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Abstract. In this paper we investigate a single-server two-way com-
munication system by the help of retrial queuing systems with finite
source. From the finite source incoming primary calls enter into the sys-
tem according to an exponential distribution. If the server is idle then
the service of incoming customer starts immediately. Alternatively, if
an incoming customer discovers the server in busy state it is directed
towards the orbit, where after some exponentially distributed time retries
to reach the server again. As soon as the server becomes idle it can gener-
ate an outgoing call to the customers in the orbit after an exponentially
distributed time. In case of two-way communication after the service of
an outgoing call it returns to the source. In this work we concentrate on
emphasizing a phenomena of outgoing call on the mean waiting time of
incoming customers. The novelty of this paper is to carry out a sensitiv-
ity analysis comparing various distributions of service time of primary
customers on the performance measures like utilization of the server or
mean waiting time. By the use of simulation several graphical results and
comparison of the applied systems are illustrated.

Keywords: Retrial queues · Two-way communication · Sensitivity
analysis · Finite-source queuing systems · Simulation

1 Introduction

Finite-source retrial queues are effective and commonly used systems for mod-
eling real life problems arising in main telecommunication systems like cellular
mobile communication networks, computer networks, local-area networks with
random access protocols, call centers and CSMA-based wire-less networks. With
the decrement of the rate of generation of new calls the number of customers in
the system increases in case of many practical situation. This can be performed
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with the help of finite-source or quasi-random input models. Their importance
can be viewed by the reader in the following works, for example [4,10,11,14,15].

Systems with retrial feature are identified by a specific feature of arriving
customers when the server is occupied. These customers stay in the system
and spend their time in a virtual waiting room called orbit. Customers in the
orbit attempt to be served after a random time. Because the number of calls
are finite, the assumption of working with finite-source queuing systems follows
real circumstances. In this paper we examine two-way communication retrial
queuing system which is quite popular topic in the recent years. This can be
explained by the fact that using two-way communication scheme is very helpful
in many application fields to model real life problems. Especially in case of
call centers where service unit can perform certain other work in idle state like
selling, advertising and promoting products including serving incoming calls. In
such systems utilization of the service unit is always pivotal, see for example in
[1,2,6,9,13,16,20,22].

Once the server becomes idle it calls for customers inside and outside of
the system which is called an outgoing call. This is a typical feature of two-
way communication system. In our investigated model the idle service unit can
generate a call only from the orbit which arrives after a random time. It will only
be served if no customers from the finite source or from the orbit come. Otherwise
this outgoing call will be canceled. Papers dealing with two-way communication
systems by the help of retrial queues, where the source is infinite, are found in
[3,5,7,8,17–19,21].

Our aim is to study the operation of the system where the service unit is
reliable and can perform outgoing call from the orbit. The novelty of this paper
is to compare this system with the common finite source retrial system using
various distribution of service on performance measures like mean waiting time
of an incoming call or utilization of the server. We are mainly interested in how
the different distributions modify the characteristics of the system. To achieve
this goal a simulation program has been developed using the base of SimPack [12]
which contains a number of C/C++ libraries and executable programs. One of
the main reasons for its usage is that the user has the freedom what performance
measure are calculated and how the model is built up. SimPack toolkit also
provides a set of utilities that demonstrate how to build a working simulation
from a model description.

2 System Model

We consider a retrial queuing system of type M/G/1//N with a reliable server
which is capable to produce outgoing calls to the customers residing in the orbit.
N customers are located in the source, where all of them can generate incoming,
primary calls towards the server. The distribution of the inter-request times is
exponential with rate λ/N . In default of waiting queue an incoming customer
either from the source or orbit finds the server in an idle state then its ser-
vice begins instantly. The service times of incoming customers are assumed to
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be gamma, hypo-exponentially, hyper-exponentially, Pareto and lognormal dis-
tributed with different parameters but with the same mean value. Customers
return to the source after their service is terminated. If the server is busy, mean-
ing that a request is under service, an incoming customer remains in the system
and enters into the orbit. Customers located in the orbit are able to attempt to
access the server again after an exponentially distributed time with parameter
σ/N . In the other hand, when the server becomes idle it can make outgoing
call towards the customers in the orbit. It is performed after an exponentially
distributed time with parameter ν. The service time of these outgoing customers
follows gamma distribution with parameters α2 and β2. In a consecutive paper
we aim to investigate the same system by the help of asymptotic methods when
N tends to infinity and that is the reason we use λ/N and σ/N parameters.
All the random variables involved in the model construction are assumed to be
totally independent of each other.

3 Applied Distributions and Its Parameters

In this Section the reader gets an insight of the parameters of the applied
distributions and the process how to select them in order to execute a valid
comparison. To do so our program is integrated with random number genera-
tors according to gamma, hyper-exponential, hypo-exponential, lognormal and
Pareto distribution. These random number generators need input parameters
which are different in every distribution, thus parameter selection is crucial.
For valid comparison we use the same mean and variance in case of every dis-
tribution hence we take over every distribution and how the fitting process is
accomplished.

3.1 Gamma Distribution

Gamma distribution is a general type of statistical distribution and a random
variable X has a gamma distribution if its density function is the following:

f(x) =

{
0 if x < 0
β(βx)α−1e−βx

Γ (α) if x ≥ 0

where β > 0 and α > 0.

Γ (α) =
∫ ∞

0

tα−1 e−t dt

This is the so-called complete gamma function, which has two parameters:
α is called the shape parameter and β is called the scale parameter. These two
parameters are also the input parameters of the random number generator.

The coefficient C2
X = V ar(X)

(EX)2 is defined as the squared coefficient of variation
of random variable X.
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The mean value, variation and the squared coefficient of variation can be
calculated:

X =
α

β
, V ar(X) =

α

β2
, C2

X =
1
α

For a predetermined mean value and variance to obtain parameters α and β
the next calculation has to be done:

α =
1

C2
X

, β =
α

X

3.2 Pareto Distribution

A random variable X has a Pareto distribution if its density function is the
following:

f(x) =

{
0 if x < k

αkαx−α−1 if x ≥ k

Hence the distribution function is:

F (x) =

{
0 if x < k

1 −
(

k
x

)α

if x ≥ k

where α, k > 0.
It has two parameters: α is called the shape parameter and k is called the

location parameter. These two parameters are the input parameters of the ran-
dom number generator.

The mean value, variation and the squared coefficient of variation can be
calculated as follows:

X =

{
kα

α−1 if α > 1
∞ if α ≤ 1

V ar(X) =
k2α

α − 2
−

( kα

α − 1

)2

, C2
X =

(α − 1)2

α(α − 2)
− 1, α > 2.

For a predetermined mean value and variance to obtain parameters α and k
the following interrelation is used:

α = 1 +

√
1 + C2

X√
C2

X

, k =
α − 1

α
× X
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3.3 Lognormal Distribution

Let Y ∈ N(m,σ) a random variable with normal distribution, lognormal is
a continuous distribution in which the logarithm of a variable having a normal
distribution, namely X = eY has lognormal distribution with parameters (m,σ).
Its distribution and density function are the following:

Fx(x) = Φ
( ln(x) − m

σ

)
, x > 0.

fx(x) =
1

σx
ϕ
( ln(x) − m

σ

)
, x > 0.

The mean value, variance and the squared coefficient of variation can be
calculated:

X = em+σ2
2 , V ar(X) = e2m+σ2

(eσ2 − 1), C2
X = eσ2 − 1.

To obtain the two parameters of the lognormal distribution the following
interrelation is applied:

σ =
√

ln(1 + C2
X), m = ln(X) − σ2

2

3.4 Hypo-exponential Distribution

Continuous statistical distribution, let Xi ∈ Exp(μi)(i = 1, ..., n) be independent
exponentially distributed random variables. Then Yn = X1+...+Xn has n-phase
hypo-exponential distribution. Its density function is given by

fYn
(x) =

⎧⎨
⎩

0 if x < 0

(−1)n−1

[ ∏n
i=1 μi

] ∑n
j=1

e−μjx
∏n

k=1,k �=j(μj−μk)
if x ≥ 0.

The mean value, variance and the squared coefficient of variation can be
calculated:

Yn =
n∑

i=1

1
μi

, V ar(Yn) =
n∑

i=1

1
μ2

i

, C2
Yn

=

∑n
i=1

(
1
μi

)2

( ∑n
i=1

1
μi

)2 .

In our simulation program we used the 2-phase hypo-exponential distribution
where the parameters are the parameters of the two independent exponential
distribution (μ1, μ2). For a predetermined mean value and variance to obtain
parameters μ1 and μ2 the next equation system has to be solved:

X =
1
μ1

+
1
μ2

, V ar(X) =
1
μ2
1

+
1
μ2
2
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3.5 Hyper-exponential Distribution

Suppose X1,X2, · · · ,Xn are independent exponential random variables, where
the rate parameter of Xi is λi. The random variable X can be one of the n
independent exponential random variables X1,X2, · · · ,Xn such that X is Xi

with probability pi with p1 + · · · + pn = 1. Such a random variable X is said to
follow a hyper-exponential distribution. Its density function is given by

fX(x) =

{
0 if x < 0∑n

i=1 piλie
−λix if x ≥ 0.

Its distribution function is

FX(x) =

{
0 if x < 0
1 − ∑n

i=1 pie
−λix if x ≥ 0.

In the case when for a random variable X,C2
X > 1 then the the following

two-moment fit is suggested

fY (t) = pλ1e
−λ1t + (1 − p)λ2e

−λ2t.

Y is a 2-phase hyper-exponentially distributed random variable. The most
commonly used procedure is the balanced mean method, that is

p

λ1
=

1 − p

λ2
.

To obtain the three parameters of the hyper-exponential distribution the
following calculation is used:

p =
1
2

(√
C2

X − 1
C2

X + 1

)
, λ1 =

2p

X
, λ2 =

2(1 − p)
X

.

4 Simulation Results

4.1 Squared Coefficient of Variation is Greater than One

The values of the input parameters are shown in Table 1. In this section these
results are in connection with the effect of different service time distributions
of incoming customers where the mean and variance are equal, respectively.
We use hyper-exponential distribution if the squared coefficient of variation is
greater than one, Table 2 shows the exact values of parameters of service time of
incoming customers. Besides hyper-exponential, gamma, lognormal and Pareto
distributions are also used for comparisons.

Figure 1 shows the mean waiting time in function of arrival intensity of incom-
ing customers. For these values of parameters regardless of the applied distri-
bution a maximum value of the mean waiting time can be seen. This maximum
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Table 1. Numerical values of model parameters

N σ/N ν α2 β2

100 0.01 0.02 1 1.1

Table 2. Parameters of service time of incoming customers

Distribution Gamma Hyper-exponential Pareto Lognormal

Parameters α = 0.04 p = 0.48 α = 2.02 m = −1.629

β = 0.04 λ1 = 0.961 k = 0.505 σ = 1.805

λ2 = 1.04

Mean 1

Variance 25

Squared coefficient
of variation

25

Fig. 1. Mean waiting time vs. arrival intensity using various distributions

feature occurs for finite-source retrial queues, see for example [4,9,10,16]. Dif-
ferences can be observed among the values of mean waiting time especially in
the case of using gamma and Pareto distribution, despite the fact that the mean
and variance are the same. On this figure the effect of different distributions is
clearly observable.

Figures 2 and 3 illustrates how the utilization of the server grows with the
increment of the arrival intensity of incoming customers. The highest values can
be found at gamma distribution but the differences of the applied distributions
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Fig. 2. Utilization of server vs. arrival intensity using various distributions

Fig. 3. Utilization of server vs. arrival intensity using various distributions
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are as commensurable as in case of Fig. 1. As the arrival intensity increases the
probability of performing outgoing call become less so outgoing requests spend
less time at the service unit.

Fig. 4. Comparison of steady-state distributions

On Fig. 4 the comparison of steady-state distribution can be seen when the
distribution of service time of the incoming customers is different. It represents
the probability of how many customers residing in the orbit. Exploring the curves
in more detail they correspond to normal distribution. The same parameter
setting is used what Table 1 demonstrates where λ/N is 0.03.

To emphasize the importance of outgoing calls we compare our investigated
model to the model without outgoing calls. This model is named as the classical
retrial queuing system. On Fig. 5 comparison of the mean waiting time can be
seen and due to the phenomena of outgoing call customers spend less time in
the system, which is obvious looking at the curves. However, in our investigated
model the utilization of the service unit (Fig. 6) is much higher compared to
the classical retrial queuing system therefore it spends less time in idle state.
In this way the efficiency of the server grows such that the mean waiting time
decreases substantively. The distribution of service time of the incoming cus-
tomer is gamma at Figs. 5 and 6, but the ratio of difference is also true for the
other distributions, too. On this figure under total utilization of server we mean
the service of both the incoming and outgoing requests at the curve of with
outgoing call.
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Fig. 5. Comparison of our investigated model and the classical retrial queuing model
on the mean waiting time

Fig. 6. Comparison of our investigated model and the classical retrial queuing model
on the utilization of server
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4.2 Squared Coefficient of Variation is Less than One

The same input parameters are used as in the previous section, see Table 1. The
results are also in connection with the effect of different service time distributions
of incoming customers where the mean and variance are equal. Instead of hyper-
exponential distribution hypo-exponential distribution is used if the squared
coefficient of variation is less than one. Table 3 illustrates the values of parameters
of service time of incoming customers. In addition to hypo-exponential, we apply
gamma, lognormal and Pareto distributions to perform sensitivity analysis.

Table 3. Parameters of service time of incoming customers

Distribution Gamma Hypo-exponential Pareto Lognormal

Parameters α = 1.5504 μ1 = 1.3 α = 2.597 m = −0.249

β = 1.5504 μ2 = 4.333 k = 0.615 σ = 0.705

Mean 1

Variance 0.6449704142

Squared coefficient
of variation

0.6449704142

Fig. 7. Mean waiting time vs. arrival intensity using various distributions

Figure 7 demonstrates the mean waiting time in the function of arrival inten-
sity of incoming calls. Taking closer look at the curves it can be stated that
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the values of mean waiting time are almost identical regardless of the applied
distribution. With this parameter setting the interesting maximum value of the
mean waiting time appears as in the previous section.

Fig. 8. Utilization of server vs. arrival intensity using various distributions

Figures 8 and 9 illustrates how the utilization of the server increases with the
increment of the arrival intensity of incoming customers. As in case of mean wait-
ing time here using different distributions result the same utilization. It seems
that when the squared coefficient of variation is less than one using different dis-
tributions have no effect on the performance measures and the obtained results
are nearly identical.

Similarly to the previous section we compare the results between the classical
retrial queuing system and our investigated model. On Figs. 8 and 9 the same
tendency can be observed like when the the squared coefficient of variation is
greater than one, namely values of mean waiting time is lesser when the server
can make outgoing calls. But this also affects the utilization of the service unit
because with the help of outgoing calls server spend less time without satisfying
the needs of the customers. As in the previous section the service time of the
incoming customer follows gamma distribution at Fig. 10 and 11, but the ratio
of difference is also true for the other distributions, too.

From Figs. 5, 6, 10 and 11 it can be said that the utilization of service unit
escalates when outgoing calls are performed, but it also results lesser mean wait-
ing time of incoming customers. With a proper parameter setting in the case of
outgoing calls the utilization of the server is much higher in a way that customers
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Fig. 9. Utilization of server vs. arrival intensity using various distributions

Fig. 10. Comparison of our investigated model and the classical retrial queuing model
on the mean waiting time
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Fig. 11. Comparison of our investigated model and the classical retrial queuing model
on the utilization of server

spend less time in the orbit. In the case of with outgoing calls total utilization of
the server includes both incoming and outgoing requests occupying the service
unit.

5 Conclusion

A finite-source retrial queueing system is introduced where the server can pro-
duce outgoing calls towards the customers of the orbit. Several figures present
the effect of the applied distributions on the mean waiting time and on the uti-
lization of the server. Using stochastic simulation method results clearly indicate
that when the squared coefficient of variation is greater than one then the con-
trast of the values of the performance measures is quite high having the same
mean and variance.
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