps shrink in spatial size and expand in semantic (depthwise)
information. Once enough abstraction on the image is achieved, features f are
flattened and typically fed into a few fully connected layers to perform the task
objective, e.g., classification. As the network usually optimizes a minimization
objective, extracted features may (and are likely to) overfit to the domain-specific
noise. Domain adaptation via gradient reversal aims to alleviate this by attaching
another classifier to the input f , which simultaneously optimizes an adversarial
objective: Given f , it tries to minimize the domain classification loss Ld between
N samples of the domain classifier with parameters θd while trying to maximize
this loss with respect to the feature extractor (with parameters θf ) of the orig-
inal FCN. In effect, this procedure aims to remove the learned features which
are domain-specific, while forcing the network to retain the domain-independent
features with error gradient signals ∂Ly

∂θy
and ∂Ly

∂θf
, where θy are the parameters

of the label classifier.
In [4], domain adaptation is achieved by backpropagating the negative bino-

mial cross-entropy loss of the domain classifier network. Features from the last
layer prior to the fully connected classification layers are used as inputs to the
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domain classifier network. We note several problems with this approach: (1) as
the network depth increases, the error signal from the domain classifier will tend
to vanish, or will be insufficient to remove domain specific features in the earlier
layers, (2) given feature maps Xi and Xj where i < j, it becomes more challeng-
ing for the network to extract domain-independent features for Xj if the features
from Xi are domain dependent, (3) even if domain specific features in map Xi

somehow are discarded in the later layers, the encoding of these features into
map Xi results in capacity underuse of the network, (4) even with the adversar-
ial training objective which forces the preservation of salient features, it is likely
for a high capacity network to employ arbitrary transformations on the target
samples to match source and target distributions (for a formal derivation, see
Appendix E of [12]). For simple tasks that do not require deep networks, van-
ishing gradients or accumulation of domain dependent features across layers do
not affect the performance as much. However, in more complex medical imaging
analysis tasks, larger networks tend to perform better; hence, the domain adap-
tation techniques are more likely to suffer from aforementioned issues. We aim
to alleviate this by regulating extracted features at each layer simultaneously by
attaching a domain classifier at the end of the layer (see Fig. 1), or by performing
unsupervised matching of distributions at each layer.

Given a feature map X ∈ R
H′×W ′×C′

, we transform X into z ∈ R
C′

by
average pooling, i.e., zk = 1

H′×W ′
∑H′

i=1

∑W ′

j=1 uk(i, j), where uk(i, j) indexes the
(i, j)th element of the response to the kth kernel of the map X, and zk is the
kth element of the vector z. We will use the shorthand ftr(Xi) = zi for the
transformation of map Xi (feature maps of layer i) into zi, which is coined as
the “squeeze” operation by [6]. Although zi itself is not enough for downstream
tasks such as classification or segmentation, it may contain enough information
to differentiate between two samples at a given layer. Given this information, we
aim to be able to perform domain adaptation at each layer, rather than just the
final feature map representation at the end of the network.

2.1 Gradient Reversal Layer Based Domain Adaptation

Analogous to [4], we add domain classifiers at the end of each feature map Xi.
By interfering at the intermediate layers, we aim to extract robust features that
are invariant to the training domain using the supervision signal. The network is
then trained simultaneously for the domain adaptation along with the original
objective. We denote this as layer-wise domain-adversarial neural network, or
L-DANN, as our model is based on DANN [4].

The mini domain classifier network for each layer has the same structure for
each layer C ′, but with varying number of parameters (see Table 1, r indicates the
reduction ratio). As the earlier layers in convolutional networks tend to extract
more high level information such as texture patterns and edges, we increase the
complexity of the domain classifier network progressively, proportional to the
depth of the feature map Xi. Given N domains, the domain classifier network
maximizes the N -class cross entropy loss via backpropagation to obscure domain
information by removing the features from the map Xi.
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Fig. 1. Proposed modification to the DANN architecture.

2.2 Wasserstein Distance Based Domain Adaptation

Instead of using the domain labels directly, we can also achieve domain adapta-
tion by interpreting zi as samples drawn from different distributions. Given two
domains X s, X t, with zs and zt are samples drawn from X s and X t, respec-
tively, our objective is minzs,zt

d(zs, zt) where d(·, ·) is an arbitrary distribution
divergence. For our experiments, we use the Wasserstein-1 distance, also known
as the Earth mover’s distance, due to its stability in training [2]. In order to
stabilize the training further, we will use the method described in [5] to ensure
Lipschitz constraint on the critic, as opposed to the gradient clipping method
suggested in [2]. We use the term “critic” as opposed to discriminator/classifier,
to be consistent with [2,5]. The procedure is summarized in Algorithm 1, we omit
the details for brevity, and refer the interested reader to [5]. In the upcoming
sections, we will refer to this method as L-WASS, or layer-wise Wasserstein.

3 Experimental Results

3.1 Implementation Details

We do not use any padding or bias in the convolutional layers described in
Table 1, and use the reduction ratio r = 16 for all the layers. We use ResNet
architecture enhanced with Squeeze-and-Excite blocks as our task objective net-
work with varying number of layers depending on the task. Contrary to [4], we
do not use a constant λ to scale ∂Ld

∂θ , nor do we use annealing to stabilize the
training. We use stochastic gradient descent (SGD) optimizer in all domain clas-
sifier, critic, and the objective network with the learning rate 0.001, momentum
0.9 and weight decay of 0.0001. We have tried updating the domain classifier and
critic parameters with and without freezing the preceding layers and observed
simultaneous training achieves superior performance. We perform 10 runs per
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Algorithm 1. Unsupervised domain adaptation via Wasserstein distance with
gradient penalty for feature matching. Squeezed feature map from layer l is zk

l ,
given input xk. The objective loss is Lobj (e.g., cross-entropy for classification).
Require: source Xs with samples xs and labels ys, target Xt, number of critic iter-

ations ncritic per generator iteration, batch size m, learning rates α1,2, gradient
penalty coefficient λ, initial parameters for the critic and the neural network for
the objective, θd, θf

1: repeat
2: for each layer j dodo
3: for t=1 to ncritic dodo
4: for i=1 to m dodo
5: Sample (xs

i , y
s
i ) ∼ Xs, xt

i ∼ Xt, a random number ε ∼ U [0, 1]
6: zbj ← εzsj + (1 − ε)ztj
7: L(i) ← Dj(z

s
j) − Dj(z

t
j) − λ(||∇zbj

Dj(z
b
j)||2 − 1)2

8: L
(i)
obj ← Lobj(x

s
i , y

s
i ) − λ(||∇zbj

Dj(z
b
j)||2 − 1)2

9: end for
10: θd ← SGD(∇d

1
m

∑m
i=1 L(i), θd, α1)

11: end for
12: end for
13: θf ← SGD(∇f

1
m

∑m
i=1 L

(i)
obj , θf , α2)

14: until θf converges

experiment, and report the mean accuracy ± the standard deviation. All exper-
iments are run for 100 epochs regardless of the network architecture or the data,
and we use the model with the highest validation accuracy achieved in the last
30 epochs for testing, to avoid selecting a model that achieved high accuracy
randomly, and has actually converged.

Table 1. Domain classifier/critic D( ftr(Xi)). The final output shape N ′ depends on
the architecture used: For L-DANN, we use N ′ = N , or number of classes, and for
L-WASS, we use N ′ = C′, number of input channels to perform distribution matching.

Input shape Kernel size Output shape

ftr(Xi) [1 × 1] × C’ – –

Conv [1 × 1] × C’ [1 × 1] × C’/r [1 × 1] × C’/r

ReLU [1 × 1] × C’/r – [1 × 1] × C’/r

Conv [1 × 1] × C’/r [1 × 1] × N ′ N ′

3.2 Effect of Layer-Wise Domain Adaptation on Small Networks

In order to determine whether layer-wise domain adaptation improves results on
networks with a small number of layers, we use the MNIST handwritten digits,
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MNIST-M (MNIST blended with random RGB color patches from the BSDS500
dataset), and the SVHN (street view house numbers) to perform digit classifi-
cation given an image which contains a single digit. SVHN has more variation
within the dataset; hence classifying SVHN digits is considered to be more chal-
lenging than MNIST or MNIST-M. For all experiments, we use ∼60000 images
per dataset for training, and ∼10000 for testing. We use a single 2-layer neural
network, MNIST architecture defined in [4], enhanced with batch normaliza-
tion prior to ReLU layers. As we do not optimize the architecture depending
on the dataset, or the direction of the adaptation, our results should only be
interpreted within the context of Table 2, and not to the results reported in [4].
As the MNIST architecture is not convolutional, we use the domain classifier
given in MNIST architecture for each layer. For L-WASS, the classifier remains
the same, with the exception that the number of output elements are 100, to
achieve more meaningful matching of distributions. Although the performance of
L-DANN remains comparable to DANN, L-WASS fails to converge for the sim-
plest experiment, hinting that for simple distributions, layer-wise Wasserstein
distribution matching is not suitable.

Table 2. Comparison between DANN, L-DANN and L-WASS for smaller networks.
N/C: Network did not converge.

Method MNIST→MNIST-M MNIST→SVHN SVHN→MNIST

No adaptation 58 ± 2 27.9 ± 5.41 77 ± 0.96

DANN 90.8 ± 1.06 27.7 ± 1.43 46.1 ± 2.27

L-DANN 90.5 ± 0.12 22.8 ± 1.72 53.8 ± 2.22

L-WASS N/C 21.0 ± 2.11 71.2 ± 0.91

3.3 Effect of Model Complexity on Domain Adaptation

We test our method on another modality, namely on chest X-ray images acquired
from two separate institutions in USA, and in China that are classified into
normal patients as well as patients with manifestations of tuberculosis [9]. The
datasets vary in resolution, quality, contrast, positive to negative samples ratio,
and the number of samples. In addition, each dataset has separate watermarks
and descriptive texts in different parts of the X-rays, which are known to degrade
performance in neural networks. The first dataset consists of 138 images, which
we refer to as S, or small, and the second dataset consists of 662 image, which
we refer to as L, or large. In order to show that our method performs better
with deeper architectures, we compare two architectures: SE-ResNet-101 (49.6
million trainable parameters) and SENET 154 (116.3M). Results are shown in
Table 3. Note that although DANN slightly outperforms L-WASS in one of the
experiments, its performance is not consistent. In some settings, it performs
worse than networks without any domain adaptation, and even fails to converge
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for the deepest setting. In contrast, both L-DANN and L-WASS consistently
perform better than the no domain adaptation baseline. The utility of using a
deeper architecture can be observed in the S →L direction, where we gain up to
∼7% in accuracy, for L − DANN setting. In other words, deeper networks can
help better generalize to larger datasets given a small labeled dataset, which is
often the case in the clinical setting.

Table 3. Comparison between DANN, L-DANN and L-WASS for deeper networks.

Architecture Source→Target Method Precision Recall F1-score Accuracy

SE-ResNet-101 L→S No adaptation 100 18.9 31.8 65.9

DANN 80.9 65.5 72.4 79

L-DANN 88.1 63.8 74 81.2

L-WASS 91.1 53.4 67.3 78.3

S→L No adaptation 68.7 72.6 70.6 69.3

DANN 71.8 67.6 69.6 70.1

L-DANN 72.6 73.7 73.1 73.9

L-WASS 70.9 76.1 73.4 72.1

SENET 154 L→S No adaptation 100 3.4 6.6 59.4

DANN 90.9 51.7 65.9 77.5

L-DANN 100 43.1 60.3 76.1

L-WASS 90.9 68.9 78.4 84.1

S→L No adaptation 79.3 65.1 71.5 73.7

DANN N/C N/C N/C N/C

L-DANN 75.1 84.5 79.5 80.9

L-WASS 88.8 75.1 81.6 81.3

3.4 Domain Adaptation for Feature Regularization

We also test our method on the BACH (BreAst Cancer Histopathology) chal-
lenge [7]. This challenge is composed of classification of patches extracted from
whole-slide images (WSI) into 4 classes (normal, benign, in-situ, and invasive
cancer) and segmentation of the WSI into these classes. As it is not uncommon
to achieve ∼90% accuracy on the classification part, we turn our attention to
the segmentation. There are 10 labeled + 20 unlabeled WSI for training, and 10
for testing. Given the stain variation among WSI, we are using the unlabeled 20
images for stain normalization, and for source (i.e., the institution, scanner or
the hospital) agnostic feature extraction. In this respect, the domain adaptation
acts as a regularizer on extracted features, retaining only the features which are
common in both domains. We train the same network, SE-ResNet-50, without
domain adaptation, with L-DANN module, with L-WASS, and with DANN,
and achieve scores (as defined in [1], which penalizes false negatives, or incorrect
“normal” class, more than false positives, or any of the remaining three classes)
0.63, 0.68, 0.66, 0.65, respectively. Note that the 2nd best score on the public
leaderboard is 0.63.
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4 Conclusions

We presented a novel domain adaptation method for fully convolutional networks
that can alleviate the requirements for large amounts of data, especially in deep
networks. Our method is simple, requires minimal amount of modification to
the original network architecture, adds small overhead to the training cost, and
is cost-free in test time. We tested our method with multiple public medical
imaging datasets and showed promising gains on multiple baseline networks.

Acknowledgments. This work was funded by Canadian Cancer Society (grant
#705772) and NSERC RGPIN-2016-06283.
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Abstract. Advances in deep learning techniques have led to compelling
achievements in medical image analysis. However, performance of neural
network models degrades drastically if the test data is from a domain
different from training data. In this paper, we present and evaluate a
novel unsupervised domain adaptation (DA) framework for semantic seg-
mentation which uses self ensembling and adversarial training methods
to effectively tackle domain shift between MR images. We evaluate our
method on two publicly available MRI dataset to address two different
types of domain shifts: On the BraTS dataset [11] to mitigate domain
shift between high grade and low grade gliomas and on the SCGM
dataset [13] to tackle cross institutional domain shift. Through exten-
sive evaluation, we show that our method achieves favorable results on
both datasets.

1 Introduction

Existence of domain shift between related datasets pose a serious challenge for
CNN based tasks like segmentation which require a large amount of annotated
data for training. Unlike in the natural images, the problem of domain shift is
ubiquitous in biomedical image analysis as images acquired by various institu-
tions belong to different domains due to difference in image acquisition parame-
ters used for capturing data. In addition, tumors and cancers of different grades
and severity may belong to different distributions, limiting the ability of single
segmentation model in labeling cancerous tumors of varying severity and growth
(Fig. 1). To tackle this issue, unsupervised domain adaptation has been exten-
sively studied to enable CNN to achieve competitive performance in a domain
different than the training domain [19].

In this paper, we study intramodality domain adaptation where both source
and target domains belong to same modality, but have different distributions due
to difference in image acquisition parameters or tumor severity. Intramodality
domain shift is often neglected in biomedical image analysis as most of the deep
learning based networks are trained and tested on a mixture of data collected
from different institutions and devices, disregarding the associated domain shift.

c© Springer Nature Switzerland AG 2019
Q. Wang et al. (Eds.): DART 2019/MIL3ID 2019, LNCS 11795, pp. 28–36, 2019.
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Fig. 1. Tumor size variability in BraTS dataset. Top row: Axial slices of high grade
(HGG) tumors, bottom row: low grade (LGG) tumors. In Ground Truth (GT), union
of all colors = whole tumor, green = enhanced tumor and blue = core tumor. HGG
and LGG have different size and distributions for tumor regions. (Color figure online)

This often results in unpredictable performance if test set is from a data source
different than training.

Numerous unsupervised domain adaptation methods have been proposed in
the literature, with a growing emphasis on learning domain invariant representa-
tion to implicitly learn the feature mapping between domains [19]. These meth-
ods can be broadly classified as divergence minimising methods [3,10,17] which
propose to minimise the distribution statistics between domains and adversar-
ial methods [5,16,20] which use discriminators for aligning feature spaces. In
contrast, French et al. [4] employed self-ensembling for domain adaptation and
achieved state-of-the-art results on VisDA-2017 domain adaptation challenge.
This technique is based on the Mean-Teacher Network [18] introduced for semi-
supervised learning and requires extensive task-specific data augmentation. Addi-
tionally, pixel space translation [2] and modulating batchnorm statistics [9] are
also explored in detail for domain adaptation and achieved promising results [19].

In biomedical imaging, Kamnitsas et al’s [7] work on brain lesion MRI domain
adaptation using adversarial training demonstrated the effectiveness of adver-
sarial loss for unsupervised domain adaptation on medical datasets. The latest
study on medical data that is closely related to our work is [12], which performed
unsupervised domain adaptation using self ensembling techniques for spinal cord
grey matter segmentation and achieved promising results.

Current research trends in domain adaptation are directed towards combining
multiple techniques to achieve superior performance in various computer vision
tasks [6,15]. Following this direction, we propose a combined network which
uses domain invariant feature training with self ensembling technique for MRI
domain adaptation in the context of semantic segmentation. We demonstrate
the performance of our method on two publicly available MRI datasets: (1) On
BraTS [1,11] dataset for multiclass tumor segmentation using high grade to
low grade glioma domain adaptation, (2) On SCGM [13] Segmentation dataset
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for grey matter segmentation using cross institutional DA. To the best of our
knowledge, our work here is the first to perform high grade to low grade glioma
domain adaptation and the first one to use a combination of self-ensembling and
adversarial training for medical image domain adaptation.

2 Methodology

2.1 Overview of the Proposed Model

Our domain adaptation network consists of three modules as shown in Fig. 2:
A student segmentation network G, a teacher segmentation network G and
a discriminator D. First, we forward source images with labels through seg-
mentation network G and update its weights. Then we pass unlabeled target
images through G and obtain its pre-softmax layer predictions. Predictions from
both the domains are passed through discriminator D to distinguish whether
the input belongs to source or target domain. Adversarial loss from D is then
back-propagated through G to update network weights to learn domain invari-
ant feature representation. Teacher network G weights are then updated as the
exponential moving average (EMA) of student network (G) weights. Finally, we
compute consistency loss between student and teacher networks predictions for
target images and back-propagate through student network (G). Figure 2 illus-
trates the proposed algorithm.

Fig. 2. Our proposed architecture. Green arrows correspond to source data and red
arrows correspond to target data. Teacher Network weights are updated via EMA.

2.2 Adversarial Training

The objective behind adversarial training is to adapt the segmentation network
invariant to variations between source and target. This is achieved by using a
fully convolutional discriminator network (D) to distinguish the domain of input
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data. D is trained with a cross entropy loss using source and target domain
predictions. For target images predictions, we compute an adversarial loss(Ladv)
and back-propagate it to segmentation network (G) to fool the discriminator by
pushing the feature representation to a domain invariant space.

2.3 Self Ensembling and Mean Teacher

We combine adversarial training with self ensembling using Mean-Teacher in our
network. Although initial self ensembling papers [8,18] were specifically designed
for semi-supervised learning, French et al. extended mean-teacher algorithm for
UDA in his seminal paper [4]. Their proposed architecture consists of a stu-
dent network and a teacher network where the student network is trained with
back-propagation while the teacher network weights are an exponential moving
average of student network weights. We use self ensembling as a regularizer to
smoothen the weights of our feature space domain adaptation network. Student
network weights are updated by task loss and adversarial loss which is then expo-
nentially averaged over time to update teacher network weights. We finally use
teacher network for making predictions. For our mean teacher self ensembling
model, we use the same architecture proposed by [4].

Perone et al. [12] has adapted and implemented this network for domain
adaptation for medical imaging segmentation and achieved favorable results. A
key difference between their work and ours is that their model uses only self
ensembling for domain adaptation while we combine it with adversarial training
as a regularizer for feature-space domain adaptation.

2.4 Objective Function

With the proposed network, we formulate the final loss function for domain
adaptation as follows:

L = Ltask(Is) + λadvLadv(It) + λconsLcons(It) (1)

where Is, and It are inputs from source and target domains respectively. Ltask(Is)
is the segmentation task loss computed on the paired input data. We use dice
loss for segmentation which is commonly employed in biomedical image segmen-
tation due to its low sensitivity to class imbalance. Adversarial loss Ladv(It) is
computed as a cross entropy loss on target images to adversarially align fea-
ture representation of both domains. Consistency loss Lcons(It) measures the
difference between predictions from teacher and student networks for distilling
the knowledge on the student model for self ensembling. We use mean squared
error (MSE) for Lcons(It) as suggested by [12]. Additionally, discriminator net-
work is trained using source and target feature representations using a standard
cross-entropy discriminator loss (Ldisc(Is, It)).
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2.5 Model Architecture

Discriminator Network : For Discriminator, we use a fully convolutional neural
network consisting of four convolutional layers with 4 × 4 kernels and stride
of 2. Except for the last layer, each convolution layer is followed by a leaky
ReLU parameterized by 0.2. Discriminator is trained with Adam as optimizer
with default set of parameters and a polynomial decay function for learning rate.

Segmentation Network : We use UNet [14] as our segmentation network with
15 layers, batch normalization and dropout. Network is trained using Adam as
optimizer with β1 = 0.9 and β2 = 0.99. Both student and teacher networks have
identical UNet architecture and only student network weights are updated by
back-propagation. Performance of the model is validated using teacher network
on validation data from both domains.

3 Datasets

We used two publicly available MRI datasets to evaluate our methodology. We
performed HGG to LGG domain adaptation on BraTS dataset [1,11] and cross
institutional domain adaptation on SCGM segmentation challenge dataset [13].

BraTS 2018 [1,11] dataset consists of 285 MRI samples (210 HGG and 75
LGG) each with T1, T1-contrast enhanced, T2-weighted and FLAIR volumes
with ground truth voxel-wise labels for enhancing tumor, peritumoral edema
and necrotic and non-enhancing tumor core. Both HGG and LGG volumes are
splitted into train and test and we use train HGG as source and train LGG
as target for domain adaptation experiments. Since we are using 2D-Unet for
segmentation, we slice 3D voxels into 2D axial slices of 128 × 128 and concate-
nated all four MRI modalities to get a 4-channel input. More information about
dataset can be found at [11].

Spinal Cord Gray Matter Challenge(SCGM) [13] dataset contains single
channel Spinal Cord MRI data with grey matter labels from 4 different centers.
Data is collected from four centers (UCL, Montreal, Zurich, Vanderbilt) using
three different MRI systems (Philips Acheiva, Siemens Trio, Siemens Skyra) with
institution specific acquisition parameters. From each center, 10 MRI volumes
are publicly available which we center cropped 2D axial slices of 200 × 200 for
our experiment. We use our network to perform cross institutional domain adap-
tation on this dataset with centers 3 and 1 as source and center 2 as target and
validate the performance on all four centers.

4 Experiments and Results

In this section, we present experimental results to validate the proposed domain
adaptation method for semantic segmentation on both datasets. First we eval-
uate model performance on SCGM dataset for cross institutional domain adap-
tation. Second, we carry out experiments for HGG to LGG domain adaptation
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on BraTS dataset. We also conduct extensive experiments and ablation studies
on both dataset to substantiate the efficacy of our proposed architecture. For a
fair comparison and analysis, all experiments are run for the same number of
epochs with the same set of parameters for optimizers and learning rate decay.
Model performance is evaluated using the dice coefficient. For each dataset we
conduct the following experiments:

1. Training the segmenter network (with no DA) on combined source and target
data and test separately on heldout sets (super-all).

2. Training the segmenter network (with no DA) on source data alone and test
separately on source and target (super-source).

3. Domain adaptation using only adversarial training (da-adv).
4. Domain adaptation using only self ensembling (da-ensemble).
5. Proposed domain adaptation algorithm with both adversarial training and

self-ensembling(da-combined).

4.1 Spinal Cord Cross Institutional Domain Adaptation

All networks for cross institutional DA are trained for 350 epochs with centers 3
and 1 as source and center 2 as target. Weights for adversarial and consistency
losses(λadv, λcons) are optimized separately using da-adv and da-ensemble mod-
els. We found λadv = 0.001 and λcons = 2 to have best performance on individual
domain adaptation models and used them for the combined DA model as well.

Table 1. Dice score for cross institutional domain adaptation.

Experiment Center1 Center2 Center3 Center4

super-all 87.5 87.9 87.8 87.96

super-source 87.48 77.11 87.19 85.25

da-adv 87.27 79.43 87.49 87.2

da-ensemble 87.7 84.76 87.59 87.33

da-combined 87.93 85.75 87.56 87.43

We present experimental results for cross-institutional domain adaptation in
Table 1. Combined supervised model achieved similar dice scores on all heldout
sets while source-only supervised model produced poor results for center 2. This
substantiates the existence of intramodality domain shift among multi institu-
tional MRI data and validates the importance of medical image domain adap-
tation. In contrast, all domain adaptation networks achieved improved results
on center2, showing the effectiveness of DA techniques in mitigating domain
shift. Our proposed model achieved highest dice score on 3 out of 4 centers and
produced results on par with supervised training using combined data. Figure 3
presents some example results for adapted segmentation using combined model.
Although domain adaptation models are adversarially trained against center2,
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model performance has improved for all centers. This suggests that DA with the
proposed architecture can be used for domain generalisation as well.

Fig. 3. Example results of adapted segmentation for SCGM Dataset. Model is trained
using combined adversarial and self ensembling domain adaptation.

4.2 Brain Tumor Segmentation Using Domain Adaptation

We trained all experiments for 150 epochs with HGG as source and LGG as
target. Networks are trained with 4-channel sliced 2D axial MRI images to per-
form 4-class segmentation (background, enhanced tumor, whole tumor and core
tumor). Performance scores for all experiments with class wise dice scores are pre-
sented in Table 2. Supervised model results clearly show the domain shift between
high grade and low grade gliomas in BraTS dataset. LGG heldout set produced
inferior results when the network is trained only using HGG volumes. Our pro-
posed domain adaptation method mitigated this domain shift to an extent and
achieved noticeable improvement in segmenting whole and core tumor regions
in LGG dataset.

Table 2. Dice scores for BraTS domain adaptation.

Experiment HGG LGG

Whole Enh Core Overall Whole Enh Core Overall

super-all 85.51 67.84 67.13 78.47 85.23 38.22 55.14 64.34

super-source 85.66 66.84 66.59 77.34 79.29 33.09 44.11 58.44

da-adv 85.47 59.01 64.63 73.44 80.09 30.35 44.90 60.07

da-ensemble 85.90 66.84 66.59 77.61 82.97 33.84 46.87 60.97

da-combined 85.80 66.43 67.11 78.23 84.11 32.67 47.11 62.17
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5 Conclusion

In this paper, we presented a novel approach to intra-modality domain adapta-
tion using adversarial training and self ensembling. We evaluated our model on
two publicly available MRI datasets to address cross institutional domain shift
and tumor severity domain shift. The results showed improved segmentation
performance on both datasets. Superior performance on two different datasets
validates the generalisability of our proposed model which can be extended to
other intra-modality DA applications for biomedical image segmentation. Future
work includes extensive hyperparameter tuning for improved segmentation for
unsupervised domain adaptation.
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Abstract. Learning Interpretable representation in medical applica-
tions is becoming essential for adopting data-driven models into clinical
practice. It has been recently shown that learning a disentangled feature
representation is important for a more compact and explainable repre-
sentation of the data. In this paper, we introduce a novel adversarial vari-
ational autoencoder with a total correlation constraint to enforce inde-
pendence on the latent representation while preserving the reconstruction
fidelity. Our proposed method is validated on a publicly available dataset
showing that the learned disentangled representation is not only inter-
pretable, but also superior to the state-of-the-art methods. We report
a relative improvement of 81.50% in terms of disentanglement, 11.60%
in clustering, and 2% in supervised classification with a few amount of
labeled data.

Keywords: Deep learning · Disentangled representation ·
Interpretability

1 Introduction

Data-driven models with the help of Deep Learning (DL) are affecting wide areas
of scientific research and the medical domain is no exception in this matter. How-
ever, in healthcare, developing a machine learning algorithm with expert level per-
formance is important but not enough for the adoption of the algorithm when the
issues of trust and explainability are not taken into consideration [14]. Explain-
ability of a model is approached either by (1) explicitly learning it by model design
or (2) after model design such as using gradient-based localization [15].

Approaching explainability by model design could be facilitated in a super-
vised manner as in decision trees and rule-based systems or in an unsupervised
manner as in Variational Autoencoder (VAE) [9] or β-Variational Autoencoder
(β-VAE) [6]. In the latter, a lower dimensional representation of the data is
learned and utilized for analyzing the data. The rest of the paper discusses this
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(a) (b)

Fig. 1. Comparison of our model to VAE on examples for traversal over the representa-
tion components. Traversal is done between [−3, 3] (a) Examples of traversal for three
images form ISIC 2018. Each row shows reconstructions of latent traversals across one
latent dimension; (b) Example of a smooth transition over the manifold by changing
multiple latent dimensions to go from small lesion on pale skin (top left image) to
bigger horizontal lesion on red skin (bottom right image). Each column represents one
dimension of change. The colored squares represent the image of the previous column
from which the traversal has started on the current dimension.

type of explainability. Deep learning models extract features from data in order
to represent it in a compressed high-level representation that suits the appli-
cation. The quality of this representation is crucial for the model performance
and it is argued that disentangled representations would be helpful for having
better control and interpretability over the data [1,6]. A disentangled represen-
tation can be defined as a representation where one latent unit represents one
generative factor of variation in the data while being invariant to other genera-
tive factors [1]. For example, a model trained on a dataset of faces would learn
disentangled latent units that represent independent ground truth generative
factors such as hair color, pose, lighting or skin color. Disentangling as many
explanatory factors as possible is important for a more compact, explainable,
transferable, abstract representation of the data [1].

Most of the previous work regarding disentanglement relied on information
about the number or nature of the ground truth generative factors [7,10]. In
medical applications, the data is complex and a priori knowledge about the gen-
erative factors is mostly unavailable. Recently, multiple models for unsupervised
disentangled feature learning were proposed [2,3,6,8]. β-VAE [6] is proposed as
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a modification on VAE [9] where the parameter β is used to introduce more
emphasis on the KL-Divergence part of the VAE objective. This enforces the
posterior to match the factorized Gaussian prior which constraints the bottle-
neck representation to be factorized while still reconstructing the data. Higher
β values encourage more disentangled representations with a trade-off on the
reconstruction error. In β-Total Correlation VAE (β-TCVAE) [2], the training
is focused on the total correlation part of KL term which is responsible for the
factorized representation. This lowers the trade-off on the reconstruction fidelity
proposed by β-VAE. β-TCVAE is validated on examples from a controlled envi-
ronment with clear factors of generation. This does not represent the complexity
of medical data and should be addressed.

Contributions: In this work, we propose a framework for learning disentangled
representations in medical imaging in an unsupervised manner. To our knowl-
edge, this is the first work that analyzes the strength of unsupervised disentan-
gled feature representations in medical imaging and proposes a framework that is
well suited to medical applications. We propose a novel residual adversarial VAE
with total correlation constraint. This enhances the fidelity of the reconstruction
and captures more details that describe better the underlying generative factors.

2 Methodology

We utilize deep generative disentangled representation learning to learn the dis-
tribution of a medical imaging dataset. We then use the learned representation
to generate images while controlling some generative factors. We first show how
disentanglement is approached with β-VAE as a motivation for incorporating β-
TCVAE. We then present our contributions to the disentanglement framework
by utilizing adversarial loss with residual blocks to enhance the disentanglement
and reduce the compromise on the reconstruction. We hypothesize that using
adversarial loss with residual blocks in a disentanglement framework would result
in higher quality representations with more disentanglement in the feature space.

Background: Let xn ∈ X , n = 1, ..., N be a set of images generated by com-
binations of K ground-truth generative factors V = (v1, ..., vK). Our aim is to
build an unsupervised generative model that utilizes only the images in X to
learn the joint distribution of the images and the set of latent generative factors
z ∼ qφ(z|x) ∈ R

d allowing us to have better control and interpretability of the
latent space. It is worth mentioning the latent generative factors capture both
disentangled and entangled factors. To realize our aim, we follow the concept
of β-VAE in learning a posterior distribution that could be used to generate
images from X . The posterior representation is approximated by qφ(z|x). The
model is built such that the generative factors V are represented by the posterior
bottleneck in a disentangled fashion.

In β-VAE, implicit independence is enforced on the posterior to encourage a
disentangled representation. This is done by constraining the posterior to match
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a prior q(z). The prior is set to be an isotropic unit Gaussian (p(z) = N (0, I)).
Adding extra pressure on the posterior to match p(z) constraints the capacity
of the bottleneck and pushes it to be factorized [6]. Thus, the objective function
for β-VAE is as follows

arg min
φ,θ

[−Eqφ(z|x)[logpθ(x|z)]
︸ ︷︷ ︸
reconstruction loss Lrec

+βDKL(qφ(z|x)||p(z))
]

(1)

where θ and φ are trainable weights of encoder and decoder respectively, DKL is
the Kullback-Leibler divergence. For enforcing disentanglement, values of β > 1
are typically chosen. Using this formula enhances the disentanglement at the
cost of reconstruction fidelity. It is suggested by [2] that the total correlation
term within DKL is responsible for the factorized disentangled representation.
Hence, focusing the training on the total correlation would result in better disen-
tanglement while having less effect on the reconstruction. The objective function
changes such as DKL is decomposed and β is multiplied by the total correlation
term as follows

arg min
φ,θ

[ − Eqφ(z|x)[logpθ(x|z)]+

Iq(z, x) + βDKL

(
qφ(z)||

∏

j

qφ(zj)
)

+
∑

j

DKL

(
qφ(zj)||p(zj)

)

︸ ︷︷ ︸
DKL(qφ(z|x)||p(z)) decomposition (Lprior)

]
(2)

The term DKL(q(z)||∏j q(zj)) is the total correlation (TC) which is a gener-
alization of mutual information to more than two variables. Penalizing TC forces
independence in the represented factors. We use β-TCVAE for its good results
on disentanglement on various datasets while having better reconstruction that
other disentanglement models and for the parameter-less approximation of q(z).
For more details about the DKL decomposition and the approximation of q(z)
the reader is referred to [2].

Proposed Approach: To enhance the fidelity of the reconstructions and improve
the generative factors captured by z, we propose using a discriminator network
with β-TCVAE disentanglement model. The discriminator is trained to decide
whether an input image is generated synthetically or sampled from the real data
distribution. We employ adversarial loss scheme for the training. The discrim-
inator in this scenario has to learn implicitly a rich similarity metric based on
features extracted from the images rather than relying only on pixel-wise simi-
larity. This does not only improve generated images visually, but also learns a
richer representation in the code z [11]. This is because the pixel-wise loss acts
as a content loss while the discriminator loss acts as a style loss [4]. Moreover, we
incorporate residual blocks rather than convolutional layers applied in [2]. This
is because residual blocks have shown a better flow of the gradients. This lim-
its the problems related to vanishing/exploding gradients [5] and is being used
in state-of-the-art Generative Adversarial Nets (GANs) literature [17] for more
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stable training. We denote Dis(.;ψ) to the discriminator network described by
trainable parameters ψ, x is a real image sampled from p(x) and x̂ is the recon-
structed image from pθ(x|z). The final objective is

arg min
φ,θ

[Lgen] = arg min
φ,θ

[Lrec + Lprior − log(Dis(x̂))]

arg min
ψ

[Ldisc] = arg min
ψ

[−log(Dis(x)) − log(1 − Dis(x̂))]
(3)

The model is trained by alternating between Lgen and Ldisc optimization. We
use pixel-wise l2-distance between x and x̂ as Lrec.

3 Experiments

Experimental validation evaluates the proposed framework in two main experi-
ments: First, we compare our proposed method disentanglement performance to
state-of-the-art methods in learning both entangled and disentangled representa-
tions. We also utilize the learned representations in two use-cases, namely, unsu-
pervised clustering and supervised classification with a few amounts of labels.
In the second experiment, we evaluate the results visually and analyze the inter-
pretable learned representation.

Dataset: We opt for the publicly available Skin Lesion dataset from ISIC 2018
Challenge [16] to perform our validations. To train our model, we utilize the
dataset of Task 3 which consists of 10k RGB images with 7 types of skin
lesions capturing 7 pathological generative factors. To evaluate the model against
ground-truth generative factors, i.e. eccentricity, orientation, and size, we utilize
the dataset of Task 2 which consists of 2k images with pixel-wise segmentation.
Note that all images are down-sampled to 64 × 64px.

Evaluation Metrics: To quantitatively evaluate the disentanglement quality,
we report the Mutual Information Gap (MIG) metric as proposed and sug-
gested in [2]. As opposed to the disentanglement metric in [6], MIG takes axis-
alignment (one vk is captured by one zj) into consideration, and it is unbiased to
hyper-parameters opposite to [6,8]. MIG measures the mutual information (MI)
between zj and the known generative factor vk, then the difference between the
two highest MIs of a generative factor is calculated, and normalized then by the
entropy of vk. The average MIG is then reported as the final MIG score. The
generative factors are set as follows:

1. MIG Pathologies (MIGp): The ground truth classes are used as generative
factors in one vs. all fashion. For instance, K = 7 for the Skin Lesion dataset.
Each generative factor has two possible values in this scenario.

2. MIG Handcrafted Factors (MIGhf ): In addition, we handcrafted a few
generative factors which are easily visible in the image space, e.g. geometric
and morphological changes. To do so, the segmentation masks given in Task
2 are utilized. The handcrafted factors are eccentricity, orientation, and size
(i.e K = 3). Each generative factor has two possible values.
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In addition, we report the Peak signal-to-noise ratio (PSNR), Normalized
Mutual Information (NMI), and Accuracy (ACC) to evaluate the reconstruction
error, clustering, and classification, respectively.

Baselines: We compare the proposed model to two representation learning mod-
els. The first is VAE [9] model which does not take disentanglement into account
explicitly. The second model is β-TCVAE [2] which adds constraints on the rep-
resentation to disentangle the components. Further, We employ two variations
of our proposed method with bottleneck residual blocks [5]; (1) without the
adversarial loss in Eq. 3 denoted as Ours-resnet ; and (2) with the adversarial
loss denoted as Ours-adv.

Implementation Details: We implement the same architecture appeared in the
CelebA experiments in [2] for both VAE and β-TCVAE. For our proposed
method, we replace the convolutional layers with bottleneck residual blocks for
both Ours-resnet and Ours-adv, while the additional discriminator network in
Ours-adv has the same architecture of the encoder except for the last layer which
has a single output. All models are trained using Adam optimizer for 100K iter-
ations with a minibatch size of 256, and a learning rate of 1e − 4. β and d are
set to 6 and 32, respectively. Note that we employ leakyReLU in our Ours-adv
which has been successfully applied in the adversarial training literature.

Comparison with State-of-the-Art: We compare our method with the recent
state-of-the-art methods by reporting the evaluation metrics (cf. Table 1). We
notice improvements over the β-TCVAE in terms of disentanglement with a
relative improvement of 81.6% and 161.8% on MIGp and MIGhf , respectively.
For reconstruction error, it is expected that VAE would be superior to other
models because there is no extra focus on the prior constraining part of the loss
function which allows reconstruction error to optimize better. However, we notice
an improvement on PSNR compared to β-TCVAE model which compromises
reconstruction error for disentanglement. This experiment shows that adding the
bottleneck residual blocks together with adversarial training not only improves
the disentanglement, but also improves the reconstruction quality.

Use-Cases: In order to show that the disentangled representation is rather cap-
turing some meaningful generative factors, which might be relevant to the task at
hand. We design two use-cases in both unsupervised and supervised paradigms.
For the clustering use-case, we utilize the learned representations to fit a Gaus-
sian Mixture Model (GMM) with 7 components and assign a label to each data
point. NMI is then calculated between assigned labels and ground-truth labels.
We report an average of 10 realizations. Regarding the classification use-case,
we utilize the learned representations of a few amounts of labeled data to train a
multi-layer perceptron (MLP) on 10% of the data and evaluate it on the remain-
ing 90% of the data. 10-fold stratified cross-validation is performed.
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The model gives a relative improvement of 11.6% and 2% on the NMI and
ACC, respectively. This could be attributed to the quality of the learned repre-
sentation where features responsible for the pathologies are captured by disen-
tanglement models as generative factors.

Table 1. Comparison of various representation learning models.

MIGp% MIGhf% PSNR NMI% ACC%

VAE 5.23 2.74 22.91 9.12 67.88

β-TCVAE 6.92 3.53 20.79 10.66 68.61

Ours-resnet 11.61 5.89 19.42 9.89 69.19

Ours-Adv 12.57 9.24 21.18 11.86 70.02

Interpretability: We qualitatively examine the interpretability of the learned
representations by manipulating the latent code. For instance, Fig. 1a shows a
comparison of the traversal between the proposed model and VAE. We notice
that the dimension responsible for changing skin color has some entanglement
with eccentricity and size in the case of VAE. In contrast, we can see in our
proposed model that the size and eccentricity are barely changed when the skin
color dimension is changed. For eccentricity, we notice in the case of VAE that
fewer variations are captured such as the absence of the horizontal elliptic lesions
that are captured with the proposed approach.

In Fig. 1b, we show the possibility of generating images with specific features
by smoothly moving over the manifold of the representations. We show the
transition of a small lesion on pale skin to a big horizontal lesion on reddish skin
by changing multiple latent dimensions responsible for each feature. Having this
control over the representation does not only give the ability to generate images
with specific known features, but also gives an interpretable representation of
the data which can be utilized in many applications.

4 Discussion

In this paper, we introduce a novel adversarial VAE with a total correlation
constraint to enforce disentanglement on the latent representation while pre-
serving the reconstruction fidelity. The proposed framework is evaluated on skin
lesions dataset and shows improvements over other state-of-the-art methods in
terms of disentanglement. The learned representations have shown remarkable
performance in both unsupervised clustering and supervised classification. One
interesting direction to investigate is the usage of few labels to enhance the dis-
entanglement and allow for better strategies for model selection as suggested in
[12,13].
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Abstract. Real-time (RT) sequences for cardiac magnetic resonance
imaging (CMR) have recently been proposed as alternatives to standard
cine CMR sequences for subjects unable to hold the breath or suffer-
ing from arrhythmia. RT image acquisitions during free breathing pro-
duce comparatively poor quality images, a trade-off necessary to achieve
the high temporal resolution needed for RT imaging and hence are less
suitable in the clinical assessment of cardiac function. We demonstrate
the application of a CycleGAN architecture to train autoencoder net-
works for synthesising cine-like images from RT images and vice versa.
Applying this conversion to real-time data produces clearer images with
sharper distinctions between myocardial and surrounding tissues, giving
clinicians a more precise means of visually inspecting subjects. Further-
more, applying the transformation to segmented cine data to produce
pseudo-real-time images allows this label information to be transferred
to the real-time image domain. We demonstrate the feasibility of this
approach by training a U-net based architecture using these pseudo-
real-time images which can effectively segment actual real-time images.

Keywords: Cardiac MR · Cardiac quantification · Convolutional
neural networks · Generative adversarial networks · Image synthesis

1 Introduction

Free breathing non-gated real-time cine (RT) is a cardiac magnetic resonance
imaging (cMRI) protocol proposed as a solution to restrictions present in the
standard short axis cine protocol [12,13]. The latter protocol reconstructs images
from multiple cardiac cycles and thus relies on electrocardiogram (ECG) gat-
ing, consistent cardiac cycle periods, and breath holds during acquisition. For
patients with arrhythmia or who cannot hold their breath, a characteristic often
seen in patients with heart diseases, this protocol is not feasible for producing
useful CMR images.
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Fig. 1. The CycleGAN network setup. The path for real-time images is in red and that
for cine MR images in green. Image data is shown as grey boxes and loss functions in
blue. (Color figure online)

Real-time cine by contrast is neither ECG-gated nor breath-held, captur-
ing cardiac motion over multiple cycles which is not directly reconstructed.
The drawbacks to this protocol include through-plane motion during respira-
tion impacting quantification of flow, the absence of ECG data informing where
in the cardiac cycle each image is placed, and the poor quality of RT images in
terms of feature resolution relative to standard acquisitions.

Previous work to address motion issues and identify cardiac cycle posi-
tion [9,15] can be applied to mitigate these drawbacks, however this does not
improve image quality directly. Real-time images suffer from a blurring effect
due to fast acquisition, reconstructing a sharper version of these images with
clearer delineation of cardiac tissues would potentially aid in visual assessment
by clinicians.

In this paper we outline a method for converting between real-time images
and short-axis images using a CycleGAN [22] based neural network architec-
ture. We used trained autoencoders to enhance the quality of real-time images
by converting them to a pseudo-cine image which present a better delineation
between myocardial and surrounding tissues. Since we also can convert cine to
pseudo-real-time images, we demonstrate the feasibility of converting segmented
cine data to pseudo-real-time to use as training input. Consecutively we trained
a U-net [14] based network to segment real-time images and compare its output
against clinician labelled data, showing that our approach also allows transfer
of training data to improve automation of analysis of this less common used
technique lacking rich labelled datasets.

Related Work: Deep learning has recently shown great promise in synthesising
medical images across different sequencing types within the same image modality
based on conditional generative networks [8] and cycle generative adversarial net-
works [7,19,20,22]. Huo et al. [7] proposed an end-to-end synthetic segmentation
network for abdominal images and for intracranial volume synthetic segmenta-
tion. A known problem with image synthesis is that of “hallucinating” data [2],
where features commonly found in a target domain, but absent in the source
image, are added to synthesised images. We address this problem in this work
by using images representing roughly the same cardiac geometry and excluding
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cases having pathological geometric variation from the datasets, thus no image
feature is expected to coincide with one image domain.

Several non-gated RT imaging techniques have been proposed to overcome
the limitations with ECG-gated CMR [3,12,13,16]. Despite solving an impor-
tant problem for patients with severe heart disease (who often have arrhythmia
and problems holding breath) feature definition and image quality remains infe-
rior to standard imaging, even using advanced acceleration techniques.

Fig. 2. Autoencoder network topology. Input tensors are first downsamples to half
the original dimensions using a strided convolution (yellow). Each subsequent residual
block (first one marked with dotted box) is composed of convolution layers with strides
of 1 and dilation factors given above. All convolutions are 2D with 3 × 3 kernels. (Color
figure online)

2 Method

To train our image synthesis autoencoders we employed a CycleGAN approach
outlined in Fig. 1. Given two image distributions A and B (in our case real-
time and cine images respectively), we train one autoencoder A2B to convert
an image from distribution A to appear like one from distribution B (labelled
∼b), and another autoencoder B2A to perform the opposite translation (∼a).
Discriminator networks DA and DB are used to discriminate between real and
synthetic images from each distribution.

These are then passed through the other network to produce reconstructed
images â and b̂ which are then compared against the original images using mean
squared error. The discriminator networks are trained subsequently using the
generated batches ∼a and ∼b, plus images from A and B, as input.

The input data consists of �20000 real-time CMRI images [15] acquired on
a 1.5T Philips Ingenia MR scanner (Philips, Best, Netherlands) from 10 healthy
participants as dataset A, plus �5000 short-axis cine images acquired from the
same participants as dataset B. Having an unbalanced ratio between the size
of A and B was found to produce poor results during training, and so �15000
cine images from the ACDC challenge dataset [1] were added to B. The selected
ACDC images were acquired from Siemens 1.5T and 3T scanners (Siemens Med-
ical Solutions, Germany) and include healthy subjects as well as those with
myocardial infarction.
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Binary cross entropy is used as the loss function to discriminate between real
and synthetic images, given that 1 labels real images and 0 synthetic:

LDA
= Ea∼A[log(DA(a))] + Eb∼B [log(1 − DA(B2A(b)))]

LDB
= Eb∼B [log(DB(b))] + Ea∼A[log(1 − DB(A2B(a)))]

Mean squared error is used as the loss between real and synthetic images:

LA = Ea∼A[‖B2A(A2B(a)) − a‖2], LB = Eb∼B [‖A2B(B2A(b)) − b‖2]

The final loss for training the two autoencoders together is the following,
using a value of 10 for the hyperparameter λ:

L = λLA + λLB + LDA
+ LDB

Fig. 3. The U-net segmentation network is built as a stack of these layers. The
“Next Layer” is either another such layer or the bottom layer consisting of only a
convolution/instance-norm/PReLU sequence. In this way each layer represents both
the encoding and decoding pathway where input data flows through the left-hand
residual block, through next layer, up through the right-hand residual block which also
upsamples and concatenates, and then the layer above.

Figure 2 illustrates the architecture of the two autoencoders. As a memory
efficiency measure the input image is downsampled by a factor of 2 using a
convolution with a stride of 2 in both dimensions, followed by instance normal-
isation and PReLU [4] activation. The network then consists of three residual
blocks [5] containing two sets of convolution-normalisation-activation layers. The
final layer is a convolution with 1 × 1 kernels to adjust the number of channels
to 4, followed by a pixel shuffle layer [17] to output an image with the same
dimensions as the original input, to which sigmoid activation is applied.

To increase the perceptive field of the residual blocks, the convolutions of
the second and third block are dilated by factors of 2 and 4. Input to each
block is the concatenated image volume of the outputs from the original set of
convolutions plus the outputs of previous blocks. This implements a dense block
similar to [6] which permits data from convolutions with smaller dilations to be
passed directly to those with larger dilations.
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It was found in this experiment that dilated convolutions are an effective
alternative to downsampling as a means of expanding the perceptive area of con-
volutions. The more common autoencoder architecture involves multiple down-
sampling layers (the encode step) following by upsampling layers (the decode
step). Using dilated kernels it was possible to define an alternative autoencoder
model which operated on near-full resolution data but was still feasible to train
and produced good quality output. Another factor contributing to good results
was the dense block architecture which allowed information from convolutions
with smaller perceptive fields to be passed directly to those with larger, thus
feeding information about smaller scale features down the encoder pipeline to
be integrated with information about larger scale features.

3 Segmentation

Using synthetic data we have trained a segmentation network based on the resid-
ual U-net [14,21] architecture to label the left ventricle. Our U-net architecture
(Fig. 3) is defined as a stack of downstream/upstream layers, and uses residual
blocks throughout the encoding and decoding path. Our network consists of four
such blocks with encoding paths producing output volumes with 16, 32, 64, and
128 channels respectively. Strided convolutions and strided transpose convolu-
tions are used to downsample and upsample data, which are followed by instance
normalisation and PReLU layers.

Input data was acquired from multiple datasets of cine images defined with
three label segmentations (left-ventricle chamber, left ventricle myocardium,
right ventricle chamber). These datasets are the ACDC challenge dataset [1]
of 100 cases, 175 healthy cases from the UK Biobank segmented by a clinician,
116 cases captured on Siemens Trio 3T scanners (Siemens Medical Solutions,
Germany), and 215 cases captured on 1.5T Philips Ingenia scanners. The total
number of images used for training is 9095. With the images converted to pseudo-
real-time with unaltered segmentations, the network was trained to transfer the
amalgamated label information from one form of MR to another.

During training, random batches of image/segmentation pairs are drawn from
this training dataset and a random set of operations are applied to each. This
follows [10] in its use of data augmentation [11,18] as so is not suitable to be
trained with the generator networks as in [7]. These augmentations include sim-
ple array transforms (flip, rotate, transpose, etc.) but more importantly also
include randomised free-form deformations. The previous work has shown that
this combination of network architecture and training process results in robust
and accurate segmentation networks.
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4 Results

Fig. 4. Examples of image synthesis, arrows pointing to cardiac area of interest. For
each image pair the original real-time image is above and the generated pseudo-cine
image below.

Image Comparison. Figure 4 gives examples of the translation from real-time
images to pseudo-cine images. The generated images exhibit greater contrast
than the originals and the myocardium (specifically the left ventricle) is better
defined with a more distinct boundary between myocardial tissue and pool or
surrounding tissue. The peak signal-to-noise ratio between the generated images
the �20000 original images is −54.22 dB (σ = 1.42), and the structural similarity
index between them is 0.77 (σ = 0.08).

Temporal information is not used in the transformation process so the relative
motion between images is preserved in the pseudo-real-time images. This allows
arrhythmia to be observed in the translated images as the cardiac cycle time is
not affected. Typically arrhythmia excludes the use of cine MR thus our approach
is an effective means of analysing such patients with high quality imagery.

Wall motion abnormalities are difficult to visualise in cine MR images as the
wall position will vary from cycle to cycle, when multiple cycles are combined
the resulting image is less distinct in this area. These abnormalities are thus
more clearly identified with the sharper imaging produced by our method which
does not reconstruct images based on the assumption of uniform geometry across
cycles.

Segmentation Comparison. To assess the segmentation network, we use our
set of manually-segmented real-time images as a ground truth comparison with
generated segmentations. The manual segmentations were drawn by clinicians
on images where they were confident the left ventricle was sufficiently distinct
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to define a reasonable boundary for the segmentation. This data is composed of
binary segmentations of the LV myocardium only, thus our comparison study
will use only these labels from the generated label set.

The segmentation network was applied to the 3194 expert-segmented real-
time images in our dataset. Of these we were able to predict 2747 correct annu-
lar segmentations after extracting the largest element from each segmentation
image. The mean dice score between these segmentations and the clinician-
defined ground truth is 0.783 with a standard deviation of 0.083. Figure 5 illus-
trates examples of generated segmentations as compared to their ground truths.

Fig. 5. Segmentation examples with original real-time image (top of each column),
ground truth segmentation (middle), and predicted segmenation (bottom).

5 Conclusion

We have in this work defined a methodology for overcoming some of the defi-
ciencies with real-time MR sequences by using a CycleGAN deep learning archi-
tecture to improve image quality. By training autoencoders to produce cine-like
images from real-time images, we can produce a processed version of a real-time
image sequence where the myocardial tissue is better differentiated from its sur-
roundings and the ventricular cavities. This can serve as an aid to clinicians
when assessing cardiac function by providing a sharper and more distinct image
with improved contrast levels.

Using the second autoencoder to convert cine MR images to pseudo-real-time
images allows a segmentation network to be trained using existing labelled cine
data but which can be applied to real-time images. We have demonstrated the
feasibility of this approach to reusing data between MR image types, which is
especially important for real-time images as very little labelled data exists for
the left ventricle and none for the right ventricle. In the future we intend to
use this combined data to train networks capable of segmenting both ventricles
despite current real-time datasets only having left ventricle labels.
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Abstract. Supervised learning algorithms trained on medical images
will often fail to generalize across changes in acquisition parameters.
Recent work in domain adaptation addresses this challenge and success-
fully leverages labeled data in a source domain to perform well on an unla-
beled target domain. Inspired by recent work in semi-supervised learn-
ing we introduce a novel method to adapt from one source domain to
n target domains (as long as there is paired data covering all domains).
Our multi-domain adaptation method utilises a consistency loss combined
with adversarial learning. We provide results on white matter lesion hyper-
intensity segmentation from brain MRIs using the MICCAI 2017 challenge
data as the source domain and two target domains. The proposed method
significantly outperforms other domain adaptation baselines.

Keywords: Domain adaptation · Adversarial learning · Brain MR

1 Introduction

In medical imaging, fully automated tools using deep learning techniques are
increasing in popularity for numerous clinical tasks, including image segmen-
tation, image classification and instance counting [8]. Among these tools, deep
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learning frameworks exhibit excellent performance (often described as ‘superhu-
man’) when applied on images drawn from the same distribution (scanner type,
parameters, patient pool etc.) as the one used in training the model. However,
the performance may deteriorate drastically when the algorithm is applied in
previously unseen domains. This performance gap is a critical barrier to the safe
implementation and widespread adoption of these techniques in clinical practice.

The process of adapting a model from a ‘source’ domain to a target domain
is called ‘domain adaptation’. Successful methods have included:

1. Training with a small number of labeled examples from the target domain.
While this solution is theoretically straightforward, its practical use is limited
as it requires additional labelling on the target domain.

2. Embedding the imaging data in a latent space. This latent space is learnt so
as to ignore domain-specific features (e.g. contrast), while retaining domain-
invariant features (pathology). Adversarial approaches have been proposed
to address this angle in the context of lesion segmentation [5]and heart struc-
ture segmentation between MR and CT [2]. In both cases, the adversarial
training is used to make the latent space as uninformative as possible about
the domain the images come from.

3. Semi-supervised methods use a model trained on a small number of labeled
examples to provide pseudo-labels for unlabeled data, which is then trained
on. The model-fitting and updating semi-supervised labels can be seen as a
form of expectation maximisation and has been used in medical imaging [1].

4. Enforcing output robustness to input perturbation. Recent methods have
exploited the property that the distribution of predictions should be invariant
to small perturbations on the input data. This observation can be expressed
as p(y|x) ≈ p(y|x̃), where x̃ is an augmented/perturbed version of x. The
enforcement of this property has the additional advantage of limiting the
unwanted behaviour of drastic output change for minimal input perturba-
tions, which can be seen as improving robustness. For instance Perone et al.
[9] proposed a teacher-student framework ensuring consistency between the
outputs when passing to the student an augmented version of the unlabeled
input of the teacher, that is similarly augmented afterwards.

Methods 2 to 4 fall under the purview of ‘Unsupervised Domain Adaptation’
(UDA), as does the presented work. In general, UDA does not rely on labeled
training examples from the desired target domain. This is especially desirable in
medical imaging, where labelling is time-consuming and highly variable, and the
‘domain’ depends on scanner manufacturer, acquisition protocol and reconstruc-
tion strategy. The augmentations required to create the perturbed input data
can either be generic (geometric or contrast operations) or application-specific.
In the context of medical imaging, the latter includes physics-based image aug-
mentation, synthetic bias field addition or registration-based approaches [14].
These methods lean on domain-specific knowledge to generate plausible
transformations.
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We propose a UDA pipeline applied to the segmentation of white matter
hyperintensities (WMH) which introduces a paired consistency (PC) loss which
guides the adaptation. The proposed (PC) method enforces the output consis-
tency between the results obtained on two separate acquisitions per subject:
an in-plane and a volumetric FLAIR sequence. We aim to (1) segment WMH
lesions on completely unlabeled examples and (2) to make these predictions sim-
ilar between the in-plane and volumetric cases. In other words, we regularize the
fitting by explicitly promoting similarity in the labels generated by each FLAIR
acquisition. This adaptation method was supplemented with an adversarial loss
in order to prevent the model from getting stuck in bad local minima. After an
overview of the proposed approach and its variants in Sect. 2, we present the
experiments which show that our proposed method leverages the unlabeled data
to produce more consistent lesion segmentations across all domains.

2 Methods

The proposed training strategy for domain adaptation occurs in two phases. In
the first phase the network is trained only on labeled data until convergence.
During the second phase of the training, the paired unlabeled data is presented
in addition to the labeled data and a consistency term is added to the loss
function. This consistency term is inspired from the loss proposed by Xie et al.
[13] that aims at minimizing the Kullback-Leibler divergence DKL between the
output probability distribution y when conditioned on the unlabeled input x
from the set U or its augmented countrapart x̂ drawn from q(x̂|x).

min
θ

LPC = E
x∈U

E
x̂∼q(x̂|x)

[DKL(pθ̃(y|x)||pθ(y|x̂))] (1)

We adapt this method to the segmentation task by using the dice loss [7]
instead of the KL divergence. In the following, we denote as yl the labeled
ground truth, ŷl the prediction over labeled images, ŷu the prediction over unla-
beled input and ŷû the prediction over its augmented/paired counterpart. The
losses used in our framework are thus expressed as follows:

LS = dice(ŷl, y), LPC = dice(ŷu, ŷû), Ltot = LS + αLPC (2)

We trained networks using Ltot as specified in (2) and denote them as PC.
These networks fθ(h|x) produce a feature representation h from which ŷ is cal-
culated.

Preventing Trivial Solutions: Early in our experiments, we encountered a
specific degenerate solution: our network was able to produce one solution for
source images (a good lesion mask) while producing a trivial result on the tar-
get domain (in this case, a mask of the foreground). This meant that there was
good agreement between in-plane and volumetric FLAIRs because they sim-
ply segmented foreground—ignoring the lesions altogether. This means that the
network was identifying the domain of the images and using this to inform its
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solution: undesirable behaviour. We introduced an additional adversarial term to
avoid these ‘solutions’. Inspired by the domain adversarial literature (methods 2
in Sect. 1) we propose an adversarial loss to minimize the amount of information
about domain contained in h. We introduce a discriminator dΩ which takes h as
input and outputs a domain prediction d̂. The adversarial loss, Ladv is given by
the cross-entropy, Ladv = −∑n

i=1 Li
ce(di, d̂i) where n is the number of domains,

Li
ce is the multi-class cross entropy loss, d is a one-hot encoded vector of the

domain label and d̂ is the model’s domain prediction as in [11]. We use a gra-
dient reversal layer as in [5] in order to minimize Ltot whilst maximizing Ladv.
Figure 1 presents the diagram of the proposed method with the combination of
different losses, where β controls the strength with which the model is adapting
its features whereas α controls the weights the consistency effect.

Fig. 1. Diagram of proposed method. At training time, xu, xl and yl are supplied to
the network. xu is an image from the unlabeled target domain and x̂u is the result of
applying some augmentation function to xu. A labeled image, xl, is passed through the
network, fθ before combining with a label yl to form the segmentation loss, Ls. The
image representations are fed to a domain discriminator dΩ which attempts to max-
imise the cross-entropy between predicted domain and actual domain, Ladv. Finally,
similarity is promoted between the network predictions on xu and x̂u using LPC .

Augmentation: In [13] the authors suggest various properties of augmented sam-
ples necessary for performing Unsupervised Data Augmentation. Samples should
be realistic, valid (meaning they should not alter the underlying label), smooth,
diverse and make use of targeted inductive biases (domain knowledge). In the
absence of sufficiently realistic augmentation functions we use paired scans which
are considered as augmented samples. However, taking them as they are makes for
a discrete augmentation function with discontinuous jumps. In order to encour-
age continuity we used a large range of augmentations on the paired data, includ-
ing generic geometric transformations and MR specific non-geometric transforma-
tions. Geometric augmentations were sampled independently and combined as one
affine transform, using random rotations (all axis ranging from −10 to 10◦), ran-
dom shears ([0.5, 0.5]) and random scaling ([0.75, 1.5]). For the non-geometric aug-
mentations we applied k-space motion artefact augmentation as described in [12]
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and bias field augmentation as implemented in [3]. We measure how useful these
additional augmentations are in our experiments.

3 Experiments and Results

Data: In this work we focus on white matter hyperintensity segmentation. The
data comes from two separate studies. As a source domain we use the White
Matter Hyperintensity challenge data presented in MICCAI 2017 [6]. The other
dataset was used as target domain and comes from a sub-study within the Phar-
macokinetic and Clinical Observations in PeoPle over fiftY (POPPY) [4]. In this
study two different FLAIR sequences were acquired during the same MR session
for all 72 subjects on a Philips 3 T scanner. The in-plane FLAIR was an axial
acquisition with 3 mm slice thickness and 1 mm2 planar resolution (Repetition
time (TR) 8000 ms, Inversion time (TI) 2400 ms and echo time (TE) 125 ms)
while the volumetric FLAIR was of resolution 1.04 × 1.04 × 0.56 mm3 (TR =
8000ms TI = 1650 ms TE = 282 ms). Both images were rigidly coregistered to
the 1 mm3 T1 sequence acquired during the session. All individuals were male
with mean age of 59.1±6.9 yrs, including HIV-positive subjects and population-
matched controls.

Implementation Details and Training: The MICCAI Challenge dataset was
split with a train:validation:test assignment of 40:10:10 subjects. For the POPPY
dataset, the split was 38:15:20.

Training was done using 2d axial slices of size 256 × 256 with inference
carried out by concatenating the predictions across all slices to form a 3d volume.
The segmentation network uses the U-Net architecture [10] with depth of 4 and
a maximum number of filters of 256 at the deepest layer, with ReLU as the
activation function. Initial training on the MICCAI dataset only was performed
using the Adam optimizer with an initial learning rate 10−3 and a learning rate
decay schedule decaying with γ = 0.1 (γ is a multiplicative factor of learning rate
decay) at epoch 300 and 350. The validation set is used for early stopping, thus
the baseline model takes the network configuration at the epoch where it showed
the highest accuracy on the validation set. All adaptation models and adversarial
models were initialized with the weights of this trained baseline model.

The choice of α parameter balancing the segmentation and the consistency
loss in the domain adaptation runs proved to be important. Generally, high val-
ues of α led to degenerate solutions, where predictions on the target dataset
were no longer capturing lesions. Since scheduling a slowly increasing α did not
help, α was fixed at 0.2 in all experiments.

In case of an adversarial setting, empirical assessment of the best choice of
architecture for the discriminator led to the following choice: four 2D convolu-
tional layers with a kernel size of 3 × 3 and a stride of 2 followed by batch
normalisation and leaky ReLU activation. The number of output channels is 4
to begin with and doubles at each layer to a total of 32. Finally, there are three
fully connected layers with output sizes of 64, 32, and 2 with relu activations
and dropout applied (p = 0.5).



Multi-domain Adaptation in Brain MRI 59

Points of Comparison: In order to assess the relevance of the proposed paired
consistency, we compared the proposed PC with adversarial setting and augmen-
tation (PC+Adv+Aug) to the version without adversarial setting (PC+Aug)
and the simplest version removing also the augmentation (PC). In addition, we
trained classical UDA methods with a mean-teacher framework (MT) as well as
the adversarial setting without PC with (Adv+Aug) and without augmentation
(Adv). Finally we compared to the baseline U-Net model trained only on the
MICCAI dataset with (Baseline+Aug) and without (Baseline) augmentation.

For the final results table checkpoints were chosen for each of the experiments
by looking at the performance across the validation set.

Table 1. Performance of different methods on the target (POPPY) and the source
domain (MICCAI 2017 WMH Challenge). We report the dice between our models’
predictions and the ground truth annotations in the source domain as well as the
HD95. The evaluation on target domains is done with the Dice, the HD95, the volume
difference (VD) and the recall. A significative rank measure is calculated across all
metrics. Results are reported with the format median (IQR) in percentages for all met-
rics except the HD95 in mm. Best results are in bold andunderlined when significantly
better than all others (p < 0.05 paired Wilcoxon tests).

POPPY MICCAI

Dice HD VD Recall Dice HD Rank

PC+Adv+Aug 54.5 (10.6) 32.7 (9.8) 15.2 (22.8) 52.4 (14.4) 81.4 (9.6) 28.5 (8.6) 2.5

PC+Aug 53.2 (15.1) 39.2 (15.5) 25.4 (15.6) 43.5 (12.5) 81.6 (15.5) 18.6 (4.8) 3.3

PC 50.7 (17.0) 35.1 (11.9) 16.6 (21.4) 43.6 (11.0) 81.4 (22.6) 17.2 (3.6) 3.4

MT 48.6 (12.3) 33.6 (14.8) 33.7 (19.0) 40.9 (5.0) 80.0 (18.2) 20.0 (7.3) 4.3

Baseline+Aug 42.8 (14.6) 34.9 (11.1) 39.3 (22.3) 33.5 (12.6) 80.6 (14.8) 17.8 (4.9) 4.9

Baseline 43.0 (16.2) 33.3 (15.1) 40.3 (24.8) 33.3 (14.8) 81.1 (16.9) 17.5 (3.3) 5.6

Adv 41.8 (15.4) 32.6 (6.1) 25.2 (24.0) 33.5 (12.7) 82.5 (12.0) 17.6 (5.2) 5.7

Adv+Aug 41.4 (16.4) 36.6 (9.0) 38.0 (16.0) 33.6 (13.9) 81.9 (11.1) 19.7 (11.0) 6.3

Reported Metrics: As a first metric of consistency, we compute the Dice
score overlap between the two volumes. However, high dice agreement may arise
without predicting lesions, for instance with the segmentation of foreground or
of another anatomical structure. Such degenerate solutions can indeed occur as
the consistency term in the loss can be minimized for any consistent prediction
between volumes.

As there are no lesion segmentations for the POPPY dataset, we use the
known association between age and white matter hyperintensity load reported
for this dataset [4] as surrogate evaluation that the segmented elements are
lesions. The effect size is a useful metric for determining whether the lesion loads
predicted by the various models agree with the reported literature. For the eight
compared models, the effect size ranged from 1.2-fold to 1.5-fold increase in lesion
load normalized by total intracranial volume per decade. This compares well with
the reported effect size on the POPPY dataset of 1.4-fold with a 95th confidence
interval of [1.0; 2.0]. Predictions from in-plane POPPY and volumetric POPPY
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were compared using the dice overlap, the 95th percentile Hausdorff distance
measured in mm (HD95), the recall (or sensitivity), the ratio of difference in
volume between the two predictions (VD) as was used in [6].

The results, gathered in Table 1, reporting median and interquartile range
are ordered according to the average significance ranking, follows the guidelines
of the MICCAI Decathlon challenge 20181.

Fig. 2. Qualitative results on a single slice from a single subject in the POPPY dataset.
The top row shows a slice from the in-plane FLAIR acquisition whilst the bottom row
shows a slice from the volumetric FLAIR acquisition. Each column shows a model’s
predictions on that row’s image. This slice is used to highlight an example of an artefact
(shown in the red circle) introduced by the in-plane acquisition. The baseline method
introduces a false positive in this region whilst the domain adaptation methods perform
better at ignoring it. Our approach shows the best in-plane to volumetric agreement.

4 Discussion

In this work, we presented a novel method of performing unsupervised multi-
domain adaptation. A pretrained model from one domain is retrained on paired
unlabeled data from two target domains, encouraging consistent predictions.
The proposed approach was evaluated against existing UDA strategies including
representation learning approaches using domain adversarial training [5], and
the ‘Mean Teacher’ algorithm for unsupervised domain adaptation [13] as well
as an unsupervised baseline for WMH segmentation. Overall, our method was
able to produce more consistent predictions across two target domains while
retaining similar performance on its original training domain. More specifically,
adaptation techniques optimizing pairwise consistency not only outperformed
baseline models not benefitting from any adaptation but also adversarial strate-
gies. Furthermore, it appeared that the PC method while closest to the mean
teacher algorithm, outperformed this approach potentially thanks to differences

1 http://medicaldecathlon.com/files/MSD-Ranking-scheme.pdf.

http://medicaldecathlon.com/files/MSD-Ranking-scheme.pdf
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in the optimisation strategies. Understanding the reasons for these differences
also reported by [13] could be an interesting avenue of future investigation.
Regarding the adversarial results, the observed inferior performance suggests
that depending on the adaptation problem, the learning of a latent space invari-
ant to domain (as enforced in the adversarial approach) may cause an informa-
tion loss detrimental to the segmentation task. Additionally, the effects of data
augmentation (which normally impacts performance positively) did not provide
any benefit in the pure adversarial setting. Specific investigation of the effect of
each type of augmentation would be needed to better understand this behaviour.
While a pure adversarial setting proved ineffective, best performance across all
models was obtained when combining it with our proposed PC strategy as it pro-
moted a good label distribution in our target images. Future work will focus on
removing the need for paired data by finding sufficiently realistic augmentation
functions.

In conclusion, PC is a promising method to adapt automated image seg-
mentation tools to different scanner manufacturers, MR sequences and other
confounds. This adaptation is critical to the clinical translation of these tools
notably in the context of scanner upgrades and multicentre trials.
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Abstract. Creating large scale high-quality annotations is a known
challenge in medical imaging. In this work, based on the CycleGAN
algorithm, we propose leveraging annotations from one modality to be
useful in other modalities. More specifically, the proposed algorithm cre-
ates highly realistic synthetic CT images (SynCT) from prostate MR
images using unpaired data sets. By using SynCT images (without seg-
mentation labels) and MR images (with segmentation labels available),
we have trained a deep segmentation network for precise delineation of
prostate from real CT scans. For the generator in our CycleGAN, the
cycle consistency term is used to guarantee that SynCT shares the iden-
tical manually-drawn, high-quality masks originally delineated on MR
images. Further, we introduce a cost function based on structural sim-
ilarity index (SSIM) to improve the anatomical similarity between real
and synthetic images. For segmentation followed by the SynCT genera-
tion from CycleGAN, automatic delineation is achieved through a 2.5D
Residual U-Net. Quantitative evaluation demonstrates comparable seg-
mentation results between our SynCT and radiologist drawn masks for
real CT images, solving an important problem in medical image seg-
mentation field when ground truth annotations are not available for the
modality of interest.

Keywords: Domain adaptation · Deep learning · CT synthesis ·
Prostate segmentation · 2.5D · Generative Adversarial Networks

1 Introduction

Prostate segmentation from radiology scans is often necessary for radiother-
apy, prostatectomy, and calculation of prostate-specific antigen (PSA) density
[1]. Among imaging modalities, magnetic resonance imaging (MRI) provides the
c© Springer Nature Switzerland AG 2019
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best soft tissue contrast and yields the most accurate estimation on prostate
volume, consistent with prostatectomy specimen volumes [2]. Unlike MRI, com-
puted tomographic (CT) scans have difficulties to distinguish the boundaries of
prostates and other adjacent tissues during segmentation [3]. Despite this, in
current clinical practice, prostate radiation therapy dose calculations is primar-
ily based on CT scans as it is the only modality that can derive electron density
needed for the dosimetry calculations [4]. Therefore, planning systems generally
require anatomical information to be delineated on CT scans.

In this study, we address a practical yet still very challenging issue of prostate
segmentation from CT images when there are no ground truth CT annotations to
supervise the segmentation algorithm. Instead, we target utilizing segmentation
labels from widely available MRI data sets, and propose a two step knowledge
transfer algorithm to map the segmentation labels from MRI to CT scans. The
correspondence between MRI to CT is established through a CycleGAN algo-
rithm [5] with a structural similarity preserving cost function. Highly realistic
synthetic CT scans generated in the first step are then used to supervise a deep
segmentation network in the second step. The training for the segmentation net-
work is performed only on the synthetic images while testing is done on both
synthetic and real CT scans for evaluation. While our framework does not enforce
the use of any specific segmentation network to finalize the delineation process,
we choose 2.5D Res-U-Net to accomplish this task with faster convergence, and
higher accuracy.

2 Methods

The proposed workflow includes two main steps as demonstrated in Fig. 1. First
step is to generate high-quality and reliable CT images (SynCT) from MR
images. Previous work [6] has shown that domain adaptation from MR images
to CT images is feasible using the CycleGAN architecture. We used a simi-
lar CycleGAN approach as baseline to create high-quality knowledge transfer
between unpaired MRI and CT.

Second step is to conduct automatic segmentation of prostate. We trained a
U-Net based segmentation network to delineate the whole prostate area but with
two main differences from the existing literature: (i) we used SynCT in training
and real CT scans in testing, and (ii) we modified the U-Net [7] to increase
the segmentation performance by adding residual blocks into the segmentation
network. For better 3D information fusion, we also modified the segmentation
architecture to utilize two additional adjacent slices in its input (i.e., 3-channel
input).
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Fig. 1. Workflow of CT image synthesis and automatic segmentation. The
red box indicate the first step, CT image synthesis via CycleGAN model. SynCTs with
identical anatomical structures as MRI were generated thus shared high-quality seg-
mentation with MRI (labeled red). The blue box indicate the second step, automatic
segmentation via 2.5D Res-U-Net train with SynCT. The automatic generated segmen-
tation (labeled pink) on true CT images were compared against manual segmentation
from radiologist. (Color figure online)

2.1 Data

We used a total of three different data sets for our experiments and evaluations.
For cycleGAN training, 346 T2 weighted MRI scans from publicly available
PROSTATEx-challenge data [9] was used. T2-weighted images were acquired
using a turbo spin echo sequence with in-plane resolution of 0.4–0.6 mm, slice
thickness of 3.6 mm and zero gap. Secondly, the testing data set for Cycle-
GAN included 60 prostate MRI cases along with their high-quality delineation
obtained from publicly available NCI-ISBI 2013 challenge data [10]. This data
was used for generating the synthetic CT scans. We used 6-fold stratified cross
validation for evaluation of the algorithms. Third, for real CT scans, as part
of retrospective IRB approved study, we acquired prostate CT data from 120
anonymized patients from our institution with resolution (0.8 × 0.8 × 1 mm3).
CT intensity was clipped to −500HU to 500HU to reveal more soft tissue contrast
similar to a soft tissue CT window. Prostate MRI and CT data are completely
different from each other, namely unpaired. Among in-house collected CT data,
we chose 19 of them to be manually segmented by a board certified radiologist
for Dice score (DSC) comparison with our automatic segmentation method.

2.2 Synthetic CT Network: CycleGAN

The synthetic CT images were generated by the CycleGAN model [5], which
consisted of two pairs of generative adversarial networks (GAN) and two extra



66 Y. Liu et al.

generators that convert generated data back to the original domain enforcing
cycle consistency. In our study, the forward-direction GAN has a generator,
GCT (MR), that generate synthetic CT as real as possible such that a discrim-
inator, DCT cannot distinguish it from the real CT. The discriminator is to
ensure the likeness of generated data with original data, hence, the reliability
of the generated data heavily depends on the performance of the discriminator,
the discriminator loss is described by Eq. 1.

LD(CT ) =
1
m

m∑

j=1

[DCT (IjCT − 1)]2 +
1
n

n∑

i=1

[DCT (GCT (IiMR))]2 (1)

Where IjCT denotes the j-th true CT slice; IiMR represents the i-th MRI slice;
GCT (IiMR) represents the generated image by generator GCT (MR) from IiMR;
DCT represents the discriminator who is trying to differentiate the generated
image from CT images, if the discriminator cannot distinguish the generated
image, it is labeled 1, which means the discriminator recognized this generated
image as true CT image, otherwise a 0 label is given.

The generator GMR(SynCT ) is translating the SynCT back to its’ original
data domain (MR domain). By minimizing the difference between the recon-
structed data and the original data (cycle-consistency loss), a powerful con-
straint has been enforced on the model to prevent generated data deviation
from ground-truth. The cycle-consistency loss is express as Eq. 2 here.

LSSIM (P ) =
1
N

N∑

p=1

[1 − SSIM(p)] (2)

SSIM(p) = (
2μxμy + C1

μ2
x + μ2

y + C1
)(

2σxy + C2

σ2
x + σ2

y + C2
), (3)

where P is the image patch, N is number of pixels in P , and p is the index
of pixel; SSIM, for a pixel p, is defined as in Eq. 3. Where μx, μy and σx, σy

denotes mean pixel intensity and the standard deviations of pixel intensity in a
local image patch centering at either x or y. Also, C1 and C1 are small constants
being added for stability. The cycle loss compares the reconstructed MRI with
the true MRI slices in a pixel by pixel manner. In our new formulation, instead
of computing mean-square-error (MSE), we propose to use structural similarity
index (SSIM) that takes into account the context of the images at a higher level
than pixel-level MSE [11].

2.3 Segmentation Network: 2.5D Res-U-Net

The U-Net architecture [7] has long skip connections to preserve spatial infor-
mation during down-sampling. Besides long skip connections, short skip con-
nections were also added forming residual blocks to prevent vanishing gradient
and increase the convergence speed, the U-Net with short skip connections is
called Res-U-Net [8]. Also, the proposed 2.5D input technique loads multiple
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slices simultaneously, which includes one central slice and its adjacent slices in
out-of-plane direction. The number of channels is determined as the sum of cen-
tral slice and the adjacent slices (channel No. = central slice+adjacent slices).
The number of adjacent slices is defined through a designated context num-
ber which can query adjacent slices in both positive and negative directions
(adjacent slices = 2× context No). For instance, if the context number is set to
be 1, the selected adjacent slices will include +1 and −1 slices adjacent to the
central slices. The context number can be adjusted in order to optimized the
segmentation results.

3 Results

The CycleGAN model was trained using Adam optimizer for 200 epochs with
initial learning rate 0.0002; the 2.5D Res-U-Net model was trained using Adam
optimizer for 300 epochs and binary cross entropy loss function was used because
there are only two classes, masks and non-masks. Training took about 24 h for
CycleGAN to generate SynCT and about 12 h for 2.5D Res-U-Net on a DGX-
station with 4x Tesla V100 GPUs each with 32 GB RAM. The segmentation
results are displayed in Fig. 2. For data augmentation, rotation, flipping, and
random crops from ratio 1 (no crop) to 0.5 (half crop) of original images were
performed during training.

Table 1. Segmentation results (DSC) of MRI, SynCT and CT testing dataset.

Training dataset Testing dataset Dice score (DSC)

MRI MRI 0.90± 0.05

SynCT SynCT 0.83± 0.13

CT 0.45± 0.29

Soft-tissue SynCT SynCT 0.82± 0.12

CT 0.62± 0.15

Soft-tissue SynCT
Data augmentated

SynCT 0.65± 0.09

CT 0.68± 0.09

Soft-tissue SynCT Data
augmentated SSIM loss

SynCT 0.80± 0.12

CT 0.73± 0.09

2.5D Res-U-Net trained and tested on MRI data illustrates the upper bounds
of performance, network trained on CT/SynCT data will intuitively be lower
than 0.9 (Table 1). SynCTs paired with MRI segmentations were used to train the
automatic segmentation network. For SynCT generated from default CycleGAN
setting (MSE loss, random crop with fix ratio, 284 to 256 pixels) and no intensity
clipping, we achieved 0.83±0.13 and 0.45±0.29 DSC for SynCT and CT testing
set, respectively; for Soft-tissue SynCT (intensity clipped from −500 HU to 500
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Fig. 2. Example slices of segmentation results on true CT. (A) Under-segmented
prostate by expert radiologists. 2.5D Res-U-Net can generate better segmentation (C)
since it adapted the segmentation from MRI, however, resulting a misleadingly lower
DSC, 0.74. CT with normal intensity can vary from −1000 HU (air) to 1000 (bone),
therefore soft tissues consists of similar HU numbers may not be seen clearly on the
images, as demonstrated on the middle part of the figure, where (D) is CT with ground-
truth segmentation from radiologist, (E) is CT without any intensity adjustment, and
(F) is CT with 2.5D Res-U-Net generated segmentation. Last row demonstrates CT
with soft tissue window (−500 HU to 500 HU, we called ST-CT (soft tissue CT)), which
is slightly larger than typical soft tissue window, −150 HU to 350 HU, to accommodate
more information in the slices. Where (G) is ST-CT with ground-truth segmentation,
(H) is the ST-CT, and (I) is the ST-CT with 2.5D Res-U-Net generated segmentation.
At the same case, the DSC of CT and ST-CT is 0.57 and 0.80, respectively.

HU), we achieved 0.82 ± 0.12 and 0.62 ± 0.15 DSC for SynCT and CT testing
set, respectively. More aggressive data augmentation (random crop with random
ratio, rotation, flipping) also adapted to generate higher quality SynCT from
CycleGAN, which achieved 0.65± 0.09 and 0.68± 0.09 DSC for SynCT and CT
segmentation testing set, respectively. To increase the structure accuracy, the
cycle loss has replaced into structural similarity index (SSIM), the 2.5D Res-
U-Net trained with SynCT-SSIM achieved 0.80 ± 0.12 and 0.73 ± 0.09 DSC for
SynCT and CT testing set, respectively. Note that the DSC of SynCT decrease
and the DSC of CT increase to reach a compatible point with no statistical
difference (p > 0.05), also the standard deviations are converging. This tendency
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Fig. 3. Boxplots are showing the Dice scores for prostate segmentation from MRI,
SynCT, and CT, respectively.

indicated our SynCT gradually reached a point where there was no difference
with true CT from 2.5D Res-U-Net network perspective.

4 Discussion and Concluding Remarks

Intensive studies have been made regarding prostate CT automatic segmenta-
tion. Recently, the reported highest DSC is 0.88 ± 0.03 by Liu et al. [12] using
U-Net and 1114 ture CT cases. Our average result is 0.73±0.09 which is compat-
ible with Burgos et al. [13] using multi-atlas based SynCT (0.73 DSC). We have
shown that the SynCT and the CT testing results have no statistical difference
indicating the feasibility of using SynCT to train a neural network for a very
challenging segmentation task. In some cases DCS is low but not due to low
performance of the proposed network. The low DSC is sometimes due to noise
in the contouring in the hand-drawn CT ground-truth segmentation and large
anatomical and pathological variations (see Fig. 2).

Data Augmentation: We used MRI and CT scans from different data sources,
MRI have smaller field-of-view (FOV) compared to CT. Inconsistent FOV
encouraged CycleGAN to shift the anatomy without focusing on anatomical
details. To generate high-quality SynCT, we central cropped the CT images by
50% to remove the surrounding air and scanning table. Then augment the data
with random ratio (1–0.5) random crop, rotation, and flipping to reduce certain
geometry tendency affecting the learning process.

2.5D Technique: 2.5D multi-slices input technique can affect the segmenta-
tion network performance as Fig. 3 shows here. For SynCT, from single slice to
3-slices, DSC increases significantly (p < 0.05) by 19.11%, from 3-slices to
5-slices no significant difference was found, from 5-slices to 7-slices, DSC
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decreased 12.5%; for CT, from single slice to 3-slices, DSC increase significantly
by 24.17%, from 3-slices to 5-slices no significant difference found, from 5-slices
to 7-slices, DSC drop significantly by 40.93%. Therefore, to optimized the perfor-
mance of 2.5D Res-U-Net and also save training time, context number 1 (3-slices
input) was used for all experiments.

In summary, we proposed a novel approach to segment prostate from CT
scans when the ground-truth was absent. Synthetic CT scans that share high-
quality segmentation with MRI were used to train a deep-learning based auto-
matic segmentation network (2.5D Res-U-Net). The testing results on true CT
achieved 0.73 DSC which is comparable with SynCT. We also examined and
identified the optimal numbers of multiple slices input, which are 3 or 5 slices.
Future steps will include 3D volume assessment and continue improvement of
the quality of synthetic CT generation.
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Abstract. Pulmonary nodule detection using chest CT scan is an essen-
tial but challenging step towards the early diagnosis of lung cancer.
Although a number of deep learning-based methods have been pub-
lished in the literature, these methods still suffer from less accuracy.
In this paper, we propose a novel pulmonary module detection method,
which uses a 3D residual U-Net (3D RU-Net) for nodule candidate detec-
tion and a 3D densely connected CNN (3D DC-Net) for false positive
reduction. 3D RU-Net contains residual blocks in both contracting and
expansive paths, and 3D DC-Net leverages three dense blocks to facili-
tate gradients flow. We evaluated our method on the benchmark LUng
Nodule Analysis 2016 (LUNA16) dataset and achieved a CPM score of
0.941, which is higher than those achieved by five competing methods.
Our results suggest that the proposed method can effectively detect pul-
monary nodules on chest CT.

Keywords: Pulmonary nodule detection · Residual learning · Dense
connection · Chest CT

1 Introduction

Lung cancer is the leading cause of all cancer-related deaths for both men and
women [1]. The average five-year survival rate of lung cancer patients is only
about 16%, however it is at least 60% if the diagnosis is made in an early stage
of the disease [2]. Since malignant pulmonary nodules may be primary lung
tumors or metastases, early detection of pulmonary nodules is critical for best
patient care. On chest CT scans, a pulmonary nodule usually refers to a spot
of less than 3 cm in diameter on the lung. Radiologists typically read chest CT
scans for pulmonary nodules on a slice-by-slice basis, which is time-consuming
and can be prone to operator bias. Computer-aided pulmonary nodule detection
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avoids many of these issues and has being increasingly studied to improve its
efficiency and accuracy.

Recently, many pulmonary nodule detection methods based on deep convo-
lutional neural networks (DCNNs) have been proposed in the literature. Most
of them consist of two successive steps: nodule candidate detection and false
positive reduction. Ding et al. [3] introduced a deconvolutional structure to 2D
Fast R-CNN to detect candidates on axial slices, then used a 3D DCNN for
false positive reduction. Hamidian et al. [4] first used a 3D fully convolutional
network (FCN) to generate a score map for the detection of nodule candidates
and then employed another 3D DCNN for nodule and non-nodule classifica-
tion. Dou et al. [5] proposed an FCN trained with an online sample filtering
scheme to detect nodule candidates accurately and rapidly, and also designed a
hybrid-loss 3D DCNN for false positive reduction. Wang et al. [6] first trained
the feature pyramid network (FPN) to detect nodule candidates, then utilized
the conditional 3D non-maximal suppression to remove redundant candidates,
and finally proposed an attention 3D DCNN to further distinguish nodules and
non-nodules. Although yield promising results, these methods still suffer from
less-accuracy, due to the loss of low-level information. Since it has been widely
recognized that the residual [7] learning and dense connection [8] are two effi-
cient ways to keep the low-level information via boosting the flow of information
within the network, we suggest incorporating both techniques into the nodule
detection procedure to improve its performance.

In this paper, we propose a two-stage pulmonary module detection method
based on a 3D residual U-Net (3D RU-Net) and a 3D densely connected CNN
(3D DC-Net). In the first stage, the 3D RU-Net, in which residual blocks are
used in both contracting and expansive paths, is constructed to segment nodule
candidates on chest CT scans. In the second stage, the 3D DC-Net, which lever-
ages three dense blocks to facilitate gradients flow, is designed to improve the
performance of nodules and non-nodules classification. We have evaluated our
method on the LUng Nodule Analysis 2016 (LUNA16) dataset [9] and achieved
promising results.

2 Dataset

The LUNA16 [9] dataset was used for this study, which contains 888 chest CT
scans and 1186 pulmonary nodules. Each scan, with the slice thickness less than
2.5 mm and slice size of 512 × 512 voxels, was annotated during a two-phase
procedure by four experienced radiologists. Each radiologist marked lesions they
identified as either non-nodule, nodules<3mm, or nodules >=3 mm. The refer-
ence standard of the LUNA16 challenge consists of all nodules >=3 mm accepted
by at least 3 out of 4 radiologists. Each nodule is equipped with its center coor-
dinate and diameter.
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3 Method

The proposed nodule detection method consists of three main procedures, includ-
ing pre-processing, nodule candidate detection and for false positive reduction.
A diagram that summarizes this method is shown in Fig. 1. We now delve into
each procedure.

Fig. 1. Diagram of our proposed pulmonary nodule detection method.

3.1 Pre-processing

To normalize the variable spatial resolution of chest CT scans, we re-slice all
scans to a unified voxel size of 1.0×1.0×1.0 mm3. Meanwhile, since outside-lung
organs and tissues such as the sternum may cause an extremely adverse effect
on the detection, we need segment lung parenchyma before detecting nodule
candidates. The segmentation process include three steps: (a) using the OTSU
algorithm to binarize each re-sliced CT scan on a slice-by-slice basis; (b) using
the morphology closing and dilation with a disk structure element of radius 5
to fill holes and generate a lung mask that covers all lung parenchyma; and (c)
applying the mask to the re-sliced CT scan to remove most outside-lung organs
and tissues.

3.2 Nodule Candidate Detection

Architecture of 3D RU-Net. The 3D RU-Net we constructed for nod-
ule candidate detection consists of a contracting path and an expansive path
(Fig. 2). The contracting path contains four residual blocks (in green) and three
Conv-BN-ReLU layers (in red). Four residual blocks are composed of, subse-
quently, one, two, three and three cascaded Conv-BN-ReLU layers. The expan-
sive path includes three DeConv-BN-ReLU layers (in blue), three residual blocks
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(in green), and a Conv-Sigmoid layer (in purple). Three residual blocks are com-
posed of, subsequently, three, two, and one cascaded Conv-BN-ReLU layers.
Each Conv/DeConv-BN-ReLU layer contains a convolutional or deconvolutional
layer, a bath normalization, and ReLU activation. All hyper-parameters that
determine the architecture of 3D RU-Net are shown in Fig. 2. We add resid-
ual connections to skip each residual block and skip connections to transfer the
feature maps produced by each residual block in the contracting path to the
corresponding place in the expansive path.

×1

3D Conv-BN-ReLU@5,1,2 

3D Conv-BN-ReLU@2,2,0 

3D Deconv-BN-ReLU@2,2,0 

3D Conv-Sigmoid@1,0,0

16 32

32×2

64

64×3

128

128×3 64
128×3

32

64×2

16 32 1

Sum

C C C

C Concatenate

×1/2 ×1/4 ×1/8 ×2 ×4 ×8

Fig. 2. Architecture of 3D RU-Net. 3D Deconv/Conv-BN-ReLU refers to 3D decon-
volutional/convolutional layers with parameters indicating the kernel size, stride and
padding size, followed by the batch normalization (BN) and ReLU activation, and
3D Conv-Sigmoid refers to 3D convolutional layers followed by the sigmoid activation
(Color figure online)

Training 3D RU-Net. To train 3D RU-Net, we need construct a pseudo seg-
mentation ground truth for each training nodule based on its center coordinate
and diameter, which can be done in two steps. First, we define a sphere with the
same diameter as the nodule and place it at the center of the nodule. Second, we
set the voxel value of sphere center to 1, then calculate the values of voxels inside
the sphere according to the Butterworth function, and set all voxels outside the
sphere to 0.

We extract partly overlapped patches of size 48×48×48 on the pre-processed
CT scans with a stride of 40, and use them to train 3D RU-Net. Since the volume
of pulmonary nodules only occupies a small portion (usually less than 0.5%) of
each CT scan, the training suffers from severe class-imbalance. To address this
issue, we jointly optimize the combined Dice loss and focal loss [10], which can
be formulated as

L = Ldice + Lfocal = 1 − 2
∑N

i=1 PiGi
∑N

i=1(Pi + Gi)

+ [− 1
N

N∑

i=1

(1 − Pi)γGi ln Pi − 1
N

N∑

i=1

Pi
γ(1 − Gi) ln(1 − Pi)],

(1)
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where N is the number of voxels, Pi denotes the predicted probability of the i-th
voxel belonging to a nodule, Gi represents the ground truth probability of i-th
voxel, Ldice and Lfocal represent the Dice loss and focal loss, respectively, and
γ is the tunable focusing parameter, which was empirically set to 2.5.

Testing 3D RU-Net. In the testing stage, we extract 48× 48× 48 patches on
the pre-processed CT scans in the same way, and feed each patch to the trained
3D RU-Net. The output is a probability map of the same size, which is then
binarized by a threshold of 0.5 and smoothed by the morphological dilation with
a 3× 3 structure element. Finally, each connected volume on the post-processed
output is regarded as a detected nodule candidate.

3.3 False Positive Reduction

We construct a 3D DC-Net to classify pulmonary nodule candidates into genuine
nodules and non-nodule tissues, aiming to reduce the false positive rate. As
shown in Fig. 3, 3D DC-Net consists of a Conv-BN-ReLU layer (in cyan), three
dense blocks (in blue), two transition layers (in red), a Conv-BN-ReLU layer (in
pink), and a fully connected layer with the sigmoid activation (in purple). Each
dense block is composed of 16 modules, each containing two BN-ReLU-Conv
layers. The transition layer, which connects two dense blocks, is composed of a
BN-ReLU-Conv layer and an average pooling layer. 3D DC-Net is optimized by
minimizing the cross-entropy loss. In the testing stage, we cropped concentric
patches on the pre-processed CT scans according to the centers of the detected
nodule candidates, and fed them to the trained 3D DC-Net for false positive
reduction.

Dense 
Block1

Dense
Block3

Dense
Block2

3D Transition Layer@1, 1, 0

3D Conv-BN-ReLU@1, 1, 0

3D Conv-BN-ReLU@3, 1, 1

FC-Sigmoid

24 216 108 300 150 342 171

3D BN-ReLU-Conv@1, 1, 0

1:nodule or 
0:non nodule

Inside Dense Block

⋯×16
3D BN-ReLU-Conv@3, 1, 1

Fig. 3. Architecture of 3D DC-Net: The parameters in each layer indicates the kernel
size, stride and padding size, and the growth rate of dense blocks is 12. (Color figure
online)



Deep Pulmonary Nodule Detection Model 77

3.4 Implementation

To alleviate the issues of over-fitting and class imbalance, we employed the data
argumentation operations, including randomly flips and shift (−10 to 10 voxels)
along three axes, to enlarge the positive training set 24 times. Consequently, the
ratio of positive and negative samples became 1:3 in the training dataset.

We adopted the Adam algorithm with a batch size of 24 and 12 to optimize
the 3D RU-Net and 3D DC-Net, respectively. For both networks, we initialized
the parameters via sampling from a standard normal distribution, set the initial
bias to 0, set the initial learning rate to 0.001, and decayed it to a half after
10 epochs. Moreover, we randomly chose 20% of the training samples to form a
validation set and would terminate the training process if the error on the other
80% of training samples continues to decline but the error on the validation set
stops decreasing.

We evaluated our nodule detection method using the 10-fold cross-validation,
and, as suggested by the LUNA16 Challenge, assessed its performance using the
competition performance metric (CPM), which is the average sensitivity at seven
operating points of the free-response receiver operating characteristic (FROC)
curve: 0.125, 0.25, 0.5, 1, 2, 4, and 8 false positives per scan (FPs/scan).

4 Results and Discussions

Comparative Evaluation. Table 1 gives the sensitivity at seven operating
points and CPM scores of our nodule detection method and five competing
methods obtained on the LUNA16 dataset. It reveals that our method substan-
tially outperforms other methods if the number of FPs/scan is no greater than 2
and remains among the best performed methods when the number of FPs/scan
is 4 or 8. Moreover, our method achieves the highest CPM score of 0.941, which
is markedly superior to that of other methods. These results suggest that our
nodule detection method is able to provide an improvement performance over
other five competing methods.

Table 1. Sensitivity at seven operating points and CPM scores of our nodule detection
method and five competing methods obtained on the LUNA16 dataset

Methods FPs/scan

0.125 0.25 0.5 1 2 4 8 CPM

Dou et al. [5] 0.659 0.745 0.819 0.865 0.906 0.933 0.946 0.839

Wang et al. [6] 0.676 0.776 0.879 0.949 0.958 0.958 0.958 0.878

Ding et al. [3] 0.748 0.853 0.887 0.922 0.938 0.944 0.946 0.891

Khosravan et al. [11] 0.709 0.836 0.921 0.953 0.953 0.953 0.953 0.897

Cao et al. [12] 0.848 0.900 0.925 0.936 0.949 0.957 0.960 0.925

Ours 0.876 0.916 0.959 0.959 0.959 0.959 0.959 0.941
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Effectiveness of 3D RU-Net. To detect nodule candidates, we constructed
3D RU-Net, which uses residual blocks in both contracting and expansive paths.
To validate the effectiveness of this design, we compared 3D RU-Net to three of
its variants. The first one (denoted by 3D U-Net) does not contain any residual
blocks, the second one (denoted by 3D CRSU-Net) contains residual blocks only
in the contracting path, and the third one (denoted by 3D DSU-Net) replaces all
residual blocks with dense blocks. Figure 4 shows the sensitivity of these networks
on validation set of LUNA16 dataset for nodule candidate detection. It reveals
that our 3D RU-Net achieves the highest sensitivity than other networks. The
results also suggest that our 3D RU-Net can detect more true positives than
other networks in the candidate detection stage.

Fig. 4. Sensitivity of 3D RU-Net and its variants on the validation set (176 CT scans)
recorded during the training process.

Fig. 5. Sensitivity (left) and specificity (right) of 3D DC-Net and its variants on the
validation set (176 CT scans) recorded during the training process.
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Effectiveness of 3D DC-Net. With the aim of reducing false positive samples,
we constructed 3D DC-Net to classify nodule candidates into genuine nodule and
non-nodule tissues. To validate the effectiveness of this network, we compared
it to two of its variants. One (denoted by 3D CNN) does not use any skip
connections, the other (denoted by 3D RC-Net) replaces all dense blocks with
residual blocks. Figure 5 gives the sensitivity and specificity of these networks on
validation set recorded during the training process. It shows that our 3D DC-Net
outperforms other two networks.

5 Conclusion

This paper proposes a novel method for pulmonary nodule detection using chest
CT. Our experiments on the LUNA16 dataset not only demonstrate the effec-
tiveness of 3D RU-Net and 3D DC-Net in nodule candidate detection and false
positive reduction, respectively, but also indicate that our method outperforms
five existing approaches. In the future, we will exploit multiscale techniques to
enable the method to detect both small and large nodules adaptively.

Acknowledgement. This work was supported in part by the Science and Tech-
nology Innovation Committee of Shenzhen Municipality, China, under Grants
JCYJ20180306171334997, in part by the National Natural Science Foundation of China
under Grants 61771397, in part by Synergy Innovation Foundation of the University
and Enterprise for Graduate Students in Northwestern Polytechnical University (NPU)
under Grants XQ201911, in part by the Seed Foundation of Innovation and Creation
for Graduate Students in NPU under Grants ZZ2019029, and in part by the Project
for Graduate Innovation team of NPU. We appreciate the efforts devoted by LUNA16
challenge organizers to collect and share the data.

References

1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global
cancer statistics 2018: GLOBOCAN estimates of incidence and mortality world-
wide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)

2. Baldwin, D.R.: Prediction of risk of lung cancer in populations and in pulmonary
nodules: significant progress to drive changes in paradigms. Lung Cancer 89(1),
1–3 (2015)

3. Ding, J., Li, A., Hu, Z., Wang, L.: Accurate pulmonary nodule detection in
computed tomography images using deep convolutional neural networks. In:
Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S.
(eds.) MICCAI 2017. LNCS, vol. 10435, pp. 559–567. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66179-7 64

4. Hamidian, S., Sahiner, B., Petrick, N., Pezeshk, A.: 3D convolutional neural net-
work for automatic detection of lung nodules in chest CT. In: Medical Imaging
2017: Computer-Aided Diagnosis, vol. 10134, p. 1013409. International Society for
Optics and Photonics (2017)

https://doi.org/10.1007/978-3-319-66179-7_64


80 F. Zhang et al.

5. Dou, Q., Chen, H., Jin, Y., Lin, H., Qin, J., Heng, P.-A.: Automated pulmonary
nodule detection via 3D convnets with online sample filtering and hybrid-loss resid-
ual learning. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins,
D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 630–638. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66179-7 72

6. Wang, B., Qi, G., Tang, S., Zhang, L., Deng, L., Zhang, Y.: Automated pul-
monary nodule detection: high sensitivity with few candidates. In: Frangi, A.F.,
Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI
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Abstract. While learning based methods have brought extremely
promising results in medical imaging, a major bottleneck is the lack
of generalizability. Medical images are often collected from multiple sites
and/or protocols for increasing statistical power, while CNN trained on
one site typically cannot be well-transferred to others. Further, expert-
defined manual labels for medical images are typically rare, making train-
ing a dedicated CNN for each site unpractical, so it is important to make
best use of the limited labeled source data. To address this problem, we
harmonize the target data using adversarial learning, and propose tar-
geted feature dropout (TFD) to enhance the robustness of the model
to variations in target images. Specifically, TFD is guided by atten-
tion to stochastically remove some of the most discriminative features.
Essentially, this technique combines the benefits of attention mechanism
and dropout, while it does not increase parameters and computational
costs, making it well-suited for small neuroimaging datasets. We evalu-
ated our method on a challenging Traumatic Brain Injury (TBI) dataset
collected from 13 sites, using labeled source data of only 14 healthy sub-
jects. Experimental results confirmed the feasibility of using the Cycle-
consistent adversarial network for harmonizing multi-site MR images,
and demonstrated that TFD further improved the generalization of the
vanilla segmentation model on TBI data, reaching comparable accuracy
with that of the supervised learning. The code is available at https://
github.com/YilinLiu97/Targeted-Feature-Dropout.git.
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1 Introduction

Traumatic brain injury (TBI) is the leading cause of death or disability in chil-
dren. For understanding the progression of TBI diseases, it is critical to accu-
rately quantify the alterations in brain structures occurring after TBI. Although
convolutional neural network (CNN) based methods have brought extremely
promising results in various medical segmentation tasks, its application to TBI
neuroimaging studies remains relatively less explored, probably due to two major
challenges. First, TBI scans are typically acquired in multiple centers due to the
heterogeneity of the injuries, while CNNs often fail to generalize well to out-of-
distribution data from unseen sites due to image acquisition/protocol differences
[2]. Second, the variations in brain change following a moderate or severe TBI
make the segmentation task more challenging, and thus larger labeled training
data is desired, which is often unfeasible in medical fields where expert-defined
labels are rare. Therefore, re-using labels even from a different domain and mak-
ing best use of them would be extremely useful. In this study, we focus on
segmenting the amygdala which is mainly involved in emotional processing and
has been identified as a potentially effective biomarker for symptoms in TBI,
and present two strategies to address the above challenges respectively.

Fig. 1. Representative images from the source domain (a healthy subject, the leftmost)
and target domains (TBI patients, the 3 rightmost)

Among the few studies explicitly on generalized segmentation in medical
imaging, [2] retrains the model directly on multi-site data and [6] fine-tunes the
batch normalization parameters of the model, both requiring additional labelled
target images from the new sites. Another line of efforts aims to extract com-
mon feature representations of the source and target domain [5]. Nevertheless,
the success of such models relies on an assumption that the domains are highly
related [9], e.g., both domains consist of TBI subjects, which might limit its
applicability to multiple distinct domains. This is particularly crucial in our
application where the labeled source data came from healthy subjects instead of
TBI patients. Thus, we instead harmonize the distribution of multi-site target
data into source-like distribution using the cycle-consistent generative adversar-
ial network (CycleGAN) [12]. Our method is among the first approaches to har-
monize multi-site data using CycleGAN. This makes it possible to flexibly apply
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a pre-trained segmentation model directly to the adapted target images with-
out prior assumptions on scanner/protocol deviations. In addition, most prior
studies usually already have abundant labeled source data (N> 60) while we
only have access to a very limited number of labeled images of healthy subjects
(N ≈ 14). Therefore, besides adaptation, we also aim to enhance the robustness
of the segmentation model to the structural changes of typical TBI subjects.

In a label-constraint setting, it is paramount to learn the most effective fea-
tures that are transferable across different target domains. This is even more
challenging in our application where images of TBI patients (target) usually
contain abnormal structural characteristics compared to those of healthy sub-
jects (source). Even though many of these abnormal features are not necessarily
related to the ROIs to be segmented (e.g., amygdala, in our case), they could
severely distract a trained model (Figs. 1 and 4(b)). An intuitive solution is to
enhance the discriminative power of the segmentation model by emphasizing
the most informative features and suppressing the irrelevant ones during train-
ing. Attention mechanism such as the Squeeze & Excitation (SE) blocks [4,8]
have been proposed to reweight the features for this purpose. Furthermore, the
ROIs themselves tend to vary more or less due to brain pathology. Although
SE can generally improve the classification power, the features reweighted by
such attention mechanisms alone are inherently source data-dependent and may
not necessarily be robust to novel data with different characteristics as in our
case. Moreover, these methods bring non-negligible parameters and computa-
tional overhead, increasing the risk of overfitting, which is not optimal for small
datasets.

Therefore, we propose Targeted Feature Dropout (TFD) that can bias the
segmentation model towards more discriminative and robust features at nearly
no cost. Specifically, we first prioritize the most discriminative features by softly
pruning the unimportant ones, which is similar in function to SE [4]. We then
apply dropout primarily to features with higher importance to further enhance
their robustness, based on an intuition that the same brain structures of different
images may differ due to injuries, and thus features that are critical to model
prediction in source images may be absent or vary in target images. Differs from
random unit-wise dropout, TFD selectively erases some of the most discrimi-
native features, guided by attention; it also highlights informative features, but
unlike SE, it does not require extra trainable parameters to reweight the features
but enforces sparsity in the parameter space by pruning unimportant features,
which inherently helps generalization. Hence, TFD combines the advantages of
attention mechanism and dropout, which makes it appealing especially to small
datasets.

Overall, the contribution of this paper is two-fold: (1) the feasibility of apply-
ing CycleGAN to harmonize multi-site MRI data is evaluated, which enables the
re-use of a pre-trained model on target images without the corresponding tar-
get labels. (2) we maximized the utility of the small labeled source dataset by
exploiting the most effective features via TFD, further enhancing the robustness
of the segmentation model more efficiently.
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2 Method

2.1 Harmonization

Since the performance of deep learning models can be severely degraded due to
data distribution shift, to bridge the distribution gap, we resort to CycleGAN
to remap the distributions of targets to that of the source while preserving the
original contents of the target images. Specifically, CycleGAN consists of two
generators that learn two mappings respectively, G1 : S → T and G2 : T → S,
and two discriminators D1, D2 that distinguish the generated images from the
real ones for each domain. In particular, we are interested in the generator G2

that transforms the target images into realistic source-like images, i.e., G2(xt) =
xt→s. The distribution of the target and source images are aligned by applying
adversarial losses where G tries to confuse D by producing images that look
realistic. Cycle-consistency losses [12] computated by l1 distance are also applied
to ensure the generated target images are similar to the original ones in contents.
Thus, the transformed target images eventually obtained from the CycleGAN
will be rendered as if they are drawn from the source domain, with the contents
preserved. The total loss is defined as:

Ltotal(G1, G2,D1,D2) = Ladv(G1,D2) + Ladv(G2,D1) + λLcyc(G1, G2), (1)

where λ is used to modulate the strength of the cycle consistency. In our exper-
iments, we set λ to 10. We closely follow CycleGAN’s setting for the choice of
generators and discriminators (Fig. 2).

Fig. 2. Illustration of the proposed targeted feature dropout module. In order to remove
the discriminative features more effectively, TFD is inserted at higher-level layers where
features are class-specific, following feature recombination via 1 × 1 × 1 convolutions.

2.2 Targeted Feature Dropout

Regular dropout drops random units, which has been shown to work well with
fully-connected layers, but can be less effective in convolutional layers where
units are spatially correlated within feature maps (FMs). That is, due to the
correlated nature, features with randomly dropped pixels are very likely to be
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recovered by contextual information and still propagated to the subsequent lay-
ers, which diminishes the regularizing effects. Structural forms of dropout such
as Spatial Dropout [10] and Dropblock [1] are therefore proposed, which drops
either the entire or contiguous regions of the FMs randomly.

We extend this strategy by dropping the whole FM (i.e., feature-wise), but in
a selective manner based on the importance of the FMs. In particular, dropout
is guided by importance scores to stochastically remove some of the most dis-
criminative features for enhancing robustness of the model to the variants of the
same brain structures, hence the name Targeted Feature Dropout. Specifically,
it consists of the following three steps:

Feature Rating. In order to guide the feature selection and dropout afterwards,
we first assign each feature a score that indicates its importance. In particular,
we only consider features in higher-level layers as they are generally more class-
specific. Furthermore, we argue that instead of rating each individual FM, rating
the recombinations of them may be more effective. Therefore, we insert TFD
into the last two 13 convolutions which performs cross-channel expansion [7] to
mix the information of FMs, x = Conv1×1×1(u), and then perform a 3D global
average pooling over each 3D channel xc, obtaining a score vector z ∈ R

1×1×1×C ,

zc =
1

D × W × H

D∑

i=1

W∑

j=1

H∑

k=1

xc(i, j, k). (2)

Each score describes the magnitude of each channel activation, which can approx-
imate the discriminative power of each feature [11].

Pruning-Based Feature Prioritization. A binary importance mask is then
generated to indicate which features to be highlighted/suppressed. This step is
similar to the attention mechanisms which improves the classification power of
the model by emphasizing the more discriminative features and ignoring features
that are not directly related to the ROIs. Since it is likely that the low-valued
FMs become important later during training, we select the FMs based on the
probabilities pc = zc∑C

i=1 zi
: FMs with higher scores are more likely to be kept,

i.e., masked as 1, and the others are temporarily masked to 0 but could still
be updated in the next iteration, so-called soft pruning [3]. Specifically, the
k FMs were drawn from a multinomial distribution, i.e., X ∼ Multi(M,P ),
where X = (x1, x2, .., xc) and P = (p1, p2, ..., pc). k = N ∗ keep ratio, where N
denotes the number of FMs and keep ratio is a hyperparameter that indicates
the targeted proportion of FMs that are considered to be important and used
for dropout afterwards.

Feature Dropout. Now features have been filtered and the remaining ones
with higher activations typically contain more important information. Since in
our case, even features that are highly related to ROIs may vary in images of
patients due to brain pathology, a drop mask is further applied specifically to
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these discriminative features with a drop rate p to force the model to learn even
without some important features, i.e., xi that was masked as 1 now still has the
probability p to be 0 (dropped).

Dynamic Hyperparameters. There are two main hyperparameters in TFD:
targeted proportion keep ratio and drop rate p. We draw their values from cer-
tain distributions, which not only simplifies the choices of the hyperparameters
but also encourages the model to be robust to different levels of noise. Specifi-
cally, keep ratio is drawn from a uniform distribution with range [a, b] in each
iteration, i.e., keep ratio ∼ U(a, b). We empirically set the range to be [0.85, 0.9]
in our experiments; p is drawn from a uniform distribution, i.e., p ∼ N(μ, σ),
where μ and σ are set to 0.2 and 0.05, respectively.

3 Experiments and Results

3.1 Datasets

We used 14 labeled local T1-weighted MRI studies (all GE MR750 scanner) with
labeled bilateral amygdala as the source training data, and 21 unlabeled TBI
data collected from 13 different sites as the target data. 3.0 T MRI scanners were
used for all cases. Among the TBI scans, 9 of them came from nine different sites,
6 from three different sites and 6 from the remaining one site. Manual labeling
of the TBI data was performed by an expert and are only used for evaluation
purpose. All data are skull-stripped, and normalized to zero-mean, unit-variance.

3.2 Configuration Details

For harmonization, we train the CycleGAN on the coronal view of all the images
from all domains. In total 3304 slices from the source data and 5900 slices from
the TBI data are used for training. Each slice is then randomly cropped to
128×128 before being fed into the CycleGAN. Data augmentation includes ran-
dom rotation and scaling. For the segmentation network backbone, we choose
a 3D dual-path fully dilated convolutional network tailored specifically for seg-
mentation of extremely small brain structures such as the amygdalae. Cross
entropy was employed as the loss function, optimized via the Adam solver with
a fixed learning rate of 0.001. For comparison only, we also trained a model using
the labeled TBI data in a 7-fold cross validation scheme. We implemented our
method in PyTorch, using one Titan Xp GPU for training.

3.3 Segmentation Results

We compared our method with both the channel-wise and spatial SE blocks,
regular dropout and the supervised training. We further analyzed the proposed
Targeted Feature Dropout by exploring the impact of the two components, (1)
pruning-based feature prioritization, denoted as TFD-FP, (2) feature-wise
dropout, denoted as TFD-FD, and compared their performance with the SE
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blocks and random unit-wise dropout, respectively. Results are summarized in
Fig. 3 which is divided into block A, B and C for separate illustration of each
point. Wilcoxon signed rank was used to compared the performance of different
methods.

Harmonization. It can be observed from Table 1 that the harmonization using
CycleGAN substantially improved the source model’s performance on target
data. We further augment the training set with synthetic target-like source
images, which brought significant improvement (p < 10−6). This then laid the
foundation for all the other compared techniques.

Table 1. Dice overlap performance before and after harmonization using CycleGAN
with/without texture variation. Results are averaged across 5 runs with random ini-
tializations.

No harmonization CycleGAN CycleGAN - Aug

Dice 0.329 (0.123) 0.730 (0.015) 0.749 (0.008)

 Settings

0.71

0.72

0.73

0.74

0.75

0.76

0.77

 D
ic

e

CycleGAN 
-Baseline

CycleGAN 
-Texture

s-SE
c-SE 
(r=8)

Dropout 
(p = 0.5)

TFD-FP 
 Only

TFD-FD 
 Only TFD 

(Ours)*Supervised

A B C

Fig. 3. Results for each technique are averaged across 5 runs with random initializa-
tions. * indicates that the proposed method is significant better than all the other
settings (p < 0.005) and is comparable to the supervised training.

Comparisons with SE Blocks and Regular Dropout. For fair comparison,
the spatial (s-SE) and channel-wise (c-SE) SE blocks and regular dropout are also
inserted in the same place. As shown below in Fig. 3 (block B, C), TFD outper-
forms c-SE (p < 0.005), s-SE (p < 10−6) and dropout (p < 10−3), respectively,
suggesting the superiority of combined advantages of attention mechanisms and
dropout. Further, it is worth noting that TFD achieves the smallest variance in
Dice, demonstrating its greater robustness.
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Analysis of TFD. Here we evaluate the effectiveness of the two major compo-
nents in the proposed method: (1) TFD-FP; (2) TFD-FD. From Fig. 3 (block C),
we observed the following: (a) TFD-FP alone can generally improve the segmen-
tation accuracy compared with the SE blocks. We believe that this is because
softly pruning the unimportant features is similar in function to attention mecha-
nisms which highlights the most informative features; also, (b) TFD-FP achieves
much smaller variance, suggesting that keeping only the important features fil-
ters the noise, which helps reduce stochasticity during training; (c) TFD-FD
performs better than random unit-wise dropout, showing the effectiveness of
feature-wise regularization in convolutional layers; (d) when TFD-FP is coupled
with TFD-FD, feature-wise dropout is performed selectively (i.e., TFD), yielding
even higher accuracy and robustness (smallest variance). Overall, each compo-
nent of the proposed TFD surpassed the baselines and contributed to the final
improvement which is even slightly better than the supervised training directly
on target data.

No Harmonization Cycle-GAN Only Dropout TFD

Fig. 4. Qualitative results of a challenging TBI scan. An axial view of this scan is
shown in Fig. 1 (the 2nd). Segmentation results are shown in orange and yellow, and
the ground truths are shown in green. (Color figure online)

3.4 Conclusion

In this study, we presented two strategies to enable generalized segmentation
on a challenging multi-site TBI dataset. To maximize the utility of the source
labeled dataset, we proposed targeted feature dropout, a novel method that
induces the CNN to learn robust features from healthy subjects as so to general-
ize well on patients data with different structural characteristics. The proposed
method can be seamlessly integrated into any CNN to improve robustness with
negligible computational costs. In addition, we confirmed the feasibility of har-
monizing MRI scans collected from multiple sites using adversarial learning. The
proposed method eventually achieved comparable or even better accuracy than
the supervised training in the target domain using less data, suggesting that
our method could greatly alleviate the burdensome annotation costs for multi-
site data. For future works, we plan to replace CycleGAN with more advanced
domain adaptation methods for further improving generalizability.
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2018. LNCS, vol. 11070, pp. 476–484. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00928-1 54

7. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400
(2013)

8. Roy, A.G., Navab, N., Wachinger, C.: Concurrent spatial and channel squeeze &
excitationin fully convolutional networks. In: Frangi, A., Schnabel, J., Davatzikos,
C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, pp. 421–429.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1 48

9. Shu, R., Bui, H.H., Narui, H., Ermon, S.: A DIRT-T approach to unsupervised
domain adaptation. arXiv preprint arXiv:1802.08735 (2018)

10. Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object local-
ization using convolutional networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 648–656 (2015)

11. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep fea-
tures for discriminative localization. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

12. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 2223–2232 (2017)

https://doi.org/10.1007/978-3-030-00937-3_58
http://arxiv.org/abs/1808.06866
https://doi.org/10.1007/978-3-319-59050-9_47
https://doi.org/10.1007/978-3-319-59050-9_47
https://doi.org/10.1007/978-3-030-00928-1_54
https://doi.org/10.1007/978-3-030-00928-1_54
http://arxiv.org/abs/1312.4400
https://doi.org/10.1007/978-3-030-00928-1_48
http://arxiv.org/abs/1802.08735


Improving Pathological Structure
Segmentation via Transfer Learning

Across Diseases

Barleen Kaur1,2,4(B), Paul Lemâıtre2, Raghav Mehta2,
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Abstract. One of the biggest challenges in developing robust machine
learning techniques for medical image analysis is the lack of access to
large-scale annotated image datasets needed for supervised learning.
When the task is to segment pathological structures (e.g. lesions, tumors)
from patient images, training on a dataset with few samples is very chal-
lenging due to the large class imbalance and inter-subject variability.
In this paper, we explore how to best leverage a segmentation model
that has been pre-trained on a large dataset of patients images with one
disease in order to successfully train a deep learning pathology segmenta-
tion model for a different disease, for which only a relatively small patient
dataset is available. Specifically, we train a UNet model on a large-scale,
proprietary, multi-center, multi-scanner Multiple Sclerosis (MS) clinical
trial dataset containing over 3500 multi-modal MRI samples with expert-
derived lesion labels. We explore several transfer learning approaches to
leverage the learned MS model for the task of multi-class brain tumor seg-
mentation on the BraTS 2018 dataset. Our results indicate that adapting
and fine-tuning the encoder and decoder of the network trained on the
larger MS dataset leads to improvement in brain tumor segmentation
when few instances are available. This type of transfer learning out-
performs training and testing the network on the BraTS dataset from
scratch as well as several other transfer learning approaches, particularly
when only a small subset of the dataset is available.
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1 Introduction

An important challenge in developing robust pathology segmentation methods
in medical imaging is the lack of access to sufficiently large annotated datasets
needed for training. Large datasets are required for a number of reasons. First,
many of the state-of-art models are based on deep learning methods, which per-
form well when trained on large datasets [6,13]. Second, pathological structures
(e.g. lesions, tumors) tend to be present in only small parts of an image, lead-
ing to large class imbalance, and also presents with high variability between
patients, exacerbating the need to have annotations for many patients. Unfortu-
nately, larger proprietary datasets cited in the literature are not always available
for public use and public labelled pathology segmentation datasets are often rel-
atively small.

To overcome this problem, transfer learning has recently been explored in
various medical imaging applications, including classification [9], detection [10]
and segmentation [7] tasks (see [4] for a survey). Investigated tasks include using
data acquired from different scanners [7] or detection of different types of abnor-
mality in the same set of data [22]. It has also been shown that knowledge could
be transferred from both medical and non-medical datasets to improve results
in other medical applications [8,15]. Deep networks trained on a larger source
dataset have been used as feature extractors [9] or as a starting point for fine-
tuning further on target data [20].

This paper explores the hypothesis that transfer learning for the segmenta-
tion of pathological structures can be performed across diseases. Specifically, we
leverage a deep learning segmentation network pre-trained on a large pathology
segmentation dataset, in order to improve segmentation performance on a small
dataset, in a scenario in which: (a) the two image datasets are acquired from
patients with different diseases, (b) the pathological structures are different in
the two datasets (lesions vs. tumors), and (c) the inference tasks themselves differ
(binary vs. multi-class segmentation). We explore several fine-tuning strategies
to see how to best leverage the source model and adapt it to the target dataset,
including: freezing the network and only retraining the last few layers, fine-tuning
only the decoder, or carefully fine-tuning the entire network.

Experimental validation of the methods involves first pre-training a binary
classifier for the segmentation of T2 lesions based on a large proprietary, multi-
scanner, multi-center, longitudinal clinical trial, MRI dataset of 1385 patients
with relapsing-remitting Multiple Sclerosis (RRMS), along with expert-labelled
T2 lesions. Next, a series of experiments are performed in order to explore
the ability of transfer learning to improve the results of an end-to-end multi-
class brain tumor segmentation network trained on subsets of the MICCAI
2018 BraTS dataset [16]. Given that both MRI datasets are acquired from
patients with neurological diseases that present with focal pathologies (lesions
and tumors), the intuition is that the two dataset share common features. As
such, the framework should be able to leverage the representation learned by the
lesion segmentation network trained on the bigger MS dataset to improve the
segmentation results on the smaller brain tumor dataset.
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2 Methodology

We use a 3D deep neural network inspired by UNet [6] for the task of focal
pathology segmentation. It consists of an encoder followed by a decoder which
combines higher resolution features from the contracting path at different levels,
in order to learn multi-scale representations. The architecture is depicted in
Fig. 1(a), and the implementation details of the model are described in Sect. 3.2.

Fig. 1. Transfer learning framework. (a) UNet architecture for pre-trained source net-
work. (b), (c) and (d) depict different methods of adapting the pre-trained source
network for the target task. In all three, the last three task-specific layers are replaced
with new layers (orange) and the remaining network is fine-tuned such that: (b) only
the newly added layers are re-trained (FT-Last Three), (c) only the decoder is fine-
tuned (FT-Decoder) and (d) the whole network is fine-tuned (FT-All) with the target
data respectively. (Color figure online)

Given a source network trained from scratch on a large source dataset, the
objective is to transfer the representation learned by the source network and
adapt it to the (smaller) target set in order to improve pathology segmentation
performance. A popular strategy for transfer learning consists of fine-tuning the
pre-trained source network on the target dataset. In this paper, we explore three
different strategies of fine-tuning. The most common way of fine-tuning consists
of replacing the last few layers of the source network with new layers, by re-
initializing the weights and changing the output dimension of these layers. The
remainder of the network is frozen, which prevents the gradient flow. The newly
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added layers are trained on the target dataset (See Fig. 1(b)). This strategy
has been advocated when the amount of target data available is small and the
similarity between the two datasets is high [7], as in the context explored in
this paper. The intuition behind this approach is that the initial layers of the
network tend to learn low level image features (e.g. edges, orientations) that are
generic and therefore useful across different datasets and tasks, while the higher
layers of the network tend to capture more complex patterns that are specific to
a particular task. When the source and target datasets are similar, and/or more
target data is available, more layers can be fine-tuned [5,21]. This leads to the
second strategy we explore, which involves freezing the encoder and fine-tuning
the entire decoder (See Fig. 1(c)). The third strategy consists of fine-tuning the
whole network with target data (See Fig. 1(d)).

3 Experiments and Results

In order to assess the performance of the three different transfer learning
approaches in the context of pathology segmentation, we perform experiments
using a large source dataset of MS patients, in which the segmentation network
is trained to label lesions. The target task is to segment brain tumors and their
tissue sub-classes from patient MRI. We compare the performance of the trans-
fer learning approach to training only on the target data, for different dataset
sizes. The segmentation performance is assessed using Dice scores.

3.1 Data Description and Preprocessing

Multiple Sclerosis Dataset (Source): The source task involves a binary
classification to differentiate T2 hyperintense lesions from healthy tissues in a
proprietary, multi-modal MRI dataset acquired from Multiple Sclerosis (MS)
patients participating in a multi-site, multi-scanner clinical trial. The dataset
consists of 1385 patients, scanned annually for up to a 24-month period, totalling
3630 multi-sequence 3D MRI samples consisting of T1-weighted, T2-weighted,
Fluid Attenuated Inverse Recovery (FLAIR), and T1 post-Gadolinium sequences
acquired at 1 mm × 1 mm × 3 mm resolution. They are then interpolated to
1 mm3 isotropic resolution, which results in MRIs of size 229 × 193 × 193.
T2 binary lesion segmentation masks provided with the dataset are obtained
through expert manual corrections as a result of a proprietary automatic seg-
mentation method. Preprocessing includes brain extraction [19], N3 bias field
in homogeneity correction [18], Nyul image intensity normalization [17], and
registration to the MNI-space.

Brain Tumor Dataset (Target): The target datasets are obtained by subsam-
pling datasets of various sizes from the BraTS 2018 MICCAI challenge [2,3,16].
The entire training dataset consists of 210 high-grade glioma (HGG) and 75
low-grade glioma (LGG) patients and the validation set consists of 66 patients.
Each sample contains T1-w, T1 post contrast (T1c), T2-w, and FLAIR 3D MR
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sequences. Ground truth segmentation labels are provided for the BraTS Train-
ing set (used for training the network) but not for the BraTS Validation set1

(used for testing). Tumors are segmented into 3 classes: edema, necrotic/non-
enhancing core, and enhancing tumor. These three classes combined together are
referred to as “whole” tumor. The volumes are co-registered, resampled to 1 mm3

resolution and skull-stripped. Our pre-processing pipeline includes registration
of samples to the same space as MS data using ANTs tool [1].

For both MS Dataset and Brain Tumor Dataset, the image intensities are
then standardized using mean subtraction, division by standard deviation, and
rescaled to range from 0 to 1. The images are standardized to 240 × 192 × 192
using zero-padding and cropping operations.

3.2 Model Implementation Details

The proposed segmentation network takes 3D patient MRI sequences as input
and generates a 3D output mask of the same resolution. As is typical of a 3D
UNet [6,14], the network consists of an encoder part and a decoder part of 4
resolution steps each. The encoder part consists of two consecutive 3D convolu-
tions of size 3 × 3 × 3 with k ∗ 2(n−1) filters, where n is the resolution step and k
is the initial number of filters (4 in our case). Each convolution is followed by a
leaky rectified linear unit (L-ReLU). Average pooling of size 2× 2× 2 and stride
of 2 is performed followed by Batch normalization [11]. In the decoder part,
each step consists of 3D transposed convolutions of size 3 × 3 × 3 with 2 × 2 × 2
stride and k ∗ 2(n−1) filters for upsampling, whose output is concatenated with
the corresponding output of the encoder part. Batch normalization is applied
again following which, two 3 × 3 × 3 convolutions with L-ReLU activation are
applied. The last layer consists of 1 × 1 × 1 convolution with F filters, where F
denotes the number of classes for the task, followed by a SoftMax non-linearity.
The implementation of the model is done in Pytorch.2

Segmenting MS lesions is a binary voxel-wise classification task whereas brain
tumor sub-type segmentation is a 4-class voxel-wise classification task [16]. For
lesion segmentation, the training objective is weighted binary cross entropy loss
(to account for class imbalance). For the multi-class brain tumor segmentation
task, the training objective is weighted categorical cross entropy loss. The weight
of a class c is calculated as the ratio of the total number of voxels divided by the
number of voxels belonging to class c in the training set. The class weights are
scheduled to decay [12] with a decay rate lower than 1. As the number of epochs
increase, the weight for each class converges to 1, ensuring that every class is
given equal importance during the later stages of training.

1 Please note that the predictions made on the BraTS 2018 Validation set must contain
all four tumor sub-classes, which are then uploaded onto the BraTS web portal for
evaluation.

2 http://pytorch.org/.

http://pytorch.org/
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3.3 Experiments

As described in Sect. 2, the baseline experiment consists of training a network
from scratch on the brain tumor dataset. The other three experiments use a
network trained on the MS dataset from scratch, which is then fine-tuned using
the three transfer learning approaches discussed above and denoted as FT-Last
Three, FT-Decoder, FT-All in Fig. 1. When pre-training the MS lesion segmen-
tation network, 80% of the MS data (2912 samples) is used for training, and the
remaining 20% is left out for validation (718 samples) for 190 epochs. The best
validation performance of the pre-trained network is obtained at epoch 186 with
an AUC of 0.77.

In order to examine the effect of the size of the target dataset on the transfer
learning outcome, the number of patient brain tumor MRI samples extracted
from the BraTS 2018 training dataset and used in the target dataset is set to
several values: 20, 50, 100, 150. For each case, the fine-tuned networks are com-
pared to the corresponding baseline network. For all experiments, the ratio of
high-grade gliomas (HGG) to low-grade gliomas (LGG) is maintained across
folds. Four-fold cross validation is performed on the respective training sets
to determine the best parameters (see Supplementary Materials3 document for
more information on hyper-parameter tuning). Then, the networks are retrained
on the respective complete training sets, using the hyper-parameters that per-
formed best during cross-validation and a local validation set (subset of BraTS
2018 training set) of 50 samples is used to select the operating point. Perfor-
mance is evaluated on the separate BraTS 2018 Validation set, for which the
ground truth is not available.

Fig. 2. Comparison of Dice values for baseline method against different fine-tuning
methods for enhanced, core and whole tumor segmentation on the Brats 2018 validation
set. The x-axis depicts a varying number of brain tumor cases available for training
(20, 50, 100, 150).

3 http://cim.mcgill.ca/∼barleenk/MICCAI2019 transfer appendix.pdf.

http://cim.mcgill.ca/~barleenk/MICCAI2019_transfer_appendix.pdf
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3.4 Results

Figure 2 summarizes all the Dice scores obtained on the BraTS 2018 validation
set for the baseline and various transfer learning methods, as a function of the
number of brain tumor cases available for fine-tuning. The epoch for which the
sum of the Dice scores is best on the local validation set, is selected as an oper-
ating point. The results indicate that FT-All outperforms the baseline results
in almost every case and consistently provides the best Dice scores for core and
enhanced tumor, particularly when the number of tumor cases is extremely low,
with 25.9% and 204.09% improvement4 on core and enhanced tumor over base-
line respectively when the number of cases is 20. See Supplementary Materials
document for more results. Since lesions are smaller in size when compared to
tumors, the results indicate that the network is extracting information from the
MS pre-trained network that is relevant to segmenting sub-regions of tumor well,
even though lesions present quite differently than brain tumors. As the number
of brain tumor samples increase, the gain of FT-All over baseline diminishes.
FT-Last Three and FT-Decoder don’t perform as well as the baseline. This is
likely due to low-level representations not getting updated as per the target task,
which in turn fuse with high level representations in the UNet to produce an
output. Qualitative segmentation results of the different methods on the local

Fig. 3. Examples of visualizations obtained on a local validation set when fine-tuning
with 20 BraTS samples for 4 patients (IDs on left). Top two rows and bottom two
rows illustrate the segmentation results obtained on HGG and LGG cases respectively.
From left to right: T1c MRI (column 1), ground truth segmentation (column 2), results
of baseline experiment (column 3), FT-Last Three (column 4), FT-Decoder (column
5) and FT-All (column 6) are shown. Edema, necrotic core and enhancing tumor are
shown in green, red and yellow respectively. (Color figure online)

4 The percentage improvement is calculated as the ratio of difference in the baseline
and FT-All Dice scores over the baseline.
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validation set for the case of 20 target dataset samples are shown in Fig. 3. Note
that with just 20 target dataset samples, FT-All is able to capture different sub-
structures of tumor better than the other methods. Performance is better on
the HGG over the LGG cases, as more HGG cases are present in the training
dataset. More results are presented in the Supplementary Materials document.

4 Conclusions

In this work, we explore different strategies for transfer learning across diseases
for the task of focal pathology segmentation. Fine-tuning the entire network
trained on a larger MS dataset improves the multi-class brain tumor segmen-
tation results on target MRI datasets, outperforming the baseline method and
the other fine-tuning methods, especially when only very small target datasets
are available. This outcome indicates that transfer learning methods can have a
significant impact, particularly for diseases where there is little access to large
scale, annotated datasets needed for training segmentation networks. The public
release of more models that have been pre-trained on large proprietary datasets
(e.g. where it is not possible to release the images themselves) will permit the
community to leverage them for the large set of applications with small datasets.

Acknowledgments. The MS dataset was provided through an award from the Inter-
national Progressive MS Alliance (PA-1603-08175). The authors would also like to
thank Nicholas J. Tustison for his guidance on using ANTs tool.
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Abstract. Endoscopy is a standard method for the diagnosis and detec-
tion of colorectal lesions. As a method to enhance the detectability of
lesions, the effectiveness of pancolonic chromoendoscopy with indigo-
carmine has been reported. On the other hand, computer-aided diag-
nosis (CAD) has attracted attention. However, existing CAD systems
are mainly for white light imaging (WLI) endoscopy, and the effect of
the combination of CAD and indigocarmine dye spraying is not clear.
Besides, it is difficult to gather a lot of indigocarmine dye-sprayed
(IC) images for training. Here, we propose image-to-image translation
from WLI to virtual indigocarmine dye-sprayed (VIC) images based on
unpaired cycle-consistent Generative Adversarial Networks. Using this
generator as preprocess part, we constructed detection models to eval-
uate the effectiveness of VIC translation for localization and classifi-
cation of lesions. We also compared the localization and classification
performance with and without image augmentation by using generated
VIC images. Our results show that the model trained on IC and VIC
images had the highest performance in both localization and classifica-
tion. Therefore, VIC images are useful for the augmentation of IC images.

1 Introduction

Medical doctors use endoscopy as the gold standard method to detect diges-
tive lesions. To reduce colorectal cancer deaths, early detection and resection of
colorectal adenomas are very important. It has been reported that future col-
orectal cancer death of the patient would increase significantly if the colonoscopy
was performed by an endoscopist with low adenoma detection rate (ADR) [4,7].
However, it is reported that the adenoma miss rate by conventional colonoscopy
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is about 20% [2,9]. In addition, previous studies have also found that virtual
chromoendoscopy such as Narrow Band Imaging (NBI) and Fujinon Intelligent
Chromoendoscopy (FICE) do not improve the adenoma detection rate in com-
parison with conventional white light imaging (WLI) [1,11,15]. In contrast, pan-
colonic chromoendoscopy with indigocarmine spraying is reported as effective
method increasing the detection rate of colorectal lesions [12].

Computer-aided diagnosis (CAD) is an alternative technology that can be
a solution for the low lesion detection rate. A number of studies on automatic
polyp detection have been recently reported [8,10,16,17]. However, most pub-
lished works are trained and evaluated on a small dataset. Moreover, inputs of
CAD systems are mostly normal WLI images. One of the reasons is that it is
challenging to obtain sufficient dye-sprayed images compared to WLI images.
Therefore, it is not clear whether the simultaneous use of dye spraying and CAD
system produce the synergistic effect for lesion detection.

In the field of image-to-image translation, Generative Adversarial Networks
(GANs) have shown effective results. Recent approaches use Convolutional Neu-
ral Networks (CNNs) to learn a parametric translation function. For example,
frameworks such as pix2pix require paired images in learning process [6]. On
the other hand, frameworks such as DualGAN and CycleGAN can use unpaired
images [18,20]. These frameworks translate an image from one domain to another
domain and vice versa. As an example of applications to medical image, temp-
CycleGAN is reported [5]. It translates a silicone phantom image to real intra-
operative image in mitral valve surgery. However, no studies are applying it to
endoscopic image enhancement methods such as chromoendoscopy. Also, it is
unclear whether this image enhancement technology by using image-to-image
translation can be effective preprocess for the colorectal lesions detection model.

In this paper, we propose image-to-image translation from WLI images to
virtual indigocarmine dye-sprayed (VIC) images. By using this generator, we
constructed detection models of colorectal lesions and validated these CAD sys-
tems.

2 Methods

2.1 Image-to-Image Translation

WLI and indigocarmine dye-sprayed (IC) images cannot be taken simultaneously
in a clinical setting. Therefore, in this work, the image-to-image translation
model was constructed from unpaired images by using CycleGAN [20].

CycleGAN consists of two generators G1, G2 and two discriminators D1,D2.
Generators convert from WLI to IC images and vice versa. The role of each
discriminator is to distinguish between real images and converted images.

The loss of CycleGAN consists of the discriminator loss and the cycle con-
sistency loss. In CycleGAN, training process has circular translation flow like
the translation from WLI to WLI via IC. The cycle consistency loss expresses
differences between an original image and a circularly translated image. This
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architecture enables CycleGAN to train image-to-image translation by using
unpaired images.

2.2 Lesion Detection Model

Any object detection method could be applicable to images generated by Cycle-
GAN. However, for real-time lesion detection such as routine endoscopy, high-
speed detection is required. In this work, we use YOLOv3 architecture which
is a real-time object detector with good precision and speed of detection [13].
Inputs of the neural network are real images or virtual images generated by
CycleGAN, and the output is a set of detections (bounding boxes with their
respective confidences and class labels).

In addition, we set initial parameters using ImageNet pre-trained model to
achieve fast convergence in all cases. For data augmentation, we use random
horizontal flips, random resizing, random aspect ratio, random translation, and
random erasing [19]. Prediction speed (CycleGAN + YOLOv3) is over 30 fps on
TITAN V with the input image size of 512 × 512 × 3.

2.3 Evaluation Metrics

Our detection models localize and classify lesions simultaneously. Thus, we have
to evaluate both localization and classification. We then use Average Precision
(AP) of localization at intersection-of-union (IoU) threshold of 0.5 (APL), AP of
the lesion type classification (APC(A),APC(B),APC(F)), and mean Average Pre-
cision of classification (mAPC). mAPC is the mean of APC(A),APC(B),APC(F),
which means the measurement of overall localization performance in three dif-
ferent lesion types (A: cancer, B: adenoma, F: non-tumor).

3 Experiments and Results

3.1 Generating Virtual Indigocarmine Image

We trained CycleGAN by using all WLI and IC images as shown in Table 1. All
images were collected in the Jikei university hospital (Tokyo, Japan) from 2017
to 2018. Using these images, we trained the model for 100 epochs. After training,
we generated translated IC images from WLI images. We called these translated
IC images as virtual indigocarmine (VIC) images in order to differentiate it from
original IC images.

To test the VIC image generation, we used paired WLI and IC images of
identical lesions taken from similar angles and compared the condition of indigo-
carmine dye spraying to the lesions between IC and VIC images. These images
are not completely matched because the endoscopy moves during indigocarmine
dye spraying.

Compared VIC image with original WLI image, the innominate grooves were
dyed blue, and the reddish area of lesions became clearer as shown in Fig. 1. In
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Table 1. The number of images for train and test dataset. Each lesion label indicates
a type of lesions; A: cancer, B: adenoma, F: non-tumor.

WLI IC VIC

Label Train Test Total Train Test Total Train Test Total

A 1802 100 1902 918 100 1018 1802 100 1902

B 10377 100 10477 3840 100 3940 10377 100 10477

F 1038 100 1138 451 100 551 1038 100 1138

Total 13317 300 13617 5209 300 5509 13317 300 13617

the case of flat lesions, some grooves were dyed blue, but the lesion was not
dyed as shown in Fig. 1(b). This emphasized a boundary between the lesion
and normal tissue as the IC image (see Fig. 1(b, d)). However, in VIC images,
there was no pooling of indigocarmine unlike real IC images because of no need
for spraying indigocarmine (see the white arrow in Fig. 1(f, h)). Therefore, VIC
images could provide better visual quality than IC images.

We also tried to generate virtual WLI (VWLI) images from IC images
by using trained generator G2. In translated VWLI image, blue coloration of
indigocarmine vanished, and redness in the entire image increased as shown in
Fig. 1(c, g).

Fig. 1. Visual comparison of (a, e): WLI, (b, f): VIC, (c, g): VWLI, and (d, h): IC.
Images (a)–(d) are in the cases of a flat lesion, and Images (e)–(h) are in the cases of
a depressed lesion. Yellow arrows in (b) indicate a boundary between the lesion and
normal tissue. White arrow in (f) indicates a depression of the lesion. (Color figure
online)
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3.2 The Effect of VIC Translation in the Lesion Detection

To validate the effectiveness of WLI-to-VIC image translation for localizing and
classifying colorectal lesions, we generated VIC images from train dataset of WLI
images and trained the model by using it (VIC model). We also constructed a
model trained on WLI images (WLI model) to compare the performance of local-
ization and classification with VIC model. Train and test dataset was annotated
with bounding box and the class label of three lesion types: cancer, adenoma,
and non-tumor. The number of images is as shown in Table 1.

Table 2 shows the evaluation results of the VIC model. Comparing two mod-
els, both APL and mAPC of WLI model were higher than that of the VIC model.
However, focusing on the performance of classification in each lesion type, only
APC(A) of the VIC model was higher than that of the WLI model. Inversely,
APC(F) of the WLI model was much higher than that of the VIC model, and
this difference affected the difference of mAPC. On the other hand, APC(B) of
both models was low, and there was not much difference.

Table 2. Average precision of lesion localization and classification. APL: AP of local-
ization, mAPC: mean Average Precision of classification, APC(A): AP of cancer classifi-
cation, APC(B): AP of adenoma classification, APC(F): AP of non-tumor classification.

Train data WLI VIC IC IC+VIC IC+WLI

Test data WLI VIC IC

Localization score: APL 0.916 0.876 0.910 0.922 0.897

Classification score of all types: mAPC 0.635 0.603 0.721 0.733 0.711

Classification score of cancer: APC(A) 0.656 0.720 0.758 0.794 0.776

Classification score of adenoma: APC(B) 0.508 0.486 0.674 0.645 0.601

Classification score of non-tumor: APC(F) 0.743 0.604 0.732 0.760 0.755

Here, we show some results of comparing lesion detection as shown in Fig. 2.
In the cases of Fig. 2(a, b), VIC translation deteriorated the detection perfor-
mance. The redness of the lesion was slightly lighter than that of normal tissue
in WLI images. However, the entire image got light in VIC images, which elim-
inated such slight differences. We could also see blood vessels in WLI images,
but it became vague in VIC images. Besides, these VIC images got noisier than
WLI images. In contrast, VIC translation improved the detection performance
in some cases such as Fig. 2(c, d).

3.3 Augmentation Effect of VIC Images

To verify the usefulness of VIC images for data augmentation, we constructed
three models: (i) trained only on IC images; (ii) trained on both IC and VIC
images; and (iii) trained on both IC and WLI images. Table 1 shows the number
of images for training.
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Fig. 2. Detection comparison between WLI and VIC models. Upper row is detection
results of WLI model, and lower row is detection results of VIC model. The white and
green bounding boxes represent ground truth and detection results, respectively. In the
cases of (a) and (b), detection results are deteriorated in VIC model. In contrast, in
the cases of (c) and (d), detection results are improved in VIC model. (Color figure
online)

Using these trained models, we evaluated the performance of localization
and classification against IC images as test data. Table 2 shows the evaluation
results. Compared with the IC model, IC+VIC model was high performance in
both localization and classification. However, only the performance of adenoma
classification (APC(B)) in IC model was higher than that of the VIC model.
On the other hand, both APL and mAPC in IC+WLI model were the worst
score among three models even though the number of images was much larger
than the IC model. Therefore, we found that just adding WLI images was not
effective for data augmentation and translating to VIC images were required for
performance improvement.

4 Discussion

In this study, we constructed a WLI-to-VIC image generator and vice versa.
Generated VIC images were so real that we could not distinguish whether it was
fake or not. In comparison between localization and classification results of WLI
and VIC models, VIC image translation was not effective. However, it is reported
that chromoendoscopy increases the lesion detection rate [3,12,14]. Therefore,
this image translation might be useful for medical doctors to detect lesions.
For example, by contrast to the background, red lesions get apparent. Also,
the excessive accumulation of indigocarmine dye often occurs in reality. VIC
images can avoid such a phenomenon and enables medical doctors to observe
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the depression of lesions which is a critical indicator to evaluate the invasion
depth of lesions. Furthermore, VIC images are also effective to recognize the
range of lesion compared with WLI images.

We applied our translation models to static images. However, medical doctors
use real-time endoscopy in the clinical situation. Hence general input type is not
a static image but a video. We consider that we can apply our models to the
video input by extracting frames. The translation process is so fast (around 15
msec per image) and a time lag can be negligible. Therefore, medical doctors
can always compare WLI image with VIC image during endoscopy by using our
translation model, which might increase the medical doctor’s detection rate as in
the entire colon dye spraying studies [3,14]. Further studies are needed in order
to evaluate the effectiveness of VIC translation for medical doctors in routine
endoscopy.

In addition, we can use the VIC generation for secondary interpretation. Our
method enables secondary doctors to do virtual indigocarmine dye spraying even
if primary doctors did not use indigocarmine dye spraying.

We generated colonoscopic VIC images in this study. However, we consider
that image translation is also applicable to other body parts or other endoscopic
image enhancing methods. One of the most commonly used image enhancing
methods for endoscopy is narrow band imaging (NBI). While NBI requires spe-
cial hardware, our approach does not require it for generating virtual NBI images.

In our study, the localization and classification performance of the VIC model
was not higher than that of the WLI model. In some translation cases, translated
images were very noisy or lost the contrast between lesions and normal tissue.
These translation behaviors might affect the results of localization and classifi-
cation in the VIC model. Therefore, we consider that the improvement of VIC
generation is required to enhance localization and classification performance.

To improve VIC generation quality, we consider there are two obstacles. First,
the dyeing condition varies locationally because Indigocarmine is not necessarily
sprayed on the whole image. The unsprayed region in IC images might affect
the training of generators and discriminators because we train these models
by a single batch. Second, halation in WLI is another obstacle to improving
generation quality and remained in VIC image. We regard the halation as a
kind of noise, and we need to suppress the degree of halation before translating
images.

5 Conclusion

In this paper, we proposed WLI-to-VIC translation and use it as preprocess
for lesion detection. Compared with WLI input model, VIC input model did
not present the high performance except for the classification of cancer. On the
other hand, our results showed that VIC images were useful for data augmen-
tation of IC images because the IC+VIC model had the highest performance
in both localization and classification against the IC model. We consider that
our study gives clues to apply human-understandable image translation for the
performance improvement of CAD.
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Abstract. In the past few years, deep learning-based methods have
demonstrated enormous success for solving inverse problems in medi-
cal imaging. In this work, we address the following question: Given a set
of measurements obtained from real imaging experiments, what is the best
way to use a learnable model and the physics of the modality to solve the
inverse problem and reconstruct the latent image? Standard supervised
learning based methods approach this problem by collecting data sets of
known latent images and their corresponding measurements. However,
these methods are often impractical due to the lack of availability of
appropriately sized training sets, and, more generally, due to the inher-
ent difficulty in measuring the “groundtruth” latent image. In light of
this, we propose a self-supervised approach to training inverse models
in medical imaging in the absence of aligned data. Our method only
requiring access to the measurements and the forward model at training.
We showcase its effectiveness on inverse problems arising in accelerated
magnetic resonance imaging (MRI).

Keywords: Deep learning · Inverse problems · Self-supervised
learning · Accelerated MRI

1 Introduction

In the past years, there has been an enormous success in deploying deep learning-
based methods in imaging, image processing, and computer vision. Most of these
tasks, if tackled as a supervised learning problem, require collecting a large
dataset of measurements and their corresponding latent variables, which would
be referred to as labels in classification and detection tasks, and as ground truth
in regression tasks. Whereas the task of labeling images, albeit not simple, can
be addressed by using a large number of human annotators, the task of collect-
ing measurements and their corresponding aligned ground-truth images is much
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harder and often impractical. The acquisition of a groundtruth image typically
requires subjecting the same object of interest to a different imaging modality
or to the same modality configured to provide more accurate measurements.
The need to register such images at the sub-pixel level, coping with the object’s
natural deformation is often very difficult to surmount.

The limitation of the supervised regime is the main motivation of the present
paper. We focus on answering the following question: Given a single measure-
ment obtained from a real imaging system, and our knowledge about the forward
model embodying the physics of the imaging modality, can we learn an operator
solving the inverse problem and reconstructing the latent signal? We henceforth
refer to this learning regime as self-supervised learning (SSL). It is important to
emphasize that the proposed self-supervised learning is cardinally different from
unsupervised learning, despite the fact that no groundtruth is used in both cases.
While the latter relates mostly to generative models which try to estimate the
latent data distributions, SSL aims at solving the inverse problem by exploiting
internal information within the measurements themselves, and more specifically
in our case, trying to explain or dissect the given measurements.

Contributions. We propose an SSL framework, comprising two building blocks:
a convolutional neural network (CNN) that serves as the prior, and a forward
model, embodying the imaging physics into the pipeline. Several recent studies
[5,7] demonstrated that a CNN can serve as a good prior for a wide range of
images classes – a line of works that is generally referred to as deep image prior.
From this perspective, the present solution can be viewed as the embodiment of
deep image priors in general inverse problems. We demonstrate and evaluation
our method on the case of accelerated magnetic resonance imaging. The forward
model in that case is the MR k-space sampling trajectory. By applying SSL
to this task, we introduce a significant improvement (around 2–3 dB PSNR)
compared to an off-the-shelf total variation-regularized solver, and even some
level of proximity to the performance of the fully supervised restoration model.

2 Methods

In this work, we are interested in inverse problems, which aim to calculate,
from the measurements, the latent signal that produced them. The process of
measuring the latent signal is referred to as the forward model. We denote the
forward model with the operator F(·) that maps the entities in the domain of
latent signals to the measurements. Many types of inverse problems arising in
signal and image processing and medical imaging involve a linear forward model,
which can be straightforwardly expressed as the matrix product

y = Fx + η. (1)

Here x ∈ R
n is the latent signal that is measured through the forward model

F ∈ R
m×n, resulting in the observed measurement y ∈ R

m; η denotes additive
measurement noise. An inverse problem consists of estimating the latent signal
x from the measurement y.



Self-supervised Learning of Inverse Problem Solvers in Medical Imaging 113

Fig. 1. Comparison of different approaches to learning inverse models. In the standard
supervised approach (top), many pairs of latent images x and corresponding measure-
ments y are available at training, and a loss in the image domain drives the parameters θ
of the inverse model such that x̂ = Iθ(y) is close to x. In the proposed self-supervised
approach (bottom) only access to the measurements y and the forward model F is
assumed. The loss is formulated in the measurement domain, and the inverse model is
trained such that F(Iθ(y)) is close to y.

While several important problems (such as denoising, inpainting, compressed
sensing, tomography) admit the above structure; linear modeling of F is not
accurate for a range of more exotic problems arising in computational and medi-
cal imaging such as multiple-scattering computed tomography, optical diffraction
tomography, and wave-propagation inverse problem in ultrasound imaging. The
proposed methodology applies to these modalities as well as long as the appropri-
ate forward operator F is known. Therefore, in order to emphasize the broader
applicability of the proposed framework, we will refer to the forward model as
F instead of the matrix F.

2.1 Prior-Based Solvers

One of the standard formulations of inverse problems is in the form of maximum
a posteriori (MAP) estimation the latent signal x from the measurements y.
This formulation allows to introduce information about the latent image through
the prior PX(x), and boils down to the minimization of an objective function
comprising the negative log-likelihood and the negative log-prior terms,

x̂ = arg min
x

− log PY |X(y|x) − log PX(x). (2)

In the case of additive white Gaussian measurement noise, the first term becomes
the Euclidean norm, ‖F(x)−y‖2. Famous examples of prior terms include total
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variation (TV) [4] or sparsity with respect to some dictionary [2], which are
regularly employed in medical imaging.

2.2 Supervised Learning for Inverse Problems

As illustrated in Fig. 1 (top), given an aligned set of samples of latent signals
and their corresponding measurements {(xi,yi)}N

i=1, supervised learning meth-
ods aim at estimating the inverse operator that maps the measurements to the
corresponding latent signals. We denote by Iθ the inverse operator that should
invert the action of the forward model. The set of parameters θ denotes the
trainable degrees of freedom – in our case, the weights of the reconstruction
neural network. The training is carried out by minimizing the empirical loss

min
θ

N∑

i=1

L (Iθ(yi),xi) (3)

where L measures the discrepancy between the estimated latent signal Iθ(yi)
and the groundtruth xi. Typical choices include the Euclidean and the L1 dis-
tances. In practice, for image restoration tasks, the operator Iθ is modeled as a
convolutional neural network and the objective (3) is minimized using stochastic
gradient-based solvers. Once the optimal set of parameters θ∗ has been learned
on the training set, the inverse operator Iθ∗ is applied to solve the inverse prob-
lem with previously unseen inputs.

2.3 Self-supervised Learning

The focus of this study is the cases where an aligned set of measurements and
latent signals is not available or challenging to obtain at the required size (typical
supervised training scenarios demand a very large N). In the extreme of such
cases, one has access to just one sample of measurements y and the forward
operator F . This exact problem has been traditionally tackled by the prior-
based methods that we discussed in the Sect. 2.1. However, a drawback of many
prior-based approaches is the need to induce explicit priors on the image instead
of learning image- and task-specific priors. On the other hand, in [7] and [5],
the authors demonstrated that CNNs by their very own structure can induce
a good prior on natural images. The key idea of the proposed self-supervised
approach is to find a latent image that is the output of the parametrized inverse
operator Iθ that best explains the given measurement. Following the ideas in [7]
and extending them to a general inverse problem setting, our approach can be
formalized as the following optimization problem

min
θ

L (F(Iθ(y)) ,y). (4)

Note that the loss function now operates on the measurement space.
Solving the above optimization problem yields x̂ = Iθ(y), i.e., the latent

signal at the intermediate stage, as illustrated in Fig. 1 (bottom). Intuitively, we
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are searching for an image x̂ that is parametrized by {θ,y} that best explains the
measurement y we have in hand. This approach is referred to as self-supervised
because the measurements themselves provide the supervision to solve the inverse
problem by exploiting the prior induced by the CNN.

3 Problem Setup

We demonstrate the applicability of the above discussed self-supervised solvers
on the task of accelerated MRI reconstruction. In accelerated MR imaging, the
field-of-view (FOV) is scanned with a reduced number of measurements that can
be achieved by acquiring less data in the k-space (Fourier domain) leading to
shorter trajectories, which in turn lead to shorter acquisition times. One standard
way of designing such acceleration schemes is by acquiring random Cartesian
trajectories (that is, directions aligned with the spatial frequency axes) in the
k-space.

The forward model of accelerated MRI can be therefore faithfully emulated
by sub-sampling the fully sampled k-space, and it is realistic, in this case, to
assume that the forward operator is known with high accuracy. Following the
terminology described in Sect. 2, we denote the image derived from fully sampled
k-space as x (the latent image), and the image obtained through the sub-sampled
k-space is denoted by y (the measurement). The forward model can therefore
be formalized as follows:

y = F(x) = Φ−1(S � (Φx)) (5)

where � denotes element-wise (Hadamard) product, and Φ and Φ−1 denote the
forward and the inverse Fourier transforms, respectively. The binary matrix S
denotes the sampling operator that embodies the Cartesian trajectories through
which the measurements were obtained; we refer to the rate of decimation
induced in k-space as the acceleration factor (AF ).

We consider the following two inverse problems: (i) Superresolution (SR),
consisting of reconstructing a sharp image from measurements containing only
the central low frequencies obtained by using the mask S as in Fig. 2 (a and c);
and (ii) Dealiasing, in which the obtained mask results in an aliasing artifact
due to a coarser sampling in the phase-encoding direction. We use the masks
displayed in Fig. 2 (b and d). The inverse problem consists of restoring a finer
sampling grid in the phase-encoding direction. Throughout the paper, we denote
the experiments specifying the task name (one of the two tasks above) and the
acceleration factor.

Loss function. We use the following loss function:

L(y, ŷ) = α‖y − ŷ‖1 + β‖Φy − S � Φ(x̂)‖1 + γ‖Iθ(y) − Iθ(ŷ)‖1 (6)

comprising three terms. The first term essentially treats the task as a superresolu-
tion problem, enforcing a penalty on the discrepancy between the reconstructed
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measurement ŷ and the given measurement y. The second term treats the task
as an inpainting problem in the k -space, penalizing the discrepancy between the
masked Fourier transform of the reconstructed latent image and k-space rep-
resentation of the measurements. The last term enforces cycle consistency on
the reconstructed measurement image passing it through the inverse operator
(Iθ(ŷ) = x̃) and making it consistent with that of the original measurements
(Iθ(y) = x̂). This constraint is similar to the cycle-consistency loss used in [9]
for image style transfer. In all the three cases, the L1 norm measures the dis-
crepancy; the relative importance of each term is governed by the parameters
α, β, and γ.

4 Experiments and Discussion

Compared Algorithms. The proposed SSL scheme was compared to the fol-
lowing two baselines: (i) Total variation: Similarly to [8], we compare our results
to an off-the-shelf accelerated MR reconstruction method with a total variation
(TV) regularizer. We used the BART [6] toolkit for calculating the TV-based
MR image reconstruction. The regularization weight was set to 0.01, and it was
run for 200 iterations per slice. (ii) Supervised learning : Since the results of a
supervised restoration model would be considered as an upper bound on SSL’s
performance, we trained a U-Net model [3] on a dataset of aligned reduced mea-
surements and full measurements MRI, and compared our results on samples
that were excluded from the training set.

Fig. 2. Visual comparison of the k -space binary masks chosen for different tasks. Tasks
ordered from left to right: superresolution ×4, dealiasing ×4, superresolution ×8, and
dealiasing ×8

Data. The data used in the preparation of this article were obtained from the
NYU fastMRI Initiative database (fastmri.med.nyu.edu) [8]. We have used the
fastMRI training set for our experiments and generated two separated sets out
of it: one containing 973 volumes (34700 slices) for training and validation, and
one containing 8 volumes (48 slices) for testing. Only samples from the test set
were used for evaluating all methods: both SSL and the comparison baselines.

http://fastmri.med.nyu.edu
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Fig. 3. Comparison of the proposed self-supervised approach (SSL) to ESPIRiT (TV)
[6] and supervised trained network [8] on different tasks. From top to bottom the
panels depict the tasks: SR ×4, dealiasing ×4, SR ×8 and dealiasing ×8. From left
to right, the columns depict the groundtruth, corrupted (with respective masks), TV-
restored [6], SSL-restored(ours), and supervised model restored images, along with
their corresponding (PSNR, SSIM) metrics mentioned below.

Settings. We performed our experiments with various types of inputs to the
inverse operator Iθ: the measurements themselves y, a gradient-like image which
we refer to as “meshgrid” input (z) – similar to what has been used in [7], and
a combination of the measurements and the meshgrid input – stacked as two
channels, i.e., [y z]. Since cycle-consistency is not valid in the case of a meshgrid
(only) input, γ has been set to zero for these experiments. The inverse operator
Iθ was chosen to be the U-net architecture for all our experiments [3]. We used
the Adam optimizer [1] as the update method with learning rate of 10−4.
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Results. Table 1 summarizes the results for the various experimental settings,
comparing the performance of the above-mentioned benchmarks to ours. When
compared to TV [6], our method achieves an improvement of ∼2 dB–3 dB in
the peak-signal-to-noise ratio (PSNR). Similar results are observed for the
structural-similarity measure (SSIM, about 0.05–0.08 points improvement). As
expected, the supervised model outperforms the proposed SSL method. However,
it seems that at least for the lower distortion rates, this gap is surprisingly small.
A visual inspection of the results over one slice is provided in Fig. 3. As can be
observed in the zoomed-in region, our method manages to restore finer details
better than the TV-based method, and even approaches the restoration levels
of the supervised model in the lower distortion rates. As evident both quantita-
tively and visually, the TV-based method completely fails on the ×8 dealiasing
task, whereas our SSL method seems to significantly alleviate the reconstruction
artifacts.

Discussion. From the practical perspective, we observed that for lower deci-
mation rates (×4) using the input as the measurements y (or) [y z] yielded the
best performance. At higher decimation rates (×8), we observed that using z as
the input performs better than using the measurements. [7] observed a similar
behavior: different restoration tasks required different inputs. This implies that
the input is part of the induced prior, and specifically in our case, the restoration
tasks involving higher decimation rates require a smooth input that is distinct
from the distorted measurements.

Upon performing a hyper-parameter search for (α, β, γ), we observed that,
irrespective of the input, enforcing a higher weight on the k -space loss is cru-
cial relative to the spatial loss. In all ×4 experiments we used (α, β, γ) =
(1.0, 8.0, 10−5), while for the ×8 experiments we set them to (0.0, 7.0, 0.0).

Table 1. Quantitative evaluation of the proposed method on 48 slices from 8 volumes.
The volumes were chosen randomly from the validation set of the fastMRI dataset [8].

Task Metrics Corrupted TV SSL (ours) Supervised

Superresolution ×4 PSNR 25.25 25.61 28.08 28.79

SSIM 0.683 0.627 0.691 0.701

Dealiasing ×4 PSNR 21.88 25.26 27.56 28.67

SSIM 0.587 0.579 0.66 0.7056

Superresolution ×8 PSNR 22.16 23.29 25.61 27.25

SSIM 0.5224 0.5017 0.5541 0.6057

Dealiasing ×8 PSNR 13.74 N/A 22.86 26.72

SSIM 0.40 N/A 0.47 0.604
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5 Conclusion and Future Work

We propose a new learning framework for solving inverse problems in the absence
of aligned data. As a proof-of-concept, we demonstrated the applicability of the
proposed framework to the use case of accelerated MRI reconstruction, where
our approach outperforms standard off-the-shelf solvers by a significant margin.
We believe this framework leads to many interesting future directions and can
become a tool in solving a new range of inverse problems in the limited/no
aligned data regime where the supervised methods are not applicable. One could
devise better loss functions that can be imposed in the measurements domain.
This framework could be extended to a semi-supervised scenario as well and
used for analysing the importance of external (supervised) data.
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Abstract. Vertebral body (VB) segmentation is an important prelimi-
nary step towards medical visual diagnosis for spinal diseases. However,
most previous works require pixel/voxel-wise strong supervisions, which
is expensive, tedious and time-consuming for experts to annotate. In this
paper, we propose a Weakly supervised Iterative Spinal Segmentation
(WISS) method leveraging only four corner landmark weak labels on a
single sagittal slice to achieve automatic volumetric segmentation from
CT images for VBs. WISS first segments VBs on an annotated sagit-
tal slice in an iterative self-training manner. This self-training method
alternates between training and refining labels in the training set. Then
WISS proceeds to segment the whole VBs slice by slice with a slice-
propagation method to obtain volumetric segmentations. We evaluate
the performance of WISS on a private spinal metastases CT dataset
and the public lumbar CT dataset. On the first dataset, WISS achieves
distinct improvements with regard to two different backbones. For the
second dataset, WISS achieves dice coefficients of 91.7% and 83.7% for
mid-sagittal slices and 3D CT volumes, respectively, saving a lot of label-
ing costs and only sacrificing a little segmentation performance.

Keywords: Vertebral body segmentation · Weak supervision

1 Introduction

Segmentation of the vertebral bodies (VBs) from CT images is often a pre-
requisite for many computational spine imaging tasks, such as assessment of
spinal deformities, detection of vertebral fractures, and computer-assisted sur-
gical interventions. Previous work of VB segmentation can be generally catego-
rized as model based [12], graph theory based [1] and machine learning based
c© Springer Nature Switzerland AG 2019
Q. Wang et al. (Eds.): DART 2019/MIL3ID 2019, LNCS 11795, pp. 120–128, 2019.
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methods [3]. Most recently, convolutional neural networks (CNNs) achieve bet-
ter performances and thus have been widely used. U-Net incorporated with VB
location prior knowledge for automatic vertebrae segmentation is explored in an
iterative fashion [9]. Nevertheless, all these methods have a same drawback that
they require pixel/voxel-wise labeled CT/MR scans to train models. It is desired
to leverage less fine-grained labels for segmentation so as to save the labeling
cost.

In this paper, we explore a Weakly supervised Iterative Spinal Segmentation
(WISS) method for VB segmentation. Considering that the normal VBs without
fractures are roughly quadrilateral from the sagittal view, we thus propose to
annotate the position of a VB with four corner landmarks in the mid-sagittal
slice and utilize them as weak labels for segmentation.

From any input CT volume with an annotated slice, we first segment the VBs
on the annotated slices in a self-training manner [8]. The segmentation model
is improved iteratively by confident prediction selection and densely connected
CRF [7]. After the segmentation model converges on the mid-sagittal slices,
we then adopt a slice-wise propagation method [2] to generalize this process
to other successive slices to obtain the full volumetric segmentation. We apply
the segmentation model to adjacent slices and create initial masks for them
as extra training data, ultimately producing the final segmentations when the
model converges. As this process iterates, segmentation results of all CT slices
can be obtained and thus 3D VB segmentation is achieved.

The proposed WISS method for 2D slices is evaluated on a private spinal
metastases CT dataset, and the 3D volumetric segmentation is evaluated on
the public lumbar spine CT dataset [6]. On the first dataset, WISS achieves an
improvement in dice coefficient of +2.1% and +3.7% with regard to two different
segmentation backbones, respectively. Furthermore, experimental results on ran-
dom noise disturbed dataset show that WISS is robust to weak and noisy supervi-
sion, which is very essential for medical diagnosis. For the second dataset, WISS
achieves dice coefficients of 91.7% and 83.7% on the mid-sagittal slices and 3D
CT volumes, respectively. Compared with state-of-the-art strongly supervised
VB segmentation methods [9], WISS saves huge costs of labeling and sacrifices
a little segmentation performance, which is very worthwhile in the practical
applications.

2 Method

In the spinal metastases dataset, each CT volume contains a mid-sagittal slice
with four corner landmark annotations. We aim to leverage such weak supervi-
sions on a single slice to achieve the volumetric segmentation.

2.1 Sagittal Slice Segmentation via Self-training

We first connect four corner landmarks to construct the coarse quadrilateral
training labels for the mid-sagittal slices. Then a base segmentation model is
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trained using these coarse labels. Such labels are refined by selecting the most
confident predictions and recovering the boundaries by fully connected condi-
tional random field (CRF) [7], thus additional supervisions are obtained. By
repeating training and refining procedures, we can achieve better segmentation
results and get a better segmentation model.

Segmentation Backbone: In our method, Mask R-CNN [5] is selected as the
segmentation backbone for its quite good performances on object detection task
and instance segmentation task. The probability map prediction from Mask R-
CNN is utilized for the confidence computation.

Mask R-CNN is a two stage network: the first stage scans image and generates
region of interest (ROI) proposals, and the second classifies the proposals and
generates bounding boxes and masks. Formally, during training, a multi-task
loss is defined on each sampled ROI as

L = Lcls + Lbox + Lmask + αLedge. (1)

The classification loss Lcls, bounding-box regression loss Lbox, and mask loss
Lmask are defined in [5]. Besides, to preserve the object boundaries, we compared
the magnitude and orientation of the edges of the predicted mask with the ground
truth. Thus an edge loss [11] is added to the loss function as

Ledge =
√

(Mx − Gx)2 + (My − Gy)2, (2)

where M is a generated mask and G is the corresponding ground truth. (Mx,My)
and (Gx, Gy) are the first derivatives of M and G, respectively in x and y
directions. α is a weighted coefficient. Although the edges of the annotations
might not be accurate at the beginning, Ledge can be considered as an attention
of the possible edge areas. As the iteration proceeds, the annotations will be
more and more accurate, thus edge loss will help model converge to the optimal
solution.

Confident Prediction Selection: We propose a confident prediction selection
method to avoid passing errors to the next iteration. During inference, Mask
R-CNN generates three outputs for each predicted ROI: the probability P to
contain a VB, bounding box coordinates C and a probability map M of each
pixel. First, we select the most confident ROIs where the object probability P
exceeds a threshold T1. For each ROI, we select the confident pixels as mask
where the probability map M exceeds another threshold T2. Considering the
prior knowledge that VBs are generally arranged in a column, we then fit a
curve based on the center points of the confident ROIs. ROIs close to this curve
are selected as final predictions, and ROIs away from this curve are rejected. As
shown in Fig. 1, the colored regions are the predicted ROIs and the red line is
the fitted curve. The leftmost green region is a false positive prediction and thus
it is discarded.

Error Alleviation by CRF: Since the initial coarse quadrilateral labels are
imperfect, the output probability maps are not tend to converge to the optimal
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Fig. 1. Overview of the proposed method. We use segmentation output mask incorpo-
rating with confident prediction selection and CRF refinements to gradually generate
extra training data for VB segmentation. Arrows colored in orange, green and purple
represent slice-propagated training at its 1st, 2nd and 3rd iterations, respectively. For
each iteration, training and refining procedures are repeated in a self-training manner
until the model converges. Best viewed in color. (Color figure online)

solution. We thus adopt the densely connected conditional random fields (CRF)
to overcome such a problem. The CRF model establishes pairwise potentials,
which take both pixel positions and intensities into account, on all pairs of pix-
els in the image. Therefore low-level appearances, such as VB boundaries, are
incorporated into the refined predictions. CRF recovers the object boundaries
by correcting the oversegmentation regions and undersegmentation regions, thus
providing extra training information and alleviating the impact of error ampli-
fication.

2.2 Slice-Propagated Segmentation

In order to generate VB segmentations for all sagittal CT slices, we train the
segmentation model in a slice-propagated manner. Formally, we denote Xi, Yi

and Ŷi as the ith sagittal slices, corresponding labels and the model outputs
for all the CT volumes in the training set, respectively. m is the mid-sagittal
index. The segmentation model first learns VB appearances based on the mid-
sagittal slices [Xm] via the self-training method introduced above. After the
model converges, we then apply this model to [Xm−1,Xm+1] from the entire
training set to compute initial predicted probability maps [Ŷm−1, Ŷm+1]. Given
these probability maps, refined VB segmentations [Ym−1, Ym+1] are created using
the confident prediction selection and densely connected CRF explained above.
These segmentations are employed as training labels for the segmentation model
on the [Xm−1,Xm+1] slices, ultimately producing the updated segmentations
[Ŷm−1, Ŷm+1] once the model converges. As this procedure proceeds iteratively,
we can gradually obtain the converged VB segmentation results across all CT
slices, and then a volumetric segmentation can be produced by stacking the
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slice-wise segmentations [. . . , Ŷm−1, Ŷm, Ŷm+1, . . . ]. The overview of the proposed
method is depicted in Fig. 1.

3 Experimental Setup and Results

Datasets. The spinal metastases dataset is used for training and 2D evaluation.
All CT scans come from patients with spinal metastases. The scans are recon-
structed to in-plane resolution between 0.234 mm and 2.0 mm, and slice thickness
between 0.314 mm and 5.0 mm. These CT scans cover all of the spine, including
cervical, thoracic, lumbar and sacral VBs. Training set contains 284 images with
3400 VBs, and testing set contains 95 images with 1109 VBs. The four points
annotations and reference segmentations are annotated by three radiologists.

The lumbar spine dataset consists of 10 scans of healthy subjects of the lum-
bar vertebraes. The scans are reconstructed to in-plane resolutions of 0.282 mm
to 0.791 mm and slice thickness of 0.725 mm to 1.530 mm. We manually edit the
reference segmentation to keep only VBs. The segmentation models are trained
on the spinal metastases dataset and directly evaluated on the lumbar dataset.

Table 1. Performances evaluated on the spinal metastases CT dataset with two seg-
mentation backbones. M denotes Mask R-CNN backbone. E means using the edge
loss (Eq. 1). R means using confident prediction selection and fully connected CRF
refinements. ST stands for self-training. For the last four rows, prefix n- represents for
experiments on the noisy dataset where the four corner landmark labels are randomly
shifted by 0 to 1mm.

Methods DIC ACC SEN SPE

UNet [10] 86.5 95.1 79.3 98.8

UNet-ST 88.6 95.5 86.8 97.5

M [5] 87.6 97.8 81.2 99.6

M-E 87.8 97.8 82.3 99.4

M-E-R 89.6 98.0 89.8 98.8

M-E-R-ST 90.1 98.1 88.8 99.1

n-M 85.6 97.4 79.6 99.3

n-M-E 86.2 97.6 79.4 99.5

n-M-E-R 86.2 97.6 79.5 99.5

n-M-E-R-ST 89.3 97.9 90.6 98.6

Evaluation Metrics. For the spinal metastases dataset, we use Dice coefficient
(DIC), Accuracy (ACC), Sensitivity (SEN), and Specificity (SPE) metrics to
evaluate the segmentation performances [4]. Larger values mean better segmen-
tation accuracy. DIC is the most important criterion.
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For the lumbar spine dataset, the segmentation performance is evaluated with
Dice similarity coefficient (DIC), average symmetric surface distance (ASD), and
Hausdorff distance (HSD). All metrics are calculated for individual vertebrae and
then averaged over all scans.

Implementation. The proposed method is implemented using the TensorFlow
library1. Stochastic gradient descent optimizer is used to optimize parameters
with a learning rate and momentum of 0.001 and 0.9, respectively. Transfer
learning technique is applied since the model is quite large but the training
set is relatively small. We adopt weights pre-trained on MSCOCO dataset and
only trained the head network, which help the model converge faster and achieve
better results. Training for 50 epochs on an NVIDIA TITAN X GPU with 12 GB
memory takes approximately 2 h, and testing takes about 0.5 s per image. As for
self-training, the number of iterations is set to be 2. Confident thresholds T1 and
T2 are set to be 0.9 and 0.5 respectively. Edge loss coefficient α is set to be 0.1.

Mid-sagittal Slices Segmentation via Self-training. Quantitative results
on the spinal metastases CT dataset are shown in Table 1. We compare the per-
formances of U-Net [10] and Mask R-CNN [5] as segmentation backbones. As
for U-Net backbone, we adopt the same quadrilateral coarse labels, but don’t
use the confident prediction selection and CRF techniques. The results demon-
strate that our proposed method improves the performances effectively. For U-
Net backbone, DIC is improved by 2.1%. And for Mask R-CNN backbone, our
method outperforms backbone 2.5% in DIC.

In practice, errors are inevitable in the manual annotations. A generic seg-
mentation method should be robust enough against these labeling noises. To
prove such robustness of our method, we build a noisy dataset by randomly
shifting the four corner landmarks by 0 to 1 mm and conduct experiments again
on this noisy dataset. The experimental results show that though the overall per-
formance is decreased, self-training is still effective. The performance of Mask
R-CNN is improved by +2.8% in DIC. The results on this noisy dataset are
reported in Table 1 with prefix n-.

Figure 2 shows segmentation results of four typical kinds of images of the
spinal metastases dataset. The four examples are cervical, sacral, thoracic and
lumbar VBs. Although the appearances of cervical VBs and sacral VBs are
quite different from thoracic VBs and lumbar VBs, especially for C1 and C2,
our model is robust enough to successfully detect and segment these two difficult
cases as demonstrated in Fig. 2(a). In Fig. 2(b), two lumbar VBs and five sacral
VBs are segmented, but segmentation for S3 is not accurate enough due to
its irregular shape. Besides, in Fig. 2(d), a lumbar VB (the yellow one) suffers
metastatic tumor and is therefore collapsed. Its original texture and shape have
been destroyed. Even so, our model detects this collapsed VB and segments it
successfully, indicating that our model is highly tolerant and robust.

Weakly Supervised Slice-Propagated Segmentation. We conduct the
proposed slice-propagated training on the spinal metastases dataset. Then we
1 https://www.tensorflow.org/.

https://www.tensorflow.org/
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Fig. 2. Qualitative results for the spinal metastases dataset. For each case, left is the
input image and right is the segmentation result. (a) Cervical VBs; (b) Sacral VBs;
(c) Thoracic VBs; (d) Lumbar VBs with collapse. Best viewed in color. (Color figure
online)

directly evaluate the 3D segmentation performance on the lumbar spine CT
dataset. We report the results with propagating 5 sagittal slices. The dice score
for 2D mid-sagittal slices on the lumbar dataset is 91.7 ± 2.3%, and the volu-
metric segmentation results are tabulated in Table 2. We achieve a dice score
of 83.71 ± 1.50%, which is a little lower than the 2D segmentation because the
marginal slices is quite difficult than mid-sagittal slices. State-of-the-art 3D VB
segmentation on the lumbar dataset is reported in [9] with 96.5% dice score and
0.2 mm ASD. It should be noted that our method only bases on four corner
landmark weak labels but [9] requires strong voxel-wise annotations. We save
huge labeling costs and achieve volumetric VB segmentation at the cost of a
little decrease in performance, which is very worthwhile.

Table 2. Volumetric segmentation results for 10 subjects of the lumbar spine CT
dataset.

Metrics #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 MEAN± STD

DIC (%) 83.21 83.26 82.25 83.72 82.78 84.95 85.48 83.09 86.77 81.59 83.71 ± 1.50

ASD (mm) 0.50 0.50 0.51 0.48 0.49 0.43 0.52 0.50 0.46 0.88 0.53 ± 0.12

HSD (mm) 4.54 5.30 4.30 3.89 4.50 4.49 5.77 4.63 4.17 4.76 4.64 ± 0.52

In addition, we display qualitative segmentation results of mid-sagittal slices
for a good case and a bad case in Fig. 3. For the good case, all five lumbar
VBs are properly detected and the edges are accurately segmented. However,
regarding to the bad case, VBs are successfully detected as well, but some edge



Weakly Supervised Segmentation of VBs with Iterative Slice-Propagation 127

regions are missing due to the low image contrast, resulting in a relatively low
value of the dice coefficient.

Fig. 3. Qualitative results for the lumbar spine CT dataset. (a) A good case (#4);
(b) A bad case (#10). For each case, left is the segmentation result as color overlay
with different colors for different instances, and right is the segmentation results as
difference maps with oversegmentation errors marked in red and undersegmentation
errors in yellow. Best viewed in color. (Color figure online)

4 Conclusion

In this paper, we proposed a Weakly supervised Iterative Spinal Segmentation
(WISS) method leveraging only four corner landmark weak labels on a single
sagittal slice to achieve volumetric segmentation from CT images of VBs. WISS
first segments the VBs on the annotated mid-sagittal slices in a self-training
manner. Then a slice-wise propagation method is adopted to generalize this
process to other successive slices to obtain the full volumetric segmentation.
The experiments have demonstrated that WISS is effective and robust to weak
and noisy supervision. Furthermore, WISS saves huge labeling costs and only
sacrifices a little segmentation performance, which is very valuable in practical
applications. In future works, the proposed WISS method will be applied to
other medical applications to prove its versatility.
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3. Chu, C., Belavỳ, D.L., Armbrecht, G., Bansmann, M., Felsenberg, D., Zheng, G.:
Fully automatic localization and segmentation of 3d vertebral bodies from CT/MR
images via a learning-based method. PLoS ONE 10(11), e0143327 (2015)

4. Gutman, D., et al.: Skin lesion analysis toward melanoma detection: A challenge
at the international symposium on biomedical imaging (ISBI) 2016, hosted by the
international skin imaging collaboration (ISIC). arXiv preprint arXiv:1605.01397
(2016)

https://doi.org/10.1007/978-3-030-00937-3_46
http://arxiv.org/abs/1605.01397


128 S. Peng et al.

5. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
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Abstract. Focal liver lesion classification is important to the diagnostics of
liver disease. In clinics, lesion type is usually determined by multi-phase
contrast-enhanced CT images. Previous methods of automatic liver lesion
classification are conducted on lesion-level, which rely heavily on lesion-level
annotations. In order to reduce the burden of annotation, in this paper, we
explore automatic liver lesion classification with weakly-labeled CT images (i.e.
with only image-level labels). The major challenge is how to localize the region
of interests (ROIs) accurately by using only coarse image-level annotations and
accordingly make the right lesion classification decision. We propose a cascade
attention network to address the challenge by two stages: Firstly, a dual-
attention dilated residual network (DADRN) is proposed to generate a class-
specific lesion localization map, which incorporates spatial attention and
channel attention blocks for capturing the high-level feature map’s long-range
dependencies and helps to synthesize a more semantic-consistent feature map,
and thereby boosting weakly-supervised lesion localization and classification
performance; Secondly, a multi-channel dilated residual network (MCDRN)
embedded with a convolutional long short-term memory (CLSTM) block is
proposed to extract temporal enhancement information and make the final
classification decision. The experiment results show that our method could
achieve a mean classification accuracy of 89.68%, which significantly mitigates
the performance gap between weakly-supervised approaches and fully super-
vised counterparts.

Keywords: Liver lesion classification � Channel attention � Spatial attention �
Weakly-labeled � Multi-phase CT images � CLSTM
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1 Introduction

Globally, liver cancer ranks the sixth in cancer incidence and the second in tumor-
related mortality. Multi-phase computed tomography (CT)images containing the
enhancement pattern of focal liver lesions usually provide guidance for early liver
cancer diagnosis. The main phases include the non-contrast (NC) phase, arterial
(ART) phase, portal venous (PV) phase and delayed (DL) phase. Typically, to reduce
the radiation dose, the DL phase is not required in clinical diagnosis.

Several previous studies have investigated liver lesion classification performance
using multi-phase CT images with full annotations (lesion-level annotations). Most
studies first selected or detected ROIs and then extracted low-level features [1, 2] or
mid-level features [3–5] from ROIs. Some recent studies have explored the diagnostic
performance of deep convolutional neural networks (DCNN) for liver lesion classifi-
cation in multi-phase CT images. Yasaka et al. [6] proposed a multi-channel CNN for
liver lesion classification on multi-phase CT images. Frid-Arar et al. [7] proposed a
multi-class patch-based CNN for liver lesion detection. Liang et al. [8] proposed a
residual network integrated with bi-directional LSTM model to learn the enhancement
pattern of different kinds of lesions. Nevertheless, all of these methods must first
identify or localize a lesion ROI on a CT image and then build classifiers based on the
extracted ROIs. The first step is finished either by an expert radiologist’s manual effort
or an automatic lesion detection or segmentation algorithm [9]. However, lesion-level
annotations are both labor-intensive and time-consuming, which pose obstacles for
preparing large training datasets. In this paper, we explore address liver lesion clas-
sification using merely image-level label (with only the lesion class label, but without
the lesion localization or boundary information), which is called as weakly-labeled
annotations. Note that the annotation with both the lesion class label and lesion
localization or boundary information is called as fully-labeled annotation or lesion-
level annotation.

Given only the weakly-labeled multi-phase CT images, the major challenge of
building a robust and well-performing lesion classification model is how to focus on
the lesion area and then make classifications by the temporal enhancement pattern. In
this paper, we propose a cascade attention classification framework. A dual-attention
dilated residual network (DADRN) is proposed to automatically enhance the important
region (lesion region). Then, another multi-channel dilated residual network (MCDRN)
embedded with convolutional long short-term memory (CLSTM) block is used to
extract spatiotemporal features of the guided attention region (lesion region) and
produce the final liver lesion classification decision. Here, to provide a more semantic-
accurate localization map, spatial attention and channel attention blocks are incorpo-
rated into DADRN. In many studies, attention mechanism has demonstrated its ability
to focus on the most discriminative area and improve the feature representation of
ROIs. Hu et al. [10] proposed a light-weight squeeze-and-excitation block that
enhances channel-wise dependencies of high-level features, considering that each
channel map can be regarded as a class-specific response. Woo et al. [11] proposed a
convolutional block attention module that emphasizes meaningful features in both
spatial and cross-channel axes. Their proposed module achieved the best classification
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accuracy on ImageNet-1K when integrated with a state-of-the-art CNN network. Our
primary contributions can be summarized as follows.

A Cascade Attention Classification Framework: We propose a cascade attention
classification method for focal liver lesion classification with weakly-labeled multi-
phase CT images, which consists of following two networks: (1) a dual-attention
dilated residual network (DADRN)for localize the most class-specific discriminative
region (lesion region) and improve the feature representation for classification; (2) a
multi-channel dilated residual network (MCDRN) embedded with convolutional long
short-term memory (CLSTM) block for fine classification that extract spatiotemporal
features of the guided attention region (lesion region) for further improvement of
feature representation.

Novel Attention Network (DADRN): We propose a novel dual-attention dilated
residual network (DADRN) for multi-phase CT images analysis, which incorporates
spatial attention and channel attention blocks for modeling the spatial and channel
interdependencies of the high-level feature map and selectively aggregate similar
semantic features.

State-of-the-Art Classification Accuracy: The proposed cascade attention classifi-
cation framework achieved a mean lesion classification accuracy 89.68%, which is
state-of-the-art performance in weakly-supervised approaches and is comparable to the
performance obtained by fully-supervised lesion classification methods.

2 Methodology

As shown in Fig. 1, given multi-phase CT images without any lesion location infor-
mation, firstly, the DADRN is trained (Sect. 2.1) with the concatenation of multi-phase
images and its image-level annotation as a multi-class classification task. The well-
trained DADRN can not only predict the lesion type of the RGB-like multi-phase input,
but also can generate the class-specific localization map (Sect. 2.1.3). The generated
localization map can be used as a guided attention mask of the multi-channel input of
MCDRN (Sect. 2.2). The backbone of DADRN and MCDRN are based on DRN-d-50
[12], the average pooling layer and fully-connected layers are removed from the
original architecture so as to obtain high-resolution global feature maps, which is four
times larger than non-dilated residual network and thus facilitate consideration of small
lesions at the course of its prediction.

2.1 Dual-Attention Dilated Residual Network (DADRN)

DADRN (upper part of Fig. 1) [15], is used for lesion classification and weakly-
supervised localization. It includes two attention blocks, i.e., the channel attention
block (CAB) and the spatial attention block (SAB) (Fig. 2). The attention blocks take
the global feature map A 2 R

512�28�28 produced by DRN backbone as input. The
output feature maps of two attention blocks are concatenated in channel dimension as
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x 2 R
512�2ð Þ�28�28, which serves as the global feature representation of input image and

is used for lesion classification and localization in the first stage.

2.1.1 Channel Attention Block (CAB)
Since each channel map in the global feature can be considered as a class-specific
response, the CAB aims to emphasize the similarity between channel maps. We first
reshape A 2 R

C�H�W into A0 2 R
C� H�Wð Þ, and perform a matrix multiplication to

calculate channel similarity map aij 2 R
C�C as,

aji ¼ 1
1þ e�Sij

;where Sij ¼ A0A
0T ð1Þ

where aij indicates the cosine similarity of the ith and jth channel map. Here, we adopt
the sigmoid function to normalize the similarity map because noise is present in the
target medical images. The sigmoid function can avoid oversensitivity to local intensity
changes and can disseminate more information than that of softmax function. Subse-
quently, the feature attention map is obtained by a matrix multiplication of A and a,
where Aj represents the jth channel map of the input feature A. We then multiply the

Fig. 1. Overview of the cascade attention classification network

Fig. 2. Illustration of spatial and channel attention blocks
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feature attention map by a scale parameter g, and perform an element-wise sum
operation with the original input A as,

yj ¼ g
Xc

i¼1
ajiAi
� �þAj ð2Þ

The parameter g is first initialized as 0 and was gradually assigned more weight in the
training phase via back-propagation. The final output of CAB is y 2 R

C�H�W .

2.1.2 Spatial Attention Block (SAB)
The SAB is designed to model long-range dependencies in the spatial dimension. Here,
spatial regions with the same pattern are benefited from each other via the spatial
attention mechanism. Given the global feature map A, it is fed into 1� 1 conv layer
and transformed into two feature spaces B1;B2 2 R

C1�H�W , which are then flattened in
the spatial dimension B0

1;B
0
2 2 R

C1� H�Wð Þ and calculate the spatial similarity map as,

bji ¼
1

1þ e�Sij
; where Sij ¼ B

0T
1 B

0
2 ð3Þ

where bji 2 R
N�N and N ¼ H �W : Meanwhile, A was also transformed into feature

map C 2 R
C�H�W Then, a matrix multiplication is performed between b and the

concatenated feature maps C to generate a new feature attention map zj as,

zj ¼ c
XN

i¼1
bjiBi þBj ð4Þ

Note that all other spatial positions are included when synthesizing the jth position
feature vector in zj: Here, more similar positions have higher attention weights. The
final output of the spatial attention module z 2 R

C�H�W is the element-wise sum result
between the feature attention and original feature maps. The adaptive scale parameter c
is first initialized as 0.

2.1.3 Class-Specific Lesion Localization
The well-trained classification network can be used for weakly-supervised localization.
Grad-CAM [13] is generally used to localize the attended regions in the global feature
map, which uses gradients of the prediction score for a specific class and the global
feature map to calculate the importance of spatial locations in the convolutional layers.

The process of weakly-supervised lesion localization is (Fig. 3): First, DADRN
predicts the type of the concatenated multi-phase image and produce a class-specific
Grad-CAM heatmap; Then, the heatmap is normalized and binarized with a threshold
of 0.25, considering cover possible lesion area as much as possible; After that, the
heatmap is resized to 224� 224 and a bounding box is generated that covers all
positive pixels in the binarized heatmap. Finally, the guided attention mask that covers

the bounding box is generated as M0 2 R
1�224�224 where M0

ijk 2 0; 1f g
� �

:
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2.2 Multi-channel Dilated Residual Network (MCDRN)

The architecture of MCDRN is shown in the lower part of Fig. 1. MCDRN has three
channels corresponding to three phases. Each phase’s liver slice image T 2 R

3�224�224

is multiplied by the guided attention mask M0 2 R
1�224�224 and the result is fed into a

shared-weight DRN for extraction of high-level feature map. Each CLSTM cell in
MCDRN takes each phase’s global feature map Fn 2 R

512�28�28 as input. The output
of CLSTM cells are concatenated as F 2 R

1536�28�28 and is fed into a 1 � 1 conv layer
to extract the spatiotemporal features of the guided attention region (lesion region) and
facilitate improve liver lesion classification performance in the second stage.

Training Process. In the training phase, DADRN is trained with weakly-labeled
multi-phase CT images (RGB format). Weighted cross entropy loss is adopted as the
objective function for this multi-class classification task. After DADRN is well trained,
the network parameters of DADRN are fixed. Secondly, MCDRN is trained with
guidance from DADRN. The final lesion classification result is determined by
MCDRN, but the performance would be influenced by the classification and weakly-
supervised localization performance of DADRN.

3 Experimental Results

3.1 Materials

The multi-phase CT images used in this study were collected from 156 patients.
The CT scans were acquired with a slice collimation of 5–7 mm, a matrix of 512� 512
pixels, and an in-plane resolution of 0.57–0.89 mm. There were a total of 1091 CT
liver slice images corresponding to each phase, which consisted of five types, namely
Normal, CYST, Focal Nodular Hyperplasia (FNH), Hepatic Cell Carcinoma (HCC),
and Hemangioma (HEM)). Notice that, each liver slice image only contains one type of
liver lesions or neither. We first conducted liver registration on multi-phase CT images
with a non-rigid registration algorithm. Then, an iterative probabilistic atlas model [14]

Fig. 3. Illustration of class-specific lesion localization process
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is applied to automatically segment liver tissue from the original CT volume data.
Details of the dataset considered in this study are shown in Table 1.

3.2 Performance Analysis of the Proposed Method

3.2.1 Comparison Between DADRN and Other Attention-Based Models
In the proposed cascade network, the localization (loc) and classification (cls) accuracy
of DADRN is essential for the final fine classification performance. To evaluate the
effectiveness of the attention blocks in DADRN, we compared it with other attention
blocks in Table 2. We chose pure DRN-d-50 (DRN) as the baseline and DRN-d-50
embedded with two state-of-the art attention blocks for comparison, i.e., SEDRN
(DRN+Squeeze Excitation (SE) block [10]), CBAMDRN (DRN+convolutional block
attention block [11]).

In Table 2, the localization accuracy of each class is calculated as Eq. (5). Since the
resized localization map is often larger than ground-truth bounding box (bbox). We
chose intersection over the detected bounding box area ratio (IoBB) as the evaluation
metrics. A predicted bbox is considered accurate when its IoBB is greater than 0.3. If
there are multiple ROIs in a liver slice image, it will be viewed as correct localized if
the number of correct predicted lesions is more than 1. The best macro localization and
classification accuracy is achieved by the proposed DADRN.

loc accuracyclass c ¼ total num of correct localized slices for class c
total num of slices for class c

ð5Þ

Table 1. Details of multi-phase CT images dataset, slices number (CT volumes) in each phase.

Type Train Validation Test Total
Set1 Set2 Set1 Set2 Set1 Set2

Normal 135(58) 126(51) 41(16) 57(22) 51(19) 44(20) 227(93)
CYST 168(64) 166(61) 56(25) 59(26) 69(25) 68(27) 293(114)
FNH 75 (43) 75(35) 29(10) 27(18) 26(14) 28(14) 130(67)
HCC 149(57) 143(65) 52(23) 57(18) 50(21) 51(18) 251(101)
HEM 112(53) 114(62) 38(20) 37(16) 40(20) 39(15) 190(93)

Table 2. The class-wise loc accuracy, macro average loc and cls accuracy of DADRN (%)

Method CYST FNH HCC HEM Loc accuracy cls accuracy

DRN [12] 88.40 96.30 92.00 64.86 85.39 84.21
SEDRN [10] 82.61 96.30 94.00 72.97 86.47 86.95
CBAMDRN [11] 85.51 92.59 94.00 75.68 86.94 85.49
DADRN 94.20 96.30 90.00 86.49 92.11 87.64

A Cascade Attention Network for Liver Lesion Classification 135



3.2.2 Ablation Study of the Proposed Cascade Attention Network
Table 3 presents the cls accuracy comparison results. Compared to single MCDRN
with no guided attention mask, the proposed cascade network obtains marginally better
cls accuracy (macro average 4.8%). Compared to single DADRN, the proposed method
also showed better performance in most classes (average 2.04%). Compared to the
cascade network without CLSTM block, the proposed method achieved better cls
performance in all categories (average 2.5%).

3.2.3 Comparison with State-of-the-Art Lesion Classification Models
In Table 4, we also compared the proposed method based on weak labels to state-of-
the-art lesion classification methods based on full labels including both deep learning-
based methods [6–8] and non-deep learning-based methods [1, 4, 5]. The ROIs of
lesions were first extracted from the whole liver slice images in our dataset by doctors.
Then we performed ROI-level classifications by using the state-of-the-art methods. As
shown in Table 4, the macro lesion accuracy of our method using only weak labels is
close to that of the traditional methods using full-labels, which motivates us to explore
the potential of using liver slice images directly for the liver lesion classification task.

Table 3. class-wise and macro average cls accuracy of each network (%) (weakly labeled data)

Method CYST FNH HCC HEM Normal Accuracy

DADRN 93.86 85.45 78.29 85.16 95.45 87.64
MCDRN (w/o guidance) 95.45 85.45 77.29 68.57 97.62 84.88
DADRN+MCDRN (w/o CLSTM) 95.65 81.81 82.25 79.53 96.64 87.18
DADRN+MCDRN 96.31 89.09 84.29 80.92 97.83 89.68

Table 4. The class-wise and macro average classification accuracy (%) compared to state-of-
the-art methods with fully labeled multi-phase CT images.

Method CYST FNH HCC HEM Accuracy

Weak annotations DADRN
+MCDRN

96.31 89.09 84.29 80.92 87.65

Full
annotations

Non-deep
learning
methods

Roy et al.
[1]

95.71 70.84 58.44 56.45 70.36

Diamant
et al. [4]

82.41 68.20 78.84 76.90 76.59

Xu et al.
[5]

92.15 69.08 85.04 84.31 82.65

Deep
learning
methods

Yasaka
et al. [6]

96.96 83.66 86.82 84.16 87.90

Frid-Adar
et al. [7]

97.75 76.39 84.37 40.67 74.80

Liang
et al. [8]

98.02 86.74 88.82 87.75 90.33
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4 Conclusions

In this paper, we proposed a cascade attention network to address focal liver lesion
classification in weakly-labeled multi-phase CT images. The attention-based DADRN
learns what and where to emphasize or suppress in a global feature map and enhances
the lesion area. The MCDRN strengthens the focal lesion’s contrast-enhanced pattern.
In future, we will extend the proposed method to multi-label classification task.
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Abstract. As the demand for more descriptive machine learning models
grows within medical imaging, bottlenecks due to data paucity will exac-
erbate. Thus, collecting enough large-scale data will require automated
tools to harvest data/label pairs from messy and real-world datasets,
such as hospital picture archiving and communication systems (PACSs).
This is the focus of our work, where we present a principled data cura-
tion tool to extract multi-phase computed tomography (CT) liver studies
and identify each scan’s phase from a real-world and heterogenous hos-
pital PACS dataset. Emulating a typical deployment scenario, we first
obtain a set of noisy labels from our institutional partners that are text
mined using simple rules from DICOM tags. We train a deep learning sys-
tem, using a customized and streamlined 3D squeeze and excitation (SE)
architecture, to identify non-contrast, arterial, venous, and delay phase
dynamic CT liver scans, filtering out anything else, including other types
of liver contrast studies. To exploit as much training data as possible,
we also introduce an aggregated cross entropy loss that can learn from
scans only identified as “contrast”. Extensive experiments on a dataset
of 43K scans of 7680 patient imaging studies demonstrate that our 3DSE
architecture, armed with our aggregated loss, can achieve a mean F1 of
0.977 and can correctly harvest up to 92.7% of studies, which signifi-
cantly outperforms the text-mined and standard-loss approach, and also
outperforms other, and more complex, model architectures.
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1 Introduction

Over the last decade, deep learning techniques have seen success in automatically
interpreting biomedical and diagnostic imaging data [1,2]. However, robust per-
formance often requires training from large-scale data. Unlike computer vision
datasets, which can rely on crowd-sourcing [3], the collection of large-scale med-
ical imaging datasets must typically involve physician labor. Thus, there exists
a tension between modeling power and data requirements that only promises
to increase [4]. An enticing prospect is mining physician expertise by collecting
retrospective data from picture archiving and communication systems (PACSs),
but the current generation of PACSs do not properly address the curation of
large-scale data for machine learning. In PACSs, DICOM tags regarding scan
descriptions are typically hand inputted, non-standardized, and often incom-
plete, which leads to the need for extensive data curation [5]. These limitations
frequently produce high mislabeling rates, e.g., the 15% rate reported by Gueld
et al., meaning that simply selecting the scans of interest (SOIs) from a large set
of studies can be prohibitively laborious. This has spurred efforts to automat-
ically text mine image/label pairs from PACSs [6–8], but these efforts rely on
complicated and customized natural language processing (NLP) technology to
extract labels. Apart from the barriers put forth by this complexity, these solu-
tions address contexts where it is possible to extract the information of interest
from accompanying text. This is not always possible, as NLP parsers [8,9] can-
not always straightforwardly correct errors in the original reports or fill in miss-
ing information. As such, collecting large-scale data will also require developing
automated, but robust, tools that go beyond mining from DICOM tags and/or
reports.

This is the topic of our work, where we articulate a robust approach to
large-scale data curation based on visual information. In our case, we focus on
a hospital PACS dataset we collected that consists of 43 010 computed tomog-
raphy (CT) scans of 7 680 imaging studies from 4 666 unique patients with liver
lesions, along with pathological diagnoses. Its makeup is highly heterogeneous,
comprising studies of multiple organs, protocols, and reconstruction types. Very
simple and accessible text matching rules applied to the DICOM tags can accu-
rately extract scan descriptions; however omissions and errors in the text mean
these labels are noisy and unreliable. Without loss of generality, we focus on
extracting a large-scale and well curated dataset of dynamic liver CT studies
from our PACS data. Dynamic CT is the most common protocol to categorize
and assess liver lesions [10], and we expect a large-scale dataset to prove highly
valuable for the development of computer-aided diagnosis systems, provided it is
well curated. Thus, the goal is to use the noisy labels to train a visual recognition
system that can much more robustly identify dynamic liver CT studies, extract
the corresponding axial-reconstructed scans, and identify the phase of each as
being non-contrast (NC), arterial (A), venous (V), or delay (D). Figure 1 shows
examples of each phase and discriminating features of each.

Unlike prior work, we focus on extracting multi-phase volumetric SOIs of
a certain type, rather than on extracting disease tags or labels. This places a
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Fig. 1. Non-contrast (NC), arterial (A), venous (V), and delay (D) phases are the SOIs
in dynamic CT. Radiologists use contrast information in several organs to determine
the phase, such as contrast in the heart/aorta (red arrows), portal veins (green arrows),
and kidneys (yellow arrows). (Color figure online)

high expectation on performance, i.e., F1 scores of 0.95, or higher. To tackle this
problem, we develop a principled phase recognition system whose contributions
are threefold. First, we collect the aforementioned large-scale dataset from a
hospital PACS, that includes more than 43 010 scans. Second, we introduce a
customized phase-recognition deep-learning model, comprised of a streamlined
version of C3D [11] with squeeze and excitation (SE) layers. We show that this
simple, yet effective model, can outperform much more complicated models.
Third, we address a common issue facing data curation systems, where many
text mined labels are too general. In our case, these are labels that indicate only
“contrast” rather than the more specific NC, A, V, or D SOIs. So that we can
still use these images for training, along with their weak supervisory signals, we
design an aggregated cross entropy (ACE) loss that incorporates the hierarchical
relationship within annotations. Our experimental results demonstrate that our
3DSE model, in combination with our ACE loss, can achieve significantly better
phase recognition performance than the text-mined method and other deep-
learning based approaches. To the best of our knowledge, this is the first work
investigating visual-information based data curation methods in PACS, and we
expect that our data curation system would also prove a useful curation approach
in domains other than liver dynamic CT.
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2 Methods

2.1 Dataset

Our goal is to reliably curate as large as possible a dataset of liver dynamic CT
scans, with minimal labor. To do this, we first extracted a dataset of CT studies
from the PACS of Anomymized, corresponding to patients who had pathological
diagnoses of liver lesions, with the hope that such a dataset would be of great
interest for later downstream analysis. This resulted in 7 680 studies of 4 666
patients. For each study, the number of scans range from 4 to 30 and there are
one to three studies per patient. The resulting dataset is highly heterogenous,
containing several types of reconstructions, projections, anatomical regions, and
contrast protocols that we not interested in, e.g., computed tomography arterial
portography. Studies containing dynamic CT scans may have anywhere from one
or all of NC, A, V, and D contrast phase SOIs. Our aim is to identify and extract
the axial-reconstructed versions of these scans from each study, should they exist.
As such, this task exemplifies many of the general demands and challenges of
data curation across medical domains.

With the dataset collected, we next applied a set of simple text matching
rules to the DICOM tags to noisily label each scan as being either NC, A, V, D
or other (O). The full set of rules are tabulated in our supplemental materials.
The text-matching rules are more than sufficient to reliably extract labels based
on text alone, due to the extremely simple structure and vocabulary of DICOM
tags. However, because the source DICOM tags are themselves error-prone and
unreliable [12], these labels suffer from inaccuracies, which we demonstrate later
in our results. Finally, we filter out any scans that have less than 10 slices, with
a spatial resolution coarser than 5mm, or were taken after or during a biopsy
or transplant procedure. As a result, we found 1728, 1703, 1504 and 1736 A,
V, D and NC scans, respectively, with 326 scans labeled as ‘contrast’. We then
manually annotated a validation set and a test set, comprising 801 and 1262
scans; 150 and 231 studies; and 101 and 196 patients, respectively. This left
a training set of 29 891 scans from 5 164 studies of 3 267 patients with noisy
text-mined annotations.

2.2 3DSE Network

As Fig. 1 illustrates, visual cues indicating the phase can be located in different
anatomical areas. Given this, we opt for a 3D classification network. State of the
art 3D classification networks, such as 3D-Resnet [13] and C3D [11], are often
quite large, adding to the training time and increasing overfitting tendencies.

Instead, we use a streamlined but effective architecture we call 3DSE, which is
illustrated in Fig. 2. To begin, we first downsample all volumes to 128× 128× 32.
From these, image features are extracted using two convolutional layers, each
followed by a rectified linear unit and max pooling layers. With such a streamlined
feature extracter, activation maps are highly local [14]. Thus, we add squeeze and
excitation (SE) [14] layers. These scale each feature channel with multiplicative



Data Curation for Patients: Phase Recognition 143

Fig. 2. Our 3DSE network is designed to have a relatively small amount of parameters
and consists of three parts, including two 3D convolution layers, one SE layer, and two
fully connected layers.

factors computed using global pooling, providing an efficient means to increase
descriptive capacity and inject global information. Subsequent pooling layers and
a two fully connected layers provide the five output phase predictions. The total
parameter size 19.22 MB which is significantly smaller than 3D-Resnet [13] and
C3D [11].

2.3 Aggregated Cross Entropy

Frequently, text-mined labels are only able to provide a more general label of
“contrast” for a scan, indicating that it could be any of A, V, or D SOIs. Since
our goal is to determine the exact phase, the easiest way to handle such scans
is to simply remove them from training, at the cost of using less data. Yet, such
weakly supervised data still provides useful information, which should ideally
be exploited to use as much training data as possible. To do this, we formulate
a simple aggregated cross entropy (ACE) loss that can execute a cross entropy
(CE) loss, but these weakly supervised instances. We formulate the probability
of “contrast” as equalling the sum of the probabilities of all contrast phases:

pC = pA + pV + pD, (1)

=
exp(wA) + exp(wV) + exp(wD)

∑
i exp(wi)

, (2)

where (2) assumes a pseudo-probability calculated using softmax, w(.) denotes
the logit outputs, and i indexes all five outputs.

The pC can be naively used in a CE loss, but that would preclude using a
numerically stable “softmax with CE” formulation. Instead, for scans that can
only be labelled as “contrast”, the CE loss can be written as:

�CE = −yNC log(pNC) − yO log(pO) − yC log(pC), (3)

= − log
(

exp(wA) + exp(wV) + exp(wD)
∑

i exp(wi)

)

, (4)

= logsumexp({wi}) − logsumexp({wA,wV,wD}), (5)



144 B. Zhou et al.

where y(.) denotes the ground truth. The elimination of all terms but the contrast
term in (4), follows from yC equalling one, with all other y(.) values equalling
zero. The logsumexp function enjoys numerically stable forward- and backward-
pass implementations. Thus, when presented with a “contrast” scan, our model
uses (5) for the loss, providing a simple and numerically stable means to exploit
all available data to train our desired, but more fine-grained, outputs.

3 Results

We tested our 3DSE network, with and without the ACE loss, on our dataset, and
compared it to both the noisy text-mined labels and also 3D-Resnet-101 [13] and
C3D [11]. For all models we perform a sweep of learning rates and report results
corresponding to the best setting and stopping point based on the validation set.

Focusing first on scan-level comparisons, Table 1 presents F1 scores across
the different phase types. As can be observed from the text-mined results, many
scans are misclassified as O and many D scans are missed, demonstrating the
shortfalls of relying on labels based on DICOM tags. In contrast, the vision-based
3DSE significantly reduces classification errors, improving the mean F1 score
from 0.938 (via text mining) to 0.967. In particular, V’s F1 score is improved
from 0.868 to 0.956. Performance is increased even further when we use the ACE
loss to include the “contrast” scans in training, boosting the mean F1 score to
0.977. While tests show a degradation of performance for the D phase, these
differences do not meet statistical significance, unlike the statistically significant
improvements seen in the NC, V, and O phases. Thus, these results validate the
use of our ACE formulation to exploit as much training data as possible.

Table 1. Quantitative comparison of scan-level performance. Best results are marked in
bold. Forthe 3DSE + ACE F1 phase-level scores, we use ∗and † to indicate if differences
were statistically significant (α < 0.05) compared to the text-mining and 3DSE model,
respectively. Significance was calculated using randomized tests [15] and adjusted using
the multiple comparison correction of Holm-Bonferroni [16].

Text mining 3DSE 3DSE + ACE

Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

NC 0.977 0.895 0.934 0.965 0.965 0.964 0.993 0.986 0.988∗†
A 0.966 0.983 0.974 0.974 0.966 0.970 0.991 0.991 0.992

V 0.975 0.782 0.868 0.965 0.946 0.956 0.930 0.993 0.963∗
D 0.964 0.956 0.960 0.964 0.956 0.960 0.972 0.930 0.951

O 0.926 0.986 0.955 0.981 0.989 0.985 0.997 0.990 0.993∗†
Mean 0.962 0.920 0.938 0.970 0.964 0.967 0.977 0.978 0.977

Shifting focus to across-model comparisons, Table 2 compares our 3DSE
model, with and without SE, against other state-of-the-art 3D deep models
[11,13]. As can be seen, 3D-Resnet is nearly 17 times larger than 3DSE and per-
forms poorly, which we observed was due to overfitting. Moving down in model
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Table 2. Across-model quantitative evaluation using the F1 score. Best and second-
best results are marked in bold and italic, respectively.

NC A V D O Mean Model size (MB)

3DResnet [13] 0.560 0.866 0.259 0.052 0.929 0.533 325.22

C3D [11] 0.972 0.965 0.920 0.895 0.989 0.948 33.56

3DSE-SE 0.954 0.953 0.924 0.914 0.985 0.946 11.44

3DSE 0.964 0.970 0.956 0.960 0.985 0.967 19.22

3DSE+ACE 0.988 0.992 0.963 0.951 0.993 0.977 19.22

size, C3D [11] performs better than 3D-Resnet, but is still unable to match
3DSE. If we remove the SE layer from our 3DSE model, performance consider-
ably suffers, which demonstrates that the SE layer is important in achieving high
performance. Despite this, performance still matches C3D even though a signifi-
cantly smaller number of parameters are used. Finally, the last rows show 3DSE
with and without the ACE loss, with latter achieving the highest performance
at a model size much smaller than competitors. Finally, as Fig. 3 illustrates,
the 3DSE model focuses on anatomical regions that are consistent with clinical
practice. More visualizations can be found in our supplementary material.

Fig. 3. Respond-CAM [17] visualizations of 3DSE from three different dynamic CT
scans. (A) the 3DSE focuses on contrast accumulation in the cardiac region; (V): 3DSE
focuses on contrast remnants in the cardiac blood pool, liver portal veins, and kidney
veins; (D): 3DSE focuses on contrast accumulation in the ureters of the kidney.

These boosts in scan-level performance are important, but arguably the
study-level performance is even more important, as the ultimate goal is to iden-
tify and extract as many dynamic liver CT studies as possible for downstream
analysis. Thus, we also evaluate how many studies are correctly extracted, mean-
ing all of their corresponding SOIs are correctly classified. As Table 3 demon-
strates, 90.5% of studies have all of their scans correctly classified by our 3DSE
model. Including the wealky supervised data using the ACE loss, we can fur-
ther improve this to 92.7%. If we extrapolate these results to entire dataset of
7 680 studies, this means that the 3DSE model, armed with the ACE loss, can
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Table 3. Study-level performance of text mining and 3DSE. Each row groups studies
based on the number of dynamic CT scans of interest (SOIs) they possess. Each column
counts the number of studies based on how many scans were misclassified, if any. Best
results for each SOI number are marked in bold.

Text mining 3DSE 3DSE + ACE

0 Errs. 1 Err. ≥2 Errs. 0 Errs. 1 Err. ≥2 Errs. 0 Errs. 1 Err. ≥2 Errs.

0 SOIs 35 8 10 47 4 2 48 5 0

1 SOI 36 13 1 47 1 2 49 1 0

2 SOIs 0 1 0 1 0 0 1 0 0

3 SOIs 15 3 1 19 0 0 19 0 0

4 SOIs 101 6 1 95 12 1 97 10 1

Total 186 32 13 209 16 6 214 16 1

Accuracy 80.9% – – 90.5% – – 92.7% – –

correctly identify and extract 609 more studies than the text mining approach.
This is a significant boost of study numbers for any subsequent analyses.

4 Conclusion

We presented a data curation tool to robustly extract multi-phase liver studies
from a real-world and heterogenous hospital PACS. This includes a streamlined,
but powerful, 3DSE model and a principled ACE loss designed to handle incom-
pletely labelled data. Experiments demonstrated that our 3DSE model, along
with the ACE loss, can outperform both text mining and also more complex deep
models. These results indicate that our vision-based approach can be an effec-
tive means to better curate large-scale clinical datasets. Future work includes
evaluating our approach in other clinical scenarios, as well as investigating how
to harmonize text-mined features with our visual-based system.
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Abstract. Image segmentation is an essential step in biomedical image
analysis. In recent years, deep learning models have achieved significant
success in segmentation. However, deep learning requires the availability
of large annotated data to train these models, which can be challeng-
ing in biomedical imaging domain. In this paper, we aim to accomplish
biomedical image segmentation with limited labeled data using active
learning. We present a deep active learning framework that selects addi-
tional data points to be annotated by combining U-Net with an efficient
and effective query strategy to capture the most uncertain and repre-
sentative points. This algorithm decouples the representative part by
first finding the core points in the unlabeled pool and then selecting
the most uncertain points from the reduced pool, which are different
from the labeled pool. In our experiment, only 13% of the dataset was
required with active learning to outperform the model trained on the
entire 2018 MICCAI Brain Tumor Segmentation (BraTS) dataset. Thus,
active learning reduced the amount of labeled data required for image
segmentation without a significant loss in the accuracy.

Keywords: Deep learning · Active learning · Segmentation

1 Introduction

Image segmentation is a critical task in computer vision as it helps us understand
the image at a semantic level. While there have been various algorithms devised
to carry out semantic segmentation [1], deep learning models have become the
main choice because of their supreme performance and generalization [2,3]. The
recent advances in deep learning have motivated some encouraging works for
medical image segmentation [4–6] as well. But the deep learning models require
large volumes of training data, which can be difficult to collect. The problem
becomes more challenging for medical image segmentation as the data needs to
be labelled at a pixel level. Annotating the data can be tedious for the human
c© Springer Nature Switzerland AG 2019
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expert, thus, affecting the labeling accuracy. The limited number of domain
experts in medical imaging adds more challenge to the process of collecting
labelled data.

In biomedical imaging, domain expertise is required for labeling the data.
Thus, it is very important to get only those data points labeled which contribute
the most in the learning of the model. Active learning [7] is a paradigm that helps
in querying the labels of only the most informative data points. Two factors -
uncertainty and representativeness, define the informativeness of a data point.
When working with deep neural networks, a single query point is not enough to
fine-tune the weights of the model. Thus, pool-based strategies such as ranked
batch-mode sampling, exploration-exploitation [8] are commonly used with the
deep learning models. In past couple of years, there have been several efforts
in applying active learning for medical image segmentation. Suggestive Anno-
tation [9] is one of the initial frameworks for biomedical image segmentation
using deep active learning for the MICCAI 2015 gland challenge. It uses the
Fully Convolutional Network (FCN) and formulates the representativeness as
the maximum set-cover problem. In a similar way, Representative Annotation
[10] reduces the computational complexity of finding the most representative
points by first using agglomerative clustering and then applying the maximum
set-cover over each cluster. Both of these works require 50% of the labeled data.
In this work, we show that the amount of labelled data can be reduced further.

In our work, we focus on applying active learning for brain tumor lesion
segmentation from MR images by using a very limited amount of labeled data
and computation time. We hypothesize that the data required to train a machine
learning model can be reduced by selecting the training points intelligently, at a
cost of a reduced accuracy within a certain limit. To test this hypothesis, we used
the 2018 Brain Tumor Segmentation (BraTS) MICCAI challenge [11] dataset.
We also devised our own query strategy: A Coreset based Ranked Batch Mode
Sampling algorithm to reduce the computational cost of selecting the query
points, yet selecting the best ones. We used U-Net as the base deep learning
model to perform the lesion segmentation task. Figure 1 summarizes the entire
proposed deep active learning framework.

2 Methodology

The two major components of our framework are the deep learning model and
the query strategy. In this section, we will discuss them in detail.

2.1 Model Architecture

U-Net [6] is one of the first successful models used for medical image seg-
mentation. It is a classic encoder-decoder model, where the encoder captures
the spatial information into a reduced form using Convolutional Neural Net-
work (CNN). This is similar to any CNN model being used for classification,
which first encodes the important features and then uses them for classification.
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Fig. 1. Our active learning framework for MRI image segmentation. (1) The model
is trained on the labeled pool. (2) Find the (a) uncertainty and (b) representative
scores for the unlabeled pool using the trained model weights. (3) The query strategy
combines these scores (4) and yields the query points, (5) which are the annotated and
included in labeled pool. This process is repeated until required.

But U-Net uses these encoded spatial features to reconstruct an output of same
size as of input. This captures the semantic information by combining the high-
level features from the encoder feature maps with the decoder using skip con-
nections. We used a modified version of U-Net as explained in [12]. This model
uses a dice loss function. The dice loss function directly aims at maximizing the
dice coefficient metric, thus performing better for data with class imbalance.

2.2 Query Strategies

Query strategy is an essential part of active learning and is used to find the
most informative data points in the unlabeled pool. The two major factors that
determine the informativeness of a data point are uncertainty - the confidence
of the model in predicting the correct output of the unlabeled data point, and
representativeness - there should be minimal similarity between the query pool
and the labeled pool, as well as diversity within the query pool. There have been
various approaches used to estimate the uncertainty of the model, like classifi-
cation uncertainty and entropy based uncertainty. Exploration-exploitation [13],
batch-mode sampling [14] are some query strategies that also capture the repre-
sentativeness. We used uncertainty sampling, ranked batch mode sampling, and
proposed coreset based ranked batch mode sampling, as described below.

Uncertainty Sampling. Uncertainty sampling [15] is the most common and
one of the first query strategies. It is a classic stream-based selective sampling
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strategy that selects one query point at a time. Hence, it is more famous with
traditional ML models that can be fine-tuned by a single data point. But we
need a batch of data points with deep learning models. For this, all the points in
unlabeled pool are ranked according to their uncertainty and top n data points
with the highest uncertainty are sampled.

This algorithm uses the prediction of the model to capture the uncertainty.
There are three ways of doing this - least confidence, margin sampling, and
entropy. We used the least confidence approach for the experiments as it is
computationally cheap and yields good results empirically.

Ranked Batch-Mode Sampling (RBM). Uncertainty sampling is not the
best strategy to mine the most informative query points as it fails to capture the
representativeness. Batch Mode Active Learning (BMAL) [14] is a query strategy
that incorporates reprsentativeness into its selection strategy. BMAL has its own
drawbacks as discussed in [16]. Ranked batch-mode sampling algorithm describes
a novel way of sampling points, keeping the major factors of uncertainty and
representativeness in mind. It calculates the scores of the two factors and take
the weighted mean by maintaining a running ratio. The points in the unlabeled
pool are ranked based on this combined score. To increase the diversity in the
labeled pool, it selects those points from the unlabeled pool which don’t have
a high similarity with the labeled pool and the query pool, thus capturing the
intra- and the inter-diversity of the unlabeled pool as explained in Fig. 2. Initially,
the algorithm gives higher preference to the diversity factor, but as the sampling
continues, the weighting scheme (α) shifts to the uncertainty scores.

Fig. 2. (left) Ranked batch-mode sampling algorithm and (right) coreset based ranked
batch-mode sampling algorithm



152 D. Sharma et al.

Coreset Based Ranked Batch-Mode Sampling. The ranked batch-mode
algorithm [16] performs well because it captures both, uncertainty and repre-
sentativeness. But because of the exhaustive similarity computation between
the two pools, labeled and unlabeled, for selecting each query point, it slows
down the process and also requires a large amount of memory. We propose a
refined version of the ranked batch-mode algorithm by decoupling the step of
finding the representative points to capture intra-pool diversity and inter-pool
diversity. First, K-means is used to reduce the size of the unlabeled pool and
keep the most diverse points. The K is decided by using the following formula -
K = 0.8Nq + 0.2Nu, where Nq is the number of data points in the query pool
and Nu is the number of data points in the unlabeled pool. Then, we choose
the data points closest to the centroid of each cluster. The reduced pool is then
used to select the data points most dissimilar to the labeled pool and capture
the inter-diversity as shown in Fig. 2.

2.3 Training Process

We divided the available annotated data into two pools - labeled data and unla-
beled data to emulate the active learning process. The entire process was then
run as explained in Fig. 1. The model was trained on the labeled pool of data.
Predictions from the trained model are then used to determine the uncertainty
scores of the of the data points in the unlabeled pool. For the representativeness
computation, the encoder output of the same trained model was used to extract
the features of the data points of the two pools. The uncertainty scores and the
representativeness scores were then fed into the query strategy to find the most
informative points. The model was trained from scratch after including anno-
tated query points to the labeled pool. Also, the number of training epochs were
increased by 2 after each query to compensate for the increased training dataset
size. The batch-mode sampling techniques used Euclidean distance to determine
representativeness.

3 Data and Experiments

We used the 2018 Brain Tumor Segmentation (BraTS) MICCAI challenge
dataset to train and evaluate our algorithm. It consists of 210 cases of High
Grade Gliomas (HGG) and 75 cases of Low Grade Gliomas (LGG) along with
the ground-truth markings for the tumor. Each slice has been manually anno-
tated into 4 categories - enhancing tumor, tumor core, whole tumor, and the
background and normal brain pixels. Each case has 4 modalities - T1, T1 con-
trast enhanced (T1ce), T2 and FLAIR. The dataset is skull-stripped, interpo-
lated to the same resolution of 1 mm3, and registered to the same dimension of
240 × 240 × 155.

The data is randomly split into the train-validation-test parts in the ratio
of 80:10:10 on case level. The training data has 166 HGG and 62 LGG cases,
validation data with 22 HGG and 6 LGG cases, and testing data with 22 HGG
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and 7 LGG cases after the split. Each slice of the four modalities for every case
is normalized to have zero mean and unit variance. The tumor is present only in
a small part of the brain. The healthy voxels comprise 98% of total voxels,0.18%
belongs to necrosis, 1.1% to edema and non-enhanced, and 0.38% to enhanced
tumor. Patches of size 128 ∗ 128 ∗ 4 are randomly sampled from each slice after
eliminating the zero-intensity pixels to tackle this class-imbalance problem. This
populates the training data with 99,864 patches, validation data with
12,264 patches, and testing data with 12,702 patches.

Table 1. Experiments conducted and the hyperparameters setting for each experiment

Exp. no Model Training data
used

Hyperparameters

1 Vanilla U-Net 99k + patches Epochs = 40

2 U-Net with
uncertainty sampling

7k patches
(∼7% data)

Initial Epochs = 10
Initial pool size = 2k patches
Number of queries = 10
Patches labeled/query = 500

3 U-Net with RBM
sampling

15k patches
(∼15% data)

Initial Epochs = 10
Initial pool size = 9k patches
Number of queries = 10
Patches labeled/query = 600

4 U-Net with coreset
based RBM sampling

13k patches
(∼13% data)

Initial Epochs = 10
Initial pool size = 10k patches
Number of queries = 5
Patches labeled/query = 600

We conducted four experiments as in Table 1. First, we used the entire data
for training and trained the model for 40 epochs. In the second experiment,
we used uncertainty sampling as the query strategy, 7% of the training data,
and conducted 10 queries. In third experiment, ranked batch-mode sampling
was used as the query strategy using 15% of the data and required 10 queries.
Finally, we used the coreset based ranked batch mode sampling which used only
13% of the entire data and only 5 queries.

4 Results and Discussion

Table 2 presents the results for the experiments conducted. The Coreset based
Ranked Batch Mode sampling outperformed all the other methods with the dice
coefficient scores of 0.844 for whole tumor, 0.83 for tumor core, and 0.799 for
enhancing tumor with a reduced average query time of just 43 min. The Ranked
Batch Mode sampling gives somewhat closer results, but at a cost of greater
computation time and memory.
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Table 2. The dice coefficients for the three tumors for each experiment

Exp. no Model Whole tumor

dice coefficient

Tumor core

dice coefficient

Enhancing tumor

dice coefficient

Avg query

time

1 Vanilla U-Net 0.815 0.689 0.608 –

2 U-Net with uncertainty

sampling

0.802 0.724 0.727 –

3 U-Net with RBM sampling 0.829 0.812 0.788 1 hr 50mins

4 U-Net with coreset based

RBM sampling

0.844 0.83 0.799 43 mins

With our coreset based ranked batch-mode algorithm, we were able to achieve
better results with the limited labeled data (only ∼13%) and query computation
time. We have also tackled the much prevalent issue of class imbalance using
active learning: Our algorithm selects the under-represented data points to be
included in the labeled pool, thus reducing the imbalance as much as possible.
This is evident from the comparable dice coefficient scores of the three tumors for
our algorithm, versus the large difference in them when no active learning is used.
Also, the increased scores of the coreset based approach empirically validates the
fact that the points being selected are more informative as compared to using
the previous strategies. Furthermore, decoupling the selection steps of the intra-
pool and inter-pool diverse points yields a faster convergence as we require only
5 queries to reach the final accuracy scores, with average query time also reduced
by one hour.

Fig. 3. The test results for HGG (left) and LGG (right) cases.
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5 Conclusion and Future Work

In this paper, we presented a deep active learning based solution for MRI brain
tumor image segmentation. Our contributions are (1) a more efficient and effec-
tive query strategy, and (2) method to tackle the class-imbalance problem using
active learning. This improved the results as shown in Fig. 3 and Table 2 as our
algorithm is able to capture even the minute details of the enhancing tumor.
In future work, we will evaluate our framework with other datasets and explore
bayesian networks [17] which can provide a better estimate of uncertainty of the
unlabeled data points.
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Abstract. Semi-supervised learning methods have achieved excellent
performance on standard benchmark datasets using very few labelled
images. Anatomy classification in fetal 2D ultrasound is an ideal prob-
lem setting to test whether these results translate to non-ideal data.
Our results indicate that inclusion of a challenging background class
can be detrimental and that semi-supervised learning mostly benefits
classes that are already distinct, sometimes at the expense of more sim-
ilar classes.

Keywords: Semi-supervised learning · Fetal ultrasound

1 Introduction

Fetal ultrasound is the most widespread screening tool for congenital abnormali-
ties and is a key recommendation in the World Health Organization’s guidelines
for antenatal care [13]. Classification of standardized tomographic 2D planes is a
key step in nearly all screening exams. However, low image quality and shortage
of experts can compromise screening efficacy or in the least make quality het-
erogeneous across sites. To democratize care, several efforts have been made to
automate standard plane detection using deep learning [2–4,8]. However, many
of these methods still rely on large amounts of labelled data.

Because labelling is expensive, semi-supervised learning (SSL) methods have
become an active area of research, particularly for image data [9,14] and in
the medical domain [5]. Recent methods have achieved remarkable performance
by learning from unlabelled data. This added information can help to push
decision boundaries into lower density regions, resulting in better generalization.
Amidst this progress, Oliver et al. call for more “realistic evaluation” [10]. One
key concern is that benchmark datasets (e.g. CIFAR10, SVHN) do not reflect
realistic scenarios.

We study the use of SSL for standard plane classification in fetal ultra-
sound [2]. This task includes a challenging background class, class imbalance,
and different levels of inter-class similarity. In accordance with Oliver et al. we
demonstrate that supervised baselines can cope with surprisingly few labelled
images; that a background class can cause SSL to become detrimental; and that
SSL is effective for distinct classes, but can weaken performance on classes which
are prone to confusion.
c© Springer Nature Switzerland AG 2019
Q. Wang et al. (Eds.): DART 2019/MIL3ID 2019, LNCS 11795, pp. 157–164, 2019.
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2 Related Work

Automatic anatomy detection from ultrasound videos is a popular topic with
many successful approaches using convolutional neural networks [2]. Further
advancements have added multi-task learning to predict sonographer gaze [3] or
multi-scale networks to exploit lower and higher level features [8]. Some methods
have also studied the challenge of limited labelled data by pretraining on natu-
ral images [4]. However there has been little investigation into the use of SSL.
Exploring this avenue can reveal what benefits SSL can bring, and conversely,
what challenges remain for SSL in non-ideal data scenarios.

Recently, SSL methods have gained momentum. Underlying many of these
methods is a consistency loss which minimizes sensitivity to perturbations (in
input/weight space). Examples of perturbations include image augmentations,
gaussian noise, weight dropout [9], targeted augmentations [14], and mixup
augmentations (interpolation between images) [12]. Input perturbations have
been shown to minimize the input-output Jacobian (linked to better generaliza-
tion) [1]. Despite these advances, Oliver et al. point out that real unlabelled data
is likely to be more irregular than the perfectly balanced benchmark datasets.
It may also include out-of-distribution or confounding data that could hurt SSL
[11]. We aim to study the ways in which SSL might help in a real problem which
stands to benefit from SSL.

3 Methods

The architecture used in this study, Sononet [2], is a convolutional neural net-
work (similar to VGG) that has been tailored for the task of anatomical standard
plane detection in fetal ultrasound. It contains 15 convolutional layers, 4 max-
pooling layers, and ends with global average pooling. This acts as a strong fully
supervised baseline. Supervised methods are trained using Adam with a learning
rate of 1E-3. All models are trained for 50 epochs with a batch size of 32.

For the SSL method, we use the consistency loss employed in both the Π
model [9] and the unsupervised data augmentation (UDA) method [14] which
are among the state of the art for standard benchmark datasets. This consistency
loss uses the softmax predictions for unlabelled data, DU , as labels for the same
images under augmentations. This consistency loss can be formalized as

LKL(xu, w) = KL(f(xu;w)||f(x′
u;w)). (1)

This is added to the typical supervised (cross-entropy) loss with some pro-
portion λ (in all our experiments λ = 0.5). Note that the weights w are the
same for inference on both the original image xu (drawn from DU ) and the cor-
responding augmented image x′

u. In this case the augmentations include random
combinations of the following operations:

– Horizontal flipping
– Random contrast adjustment by a factor within [0.7, 1.3]
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– Random rotation by an angle within [−π
4 , π

4 ]
– Random cropping ranging from 1% to 20%

The same augmentation is applied to all methods, including supervised base-
lines. These augmentations are not specially tailored to the data as is the case in
UDA. For the best performance, UDA uses AutoAugment [6], a reinforcement
learning method that finds the optimal augmentation policies. This would likely
improve both SSL and fully supervised regimes. However, as shown in the results,
the scores of the supervised baselines are already very high with surprisingly few
labelled images; applying AutoAugment to both SSL and fully supervised meth-
ods may truncate the margin for potential improvement that we wish to study.
We include (a) training signal annealing (TSA), (b) confidence-based masking
(CBM), (c) entropy minimization, and (d) softmax temperature controlling [14].
Since these are proposed in [14], we refer to the combination of (i) the consis-
tency loss with (ii) these additional techniques, as UDA for simplicity and to
acknowledge their contributions.

TSA [14] uses a threshold, ηtsa, to mask the contribution of a given labelled
image, xl (drawn from DL), to the supervised gradient. Specifically, an example
only contributes to the gradient if the softmax probability in the ground truth
class is greater than the threshold, p(y∗|xl) > ηtsa. The threshold ηtsa starts at

1
#ofclasses and is increased to 1 following a linear, log, or exponential schedule
across the total number of epochs.

CBM [14] uses a confidence threshold on unlabelled images. An unlabelled
image only contributes to the consistency gradient if, max(p(y|xu)) > ηcbm. A
ηcbm of 0.75 is used for all SSL experiments.

Entropy minimization [7] is applied to p(y|x′
u), the prediction for an aug-

mented unlabelled image. Also the prediction for original unlabelled image is
sharpened by using a softmax temperature of 0.8.

Fig. 1. Distribution of the training data (a) and examples of standard views (b).
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3.1 Dataset

Our dataset contains 13 anatomical classes plus 1 background class. The entire
training dataset consists of 22757 images (class distribution shown in Fig. 1a).
For SSL, 100 images are extracted from each class to make up the labelled data
DL. The remaining images are treated as unlabelled data DU . Experiments are
performed using subsets of DL, specifically using 1, 5, 20, 50, and 100 images
per class. The test set follows the same distribution, but totals to 5737 images.
Each image is 224 × 288 pixels. These image frames are derived from a dataset
containing 2438 videos from over 2000 volunteers.

Examples of some of the classes are displayed in Fig. 1b. The cardiac classes
are among the most difficult to distinguish. While the spine and brain also
span multiple classes, these images are generally more clear and can have sig-
nificant pose differences (spine). The background class contains a diverse range
of images sampled from the videos (excluding frames of standard planes). All
extracted samples satisfy a minimum image-space distance between neighbour-
ing frames. This means that most background frames are extracted during rapid
probe movement and not when the sonographer slows down to home in on the
standard planes. However, some images that resemble standard planes still make
it through this näıve filtering approach. Also, the background class is larger than
any anatomical class (Fig. 1a). In short, the background class introduces class
imbalance; is not easily characterized by a single common feature; and contains
examples which resemble other classes.

3.2 Evaluation

Fully supervised methods are evaluated with 1, 5, 20, 50, and 100 labelled images
per class. Another experiment is performed using the entire labelled training
set (total 22757 images). The SSL framework is applied to the cases of 5, 20,
and 50 labelled images per class, where there is a large margin for potential
improvement. These cases represent a very feasible labelling task compared to
labelling all 22757 images.

Each evaluation is done with and without the background class. To measure
the impact of the background class on anatomical classes, accuracy is reported
only for the anatomical classes (not background). Accuracy is also reported with
a single merged cardiac class. In this case, any cardiac view that is classified as
any of the four cardiac views is considered correct. Comparing the overall and
grouped cardiac accuracies gives an indication of whether improvements extend
to the cardiac classes.

4 Results

Accuracy for fully supervised baseline methods is shown in Fig. 2. With only 20
labelled examples per class, overall accuracy is near 70% and grouped cardiac
accuracy is over 80%. All baselines are trained for 50 epochs and did not grossly
overfit (except for 1 image per class which was trained for 5 epochs).
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Fig. 2. Supervised baselines with varying number of labelled images per class. Inclusion
of the background class increases the difficulty of the classification task. Accuracy is
reported as either overall or grouping all cardiac classes into a single class.

When applying the SSL consistency loss, we find the performance is sensitive
to the consistency loss masking threshold, ηcbm. This is particularly true for
the cardiac classes. Table 1 compares the performance of different thresholds
for the cardiac classes. The threshold for all other classes remains constant at
0.75. A cardiac threshold of 0.25 gives best performance and is used for all further
experiments.

Table 1. Confidence mask threshold values for cardiac classes. These experiments use
20 labelled images per class and exclude the background class.

Method Cardiac confidence
mask threshold

Grouping cardiac Overall

Supervised N/A 0.868 0.720

Basic UDA ηcbm 0.849 0.665
1
2
· ηcbm 0.840 0.661

1
3
· ηcbm 0.905 0.728

1
4
· ηcbm 0.831 0.664

>1 (disabled) 0.631 0.631

UDA best configuration ηcbm 0.915 0.720
1
3
· ηcbm 0.936 0.754

Further experiments are performed with different UDA settings to find the
optimal configuration (Table 2). We find that a log TSA schedule gives the best
performance. Log schedules are suggested for cases when the network is less
likely to quickly overfit [14].
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Table 2. Different configurations for the case of 20 labelled images per class without
the background class.

Method Optimizer TSA schedule Grouping cardiac Overall

Supervised Adam: 1E-3 N/A 0.868 0.720

UDA Adam: 1E-3 Linear 0.905 0.728

Momentum: 1E-3 Linear 0.891 0.692

SGD cyclic: [7E-3, 5E-2] Linear 0.921 0.735

Adam: 1E-3 Log 0.936 0.754

SGD cyclic: [7E-3, 5E-2] Log 0.935 0.744

The best found configuration is then used with 5, 20, and 50 labelled images
per class, with and without the background class. Accuracies are reported in
Fig. 3.

Fig. 3. Overall and grouped cardiac accuracies with and without the background class
for 5, 20, and 50 labelled images per class. Red bars indicate supervised baseline per-
formance. Without the background class (green bars), SSL accuracy is almost always
above supervised baslines (red). Inclusion of the background class can cause SSL per-
formance to drop below supervised baselines. (Color figure online)

Confusion matrices are displayed in Fig. 4. SSL improves accuracy for distinct
classes such as brain, femur, kidney, and lips from mid 0.80 (a - supervised) to
mid 0.90 (b - UDA), which approaches the fully supervised performance shown
in (c). However, for cardiac classes, confusion is increased when using SSL.

5 Discussion

Similarly to Oliver et al. [10], we show that supervised baselines are surprisingly
accurate (Fig. 2). There is also a clear diminishing return of increasing the num-
ber of labelled images, which starts as early as 20 examples per class. Inclusion



Semi-supervised Learning for Fetal Ultrasound 163

(a) Supervised baseline (b) UDA (c) Supervised on all data

Fig. 4. Confusion matrices for the case of 20 labelled images per class without back-
ground. The supervised baseline (a) performs surprisingly well given the limited data.
SSL (b) is able to make considerable improvement for distinct classes, but can increase
confusion of cardiac classes. Even when trained on the entire labelled dataset (c), some
cardiac classes are prone to confusion.

of the background class decreases accuracy in almost all cases. This indicates
that the background class adds difficulty even in the fully supervised case.

Investigating sensitivity to confidence thresholds (Table 1), we see that 1
3 ·

ηcbm (0.25) is the only setting that improves both grouped cardiac and overall
accuracy for the basic UDA implementation. A value near 0.25 is reasonable
given that the network must divide its confidence over 4 very similar cardiac
classes. Even for the best UDA configuration, a threshold of 0.25 for the cardiac
classes makes a considerable difference; without it, overall accuracy does not
improve from the supervised baseline.

Figure 3 displays that without the background class (green bars), the SSL
regime can almost always improve upon the fully supervised baseline. The only
exception being the overall accuracy for 50 labelled examples. In this case the
supervised baseline is already quite high and any further improvement would
likely depend on the cardiac classes which the SSL method struggles with. In
contrast, the inclusion of the background class (blue bars), not only reduces the
accuracy of the fully supervised baselines, but tends to be harmful to the SSL
method. For most of the blue bars, the SSL method fails to match, let alone
surpass, the baseline accuracy. This illustrates the negative impact of including
confounding images in the unlabelled data. Again, the case with 50 labelled
examples is the exception. Perhaps 50 labelled examples is sufficient to capture
the majority of the variation in the background class, preventing it from having
a negative impact on the SSL loss.

While the SSL has been shown to increase both grouped cardiac and overall
accuracies, the confusion matrices in Fig. 4 clearly show that these improvements
are often at the expense of the cardiac classes. It seems unlabelled data can help
the network to learn when the classes are inherently more distinct, but can cause
harm when classes are inherently similar.
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6 Conclusion

Supervised baselines provide surprisingly reliable performance even in extremely
low data regimes (e.g. accuracy of 50% from only 5 labelled images per class).
Recent developments in SSL can further improve this performance. However,
having irregular data can cause SSL to be detrimental rather than beneficial.
Also, classes with high similarity, such as cardiac views, can see an increase
in confusion. For such classes, injecting domain knowledge (e.g. lowering car-
diac confidence thresholds) may be necessary to supplement a lack of labelled
examples.
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Abstract. Missing data is a common problem in machine learning and
in retrospective imaging research it is often encountered in the form of
missing imaging modalities. We propose to take into account missing
modalities in the design and training of neural networks, to ensure that
they are capable of providing the best possible prediction even when
multiple images are not available. The proposed network combines three
modifications to the standard 3D UNet architecture: a training scheme
with dropout of modalities, a multi-pathway architecture with fusion
layer in the final stage, and the separate pre-training of these pathways.
These modifications are evaluated incrementally in terms of performance
on full and missing data, using the BraTS multi-modal segmentation
challenge. The final model shows significant improvement with respect
to the state of the art on missing data and requires less memory during
training.

Keywords: Convolutional neural network · Glioma segmentation ·
Missing data

1 Introduction

Tumor segmentation is a key task in brain imaging research, as it is a prerequi-
site for obtaining quantitative features of the tumor. Since manual segmentation
by radiologists is time-consuming and prone to inter-observer variation, there is
a clear need for effective automatic segmentation methods. Research into these
methods for glioma has been accelerated by the recurring BraTS multi-modal
segmentation challenge on low-grade glioma (LGG) and glioblastoma (GBM)
[8]. The best performing methods in recent editions were all based on 3D convo-
lutional neural networks (CNNs) with the encoder-decoder shape of the UNet.

While the BraTS challenge focuses on improving performance, there are prac-
tical problems to overcome before automatic segmentation can be applied in

c© Springer Nature Switzerland AG 2019
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practice. One of these challenges is dealing with missing data. The BraTS bench-
mark contains four MR modalities: a T1-weighted image (T1W), a T1-weighted
image with contrast agent (T1WC), a T2-weighted image (T2W) and a T2-
weighted FLAIR image (FLAIR), which are co-registered so that corresponding
voxels in the image are aligned and a CNN can learn to segment a tumor from
the specific combination of modalities. Although these images are complemen-
tary, a radiologist is still able to perform a partial segmentation if one of these
modalities is missing, while for a CNN this is not guaranteed. Especially in retro-
spective and multi-center studies it is not unlikely that images are either missing
or have quality issues.

There are two ways in general to deal with the problem of missing data. The
most common way is to impute the missing values by an estimate, which can
be as simple as the mean value. More advanced techniques for missing image
imputation is to generate a new image from remaining modalities, which can be
achieved through neural networks [5,10].

However, it is also possible to train a CNN to be inherently robust to missing
data. The HeMis model [3] is an example of this, where the modalities are each
passed through a separate pathway before being merged in a so-called abstrac-
tion layer which extracts the mean and variance of the resulting features. This
network architecture enforces a shared feature representation of the modalities,
though it may be of additional value to include a similarity term in the loss
function to enforce a true shared representation [9].

1.1 Contribution

Building on the existing work on shared representations, we provide a careful
experimental evaluation of different aspects that make the network robust to
missing images. We evaluate four modifications to a state-of-the-art UNet archi-
tecture and evaluate their effect incrementally. A first adaptation is to train
with missing data in a curriculum learning approach. Secondly, a multi-path
architecture is evaluated where the information of different modalities is fused
in a later stage. Thirdly, within this architecture, a shared representation layer
is compared to a concatenation of feature maps. Finally, we propose a train-
ing procedure where each pathway is trained separately before combining them
and training the final classification layer. This approach enforces each path to
form an informative feature represenation. The separate training also reduces
the demand on GPU memory, which is the main bottleneck in state-of-the-art
segmentation networks. The modified architectures are compared to the baseline
architecture, in a situation where it is trained with the entire dataset but also
when it is specifically trained for each combination of modalities.
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Fig. 1. Illustration of the UNet architecture. The number of feature maps, as a function
of the parameter c, is indicated for each step. The fusion and shared representation
networks contain one UNet per modality, which are fused at the indicated location. M
indicates the number of input modalities and L the number of output labels. In this
study M = 4 and L = 4.

2 Methodology

2.1 Network Architecture

The 3D UNet architecture [2] is a well-established segmentation network and
still was one of the best performing architectures at the most recent 2018 BraTS
challenge [4]. Therefore the UNet forms the baseline for our research. One UNet
is trained on all modalities and evaluated with missing data, but also a dedicated
UNet is trained and evaluated for each specific combination of modalities. The
number of trainable parameters in the model depends on the number of feature
maps in each convolution, which we chose to parameterize by a single variable c.
The first convolution has c kernels, and as the size of the feature maps decreases
the number of kernels is increased. Figure 1 shows the UNet architecture with
the number of feature maps per convolution layer expressed as a multiple of c.

In the reference UNet architecture each 3D convolution block contains a
batch normalization, a 3D unpadded convolution layer with kernels of size 33,
and Leaky ReLu activation. The last fully connected layers are implemented as a
3D convolution with kernels of size 13. The downsampling step is a max-pooling
layer of stride 2 and size 23 and the upsampling is a tri-linear interpolation. For
this UNet architecture each target voxel has a receptive field of 883 voxels.

Modality Dropout. To make a network robust to missing data it needs to
train with missing data. To this end, a specific modality dropout scheme was
implemented which removes entire input channels (MR sequences) with a proba-
bility p. The features from missing sequences are removed by setting the input to
zero and scaling the other inputs by mo/M , where mo is the number of original
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input images and M is the number of remaining inputs. A curriculum learning
approach is used to aid convergence: starting from p = 0.125 the probability
of dropout is doubled every 50 epochs until it reaches p = 0.5. This method is
applied to directly to the input layer in the Dropout network, but also to the
fusion layers in the Multipath and SharedRep networks.

Multipath Network. In this approach the network has one pathway for each
of the M = 4 modalities and the feature maps of the final convolutional layer
are concatenated to an output of 8c channels in a fusion layer, which is where
the modality dropout is applied. The final prediction is performed again by a 13

convolution layer with 4c channels.
For a fair comparison it is important to consider the number of trainable

parameters, which scales quadratically with the number of channels per layer.
To create a multi-path network of the same size as a single reference network, the
UNets that form the pathways have half the number of channels per layer. As
the UNet was implemented with c = 32, the separate pathways are a quarter of
the size with c = 16. Note that whereas parameter size scales quadratically, the
memory usage scales approximately linear with the number of feature maps. The
multi-pathway networks (with M = 4) therefore require approximately twice the
amount of GPU memory during training compared to the single UNet.

Shared Representation. The Shared Representation (SharedRep) network is
a multi-path network with a specific fusion layer, based on the HeMIS model [3].
Instead of concatenating, the fusion layer takes the mean and variance of each
feature map and therefore encourages a common feature represenation between
the modalities. To enable fair comparison to the fusion network, the last layer
of each pathway has double the amount of feature maps (4c), leading to 8c
features in the fusion layer. The network is trained with modality dropout of the
pathways and the variance is set to zero if only a single pathway is available.

Pre-trained Paths. Pre-training the paths means that a UNet is trained for
each individual MR modality and the separate prediction layers are replaced
by one fusion layer. These are trained with modality dropout (p = 0.5), while
freezing the parameters of the single pathways. When fusing the pathways with
a shared representation layer, the final convolutional layers of the networks are
also replaced and trained in order to learn a new shared feature representation.
Using the pre-training scheme greatly reduces the demand on GPU memory, as
the pathways require a quarter of the memory of the whole network and half that
of the full UNet with c = 32. The combined training scheme took approximately
50% longer than without pre-training, though with parallel training of the paths
on separate devices it was even faster than the baseline.

2.2 Data and Preprocessing

The networks were trained and evaluated on the training set of the BraTS
challenge 2018 [1], which is a benchmark dataset of pre-operative scans of 278
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patients with low-grade glioma (LGG, 75) or glioblastoma (GBM, 203). The
images in this benchmark are skull-stripped, co-registered and resampled to a
size of 240 by 240 by 155 voxels. The target areas for evaluation are the whole
tumor, tumor core and enhancing core. The non-background voxels of each sepa-
rate image were normalized to zero mean and unit standard deviation. Random
patches of 1083 voxels were extracted, which correspond to 203 target voxels.
With a probability of 50% a patch was selected from a tumor area, meaning
that the center voxel was part of the tumor, and with 50% probability the cen-
ter voxel was located outside of the tumor but inside the brain.

2.3 Training and Evaluation

The networks were optimized with the Adam optimizer [6] and the cross-entropy
loss function. An epoch is defined as an iteration over 100 batches with 4 ran-
dom patches, and the models were trained for 150 epochs. For pre-trained path-
ways, the separate pathways and the final combination layer were trained for 100
epochs each. The dataset was divided into five cross-validation folds, so that 20%
of the subjects were always selected for testing and never used during training.
The folds are random, but the same for each experiment. Evaluation took place
on the whole image, although it was classified by the network in patches to limit
memory usage. To assess whether the models are indeed more robust to missing
data, we evaluated the same models in a situation where any combination of
sequences is removed.

2.4 Visualizing Shared Representations

To validate the concept of a shared representation layer in the context of missing
data, we would like to know whether the feature representation of such a layer
is indeed robust to missing data. We evaluated this in a qualitative way by
looking at the t-SNE [7] maps of the activations of the final fully connected
layer. Feature maps from the final fully connected layer were extracted for 40,000
random voxels originating from 16 random patches. A t-SNE map was computed
to map the 64-dimensional feature vectors to a 2D representation. These maps
can be interpreted as a representation of the distances between voxels in the
specific feature representation of each model. The same set of voxels was used
for both maps.

3 Results

Six networks were trained and evaluated in five-fold cross-validation and, as
an additional reference, a dedicated UNet was trained for each combination of
sequences. The results are summarized in Table 1. On the full dataset, the simple
UNet without dropout performs best, and every modification to the network
comes with a decreased performance in this case. For missing data scenarios,
the regular UNet suffers while the other networks are able to maintain a better
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performance. None of the networks is able to outperform a dedicated UNet
trained for each specific combination of sequences.

There is no architecture that consistently outperforms the others, though the
pre-trained multipath networks seem to perform best overall and especially on
cases with few available modalities. However, when considering performance on
the full dataset, the UNet baseline still performs best and the SharedRep model
without pretraining performs better than pretrained paths on the tumor core.
Training only with modality dropout greatly decreases performance on the full
dataset while only providing minor improvement on missing data.

Table 1. Numeric results in terms of mean Dice percentage on the three different
regions of interest. Color scales (see online) are adapted to each region, defined by the
best and worst results on that region.

3.1 t-SNE Visualizations

The resulting t-SNE representations are shown in Fig. 2 for the pretrained Multi-
path and SharedRep model. The predicted and true labels are highlighted in red,
showing that the mapped representation is meaningful to the network predic-
tion and ground truth. Also, the feature maps generated with missing data are
highlighted to see whether they lead to distinct feature representations. Whereas



Multi-modal Segmentation with Missing MR Sequences 171

the multipath fusion model maps the different missing data scenarios to specific
parts of the feature space, the shared representation model seems to have less
distinction between complete and incomplete data. This visualization supports
the notion that the shared representation layer does indeed lead to a feature
representation that is consistent, even when images are removed.

Fig. 2. t-SNE results for pretrained network with fusion by concatenation (left) and
shared representation (right). Specific subsets of the voxels are indicated in red. (Color
figure online)

4 Discussion and Conclusion

We have carefully evaluated different approaches for training a CNN to be robust
to missing imaging modalities, in the context of the BraTs multi-modal segmen-
tation challenge with four MR sequences. Applying modality dropout on the
input channels is a simple way to achieve some robustness, but it has a signifi-
cant impact on performance with full data. More advanced multimodal architec-
tures, with a separate pathway for each modality, give a better balance between
performance and robustness.

The pathways can be fused either through a simple concatenation or using
their statistical moments (mean and variance), thereby enforcing a shared fea-
ture representation. Although qualitative visual results show that the shared
representation layer forces the feature maps of different combinations of modali-
ties toward a common space, the performance results give no conclusive evidence
that it should be preferred over a simple concatenation. The pretraining of the
separate paths with a single modality seems to increase the performance mostly
in the more difficult cases with fewer modalities. It is also in these cases that a
dedicated UNet trained for the specific combination of modalities performs best
in comparison, showing that there is still room for improvement.

However, it must be noted that the performance achieved by multipath mod-
els do not match the best performance on the most recent BraTS training set,
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as measured on the full dataset. Further improvements on the UNet core are
expected to increase the performance further, on both full and partial datasets.

The evaluation in this paper has focussed on a systematic comparison of
model architectures with the same hyperparameters and size. However, the
demand on GPU memory is different between networks. The pre-training of
paths in the multipath networks drastically reduces the required memory, so
they could be trained with more channels per layer, a larger batch size, a larger
patch size or simply a less expensive GPU. It should be preferred for this reason
and for its consistent good performance with any combination of modalities.
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Abstract. Improving a semi-supervised image segmentation task has
the option of adding more unlabelled images, labelling the unlabelled
images or combining both, as neither image acquisition nor expert
labelling can be considered trivial in most clinical applications. With
a laparoscopic liver image segmentation application, we investigate the
performance impact by altering the quantities of labelled and unlabelled
training data, using a semi-supervised segmentation algorithm based on
the mean teacher learning paradigm. We first report a significantly higher
segmentation accuracy, compared with supervised learning. Interestingly,
this comparison reveals that the training strategy adopted in the semi-
supervised algorithm is also responsible for this observed improvement,
in addition to the added unlabelled data. We then compare different
combinations of labelled and unlabelled data set sizes for training semi-
supervised segmentation networks, to provide a quantitative example of
the practically useful trade-off between the two data planning strategies
in this surgical guidance application.

Keywords: Semi-supervised · Laparoscopic video · Image
segmentation

1 Introduction

Deep convolutional neural networks have been proposed to segment livers from
surgical video images [6], a significant step towards fully-automated computer-
assisted guidance for liver resection procedures. The automatically segmented
liver surfaces can be used to reconstruct anatomical structures for assisting real-
time navigation and for registering with preoperative 3D medical images, such as
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diagnostic CT or MR, to locate the target of operative interest. Precise image-
guidance has the potential to increase the number of patients that can be offered
laparoscopic liver resection over open surgery, thereby significantly reducing the
surgery-related stress and risk.

Further improving the segmentation accuracy may resort to more labelled
data or unlabelled data with semi-supervised learning. Like many other medical
image segmentation tasks, deep-learning-based approaches often require a sub-
stantial amount of labelled data for training, which rely on human experts with
specialised clinical knowledge and multidisciplinary experience. On the other
hand, acquiring more unlabelled image data from more patients or prolonging
procedures may have a significant impact on workflow and patient safety. There-
fore the data planning decision in relation to performance improvement needs
to be carefully considered.

Semi-supervised approaches have been successfully applied in medical image
segmentation [2,3,8]. However, comparing semi-supervised methods directly
with the supervised counterparts has to consider multiple factors, such as added
unlabelled data and a different network with its training strategy that is often
more complex and specific to application. We postulate that this could lead
to inconclusive correlation between confounding factors and the observed per-
formance improvement. Based on the ‘mean teacher’ method [11], which has
been adapted into several medical imaging applications [5,8], we decomposed
the effects into those caused by the change of network (training and architec-
tures) and those by adding unlabelled data. The mean teacher approach averages
model weights to produce perturbed predictions as pseudo labels for regularis-
ing the training [7], a strategy that can be applied with or without ground-truth
labels. In this work, we use the aforementioned surgical application as a real-
world example to provide a quantitative analysis of the performance impact on
the quantities of labelled and unlabelled training data.

Using real patient data from liver surgery cases, we summaries the contribu-
tions in this study as follows: (a) A statistically significant higher segmentation
accuracy is reported in terms of Dice score and Hausdorff distance, compared
with a previously proposed supervised method [6]; (b) We demonstrate the pos-
sibility that the change of training strategy specific to semi-supervised learn-
ing could result in significantly better segmentation results without adding any
labelled or unlabelled data; (c) We show that adding more unlabelled data poten-
tially can reach the improvement made with more labels, providing a practically
important quantitative basis for data planning decisions.

2 Method

2.1 Supervised Segmentation Network Architecture

To analyse the effect with different training data set sizes in this work, we con-
sistently use an exemplar neural network throughout our experiment, which is
adapted from a U-Net variant [1]. Like the original U-Net [9], it consists of a
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Fig. 1. U-Net architecture with multi-scale inputs (depth = 3).

Fig. 2. Mean teacher structure

downsampling path (encoder) and an upsampling path (decoder), with skip con-
nections added between the two paths. In addition, a multi-scale input image
pyramid is added at each encoder layer except for the bottom one. For the
decoder, the attention gate and deep supervision are omitted in this network for
faster training. The details of the network architecture are illustrated in Fig. 1.
The two-class Dice [10] with L2 regularization is adopted for classifying the
foreground pixels representing liver from the background pixels.

2.2 Semi-supervised Mean Teacher Training

Denote the labelled input as xl, with its label as yl, and the unlabelled input as
xu. Let xm = [xl;xu] be the mixed input. Two identical segmentation networks,
the student network f(xm, η1

m; θs) and the teacher network f(xm, η2
m; θt) are

illustrated in Fig. 2, with different input noise η and network weights θ.
During the training, the student network’s weights θs are optimized using

back-propagated gradients with respect to a regularised segmentation loss:

Ls = Ll(f(xl, η
1
l ; θs), yl) + λ Lu(f(xm, η1

m; θs), f(xm, η2
m; θt)),

where λ is a hyper-parameter balancing the contributions of a supervised loss
Ll and an unsupervised loss Lu, both based on the two-class soft Dice loss [10].
Ll measures the overlap between the prediction and the ground-truth label,
while Lu measures the discrepancy between student and teacher’s predictions.
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The teacher network is updated using exponential moving average (EMA): after
each training step, θt = αθt + (1 − α)θs, where α controls the smoothing.

One important mechanism of this method is adding noise ηi
l and ηi

u to labelled
and unlabelled image input, respectively, and ηi

m = [ηi
l ; η

i
u] for i ∈ {1, 2}. In

this work, we propose to use random affine transformation as the noise in the
spatial domain. We apply two independently-drawn affine transformations to
the input data as follows: one is applied to the student network input, with the
same transformation applied to the available labels for supervised loss; while the
second is composed with the first and applied to the teacher network input. The
second transformation is then applied to the student network’s prediction for
computing the unsupervised loss.

3 Experiment

3.1 Data Set

A total of 41,994 laparoscopic video frames, with a sampling rate of four frames-
per-second, were captured from a Storz TIPCAM 3D stereo laparoscope camera
in our experiment. These were from thirteen patients during six liver resection
and seven liver staging procedures, with informed consents obtained from all
patients, and the data collection was approved by our institutional research
ethics board. In addition, 2,209 images were selected on which, the regions of liver
were manually contoured by an expert clinical research fellow in General Surgery
to provide ground-truth segmentation labels. The annotation was performed in
NiftyIGI [4], resulting in 67, 156, 148, 168, 246, 180, 140, 260, 198, 178, 166,
144, 158 labelled frames for each patient respectively. The original size of frame
images were 1920×540 pixels in RGB channels with black borders on both sides.
For computational and memory efficiency, all images were linearly re-sampled to
128 × 384 for each channel after cropping out the border to 1660 × 540 pixels.

3.2 Network Implementation and Training

The depth of network was 4 and each network was trained for 10, 000 iterations
with a mini-batch size of 32, using the Adam optimizer with an initial learning
rate at 10−4. The weight of L2 loss was fixed to 10−5 throughout the experiments.
The network output has the same size as the re-sampled input image, larger than
81 × 21 used in previous work [6]. In the loss used in the mean teacher training,
λ = 0.1β with β increasing progressively, i.e. β = exp(−5(max(1− S

L , 0))2), where
S is the current training step and L = 1000 is the ramp-up length. The EMA
decay α was fixed to 0.99 during the initial ramp-up phase and 0.999 afterwards.
All networks were implemented in TensorFlow and trained using Nvidia Tesla
V100 general-purpose graphics process units on a DGX-1 workstation. To avoid
over-fitting the entire data set, all the reported hyper-parameter values were
configured empirically without extensive tuning.
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3.3 Evaluation

All experiment results reported in this paper were based on 13-fold leave-one-
patient-out cross-validations: for each fold, data from one patient was used for
evaluation and the network was trained on the remaining data. The predicted
binary masks representing segmentation were first re-sampled to 1660×540 and
then processed by filling the holes before evaluation. Commonly-adopted data
augmentation strategies for surgical video applications, including contrast and
brightness adjustment and standardization, were also used before feeding the
input data. The segmentation performance was measured by the Dice score and
the 95th-percentile Hausdorff distance. The reported Hausdorff distance is in
pixels and 100 pixels correspond approximately 1.5 mm to 6.0 mm, depending
on the typical object-to-camera distance range in this application.

To test different data set sizes, 2%, 10%, 25%, 50% and 100% of the labelled
data set were randomly sampled from each patients for semi-supervised networks,
while 0%, 6.25%, 25% and 100% of the unlabelled data set were sampled with
0% indicating the mean teacher models trained without unlabelled data, which
are fully supervised. A single network without the mean teacher model (here-
after referred to as the baseline supervised network) was also tested. In practice,
however, the availability of the labelled and unlabelled image data would be influ-
enced by other practical factors, such as cost and patient cohort sampling, and
is highly application-dependent. This controlled experiment was designed with
a simplified condition that excludes potential anatomical-variation-introduced
difference between patients and should be considered as the first step towards
a more comprehensive experiment design considering both inter- and intra-
patient variation. We also report the statistical significance using non-parametric
Wilcoxon signed-rank tests at a significance level of 0.05.

4 Result

Baseline Supervised Network (SL). The median Dice scores on 13 folds
from the baseline supervised network trained using all labelled images ranged
from 0.85 to 0.98 with a median of 0.95, compared with 0.78, 0.98 and 0.97
from the previous study [6], respectively. The difference was probably due to the
change of loss function and the adoption of the U-net variant. When varying
the quantity of the training (labelled) data from 2% to 100%, the segmentation
performance was improved, from 0.9250 to 0.9594 and from 137.00 to 91.61, for
Dice score and Hausdorff distance, respectively.

Mean Teacher (MT). The results for SL and MT with 100% unlabelled data
are given in Table 1. Both the medians of Dice score and Hausdorff distance from
MT were significantly better (both p-values < 0.001). The median Dice scores
on 13 folds ranged from 0.87 to 0.98, with a median of 0.97, therefore surpassed
the previous study [6] (p-value = 0.008). Examples are shown in Fig. 3.
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Table 1. Supervised model (SL) and mean teacher (MT) with all data.

Metric Method Median Mean Std Wilcoxon

Dice score SL 0.9594 0.8792 0.1819 9.27e−28

MT 0.9646 0.9032 0.1483

Hausdorff distance SL 91.61 148.23 166.86 4.40e−07

MT 81.49 137.57 163.16

Fig. 3. Two examples with ground truth (green) and the predictions of the supervised
model (blue) and mean teacher trained with all labelled and unlabelled data (orange).
(Color figure online)

Fig. 4. Supervised model and mean teacher with different quantities of labels.

Fig. 5. Supervised model (SL) and mean teacher (MT) with different quantities of
unlabelled data. The quantity of labelled data used is indicated in brackets.
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Mean Teacher with Different Labelled Data Set Sizes. The median Dice
scores for the MT models, trained with all available unlabelled data and different
quantities of labelled data, varied from 0.9332 to 0.9646. It consistently outper-
formed SL with the same labelled data set sizes sampled, as shown in Fig. 4. The
Hausdorff distance results also showed a consistent difference. In addition, a clear
overall trend for both segmentation metrics can be observed: the performance
improves as the number of labelled data increases.

Mean Teacher with Different Unlabelled Data Set Sizes. Median Dice
scores are plotted in Fig. 5 with the quantity of labelled data indicated in the
brackets. Without using any unlabelled data, MT generally outperformed SL;
with more unlabelled data, MT produced better segmentation in general, but it
was not monotonic. For instance, using 6.25% of unlabelled data improves MT
(10%) from 0.9438 to 0.9473 in terms of Dice score, but for MT (2%) the score
decreases from 0.9259 to 0.9202. This may be caused by (a) high correlation
between unlabelled data due to the nature of the procedure and the omitted
inter-patient variation (also discussed in Sect. 3.3); (b) the lack of optimised semi-
supervised training and hyper-parameter tuning, which was not pursued further
for the purpose of this work. Practically important, perhaps more interesting,
results can be found to quantify the trade-off between the labelled and unlabelled
data. For example, using 100% unlabelled data, MT (50%) reached a Dice score
of 0.9611 which was higher than SL (100%), 0.9594, depicting a scenario in which
more unlabelled data achieve a comparable performance as adding labels would.

5 Conclusion

The quantified differences showed in this work, such as the improvement due to
more labelled and/or unlabelled data, are useful in developing machine learn-
ing applications that in turn assist clinical procedures. To summarise, we have
shown a statistically significant improvement in segmenting liver from laparo-
scopic video images using a semi-supervised mean teacher method. Whilst adding
more labelled data generally improves the segmentation, it is possible to use more
unlabelled data, instead of labelling more data, to achieve comparable level of
segmentation accuracy. To the best of our knowledge, it is the first time these
conclusions are presented with quantitative evidence based on real patient data.

These results, however, should be interpreted with the limitations of the
experiment design due to practical constraints. We suspect that non-optimised
semi-supervised training and sampling intra-patient variation, also discussed in
Sects. 3.2 and 3.3, respectively, are possible reasons for the perturbing segmen-
tation performance as unlabelled data increase, which limited potentially larger
improvement. Nevertheless, the reported high segmentation accuracy warrants a
high applicability of these presented models for clinical use. Thus, the statistical
significance found in the performance changes, measured on independent test
data, suggest potential clinical value in planning data for training these semi-
supervised models. These experiments produced a set of quantitative results, on
which future work can be built to answer further multidisciplinary questions.
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Abstract. Image modality recognition is essential for efficient imag-
ing workflows in current clinical environments, where multiple imaging
modalities are used to better comprehend complex diseases. Emerging
biomarkers from novel, rare modalities are being developed to aid in such
understanding, however the availability of these images is often limited.
This scenario raises the necessity of recognising new imaging modalities
without them being collected and annotated in large amounts. In this
work, we present a few-shot learning model for limited training examples
based on Deep Triplet Networks. We show that the proposed model is
more accurate in distinguishing different modalities than a traditional
Convolutional Neural Network classifier when limited samples are avail-
able. Furthermore, we evaluate the performance of both classifiers when
presented with noisy samples and provide an initial inspection of how
the proposed model can incorporate measures of uncertainty to be more
robust against out-of-sample examples.

Keywords: Brain imaging · Modality recognition · Few-shot
learning · Triplet loss · Uncertainty · Noise

1 Introduction

In recent decades, many useful imaging biomarkers have emerged from multiple
imaging modalities such as CT, PET, SPECT and MRI (and its many sub-
modalities) to assist with differential diagnosis, disease monitoring and measur-
ing the efficacy of pharmaceutical treatments. Diagnostic workflows and clini-
cal trials have therefore become dependent on the simultaneous use of multiple
modalities to augment the clinical understanding of complex diseases. This diver-
sity of imaging modalities creates complexity for image archival systems such as
PACS, VNAs and cloud-based solutions, and the institutions or businesses that
use them.

Classification of modalities and sub-modalities is important for efficient imag-
ing workflows, a particularly difficult problem in MRI as the many distinct sub-
modalities are not differentiated in a simple and consistent manner by image

c© Springer Nature Switzerland AG 2019
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header information. For example, the use of contrast enhancing agents is a field
often accidentally omitted or improperly populated in DICOM headers, meaning
the use of a contrast enhancing agent can only be determined from the features
of the image itself. In molecular imaging, an increasing variety of radioligands
are being developed for monitoring different disease processes with each having
distinct patterns of uptake or deposition. A human expert can easily distinguish
them by their distinct visual features, however, scanner, vendor and center-
specific idiosyncrasies in sequence implementation result in inconsistencies in
DICOM header information that make automatic classification from DICOM
headers alone highly challenging.

Due to the importance of the visual features of the images to classify, the
problem lends itself to Convolutional Neural Networks (CNNs), which have
proved to be highly successful at achieving near human-level performance at
classifying images based on visual features [2]. A challenge to using CNNs for
this kind of application is that they require large volumes of annotated data,
which can be difficult to obtain for novel imaging biomarkers or rare modalities.
For example, in a clinical trial utilising a novel imaging biomarker, it might be
difficult to collect more than a handful of examples of the associated imaging
sequence at startup. However, during the course of the trial, thousands of images
may be acquired, requiring specific expertise to properly classify each sequence.
Few-shot learning techniques offer a solution to creating robust classifiers from
a limited amount of training data.

In this paper, we propose a few-shot learning model based on Deep Triplet
Networks, capable of capturing the most relevant imaging features that enable
the differentiation between modalities even if the amount of training examples
is limited.

2 Methods

2.1 Data

We collect a brain imaging dataset that consists of 7 MRI sequences (T1, T2,
post-contrast T1, T2-FLAIR, PD, PASL and MRA), CT and FDG-PET imag-
ing, sourced from several public datasets that include brain scans from healthy
and diseased individuals. We consider two categories for these modalities: base
modalities, that includes T1, T2, CT and FDG-PET, and are the most abun-
dant and have the most distinctive imaging traits; and few-shot modalities, which
includes T1-post, T2-FLAIR, PD, PASL and MRA modalities.

To train and evaluate the models, we extract 2D slices by sampling a normal
distribution centered around the middle slice of the brain along the sagittal,
coronal and axial axes. We sample 30874 slices of T1, 231759 of T2, 18541 of
CT, 15432 of FDG-PET, 8017 of T1-post, 9828 of T2-FLAIR, 8370 of PD, 5321
of PASL and 8462 of MRA images. We used 70% for training, 10% for evaluation
and 20% for test.
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2.2 Deep Triplet Networks

We approach the few-shot learning problem with Triplet Networks [4]. A Triplet
Network is a type of metric learning algorithm designed to learn a metric embed-
ding φ(x) and a corresponding distance function d(x, x′) induced by a normed
metric, so that given a triplet of samples (x, x+, x−) and a similarity measure
r(x, x′) that satisfies r(x, x+) > r(x, x−), the learned distance function satisfies
d(x, x+) < d(x, x−). In essence, Triplet Networks learn to project samples in a
embedding space in which similar samples are closer and dissimilar samples are
farther apart with respect to a normed metric.

Fig. 1. A Deep Triplet Network takes an anchor, a positive and a negative sample,
computes their embeddings with a deep CNN and then learns a distance function that
satisfies the similarities between the samples of the triplet.

In our experimental setting, which corresponds to a multi-class image classi-
fication problem, the similarity measure r(x, x′) is defined by the labeling of our
samples, that is, r(x, x′) = 1 if x and x′ belong to the same class and r(x, x′) = 0
if x and x′ belong to different classes. We define our distance function using the
L1 normed metric as follows:

d(x, x′) = ||φ(x) − φ(x′)||1 (1)

where φ(x) is implemented with a deep CNN, hence the Deep Triplet Networks
naming. Typically, the samples of the triplet (x, x+, x−) are referred to as anchor,
positive and negative; the anchor and positive samples belong to the same class,
while the negative sample belongs to a different class. A diagram of a Deep
Triplet Network is depicted in Fig. 1.

2.3 Triplet Loss with Online Hard-Mining

The loss used to train Deep Triplet Networks, referred to as triplet loss, is defined
as follows:

L(x, x+, x−) = max(d(x, x+)−d(x, x−)+m, 0)+λ(||x||2+ ||x+||2+ ||x−||2) (2)
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where m is a margin that controls how much farther apart do we want the
negative sample to be with respect to the anchor and positive sample, and λ
is an hyperparameter that controls the amount of L2 norm penalization of the
embedding vectors.

We implement an online hard-mining triplet loss, which has been shown to
be more efficient and help convergence [5]. Instead of computing the embeddings
on the whole training set in an offline fashion and then mine the hard triplets,
which satisfy d(x, x−) < d(x, x+), we compute the embeddings on a mini-batch
of B images and then create a valid triplet with the hardest positive and the
hardest negative for each anchor within that mini-batch [3]. We choose a batch
size of B = 64 as it provides a good balance between memory demand and a
number of samples large enough to mine valid triplets among a variety of classes.

2.4 Pipeline for Image Classification with Deep Triplet Networks

We propose a pipeline for medical image volume classification based on Deep
Triplet Networks. The pipeline, shown in Fig. 2, starts with a preprocessing and
slice sampling step that normalizes the orientation and image intensities of the
volume and samples slices along the acquisition plane, emphasizing the sam-
pling density around the FOV center. Each slice is then passed through a CNN
that consists of a ResNet-50 [1] initialized with pre-trained weights from Ima-
geNet and trained with the triplet loss previously described. Then, the embed-
ding vectors extracted per slice are projected to a lower-dimensional space using
Principal Component Analysis (PCA), in order to remove the noisy components
of the embedded representation [6]. The PCA-projected embeddings are then
clustered with a Gaussian Mixture Model (GMM) via expectation maximisation
(EM). Unlike other clustering algorithms, such as k-means, a GMM is capable
of capturing non-spherical cluster structures and provides estimates of the like-
lihood of a sample belonging to the model due to its probabilistic nature. We
set the number of components of the GMM equal to the number of classes, and
create a cluster to label mapping function by assigning to each cluster the most
common class. From a GMM we can extract the posterior probability of each
slice, that is, the probability that a sample came from each of the components of
the mixture. We leverage that property to implement a hard decision function in

Fig. 2. Diagram of the end-to-end pipeline for image classification with Deep Triplet
Networks
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which each slice is assigned the class with maximum probability, and the volume
is classified by majority voting.

3 Experiments

3.1 Hyperparameter Search

We use grid-search to obtain the optimal parameters of the model. The hyper-
parameters and options selected to optimize the network architecture are:

– Optimizer: ADAM, SGD with Nesterov momentum.
– Learning Rate: 1e−3, 1e−4, 1e−5.
– Learning Rate Decay: use a exponential decay with a decay rate of 0.9 every

1000 steps or not use decay.

The best performance was obtained when using SGD with Nesterov momentum
as optimizer, a learning rate of 1e−3 and learning rate decay. We set in all
experiments L2 and L1 regularization of weights to 1e−5 and 1e−6 respectively,
the margin m of the triplet loss to 2, the L2 penalization of the embeddings
λ to 0.05, and the dimension of the embedding space to 64. We also perform
random left-right and up-down flips as data augmentation. This configuration is
used to evaluate the performance of the proposed model in all the subsequent
experiments.

Furthermore, for each set of experiments, we evaluate the PCA projector
using different number of projection components in order to select the best
configuration. After evaluating the results, we select PCA with 9 components.
The GMM is configured so that each component has its own general covariance
matrix.

3.2 Few-Shot Learning

We compare the performance of our proposed Triplet Network (TN) classifier
against a standard CNN classifier when training with all the available data (exp1)
and training with restrictions on the number of slices of the few-shot classes
(exp2). In the latter, we restrict the number of slices of the few-shot classes
to only 150 slices, which corresponds to 10 volumes from which 5 slices have
been sampled for each of the 3 orthogonal axes. The CNN classifier is based
on the same architecture and pre-trained weights than the TN classifier, plus a
fully-connected layer to directly predict the class from the imaging data.

In Table 1 we present the class-wise average of the precision, recall and F1-
score, and the balanced accuracy for both experiments. The standard CNN clas-
sifier performs considerably well when trained with all the available data, but is
unable to capture the relevant imaging traits of the few-shot classes when the
training data is scarce. However, the TN classifier is able to produce an embed-
ding space (Fig. 3) that separates the modalities into distinct clusters, allowing
a better classification despite the under-representation of some classes.
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Table 1. Classification metrics of the Triplet Network classifier (TN) and the standard
CNN classifier (CNN). B: base classes; F: few-shot classes.

Model Precision(B) Recall(B) F1-score(B) Precision(F) Recall(F) F1-score(F) Accuracy

CNN classifier

- exp 1

0.98 0.99 0.9875 0.966 0.924 0.944 0.953

TN classifier -

exp 1

1 0.938 0.965 0.89 0.996 0.93 0.971

CNN classifier

- exp 2

0.782 0.995 0.887 1 0.332 0.396 0.626

TN classifier -

exp 2

0.92 0.967 0.942 0.816 0.702 0.746 0.819

Fig. 3. Representation of the embedding space using the first three principal compo-
nents of the evaluation embedding’s projection on experiment 1 (left) and experiment 2
(right). Orange: T2, brown: T1, blue: CT, red: FDG-PET, purple: T2-FLAIR, yellow:
T1-post, green: PD, pink: MRA, cyan: PASL. (Color figure online)

3.3 Robustness Against Noise

We measure the robustness of both classifiers when the dataset is corrupted
with additive gaussian noise and salt and pepper noise. We consider the scenario
where the model has been trained with data that has been randomly corrupted
by noise and tested with corrupted samples (exp3), and the scenario where the
model has been trained with curated data but is also tested with corrupted
samples (exp4). Further, we also analyze the performance when limiting the
number of instances of the few-shot classes in both exp3 and exp4, as described
in the previous section.

In Table 2 we show the class-wise average of the precision, recall and F1-score,
and the balanced accuracy for the experiments where the data is corrupted with
additive gaussian noise and salt and pepper noise. When the noise applied is
additive gaussian, in both experiments and both scenarios (with and without
limiting few-shot classes), the TN classifier outperforms the CNN classifier, thus
providing a more robust model. As expected, when the model has observed
samples corrupted with noise during the training process the performance is
better than when the training data is all curated. In the experiment using salt
and pepper noise, when we use randomly corrupted samples during training the
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CNN classifier performs better than the TN classifier, but the results of the
network decrease considerably when the few-shot classes are limited, while our
proposed model is able to maintain a good performance. Both networks achieve
bad results when are trained with curated data and tested with samples with
salt and pepper noise. It is interesting to observe that the performance of the
CNN classifier is similar with both types of noise, while the TN classifier has
decreased substantially its performance when the noise used is salt and pepper.

Table 2. Classification metrics of the few-shot classifier (Triplet) and the standard
CNN classifier (Baseline) when trained with data corrupted noise (exp3) and trained
with curated data but tested with corrupted volumes (exp4). B: base classes; F: few-
shot classes.

Model Precision(B) Recall(B) F1-score(B) Precision(F) Recall(F) F1-score(F) Accuracy

Noise Gaussian

CNN classifier

- exp 3

0.99 0.987 0.987 0.956 0.93 0.938 0.955

TN classifier -

exp 3

0.992 0.947 0.97 0.888 0.942 0.902 0.97

CNN classifier

limit - exp 3

0.815 0.997 0.887 1 0.328 0.4 0.625

TN classifier

limit - exp 3

0.942 0.965 0.952 0.658 0.62 0.622 0.773

CNN classifier

- exp 4

0.85 0.742 0.735 0.964 0.478 0.638 0.596

TN classifier -

exp 4

0.992 0.687 0.787 0.754 0.774 0.682 0.737

CNN classifier

limit - exp 4

0.725 10.817 0.732 0.742 0.194 0.29 0.47

TN classifier

limit - exp 4

0.927 0.67 0.765 0.634 0.678 0.588 0.673

Model Precision(B) Recall(B) F1-score(B) Precision(F) Recall(F) F1-score(F) Accuracy

Noise Salt and pepper

CNN classifier

- exp 3

0.982 0.985 0.982 0.946 0.916 0.93 0.947

TN classifier -

exp 3

0.96 0.9375 0.945 0.658 0.738 0.668 0.827

CNN classifier

limit - exp 3

0.765 0.99 0.87 0.914 0.31 0.384 0.625

TN classifier

limit - exp 3

0.932 0.952 0.94 0.782 0.75 0.756 0.839

CNN classifier

- exp 4

0.832 0.612 0.647 0.822 0.522 0.576 0.561

TN classifier -

exp 4

0.912 0.49 0.6325 0.798 0.562 0.538 0.53

CNN classifier

limit - exp 4

0.785 0.505 0.602 0.616 0.26 0.25 0.47

TN classifier

limit - exp 4

0.722 0.49 0.545 0.64 0.396 0.448 0.44
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3.4 Investigation of Uncertainty Measures

We investigate the use of the estimated log-likelihood of a sample on the GMM
model as a measure of uncertainty. To do so, we obtain a minimum log-likelihood
threshold by taking the 1st percentile over the training data, which corresponds
to a value of −12.44, and compare such threshold with the estimated log-
likelihood of samples: (a) that come from one of the classes on our dataset;
(b) that come from classes not represented in our dataset (e.g. volumes with
binary masks or derived images).

In Fig. 4 we can see examples of the proposed experimental setting. We
observe that a sample from a class represented in the dataset (in our case, a
T1 volume from the test split) presents a log-likelihood value above the pro-
posed threshold. However, samples from classes not represented in the dataset
(concretely, a segmentation map, a filtered image and a probability map) have
a log-likelihood value lower than the proposed threshold.

This basic observation serves as an initial validation of the possibility of hav-
ing uncertainty estimates using the combination of a Deep Triplet Network and a
GMM model, thus having the capability of discerning out-of-sample modalities.

Fig. 4. Three samples of classes not represented in our dataset and a T1 slice, with
their corresponding log-likelihood.

4 Conclusions

We have provided evidence that Deep Triplet Networks are a viable solution for
modality classification in a few-shot setting. The proposed model, when trained
with 30 times less instances of the rarer classes, surpasses substantially the per-
formance of a CNN classifier trained under the same conditions. We have also
concluded that the creation of an embedding space following a triplet network
strategy increases the robustness against noise when compared to a standard
CNN classifier. This is due to the fact that the results are not remarkably altered
when the data is corrupted, regardless of whether the model has been trained
with all the available samples or limiting the number of instances. Finally, we
have explored the use of log-likelihood estimates of our model as a measure
of uncertainty by evaluating such measure on samples not belonging to our
dataset. We have found that this measure can effectively serve as an initial basis
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for uncertainty estimation, hence it can make our model more robust to unseen
examples. This observation is preliminary and further investigation and devel-
opment is required. Future work will focus on this topic, as well as extending
the proposed model to alternative problems, such as disease staging.
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Abstract. Obtaining large amounts of annotated biomedical data to
train convolutional neural networks (CNNs) for image segmentation is
expensive. We propose a method that requires only a few segmentation
examples to accurately train a semi-automated segmentation algorithm.
Our algorithm, a convolutional neural network method for boundary
optimization (CoMBO), can be used to rapidly outline object boundaries
using orders of magnitude less annotation than full segmentation masks,
i.e., only a few pixels per image. We found that CoMBO is significantly
more accurate than state-of-the-art machine learning methods such as
Mask R-CNN. We also show how we can use CoMBO predictions, when
CoMBO is trained on just 3 images, to rapidly create large amounts of
accurate training data for Mask R-CNN. Our few-shot method is demon-
strated on ISBI cell tracking challenge datasets.

Keywords: Biomedical image segmentation · Few shot learning ·
Convolutional neural network

1 Introduction

Convolutional neural networks (CNNs) have recently been used to automate
the segmentation of biomedical images [3], enabling an increase in the speed
and accuracy of diagnosis, histology, and cell image analysis. However, creating
segmentation training data for CNNs is a time intensive process requiring expert
human annotation by clinicians or scientists. Thus, there is a need for methods
to reduce the annotation burden by (1) drastically decreasing the amount of data
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required to accurately train CNNs for segmentation, or (2) semi-automating the
segmentation process while requiring minimal expert annotation. Recently, a
novel method was proposed for using CNNs to improve segmentation accuracy
by optimizing the task of tracing the boundary of objects in biomedical images
[9]. This work found that using CNNs for optimizing boundary tracing accuracy
better ensured contiguity of segmented regions and resulted in hyper-accurate
cell segmentations. A unique aspect of the boundary optimization method is that
the number of training examples obtained from a training image and its mask
is equal to the number of pixels on the boundary of any object in the image.
This is because the input to the CNN for boundary optimization is a small patch
of the training image centered around any pixel on the boundary of an object,
and the output is the prediction of the relative pixel displacements of the next
m pixels in the trace (see Fig. 1, right panel). Thereby, a single segmentation
training example can potentially yield hundreds or thousands (depending on the
image size) of training examples for the task of boundary optimization. In this
work, we investigated whether this property of boundary optimization could be
leveraged to create accurate CNN-based segmentation methods for tasks (1) and
(2) above with using only a few training images.

Contributions:

– We show that our Convolutional neural network method for boundary
optimization (CoMBO) can be used to accurately segment biomedical images
using just 3 training examples. To make predictions, this method requires an
extremely minimal amount of human annotation, i.e., a single pixel per object.

– Provide a comparison of CoMBO with Mask R-CNN [3] and U-net [8].
– We show that CoMBO predictions can be used to rapidly create accurate

training data for Mask R-CNN. The Mask R-CNN model trained on CoMBO
predictions is just as accurate as a Mask R-CNN model trained on human
annotations.

Related Work (Few-Shot Learning): Our work is related to the task of
training a method for image segmentation with only a few training examples,
i.e., few-shot learning. Unlike the task of one or few-shot image classification,
the concept of one or few-shot image segmentation is relatively new [2,5,6,10].
Importantly, many previous methods for few-shot segmentation have been devel-
oped with a large margin of error and for multiple classes, since the focus has
not been on biomedical imaging. Shaban et al. [10] created the first one-shot
semantic segmentation network. Many few-shot segmentation techniques rely on
using pre-trained networks [2,6], which may not be as applicable to medical
imaging datasets. Other few-shot techniques consider multi-class segmentation,
thus leveraging the existence of multiple images (one per class). Michaelis et al.
[5] created a one-shot segmentation algorithm in clutter, but their method is
best suited towards an instance where there is only one target in the image to
segment, while there may be many targets to segment in a biomedical image.
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2 Methods

In contrast to previous few-shot segmentation learning approaches, our method
does not use transfer learning or pre-training. By formulating the learning task as
a boundary optimization task, we naturally create many image-label pairs upon
which to train a CNN for our algorithm. Our method modifies a previously
developed CNN-based algorithm for object tracing described in [9].

The input to the CNN is a 64× 64 patch of an image with a previously
‘traced’ boundary overlaid (Fig. 1, left panel). The CNN itself consists of three
repeating blocks, each of which has 3 3× 3 convolutional layers followed by a
max-pooling layer. The final layer is an 8× 8 convolutional layer. The number
of filters for each repeating block is 32, 64, and 128, while the final layer has
60 filters. The output of the CNN is the next predicted 30 pixel horizontal
and vertical displacements of the boundary relative to the center of the image
(Fig. 1, middle). These horizontal and vertical displacements are then overlaid
on the image as the cell boundary (Fig. 1, right panel cyan). A key modification
we make to the algorithm in [9] is that we use the predicted displacements to
move the trace multiple steps instead of one step at a time. This has resulted in
higher accuracies, since the algorithm can ‘skip’ over problematic areas, while
also speeding up forward passes by an order of magnitude. We do this by using a
Bresenham line to connect the predicted pixel locations, thus ensuring a smooth
outline of a cell. The number of steps to trace at each iteration is treated as a
hyper-parameter selected using the validation data.

Fig. 1. Schematic of the tracing algorithm. Weak annotation shown as a red dot. The
CNN takes as input the black patch, returns the next m predicted pixel locations,
which are overlaid on the image in cyan. (Color figure online)

To trace an object in an image, we first choose an initial trace location
(Fig. 1, left panel, red dot). In previous work [9] this initialization point was
determined via output from other convolutional neural networks (U-Net). Due
to the inaccuracies of such estimations in the few-shot setting, we instead utilize
weak annotations provided by the user, namely a single pixel on the boundary of
each object. Although annotating full segmentations for each object is laborious,
clicking on an initial starting location for each object in an image is relatively
quick and simple: for a dataset with approximately 25–30 objects per image, we
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were able to provide starting locations for approximately 12 images in 8 min.
Once the initialization is begun, we pass the 64 × 64 image patch around the
starting location through the CNN.

The forward pass on an image consists of (i) choosing an initial location (weak
annotation by the user), (ii) iteratively using the CNN to trace the outline of the
object, and (iii) stopping the iteration when the trace is greater than a certain
length and the final pixel predictions are within a small distance to the initial
pixel location.

One natural question arising from this algorithm is what happens for non-
ideal tracing patterns? There are two such possible cases: either the CNN predicts
a trace in the direction it just came from, or the trace deviates far from the true
object boundary. We generate training data to always train counter-clockwise to
ensure that traces do not go back in the direction they came from. We use a large
patch size and, more importantly, predict the next thirty pixel displacements.
By predicting multiple steps ahead, we can ‘skip’ areas in which the tracing
algorithm might go awry. By including an adequate level of image context via a
large patch size, the true boundary location is usually included in the image patch
being passed to the CNN and the prediction can direct the trace back toward
the boundary. We have not experienced a trace going off-course, but we include
Supplementary Figure S1 which shows that the CNN predicts a trajectory that
recovers from an initial pixel location off the boundary.

3 Experiments

Data: We evaluated our methodology on two grayscale light microscopy image
data sets from the ISBI cell tracking benchmarks [4,11]: (1) GFP-GOWT1 mouse
stem cells (Fluo-N2DH-GOWT1), and (2) Glioblastoma-astrocytoma U373 cells
(PhC-C2DH-U373). From each data set, we used k images for training, 1 image
for validation, and tested on the remaining images. Images from these datasets
were prepared by zero-padding with 32 pixels (to ensure 64× 64 patches for the
CNN could be generated at the edge of the image). We found that this simplifies
the algorithm in [9], which used symmetric padding, by helping to keep the trace
away from the padded region when it reaches the edge of an image. Only images
that had corresponding masks were used for training, validation, and testing
(8 images for the GFP-GOWT1 dataset and 34 images for the U373 dataset).
We performed 5-fold cross-validation for all experiments. In order to reduce
stochasticity associated with initial pixel locations for the traces, the results
from CoMBO are reported as the mean of 10 random initial locations for each
object boundary. We perform the following series of augmentations at random
to produce 48 augmented images per training image: up-down flips, left-right
flips, rotations between −45◦ and 75◦, shears between −10◦ and 30◦, Gaussian
blurring, and additive Gaussian noise.

Evaluation Metrics: Several metrics are used to assess the accuracy of our
segmentations, since recent work showed that altering evaluation metrics can
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vastly change how algorithms are ranked [7]. To evaluate the accuracy of both the
semantic segmentation and predicted cell morphology we calculated the Jaccard
score, Dice Similarity Coefficient, Hausdorff distance, and mean surface distance
(MSD).

Baseline: We compare the performance of our approach to Mask R-CNN, a
well known method for instance segmentation [3]. Although Mask R-CNN is not
formulated specifically for few-shot learning, we use it as a baseline comparison
because there are not many other published few-shot segmentation algorithms.
Moreover, Mask R-CNN is one of the best-performing benchmark segmentation
algorithms. To make Mask R-CNN more adept at the few-shot segmentation
task, we start training Mask R-CNN from weights that were pre-trained on
imagenet [1]. We fine-tuned Mask R-CNN for each dataset and k-shot experiment
for 400 epochs.

4 Results

We consider few-shot learning on 1, 3, and 5 training images. For each of these
sets, an additional image is used for validation. We compare results with a pre-
trained Mask R-CNN fine-tuned on the same number of images. Figure 2 displays
the median (± standard deviation) of the Jaccard scores and mean surface dis-
tances (MSD) for the GFP-GOWT1 dataset and the U373 dataset.

For the GFP-GOWT1 dataset, we found that CoMBO performs significantly
better for all k-shot experiments in both Jaccard score and MSD. Further-
more, we observe lower standard deviations in the CoMBO model, implying
that CoMBO was much less sensitive to the choice of training data. CoMBO was
especially better at predicting accurate cell morphology in the few-shot setting,
as reflected in the MSD and Hausdorff metrics. The evaluation metrics (Jaccard,
Dice, MSD, and Hausdorff Distance) are reported for the GFP-GOWT1 dataset
in Supplementary Table S1.

For the U373 data, we found that CoMBO was significantly better than Mask
R-CNN using just 3 images for training (Fig. 2, right). Moreover, the CoMBO
algorithm appears to reach convergence in Jaccard scores (and MSD) with only
5 images, i.e., training on more images did not appear to improve segmentation
accuracy.

Since CoMBO is a semi-automated method, we investigated whether it could
be used to rapidly generate data that was accurate enough to train Mask R-CNN.
If CoMBO predictions are accurate enough for this purpose, then it would show
that it could be used to effectively take the human out of the loop, eliminating the
need for any human annotation. To test this, we used the 3-shot trained CoMBO
that had the median Jaccard score for the U373 dataset to predict masks for the
remaining images (approximately 30 images). We note that this would require
minimal human annotation for each image, i.e., one pixel on the boundary of
each object to initialize the predicted trace. We then generated masks from the
CoMBO traces and used these data to train Mask R-CNN. We found that Mask
R-CNN trained on data from CoMBO traces was able to achieve similar accuracy



CoMBO for Few Shot Learning 195

Fig. 2. Median Jaccard scores (top) and mean surface distances (bot-
tom) for the GFP-GOWT1 dataset (left) and the U373 dataset (right).
Blue=CoMBO, Red = Mask R-CNN, and the dashed black line represents Mask
R-CNN retrained on images traced by CoMBO. Error bars denote standard deviation,
outliers (*) were removed from standard deviation calculations. (Color figure online)

as using ground-truth masks (Fig. 2, right). These results suggest that CoMBO
can be used to quickly and accurately annotate large datasets for fully automated
machine learning methods. Figure 3 displays an example segmentation from the
U373 testing set for 3-shot Mask R-CNN (left), 3-shot CoMBO (middle), and the
Mask R-CNN trained on CoMBO-generated trainined data (right). This example
shows how using the predicted masks from the 3-shot CoMBO to train Mask
R-CNN is able to fix the false positives and improve both the Jaccard score and
MSD.

Few-shot segmentation results for the U373 dataset are shown in Table 1 for
all four accuracy metrics we considered. At all k-shot levels, CoMBO performed
significantly better in the Hausdorff distance and MSD metrics. Mask R-CNN
had a higher Jaccard and Dice scores for 1-shot segmentation. However, CoMBO
had significantly higher Jaccard and Dice scores when trained on 3 and 5 images,
and on the full dataset. Similar results for the GFP-GOWT1 dataset are reported
in Supplementary Table S1.
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Fig. 3. An example image from the U373 test set for the 3-shot Mask R-CNN (left), 3-
shot CoMBO (middle) and Mask R-CNN trained on CoMBO-generated images (right).
Green=Ground Truth, Blue=Mask R-CNN, Red=CoMBO. Orange arrows highlight
areas in which CoMBO is more accurate. The 3-shot Mask R-CNN had difficulty accu-
rately segmenting cells, both by having false positive cells and inaccurately segmenting
the leftmost cell. (Color figure online)

Table 1. Performance of algorithms on the testing set averaged over five train/val/test
data splits for CoMBO and Mask R-CNN for the U373 dataset. Bold denotes the best
score within each k-shot experiment.

k-shot Method Jaccard score
mean (std)

Dice
coefficient
mean (std)

Mean surface
distance mean
(std)

Hausdorff
distance
mean (std)

1-shot Mask 0.8192 0.8986 7.3651 137.3790

R-CNN (0.01796) (.01780) (0.4886) (11.9108)

CoMBO 0.7866 0.8754 3.4096 36.0004

(.05795) (.03905) (1.1970) (12.0755)

3-shot Mask 0.8434 0.9135 5.2904 97.1921

R-CNN (0.007609) (0.01078) (1.7850) (48.9499)

CoMBO 0.8679 0.9276 1.9130 25.0281

(0.01906) (0.01172) (0.4637) (5.7986)

5-shot Mask 0.8451 0.9140 4.7925 81.9223

R-CNN (0.01645) (0.003871) (2.4530) (60.8722)

CoMBO 0.8745 0.9313 1.9041 24.0791

(0.02126) (0.01369) (0.3538) (5.7986)

Full Mask 0.86278 0.9246 2.6368 30.1077

R-CNN (0.01924) (0.01430) (1.6806) (18.8510)

CoMBO 0.8914 0.9416 1.5586 18.5223

(0.01831) (0.01057) (0.2866) (2.0231)

Retrained 0.8685 0.9294 1.7458 14.0817

Mask R-CNN



CoMBO for Few Shot Learning 197

5 Discussion

We found that our CoMBO algorithm for image segmentation is able to achieve
accurate segmentations with 3 or fewer training images. We speculate that
CoMBO is able to achieve high accuracy with a few training images because
it transforms a small training data set, i.e., a few image/segmentation pairs,
into thousands of training examples for a boundary optimization CNN task. It
does so at the cost of requiring minimal user input, i.e., clicking a single pixel
on the boundary of each object in an image. However, we also found that the
predicted segmentations from CoMBO were accurate enough to create training
data for Mask R-CNN [3], a fully automated segmentation method. The accu-
racy of Mask R-CNN trained on CoMBO data matched the use of ground-truth
data.

Future work will include extending CoMBO to multi-class segmentation and
also augmenting this method to handle instance segmentation, perhaps by using
Mask R-CNN predictions as an additional channel for each patch input to the
CNN. Using other few-shot algorithms to determine a starting location along
the cell boundary would also enable a fully-automated few-shot segmentation
learning approach.
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Abstract. Brain MR image segmentation is a key task in neuroimag-
ing studies. It is commonly conducted using standard computational
tools, such as FSL, SPM, multi-atlas segmentation etc, which are often
registration-based and suffer from expensive computation cost. Recently,
there is an increased interest using deep neural networks for brain
image segmentation, which have demonstrated advantages in both speed
and performance. However, neural networks-based approaches normally
require a large amount of manual annotations for optimising the mas-
sive amount of network parameters. For 3D networks used in volumetric
image segmentation, this has become a particular challenge, as a 3D net-
work consists of many more parameters compared to its 2D counterpart.
Manual annotation of 3D brain images is extremely time-consuming and
requires extensive involvement of trained experts. To address the chal-
lenge with limited manual annotations, here we propose a novel multi-
task learning framework for brain image segmentation, which utilises a
large amount of automatically generated partial annotations together
with a small set of manually created full annotations for network train-
ing. Our method yields a high performance comparable to state-of-the-
art methods for whole brain segmentation.

1 Introduction

Magnetic resonance imaging (MRI) plays an important role in human brain stud-
ies due to its good performance on presenting anatomy, pathology and function
of the brain. Accurate segmentation of brain MRI scans is a prerequisite for mea-
suring volume, thickness and shape of brain structure, which allows researchers
to track and study the development, ageing and diseases of the brain [1]. Brain
image segmentation is a time-consuming process when conducted manually,
which typically takes several hours for a single subject. Therefore computational
tools including FSL [2], SPM [3], MALP-EM [4] etc have been developed to auto-
matically segment brain MRI scans and to enable large-scale population-based
c© Springer Nature Switzerland AG 2019
Q. Wang et al. (Eds.): DART 2019/MIL3ID 2019, LNCS 11795, pp. 199–206, 2019.
https://doi.org/10.1007/978-3-030-33391-1_23
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imaging studies. Most of these computational tools segment the scans by per-
forming linear and nonlinear registration between a manually annotated brain
atlas and a target scan and then propagating the atlas. Despite the efficiency
they bring, these tools still suffer problems such as expensive computational cost
and potential failures in image registration. Furthermore, strict pre-processing
steps including brain stripping and bias correction are required to improve the
reliability of these computational tools.

Neural networks have been explored and widely used for brain segmentation
in recent years. Comparing to conventional brain image segmentation pipelines
that are registration-based, network-based methods use pairs of images and man-
ual annotations to train a discriminative model for inferring the segmentation
of a new scan. Such difference brings a few advantages: (i) pre-processing can
be potentially simplified [5]; (ii) processing time is significantly reduced with-
out sacrificing the segmentation accuracy. Segmenting brain with network-based
models also has drawbacks as these models require massive amount of annotated
data for model training. The limited amount of annotations for brain images has
become one of the biggest challenges for applying neural networks to brain image
segmentation.

Previous works have been exploring ways for training image segmentation
networks with limited annotations. A common approach is to fine-tune a pre-
trained network from large image datasets like ImageNet [6]. In [7], an encoder-
decoder model is pre-trained with auxiliary labels generated by FreeSurfer and
then fine-tuned with an error corrective boosting loss. In [8], a multi-task image
segmentation model is investigated to learn features that can be shared between
MRI scans of different parts of human body. Generative adversarial networks
(GANs) are adopted in [9] for data augmentation, which indicates a better per-
formance than conventional augmentation methods.

Here we propose a novel brain image segmentation network, which leverages
a massive set of automatically generated partial annotations (sub-cortical seg-
mentations from FSL) for network pre-training and then perform transfer learn-
ing onto a small set of full annotations (manual whole brain segmentations).
Compared to [7], our method is conducted in 3D but with less convolutional

Fig. 1. Two-stage training scheme: Stage 1: pre-training; Stage 2: joint training.
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layers. We demonstrate how features learnt from partial annotations in the source
domain can be adapted to the target domain. With very limited annotations,
our method achieves a performance comparable to state-of-the-art methods for
brain image segmentation.

2 Method

Our work adopts a two-stage training scheme as illustrated in Fig. 1. Stage 1
pre-trains the segmentation network using a large set of automatically generated
partial annotations. Stage 2 fine-tunes the network by jointly training on partial
annotations and a small set of full annotations.

2.1 Pre-training with Partial Annotations

In this work, partial annotation refers to segmentation that only covers part
of the brain structures. In our case, it refers to segmentation of 15 sub-cortical
structures automatically generated by FSL. Full annotation refers to segmenta-
tion of whole brain structures manually annotated by human experts, which is a
superset of partial annotation and consists of 138 structures. Since partial anno-
tations are automatically generated, it is easy to acquire many of them. On the
other hand, acquiring full annotations is more difficult as it requires extensive
manual labour.

A 3D U-Net is employed for pre-training on partial annotations, using cate-
gorical cross-entropy as the loss function,

L = −
∑

v

gwl (v) log pwl (v) (1)

where pwl (v) is the the predictive probability of partial segmentation belonging
to class l at voxel v and gw(v) is the probability of it belonging to its actual
class.

Fig. 2. Network architectures used in stage one and two training.
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2.2 Joint Training with Full Annotations

We employ a multi-task learning framework for the second stage. The encoder
is consistent with the architecture used in the first stage. Two decoders are
used, so that the two tasks (partial segmentation and full segmentation) can be
jointly trained. We refer our method as the multi-output network (MO-Net).
The encoder and both decoders are loaded with the pre-trained parameters.
Multi-output design encourages the encoder to learn shared features for partial
segmentation and full segmentation. The partial segmentation used for joint
training is extracted from the full segmentation, which are manual segmentations
of the whole brain. Since manual segmentations have always been considered as
‘gold standard’ and should be more reliable than segmentations from automatic
tools, the trained MO-Net should also be able to provide more accurate partial
segmentation than the one trained in the first stage. The multi-output design
given in Fig. 2 is similar to the one described in [5], which allows the network
to learn jointly from two segmentation maps in order to achieve more accurate
prediction and to have the potential to provide segmentation output for various
annotation protocols. However, the difference is that we use a modified U-Net
instead of ResNet and FCN adopted in [5], and our network is loaded with the
parameters learnt from the pre-training stage.

A weighted loss that combines the overall loss of two decoders of MO-Net for
joint training is formulated as,

LMO−Net = −
∑

v

λsg
s(v) log psm(v) −

∑

v

λwgw(v) log pwl (v) (2)

where psm(v) is the predictive probability of full segmentation belonging to class
m at voxel v and gs(v) is the probability of it belonging to its actual class. λs

and λw are the weights for overall loss function. To balance between the learning
tasks for partial segmentation and full segmentation, we assign 0.5 to both losses
in the overall loss function.

3 Experiments and Results

3.1 Datasets

UK Biobank Dataset (UKBB). 4,000 MRI brain scans from the UK Biobank
are used. Automatic sub-cortical segmentations of 15 regions by FSL are used
as partial annotations for pre-training.

Hammers Adult Atlases (HAA). The HAA dataset [10,11] contains brain
atlases for 20 subjects with manual annotations for 67 regions. The dataset is
split into 5/2/13 for training, validation and test.

MICCAI 2012 Multi-atlas Labelling Challenge (MALC). The MALC
dataset [12] contains MRI scans from 30 subjects (15 subjects for training) with
manual annotations for the whole brain for 138 regions and 132 regions are used
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for performance evaluation. The dataset also includes 5 follow-up scans, but
they are excluded in our work. The dataset is split into 15/2/13 for training,
validation and testing.

The manual annotations from the HAA and MALC datasets are regarded as
ground truth in evaluation.

3.2 Preprocessing and Training

The typical brain image resolution is 2563, with isotropic spatial resolution of
1 mm3. All images were rigidly registered to MNI space and normalized to zero
mean and unit standard deviation. For training the network, 3D patches of size
1283 were randomly drawn from the brain images. Batch size was set to 1 due to
the limitation of GPU memory. Random elastic deformation was applied to the
3D patches for data augmentation. Cropping and augmentation were performed
on-the-fly. Adam optimiser with a starting learning rate of 0.001 was used for
both stages of network training. Leaky rectified linear unit (LeakyReLU) with
a negative slope of 0.01 is applied as the activation function. For the proposed
method, pre-training was ran for 3 epochs and joint training was ran for 200
epochs. We also trained a standard U-Net as a baseline method for comparison.

3.3 Results

We evaluated the performance of MO-Net in terms of Dice score. For comparison,
two versions of U-Nets were trained, one trained from scratch (U-Net (FS))
and the other fine-tuned (U-Net (FT)) on MALC and HAA respectively. For
evaluating whole brain segmentation performance on MALC, we also compared
our result to SLANT8 and SLANT27 [13], which is based on fine-tuning 8 and
27 3D U-Nets pre-trained with 5111 subjects for different locations of brain.

As shown in Tables 1 and 2, our method outperformed the U-Net trained
from scratch by 26% on MALC dataset and 19% on HAA dataset. MO-Net also
shows slight improvements over fine-tuned U-Net, SLANT8 and SLANT27 on
both MALC and HAA datasets. We further compared to QuickNAT [7] on the
same 25 brain structures as in their paper on the MALC dataset. The result
is given in Table 3. MO-Net outperformed the fine-tuned U-Net, SLANT8 and
SLANT27 by a small margin, although the performance is inferior to QuickNAT.

Table 1. Whole brain segmentation
accuracy on MALC.

Method Dice (mean± std)

U-Net (FS) 0.623± 0.095

U-Net (FT) 0.782± 0.043

SLANT8 [13] 0.768± 0.011

SLANT27 [13] 0.776± 0.012

MO-Net 0.785±0.070

Table 2. Whole brain segmentation
accuracy on HAA.

Method Dice (mean± std)

U-Net (FS) 0.706± 0.032

U-Net (FT) 0.821± 0.019

MO-Net 0.843±0.037
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Table 3. Segmentation accuracy for 25 structures on MALC.

Method Dice (mean± std)

U-Net (FS) 0.775± 0.035

U-Net (FT) 0.809± 0.021

SLANT9 [13] 0.817± 0.036

SLANT27 [13] 0.823± 0.037

QuickNAT [7] 0.901± 0.045

MO-Net 0.838± 0.049

Table 4. Segmentation accuracy for 15
sub-cortical structures on MALC.

Method Dice (mean± std)

U-Net (FS) 0.649± 0.145

U-Net (FT) 0.835± 0.062

FSL 0.637(9 failed)± 0.216

MO-Net 0.826± 0.029

Table 5. Segmentation accuracy for 15
sub-cortical structures on HAA.

Method Dice (mean± std)

U-Net (FS) 0.612± 0.103

U-Net (FT) 0.874± 0.053

FSL 0.763± 0.043

MO-Net 0.879±0.091

For sub-cortical segmentation, we compared our result to FSL FIRST and
U-Net. The proposed method MO-Net shows similar Dice score performance to
fine-tuned U-Net and it is better than FSL and U-Net trained from scratch. The
result is shown in Tables 1 and 4.

A box-plot of Dice scores comparing MO-Net with U-Net trained from scratch
and fine-tuned on HAA for 8 brain structures is given in Fig. 3 showing the
improvement of adopting our method. A qualitative result of whole brain and
sub-cortical segmentation from MO-Net is given in Fig. 4, which shows better
segmentation accuracy for certain structures comparing with U-Net and FSL
(Table 5).

The result has demonstrated that a CNN-based model pre-trained with par-
tial segmentation can achieve better accuracy for whole brain segmentation. The
performance of MO-Net in terms of Dice scores is comparable to 3D U-Net based
approaches in [13] on MALC with less strict training data, although inferior to
[7] probably due to the deeper network they adopted. We believe the perfor-
mance of our approach has the potential to be improved with a more advanced
CNN design in the future. In general, multi-task learning helps the model to
improve the generalization and in our case, to learn features shared by partial
segmentation and full segmentation, which can possibly make our encoder more
robust. Such claim would need more experiments to prove in the future.
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Fig. 3. Box-plot of Dice scores of MO-Net, U-Net fine-tuned and U-Net trained from
scratch on HAA for 8 brain structures on the left hemisphere.

Fig. 4. Visual inspection of whole brain segmentation and sub-cortical segmentation
on MALC: Ground truth of full (a) and partial (d) brain segmentation from the
expert, full (b) and partial (e) brain segmentation from MO-Net, full (c) segmentation
from fine-tuned U-Net, and sub-cortical (f) segmentation from FSL. Red arrows indict
regions where MO-Net looks consistent with manual annotations and outperforms other
methods. (Color figure online)

4 Conclusion

In this paper, we propose a method that combines transfer learning and multi-
task learning to address the small data learning problem. Our method takes



206 C. Dai et al.

advantage of existing automatic tool to create a large set of partial annotations
for model pre-training which has been demonstrated to improve segmentation
accuracy. The preliminary result on whole brain segmentation shows a good
potential of the proposed method.
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Abstract. Deep convolutional neural networks have driven substantial
advancements in the automatic understanding of images. Requiring a
large collection of images and their associated annotations is one of the
main bottlenecks limiting the adoption of deep networks. In the task
of medical image segmentation, requiring pixel-level semantic annota-
tions performed by human experts exacerbate this difficulty. This paper
proposes a new framework to train a fully convolutional segmentation
network from a large set of cheap unreliable annotations and a small
set of expert-level clean annotations. We propose a spatially adaptive
reweighting approach to treat clean and noisy pixel-level annotations
commensurately in the loss function. We deploy a meta-learning app-
roach to assign higher importance to pixels whose loss gradient direction
is closer to those of clean data. Our experiments on training the net-
work using segmentation ground truth corrupted with different levels of
annotation noise show how spatial reweighting improves the robustness
of deep networks to noisy annotations.

1 Introduction

Skin cancer is one of the most common type of cancers, and early diagnosis is
critical for effective treatment [10]. In recent years, computer aided diagnosis
based on dermoscopy images has been widely researched to complement human
assessment. Skin lesion segmentation is the task of separating lesion pixels from
background. Segmentation is a nontrivial task due to the significant variance in
shape, color, texture, etc. Nevertheless, segmentation remains a common pre-
cursor step for automatic diagnosis as it ensures subsequent analysis (i.e. classi-
fication) concentrates on the skin lesion itself and discards irrelevant regions.

Since the emergence of fully convolutional networks (FCN) for semantic
image segmentation [5], FCN-based methods have been increasingly popular
in medical image segmentation. Particularly, U-Net [9] leveraged the encoder-
decoder architecture and applied skip-connections to merge low-level and high-
level convolutional features, so that more refined details can be preserved. FCN
and U-Net have become the most common baseline models, on which many
different proposed variants for skin lesion segmentation were based. Venkatesh
et al. [14] and Ibtehaz et al. [3] modified U-Net, designing more complex residual
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connections within each block of the encoders and the decoders. Yuan et al. [17]
and Mirikharaji et al. [6] introduced, in order, a Jaccard distance based and
star-shape loss functions to refine the segmentation results of the baseline mod-
els employing cross-entropy (CE) loss. Oktay et al. [7] proposed an attention
gate to filter the features propagated through the skip connections of U-Net.

Despite the success of the aforementioned FCN-based methods, they all
assume that reliable ground truth annotations are abundant, which is not always
the case in practice, not only because collecting pixel-level annotation is time-
consuming, but also since human-annotations are inherently noisy. Further,
annotations suffer from inter/intra-observer variation even among experts as the
boundary of the lesion is often ambiguous. On the other hand, as the high capac-
ity of deep neural networks (DNN) enable them to memorize a random labeling
of training data [18], DNNs are potentially exposed to overfitting to noisy labels.
Therefore, treating the annotations as completely accurate and reliable may lead
to biased models with weak generalization ability. This motivates the need for
constructing models that are more robust to label noise.

Previous works on learning a deep classification model from noisy labels
can be categorized into two groups. Firstly, various methods were proposed to
model the label noise, together with learning a discriminative neural network.
For example, probabilistic graphical models were used to discover the relation
between data, clean labels and noisy labels, with the clean labels treated as latent
variables related to the observed noisy label [12,16]. Sukhbaatar et al. [11] and
Goldberger et al. [2] incorporated an additional layer in the network dedicated
to learning the noise distribution. Veit et al. [13] proposed a multi-task network
to learn a mapping from noisy to clean annotations as well as learning a classifier
fine-tuned on the clean set and the full dataset with reduced noise.

Instead of learning the noise model, the second group of methods concen-
trates on reweighting the loss function. Jiang et al. [4] utilized a long short-term
memory (LSTM) to predict sample weights given a sequence of their cost val-
ues. Wang et al. [15] designed an iterative learning approach composed of a noisy
label detection module and a discriminative feature learning module, combined
with a reweighting module on the softmax loss to emphasize the learning from
clean labels and reduce the influence of noisy labels. Recently, a more elaborate
reweighting method based on a meta-learning algorithm was proposed to assign
weights to classification samples based on their gradient direction [8]. A small
set of clean data is leveraged in this reweighting strategy to evaluate the noisy
samples gradient direction and assign more weights to sample whose gradient is
closer to that of the clean dataset.

In this work, we aim to extend the idea of example reweighting [8] explored
previously for the classification problem to the task of pixel-level segmentation.
We propose the first deep robust network to target the segmentation task by con-
sidering the spatial variations in the quality of pixel-level annotations. We learn
spatially adaptive weight maps associated with training images and adjust the
contribution of each pixel in the optimization of deep network. The importance
weights are assigned to pixels based on the pixel-wise loss gradient directions.
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A meta-learning approach is integrated at every training iteration to approxi-
mate the optimal weight maps of the current batch based on the CE loss on
a small set of skin lesion images annotated by experts. Learning the deep skin
lesion segmentation network and spatially adaptive weight maps are performed
in an end-to-end manner. Our experiments show how efficient leveraging of a
small clean dataset makes a deep segmentation network robust to annotation
noise.

2 Methodology

Our goal is to leverage a combination of a small set of expensive expert-level
annotations as well as a large set of unreliable noisy annotations, acquired from,
e.g., novice dermatologists or crowdsourcing platforms, into the learning of a
fully convolutional segmentation network.

FCN’s Average Loss. In the setting of supervised learning, with the
assumption of the availability of high-quality clean annotations for a large
dataset of N images and their corresponding pixel-wise segmentation maps,
D : {(X(i), Y (i)); i = 1, 2, . . . , N}, parameters θ of a fully convolutional seg-
mentation network are learned by minimizing the negative log-likelihood of the
generated segmentation probability maps in the cost function L:

L(X,Y ; θ) = − 1
N

ΣN
i=1

1
P

Σp∈Ωi
yp log Pr(yp|xp; θ) (1)

where P is the number of pixels in an image, Ωi is the pixel space of image
i, xp and yp refer, in order, to the image pixel p and its ground truth label,
and Pr is the predicted probability. As the same level of trust in the pixel-level
annotations of this clean training data annotations is assumed, the final value
of the loss function is averaged equally over all pixels of the training images.

FCN’s Weighted Loss. As opposed to the fully supervised setting, when the
presence of noise in most training data annotations is inevitable while only a
limited amount of data can be verified by human experts, our training data
comprises of two sets: Dc : {(Xc(i), Y c(i)); i = 1, 2, . . . ,K} with verified clean
labels and Dn : {(Xn(i), Y n(i)); i = 1, 2, . . . ,M � K} with unverified noisy
labels. We also assume that Dc ⊂ Dn. Correspondingly, we have two losses, Lc

and Ln. Whereas Lc has equal weighting, Ln penalizes a log-likelihood of the
predicted pixel probabilities but weighted based on the amount of noise:

Lc(Xc(i), Y c(i); θ) = − 1
P

Σp∈Ωi
yc

p log Pr(yc
p|xc

p; θ), (2)

Ln(Xn(i), Y n(i); θ,W (i)) = −Σp∈Ωi
yn

p wip log Pr(yn
p |xn

p ; θ) (3)

where wip is the weight associated with pixel p of image i. All the weights
of the P pixels of image i are collected in a spatially adaptive weight map
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W (i) = {wi1, . . . , wip, . . . , wiP }, and weight maps associated with all M noisy
training images Xn are collected in W = {W (1), . . . ,W (M)}.

Model Optimization. The deep noise-robust network parameters θ are now
found by optimizing the weighted objective function Ln (as opposed to equal
weighting in (1)) on the noisy annotated data Dn, as follows:

θ∗ = arg min
θ

ΣM
i=1Ln(Xn(i), Y n(i); θ,W (i)). (4)

Optimal Spatially Adaptive Weights. The optimal value of unknown param-
eters W is achieved by minimizing the expectation of negative log-likelihoods in
the meta-objective function Lc over the clean training data Dc:

W ∗ = arg min
W, W�0

1
K

ΣK
i=1Lc(Xc(i), Y c(i); θ∗(W )). (5)

Efficient Meta-training. Solving (5) to optimize the spatially adaptive weight
maps W for each update step of the network parameter θ in (4) is inefficient.
Instead, an online meta-learning approach is utilized to approximate W for every
gradient descent step involved in optimizing θ (4). At every update step t of θ
(4), we pass a mini-batch bn of noisy data forward through the network and then
compute one gradient descent step toward the minimization of Ln:

θ̂ = θt − α∇θΣ
|bn|
i=1Ln(Xn(i), Y n(i); θt,W0(i)) (6)

where α is the gradient descent learning rate and W0 in the initial spatial weight
maps set to zero. Next, a mini-batch bc of clean data is fed forwarded through the
network with parameters θ̂ and the gradient of Lc with respect to the current
batch weight maps WB = {W (1), . . . ,W (|bn|)} is computed. We then take a
single step toward the minimization of Lc, as per (5), and pass the output to a
rectifier function as follows:

UB = WB
0

∣
∣
∣
∣
WB

0 =0

− η∇WB

1
|bc|Σ

|bc|
i=1Lc(Xc(i), Y c(i); θ̂(W )), (7)

WB = g(max(0, UB)). (8)

where η is a gradient descent learning rate, max is an element-wise max and
g is the normalization function. Following the average loss over a mini-batch
samples in training a deep network, g normalizes the learned weight maps such
that Σ

|bn|
i=1Σp∈Ωi

wip = 1.
Equations (7) and (8) clarify how the learned weight maps prevents penalizing

the pixels whose gradient direction is not similar to the direction of gradient
on the clean data. A negative element uip in U (associated with pixel p of
image i) implies a positive gradient ∇wip

Lc in (7), meaning that increasing
the assigned weight to pixel p, wip, increases the Lc loss value on clean data.
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So by rectifying the values of uip in (8), we assign zero weights wip to pixel p
and prevent penalizing it in the loss function. In addition, the rectify function
makes the Ln loss non-negative (cf. (3)) and results in more stable optimization.

Once the learning of spatially adaptive weight maps is performed, a final
backward pass is needed to minimize the reweighted objective function and
update the network parameters from θt to θt+1:

θt+1 = θt − α∇θt
Σ

|bn|
i=1Ln(Xn(i); θt,W

B). (9)

3 Experiments and Discussion

Data Description. We validated our spatially adaptive reweighting approach
on data provided by the International Skin Imaging Collaboration (ISIC) in
2017 [1]. The data consists of 2000 training, 150 validation and 600 test images
with their corresponding segmentation masks. The same split of validation and
test data are deployed for setting the hyper-parameters and reporting the final
results. We re-sized all images to 96×96 pixels and normalized each RGB channel
with the per channel mean and standard deviation of training data.

To create noisy ground truth annotations, we consider a lesion boundary as a
closed polygon and simplify it by reducing its number of vertices: Less important
vertices are discarded first, where the importance of each vertex is proportional to
the acuteness of the angle formed by the two adjacent polygon line segments and
their length. 7-vertex, 3-vertex and 4-axis-aligned-vertex polygons are generated
to represent different levels of annotation noise for our experiments. To simulate
an unsupervised setting, as an extreme level of noise, we automatically generated
segmentation maps that cover the whole image (excluding a thin band around
the image perimeter). Figure 1 shows a sample lesion image and its associated
ground truth as well as generated noisy annotations.

Fig. 1. A skin image and its clean and various noisy segmentation maps.

Implementation. We utilize PyTorch framework to implement our segmen-
tation reweighting network. We adopt the architecture of fully convolutional
network U-Net [9] initialized by a random Gaussian distribution. We use the
stochastic gradient descent algorithm for learning the network parameters from
scratch as well as the spatial weight maps over the mini-batch of sizes |bn| = 2
and |bc| = 10. We set the initial learning rate for both α and η to 10−4 and divide
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by 10 when the validation performance stops improving. We set the momentum
and weight decay to 0.99 and 5×10−5, respectively. Training the deep reweight-
ing network took three days on our 12 GB GPU memory.

Spatially Adaptive Reweighting vs. Image Reweighting and Fine-
Tuning. We compare our work with previous work on noisy labels which assign
a weight per training images [8]. In addition, one popular way of training a deep
network when a small set of clean data as well as a large set of noisy data are
available is to pre-train the network on the noisy dataset and then fine-tune it
using the clean dataset. By learning the spatially adaptive weight maps proposed
in this work, we expect to leverage clean annotations more effectively for segmen-
tation task and achieve an improved performance. We start with |Dn| = 2000
images annotated by 3-vertex polygons and gradually replace some of the noisy
annotation with expert-level clean annotations, i.e., increase |Dc|. We report the
Dice score on the test set in Fig. 2. The first (leftmost) point on the fine-tuning
curve indicates the result of U-Net when all annotation are noisy and the last
point corresponds to a fully-supervised U-Net. When all annotation are either
clean or noisy, training the reweighting networks are not applicable. We observe
a consistent improvement in the test Dice score when the proposed reweighting
algorithm is deployed. In particular, a bigger boost in improvement when the
size of the clean annotation is smaller signifies our method’s ability to effectively
utilize even a handful of clean samples.

Fig. 2. Test Dice score comparison for fine-tuning, per image reweighting [8] and,
spatially adaptive reweighting (ours) models.

Size of the Clean Dataset. Figure 2 shows the effect of the clean data size,
|Dc|, on the spatial reweighting network performance. Our results show leverag-
ing just 10 clean annotations in the proposed model improves the test Dice score
by 21.79% in comparison to training U-Net on all noisy annotations. Also, utiliz-
ing 50 clean annotations in the spatial reweighting algorithm achieves a test Dice
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score (∼80%) almost equal to that of the fully supervised approach. With only
∼100 clean image annotations, the spatial reweighting method outperforms the
fully-supervised with 2000 clean annotations. Incrementing |Dc| from 50 to 1990,
the reweighting approach improves the test Dice score by about 2%, questioning
whether a 2% increase in accuracy is worth the ∼40-fold increase in annotation
effort. Outperforming the supervised setting using spatial reweighting algorithm
suggests that the adaptive loss reweighting strategy works like a regularizer and
improves the generalization ability of the deep network.

Robustness to Noise. In our next experiment, we examine how the level of
noise in the training data affect the performance of the spatial reweighting net-
work in comparison to fine-tuning. We utilized four sets of (i) 7-vertex; (ii)
3-vertex; (iii) 4-axis-aligned-vertex simplified polygons as segmentation maps;
and (iv) unsupervised coarse segmentation masks where each set corresponds
to a level of annotation noise (Fig. 1). Setting |Dc| = 100 and |Dn| = 1600,

Table 1. Dice score using fine-tuning and reweighting methods for various noise levels.

Noise type Fine-tuning Proposed reweighting

A No noise (fully-supervised) 78.63% Not applicable

B 7-vertex 76.12% 80.72%

C 4-axis-aligned-vertex 75.04% 80.29%

D 3-vertex 73.02% 79.45%

E Maximal (unsupervised) 70.45% 73.55%

Fig. 3. (a) Sample skin images and expert lesion delineations (thin black contour), (b)
noisy ground truth, (c) network output, (d) the erroneously labelled pixels (i.e. noisy
pixels) and learned weight maps in iterations (e) 1K and (f) 100K overlaid over the
noisy pixel masks using the following coloring scheme: Noisy pixels are rendered via the
blue channel: mislabelled pixels are blue, and weights via the green channel: the lower
the weight the greener the rendering. The cyan color is produced when mixing green
and blue, i.e. when low weights (green) are assigned to mislabelled pixels (blue). Note
how the cyan very closely matches (d), i.e. mislabelled pixels are ca. null-weighted.
(Color figure online)
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the segmentation Dice score of test images for reweighting and fine-tuning
approaches are reported in Table 1. We observe that deploying the proposed
reweighting algorithm for 3-vertex annotations outperforms learning from accu-
rate delineation without reweighting. Also, increasing the level of noise, from
7-vertex to 3-vertex polygon masks in noisy data, results in just ∼1% Dice score
drop when deploying reweighting compared to ∼3% drop in fine-tuning.

Qualitative Results. To examine the spatially adaptive weights more closely,
for some sample images, we overlay the learned weight maps, in training iter-
ations 1K and 100K, over the incorrectly annotated pixels mask (Fig. 3). To
avoid overfitting to annotation noise, we expect the meta-learning step to
assign zero weights to noisy pixels (the white pixels in Fig. 3(d)). Looking into
Fig. 3(e, f) confirms that the model consistently learns to assign zero (or very
close to zero) weights to noisy annotated pixels (cyan pixels), which ultimatly
results in the prediction of the segmentation maps in Fig. 3(c) that, qualitatively,
closely resemble the unseen expert delineated contours shown in Fig. 3(a).

4 Conclusion

By learning a spatially-adaptive map to perform pixel-wise weighting of a seg-
mentation loss, we were able to effectively leverage a limited amount of cleanly
annotated data in training a deep segmentation network that is robust to anno-
tation noise. We demonstrated, on a skin lesion image dataset, that our method
can greatly reduce the requirement for careful labelling of images without sacri-
ficing segmentation accuracy. Our reweighting segmentation network is trained
end-to-end, can be combined with any segmentation network architecture, and
does not require any additional hyper-parameter tuning.

Acknowledgments. We thank NVIDIA Corporation for the donation of Titan X
GPUs used in this research and Compute Canada for computational resources.
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Abstract. We present a weakly supervised deep learning method to
perform instance segmentation of cells present in microscopy images.
Annotation of biomedical images in the lab can be scarce, incomplete,
and inaccurate. This is of concern when supervised learning is used for
image analysis as the discriminative power of a learning model might be
compromised in these situations. To overcome the curse of poor label-
ing, our method focuses on three aspects to improve learning: (i) we
propose a loss function operating in three classes to facilitate separating
adjacent cells and to drive the optimizer to properly classify underrepre-
sented regions; (ii) a contour-aware weight map model is introduced to
strengthen contour detection while improving the network generalization
capacity; and (iii) we augment data by carefully modulating local inten-
sities on edges shared by adjoining regions and to account for possibly
weak signals on these edges. Generated probability maps are segmented
using different methods, with the watershed based one generally offering
the best solutions, specially in those regions where the prevalence of a
single class is not clear. The combination of these contributions allows
segmenting individual cells on challenging images. We demonstrate our
methods in sparse and crowded cell images, showing improvements in
the learning process for a fixed network architecture.

Keywords: Instance segmentation · Weakly supervised · Cell
segmentation · Microscopy cells · Loss modeling

1 Introduction

In developmental cell biology studies, one generally needs to quantify temporal
signals, e.g. protein concentration, on a per cell basis. This requires segmenting
individual cells in many images, accounting to hundreds or thousands of cells per
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Fig. 1. Incomplete (A) and inaccurate (B) annotations of training images might be
harmful for supervised learning as the presence of similar regions with erratic annota-
tions might puzzle the optimization process. Our formulation is able to segment well
under uncertainty as shown in the examples in the right panels of A and B above.

experiment. Such data availability suggests carrying on large annotation efforts,
following the common wisdom that massive annotations are beneficial for fully
supervised training to avoid overfitting and improve generalization. However,
full annotation is expensive, time consuming, and it is often inaccurate and
incomplete when it is done at the lab, even by specialists (see Fig. 1).

To mitigate these difficulties and make the most of limited training data,
we work on three fronts to improve learning. In addition to the usual data aug-
mentation strategies (rotation, cropping, etc.), we propose a new augmentation
scheme which modulates intensities on the borders of adjacent cells as these
are key regions when separating crowded cells. This scheme augments the con-
trast patterns between edges and cell interiors. We also explicitly endow the
loss function to account for critically underrepresented and reduced size regions
so they can have a fair contribution to the functional during optimization. By
adopting large weights on short edges separating adjacent cells we increase the
chances of detecting them as they now contribute more significantly to the loss.
In our experience, without this construction, these regions are poorly classified
by the optimizer – weights used in the original U-Net formulation [9] are not
sufficient to promote separation of adjoining regions. Further, adopting a three
classes approach [4] has significantly improved the separation of adjacent cells
which are otherwise consistently merged when considering a binary foreground
and background classification strategy. We have noticed that complex shapes,
e.g. with small necks, slim invaginations and protrusions, are more difficult to
segment when compared to round, mostly convex shapes [10]. Small cells, tiny
edges, and slim parts, equally important for the segmentation result, can be eas-
ily dismissed by the optimizer if their contribution is not explicitly accounted
for and on par with other more dominant regions.

Previous Work. In [6] the authors propose a weakly semantic segmentation
method for biomedical images. They include prior knowledge in the form of con-
straints into the loss function for regularizing the size of segmented objects. The
work in [11] proposes a way to keep annotations at a minimum while still captur-
ing the essence of the signal present in the images. The goal is to avoid excessively
annotating redundant parts, present due to many repetitions of almost identi-
cal cells in the same image. In [8] the authors also craft a tuned loss function
applied to improve segmentation on weakly annotated gastric cancer images.
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The instance segmentation method for natural images Mask R-CNN [5] uses
two stacked networks, with detection followed by segmentation. We use it for
comparisons on our cell images. Others have used three stacked networks for
semantic segmentation and regression of a watershed energy map allowing sep-
arating nearby objects [1].

2 Segmentation Method

Notation. Let S = {(xj , gj)}N
j=1 be a training instance segmentation set where

xj : Ω → R+ is a single channel gray image defined on the regular grid Ω ∈ R2,
and gj : Ω → {0, . . . , mj} its instance segmentation ground truth map which
assigns to a pixel p ∈ Ω a unique label gj(p) among all mj + 1 distinct instance
labels, one for each object, including background, labeled 0. For a generic (x, g),
Vi = {p | g(p) = i} contains all pixels belonging to instance object i, hence
forming the connected component of object i. Due to label uniqueness, Vi ∩Vj =
Ø, i �= j, i.e. a pixel cannot belong to more than one instance thus satisfying
the panoptic segmentation criterion [7]. Let h : Ω → {0, . . . , C} be a semantic
segmentation map, obtained using g, which reports the semantic class of a pixel
among the C + 1 possible semantic classes, and y : Ω → RC+1 its one hot
encoding mapping. That is, for vector y(p) ∈ RC+1 and its l-th component yl(p),
we have yl(p) = 1 iff h(p) = l, otherwise yl(p) = 0. We call nl =

∑
p∈Ω yl(p) the

number of pixels of class l, and ηk(p), k � 1, the (2k+1)×(2k+1) neighborhood
of a pixel p ∈ Ω. In our experiments we adopted k = 2.

From Instance to Semantic Ground Truth. We formulate the instance
segmentation problem as a semantic segmentation problem where we obtain
object segmentation and separation of cells at once. To transform an instance
ground truth to a semantic ground truth, we adopted the three semantic classes
scheme of [4]: image background, cell interior, and touching region between cells.
This is suitable as the intensity distribution of our images in those regions is
multi-modal. We define our semantic ground truth h as

h(p) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if g(p) = 0 − background

2 if
∑

p′∈ηk(p)
[g(p′) �= g(p)] · [g(p′) �= 0] > 1 − touching

1 otherwise − cell

(1)

where [·] refers to Iverson bracket notation [2]: [b] = 1 if the boolean condition b
is true, otherwise [b] = 0. Equation 1 assigns class 0 to all background pixels, it
assigns class 2 to all pixels whose neighborhood ηk contains at least one pixel of
another connected component, and it assigns class 1 to cell pixels not belonging
to touching regions.

Touching Region Augmentation. Touching regions have the lowest pixel
count among all semantic classes, having few examples to train the network. They
are in general brighter than their surroundings, but not always, with varying val-
ues along its length. To train with a larger gamut of touching patterns, including
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−1.0 −0.5 0.0 0.5 1.0

Fig. 2. Contrast modulation around touching regions. Separating adjacent cells is one
of the major challenges in crowded images. To leverage learning, we feed the network
with a variety of contrasts around touching regions. We do so by modulating their
intesities while keeping adjacencies the same. In this example, an original image (a = 0)
has its contrast increased (decreased) around shared edges when we set a < 0 (a > 0).
- see our formulation in Sect. 2.

weak edges, we augment existing ones by modulating their pixel values according
to the expression xa(p) = (1 − a) · x(p) + a · x̃(p), only applied when h(p) = 2,
where x̃ is the 7 × 7 median filtered image of x. When a < 0 (a > 0) we increase
(decrease) contrast. During training, we have random values of a ∼ U(−1, 1).
An example of this modulation is shown in Fig. 2.

Loss Function. U-Net [9] is an encoder–decoder network for biomedical image
segmentation with proven results in small datasets, and with cross entropy being
the most commonly adopted loss function. The weighted cross entropy [9] is
a generalization where a pre–computed weight map assigns to each pixel its
importance for the learning process,

L(y, z) = −
C∑

l=0

∑

p∈Ω

ωβ,ν,σ(p) · yl(p) · log zl(p) (2)

where ωβ,ν,σ(p) is the parameterized weight at pixel p, and zl(p) the computed
probability of p belonging to class l for ground truth yl(p).

Let R(u) = u+ be the rectified linear function, ReLu, and ϕβ(u) = R(1 −
u/β), u ∈ R, a rectified inverse function saturated in β ∈ R+. We propose the
Triplex Weight Map, W 3, model

ωβ,ν,σ(p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ν/n0 + ν · ϕβ (φh(p)) /n1 if h(p) = 0
ν/n1 + ν · ϕβ (φK(p)) if h(p) = 1, p ∈ Γ

ν/n1 + ωβ,ν,σ(ζΓ (p)) · exp(−φ2
Γ (p)/σ2) if h(p) = 1, p /∈ Γ

ν/n2 if h(p) = 2

(3)

where Γ represents cell contour; nl is the number of pixels of class l; φh is
the distance transform over h that assigns to every pixel its Euclidean distance
to the closest non-background pixel; φK and φΓ are, respectively, the distance
transforms with respect to the skeleton of cells and cell contours; and ζΓ : Ω → Ω
returns the pixel in contour Γ closest to a given pixel p, thus ζΓ (p) ∈ Γ . The
W 3 model sets ωβ,ν,σ(p) = ν/n0 for all background pixels distant at least β to a
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cell contour. This way, true cells that are eventually not annotated and located
beyond β from annotated cells have very low importance during training – by
design, weights on non annotated regions are close to zero.

The recursive expression for foreground pixels (third line in Eq. 3) creates
weights using a rolling Gaussian with variance σ2 centered on each pixel of the
contour. These weights have amplitudes which are inversely proportional to their
distances to cell skeleton, resulting in large values for slim and neck regions. The
parameter ν is used for setting the amplitude of the Gaussians. The weight at a
foreground pixel is the value of the Gaussian at the contour point closest to this
pixel. The touching region is assigned a constant weight for class balance, larger
than all other weights.

From Semantic to Instance Segmentation. After training the network for
semantic segmentation, we perform the transformation from semantic to panop-
tic, instance segmentation. First, a decision rule ĥ over the output probability
map z is applied to hard classify each pixel. The usual approach is to classify
with maximum a posteriori (MAP) where the semantic segmentation is obtained
with ĥ(p) = arg maxl zl(p). However, since pixels in the touching and interior
cell regions share similar intensity distributions, the classifier might be uncertain
in the transition zone between these regions, where it might fail to assign the
right class for some, sometimes crucial, pixels in these areas. A few misclassified
pixels can compromise the separation of adjacent cells (see Fig. 3). Therefore,
we cannot solely rely on MAP as our hard classifier. An alternative is to use
a thresholding (TH) strategy as a decision rule, where parameters γ1 and γ2
control, respectively, the class assignment of pixels: ĥ(p) = 2 if z2(p) ≥ γ2, and
ĥ(p) = 1 if z1(p) ≥ γ1 and z2(p) < γ2, and 0 otherwise. Finally, the estimated
instance segmentation ĝ labels each cell region V̂i and it distributes touching
pixels to their closest components,

ĝ(p) =

⎧
⎪⎨

⎪⎩

0 if ĥ(p) = 0
i if ĥ(p) = 1 and p ∈ V̂i

ĝ(ζΓ (p)) if ĥ(p) = 2
(4)

Another alternative for post-processing is to segment using the Watershed Trans-
form (WT) with markers. It is applied on the topographic map formed by the
subtraction of touching and cell probability maps, z2−z1. Markers are comprised
of pixels in the background and cell regions whose probabilities are larger than
given thresholds τ0 and τ1, {p|z0(p) ≥ τ0 or z1(p) ≥ τ1}. High values for these
should be safe, e.g. τ0 = τ1 = 0.8.

3 Experiments and Results

Training of our triplex weight map method, W 3, is done using U-Net [9] ini-
tialized with normally distributed weights according to the Xavier method [3].
We compare it to the following methods: Lovász-Softmax loss function ignoring
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Image Segmentation MAP Prob. map Prob. values

Fig. 3. Poor classification. Maximum a posteriori, MAP, does not separate adjacent
cells due to poor probabilities in the junctions shown above. The misclassification of
just a few pixels renders a wrong cell topology. Probability maps are shown as RGB
images with Background (red), Cell (green) and Touching (blue) classes. (Color figure
online)

the background class, LSMAX [2]; weighted cross entropy using class balance
weight map, BWM; U-Net with near object weights [9] adapted to three classes,
UNET; and the per-class average combination of the probability maps from
BWM, UNET, and W 3, followed by a softmax, named COMB. We also com-
pared our results with those obtained by Mask R-CNN, MRCNN [5]. The use of
COMB is motivated by ensenble classifiers where one tries to combine the pre-
dictions of multiple classifiers to achieve a prediction which is potentially better
than each individual one. We plan to explore other choices beyond averaging.

We trained all networks over a cell segmentation dataset containing 28 images
of size 1024 × 1024 with weak supervision in the form of incomplete and inaccu-
rate annotations. We use the optimizer Adam with initial learning rate lr = 10−4.
The number of epochs and minibatch size were, respectively, 1000 and 1. We aug-
mented data during training by random mirroring, rotating, warping, gamma
correction, and touching contrast modulation, as in Fig. 2.

We follow [7] to assess results. For detection, we use the Precision (P05)
and the Recognition Quality (RQ) of instances with Jaccard index above 0.5.
For segmentation, we use Segmentation Quality (SQ) computed as the average
Jaccard of matched segments. For an overall evaluation of both detection and
segmentation, we use the Panoptic Quality (PQ) metric, PQ = RQ · SQ.

Maximum A Posterior Threshold Watershed

Fig. 4. Panoptic Quality (PQ) training values for all methods we compare to W 3,
except COMB, using Maximum a Posteriori (MAP), Thresholded Maps (TH) and
Watershed Transform (WT) post-processing. W 3 converges faster to a better solution.
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Panoptic Segmentation Performance. We performed an exploration over
the parameter space for the two parameters used in the TH and WT postpro-
cessing methods. Table 1 shows a comparison of different post-processing strate-
gies considering the best combination of parameters for Thresholds (TH) and
Watershed (WT). For Mask R-CNN we used the same single threshold TH on
the instance probability maps of all boxed cells. We performed watershed WT on
each boxed cell region with seeds extracted from the most prominent background
and foreground regions in the probability maps. Although Lovász-Softmax seems
to be a promising loss function, we believe that the small training dataset and
minibatch size negatively influenced its performance. For most values of thresh-
olds used in the TH post-processing, the average combination (COMB) improved
the overall result due to the reduction of False Positives (see P05 column). Also,
in most cases, our W 3 approach obtained better SQ values than other methods
suggesting a better contour adequacy. Because touching and cell intensity distri-
butions overlap, a softer classification was obtained for these regions. MAP did
not achieve the same performance of other approaches (Fig. 3). The behavior in
Table 1 remained the same during training as shown in Fig. 4.

Image LSMAX MRCNN U-Net BWM W 3 COMB Annotation

Fig. 5. Segmentation results for packed cell clusters obtained using methods described
in Sect. 3. Colors serve to show cell separation. Note the superiority of our W 3.

Examples of segmenting crowded cells with various methods are shown in
Fig. 5. In our experiments, MRCNN was able to correctly segment isolated and
nearly adjacent cells (second row), but it sometimes failed in challenging high-
density clusters. BWM and U-Net tend to misclassify background pixels in neigh-
boring cells (second row) with estimated contours generally beyond cell bound-
aries. W 3 had a better detection and segmentation performance with improve-
ment of contour adequacy over COMB.

We believe our combined efforts of data augmentation, loss formulation with
per pixel geometric weights, and multiclass classification enabled our trained
neural networks to correctly segment cells even from domains it has never seen.
For example, we have never trained with images of meristem and sepal cells but
we still obtain good quality cell segmentation for these as shown in Fig. 6. These
solutions might be further improved by training with a few samples from these
domains.
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Table 1. Metric values for different post processing schemes and segmentation meth-
ods. Numbers are average values obtained for the best combination of threshold param-
eters for both TH and WT post processing methods. Tests were done on 7 images,
totaling 138 cells, with 14 clusters containing from 2 to approximately 32 cells. Metric
values obtained with TH and WT are higher than those obtained with MAP showing
that our post procesing schemes improve results. Overall, our W 3 and COMB outper-
form other segmentation methods for almost all metrics, except P05, when thresholding
and watershed classification schemes are adopted.

Methods MAP TH WT

P05 RQ SQ PQ P05 RQ SQ PQ P05 RQ SQ PQ

MRCNN 0.9188 0.8617 0.8002 0.6892 0.9343 0.8767 0.8012 0.7019 0.9343 0.8767 0.8019 0.7026

LSMAX 0.3871 0.3236 0.7455 0.2408 0.4348 0.3119 0.7171 0.2286 0.4000 0.3149 0.7073 0.2237

BWM 0.6756 0.5580 0.8674 0.4858 0.8583 0.8504 0.8769 0.7476 0.8193 0.8405 0.8831 0.7437

U-Net 0.6801 0.5381 0.8418 0.4556 0.8413 0.8508 0.8791 0.7492 0.8708 0.8600 0.8850 0.7621

W3 (Ours) 0.7384 0.6305 0.8721 0.5513 0.8477 0.8439 0.8994 0.7604 0.9028 0.8775 0.8995 0.7896

COMB (Ours) 0.7587 0.6129 0.8698 0.5351 0.8952 0.8851 0.8908 0.7889 0.8925 0.8759 0.8944 0.7837

Meristem Segmentation Sepal Segmentation

Fig. 6. Zero-shot panoptic segmentation of meristem and sepal images with our W 3

method exclusively trained with cell images from different domains.

4 Conclusions

We proposed a weakly supervised extension to the weighted cross entropy loss
function that enabled us to effectively segment crowded cells. We used a semantic
approach to solve a panoptic segmentation task with a small training dataset of
highly cluttered cells which have incomplete and inaccurate annotations. A new
contrast modulation was proposed as data augmentation for touching regions
allowing us to perform an adequate panoptic segmentation. We were able to
segment images from domains other than the one used for training the network.
The experiments showed a better detection and contour adequacy of our method
and a faster convergence when compared to similar approaches.
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Abstract. Supervised deep learning approaches provide state-of-the-art
performance on medical image classification tasks for disease screen-
ing. However, these methods require large labeled datasets that involve
resource-intensive expert annotation. Further, disease screening appli-
cations have low prevalence of abnormal samples; this class imbalance
makes the task more akin to anomaly detection. While the machine learn-
ing community has proposed unsupervised deep learning methods for
anomaly detection, they have yet to be characterized on medical images
where normal vs. anomaly distinctions may be more subtle and variable.
In this work, we characterize existing unsupervised anomaly detection
methods on retinal fundus images, and find that they require significant
fine tuning and offer unsatisfactory performance. We thus propose an
efficient and effective transfer-learning based approach for unsupervised
anomaly detection. Our method employs a deep convolutional neural
network trained on ImageNet as a feature extractor, and subsequently
feeds the learned feature representations into an existing unsupervised
anomaly detection method. We show that our approach significantly out-
performs baselines on two natural image datasets and two retinal fundus
image datasets, all with minimal fine-tuning. We further show the ability
to leverage very small numbers of labelled anomalies to improve perfor-
mance. Our work establishes a strong unsupervised baseline for image-
based anomaly detection, alongside a flexible and scalable approach for
screening applications.
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1 Introduction

Deep learning approaches offer state-of-the-art performance for a variety of medi-
cal image classification tasks. However, a major challenge in practical translation
of these methods is that model training and/or fine-tuning requires thousands
of images labelled by domain experts or clinical specialists. Such labelling is
laborious, expensive, inefficient, and difficult to scale across diverse settings and
applications. Moreover, expert raters can have discordant opinions [5,9], result-
ing in noisy or biased labels. Accordingly, there has been increasing interest
in semi-supervised approaches for medical image classification [10,13], but less
work on unsupervised learning.

For disease screening, normal samples usually have higher prevalence than
abnormal samples. Thus, the classification task is akin to a rare anomaly detec-
tion task. We focus on unsupervised methods to detect anomalies for medical
image-based screening. The machine learning community has developed many
methods for unsupervised anomaly detection on natural image datasets like
CIFAR-10 and SVHN [3,16,19,20]. However, the tasks of detecting anomalies
on natural vs. medical images are distinct. Medical images exhibit greater vari-
ability due to the heterogeneity in abnormality presentation across patients or
cohorts, and differences in acquisition devices or parameters. Further, anomalies
in medical images tend to have finer resolution or more localized features. Yet,
there has been limited focus on unsupervised anomaly detection methods for
medical image datasets.

In this work, we characterize a range of unsupervised anomaly detection
methods on natural image benchmarks (CIFAR-10, SVHN) and medical image
datasets. For the latter, we employ fundus images obtained to screen for Diabetic
Retinopathy (DR) and Retinopathy of Prematurity (ROP). We compare and
contrast performance to find that existing methods have relatively unsatisfac-
tory performance on medical image datasets. We further find that the unsuper-
vised methods often require significant fine tuning and intensive computational
resources, and therefore have limited practical applicability.

To overcome these challenges, we introduce a simple yet effective transfer
learning method for unsupervised anomaly detection on medical images. Our
method leverages the expressive representations learned by deep learning based
classifiers trained on large image collections (like ImageNet). We extract fea-
tures learned with these models and feed them into Isolation Forests [11], which
offer efficient and robust anomaly detection for high-dimensional data with min-
imal tuning requirements. We perform extensive experiments and show that this
approach outperforms baselines on both data types, with more significant gains
on medical image datasets. We further show how to use a small collection of
labeled anomalous samples, akin to a “validation set” to improve performance
by selecting the best feature representation. As such, our work provides a strong
baseline for unsupervised image-based anomaly detection, and a flexible and
scalable approach for screening applications.
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2 Methods

2.1 Task Definition

We consider two experimental settings. First, we assume the training data com-
prises only of normal images and focus on identifying images that fall out-of-
distribution. We term this as Novelty Detection. Second, we relax this assump-
tion, and consider the fully unsupervised scenario where the training set contains
normal images alongside a small number of anomalies. We term this as Anomaly
Detection. We now describe our method and the baselines.

2.2 Transfer Learning for Anomaly Detection

Figure 1 illustrates our method, which leverages the feature representations
learned by networks trained on large, diverse image collections. The basic app-
roach consists of (1) computing feature representations with a pre-trained net-
work, and (2) training an anomaly detection algorithm on top of the computed
representations. Implementing this general approach requires choosing (1) the
pre-trained network, (2) how representations are derived (e.g., choice of layer),
(3) an anomaly detection algorithm, and (4) tuning hyperparameters of the
anomaly detection algorithm. We detail these choices below.

Fig. 1. Overview of proposed transfer learning-based anomaly detection method. Train-
ing images are assumed to come from a distribution of primarily normal images. We
compute feature representations using a pre-trained deep learning model, and use the
resulting feature vectors to train an unsupervised anomaly detection model. During
testing, we transform images into feature space and use the trained model for anomaly
detection.

Choice of Network: In our experiments, we used the Inception-ResNet-v2
network [18] trained on the ImageNet ILSVRC-2012-CLS dataset [15], as it is
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one of the best performing networks for such tasks; our results were similar when
using the Inception-v3 network (Supplementary Table 17).

Deriving Representations: We evaluated two strategies for deriving the rep-
resentations.

1. Computing a representation from all layers: Previous work suggests that fea-
tures from convolutional layers earlier in the network can contain very dis-
criminative features [12]. To harness the power of these features, we derive
representations including these earlier convolutional layers as well. For com-
putational tractability, the outputs of these layers are first spatially averaged
and then concatenated to the output of the other fully connected layers to
produce a representation from the whole network.

2. Picking the best representation using a validation set: If annotated anomalies
are available, they could be used to pick the best performing representation
(from a single network layer/module) by evaluating model performance on a
constructed validation set including these anomalies.

Anomaly Detection Algorithm: We chose the Isolation Forest method as it
is fast, handles high-dimensional data well, does not require much tuning, and
works well whether the training set consists only of normal data, or is mixed
with some anomalies.

Hyperparmeters for Anomaly Detection Algorithm: We used the scikit-
learn implementation of Isolation Forests with default parameters, in line with
our goal of proposing a method requiring minimal fine-tuning.

Supplementary Sects. 8 and 9 describe the impact of the choices of network
and feature representations. We note that the utility of transfer-learned represen-
tations has been demonstrated across a wide range of supervised computer vision
tasks [2]. However, such approaches remain largely unexplored for unsupervised
anomaly detection. To our knowledge, [1] is the only work exploring transfer
learning for unsupervised anomaly detection. However, they focused solely on
non-medical images in the novelty detection setting, and did not comprehen-
sively benchmark against other competing methods. In contrast, we provide
extensive comparisons to recent approaches on retinal fundus images and offer
ways to select and improve feature representations for transfer.

2.3 Baselines

We evaluate a range of methods including shallow models (one-class SVM
[17], Isolation Forest (IF) [11]), deep anomaly detection methods based on
autoencoders (DAGMM [3], DSEBM [20]) and generative adversarial networks
(AnoGAN [16]), as well as recently emerging unsupervised methods based on
geometric transformations (DeepGEO, [6]) and SVDD based representations
(DeepSVDD, [14]). For medical datasets, we include a supervised baseline: we
finetune an Inception Resnet V2 [18] network that is initialized with ImageNet
weights for “normal” vs. “abnormal” classification. Supplementary Sect. 1 details
the baselines and associated hyperparameters.
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3 Experiments

Here, we detail datasets with definition of the anomalies in each case, and pro-
vides evaluation results across the datasets and methods for the two settings.

3.1 Datasets

Figure 2 shows an overview of data types and illustrates example normal vs.
anomalous images in the different datasets. Supplementary Fig. 1 provides more
examples highlighting the variations. Supplementary Table 10 breaks down the
statistics.

Fig. 2. Overview of datasets. The upper panel shows normal images while the lower
panel shows abnormal images. These examples show the differences between natu-
ral and medical images, and highlight the nuanced nature of medical image anomaly
detection.

Natural Image Datasets (SVHN, CIFAR-10): We used the official training
and testing sets for SVHN and CIFAR-10. K denotes the number of classes in the
dataset. Following previous works [6,14,19], we design K different experiments
where samples from each label are alternately considered as “normal” and are
used for training. We use 25% of the training set as a validation set and evaluate
each model on the official test set containing anomalies at a ratio of (K − 1)/K
(i.e, 90% for CIFAR-10 and SVHN). The only preprocessing was rescaling the
images to [0, 1].

Retinopathy of Prematurity (ROP): ROP is an eye disease affecting pre-
mature babies, and is graded as “pre-plus” and “plus” based on the extent of
retinal arterial tortuosity and venous dilation at the posterior pole [4]. As ROP
is a leading cause of childhood blindness, there is a need for automated sys-
tems to regularly screen for “plus” disease, a key determinant for treatment. We
obtained posterior pole retinal RGB photographs as part of the ongoing ‘Imag-
ing & Informatics in ROP’ (i-ROP) cohort study. Each image was annotated
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as “normal”, “pre-plus” or “plus” by at least three independent experts, and a
consensus reference standard label was assigned [4]. We squared cropped to cut
the neutral background and resized images to 256 pixels, before subtracting the
local average color to reduce differences in lighting. Pixel values were rescaled to
[0,1]. Our experiments consider two scenarios: (1) “normal” vs. “plus” anomalies
(total 4707 images, denoted as ROP by default), and (2) “normal” vs. “pre-plus”
and “plus” anomalies (total 5511 images, denoted as ROP (All Grades)).

Diabetic Retinopathy (DR): DR is diagnosed based on the presence of
microaneurysms, hemorrhages, hard exudates, microvascular abnormalities and
neovascularization in retinal fundus photographs [7]. Due to the high prevalence
of diabetes, there is a need to screen patients regularly. We obtained color retinal
fundus photographs annotated with severity ratings from licensed clinicians as
part of the Kaggle Diabetic Retinopathy challenge [8]. This is a large dataset
from multiple sites with diverse patient demographics and varying acquisition
conditions. It includes several poor quality images with over-exposed, out-of-
focus and artefactual images, hence poses significant challenges for anomaly
detection. For our experiments, we denoted images with severity rating of 0
(healthy) as normal and images with severity rating of 4 (advanced symptoms)
as anomalous. We randomly sampled subsets of 3912 training and 7829 testing
images from the official dataset, and preprocessed in the same way as for ROP.

3.2 Training and Evaluation

Except the DR dataset, we ran all experiments using five-fold cross-validation
and quantify performance using the cross-validated area under the ROC curve
(averaged across 5 seeds) and the corresponding standard deviation. AUROC is
the common metric of choice for both anomaly detection papers [6,14,19] and
medical applications [4,7]. We present the area under the precision-recall curve
and the recall in Supplementary Tables 12–14.

3.3 Novelty Detection Setting

Results in the novelty detection setting are presented in Table 1. Our model
outperforms all the baselines on CIFAR-10. We present results on a more chal-
lenging CIFAR-100 dataset in Supplementary Table 11. On SVHN, all methods
perform only slightly better than random guessing, with a small advantage to
DeepSVDD. The slightly lower performance for our method is likely due to a
domain shift between the source (ImageNet) and target (SVHN) datasets. This
is consistent with the fact that transfer learning performance can drop with
dissimilarity between source and target datasets [2]).

On both the medical imaging datasets, our method outperforms every unsu-
pervised baseline by a wide margin of around 20%. In all cases, however, the
supervised classifier has better performance than the best unsupervised method.
We repeated the ROP experiments on the more challenging setting that includes
all grades of anomalies (“pre-plus” and “plus”). The results, in Supplementary
Table 15, show similar trends.
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Table 1. Area under the ROC curve in % with standard deviation in novelty detec-
tion setting. Results are averaged over the number of classes for natural images (see
Sect. 3.1) and over 5 runs for medical images.

Natural images

IF DAGMM AnoGAN DSEBM DeepSVDD DeepGEO Ours

CIFAR-10 59.4± 11 57.5± 10 57.6± 12 58.8± 11 64.8 86.0 88.2 ± 6.6

SVHN 51.4± 0.9 51.8± 1.2 53.3± 3.1 57.1± 2.8 57.3 ± 3.3 − 55.4± 4.1

Medical images

IF AnoGAN DSEBM DeepSVDD DAGMM Ours Supervised

ROP 55.1± 5.0 49.5± 4.4 49.6± 3.9 57.5± 2.4 58.1± 6.2 77.0 ± 3.8 97.3 ± 2.0

DR 44.0± 0.5 44.2± 1.1 43.1± 0.2 46.4± 1.3 52.0± 0.1 74.5 ± 1.7 94.5 ± 2.7

3.4 Utilizing Small Numbers of Labeled Anomalies to Improve
Performance

While it is difficult to curate large labeled datasets with sizeable numbers of
anomalous samples for supervised learning, it is often feasible to obtain small
numbers of labeled anomalies. We therefore explored whether it is possible to
use such small “validation” sets to improve the choice of feature representation
and anomaly detection performance. These experiments are done in the Novelty
Detection setting. For the CIFAR-10 and ROP datasets, we compiled a small
collection of N annotated anomalous samples, with N set as 3% of the total
dataset size. We then evaluated representations from each of the blocks in the
pre-trained network on this validation set, and chose the representation with best
validation AUC. We employ these chosen representations to obtain evaluation
results on the test set (Table 2). This strategy is especially useful for the medical
image datasets (unlike for CIFAR-10 where gains are limited). In particular, we
observed 6% AUC gain on the ROP dataset with just 4 annotated anomalies.
Supplementary Sect. 10 provides further detailed results from individual blocks
for varying sizes of the validation sets and for the complex ROP (AllGrades)
task. Overall, these results suggest that our method could offer significant gains
for medical domain end-users who are able to invest in limited resources to label
a few examples.

Table 2. Averaged area under the ROC curve (over 5 runs) in % with standard devi-
ation for different representations.

Representation Concatenation Best (picked) representation

CIFAR-10 88.2± 6.6 88.2± 6.6

ROP 77.0 ± 3.8 82.6± 6.5
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3.5 Anomaly Detection Setting

We now consider how robust our method is to inclusion of varying proportions of
anomalies in the training data. These evaluations correspond to the fully unsu-
pervised Anomaly Detection setting. Table 3 illustrates the robustness of our
method to varying numbers of anomalies mixed in to the training set for the
CIFAR-10 and ROP datasets. We see that on CIFAR-10, test AUC decreases
gradually as the proportion of anomalous samples in the training set increases.
As CIFAR-10 has a high 90% proportion of anomalies, it provides an opportu-
nity to understand how the performance of our method changes with varying
anomaly proportions. For ROP, we expanded the training set to include up to
3% anomalies, to mimic the prevalence of disease in screening applications. Our
results show that the performance is robust to inclusion of anomalous samples.
We include evaluation against other baselines in Supplementary Table 16, and
show that our method exhibits robust performance gains over competing meth-
ods even in the fully unsupervised setting.

Table 3. Area under the ROC curve (over 5 runs) for different anomaly ratios ρ in
training set

ρ 1% 2% 3% 5% 10% 15% 20% 25%

CIFAR10 − − − 86.8 85.3 84.2 82.8 81.1

ROP 75.4 76.9 75.5 − − − −

4 Discussion and Conclusion

In this work, we characterized a range of unsupervised anomaly detection meth-
ods from the machine learning literature on medical images, and proposed a
simple, efficient and effective transfer learning method to overcome prevailing
limitations in this area. Our proposed method significantly outperforms com-
peting methods on two computer vision benchmarks and two medical imaging
datasets. Importantly, our method is flexible, and can effectively leverage very
small numbers of labelled anomalies to improve performance. While our work
offers a step towards closing the performance gap between unsupervised and
supervised anomaly detection methods, we recognize the need for further perfor-
mance improvements before they become suitable for clinical use. We anticipate
that the first applications could lie in processes for more efficient labeling before
diagnostic decision support applications can take shape.1
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Abstract. Fine-tuning a network which has been trained on a large
dataset is an alternative to full training in order to overcome the prob-
lem of scarce and expensive data in medical applications. While the shal-
low layers of the network are usually kept unchanged, deeper layers are
modified according to the new dataset. This approach may not work
for ultrasound images due to their drastically different appearance. In
this study, we investigated the effect of fine-tuning different layers of a
U-Net which was trained on segmentation of natural images in breast
ultrasound image segmentation. Tuning the contracting part and fixing
the expanding part resulted in substantially better results compared to
fixing the contracting part and tuning the expanding part. Furthermore,
we showed that starting to fine-tune the U-Net from the shallow layers
and gradually including more layers will lead to a better performance
compared to fine-tuning the network from the deep layers moving back
to shallow layers. We did not observe the same results on segmentation
of X-ray images, which have different salient features compared to ultra-
sound, it may therefore be more appropriate to fine-tune the shallow
layers rather than deep layers. Shallow layers learn lower level features
(including speckle pattern, and probably the noise and artifact proper-
ties) which are critical in automatic segmentation in this modality.

Keywords: Ultrasound imaging · Segmentation · Transfer learning ·
U-Net

1 Introduction

Training a deep convolutional neural network (CNN) from scratch is challenging,
especially in medical applications, where annotated data is scarce and expensive.
An alternative to full training is transfer learning, where a network which has
been trained on a large dataset is fine-tuned for another application. When the
new dataset is small, the recommended approach in fine-tuning is to keep the
first layers of the network unchanged, and to fine-tune the last layers [14]. It is
shown that first layers of a CNN represent more low-level features, while more
semantic and high-level features are recognized by deeper layers [4]. Therefore,
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fine-tuning the deepest layers originates from the assumption that basic features
of the datasets (associated with shallow layers) are similar, and more specific
features of the datasets (associated with deeper layers) should be tuned in order
to get acceptable results in a different application. This assumption may not
hold true in some medical applications. For instance, in ultrasound imaging
the presence of wave-tissue interactions such as scattering lead to creation of
speckles, which may not be present in natural images or images from other
medical modalities.

Ultrasound imaging is a standard modality for many diagnostic and monitor-
ing purposes, and there has been significant research into developing automatic
methods for segmentation of ultrasound images [5,11]. U-Net [7] for instance has
been shown to be a fast and precise solution for medical image segmentation,
and has successfully been adapted to segment ultrasound images too [1,8,10,12].
In this study, we investigate the effect of fine-tuning different layers of a U-Net
network for the application of ultrasound image segmentation. We hypothesize
that ultrasound-specific patterns are learned in shallow layers which disentangle
the information in speckle pattern. Therefore, fine-tuning these layers is critical
in fine-tuning the weights learned from another domain.

2 Methodology

This section provides an overview of the datasets used in this study, details of
pre training and fine-tuning the U-Net, and the performance metrics used to
validate our results.

2.1 Datasets

In order to pre-train the network, we used the XPIE dataset which contains
10000 segmented natural images [9]. The images in this dataset are not gray
scale. In order to have a more similar pre-training dataset to ultrasound dataset,
we converted these images into black and white prior to feeding to the network.
We used 40 epochs to train the network, and 10% of the data was considered
as the validation set. Figure 1 shows a few examples of this dataset. The pre-
trained network was then used for the task of segmentation of ultrasound B-mode
images. The ultrasound imaging dataset contains 163 images of the breast with
either benign lesions or malignant tumors [13]. In order to investigate whether
the results are specific to the ultrasound imaging, we repeated the analysis for
a chest X-ray dataset with the total of 240 images [2], wherein we used the
pre-trained network to segment both lungs.

Data Augmentation. As the size of ultrasound and X-ray datasets was small,
we implemented data augmentation techniques to improve the network perfor-
mance, invariance and robustness. For these datasets, the network should be
robust to shift, rotation, flipping, shearing and zooming. We generated smooth
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Fig. 1. Some examples from the XPIE dataset and the associated masks. These images
have very different appearances when compared to X-ray or ultrasound images.

deformations of images using random and small degrees of all these transfor-
mations. In total, we had 600 images including the original images to train the
network. In the case of natural images, we did not augment the data.

2.2 Analysis

We used the same U-Net architecture introduced in the original paper [7] except
that we used up-sampling in the expanding path. The network consists of blocks
of two convolutional layers with ReLU activation, followed by either a max-
pooling or an upsampling operation. There are 64 filters in both layers in the
first block. Following each maxpooling operation, the number of filters doubles,
while after each upsampling operation, the number of filters is halved. A 1 × 1
convolutional layer with sigmoid activation is used as the last layer to map the
feature vector to the interval of 0 and 1. For evaluation purposes, pixels with the
value above 0.5 were considered as 1, and pixels with the value below 0.5 were
considered as 0. We did not use batch normalization, but we used the dropout
technique after the contracting path.

We first trained a U-Net using the XPIE dataset. The parameters of this
pre-trained network was then utilized as an initial point to retrain the network
for ultrasound or X-ray image segmentation. All images were resized to 256×256
pixels and were normalized to [0,1]. To examine whether fine-tuning shallow or
deep layers differ significantly, we divided the U-Net into two parts: contracting
(up to the 10th convolutional layer) and expanding (from 10th convolutional
layer to the end). While freezing one part, we fine-tuned the other part using
the ultrasound B-mode images as the training data. We then switched the frozen
and trainable parts.

Next, we repeated the same approach but in a finer manner. We grouped all
layers between two consecutive maxpooling or up-sampling layers in to one block
(Fig. 2). Each block therefore consisted of two convolutional layers. We started
by fine-tuning the first block (first two layers) while freezing all other layers.
We then included other blocks in the fine-tuning procedure one-by-one, until the
whole network was trained (from shallow to deep layers). We repeated the same
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procedure in the opposite direction; we started fine-tuning the deepest block
while freezing the remaining of the network, and then included more blocks in
fine-tuning until the whole network was trained (from deep to shallow layers).
The same analysis was done for the chest X-ray dataset to segment the lungs.

The most 
shallow block

The deepest 
block

Contrac ng Path Expanding Path

Fig. 2. Schematic of U-Net. Each box represents one block of layers. Red, green
and blue arrows respectively represent maxpooling, upsampling and copy-crop-
concatenating. (Color figure online)

2.3 Performance Metrics

We used 5-fold cross validation to evaluate the performance of the network. All
the data was randomly divided into five folds, with four folds used for training
and the 5th fold used for validation. The procedure was repeated five times so
that all five folds served as the validation set. To evaluate the performance of the
network in segmenting the images, we used Dice score, pixel error and rand score.
Dice score equals twice the number of elements correctly predicted as the mask
(2 * TP) divided by the sum of the number of elements in the ground-truth mask
(TP + FN) and the predicted mask (TP + FP). Pixel error is the percentage of
voxels falsely predicted by the network, and rand score is a measure of similarity
between two clusterings by considering pairs that are assigned in the same or
different clusters in the predicted and ground-truth image [6]. In this study, we
used the rand score adjusted for chance clustering.

3 Results

Training the contracting part and freezing the expanding part led to better
results compared to freezing the contracting part and fine-tuning the expand-
ing part (Dice score: 0.80 ± 0.03 vs. 0.72 ± 0.04, pixel error: 1.4%± 0.5 vs.
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1.9%± 0.6, rand score: 0.78± 0.03 vs. 0.71± 0.05). It is interesting to note that
the number of parameters in the contacting path is almost half the number of
parameters in the expanding path, but still we get better results by training
fewer number of parameters. Figure 3 represents some examples of the results
on the test set. Contrary to ultrasound images, chest X-ray images resulted in
an almost equal evaluation scores when segmenting lungs, by applying the same
fine-tuning procedure (Dice score: 0.98 for both scenarios, pixel error: 1.1% vs.
1.3%, rand score: 0.95 for both scenarios).

Fig. 3. Comparison of the two scenarios on a few examples. From left to right: the
original image, the ground truth mask, the predicted mask by the pre-trained network,
the predicted mask when the expanding part is fine-tuned, the predicted mask when
the contracting part is fine-tuned. First row: both scenarios work well. Second row: fine-
tuning the contracting path outperforms the other scenario. Third row: fine-tuning the
contracting path performs much better than the other scenario.

When we investigated fine-tuning in a more rigorous manner (including
blocks of layers one-by-one), better performance was achieved moving from shal-
low to deep layers compared to moving from deep to shallow layers. Figure 4
shows the average Dice score for the two directions of fine-tuning. Note that the
middle part of Fig. 4 corresponds to the results reported in the previous para-
graph; blue graph: fine-tuning the contracting path and freezing the expanding
path, red graph: fine-tuning the expanding path and freezing the contracting
path.
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As the number of parameters in the expanding part of the network is much
higher than the contracting part, it would be expected that the expanding part of
the network trains more slowly than the contracting part, and it would therefore
affect the results. We used a fixed number of epochs (20 epochs) for fine-tuning
the network in all studied scenarios. Although the network was stable after 20
epochs, we added 20 more epochs (40 epochs in total now) to examine the impact
of number of epochs on the segmentation performance. The changes in Dice score
were below 1% for all cases except for the case when the deepest block of layers
was trained and the rest of the network was fixed (first point in Fig. 4); the Dice
score improved by 3%, but it was still much lower than the other path. Adding
10 more epochs did not change the results anymore. Thus, the effect of the speed
of training is not a major one.

Fig. 4. Average Dice score for two different scenarios for ultrasound and X-ray images.
Error bars depict the standard deviation of the mean among the five folds. (Color figure
online)

In order to see what features are seen by different layers of the network, we
employed Keras-Vis [3] to visualize the input image which maximize the activa-
tion in each neuron. Several low-level patterns were recognized for shallow layers
(mostly edges), while high-level maps are more detailed and complex shapes.
Figure 5 shows some examples in different neurons of shallow and deep layers.
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Fig. 5. Some examples of images which maximize the activation in a network trained
on ultrasound images, top: in the fourth layer, bottom: in the deepest convolutional
layer.

4 Discussion and Conclusions

We showed that in breast ultrasound image segmentation using U-Net, fine-
tuning shallow layers of a pre-trained network outperforms fine-tuning deep
layers, when a small number of images are available. It could be due to the
presence of specific low-level patterns such as speckles in this modality, which
are associated with shallow layers of the network.

It is important to note that U-Net is not a simple feedforward architecture.
The notion of deep and shallow is ambiguous in a U-Net, because there are short
and long paths from the input to the output. In this study, we considered the
depth of a layer to be the longest possible path to reach it. Some differences in
the behavior could potentially be related to the difference in architecture of a
U-Net. However, given that the behaviour on non-ultrasound data is similar to
previously reported results, we believe the primary cause of the differences are
due to the character of the image.
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Abstract. The deep convolutional neural network has achieved out-
standing performance on neonatal brain MRI tissue segmentation. How-
ever, it may fail to produce reasonable results on unseen datasets that
have different imaging appearance distributions with the training data.
The main reason is that deep learning models tend to have a good fit-
ting to the training dataset, but do not lead to a good generalization on
the unseen datasets. To address this problem, we propose a multi-task
learning method, which simultaneously learns both tissue segmentation
and geodesic distance regression to regularize a shared encoder network.
Furthermore, a dense attention gate is explored to force the network to
learn rich contextual information. By using three neonatal brain datasets
with different imaging protocols from different scanners, our experimen-
tal results demonstrate superior performance of our proposed method
over the existing deep learning-based methods on the unseen datasets.

Keywords: Neonatal brain segmentation · Multi-task learning ·
Attention · Geodesic distance

1 Introduction

Brain tissue segmentation is a fundamental step in the baby brain MRI analysis.
However, due to the low tissue contrast in the early infantile phase, accurate and
automatic segmentation of the neonatal brain is still a challenge. Many efforts
[2,10,14] have been proposed to improve segmentation accuracy. Over the past
few years, deep convolutional neural network (DCNN) is considered as a poten-
tially promising approach for infant brain segmentation. The DCNN aims to
c© Springer Nature Switzerland AG 2019
Q. Wang et al. (Eds.): DART 2019/MIL3ID 2019, LNCS 11795, pp. 243–251, 2019.
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learn a supervised model from relevant features in the training images. A bench-
mark for infant brain segmentation based on DCNN can be found in [14], where
the DCNN methods demonstrated great success, in comparison with non-deep
learning based methods. However, these methods achieve a good segmentation
accuracy only on the testing datasets that have the similar imaging appearance
as the training dataset, but may fail to produce reasonable results, when the
testing data have different imaging appearance (i.e., from different acquisition
conditions). The main reason is that these deep learning models tend to have
a good fitting to the training dataset, but they generally do not lead to good
generalization on unseen data [5].

Multi-task learning [1] has been proposed to improve the generalization of
the DCNN by forcing a single model to learn several related tasks at once.
For instance, Myronenko [9] added a variational autoencoder branch for image
reconstruction and jointly trained it with segmentation branch to regularize the
shared encoder for brain tumor segmentation. Dangi et al. [4] proposed multi-
task learning for cardiac MR image segmentation by jointly learning a segmen-
tation network and a Euclidean distance map regression network. Wang et al.
[13] employed the Euclidean distance to refine the segmentation result for infant
brains. However, the Euclidean distance uses ground-truth label information to
compute the distance to the tissue boundary, thus it does not leverage the rich
image contextual information. Contrary to the Euclidean distance, the geodesic
distance [3] allows encoding both spatial regularization and contrast-sensitivity.
Wang et al. [12] demonstrated the effectiveness of the geodesic distance over the
Euclidean distance for the interactive segmentation. However, it is not designed
for multi-task learning.

In this paper, we propose multi-task learning for neonatal brain segmen-
tation. Instead of learning a single segmentation task, the proposed network
simultaneously trains both the tissue segmentation task and a geodesic distance
regression task together to regularize the shared encoder network. Meanwhile,
we observe that the regression features can be used to further refine the segmen-
tation result. Hence, we further concatenate the segmentation features and the
regression features together followed by three 3 × 3 × 3 convolutions to produce
a refined segmentation result. Furthermore, we propose a dense attention gate
(DAG) to guide the network to focus on learning the contextual information.
The DAG utilizes contextual information from high-level features to provide
unambiguous information for the correct category as the guidance of low-level
features.

2 Method

2.1 Dense Attention Gate (DAG)

Let Ul = [ul
1, u

l
2, · · · , ul

Cl
] be a feature map at the lth layer, where ul

i ∈ R
D×H×W

and Cl is the number of channel. A statistic vector zl = [zl
1, z

l
2, · · · , zl

Cl
] is

achieved by the global average pooling [8], and each element zl
i of vector zl is
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computed as zl
i = 1

D×H×W

∑D
d=1

∑H
h=1

∑W
w=1 ul

i(d, h, w). Since high-level fea-
tures often have a larger number of channels, we apply 1 × 1 × 1 convolution to
reduce the number of channels to Cl. It provides a balance of important features
among different levels. An attention vector al at the layer lth is formulated via
a sigmoid activation [6]:

al = σ(F(zl,Wl
0)) (1)

where Wl
0 = [w1,w2, ...,wCl

] is learnable weight for each element of the vector
zl, and F(.) is a transformation function.

To integrate the contextual information from high-level features, we define
our proposed dense attention gate (DAG) as follows:

al
DAG =

n∑

i=l

wiai (2)

where the dense attention vector an−1
DAG at the layer (n−1)th computes as follows:

an−1
DAG = wnan + wn−1an−1. In which, an = σ(F(zn,Wn

0 )) is the attention
vector at the layer nth. In the same way, the dense attention vector an−2

DAG at the
layer (n − 2)th calculates as follows: an−2

DAG = wnan + wn−1an−1 + wn−2an−2 =
an−1

DAG + wn−2an−2. Thus, the Eq. 2 can be rewritten as follows:

al
DAG = al−1

DAG + wlal (3)

The Eq. 3 indicates that the dense attention vector al
DAG at layer lth can

be computed via linear combination of the dense attention vector al−1
DAG at the

higher level feature l − 1th and the attention vector at the layer lth. Hence,
the dense attention vector al

DAG not only contains the information of the layer
lth, but also includes the contextual information of higher level features. We
employ the weight Wl

1 = [wl,wl+1, · · · ,wn] to learn the contribution of each
high-level feature to the attention vector al

DAG. Figure 1 shows our proposed
dense attention gate, which aims to force the network to learn the contextual
information of features. By using the contextual information from high-level
features, our proposed DAG enables the network to emphasize useful information
and ignore ambiguous information in the low-level features.

Fig. 1. Our proposed dense attention gate (DAG).
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2.2 Geodesic Distance

Given an image I : Ω → R
D×H×W and a corresponding ground-truth label

Y : Ω → R
D×H×W . We use one-hot encoding scheme to convert the ground-

truth label Y to Mi binary mask images where Mi(d, h, w) = 1 if Mi(d, h, w)
belongs to the class ith; otherwise it takes 0 value, i = 1, · · · , C, where C is
the number of tissue classes. For the binary mask Mi, the geodesic distance [12]
from a voxel x to the boundary of the mask Mi is defined:

GD(x,Mi,∇I) = min
x′∈Mi

d(x, x′,∇I) (4)

where d(x, x′,∇I)=minΓ∈P (x,x′)
∫ 1

0

√
Γ ′(s)2 + γ2(∇I(s) · u(s))2ds, and P (x, x′)

denotes a set of all possible paths between voxels x and x′, and Γ (s) is a path in
the set, parameterized by s ∈ [0, 1]. The unit vector u(s) = Γ ′(s)

‖Γ ′(s))‖ presents the
direction of the path. The factor γ controls the contribution of the image gradient
∇I(s) and the spatial distances, Γ ′(s). Note that the geodesic distance reduces to
the Euclidean distance when setting γ = 0.

We define a signed geodesic distance map for the tissue ith, Di(x), by tak-
ing negative value −GD(.) if the voxel inside the tissue Mi, and positive value
GD(.) if the voxel outside the tissue. Figure 2 indicates an example of the signed
geodesic distance for three classes. For a given voxel, the red color shows the vox-
els far away from the tissue boundary, while the blue color indicates the voxels
close to the tissue boundary. By considering the geodesic distance, the network
enables learning the spatial relationship for each voxel in each class.

Fig. 2. An example of computing geodesic distance: (a) original T1-weighted image
(I), (b) label image (Y ), geodesic distance maps of (c) cerebrospinal fluid (CSF) class
M1, (d) gray matter (GM) class M2, and (e) white matter (WM) class M3. (Color
figure online)

2.3 Network Architecture of Multi-task Learning

Figure 3 illustrates our proposed multi-task network architecture, which has two
main branches: segmentation branch and regression branch. The segmentation
branch is a 3D-Unet [2] with dense connection [7] to improve information flow
between blocks. The segmentation branch includes two paths: an encoder and a
decoder. The encoder path comprises four dense blocks, followed by max-pooling
layers to enlarge the receptive field. To preserve the spatial resolution of feature
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Fig. 3. Our proposed multi-task learning architecture for neonatal brain segmentation.

maps, we used dilated convolution with the rate of 2 for two last blocks. The
proposed DAG is added on the skip connection to force the network to learn
the contextual information. In the decoder path, 3D convolutions with stride of
2 are used to recover the input resolution. We apply a 1 × 1 × 1 convolution to
map the segmentation features to one of the four tissue classes, i.e., GM, WM,
CSF and BG (background).

The regression branch shares the same encoder with the segmentation branch
and has a similar decoding structure. Instead of pixel-wise classification, the dis-
tance regression learns pixel-wise regression. We use the mean square error loss to
measure the difference between the estimated geodesic distance and the ground-
truth distance. A discrimination network is added to encourage the regression
network to produce similar output as the ground-truth distance. The features
from two last layers of segmentation and regression branch are concatenated
together, and then fed to a refinement network (RN) that consists of three con-
volutional layers 3 × 3 × 3 to fuse the two features and provide a refinement
segmentation result. By using the shared encoder, the proposed network enables
learning a joint representation between segmentation and regression task. Hence,
the regression task helps regularize the shared features and improves the gen-
eralization of the network, thus yielding a better segmentation on the unseen
datasets. The proposed network not only provides the pixel-wise prediction, but
also estimates the spatial distance of each pixel to the tissue boundary.

The proposed multi-task loss is thus defined as follows:

L = α1Lseg + α2Lreg + α3LD + Lseg reg (5)

where Lseg and Lseg reg are the cross-entropy losses, and Lreg and LD denote the
mean square error losses for distance regression and the discrimination network,
respectively. The parameters αi (i = 1, · · · , 3) control the balance among losses.
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3 Experiments and Results

3.1 Datasets and Training

We compare the performance of our proposed network with several state-of-the-
art baselines on three datasets of neonatal brains, as shown in Table 1. Herein,
we mainly focus on T1-weighted neonatal images, which typically have higher
spatial resolutions than T2-weighted images in most neonatal imaging studies.
However, our method is generic and can also be applied in T2-weighted images.
All T1-weighted images used in our experiments were acquired on 3T scanners.
The performance of each method was compared with the manual segmentation
using the following two metrics: Dice Similarity Coefficient (DSC) and 95th-
percentile Hausdorff Distance (HD). A higher DSC value and a lower HD value
indicates a superior performance.

Table 1. Datasets and imaging settings.

Datasets (# subject) Scanners Image resolutions Imaging parameters
(TR/TE)

Dataset A (N = 25) GE 0.9375 × 0.9375 × 1 mm3 10.47/4.76 ms

Dataset B (N = 10) Siemens 0.8 × 0.8 × 0.8 mm3 2400/2.24 ms

Dataset C (N = 10) Siemens 1 × 1 × 1 mm3 1900/4.38 ms

All networks were implemented and trained using Pytorch framework on the
12 GB Titan X GPU. We normalized the input image to zero mean and unit
variance, and randomly cropped a sub-region with a size of 64 × 64 × 64 before
inputting them into the network. The Adam optimizer with a batch size of four
were used to train the network. The initialization learning rate was set as 0.0002
and was decreased ten times every 4,000 epochs. The total number of iteration
was 20,000 epochs. The balance weights were set as α1 = 1 and α2 = α3 = 0.5.
We set γ = 0.2 for the geodesic distance map. We selected the dataset A as the
training data and the two remaining datasets for the validation datasets.

3.2 Training and Testing Within the Same Dataset

We first evaluate the performance of those methods on the dataset A. We ran-
domly select sixteen samples for training and four samples for validation and
nine samples for testing. Table 2 shows the segmentation accuracy in term of
DSC values for 3-fold cross validation and testing on the dataset A of different
methods. We employ 3D-Unet [2] with dense connection [7] as a baseline model.
The proposed architecture is built upon the baseline model and extended by
including the regression branch. Meanwhile, the concurrent spatial and channel
(ScSE) [11] is included to the baseline model for comparing with the proposed
DAG block.
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Table 2 reports the performance of the proposed method and the competing
methods on validation and testing sets when training on the same dataset. Both
proposed DAG and ScSE blocks provide better results in comparison with the
baseline, demonstrating the advantage of the attention mechanism for neonatal
brain segmentation. By adding the distance regression branch, the proposed net-
work overcomes the existing methods in term of average DSC. From Table 2, we
can conclude that these methods provide good generalization when the training
and testing data are from the same scanning center.

Table 2. Performance comparison on 3-fold cross validation and testing using DSC.

Method CSF GM WM Avg. DSC

Validation 3D-Unet [2] (Baseline) 97.59(0.39) 96.77(0.30) 98.43(0.28) 97.59

Baseline+ScSE [11] 97.63(0.40) 96.83(0.29) 98.45(0.27) 97.64

Baseline+DAG (Ours) 97.68(0.39) 96.97(0.28) 98.51(0.27) 97.72

Baseline+DAG+DR (Ours) 97.80(0.41) 97.09(0.32) 98.55(0.28) 97.81

Testing 3D-Unet [2] (Baseline) 97.65(0.44) 96.85(0.33) 98.51(0.26) 97.67

Baseline+ScSE [11] 97.71(0.44) 96.93(0.32) 98.54(0.26) 97.73

Baseline+DAG (Ours) 97.75(0.49) 97.06(0.33) 98.59(0.26) 97.80

Baseline+DAG+DR (Ours) 97.88(0.48) 97.18(0.35) 98.65(0.26) 97.90

ScSE: Spatial Channel Squeeze Exciation [11]; DAG: Dense Attention Gate, DR: Distance
Regularization. Bold indicates a significant better performance with p-value < 0.05 using
paired t-test

3.3 Training and Testing in Different Datasets

To demonstrate the effectiveness of the proposed multi-task learning, we further
evaluate the proposed network on the unseen datasets: B and C. All testing
images are resampled to the training resolution of 0.9375 × 0.9375 × 1 mm3.

Figure 4 illustrates the segmentation results obtained by different methods
in all three datasets. The baseline method, 3D-Unet [2], provides a good result
when testing and training data have the similar distribution, but has misclassi-
fication on the unseen datasets indicated by white rectangle as shown in Fig. 4
(b). This indicates that the existing methods have a poor generalization on the
unseen datasets. In contrast, the proposed method provides better stability and
generalization capability among different datasets as shown in Fig. 4(d).

Table 3 compares the mean and standard deviation of segmentation accuracy
of those methods on the unseen datasets in term of DSC, and HD metrics. It is
observed that the proposed multi-task learning provides a better generalization
than the existing networks on unseen datasets, i.e., achieving more accurate
segmentation. The proposed architecture not only improved DSC from 89.02%
to 90.29%, but also reduced HD distance from 1.32 mm to 1.11 mm, compared
with the existing methods. Since the all networks are trained on low resolution
images (dataset A), thus they led to a low performance on the testing images
with a high resolution (dataset B).
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Fig. 4. An example of neonatal brain image: (a) axial slice of T1-weighted MRI from
the dataset A (first row), the dataset B (second row) and the dataset C (third row),
(b) results by 3D-Unet [2] (baseline), (c) results by baseline + SCSE [11], (d) results
by our proposed method, and (e) the ground-truth results.

Table 3. Segmentation accuracy on different datasets.

Method DSC (%) HD (mm)

Dataset B 3D-Unet [2] (Baseline) 84.55 (0.93) 2.28 (0.20)

Baseline + ScSE [11] 84.98 (0.98) 2.07 (0.17)

Baseline + DAG + DR (Ours) 85.85 (1.19) 1.61 (0.12)

Dataset C 3D-Unet [2] (Baseline) 89.02 (3.15) 1.32 (0.11)

Baseline + ScSE [11] 89.15 (3.01) 1.29 (0.09)

Baseline + DAG + DR (Ours) 90.29 (2.43) 1.11 (0.06)

4 Conclusion

We presented an effective of multi-task learning architecture that allows train-
ing segmentation and distance regression tasks simultaneously to address the
generalization issue on unseen datasets in neonatal brain segmentation. We also
proposed a dense attention gate to force learning the important features in the
low level-features by using the information from high-level features. We show
that the proposed multi-task learning network can provide a good generaliza-
tion, yielding a better segmentation accuracy on unseen datasets.
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Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS,
vol. 11072, pp. 411–419. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-00931-1 47

14. Wang, L., et al.: Benchmark on automatic 6-month-old infant brain segmentation
algorithms: the iSeg-2017 challenge. IEEE Trans. Med. Imaging 38(9), 2219–2230
(2019)

https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-540-88682-2_9
http://arxiv.org/abs/1901.01238
http://arxiv.org/abs/1312.4400
https://doi.org/10.1007/978-3-030-11726-9_28
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1803.02579
https://doi.org/10.1007/978-3-030-00931-1_47
https://doi.org/10.1007/978-3-030-00931-1_47


Author Index

Adluru, Nagesh 81
Albarqouni, Shadi 37
Alexander, Andrew L. 81
Amiri, Mina 235
Angelini, Elsa 199
Arbel, Tal 90
Ariga, Rina 45
Arnold, Douglas 90
Au, Anselm 157

Bagci, Ulas 63
Bai, Wenjia 199
Bronstein, Alex 111
Brooks, Rupert 235
Bui, Toan Duc 243

Campbell, J. Peter 225
Cardoso, M. Jorge 54
Chandrasekhar, Vijay 225
Chartsias, Agisilaos 11
Chen, Jian 243
Chen, Jianan 20
Chen, Xiao 129
Chen, Yen-Wei 129
Cheng, Chi-Tung 139
Chiang, Michael F. 225
Ciga, Ozan 20
Clarkson, Matthew J. 173
Cunha, Alexandre 216

Dai, Chengliang 199
Davidson, Brian 173

Eaton-Rosen, Zach 54
Enquobahrie, Andinet 28, 148
Eslami, Abouzar 37

Fernandez, Pedro D. Marrero 216
Ferrazzano, Peter A. 81
Flores, Kevin B. 190
Foo, Chuan-Sheng 225
Fu, Yunguan 173
Fukuda, Akihiro 99

Gao, Mingchen 28
Garcin, Camille 225
Gerber, Samuel 28, 148
Guerrero-Peña, Fidel A. 216
Guo, Yike 199

Haddow, Lewis J. 54
Hamarneh, Ghassan 207
Han, Xianhua 129
Harrison, Adam P. 139
Hu, Hongjie 129
Hu, Yipeng 173

Iwamoto, Yutaro 129

Jambawalikar, Sachin 63

Kainz, Bernhard 157
Kalpathy-Cramer, Jayashree 225
Kamba, Shunsuke 99
Kaur, Barleen 90
Kerfoot, Eric 45
Kern, Christoph 3
Khosravan, Naji 63
Kirk, Gregory R. 81
Klein, Stefan 165
Koo, Bongjin 173
Kortuem, Karsten 3
Krishnaswamy, Pavitra 225

Lagergren, John H. 190
Lai, Bolin 120
Lamata, Pablo 45
Lemaître, Paul 90
Leo, Andrea 11
Li, Gang 243
Liao, Chien-Hung 139
Lin, Lanfen 129
Lin, Weili 243
Liu, Yilin 81
Liu, Yucheng 63
Liu, Yulin 63
Lu, Le 139



Manakov, Ilja 3
Martel, Anne 20
Mehta, Raghav 90
Meng, Qingjie 157
Michailovich, Oleg 111
Mirikharaji, Zahra 207
Miyamoto, Tadashi 99
Mo, Yuanhan 199
Modat, Marc 54

Nacewicz, Brendon M. 81
Nachev, Parashkev 54
Navab, Nassir 37
Nie, Dong 81
Nielsen, Mads 54

Orbes-Arteaga, Mauricio 54
Ouardini, Khalil 225
Ourselin, Sébastien 54

Pai, Akshay 54
Peng, Shiqi 120
Precup, Doina 90
Puch, Santi 181
Puyol-Antón, Esther 45

Reddy, Chandan K. 148
Ren, Tsang Ing 216
Rivaz, Hassan 235
Robu, Maria R. 173
Rohm, Markus 3
Romain, Manon 225
Rowe, Matt 181
Ruijsink, Bram 45
Rutter, Erica M. 190

Sánchez, Irina 181
Sarhan, Mhd Hasan 37
Schnabel, Julia 45
Schneider, Crispin 173
Schworm, Benedikt 3
Senouf, Ortal 111
Sepahvand, Nazanin Mohammadi 90
Shanis, Zahil 28, 148
Sharma, Dhruv 148
Shen, Dinggang 243
Shen, Mingren 81

Shoag, Jonathan 63
Smits, Marion 165
Sørensen, Lauge 54
Stember, Joseph 63
Stoyanov, Danail 173
Styner, Martin A. 81
Sudre, Carole H. 54
Sumiyama, Kazuki 99

Tan, Jeremy 157
Tong, Ruofeng 129
Tresp, Volker 3
Tsaftaris, Sotirios A. 11

Unnikrishnan, Balagopal 225

Valvano, Gabriele 11
van Garderen, Karin 165
van Laarhoven, Stijn 173
Varsavsky, Thomas 54
Vedula, Sanketh 111

Wang, Li 243
Wang, Yan-Feng 120
Weiss, Tomer 111
Wu, Jian 129

Xia, Yong 72
Xiao, Jing 139
Xie, Yutong 72

Yan, Yiqi 207
Yang, Huijuan 225
Yao, Guangyu 120
Yao, Jiawen 139
Yeske, Benjamin 81

Zacur, Ernesto 45
Zenati, Houssam 225
Zhang, Feng 72
Zhang, Qiaowei 129
Zhang, Xiaoyun 120
Zhang, Ya 120
Zhang, Yanning 72
Zhao, Hui 120
Zhou, Bo 139
Zibulevsky, Michael 111

254 Author Index


	Additional Workshop Editors
	Preface
	Organization
	MIL3ID 2019 Preface
	Organization
	Contents
	DART 2019
	Noise as Domain Shift: Denoising Medical Images by Unpaired Image Translation
	1 Introduction
	2 Methodology
	3 Experiments and Results
	3.1 Dataset
	3.2 Quantitative Evaluation
	3.3 Qualitative Evaluation
	3.4 Feature Map Inspection

	4 Discussion
	References

	Temporal Consistency Objectives Regularize the Learning of Disentangled Representations
	1 Introduction
	2 Related Works
	2.1 Learning Good Representations with Temporal Conditioning
	2.2 Spatial Decomposition Network (SDNet)

	3 Proposed Approach
	3.1 Spatial Decomposition and Transformation Network (SDTNet)
	3.2 Transformer Design
	3.3 Cost Function and Training

	4 Experiments and Discussion
	4.1 Data and Preprocessing
	4.2 Results

	5 Conclusion
	References

	Multi-layer Domain Adaptation for Deep Convolutional Networks
	1 Introduction
	2 Methods
	2.1 Gradient Reversal Layer Based Domain Adaptation
	2.2 Wasserstein Distance Based Domain Adaptation

	3 Experimental Results
	3.1 Implementation Details
	3.2 Effect of Layer-Wise Domain Adaptation on Small Networks
	3.3 Effect of Model Complexity on Domain Adaptation
	3.4 Domain Adaptation for Feature Regularization

	4 Conclusions
	References

	Intramodality Domain Adaptation Using Self Ensembling and Adversarial Training
	1 Introduction
	2 Methodology
	2.1 Overview of the Proposed Model
	2.2 Adversarial Training
	2.3 Self Ensembling and Mean Teacher
	2.4 Objective Function
	2.5 Model Architecture

	3 Datasets
	4 Experiments and Results
	4.1 Spinal Cord Cross Institutional Domain Adaptation
	4.2 Brain Tumor Segmentation Using Domain Adaptation

	5 Conclusion
	References

	Learning Interpretable Disentangled Representations Using Adversarial VAEs
	1 Introduction
	2 Methodology
	3 Experiments
	4 Discussion
	References

	Synthesising Images and Labels Between MR Sequence Types with CycleGAN
	1 Introduction
	2 Method
	3 Segmentation
	4 Results
	5 Conclusion
	References

	Multi-domain Adaptation in Brain MRI Through Paired Consistency and Adversarial Learning
	1 Introduction
	2 Methods
	3 Experiments and Results
	4 Discussion
	References

	Cross-Modality Knowledge Transfer for Prostate Segmentation from CT Scans
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Synthetic CT Network: CycleGAN
	2.3 Segmentation Network: 2.5D Res-U-Net

	3 Results
	4 Discussion and Concluding Remarks
	References

	A Pulmonary Nodule Detection Method Based on Residual Learning and Dense Connection
	1 Introduction
	2 Dataset
	3 Method
	3.1 Pre-processing
	3.2 Nodule Candidate Detection
	3.3 False Positive Reduction
	3.4 Implementation

	4 Results and Discussions
	5 Conclusion
	References

	Harmonization and Targeted Feature Dropout for Generalized Segmentation: Application to Multi-site Traumatic Brain Injury Images
	1 Introduction
	2 Method
	2.1 Harmonization
	2.2 Targeted Feature Dropout

	3 Experiments and Results
	3.1 Datasets
	3.2 Configuration Details
	3.3 Segmentation Results
	3.4 Conclusion

	References

	Improving Pathological Structure Segmentation via Transfer Learning Across Diseases
	1 Introduction
	2 Methodology
	3 Experiments and Results
	3.1 Data Description and Preprocessing
	3.2 Model Implementation Details
	3.3 Experiments
	3.4 Results

	4 Conclusions
	References

	Generating Virtual Chromoendoscopic Images and Improving Detectability and Classification Performance of Endoscopic Lesions
	1 Introduction
	2 Methods
	2.1 Image-to-Image Translation
	2.2 Lesion Detection Model
	2.3 Evaluation Metrics

	3 Experiments and Results
	3.1 Generating Virtual Indigocarmine Image
	3.2 The Effect of VIC Translation in the Lesion Detection
	3.3 Augmentation Effect of VIC Images

	4 Discussion
	5 Conclusion
	References

	MIL3ID 2019
	Self-supervised Learning of Inverse Problem Solvers in Medical Imaging
	1 Introduction
	2 Methods
	2.1 Prior-Based Solvers
	2.2 Supervised Learning for Inverse Problems
	2.3 Self-supervised Learning

	3 Problem Setup
	4 Experiments and Discussion
	5 Conclusion and Future Work
	References

	Weakly Supervised Segmentation of Vertebral Bodies with Iterative Slice-Propagation
	1 Introduction
	2 Method
	2.1 Sagittal Slice Segmentation via Self-training
	2.2 Slice-Propagated Segmentation

	3 Experimental Setup and Results
	4 Conclusion
	References

	A Cascade Attention Network for Liver Lesion Classification in Weakly-Labeled Multi-phase CT Images
	Abstract
	1 Introduction
	2 Methodology
	2.1 Dual-Attention Dilated Residual Network (DADRN)
	2.1.1 Channel Attention Block (CAB)
	2.1.2 Spatial Attention Block (SAB)
	2.1.3 Class-Specific Lesion Localization

	2.2 Multi-channel Dilated Residual Network (MCDRN)

	3 Experimental Results
	3.1 Materials
	3.2 Performance Analysis of the Proposed Method
	3.2.1 Comparison Between DADRN and Other Attention-Based Models
	3.2.2 Ablation Study of the Proposed Cascade Attention Network
	3.2.3 Comparison with State-of-the-Art Lesion Classification Models


	4 Conclusions
	Acknowledgements
	References

	CT Data Curation for Liver Patients: Phase Recognition in Dynamic Contrast-Enhanced CT
	1 Introduction
	2 Methods
	2.1 Dataset
	2.2 3DSE Network
	2.3 Aggregated Cross Entropy

	3 Results
	4 Conclusion
	References

	Active Learning Technique for Multimodal Brain Tumor Segmentation Using Limited Labeled Images
	1 Introduction
	2 Methodology
	2.1 Model Architecture
	2.2 Query Strategies
	2.3 Training Process

	3 Data and Experiments
	4 Results and Discussion
	5 Conclusion and Future Work
	References

	Semi-supervised Learning of Fetal Anatomy from Ultrasound
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Dataset
	3.2 Evaluation

	4 Results
	5 Discussion
	6 Conclusion
	References

	Multi-modal Segmentation with Missing MR Sequences Using Pre-trained Fusion Networks
	1 Introduction
	1.1 Contribution

	2 Methodology
	2.1 Network Architecture
	2.2 Data and Preprocessing
	2.3 Training and Evaluation
	2.4 Visualizing Shared Representations

	3 Results
	3.1 t-SNE Visualizations

	4 Discussion and Conclusion
	References

	More Unlabelled Data or Label More Data? A Study on Semi-supervised Laparoscopic Image Segmentation
	1 Introduction
	2 Method
	2.1 Supervised Segmentation Network Architecture
	2.2 Semi-supervised Mean Teacher Training

	3 Experiment
	3.1 Data Set
	3.2 Network Implementation and Training
	3.3 Evaluation

	4 Result
	5 Conclusion
	References

	Few-Shot Learning with Deep Triplet Networks for Brain Imaging Modality Recognition
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Deep Triplet Networks
	2.3 Triplet Loss with Online Hard-Mining
	2.4 Pipeline for Image Classification with Deep Triplet Networks

	3 Experiments
	3.1 Hyperparameter Search
	3.2 Few-Shot Learning
	3.3 Robustness Against Noise
	3.4 Investigation of Uncertainty Measures

	4 Conclusions
	References

	A Convolutional Neural Network Method for Boundary Optimization Enables Few-Shot Learning for Biomedical Image Segmentation
	1 Introduction
	2 Methods
	3 Experiments
	4 Results
	5 Discussion
	References

	Transfer Learning from Partial Annotations for Whole Brain Segmentation
	1 Introduction
	2 Method
	2.1 Pre-training with Partial Annotations
	2.2 Joint Training with Full Annotations

	3 Experiments and Results
	3.1 Datasets
	3.2 Preprocessing and Training
	3.3 Results

	4 Conclusion
	References

	Learning to Segment Skin Lesions from Noisy Annotations
	1 Introduction
	2 Methodology
	3 Experiments and Discussion
	4 Conclusion
	References

	A Weakly Supervised Method for Instance Segmentation of Biological Cells
	1 Introduction
	2 Segmentation Method
	3 Experiments and Results
	4 Conclusions
	References

	Towards Practical Unsupervised Anomaly Detection on Retinal Images
	1 Introduction
	2 Methods
	2.1 Task Definition
	2.2 Transfer Learning for Anomaly Detection
	2.3 Baselines

	3 Experiments
	3.1 Datasets
	3.2 Training and Evaluation
	3.3 Novelty Detection Setting
	3.4 Utilizing Small Numbers of Labeled Anomalies to Improve Performance
	3.5 Anomaly Detection Setting

	4 Discussion and Conclusion
	References

	Fine Tuning U-Net for Ultrasound Image Segmentation: Which Layers?
	1 Introduction
	2 Methodology
	2.1 Datasets
	2.2 Analysis
	2.3 Performance Metrics

	3 Results
	4 Discussion and Conclusions
	References

	Multi-task Learning for Neonatal Brain Segmentation Using 3D Dense-Unet with Dense Attention Guided by Geodesic Distance
	1 Introduction
	2 Method
	2.1 Dense Attention Gate (DAG)
	2.2 Geodesic Distance
	2.3 Network Architecture of Multi-task Learning

	3 Experiments and Results
	3.1 Datasets and Training
	3.2 Training and Testing Within the Same Dataset
	3.3 Training and Testing in Different Datasets

	4 Conclusion
	References

	Author Index



