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Preface

The series of scientific conferences Information Technologies and Mathematical
Modelling (ITMM) was started in 2002. In 2012, the series acquired an international
status, and selected revised papers have been published in Communication in Computer
and Information Science since 2014. The conference series was named after Alexander
Terpugov, one of the first organizers of the conference, an outstanding scientist of the
Tomsk State University and a leader of the famous Siberian school on applied
probability, queueing theory, and applications.

Traditionally, the conferences have about ten sections in various fields of
mathematical modelling and information technologies. Throughout the years, the
sections on probabilistic methods and models, queueing theory, and communication
networks have been the most popular ones at the conference. These sections gather
many scientists from different countries. Many foreign participants come to this Siberia
conference every year because of our warm welcome and serious scientific discussions.
This year, the ITMM conference was held in Saratov, one of the biggest research and
engineering centers of the Russian Federation.

This volume presents selected papers from the 18th ITMM conference. The papers
are devoted to new results in queueing theory and its applications. Its target audience
includes specialists in probabilistic theory, random processes, mathematical modeling,
as well as engineers engaged in logical and technical design and operational
management of data processing systems, communication, and computer networks.

June 2019 Alexander Dudin
Anatoly Nazarov

Alexander Moiseev
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On the Busy Period in a Finite-Source
Retrial Queue with Outgoing Calls

Velika Dragieva1(B) and Tuan Phung-Duc2

1 University of Forestry, 10 Kliment Ohridsky, 1756 Sofia, Bulgaria
dragievav@yahoo.com

2 University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
tuan@sk.tsukuba.ac.jp

Abstract. The main purpose of present paper is to study the busy
period in one single-server, finite-source retrial queue with outgoing calls.
The specific feature of this system is that the outgoing calls do not affect
the customers in the system. This allows the model to be considered as
a queue with two types of customers. The service times of incoming and
the outgoing calls follow two distinct arbitrary distributions. We derive
formulas for computing the Laplace-Stieltjes transform of the distribu-
tion of the busy period length and its first moment.

Keywords: Finite queues · Retrials · Outgoing calls · Busy period

1 Introduction

This paper deals with a single-server queue with two types of customers (units,
users). The customers of the first type form a quasi-random input of demands,
and if the service cannot start at the time of arrival, the customer joins a virtual
waiting room, called orbit and after some exponentially distributed random time
repeats his/her attempt for service. The customers of the second type arrive
according to a Poisson flow. When their service can not start at the moment of
arrival they do not join the orbit, they are lost. This behavior of the second type
customers allows the model to be considered as a single-server, finite-source
retrial queue where the server makes outgoing calls after some exponentially
distributed idle time.

In the queueing models with quasi-random input (also called closed queue-
ing models or queues with finite source) it is assumed that the server/servers
serve a finite number of customers as it is in most of the real situations. Each of
these customers produces its flow of demands which means that the generalized
input flow depends on the number of customers able to produce demands. These
models have been used to analyze the performance of telephone, computer, com-
munication and other systems (see [6,7,20,21]).

Retrial queues have been used to model problems in telephone, computer,
communication system, etc. The most obvious example of a retrial queue appears

c© Springer Nature Switzerland AG 2019
A. Dudin et al. (Eds.): ITMM 2019, CCIS 1109, pp. 1–13, 2019.
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in a telephone call, when a person phones and finds the line engaged. Usually in
such a situation the subscriber repeats his attempts until he is satisfied. Other
examples arrise in diverse real situations including telephone switching systems,
telecommunication and computer networks, call centers, cellular and local area
networks, etc. (see [1,3,8,9,31,32]). A systematic account of the fundamental
methods and the latest results, as well as an classified bibliography on this topic
can be found, for example in [3,15,17,23] and references therein.

Single-server retrial queues with quasi-random input are useful in model-
ing magnetic disk memory systems (see [29]), a star-like local area networks (see
[22,26]), a local area networks with non-persistent CSMA/CD protocol (see [25])
and in other real life situations. These models have been studied in a number of
articles by a number of authors: Ohmura and Takahashi [29], Falin and Artalejo
[18], Amador [2], Dragieva [10]. Recently, such models, extended with additional
features of the service regime and/or the customers behaviour, have been exten-
sively analyzed. This includes models with an unreliable server (in [33,35]), with
two phases of the service times (in [34]), models with collisions (in [27]), with
random access (in [19]), models with two-way communication (in [13,24,28]).

In various real life situations, especially in systems with human servers such
as call centers, mobile phone, etc., the server not only accepts and serves incom-
ing demands (calls) but, while being idle he/she himself/herself initiates out-
going calls. Such situations are usually modelled by queueing systems, recently
known as two-way communication queues or queues with outgoing calls. Ones
of the first results about such models are obtained by Falin in his paper [16],
where the author analyzes a single server queue with outgoing and incoming calls
whose service times have the same arbitrary distribution. Single and multiple-
servers retrial models with incoming and outgoing calls that follow exponential
distribution with distinct parameters are analyzed by Artalejo and Phung-Duc
[4]. The corresponding M/G/1 queue where the service times of incoming and
outgoing calls follow two distinct arbitrary distributions is investigated by the
same authors in their paper [5]. Sakurai and Phung-Duc [30] consider two-way
communication retrial queues with multiple types of outgoing calls. A two-way
communication M/M/1 retrial queue with server-orbit interaction is studied by
Dragieva and Phung-Duc [12].

As stated above, a single-server, finite-source retrial queues with two-way
communication are analyzed by Dragieva and Phung-Duc [13], Nazarov et al.
[28], Kuki et al. [24]. In these works it is assumed that the outgoing calls are
directed to the customers in the system: in the orbit or outside it (the customers
in free state), while the corresponding model with outgoing calls directed to some
customers outside the system is studied by Dragieva and Phung-Duc [14]. In the
present paper we extend this analysis, considering the system performance in
non-stationary regime. Applying the discrete transformations method, common
it the investigation of queues with finite source (see [11,17,18,21,29,33–35]) we
derive formulas for computing the Laplace-Stieltjes transform of the distribution
function of the system busy period. We also derive convenient recursive formulas
for computing the mathematical expectation of the busy period length.
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The assumption that outgoing calls are directed to some customers outside
the system allows to consider the model under investigation as a model with
vacations (or breakdowns and repairs), made by the server during its idle time,
or as a model with two types of customers. The motivation for studying such
model are many real situations like call centers, repair centers, or medical centers.
Usually in these centers along with the regular customers there is and a special
group of subscribed customers, or customers (patients) under special care whose
service consists mainly of preventive activities, initiated by the server (operator)
when being idle.

Further the paper is organized as follows. In Sect. 2 we describe the model
in detail and introduce the necessary notations. Section 3 is devoted to the busy
period investigation and contains the main results of the paper. Section 4 closes
the paper and presents some topics for possible further works.

2 Model Description and Notations

We consider queueing system with one server that serves K customers. Each
of these customers in its free state that means not being served or waiting for
service, produces a Poisson flow of demands (calls) with intensity λ1, i.e. a cus-
tomer in free state calls for service with rate λ1 which will be also called primary
intensity. If the server is idle at the time of a customer arrival, the service of
this customer starts. Otherwise it enters the orbit and repeats its attempts for
service until it finds the server idle. The intervals between repetitions are expo-
nentially distributed with parameter μ, the secondary intensity. The customers
in the orbit are called secondary incoming customers or repeated customers,
while those that are outside it - primary customers or customers in free state.
The service duration of primary and secondary incoming customers follows the
same arbitrary law with common probability distribution function B1(x), haz-
ard rate function b1(x) = B′

1(x)[1−B1(x)]−1, Laplace-Stieltjes transform β1(s)
and mean 1/ν1. After the service all customers (primary or secondary) move to
a free state, i.e. can produce a Poisson flow of demands with intensity λ1.

On the other hand, the server produces outgoing calls after some idle time
having exponential distribution with parameter λ2 (the intensity of outgoing
calls, or just outgoing intensity): The duration of outgoing calls follows an arbi-
trary distribution with probability distribution function B2(x), hazard rate func-
tion b2(x), Laplace-Stieltjes transform β2(s) and mean 1/ν2.

Thus, after each service the next server occupation is determined by a com-
petition between three flows of demands - demands of the primary and secondary
incoming customers, and demands of the server outgoing calls. More precisely,
if at a time moment t the server is idle and there are n customers in the orbit,
the rates of these flows are equal to (K − n)λ1, nμ and λ2, respectively.

3 Busy Period

Let us assume that the busy period starts at time t0 = 0 at which all customers
are in free state and one of them generates a call. It ends at the first epoch
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at which the server is idle and there are no customers in the orbit. We assume
that the length of the busy period is ζ, its distribution function, P{ζ ≤ x} is
H(x) with Laplace – Stieltjes transform η(s). For each t ≥ 0 we consider the
probabilities (densities)

Pi,n(t, x)dx = P {ζ > t, C(t) = i, R(t) = n, x ≤ z(t) < x + dx} ,

Pi,n(t) = P {ζ > t, C(t) = i, R(t) = n} =
∫

Pi,n(t, x)dx, i = 1, 2,

P0,n(t) = P {ζ > t, C(t) = 0, R(t) = n} , 0 ≤ n ≤ K,

with P1,K(t, x) = 0,

P0,n(0) = P2,n(0, x) = 0, P1,n(0, x) = δ(x)δ0,n, (1)

and Laplace transforms P i,n(s, x) (i = 1, 2), P i,n(s) (i = 0, 1, 2). Here C(t)
denotes the server state at time t (0, 1 or 2, according to the server is idle, busy
with an incoming or with an outgong call, respectively), R(t) is the number
of repeated customers at time t, z(t) is a supplementary variable, equal to the
elapsed service time, δ(x) is Dirac delta and δi,j is Kronecker’s delta.

Remark 1. In our definition of a busy period we have not included the case when
this period is initiated by an outgoing call. Since a client can arrive during this
outgoing call, thus starting a new busy period, such a situation is interesting
and should be stated as a possible future topic for investigation. The same refers
to the case when we consider the model as a queue with two types of customers.

The Kolmogorov’s equations for these transient probabilities are:

d

dt
P0,n(t) = −[(K − n)λ1 + λ2 + nμ]P0,n(t) +

∫ t

0

2∑
i=1

Pi,n(t, x)bi(x)dx,

∂

∂t
P2,n(t, x) = −

[
(K − n)λ1 + b2(x) +

∂

∂x

]
P2,n(t, x)+

+ (1 − δn,1) (K − n + 1)λ1P2,n−1(t, x),
P2,n(t, 0) = λ2P0,n(t),

1 ≤ n ≤ K,
∂

∂t
P1,n(t, x) = −

[
(K − n − 1)λ1 + b1(x) +

∂

∂x

]
P1,n(t, x)+

+ (1 − δn,1) (K − n)λ1P1,n−1(t, x),
P1,n(t, 0) = (1 − δ0,n) (K − n)λ1P0,n(t) + (n + 1)μP0,n+1(t),

0 ≤ n ≤ K − 1,

with initial conditions (1).
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In addition, it holds:

d

dt
H(t) =

∞∫

0

P1,0(t, x)b1(x)dx,

K∑
n=1

(
P0,n(t) +

∫ ∞

0

P2,n(t, x)dx

)
+

K−1∑
n=0

∫ ∞

0

P1,n(t, x)dx = 1 − H(t).

Applying in these equations Laplace transform, we get

[(K − n)λ1 + λ2 + nμ + s] P 0,n(s) =∫ ∞

0

(
P 1,n(s, x)b1(x) + P 2,n(s, x)b2(x)

)
dx,

(2)

[
(K − n)λ1 + b2(x) + s +

∂

∂x

]
P 2,n(s, x) =

(1 − δn,1) (K − n + 1)λ1P 2,n−1(s, x),
(3)

P 2,n(s, 0) = λ2P 0,n(s),
1 ≤ n ≤ K,

(4)

[
(K − n − 1)λ1 + b1(x) + s +

∂

∂x

]
P 1,n(s, x) =

δ(x)δn,0 + (1 − δn,0) (K − n)λ1P 1,n−1(s, x),
(5)

P 1,n(s, 0) = (1 − δn,0) (K − n)λ1P 0,n(s) + (n + 1)μP 0,n+1(s),
0 ≤ n ≤ K − 1,

(6)

η(s) =

∞∫

0

P 1,0(s, x)b1(x)dx, (7)

K∑
n=1

(
P 0,n(s) +

∫ ∞

0

P 2,n(s, x)dx

)
+

K−1∑
n=0

∫ ∞

0

P 1,n(s, x)dx =
{

1−η(s)
s , if s �= 0

E[ζ], if s = 0
.

(8)

The matrix form of Eqs. (3) and (5) is

(
θiI − A

)
P i(s, x) = Di(x), (9)

i = 1, 2, respectively, where θi are defined as,

θi = bi(x) + s +
∂

∂x
,
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I is the identity matrix of order K, A is obtained by (3) and (5) in the usual
way,

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

− (K − 1) λ1 0 ... 0 0 0
(K − 1) λ1 −(K − 2)λ1 ... 0 0 0

0 (K − 2) λ1 ... 0 0 0
. . . . . .
0 0 ... 2λ1 −λ1 0
0 0 ... 0 λ1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and

P i(s, x) =
(
P i,i−1(s, x), ..., P i,K−2+i(s, x)

)T
,

D1(x) = (δ(x), 0, ..., 0)T
, D2(x) = 0.

It is not difficult to verify that applying in Eq. (9) the transformations

P i(s, x) = Y Qi(s, x),

these equations get a simpler form

θiQi(s, x) − ΛQi(s, x) = Y −1Di, (10)

where

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 ... 0 1
0 0 0 ... 1 −(

K−1
K−2

)
0 0 0 ... −(

K−2
K−3

) (
K−1
K−3

)
... ... ... . ... ...

0 1 −2 ... (−1)K−3 (
K−2
1

)
(−1)K−2 (

K−2
1

)
1 −1 1 ... (−1)K−2 (−1)K−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Y −1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 ... 1 1 1(
K−1
1

) (
K−2
1

)
...

(
2
1

)
1 0

... ... ... ... ... ...(
K−1
K−3

) (
K−2
K−3

)
... 0 0 0(

K−1
K−2

)
1 ... 0 0 0

1 0 ... 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Λ = diag{0,−λ1, ...,− (K − 1) λ1}.
Transformations of this type are known as discrete transformations and, as

stated in the Introduction are widely used in the investigation of queueing sys-
tems with finite number of customers. In fact, the diagonal elements of the matrix
Λ are the eigenvalues of the matrix A, and the columns of the matrix Y are the
corresponding eigenvectors.

Thus, transforming (2)–(8) according to the formulas

P 1,n(s, x) =
n∑

m=0

(−1)n−m

(
K − 1 − m

n − m

)
Q1,K−1−m(s, x),

0 ≤ n ≤ K − 1,

(11)
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P 2,n(s, x) =
n−1∑
m=0

(−1)n−m−1

(
K − 1 − m

n − m − 1

)
Q2,K−m(s, x),

1 ≤ n ≤ K,

(12)

we can simplify and solve Eqs. (5) and (3), and get formulas for calculating
P i,n(s, x) (i = 1, 2), P 0,n(s), P i,n(s) =

∫ ∞
0

P i,n(s, x)dx (i = 1, 2) and η(s).
These formulas are given in the next theorem.

Theorem 1. The Laplace transforms P i,n(s, x) (i = 1, 2) and P i,n(s) (i =
0, 1, 2) of the system state distribution during the busy period, Pi,n(t, x) and
Pi,n(t), respectively, and the Laplace – Stieltjes transform, η(s), of the busy period
distribution function, H(x) can be calculated by the formulas

P 1,n(s, x) = (1 − B1(x))
n∑

m=0

(−1)n−m
e−[(K−m−1)λ1+s]x×

(
K − 1 − m

n − m

) (
Q1,K−1−m(s, 0) +

(
K − 1

m

))
,

(13)

P 1,n(s) =
n∑

m=0
(−1)n−m

β̃1,m(s)
(

K − 1 − m

n − m

)(
Q1,K−1−m(s, 0) +

(
K − 1

m

))
,

0 ≤ n ≤ K − 1,

(14)

P 2,n(s, x) = (1 − B2(x)) ×
n−1∑
m=0

(−1)n−m−1

(
K − 1 − m

n − m − 1

)
e−[(K−m−1)λ2+s]xQ2,K−m(s, 0),

(15)

P 2,n(s) =
n−1∑
m=0

(−1)n−m−1

(
K − m − 1
n − m − 1

)
β̃2,m(s)Q2,K−m(s, 0), (16)

P 0,n(s) =
P 2,n(s, 0)

λ2
=

P 0,n(s) =
P 2,n(s, 0)

λ2
=

1
λ2

n−1∑
m=0

(−1)n−m−1

(
K − m − 1
n − m − 1

)
Q2,K−m(s, 0),

1 ≤ n ≤ K,

(17)

η(s) =

∞∫

0

P 1,0(s, x)b1(x)dx = β1,K−1(s)
(
Q1,K−1(s, 0) + 1

)
. (18)

Here

β̃i,k(s) =

{
1−βi,K−k−1(s)

(K−k−1)λi+s , if (K − k − 1) λi + s �= 0
1
νi

, if (K − k − 1) λi + s = 0
,

βi,k(s) = βi (kλi + s) , βi,k = βi,k(0),
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and initial conditions Qi,k(s, 0) satisfy the following system of linear equations

n∑
m=0

λ2 (1 − δn,K) (−1)n−m
β1,K−m−1(s)

(
K − 1 − m

n − m

)
Q1,K−1−m(s, 0)+

n−1∑
m=0

(−1)n−m

(
K − 1 − m

n − m − 1

)
×

[
(K − n)λ1 + λ2

(
1 − β2,K−m−1(s)

)
+ nμ + s

]
Q2,K−m(s, 0) =

λ2 (1 − δn,K)
n∑

m=0

(−1)n−m−1
β1,K−m−1(s)

(
K − 1 − m

n − m

)(
K − 1

m

)
,

1 ≤ n ≤ K,

(19)

λ2

n∑
m=0

(−1)n−m

(
K − 1 − m

n − m

)
Q1,K−1−m(s, 0) + δn,0λ2+

n∑
m=0

(−1)n−m

(
K − 1 − m

n − m

)
[(n − m)λ1 − (n + 1)μ] Q2,K−m(s, 0) = 0

0 ≤ n ≤ K − 1,

(20)

Q2,1(s, 0)
(

β̃2,K−1(s) +
1
λ2

)
+ β̃1,K−1(s)

(
Q1,0(s, 0) + 1

)
={

1−β1,K−1(s)(Q1,K−1(s,0)+1)
s , if s �= 0

E[ζ], if s = 0
.

(21)

Proof. Transforming Eqs. (5) and (3) according to (9) we obtain them in the
form

∂

∂x
Q1,m(s, x) + [mλ1 + b1(x) + s] Q1,m(s, x) =

(
K − 1

m

)
δ(x),

0 ≤ m ≤ K − 1,
∂

∂x
Q2,m(s, x) + [(m − 1) λ2 + b2(x) + s] Q2,m(s, x) = 0,

1 ≤ m ≤ K,

whose solutions are

Q1,m(s, x) = (1 − B1(x)) e−(mλ1+s)x

(
Q1,m(s, 0) +

(
K − 1

m

))
,

Q2,m(s, x) = (1 − B2(x)) e−[(m−1)λ2+s]xQ2,m(s, 0).

Substituting with these expressions in (11), (12) and (4) we obtain formulas
(13)–(17) for the quantities P i,n(s, x), P i,n(s) (i = 1, 2) and P 0,n(s). Formula
(18) for η(s) follows from (7) and (13).

Further, from Eqs. (2) and (6) we derive relations between the initial condi-
tions Q1,m(s, 0) and Q2,m(s, 0). First, substituting in (2) P 0,n(s) according to
(4) and then using (13) and (15) we obtain
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[(K − n)λ1 + λ2 + nμ + s]
n−1∑
m=0

(−1)n−m−1

(
K − m − 1
n − m − 1

)
Q2,K−m(s, 0) =

λ2 (1 − δn,K)
n∑

m=0

(−1)n−m
β1,K−m−1(s)

(
K − 1 − m

n − m

)
×

(
Q1,K−1−m(s, 0) +

(
K − 1

m

))
+

λ2

n−1∑
m=0

(−1)n−m−1

(
K − 1 − m

n − m − 1

)
β2,K−m−1(s)Q2,K−m(s, 0),

1 ≤ n ≤ K.

These equations can be transformed to the form (19).
In a similar way, substituting in (6) P 0,n(s) and P 0,n+1(s) according to (4),

after some rearrangements we get the following relations between the initial
conditions Q1,m(s, 0) and Q2,m(s, 0) :

λ2

n∑
m=0

(−1)n−m

((
K − 1 − m

n − m

)
Q1,K−1−m(s, 0) +

(
K − 1

n

)(
n

m

))
=

(1 − δn,0) (K − n)λ1

n−1∑
m=0

(−1)n−m−1

(
K − 1 − m

n − m − 1

)
Q2,K−m(s, 0)+

(n + 1)μ
n∑

m=0
(−1)n−m

(
K − 1 − m)

n − m

)
Q2,K−m(s, 0),

0 ≤ n ≤ K − 1.

Last relations lead to formulas (20).
Finally we use the normalizing condition (8). From (16) and (17), after some

transformations we have

K∑
n=1

(
P 0,n(s) +

∫ ∞

0

P 2,n(s, x)dx

)
=

K∑
n=1

(
P 0,n(s) + P 2,n(s)

)
=

Q2,1(s, 0)
(

β̃2,K−1(s) +
1
λ2

)
.

Similarly, from (14) it follows that

K−1∑
n=0

∫ ∞

0

P 1,n(s, x)dx =
K−1∑
n=0

P 1,n(s) = β̃1,K−1(s)
(
Q1,0(s, 0) + 1

)
.

These two expressions and formula (18) show that Eq. (8) can be presented in
the form (21) which ends the proof of the theorem.

Thus, to calculate η(s) we have to find the solutions Q1k(s, 0) of the linear
system (19)–(21). Further, upon suitable differentiations in (18)–(20) we can
obtain formulas for computing the moments of the busy period length, ζ. Besides
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this way, the mean busy period can be calculated with the help of formula (21)
for s = 0,

E[ζ] = Q2,1(0, 0)
(

β̃2,K−1(0) +
1
λ2

)
+ β̃1,K−1(0)

(
Q1,0(0, 0) + 1

)
.

Having in mind that

β̃i,K−1(0) =
1
νi

,

and that Qi,i−1(0, 0), (i = 1, 2) can be calculated from formulas (19)–(20) and
(18) for s = 0 we prove the following corollary.

Corollary 1. The mean busy period can be calculated by the formula

E[ζ] =
Q1,0(0, 0)

ν1
+ Q2,1(0, 0)

(λ2 + ν2)
λ2ν2

+
1
ν1

,

where Qi,i−1(0, 0) (i = 1, 2) can be calculated solving the system

n∑

m=0

λ2

(
1 − δn,K

)
(−1)n−m β1,K−m−1

(K − 1 − m

n − m

)
Q1,K−1−m(0, 0)+

n−1∑

m=0

(−1)n−m
(K − 1 − m

n − m − 1

)
[(K − n)λ1 + λ2

(
1 − β2,K−m−1

)
+ nμ]Q2,K−m(0, 0) =

λ2

(
1 − δn,K

) n∑

m=0

(−1)n−m−1 β1,K−m−1

(K − 1 − m

n − m

)(K − 1

m

)
,

1 ≤ n ≤ K,

(22)

λ2

n∑
m=0

(−1)n−m

(
K − 1 − m

n − m

)
Q1,K−1−m(0, 0) + δn,0λ2+

n∑
m=0

(−1)n−m

(
K − 1 − m

n − m

)
[(n − m)λ1 − (n + 1)μ] Q2,K−m(0, 0) = 0,

0 ≤ n ≤ K − 1,

(23)

β1,K−1

(
Q1,K−1(0, 0) + 1

)
= 1. (24)

The solution of system (22)–(24) can be computed recursively, starting with
the value of Q1,K−1(0, 0) that we find from (24),

β1,K−1Q1,K−1(0, 0) = 1 − β1,K−1.

Then from Eq. (23) for n = 0 we calculate Q2,K(0, 0),

μQ2,K(0, 0) = λ2 + λ2Q1,K−1(0, 0),

and from Eq. (22) for n = 1 we calculate Q1,K−2(0, 0),

λ2β1,K−2Q1,K−2(0, 0) = λ2 (K − 1)
(
β1,K−1 − β1,K−2

)
+

λ2β1,K−1 (K − 1) Q1,K−1(0, 0) + [(K − 1)λ1 + λ2

(
1 − β2,K−1

)
+ μ]Q2,K(0, 0).
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Further, once we have calculated all quantities Q1,K−k−1(0, 0) (k = 0, .., n, n =
0, ...,K − 2) and Q2,K−k(0, 0) (k = 0, .., n − 1, n = 1, ...,K − 2), from (23) for
n we calculate Q2,K−n(0, 0),

(n + 1)μQ2,K−n(0, 0) = λ2

n∑
m=0

(−1)n−m

(
K − 1 − m

n − m

)
Q1,K−1−m(0, 0)+

n−1∑
m=0

(−1)n−m

(
K − 1 − m

n − m

)
[(n − m)λ1 − (n + 1)μ] Q2,K−m(0, 0),

(25)

and then from (22) for n + 1 we calculate Q1,K−n−2(0, 0),

λ2β1,K−n−2Q1,K−n−2(0, 0) = −λ2β1,K−n−2

(
K − 1
n + 1

)
+

n∑
m=0

Q2,K−m(0, 0)×

(−1)n−m

(
K − 1 − m

n − m

)
[(K − n − 1)λ1 + λ2

(
1 − β2,K−m−1

)
+ (n + 1) μ]+

n∑
m=0

λ2 (−1)n−m
β1,K−m−1

(
K − 1 − m

n + 1 − m

)[
Q1,K−1−m(0, 0) +

(
K − 1

m

)]
.

The quantity Q2,1(0, 0) can be calculated by formula (25) for n = K − 1 (which
comes from Eq. (23) for n = K − 1) or from Eq. (22) for n = K,

KμQ2,1(0, 0) =
K−2∑
m=0

(−1)K−m [
λ2

(
1 − β2,K−m−1

)
+ Kμ

]
Q2,K−m(0, 0).

4 Conclusions

In this paper we analyze the busy period in an M/G/1//K retrial queue with
outgoing calls, directed outside the customers in the system. This assumption
means that the model under consideration can be thought of as a model with
server vacation or as a model with two types of customers. The duration of
outgoing calls follows an arbitrary distribution, other than the distribution of
incoming calls. Applying the discrete transformations method we derive formulas
for computing the Laplace-Stieltjes transform of the busy period distribution as
well as the first moment of this distribution.

The results, obtained in present paper can be applied for further investigation
of the busy period, like deriving formulas for computation of the second moment
of the busy period length. We also plan to extend our analysis assuming that the
busy period can be initiated not only by an incoming call, as it is assumed here,
but also by an outgoing call (or by a customer of second type if we consider the
model as a queue with two types of customers).
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Abstract. In this paper retrial queuing systems with a finite number
of sources and collisions of the customers is considered, where the server
is subjects to random breakdowns and repairs depending on whether it
is idle or busy. The novelty of this system comparing to the previous
ones is that the service time is assumed to follow a general distribution
while the source times, retrial times, servers lifetime and repair time are
supposed to be exponentially distributed. A new numerical algorithm for
finding the joint probability distribution of the number of customers in
the system and the server’s state is proposed. Several numerical examples
and Figures show the effect of different input parameters on the main
steady state performance measures, such as mean response and waiting
time of the customers, probability of collision and retrials.

Keywords: Finite-source queuing system · Closed queuing systems ·
Retrial queue · Collision · Server breakdowns and repairs · Unreliable
server · Asymptotic analysis · Method of residual service time ·
Method of elapsed service time

1 Introduction

Finite-source retrial queues are very useful and effective stochastic systems to
model several problems arising in telephone switching systems, telecommunica-
tion networks, computer networks and computer systems, call centers, wireless
communication systems, etc. To see their importance the interested reader is
referred to the following works and references cited in them, for example [3,5–
7,10]. Searching the scientific databases we have noticed that relatively just a
small number of papers have been devoted to systems when the arriving calls
(primary or secondary) causes collisions to the request under service and both
c© Springer Nature Switzerland AG 2019
A. Dudin et al. (Eds.): ITMM 2019, CCIS 1109, pp. 14–27, 2019.
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go to the orbit, see for example [1,9,11,21]. It should be noted that collisions
decreases the effectiveness of the system performance and that is why new pro-
tocols should be developed to avoid the collision but unfortunately it cannot
be neglected, see [4,8,16]. This fact shows the importance of the mathematical
modeling of such systems.

Nazarov and his research group developed a very effective asymptotic method
[20] by the help of which various systems have been investigated. Concerning to
finite-source retrial systems with collision we should mention the following papers
[12–15,18].

Sztrik and his research group have been dealing with systems with unreliable
server/s as can be seen, for example in [2,23] and that is why it was understand-
able that the two research groups started cooperation in 2017.

The primary aim of the present paper is to give a new numerical algorithm
for finding the joint probability distribution of the number of customers in the
system and the server’s state. The method of supplementary variable is used
by introducing the residual service time to derive the system of steady state
Kolmogorov equations. An effective algorithmic approach is proposed to get
the solution of these equations resulting the steady state distribution of the
underlying process. Several numerical examples and Figures show the effect of
different input parameters on the main steady state performance measures, such
as mean response and waiting time of the customers, probability of collision and
retrials. The present model is a generalization of the M/G/1//N retrial system
treated in [14] where the server was reliable and the M/M/1//N system with
unreliable server analyzed in [17].

The rest of the paper is organized as follows. In Sect. 2 description of the
model is given, the corresponding multi-dimensional non-Markov process is
defined. Then in Sect. 3 by the help of the residual service time technique the cor-
responding steady state Kolmogorov equations are derived. Section 4 is devoted
to the solution of these equations by proposing and new algorithmic approach
and important performance measures are defined. In Sect. 5 several numerical
examples and Figures show the effect of different input parameters on the main
steady state performance measures and some comments are made. Finally, the
paper ends with a Conclusion and some future plans are highlighted.

2 Model Description and Notation

Let us consider a closed retrial queuing system of type M/GI/1//N with collision
of the customers and an unreliable server. The number of sources is N and each
of them can generate a primary request with rate λ/N . A source cannot generate
a new call until the end of the successful service of this customer. If a primary
customer finds the server idle and not failed, he enters into service immediately,
in which the required service time has a probability distribution function B(x).
Let us denote its service rate function by μ(y) = B

′
(y)(1 − B(y))−1 and its

Laplace -Stieltjes transform by B∗(y), respectively. Otherwise, if the server is
busy, an arriving (primary or repeated) customer involves into collision with the
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customer under service and they both moves into the orbit. The retrial times of
requests are exponentially distributed with rate σ/N . We assume that the server
is unreliable, that is its lifetime is supposed to be exponentially distributed with
failure rate γ0 if the server is idle and with rate γ1 if it is busy. When the server
breaks down, it is immediately sent for repair and the recovery time is assumed
to be exponentially distributed with rate γ2. We deal with the case when the
server is down all sources continue generation of customers and send it to the
server, similarly customers may retry from the orbit to the server but all arriving
customers immediately go into the orbit. Furthermore, in this unreliable model
we suppose that the interrupted request goes to the orbit immediately and its
next service is independent of the interrupted one. The explanation of using
λ/N , and σ/N is that in a consecutive paper we would like to investigate the
same system by means of asymptotic methods as N tends to infinity and we
would like to compare the asymptotic results to the exact ones. All random
variables involved in the model construction are assumed to be independent of
each other. Let Q(t) be the number of customers in the system at time t, that
is, the total number of customers in the orbit and in service. Similarly, let C(t)
be the server’s state at time t, that is

C(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if the server is idle,
1, if the server is busy,
2, if the server is down

(under repair).

Thus, we will investigate the process {C(t), Q(t)}, which is not a Markov-type
unless the required service time is exponentially distributed. Using the supple-
mentary variable method let us introduce the random process Z(t), equal to the
residual service time, that is the time interval from moment t until the end of
the successful service. It should be noted that the other standard method is to
introduce the elapsed service time as the continuous component, see for example
[6,25,26] where the resulting Kolmogorov equations are solved by the help of
so-called discrete transform. This approach is more common but in our case the
residual service time method is more effective as we will show it later on.

As we can see {C(t), Q(t), Z(t)} is a three-dimensional Markov process, which
has variable number of components, depending on the server’s state, since the
component Z(t) is determined only in those moments when the server is busy,
that is C(t) = 1.

3 Kolmogorov Equations for the Probability Distribution

Let us define the following probabilities

Pk(j, t) = P{C(t) = k,Q(t) = j}, k = 0, 2
P1(j, z, t) = P{C(t) = 1, Q(t) = j, Z(t) < z}.

Since the introduction of the residual service time is not so standard as
the elapsed service time approach we derive the Kolmogorov equations in more
details, namely we can write
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P0(0, t + Δt) = P0(0, t)(1 − λΔt)(1 − γ0Δt) + γ2ΔtP2(0, t) + P1(1, Δt, t) + o(Δt),
(1)

P1(1, z − Δt, t + Δt) =
[
P1(1, z, t) − P1(1,Δt, t)

](
1 − λ

N − 1
N

Δt
)
(1 − γ1Δt)

(2)

+ P0(0, t)λB(z)Δt + P0(1, t)
σ

N
B(z)Δt + o(Δt),

P2(0, t + Δt) = P2(0, t)(1 − λΔt)(1 − γ2Δt) + γ0ΔtP0(0, t) + o(Δt), (3)

P0(j, t + Δt) = P0(j, t)(1 − λ
N − j

N
Δt)(1 − γ0Δt)

(
1 − j

N
σΔt

)
+ P1(j + 1, Δt, t)

(4)

+ P1(j − 1, t)λ
N − j + 1

N
Δt + P1(j, t)

(j − 1)σ

N
Δt + P2(j, t)γ2Δt + o(Δt),

P1(j, z − Δt, t + Δt) = (5)
[
P1(j, z, t) − P1(j,Δt, t)

](
1 − λ

N − j

N
Δt

)
(1 − γ1Δt)

(
1 − j − 1

N
σΔt

)

+ P0(j − 1, t)λ
N − j + 1

N
B(z)Δt + P0(j, t)

jσ

N
B(z)Δt + o(Δt),

P2(j, t + Δt) =P2(j, t)
(
1 − λ

N − j

N
Δt

)
(1 − γ2Δt) + γ0ΔtP0(j, t) (6)

+ P2(j − 1, t)λ
N − j + 1

N
Δt + P1(j, t)γ1Δt + o(Δt)

Assuming that system is operating in steady state, then from the above
relations it is not difficult to get the system of equations for the stationary
probability distribution P0(j),P1(j, z),P2(j), j = 0, ..., N in a shorter form,
namely we have

−
[

λ
N − j

N
+ σ

j

N
+ γ0

]

P0(j) +
∂P1(j + 1, 0)

∂z
+ λ

N − j + 1
N

P1(j − 1)

+
j − 1
N

σP1(j) + γ2P2(j) = 0 ,

∂P1(j, z)
∂z

− ∂P1(j, 0)
∂z

−
[

λ
N − j

N
+ σ

j − 1
N

+ γ1

]

P1(j, z)

+ λ
N − j + 1

N
B(z)P0(j − 1) +

j

N
σB(z)P0(j) = 0 ,

−
[

λ
N − j

N
+ γ2

]

P2(j) + λ
N − j + 1

N
P2(j − 1) + γ0P0(j) + γ1P1(j) = 0 .

(7)

where the meaningless probabilities are zero.



18 A. Nazarov et al.

4 Numerical Algorithm for Finding the Probability
Distribution of the System State and Performance
Measures

4.1 Algorithmic Approach for the Steady State Distribution

In order to find the probability distribution of the number of customers in the
system, we will solve system (7) numerically. We first obtain some very impor-
tant equalities used later on.

Let us consider the second equation of system (7) for case j = 1, that is

∂P1(1, z)
∂z

− ∂P1(1, 0)
∂z

−
[

λ
N − 1

N
+ γ1

]

P1(1, z)

+ λB(z)P0(0) +
σ

N
B(z)P0(1) = 0. (8)

The solution of this equation can be written in the form

P1(1, z) = e[λ
N−1
N +γ1]z

z∫

0

e−[λN−1
N +γ1]y

{
∂P1(1, 0)

∂z

−
[
λP0(0) +

σ

N
P0(1)

]
B(y)

}
dy.

(9)

Then by carrying out the limiting transition at z → ∞ we obtain that the first
factor of the right part of equality (9) in a limiting condition tends to infinity,
therefore we can conclude that the second factor will be equal to zero, that is

∞∫

0

e−[λN−1
N +γ1]y

{
∂P1(1, 0)

∂z
−

[
λP0(0) +

σ

N
P0(1)

]
B(y)

}

dy = 0,

from which it is not difficult to obtain that

∂P1(1, 0)
∂z

=
[
λP0(0) +

σ

N
P0(1)

]
B∗

(

λ
N − 1

N
+ γ1

)

. (10)

We can perform similar transformations for the second equation of system (7)
for the general case and, as a result we obtain

∂P1(j, 0)
∂z

=
[

λ
N − j + 1

N
P0(j − 1) +

j

N
σP0(j)

]

B∗
(

λ
N − j

N
+

j − 1
N

σ + γ1

)

.

(11)
In Eq. (8) let us execute the limiting transition at z → ∞ then we get

∂P1(1, 0)
∂z

[

λ
N − 1

N
+ γ1

]

P1(1) = λP0(0) +
σ

N
P0(1). (12)
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Similarly, for the general case, that is for j, using the second equation of sys-
tem (7), we can obtain

∂P1(j, 0)
∂z

[

λ
N − j

N
+

j − 1
N

σ + γ1

]

P1(j) = λ
N − j + 1

N
P0(j − 1)

+
j

N
σP0(j).

(13)

Let us write down the system of Eq. (7) for the case j = 0 then we get

∂P1(1, 0)
∂z

= [λ + γ0] P0(0) − γ2P2(0),

− [λ + γ2] P2(0) + γ0P0(0) = 0.

(14)

Hence combining equations of the system (7) for case j = 1 by using Eqs. (10)
and (12) we obtain

∂P1(1, 0)
∂z

=
[
λP0(0) +

σ

N
P0(1)

]
B∗

(

λ
N − 1

N
+ γ1

)

,

∂P1(1, 0)
∂z

+
[

λ
N − 1

N
+ γ1

]

P1(1) = λP0(0) +
σ

N
P0(1),

[

λ
N − 1

N
+ γ2

]

P2(1) = γ0P0(1) + γ1P1(1) + λP2(0),

∂P1(2, 0)
∂z

=
[

λ
N − 1

N
+ γ0 +

σ

N

]

P0(1) − γ2P2(1) − λP1(0).

(15)

Similarly, using the equations of system (7) and the equalities (11), (13) obtained
earlier we can write down the extended system of equations for 2 ≤ j ≤ N as
follows

[
λ

N − j

N
+ σ

j

N
+ γ0

]
P0(j) =

∂P1(j + 1, 0)

∂z
+ λ

N − j + 1

N
P1(j − 1)

+
j − 1

N
σP1(j) + γ2P2(j) ,

[
λ

N − j

N
+ γ2

]
P2(j) = λ

N − j + 1

N
P2(j − 1) + γ0P0(j) + γ1P1(j) ,

∂P1(j, 0)

∂z
=

[
λ

N − j + 1

N
P0(j − 1) +

j

N
σP0(j)

]
B∗

(
λ

N − j

N
+

j − 1

N
σ + γ1

)
,

∂P1(j, 0)

∂z
+

[
λ

N − j

N
+

j − 1

N
σ + γ1

]
P1(j) = λ

N − j + 1

N
P0(j − 1) + +

j

N
σP0(j) .

(16)
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The joint stationary probability distribution Πk(j) of the server’s state and the
number of customers in the system is the normalized solution of systems (14)–
(16). Starting with P0(0) = 1 using the algorithmic steps after normalization
we obtain the probability distribution Πk(j). Thus our proposed algorithmic
solution consists of the following steps

1. Put P0(0) = 1.
2. From the second equation of system (14) we get

P2(0) =
γ0

λ + γ2
P0(0).

3. From the first equations of systems (14), (15) we obtain

P0(1) =
N

σB∗ (
λN−1

N + γ1
) {−γ2P2(0)+

+
(

λ

[

1 − B∗
(

λ
N − 1

N
+ γ1

)]

+ γ0

)

P0(0)
}

.

4. From the first equation of system (14) and second equation of system (15) we
have

P1(1) =
1

λN−1
N + γ1

{ σ

N
P0(1) − γ0P0(0) + γ2P2(0)

}
.

5. From the third equation of system (15) we determine

P2(1) =
1

λN−1
N + γ2

{γ0P0(1) + γ1P1(1) + λP2(0)} .

6. For general case, that is for 2 ≤ j ≤ N , from system (16) it is not difficult to
obtain formulas for calculating Pk(j) in the form

P0(j) =
1

jσB∗
(
λN−j

N + j−1
N σ + γ1

)
{

− λ(N − j + 2)P1(j − 2)

+
(

λ(N − j + 1)
[

1 − B∗
(

λ
N − j

N
+

j − 1
N

σ + γ1

)]

+ (j − 1)σ

+γ0N
)

P0(j − 1) − (j − 2)σP1(j − 1) − γ2NP2(j − 1)
}

,

P1(j) =
1

λ(N − j) + σ(j − 1) + γ1N
{− [σ(j − 1) + γ0N ] P0(j − 1)

+jσP0(j) + λ(N − j + 2)P1(j − 2) + (j − 2)σP1(j − 1) + γ2NP2(j − 1)} ,

P2(j) =
1

λ(N − j) + γ2N
[γ0NP0(j) + γ1NP1(j) + λ(N − j + 1)P2(j − 1)] ,

P1(0) = 0 by convention.
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7. The solution obtained in the previous steps does not satisfy the normalization
condition. For the normalizing constant let us calculate the sum

d =
N∑

j=0

[P0(j) + P1(j) + P2(j)] ,

where Pk(j) is the quantities obtained in the previous steps.
8. To calculate the two-dimensional probability distribution Πk(j) carry on the

normalization, that is

Πk(j) =
1
d
Pk(j), k = 0, 1, 2, j = 0, 1, ..., N.

9. The marginal distribution of the number of customers in the system Π(j),
and the server’s state Πk, respectively can be calculated as follows

Π(j) = Π0(j) + Π1(j) + Π2(j), j = 0, ..., N, Πk =
N∑

j=0

Πk(j), k = 0, 1, 2.

4.2 Performance Measures

To show the effect of the input parameters on the operation of the system let us
define the most important characteristics which can be determine directly from
the steady state probabilities. Unfortunately only mean values are obtained but
our intention is to continue the research to get the distribution of the response
and waiting time of the customers, distribution of the number of retrials just to
mention some.

– Mean number of customers in the system Q

Q =
N∑

j=0

jΠ(j), (17)

– Mean arrival rate λ

λ = (N − Q)
λ

N
, (18)

– Mean response time T can be obtained by the Little-formula

T =
Q

λ
, (19)

– Mean number of customers in the orbit O

O = Q − Π1, (20)
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– Mean waiting time in the orbit W

W =
O

λ
, (21)

– Mean total service time E(TS)

E(TS) = T − W, (22)

– Probability of collision of a customer arriving from the source (Primary Cus-
tomer) PPC

PPC =
∑N

k=1(N − k) λ
N Π1(k)

∑N
j=0(N − j) λ

N (Π0(j) + Π1(j))
, (23)

– Probability of collision of a customer arriving from the orbit (Secondary Cus-
tomer) PSC

PSC =

∑N
j=1(j − 1) σ

N Π1(j)
∑N

j=0 j σ
N Π0(j) +

∑N
j=1(j − 1) σ

N Π1(j)
, (24)

– Probability of collision PC

PC = (25)
∑N

j=1

[
(N − j) λ

N
+ (j − 1) σ

N

]
Π1(j)

∑N
j=0

[
(N − j) λ

N
+ j σ

N

]
Π0(j) +

∑N
j=0(N − j) λ

N
Π1(j) +

∑N
j=1(j − 1) σ

N
Π1(j)

,

– Probability of retrial PR

PR = (26)
∑N

j=0(N − j) λ
N

(
Π1(j) + Π2(j)

)
+

∑N
j=1(j − 1) σ

N
Π1(j) +

∑N
j=1 j σ

N
Π2(j) + γ1Π1

∑N
j=0(N − j) λ

N
Π(j) +

∑N
j=1(j − 1) σ

N
Π1(j) +

∑N
j=1 j σ

N

(
Π0(j) + Π2(j)

)
+ γ1Π1

.

5 Numerical Examples

The proposed algorithm has been tested by the numerical results of [13] where
the service time is exponentially distributed and the server is reliable, [14] in
which the service time is generally distributed and the server is reliable, and [19]
where the service time is exponentially distributed and the server is subject to
breakdowns and repairs. Finally, in [24] the present model has been analyzed by
means of stochastic simulation.
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Table 1. Numerical values of model parameters

Case studies

No. N λ σ α β γ0 γ1 γ2

Fig. 1 30 2 10 0.5 0.5 0.1 0.2 1

Fig. 2 30 2 10 0.5, 1, 2 0.5, 1, 2 0.1 0.2 1

Fig. 3 100 0.01..10 1 0.5, 1, 2 0.5, 1, 2 0.1 0.1 1

Fig. 4 100 0.01..0.2 1 0.5, 1, 2 0.5, 1, 2 0.1 0.1 1

Fig. 5 100 0.01..0.2 1 0.5, 1, 2 0.5, 1, 2 0.1 0.1 1

Fig. 6 100 0.01..0.25 0.1 0.5 0.5 0.5 0.5 1

Fig. 7 100 0.01..0.15 0.1 1 1 0.5 0.5 1

Fig. 8 100 1 1 1 1 0.05..1 0.05..1 2

In our examples we will choose gamma distributed service time S with a shape
parameter α and scale parameter β, with Laplace-Stieltjes transform B∗(δ) of
the form

B∗(δ) =
(

1 +
δ

β

)−α

,

in the case when α = β, that is when the average service time will be equal to
unit.
It can be shown that

E(S) =
α

β
, V ar(S) =

α

β2
, V 2

S =
1
α

,

where V 2
S denotes the squared coefficient of variation of S. This distribution

allows us to show the effect of the distribution on the main performance mea-
sures, because dealing with the same mean we can see the impact of the variance,
too.

From the system probabilities the well known system characteristics are cal-
culated. The most interesting performance characteristics obtained by these tools
are graphically presented in this section. On the Figures the lines represent dif-
ferent working assumptions or cases (e.g. different parameters of the distribution
of the service time). The input parameters are listed in Table 1.

Figures 1 and 2 display distributions of the steady-state system probabilities
where values of x-axes represent the numbers of customers staying in the sys-
tem, i.e. the states of the system. On the other Figures the effects of a running
parameter are shown. In Table 1 a parameter running from n to m is denoted
by n..m. If the effect of an other parameter is also considered, a separate curve
is presented for each values of that parameter, and these values are listed in
Table 1, as well.
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Fig. 1. Comparison of numerical and
simulation results

Fig. 2. Comparison the distributions
for different α and β parameters

On Fig. 1 the numerical and simulation results for the steady-state proba-
bilities are compared to each other. As we can see the values are very close to
each other, so the two curves are identical illustrating that the numerical and
simulation procedures operate correctly.

Figure 2 shows the effect of the different values of the shape α, and scale/rate
β parameters. The curves represent the cases of α = β with values 0.5, 1, 2,
respectively. Thus, the expected values of the service times are equal but the
variances are different. For higher values of α, and β parameters, the standard
deviation and the coefficient of variance will be smaller. For small values of
parameters, i.e. high value of standard deviation, the distribution is more tailed
than for higher values of α, and β.

On Fig. 3 the mean waiting time can be seen in different cases. For Case 1,
2, and 3 the values of α, and β are 0.5, 1, 2, respectively (α = β for all cases). A
maximum point can be observed for this performance measure, as the arrival rate
increases. In retrial systems this maximum feature is an unexpected and quite
unique phenomenon. Many times there exists a combination of parameters, for
which the response time, waiting time or queue length have a maximum point,
see for example in [5,6,22,25].

Fig. 3. Mean waiting time W vs arrival
intensity from the source

Fig. 4. Probability of collision for pri-
mary customers PPC vs arrival inten-
sity from the source
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The mentioned maximum feature can be observed on Fig. 4, as well. Here
again the arrival rate is the running parameter. The different lines correspond
to the different α, and β parameters as on Fig. 2 and 3. As mentioned above,
this maximum point can be achieved only a specific set of parameters. With the
parameters of Fig. 4, the probabilities of retrial are computed and displayed on
Fig. 5. Here there are no maximum points for the probabilities. The PR values
increase with the increasing arrival rate. But when some parameters (retrial rate,
failure rates) are modified, the following results can be obtained: for α = β = 0.5
the Fig. 6, and for α = β = 1 the Fig. 7. The maximum feature and the decreasing
trend of the probabilities can be seen on both Figures. A similar Figure could
be generated for α = β = 2 case, too.

Finally, Fig. 8 displays the result of the effect of modification of failure rates.
γ0, and γ1 are modified parallel, the same way, so for each point γ0 = γ1.
The range of the parameters can be found in Table 1. The PPC , PC , and PR

probabilities are displayed, but only two lines are in the Figure. The values of
PPC , and PC are so close (not identical) to each other, that only one line can
be seen for these two parameters. The results show what is expected, that is as
the failure rate increasing more and more requests are sent to the orbit causing
retrials, but the chance of collision is decreasing since the server is broken.

Fig. 5. Probability of retrial PR vs
arrival intensity from the source

Fig. 6. Probability of retrial PR vs
arrival intensity from the source

Fig. 7. Probability of retrial PR vs
arrival intensity from the source

Fig. 8. Values of probabilities PPC ,
PC , and PR vs failure rate



26 A. Nazarov et al.

6 Conclusion

In this paper finite source M/GI/1 retrial queuing systems with collisions of
the customers and an unreliable server were considered. Applying the method
of residual service times as supplementary variable the steady state Kolmogorov
equations were solved by means of a new algorithmic approach. The main perfor-
mance measures were defined and several numerical sample examples illustrated
the effect of the input parameters on these characteristics. In the near future,
for the considered system we plan to investigate the distribution of the number
of transitions of the customer into the orbit, distribution of the sojourn time of
the customer in the system and other system performance descriptors.
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Abstract. An indicator model of transport connection with multiple
subscribers competing for the throughput is proposed for selective failure
mode. The indicator of competition is the queue of competitive data flows
in transit nodes of transport connection with specified parameters. The
analysis of available throughput in different conditions when competing
is carried out.

Keywords: Transport protocol · Selective failure mode · Competition
for resources · Throughput · Protocol parameters · Round-trip delay ·
Mathematical model · Markov chain

1 Introduction

The most important operational characteristic of a subscriber connection con-
trolled by a computer network transport protocol is its throughput. This indi-
cator is largely determined by the intensity of external flows relative to this
connection, which has at least a part of common route with it. The main indi-
cator of “external” load on the path in which the studied transport connection
is laid is the size of the queues ahead of protocol data blocks of analyzed con-
nection in transit nodes. Monitoring such an indicator allows us to evaluate the
distribution of queue lengths in transit nodes from external network streams
in regard to analyzed connection and to use when calculating the operational
characteristics of the connection and the choice of protocol parameters for the
communication time between a given pair of subscribers. Known models of asyn-
chronous control procedures of a separate data link and transport protocol [1–7]
do not allow us to take into account the load on shared network resources which
is provided by the neighboring with other virtual connections, aggregated on
different sections of the path in separate links of the route of a given subscriber
connection, and present itself as “External” queues in transit nodes. The study
of data transmission process in a loaded transport connection [8,9] was carried
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out with significant restrictions on the values of the protocol parameters and
characteristics of data transmission path. The paper proposes a mathematical
model of transport connection controlled by transport protocol in the selective
failure mode, which takes into account, apart from the distortion factor in the
forward and reverse data transmission paths and retransmission mechanisms,
caused by distortions and the timeout of non-reception of response from the
recipient of the information flow, and also non-zero queues lengths from “exter-
nal” inter-subscriber connections for end-to-end timeout durations with interval
and below restrictions.

2 Indicator Data Transmission Path Model

Let us consider the exchange between subscribers connected by a multi-link data
path. Assume that the following assumptions are true: The nodes of the path
are connected by duplex communication channels having the same speed in both
directions. The length of the tract, expressed in the number of hop is equal to
Dn. The return channel, on which confirmation is delivered to the sender about
the validity of the reception of sequence of data segments, has a length Do. The
probabilities of segment distortion in the communication channel are specified
for the forward Rn(d), d = 1,Dn and reverse—Ro(d), d = 1,Do the transmission
directions of each segment of the hop is given. Then the reliability of transmis-
sion of data segments along the path from the source to the addressee and back
will be Fn =

∏Dn

d=1(1 − Rn(d)); Fo =
∏Do

d=1(1 − Ro(d)). The processing time of
segments in path nodes is the same. Interacting subscribers have an unlimited
flow of segments for transmission, and the exchange is carried out by segments of
the same length. The recipient’s confirmation of the validity of received data is
transferred in the segments of the counter flow. We believe that the retransmis-
sion of segments is organized in accordance with the selective rejection procedure
[1]. We also assume that the loss of segments due to the absence of buffer mem-
ory at the nodes of the path does not occur. Probability function is given bn,
n = 0, N that each segment from the flow of analyzed connection in transit
nodes will meet a queue of size n ≤ N , where N is the maximum queue size
determined by the capacity of buffer pools of transit nodes. We will call cycle
time t necessary for output of a segment to a line. The cycle is determined by
the sum of the segment output time to the line, the signal distribution time in
the communication channel and processing time of the segment by the receiving
node. The timeout S, expressed in duration t, runs before the start of trans-
mission of the first segment of sequence and is fixed for all segments within the
window width. We assume that the size of the controlled protocol window is
determined by the value of W , and S > W—sets the duration of the timeout
for waiting for confirmation of validity of data delivery. It is obvious that the
sum of lengths of forward and reverse data paths D = Dn + Do can be inter-
preted as the duration of the round-trip delay the unloaded path, expressed in
cycles t. After next segment is transferred, protocol copies it to the queue of
transmitted but not confirmed data and starts a timeout. As soon as the queue
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size becomes equal to the width of the window W , the control protocol suspends
transmission while waiting for the acknowledgement or the expiration of timeout
S for confirmation. Upon receiving the confirmation, the segments that reached
the addressee without distortion are removed from the queue. When S timeout
expires, the corresponding segment is retransmitted and timeout starts again.
Then the time of confirmation by the sender of end-to-end acknowledgement is
distributed according to the geometric law with the parameter Fo and the dura-
tion of the sampling cycle t. The operation of virtual connection controlled by
transport protocol in a loaded multilink data transmission path with segment
queues before sending data or confirmations can be described by a markovized
process of the dynamics of a queue of transmitted but not confirmed segments
in which the queue size ahead of the forward or reverse data flow of the test con-
nection is additional variable of Markov process. In the state of Markov chain
(i, n) the source sent a sequence of size i − n segments, which in the process of
transfer in one of the links met a queue with length of n segments. The coor-
dinates i = 0,W + n, n = 0, N of the states of Markov chain correspond to
the number of segments transmitted but not confirmed by the recipient and
the time from the beginning of the transmission of the sequence, while the val-
ues i = W + n + 1, S − 1, n = 0, N correspond to the time during which the
sender is not active and is waiting for confirmation of a receipt of the validity of
transmitted sequence from the W segments. We define by P (i, n), i = 0, S − 1,
n = 0, N , the probabilities of the states of the Markov chain. Then the sequence
of transmitted, but not confirmed data segments of considered virtual connection
with a zero-length queue grows to the state of a Markov chain with coordinates
(D − 1, 0) with probability b0. Further increase in size of this sequence occurs
with probability b0(1 − Fo). In states (i, n), i = D − 1 + n, S − 1, n = 0, N ,
it is possible for the sender to receive acknowledgement and depending on the
delivery results, the sender transmits new segments (with a positive acknowl-
edgement), or repeatedly—distorted. Since transmitted sequence of segments of
the virtual connection under study may encounter a queue of non-zero length at
any moment of transferring process (on the path of the sequence to the addressee
or when transferring confirmation to the sender of information flow), the tran-
sition from state (i, 0), i = 0, S − 2 to state (i, n), i = 0, S − 2, n = 1, N occurs
with probability bn.

3 State Probabilities of Markov Chain

Let us define πjm
in the transition probabilities of Markov chain, where (i, n) are

the coordinates of the initial one, and (j,m) are the altered states of the chain.
Then the dynamics of the process of transmitting information flow in the selective
failure mode in loaded data transmission path can be set with the following values
of transition probabilities:
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πjm
in =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b0, j = i + 1,m = 0; i = 0,D − 2, n = 0;
b0(1 − Fo), j = i + 1,m = 0; i = D − 1, S − 2, n = 0;
bm, j = i,m = 1, N ; i = 0, S − 2, n = 0;
b0Fo, j = D − 1,m = 0; i = D − 1,W − 1, n = 0;
b0Fo, j = W + D − 2 − i,m = 0; i = W,W + D − 2, n = 0;
b0Fo, j = 0,m = 0; i = W + D − 1, S − 2, n = 0;
1, j = 0,m = 0; i = S − 1, n = 0, N ;
1, j = i + 1,m = n; i = 0,D − 2 + n, n = 1, N ;
1 − Fo, j = i + 1,m = n; i = D − 1 + n, S − 2, n = 1, N ;
Fo, j = D − 1,m = 0; i = D − 1 + n,W − 1 + n, n = 1, N ;
Fo, j = W + n + D − 2 − i,m = 0;

i = W + n,W + n + D − 2, n = 1, N ;
Fo, j = 0,m = 0; i = W + n + D − 1, S − 2, n = 1, N.

(1)
The variety of solutions of system of equilibrium equations for Markov chain

state probabilities is determined by relations between the protocol parameters
W , S, the total path length D and the maximum length of queues N . Since time-
out length must exceed the window width, and be no shorter than the round-trip
delay (S ≥ D), exceeding the waiting time in queues from protocol data blocks
of corresponding traffic prior to transmission in transit nodes a wide variety of
solutions for different areas of change in the values of the Protocol parameters
and queue lengths are distinguished. Analysis of the transmission process in
analytical form for arbitrary values of protocol parameters in the conditions of
competition for network resources is possible only under the assumption that
the “external” queues have a non-zero length (b0 = 0).

4 Analysis of Transmission Process with Lower
Restrictions on Duration of Timeout

Consider the transfer process for protocol parameters related to the total path
length and the maximum queue size of the form inequalities W ≥ D, S ≥
D + W + N − 1. The system of equilibrium equations is written as follows:

P (0, 0) = Fo

N∑

n=1

S−2∑

i=D+W+n−2

P (i, n) +
N∑

n=0

P (S − 1, n); (2)

P (i, 0) = Fo

N∑

n=1

P (D + W + n − 2 − i, n), i = 1,D − 2; (3)
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P (D − 1, 0) = Fo

N∑

n=1

W+n−1∑

i=D+n−1

P (i, 0); (4)

P (0, n) = bnP (0, 0), n = 1, N ; (5)

P (i, n) = bnP (i, 0) + P (i − 1, 0), i = 1,D − 1, n = 1, N ; (6)

P (i, n) = P (i − 1, n), i = D,D + n − 1, n = 1, N ; (7)

P (i, n) = (1 − Fo)P (i − 1, n), i = D + n, S − 1, n = 1, N. (8)

Let us find a solution to this system of equations. According to Eq. (7), we
obtain: P (i, n) = P (D−1, n), i = D,D + n − 1, n = 1, N , and from (8) we have:
P (i, n) = (1 − Fo)i−D−n+1P (D − 1, n), i = D + n, S − 1, n = 1, N . Taking into
account these relations from (3), (4) for i = 1,D − 1 we find:

P (i, 0) = Fo(1 − Fo)W
N∑

m=1

P (D − 1,m), i = 1,D − 2,

P (D − 1, 0) =
(
1 − (1 − Fo)W−D+1

) N∑

m=1

P (D − 1,m).

Substituting the relations found in (6) with (5) taken into account, we obtain

P (i, n) = bn

[

P (0, 0) + (1 − Fo)W−i−1
(
1 − (1 − Fo)i

) N∑

m=1

P (D − 1,m)
]

,

i = 1,D − 2, n = 1, N,

P (D − 1, n) = bn

[

P (0, 0) +
(
1 − (1 − Fo)W−1

) N∑

m=1

P (D − 1,m)
]

, n = 1, N.

Hence, we successively express for arbitrary n = 1, N through P (D − 1, n)
the probabilities of states P (D − 1,m) m = n + 1, N :

P (D − 1, n) =
bn

1 −
(
1 − (1 − Fo)W−1

) N∑

m=1
bm

[

P (0, 0) +

+
(
1 − (1 − Fo)W−1

) N∑

m=n+1

P (D − 1,m)
]

, n = 1, N. (9)

When n = N from here we come to: P (D − 1, N) = bNP (0,0)

1−FW−1
o

. Substituting this
relation into (9) for values of n from N − 1 to 1, we recursively find functional
expressions for the probabilities of states P (D − 1, n) through P (0, 0): P (D −
1, n) = bnP (0,0)

1−FW−1
o

, n = 1, N . Hence, from previously found relations, we finally
obtain the probability distribution of states of Markov chain
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P (i, 0) = Fo
P (0, 0)

(1 − Fo)i
, i = 1,D − 2;

P (D − 1, 0) =

(
1 − (1 − Fo)W−D+1

)
P (0, 0)

(1 − Fo)W−1
;

P (i, n) =
bnP (0, 0)
(1 − Fo)i

, i = 0,D − 2, n = 1, N ;

P (i, n) =
bnP (0, 0)

(1 − Fo)W−1
, i = D − 1,D + n − 1, n = 1, N ;

P (i, n) =
bn(1 − Fo)i−D−n+1P (0, 0)

(1 − Fo)W−1
, i = D + n − 1, S − 1, n = 1, N,

and from the normalization condition we find the probability of the initial state

P (0, 0) =
Fo(1 − Fo)W−1

1+Fo(1+N̄)+(1−Fo)W−D+1−(1−Fo)W −
N∑

m=1
bm(1−Fo)S−D+1−m

,

where N̄ =
∑N

n=1 nbn.
Let us consider the solution found in a number of special cases. For determin-

istic return path (Fo = 1), the space of significant states (i, n) forms a plane of
an isosceles along coordinates i and n triangle i = D − 1,D − 1 + n, n = 0, N :

P (D − 1, 0) =
1

2 + N̄
;

P (i, 0) =
bn

2 + N̄
, i = D − 1,D − 1 + n, n = 1, N.

With an unlimited width of the window (w = ∞) the states (i, n), i = 0,D − 2,
n = 0, N are non-recurrent (P (i, n) = 0) and probabilities of the state of Markov
chain take the form

P (D − 1, 0) =
Fo

1 + Fo(1 + N̄)
;

P (i, n) =
bnFo

1 + Fo(1 + N̄)
, i = D − 1,D − 1 + n, n = 1, N ;

P (i, n) =
bn(1 − Fo)i−D−n+1P (0, 0)

1 + Fo(1 + N̄)
, i ≥ D − 1 + n, n = 1, N.

Let us consider the process of data transfer in conditions where the width of
the window does not exceed the duration of the round-trip delay (W ≤ D), and
the size of the timeout is limited from below (S ≥ D + W + N − 1). According
to (1) the system of equilibrium equations given above will change as follows.
Equations (2), (5) and (8) will remain unchanged, (3)—true for i = 1,W − 1,
Eq. (4) will take the form P (D − 1, 0) = 0, Eq. (6)—true for i = 1,W − 1,
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n = 1, N , Eq. (7)—for i = W,D − 1 + n, n = 1, N . The solution of the system
of equilibrium equations is as follows

P (i, 0) =
FoP (0, 0)
(1 − Fo)i

, i = 1,W − 1;

P (i, n) =
bnP (0, 0)
(1 − Fo)i

, i = 0,W − 1, n = 1, N ;

P (i, n) =
bnP (0, 0)

(1 − Fo)W−1
, i = W − 1,D + n − 1, n = 1, N ;

P (i, n) =
bn(1 − Fo)i−D−n+1P (0, 0)

(1 − Fo)W−1
, i = D + n − 1, S − 1, n = 1, N,

and from the normalization condition we obtain the probability of the initial
state

P (0, 0) =
Fo(1 − Fo)W−1

2 + Fo(D − W + N̄) + (1 − Fo)W − (1 − Fo)S−D+1 −
N∑

m=1

bm
(1−Fo)m

.

If Fo = 1 only states are significant

P (W − 1, 0) =
F 2
o

D − W + N + 2
;

P (i, 0) =
bnF 2

o

D − W + N + 2
, i = W − 1,D − 1 + n, n = 1, N.

The unlimited duration of timeout leads to probability of the initial state of the
following form:

P (0, 0) =
Fo(1 − Fo)W−1

2 + Fo(D − W + N̄) − (1 − Fo)W
.

For start-stop protocol (W = 1) we obtain

P (0, 0) =
Fo

1 + Fo(D + N̄) − (1 − Fo)S−D+1
N∑

m=1

bm
(1−Fo)m

.

5 Available Throughput of the Transport Connection

The capacity of a transport connection under the conditions of competition of
flows of different corresponding subscribers for the throughput of data transmis-
sion path is defined as the relation of the average amount of data transmitted
between two consecutive acknowledgement to the average time acknowledge-
ment [4,5]. Contribution to the speed of the virtual connection is given by
those states of Markov chain for which it is possible to obtain acknowledge-
ment. Normalized per unit throughput of virtual connection in loaded path is
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determined by the relation of the average number of data segments transmitted
by the sender between two consecutive acknowledgement to the average time
between acknowledgement expressed in the number of intervals of duration t:
Z(W,S) = V /T . Since acknowledgements are transferred in each segment inde-
pendently and arrive to the sender every cycle t, provided that they are not
distorted in the path of length D from the recipient to the sender of the infor-
mation flow the average time between acknowledgement is distributed according
to the geometric law with the parameter Fo and will be: T = 1/Fo. The average
volume of data transmitted between acknowledgements taking into account the
fact that each segment of the test connection with the probability bn, n = 0, N
meets the size of the queue n and contributes to the amount of information trans-
mitted inversely proportional to the value n + 1, is determined by generalizing
the relation given in [4]

V =
N∑

n=0

1
n + 1

[
W+2D−2+n∑

l=2D−1+n

l̄P (l, n) +
S−1∑

l=W+2D−1+n

W̄P (l, n)

]

.

Values l̄ and W̄ are determined by the average number of segments that reached
the addressee in selective procedure for repeating distorted segments:

l̄ = (l − 2D − n + 2)Fn, W̄ = WFn.

Then dependence of throughput of the virtual connection on the protocol param-
eters (W,S), characteristics of transmitting path (D, Fn, Fo) and load parame-
ters (bn, n = 1, N) will take the form:

Z(W,S) = FnFo

N∑

n=0

1
n + 1

[
W+2D−2+n∑

l=2D−1+n

(l − 2D + 2 − n)P (l, n) + W

S−1∑

l=W+2D−1+n

P (l, n)

]

.

Hence, for an arbitrary width of the window when S ≥ D+W +N −1 we finally
get

Zc(W,S)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Fn

N∑

n=1

bn
n+1

[
1−(1−Fo)

W−WFo(1−Fo)
S−D−n+1

]

2+Fo(D−W+N̄)−(1−Fo)W−
N∑

n=1
bn(1−Fo)S−D−n+1

, W < D;

Fn

F2
o

(
1−(1−Fo)

W−D+1
)
+

N∑

n=1

bn
n+1

[
1−(1−Fo)

W−WFo(1−Fo)
S−D−n+1

]

1+Fo(N̄+1)+(1−Fo)W−D+1−(1−Fo)W−
N∑

n=1
bn(1−Fo)S−D−n+1

, W ≥D.

For interval limits on the duration of the timeout and the queue size of com-
petitors 1 ≤ N ≤ D − 2 the speed of transport connection in a competitive data
transmission environment will be
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Zc(W,S) = Fn

{

F 2
o

(
1 − (1 − Fo)

W−D+1
)

+
N∑

n=1

bn −
S−D−W+1∑

n=1

bn
n + 1

[
(1 − Fo)

W

+WFo(1 − Fo)
S−D−n+1

]
−

N∑

n=S−D−W+2

bn
n + 1

(1 − Fo)
S−D−n+1

[
1 +

+Fo(S − D − n + 1)
]}

/{

1 + Fo(1 + N̄) + (1 − Fo)
W−D+1 − (1 − Fo)

W −

−
N∑

n=1

bn(1 − Fo)
S−D−n+1

}

.

In the case of an absolutely reliable return channel (Fo = 1), available through-
put of transport connection W ≤ D is largely determined by the proximity of
window width to the duration of round-trip delay

Zc(W,S) =
Fn

2 + D − W + N̄

N∑

n=1

bn
n + 1

,

and for W ≥ D—is invariant to D

Zc(W,S) =
Fn

2 + N̄

[

1 +
N∑

n=1

bn
n + 1

]

.

The unlimited duration of the timeout (S → ∞) when W < D leads to the
dependence of the form

Zc(W,∞) =
Fn

(
1 − (1 − Fo)W

) ∑N
n=1

bn
n+1

2 + Fo(D − W + N̄) − (1 − Fo)W
,

and for unlimited increasing width of the window we obtain

Zc(∞,∞) =
Fn

1 + Fo(N̄ + 1)

[

F 2
o +

N∑

n=1

bn
n + 1

]

.

Numerical analysis shows that the available throughput for the transport con-
nection W ≥ D is practically invariant to the duration of round-trip delay, sig-
nificantly decreasing from the saturation range at W = D and Fo < 1. In case
W < D available throughput is underloaded and the effective data transmission
rate is significantly reduced. With increasing competition between subscribers
for the throughput of the transmission path, the queue size increases, and the
speed of information transfer decreases rapidly.

6 Conclusion

The analysis of competitor process of information flows of various inter-
subscriber connections for the throughput on shared sections of the path has
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been carried out. An indicator model of transport connection, competing for
the throughput of individual sections of the route, in the form of Markov chain
with discrete time, describing the dynamics of queue of sent but not confirmed
protocol data blocks, is proposed. The distribution of states of Markov chain
under various operating conditions of transport connection is obtained. Analyt-
ical dependencies of transport connection speed are found for different ratios
between parameters of transport protocol, the characteristics of network chan-
nels and load parameters. Numerical studies of available throughput of trans-
port connection in selective re-transmission mode showed that the transmission
rate between subscribers is determined by the reliability of data transmission,
distribution of queue length of protocol units in transit nodes, and the ratio
between duration of round-trip delay and the window width. The direction of
further research is to single out the task of analyzing the available throughput
of transport connections with interval restrictions on the size of the queues of
competitive flows and duration of the end-to-end timeout of transport protocol.
It is important to analyze the efficiency of application of forward error correc-
tion procedures at transport protocol level with exclusive and competitive use
of network communication channels.
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Abstract. A common approach to performance estimation of queueing
system models is based on point estimators. Confidence intervals provide
more insight on the system performance, and basically a regenerative
structure of the studied process is required. However, classical regenera-
tion epochs (arrivals into empty system) are too rare (or even might not
exist) in complex queueing systems (such as high performance comput-
ing clusters), thus are inappropriate for practical usage. Instead, we pro-
pose the so-called artificial regeneration based on exponential splitting,
which provide the desired estimators with reasonable accuracy. We illus-
trate the approach considering a multiserver model with energy efficiency
management by activating the so-called sleep mode of servers which we
hope is relevant to energy/performance tradeoff in cloud computing.

Keywords: Regenerative estimation · Confidence interval ·
Multiserver system · Performance · Energy efficiency · Artificial
regeneration

1 Introduction

Regeneration of stochastic process is one of the basic and efficient methods
of estimating stationary performance of queueing systems [3,7–10,12,13]. The
regenerating stochastic process (describing the systems behavior) from time
to time enters a special state (restarts) at regeneration points and trajectory
between such points can be separated into interdependent (or, in general, weakly
dependent) and identically distributed groups. It allows to apply well-developed
classical statistical methods based on the special form of the Central Limit Theo-
rem (CLT) for confidence estimation of Quality of Service (QoS) parameters. At
the same time the efficiency of the approach depends strongly on the accuracy
of estimation which, in turn, depends on the frequency of the regeneration.

However, in many practical cases the system does not necessary experience
classical regeneration, or the regeneration points are too rare to be practically
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useful. Then various methods may be applied, including more general construc-
tions, such as wide sense regeneration [6], renovation [5] or accelerated regenera-
tion [1]. Another method, closely related to the aforementioned, is the so-called
artificial regeneration [2]. The artificial regeneration method is based on con-
structing a new, equivalent to the original, system by using the splitting prop-
erty, which allows to change the internal structure of continuous-valued random
variable in such a way to obtain a sequence of times at which the distribution has
some specific properties, and these times occur with positive probability (possi-
bly by enriching the probability space). If the splitting is based on exponential
distribution, then the system at this particular points has memoryless property,
and thus, regenerates in classical sense. In this work we propose to use artificial
regeneration in the case when classical regeneration do not exist or is too rare
to provide the desired accuracy in an acceptable simulation time. This approach
can be effectively applied for estimation of QoS parameters such as stationary
mean queue size or stationary mean waiting time, when e.g. service times have
heavy-tailed distribution. In this paper we develop the method introduced in [2],
and apply the artificial regeneration method to analysis of a multiserver sys-
tem with energy efficiency management, focusing on practical aspects of method
implementation.

This paper is organized as follows. In Sect. 2 we give some necessary back-
ground on regeneration and regenerative estimation based on the corresponding
version of CLT. In Sect. 3 we define artificial regeneration points in general case.
In Sect. 4 we demonstrate the method by considering a multiserver system with
energy efficiency management by switching servers to power saving mode, and
study the model. We perform some numerical experiments in Sect. 5. We give
conclusions in Sect. 6.

2 Regeneration in Multiserver Systems

The main idea of regenerative approach is to separate the original process Θ =
{Θ(t)}t�0 trajectory into (independent or weakly dependent) regeneration cycles
Gk = {Θ(t), βk � t < βk+1, k � 0} (the parts of trajectory between regeneration
points β = {βn}n�1) with independent and identically distributed (iid.) cycle
lengths αk = βk+1 − βk, k � 0. It allows to study the process as a sequence of
iid. cycles.

The process Θ is called classical regenerative if the distribution of {Θ(βk +
t), t � 0, (βk−βi), i � k} is independent on k � 0 and does not depend on the pre-
history {Θ(t), t < βk; β1, . . . , βk}. A frequently used definition of regeneration
point for the process Θ describing a queueing system is related to such time
epochs, when the number of customers in the system hits zero, i.e. βn+1 =
inf{k > βn : νk = 0}, where νn the number of customers in the system.

However, in multiserver systems classical regeneration is not guaranteed by
stability of the system (e.g. each client enters the system before a service com-
pletion of another client), on the contrast to a single-server system. Thus, appro-
priate widening of the regeneration notion was required, and wide sense regener-
ation was introduced [6], allowing the (finite depth) dependence (the case k = 1
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is denoted as weak regeneration) of regeneration cycles Gk, keeping the indepen-
dence between regeneration cycles and regeneration epochs.

In general, it is hard to obtain weak regeneration epochs constructively. From
practical point of view, the method of renovation events can be used for weak
regeneration points construction. The method is based on detection of the so-
called renovation periods and is well developed for stochastic recurrent sequences
widely used in the analysis of queueing systems [5]. Note however, that such a
construction depends on the complexity of the system, and detection of renova-
tion events is difficult for complex systems. At that, an alternative constructive
method is based on obtaining an artificially defined regeneration points by con-
sidering a stochastically equivalent process instead of original one [2]. In this
paper we develop the artificial regeneration method and apply it to a multi-
server queueing model.

Once the regeneration points are detected, an appropriate version of the CLT
(classical or weakly-dependent version, w.r.t. the type of regeneration used) is
applied to regeneration cycles in order to obtain performance estimates of a
system.

2.1 Regenerative Estimation

To estimate some performance characteristic χ(Θ) of the process Θ, e.g. χ(Θ)
is the stationary average customer delay in the system or energy consumption
of the system per unit time. Let Yj =

∑βj+1−1
i=βj

χ(Θi)(ti+1 − ti) – the sum of the
values of χ(Θi) on j-th cycle (w.r.t. intervals ti+1 − ti between events).

For classical case the statistical estimation of the process characteristic χ(Z)
is reduced to the following: in the presence of independent and identically dis-
tributed observations (Yj , αj), j � 0 it is necessary to estimate [3]

r =
EY1

Eα1
,

where EY – expectation of Y . Suppose that E(Y1 + α1)2 < ∞, the using CLT
we can obtain (1 − 2γ)% confidence interval for r [4]:

⎡

⎣rn ±
hγ

√
Var(n)

√
nαn

⎤

⎦ , (1)

where αn (Yn) – sample mean for αi (Yi), n – the number of cycles, Var(n) –
sample estimate of Var(Y1) − 2rcov(Y1, α1) + r2Var(α1), hγ = Φ−1((1 − γ)/2),
Φ(x) – Laplace function.

Note that the width of constructed confidence intervals, and hence the effi-
ciency of estimation, depends on the number of regeneration cycles n.

3 Artificial Regeneration

In this section we develop the method of construction of artificial regeneration
points introduced in [2]. The method is based on replacement of the original
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process by a stochastically equivalent process with enlarged probability space,
which, in turn, hits the desired state with positive probability, infinitely often.
This allows, after obtaining the regeneration points, to apply regenerative esti-
mation and construct confidence intervals to analyze performance of the original
process. The method is based on the general construction of splitting, which is
introduced below.

3.1 Exponential Splitting of a Continuous Random Variable

The density f of continuous random variable (r.v.) T can be split [14] if there
exists some 0 < p < 1 and density f0, such that:

f � pf0. (2)

Then we define a new Bernoulli random variable I called splitting indicator s.t.
P(I = 1) = p. Now we construct a split r.v. T ′ (equivalent the r.v. T ) as follows:

T ′ = IT0 + (1 − I)T1, (3)

where T0 has density f0, and T1 has density

f1 =
f − pf0
1 − p

. (4)

It is clear that the r.v. T ′ is equivalent to T (only noting that T ′ is defined on
an extended probability space due to introduction of the splitting indicator I).
If I = 1, then we say that the split r.v. T ′ is governed by f0 (and governed
by f1 otherwise). We note that, due to the introduction of splitting indicator,
the subsets in an extended probability space corresponding to f0 and f1 are
disjoint. The r.v. T ′ is called splitting representation of T . The purpose of such
a transformation is to let the r.v. T ′ have the desired (say, memoryless etc.)
properties of the distribution f0 with probability not less than p.

Now we consider exponentially split r.v. We say that (positive valued) r.v. T
is exponentially split if there exist constants λ > 0, τ0 � 0 and 0 < p < 1 such
that

f(x) � pλe−λ(x−τ0), x � τ0. (5)

That is, splitting representation T ′ of exponentially split r.v. T consists of T0

being left truncated exponentially distributed r.v. with truncation point τ0, rate
λ, density

f0(x) =
{

0, x � τ0,
λe−λ(x−τ0), x > τ0,

and T1 having density

f1(x) =

{
f(x)
1−p , x � τ0,
f(x)−pλe−λ(x−τ0)

1−p , x > τ0.
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From simulation point of view splitting means that, instead of generation of
r.v. T with density f , we generate a triple T0, T1, I and construct T ′ as in (3).
The property (2) together with specially constructed (4) guarantee, that the
simulated value T ′ is stochastically equivalent to T . Moreover, if I = 1, that
is, T ′ is governed by truncated exponential distribution, then for any t > τ0
the remaining part T ′ − t = T0 − t may be replaced by (classical) exponentially
distributed r.v. τ due to memoryless property of the remainder:

P(T0 − t > x + y|T0 − t > x) =
e−λ(x+y+t−τ0)

e−λ(x+t−τ0)
= e−λy, x, y > 0, t > τ0. (6)

Following [2], consider the following example. Let f(x) be the density of
Gamma distribution:

f(x) =
α(αx)β−1

Γ (β)
e−αx, x � 0,

then for any α and β � 1 it is easy to set parameters λ, τ0, p of the splitting in
such a way to satisfy minorization condition (5). Indeed, let

τ0 =
1
α

, λ = α, p =
1

eΓ (β)
. (7)

Then it is easy to check that (5) holds for x > τ0, and thus f(x) is exponentially
split.

3.2 Artificial Regeneration of Stochastic Process with Discrete and
Continuous Components

In many practical applications obtaining analytical results is hardly possible. In
such a case simulation is used to perform a numerical study and derive (less
general, however) results of practical impact. One of the powerful simulation
methods is the discrete event simulation (DES). When performing a DES, it is
assumed that the system state significantly changes only at some specific time
epochs (related to the discrete events appearing in the system, e.g. customer
arrival, service completion, server failure etc.), whereas the system state evolves
in some predictable way in-between (e.g. the work in the system decreases lin-
early etc.). This property allows to evolve the system state only at the afore-
mentioned specific event epochs, and derive system performance measures after
the simulation based on the trace obtained. In many cases such a model may be
obtained by means of the stochastic recursion, see e.g. [11].

A DES model of a queueing system naturally contains two types of compo-
nents: the discrete-valued component is related to some countable quantities in
the system (e.g. the number of customers in the queue, the server state etc.),
and the continuous-valued component is related to some continuous resource
(e.g. the remaining time before a customer arrival, the remaining work in the
system/at server etc.) that are changing in time t. Motivated by that, we con-
sider a stochastic process Θ = {X(t),T(t)}t�0, with discrete (vector) component
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X = (X1, . . . , Xn) and continuous component T = (T1, . . . , Tm) � 0 (hereafter
we denote vector-valued variables in bold and assume the dimension is clear from
context, if not sub-indexed explicitly). Moreover, we assume that T decreases
linearly with time, that is, T(t + δ) = T(t) − δ1, for δ > 0, and define an event
as a time epoch ti such that Tj∗(ti) = 0 for some j∗ ∈ {1, . . . , m} (in this case
we say that the ith event occurring at ti is of j∗th type). We assume that the
discrete component X is changed only at event epochs, e.g. by some recurrent
relation

X(ti+) = Gj∗ (X(ti−)) , (8)

where Gj∗ is the recursion related to type j∗ event, or, in general, assume the
change is governed by some Markovian probability

Pj∗(x, x′) = Pj∗{X(ti+) = x′|X(ti−) = x}.

The component X(t) does not change if T(t) > 0, that formally means

X(t) = X(ti+), i = max{k : tk < t}.

We also assume that in the vector T the zeroed at ti− component Tj∗ is initial-
ized at ti+ from some distribution with density fj∗ , that is,

fj∗(u, x, x′) = P(Tj∗(ti+) ∈ du|X(ti−) = x,X(ti+) = x′). (9)

Now we assume, that if X(t) = x∗ for some specific x∗, then the pro-
cess Θ allows to perform exponential splitting of the continuous component T,
that is for each continuous component Tj there exist constants τ0(j), λ(j), p(j)
such that (5) holds for the density fj(u, x, x∗), with corresponding f0,j(u) =
λje

−λj(u−τ0(j)) and f1,j defined appropriately. At that, we introduce a split
process Θ′ = {X(t),T′(t),Z(t)}t�0 enhanced with auxiliary phase variable
Z ∈ {0, 1, 2}m denoting the phases of components of T defined componentwise
in a recursive manner as follows

Zj∗(ti+) =
{

1, if X(ti+) = x∗ and Ij∗(ti+) = 1,
2, otherwise, (10)

Zk(ti+) = Zk(ti−), k �= j∗, (11)

where ti is the epoch of type j∗ event, and Ij∗ is the splitting indicator corre-
sponding to the component T ′

j∗ with success probability p(j∗). However, starting
from Zj∗(ti+) = 1 at time ti, the component Zj∗ makes a step between the
events:

Zj∗(t) =
{

1, ti < t < ti + τ0(j∗)
0, t � ti + τ0(j∗), (12)

that is, the phase Zj∗ is changed from one to zero when not less than τ0(j∗)
time passes since the epoch ti corresponding to the last event of j∗th type. In
case Zj �= 1, the component Zj does not change during inter-event time.

In fact, the phase Zk, k �= j∗ at time ti is interpreted as follows:
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– if Zk(ti) = 0, then the component T ′
k(ti) is in the pure exponential phase,

that is, the previous event of type k appeared at time t < ti − τ0(k) and the
splitting indicator Ik(t+) = 1, so that more than τ0(k) time has passed since
that epoch, and hence the value of the component T ′

k(ti+) may be sampled
from classical exponential distribution with rate λ(j) independently of the
current value of T ′

k(ti−);
– if Zk(ti−) = 1, then the splitting of T ′

k was performed at some time epoch t of
the previous event of type k, Ik(t+) = 1, but t+ τ0(k) > ti so that still T ′

k(ti)
is in the pre-exponential phase (we adopt the terms from [2]) corresponding
to the shift τ0(k), this also means replacement of T ′

k(ti+) by independent
exponential is impossible yet;

– if Zk(ti−) = 2, then T ′
k is in non-exponential phase, that is, either the splitting

of T ′
k was not performed at previous kth type event epoch t (if X(t+) �= x∗),

or the split r.v. T ′
k(t+) is governed by T ′

1,k, that is, Ik(t+) = 0.

We stress that exponential splitting of T ′
j is performed only at time epoch t

corresponding to event of type j, that is, at the time of initialization of (the new)
T ′

j(t+) after zeroing, and only if Xj(t+) = x∗
j . If Xj(t+) �= x∗

j , then T ′
j is sampled

from the original distribution (9) and we set Zj(t+) = 2. The necessity of the pre-
exponential phase is explained by the memoryless property (6) of a left truncated
exponential distribution. However, to perform the simulation efficiently, we need
to define the pseudo-event as the time epoch when step defined in (12) occurs.
The pseudo-event corresponds to initialization of the (pure) exponential phase of
the component T ′

j and appears exactly at time t + τ0(j), where t is the splitting
time of T ′

j . Note that pseudo-event does not correspond to transition in X. Thus,
we use the following (adopted from [2]) procedure of splitting of the component
T ′

j : first we initialize T ′
j(t+) = τ0(j), if at t+ the event j occurs, and set Zj(t+) =

1. Then we wait for occurrence of pseudo-event of type j at some t′ > t (that
is, the component T ′

j(t
′−) = 0, and Zj(t′−) = 1), initialize T ′

j(t
′+) by sampling

from classical exponential distribution with rate λ(j) and set Zj(t′+) = 0. By
this trick we eliminate the necessity to find the previous event of jth type, and
thus, keep the system Markovian. (Note that in fact t′ = t + τ0(j)).

It remains to define the artificial regeneration epochs as the (increasing)
sequence of pseudo-event epochs {βk}k�1 such that

βk+1 = min {t > βk : X(t+) = x∗,Z(t+) = 0} . (13)

3.3 Algorithmic Implementation

In this section we present an algorithmic implementation of the simulation of
process Θ′ and obtaining the regeneration epochs {βk}k�1. The Algorithm 1
runs until N artificial regeneration epochs are obtained.
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Algorithm 1. Artificial Regeneration
1: Z ← 0 � Exponential phases for all components
2: X ← x∗ � Start from artificial regeneration
3: T ← (exp(λ1), . . . , exp(λm)) � Initialize continuous component
4: t ← 0 � Initialize modeling time
5: k ← 1 � Initialize regeneration counter
6: βk ← 0 � Set first regeneration epoch at zero

7: while k < N do
8: j∗ ← arg mini∈{1,...,m} Ti

9: t ← t + Tj∗ � Increase modeling time
10: for all j �= j∗ do
11: if Zj > 0 then
12: Tj ← Tj − Tj∗

13: else � Re-initialize all exponential phase components
14: Tj ← exp(λ(j))
15: end if
16: end for
17: if Zj∗ == 1 then � Pseudo-event occurrence
18: Zj∗ ← 0
19: Tj∗ ← exp(λ(j∗))
20: if Z == 0 & X == x∗ then � Artificial regeneration epoch
21: k ← k + 1
22: βk ← t
23: end if
24: else � Event occurrence
25: X ← Gj∗(X) � Make a step in discrete component
26: Zj∗ ← 2 � For convenience
27: if Xj∗ == x∗

j∗ then
28: Ij∗ ← Bernoulli(p(j∗))
29: if Ij∗ == 1 then � Splitting occurs
30: Tj∗ ← τ0(j

∗)
31: Zj∗ ← 1 � Pre-exponential phase starts
32: else
33: Tj∗ ← f1,j � Initialize from density f1,j
34: end if
35: else
36: Tj∗ ← fj � Initialize from density fj
37: end if
38: end if
39: end while

To simplify comprehension, we also illustrate the main loop of the algorithm,
see Fig. 1.
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j∗ argmini∈{1,...,m} Ti

t t + Tj∗

Zj∗ = 1?

Tj Tj − Tj∗ if Zj > 0
Tj exp(λ(j)) if Zj = 0, j �=
j∗,
X Gj∗(X)

Zj∗ 0
Tj∗ exp(λ(j∗))

Z = 0
X = x∗?

k k + 1
βk t

Xj∗ = x∗
j∗?Tj∗ fj∗

Ij∗ Bernoulli(p(j∗))

Ij∗ = 1?Tj∗ f1,j∗

Tj∗ τ0(j∗)
Zj∗ 1

Zj∗ 2

no

yes yes

no

yes

no

yes

no

Fig. 1. Flowchart of the main loop of artificial regeneration algorithm

4 Artificial Regeneration in Multiserver System

In this section we apply the method of artificial regeneration to performance
estimation of a multiserver system with energy efficiency control. We consider
the following model. Let an m-server system receive a renewal input of customers
waiting in a single queue if all servers are busy, and proceeding from queue to
service in the order of arrival (First Come First Served queueing discipline). If at
the ith service completion epoch the queue is empty, then the emptying server
goes to the so-called sleep mode (with low energy consumption) for a (generally
distributed) random time Ci having density c(·). The server during sleep mode
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period remains uninterrupted until the end of such a period, and no customer
service is possible at this particular server. The interarrival time Ti between ith
and i + 1th clients is generally distributed with density a(·), and service time of
ith client Si is generally distributed with density b(·) (note that for simplicity
we assume identical servers, but heterogeneity of servers may be incorporated
straightforwardly). Now we define the discrete and continuous components of
the simulated process Θ. For convenience, we start indexing with zero. Let τ0(t)
be the queue size at time t, and Xi(t) be the mode of ith server, i = 1, . . . ,m
defined as follows: X1(t) = 1 if the server is active, and X1(t) = 0 if the server
is in the sleep mode. Now we define continuous component T(t) Let T0(t) be
the time before the next arrival epoch, and Ti(t) be the remaining times of
current activity (service/sleep) of ith server, i = 1, . . . ,m. We stress that an
arriving customer never starts receiving service immediately, but instead goes to
the queue and waits for the nearest sleep mode completion epoch.

Now we define the transition functions Gi, i = 0, . . . ,m. For convenience
denote ei the vector with ith component equal to one, and other components
equal zero, i = 0, . . . ,m. An arrival invokes the 0 type event, and since the
arriving customer goes directly to the queue,

G0(X) = X + e0.

At the activity completion epoch of server i = 1, . . . , m, the server starts sleep
mode period if the queue is empty, and starts service period otherwise, hence,

Gi(X) = X(1 − ei)I{τ0 = 0} + (X(1 − ei) + ei − e0)I{τ0 > 0}.

Now we define the transition functions for the continuous components. Since
interarrival time always has density a, then for any x, x′

f0(u, x, x′) = f0(u) = a(u).

The time before next activity completion of server i = 1, . . . ,m depends on the
current state of the queue, and thus

fi(u, x, x′) = b(u)I{τ0 > 0} + c(u)I{τ0 = 0}
where I is used as the comparison function for nonrandom arguments.

Now to define the regeneration epoch, we set x∗ = {k, 1, . . . , 1} for some
k � 0 and recall that artificial regeneration occurs at such pseudo-event epoch
t that X(t+) = x∗ (i.e. all servers are busy and k customers are waiting in the
queue), and all the exponentially split components T0, . . . , Tm are in exponential
phases, that is, Z(t+) = 0.

5 Numerical Illustration

To perform a practical illustration of the method, we consider an m = 3-server
system with identical distributions of interarrival, service and sleep times

a(x) = b(x) = c(x) =
α(αx)β−1

Γ (β)
e−αx, x � 0,
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where we take α = 1.5, β = 1.5. Now we set the parameters of truncated expo-
nential distribution given in (7). As a performance measure, we consider the
number of active (working) servers, that is, we estimate the following theoretical
quantity

χ(Θ) = lim
t→∞

1
t

∫ t

0

m∑

i=1

Xi(u) du.

Note that this performance measure is directly related to cost function in terms
of energy efficiency (proportional to stationary average energy consumption per
unit time). We run the DES of the system following Algorithm 1 until N = 100
regeneration epochs are obtained. Assume 0 = i1, i2, . . . , i100 are the event epochs
of regeneration, i.e.

βj = tij
, j = 1, . . . , 100.

Then we accumulate the per-cycle performance estimate as the following sum

Yj =
ij+1−1∑

k=ij

m∑

v=1

Xv(tk)(tk+1 − tk),

and perform confidence estimation as described in Sect. 2. Next, we simulate 5
trajectories of the original process Θ and do simple average estimator of the
desired quantity as follows

1
tj

j−1∑

k=1

m∑

v=1

Xv(tk)(tk+1 − tk).

We plot the confidence intervals as well as the trajectories on Fig. 2. It may
be seen that most of the trajectories fit the confidence corridor nicely, and the
interval gets more narrow with increasing modeling time. However, as it may be
seen from the plot, the simple average estimate may be highly displaced due to
slow convergence to theoretical value.
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Fig. 2. Confidence interval based on artificial regeneration points for 3-server system
with Gamma-distributed interarrival, service and sleep times.
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6 Conclusion and Discussion

The method of artificial regeneration is a constructive method of obtaining regen-
eration points for regenerative estimation of performance of sophisticated queue-
ing systems. In this paper we developed the variant of artificial regeneration
method originally introduced in [2] and clarified algorithmic implementation
from practical view. We applied the method to an important multiserver model
with energy efficiency management, and demonstrated the results by numerical
investigation. We hope that the method will allow to analyze many sophisticated
models, such as a model of a high performance cluster (which is an extension of
the multiserver model), but leave this for future research.
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Abstract. Stochastic models which are applied to model queues where the
traffic intensity is greater than one and to health care models which involves
huge sized populations such as human cells, viruses etc., faces the challenge of
very huge number of states and hence demands huge computational cost. We
studied the upper level stochastic effects in some of these models. We found that
the upper level stochastic effects can’t be omitted in many situations; but can be
remarkably similar to the upper level effects in a differential equation model,
closely related to the stochastic model. Given a huge dimensioned stochastic
model, we replaced the upper level stochastic effects with the upper level
dynamics of a suitably defined differential equation model, to study certain
system performance measures. This resulted in a reduction in the computational
cost involved with the use of the stochastic model with a large number of states.

Keywords: Stochastic models � Deterministic models � Expected time �
Computational cost

1 Introduction

Stochastic modeling is a widely used tool in many fields of science. Queueing,
Inventory, Reliability Engineering are some such areas. A stochastic model can con-
sider several aspects of real world phenomena as its states, and collect information in
terms of state probabilities. This information could be collected at an arbitrary time or
in the steady state. However, in many situations this involves huge computational costs
[1]. This may be a reason, why these tools are less popular in fields like health care.

Differential equation models have remained as first choice of mathematical mod-
eling in the health care field [2–8]. Simplicity in formation, small dimension and ability
to collect useful information are some advantages enjoyed by the deterministic models.
However compared to deterministic models, stochastic models have the advantage that
they can incorporate an abundance of information in the modeling of real world sce-
narios. As an example, in the place of five or six differential equations in a deterministic
model [3], a Markov chain model [9, 10] may involve millions of differential or linear
equations. This show that incorporation of more details often demands huge compu-
tational power for the analysis of a stochastic model. Scarcity of analytical results
except in some special cases [9] can be seen to be another reason why differential
equation models, despite being less effective in capturing lower level changes of
variables [9], are preferred over stochastic models in the healthcare field. With the
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emergence of modern computational tools to handle the huge dimension, stochastic
models especially Markov models are getting acceptance [9–18] in the health care field.

The huge dimension problem can be seen to exist in fields where Markov modeling
is popular. For example consider an M/M/1 queueing model in which the arrival rate is
greater than the service rate. It is well known that the steady state does not exist for
such a model. However a network engineer, who may have to handle such a queueing
system, may wish to know how much time it will take for the queue size to grow
beyond certain limit. A similar problem exists for a birth death process, when the birth
rate is greater than the death rate. Theoretically, one can prove that the above time has a
phase-type distribution with suitable parameters. However, calculating its expected
value may involve solving a linear system of millions of equations.

The above problem may demand several computational hours of an ordinary
desktop computer. One may solve it faster using a workstation or a super computer.
However such fast computing could not yet achieved using the hardware in a mobile
station.

To speed up the computation, researchers have applied different techniques [9, 10,
14]. The HIV latently infected cell model in [14] assumes that stochastic effects are
important only for small values of the random variable representing the number of
actively infected cells. They thus proceed with a fast deterministic numerical integra-
tion technique for higher values of the variable. However, such an assumption may
seem to contradict findings in [13] that stochastic effects in viral evolution can’t be
neglected even when the HIV population sizes are large.

In the current paper, we studied some Markov models and the corresponding
deterministic models, which could be useful in many fields such as queueing and
healthcare, to check whether it is possible to discard the upper level stochastic effects.
We also studied whether the upper level stochastic effects are similar to that in a
corresponding deterministic model. We demonstrate that capturing the upper level
dynamics through deterministic models and lower level dynamics through stochastic
models, hence combining the results from two types of models of the same problem
could be a very useful technique.

This paper is arranged as follows. In Sect. 2, we discuss the method. In Sect. 3, we
discuss some of its applications to different queueing/healthcare models. Section 4
concludes the discussion.

2 Methods

2.1 Importance of Upper Level Stochastic Effects

Let NðtÞf g be a pure death process, with death rate l and N 0ð Þ ¼ n. When N tð Þ ¼ i,
the cumulative death rate is il. The state space of N ¼ N tð Þjt� 0f g is {0, 1, 2, …, n}.
The transition rate from state i to i − 1 is il. N starts from the state n and eventually
reaches the state 0. Let E(i) denote the expected time taken by N to reach the state 0
from state i. Since N(t) can only decrease, the average time N(t) remains in the state i is
1
il. This implies the equations
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E ið Þ ¼ 1
il

þE i� 1ð Þ; 2� i� n;

E 1ð Þ ¼ 1
l

These equations in turn give,

E nð Þ ¼ 1
l
SðnÞ;

where

S nð Þ ¼
Xn

i¼1

1
i

Distribution of the time for N(t) to reach the state 0 from n can be found in [19].
Now to consider a real world situation, let us assume that N(t) denote the number of

HIV latently infected cells in the body of an HIV patient [20]. Then E(n) denotes the
expected time for the eradication of the latent cell reservoir. A half-life s1=2 ¼ 44

months of latently infected cells [21] implies a death rate l ¼ lnð2Þ
s1=2

= 5.2 � 10−4 d−1.

Now, if the initial population of latent cells is n = 105, it follows that E(105) = 63.7
years and if n = 106, E(106) = 75.8 years. The difference between E(105) and E(106)
suggest that upper level stochastic effects does make a difference. We find that S
(106) − S(105) is just 2.3 and hence the difference between E(105) and E(106) was
contributed by the death rate l, which is small.

If we had assumed N(t) denote the number of viruses in the body of the HIV
patient, their death rate could have been much higher say l = 9.1 d−1 [22]. In this case
E(n) denotes the expected time for the initial viral load n to reach the level 0. It follows
that there is not much difference between E(105), which is 1.3 days and E(106), which
is 1.6 days. This shows that upper level stochastic effects did not contribute much in
this example.

These examples suggests that for population variables with faster downward
movement rate than upward movement rate, upper level stochastic effects may become
less important and it does matter in the opposite case. Motivated by the above examples
we hope to present a method, like the one in [14] which applied a deterministic
numerical integration, for capturing upper level stochastic effects when it really matters.

2.2 A Relation Between Stochastic and Deterministic Models

Going back to the Markov chain N, define PiðtÞ as the probability that N(t) = i. Thus

H tð Þ ¼ Pn
i¼1

iPiðtÞ is the expected value of N(t). PiðtÞ satisfies the set of differential

equations
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P
0
i tð Þ ¼ �ilPi tð Þþ iþ 1ð ÞlPiþ 1 tð Þ; 0� i� n� 1

P
0
n tð Þ ¼ �nlPn tð Þ:

Differentiating H tð Þ, we get H
0
tð Þ ¼ Pn

i¼1 iP
0
iðtÞ. Substituting for P

0
i tð Þ from the

above equations, we get

H
0
tð Þ ¼ �

Xn�1

i¼1

i2lPi tð Þþ
Xn�1

i¼1

i iþ 1ð ÞlPiþ 1 tð Þ � n2lPn tð Þ

that is

H
0
tð Þ ¼ �

Xn�1

i¼1

i2lPiðtÞþ
Xn�1

i¼1

ðiþ 1Þ2lPiþ 1ðtÞ �
Xn�1

i¼1

ðiþ 1ÞlPiþ 1ðtÞ � n2lPnðtÞ

that is

H
0
tð Þ ¼ �lP1ðtÞ �

Xn�1

i¼1

ðiþ 1ÞlPiþ 1ðtÞ

that is

H
0
tð Þ ¼ �lH tð Þ:

On solving the above differential equation with the initial condition H(0) = n, we
get H tð Þ ¼ ne�lt. This shows that the average value in the stochastic model satisfies a
deterministic model, which establishes a relation between the two models.

2.3 Combining Stochastic and Deterministic Models

We take H
0
tð Þ ¼ �lH tð Þ as the deterministic model corresponding to the Markov

model NðtÞf g given in Sect. 2.1.

The expression H tð Þ ¼ ne�lt gives t ¼ � 1
l log

HðtÞ
n

� �
.

Let us define t̂n;m as the time taken by N(t) in the deterministic model (by this, we
mean the movement of H(t)) to reach the level m after starting from the initial level
n. Then t̂n;m ¼ � 1

l log
m
n

� �
.

Similarly, let tn;m be the average time taken by N(t) in the stochastic model N to
reach the state m after starting from the initial state n. Then tn;m ¼ E nð Þ � EðmÞ.

With n = 105 and l = 5.2 � 10−4 d−1, we find from Table 1 that tn;m and t̂n;m are
very close and that t̂n;m can be taken as an approximate value of tn;m.

Now combining the results from the stochastic and deterministic models, we write
the approximate value AE(m) of the expected time E(n) as AE mð Þ ¼ t̂n;m þEðmÞ.
Notice that t̂n;m has been calculated from the deterministic model and E(m) from the

54 N. C. Viswanath



stochastic model. To check how good the approximation is, we present the following
results.

AE 1ð Þ ¼ t̂n;1 þEð1Þ ¼ 60:66þ 5:27 ¼ 65:93 yrs

AE 100ð Þ ¼ t̂n;100 þEð100Þ ¼ 36:39þ 27:33 ¼ 63:72 yrs

AE 104
� � ¼ t̂n;104 þEð104Þ ¼ 12:13þ 51:57 ¼ 63:7 yrs

We find that AE(100) and AE(104) gives good approximations for the actual value of E
(n), which is 63.7. Notice that for finding E(105) using the stochastic model alone, we
had to consider 105 states of the Markov chain. This reduces to just 100 states using AE
(100). Thus, there is a substantial reduction in the computational power if we combine
the deterministic and stochastic models. This method depends on the fact that tn;m and
t̂n;m are remarkably close when m is large; that is the upper level stochastic effects are
similar to that in a corresponding differential equation model.

3 Examples of Application of the Method

3.1 A Birth-Death Model

Let W ¼ XðtÞf g denote a birth-death process with birth rate k and death rate l. Assume
that k[ l, so that the population size X(t) becomes infinity as time tends to infinity.
Let S(M) denote the time taken by X(t) to reach the state M starting from state 0. It
follows that S(M) has a phase-type distribution with representation ðb; TÞ, where b is a
1 x (M + 1) row vector of the form

b ¼ ð1; 0; 0; . . .; 0Þ

and T is an M + 1 square matrix whose (i, j)th entry, Tij is given by

Tij ¼

�k; j ¼ i ¼ 1
�ði� 1Þ kþ lð Þ; 2� j ¼ i�Mþ 1
k; i ¼ 1; j ¼ 2
i� 1ð Þk; 2� i�M; j ¼ iþ 1
i� 1ð Þl; 2� i�Mþ 1; j ¼ i� 1

8>>>><
>>>>:

Table 1. Comparison of the average time tn;m (in years), to reach the state m from the state n in
the Markov model N (pure death process), with t̂n;m, that in the deterministic model. Parameters:
n = 105 and l ¼ 5:2� 10�4 d−1

m 1 10 50 100 1000 104

tn;m 58.43 48.27 39.99 36.37 24.26 12.13

t̂n;m 60.66 48.53 40.05 36.39 24.26 12.13
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The expected value of S(M) is then given by

lSðMÞ ¼ �bT�1e:

Now we shall derive the differential equation satisfied by the expected value
E(X(t)). For this note that

X tþDtð Þ � X tð Þ ¼
þ 1; with probability kXðtÞDt
�1; with probability lXðtÞDt
0; with probability 1� ðkþ lÞXðtÞDt

8<
:

and hence

E X tþDtð Þ � X tð Þð Þ ¼ ðk� lÞX tð ÞDt:

The above equation leads to the differential equation

d
dt
E XðtÞð Þ ¼ ðk� lÞEðX tð ÞÞ:

Solving, we get

E XðtÞð Þ ¼ Xð0Þeðk�lÞt;

which in turn gives

t ¼ 1
ðk� lÞ log

E XðtÞð Þ
Xð0Þ

� �
:

Let uL;M , be the time required for E XðtÞð Þ to move from L to M, where L < M. We
have

uL;M ¼ 1
ðk� lÞ log

M
L

� �
:

As in Sect. 2.3, we define an approximate value AES(L) for the time lSðMÞ as

AES Lð Þ ¼ lSðLÞ þ uL;M :

Table 2 presents a numerical example of the above procedure with M = 5 � 105,
k = 3.7 and l = 2.0. The actual average time lSðMÞ is 8.647. The table shows that AES
(1000) gives a very good approximation of lSðMÞ.
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3.2 A PH/M/1 Queue

Next we consider a PH/M/1 queue. The inter-arrival time follow a phase-type distri-
bution with representation ða;HÞ of order k and service time is exponentially dis-
tributed with parameter l. We take the average arrival rate as k ¼ pH0, where
H0 ¼ �He and p is the steady state distribution of the generator matrix HþH0a. As in
Sect. 3.1, we assume that k[ l, so that the queue size tends to infinity as time tends to
infinity. Let Y(t) denote the number of customers in the system including the one
getting service (if any). U ¼ fYðtÞjt� 0g forms a Markov chain.

Let S(M) has the same definition as in Sect. 3. It again follows that S(M) has a
phase-type distribution with representation ðb; TÞ, where b is a 1 � (M + 1)k row
vector of the form

b ¼ ða; 0; 0; . . .; 0Þ

and T is an (M + 1)k square matrix given by

The expected value of S(M) is then given by

lSðMÞ ¼ �bT�1e:

The differential equation satisfied by EðYðtÞÞ is taken as

d
dt
E YðtÞð Þ ¼ ðk� lÞEðY tð ÞÞ:

Let uL;M , lSðLÞ and AES(L) have the same definition and expression as in Sect. 3.1.
Table 3 presents a numerical example of the discussed procedure with parameters

as: M = 1 � 105, a ¼ 0:4; 0:6ð Þ;H ¼ �12 1
2 �15

� 	
, k ¼ pH0 = 12.03 and l = 2.0.

It shows that the actual average time lSðMÞ ¼ 9973.126 is obtained with L = 10.

Table 2. Approximate value of the actual average time lSðMÞ ¼ 8:647, in the birth-death model
using AES Lð Þ. Parameters: M = 5 � 105, k = 3.7 and l = 2.0.

L 10 50 100 500 1000 104

lSðLÞ 2.156 3.208 3.627 4.581 4.990 6.346

uL;M 6.364 5.418 5.010 4.063 3.656 2.301
AES Lð Þ 8.521 8.626 8.637 8.645 8.646 8.647
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4 Conclusions

Very huge state space has always been a challenge for Markov models in queues and
several other fields. Examples are number of customers in a queueing model with
bursty traffic and virus cell population in a health care model. In many problems, a
deterministic model involving the same variables could be formulated. We have
demonstrated that the upper level stochastic effects in a Markov model may be very
much identical to the upper level dynamics in a suitably formulated deterministic
model. We thus combined the upper level results from a deterministic model with the
lower level results from a Markov model involving same variables to reduce the
computational cost associated with the Markov model. Since Markov models are
highly useful in collecting important information in real world scenarios like a disease
progression or data packet transmission, the method discussed in the paper might
improve their applicability further.
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Abstract. We consider a correlated semi-synchronous event flow of the
second order with two states; it is one of the mathematical models for
an incoming stream of claims (events) in modern digital integral servic-
ing networks, telecommunication systems and satellite communication
networks. We solve the problem of estimating the probability density
parameters of the values of the interval duration between the moments
of the events occurrence by the method of moments for general and
special cases of setting the flow parameters. The results of statistical
experiments performed on a flow simulation model are given.

Keywords: Correlated semi-synchronous event flow of the second
order · Probability density · Estimation of the parameters · Method of
moments

1 Introduction

Mathematical models of queueing theory are widely used to describe real eco-
nomic, physical, and other processes. In modern times, thanks to the fast devel-
opment of information technologies, another important fields of queueing theory
applications are the design and creation of digital integrated service networks
(DISN). Since in practice, the parameters defining the event flow change ran-
domly in time, the doubly stochastic event flows are adequate mathematical
models of information flows of messages operating in the DISN [1–8]. These
flows are characterized by double randomness: the moments when events occur
are random and the intensity of the flow is a random process. This leads to the
study of doubly stochastic event flows.

Depending on how the transition from state to state occurs, these event flows
can be divided into three types: (1) synchronous flows, the transition from state
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to state in which depends directly on the occurrence of the event; (2) asyn-
chronous flows, the transition from state to state in which does not depend on
whether an event has occurred or not; (3) semi-synchronous flows, for which
the definition of the first type is true for one state and the second type for the
second state. A semi-synchronous event flow of the second order is the object
of studying in this work. The main problems in the studying of doubly stochas-
tic event flows are problems that are realized by observing the moments when
events occur: (1) estimating the states of an event flow [9,10]; (2) estimating
flow parameters [11–14].

The problem of optimal states estimation for the considered event flow under
its complete observability was solved in [10] and with partial observability in [15].

In this paper, we find the explicit form of the probability density of the
values of the interval duration between the moments of the events occurrence
for general and special cases of setting the parameters of a correlated semi-
synchronous event flow of the second order. The problem of estimating density
parameters is solved by the method of moments for each considered case.

2 Problem Setting

We consider the stationary operation mode of a semi-synchronous doubly
stochastic event flow of the second order (hereinafter flow), the accompanying
random process of which is a piecewise constant process λ(t) with two states S1

and S2. Hereinafter, the ith state of the process is understood as the state Si,
i = 1, 2.

The duration of the interval between the flow events at the first state is
determined by the random variable η = min(ξ(1), ξ(2)), where random variable
ξ(1) has distribution function F

(1)
1 (t) = 1 − e−λ1t, random variable ξ(2) has

distribution function F
(2)
1 (t) = 1 − e−α1t; ξ(1) and ξ(2) are independent random

variables.
At the moment of the flow event occurrence, the process λ(t) transits from

the state S1 to Sj either with probability P
(1)
1 (λj |λ1), or with probability

P
(2)
1 (λj |λ1), depending on what value the random variable η has taken, j = 1, 2.

Here
∑2

j=1 P
(k)
1 (λj |λ1) = 1, k = 1, 2. The duration of the interval between

the flow events at the first state is random variable with distribution function
F (t) = 1 − e−(λ1+α1)t.

The time during which the process λ(t) remains at the second state is random
variable with distribution function F2(t) = 1 − e−α2t. During the time when the
process λ(t) is in the second state, there is a Poisson event flow with parameter
λ2.

Hereinafter, it is assumed that the state Si (ith state) of the process λ(t)
takes place if λ(t) = λi, i = 1, 2; λ1 > λ2 ≥ 0.

The infinitesimal characteristics matrices for the process λ(t) are as follows

D0 =
∣
∣
∣
∣

∣
∣
∣
∣
−(λ1 + α1) 0

α1 −(λ2 + α2)

∣
∣
∣
∣

∣
∣
∣
∣ ,
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D1 =
∣
∣
∣
∣

∣
∣
∣
∣
λ1P

(1)
1 (λ1|λ1) + α1P

(2)
1 (λ1|λ1) λ1P

(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1)

0 λ2

∣
∣
∣
∣

∣
∣
∣
∣ .

Elements of the matrix D1 are the intensities of the process transitions from
state to state with an event occurrence. Nondiagonal elements of the matrix D0

are the intensities of transitions from state to state without an event. In turn,
the diagonal elements of the matrix D0 are the intensities of the process exit
from its states taken with the opposite sign.

An example of one of the realizations of the process λ(t) and the event flow
are shown on Fig. 1, where t1, t2, ... denote the moments when events occur in
the flow.

Fig. 1. Semi-synchronous event flow of the second order

Since the process λ(t) is unobservable in principle, and we can only observe
time moments t1, t2, ... when events occur in the flow, then λ(t) is a hidden
Markov process or an unobservable accompanying Markov process. The sequence
{λ(tk)} at the time moments t1, t2, ..., tk, ... of events occurrence is an embedded
Markov chain.

We denote by τk = tk+1 − tk, k = 1, 2, ..., the value of interval duration
between neighboring events, and by p(τ) the probability density of the value
of interval duration between neighboring events in the observed flow. Since we
consider the stationary operation mode of the observed flow then p(τk) = p(τ)
for all k = 1, 2, ..., τ ≥ 0. Then we can let the moment of event occurrence tk
equal to zero without loss of generality, i.e. the moment of the event occurrence
is τ = 0.

3 Derivation of Probability Density p(τ )

We introduce the conditional probability pij(τ) that there are no events on the
interval (0, τ) and that the process value λ(τ) = λj at the time moment τ ,
provided that the process value λ(0) = λi, i, j = 1, 2 at the time moment τ = 0
[16].



Probability Density Parameters Estimation in the Correlated Flow 63

3.1 Probability Density for the General Case of Setting Flow
Parameters

Lemma 1. The conditional probabilities pij(τ), i, j = 1, 2, in a correlated semi-
synchronous event flow of the second order are given by the following

p11(τ) = e−(λ1+α1)τ , p12(τ) = 0, p22(τ) = e−(λ2+α2)τ ,

p21(τ) =
α2

(λ1 + α1) − (λ2 + α2)
[e−(λ2+α2)τ − e−(λ1+α1)τ ], τ ≥ 0, (1)

where (λ1 + α1) − (λ2 + α2) �= 0.

Proof. The proof is carried out by solving differential equations for pij(τ), i, j =
1, 2.

Lemma 2. The probability densities p̃ij(τ), i, j = 1, 2, in a correlated semi-
synchronous event flow of the second order are given by the following formulas

p̃1j(τ) = [λ1P
(1)
1 (λj |λ1) + α1P

(2)
1 (λj |λ1)]e−(λ1+α1)τ , j = 1, 2,

p̃21(τ) =
α2[λ1P

(1)
1 (λ1|λ1) + α1P

(2)
1 (λ1|λ1)]

(λ1 + α1) − (λ2 + α2)
[e−(λ2+α2)τ − e−(λ1+α1)τ ], (2)

p̃22(τ) =
α2[λ1P

(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1)]

(λ1 + α1) − (λ2 + α2)
[e−(λ2+α2)τ − e−(λ1+α1)τ ]+

+λ2e
−(λ2+α2)τ ,

where τ ≥ 0, (λ1 + α1) − (λ2 + α2) �= 0.

Proof. We introduce the joint probability that without flow events occurrence
at the interval (0, τ) the process λ(τ) transited from the first state to the first
at this interval, then the event occurred at the half-interval [τ, τ + Δτ) with
probability 1 − e−λ1Δτ and, at the moment of the flow event occurrence, the
process λ(τ) transited from the first state to the first (S1 → S1) with proba-
bility P

(1)
1 (λ1|λ1) or, on the half-interval [τ, τ + Δτ) a flow event occurred with

probability 1 − e−α1Δτ and at the moment of the flow event occurrence the
process λ(τ) transited from the first state to the first (S1 → S1) with prob-
ability P

(2)
1 (λ1|λ1). This joint probability is as follows p11(τ)[λ1P

(1)
1 (λ1|λ1) +

α1P
(2)
1 (λ1|λ1)]Δτ + o(Δτ). We note that the joint probability under considera-

tion can be represented as p11(τ)[λ1P
(1)
1 (λ1|λ1) + α1P

(2)
1 (λ1|λ1)]Δτ + o(Δτ) =

p̃11(τ)Δτ + o(Δτ), where p̃11(τ) is the probability density corresponding to the
joint probability. Writing the last equality in the form p̃11(τ) + o(Δτ)/Δτ =
[λ1P

(1)
1 (λ1|λ1) + α1P

(2)
1 (λ1|λ1)]p11(τ) + o(Δτ)/Δτ and tending Δτ to zero, we

find p̃11(τ) = [λ1P
(1)
1 (λ1|λ1) + α1P

(2)
1 (λ1|λ1)]p11(τ). We define the remaining

joint probabilities in the same way. Thus, the probability density pij(τ) that the
process λ(τ) transits from the state Si to Sj , i, j = 1, 2, at the interval (0, τ),
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without the flow event occurrence at this interval and with the event occurrence
at the moment τ , is written in the form

p̃1j(τ) = [λ1P
(1)
1 (λj |λ1) + α1P

(2)
1 (λj |λ1)]p11(τ), j = 1, 2,

p̃21(τ) = [λ1P
(1)
1 (λ1|λ1) + α1P

(2)
1 (λ1|λ1)]p21(τ),

p̃22(τ) = [λ1P
(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1)]p21(τ) + λ2p22(τ). (3)

Substituting (1) into (3), we obtain (2).

Lemma 3. The transition probabilities pij, i, j = 1, 2, in a correlated semi-
synchronous event flow of the second order are given by the following

p1j = (λ1P
(1)
1 (λj |λ1) + α1P

(2)
1 (λj |λ1))/(λ1 + α1), j = 1, 2,

p21 = (α2[λ1P
(1)
1 (λ1|λ1) + α1P

(2)
1 (λ1|λ1)])/[(λ1 + α1)(λ2 + α2)],

p22 = (α2[λ1P
(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1)])/[(λ1 + α1)(λ2 + α2)] + λ2/(λ2 + α2).

(4)

Proof. We define pij , i, j = 1, 2, the probability of the process λ(τ) transition
from the state Si to Sj for a time which will pass from the moment τ = 0 until
the next flow event occurrence. Since τ is an arbitrary time moment, then these
transition probabilities are defined as

pij =
∫ ∞

0

p̃ij(τ)dτ, i, j = 1, 2. (5)

Thus, substituting (2) into (5), we obtain (4).

Let us consider the conditional stationary probability πi(0) that the process
λ(τ) is in the state Si at the time τ = 0, provided that a flow event has occurred
at the time τ = 0, i, j = 1, 2, π1(0) + π2(0) = 1.

Lemma 4. The conditional stationary probabilities πi(0), i = 1, 2, in a corre-
lated semi-synchronous event flow of the second order are given by the following
formulas

π1(0) =
α2[λ1P

(1)
1 (λ1|λ1) + α1P

(2)
1 (λ1|λ1)]

λ2[λ1P
(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1)] + (λ1 + α1)α2

,

π2(0) =
(λ2 + α2)[λ1P

(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1)]

λ2[λ1P
(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1)] + (λ1 + α1)α2

, π1(0) + π2(0) = 1.

(6)
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Proof. Since the sequence of the moments t1, t2, ..., tk, ... forms an embedded
Markov chain {λ(tk)} then the following equations are valid for probabilities
πi(0)

π1(0) = p11π1(0) + p21π2(0), π2(0) = p12π1(0) + p22π2(0), (7)

where the probabilities pij , i, j = 1, 2, are defined by (4).
From (7), taking into account that π1(0) + π2(0) = 1, we find

π1(0) = p21/(p12 + p21), π2(0) = p12/(p12 + p21). (8)

Substituting (4) into (8), we obtain (6).

Lemmas 2 and 4 yield the following theorem.

Theorem 1. The probability density of the value of interval duration between
neighboring events in a correlated semi-synchronous event flow of the second
order is given by the following

p(τ) = γz1e
−z1τ + (1 − γ)z2e−z2τ , τ ≥ 0, (9)

γ =
π1(0)(λ1 + α1 − λ2) − α2

(λ1 + α1) − (λ2 + α2)
, z1 = λ1 + α1, z2 = λ2 + α2,

where (λ1 + α1) − (λ2 + α2) �= 0, and the probability π1(0) is defined in (6).

Proof. Due to the fact that the process λ(t) has a Markov property, if its evo-
lution is considered starting from the time moment tk, k = 1, 2, ..., of the flow
event occurrence, the probability density p(τ) of the value of interval duration
between neighboring events in the flow under consideration is determined as

p(τ) =
2∑

i=1

πi(0)
2∑

j=1

p̃ij(τ), τ ≥ 0. (10)

Substituting the expressions (2) and (6) into (10), after the necessary trans-
formations, we obtain (9).

3.2 Probability Density for the Special Case of Setting Flow
Parameters

Let us consider the case when the coefficient (λ1 + α1) − (λ2 + α2) = 0 in (9).

Lemma 5. The conditional probabilities pij(τ), i, j = 1, 2, in a correlated semi-
synchronous event flow of the second order in the case when (λ1 + α1) − (λ2 +
α2) = 0 are given by the following

p11(τ) = e−(λ1+α1)τ , p12(τ) = 0, p22(τ) = e−(λ1+α1)τ ,

p21(τ) = (λ1 + α1 − λ2)τe−(λ1+α1)τ , τ ≥ 0. (11)
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Proof. The proof is carried out by solving differential equations for pij(τ), i, j =
1, 2.

Then, based on Lemmas 4 and 5, we formulate the following theorem.

Theorem 2. The probability density of the value of interval duration between
neighboring events in a correlated semi-synchronous event flow of the second
order in the case when (λ1 + α1) − (λ2 + α2) = 0 is given by the following

p(τ) = [(λ1 +α1)−π2(0)(λ1 +α1 −λ2)(1− (λ1 +α1)τ)]e−(λ1+α1)τ , τ ≥ 0, (12)

where the probability π2(0) is defined in (6).

Proof. Substituting (11) into (3), we find the densities p̃ij(τ); substituting (3)
into (5) and (5) into (8), we obtain the probabilities πi(0). Substituting p̃ij(τ)
and πi(0), i, j = 1, 2, into (10), as a result of the necessary transformations we
obtain (12).

4 Estimation of the Distribution Parameters by the
Method of Moments

Let us consider the statistics Cl = 1
n

∑n
k=1 τ l

k, where τk = tk+1 − tk.

4.1 General Case of Setting Flow Parameters

Let us have a sample τ1, τ2, ..., τn from the distribution p(τ |z1, z2, γ) depending
on three unknown parameters z1, z2, γ. Let M(τ l) =

∫ ∞
0

τ lp(τ |z1, z2, γ)dτ be the
initial theoretical moment of the lth order which is a function of the unknown
parameters. Then it is close to the corresponding selective moment τ̄ l which is
the Cl = 1

n

∑n
k=1 τ l

k statistics. For the first three initial moments we write the
moment equations

M(τ l) = Cl, l = 1, 2, 3. (13)

Given the kind of density (9), we get M(τ l) = l!γ/zl
l + l!(1−γ)/zl

2, l = 1, 2, 3.
Then the system (13) takes the following form

z1z2C1 − z2γ − z1(1 − γ) = 0, (z1 + z2)C1 − z1z2C2/2 = 1, (14)

(z1 + z2)C2 − z1z2C3/3 = 2C1.

Solving the system of equations (14), we find parameter estimates of p(τ)

ẑ1,2 =
1
2

⎛

⎝−2(C3 − 3C1C2)
3C2

2 − 2C1C3
±

√(
2(C3 − 3C1C2)
3C2

2 − 2C1C3

)2

+ 4
6(C2 − 2C2

1 )
3C2

2 − 2C1C3

⎞

⎠ .

(15)
Since z1 = λ1 + α1, z2 = λ2 + α2, where λ1 > λ2 ≥ 0, and the relation-

ship between parameters α1 and α2 is unknown, then the relationship between
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parameters z1 and z2 is unknown too. Thus, in order to determine which root of
equation (15) can be chosen as the parameter estimate ẑ1 and which parameter
as the estimate ẑ2, additional information about the flow is needed.

From the first equation of system (14), we obtain the estimate of the param-
eter γ

γ̂ = ẑ1(1 − C1ẑ2)/(ẑ1 − ẑ2), ẑ2 �= ẑ1. (16)

Let us introduce the density p(τ) in the following form

p(τ) = γ(λ1 + α1)e−(λ1+α1)τ + (1 − γ)(λ2 + α2)e−(λ2+α2)τ , τ ≥ 0.

And let us solve the problem of estimating parameters λ1, λ2, α1, α2 of
the density function by the method of moments with a known value of the
parameter γ. We note that the parameters under estimation coincide with the
flow parameters.

Let us have a sample τ1, τ2, ..., τn from the distribution p(τ |λ1, λ2, α1, α2)
depending on four unknown parameters. So for estimating λ1, λ2, α1, α2 it is
necessary to have four moment equations, i.e. M(τ l) = Cl, l = 1, 2, 3, 4. As a
result of the necessary transformations, the system of moments equations takes
the form

(λ1 + α1)(λ2 + α2)C1 − (λ2 + α2)γ − (λ1 + α1)(1 − γ) = 0,

((λ1 + α1) + (λ2 + α2))C1 − 1/2(λ1 + α1)(λ2 + α2)C2 = 1,

((λ1 + α1) + (λ2 + α2))C2 − 1/3(λ1 + α1)(λ2 + α2)C3 = 2C1, (17)

((λ1 + α1) + (λ2 + α2))C3 − 1/4(λ1 + α1)(λ2 + α2)C4 = 3C2.

Theorem 3. The system (17) for the unknown parameters λ1, λ2, α1, α2 of a
semi-synchronous event flow of the second order is incompatible.

Proof. We reduce the system (17) to a linearly inhomogeneous system by letting

x1 = λ2+α2−λ1−α1, x2 = λ1+α1, x3 = λ2+α2+λ1+α1, x4 = (λ1+α1)(λ2+α2).

The resulting system of linear inhomogeneous equations for four unknowns
xi, i = 1, 2, 3, 4, is the following

γx1 + x2 − C1x4 = 0, C1x3 − C2x4/2 = 1, C2x3 − C3x4/3 = 2C1, (18)

C3x3 − C4x4/4 = 3C2.

The system (18) has no solutions, i.e. the system is incompatible and it is impos-
sible to estimate the flow parameters λ1, λ2, α1, α2 having only information
about the density p(τ).
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4.2 Special Case of Setting Flow Parameters

Let us introduce the density (12) in the following form

p(τ) = [z − a(1 − zτ)]e−zτ , z = λ1 + α1, a = π2(0)α2, τ ≥ 0. (19)

Let us have a sample τ1, τ2, ..., τn from the distribution p(τ |z, a) depending
on two unknown parameters z, a. Let M(τ l) =

∫ ∞
0

τ lp(τ |z, a)dτ be the initial
theoretical moment of the lth order which is a function of the unknown parame-
ters. Considering the form of the density (19), we obtain M(τ l) = l!/zi [1 + a/z],
l = 1, 2.

Then the system of moments equations takes the following form

[z + a]/z2 = C1, [z + 2a]/z3 = C2. (20)

Solving the system (20), we find

ẑ(1) =
1
C2

(

2C1 −
√

4C2
1 − 2C2

)

/C2, ẑ(2) =
1
C2

(

2C1 +
√

4C2
1 − 2C2

)

. (21)

In this case, the following conditions must be satisfied

ẑ(1)ẑ(2) = 2/C2 > 0, ẑ(1) + ẑ(2) = 4C1/C2 > 0, 4C2
1 − 2C2 ≥ 0.

Substituting the estimates ẑ(1) and ẑ(1) into the first equation of (20), we
obtain

â(1) = C1(ẑ(1))2 − ẑ(1), â(2) = C1(ẑ(2))2 − ẑ(2). (22)

The question naturally arises of which pair {ẑ(1), â(1)} and {ẑ(2), â(2)} to
choose as a solution of the problem. Taking into account the explicit form of the
parameters z = λ1+α1, a = π2(0)α2 and the condition (λ1+α1)−(λ2+α2) = 0,
it is easy to show that ẑ and â must satisfy the conditions â > 0 and ẑ − â >
0. During the analytical test of the obtained pairs for the fulfillment of these
conditions, the following conclusions were made. If C2/2 ≤ C2

1 < 2C2/3 then
both pairs are equal and any of them can be chosen as an estimate; if C2

1 ≥ 2C2/3
then only {ẑ(1), â(1)} can be chosen as the solution of the estimation problem.

Remark. It can be shown that for the special case of setting flow parameters
(λ1 + α1) − (λ2 + α2) = 0, a system of three or more moment equations is
incompatible.

5 Results of Numerical Calculations

In order to establish the quality of estimation, we developed the algorithm for
calculating parameter estimates of the density. The algorithm consists of two
stages. The simulation of the semi-synchronous event flow of the second order is
performed directly at the first stage of the implementation algorithm. Parameter
estimates are calculated at the second stage of the algorithm using the formulas
obtained.
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Let us consider general case of setting the parameters of the flow. For this
case we compute the estimates ẑ1, ẑ2, γ by the formulas (15), (16) and we obtain
sample averages M̂(θ̂) = 1

N

∑N
k=1 θ̂(k) and offset estimates δ(θ) = |M̂(θ̂) − θ|,

where θ ∈ {z1, z2, γ}, θ̂ ∈ {ẑ1, ẑ2, γ̂}.
In the first statistical experiment, we consider the dependence of M̂(θ̂), δ(θ)

from the values λ1 = 2, 3, 4, 5, 6 for simulation time T = 100 units of time, N =
100, probabilities P

(1)
1 (λ1|λ1) = P

(2)
1 (λ2|λ1) = 0, 4, P

(1)
1 (λ2|λ1) = P

(2)
1 (λ1|λ1) =

0, 6 and parameters λ2 = 0, 8, α1 = 2, α2 = 0, 8. The experiment results are
given in Table 1, where the last three rows are the real values of the parameters
under evaluation.

Table 1. The results of the first statistical experiment for z1, z2, γ

λ1 2 3 4 5 6

M̂(ẑ1) 4,3298 5,2167 6,1552 7,0959 8,0483

δ(z1) 0,3298 0,2167 0,1552 0,0959 0,0483

M̂(ẑ2) 3,1902 3,0743 3,0377 2,9545 2,9151

δ(z2) 0,3902 0,2743 0,2377 0,1545 0,1151

M̂(γ̂) 0,3621 0,3393 0,3291 0,2909 0,2717

δ(γ) 0,2510 0,1846 0,1513 0,0989 0,0701

z1 4 5 6 7 8

z2 2,8 2,8 2,8 2,8 2,8

γ 0,1111 0,1547 0,1778 0,1920 0,2016

Analyzing the numerical results given in Table 1, we can make the following
conclusions. There is a displacement in the obtained estimates by an amount
δ(θ) relative to the initial values of the estimated parameters. The offset δ(θ)
decreases with the increase of the parameter λ1. This is due to the fact that the
frequency of transitions from the first state to the second of the process λ(t)
increases with the increase of the parameter λ1, which has a positive effect on
the conditions of states distinguishability.

Let us consider special case of setting the parameters of the flow. For this
case we compute the estimates ẑ, â, γ by the formulas (21), (22) and we obtain
sample averages M̂(θ̂) and offset estimates δ(θ), where θ ∈ {z, a}, θ̂ ∈ {ẑ, â}.

In the second statistical experiment, we consider the dependence of M̂(θ̂),
δ(θ) from the simulation time values Tm for fixed N = 100, for the probabilities
P

(1)
1 (λ1|λ1) = P

(2)
1 (λ1|λ1) = 0, 65, P

(1)
1 (λ2|λ1) = P

(2)
1 (λ2|λ1) = 0, 35 and flow

parameters λ1 = 4, λ2 = 1, 5, α1 = 0, 5, α2 = 3. The results of the experiment
are given in Table 2, where the last two rows are the real values of the parameters
under evaluation.

Analysis of the numerical results given in Table 2 shows that the offset δ(θ),
θ ∈ {z, a}, decreases with the increase of the Tm, which is quite normal. In other
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Table 2. The results of the second statistical experiment for z, a

Tm 50 100 150 200 . . . 900 950 1000

M̂(ẑ) 4,8894 4,7864 4,7664 4,7463 . . . 4,5398 4,5397 4,5388

δ(z) 0,3894 0,2864 0,2664 0,2463 . . . 0,0398 0,0397 0,0388

M̂(â) 1,6402 1,5211 1,4984 1,4698 . . . 1,3777 1,3775 1,3769

δ(a) 0,2998 0,1807 0,1580 0,1294 . . . 0,0373 0,0371 0,0365

z 4,5 4,5 4,5 4,5 . . . 4,5 4,5 4,5

a 1,3404 1,3404 1,3404 1,3404 . . . 1,3404 1,3404 1,3404

words, the quality of estimating the density parameters is the better (in the
sense of reducing the offset estimates), the larger the simulation time Tm.

In the third statistical experiment, we consider the dependence of M̂(θ̂),
δ(θ) from the parameter λ1 = 2, 3, 4, 5, 6 for simulation time T = 100 units
of time, N = 100, probabilities P

(1)
1 (λ1|λ1) = P

(2)
1 (λ2|λ1) = 0, 4, P

(1)
1 (λ2|λ1) =

P
(2)
1 (λ1|λ1) = 0, 6 and flow parameters λ2 = 1, α1 = 0, 8. And the parameter α2

is calculated by the formula α2 = λ1+α1−λ2. The results of this experiment are
given in Table 3, where the last two rows are the real values of the parameters
under evaluation.

Table 3. The results of the third statistical experiment for z, a

λ1 2 3 4 5 6

α2 1,8 2,8 3,8 4,8 5,8

M̂(ẑ) 3,1823 3,9902 4,9281 5,8682 6,8279

δ(z) 0,3823 0,1902 0,1281 0,0682 0,0279

M̂(â) 1,5620 1,9810 2,4835 3,0254 3,5955

δ(a) 0,3942 0,2133 0,1165 0,0592 0,0299

z 2,8 3,8 4,8 5,8 6,8

a 1,1678 1,7677 2,3670 2,9662 3,5656

Analyzing the numerical results obtained in Table 3, we can make the follow-
ing conclusions. With the increase of the parameter value λ1 and, respectively,
with the increase of the parameter α2, the offset value δ(θ) decreases, since the
states of the process λ(t) become more distinguishable (λ1 > λ2).

6 Conclusion

In this paper, the semi-synchronous event flow of the second order was consid-
ered, and the explicit form of the probability density of the values of the interval
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duration between the moments of the events occurrence was obtained for gen-
eral and special cases of setting the flow parameters. The estimates of probability
density parameters were found by the method of moments. The expressions for
parameter estimates are obtained explicitly, which allows for calculations with-
out the use of numerical methods. The algorithm for calculating estimates of
density parameters is implemented in C# with Visual Studio 2013. In order to
establish the quality of estimation, statistical experiments were performed, the
numerical results of which do not contradict the physical interpretation.
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Abstract. This paper studies Markovian models of controlled systems
with retrials, where the rate of the flow of retrials does not depend on
the amount of their sources. The input flow of customers is controlled
according to a multithreshold strategy. The conditions for the existence
of a stationary regime are defined for this type of system, and clear
formulae of vector-matrix type for stationary probabilities are obtained.
The problem of multicriteria optimization of the system’s profit are also
considered.

Keywords: Queueing · Repeated calls · Constant retrial rate ·
Stationary regime · Optimal control

1 Introduction

Queueing systems with retrials are a specific class of stochastic models that
allow consideration of an important peculiarity of the service process. The cus-
tomer that upon its arrival finds all the servers busy will join a source of retrial
customers for trying for service later on. This type of models is widely used in
computer and communication networks, call centers, planes landing management
in airports, etc.

The mathematical analysis of systems with retrials has its peculiarities. The
consideration of retrials leads to a multidimensional service process, typical for
stochastic networks, and, as a consequence, it complicates the theory. The main
models of systems with retrials, their problems and some results can be found
in [7,9].

This paper studies a specific class of Markovian systems with retrials that
have two peculiarities. Firstly, it is admitted that the rate of the input flow
depends on the number of retrials at the present moment of time. The situation
when this dependence is represented by a piecewise constant function or by
a threshold strategy is studied in details. Threshold strategies can solve the
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problems of optimal choice of the model parameters. The solutions for this type
of problems are given at the end of this paper.

Secondly, unlike in the conventional models of systems with retrials it is
assumed that the rate of retrials does not depend on the number of their sources.
In papers [3,4] systems with a constant intensity of retrials have been used to
model multi-access protocols (CSMA/CD, ALOHA). Other uses in the informa-
tion flows modeling in Internet can be found in [2].

2 Mathematical Model of the Service Process

In order to define the service process in the retrial system, let us introduce
a two-dimensional Markov chain with continuous time X(t) = (X1(t),X2(t))′,
X1(t) ∈ {0, 1, ..., c}, X2(t) ∈ {0, 1, ...}, defined by its local parameters α(i,j)(i′,j′),
(i, j), (i′, j′) ∈ S(X) = {0, 1, ..., c} × {0, 1, ...} in the following way.

1. For 0 ≤ i ≤ c − 1

α(i,j)(i′ ,j′ ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λj , when (i
′
, j

′
) = (i + 1, j);

iν, when (i
′
, j

′
) = (i − 1, j);

μ, when (i
′
, j

′
) = (i + 1, j − 1);

−(λj + iν + μ), when (i
′
, j

′
) = (i, j);

0, otherwise.

2. For i = c

α(i,j)(i′ ,j′ ) =

⎧
⎪⎪⎨

⎪⎪⎩

λj , when (i
′
, j

′
) = (c, j + 1);

cν, when (i
′
, j

′
) = (c − 1, j);

−(λj + cν), when (i
′
, j

′
) = (c, j);

0, otherwise.

The two-dimensional Markov chain, whose local parameters matrix has the
described above structure, can be interpreted as a service process in a retrial
system that consists of c identical servers. The service rate on each server is
ν > 0, the rate of retrials μ > 0, and λj > 0 is the rate of the input flow with the
condition that there are j sources of retrials in the system. The first component
X1(t) ∈ {0, 1, ..., c} indicates the number of busy servers at the instant t ≥ 0,
and the second one X2(t) ∈ {0, 1, ...} is the number of retrial sources. Further,
the process X(t) = (X1(t),X2(t))′ is the main subject of our investigation.

Let us write the states of X(t) as S(X) = {(0, 0), ..., (c, 0), (0, 1), ..., (c, 1), ...}.
Then the infinitesimal matrix Q of the Markov chain X(t) can be represented
in a matrix-block form:

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q(0,0) Q(0,+1)

Q(1,−1) Q(1,0) Q(1,+1)

. . . . . . . . .
Q(j,−1) Q(j,0) Q(j,+1)

. . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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where

Q(j,−1) = ‖q(j,−1)
nm ‖c

n,m=0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 μ
0 μ
. . . . . . . . .

0 μ
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

Q(j,0) = ‖q(j,0)nm ‖c
n,m=0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s0j λj

ν s1j λj

2ν s2j λj

. . . . . . . . .
(c − 1)ν sc−1j λj

cν scj

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

sij = −[λj + iν + (1 − δic)(1 − δj0)μ],

where δij is a Kronecker delta and Q(j,+1) = ‖q
(j,+1)
nm ‖c

n,m=0 = diag(0, . . . , 0, λj)
is a diagonal matrix.

It follows that X(t) is a quasi-birth-and-death process (QBD process), whose
blocks, generally speaking, depend on the level number (see for example [11], p.
189). If λj = λ, then we have a normal Poisson process of rate λ at the system
input, and the matrices Q(j,±1) = Q(±1) = ‖q

(±1)
nm ‖c

0 , Q(j,0) = Q(0) = ‖q
(0)
nm‖c

0

become independent from j ≥ 1. Thus, X(t) becomes a level independent QBD
process.

The ergodicity conditions, with an easy interpretation, are well known for
these processes.

Let the infinitesimal matrix Q̃ = ‖q̃nm‖c
0 = Q(−1)+Q(0)+Q(+1) be irreducible

and ρ = (ρ0, ρ1, . . . , ρc)
′
be the unique solution of

ρ
′Q̃ = 0

′
c+1, ρ

′
1c+1 = 1

where 0c+1, 1c+1 are the (c + 1)-dimensional vectors formed by zeros and ones,
respectively.

Then the irreducible QBD process is ergodic when

ρ
′Q(+1)1c+1 < ρ

′Q(−1)1c+1. (1)

This result persists if the process X(t) is close to the level independent QBD
process.

Lemma 1. Let X(t) = (X1(t),X2(t))′ be an irreducible level dependent QBD
process, that takes values in S(X) = {0, 1, ..., c} × {0, 1, ...} , for which the fol-
lowing conditions are satisfied

lim
j→∞

Q(j,±1) = Q(±1), lim
j→∞

Q(j,0) = Q(0),

where the matrix convergence is understood in componentwise meaning. If matrix
Q̃ is irreducible and condition (1) is satisfied, then X(t) is ergodic.
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Proof. For proving the lemma, we use the method of test functions (Lyapunov
functions). To create such a function, let us introduce some terms:

q(±1)
n =

c∑

m=0

q(±1)
nm , dn = q(−1)

n − q(+1)
n , n = 0, 1, . . . , c,

and
(δ0, . . . , δc−1)

′
= (Q∗)−1[(d0, . . . , dc−1)

′ − ε1
′
c], (2)

where ε =
∑c

n=0 pndn > 0,Q∗ = ‖ ˜qnm‖c−1
0 is the matrix of size c × c, that is

obtained from matrix Q̃ by deleting the last row and the last column; 1c is a
vector of size c, formed by ones.

Following paper [6], we use ϕ(s) = δn + j as a Lyapunov function ϕ(s),
s = (n, j) ∈ S(X) (δn = 0, when n = c). Let us verify the validity of the
conditions of the ergodicity criterion from [7], p. 97.

Let

q(j,±1)
n =

c∑

m=0

q(j,±1)
nm , d(j)n = q(j,−1)

n − q(j,+1)
n ,

Q̃(j) = ‖q̃(j)nm‖c
n,m=0 = Q(j,−1) + Q(j,0) + Q(j,+1),

Q̃(j)∗
= ‖q̃(j)nm‖c−1

n,m=0, ys = y(n,j) =
∑

p∈S(X)

αsp(ϕ(p) − ϕ(s)), s = (n, j) ∈ S(X).

Using (2), we obtain

(y(0,j), . . . , y(c−1,j))
′
= −ε1

′
c + [(d0, . . . , dc−1)

′ − (d(j)0 , . . . , d
(j)
c−1)] +

+[Q(j)∗ − Q∗](Q∗)−1[(d0, . . . , dc−1)
′ − ε1

′
c)].

For n = c we have

y(c,j) = −ε + (q̃(j)c0 − q̃c0, . . . , q̃
(j)
cc−1 − q̃cc−1)(δ0, . . . , δc−1)

′ − (d(j)c − dc).

Based on the conditions of the lemma, it is possible to find such a number
j0 = j0(ε), that for all n = 0, 1, . . . , c and j ≥ j0

y(n,j) ≤ −ε/2.

Therefore, process X(t) is ergodic. The lemma is proved.

As for the retrial process with a constant intensity, the conditions of Lemma
1 are satisfied when:

λj > 0, j = 0, 1, . . . ; lim
j→∞

λj = λ; (3)

and
λ(λ + μ)c

c!μ
c−1∑

i=0

(λ+μ)i

i!νi−c

< 1. (4)

Consequently, Lemma 1 allows to obtain the following result.
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Corollary 1. If conditions (3) and (4) are satisfied for the retrial process with
a constant rate X(t), then the process is ergodic.

Further, we suppose for the rate of the input flow that its dependence on
the number of sources of retrials is defined by the threshold strategy. It means
that, for an integer l ≥ 2, thresholds 0 = H0 < H1 < . . . < Hl−1 < Hl = ∞,
H

′
= (H1, . . . , Hl−1), are fixed. If at an instant t ≥ 0 the number of retrial

sources is X2(t) ∈ [Hi−1,Hi), then the system is working in the ith regime and
the rate of the input flow is λ(i). Thus, λj is a piecewise constant function:
λj = λ(i), j ∈ [Hi−1,Hi), i = 1, ..., l.

If λ(i) > 0, i = 1, ..., l, and for λ = λ(l) condition (4) is satisfied, then for
the process X(t) there exists a stationary regime and our next goal is to find its
stationary probabilities πij , (i, j) ∈ S(X).

3 Investigation of the Process in the Stationary Regime

In order to find the stationary probabilities πij , let us use the theorem about the
equality of probability flows across the border of the closed area in a stationary
regime (see, for example, [12], Chapter II). For every j = 0, 1, . . . we create a
partition of the phase space S(X) = S

(1)
j (X) ∪ S̄

(1)
j (X), S

(1)
j (X) = {(p, q) ∈

S(X) : q ≤ j}. Equaling the flows of probabilities through the border of the area
S
(1)
j (X), we obtain:

λjπcj = μ

c−1∑

i=0

πij+1, j = 0, 1, . . . (5)

Now, for i = 0, 1, . . . , c − 1, j = 0, 1, . . . we create a partition of the phase
space S(X) = S

(2)
ij (X) ∪ S̄

(2)
ij (X), S

(2)
ij (X) = {(i, j)}. Equaling the flows of

probabilities through the border of the area S
(2)
ij (X) , we obtain the following

system of equations:

[λj + (1 − δj0)μ]π0j = νπ1j , j = 0, 1, . . . (6)

[λj + (1 − δj0)μ + iν]πij = λjπi−1j + (i + 1)νπi−1j + μπi−1j+1,

i = 1, . . . , c − 1, j = 0, 1, . . .(7)

Let us introduce notations for the matrices that depend on the system param-
eters:

– Aj =‖ aik(j) ‖c
i,k=1, j = 0, 1, . . . , are matrices with elements aii−1(j) = μ,

i = 1, 2, . . . , c − 1,

ack(j) =

⎧
⎪⎨

⎪⎩

cμν
λj

, k �= c − 1,

μ[λj+cν]
λj

, k = c − 1,

and the rest of the elements equal to 0;
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– Bj =‖ bik(j) ‖c
i,k=1, j = 0, 1, . . . , are three-diagonal matrices with elements

bii−1(j) = −λj , ci = 2, . . . , c, j = 0, 1, . . ., bii(j) = λj+μ+(i−1)ν, i = 1, . . . , c,
j = 0, 1, . . ., bii+1(j) = −iν, i = 1, . . . , c − 1, j = 0, 1, . . . ;

– C =‖ cik(j) ‖c
i,k=1, where c11 = 1, c1k = 0, k = 2, . . . , c, cik =

bi−1k(Hl−1), i = 2, . . . , c, k = 1, . . . , c.

Let us give the following statement whose proof is based on Hadamard cri-
terion ([11], p. 419).

Lemma 2. Matrices Bj and C are nonsingular.

To find out a stationary distribution of the service process X(t), let us study a
similar process with a limited state space. This process describes the function-
ing of the stochastic system, similar to the original one, but that has a limit on
the maximum length of the queue: new customers are lost when all the servers
are busy and there are N sources of retrials in the system. Formally this kind
of behavior is described by the Markov chain X(t,N) = (X1(t,N),X2(t,N))′,
X1(t,N) ∈ 0, 1, . . . , c, X2(t,N) ∈ 0, 1, . . . , N . Its infinitesimal rates a

(N)

(i,j)(i′ ,j′ )
,

(i, j), (i
′
, j

′
) ∈ S(X,N) = {0, 1, . . . , c} × {0, 1, . . . , N} coincide with the corre-

sponding rates a(i,j)(i′ ,j′ ) of the chain X(t) at all points except of the boundary
case i = c, j = N,

a
(n)
(c,N)(i′,j′) =

⎧
⎨

⎩

cν, when (i′, j′) = (c − 1, N);
−cν, when (i′, j′) = (c,N);
0, otherwise

Since the phase space S(X,N) of the process X(t,N) is finite, then there
exists a stationary regime for X(t,N), and we denote its stationary probabilities
by πij(N), (i, j) ∈ S(X,N). Further, by the parameter N we realize the limit
transition N → ∞. Therefore, we assume that N > Hl−1.

For the vector of stationary probabilities πj(N) = (π0j(N), . . . , πc−1j(N))
′
,

the following lemma holds.

Lemma 3. The stationary probabilities of process X(t,N) are linked by the fol-
lowing correlation:

πj(N) = Δj(N)π00(N), j = 0, 1, . . . , N,

where
Δ0(N) = (B0 − μE)−1A0Δ1(N),

Δj(N) =

(∏N−1
i=j B−1

i Ai

)
C−1e1

e
′
1(B0 − μE)−1B0

(∏N−1
i=j B−1

i Ai

)
C−1e1

, j = 1, 2, . . . ,

e1 = (δ11, δ12, . . . , δ1c)
′
.
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Proof. Probabilities πij(N), (i, j) ∈ S(X,N) of a truncated system satisfy the
system of Eqs. (5)–(7) of the original system. Only a limit case j = N requires
a special consideration, for which the following correlations are met:

[λN + μ]π0N (N) = νπ1N (N),

[λN + μ + iν]πiN (N) = λNπi−1N (N) + (i + 1)νπi+1N (N), i = 1, . . . , c − 2.

Let us add the following identity into the last system of equations: π0N (N) =
π0N (N) and rewrite it in a vector-matrix form

CπN (N) = e1 · π0N (N).

From this we obtain
πN (N) = C−1e1 · π0N (N). (8)

The system of Eqs. (5)–(7) of the truncated system can be rewritten in a
vector-matrix form:

Ajπj+1(N) = Bjπj(N), j = 1, . . . , N − 1,

A0π1(N) = (B0 − μE)−1π0(N).

Considering (8), we obtain

πj(N) =

⎛

⎝
N−1∏

i=j

B−1
i Ai

⎞

⎠ C−1e1π0N (N), j = 1, . . . , N, (9)

π0(N) = (B0 − μE)−1B0

(
N−1∏

i=0

B−1
i Ai

)

C−1e1π0N (N).

The last equation yields probability π0N (N):

π0N (N) =

{

e
′
1(B0 − μE)−1B0

(
N−1∏

i=0

B−1
i Ai

)

C−1e1

}−1

· π00(N).

Substituting the last equation into (9), we obtain the confirmation of the
lemma.

The lemma is proved.

Let us investigate the limit behavior of vector Δj(N), for N → ∞. The
following result was obtained.

Lemma 4. The limits of vectors Δj(N), j = 0, 1, . . . , for N → ∞ are defined
by the following correlations:

Δ0 = (B0 − μE)−1A0Δ1,
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Δj(N) =

(
B−1

Hk−1
AHk−1

)Hk−j
(

l−2∏

i=k

(
B−1

Hi
AHi

)Hi+1−Hi

)

uν′C−1e1

e
′
1(B0 − μE)−1B0

(
l−2∏

i=0

(
B−1

Hi
AHi

)Hi+1−Hi

)

uν′C−1e1

,

j = Hk−1, . . . , Hk − 1, k = 1, . . . , l − 1,

Δj(N) =

=
uν′C−1e1

e
′
1(B0 − μE)−1B0

(
l−2∏
i=0

(
B−1

Hi
AHi

)Hi+1−Hi
) (

B−1
Hk−1

AHk−1

)j−Hl−1
uν′C−1e1

,

j = Hl−1, . . . ,

where u = (u1, u2, . . . , uc)′ > 0, ν = (ν1, ν2, . . . , νc)′ > 0 are the right and the
left eigenvectors of matrix B−1

Hl−1
AHl−1 , which correspond to the Perron root r.

Proof. As the rate of input flow λj is a piecewise constant function, vector Δj(N)
can be represented in the following way:

Δj(N) =

(
N−1∏

i=j

B−1
i Ai

)

C−1e1

e
′
1(B0 − μE)−1B0

(
N−1∏

i=0

B−1
i Ai

)

C−1e1

=

=

(
HK−1∏

i=j

B−1
Hk−1

AHk−1

)

· . . . ·
(

N−1∏

i=Hl−1

B−1
Hl−1

AHl−1

)

C−1e1

e
′
1(B0 − μE)−1B0

(
H1−1∏

i=H0

B−1
H0

AH0

)

· . . . ·
(

N−1∏

i=Hl−1

B−1
Hl−1

AHl−1

)

C−1e1

=

=

(
B−1

Hk−1
AHk−1

)Hk−j

· . . . ·
(
B−1

Hl−1
AHl−1

)N−Hl−j

C−1e1

e
′
1(B0 − μE)−1B0

(
B−1

H0
AH0

)H1−H0 · . . . ·
(
B−1

Hl−1
AHl−1

)N−Hl−j

C−1e1

,

j = Hk−1, . . . , Hk − 1, k = 1, . . . , l − 1, (10)

Δj(N) =

(
B−1

Hl−1
AHl−1

)N−j
C−1e1

e
′
1(B0 − μE)−1B0

(
B−1

H0
AH0

)H1−H0 · . . . ·
(

B−1
Hl−1

AHl−1

)N−Hl−j
C−1e1

=

(
B−1

Hl−1
AHl−1

)N−j
C−1e1

e
′
1(B0 − μE)−1B0

(
B−1

H0
AH0

)H1−H0
. . .

(
B−1

Hl−1
AHl−1

)j−Hl−j
(

B−1
Hl−1

AHl−1

)N−j
C−1e1

,

j = Hl−1, . . . .

Matrix B−1
Hl−1

AHl−1 > 0 , therefore conditions of the theorem 8.2.8 [11] are
met for it, and its ith power can be written as:

(
B−1

Hl−1
AHl−1

)i

= riuν′ + o(ri
1),
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where r1 < r, r is the Perron root of matrix B−1
Hl−1

AHl−1 , u and ν are the right
and the left eigenvectors, that correspond to r, u′ν = 1.

Let us substitute this expression into the system of Eq. (10):

Δj(N) =

(
B−1

Hk−1
AHk−1

)Hk−j
(

l−2∏
i=k

(
B−1

Hi
AHi

)Hi+1−Hi

) (
rN−Hi−1uν′ + o

(
r
N−Hl−1
1

))
C−1e1

e
′
1(B0 − μE)−1B0

(
l−2∏
i=0

(
B−1

Hi
AHi

)Hi+1−Hi

) (
rN−Hi−1uν′ + o

(
r
N−Hl−1
1

))
C−1e1

,

j = Hk−1, . . . , Hk − 1, k = 1, . . . , l − 1, (11)

Δj(N) =

=

(
rN−juν′ + o

(
rN−j
1

))
C−1e1

e
′
1(B0 − μE)−1B0

(
l−2∏
i=0

(
B−1

Hi
AHi

)Hi+1−Hi
) (

B−1
Hl−1

AHl−1

)j−Hl−1
×,

× 1(
rN−juν′ + o

(
rN−j
1

))
C−1e1

j = Hl−1, . . . . (12)

Now let us divide the numerator and the denominator of (11) by r
N−Hl−1
1 ,

and the numerator and the denominator of (12) by rN−j and proceed to the
limit for N → ∞ :

Δj = lim
N→∞

Δj(N) =

=

(
B−1

Hk−1
AHk−1

)Hk−j
(

l−2∏

i=k

(
B−1

Hi
AHi

)Hi+1−Hi

)

uν′C−1e1

e
′
1(B0 − μE)−1B0

(
l−2∏

i=0

(
B−1

Hi
AHi

)Hi+1−Hi

)

uν′C−1e1

,

j = Hk−1, . . . , Hk − 1, k = 1, . . . , l − 1,

Δj = lim
N→∞

Δj(N) =

=
uν′C−1e1

e
′
1(B0 − μE)−1B0

(
l−2∏

i=0

(
B−1

Hi
AHi

)Hi+1−Hi

) (
B−1

Hl−1
AHl−1

)j−Hl−1

uν′C−1e1

,

j = Hk−1, . . . .

Since the matrix uν′ is included in the numerator and the denominator for
Δj , then the normalization condition uν′ = 1 for eigenvectors u and v can be
eliminated.

The lemma is proved.
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Let us formulate and prove one more auxiliary result.

Lemma 5. Let the condition of Lemma 1 be satisfied. Then

∞∑

j=0

λj−1 + μ

λj−1
1

′
cΔj < ∞. (13)

Proof. If the condition of Lemma 1 is satisfied, then the process X(t) is ergodic,
which means that there exists a probability π00 > 0. Using the results of the
stochastic ordering of probability distributions for the migration processes from
[7], we find

lim
N→∞

π00(N) = π00 > 0. (14)

From the normalization condition for the stationary distributions of the pro-
cess X(t,N), taking into consideration the results of Lemma 3, we obtain:

π00(N) =

⎧
⎨

⎩
1

′
cΔ0(N) +

N∑

j=1

λj−1 + μ

λj−1
1

′
cΔj(N)

⎫
⎬

⎭

−1

.

We prove the lemma using the method of contradiction. We will suppose that
(13) does not converge. This means that for any large L > 0, there exists such
a number M = M(L) that

M∑

j=0

λj−1 + μ

λj−1
1

′
cΔj > L.

It is not difficult to check that

π−1
00 = lim

N→∞
π−1
00 (N) = lim

N→∞

⎧
⎨

⎩
1

′
cΔ0(N) +

N∑

j=1

λj−1 + μ

λj−1
1

′
cΔj(N)

⎫
⎬

⎭
≥

≥ lim
N→∞

⎧
⎨

⎩
1

′
cΔ0(N) +

N∑

j=1

λj−1 + μ

λj−1
1

′
cΔj(N)

⎫
⎬

⎭
=

1
′
cΔ0(N) +

N∑

j=1

λj−1 + μ

λj−1
1

′
cΔj(N) > 1

′
cΔ0(N) + L

Thus, π00 = 0, which contradicts (14).
The lemma is proved.

For N → ∞ stationary distributions πij(N) approximates the corresponding
probabilities of the original system. On the basis of previously proved Lemmas
we obtain the main result, which contains explicit vector-matrix formulae for
the stationary probabilities of the system written via its parameters.
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Theorem 1. If the condition of Lemma 1 is met for the process X(t), then:

πj = lim
N→∞

πj(N) = Δj · π00 j = 0, 1, . . . ,

πcj =
μ

λj
1

′
cΔj+1 · π00 j = 0, 1, . . . , (15)

where π00 =
{

1
′
cΔ0 +

∑N
j=1

λj−1+μ
λj−1

1
′
cΔj

}−1

.

The theorem is a direct consequence of Lemmas 3 and 4. The probabilities
πcj , j = 0, 1, . . . are expressed by Eq. (5), and the probability π00 is found from
the normalization condition.

Since |B−1
j Aj | = |B−1

j |·|Aj |, then the characteristic equation |B−1
j Aj−zE| =

0 has a root z = 0. Consequently, for M/M/c/∞-systems for c = 1, 2, . . . , 5, we
can always express the Perron root and stationary probabilities explicitly in
terms of the system parameters. To calculate the Perron roots and correspond-
ing eigenvectors for c > 5 (and for c ≤ 5) we can use efficient computational
algorithms from [11] (Sec. 8.5).

4 Application in Optimization

As an example of using obtained results, let us consider the problem of optimizing
the profit from the system’s functioning.

Let fk(t,H) be the profit from the system’s functioning in the kth regime,
k = 1, . . . , l; fl+1(t,H) be the number of customers that were refused for
service and became sources of retrials; fl+2(t,H) be the number of switches
in rate of the input flow. If the conditions of Lemma 1 are met, there exist
limits limt→∞t−1fk(t,H), k = 1, . . . , l + 2. Let us denote them by fk(H),
k = 1, . . . , l + 2.

The objective of maximizing the profit from the system’s functioning is to
find the values of the thresholds Hk, k = 1, . . . , l − 1, which are the solution of
the multi-criteria problem:

fk(H) → max, k = 1, . . . , l,

fl+1(H) → min, fl+2(H) → min,

Hk ∈ {0, 1, . . .}, k = 1, . . . , l − 1,

Hi < Hj , i < j.

Similar optimization problems for other models of retrial queues were con-
sidered, for example, in [5,8,10]. If we take into account the economic nature
of the problem, the most logical method to solve it in practice is the method
of linear convolution of criteria. It consists in the fact that the solution of the
original multi-objective problem is found by solving the one-criterion problem:
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Fig. 1. Dependence of the objective function on the threshold value.

l∑

i=1

Cifi(H) − Cl+1fl+1(H) − Cl+2fl+2(H) → max,

Hi ∈ {0, 1, . . .}, k = 1, . . . , l − 1,

Hi < Hj , i < j.

where Ci, i = 1, . . . , l, is the profit from the servicing of a customer when the
system works in the ith regime; Cl+1 is a fine for the service rejection; Cl+2 is a
fine for switching the service rate.

The limit functionals fk(H), k = 1, . . . , l + 2, can be written using the sta-
tionary distribution of the system:

fk(H) = ν

c∑

i=1

Hk−l∑

j=Hk−1

iπij k = 1, . . . , l,

fl+1(H) =
∞∑

j=0

λjπcj =
l∑

i=1

λ(i)

Hi−l∑

j=Hi−1

πcj ,

fl+2(H) =
l∑

i=1

λ(i)πcHi−1 + μ
l∑

i=1

c−l∑

k=0

πkH ,

which together with the result of Theorem 1 gives the algorithm of solving of
the described optimization problem.
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To illustrate the obtained results, let us consider an example of solving the
problem of choosing the optimal threshold control strategy for the system with
two functioning regimes and the following parameters: λ(1) = 13, λ(2) = 8,
ν = 8.1, μ = 1. The above-described multi-criteria optimization problem will
be solved by the method of linear convolution of criteria with coefficients C1 =
10, C2 = 300, C3 = 30, C4 = 100.

Figure 1 shows a graph of dependence of the objective function on the thresh-
old value. As seen in the graph, the highest value of the criteria 146,87 is reached
at H = 23.

5 Conclusions

The paper studies the stationary regime for systems with retrials of constant
intensity, whose input flow of customers is controlled by multithreshold strate-
gies. Explicit formulae of vector-matrix type for stationary probabilities via the
system parameters are obtained. The obtained representation of stationary prob-
abilities enables further systems analysis and calculation of their performance
characteristics, as well as solving the optimization problems. As an example, a
multicriteria problem of optimization of profit from the system’s functioning was
set and solved.
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Abstract. We consider an unreliable queueing system which can be
used for modeling a broadband hybrid communication channel consist-
ing FSO (Free Space Optics) channel and radio wave channel. The radio
channel is backup and is connected when the optical channel is not
available. In order to save energy, a hysteresis strategy for connecting
a backup channel is used. This strategy is given by two thresholds: j1
and j2, j1 ≤ j2. If the main channel fails, the backup channel connects
to information transmission if the number i of customers in the system
is such that i > j2. If during backup channel operation the number of
customers in the system becomes such that i ≤ j1, then the backup
channel is disabled and the current customer continues to be serviced
at the main server. If at some point in time the number i of customers
in the system becomes such that j1 < i ≤ j2, then the system works in
the mode in which it worked until that time. We describe the system
operation by two-dimensional Markov chain, calculate the steady state
distribution and the main performance characteristics of the system. We
introduce the cost function and present the example of numerical opti-
misation consisting in choosing the threshold values minimizing the cost
function.

Keywords: Unreliable queueing system · Backup server · Hysteresis
strategy · Steady state distribution · Performance characteristics · Cost
function · Optimisation problem

1 Introduction

At the present day, the FSO-Free Space Optics technology has become
widespread. The main advantages of atmospheric optical communication chan-
nel are high bandwidth, quality and confidentiality of communication. Therefore,
laser systems are often used for a variety of applications that require high quality
of data transmission, including financial, medical and military organizations.
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Along with the main advantages of wireless optical systems, their main dis-
advantages are also known: dependence of availability of the communication
channel on weather conditions; the need to provide direct visibility between the
emitter and receiver; limited range of communication. Unfavorable weather con-
ditions such as rain, snow, fog (as well as sand dust, urban smog and various
types of aerosols) can significantly reduce visibility and thus reduce the effective
range of laser atmospheric communication lines. Therefore, in order to achieve
required values of the reliability of the FSO communication channel, it is neces-
sary to resort to the use of hybrid solutions based on laser and radio technology.
The main mode of operation of the combined system is a laser mode. When the
signal-to-noise ratio deteriorates, transmission of information is carried out in
wide-band radio mode. After restoring the quality of the atmospheric optical
channel transmission of information is carried out by this channel. When using
the laser channel, the radio channel stops its work.

Due to the increased interest in hybrid systems in recent years, there have
been many works in which their characteristics were studied, see e.g. [1–7]. How-
ever, in the majority of research, the authors use simulation and do not provide
a comprehensive study of all the characteristics often limiting themselves to
assessing the reliability of the hybrid channel.

Among the works devoted to the construction of mathematical models and
their analysis, note [8–13]. The paper [9] is devoted to a hybrid communica-
tion system with so called hot standby, where the backup radio channel trans-
mits data along with the FSO channel, but at low speed. In the paper [10],
the hybrid communication system with cold redundancy is considered, where
the radio-wave channel is assumed to be absolutely reliable and backs up FSO
channel only in cases when the latter interrupts its functioning because of the
unfavorable weather conditions. The paper [8] deals with a hybrid communica-
tion system where the millimeter-wave radio channel is used as a backup one.
To model this system, the authors consider two-channel queueing system with
unreliable heterogeneous servers which fail alternately. In further works [11–13],
more complicated models of unreliable single-server queues are considered. They
generalize models of [8–10] to the case of more complicated processes describing
the operation of the hybrid communication systems.

It is assumed in all papers cited above that backup server connects to the
service of customers immediately at the time of main server failure and turns off
when the main server is being restored. It is clear that such a strategy of con-
necting a backup server may be ineffective due to the switching cost in situations
where the switchings often occur. In the present paper, we consider queueing sys-
tem suitable to model a hybrid communication channel with cold redundancy
under more general, in comparison with the papers cited above, assumptions
about strategy of switching between the main and backup server. This strategy
(called as hysteresis strategy) is defined by two thresholds: j1 and j2, j1 ≤ j2.
If the main channel fails, the backup channel connects to information transmis-
sion if the number of customers i in the system is such that i > j2. If during
backup channel operation the number of customers in the system becomes such
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that i ≤ j1, then the backup channel is disabled and the current customer con-
tinues to be serviced at the main server. If at some point in time the number
i of customers in the system becomes such that j1 < i ≤ j2, then the system
works in the mode in which it worked until that time. In the paper, we describe
the system operation by two-dimensional Markov chain, calculate the steady
state distribution and the main performance characteristics of the system. We
introduce the cost function and present the example of numerical optimisation
consisting in choosing the threshold values minimizing the cost function.

2 Mathematical Model

We consider a queuing system with an infinite waiting room and two servers,
one of which (the main server) is unreliable and the other one (standby, backup
server) is absolutely reliable. The latter one is in the so-called “cold” reserve.
Interpretation: the unreliable server is the FSO (laser) channel, and the reliable
one is a wireless radio channel IEEE 802.11n. Customers arrive at the system
in the stationary Poisson flow with the rate λ. Service times on the main server
and on the backup server are exponentially distributed with parameters μ1 and
μ2, respectively.

Under the influence of weather conditions, the laser channel, i.e., the main
server, can fail and immediately begins to be repaired. Breakdowns arrive at
this server in a stationary Poisson flow with the intensity h. Repair time is
exponentially distributed with the parameter τ. During the recovery, information
is transmitted through the backup server, the transmission rate in which is lower
than the transmission rate in the main server (we emphasize that the backup
server may be involved in the servicing only during the repair time of the main
server). In order to save energy, a hysteresis strategy for connecting the backup
server is used, given by two thresholds j1 and j2 such as j1 ≤ j2. With this
strategy, the backup server and, accordingly, the whole system can work in two
modes. If the main server fails, the backup server connected to the service of
customer if the number i of customers in the system is such that i > j2 ≥ 0.
In this case we will say that the system works in the 2nd mode. If during the
backup server operation in the 2nd mode, the number of customers in the system
becomes such that i ≤ j1, then the backup server is disabled (note that in such
a scenario, the backup server can be switched on and off several times during
repair time of the main sever). In this case we will say that the system works in
the 1st mode. If at some point in time the number i of customers in the system
becomes such that j1 < i ≤ j2, then the system works in the mode in which it
has worked until that moment. We will also assume that in the time intervals
when the main server is fault free, the system works in the 0th mode.

After the restoration of the main server the backup server shuts down until
the next failure of the main server. In such a case, the customer in service
continues to be serviced on the main server. If at an arrival time the main sever
is busy or under repair, then the arrival customer goes at the queue in the buffer
of an infinite capacity. After the change of the server that provides service to
the current customer, service continues from the moment of the change.
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3 Process of the System States

The process of the system operation can be described by a regular irreducible
continuous time Markov chain {it, nt}, t ≥ 0, where, at the time instant t :

• it is the number of customers in the system, it ≥ 0;
• nt = 0, if the main server is working, i.e., the system is working in mode 0;

nt = 1, if the main server is under repair, the backup server is not yet on, i.e.,
the system is working in mode 1; nt = 2, if the main server is under repair, the
backup server is working, i.e., the system is working in mode 2.

Let us enumerate the states of the chain in the lexicographical order of its
components. Denote by Qi,l the matrix of chain transition rates from the states
corresponding to the value i of the first (countable) component to the states
corresponding to the value l of this component, i, l ≥ 0.

Lemma 1. In the case j1 �= j2 the infinitesimal generator Q of a Markov chain
{it, nt}, t ≥ 0, has the block three-diagonal structure

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q0,0 Q0,1 O O O · · · O O O O O O . . .
Q1,0 Q1,1 Q1,2 O O · · · O O O O O O . . .
O Q2,1 Q2,2 Q2,3 O · · · O O O O O O . . .
...

...
...

...
...
. . .

...
...

...
...

...
... . . .

O O O O O · · · O Qj2,j2−1 Qj2,j2 Qj2,j2+1 O O · · ·
O O O O O · · · O O Qj2+1,j2 Q1 Q2 O · · ·
O O O O O · · · O O O Q0 Q1 Q2 · · ·
O O O O O · · · O O O O Q0 Q1 · · ·
...

...
...

...
...
. . .

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

Q0,0 =
(−(λ + h) h

τ −(λ + τ)

)
, Q0,1 = λI2,

Qi,i−1 =
(

μ1 0
0 0

)
, Qi,i =

(−(λ + h + μ1) h
τ −(λ + τ)

)
, i = 1, j1,

Qi,i+1 = λI2, i = 1, j1 − 1, Qj1,j1+1 =
(

λ 0 0
0 λ 0

)
, Qj1+1,j1 =

⎛
⎝

μ1 0
0 0
0 μ2

⎞
⎠ ,

Qj1+1,j1+2 =

⎛
⎝

λ 0
0 λ
0 λ

⎞
⎠ , j2 = j1 + 1, Qj1+1,j1+2 = λI3, j2 > j1 + 1,

Qj1+1,j1+1 =

⎛
⎝

−(λ + h + μ1) h 0
τ −(λ + τ) 0
0 0 −(λ + μ2

⎞
⎠ , Qi,i−1 =

⎛
⎝

μ1 0 0
0 0 0
0 0 μ2

⎞
⎠ ,
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Qi,i =

⎛
⎝

−(λ + h + μ1) h 0
τ −(λ + τ) 0
0 0 −(λ + μ2

⎞
⎠ , Qi,i+1 = λI3, i = j1 + 2, j2 − 1,

Qj2,j2−1 =

⎛
⎝

μ1 0 0
0 0 0
0 0 μ2

⎞
⎠ , Qj2,j2+1 =

⎛
⎝

λ 0
0 λ
0 λ

⎞
⎠ ,

Qj2,j2 =

⎛
⎝

−(λ + h + μ1) h 0
τ −(λ + τ) 0
0 0 −(λ + μ2

⎞
⎠ , Qj2+1,j2 =

(
μ1 0 0
0 0 μ2

)
,

Qj2+1,j2+1 =
(−(λ + h + μ1) h

τ −(λ + τ + μ2)

)
, Qj2+1,j2+2 = λI2;

Q0 =
(

μ1 0
0 μ2

)
, Q1 =

(−(λ + h + μ1) h
τ −(λ + τ + μ2)

)
, Q2 = λI2.

The proof of the lemma is carried out by analyzing the behavior of a chain
over an infinitely small time interval.

Corollary 1. The Markov chain {it, nt}, t ≥ 0, belongs to the class of continu-
ous time quasi-Toeplitz Markov chains, see [14].

Proof. The generator Q has block three-diagonal structure and, for i > j2 + 1,
its blocks Qi,l depend on the value i, l only via their difference l − i, precisely,
Qi,l = Ql−i+1. Then, according the definition given in [14], the chain under
consideration belongs to the class of quasi-Toeplitz Markov chains.

Corollary 2. In the case j1 = j2 = j the infinitesimal generator Q of a Markov
chain {it, nt}, t ≥ 0, has the following block three-diagonal structure

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q00 Q0,1 O · · · O O O O O · · ·
Q1,0 Q1,1 Q1,2 · · · O O O O O · · ·
...

...
...

...
...

...
...

...
...

O O O · · · Qj−1,j−2 Qj−1,j−1 Qj−1,j O O · · ·
O O O · · · O Qj,j−1 Qj,j Qj,j+1 O · · ·
O O O · · · O O Q0 Q1 Q2 · · ·
O O O · · · O O O Q0 Q1 · · ·
...

...
...

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

Q00 =
(−(h + λ) h

τ −(τ + λ)

)
, Q0,1 = λI2,

Qi,i−1 =

(
μ1 0
0 0

)
, Qi,i =

(−(μ1 + h + λ) h
τ −(τ + λ)

)
, Qi,i+1 = λI2, i = 1, j,

Q0 =
(

μ1 0
0 μ2

)
Q1 =

(−(μ1 + h + λ) h
τ −(τ + λ + μ2)

)
, Q2 = λI2, i > j.
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4 Stationary Distribution

For the system under consideration, the condition for the existence of the sys-
tem stationary distribution coincides with the ergodicity condition for the chain
{it, nt}, t ≥ 0, which is given by the following theorem.

Theorem 1. The Markov chain {it, nt}, t ≥ 0, is ergodic if and only if

λ <
τμ1 + hμ2

τ + h
. (1)

Proof. According to [14], the necessary and sufficient condition for the ergodic-
ity of the quasi-Toeplitz Markov chain under consideration is expressed by the
inequality

xQ2e < xQ0e, (2)

where the vector x = (x1, x2) is the unique solution of the system

x(Q0 + Q1 + Q2) = 0, xe = 1. (3)

Solving the system (3), we obtain:

x1 =
τ

τ + h
, x2 =

h

τ + h
.

Substituting this solution into (2), we obtain the desired inequality (1).

In what follows, we assume that ergodicity condition (1) is fulfilled . Introduce
the steady state probabilities of the chain:

p(i, n) = lim
t→∞ P{it = i, nt = n}, i ≥ 0, n = 0, 1,

and the vectors of these probabilities

pi = (p(i, 0), p(i, 1)), i = 0, j1, pi = (p(i, 0), p(i, 1), p(i, 2)), i = j1 + 1, j2,

pi = (p(i, 0), p(i, 2)), i ≥ j2 + 1.

To calculate the vectors pi, we used a special case of the algorithm developed
in [14] for quasi-Toeplitz Markov chain, adapted for the case of the chain under
consideration.

Using the steady state probability vectors pi, i ≥ 0, we can calculate various
performance measures of the system. In the case when the stationary distribution
pi, i ≥ 0, is heavy tailed, the following result will be useful.

Lemma 2. The generating function P(z) =
∞∑

i=j2+1

piz
i, |z| ≤ 1, satifies the

following functional equation:

P(z)Q(z) = pj2+1z
j2+1Q0 − zp0(Q0,0 + Q0,1z) −

j2∑
i=1

piz
iQ(i)(z), (4)

where

Q(z) = Q0 + Q1z + Q2z
2, Q(i)(z) = Qi,i−1 + Qi,iz + Qi,i+1z

2.
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We will use formula (4) to calculate the values of the function P(z) and its
derivatives at the point z = 1 without calculating infinite sums. The calculated
values allow to find the moments of the number of customers in the system and
a number of other characteristics of the system. Note that it is not possible to
calculate directly the value of P(z) and its derivatives at the point z = 1 from
Eq. (4), since the matrix Q(1) is singular. This difficulty can be overcome by
using the recursion formulas given below in Corollary 3.

Denote as g(m)(z) the mth derivative of g(z), m ≥ 1, and g(0)(z) = g(z).
Denote as B(z) the right hand side of Eq. (4).

Corollary 3. The derivatives of the vector generating function P(z), |z| ≤ 1,
at the point z = 1 are calculated recurrently as solutions of the following systems
of linear algebraic equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dmP(z)
dzm |z=1Q(1) = B(m)(1) −

m−1∑
l=0

Cl
m

dlP(z)
dzl |z=1Q

(m−l)(1),

dmP(z)
dzm |z=1Q

′(1)e = 1
m+1 [B(m+1)(1) −

m−1∑
l=0

Cl
m+1

dlP(z)
dzl |z=1Q

(m+1−l)(1)]e,

m ≥ 0,

The proof of the corollary is implemented by analogy with the proof presented
in [15].

5 Performance Measures. Optimization Problem

The list of performance measures of the system calculated using the results
obtained are presented below.

1. Throughput of the system (maximum rate of the input flow which can be
passed through the system)

� =
τμ1 + hμ2

τ + h
.

2. Probability that there are i customers in the system pi = pie, i ≥ 0.
3. Mean number of customers in the system

L =
j2∑
i=1

ipi +
dP(z)

dz
|z=1e.

4. Variance of the number of customers in the system

V =
j2∑
i=1

i2pi +
d2P(z)

dz2
|z=1e +

dP(z)
dz

|z=1e − L2.
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5. Probability that i customers stay in the system and the main server is fault
free

αi = pi

(
1
0

)
, i = 0, j1, αi = pi

⎛
⎝

1
0
0

⎞
⎠ , i = j1 + 1, j2, αi = pi

(
1
0

)
, i > j2.

6. Probability that i customers stay in the system, the main server is under
repair, and the backup server has not yet connected to the customers service

βi = pi

(
0
1

)
, i = 0, j1, βi = pi

⎛
⎝

0
1
0

⎞
⎠ , i = j1 + 1, j2.

7. Probability that i customers stay in the system, the main server is under
repair, and the backup server serves a customer

γi = pi

(
0
1

)
, i > j1.

8. Probability that the system is working in mode 0 (the main server is fault

free) P (0) =
∞∑
i=0

αi.

9. Probability that the system is working in mode 1 (the main server is under
repair, and the backup server has not yet connected to the customers service)

P (1) =
j2∑
i=0

βi.

10. Probability that the system is working in mode 2 (the main server is under

repair, and the backup server serves a customer) P (2) =
∞∑

i=j1+1

γi.

11. Mean number of switching from the mode 1 to mode 2 (from the mode 2 to
mode 1) per unit of time

χ = βj2λ = γj1+1μ2.

The optimization problem is formulated as the problem of choosing the opti-
mal thresholds j1, j2 that minimize the economic criterion of the quality of the
system operation of the form

E = aL + c1P
(2) + 2c2χ, (5)

where L is a mean number of customers in the system at an arbitrary time; a
is a penalty charged per unit of time for each customer that stay in the system;
P (2) is the average fraction of the time during which the main server is under
repair and the backup server serves customers; c1 is a unit cost of operation
time of the backup server, χ is the mean number of switching from one server
to another one per unit of time, c2 is a cost of one switch.



94 V. Klimenok et al.

Such a criterion is an average penalty per unit of time during the steady
state operation of the system.

Below we present two examples of numerical optimization. Our aim is to find
by direct search the optimal set of values of thresholds j1, j2 that provides the
minimum value to the cost criterion (5).

In the first example, we consider the following input data: the input rate
λ = 25, the service rates of the main server and the backup server are μ1 = 30
and μ2 = 20, respectively, the rate of breakdowns is h = 0.1, the repair rate
is τ = 1. Under these parameters the load coefficient ρ = 0.859375. The cost
coefficient are as follows: a = 1, c1 = 69, c2 = 8.5.

Fig. 1. Criterion E as a function of the thresholds j1 and j2

The dependence of the criterion E on the threshold values j1, j2 is shown in
Fig. 1. The criterion values for different threshold values are also given in Table 1.
From the figure and the table it can be seen that the least favorable situation
is achieved in two situations: when the thresholds are equal and high and when
the difference in the values of thresholds is high. The more favorable values of
thresholds, including the optimum values, lie in the region where the difference
0 < j2 − j1 ≤ 2. The maximum of the criterion E is reached at the point (0,1).
With j1 and j2 increasing the value of the criterion also increases. It should be
also noted that in the region j1, j2 ⊂ [0, 19] the relative gain from the use of
the optimal strategy (0,1) is 20% comparing with the use the most non-optimal
strategy (3,19).

In the second example, we consider the following input data: the input rate
λ = 7, the service rates of the main server and the backup server are μ1 = 30
and μ2 = 15, respectively, the rate of breakdowns is h = 0.1, the repair rate is
τ = 3. Under these parameters the load coefficient ρ = 0.24. The cost coefficient
are as follows: a = 1, c1 = 3, c2 = 5. The cost criterion as a function of the
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Table 1. Criterion E as a function of the thresholds j1 and j2

j1 j2 E

0 0 14,95780
0 1 14,35471
0 2 14,60754
0 3 14,76822
0 4 14,96300
0 5 15,16582
0 6 15,36542
0 7 15,55665
0 8 15,73745
0 9 15,90735
0 10 16,06683
0 11 16,21684
0 12 16,35859
0 13 16,49334
0 14 16,62238
0 15 16,74689
0 16 16,86798
0 17 16,98661
0 18 17,10362
0 19 17,21974
1 1 15,32200
1 2 14,76688
1 3 14,76776
1 4 14,90081
1 5 15,07784
1 6 15,26828
1 7 15,45904
1 8 15,64407
1 9 15,82070
1 10 15,98811
1 11 16,14644
1 12 16,29639
1 13 16,43895
1 14 16,57520
1 15 16,70627
1 16 16,83322
1 17 16,95702
1 18 17,07856
1 19 17,19860
2 2 15,60238
2 3 14,93421
2 4 14,89774

j1 j2 E

2 5 15,01159
2 6 15,17670
2 7 15,35916
2 8 15,54449
2 9 15,72600
2 10 15,90062
2 11 16,06723
2 12 16,22574
2 13 16,37667
2 14 16,52083
2 15 16,65918
2 16 16,79271
2 17 16,92239
2 18 17,04910
2 19 17,17366
3 3 15,81789
3 4 15,06800
3 5 15,00571
3 6 15,10695
3 7 15,26464
3 8 15,44245
3 9 15,62495
3 10 15,80498
3 11 15,97919
3 12 16,14626
3 13 16,30593
3 14 16,45858
3 15 16,60490
3 16 16,74576
3 17 16,88203
3 18 17,01462
3 19 17,21435
4 4 15,98385
4 5 15,17725
4 6 15,09818
4 7 15,19187
4 8 15,34556
4 9 15,52125
4 10 15,70287
4 11 15,88293
4 12 16,05791
4 13 16,22635

j1 j2 E

4 14 16,38788
j1 j2 E

4 15 16,54278
4 16 16,69165
4 17 16,83527
4 18 16,97446
4 19 17,11005
5 5 16,11257
5 6 15,26902
5 7 15,18019
5 8 15,27019
5 9 15,42248
5 10 15,59792
5 11 15,78009
5 12 15,96129
5 13 16,13790
5 14 16,30836
5 15 16,47224
5 16 16,62974
5 17 16,78139
5 18 16,92793
5 19 17,07011
6 6 16,21381
6 7 15,34886
6 8 15,25565
6 9 15,34489
6 10 15,49767
6 11 15,67426
6 12 15,85800
6 13 16,04113
6 14 16,21996
6 15 16,39289
6 16 16,55944
6 17 16,71975
6 18 16,87433
6 19 17,02385
7 7 16,29530
7 8 15,42105
7 9 15,32756
7 10 15,41820
7 11 15,57287
7 12 15,75159

j1 j2 E

7 13 15,93764
7 14 16,12324
7 15 16,30469
7 16 16,48037
7 17 16,64977
7 18 16,81301
7 19 16,97057
8 8 16,36308
8 9 15,48888
8 10 15,39819
8 11 15,49180
8 12 15,64936
8 13 15,83089
8 14 16,01973
8 15 16,20815
8 16 16,39247
8 17 16,57106
8 18 16,74341
8 19 16,90963
9 9 16,42185
9 10 15,55487
9 11 15,46925
9 12 15,56695
9 13 15,72807
9 14 15,91285
9 15 16,10480
9 16 16,29625
9 17 16,48357
9 18 16,66514
9 19 16,84046
10 10 16,47525
10 11 15,62089
10 12 15,54198
10 13 15,64455
10 14 15,80966
10 15 15,99797
10 16 16,19319
10 17 16,38777
10 18 16,57812
10 19 16,76267
11 11 16,52607
11 12 15,68835

j1 j2 E

11 13 15,61730
11 14 15,72523
11 15 15,89458
11 16 16,08656
11 17 16,28511
11 18 16,48283
11 19 16,67620
12 12 16,57641
12 13 15,75826
12 14 15,69584
12 15 15,80941
12 16 15,98312
12 17 16,17880
12 18 16,38068
12 19 16,58148
13 13 16,62784
13 14 15,83133
13 15 15,77802
13 16 15,89737
13 17 16,07545
13 18 16,27479
13 19 16,47991
14 14 16,68152
14 15 15,90806
14 16 15,86412
14 17 15,98925
14 18 16,17164
14 19 16,37453
15 15 16,73830
15 16 15,98876
15 17 15,95426
15 18 16,08510
15 19 16,27167
16 16 16,79875
16 17 16,07359
16 18 16,04849
16 19 16,18490
17 17 16,86325
17 18 16,16264
17 19 16,14680
18 18 16,93204
18 19 16,25589
19 19 17,00522
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threshold j1, j2 is shown in Fig. 2. In this example in the region j1, j2 ⊂ [0, 19]
the minimum value of the cost criterion E = 5.59596 is reached at the point
(0,2) and the maximum value E = 6.31951 is reached at the point (5.16). The
relative gain from the use of the optimal strategy (0,2) is 13% comparing with
the use the most non-optimal strategy (5,16).

Fig. 2. Criterion E as a function of the thresholds j1 and j2

6 Conclusion

In this paper, we consider an unreliable queueing system with high-speed unre-
liable main server and low speed reliable backup server. The backup server is
connected to the service of customers when the main server is not available due
to a breakdown. In order to save energy, a hysteresis strategy for connecting a
backup server is used. We described the system operation by two-dimensional
Markov chain, calculated the steady state distribution and the main performance
characteristics of the system. We introduced the cost function and presented the
example of numerical optimisation consisting in choosing the threshold values
minimizing the cost function. The results can be used for performance evalu-
ations and optimization of real world hybrid communication system consisting
the Free Space Optics channel and radio wave channel.
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The Laws of Conservation of Flows
in Acyclic Queueing Networks
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Abstract. In this paper we consider open acyclic queuing network with
few input flows, multi-server nodes and service discipline when a presence
of customers in a node leads to a work of some its server. Input flows are
Poisson and service times in all nodes have exponential distribution. It
is proved that in stationary regime input and output flows coincide by
their distributions. These results are based on generalization of Burke
theorem and on rearrangement of acyclic open network nodes into some
classes of nodes Jp, p = 1, . . . , s, so that transition of customer may be
only from node of class Jp to node of class Jp+1, p = 1, . . . , s− 1.

Keywords: Acyclic queuing network · Output flow · Law of
conservation

Introduction

In [1] we consider a single-server queuing system with several independent Pois-
son input streams and service discipline, in which the device is always busy, if the
system has any applications. It is proved that in the stationary regime the flows
leaving this system coincide in distribution with the input flows. This statement
can be considered as a kind of analogue of the law of conservation of flows. In
the present work, the aim is to generalize this conservation law for open acyclic
queueing network, the nodes of which are multi-server queuing systems.

This generalization of the law of conservation of flows is proposed to carry out
by mathematical induction along the length of the maximum path from the input
node of the acyclic graph to the remaining nodes [2]. With this factorization of
the nodes of an acyclic graph, the oriented edges connect only the nodes with
smaller factors to the nodes with larger factors.

Therefore, the implementation of the proposed research program of the law
of conservation of flow distributions consists of the following parts: (1) consider-
ation of a multi-server queuing system with several flows, (2) application of the
method of mathematical induction on the above factor.
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https://doi.org/10.1007/978-3-030-33388-1_9
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1 Output Flows in a Multi-server Queuing System

The system with one flow is described by a discrete Markov process characteriz-
ing the number of customers at the current time. To describe the Markov process
system with multiple flows and even the simplest discipline of service FIFO “first
come-first served” is required to characterize the entire queue, i.e, to specify to
which flows the customers in queue belong, and to arrange them by the time of
receipt.

As a result, the phase space of a discrete Markov process describing such a
system consists of vectors whose dimension coincides with the number of cus-
tomers in the system and therefore is not constant. Each component of this
vector is a number of the flow to which the customer in the system belongs.
This creates significant analytical and computational difficulties in the study
of Markov processes describing systems with multiple flows. Such description
in many ways resembles the construction of a piecewise linear Markov process
[3,4], which is used not in analytical calculations, but in numerical modelling of
queuing systems.

In this paper, we consider a multi-server queuing system with exponentially
distributed service times and intervals between the arrivals of customers from
several flows. It is proved that stationary output flows coincide in distribution
with independent Poisson input flows provided that the servers work if the sys-
tem has customers. Using the technique of [5], in which a jump of one of the
components of the Markov process described above corresponds to the exit from
the server to the next customer, we checked the condition of independence of
the number of customers of output flows at disjoint time intervals [6]. Closed
methods of customers flows analysis are used in [7–9] with different applications
to retrial queues [10–14], and systems with feedback [15,16].

However, to determine the intensities of the output flows it is required to
use the ergodicity theorem of the analysed Markov process [2]. To establish the
ergodicity of the Markov process describing the membership of the customers
in the system to different input flows, the stochastic monotonicity conditions
[17] and the ergodicity theorem for the regenerating process [18] are used. The
theorem of the ergodicity has allowed to establish the equality of the intensities
of the input and output flows without calculating marginal distributions.

2 Law of Conservation of Flow Intensities

Let m independent Poisson flows of intensity λk, k = 1, . . . , m, enter n – server
queuing system A(n,m). Customers of these flows are served on the system
servers with an intensity of μ so that if there is at least one customer in the
system, the servers work. Let’s denote xk(t) the number of customers k of the
input flow that came to the system in the time interval [0, t], xk(0) = 0. Define
yk(t) the number of customers that have been logged out in the time interval
[0, t], yk(0) = 0.



100 G. Tsitsiashvili and M. Osipova

Lemma 1. If the following condition is true

λ =
m∑

k=1

λk < nμ, (1)

then the convergence in probability is valid

yk(t)
t

→ λk, t → ∞, k = 1, . . . , m. (2)

Proof. The number of customers in the k - th input flow that are in the system
at the time t satisfies the equality

zk(t) ≡ xk(t) − yk(t), t ≥ 0. (3)

It is obvious that the number of customers in the flow z(t) =
m∑

k=1

zk(t) and so

zk(t) ≤ z(t), t ≥ 0, k = 1, . . . , m. (4)

Since the Markov process z(t) is ergodic, the convergence in probability is fair

z(t)
t

→ 0, t → ∞. (5)

Indeed, fix arbitrary ε > 0 and define zε so that

lim
t→∞ P (z(t) ≥ zε) < ε.

Then there exists tε > 0 so that for any t ≥ tε∣∣∣ lim
t→∞ P (z(t) ≥ zε) − P (z(t) ≥ zε)

∣∣∣ < ε,

and consequently for any t ≥ tε

P (z(t) ≥ zε) ≤ 2ε.

Using these inequalities we obtain for any t ≥ tε, t ≥ zε

2ε

2ε ≥ P

(
z(t)
t

≥ zε

t

)
≥ P

(
z(t)
t

≥ 2ε

)
.

So the convergence in probability (5) is proved.
From the relations (4), (5) the convergence in probability follows

zk(t)
t

→ 0, t → ∞, k = 1, . . . m. (6)

Since the random variable xk(t) has Poisson distribution with the parameter
λkt, it is easy to establish the convergence in probability

xk(t)
t

→ λk, t → ∞. (7)

From the formulas (3), (6), (7) we obtain the limit convergence in probability
(2). Thus, the intensity of the output flow consisting of customers of the input
flow k, coincides with the intensity of λk of the input low, k = 1, . . . , m.
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3 Construction of Markov Process Describing Queuing
System A(n,m)

Everywhere further we assume that in the queuing system A(n,m) with m inde-
pendent input Poisson flows of intensity λk, k = 1, . . . , m, the server operates
in the presence of at least one customer with the intensity μ.

Let us first describe the operation of the system A(1,m) by Markov process
Z(t) with states of the form

Z = (z, a1, . . . , az).

Here z is the number of customers in the system, a1, . . . , az is the sequence
of numbers of flows to which the customers in the system belong, ak ∈
{1, . . . , m}, k = 1, . . . , z.

Customers in the set a1, . . . , az are ordered by the sequence of their service
on the device: the first number on the device is the customer described by the
flow number a1, second number - the customer described by the flow number a2,
etc. After the end of the service the process Z(t) with intensity μ goes from the
state Z = (z, a1, . . . , az) to the state

Z ′ = (z − 1, a2, . . . , az). (8)

When a new customer enters the system from the flow with the number az+1,
the transition from the state Z to the state

Z ′′ = (z + 1, π(a1, . . . , az+1))

with the intensity λaz+1 , where π is a permutation of characters a1, . . . , az+1

(see Fig. 1). In such a transition, the order of service of the customers in it may
change depending on the discipline of service.

Fig. 1. Transition intensities of the process Z(t).

Thus, for the FIFO service discipline (first come - first served), the arrival of
a new customer from the flow with the number az+1 leads to the transition to
the state

Z ′′ = (z + 1, a1, . . . , az+1).

For the discipline of relative priority between flows the arrival of a new cus-
tomer from the flow with the number az+1 leads to the transition from the state
Z to the state Z ′′ of the following form:

Z ′′ = (z + 1, a1, . . . , ai, az+1, ai+1, . . . , az),
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where i > 1 is the maximum of numbers such that ai ≥ az+1. If for all i : 1 <
i ≤ z the inequality ai < az+1 is satisfied, then

Z ′′ = (z + 1, a1, az+1, a2, . . . , az). (9)

If in the system A(1,m) the absolute priority by flows is set then under the
same conditions instead of the ratio (9) the ratio is executed

Z ′′ = (z + 1, az+1, a1, a2, . . . , az).

Other service disciplines are possible also and, as a consequence, other ways
to set the state of Z ′′ by rearranging the components of the vector a1, . . . , az+1.

Remark 1. In the transition from system A(1,m) to system A(n,m) it is enough
to replace the formula (8) with

Z ′ = (z − 1, a1, . . . , ai−1, ai+1, . . . , az), 1 ≤ ai ≤ min(n, z).

This means that one of the customers on its servers leaves the system. The
intensity of the transition from the state Z to the state Z ′ remains the same and
is equal to the intensity of service μ.

4 Ergodicity of Markov Process Z(t) and Equality of
Distributions of Input and Output Stationary Flows

Since the task of Z ′, Z ′′ defines a random process Z(t) as Markov, an important
problem is to find out the conditions of ergodicity of this process and conse-
quently that it has a stationary distribution.

Lemma 2. If the condition is met that there is at least one customer in the
system A(n,m) and so one of the servers works, and the inequality (1) is fair,
then the Markov process Z(t) is ergodic.

Proof. The process z(t), t ≥ 0, describing the total number of customers in the
system A(n,m) at the time t, coincides with the process describing the total
number of customers in the system M |M |n|∞ with the Poisson input flow with
the intensity λ and the exponential distribution of service times with the intensity
μ. Therefore, the process z(t) is Markov and ergodic, moreover, the moments
T1, T2, . . . , of zeroing the process z(t) are the moments of its regeneration, i.e.
the pieces of a random process

{z(t), Tn < t ≤ Tn+1}, n = 1, 2, . . . ,

are independent and equally distributed. Then it follows from the condition of
this theorem that the average time between adjacent regeneration moments

M(Tn+1 − Tn) < ∞.
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However, the points T1, T2, . . . , are also regeneration points of the process Z(t).
Therefore, it follows from the ergodicity theorem for regenerating processes [18]
that the Markov process Z(t) is also ergodic and its stationary state is deter-
mined.

Theorem 1. Under the conditions of Lemma 2, the stationary output flows
coincide in distribution with the Poisson independent input flows.

Proof. Since output of a customer of the input flow k from the system corre-
sponds to the jump of the process Z(t) from the state Z : z > 0, a1 = k to
the state Z ′, then the intensity bk of the stationary output flow consisting of
customers of the input flow k, satisfies the equality

bk =
∑

Z: z>0, ai=k, 1≤i≤min(n,z)

μP (Z),

where P (Z) is the stationary distribution of the random process Z(t). Hence,
using a generalization of Burke’s theorem [1], we obtain that the stationary
output flow in the system A(n,m), consisting of customerss of the input flow
k, is Poisson with intensity λk. And since every point of the output flow in the
system A(n,m) with a probability

λk

∑m
i=1 λi

belongs to the k flow, all output flows are independent [19].

5 Invariance of Stationary Flows in Acyclic Open
Queuing Networks

Consider an open queuing network S with a finite number of nodes 1, . . . , N and
independent Poisson intensity input flows λ1

1, . . . , λ
m
1 (exiting node 1). Motion

of customers in the network S is determined by the route matrix

Θ = ||θi,j ||Ni,j=1

consisting of transition probabilities θi,j of the customer to node j after com-
pleting the service at node i. Moreover, θ1,i is the probability of the customer of
input flow to enter the service node i and θi,N is the probability of withdrawal
of the customer from the network after service at node i, 1 ≤ i < N. In node
k of network S there is nk of identical servers with exponential distribution of
service time of customers having parameter

μk, 0 < μk ≤ ∞, k = 2, . . . , N − 1.

We compare the transition probability matrix Θ with a directed graph G
with a set of nodes 1, . . . , N and a set of V edges (i, j), for which the transition
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Fig. 2. Acyclic open queuing network with N = 7.

probability θi,j > 0. Suppose that the matrix Θ is arranged in such a way that
the directed graph G is acyclic. Let’s call a certain open queueing network acyclic
(see Fig. 2).

Divide the set of nodes of the graph 1, . . . , N into disjoint subsets

J1, . . . , Js, J1 = {1}, Js = {N}
(here J1 is the node from which the customers come to the network, Js is the
node to which the customers come out of the network) so that any edge of the
graph S comes from the node jp of the class Jp to the node jq of the class
Jq, p < q.

Everywhere further we assume that in the graph G for any node i ∈ U
there exists a path from node 1 to node i. For each node i of the graph G we
determine the maximum path length li from node 1 to node i, l1 = 0. Matrix
of the maximums of the paths lengths may be determined by a modification of
the Floyd-Warshell [20, P. 1296] algorithm, which is commonly used to compute
the matrix of minimal paths lengths between nodes of a graph.

For constructive computation li, i = 2, . . . , N, we introduce the following
matrix D1 = ||d1i,j ||Ni,j=1 :

d1i,j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, i = j, i = 1, . . . , N,

∞, (i, j) /∈ V,

1, (i, j) ∈ V.

Thus for any pair of nodes that are not connected by an edge (by length one),
the value d1i,j is equal to infinity.

Let
Dk = ||dk

i,j ||Ni,j=1, k = 1, . . . , N,

where the value dk
i,j is infinite, if and only if the graph G has no path connecting

nodes i, j which in addition to nodes i, j can only pass through nodes 1, . . . , k.
If such paths exist, then the value of dk

i,j is equal to the maximum length of such
paths. It is easy to prove that the following theorem is true.

Theorem 2. Matrices Dk, k = 2, . . . , N, satisfy recurrent relations



The Laws of Conservation of Flows 105

dk
i,j =

⎧
⎨

⎩

max(dk−1
i,j , dk−1

i,k + dk−1
k,j ), if max(dk−1

i,j , dk−1
i,k + dk−1

k,j ) < ∞,

min(dk−1
i,j , dk−1

i,k + dk−1
k,j ), otherwise.

Moreover, the matrix DN = ||dN
i,j ||Ni,j=1 defines the maximum lengths of paths

between the vertices of the graph G, if such paths exist. In the absence of such
paths, the corresponding elements of the matrix are infinite.

Thus, the Theorem 2 can be used to calculate the maximum lengths of paths
from node 1 to nodes i = 2, . . . , N :

li = dN
1,i.

Let us now proceed to the classification of the nodes of the graph G. Define

Jl = {t : d1,t = l}.

Obviously, after this classification, any edge of the graph S goes from the vertex
jp of class Jp to the vertex jq of class Jq, p < q. The selection of node sets
J1, . . . , Js is illustrated in Fig. 3.

If p+1 < q, then you can enter intermediate dummy nodes in the graph G so
that the edges (jp, jq) pass through the dummy nodes. Then the flow of output
customers from the node jp to the node jq can be passed through the fictitious
nodes in which the servers in them process the customers instantly (see Fig. 4).

Fig. 3. Transformed acyclic open queuing network.

Denote Ĝ a graph (network) G overridden in this way. Put Ĵp, 1 ≤ p ≤ s,

sets of nodes of the graph Ĝ (see Fig. 5) and transition probabilities between
nodes of the graph Ĝ :

θ̂jp,jp+1 , jp ∈ Ĵp, jp+1 ∈ Ĵp+1, 1 ≤ p < s.

By induction of p it is possible to calculate the intensity of the input flows to
all nodes of the network. Let λjp be the total intensity of the input flow to the
node jp ∈ Ĵp, then

λjp+1 =
∑

jp∈ ̂Jp

λjp θ̂jp,jp+1 .
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Fig. 4. The transformed acyclic open network with dummy nodes.

Fig. 5. Flow passing through a transformed acyclic open network with dummy nodes.

Theorem 3. Let each node of the acyclic open queuing network Ĝ meet the
condition of ergodicity

λjp < njpμjp

and the discipline of servicing customers of flows 1, . . . , m in the network is such
that if in any node there is at least one customer then some of servers of this
node works. Then the steady-state output flows at individual nodes coincide in
distribution with their steady-state input flows.

Proof. The proof is based on the Theorem 1, on the induction of p for nodes
from the set Ĵp (see Fig. 5) and on the following approval. The union of two
independent Poisson flows of intensities a, b is a Poisson flow with the intensity
a + b. If each point of Poisson flow with the intensity a + b, regardless of the

other events with probability
a

a + b
goes to one flow, and with probability

b

a + b
goes to the other flow, then the resulting flows are independent and Poisson with
intensities a, b [19].

6 Conclusion

Considered in Fig. 5 the scheme corresponds to the so-called queuing network of
multiphase type [21]. In this network, we can assume that the flow of customers
of different types may have different transition probabilities between the nodes
of the network.
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Assume that the network S has the set of nodes {1, . . . , N} devided into
subsets J1 = {1}, J2, . . . , Js−1, Js = {N}. Poisson input flow consists of m
independent flows 1, . . . , m. For them the following transition probabilities are
defined: θk

jp,jp+1
, jp ∈ Jp, jp+1 ∈ Jp+1, k = 1, . . . , m. Then total intensity of

input flow of the node jp+1 ∈ Jp+1 is following

λjp+1 =
∑

jp∈Jp

m∑

k=1

λk
jpθ

k
jp,jp+1

and the intensity of the customers from input flow k are

λk
jp+1

=
∑

jp∈Jp

λk
jpθ

k
jp,jp+1

.

Then it is possible to rewrite conditions of ergodicity and laws of flows con-
servation for all nodes of the network. Also there are other generalizations of
queuing network of multiphase type that involve integrating of customers of
different flows in the separate units and which divide customers during their
passage through the nodes.

This paper is partially supported by Russian Fund for Basic Researches,
project 17-07-00177.
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Abstract. In this paper a Markovian queueing system supplied with
main and reserve unreliable service facility which we refer to as pools is
introduced. Usage of the reserve pool is controlled by a hysteretic pol-
icy that depends on upper and lower threshold levels of queue length
to increase and decrease the total service rate. The system is analysed
as a process of type quasi-birth-and-death (QBD), and expressions for
the stationary state probabilities are derived. For the cost structure we
evaluate the long-run average cost per unit of time and determine the
optimal hysteretic policy by implementing genetic algorithm. The sen-
sitivity analysis to study the effect of system parameters and threshold
levels on the average cost is provided by a number of numerical examples.

Keywords: Unreliable queueing system · Hysteretic policy ·
Quasi-birth-and-death process · Long-run average cost · Genetic
algorithm

1 Introduction

Hysteretic control policies are used in various types of queueing and reliability
models in which the available resources are to be optimally used to minimize
the average cost per unit of time. This paper addresses a Markovian queueing
system supplied with main and unreliable reserve service facilities, which are
hereafter referred to as server pools. The reserve pool is activated in accordance
with hysteretic control policy, whose underlying control principle can be easily
explained by the following real-world application: Consider a single cell of a
cellular (3GPP LTE) network with a Licence Shared Access (LSA) technology
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(for details see Gudkova et al. [4]), which assumes that the band can be used
when the owner does not need it, modelled as a queueing system. The main
cellular and LSA bands correspond to the main and the reserve server pools,
respectively. If the main pool is completely occupied by users, incoming service
requests must be transmitted to the waiting queue. When the number of requests
exceeds a certain upper threshold level a reserve LSA pool must be activated. If
the number of requests drops below the lower threshold level, the reserve pool
must be switched off. Since during service the reserve pool may be required by
the band’s owner, it is assumed to be unreliable. The central task is to find the
optimal value for upper and lower threshold levels to minimize the specified cost
function.

Numerous papers on queueing systems with controllable server activation
have been published. Among the most popular is a paper by Yadin and Naor
[10], who introduced the N -policy for turning the server on when the number
of customers in the system reaches a threshold level N and turning it off only
when the system becomes idle. This model was generalized by Wang [11] to
the case of a unreliable server and random start-up time. Lu and Serfozo [7]
presented a control policy for dynamic service rate choice based on hysteresis
(retardation) due to the switching costs. Use of such a policy is justified, as it
reduces the frequency of transitions between server on and off states, which in
turn reduces average cost. Ibe and Keilson [5] studied a multi-server queueing
system with hysteretic policy, achieving a stationary state distribution and mean
delay of customers in the system in closed form. The problem of finding a balance
between high system performance and low power consumption of the reserve
servers was addressed by Mitrani [8]. The author has proposed a deterministic
fluid approximation of the queueing process to derive some heuristics for the
optimal policy. To the best of our knowledge, the problem of optimizing the
switching rule for a multi-server queueing system with a multi-server reserve
pool subject to failure has not yet been analysed. This work seeks to fill this
gap, concentrating mostly on the evaluation of the optimal hysteretic policy.
The application of a multi-server queueing system to estimate the impact of the
LSA band unreliability to the LSA licensee within the busy period when some
interruptions are possible was proposed in [1].

Our performance analysis of the queueing system with a reserve unreliable
server pool includes the following contributions. We model the system as con-
trollable queueing system with a hysteretic control policy. It is shown that for a
fixed policy the Markov process belongs to a class of quasi-birth-and-death pro-
cesses with a large number of boundary states according to a two-level threshold
policy. We derive expressions for calculation the stationary state distribution and
the long-run average cost in explicit form as function of threshold levels. Since
a direct optimization of the average cost function over two discrete unknowns
by a simple enumerative technique seems to be computationally quite expen-
sive, we have proposed an alternative algorithm based on a genetic optimization
methodology.
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The rest of the paper is organized as follows: The mathematical model and
discussion of the control problem are given in Sect. 2. Section 3 presents the
algorithm for calculating the stationary state probabilities and evaluating the
average cost function. A sensitivity analysis of the average cost function are
presented in Sect. 4.

We use the notations e, 0 and I respectively for the column vector of 1’s, the
raw vector or the matrix of 0’s and the identity matrix with appropriate sizes.
The notation 1{A} specifies the indicator function, which takes the value 1 if the
event A holds, and 0 otherwise.

2 Mathematical Model

Consider a markovian queueing system with main and reserve server pools of
sizes k1 and k2, respectively. The total number of identical servers is fixed and
denoted by k = k1+k2. The requests arrive to the system in accordance to a Pois-
son process with parameter λ. The service times are exponentially distributed
with parameter μ. The main pool is absolutely reliable, whereas the reserve is
subject to failures that results in simultaneous failure of all servers in the pool.
The service at the reserve pool is assumed to be preemptive. This means that, if
there are no waiting customers at the moment of main pool service completion,
but some reserve pool servers are busy, those customers must be transmitted to
the empty servers of the main pool. In other words, the main pool servers must
be kept busy whenever there are more than k1 customers in the system. This
assumption is very important because it renders a separate description of the
state of the main server pool in the corresponding Markov chain unnecessary.
The lifetime of the reserve pool is exponentially distributed with parameter α.
In failure state the repair starts immediately and requires time exponentially
distributed with parameter β. The reserve pool can fail even if no customers are
present on some of its servers. Requests that cannot be serviced at the moment
of arrival form one unbounded queue. The customers whose service was inter-
rupted by failure of the reserve pool when all servers in the main pool were busy
go to the head of the queue.

The reserve pool is activated by a two-level threshold policy (hysteretic pol-
icy) defined as f = (q1, q2), 0 ≤ q2 < q1 < ∞. If the reserve pool is switched off
and the number of requests exceeds the level q1 ≥ k1, all k2 of the reserve pool
can be treated as activated. After activation, the reserve pool can be found in
an operational state with probability p and in a failure state with probability
1 − p. In the former case all k servers are available for service, whereas in the
latter case only k1 are available. If the reserve servers are in operational or fail-
ure mode and the number of requests decreases to level q2, they are switched
off as a group and are no longer observable. When all servers are on, the servers
of the reserve pool are indistinguishable from the servers of the main pool and
the system behaves like an M/M/k queueing system with unreliable servers.
After a failure the system becomes an M/M/k1 queueing system. When the
time between deactivation and the next activation of the reserve pool very long,
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the probability p can be set to be equal to β/(α + β), that is, to the probability
to be at a random epoch in state s = 1. The requests in a second pool whose
service was interrupted are transferred to the first pool, and occupy the servers
if they are available or go to the head of the queue otherwise.

The system state at time t for the fixed hysteresis control policy f = (q1, q2)
is described by a continuous-time Markov chain

{X(t)}t≥0 = {S(t), N(t)}t≥0

with a threshold-dependent state space

E =
{

x = (s, n) : s =

{
0, 0 ≤ n ≤ q1 − 1,

1, 2, n ≥ q2 + 1

}
,

where S(t) ∈ {0, 1, 2} stands for the states of the reserve pool at time t:

S(t) =

⎧⎪⎨
⎪⎩

0 if reserve pool is off;
1 if reserve pool is on and operational;
2 if reserve pool is on and failed.

N(t) ∈ N0 is the number of requests in the system. The transitions of the Markov
chain {X(t)}t≥0 are defined by a threshold-dependent infinitesimal matrix Λf =
[λf

xy]x,y∈E . The transition diagram for the given Markov process {X(t)}t≥0 is
illustrated in Fig. 1, where the service rates are denoted by μ1,n = min{n, k1}μ
and μ2,n = min{n, k}μ.

For the controllable model associated with a Markov process {X(t)}t≥0, we
define the following cost structure: c1 – the holding cost per unit of time for
each customer present in the system; c2 – the pool exploitation cost per unit of
time per server; c3, c4 – the fixed costs for turning the reserve pool on and off,
respectively. The immediate cost c(x) in state x ∈ E is then of the form

c(x) = c1n(x) + c2[k1 + k21{s(x)∈{1,2}}] + c3λ1{x=(0,q1−1)}
+ c4[μ2,q2+11{x=(1,q2+1)} + μ1,q2+11{x=(2,q2+1)}],

where s(x) and n(x) denote respectively the state of a reserve pool and the
number of customers in the system in state x ∈ E. For the given cost structure
the long-run average cost per unit of time for the fixed policy f can be written
as the gain

gf =
∑
x∈E

c(x)πf
x = c1L̄

f + c2C̄
f + c3λπf

(0,q1−1) (1)

+ c4

[
μ2,q2+1π

f
(1,q2+1) + μ1,q2+1π

f
(2,q2+1)

]
,

where
L̄f =

∑
x∈E

n(x)πf
x
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Fig. 1. Transition diagram of the Markov chain

is the mean number of requests in the system and

C̄f = k1 + k2
∑
x∈E

s(x)∈{1,2}

πf
x = k − k2

∑
x∈E

s(x)=0

πf
x

stands for the mean number of activated servers in the main and reserve pools.
These performance characteristics depend on the stationary state distribution,
which in turn depends on the threshold policy f = (q1, q2) specified above and on
the specific choice of k2. The main objective is to evaluate the optimal hysteretic
policy f∗ = (q∗

1 , q
∗
2) and the optimal number of servers k∗

2 at the reserve pool
such that

f∗ = arg min
f,k2

gf , (2)

where 0 ≤ k2 ≤ k −1, 0 ≤ q2 ≤ q1 −1, q1 ≥ max{q2 +1, k1}. The costs c3 and c4
have an impact on the average cost, but only if they take large values compared
to c1 and c2.

3 Stationary State Distribution and Average Cost
Function

The stationary state probability vector π = (πx : x ∈ E) for some fixed policy f
is a unique solution to πΛf = 0 and πe = 1. To simplify the notation, we omit
the upper index f . By πn = (π(1,n), π(2,n)), n ≥ q2 +1 we denote the sub-vectors
of stationary probabilities for level n. To describe the transitions within a set of
states {x = (n, s) : n ≥ q2 + 1, s ∈ {1, 2}}, we define the sub-matrices,

Q0,n = λI, Q1,n =
(−(λ + μ2,n + α) α

β −(λ + μ1,n + β)

)
,

Q2,n+1 =
(

μ2,n+1 0
0 μ1,n+1

)
,

which specify respectively the transitions from level n − 1 to n due to new
arrivals, the transitions for remaining to stay at a given level n, and the tran-
sitions upon service completion at level n + 1. The Markov process {X(t)}t≥0
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obviously belongs to the class of quasi-birth-and-death processes (QBD) with
a large number of boundary states. If the number of customers in the system
exceeds the level u = max{q1 + 1, k}, the corresponding transitions defined by
the matrices λI,Q1,u and Q2,u+1 = Q2,u form the homogeneous part of the QBD
process. It is well known (see, e.g., Neuts [9, Chapter 3]) that the stationary state
probability vector π exists if and only if

pλIe < pQ2,ue,

where p = (p1, p2) represents the invariant probability vector of the matrix
Q = λI + Q1,u + Q2,u. Solving the system pQ = 0 and pe = 1 easily yields the
stability condition of the queueing system under study in the form,

ρ̂ = ρ
α + β

k1α + kβ
< 1, where ρ =

λ

μ
. (3)

Theorem 1. Under the stability condition the stationary state probabilities can
be calculated by the following recursive solver:

π(0,n) =
ρn

n!
π(0,0), 0 ≤ n ≤ min{q2, k1}, (4)

π(0,n) =
( λ

k1μ

)n−k1 ρk1

k1!
π(0,0), k1 + 1 ≤ n ≤ q2, q2 > k1, (5)

π(0,n) =
τq1−1−n

τq1−1−q2

π(q2,0), q2 + 1 ≤ n ≤ q1 − 1, q2 ≤ q1 − 2, (6)

πn =
u∑

i=q1

Li

i−(n+1)∏
j=0

Mi−j−1π(0,q1−1), q2 + 1 ≤ n ≤ q1 − 1, q2 ≤ q1 − 2, (7)

πn =
u∑

i=n

Li

i−(n+1)∏
j=0

Mi−j−1π(0,q1−1), q1 ≤ n ≤ u, (8)

πn =πuRn−u, n ≥ u + 1, (9)

where τ0 = 1, τi = 1+ 1
ρ1,q1−1

τi−1, 1 ≤ i ≤ q1−q2−1, and the matrices Mi, q2+1 ≤
i ≤ u − 1, and Li, q1 ≤ i ≤ u, satisfy the recursive relations,

Mq2+1 = − Q2,q2+2Q
−1
1,q2+1, (10)

Mi = − Q2,i+1(Q1,i + λMi−1)−1, q2 + 2 ≤ i ≤ k − 1, q1 ≤ k − 2,

Lq1 = − λ(p, 1 − p)(Q1,q1 + λMq1−1)−1, q2 ≤ q1 − 2,

Lq1 = − λ(p, 1 − p)Q−1
1,q1

, q2 = q1 − 1,

Li = − λLi−1(Q1,i + λMi−1)−1, q1 + 1 ≤ i ≤ k − 1, q1 ≤ k − 2,

Lu = − λLu−1(Q1,u + λMu−1 + RQ2,u)−1.
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The probability π(0,0) is calculated from the normalizing condition

q1−1∑
n=0

π(0,n) +
u−1∑

n=q2+1

πne + πu(I − R)−1e = 1. (11)

The matrix R is the unique non-negative solution with spectral radius less than
one of the equation

R2Q2,u + RQ1,u + λI = 0. (12)

Proof. Under the stability condition we obtain the following results by solving
the equation πΛf = 0 with normalization condition: The stationary state prob-
abilities π(0,n) for 0 ≤ n ≤ q2 can obviously be expressed as functions of π(0,0)

in the same way as in the M/M/k1 queueing system, giving expressions (4) and
(5). For the states x = (0, n), q2+1 ≤ n ≤ q1−1, the system of balance equations
can be rewritten in the form

λπ(0,q1−1) + μ1,q2+1π(0,q2+1) = λπ(0,q2), (13)
λπ(0,q1−1) + μ1,q2+2π(0,q2+2) = λπ(0,q2+1),

. . .

λπ(0,q1−1) + μ1,q1−2π(0,q1−2) = λπ(0,q1−3),

λπ(0,q1−1) + μ1,q1−1π(0,q1−1) = λπ(0,q1−2).

The last system implies the relations

π(0,n) = τq1−1−nπ(0,q1−1), q2 ≤ n ≤ q1 − 2.

Equation (6) results from π(0,q2) = τq1−1−q2π(0,q1−1). For the sub-vectors πn, n ≥
q2 + 1, we obtain for q2 ≤ q1 − 2:

πq2+1Q1,q2+1 + πq2+2Q2,q2+2 = 0, (14)
λπn−1 + πnQ1,n + πn+1Q2,n+1 = 0, q2 + 2 ≤ n ≤ u, n �= q1,

λπq1−1 + πq1Q1,q1 + πq1+1Q2,q1+1 + λ(p, 1 − p)π(0,q1−1),

λπuRn−u−1 + πuRn−uQ1,u + πuRn−u+1Q2,u = 0, n ≥ u + 1.

Routine substitution in system (14) yields

πn = πn+1Mn, q2 + 1 ≤ n ≤ q1 − 1, (15)
πn = πn+1Mn + π(0,q1−1)Ln, q1 ≤ n ≤ u − 1,

πu = π(0,q1−1)Lu,

πn = πuRn−u, n ≥ u + 1.

Solving these recursive relations, we obtain (7)–(9). Since all probabilities can be
expressed as functions of π0,0, it is evaluated by means of a normalizing condition
(11).
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Remark 1. The matrix R can be evaluated in closed form by solving (12) given
the relation RQ2,ue = λIe. The resulting formulas are very complex, but an
algorithm of successive substitution can be used instead:

R0 = 0, Rn+1 = −λQ−1
1,u − R2

nQ2,uQ−1
1,u, n ≥ 0, (16)

until e′(R2
n+1Q2,u +Rn+1Q1,u +λI)e ≤ ε. The sequence {Rn} is monotonic and

converges to R.

Corollary 1. The mean performance measures needed for calculating the gain
g are given by

L̄ =
q1−1∑
n=0

nπ(n,0) +
u−1∑

n=q2+1

nπne + π(0,q1−1)Lu(uI − (u − 1)R)(I − R)−2e,

C̄ = k1 + k2

∞∑
n=q2+1

πne = k − k2

q1−1∑
n=0

π(n,0). (17)

According to the average cost function defined in (1), it is a hard task to eval-
uate analytically the optimal values {k∗

2 , f
∗ = (q∗

1 , q
∗
2)} due to highly non-linear

structure and recursive elements in the expression. A direct search method using
a simple enumeration of possible values {k2, q1, q2} requires enormous CPU time
and can therefore not be applied for numerical tests of the sensitivity analysis.
This problem can be solved by a dynamic programming approach, although this
has some limitations associated with the necessity to truncate the queue length,
which in turn can influence the optimal policy and the value of the average cost
function especially in heavy-traffic cases, when ρ̂ ≈ 1. Other algorithms can be
used to minimize the function gf , such as the Tabu search algorithm (Glover
and Laguna [2]) and particle swarm optimization (see Kennedy and Eberhart
[6]). To minimize the function g, we implemented a genetic algorithm (GA, see
e.g. Goldberg [3]), which requires reasonable evaluation time and belongs to the
class of non-traditional search and optimization techniques.

The main idea of the GA consists of a random realization of the initial pop-
ulation of solutions and subsequent trials to improve the solution through a
number of new generations. Each individual solution has an impact on the next
generation. A selection of individuals for crossover and mutation is used to create
the next population of solutions. The performance of the solution in the opti-
mization problem is evaluated by a so-called fitness function, which in our case
coincides with the function g. Below we give a short description of the algorithm
implemented for our optimization problem. Recall that the task is to minimize
the function

gf := g(k2, q1, q2), 0 ≤ k2 ≤ k − 1, 0 ≤ q2 ≤ q1 − 1, q1 ≥ max{q2 + 1, k1}.

To transform the minimization into a maximization problem, we define a fitness
function

y(k2, q1, q2) = 200 − g(k2, q1, q2).
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In the GA, the values of the three unknown variables x1 = k2, x2 = q1 and
x3 = q2 must be represented as a bit string (chromosome) with three segments.
The bit length lj of a segment j for an accuracy up to 10−4 is calculated by

2lj < (bj − aj) · 104 < 2lj − 1,

where xj ∈ [aj , bj ].

Algorithm 1 (Genetic algorithm)
Input: λ,μ,α, β, total number of servers k = 20, population size np = 20, gen-
eration number ng = 200, crossover rate pc = 0.25, mutation rate pm = 0.01,
bit length of a variable lj = 18, j = 1, 2, 3. Generate randomly np bit strings. Set
n = 0.
Step 1: Evaluate for the k-th generated bit string the corresponding real value
x
(k)
j ,

x
(k)
j = aj + N

(k)
j

bj − aj

2lj − 1
, j = 1, 2, 3, (18)

where Nj is a decimal number encoded within the k-th bit string.
Step 2: If n < ng, then generate a new population by selecting the best strings as
parents according to the roulette wheel, terminate the loop otherwise. This step
consists of the following operations:

2a: Evaluate the general compliance population function,

F =
np∑

k=1

y(x(k)
1 , x

(k)
2 , x

(k)
3 ) − min

j=1,...,np

y(x(j)
1 , x

(j)
2 , x

(j)
3 ).

2b: Evaluate the choice probability pk of each bit string,

pk =
y(x(k)

1 , x
(k)
2 , x

(k)
3 ) − min

j=1,...,np

y(x(j)
1 , x

(j)
2 , x

(j)
3 )

F
, k = 1, 2, . . . , np.

2c: Evaluate the aggregate probability qk for each bit string,

qk =
k∑

j=1

pj , k = 1, 2, . . . , np.

2d: Generate a random value r ∈ [0, 1]. If r ≤ q1, then the first chromosome
must be selected; otherwise, select a chromosome k, 1 ≤ k ≤ np, such that
qk−1 < r ≤ qk.

Step 3: Select from the population the candidates with probability pc. Perform
a double-point crossover between two parents, exchanging a part of a bit string
between the randomly selected crossover points.
Step 4: Perform a mutation of each bit in the population with probability pm.
Step 5. Evaluate new bit strings as chromosomes of a new population. Set n =
n + 1, and go to Step 2.
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Fig. 2. The function g given optimal q∗
2 versus q1 for various values of k2
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Fig. 3. The function g given optimal q∗
1 versus q2 for various values of k2

4 Numerical Examples

The genetic algorithm was coded using Mathematica 11. The computation time
for each optimization run is about 20–40 s, depending on the parameter selection.
The numerical examples presented in this section were calculated for a queueing
system with a total number of servers k = 20. The following system parameter
values were chosen:

λ = 10, μ = 1, α = 0.01, β = 0.1, p = 0.9, c1 = 2, c2 = 4, c3 = c4 = 0. (19)

Figure 2 illustrates the sensitivity of the cost function given an optimal value q∗
2

for varying q1 and k2. The figure shows that the optimal number q1 of customers
needed for activation of the reserve pool increases with increasing k2. For smaller
values of k2, the function g increases more gently after reaching the optimal value
then for larger values k2. Hence, the overestimation of q1 has a relatively small
impact on the average cost increase, if the number of servers in the reserve pool
is considerably smaller than that in the main pool.

Figure 3 plots the cost function given an optimal value q∗
1 for varying values

of q2 and k2. It can be seen from this figure that the optimal number q2 for
deactivating the reserve pool decreases with increasing k2. In the case of small
values k2, the function g yields a significantly flatter curve after reaching its
optimal value.

In Fig. 4, we show the dependence of the function g under the optimal pol-
icy f∗ = (q∗

1 , q
∗
2) on the parameter k2 for various values of λ (Fig. 4a) and μ
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(Fig. 4b). Other parameters take the values from (19). We observe that the opti-
mal number of reserve pool servers k2 increases with decreasing values of λ and
with increasing values of μ. Hence, in the case of light traffic (i.e. ρ̂ � 1), the
service capacity of the reserve pool, should be higher than in a heavy traffic case
(ρ̂ ≈ 1). This can be explained by the choice of pool exploitation cost, which is
twice as high as the holding cost. The differences between the curves for average
costs and varying arrival and service rates become ,more distinct with increasing
k2, since the increase in the reserve pool’s service capacity leads to higher pool
exploitation costs.

Figure 5 plots the average cost g under the optimal policy f∗ = (q∗
1 , q

∗
2) for

various values α (Fig. 5a) and β (Fig. 5b). We observe that for large α and small
β, g rapidly increases with increasing k2 after reaching the point at k2 = 10.
Further, the functions g for different values of α and β coincide when k ≤ 10.
The optimal value k2 is insensitive to changes of α and β under the optimal policy
f∗ = (q∗

1 , q
∗
2). We observe that usage of the reserve pool under the optimal policy

outperforms the system in which all k = k1 = 20 reliable servers are permanently
in use. Reduction of the pool exploitation cost reduces the cost advantage of the
controllable model compared to the non-controllable equivalent model.



120 D. Efrosinin et al.

5 Conclusions

We have analysed an M/M/k queueing system with k1 main pool servers and
k2 reserve pool servers, where k = k1 + k2. The mechanism for activating and
consuming reserve service capacity was characterised by hysteretic control pol-
icy f = (q1, q2) which prescribes the increase/decrease in service rate depending
on two queue threshold levels q1 and q2. For the given control policy, the corre-
sponding Markov process belongs to the class of quasi-birth-and-death processes.
A matrix-analytic approach was used to obtain the stationary state probabilities
and to derive an average cost per unit of time as a function of threshold levels
and costs. Rather than a direct search method, we employed a genetic optimiza-
tion algorithm to minimize the average cost function. Numerical analyses showed
that the insensitivity of the optimal number k2 to changes in failure and repair
rates under the optimal policy.
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Abstract. A queueing system with two Poisson input flows, infinite
capacity queues, and a single server is studied. If the first queue is empty
at the service time termination of the second queue, the server makes the
loop by prolongation of the service time for the second queue by the same
amount until the first queue is entered by a customer. Otherwise, a cyclic
switching is used. We employ the fact that during certain intervals the
second queue is described by a random walk stopped at a random time.
In result the queueing system is modeled by a multidimensional discrete
Markov chain, the server state and queues’ lengths its elements. A nec-
essary condition for the stationary probability distribution existence is
found.

Keywords: Conflicting queueing system · Loop control algorithm ·
Stopped random walk · Stationary probability distribution · Necessary
condition

1 Introduction

In queueing systems with several conflicting input flows different control algo-
rithms are used. Some control algorithms allow for a relatively easy study of
conditions for the stationary probability distribution existence of the modelling
stochastic process, e.g. cyclic algorithms. On the contrary, control algorithms
relying on system state dependent switching of the server can lead to analyti-
cally intractable models [1–4]. Stability analysis of queueing systems like these
is complicated by varying server regimes.

Consider a queueing system with two input flows controlled by an algo-
rithm with a loop (a d-limited polling system [5–7] with two stations and state-
dependent switching as will be described below). Assume that the server spends
a fixed (nonrandom) amount of time at each queue in turn. If the first queue is
empty when the server finishes its service time at the second queue, the server
prolongates the service time for the second queue by the same amount of time
(this prolongation can be drawn as a loop on a server state-switching graph).
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Prolongations take place until a customer arrives to the first queue. After service
of the first queue no prolongation is possible. In other words, the first queue has
a higher priority.

A control algorithm of this kind can be used for traffic control at intersections
governed by traffic-light signals as well as for automated microchip production
machines. Depending on the inputs intensities, the typical behaviour of such a
system is more like that of a purely cyclic system (in a heavy load case), or
an M/G/1/∞ batch system (the case of light first flow), or a mixture of the
two. In turn, the mixture coefficients depend on all system parameters in quite
a complicated way.

A natural mathematical model for the queuing system is an embedded denu-
merable Markov chain describing the server state and queue lengths. The focus
of the present paper is on the stability conditions, i.e. conditions under which a
stationary probability distribution exists for a stochastic process describing the
queueing system. Stability conditions for polling systems with state-dependent
routing were obtained using different methods [8–11]. They don’t seem to be
directly applicable to the present queuing system. In the present paper we con-
sider another embedded process, such that the server state changes at every
observation instant. This can be done at cost of skipping a random number of
steps in the original Markov chain. In Sect. 2 we define the model precisely and
find transition probabilities for the embedded chain by solving a purely abstract
problem about a stopped random walk. Then in Sect. 3 we explore a representa-
tion of a multi-queue system governed by the loop algorithm as a cyclic algorithm
with random durations of server states and apply the method from [3].

2 The Problem Statement and the Stochastic Model

Consider a queueing system with two conflicting Poisson inputs Π1, Π2. The
intensity of Πj is λj , j = 1, 2. Customers from Πj join a queue Oj of unlimited
capacity. A server has two states, Γ (1) and Γ (2). Only customers from Oj get
serviced in the state Γ (j). The server spends a constant time Tj in the state Γ (j).
When this time elapses, the server instantly switches to the state Γ (2) if j = 1,
but if j = 2 then Γ (1) becomes the new server state only when the queue O1 is
non-empty, otherwise a new time slot in the state Γ (2) takes place. The server
loops in Γ (2) until new arrivals from Π1. Epochs of these T1- and T2-time endings
will be called the control epochs, and denoted τi, i = 0, 1, . . . . To define the
service process we use the notion of a saturation flow [12]. Instead of specifying
probability distribution functions for service time of a single customer in every
queue we set the large number of customers who can be served during the server
sojourn in its state. The reader may assume that the actual service times can
have different distributions and even be dependent as long as the total amounts
of serviced customers per a server visit. In the state Γ (j) the saturation flow Πsat

j

holds �j > 0 customers during the time Tj , and the other saturation flow Πsat
r ,

r �= j, holds no customers.
An example of a real-life queueing situation satisfying the above assumptions

is an intersection with state-dependent traffic light switching. If yellow light



Study of a Service Process by a Loop Algorithm 123

signals (when cars may pass) can be adjoined to green light signals, and if a
lower-priority direction can be let through only when there are no vehicles in a
perpendicular high-priority direction, then our assumptions are fulfilled.

We will consider a stochastic sequence

{(Γi, κ1,i, κ2,i); i = 0, 1, . . .} (1)

on a probability space (Ω,F,P), where Γ0 ∈ {Γ (1), Γ (2)} is the initial server
state at time τ0 = 0, Γi ∈ {Γ (1), Γ (2)} is the server state during the time slot
(τi−1, τi], κj,i is the number in Oj at time τi, i = 1, 2, . . . , dependence on
the elementary outcome ω implied but omitted in notation, as usual. We have
functional relations

Γi+1 = Γ (1), κ1,i+1 = max{0, κ1,i + η1,i − �1}, κ2,i+1 = κ2,i + η2,i,

on the set {ω : Γi = Γ (2), κ1,i > 0}, ηj,i possessing a Poisson probability distri-
bution with parameter λjT1, j = 1, 2, and we have

κ1,i+1 = κ1,i + η1,i, κ2,i+1 = max{0, κ2,i + η2,i − �2}, Γi+1 = Γ (2),

on the set {ω : Γi = Γ (1)} ∪ {ω : Γi = Γ (2), κ1,i = 0}, ηj,i having a Poisson
probability distribution with parameter λjT2, j = 1, 2. In effect, sequence (1) is
a homogeneous irreducible Markov chain.

Let S′ = {Γ (1), Γ (2)} × {0, 1, . . .} × {0, 1, . . .} be the state space of the pro-
cess (1), put S0 = {(Γ (2), 0, x2);x2 = 0, 1, . . .}. Introduce stopping moments

θ0 = 0, θi+1 = min{k : k > θi, (Γk, κ1,k, κ2,k) �∈ S0}.

Set Γ̂i = Γθi
, κ̂j,i = κj,θi

, i = 0, 1, . . . . The new sequence

{(Γ̂i, κ̂1,i, κ̂2,i); i = 0, 1, . . .} (2)

is another Markov chain. To find its transition probabilities, let us note that one
has θi+1 = θi + 1 on a set

{ω : Γ̂i = Γ (2), κ̂1,i > 0} ∪ {ω : Γ̂i = Γ (1), κ̂1,i > 0},

while on a set
{ω : Γ̂i = Γ (1), κ̂1,i = 0}

the number of prolongations is νi+1 = θi+1 − θi, geometrical random variable
taking on value k = 1, 2, . . . with probability (1 − p)pk−1, p = e−λ1T2 . Also
on the set {ω : Γ̂i = Γ (1), κ̂1,i = 0, κ̂2,i = x2} quantities κ2,θi

, κ2,θi+1, . . . ,
κ2,θi+1 behave as the number in an M/G/1/∞ queue with batch service and
initial queue length κ̂2,i, and κ̂2,i+1 is the number at the stopping time νi+1.
To employ this observation, let us introduce auxiliary i.i.d. Poisson variables η′

i,
i = 1, 2, . . . with parameter λ2T2, and variables

κ′
0 = b, κ′

i+1 = max{0, κ′
i + η′

i − �2}.
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Further, let us introduce a family of probability generating functions (|z| � 1,
k = 0, 1, . . . ):

Φk(z, b) = E(zκ′
k), Φ(p, z; b) =

∞∑

k=0

pkΦk(z; b), qj(z; t) = exp{λjt(z − 1)}.

Then, in law,

E(zκ̂1,i+1
1 z

κ̂2,i+1
2 | {ω : Γ̂i = Γ (1), κ̂1,i = 0, κ̂2,i = x2})

=
∞∑

k=1

(e−λ1T2)k−1
( ∞∑

b=1

zb
1

(λ1T2)b)
b!

e−λ1T2

)
Φk(z2;x2)

= (eλ1T2z1 − 1)(Φ(p, z2;x2) − zx2
2 ). (3)

We claim the following:

Lemma 1. Let βj = βj(p), j = 1, 2, . . . , �2, be the (distinct) zeroes of an
equation

z�2 − pq2(z;T2) = 0

lying inside a unit disk |z| < 1. Then

Φ(p, z; b) =
(z − β1) × . . . × (z − β�2)

z�2 − pq2(z;T2)

(
1

(1 − β1) × . . . × (1 − β�2)

+
�2∑

j=1

(βj)�2−1

∏
s �=j

(βj − βs)

(
zb+1 − (βj)b+1

z − βj
− 1 − (βj)b+1

1 − βj

))
. (4)

Proof. Conditioning on κ′
i gives

E
(
zκ′

k+1
)

= z−�2q2(z;T2)E
(
zκ′

k
)

+
�2−1∑

x=0

P({ω : κ′
k = x})

�2−1−x∑

w=0

ϕ2(w;T2)(1 − zx+w−�2). (5)

Recalling the definition of Φk+1(z; b) and Φk(z; b), by multiplying (5) by pk+1

and then summing up for k = 0, 1, . . . one gets
∞∑

k=0

pk+1Φk+1(z; b) = z−�2q2(z;T2)p
∞∑

k=0

pkΦk(z; b)

+ p

�2−1∑

x=0

( ∞∑

k=0

pkP({ω : κ′
k = x})

) �2−x∑

w=0

ϕ2(w;T2)(1 − zx+w−�2).

Since E(zκ′
0) = zb, one finally has

(z�2 − pq2(z;T2))Φ(p, z; b) = zb+�2 + p

�2−1∑

x=0

Φ̂(p; b, x)
�2−x∑

w=0

ϕ2(w;T2)(z�2 − zx+w).
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By virtue of Rouché’s theorem, an equation z�2 − pq2(z;T2) = 0 has exactly �2
zeros βj = βj(p), j = 1, 2, . . . , �2 in the open unit disk |z| < 1. Positions of the
zeros don’t depend on the initial value κ′

0 = b. The numbers β1, β2,. . . , β�2 are
all distinct. Indeed, βj is the unique zero of

z = (ζ�2)
jp1/�2eλ2T2(z−1)/�2 ,

lying in the unit circle, where ζ�2 is the �2th primitive root of unity. Let us
consider a factorization

(z�2 − pq2(z;T2)) = (z − β1)(z − β2) × . . . × (z − β�2)

× z�2 − pq2(z;T2)
(z − β1)(z − β2) × . . . × (z − β�2)

= ue(z; p)ui(z; p).

The function

ui(z; p) =
z�2 − pq2(z;T2)

(z − β1)(z − β2) × . . . × (z − β�2)

is analytic in the open unit disk |z| < 1, continuous up to the boundary, and
non-vanishing. So,

Φ(p, z; b) =
1

ui(z; p)
·
zb+�2 + p

�2−1∑
x=0

Φ̂(p; b, x)
�2−1−x∑

w=0
ϕ2(w;T2)(z�2 − zx+w)

ue(z; p)
.

In the numerator we have a polynomial of degree �2 + b in the variable z, at
the same time the numbers β1, β2, . . . , β�2 should be among its zeros. In other
words, one has

zb+�2 + p

�2−1∑

x=0

Φ̂(p; b, x)
�2−1−x∑

w=0

ϕ2(w;T2)(z�2 − zx+w)

= (zb + A1(p)zb−1 + . . . + Ab−1(p)z + Ab(p) + Â(p))
×(z − β1)(z − β2) × . . . × (z − β�2) (6)

with some yet undefined coefficients A1(p), . . . , Ab(p). are independent of the
unknown Ψ̂x(p), x = 0, 1, . . . , �2 − 1. Interestingly, they are exactly the coeffi-
cients obtained after division of a monomial z�2+b by (z − β1)(z − β2) × . . . ×
(z − β�2). In particular, they are the symmetric polynomials

A1(p) = β1 + β2 + . . . + β�2 ,

A2(p) = β2
1 + β2

2 + . . . + β2
�2 + β1β2 + β1β2 + . . . + β�2−1β�2 ,

. . . ,

Aj(p) =
∑

k1+...+k�2=j
k1�0,...,k�2�0

(β1)k1 × . . . × (β�2)
k�2 , j = 1, 2, . . . , b.
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Considering the partial fractions decomposition of a generating function∑∞
j=1 tjAj(p) we quickly prove a concise (fixed-length) formula

Aj(p) =
(β1)j+�2−1

(β1 − β2) × . . . × (β1 − β�2)

+
(β2)j+�2−1

(β2 − β1) × . . . × (β2 − β�2)
+

(β�2)
j+�2−1

(β�2 − β1) × . . . × (β�2−1 − β�2)
.

In particular, for j = 0 we have A0(p) = 1. Now let us find the unknown Â(p).
We put z = 1 into both sides of equality (6). We have an equation

1 = (1 − β1) × . . . × (1 − β�2)(1 + A1(p) + . . . + Ab(p) + Â(p)).

Hence,

Â(p) = (1 − β1)−1 × . . . × (1 − β�2)
−1 − 1 − A1(p) − . . . − Ab(p).

Then,

A0(p)(zb − 1) + A1(p)(zb−1 − 1) + . . . + Ab−1(p)(z − 1)

+
(
(1 − β1) × . . . × (1 − β�2)

)−1 =
1

(1 − β1) × . . . × (1 − β�2)

+
�2∑

j=1

(βj)�2−1

∏
s �=j

(βj − βs)

(
zb+1 − (βj)b+1

z − βj
− 1 − (βj)b+1

1 − βj

)
.

This proves the lemma. ��
Lemma 1 is an extension of known facts firstly because as a rule only the

case b = 0 is studied in the majority of researches. Secondly, they were more
interested in the limit of (1 − p)Φ(p, z; b) as p → 1 as it gives the stationary
probability distribution for the random walk.

Let Qi(r;x1, x2) = P({ω : Γ̂i = Γ (r), κ̂1,i = x1, κ̂2,i = x2}),

Ψi(z1, z2; r) =
∞∑

x1=1

∞∑

x2=0

zx1
1 zx2

2 Qi(r;x1, x2), r = 1, 2.

Lemma 2. One has (p = e−λ1T2)

Ψi+1(z1, z2; 1) +
∞∑

x2=0

Qi+1(1; 0, x2)zx2
2

= q2(z2;T1)
�1−1∑

x1=1

∞∑

x2=0

Qi(2;x1, x2)zx2
2

�1−1−x1∑

b=0

ϕ1(b;T1)(1 − zx1+b−�1
1 )

+ z−�1
1 q1(z1;T1)q2(z2;T1)Ψi(z1, z2; 2), (7)
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Ψi+1(z1, z2; 2) = q1(z1;T2)z−�2
2 q2(z2;T2)Ψi(z1, z2; 1)

+
∞∑

x1=1

�2−1∑

x2=0

Qi(1;x1, x2)zx1
1 q1(z1;T2)

�2−1−x2∑

b=0

ϕ2(b;T2)(1 − zx2+b−�2
2 )

+ (p−1q1(z1;T2) − 1)
∞∑

x2=0

Qi(1; 0, x2)zx2
2

(
z−x2
2 Φ(p, z2;x2) − 1

)
. (8)

Proof. Since

Ψi+1(z1, z2; 1) +
∞∑

x2=0

Qi+1(1; 0, x2)zx2
2 = E

[
z

κ̂1,i+1
1 z

κ̂2,i+1
2 I({ω : Γ̂i+1 = Γ (1)})

]
,

by conditioning on Γ̂i, κ̂1,i, and κ̂2,i, one gets:

Ψi+1(z1, z2; 1) +
∞∑

x2=0

Qi+1(1; 0, x2)zx2
2 =

∞∑

x1=1

∞∑

x2=0

Qi(2;x1, x2)

×E(z
max{0, x1+η1,θi

−�1}
1 z

x2+η2,θi
2 | {ω : Γ̂i = Γ (2), κ̂1,i = x1, κ̂2,i = x2})

=
∞∑

x1=1

∞∑

x2=0

Qi(2;x1, x2)zx2
2 q2(z2;T1)

×
(
E(z

x1+η1,θi
−�1

1 | {ω : Γ̂i = Γ (2), κ̂1,i = x1, κ̂2,i = x2})

+E
(
z
max{0, x1+η1,θi

−�1}
1 − z

x1+η1,θi
−�1

1 |{ω : Γ̂i = Γ (2), κ̂1,i = x1, κ̂2,i = x2}
))

,

which leads to (7).
Now let us prove equality (8). We have νi+1 = 1 on the set {ω : Γ̂i =

Γ (1), κ̂1,i = x1, κ̂2,i = x2}, x1 > 0. Thus

Ψi+1(z1, z2; 2) = E
[
z

κ̂1,i+1
1 z

κ̂2,i+1
2 I({ω : Γ̂i+1 = Γ (2)})

]

=
( ∞∑

x1=1

∞∑

x2=0

Qi(1;x1, x2)

×E(z
x1+η1,θi
1 z

max{0,x2+η2,θi
−�2}

2 | {ω : Γ̂i = Γ (1), κ̂1,i = x1, κ̂2,i = x2})
)

+
∞∑

x2=0

Qi(1; 0, x2)E(zκ̂1,i+1
1 z

κ̂2,i+1
2 | {ω : Γi = Γ (2), κ1,i = 0, κ2,i = x2}).
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The sum in parentheses is
∞∑

x1=1

∞∑

x2=0

Qi(1, x1, x2)zx1
1 q1(z1;T2)

×
(
E(z

x2+η2,θi
−�2

2 | {Γ̂i = Γ (1), κ̂1,i = x1, κ̂2,i = x2})

+E(z
max{0,x2+η2,θi

−�2}
2 − z

x2+η2,θi
−�2

2 | {ω : Γ̂i = Γ (1), κ̂1,i = x1, κ̂2,i = x2})
)

= q1(z1;T2)z−�2
2 q2(z2;T2)Ψi(z1, z2; 1)

+
∞∑

x1=1

�2−1∑

x2=0

Qi(1, x1, x2)zx1
1 q1(z1;T2)

�2−1−x2∑

b=0

ϕ2(b;T2)(1 − zx2+b−�2
2 ).

The second sum is transformed using formulae (3), (4) to prove (8). ��

3 Some Stationarity Conditions

Under the assumptions above, a sequence

{(Γ̂i, κ̂1,i); i = 0, 1, . . . } (9)

is also an irreducible periodic Markov chain. Let us set,

Q1,i(r, x) = P({ω : Γ̂i = Γ (r), κ̂1,i = x}),

Ψ1,i(z; 1) =
∞∑

x=0

Q1,i(r, x)zx, Ψ1,i(z; 2) =
∞∑

x=1

Q1,i(2, x)zx, |z| � 1.

The notations for a stationary probability distribution resemble this one but
omit i and (i + 1) in the subscripts.
Theorem 1. For the existence of a stationary probability distribution of the
Markov chain (9) it is necessary and sufficient that λ1(T1 + T2) − �1 < 0.

Proof. Substitution z1 = z, z2 = 1 into recurrence relations (7), (8) produces

Ψ1,i+1(z; 1) = z−�1q1(z;T1)Ψ1,i(z; 2)

+
�1−1∑

x=1

Q1,i(2, x)
�1−1−x∑

b=0

(λ1T1)b

b!
e−λ1T1(1 − zx+b−�1), (10)

Ψ1,i+1(z; 2) = q1(z;T2)Ψ1,i(z; 1) + Q1,i(1, 0)e−λ1T2
q1(z;T2) − 1
1 − e−λ1T2

. (11)

If a stationary probability distribution exists, the corresponding probability gen-
erating functions must satisfy equations

Ψ1(z; 1) = z−�1q1(z;T1)Ψ1(z; 2)

+
�1−1∑

x=1

Q1(2, x)
�1−1−x∑

b=0

(λ1T1)b

b!
e−λ1T1(1 − zx+b−�1), (12)

Ψ1(z; 2) = q1(z;T2)Ψ1(z; 1) + Q1(1, 0)e−λ1T2
q1(z;T2) − 1
1 − e−λ1T2

. (13)
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It’s trivial to see that Ψ1(1; 1) = Ψ1(1; 2) = 1/2. Substituting Taylor expansions
in the left neighborhood of z = 1

z−�1q1(z;T1) = 1 + (λ1T1 − �1)(z − 1) + o(z − 1),
q1(z;T2) = 1 + λ1T2(z − 1) + o(z − 1),

1 − zx+b−�1 = (�1 − x − b)(z − 1) + o(z − 1)

into (12), (13), summing up the two equations, combining similar terms, and
sending z → 1 from the left we get in effect

�1−1∑

x=1

Q1(2, x)
�1−1−x∑

b=0

(λ1T1)b

b!
e−λ1T1(�1 − x − b)

+Q1(1, 0)e−λ1T2
λ1T2

1 − e−λ1T2
=

�1 − λ1(T1 + T2)
2

. (14)

Now, assumption �1 � λ1(T1 +T2) leads to an impossible conclusion that all the
stationary probabilities Q1(1, 0), Q1(2, b), b = 2, 3, . . . , �1 − 1 are non-positive.

To prove that the inequality λ1(T1 + T2) − �1 < 0 is sufficient for the exis-
tence of the stationary probability distribution, assume the converse, that given
this inequality no stationary probabilities exist. Then it’s easy to prove that
a sequence of mathematical expectations {Eκ̂1,i; i = 0, 1, . . .} grows to infinity
independently of the initial probability distribution. But we plan to demonstrate
that these mathematical expectations are bounded uniformly in i = 0, 1, . . . .
Indeed, recurrence relations (10), (11) extend the probability generating func-
tions in analytic way into a disk {z : |z| < 1 + ε} for some ε > 0. We can select
a real z1, 1 < z1 < 1 + ε and define a real-valued sequence

Ψ+
0 = Ψ1,0 (z1; 1), Ψ+

1 = Ψ1,1(z1; 1),

Ψ+
i+1 = z−�1

1 q1(z1;T1)q1(z;T2)Ψ+
i + z−�1

1 q1(z1;T1)e−λ1T2
q1(z1;T2) − 1
1 − e−λ1T2

+
�1−1∑

x=1

�1−1−x∑

b=0

(λ1T1)b

b!
e−λ1T1(1 − zx+b−�1

1 ), i = 0, 1, . . .

Since the derivative

d

dz

(
z−�1
1 q1(z1;T1)q1(z;T2)

)∣∣∣
z=1

= λ1(T1 + T2) − �1

is negative by assumption, the sequence {Ψ+
i ; i = 0, 1, . . .} converges, hence it’s

bounded. At the same time the sequence dominates {Ψ1,i(z1; 1); i = 0, 1, . . .},
i.e. Ψ1,i(z1; 1) � Ψ+

i for all i = 0, 1, . . . . It follows then that both the sequence
{Ψ1,i(z1; 1); i = 0, 1, . . .} and the sequence {Ψ1,i(z1; 2); i = 0, 1, . . .} are bounded,
and the above-mentioned mathematical expectations get bounded due to the
Chauchy’s integral formula. The contradiction proves that a stationary proba-
bility distribution exists.
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Theorem 2. Let α1 = 1, α2, . . . , αl1 be the (distinct) zeroes of the equation

z�1 − q1(z;T1 + T2) = 0

lying in the unit disk |z| � 1. Then the stationary probabilities Q1(1, 0), Q1(2, b),
b = 2, 3, . . . , �1 − 1 are the solution to the linear algebraic system

�1−1∑

x=1

Q1(2, x)
�1−1−x∑

b=0

(λ1T1)b

b!
e−λ1T1(α�1

w − αx+b
w )

+Q1(1, 0)e−λ1T2 · eλ1(T1+T2)(αw−1) − eλ1T1(αw−1)

1 − e−λ1T2
= 0, w = 2, 3, . . . , �1,(15)

�1−1∑

x=1

Q1(2, x)
�1−1−x∑

b=0

(λ1T1)b

b!
e−λ1T1(�1 − x − b)

+Q1(1, 0)e−λ1T2
λ1T2

1 − e−λ1T2
=

�1 − λ1(T1 + T2)
2

. (16)

Proof. Stationary Eqs. (12), (13) in matrix form can be written as
(

z�1 −q1(z;T1)
−q1(z;T2) 1

)
·
(

Ψ1(z; 1)
Ψ1(z; 2)

)

=

⎛

⎜⎜⎝

�1−1∑
x=1

Q1(2, x)
�1−1−x∑

b=0

(λ1T1)b

b!
e−λ1T1(z�1 − zx+b)

Q1(1, 0)e−λ1T2
q1(z;T2) − 1
1 − e−λ1T2

⎞

⎟⎟⎠ .

Let’s multiply the above equation from left by the conjugate matrix
(

1 q1(z;T1)
q1(z;T2) z�1

)
.

We get (back in scalar form)

(
z�1 − q1(z;T1 + T2)

)
Ψ1(z; 1) = Q1(1, 0)e−λ1T2q1(z;T1)

q1(z;T2) − 1
1 − e−λ1T2

+
�1−1∑

x=1

Q1(2, x)
�1−1−x∑

b=0

(λ1T1)b

b!
e−λ1T1(z�1 − zx+b)

and

(z�1 − q1(z;T1 + T2))Ψ1(z; 2) = Q1(1, 0)e−λ1T2z�1
q1(z;T2) − 1
1 − e−λ1T2

+ q1(z;T2)
�1−1∑

x=1

Q1(2, x)
�1−1−x∑

b=0

(λ1T1)b

b!
e−λ1T1(z�1 − zx+b).
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By virtue of Rouché’s theorem, an equation z�1 − q1(z;T1 + T2) = 0 has exactly
�1 zero in a disk |z| � 1. Indeed, one has

|q1(z;T1 + T2)| =
∣∣exp{λ1(T1 + T2)(z − 1)}∣∣ � 1 = |z�1 | for |z| = 1.

We shall call them z1 = 1, z2, . . . , z�1 . They should also zero out the right-hand
sides of the two equations above. So, we have (�1−1) equations like (15). Finally,
Eq. (16) is the same as (14). ��

Equations (15), (16) are linear in the unknown stationary probabilities, but
involve quantities (the zeros α2, . . . , α�1) which can’t be written in a simple form
in terms of the system’s parameters. But they can be determined numerically
to any desired accuracy. Then the stationary probability generating functions
Ψ1(z; 1) and Ψ1(z; 2) will have only numerical parameters. It’s worth noting that
the stability condition for the first queue coincides with the stability condition
for a purely cyclic service algorithm.

Theorem 3. Let �2 = 1 or 2. For the existence of the stationary probability
distribution of the Markov chain (2) it is necessary that

1
2
(λ2(T1 + T2) − �2) +

p

1 − p
(λ2T2 − �1)Q1(1, 0) < 0. (17)

Proof. Let’s assume that the stationary probability distribution for the Markov
chain (2) exists. Selecting it in place of the initial probability distribution we
guarantee that the probability generating functions are independent of i. Sub-
stitution z1 = 1 into recurrence relations of Lemma 2 yields

Ψ(1, z2; 1) +
∞∑

x2=0

Q(1; 0, x2)zx2
2 = q2(z2;T1)Ψ(1, z2; 2), (18)

Ψ(1, z2; 2) = z−�2
2 q2(z2;T2)Ψ(1, z2; 1)

+
∞∑

x1=1

�2−1∑

x2=0

Q(1;x1, x2)
�2−1−x2∑

b=0

ϕ2(b;T2)(1 − zx2+b−�2
2 )

+ (p−1 − 1)
∞∑

x2=0

Q(1; 0, x2)zx2
2

(
z−x2
2 Φ(p, z2;x2) − 1

)
. (19)

To proceed we need to calculate the derivative of Φ(p, z2;x2) w.r.t z2 at
z2 = 1. From Equality (5) we get, after some trivial transformations:

dΦ

dz2
(p, 1;x2) =

1
1 − p

( 1
1 − β1

+ . . . +
1

1 − β�2

)
− �2 − pλ2T2

(1 − p)2

+
1

1 − p

(
x2

�2∑

j=1

(βj)�2−1
∏

s �=j

1 − βs

βj − βs
−

�2∑

j=1

(βj)�2 − (βj)�2+x2

1 − βj

∏

s �=j

1 − βs

βj − βs

)
.
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Lagrange’s interpolation formula justifies identities

�2∑

j=1

(βj)�2−1
∏

s �=j

1 − βs

βj − βs
= 1

and

1
1 − β1

+ . . . +
1

1 − β�2

−
�2∑

j=1

(βj)�2

1 − βj

∏

s �=j

1 − βs

βj − βs
= �2.

Then the derivative equals

1
1 − p

( 1
1 − β1

+ . . . +
1

1 − β�2

)
− �2 − pλ2T2

(1 − p)2

+
1

1 − p

(
x2 + �2 − 1

1 − β1
− . . . − 1

1 − β�2

+
�2∑

j=1

(βj)�2+x2

1 − βj

∏

s �=j

1 − βs

βj − βs

)

= −�2 − pλ2T2

(1 − p)2
+

1
1 − p

(
x2 + �2 +

�2∑

j=1

(βj)�2+x2

1 − βj

∏

s �=j

1 − βs

βj − βs

)
.

With the last formula the following expansions hold:

q2(z2;T1) = 1 + λ2T1(z2 − 1) + o(z2 − 1),
z−�2
2 q2(z2;T2) = 1 + (λ2T2 − �2)(z2 − 1) + o(z2 − 1),

(p−1 − 1)(z−x2
2 Φ(p, z2;x2) − 1) = (p−1 − 1)

[
(1 − p)−1 − 1

]

+ (z2 − 1)(p−1 − 1)
(
−x2(1 − p)−1 +

dΦ

dz2
(p, 1;x2)

)
+ o(z2 − 1)

= 1 + (z2 − 1)

(
λ2T2 − �2
(1 − p)

+
1
p

�2∑

j=1

(βj)�2+x2

1 − βj

∏

s �=j

1 − βs

βj − βs

)
+ o(z2 − 1),

Let us add (18), (19) and use the above expansions:

Ψ(1, z2; 1) +
∞∑

x2=0

Q(1; 0, x2)zx2
2 + Ψ(1, z2; 2) = (1 + λ2T1(z2 − 1) + o(z2 − 1))

×Ψ(1, z2; 2) + (1 + (λ2T2 − �2)(z2 − 1) + o(z2 − 1))Ψ(1, z2; 1)

+
∞∑

x1=1

�2−1∑

x2=0

Q(1;x1, x2)
�2−1−x2∑

b=0

ϕ2(b;T2)((�2 − x2 − b)(z2 − 1) + o(z2 − 1)

+
∞∑

x2=0

Q(1; 0, x2)zx2
2

(
1 + (z2 − 1)

(λ2T2 − �2
(1 − p)

+
1
p

�2∑

j=1

(βj)�2+x2

1 − βj

∏

s �=j

1 − βs

βj − βs

)

+o(z2 − 1)
)
.
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Then after combining similar terms, dividing by (z2 − 1), and sending z2 → 1
(z2 < 1) we obtain

0 = λ2T1Ψ(1, 1; 2) + (λ2T2 − �2)Ψ(1, 1; 1)

+
∞∑

x1=1

�2−1∑

x2=0

Q(1;x1, x2)
�2−1−x2∑

b=0

ϕ2(b;T2)(�2 − x2 − b)

+
∞∑

x2=0

Q(1; 0, x2)
(λ2T2 − �2

(1 − p)
+

1
p

�2∑

j=1

(βj)�2+x2

1 − βj

∏

s �=j

1 − βs

βj − βs

)
. (20)

On the other hand, from formula (18) we get whence

Ψ(1, 1; 1) +
∞∑

x2=0

Q(1; 0, x2) = Ψ(1, 1; 2) =
1
2
.

If we put these values into (20) we get

0 =
1
2
(λ2(T1 + T2) − �2) +

∞∑

x1=1

�2−1∑

x2=0

Q(1;x1, x2)
�2−1−x2∑

b=0

ϕ2(b;T2)(�2 − x2 − b)

+
∞∑

x2=0

Q(1; 0, x2)
(

λ2T2 − �2
(1 − p)

+
1
p

�2∑

j=1

(βj)�2+x2

1 − βj

∏

s �=j

1 − βs

βj − βs
− (λ2T2 − �2)

)
.

In result,

0 =
1
2
(λ2(T1 + T2) − �2) +

p

1 − p
(λ2T2 − �2)Q1(1, 0)

+
∞∑

x1=1

�2−1∑

x2=0

Q(1;x1, x2)
�2−1−x2∑

b=0

ϕ2(b;T2)(�2 − x2 − b)

+
∞∑

x2=0

Q(1; 0, x2)
1
p

�2∑

j=1

(βj)�2+x2

1 − βj

∏

s �=j

1 − βs

βj − βs
. (21)

It follows from the definition of β1, β2, . . . , β�2 that two at most are real, while
the others make pairs of complex conjugates. Then the value

�2∑

j=1

(βj)�2+x2

1 − βj

∏

s �=j

1 − βs

βj − βs
(22)

coincides with its complex conjugate, so it’s real. Up to this time we have a proof
it’s positive when �2 = 1 or 2. If �2 = 1, the unique root β1 is positive and less
than unity, thus β1+x2

1 (1 − β1)−1 > 0.
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Let’s assume now that �2 = 2. There are two real solutions, 0 < −β2 < β1 <
1. The sum of interest equals

β2+x2
1

1 − β1
· 1 − β2

β1 − β2
+

β2+x2
2

1 − β2
· 1 − β1

β2 − β1

=
1 − β2

(1 − β1)(β1 − β2)

(
β2+x2
1 − β2+x2

2

(1 − β1)2

(1 − β2)2
)

> 0.

An assumption that Inequality (17) is false leads to a nonsense conclusion that
all stationary probabilities in (21) are null or negative. Hence, Inequality (17) is
necessary for the existence of a stationary probability distribution of the Markov
chain (2). ��

Theorems 1–3 characterize the stability regime of the queueing system with
loop algorithm in a form suitable for numerical verification. We have to remark
that the stationary probability Q1(1, 0) occurring in the necessary stationarity
condition for the Markov chain (2) is also a stationary probability of the state
(Γ (1), 0) of the Markov chain (9). Its presence in (17) comes from the fact that
the first queue, O1, can be stable on its own, independently of the second queue,
and then it ‘modulates’ the second input flow, Π2, by controlling the service tact
durations (i.e., whether it loops or not). Figure 1 depicts the set of pairs (λ1, λ2)
for which the condition in Theorem 2 is fulfilled.

Fig. 1. A stationary probability distribution existence domain for T1 = 10, T2 = 15,
�1 = �2 = 20 (shaded)

Obviously, the assumption that �2 = 1 or 2 plays role only in the last step of
the proof. Actually, we computationally verified positivity of the quantities (22)
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even for larger integer values of the parameter �2. Also, in our Monte-Carlo sim-
ulations we saw that the inequalities from Theorems 1 and 3 provided stability
to the both queues.

4 Conclusion

The queueing system under study gives an example where the stationarity con-
ditions have an essentially non-linear form in terms of input parameters such as
input intensities. Still, the method for analysis of two conflicting Poisson queues
governed by a cyclic algorithm with prolongations which is demonstrated in this
paper allows to obtain such conditions. A possible issue when generalizing the
method is the necessity to obtain and analyze explicit formulas like (4) and (22).
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Abstract. The article proposes the method for investigating the het-
erogeneous queuing system of MMPP (2,ν)|GI2|∞ type with resource
splitting and parallel service. Each customer is characterized by a ran-
dom total capacity which is independent of the service time. Based on
the asymptotic analysis, it is possible to deduce the expressions for char-
acteristic function of the process of the total amount of resource in two-
service unit system. The mathematical models of this type could be of
great interest in terms of application in telecommunication, for example,
for modeling wireless network, enhancing the existing and designing new
ones.

Keywords: Markov modulated Poisson process · Infinite server ·
Paired requests

1 Introduction

The development of 4G mobile broadband technology has contributed to a rapid
growth in wireless network traffic. It has affected the Quality of Service (QoS)
and resulted in the network capacity crunch.

Today, multiplexing is regarded as a major solution to increase spatial reuse
and, consequently, to meet ever-growing traffic demand in 5th Generation (5G)
wireless systems [1].

At the same time, resource sharing in wireless network depends on the ade-
quate management of information flows. Multiplexing of two or more hetero-
geneous networks, for example, combination of traditional LTE operating in
licensed spectrum and machine-to-machine traffic operating in new unlicensed
spectrum of narrow band internet of things (NB-IoT), could increase reliability
and intelligence of decision-taking systems. The analysis of sources, recommen-
dations, and standards of such international organizations as 3GPP, IEEE, ETSI
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has revealed that there is a need for end-to-end models which would adequately
describe the peculiarities of access control methods and resource redundancy in
5G networks. To enhance the efficiency of redundancy mechanism, it is required
to develop new models and methods to analyze the efficiency of heterogeneous
broadband wireless networks.

The issues of sharing telecommunication system resources were for the first
time addressed by Kleinrock in the work on shared-memory packet switches [2].
The methods of research were further developed by scientific schools of Basharin
and Zhozhikashvili. The peculiarity of the models was a multiplicativity of the
stationary distribution. Then, such models were investigated with regard to the
satellite communication systems. At the same time, some scholars achieved the
results in the study of exponential homogenous and heterogeneous queuing net-
works, with their models sharing the same peculiarity. The key findings on math-
ematical models for sharing channel resources were obtained by Kelly, and later
Ross [3–6]. It is possible to assume that their works triggered the research in
resource sharing for multiservice networks of the next 3G and 4G generations.
Among the studies on network resource sharing in case of two types of traffic,
the works by Bousset and Beylot are worth noting [7].

In the second half of the 20th century, Romm and Skitovich for the first
time proposed the generalization of the Erlang problem in terms of the resource
system models. According to this generalization, each customer entering the
queue possesses a certain information property termed as capacity. Denial of
service occurs when capacity of the arriving customer exceeds the difference
between the queuing network capacity and the number of customers being served
at the moment of a new customer arrival.

Tikhonenko [8,9] together with the colleagues significantly contributed to the
development of the research methods for resource queuing network. He consid-
ered the queuing systems of random capacity as a class of systems character-
ized by a certain capacity and service time which is dependent or independent
of the number of customers. Samuilov uses the queuing networks with limited
resources as models of wireless communication networks of the next genera-
tion [10,11]. Almost all research works mentioned above investigate the models
which are referred to so-called Markovian models (input flow is the simplest
and service time follows the exponential distribution). At the same time, as
described in [12], in order to model modern flows of information transmission, it
is required to apply non-Poisson models: MAP-flow (Markovian Arrival Process)
or MMPP-flow (Markov Modulated Poisson Process). To investigate the models
in terms of the mentioned flow types, simulation modeling, matrix and numerical
methods are used. The analytical results have been obtained only for peculiar
cases. The present article investigates the characteristics of queuing systems with
random customer capacities in the wireless network with splitting requests [13–
15]. Unlike the well-known models, the considered ones would allow engineers
to estimate the required volume of redundant resources for traffic operating on
the internet of things and develop the strategy to allocate resources in case of
competing traffic.
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2 Statement of the Problem

2.1 Mathematical Model

Consider the queueing system with two service units of two different types
contains of unlimited number of servers (Fig. 1). Each customer carries a ran-
dom capacity of some resource. Customers arrive in the system according to
Markov Modulated Poisson Process (MMPP), which is governer by Markov chain
k(t) = 1, ...,K, which determined by the matrix of infinitesimal characteristics Q
and matrix of conditional intensities Λ = diag[λ1, ..., λK ]. At the time of occur-
rence of the event in the arriving flow each customer splits, the customer entering
the queue splits, so that there are two customers in the system. Each customer
goes to a free server in the first and second service units, where the service
is performed during a random time with distribution function Bi (x) , i = 1, 2
corresponding to the type of unit.

Let each customer requires some random capacity νi > 0, i = 1, 2 with dis-
tribution function Gi (y) , i = 1, 2.

The total capacity of each customer on each service unit in the system at
time t is described as {ν1(t), ν2(t)}. The problem of exploring of two-dimensional
stochastic process {V1(t), V2(t)} is set, where

Vj =
∞∑

i=1

ν
(j)
i , j = 1, 2.

MMPP (2,ν)

V1(t)

V2(t)

B1(x)

B2(x

Fig. 1. Heterogeneous queue MMPP (2,v)|G(2,v)|∞ with random customers capacities

This process is not Markovian, therefore, we use the dynamic screening
method to investigate it (Fig. 2).

We assume the system is empty at the moment t0, and let us fix some arbi-
trary moment T in the future. Si(t) denotes the probability that a customer
arriving at time t will be served in the system within the moment T on i-type of
service unit, Si(t) = 1−Bi (T − t) , i = 1, 2, for t0 ≤ t ≤ T . The total capacity of
arrivals screened before the moment t is described by w1(t), w2(t). As shown in
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Fig. 2. Screening of customers arrivals

[7], the probability distribution of the capacity of the customer in the system at
the moment T equals to the probability distribution of the capacity of screened
arrivals on the axis:

P{V1(T ) < w1, V2(T ) < w2} = P{w1(T ) < w1, w2(T ) < w2}.

2.2 Kolmogorov Differential Equations

Let us consider the process {k(t), w1(t), w2(t)}, where k(t) is state of Markov
chain and describe it by

P (k,w1, w2, t) = P {k(t) = k,w1 (t) < w1, w2 (t) < w2} .

According to the formula of the total probability we deduce the equation

P (k,w1, w2, t + Δt) = (1 − λkΔt)(1 − qνkΔt)P (k,w1, w2, t)

+ λkΔt
[
S1(t)(1 − S2(t))

∫ w1

0

P (k,w1 − y1, w2, t)dG1(y1)

+ (1 − S1(t))S2(t)
∫ w2

0

P (k,w1, w2 − y2, t)dG2(y2)

+ S1(t)S2(t)
∫ w1

0

∫ w2

0

P (k,w1 − y1, w2 − y2, t)dG1(y1)dG2(y2)

+ (1 − S1(t))(1 − S2(t))P (k,w1, w2, t)
]

+
∑

ν �=k

qνkP (ν, w1, w2, t) + o(Δt)
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Regarding two-dimensional Markovian process, the following system of Kol-
mogorov differential equations is written:

∂P (k,w1, w2, t)
∂t

= −λk(S1(t) + S2(t) − S1(t)S2(t))P (k,w1, w2, t))

+λk

[
S1(t)(1 − S2(t))

∫ w1

0

P (k,w1 − y1, w2, t)dG1(y1)

+S2(t)(1 − S1(t))
∫ w2

0

P (k,w1, w2 − y2, t)dG2(y2)

+S1(t)S2(t)
∫ w1

0

∫ w2

0

P (k,w1 − y1, w2 − y2, t)dG1(y1)dG2(y2)
]

+
∑

v

qvkP (k, v1, v2, t)

(1)

with initial condition

P (k,w1, w2, t0) =

{
1, w1 = w2 = 0,
0, otherwise.

We introduce the characteristic function

h(k, u1, u2, t) =
∫ ∞

0

eju1w1

∫ ∞

0

eju2w2P (k, dw1, dw2, t),

where j =
√−1 is the imaginary unit. Then we can rewrite system (1)

∂h(k, u1, u2, t)
∂t

= λkh(k, u1, u2, t)[S1(t)(G∗
1(u1) − 1) + S2(t)(G∗

2(u2) − 1)

+S1(t)S2(t)(G∗
1(u1) − 1)(G∗

2(u2) − 1)] +
∑

v

qvkh(ν, u1, u2, t).
(2)

Let us write vector-matrix equation

∂h(u1, u2, t)
∂t

= h(u1, u2, t)[Λ(S1(t)(G∗
1(u1) − 1) + S2(t)(G∗

2(u2) − 1)

+S1(t)S2(t)(G∗
1(u1) − 1)(G∗

2(u2) − 1)) + Q].
(3)

with initial condition
h(u1, u2, t0) = r, (4)

where

h(u1, u2, t) = {h(1, u1, u2, t), h(2, u1, u2, t), . . . , h(K,u1, u2, t)}
and r = [r(1), r(2), ..., r(K)] stands for the stationary distribution of the under-
lying Markov chain. Vector r satisfies the following linear system

{
rQ = 0,
re = 1.

(5)
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3 Asymptotic Analysis Method

In general the exact solution of Eqs. (3), (4) is not available, but it may be found
under asymptotic conditions. In this work we consider the system under the
condition of parallel infinitely growing service time.

3.1 First-Order Asymptotic Analysis

Let us denote the mean service time in each unit as

bi =
∫ ∞

0

(1 − Bi(x)dx, i = 1, 2,

then the asymptotic condition is bi → ∞.
We formulate and prove the following statement.

Theorem 1. The first-order asymptotic characteristic function of the probabil-
ity distribution of the process w1(t), w2(t) has the form

h(1)(u1, u2, t) = r exp
{

jκ1

2∑

i=1

uiai

∫ t

t0

S(τ)dτ
}

,

where κ1 = rΛe and ai =
∫ ∞
0

yidGi(yi), i = 1, 2 is the mean customer capacity.

Proof. By performing the substitutions

b1 =
1
ε
, b2 =

1
qε

, tε = τ, t0ε = τ0,

S1(t) = S̄1(τ), S2(t) = S̄2(τ), u1 = εx1, u2 = εx2,

h(u1, u2, t) = F1(x1, x2, τ, ε)

(6)

in Eqs. (3), (4), we obtain

ε
∂F1(x1, x2, τ, ε)

∂τ
= F1(x1, x2, τ, ε)

[
ΛS̄1(τ)

( ∫ ∞

0

ejεx1y1dG1 − 1
)

+S̄2(τ)
( ∫ ∞

0

ejεx2y2dG2 − 1
)

+S̄1(τ)S̄2(τ)
(
1 −

∫ ∞

0

ejεx1y1dG1 −
∫ ∞

0

ejεx2y2dG1

+
∫ ∞

0

ejεx1y1dG1

∫ ∞

0

ejεx2y2dG2

)
+ Q

]

(7)

with initial condition
F1(x1, x2, τ0, ε) = r (8)

We find solution of problems (7), (8) F1(x1, x2, τ) = lim
ε→0

F1(x1, x2, τ, ε) in
two steps.
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Step 1. We consider Eqs. (7), (8) in limit ε → 0, and taking into account
decomposition ejεxiyi = 1 + jεxiyi + o(ε2), we obtain

F1(x1, x2, τ)Q = 0 (9)

Taking into account (5), we can conclude that F1(x1, x2, τ) can be expressed
as

F1(x1, x2, τ) = rΦ(x1, x2, τ), (10)

where Φ(x1, x2, τ) is some scalar function which satisfies the condition

Φ(x1, x2, τ0) = 1. (11)

Step 2. Let us substitute (10) into (7) and multiply by vector e, taking into
account system (5) and κ1 = rΛe

ε∂Φ(x1,x2,τ)
∂τ = κ1Φ(x1, x2, τ)[S̄1(τ)jεx1a1

+S̄2(τ)jεx2a2 + S̄1(τ)S̄2(τ)j2ε2x1x2a1a2] + o(ε2).
(12)

Then let us divide the result by ε and perform the asymptotic transition
ε → 0. We obtain the following differential equation for Φ(x1, x2, τ)

∂Φ(x1, x2, τ)
∂τ

= κ1jΦ(x1, x2, τ)[S̄1(τ)x1a1 + S̄2(τ)x2a2].

The solution of problems (11), (12)

Φ(x1, x2, τ) = exp
{

κ1j

2∑

i=1

xiai

∫ τ

−∞
S̄i(ξ)dξ

}
.

Substituting this expression into (10), we obtain

F1(x1, x2, τ) = r exp
{

κ1j

2∑

i=1

xiai

∫ τ

−∞
S̄i(ξ)dξ

}
.

Therefore, we can write

h(u1, u2, τ) = F1(x1, x2, τ, ε) ≈ F1(x1, x2, τ) = r exp
{

κ1j
2∑

i=1

xiai

∫ τ

−∞
S̄i(ξ)dξ

}

= r exp
{

κ1j

2∑

i=1

uiai

∫ t

t0

S̄i(ξ)dξ
}

Thus, the proof is complete.
We set t = T t0 = −∞, then we can write for two-dimensional process

{V1, V2}

h(u1, u2) = M
{

ej(u1w1+u2w2)
}

= h(u1, u2, T )e = exp
{

κ1j
2∑

i=1

uiaibi

}
,

where
bi =

∫ ∞

0

(1 − Bi(x))dx, i = 1, 2.
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3.2 Second-Order Asymptotic Analysis

The main result is the following theorem.

Theorem 2. The second-order asymptotic characteristic function of the proba-
bility distribution of the process w1(t), w2(t) has the form

h(2)(u1, u2, t) = r exp
{

jκ1

2∑

i=1

uiai

∫ t

t0

Si(τ)dτ

+
(ju1)

2

2

[
κ1a1

(2)

∫ t

t0

S1(τ)dτ + 2κ2a1
(2)

∫ t

t0

S2
2(τ)dτ

]

+
(ju1)

2

2

[
κ1a2

∫ t

t0

S1(τ)dτ + 2κ2a2
(2)

∫ t

t0

S2
2(τ)dτ

]

+ ju1ju2

[
κ1a1a2

∫ t

t0

S1(τ)S2(τ)dτ + 2κ2

∫ t

t0

S1(τ)S2(τ)dτ
]}

,

where κ2 = f2Λe, a
(2)
i =

∫ ∞
0

yi
2dGi(yi), i = 1, 2 and the row vector f2 satisfies

the linear matrix system
{

f2Q = r(κ1I − Λ)
f2e = 0

(13)

Proof. Let h2(x1, x2, t) be a vector function which satisfies the equation

∂h2(x1, x2, t)
∂t

= h2(x1, x2, t) exp
{

jκ1

2∑

i=1

uiai

∫ t

t0

S(τ)dτ
}

. (14)

Substituting (14) into (3) and (4), we obtain

∂h2(x1, x2, t)
∂t

= h2(x1, x2, t)
[
Λ(S1(t)(G∗

1(u1) − 1) + S2(t)(G∗
2(u2) − 1)

+S1(t)S2(t)(G∗
1(u1) − 1)(G∗

2(u2) − 1))

+Q − jκ1(u1a1S1(t) + u2a2S2(t))
]

(15)

with initial condition
h2(u1, u2, t0) = r, (16)

where I is identity matrix.
Let us make the following substitutions

b1 =
1
ε2

, b2 =
1

qε2
, tε2 = τ, t0ε

2 = τ0, S1(t) = S̄1(τ),

S2(t) = S̄2(τ), u1 = εx1, u2 = εx2,

h2(u1, u2, t) = F2(x1, x2, τ, ε).

(17)
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We rewrite problems (15), (16) considering (17)

ε2
∂F2(x1, x2, τ, ε)

∂τ
= F2(x1, x2, τ, ε)

[
ΛS̄1(τ)

( ∫ ∞

0

ejεx1y1dG1 − 1
)

+S̄2(τ)
( ∫ ∞

0

ejεx2y2dG2 − 1
)

+S̄1(τ)S̄2(τ)
(
1 −

∫ ∞

0

ejεx1y1dG1 −
∫ ∞

0

ejεx2y2dG1

+
∫ ∞

0

ejεx1y1dG1

∫ ∞

0

ejεx2y2dG2

)
+ Q

−jεκ1(x1a1S̄1(τ) + x2a2S̄2(τ))I
]

(18)

with initial condition
F2(x1, x2, τ0, ε) = r. (19)

We find the asymptotic solution of problems (18), (19) in three steps.
Step 1. Under limit condition ε → 0, we obtain system

{
F2(x1, x2, τ)Q = 0
F2(x1, x2, τ0) = r,

and taking into account (5), we can write

F2(x1, x2, τ) = rΦ2(x1, x2, τ), (20)

where Φ2(x1, x2, τ) is some scalar function which satisfies condition

Φ2(x1, x2, τ0) = 1. (21)

Step 2. Using (20), the function F2(x1, x2, τ) can be represented in the expan-
sion form

F2(x1, x2, τ, ε) = Φ2(x1, x2, τ, ε)[r+ jε(x1a1S̄1(τ)+x2a2S̄2(τ))f2]+O(ε2), (22)

where f2 is a row vector that satisfies the condition f2e = const. Let us use (22)
and taking into account decomposition ejεxiyi = 1 + jεxiyi + O(ε2) in (18), we
obtain the following equation for the vector function f2

f2Q + r(Λ − κ1I) = 0.

Step 3. We multiply (18) by vector e and use (22) taking into account

ejεxiyi = 1 + jεxiyi +
(jεxiyi)2

2
+ O(ε3)

and denoting by κ2 = f2Λe we obtain the following equation for Φ2(x1, x2, τ)

∂Φ2(x1, x2, τ)
∂τ

= Φ2(x1, x2, τ)
[ (jx1)2

2
(κ1a1S̄1(τ) + 2κ2a1

(2)S̄2
1(τ))

+
(jx2)2

2
(κ1a2S̄2(τ) + 2κ2a2

(2)S̄2
2(τ))

+jx1jx2(κ1a1a2S̄1(τ)S̄2(τ) + 2κ2S̄1(τ)S̄2(τ))
]
.

(23)
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The solution of this equation with initial condition (22) is as follows

Φ2(x1, x2, τ) = exp
{ (jx1)2

2

(
κ1a1

∫ τ

0

S̄1(ξ)dξ + 2κ2a1
(2)

∫ τ

0

S̄2
1(ξ)dξ

)

+
(jx2)2

2

(
κ1a2

∫ τ

0

S̄2(ξ)dξ + 2κ2a2
(2)

∫ τ

0

S̄2
2(ξ)dξ

)

+jx1jx2

(
κ1a1a2

∫ τ

0

S̄1(ξ)S̄2(ξ)dξ + 2κ2

∫ τ

0

S̄1(ξ)S̄2(ξ)dξ
)}

.

(24)

Substituting this expression in Formula (20) and performing the substitutions
which are inverse to (14) and (17), we obtain

h(2)(u1, u2, t) = r exp
{

jκ1

2∑

i=1

uiai

∫ t

t0

Si(τ)dτ

+
(ju1)

2

2

[
κ1a1

(2)

∫ t

t0

S1(τ)dτ + 2κ2a1
(2)

∫ t

t0

S2
2(τ)dτ

]

+
(ju2)

2

2

[
κ1a2

∫ t

t0

S1(τ)dτ + 2κ2a2
(2)

∫ t

t0

S2
2(τ)dτ

]

+ ju1ju2

[
κ1a1a2

∫ t

t0

S1(τ)S2(τ)dτ + 2κ2

∫ t

t0

S1(τ)S2(τ)dτ
]}

,

The proof is complete.
Corollary. We assume t = T and t0 → −∞ and consider that

P{V1(T ) < w1, V2(T ) < w2} = P{w1(T ) < w1, w2(T ) < w2}.

We obtain the steady-state characteristic function of the process under study
{V1(t), V2(t)}

h(2)(u1, u2) = exp
{

jκ1(u1a1b1 + u2a2b2)

+
(ju1)

2

2
(κ1a1b1 + 2κ2a1

(2)β2)

+
(ju2)

2

2
(κ1a2b2 + 2κ2a2

(2)β2)

+ju1ju2(κ1a1a2β12 + 2κ2β12)
}

,

(25)

which we call the second-order asymptotic characteristic function, where

βi =
∫ 0

−∞
S2

i (x)dx =
∫ 0

−∞
(1 − Bi(−x))2dx =

∫ ∞

0

(1 − Bi(x))2dx, i = 1, 2,

β12 =
∫ 0

−∞
S1(x)S2(x)dx =

∫ 0

−∞
(1 − B1(−x))(1 − B2(−x))dx

=
∫ ∞

0

(1 − B1(x))(1 − B2(x))dx.
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From the form of the characteristic function (25), it is clear that the proba-
bility distribution of the two-dimensional process {V1(t), V2(t)} is asymptotically
Gaussian with vector of means

a =
[
κ1a1b1 κ1a2b2

]

and covariance matrix

K =
[

κ1a1b1 + 2κ2a1
(2)β2 κ1a1a2β12 + 2κ2β12

κ1a1a2β12 + 2κ2β12 κ1a2b2 + 2κ2a2
(2)β2

]

that is variance of total customer capacity on each service unit has form

σi = κ1aibi + 2κ2ai
(2)β2, i = 1, 2.

Then using (25) and set u1 = u2 = u we can obtain the characteristic function
for total customer capacity in the system, on both service units

h(u) = M{eV1+V2} = exp
{

jκ1u(a1b1 + a2b2) +
(ju)2

2
(κ1u(a1b1 + a2b2)

+ 2κ2β2(a1
(2) + a2

(2)) + 2β12(κ1a1a2 + 2κ2))
}

.

4 Numerical Results

Result (25) is obtained under the asymptotic condition bi → ∞. Therefore,
the result may be used just as an approximation. We make series of simulation
experiments and compare asymptotic distributions with empiric ones.

Let us set the matrix of infinitesimal characteristics and matrix of conditional
intensities

Q =

⎡

⎣
−0.8 0.4 0.4
0.3 −0.6 0.3
0.4 0.4 −0.8

⎤

⎦ , Λ =

⎡

⎣
0.5 0 0
0 1 0
0 0 1.5

⎤

⎦ .

Then intensity of incoming flow κ1 = rΛe = 1. Let us also assume that cus-
tomer capacities have uniform distribution in [0, 1] and service time has gamma
distribution with shape and inverse scale parameters α1 = 0.5 and β1 = α1/N on
the first service unit, α2 = 1.5 and β2 = α2/N on the second service unit. There
are results of a comparison of the probability distribution of the total customer
capacities in different service units obtained using simulation and asymptotic
analysis, and the approximation accuracy is clearly demonstrated on Figs. 3, 4.
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Fig. 3. Distributions of the total resource (N = 10) for the first (1) and the second (2)
service units
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Fig. 4. Distributions of the total resource (N = 100) for the first (1) and the second
(2) service units

Let us denote

Δi = sup
x

|Fasi(x) − Fimi(x)|, i = 1, 2,

Δ12 = sup
x,y

|Fas(x, y) − Fim(x, y)|,
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Where Fim(x), F im(x, y) is the cumulative distribution function built on the
basis of simulation results and Fas(x), Fas(x, y) is the Gaussian approximation
based on (25).

Table 1. Distance Kolmogorov

N Δ12 Δ1 Δ2

1 0.373 0.373 0.369

3 0.118 0.111 0.117

5 0.066 0.061 0.063

7 0.043 0.040 0.042

10 0.029 0.027 0.029

20 0.018 0.017 0.018

50 0.011 0.011 0.011

100 0.008 0.007 0.008

As we can see from the (Table 1), the use of a Gaussian approximation is
justified when the average service time is 10 times greater than the intensity of
the incoming flow.

5 Conclusion

In this paper we considered a MMPP (2,ν)/GI2/∞ queueing system with Markov
Modulated Poisson Process input, each customer occupying a random resource
amount independent of its service time. We have obtained expressions for the
asymptotic characteristic function of the process of the total volume of the occu-
pied resource in two-service unit system.
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Abstract. Virtual radio resource management system (VRRM) provides opti-
mal sharing of virtualized resources of an infrastructure provider (InP) between
several virtual network operators (VNO). One of the main objectives of the
VRRM is to optimize the usage of radio access network (RAN) by dynamic
sharing between slices in a fair manner according to their contracted Service
Level Agreement (SLA). The paper presents the architecture of the VRRM
simulation tool in terms of queuing systems. Besides, using the developed
simulator, we analyze a practical scenario with 3 VNOs and different types of
SLAs and investigate performance metrics under variation of traffic load and
SLAs.

Keywords: Virtual RAN � Resource slicing � SLA � Event-based simulation

1 Introduction

Network slicing is a key capability of modern network systems that allows a single
network to simultaneously support a wide range of application scenarios (e.g., auto-
motive, utilities, smart cities, high-tech manufacturing) and business models that
impose a wide variety of requirements on network functions and expected performance.
This allows operators to create and manage multiple dedicated logical networks with
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specific functionality running on top of the overall infrastructure. Each of these logical
networks is called a network slice and can be adapted to provide specific system
behavior to best support specific service/application domains [1–3].

In 5G Network slicing can be used following cases:

• Advanced mobile broadband (eMBB): this usage scenario applies to high data rates,
high user density, high user mobility, highly variable data rates, deployment and
coverage. Enhanced mobile broadband will be complemented by new applications
and requirements in addition to existing mobile broadband applications to increase
productivity and provide increasingly seamless user access;

• Machine type mass communication (mMTC): this usage scenario is characterized
by a very large number of connected devices, typically transmitting a relatively low
amount of non-latency-sensitive data. Devices should be inexpensive and have a
very long battery life;

• Ultra-reliable and low-latency communication (URLLC): this usage scenario has
strict requirements for features such as bandwidth, latency, and reliability. Some
examples include wireless control of industrial production or manufacturing pro-
cesses, remote medical surgery, distribution automation in an intelligent network,
transportation safety, etc.

Network slicing enables an 5G network operator to provide customized networks
by slicing a network into multiple virtual, and end-to-end networks, referred to as
network slices. Each network slice can be defined according to different requirements
on functionality, performance and specific users.

Network slicing allows the 5G network operator to provide dedicated logical net-
works (i.e., network slices) with customer specific functionalities. A network slice,
spanning all the network segments including radio access network, transport network
and core network, can be dedicated to specific types of service [4]. When a UE is only
associated to a single dedicated network slice, the 5G network can identify the asso-
ciation of the UE with the network slice based on user subscription, context, service
provider’s policy, etc. Otherwise, if a UE accesses multiple network slice instances
simultaneously, it is recommended that the UE provide information to the network to
assist the network slice selection process.

For each network slice, dedicated resources (e.g., virtualized network functions,
network bandwidth, QoS) are allocated and an error or fault that occurs in one slice
does not cause any effect in other slices [5].

In the paper, we develop mathematical model in terms of queuing system for a
standalone network slice. Since the analysis of the whole system with multiple slices
governed by the Virtual Radio Resource Management system (VRRM) is too complex,
we also develop a simulation model for evaluation of VRRM performance metrics.

The rest of the paper is organized as follows. Section 2 describes network slicing
model including service model, while Sect. 3 is devoted to the mathematical model of
resource allocation and queuing in a standalone VNO. Section 4 provides description
of the simulation tool’s architecture. The case study is presented in Sect. 5, while
Sect. 6 concludes the paper.
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2 Virtual Resources Slicing Model

2.1 RRM Model

One of the main concepts of network slicing is virtualization of physical resources from
different Radio Access Technologies (RATs) and managing available virtual resources.
Radio resources of each base station are controlled managed by Local RRMs (LRRMs)
and the Common RRM system (CRRM) manages all radio resources from different
base stations of different RATs. Finally, the VRRM system provides virtualization of
available physical resources and divides them into slices by means of bitrate instead of
Radio Resource Units (RRUs).

VNOs demand for Capacity-as-a-Service (CaaS) from VRRM. VRRM is in charge
of managing the total available capacity provided by CRRM, through aggregating all
the RRUs from different RATs, and sharing the capacity by configuring isolated slices
associated with different services of VNOs. By providing isolation and abstraction of
elements, VRRM allows each VNO to deploy its own protocol stack on the same set of
RRUs per RAT (e.g. resource blocks in LTE, codes in UMTS, timeslots in GSM and
carriers in Wi-Fi), thus promoting the concept of multi-lease in a heterogeneous vir-
tualized environment with existing multiple access methods. A simplified diagram of
the network functionality is presented in Fig. 1 for a better understanding of the
mechanisms of interaction among the involved parties.

VNO

CRRM

RAT/LRRM

Users

InP

1

2

3

4

5

VNO MNO

- service requests queueing (Q);
- slices capacity optimization (RS);
- allocation of slice capacity for each service 
request (RA)

VRRM
6

Fig. 1. RRM model
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Here (1) is the session request arriving to VNO, (2) is the channel condition
information sent to base station of RAT, (3) is the RRU status information gathered by
CRRM from all available LRRM. CRRM is informing VRRM of total available
resource capacity (4), while VNO informs VRRM of service request parameters (5).
Finally, VRRM defines the slice capacity for the VNO (6). It is worth noting that the
numbers in Fig. 1 do not necessarily represent the operational order in sequence. The
physical infrastructure and network elements managed by the InP are displayed in a
dotted box [6, 7].

VRRM, VNOs, and physical resource define the current network structure. Mobile
Network Operator locates on the top of this block. MNO is the owner of the resource.
A network virtualization tool is offered in this system, which consists of a VRM
module and several virtual operators (VNO), which allows the owner of cellular
equipment to sell its resources to several operators. At the same time, virtual operators
get a cheaper opportunity to enter the market without buying equipment, and at they
will be logically separated from each other within the same network, which will allow
them to provide their subscribers with any telecommunication services.

Fig. 2. System model
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Figure 2 shows the system model. The request to start a user session (we will refer
further as service requests, SR) arrive to VNO and provide information on service
parameters. We assume here that each mobile device can handle no more than one
session at a time. According to the service parameters and SLA types, each VNO
allocates available slice capacity to service requests (Resource Allocation, RA) and
places some of them to the queue (Q) if there are not enough resources for all requests.
The Resource Sharing (RS) block gathers information on the load at VNOs and
determines slice capacities accordingly.

2.2 Service Model

The set of services provided in wireless networks by virtual operators may be different.
However, for the correct operation of the network and VRRM, a set of parameters is
defined that must be set for each service before it is put into operation: class of service,
service priority, violation priority, maximum rate, minimum rate, maximum waiting
time for the start of service [8]. Table 1 summarizes the SLA types and their
requirements.

GB type sessions are described by the session duration, minimum and maximum
required bitrate. Note that streaming GB sessions can tolerate waiting in a queue with
the help of buffering mechanisms, but conversational GB cannot. BG and BE type
sessions are characterized by the data size to be sent, while BG has additional minimum
bitrate requirements. Moreover, although both BG and BE type sessions can be queued,
BG sessions do not tolerate too much waiting due to their interactive nature.

3 Standalone VNO Queueing Scenario

In this section, we develop a mathematical model in terms of queueing systems with
impatient customers and retrial group for the analysis of BG type sessions. BG type
corresponds to 3rdclass of services, interactive, that include file sharing, web browsing
and social networking. We consider the scenario, in which the user can use one of the
three above services. The system contains R resources, the queue size and the retrial
group size are denoted by Nq and Nrg. In other words the network has a total capacity

Table 1. Types of service.

SLA type Service class Service example

Guaranteed bitrate (GB) Conversational Voice over IP (VoIP);
Real-time games

Guaranteed bitrate (GB) Streaming Video streaming
Best effort with minimum
guaranteed (BG)

Interactive Web browsing, file transfer
protocol (FTP)

Best effort (BE) Background Email
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R[Mbps], a queue is a buffer in which session requests are accumulated in case the whole
network capacity is occupied. The time that a service request spends in the queue
corresponds to the waiting for the start of the session. The maximum number of
simultaneously served sessions N depends on the total network capacity and the
minimum assignable data rate bmin

BG to each session, all other sessions are waiting in the
queue.

Each session implies transferring of a file of random volume. The file size is
assumed to be exponentially distributed with the parameter hS. Note that the service
rate is given by l ¼ RhS. Since users are impatient, they can leave the queue after an
exponentially distributed time with parameter b and reenter the queue after an expo-
nentially distributed time with parameter a. The transition of the user from the queue
into the retrial group describes the process when due to the limited waiting time,
attempt to start a session is aborted. Thus, the user comes into the retrial group and after
a random amount of time returns to the queue, which describes the process of
attempting to start a session. All notations are summarized in Table 2.

Let pðn;mÞ be the stationary probability that n sessions are served or waiting in the
queue and m sessions are in the retrial group. The following formulas define set of
equilibrium equations:

Table 2. Notations of the mathematical model.

R Volume of resources of a VNO
Nq Queue size
Nrg Size of the retrial group
hS Parameter of the file size distribution
l The average service rate
b The intensity of customers leaving the queue to the retrial group
a The intensity of customers moved to the queue from the retrial group
k Arrival intensity of customers
pðn;mÞ The stationary probability that n sessions are served or waiting in the queue and

m sessions are in the retrial group
rGB tð Þ Volume of resources allocated to a GB service request at time t
rBG tð Þ Volume of resources allocated to a BG service request at time t
rBE tð Þ Volume of resources allocated to a BE service request at time t
NGB tð Þ Number of service requests of type GB at time t
NBG tð Þ Number of service requests of type BG at time t
NBE tð Þ Number of service requests of type BE at time t
N tð Þ Total number of all service requests at time t
bmax
GB Maximum volume of resources required to a GB type service request

bmin
GB Minimum volume of resources required to a GB type service request

bmin
BG Minimum volume of resources required to a BG type service request

RFR� tð Þ Volume of resources that may be unused if all GB and BG service requests are
allocated minimum and there are no BE service requests
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kp 0; 0ð Þ ¼ lp 1; 0ð Þ; ð1Þ
kþ lð Þp n; 0ð Þ ¼ lp nþ 1; 0ð Þþ kp n� 1; 0ð Þþ bp n� 1; 1ð Þ; 0\n�N; ð2Þ

kþ lþ a n� Nð Þð Þp n; 0ð Þ ¼ lp nþ 1; 0ð Þþ kp n� 1; 0ð Þþ bp n� 1; 1ð Þ;
N\n\NþNq;

ð3Þ

lþ aNq
� �

p N þNq;m
� � ¼ kp N þNq � 1;m

� �þ bðmþ 1Þp NþNq � 1;mþ 1
� �

; m\Nrg;

ð4Þ

lp NþNq;Nrg
� � ¼ kp N þNq � 1;Nrg

� �
; ð5Þ

kþ bmð Þp 0;mð Þ ¼ lp 1;mð Þ; 1�m�Nrg; ð6Þ

kþ lþmbð Þp n;mð Þ ¼ kp n� 1;mð Þþ lp nþ 1;mð Þþ ðmþ 1Þbp n� 1;mþ 1ð Þ;
1� n\N; 1�m\Nrg;

ð7Þ

kþ lþmbð Þp N;mð Þ ¼ kp N � 1;mð Þþ þ lp Nþ 1;mð Þ
þ ap N þ 1;m� 1ð Þþ ðmþ 1Þbp N � 1;mþ 1ð Þ; 1�m\Nrg;

ð8Þ

kþ lþmbþ n� Nð Það Þp n;mð Þ ¼ kp n� 1;mð Þþ lp nþ 1;mð Þ
þ nþ 1� Nð Þap nþ 1;m� 1ð Þþ mþ 1ð Þbp n� 1;mþ 1ð Þ;

N\n\NþNq; 1�m\Nrg;

ð9Þ

kþ lþNrgb
� �

p n;Nrg
� � ¼ kp n� 1;Nrg

� �þ lp nþ 1;Nrg
� �

; 0\n\N; ð10Þ

kþ lþNrgb
� �

p n;Nrg
� � ¼ kp n� 1;Nrg

� �þ lp nþ 1;Nrg
� �

þ nþ 1� Nð Þap nþ 1;Nrg � 1
� �

; N � n\NþNb:
ð11Þ

Solving the system of Eqs. (1–11) we can find blocking probabilities according to
the following formulas:

B1 ¼
XNrg

m¼0
p N þNq;m
� �

; ð12Þ

B2 ¼
XNþNq

n¼0
p n;Nrg
� �

; ð13Þ

B1 ¼
XNrg

m¼1
p N þNq;m
� �

; ð14Þ

B ¼ B1 þB2 � p NþNq;Nrg
� �

: ð15Þ

Note that in real networks there are no blocking of BG type sessions. Therefore, the
blocking probability B corresponds to the probability of SLA violation in the network.
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Similar scenario can be developed for each standalone VNO with any SLA type.
However, analytical modelling of a VNO with several SLA types is too complex. For
that reason, we develop the simulation tool in the next section.

4 Simulation Tool’s Architecture

4.1 Event-Based Simulation

The simulation tool models the VRRM system according to the event-based approach.
There are three types of events. They are the arrival of a service request, the departure
of a service request and the slice reconfiguration event. On the arrival and the departure
of a service request, RA function reallocates available capacity to the new number of
sessions. At slice reconfiguration, the RS block gathers information on the network
load from all slices and assigns new resource volumes for them.

VNO consists of three queues to handle each type of traffic (GB, BG, BE). The
length of each queue is set before the simulation begins. The resource is the total bitrate
that the VNO can use. VNO is allocated a slice from shared virtual resource. The
capacity of slices is optimized and reconfigured every D ms by RS block. RA function
allocates slice capacity to service requests according to resource allocation rules
depending on the type of traffic. Some of the service requests are waiting in block Q.
Thus, the input data in the VNO is the flow of service requests with specified service
type and parameters. Then by the rules (16)–(19) service requests are allocated some
resources.

4.2 TG Architecture

The traffic generator is initiated with a set of services, requests for which it will
generate traffic, together with the service parameters, the arrival intensities and dis-
tribution of interarrival times for each type of service. The traffic generator runs in
several threads according to the number of virtual operators. When the input data is
received, the core of the traffic generator determines the next interval of a new service
request arrival for each flow and their parameters (file size, service duration,
minimum/maximum bitrate, etc.). The generated sequence of arrivals and service
parameters is then sent to the event manager block of the simulation tool. The archi-
tecture is scalable and allows use in conjunction with various software.

4.3 Resource Allocation Rules

Here we summarize the resource allocation rules for different SLA types. Table 2
explains the notation used to formalize the allocation rules.

The main idea of resource allocation rule is as follows. Firstly, we allocate the
highest priority GB and BG service requests their minimum requirements. The rest of
resources is denoted RFR� tð Þ. Then these free resources are distributed equally among

all service requests, i.e. all requests receive additional RFR� tð Þ
NðtÞ resources. Finally, if the

volume of resources allocated to BG service requests is greater than their maximum

Modelling of Virtual Radio Resources Slicing in 5G Networks 157



requirement bmax
GB , then their share of resources is decreased to bmax

GB and the remaining
resources are distributed equally between BG and BE service requests.

Let

N tð Þ ¼ NGB tð ÞþNBG tð ÞþNBE tð Þ;
RFR� tð Þ ¼ R� NGB tð Þ � bmin

GB � NBG tð Þ � bmin
BG :

ð16Þ

Then the formal expressions for the allocation rules are given as follows.

rGB tð Þ ¼ bmax
GB ; if RFR� tð Þ

N tð Þ [ bmax
GB � bmin

GB ;

bmin
GB þ RFR� tð Þ

N tð Þ ; if RFR� tð Þ
N tð Þ \bmax

GB � bmin
GB ;

(
ð17Þ

rBG tð Þ ¼
bmin
BG þ RFR� tð Þ

N tð Þ ; if RFR� tð Þ
N tð Þ \bmax

GB � bmin
GB ;

bmin
BG þ RFR� tð Þ� bmax

GB �bmin
GBð Þ�NGB tð Þ

NBG tð ÞþNBE tð Þ ; if RFR� tð Þ
N tð Þ [ bmax

GB � bmin
GB ;

8<
: ð18Þ

rBE tð Þ ¼
RFR� tð Þ
N tð Þ ; RFR� tð Þ

N tð Þ \bmax
GB � bmin

GB ;

RFR� tð Þ� bmax
GB �bmin

GBð Þ�NGB tð Þ
NBG tð ÞþNBE tð Þ ; RFR� tð Þ

N tð Þ [ bmax
GB � bmin

GB :

8<
: ð19Þ

5 Case Study

In this section, we present the results of resource slicing case study. Assume that the
system capacity is 200 Mbps (resource volume) and three VNOs. The arrival rates of
session requests are given below.

k1GB ¼ 1:8; k2GB ¼ 2:4; k3GB ¼ 3:0;

k1BG ¼ 1:2; k2BG ¼ 1:6; k3BG ¼ 2:0:

Service rates of GB type sessions in each VNO are assumed to be equal to each
other:

l1GB ¼ l2GB ¼ l3GB ¼ 1
60

½sessions=s�

Thus, the average service time of GB type sessions is 60 s. File sizes of BG type
sessions h1BG; h

2
BG; h

3
BG are assumed to have uniform distribution on the interval

4 MB; 20 MB½ �:
Minimum bitrate requirements Ri;min

GB for GB type sessions are identical for each of
the VNOs and equal to 0.3 Mbps, while maximum Ri;max

GB is equal to 5 Mbps. For BG
type sessions, the minimum bitrate Ri;min

BG is equal to 1 Mbps.
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The maximum queue length for each type of traffic in each VNO is 50.
At the beginning, the resource is divided equally between all operators, but during

simulations, the resource distribution between slices become more stable and oscillates
about the values that are proportional to the arrival rates to each VNO (see in Figs. 3
and 4).

In the case of a fixed resource volume for a separate VNO, with given arrival rates
and resource requirements, the first VNO will have an excess of the resource, while the
third VNO will suffer from the shortage of resources. Resource reconfiguration allows
to solve this problem and reduces the number of blocked requests of the third VNO due
to a slight increase in the probability of blocking on the first. Note that resource
reconfiguration of slices affects mainly the highest priority GB type sessions (see
Fig. 5).

Fig. 3. Dynamics of the resource volume allocated to virtual operators at model times

Fig. 4. Dynamics of the resource volume shares allocated to virtual operators
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Also, with certain delta, similar improvements can be seen in the average queue
length, the average service duration of BG type requests, as well as the average waiting
time (Fig. 6).

6 Conclusion

This paper proposes a general software tool architecture for developing and analyzing
mechanisms of SLA-based network slicing procedures for virtual RANs. The archi-
tecture shown in Fig. 3 reflects the two main components of the software tool - a
module for sharing and optimizing resources between tenants (VNOs) in accordance
with the SLA and a module for managing tenant resources in accordance with the
algorithms for servicing user requests for the service provisioning. A distinctive feature

Fig. 5. Average waiting time in each GB applications

Fig. 6. Average waiting time in each BG applications
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of the tool architecture is its scalability in terms of the main parameters of the network
slicing policies as well as the approach to the development of a tenant resource
management module, based on the application of queues with random requirements for
system resources.

To achieve these goals, the proposed architecture software is based on the VRRM
model, developed on the basis of the hierarchical architecture that was presented in a
previous paper [6], and formulated as a convex optimization problem to cope with the
concept of proportional fairness of slicing resources for tenants. Recall that the model is
based on three types of SLA contracts (GB, BG and BE), and it is for these three types
of contracts that models of queuing systems with random requirements for network
resources are developed and incorporated into the software tool architecture.

We have already conducted preliminary studies and built models of queuing sys-
tems for all types of SLA contracts, and also developed a preliminary version of the
tenant resource allocation management module. Some results of numerical are shown
in Sects. 4 and 5 of current paper.

In further studies, we are to analyze the options for formalizing the optimization
problem in the resource sharing module, taking into account the results of such works
as [9, 10], as well as the work of [6], where some improvements and clarifications will
be proposed. Particular attention will be paid to the development of the traffic generator
module, which should receive the parameters of user requests for services on the front-
end, and offer random flows customers to the queuing systems, which are elements of
the tenant resource allocation management module, at the back-end.

The goal of all the work is to develop methods and algorithms for the network
slicing in the target architectures proposed in the 3GPP standards.
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Abstract. Methods of queueing theory are often used for telecommu-
nication systems performance evaluation. According to this approach,
all MAC and PHY layer protocols details are modelled with a given
service time distribution, and the precision of the estimated properties
depends on this distribution function selection. While for Ethernet and
wireless relay networks the service time is roughly equal to the sum of
packet and headers sizes divided by the channel bitrate, it is not so
easy to estimate the service time for wireless networks channels based on
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1 Introduction

When analyzing the performance characteristics of various telecommunication
networks, the queuing theory methods are often used. The packet transmission
time through the communication channels is modelled by a random service pro-
cess, the input data flows are modelled by random arrival flows, and the memory
of routers in which the packets are buffered while waiting for transmission is mod-
elled with finite or infinite queues. In the simplest case, both the service time
and the interarrival intervals are modelled by the exponential distribution, and
the queues are assumed to have unlimited capacity. The queueing network model
in this case has nodes of the M/M/1-type, and the performance characteristics
of such network can be easily calculated. However, the estimates obtained may
have low accuracy.

Fig. 1. An example of modelling a wireless network with linear topology using a tandem
queuing network with the arrival MAP flows.

For greater certainty, let us focus on the consideration of a particular case
of telecommunication networks, namely, the linear topology networks. Traffic is
assumed to be transmitted through the network mainly in one direction. An
illustration of such a network is shown in Fig. 1. Examples of such networks
include sensor networks along pipelines or communication networks for connect-
ing cameras along the highways. Moreover, many results obtained for networks
with a linear topology are easily scaled to the case of networks with an arbitrary
acyclic topology; therefore, the class of networks under consideration turns out
to be quite large.

Insufficient accuracy of the model M/M/1 → •/M/1 → · · · • /M/1 for both
wired and wireless networks follows from three reasons. First, packets on a net-
work hardly ever have an exponential size distribution. Moreover, the various
channel and network layer protocols have their own limitations on the maxi-
mum packet size, and the minimum size is due to the presence of the headers
and a preamble. Because of this, even in the case of a wired network, the usage
of exponential service time can introduce significant error. Secondly, the inter-
vals between packets also do not always have an exponential distribution. For
example, if data from the sensors or cameras is transmitted within a fixed inter-
val, then the intervals distribution will be closer to a constant. Thirdly, when
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transmitting packets over the network, their size does not change which means
that their service time should not change either.

The first and second problems can be solved using more appropriate service
time distributions and the input flow models. For example, a good generalization
is the queuing networks with the MAP/PH/1/N -type nodes where the traffic
is modelled by the Markovian arrival processes (MAPs), and the service time
has the phase-type distribution (PH). Queuing networks of this type are well
studied, see for instance [15]. Solving the third problem leads to systems with
correlated services which are beyond the scope of this paper.

For effective modelling of the real telecommunication networks using the
queuing networks MAP/PH/1/N → •/PH/1/N → · · · • /PH/1/N , it is nec-
essary to have the service time distribution functions that model a distribution
of packets transmission time through a communication channel with sufficient
accuracy. In the case of a wireless network using CSMA/CA as an access scheme,
the transmission duration is rather complicated. In particular, in addition to the
size of the transmitted data and headers, it is necessary to take into account the
random waiting time for channel listening (backoff), fixed inter-frame intervals,
waiting time, receipt of acknowledgement and re-transmissions due to collisions.

For a mathematical description of the packet transmission process in a wire-
less network channel, we will use a semi-Markov process with absorbing state, in
which the probabilities of state transitions are determined by a Markov chain,
and the waiting times in each state are independent (can have arbitrary dis-
tributions, not necessarily exponential). Also in such processes one or several
absorbing states are selected, having reached any of which the process stops.
The time spent in the process from the initial state to hitting any of the absorb-
ing states is a random variable that is proposed to be used as a model of packet
transmission time.

The paper is organized as follows. In Sect. 2 we will briefly observe papers
related to transmission time modelling. Then in Sect. 3 we will describe the
channel we model and provide numerical parameters used in experiments. In
Sect. 4 service time modelling with a semi-Markov absorbing process and then
PH distributions fitting will be discussed, and in Sect. 5 the results of a numerical
experiment of a multi-hop wireless network performance evaluation using the
queueing model with PH distributions found earlier will be presented. Finally,
Sect. 6 discusses the results and concludes the paper.

2 Previous Work

Markov and semi-Markov processes for performance analysis of wireless networks
with DCF channels are studied in a variety of papers. One of the key papers by
Bianchi [2] proposes a Markov chain to analyse the operation of an IEEE 802.11
network under the DCF channel access. The states of the chain correspond to
backoff slots and transmission attempts. The key assumptions of the model are
the saturated network conditions and the fact that the conditional probability
of a collision during any transmission is constant. On the base of the proposed
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Markov chain, the network throughput is estimated. The semi-Markov processes
are also often used to describe the operation of wireless networks. For example,
in [10] a semi-Markov process was proposed to analyse the operation of the data
link layer of the IEEE 802.15.4-2006 network; authors estimate the network
bandwidth, distribution of intervals between successful transmissions and the
distribution of the waiting time in backoff.

A large number of papers, e.g. [1,3–9,11,13,14], are devoted to the analysis of
the packet transmission time (access delay) in IEEE 802.11 networks with DCF
channel access. Chatzimisios et.al. in [3] describe a simple model for calculating
the average packet transmission time based on the Bianchi model suggesting a
limited number of transmission attempts. [1] presents an analytical model for
calculating the packet transmission delays in saturated network. In [11] authors
consider the DCF ad-hoc network in a saturated mode, derive the analytical
relations for the expectation and variance of the packet service time taking into
account the limited number of transmission attempts. The authors also give the
expression for the generation function of the packet transmission time. The paper
[14] considers unsaturated network with queues. In [5], Dong et.al. study the
ad-hoc network in an unsaturated mode assuming an exponential distribution of
time intervals between packet arrivals and, apart from analyzing the service time
on individual nodes, consider the delay in transmission over multi-step routes
taking into account the hidden stations. The paper [8] is also devoted to the
problem of estimating the transmission time in the presence of hidden stations.
[13] presents not only the detailed analysis of the packet transmission time in
an ad-hoc network in the unsaturated conditions but also considers the case
of transmitting a group of packets using the IEEE 802.11e EDCA mechanism.
Felemban and Ekici in [6] analyze the transmission time of packets in one-step
ad-hoc networks refining the Bianchi model by introducing additional Markov
chains for backoff states, they also analyze unsaturated network performance.
Another detailed analysis of the performance of ad-hoc networks including packet
transmission times is presented in [4]. We should also mention the paper [9] where
the packet transmission time is described as the PH distribution.

Note that the primary goal of our work is not in modelling the transmission
time of packets on individual channels, but in using the models of transmis-
sion time for the tandem queuing networks such as MAP/PH/1/N → · · · →
•/PH/1/N for evaluating the characteristics of wireless multi-hop networks with
linear topology. Although we further propose to use a simple semi-Markov model
for analyzing the packet transmission time in a network operating in saturated
mode, to clarify the results one can use the transmission time estimates from
the works listed above especially concerning the network in unsaturated mode.

3 Wireless DCF Channel

As a channel access method, we consider the simplest implementation of the
IEEE 802.11 DCF. This access method is one of the earliest and is a basis for a
significant number of wireless LANs and sensor networks. On the one hand, this
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mechanism is simple to be analyzed and well studied but, on the other hand, it
allows taking into account the key features of wireless networks that affect data
transfer time without the need to simulate complex protocols and methods.

The DCF mechanism is described in detail in literature (see, e.g., [2]), and
the most detailed description can be found in the IEEE 802.11 standard. In this
paper we simplify the mechanism by ignoring RTS/CTS transmissions, assuming
infinite transmission attempts and not taking into account post-backoff which
leads to correlated service times and the need to use MSP (Markov Service
Process) instead of PH distributions.

In the following, we use the DCF parameters values given in Table 1. These
parameters coincide with [2] which simplifies the model validation. However,
they can be easily modified to analyze the higher-speed, modern versions of the
IEEE 802.11 channels. In addition, the table shows the traffic parameters that
we will use when modeling a network in unsaturated mode.

Table 1. The DCF mechanism parameters and traffic transfer modes used in the
simulation of a wireless network.

Parameter Value Unit

PHY header 128 bit

MAC DATA header 272 bit

MAC ACK frame 112 (+ PHY header) bit

Slot duration (σ) 50 μs

DIFS 128 μs

SIFS 28 μs

CWmin 16

CWmax 1024

Bitrate 1000 kbps

IP header 160 bit

Payload size 10688 bit

Low traffic rate 1 kbps

Medium traffic rate 20 kbps

High traffic rate 180 kbps

4 Simulation of the Packet Transmission Time over the
Wireless Channel

To represent the packet transmission time in the DCF channel as a PH distribu-
tion, we consider the classical IEEE 802.11 network in which all stations transmit
in a common area (also called collision domain) where all stations “hear” each
other. Thus, the simultaneous transmissions of any two stations interfere with
each other and lead to collisions. An example of a network is shown in Fig. 2.
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Consider two modes of network operation: saturated mode when each station
always has a packet to transmit and unsaturated mode in which the packets
arrive at the station in accordance with some random distribution and there are
intervals when the station doesn’t transmit anything. We will select the param-
eters of this distribution so that on average each station needs to transmit user
data (payload) with a given bitrate (low, medium or high, see Table 1).

Fig. 2. The structure of the wireless network which is the model for service time esti-
mation: N clients within the same collision domain transmit data to the gateway.

The time of a packet transmission (service) is referred to as the time elapsed
from the arrival of the packet to the transmitter until the successful transmis-
sion is confirmed. For the analysis of packet transmission time, we use both the
simulation and the analytical models: for a saturated mode, the service time
is obtained as the distribution of time to reach the absorbing state in a semi-
Markovian random process based on the Bianchi [2] model, and for an unsat-
urated mode, the service time sets are obtained using the network simulation.
Then using this data, we apply the methods of constructing PH-distributions by
moments or samples set.

4.1 The Structure of the Semi-Markov Process for the Saturated
Mode

A large number of models based on [2] were proposed to analyze various per-
formance parameters of IEEE 802.11 networks. The Bianchi model [2] itself is
primarily intended for analyzing the network bandwidth in a saturated mode.
For the purposes of this paper, we construct a semi-Markov absorption process
that simulates the service time of a packet which is convenient because, on the
one hand, it is easy to calculate the expectation and variance of the packet ser-
vice time, and on the other hand, it is convenient to generate a samples set for
subsequent use of the EM procedure [12].

The structure of the semi-Markov process is shown in Fig. 3. Here CW =
CWmin, m = log2(CWmax/CWmin) is the number of times the size of the
content window may increase. The structure of states and transition probabilities
almost completely coincides with the chain described in [2]. However, here we
divide the zero slot in which the transmission is carried out into two different
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states D and C: if the process is in D then no collisions occurred and the packet
described by a random variable τD = (ξ + HDR)/B + SIFS + ACK/B + 2δ is
successfully transmitted, where ξ is a random variable describing the packet size,
HDR is the fixed headers sizes, B is a channel bitrate, ACK is a bit size of the
frame Ack along with the headers, and δ is the propagation delay. If the process
is in state C then a collision occurred during the transfer and the duration of our
stay in this state is modeled using the random variable τC = (ξ+HDR)/B+TW ,
where TW is a constant equal to the maximum acknowledgment waiting time
(for a more accurate estimate of the collision duration, we should also take
into account that the start of the transmission of a competing frame does not
necessarily coincide with the start of the transmission by the station in question,
see, for example, [2]).

If the process is in state D then it enters the absorbing state next with
probability 1. If the process was in state C then a collision occurred and the
next transfer attempt is modeled.

The time spent in state E depends on whether there were transmission
attempts and whether there was a collision among the rest of stations. This
time is described using a random variable τE :

P{τE = σ} = 1 − Ptr(n − 1)
P{τE = τD} = Ptr(n − 1)Ps(n − 1)
P{τE = τC} = Ptr(n − 1)(1 − Ps(n − 1))

Here the expressions for Ptr, Ps are calculated similarly as formulas (10) and
(11) in [2] by using n − 1 instead of n. The expressions like τE = τD mean that
with the given probability τE has the same distribution as τD. By calculating the
moment generating function one can easily obtain the values of the expectation
and variance for the semi-Markov random process we have constructed.

Note that to calculate the expectation and variance of packet transmission
time, you can use the more accurate formulas given in paper [11].

4.2 Transmission Time Analysis

To validate the semi-Markov process described above, transmission time mean
and standard deviation values were compared with the results obtained from a
simulation model of a wireless network operating in saturated mode. We consid-
ered two different payload size distributions: ξ ≡ const ≡ P and ξ ∼ Exp(1/P ),
where P – mean value of payload bit size. Figure 4 shows the simulation and ana-
lytic results for a network with up to five clients. We also considered unsaturated
mode with three types of traffic (see Table 1).

As Fig. 4 shows, semi-Markov process provides very precise results on sat-
urated networks channels with up to four stations. If the network operates in
unsaturated mode, then under low traffic both mean and deviation values are
much smaller then in saturated case. However, it is obvious that under heavy
traffic the conditions are more close to saturated mode. This effect is due to a
smaller number of collisions in unsaturated network under low traffic load.
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Fig. 3. The structure of the semi-Markov process with absorption built on the basis
of the Bianchi model which model the transmission time in the collision domain in the
saturated mode

Fig. 4. Mean and standard deviation values for a channel in saturated and unsatu-
rated network, estimated using network simulation modelling and semi-Markov ana-
lytic model.

4.3 PH-Fitting of Packet Transmission Time

Based on the results above, we will fit PH-distributions into three sets:

1. PH-distributions matching two moments of semi-Markov process (S1);
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2. PH-distributions fitted with transmission time sampled from the semi-Markov
process (S2);

3. PH-distributions for unsaturated network channel, fitted with samples
obtained from a network simulation model when transmitting low intensity
traffic (S3)

To fit PH distribution by the first two moments, one need to solve a non-
linear optimization problem of loss function minimization with constraints on
moments values, like it is described in [16]. When fitting PH-distribution with a
samples set, we use G-FIT algorithm [12] based on EM-procedure.

We use PH distributions to model wireless channels in a network with linear
topology. Assuming that stations are placed far enough from each other, colli-
sions arise between neighbour stations only. We also assume ideal radio channel
with BER equal zero, neglecting errors in frames transmission due to multipath
propagation, signal attenuation and low signal-to-noise (SNR) ratio. In these
assumptions, three cases may take place:

1. there are no collisions in a single-hop network, so it is equal to a collision
domain network with a single client;

2. each boundary station in a multi-hop network collide with only one neighbour,
which is equal to a collision domain network with two clients;

3. each middle station in a multi-hop network collide with two neighbours, which
is equal to a collision domain network with three clients.

It should be noticed, that if the stations are placed closer to each other,
collisions with two-hop neighbours may arise. However, we are not going to
consider this scenario.

Thus, we need to fit the PH distributions for networks that have from one
to three stations. Each distributions set Si contains six PH distributions: Si =
{β

(const)
i,j , β

(exp)
i,j : j = 1, 2, 3}, matching collision domain networks with one, two

or three stations, and either constant or exponentially distributed payload size.

5 Numerical Estimations for a Multi-hop Wireless
Network with Linear Topology

To study the performance of a multi-hop wireless network with linear topology we
make use of a tandem open queueing network MAP/PH/1/N → •PH/1/N →
· · · → •/PH/1/N . We use an iterative procedure defined in [15] to compute
mean values of response times, end-to-end delays, queue sizes and utilization.
The key problem in applying this iterative procedure is the exponential growth
of the state space. To get approximate results, one can use departure MAP
flows approximations with MAP flows of smaller order [16], or use Monte-Carlo
method for numerical solution. In this paper we use the second approach.

For the sake of simplicity, let us assume that arrival flow is Poisson with rate
λ = BT /ξ, where BT – user traffic bitrate (see the bottom rows of Table. 1),
and ξ – mean payload bit size.
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In the numerical experiment we considered networks with up to ten stations;
user traffic arrived either at the first station only, or at each station (cross-traffic).
For each case a queueing network was constructed using PH distributions from
sets S1,S2,S3 defined above, and real wireless network properties were estimated
using the simulation model developed for this experiment.

Fig. 5. End-to-end delays in wireless networks with up to 10 stations without cross-
traffic. Results estimated with network simulation model and tandem queueing net-
works with PH distributions fitted for saturated and unsaturated channels.

5.1 Network with Single Traffic Source

Figure 5 shows end-to-end delays estimated with wireless network simulation
model and queueing tandem network with PH distributions fitted for various
traffic in unsaturated mode, and for saturated mode. It can be seen that the
queueing network with PH distributions fitted for unsaturated mode provides
very close to simulation results for low or medium traffic. However, in case of
heavy user traffic all queueing models fail to provide accurate results for net-
works with more than four stations; for small networks with up to four stations,
queueing networks with PH fitted from saturated channel model provide rather
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Fig. 6. Average queue sizes in wireless network with 10 stations and single traffic
source.

close approximation. It should also be noticed, that queueing networks with PH
distributions fitted with moments matching and EM procedure methods provide
very close to each other results.

Figures 6 and 7 show the estimation results for queue sizes and utilization
(busy) ratios mean values. Under low or medium user traffic tandem queue-
ing networks with PH distributions fitted from unsaturated network provide
very accurate results. However, under heavy user traffic the results are not very
accurate. Moreover, one of the reasons for such simulation results may be the
correlation of service times in the wireless network.

5.2 Network with Cross-Traffic

We also studied the network performance under cross-traffic, when sources at
each station generate the same user traffic. Since this kind of network becomes
saturated very easy (for instance, the gateway receives 200 kbps when each user
generates only 20 kbps traffic), we did not consider heavy traffic case. The esti-
mated end-to-end delays, queue sizes and utilization ratios are shown on Figs. 8,
9 and 10 respectively.
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Fig. 7. Average busy ratios in wireless network with 10 stations and single traffic
source.

Fig. 8. Average end-to-end delays in wireless network with 10 stations and cross-traffic.
Results estimated with network simulation model and tandem queueing networks with
PH distributions fitted for saturated and unsaturated channels.
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Fig. 9. Average queue sizes in wireless network with 10 stations and cross-traffic.

Fig. 10. Average utilization ratios in wireless network with 10 stations and cross-traffic.

It can be seen that considering low user traffic, PH-distribution fitted for
unsaturated mode provides accurate results. However, for medium traffic the
results are accurate for only the first 3–4 nodes.

6 Conclusion

The paper presented the results of the study of the queueing model
M/PH/1/N → •/PH/1/N · · · → •/PH/1/N applicability for performance
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evaluation of a multi-hop wireless network with linear topology, when PH distri-
butions used in the model are fitted from the transmission times in a single-hop
collision domain network, operating under saturated or unsaturated mode. For
saturated mode a semi-Markov absorbing process based on a model from [2] was
used. For unsaturated mode PH distributions were fitted from transmission time
samples collected from a simulation model execution.

The results provided in this paper show that queueing networks with PH
distributions from a set S3 (see Sect. 4.3) provide very accurate estimations of
end-to-end delays, average queue sizes and nodes busy rates when user traffic
is rather low. In the same time, selecting PH distributions from sets S1 and S2

fitted from a semi-Markov process using moments matching or EM-procedure
provide upper bounds with high error. However, these PH distributions can be
used to estimate the network performance processing heavy user traffic, but for a
small number of stations only. It should also be noticed that both fitting methods
provide very close results, so choosing either fitting method is a question of time
complexity: fitting using moments matching method took significantly less time
then EM-procedure when only first two moments are considered. Boundaries
definitions of various PH distributions applicability for wireless network proper-
ties estimation is a subject for future work, as well as more accurate protocol
modelling.

All numerical experiments provided in this paper, as well as some additional
data, including the fitted PH distributions subgenerators and initial probability
distributions are available at GitHub1.
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Abstract. In this paper, we consider a single server queueing model
M [n]|GI|GI|1|L with Batch Poisson input flow. Upon arrival, an incom-
ing call from the batch occupies the server, if the server is idle. Other
calls from the batch join the orbit and try to occupy the server after an
exponentially distributed time. If the server is busy all incoming calls
from the batch join the orbit and make a delay for an exponentially dis-
tributed time then repeat their request for service. The server makes an
outgoing call in its idle time. Our contribution is to derive the stationary
probability distribution of the number of incoming calls in the system.

Keywords: Retrial queueing system · Incoming and outgoing calls ·
Batch Poisson input flow

1 Introduction

Retrial queues arise naturally in many situations in both communication and
service systems. They reflect the fact that customers who are blocked upon
arrivals might not wait for service but retry for the service in a later time [1,2,8].
In service systems such as call centers, it is common that customers will call
again after some random time if they are not served immediately upon arrivals.
In random access systems in communication networks, multiple users share a
channel and only one user can transmit data at a time. In this case, blocked
users will retransmit their data in a random time. The retrial time interval is
increased with the number of blockings [11].

On the other hand, the server might utilize the idle time for a secondary
service. This also fits the situations in blended call centers where the operators
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serve inbound and outbound calls [5,7]. In particular, the server may make out-
going calls in its idle time. These outgoing calls are not for those in the orbit.
In this paper, we consider a model where the server makes outgoing calls to
multiple type of customers with distinct service time distributions.

Retrial queues with outgoing calls are also referred to as the models with
two-way communications for which a number of works were devoted [3,4,6,9,10,
12,13]. In all of these previous works, the input flow is assumed to be Poisson
process with individual arrival. In this paper, we extend the arrival process to
batch Poisson process which may be more realistic in most communication and
service systems. In the former, users seem to send data in a file which is derived
into multiple packets while in service systems, customers often arrive the system
in groups. A special case of our model is presented in [13] where a model with
multiple type of outgoing calls and Poisson arrival process was considered.

The rest of our paper is organized as follows. In Sect. 2, we present the model
and define some notations. Section 3 provides the analysis of the model, deriving
the generating functions of the number of jobs in the system. In Sect. 4, we
present the concluding remarks.

2 Model Description and Problem Definition

In this paper, we consider a single server queueing model M [n]|GI|GI|1|L with
Batch Poisson input flow with the arrival rate λ. An event of the flow causes an
arrival of the batch of demands of volume n with probability rn, n � 0. We will
call the demands from the flow as incoming calls.

Upon arrival, an incoming call from the batch occupies the server for an
arbitrary distributed time with probability function B(x), if the server is idle.
Other calls from the batch join the orbit and try to occupy the server after
an exponentially distributed time with rate σ independently. If the server is
busy all incoming calls from the batch join the orbit and make a delay for an
exponentially distributed time with rate σ then repeat their request for service.

On the other hand, the server makes an outgoing calls after an exponentially
distributed idle time. The server makes an outgoing call of type l with rate
αl, l = 2, L and serves it for an arbitrary distributed time with probability
function Vl(x), l = 2, L.

We denote random process i(t) as the number of incoming calls in the system
at the moment t. The aim of the current research is to derive the stationary
probability distribution of this process.

3 Probability Distribution of the Number of Incoming
Calls in Retrial Queue

Random process k(t) is the state of the server at the moment t. This process
has the following set of states: 0 if the server is idle, 1 if an incoming call is in
service, l if an outgoing call of type l is in service, l = 2, L.
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Let y(t) is an elapsed service time at time t.
We denote

μ(x) =
B′(x)

1 − B(x)
, vl(x) =

V ′(x)
1 − V (x)

conditional rates of service for incoming and outgoing call under the condition
that elapsed service time is x, respectively. Under the current setting the process
{k(t), i(t)}, k = 0, {k(t), i(t), y(t)}, k = 1, L with variable number of dimensions
is a Markov process. Let

P0(i, t) = P{k(t) = 0, i(t) = i},

Pk(i, y, t) =
∂P{k(t) = k, i(t) = i, y(t) ≤ y}

∂y
, k = 1, L,

denote the probability distribution of the system state which is the unique solu-
tion of Kolmogorov system of equations. To derive the system we write the
following equations

P0(i, t + Δt) = P0(i, t)(1 − λΔt)(1 − iσΔt)

(
1 −

L∑
l=2

αlΔt

)

+

∞∫
0

P1(i + 1, y, t)μ(y)Δtdy +
L∑

l=2

∞∫
0

Pl(i, y, t)vl(y)Δtdy + o(Δt),

P1(i, y + Δt, t + Δt) = P1(i, y, t)(1 − λΔt)(1 − μ(y)Δt)

+
i∑

n=0

P1(i − n, y, t)λrnΔt + o(Δt),

Δt∫
0

P1(i, x, t)dx =
i∑

n=0

P0(i − n, t)λrnΔt + P0(i, t)iσΔt + o(Δt),

Pl(i, y + Δt, t + Δt) = Pl(i, y, t)(1 − λΔt)(1 − vl(y)Δt)+
i∑

n=0

Pl(i − n, y, t)λrnΔt + o(Δt), l = 2, L,

Δt∫
0

Pl(i, x, t)dx = P0(i, t)αlΔt + o(Δt), l = 2, L.

From these equations we derive the Kolmogorov system of equations for the
probability distribution of the system state in stationary regime

−
(

λ + iσ +
L∑

l=2

αl

)
P0(i) +

∞∫
0

P1(i + 1, y)μ(y)dy +

L∑
l=2

∞∫
0

Pl(i, y)vl(y)dy = 0,
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∂P1(i, y)
∂y

= −(λ + μ(y))P1(i, y) + λ

i∑
n=0

P1(i − n, y)rn,

P1(i, 0) = λ

i∑
n=0

P0(i − n)rn + iσP0(i),

∂Pl(i, y)
∂y

= −(λ + vl(y))Pl(i, y) + λ
i∑

n=0

Pl(i − n, y)rn, l = 2, L,

Pl(i, 0) = P0(i)αl, l = 2, L. (1)

We denote the partial characteristic functions

H0(u) =
∞∑

i=0

ejuiP0(i), H1(u, y) =
∞∑

i=0

ejuiP1(i, y),

Hl(u, y) =
∞∑

i=0

ejuiPl(i, y), r(u) =
∞∑

n=1

ejunrn,

where

P1(0, y) ≡ 0,
r0 = 0.

We rewrite system of Eq. (1) in the following form

−
(

λ +
L∑

l=2

αl

)
H0(u) + e−ju

∞∫
0

H1(u, y)μ(y)dy

+
L∑

l=2

∞∫
0

Hl(u, y)vl(y)dy + jσH ′
0(u) = 0,

∂H1(u, y)
∂y

= ((r(u) − 1)λ − μ(y))H1(u, y),

H1(u, 0) = λr(u)H0(u) − jσH ′
0(u),

∂Hl(u, y)
∂y

= ((r(u) − 1)λ − vl(y))Hl(u, y), l = 2, L,

Hl(u, 0) = αlH0(u), l = 2, L.

(2)

Theorem 1. The characteristic function of the number of incoming calls in
M [n]|GI|GI|1|L retrial queue with batch Poisson input and multiple types of
outgoing calls has the following form:

H(u)

= H0(u)

(
1 + (λr(u) − jσh(u))

1 − B∗(λ − λr(u))

λ − λr(u)
+

L∑
l=2

αl
1 − V ∗

l (λ − λr(u))

λ − λr(u)

)
.
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Here B∗(u) and V ∗
l (u) are the Laplas-Stieltjes transforms of the functions B(x)

and Vl(x), l = 2, L respectively. Function H0(u) is defined by the equations

H0(u) = P0 exp

⎧⎨
⎩

u∫
0

h(x)dx

⎫⎬
⎭ ,

h(u) = j

λ
(
e−jur(u)B∗(λ − λr(u)) − 1

)
+

L∑
l=2

αl (V ∗
l (λ − λr(u)) − 1)

σ{1 − e−juB∗(λ − λr(u))} ,

h(0) = j
λ

σ
·
r

(
1 +

L∑
l=2

αlvl

)
− (1 − rλb)

1 − rλb
,

P0 =
1 − rλb

1 +
L∑

l=2

αlvl

,

where b and vl are the mean values of probability distributions B(x) and Vl(x),
l = 2, L; r is the mean number of calls in batch.

Proof. We introduce the notations in the system (2)

H1(u, y) = (1 − B(y))h1(u, y),
Hl(u, y) = (1 − Vl(y))hl(u, y), l = 2, L,

(3)

in order to obtain the following system of equations

−
(

λ +
L∑

l=2

αl

)
H0(u) + e−ju

∞∫
0

h1(u, y)dB(y)

+
L∑

l=2

∞∫
0

hl(u, y)dVl(y) + jσH ′
0(u) = 0,

−B′(y)h1(u, y) + (1 + B(y))
∂h1(u, y)

∂y
=(

(r(u) − 1)λ − B′(y)
1 − B(y)

)
(1 − B(y))h1(u, y),

h1(u, 0) = λr(u)H0(u) − jσH ′
0(u),

−V ′
l (y)h1(u, y) + (1 − Vl(y))

∂h1(u, y)
∂y

=
(

(r(u) − 1)λ − V ′
l (y)

1 − Vl(y)

)
(1 − Vl(y))hl(u, y), l = 2, L,

hl(u, 0) = αlH0(u), l = 2, L.

(4)
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From (4) we have

−
(

λ +
L∑

l=2

αl

)
H0(u) + e−ju

∞∫
0

h1(u, y)dB(y)+

L∑
l=2

∞∫
0

hl(u, y)dVl(y) + jσH ′
0(u) = 0,

∂h1(u, y)
∂y

= λ(r(u) − 1)h1(u, y),

h1(u, 0) = λr(u)H0(u) − jσH ′
0(u),

∂h1(u, y)
∂y

= λ(r(u) − 1)hl(u, y), l = 2, L,

hl(u, 0) = αlH0(u), l = 2, L.

(5)

The solutions of the second and fourth equations were obtained as follows.

h1(u, y) = h1(u, 0) exp{λ(r(u) − 1)y},
hl(u, y) = hl(u, 0) exp{λ(r(u) − 1)y}.

(6)

Substituting (6) into the first equation of the system (5) and denoting the Laplas-
Stieltjes transforms as B∗(u) and V ∗

l (u) we obtain

−
(

λ +
L∑

l=2

αl

)
H0(u) + e−juh1(u, 0)B∗(λ − λr(u))

+
L∑

l=2

hl(u, 0)V ∗
l (λ − λr(u)) + jσH ′

0(u) = 0.

We transform the last equation

−
(

λ +
L∑

l=2

αl

)
H0(u) + e−ju{λr(u)H0(u) − jσH ′

0(u)}B∗(λ − λr(u))

+
L∑

l=2

αlH0(u)V ∗
l (λ − λr(u)) + jσH ′

0(u) = 0.(
−λ −

L∑
l=2

αl + e−juλr(u)B∗(λ − λr(u)) +
L∑

l=2

αlV
∗
l (λ − λr(u))

)
H0(u)

+jσH ′
0(u){1 − e−juB∗(λ − λr(u))} = 0.

jH0(u)

(
λ(e−jur(u)B∗(λ − λr(u)) − 1) +

L∑
l=2

αl(V ∗
l (λ − λr(u)) − 1))

)
=

σH ′
0(u){1 − e−juB∗(λ − λr(u))}.

(7)

We denote

h(u) = j

λ(e−jur(u)B∗(λ − λr(u)) − 1) +
L∑

l=2

αl(V ∗
l (λ − λr(u)) − 1)

σ{1 − e−juB∗(λ − λr(u))} , (8)
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Then we rewrite (7) as follows

H ′
0(u) = H0(u)h(u). (9)

The solution of Eq. (9) has the following form:

H0(u) = P0 exp

⎧⎨
⎩

u∫
0

h(x)dx

⎫⎬
⎭ ,

h(u) = j

λ(e−jur(u)B∗(λ − λr(u)) − 1) +
L∑

l=2

αl(V ∗
l (λ − λr(u)) − 1)

σ{1 − e−juB∗(λ − λr(u))} .

(10)

Let us consider Eqs. (3) and (6)

H1(u, y) = (1 − B(y))h1(u, y) = h1(u, 0) exp{λ(r(u) − 1)y}(1 − B(y)),
Hl(u, y) = (1 − Vl(y))hl(u, y) =

hl(u, 0) exp{λ(r(u) − 1)y}(1 − Vl(y)), l = 2, L.
(11)

Integrating Eq. (11) by y we have

H1(u) =

∞∫
0

H1(u, y)dy = h1(u, 0)
1 − B∗(λ − λr(u))

λ − λr(u)
,

Hl(u) =

∞∫
0

Hl(u, y)dy = hl(u, 0)
1 − V ∗

l (λ − λr(u))
λ − λr(u)

, l = 2, L.

Taking (4) into account we obtain

H1(u) = H0(u)(λr(u) − jσh(u))
1 − B∗(λ − λr(u))

λ − λr(u)
,

Hl(u) = αlH0(u)
1 − V ∗

l (λ − λr(u))
λ − λr(u)

, l = 2, L.

The characteristic function of the number of incoming calls in the system can
be obtained as follows

H(u) = H0(u) + H1(u) +
L∑

l=2

Hl(u)

= H0(u)

(
1 + (λr(u) − jσh(u))

1 − B∗(λ − λr(u))

λ − λr(u)
+

L∑
l=2

αl
1 − V ∗

l (λ − λr(u))

λ − λr(u)

)
,

where function H0(u) is defined by (10). Let us consider the normalization con-
dition

1 − B∗(λ − λr(u))
λ − λr(u)

∣∣∣∣
u=0

= b =

∞∫
0

xdB(x),

1 − V ∗
l (λ − λr(u))

λ − λr(u)

∣∣∣∣
u=0

= vl =

∞∫
0

xdVl(x),
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where b and vl are the mean values of probability distributions B(x) and Vl(x),
l = 2, L. On the other hand we have

1 = P0

(
1 + (λ − jσh(0))b +

L∑
l=2

αlvl

)
. (12)

We consider (10) in order to obtain the function h(0)

σ
{
1 − e−juB∗(λ − λr(u))

}
h(u)

= jλ(e−jur(u)B∗(λ − λr(u)) − 1) + j

L∑
l=2

αl(V ∗
l (λ − λr(u)) − 1).

Differentiating left and right parts of the equation by u we obtain{
jσe−juB∗(λ − λr(u)) + σe−jur′(u)λB∗′(λ − λr(u))

}
h(u)

= jλ
(−je−jur(u)B∗(λ − λr(u)) + e−jur′(u)B∗(λ − λr(u))

−λe−jur(u)r′(u)B∗′(λ − λr(u))
) − jλ

L∑
l=2

αlr
′(u)V ∗

l
′(λ − λr(u)).

(13)

Denoting r′(u)|u=0 = jr, where r is mean number of calls in the batch, we
substitute u = 0 in equality (13)

σ{1 − rλb}h(0) = jλ

(
r − 1 + rλb + r

L∑
l=2

αlvl

)

= jλ

(
rλb − 1 + r

(
1 +

L∑
l=2

αlvl

))
.

(14)

Thus,

h(0) = j
λ

σ
·
r

(
1 +

L∑
l=2

αlvl

)
− (1 − rλb)

1 − rλb
. (15)

From the last equation we obtain

P0 =
1 − rλb

1 +
L∑

l=2

αlvl

.

4 Numerical Example

We fix probability functions B(x) as a gamma distribution with shape parameter
s1 and scale parameter γ1, s1 = γ1 = 2.

The server makes an outgoing call of type l with rate αl, l = 2, 4 and serves
it for an arbitrary distributed time with probability function Vl(x), l = 2, 4 as
a gamma distribution with shape parameter sl, l = 2, 4 and scale parameter
γl, l = 2, 4 and s2 = γ2 = 0.5, s3 = γ3 = 1.5, s4 = γ4 = 3.
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Fig. 1. Probability distribution of the number of incoming calls in the system, σ = 5

Fig. 2. Probability distribution of the number of incoming calls in the system, σ = 1.

The arrival rate of the batch Poisson input flow is λ = 0.4 and probabil-
ity distribution of the number of customers in the batch is shifted geometric
distribution with parameter q = 0.5.

Figures 1, 2 and 3 show the probability distribution of the number of incoming
calls in the system in cases of σ = 5, σ = 1 and σ = 0.2.
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Fig. 3. Probability distribution of the number of incoming calls in the system, σ = 0.2.

5 Conclusions

In the current paper we have considered retrial queue with batch Poisson input,
multiple types of outgoing calls and arbitrary distributions of the service dura-
tions and the number of calls in the batch. Using a supplementary variable
method we have obtained an explicit expression of the stationary probability
distribution of the number of incoming calls in the system and the probability
that the server is idle. We have provided a numerical examples for cases where
the distribution of service durations is gamma and the distribution of the number
of calls in the batch is shifted geometric.
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Abstract. Mathematical models of the multichannel queueing systems
with both instantaneous and delayed feedbacks are proposed. Proba-
bilities of leaving the system, instantaneous returning to channels and
entering to orbit depend on the number of calls in orbit. Both models
with finite and infinite size of orbit are investigated. Refined approximate
algorithms to calculate the steady-state probabilities as well as quality
of service (QoS) metrics of the system are developed. Execution time of
the proposed algorithms is negligible. Results of numerical experiments
are given.
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1 Introduction

Queuing systems with feedback are adequate mathematical models of many real
situations in which part of already serviced calls return to the system to get
additional service. Among models of queuing systems with feedback two kinds
of models should be distinguished: (1) models with instantaneous feedback (i.e.
models without orbit) and (2) models with delayed feedback (i.e. models with
orbit). In the literature both kinds of models have been investigated separately.
Note that first papers devoted to both kinds of feedback were published by
Takacs in [1] and [2]. In future the models of queuing systems with single node
and instantaneous and delayed feedback were investigated in [3–9] and [10–17]
correspondingly. In [18–22] tandem open queueing networks with instantaneous
feedback are used for the analysis of integrated cellular communication network
and wireless local area network. A similar queuing network model with delayed
feedback is presented in [23] to analyze the call center, where it is assumed that
there is no place for waiting before first node of the network and the size of
intermediate buffer between nodes is limited. Models of queuing systems with
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A. Dudin et al. (Eds.): ITMM 2019, CCIS 1109, pp. 188–201, 2019.
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simultaneously instantaneous and delayed feedback have been investigated in
recent papers [24–26]. In last papers detailed review of indicated above work
might be found. In this paper, the Markov models of multi-channel queuing
systems with instantaneous and delayed feedback are examined. Following the
above mentioned works it is assumed that primary and feedback calls have the
same channel holding times. However unlike the known works here it is assumed
that both departure and feedback probabilities are state-dependent. Moreover,
we consider models with linear but not constant retrial rate from the orbit which
has either finite or infinite size. These assumptions essentially broaden applica-
bility of their results in real systems.

The main task in the analysis of the investigated queuing systems with feed-
back is to find steady-state probabilities of the appropriate two-dimensional
Markov Chains (2D MC) with large number of states. In known works to solve
this problem mainly matrix-geometric method (MGM) [27] and spectral expan-
sion method (SEM) [28], are used. However, in order to apply these methods
some unrealistic assumptions should be accepted. For example, usually it is
assumed that retrial rate from the orbit is constant, i.e. it is independent of
the number of calls in the orbit. Unlike the known works investigated here 2D
MC represent Level Dependent Quasi Birth-Death (LDQBD) process.

Note that an approach based on the system of equilibrium equations (SEE)
for calculate the steady-state probabilities becomes inefficient for the large scale
models. So, developing efficient methods for approximate analysis of models with
a large number of channels and large size of orbit is highly desired. Below we
develop space merging algorithms (SMA) to approximate calculate the steady-
state probabilities of the queuing models with instantaneous and delayed feed-
back. Computation time which is needed by SMA is almost zero since it executed
by explicit formulas many of which are even tabulated. Numerical results demon-
strate high accuracy of the proposed method.

The rest of this paper is organized as follows. The description of the model
with state-dependent feedback probabilities is presented in Sect. 2. Exact and
approximate methods to calculate the QoS metrics are developed in Sect. 3. The
results of numerical experiments performed by using the developed SMA are
demonstrated in Sect. 4. Conclusion remarks are given in Sect. 5.

2 Description of the Model with Feedback

The system has N > 1 independent and identical channels and accepts Poisson
flow of primary calls (p-calls) with λ intensity. After serving p-calls it either (1)
leaving the system with probability σ1 (x), either (2) instantaneously repeated
service with probability σ2 (x) (instantaneous feedback) or (3) it goes to the orbit
with probability σ3 (x) = 1 − σ1 (x) − σ2 (x) in order for repeated call after a
random time (delayed feedback). These probabilities depend on the state x of a
random environment, x ∈ X, where X is the set of possible states of the random
environment. It is assumed that there is no limit on the number of repetition of
calls, i.e. p-call and retrial call (r-call) can be repeated to be serviced arbitrary
times.
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Delayed r -calls forms orbit with the maximum size R, 0 < R ≤ ∞. The
limitation on the size of the orbit (i.e. case R < ∞) means that the call can
enter orbit if total number of retrial calls are less than R at the time of arrival;
otherwise it leaves the system.

Delayed r -calls require repeated service at random times, which are subject
to exponential distribution with mean 1/η. If at the time of generation of delayed
r -call has at least one free channel in the system, then it is accepted to service.
Distribution functions of channel occupancy time of primary and repeated calls
are assumed be independent and exponential with same parameter 1/μ.. It is
expected that delayed r -calls are persistent, i.e. if all the channels are busy at
the moment of arrival of delayed r -calls, then they either leave the system with
probability αj ,or with probability 1 − αj return to the orbit, where j is the
current number of calls in orbit, j = 1, 2, ..., R.

It is assumed that the state of a random environment is determined by num-
ber of r -call in orbit, i.e. set of all possible states of the random environment is
defined as X = {0, 1, 2, ..., R} . Obviously, in case R < ∞ we have σ3 (R) = 0.

The problem is finding the joint probability distribution of the number of
calls in system and number of repeated calls in the orbit. Determination of the
indicated probability distribution allows calculate the desired QoS metrics as
well.

3 Exact and Approximate Methods to Calculate the
Steady-State Probabilities

First consider model with finite size of orbit, i.e. R < ∞. State of the system is
defined by the two-dimensional (2D) vector (i, j), where i is the total number of
calls (primary and repeated) in the channels, i = 0, 1, ..., N, and j indicates the
number of repeated calls in the orbit j = 0, 1, ..., R. Based on the distribution
function of the random variables involved in the formation of the model, we
determine that the studied system is described by the two-dimensional Markov
chain (2D MC). The set of all possible states of the system, i.e., state space of
given 2D MC is defined as S = {0, 1, ..., N} × {0, 1, ..., R} . The transition rate
from the state (i, j) ∈ S to the state (m,n) ∈ S is denoted as q((i, j), (m,n)).
The combination of these quantities involves Q-matrix of given 2D MC and are
determined from the following relations:

For the case 0 ≤ i ≤ N − 1 :

q ((i, j) , (m,n)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ, if (m,n) = (i + 1, j) ,
iμσ1 (j) , if (m,n) = (i − 1, j) ,
iμσ3 (j) , if j < R, (m,n) = (i − 1, j + 1) ,
jη, if (m,n) = (i + 1, j − 1) ,
0 in other cases.

(1)
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For the case i = N :

q ((N, j) , (m,n)) =

⎧
⎪⎪⎨

⎪⎪⎩

Nμσ1 (j) , if (m,n) = (N − 1, j) ,
Nμσ3 (j) , if j < R, (m,n) = (N − 1, j + 1) ,
jηαj , if (m,n) = (N, j − 1) ,
0 in other cases.

(2)

As we seen from (1) and (2) the given finite 2D MC represent level dependent
quasi birth-death (LDQBD) process and it is an irreducible. In other words, there
exist its stationary steady-state probabilities. Let p(i, j) means the stationary
probability of state (i, j) ∈ S. These probabilities are determined by solving the
system of equilibrium equations (SEE), which is compiled on the basis of (1)
and (2). Due to the obviousness of the SEE it is not provided here. It is easy
to derive desired QoS metrics via steady-state probabilities. There are several
general QoS metrics, some of which are listed below:

• The loss probability of primary calls (Pp) is given by

Pp =
R∑

j=0

p (N, j) . (3)

• The loss probability of repeated calls (Pr) is expressed as

Pr =
R∑

j=1

p (N, j) αj . (4)

• The average number of busy channels (Nav) is given by

Nav =
N∑

i=1

i

R∑

j=0

p (i, j) . (5)

• The average number of the repeated calls in orbit (L0) is expressed as

Lo =
R∑

j=1

j

N∑

i=0

p (i, j) . (6)

The dimension of SEE determined by the dimension of the state space S, which
is defined as (N + 1) (R + 1). Unfortunately, it’s difficult to find the analytical
solution of this system of equations. Therefore, it’s required to use numerical
methods of linear algebra for its solution. The known methods allow an accu-
rate study the behavior QoS metrics (3)-(6) with respect to structural changes
and load parameters of the models with moderate dimensions. With the growing
dimension of the state space S, these methods are faced computational difficul-
ties. To eliminate them, we use the SMA to calculate the stationary distribution
of 2D MC (see [24–26]).

For correct use of this method, below we assume that σ3 (j) � σ1 (j)+σ2 (j).
It is important to note that the probabilities σ3 (j) are not so small that they
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can be ignored. Otherwise we can just add the rate of r -calls to the p-calls rate
and further investigate the model without r -calls.

Consider the following splitting of state space S :

S =
R⋃

j=0

Sj , Si

⋂
Sj = ∅ , i �= j, (7)

where Sj = {(i, j) ∈ S : i = 0, 1, ..., N} , j = 0, 1, ..., R.
Merge function on the state space S is determined on the basis of the splitting

(7) as follows:
U ((i, j)) =< j > , (8)

where < j > is a merge state, which includes all the states of the Sj . Let
Ω = {< j >: j = 0, 1, ..., R} .

The approximate values of steady-state probabilities of the initial model are
defined as follows:

p̃ (i, j) ≈ ρj (i) π (< j >) , (9)

Where ρj (i) denotes the state probability of (i, j) within the splitting model with
state space Sj , and π (< j >) is the probability of the merge state < j >∈ Ω .

From splitting scheme (7) it’s clear that all the splitting models are one-
dimensional birth and death processes (1D BDP), so that in the class of states Sj

the second component is constant. Therefore, in the study of the splitting model
with state space Sj microstate (i, j) ∈ S can be representing by scalari, i =
0, 1, ..., N . The transition intensity between states i and k in the splitting model
with state space Sj is denoted by qj (i, k) , i, k = 0, 1, ..., N. From (1) and (2) we
get that these parameters are defined as follows:

qj (i, k) =

⎧
⎨

⎩

λ, if k = i + 1,
iμσ1 (j) , if k = i − 1,
0 in other cases.

(10)

From (10) we conclude that the state probabilities within the split-
ting model with state space Sj are defined as follows:

ρj (i) =
νi

j

i!
ρj (0) , i = 1, 2, ..., N, (11)

where νj = λ/μσ1 (j) ,ρj (0) is derived from normalizing condition, i.e.
∑N

i=0 ρj (i) = 1.
The transition intensity from the merge state < i > to other merge state

< j > is denoted as q (< i >,< j >) , < i >,< j >∈ Ω . After certain algebras
on the bases of (1), (2) and (11) we obtain:

q (< i >,< j >) =

⎧
⎨

⎩

Λi, if j = i + 1,
iΨi, if j = i − 1,
0 in other cases,

(12)
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where Λi = μσ3 (i)
∑N

k=1 kρi (k) , i = 0, 1, ..., R − 1 ; Ψi = η (1 − (1 − αi) ρi

(N)) , i = 1, 2, .., R. From (12) we conclude that the probabilities of the merging
states π (< j >) , < j >∈ Ω, are calculated as the state probabilities of 1-D BDP.
In other words,

π (< j >) =
1
j!

j∏

i=1

Λi−1

Ψi
π (< 0 >) , j = 1, ..., R, (13)

where π (< 0 >) is derived from normalizing condition, i.e.,
∑R

j=0 π (< j >) = 1.
Therefore, taking into account the relations (11) and (13) from (9) we calculate
the steady-state probabilities of the initial 2D MC. After certain algebras we
obtain the following approximate formulas for calculating the desired QoS met-
rics of the system:

Pp ≈
R∑

i=0

ρi (N) π (< i >) ; (14)

P r ≈
R∑

i=1

ρi (N) π (< i >) αi; (15)

Nav ≈
N∑

k=1

k

R∑

i=0

ρi (k) π (< i >) ; (16)

Lo ≈
R∑

i=1

iπ (< i >) . (17)

Special Case. Let the probabilities σi (j) , i = 1, 2, 3 and αj are constants, i.e.
they don’t depend on the number of calls in orbit j, j = 0, 1, ..., R. In this case
the above formulas (10)-(17) are getting more simplified. Thus, in this case the
state probabilities within all splitting models coincide with state probabilities of
classical Erlang’s model M /M /N /N with loadν = λ/μσ1, i.e.

ρ (i) =
νi

i!

/
N∑

j=0

νj

j!
, i = 1, 2, ..., N . (18)

By taking into account (1), (2), (18) after certain algebras, we obtain:

q (< i >,< j >) =

⎧
⎨

⎩

Λ, if j = i + 1,
iΨ, if j = i − 1,
0 in other cases,

(19)

where Λ = λσ3
σ1

(1 − EB (v,N)) ; Ψ = η (1 − (1 − α) EB (v,N)) . Here and
below EB (ν,N) indicate the Erlang’s loss formula in M /M /N /N with load
ν, i.e. EB (ν,N) = ρ (N).

Consequently, in this case, the probabilities of the merging states are defined
as follows:

π (< j >) =
(Λ/Ψ)j

j!
π (< 0 >) , j = 0, 1, ..., R. (20)
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Then the QoS metrics are defined as follows:

Pp ≈ EB (ν,N) ; (21)

Pr ≈ αEB (ν,N) (1 − π (< 0 >)) ; (22)

Nav ≈ ν (1 − EB (ν,N)) ; (23)

Lo ≈ π (< 0 >)
R∑

i=1

(Λ/Ψ)i

(i − 1)!
. (24)

From the formulas (21) and (23) we conclude that the loss probability of the
primary calls and average number of busy channels doesn’t depend on the rate
of the retrial calls (see Eq. (20)). These metrics also does not depend on the size
of the orbit. These facts are explained by the fact that the approximate formulas
are based on the assumption that the probability of going to orbit essentially
less than sum of other two probabilities, i.e. rate of primary calls significantly
exceeds the rate of retrial calls from orbit. However, these QoS metrics depends
on the probability of leaving of calls from the system; therefore, they depend on
the probability of entering of the primary calls to the orbit after finishing the
service. In other words, these metrics are indirectly dependent on the size of the
orbit. It is important to note that in this case it is possible to obtain explicit
formulas for the model with an infinite size of the orbit, i.e., if R = ∞ then
from (20) we find that π (< 0 >) = e−Λ/Ψ . Therefore, in the model with infinite
size of the orbit and linear retrial rate the QoS metrics are determined by the
following simple formulas:

Pr ≈ αEB (ν,N)
(
1 − e−Λ/Ψ

)
; (25)

Lo ≈ Λ/Ψ. (26)

Let us now assume that in model with finite size of orbit retrial rate is constant,
i.e. retrial rate is independent of the number of calls in the orbit, i.e below we
assume that retrial rate is not linear as it was accepted above (see formulas (1)
and (2)). Then the state probabilities within all splitting models are calculated
by (18) and the transition rates between merged states are calculated similar to
(19) but in (19) we should take into account that in the right site the coefficient
of Ψ is equal to 1. So, in this case, for existence the stationary probabilities of
the merging states the ergodicy condition Λ < Ψ is required. Under satisfying
ergodicy condition the state probabilities of merged model coincide with state
probabilities of classical Erlang’s model M /M /1/∞ with load Λ/Ψ , i.e.

π (< j >) =
(

Λ

Ψ

)j (

1 − Λ

Ψ

)

, j = 0, 1, ... (27)
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Note 1. The ergodicy condition Λ < Ψ might be substitute by following
simple checkable but rough condition: λσ3

σ1
< η.

The QoS metrics Pp, Pr and Nav in this case are calculated by (21)-(23) while
average number of calls in the orbit is defined as follows:

Lo ≈ Λ

Ψ − Λ
. (28)

Under indicated above assumptions related to constancy of probabilities
σi (j) , αj application of the Spectral Expansion Method (SEM) to model with
finite size of orbit looks like following.

First, we define matrix Aj for purely lateral transitions (n = j):

Aj (i,m) =

⎧
⎨

⎩

λ if m = i + 1, i ≤ N − 1 ,
iμσ1 if m = i − 1 ,
0 otherwise .

(29)

Let’s define matrix Bj for one-step upward transitions (n = j + 1):

Bj (i,m) =
{

iμσ3 if m = i − 1 ,
0 otherwise .

(30)

Let’s define matrix Cj for one-step downward transitions (n = j − 1):

Cj (i,m) =

⎧
⎨

⎩

η if m = i + 1, i ≤ N − 1 ,
ηα if m = i = N ,
0 otherwise .

(31)

According to (29)-(31) we have Aj = A , Bj = B , Cj = C for any j. This
means that we could choose SEM threshold parameter Marbitrary quantity such
that 1 < M < R.

We define matrices DA, DB , DC with the element (m,m) as mth row sum
of the corresponding matrices A , B and C.

Let us introduce vectors v j = (p (0, j) , p (1, j) , ..., p (N, j)) , j = 0 , 1, ..., R.
Then steady-state balance equations will be as follows:

vj

(
DA + DB + DC

)
= vj−1B + vjA + vj+1C , (32)

R∑

j=0

vje = 1 , (33)

where e is unit column vector of size N + 1 and v−1 = 0 .
From (32) matrix-difference equation of second order is derived:

vjQ0 + vj+1Q1 + vj+2Q2 = 0 , (34)
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Where Q0 = B, Q1 = A − DA − DB − DC , Q2 = C .It is assumed that both
matrices Q0 and Q2 has full rang and there exists their inverses. Based on (34)
the following characteristic matrix polynomial of second order is obtained:

Q (λ) = Q0 + Q1λ + Q2λ
2.

According to SEM we conclude that vectors vj , j = 0, 1, ..., R, might be
represents as follows:

vj =
N∑

k=0

akψkλj+1
k , (35)

or equivalently

p (i, j) =
∑N

k=0
akψk (i) λj+1

k , j = M − 1, ..., R ,

Where (ψk, λk) be eigenvector and eigenvalue pairs of matrix Q (λ). It is assumed
that |λk| < 1 and unknown parameters ak, k = 0, 1, ..., N, are calculated by
using some recurrence procedure based on (32) and (35).

4 Numerical Results

This section has two-fold purpose. Firstly, we illustrate the high accuracy of
developed algorithms and secondly, we show that execution time of these algo-
rithms is less than appropriate algorithms based on original spectral expansion
method. Consider the model with finite size of orbit. Below in numerical exper-
iments, we choose the following parameters: σ1 = 0.5, σ2 = 0.3, α = 0.8. The
exact values (EV) of steady-state probabilities and performance measures are
calculated by using SEE. The accuracy of the developed SMA to calculation of
the steady-state probabilities is estimated by following norms: Maximum abso-
lute difference:

‖N‖1 = max
n∈E

|p (n) − p̃ (n)| . (36)

Cosine similarity:

‖N‖2 =
∑

n∈E p (n) p̃ (n)
(∑

n∈E (p (n))2
) 1

2
(∑

n∈E (p̃ (n))2
) 1

2
. (37)
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Table 1. Estimation of accuracy of SMA to calculate the steady-state probabilities
versus various norms.

(N , R) (λ, η) μ Norms

(36) (37)

(4,2) (55,30) 15 0.0413 0.9939

(60,40) 20 0.0380 0.9944

(65,50) 25 0.0344 0.9951

(4,3) (55,30) 15 0.0408 0.9939

(60,40) 20 0.0375 0.9944

(65,50) 25 0.0341 0.9951

(4,4) (55,30) 15 0.0407 0.9939

(60,40) 20 0.0375 0.9944

(65,50) 25 0.0340 0.9951

(5,2) (55,30) 15 0.0364 0.9932

(60,40) 20 0.0312 0.9944

(65,50) 25 0.0265 0.9957

(5,3) (55,30) 15 0.0356 0.9932

(60,40) 20 0.0306 0.9945

(65,50) 25 0.0261 0.9957

(5,4) (55,30) 15 0.0355 0.9932

(60,40) 20 0.0305 0.9945

(65,50) 25 0.0260 0.9957

(6,2) (55,30) 15 0.0300 0.9933

(60,40) 20 0.0235 0.9954

(65,50) 25 0.0185 0.9969

(6,3) (55,30) 15 0.0290 0.9934

(60,40) 20 0.0229 0.9955

(65,50) 25 0.0180 0.9970

(6,4) (55,30) 15 0.0289 0.9934

(60,40) 20 0.0228 0.9955

(65,50) 25 0.0180 0.9970

The comparison results of the steady-state probabilities and performance mea-
sures are given in Tables 1 and 2 correspondingly. We conclude from these tables
that the accuracy of the SMA is very high. We also compare the results obtained
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Table 2. Estimation of accuracy of SMA to calculate performance measures, EV –
Exact Value, AV – Approximate Value.

(N , R) (λ, η) μ Pp Pr Nav Lo

EV AV EV AV EV AV EV AV

(4, 2) (55, 30) 15 0.5017 0.5441 0.0886 0.1342 3.2648 3.3429 0.3393 0.3569

(60, 40) 20 0.4321 0.4696 0.0690 0.1098 3.1071 3.1826 0.3199 0.3359

(65, 50) 25 0.3808 0.4138 0.0562 0.0925 2.9769 3.0482 0.3046 0.3191

(4, 3) (55, 30) 15 0.5009 0.5441 0.0892 0.1360 3.2625 3.3429 0.3501 0.3728

(60, 40) 20 0.4315 0.4696 0.0695 0.1111 3.1052 3.1826 0.3289 0.3495

(65, 50) 25 0.3804 0.4138 0.0566 0.0935 2.9752 3.0482 0.3123 0.3309

(4, 4) (55, 30) 15 0.5009 0.5441 0.0893 0.1361 3.2623 3.3429 0.3511 0.3749

(60, 40) 20 0.4315 0.4696 0.0695 0.1113 3.1050 3.1826 0.3296 0.3511

(65, 50) 25 0.3803 0.4138 0.0566 0.0936 2.9751 3.0482 0.3129 0.3322

(5, 2) (55, 30) 15 0.4053 0.4439 0.0831 0.1257 3.9906 4.0784 0.4022 0.4186

(60, 40) 20 0.3291 0.3604 0.0608 0.0960 3.7572 3.8376 0.3760 0.3900

(65, 50) 25 0.2753 0.3009 0.0469 0.0760 3.5633 3.6354 0.3552 0.3670

(5, 3) (55, 30) 15 0.4043 0.4439 0.0839 0.1279 3.9867 4.0784 0.4203 0.4433

(60, 40) 20 0.3285 0.3604 0.0614 0.0975 3.7540 3.8376 0.3909 0.4103

(65, 50) 25 0.2749 0.3009 0.0473 0.0771 3.5607 3.6354 0.3679 0.3843

(5, 4) (55, 30) 15 0.4042 0.4439 0.0840 0.1281 3.9863 4.0784 0.4224 0.4471

(60, 40) 20 0.3284 0.3604 0.0614 0.0976 3.7537 3.8376 0.3925 0.4132

(65, 50) 25 0.2749 0.3009 0.0473 0.0772 3.5605 3.6354 0.3691 0.3866

(6, 2) (55, 30) 15 0.3192 0.3517 0.0731 0.1100 4.6622 4.7542 0.4566 0.4707

(60, 40) 20 0.2412 0.2649 0.0495 0.0773 4.3320 4.4105 0.4226 0.4336

(65, 50) 25 0.1891 0.2068 0.0357 0.0568 4.0588 4.1245 0.3954 0.4041

(6, 3) (55, 30) 15 0.3182 0.3517 0.0741 0.1123 4.6568 4.7542 0.4831 0.5045

(60, 40) 20 0.2406 0.2649 0.0502 0.0787 4.3278 4.4105 0.4441 0.4608

(65, 50) 25 0.1888 0.2068 0.0361 0.0577 4.0556 4.1245 0.4135 0.4265

(6, 4) (55, 30) 15 0.3180 0.3517 0.0742 0.1126 4.6560 4.7542 0.4868 0.5105

(60, 40) 20 0.2405 0.2649 0.0503 0.0789 4.3273 4.4105 0.4468 0.4651

(65, 50) 25 0.1888 0.2068 0.0362 0.0578 4.0552 4.1245 0.4155 0.4298

by SEM and SMA for the model with infinite orbit size (see Table 3). It is clear
from Table 3 that results are very close. Additionally, the SMA is more compu-
tationally efficient than the SEM, as the SEM algorithm involves finding of eigen
value/vectors and solving of the system of linear equation.
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Table 3. The comparison of results obtained by SEM and SMA for the model with
infinite orbit size.

(N, μ) (λ, η) Pp Pr Nav Lo

SEM SMA SEM SMA SEM SMA SEM SMA

(4, 25) (20, 10) 0.0540 0.0565 0.0311 0.0345 1.4887 1.5097 2.9318 3.2274

(30, 15) 0.1281 0.1387 0.0652 0.0786 2.0142 2.0671 2.0839 2.4328

(40, 20) 0.2069 0.2281 0.0916 0.1181 2.3914 2.4699 1.5383 1.8329

(4, 30) (20, 10) 0.0340 0.0351 0.0203 0.0218 1.2744 1.2865 3.2608 3.4916

(30, 15) 0.0893 0.0952 0.0486 0.0562 1.7728 1.8095 2.4692 2.8148

(40, 20) 0.1546 0.1687 0.0751 0.0929 2.1542 2.2168 1.8720 2.2078

(4, 40) (20, 10) 0.0151 0.0154 0.0093 0.0097 0.9802 0.9846 3.6363 3.7647

(30, 15) 0.0461 0.0480 0.0269 0.0295 1.4107 1.4281 3.0551 3.3292

(40, 20) 0.0893 0.0952 0.0486 0.0562 1.7728 1.8095 2.4692 2.8148

(5, 25) (20, 10) 0.0174 0.0177 0.0106 0.0112 1.5637 1.5716 3.5823 3.7304

(30, 15) 0.0591 0.0624 0.0335 0.0379 2.2180 2.2502 2.8501 3.1588

(40, 20) 0.1172 0.1274 0.0600 0.0730 2.7289 2.7923 2.1804 2.5252

(5, 30) (20, 10) 0.0092 0.0093 0.0057 0.0059 1.3173 1.3210 3.7676 3.8555

(30, 15) 0.0353 0.0367 0.0209 0.0228 1.9084 1.9266 3.2304 3.4711

(40, 20) 0.0773 0.0825 0.0424 0.0493 2.4039 2.4465 2.6072 2.9414

(5, 40) (20, 10) 0.0031 0.0031 0.0019 0.0020 0.9960 0.9969 3.9186 3.9514

(30, 15) 0.0139 0.0142 0.0086 0.0090 1.4727 1.4787 3.6578 3.7823

(40, 20) 0.0353 0.0367 0.0209 0.0228 1.9084 1.9266 3.2304 3.4711

(6, 25) (20, 10) 0.0047 0.0047 0.0029 0.0030 1.5902 1.5925 3.8752 3.9257

(30, 15) 0.0236 0.0244 0.0142 0.0153 2.3263 2.3415 3.4475 3.6368

(40, 20) 0.0599 0.0636 0.0336 0.0386 2.9547 2.9964 2.8349 3.1451

(6, 30) (20, 10) 0.0020 0.0021 0.0013 0.0013 1.3297 1.3306 3.9436 3.9673

(30, 15) 0.0119 0.0121 0.0073 0.0077 1.9690 1.9758 3.7007 3.8134

(40, 20) 0.0340 0.0354 0.0200 0.0220 2.5495 2.5723 3.2499 3.4881

(6, 40) (20, 10) 0.0005 0.0005 0.0003 0.0003 0.9993 0.9995 3.9856 3.9918

(30, 15) 0.0035 0.0035 0.0022 0.0023 1.4931 1.4947 3.9051 3.9441

(40, 20) 0.0119 0.0121 0.0073 0.0077 1.9690 1.9758 3.7007 3.8134

5 Conclusion

In this paper, mathematical models of multi-channel queuing system with instan-
taneous and delayed feedbacks are proposed. The probabilities of the return of
calls to immediate repeated service or going to orbit depends on the number of
calls in orbit. Models with finite and infinite size of the orbit for repeated calls
were investigated. Exact and approximate methods of calculating the steady-
state probabilities as well as QoS metrics of the given model were developed. High
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accuracy of the developed approximate formulas is shown by numerical exper-
iments. Comparisons of the developed method and spectral expansion method
are shown.
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Abstract. We consider the problem of estimating the probability den-
sity parameters of the interval duration values between adjacent moments
of occurrence of events in correlated synchronous generalized doubly
stochastic event flow of the second order under conditions of its com-
plete observability. The explicit form of parameter estimates is found by
the method of moments and the quality of estimates within the selected
criteria is established through the work of the flow simulation model.
Finally, numerical results of statistical experiments obtained using com-
putational analytical formulas and simulation modeling are given.

Keywords: Synchronous generalized event flow of the second order ·
Doubly stochastic flows · Probability density · Parameters estimation ·
Method of moments

1 Introduction

The intensive development of computer appliance and innovations in the field
of information technologies have stimulated the development of queueing theory
and the improvement of the mathematical apparatus used within it. The most
relevant research related to the design, subsequent implementation and main-
tenance of information and computing systems and networks of various config-
urations, whose mathematical models are queuing systems (QS) and queuing
networks (QN), arises primarily in the framework of incoming streams of events
(messages, requests) [1–3].

The complication of the structure of telecommunication systems, global com-
puter networks, satellite communication networks, various software and hard-
ware, integration of various communication systems have revealed the need to
construct new mathematical models of incoming streams in the form of dou-
bly stochastic flows, the studies of which are described in [4–9]. The intensity of
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A. Dudin et al. (Eds.): ITMM 2019, CCIS 1109, pp. 202–216, 2019.
https://doi.org/10.1007/978-3-030-33388-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33388-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-33388-1_17


Estimation of the Probability Density Parameters in the Correlated Flow 203

such flows can be represented by both continuous and piecewise constant random
processes with a finite number of states.

Flows with a step intensity function are most characteristic of real telecom-
munication networks and called MC (Markov chain) or MAP (Markovian Arrival
Process) flows [6–8]. The work [10] is devoted to the generalization of the MAP-
flows of events, while [11] is about establishing the relationship between MC-
flows and MAP-flows. This class of flows, in particular, includes synchronous
generalized event flow of the second order studied within this work [12,13]. It
should be noted separately that works on the study of QS and QN with incoming
MAP-flow of requests (as well as MMPP (Markov Modulated Poisson Process)
as its particular case) are of particular scientific and practical interest due to the
adequacy of such mathematical models to real processes and systems [14–16].

In the direct study of doubly stochastic flows, two main classes of problems
are addressed: estimating flow states [12,13,17–21] and estimating their param-
eters [22–26] from the observed moments of occurrence of events.

In papers [12,13], the problem of optimal estimation of the states of syn-
chronous generalized flow of the second order was solved: under conditions of
accessibility to observation of all its events in [12], in the presence of an unex-
tandable dead time in [13]. In this paper, we are solving the problem of estimating
the parameters of the probability density function of the interval duration values
between events in correlated flow using the method of moments.

2 Problem Statement

We consider a synchronous generalized doubly stochastic event flow of the sec-
ond order (flow) in stationary conditions and assume that the accompanying
process λ(t) is a piecewise constant random process with two states S1 and S2.
Hereinafter, Si is understood as ith state of λ(t), i = 1, 2.

The interval duration between flow events at the ith state is determined by
the random variable ηi = min(ξ(1)i , ξ

(2)
i ), where ξ

(1)
i , ξ

(2)
i are mutually indepen-

dent random variables with distribution F
(1)
i (t) = 1−e−λit, F

(2)
i (t) = 1−e−αit,

i = 1, 2, respectively. At the moment when a flow event occurs, depending
on the value ηi, i = 1, 2, the process λ(t) either transits from the ith state
to the jth state, i �= j, or remains at the ith state, i = j, with probabil-
ity P

(1)
1 (λj |λi) or P

(2)
1 (λj |λi), i, j = 1, 2. Here P

(1)
1 (λj |λi) + P

(1)
1 (λi|λi) = 1,

P
(2)
1 (λj |λi) + P

(2)
1 (λi|λi) = 1, i, j = 1, 2, i �= j. Thus, the flow inter-event

interval duration at the ith state of the process λ(t) is a random variable with
exponential distribution function Fi(t) = 1 − e−(λi+αi)t, i = 1, 2. In the sequel
it is assumed that the state Si takes place if λ(t) = λi, i = 1, 2 (λ1 > λ2 ≥ 0).

Under the above assumptions, λ(t) for the considered event flow is a hidden
Markov process [12] with infinitesimal characteristics matrices of the form

D0 =
∣
∣
∣
∣

∣
∣
∣
∣

−(λ1 + α1) 0
0 −(λ2 + α2)

∣
∣
∣
∣

∣
∣
∣
∣
,



204 L. Nezhelskaya et al.

D1 =

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

λ1P
(1)
1 (λ1|λ1) + α1P

(2)
1 (λ1|λ1) λ1P

(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1)

λ2P
(1)
1 (λ1|λ2) + α2P

(2)
1 (λ1|λ2) λ2P

(1)
1 (λ2|λ2) + α2P

(2)
1 (λ2|λ2)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
.

Elements of D1 are the intensities of the process λ(t) transitions from state
to state with a flow event occurrence. Off-diagonal elements of D0 represent
the transition intensities without an event occurrence; diagonal elements are the
intensities of the λ(t) output from its states, taken with the opposite sign [7].

A variant of the arising situation is shown in Fig. 1, where S1, S2 are the
states of the fundamentally unobservable random process λ(t); t1, t2, ..., tk, ...
are observable moments of occurrence of events in the flow under consideration.
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Fig. 1. Formation of the observed event flow

Let t0 and t represent the start and the end of observations, respectively;
then, the sequence of observable moments of occurrence of events on the interval
(t0, t) generates an embedded Markov chain {λ(tk)} due to the formulated pre-
requisites. In other words, the observed event flow has the Markov property, if its
evolution is considered from the moment of an event occurrence tk, k = 1, 2, ....

The study aim is to determine the explicit form of the probability density of
the interval duration between instants of occurrence of events in a synchronous
generalized flow of the second order, which is a correlated event flow in the
general case, and to estimate its parameters using the method of moments.

3 Derivation of the Probability Density

Let us denote the probability density of the duration values of the kth interval
between neighboring events tk and tk+1, k = 1, 2, ..., in the studied flow by p(τ).
Since we consider the steady-state operation mode of the flow, for any k ≥ 1
the equality p(τk) = p(τ), τ ≥ 0, is valid. As a consequence, the moment of
an event occurrence without any loss of generality can be set equal to zero, or,
equivalently, the moment when a flow event occurs is τ = 0.

Let pij(τ) be the conditional probability that there are no flow events on
the interval (0, τ) and the value of the process at the moment τ is λ(τ) = λj ,
provided that λ(0) = λi, i.e. the conditional probability that during the time
interval (0, τ) a non-conjugate with an event occurrence transition of the process
λ(τ) from the state Si to the state Sj , i, j = 1, 2, takes place.
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Lemma 1. The conditional probabilities pij(τ), i, j = 1, 2, in a correlated syn-
chronous generalized event flow of the second order have the form

p11(τ) = e−(λ1+α1)τ , p12(τ) = 0, p21(τ) = 0, p22(τ) = e−(λ2+α2)τ , τ ≥ 0. (1)

Proof. In accordance with the flow definition, the probabilities p12(τ), p21(τ) are
identically equal to zero, since transitions from state to state are accompanied
by an event occurrence. For p11(τ), p22(τ), the differential equations

p′
11(τ) = −(λ1 + α1)p11(τ), p′

22(τ) = −(λ2 + α2)p22(τ) (2)

with the initial conditions p11(0) = 1, p22(0) = 1 are valid. Integrating equations
with separable variables (2) between τ = 0 and τ , we get (1).

Lemma 2. The probability densities p̃ij(τ), i, j = 1, 2, in a correlated syn-
chronous generalized flow of the second order are determined by the formulas

p̃11(τ) = (λ1P
(1)
1 (λ1|λ1) + α1P

(2)
1 (λ1|λ1))e−(λ1+α1)τ ,

p̃12(τ) = (λ1P
(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1))e−(λ1+α1)τ ,

p̃21(τ) = (λ2P
(1)
1 (λ1|λ2) + α2P

(2)
1 (λ1|λ2))e−(λ2+α2)τ ,

p̃22(τ) = (λ2P
(1)
1 (λ2|λ2) + α2P

(2)
1 (λ2|λ2))e−(λ2+α2)τ .

(3)

Proof. The joint probabilities that, without an event occurrence on the interval
(0, τ), the process λ(τ) transits on this interval from the ith to the jth state,
i, j = 1, 2, the state Sj of the process λ(τ) ends on the half-closed interval
[τ, τ + Δτ) and at the moment when a flow event occurs, the process λ(τ)
transits from the jth state to the ith, i, j = 1, 2, will be written as

P11(τ) = p11(τ)(λ1P
(1)
1 (λ1|λ1) + α1P

(2)
1 (λ1|λ1))Δτ + o(Δτ),

P12(τ) = p11(τ)(λ1P
(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1))Δτ + o(Δτ),

P21(τ) = p22(τ)(λ2P
(1)
1 (λ1|λ2) + α2P

(2)
1 (λ1|λ2))Δτ + o(Δτ),

P22(τ) = p22(τ)(λ2P
(1)
1 (λ2|λ2) + α2P

(2)
1 (λ2|λ2))Δτ + o(Δτ).

(4)

Note that each of the considered joint probabilities (4) can be represented as
pii(τ)(λiP

(1)
1 (λj |λi)+αiP

(2)
1 (λj |λi))Δτ +o(Δτ) =

∫ τ+Δτ

τ
p̃ij(u)du = p̃ij(τ)Δτ +

o(Δτ), p̃ij(τ) is the probability density corresponding to Pij(τ), i, j = 1, 2.
Let us rewrite the last equality as pii(τ)(λiP

(1)
1 (λj |λi) + αiP

(2)
1 (λj |λi)) +

o(Δτ)
Δτ = p̃ij(τ) + o(Δτ)

Δτ , i, j = 1, 2, and let Δτ goes to zero; as a result we find

p̃ij(τ) = pii(τ)(λiP
(1)
1 (λj |λi) + αiP

(2)
1 (λj |λi)), i, j = 1, 2. (5)

Substituting in (5) pii(τ) from (1), we obtain (3).
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Lemma 3. For a correlated synchronous generalized event flow of the second
order, the transition probabilities pij, i, j = 1, 2, are determined by the formulas

p11 = (λ1P
(1)
1 (λ1|λ1) + α1P

(2)
1 (λ1|λ1)(λ1 + α1)−1,

p12 = (λ1P
(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1))(λ1 + α1)−1,

p21 = (λ2P
(1)
1 (λ1|λ2) + α2P

(2)
1 (λ1|λ2))(λ2 + α2)−1,

p22 = (λ2P
(1)
1 (λ2|λ2) + α2P

(2)
1 (λ2|λ2))(λ2 + α2)−1.

(6)

Proof. Since τ is an arbitrary time moment, then pij (the transition probabilities
of the process λ(τ) from the state Si to the state Sj , i, j = 1, 2, in the time from
τ = 0 to the moment of occurrence of the next flow event) are given by

pij =
∫ ∞

0

p̃ij(τ)dτ, i, j = 1, 2. (7)

Substituting (3) into (7), we find (6).

We denote by πi(0) the conditional stationary probability that the process
λ(τ) at the time moment τ = 0 is in the ith state provided that τ = 0 is the
moment of a flow event occurrence, i = 1, 2; π1(0) + π2(0) = 1.

Lemma 4. The conditional final probabilities πi(0), i = 1, 2, in a correlated
synchronous generalized flow of the second order are given by the expressions

π1(0) =
(λ1 + α1)φ2

(λ1 + α1)φ2 + (λ2 + α2)φ1
, π2(0) =

(λ2 + α2)φ1

(λ1 + α1)φ2 + (λ2 + α2)φ1
, (8)

where φ1 = λ1P
(1)
1 (λ2|λ1)+α1P

(2)
1 (λ2|λ1), φ2 = λ2P

(1)
1 (λ1|λ2)+α2P

(2)
1 (λ1|λ2).

Proof. Due to the fact that {λ(tk)} is an embedded Markov chain, the following
equations are valid for the probabilities πi(0), i = 1, 2,

π1(0) = p11π1(0) + p21π2(0), π2(0) = p12π1(0) + p22π2(0), (9)

pij , i, j = 1, 2, are determined by Lemma 3 and have the form (6). Substituting
(6) into (9), taking into account the normalization condition, we arrive at (8).

Lemmas 2 and 4 allow us to formulate the following theorem.

Theorem 1. In a correlated synchronous generalized flow of the second order,
the probability density of the interval duration values between neighboring flow
events takes the form

p(τ) = γ(λ1 + α1)e−(λ1+α1)τ + (1 − γ)(λ2 + α2)e−(λ2+α2)τ , τ ≥ 0, (10)

γ = π1(0), where π1(0) is defined in (8).
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Proof. Since the sequence of instants of occurrence of events generates an embed-
ded Markov chain, the density p(τ) in the correlated flow has the form

p(τ) =
2∑

i=1

πi(0)
2∑

j=1

p̃ij(τ), τ ≥ 0. (11)

Substituting into formula (11) first (3), and then explicit expressions (9) for the
probabilities πi(0), i = 1, 2, after the necessary manipulations, we obtain (10).

Note that (10) is the probability density p(τ) of a random variable distributed
according to the hyperexponential law with the corresponding parameters. The
last statement leads to the following remark.

Remark 1. The probability density of the inter-event interval duration of the flow
under study has the form (10) if and only if there is an additional condition for
setting the distribution parameters of the random variables ξ

(1)
i and ξ

(2)
i , i = 1, 2,

namely, (λ1+α1) �= (λ2+α2), which may well be violated in the original problem
formulation due to the fact that λ1 and λ2 satisfy the condition λ1 > λ2 ≥ 0,
but, at the same time, α1 and α2, generally speaking, are arbitrary non-negative
numbers. The equality (λ1 + α1) = (λ2 + α2) leads to the probability density of
a Poisson flow of events with parameter (λ1 + α1).

In the following, it is assumed that (λ1+α1) �= (λ2+α2). Putting α1 = α2 = 0
in (11), we obtain the probability density p(τ) for a synchronous event flow [27].

4 Estimation of the Probability Density Parameters

It is not possible to estimate by the method of moments the twelve unknown
parameters of a synchronous generalized flow of events of the second order
λi, αi, P

(1)
1 (λj |λi), P

(2)
1 (λj |λi), i, j = 1, 2, or eight parameters with regard to

P
(1)
1 (λi|λi) = 1 − P

(1)
1 (λj |λi), P

(2)
1 (λi|λi) = 1 − P

(2)
1 (λj |λi), i, j = 1, 2, i �= j,

having only information on the form of p(τ), as will be seen below. We will
estimate the unknown probability density parameters (λ1 + α1), (λ2 + α2), γ.

Remark 2. The considered event flow is, in general, correlated, i.e. the interval
durations between the instants of occurrence of events in the flow are depen-
dent random variables. This dependency does not allow us to speak about the
consistency of the estimates obtained by the method of moments, and we can
state their quality only on the basis of the results of simulation in sense of one
or another estimation quality criterion.

Let us introduce statistics Cl = 1
n

∑n
k=1 τk

l, where τk = tk+1 − tk (here,
we observe n + 1 flow events). Let τ1, τ2, ..., τn be a sample from the distribu-
tion p(τ |z1, z2, γ) = γz1e

−z1τ +(1−γ)z2e−z2τ , depending on the three unknown
parameters z1 = λ1+α1, z2 = λ2+α2 (without any loss of generality, we assume
z1 > z2), γ = π1(0), which must be estimated. The theoretical initial moment
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of the lth order E[τ l] =
∫ ∞
0

τ lp(τ |z1, z2, γ)dτ is a function of the unknown
parameters and, due to the closeness of the theoretical and empirical distribu-
tion functions for a sufficiently large n, the theoretical moment is close to the
corresponding sample moment (the statistics of the same order). Thus, for esti-
mating z1, z2, γ it is necessary to have three moment equations, i.e. E[τ l] = Cl,
l = 1, 3. The theoretical initial moment of the lth order is determined by the
formula E[τ l] = l!γz1

−l + l!(1 − γ)z2−l, l = 1, 3, on the basis of which we write
the system of equations for the unknowns z1, z2, γ:

γ

z1
+

(1 − γ)
z2

= C1, 2
γ

z12
+ 2

(1 − γ)
z22

= C2, 6
γ

z13
+ 6

(1 − γ)
z23

= C3. (12)

As a result of simple manipulations, we bring the system (12) to the form

γz2 + (1 − γ)z1 − z1z2C1 = 0, (z1 + z2)C1 − z1z2C2/2 = 1,

(z1 + z2)C2 − z1z2C3/3 = 2C1.
(13)

From the system (13), we find ẑ1 + ẑ2 = 2(3C1C2−C3)
3C2

2−2C1C3
, ẑ1ẑ2 = 6(2C1

2−C2)
3C2

2−2C1C3
.

Then the estimates ẑ1, ẑ2 of parameters z1, z2 are roots of the quadratic equation

z2 − x1z + x2 = 0 (14)

with known coefficients x1 = ẑ1+ẑ2 = 2(3C1C2−C3)
3C2

2−2C1C3
and x2 = ẑ1ẑ2 = 6(2C1

2−C2)
3C2

2−2C1C3
.

According to the condition z1 > z2, we have

ẑ1,2 =
3C1C2 − C3

3C2
2 − 2C1C3

± 1
2

√
(

2(3C1C2 − C3)
3C2

2 − 2C1C3

)2

− 4
6(2C1

2 − C2)
3C2

2 − 2C1C3

. (15)

Remark 3. ẑ1, ẑ2 as real positive roots of (14) exist if and only if all of conditions

are met:
(

2(3C1C2−C3)
3C2

2−2C1C3

)2

− 4 6(2C1
2−C2)

3C2
2−2C1C3

> 0, 3C1C2−C3
3C2

2−2C1C3
> 0, 6(2C1

2−C2)
3C2

2−2C1C3
> 0.

Estimate γ̂ is determined uniquely from the first equation of the system (13)

γ̂ =
ẑ1(1 − C1ẑ2)

ẑ1 − ẑ2
. (16)

Thus, system (13) has the unique solution ẑ1, ẑ2, γ̂.
Let us consider the representation of the parameter γ as γ = γ1(γ1 + γ2)−1,

1 − γ = γ2(γ1 + γ2)−1, where γ1 = (λ1 + α1)[λ2P
(1)
1 (λ1|λ2) + α2P

(2)
1 (λ1|λ2)],

γ2 = (λ2+α2)[λ1P
(1)
1 (λ2|λ1)+α1P

(2)
1 (λ2|λ1)]. As a result, τ1, τ2, ..., τn is a sample

drawn from p(τ |z1, z2, γ1, γ2) = γ1(γ1 + γ2)−1z1e
−z1τ + γ2(γ1 + γ2)−1z2e

−z2τ ,
depending on the four unknown parameters z1, z2 (z1 > z2), γ1, γ2. For the first
four initial moments, as before, we write the exact equalities, in which, instead
of the true parameter values, we substitute their estimates: E[τ l] = Cl, l = 1, 4.
Thus, the analogue of (13) is written as

γ1z2 + γ2z1 − (γ1 + γ2)z1z2C1 = 0, (z1 + z2)C1 − z1z2C2/2 = 1,

(z1 + z2)C2 − z1z2C3/3 = 2C1, (z1 + z2)C3 − z1z2C4/4 = 3C2.
(17)
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Theorem 2. The system of the four moment equations (17) with respect to the
unknown parameters z1, z2, γ1, γ2 of the probability density p(τ) is incompatible.

Proof. We perform the variables change in system (17) z1 + z2 = x1, z1z2 = x2,
γ1z2 + γ2z1 = x3 and (γ1 + γ2)z1z2 = x4, which leads to a linear form

x3 − x4C1 = 0, x1C1 − x2C2/2 = 1,

x1C2 − x2C3/3 = 2C1, x1C3 − x2C4/4 = 3C2.
(18)

The ranks of the matrix and extended matrix of the resulted system of four linear
inhomogeneous equations in four unknowns xl, l = 1, 4, are respectively 3 and 4.
Consequently, according to the corollary of the Kronecker–Capelli theorem, the
system is incompatible, i.e. the solution of (18) does not exist.

Thus, Theorem 2 determines that the knowledge of only the probability den-
sity form does not allow one to estimate z1, z2, γ1, γ2, and, all the more, all the
correlated flow parameters, i.e. the information contained in p(τ) is not enough to
estimate more than three parameters. Indeed, the density (10) makes it possible
to estimate by the method of moments z1 = λ1 + α1, z2 = λ2 + α2, γ = π1(0).

5 Numerical Results of Parameter Estimation

In order to obtain numerical results, a two-stage algorithm for computing ẑ1,
ẑ2, γ̂ has been developed. The first stage involves simulation [28] of the flow to
obtain statistics, the second is the calculation of estimates by (15), (16).

Table 1. Model parameters

λ1 = 6, 1 P
(1)
1 (λ1|λ1) = 0, 6 P

(1)
1 (λ2|λ1) = 0, 4

λ2 = 1, 3 P
(1)
1 (λ2|λ2) = 0, 5 P

(1)
1 (λ1|λ2) = 0, 5

α1 = 5, 1 P
(2)
1 (λ1|λ1) = 0, 3 P

(2)
1 (λ2|λ1) = 0, 7

α2 = 0, 1 P
(2)
1 (λ2|λ2) = 0, 8 P

(2)
1 (λ1|λ2) = 0, 2

Table 2. Results of the first statistical experiment

θ Tm 400 500 600 700 800 900 1000

z1 = 11, 2 Ê[ẑ1] 12,6151 10,8123 12,2031 11,1435 11,8946 11,7036 11,2358√
V̂ [ẑ1] 7,2285 9,2995 5,6807 4,8109 2,7360 2,2163 1,7365

z2 = 1, 4 Ê[ẑ2] 1,4029 1,2701 1,4159 1,3762 1,4180 1,4158 1,3958√
V̂ [ẑ2] 0,7827 1,0338 0,5207 0,4917 0,0685 0,0774 0,0371

γ = 0, 4714 Ê[γ̂] 0,4799 0,5227 0,4757 0,4878 0,4718 0,4742 0,4714√
V̂ [γ̂] 0,2675 0,3975 0,1790 0,1389 0,0365 0,0361 0,0259
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To establish the quality of the obtained estimates, statistical experiments
were carried out. In the first of them, the time interval for reaching the stationary
operation mode is monitored: for each modeling time value (duration Tm of the
flow observation) with fixed event flow parameters, N = 100 independent real-
izations of the correlated event flow are simulated; for each of them estimates θ̂k,
k = 1, N , of the corresponding parameters θ are determined according to formu-
las (15), (16), after which the sample mean estimate value Ê[θ̂] = 1

N

∑N
k=1 θ̂(k)

and sample square error
√

V̂ [θ̂] as square root of V̂ [θ̂] = 1
N

∑N
k=1(θ̂

k − θ)2,

θ ∈ {z1, z2, γ}, θ̂ ∈ {ẑ1, ẑ2, γ̂}, are calculated. The corresponding results for the
parameter set of Table 1 are presented in Table 2.

Based on the analysis of numerous experiment results, including the ones pre-
sented in Table 2, it can be argued that the quality of the estimates θ̂ ∈ {ẑ1, ẑ2, γ̂}
significantly depends on the modeling time of the flow implementations: namely,
with an increase of Tm, the quality of the estimates improves in sense of decreas-
ing the sample quadratic error. The latter is quite natural and is explained first
of all by the very concept of the method of moments, which is based on the
statistics values required for the calculations and taken from the implementa-
tions of a synchronous generalized flow of the second order. The statistics Cl,
l = 1, 3 contain information about the intervals between the observed instants
of occurrence of events, consequently, the greater number of intervals in the
implementation, the more information will be collected in the statistics and,
therefore, the accuracy of density parameters estimation will be higher. We also

note the oscillatory behavior of Ê[θ̂],
√

V̂ [θ̂], θ̂ ∈ {ẑ1, ẑ2, γ̂}, which, however,
with a significant increase in Tm is less significant. As a consequence, for further
experiments the modeling time value was chosen equal to Tm = 1000 time units.

The subject of research in the second statistical experiment is the dependence

of Ê[θ̂] and
√

V̂ [θ̂], θ̂ ∈ {ẑ1, ẑ2, γ̂}, on changes in λi, αi, i = 1, 2, with fixed
Tm = 1000, N = 100 and the initial data of Table 3. As an illustration the
following tables show the results of the current experiment: for λ1 = 4; 6; 8; 10 in
Table 4, for α1 = 4; 6; 8; 10 in Table 5, for λ2 = 1, 125; 1, 25; 1, 375; 1, 5 in Table 6,
for α2 = 41, 125; 1, 25; 1, 375; 1, 5 in Table 7.

Table 3. Model parameters

P
(1)
1 (λ1|λ1) = 0, 2 P

(1)
1 (λ2|λ2) = 0, 1 P

(2)
1 (λ1|λ1) = 0, 1 P

(2)
1 (λ2|λ2) = 0, 2

P
(1)
1 (λ2|λ1) = 0, 8 P

(1)
1 (λ1|λ2) = 0, 9 P

(2)
1 (λ2|λ1) = 0, 9 P

(2)
1 (λ1|λ2) = 0, 8
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Table 4. Results of the experiment
(λ2 = 1, 125, α1 = 4, α2 = 1, 125)

λ1 4 6 8 10

z1 8 10 12 14

Ê[ẑ1] 8,1755 10,0780 11,8932 14,1534√
V̂ [ẑ1] 1,0134 0,8796 0,9852 0,6873

z2 2,25 2,25 2,25 2,25

Ê[ẑ2] 2,2686 2,2644 2,2598 2,2601√
V̂ [ẑ2] 0,0861 0,0872 0,0667 0,0658

γ 0,5000 0,5030 0,5050 0,5064

Ê[γ̂] 0,5071 0,5126 0,5102 0,5108√
V̂ [γ̂] 0,0361 0,0341 0,0254 0,0272

Table 5. Results of the experiment
(λ1 = 4, λ2 = 1, 125, α2 = 1, 125)

α1 4 6 8 10

z1 8 10 12 14

Ê[ẑ1] 8,0959 10,0505 12,1694 14,1215√
V̂ [ẑ1] 1,1017 0,8603 0,9396 0,6383

z2 2,25 2,25 2,25 2,25

Ê[ẑ2] 2,2637 2,2615 2,2521 2,2722√
V̂ [ẑ2] 0,0832 0,0694 0,0669 0,0572

γ 0,5000 0,4971 0,4951 0,4938

Ê[γ̂] 0,5098 0,5065 0,4927 0,4979√
V̂ [γ̂] 0,0411 0,0283 0,0248 0,0231

Table 6. Results of the experiment
(λ1 = 4, α1 = 4, α2 = 1, 125)

λ2 1,125 1,25 1,375 1,5

z1 8 8 8 8

Ê[ẑ1] 8,1549 8,2074 7,9946 8,1019√
V̂ [ẑ1] 0,9934 0,9525 0,9614 0,9141

z2 2,25 2,375 2,5 2,625

Ê[ẑ2] 2,2653 2,3993 2,5012 2,6300√
V̂ [ẑ2] 0,0897 0,0804 0,0802 0,0807

γ 0,5000 0,5001 0,5015 0,5021

Ê[γ̂] 0,5100 0,5052 0,5109 0,5116√
V̂ [γ̂] 0,0402 0,0383 0,0307 0,0356

Table 7. Results of the experiment
(λ1 = 4, λ2 = 1, 125, α1 = 4)

α2 1,125 1,25 1,375 1,5

z1 8 8 8 8

Ê[ẑ1] 8,1756 8,1253 8,2586 8,1104√
V̂ [ẑ1] 1,0760 1,0578 0,9411 0,8680

z2 2,25 2,375 2,5 2,625

Ê[ẑ2] 2,2620 2,3853 2,5364 2,6587√
V̂ [ẑ2] 0,0900 0,0826 0,0887 0,0809

γ 0,5000 0,4992 0,4985 0,4979

Ê[γ̂] 0,5048 0,5044 0,4966 0,4958√
V̂ [γ̂] 0,0443 0,0349 0,0353 0,0313

The numerical results reported in Tables 4, 5, 6, 7 demonstrate that with an
increase in λi, αi, i = 1, 2, and the other fixed, the quality of estimates ẑ1, ẑ2,
γ̂ improves in sense of decreasing the sample quadratic error. This is explained
by the fact that an increase in each of the values λi, αi, i = 1, 2, entails a more
frequent occurrence of the flow events, which increases the number of observed
intervals on which the statistics Cl, l = 1, 3, are based, which naturally improves
the quality of the obtained estimates.

It is not difficult to obtain expressions for the mean (first initial moment)
and variance (second central moment) of the random variable τ (the interval
duration between adjacent events of the correlated doubly stochastic flow) using
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the known probability density (10): E[τ ] = γ(λ1 + α1)−1 + (1 − γ)(λ2 + α2)−1,
D[τ ] = 2[γ(λ1+α1)−2+(1−γ)(λ2+α2)−2]−[γ(λ1+α1)−1+(1−γ)(λ2+α2)−1]2,
where γ is defined in (10).

In the third experiment on the simulation flow model, statistical estimates
were obtained for the discussed above probabilistic characteristics of τ : the sam-
ple mean Ê[τ ] = 1

N

∑N
k=1 τk and sample variance D̂[τ ] = 1

N

∑N
k=1(τk − Ê[τ ])2,

and the relative error values δ = |θ−θ̂|
θ , θ ∈ {E[τ ],D[τ ]}, θ̂ ∈ {Ê[τ ], D̂[τ ]}, were

determined. For the fixed event flow realizations defined by the parameter sets
of Table 8, the following results shown in Table 9 takes place.

Table 8. Model parameters

λ1 = 4 P
(1)
1 (λ1|λ1) = 0, 2 P

(1)
1 (λ2|λ1) = 0, 8

λ1/λ2 = 8; 16 P
(1)
1 (λ2|λ2) = 0, 4 P

(1)
1 (λ1|λ2) = 0, 6

α1 = 4 P
(2)
1 (λ1|λ1) = 0, 3 P

(2)
1 (λ2|λ1) = 0, 7

α1/α2 = 8; 16 P
(2)
1 (λ2|λ2) = 0, 1 P

(2)
1 (λ1|λ2) = 0, 9

Table 9. Results of the third statistical experiment

E[τ ] Ê[τ ] |E[τ ]−Ê[τ ]|
E[τ ]

D[τ ] D̂[τ ] |D[τ ]−D̂[τ ]|
D[τ ]

λ1/λ2 = 8, α1/α2 = 8 0,5625 0,5584 0,0073 0,6992 0,6897 0,0136

λ1/λ2 = 8, α1/α2 = 16 0,7500 0,7440 0,0080 1,2917 1,2921 0,0003

λ1/λ2 = 16, α1/α2 = 8 0,7097 0,7081 0,0023 1,2329 1,2331 0,0002

λ1/λ2 = 16, α1/α2 = 16 1,0625 1,0593 0,0030 2,8867 2,9324 0,0158

This experiment was performed with different values of the model flow param-
eters. Analysis of the results, including those reported in Table 9, allows us to
speak about the applicability of the statistics Cl, l = 1, 3, for solving the estima-
tion problem of the flow parameters by the method of moments. For example,
statistics C1 is close to the analytically obtained E[τ ], δ = |E[τ ]−Ê[τ ]|

E[τ ] < 0, 009.
The last example suggests that the constructed flow model, imitating its

behavior, is correct and consistent with the input data, as confirmed by the
information contained in the statistics Cl, l = 1, 3.

The most interesting is the ability of working with real data, implemented
in the simulation flow model. To this aim we used the traffic data collected
by Leland and Wilson [29–31] over several Ethernet local area network at the
Bellcore Morristown Research and Engineering Center and formed as sets, each of
which contains one million packet arrivals. We considered the sets BC-pAug89,
started at 11:25 on August 9, 1989 and lasting for about 3142,82 s (until one
million packet were registered), and BC-pOct89, started at 11:00 on October
5, 1989 and lasting about 1759,62 s. Note that in this study, packet size (Ethernet
data length in bytes) does not matter, only the moment of its arrival is important,
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which is interpreted as the moment of flow event occurrence, and the fact that
previously [29] was used exclusively in the framework of demonstration a self-
similarity traffic nature.

Using Cl, l = 1, 3, and with formulas (15), (16) for the derived over each
of BC-pAug89 and BC-pOct89 sequences of the interval durations between
the moments of packet arrivals (events), the following estimation results are
obtained, reported in Table 10 as ẑreal

1 , ẑreal
2 , γ̂real, in which, moreover, there

are values ẑmodel
1 , ẑmodel

2 , γ̂model, determined by the estimation procedure of
the corresponding parameters based on the one of the flow realizations, namely
the one (with corresponding λi, αi, P

(1)
1 (λj |λi), P

(2)
1 (λj |λi), i, j = 1, 2) for

which the selected quality indicator (the relative error value δ[θ̂] = |θ̂real−θ̂model|
θ̂real

,

θ̂ ∈ {ẑ1, ẑ2, γ̂}) reaches the accuracy δ[θ̂] < δ = 0, 005. We emphasize that the
fluctuations of δ[θ̂], due to the choice of a particular data set as a model (each
obtained through the simulation process and contains one million values of the
inter-event interval durations), are insignificant, which allows to draw conclu-
sions about the modeling quality and the legitimacy of its application to the
parameter estimation problems based on the one specific realization.

Table 10. Results of working with the real data

BC-pAug89 ẑreal
1 = 390, 6379 ẑreal

2 = 45, 4911 γ̂real = 0, 9700

ẑmodel
1 = 391, 1351 ẑmodel

2 = 45, 4657 γ̂model = 0, 9696

δ[ẑ1] = 0, 0013 δ[ẑ2] = 0, 0006 δ[γ̂] = 0, 0004

BC-pOct89 ẑreal
1 = 693, 5398 ẑreal

2 = 76, 9829 γ̂real = 0, 9725

ẑmodel
1 = 692, 9417 ẑmodel

2 = 77, 1840 γ̂model = 0, 9724

δ[ẑ1] = 0, 0009 δ[ẑ2] = 0, 0026 δ[γ̂] = 0, 0001

In order to establish the adequacy of the data obtained through the model
with the real traffic and, as a consequence, the applicability of the simulation
apparatus to obtain numerical results of estimation both parameters and flow
states, the relative errors of the numerical characteristics estimates were deter-
mined (such as mean, median and variance) from the real and model data sets.
The results are shown in Table 11.

The results indicate that the flow simulation model used in the current study,
as well as in [12,13], not only does not contradict the input data, as was revealed
in the third experiment, but also corresponds to the actual arrival processes (in
this case, recorded by Leland and Wilson [29–31]), which ensures the consistency
of its use to obtain the observed moments of occurrence of events and solve on
their basis the previously allocated problems for doubly stochastic flows.

The data of Table 10 at the same time indicate that the method of moments
for the estimation of z1 = (λ1 +α1) (intensity of occurrence of the flow events at
the first state) and z2 = (λ2 + α2) (intensity of occurrence of the flow events at
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Table 11. Results of working with the real data

BC-pAug89 BC-pOct89

Real Model δ Real Model δ

Mean 0,003143 0,003146 0,000955 0,001760 0,001761 0,000568

Median 0,001956 0,001948 0,004090 0,001032 0,001035 0,002907

Variance ·10−5 3,184068 3,195083 0,003459 1,023295 1,022307 0,000966

the second state) of a correlated synchronous generalized flow of the second order
allows to draw conclusions regarding, for example, the channel capacity as one of
the most important characteristics of systems like Ethernet local area networks,
quite effectively (in sense of the smallness of the relative error δ[θ̂] < δ = 0, 005,
θ̂ ∈ {ẑ1, ẑ2, γ̂}, in all cases). In addition, Tables 10, 11 together establish the
previously noted adequacy of the mathematical models of arrival processes of
data packets in the form of doubly stochastic flows.

6 Conclusion

This paper considered a synchronous generalized event flow of the second order
under its complete observability. The probability density of the inter-event inter-
val duration p(τ) was obtained for the correlated doubly stochastic flow in the
form (10), as well as by the method of moments, estimates of the distribution
parameters ẑ1, ẑ2 were found in the form (15) and γ̂ in the form (16), which
allow calculations without using numerical methods.

A number of statistical experiments were carried out on the simulation flow
model implemented as a Windows Forms application project using the object-
oriented C# programming language in Microsoft Visual Studio environment,
the numerical results of which do not contradict the physical interpretation and
illustrate the acceptable quality of the estimates ẑ1, ẑ2, γ̂ in sense of the smallness
of the the sample quadratic error. In addition, this paper illustrates an example
with real data, which reflects the feasibility of using doubly stochastic event flows
as mathematical models of real information flows in modern packet-switching
networks, as well as the correctness and practical applicability of the results
obtained by the model, reproducing the considered flows behavior.
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Abstract. This paper analyses a two-server queueing model with con-
sultations in random environment given by the main server to the regu-
lar server. The main server not only serves customers but also provides
consultation to the regular server with a preemptive priority over cus-
tomers. The customers at the main server undergo interruptions during
their service. There are upper bounds for the number of interruptions at
the main server and the number of consultations to the regular server.
There are K environment factors for consultations. The arrival process
and requirement of consultation follow mutually independent Poisson
processes. The service times at the main server and the regular server
are assumed to follow mutually independent phase type distributions.
Duration of threshold clock and the consultation time for each factor
are independent and mutually distributed exponential random variables.
The stability condition is established. Some performance measures are
studied numerically.

Keywords: Main server · Regular server · Consultation ·
Interruption · Environmental factors

1 Introduction

A multi-server queueing system with consultation has many applications in day
today life. Such a system is introduced by Chakravarthy [3]. In this paper the
author narrates a situation he has experienced in an airtport which lead him
to the formulation of this model. In multi-server queueing system, the servers
may be of different experience level. If some servers are trainees or beginners,
they need frequent clarifications for the smooth progress of their work. So an
experienced server (namely, main server) helps the fellow servers to clear their
doubts together with serving customers. Such queueing systems are common in
banks, super market check outs, hospitals, etc. Quality of the service will be
improved by consultations.
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The queueing system in the above mentioned work consists of c servers.
One of these c servers is referred to as the main server and the others as the
regular servers. The request for consultation will be attended immediately if
the main server is idle. Otherwise, consultation is provided by the main server
with preemptive priority over customers to the regular servers. The request for
consultation of the regular server is attended by the main server, even if there is a
customer being served at the main server. Then that customer at the main server
has to wait until the consultation is completed. At this stage the service of the
customer at the main server is said to be interrupted. (So the word ‘interruption’
is associated with the customer at the main server when the main server is
providing consultation to the regular server.) The service of the interrupted
customer at the main server will be resumed after all consultations are completed.
The regular servers who need consultation are queued up at the main sever. The
consultations are given in a FCFS basis. The regular servers receive any number
of consultations during the service of a customer. The customer at the regular
server is not said to be interrupted since consultation is a part of his service.
The service times at the main server and the regular servers follow independent
exponential distributions.

Krishnamoorthy et al. [8] dealt with a single server queueing model with
interruptions to the server controlled by a super clock and a finite number of
interruptions. No further interruptions are allowed to that customer after the
maximum number of interruptions or after the realisation of the super clock.
A threshold clock determines whether the service will be resumed or restarted
after each interruption.

Queues with service interruptions are first studied by White and Christie
[11]. There are two queues served by a single server. The priority I and II queues
are served such that the arrival of a priority I customer preempt the priority II
customer. The duration of interruption is an exponentially distributed random
variable. The service will be resumed at the end of an interruption. Gaver [5]
considers a queueing model with interruption. After the completion of interrup-
tion, the service will be repeted or resumed, but there is no particular rule to
determine the repetition or resumption. The distributions of the completion time
of the job in three cases of repetition, resumption and postponable interruption
are computed.

Some of the earlier papers which analyse queueing models with service inter-
ruptions, assuming general distributions for the service and interruption dura-
tions are by Keilson [7], Ibe and Trivedi [6], Avi-Izhak and Naor [1] and Fiems
et al. [4].

In the paper by Chakravarthy [3], the service of the customer at the main
server is interrupted at the time of request of the regular server for consultation.
There is no an upper bound for the number of interruptions to a customer at
the main server. At the same time, the regular server is free to get any number
of consultations during the service of a customer. It is not fair to interrupt a
customer at the main server too many times or to avail too many consultations
by the regular server. So in order to control the number of interruptions and
consultations, we impose some upper bounds for them. A maximum of L inter-
ruptions are allowed to a customer at the main server. The maximum number



On a Two-Server Queue with Consultation in Random Environment 219

of consultations possible to the regular server during the service of a particular
customer is M .

A super clock is also introduced to control the number of interruptions. The
super clock starts at the beginning of the first interruption to the customer at
the main server. At the completion of the interruption, the super clock freezes.
When the next interruption to the same customer starts, the super clock again
starts from the phase where it has stopped and so on. If the super clock expires
during the consultation with one interrupted customer at the main server, then
the present consultation is permitted to complete and no more interruption is
allowed to befall to that particular customer at the main server. The super clock
starts anew when the interruption happens to a new customer at the main server.

If the number of interruptions has reached the upper bound or the super clock
has expired and if the regular server needs further consultation, then he/she has
to wait until the service at the main server is completed. After the service of
the interrupted customer is completed, the main server will immediately attend
the consultation before taking a new customer from the queue for service. Since
no customer is interrupted at the main server, super clock is not present at this
time.

A queueing system in an alternating random environment is discussed by
Bhaskar Senguptha [2]. In this paper, the server is subjected to random break-
down. Until it is repaired, the server cannot serve customers. He also assumes
that during the break down period, another service facility is provided to some
of the arriving customers.

The consultations may be for different matters. For example, the manager in
a bank has to provide clarifications to the fellow officers regarding debits, credits,
cheques, demand drafts, loans, opening, closing and transfer of accounts, filling
cash in ATM’s, etc. These are different environments for consultation. In the
present paper, we assume that consultations are due to K factors in random
environment. Here we consider single factors only, even though combinations of
these factors are possible.

2 Model Description

We consider a two-server queueing system with a main server and a regular
server. The arrival of customers to the system follows a Poisson process with
rate λ. The service time at the main server is a phase type distributed random
variable with representation (α, A), where the number of phases is a. The phase
type distribution (β, B) with number of phases b represents the service time at
the regular server. Here A0 = −Ae and B0 = −Be, where e is a column vector
of 1′s of appropriate order.

The main server offers consultation to the regular server whenever it is
needed. Assume that the consultations are provided to the regular server for
the K random environmental factors φ1, φ2, ........., φK . The requirement of con-
sultation follows a Poisson process with rate θ. The ith factor of the random
environment occurs with probability δi, i = 1, 2, ...,K. The duration of con-
sultation for the ith factor is exponentially distributed with parameter ξi. The
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upper bounds for interruptions to a customer at the main server and that for
the consultations to the regular server are L and M, respectively. The dura-
tion of super clock follows a phase type distribution with representation (γ, C),
where the number of phases is c. Here C0 = −Ce. The restart or resumption of
services at both the servers are determined by the realisation of the threshold
clock. The duration of the threshold clock follows an exponential distribution
with parameter η.

Notations: We use the following notations in this model.

L0 = L(c + 1), L1 = L0 + 1, L2 = L1a + (M + 1)b + 2MKb,

L3 = L1(M + 1)ab + 2MKb + 2L0MKab + 2MKab,

İ1 =
[
O IL0

]
L0×L1

,

α̃ = e
′
L1

(1) ⊗ α, γ̃ = (γ, 0),ψ = (1, 0),

C̃ =
[

C C0

0
¯

0

]
, Ẽ = η

[−1 1
0 0

]
,

ξ = (ξ1, ξ2, ...., ξK)
′
, ξ̃ = diag(ξ1, ξ2, ...., ξK).

3 The Queueing Model

Consider the queueing model Z = {Z(t), t ≥ 0},
where Z(t) = {N(t),H(t), B1(t), B2(t),H1(t),H2(t), G(t), J1(t), J2(t)}.

The variables are defined as follows:

N(t) − the number of customers in the system,

B1(t) − number of consultations already enjoyed by
the regular server during the service of a particular customer,

B2(t) − number of interruptions already befell to a customer at the main server,
H1(t) − phase of the super clock,

J1(t) − phase of the main server,
J2(t) − phase of the regular server.

Here H(t) denotes the status of the servers at time t such that

H(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0̃, if only the regular server is busy
0, if the main server together with or without

the regular server is busy
1, if the main server is giving consultation only
2, if the main server is giving consultation

with one interrupted customer at the main server
3, if the regular server is waiting for getting consultation

after the present service at the main server.
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The status of the threshold clock is denoted by H2(t).

H2(t) =
{

1, if the threshold clock is running
0, if the threshold clock has expired.

Note that B2(t) is ‘0’ means the customer at the main server has not inter-
rupted yet and so super clock has not started. In this case the super clock has
no role to play. So we do not consider the super clock variable H1(t) when
B2(t) = 0. Also, since super clock is associated with the interruption to a cus-
tomer at the main server and no customer is present at the main server during
the ‘consultation only’ mode, super clock is not ‘present’ at this mode.

Here G(t) represents the environmental factor due to which consultation is
in progress/ waiting to get consultation.
G(t) = i, if the consultation is due to the ith factor.

{Z(t), t ≥ 0} is a Continuous Time Markov Chain with state space

Ω = {0} ∪
∞⋃

i=1

ω(i).

The terms ω(i)’s are defined as

ω(1) = ω(1, 0) ∪ ω(1, 0̃) ∪ ω(1, 1) and
ω(i) = ω(i, 0) ∪ ω(i, 1) ∪ ω(i, 2) ∪ ω(i, 3), for i ≥ 2,
where
ω(1, 0) = {(1, 0, 0, t1)} ∪ {(1, 0, k, l1, t1) : 1 ≤ k ≤ L},
ω(1, 0̃) = {(1, 0̃, j, t2) : 0 ≤ j ≤ M},
ω(1, 1) = {(1, 1, j, l2, l3, t2) : 0 ≤ j ≤ M − 1},
and for i ≥ 2,
ω(i, 0) = {(i, 0, j, 0, t1, t2) ∪ (i, 0, j, k, l1, t1, t2) : 0 ≤ j ≤ M, 1 ≤ k ≤ L},
ω(i, 1) = {(i, 1, j, l2, l3, t2) : 0 ≤ j ≤ M − 1},
ω(i, 2) = {(i, 2, j, k, l1, l2, l3, t1, t2) : 0 ≤ j ≤ M − 1, 0 ≤ k ≤ L − 1},
ω(i, 3) = {(i, 3, j, l2, l3, t1, t2) : 0 ≤ j ≤ M − 1},
with 0 ≤ l1 ≤ c, l2 = {1, 0}, 1 ≤ l3 ≤ K, 1 ≤ t1 ≤ a and 1 ≤ t2 ≤ b.

The infinitesimal generator matrix Q̂ is given by

Q̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−λ S1

S2 S3 S4

S5 T1 T0

T2 T1 T0

. . . . . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (1)
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where the block matrices appearing in Q̂ are as follows:

S1 = λ
[
α̃ 0

¯
]
, S2 =

⎡

⎣
eM1 ⊗ A0

eK+1 ⊗ B0

0

⎤

⎦ , S3 =

⎡

⎣
IM1 ⊗ A O O

O S31 S32

O S33 S34

⎤

⎦ − λI,

S4 = λ
[
S41 S42 O

]
, S5 =

[
S51 S52 S53

]
,

T0 = λI, T1 =

⎡

⎢
⎢
⎣

T11 O T12 T13

T14 S34 O O
T15 O T16 O
O O O T17

⎤

⎥
⎥
⎦ − λI, T2 =

[
T21 S53 O

]
.

Here T0, T1 and T2 are square matrices of order L3; S3 is a square matrix of
order L2 and S1, S2, S4, S5 are matrices of orders 1 × L2, L2 × 1, L2 × L3 and
L3 × L2, respectively.

Here

S31 =

[
IM ⊗ (B − θI) O

O B

]
(M+1)b

, S32 = θ

[
IM
O

]
(M+1)×M

⊗ ψ ⊗ δ ⊗ Ib,

S33 =
[
O IM ⊗ Δ

′
b

]
2MKb×(M+1)b

, S34 = IM ⊗ ∇̃ ⊗ Ib,

S41 =

⎡
⎣e

′
M+1(1) ⊗ IL1 ⊗ Iaβ

IM+1 ⊗ α̃ ⊗ Ib
O

⎤
⎦

L2×(M+1)L1ab

, S42 =

[
O

I2MKb

]
L2×2MKb

,

S51 =

[
eM+1 ⊗ IL1 ⊗ Ia ⊗ B0

O

]
L3×L0a

, S52 =

[
IM+1 ⊗ eL1 ⊗ A0 ⊗ Ib

O

]
L3×(M+1)b

,

S53 =

[
O

IMK ⊗ I2 ⊗ A0 ⊗ Ib

]
L3×2MKb

,

T11 =

[
IM ⊗ IL1 ⊗ (A ⊕ B − θI) O

O IL1 ⊗ (A ⊕ B)

]
L1(M+1)ab

,

T12 = θ

[
IM ⊗ P

O

]
L1(M+1)×L0M

⊗ δ ⊗ ψ ⊗ Iab,

T13 = θ

[
IM ⊗ P ∗

O

]
L1(M+1)×M

⊗ δ ⊗ ψ ⊗ Iab,

T14 =
[
O IM ⊗ Δ̂

]
2MKb×L1(M+1)ab

,

T15 =
[
O IM ⊗ İ1 ⊗ Δ∗ ]

2L0MKab×L1(M+1)ab
,

T16 = IM ⊗ IL ⊗ (C̃ ⊕ ∇̃) ⊗ Iab, T17 = IMK ⊗ (Ẽ ⊕ A) ⊗ Ib,

T21 =

[
Ã0 + B̃0

O

]
L3×L1(M+1)ab

.
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Here

P =
[

diag(γ̃, IL−1 ⊗ Îc)
O

]

L1×L0

, P ∗ =

⎡

⎣
0

eL−1 ⊗ êc
ec+1

⎤

⎦

L1×1

,

Ã0 = IM+1 ⊗ eL1 ⊗ A0 ⊗ α ⊗ Ib, B̃
0 = eM+1 ⊗ IL1 ⊗ Ia ⊗ B0 ⊗ β,

Δ
′
b =

[
ξ ⊗ Ib

ξ ⊗ eb ⊗ β

]
, ∇̃ = −I2 ⊗ ξ̃ + Ẽ ⊗ IK ,

Δ̂ =
[

ξ ⊗ α̃ ⊗ Ib
ξ ⊗ eb ⊗ α̃ ⊗ β

]
,Δ∗ =

[
ξ ⊗ Iab

ξ ⊗ eab ⊗ α ⊗ β

]
.

4 Steady State Analysis

The steady state analysis of the queueing system under study is performed in
this section. Let us first establish the stability condition of the queueing model.

4.1 Stability Condition

Let π denote the steady-state probability vector of the generator T0 + T1 + T2.
That is, π(T0 + T1 + T2) = 0; πe = 1. The LIQBD description of the model
indicates that the queueing system is stable (see, Neuts [10]) if and only if

λ < πT2e. (2)

That is, the rate of drift to the left has to be higher than that to the right. The
vector π cannot be obtained explicitly in terms of the parameters of the model.

For future reference, we define the traffic intensity ρ as

ρ =
λ

πT2e
. (3)

Note that the stability condition in Eq. (2) is equivalent to ρ < 1. We will discuss
the impact of the input parameters of the model on the traffic intensity in Sect. 5.

4.2 Steady State Probability Vector

The present model is studied as a QBD process. Its stationary distribution has a
matrix-geometric solution. We assume that the stability condition given by (2)
holds. Let the steady-state probability vector of the generator Q̂ given in Eq. (1)
be denoted by z . That is,

z Q̂ = 0; ze = 1. (4)
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Partitioning z as
z = (z 0, z 1, z 2, z 3, ..............), (5)

we see that the sub-vectors of z , under the assumption that the stability condi-
tion (2) holds, are obtained as (see, Neuts [10])

z j = z 2R
j−2, j ≥ 3,

where R is the minimal non-negative solution to the matrix quadratic equation

R2T2 + RT1 + T0 = 0.

z 0, z 1 and z 2 are obtained using the boundary equations

−λz 0 + z 1S2 = 0;

z 0S1 + z 1S3 + z 2S5 = 0;

z 1S4 + z 2(T1 + RT2) = 0.

The normalizing condition given by (4) results in

z 0 + z 1e + z 2(I − R)−1e = 1.

Once the rate matrix R is obtained, we compute the vector z by exploiting the
special structure of the coefficient matrices.

4.3 Performance Measures

After calculating the steady state probability vector, we now calculate some key
performance measures of the system and their formulae for computation. This
helps to bring out the qualitative aspects of the present model.

Towards this end, we further partition the vectors z i as z 1 = (z 10, z 10̃, z 11)
and z i = (z i0, z i1, z i2, z i3), for i ≥ 2.

Note that z 0 is a scalar, z 10, z 10̃, z 11, z i0, z i1, z i2, z i3, for i ≥ 2 are vectors of
dimensions M1a, (K + 1)b, 2KLb, (K + 1)M1ab, 2KLb, 2M0KLab and 2KLab,
respectively.

(a) Mean number of customers in the system

μ1 =
∞∑

i=1

iz ie.

(b) Mean number of customers in the queue

μ2 =
∞∑

i=2

(i − 1)z i1e +
∞∑

i=3

(i − 2)(z i0e + z i2e + z i3e).
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(c) Effective rate of consultation

E1 = θ

M−1∑

j=0

z 10̃je + θ

∞∑

i=2

M−1∑

j=0

z i0je.

(d) Effective rate of interruption

E2 = θ

∞∑

i=2

M−1∑

j=0

z i0j0e + θ

∞∑

i=2

M−1∑

j=0

L−1∑

k=1

c∑

l1=1

z i0jkl1e.

(e) Fraction of time the main server is idle

F1 = z 0e + z 10̃e.

(f) Fraction of time the regular server is idle

F2 = z 0e + z 10e.

(g) Fraction of time the main server is busy serving a customer

F3 = z 10e +
∞∑

i=2

z i0e +
∞∑

i=2

z i3e.

(h) Fraction of time the regular server is busy serving a customer

F4 = z 10̃e +
∞∑

i=2

z i0e.

(i) Fraction of time main server remains interrupted

F5 =
∞∑

i=2

z i2e.

(j) Fraction of time regular server is getting consultation

F6 =
∞∑

i=1

z i1e +
∞∑

i=2

z i2e.

(k) Fraction of time regular server is waiting to get consultation

F7 =
∞∑

i=2

z i3e.

(l) Rate at which interruption completion takes place before threshold is
realised

R1 =
∞∑

i=2

M−1∑

j=0

L−1∑

k=0

c∑

l1=0

K∑

l3=1

ξl3z i2jkl11l3e.
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(m) Rate at which interruption completion takes place after threshold is realised

R2 =
∞∑

i=2

M−1∑

j=0

L−1∑

k=0

c∑

l1=0

K∑

l3=1

ξl3z i2jkl10l3e.

(n) Rate at which consultation completion takes place before threshold is
realised

R3 =
∞∑

i=1

M−1∑

j=0

K∑

l3=1

ξl3z i1j1l3e +
∞∑

i=2

M−1∑

j=0

L−1∑

k=0

c∑

l1=0

K∑

l3=1

ξl3z i2jkl11l3e.

(o) Rate at which consultation completion takes place after the threshold is
realised

R4 =
∞∑

i=1

M−1∑

j=0

K∑

l3=1

ξl3z i1j0l3e +
∞∑

i=2

M−1∑

j=0

L−1∑

k=0

c∑

l1=0

K∑

l3=0

ξl3z i2jkl10l3e.

(p) Rate at which service completion at the main server takes place without
any interruption

R5 =
a∑

t1=1

A0
t1z 100t1e +

∞∑

i=2

M∑

j=0

a∑

t1=1

A0
t1z i0j0t1e.

(q) Rate at which service completion (with at least one interruption) at the
main server takes place before super clock is realised

R6 =
∞∑

i=2

M∑

j=0

L∑

k=1

c∑

l1=1

a∑

t1=1

A0
t1z i0jkl1t1e +

M∑

j=0

L∑

k=1

c∑

l1=1

a∑

t1=1

A0
t1z 10jkl1t1e.

(r) Rate at which service completion (with at least one interruption) at the
main server takes place after super clock is realised

R7 =
∞∑

i=2

M∑

j=0

L∑

k=1

a∑

t1=1

A0
t1z i0jk0t1e +

M∑

j=0

L∑

k=1

a∑

t1=1

A0
t1z 10jk0t1e.

(s) Rate at which service completion at the regular server takes place without
any consultation

R8 =
b∑

t2=1

B0
t2z 10̃0t2

e +
∞∑

i=2

a∑

t1=1

b∑

t2=1

B0
t2z i000t1t2e

+
∞∑

i=2

L∑

k=1

c∑

l1=0

a∑

t1=1

b∑

t2=1

B0
t2z i00kl1t1t2e.
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(t) Rate at which service completion (with at least one consultation) at the
regular server takes place

R9 =
M∑

j=1

b∑

t2=1

B0
t2z 10̃jt2

e +
∞∑

i=2

M∑

j=1

a∑

t1=1

b∑

t2=1

B0
t2z i0j0t1t2e

+
∞∑

i=2

M∑

j=1

L∑

k=1

c∑

l1=0

a∑

t1=1

b∑

t2=1

B0
t2z i0jkl1t1t2e.

5 Numerical Results

In this section, we present some examples numerically to describe the system
characteristics of the queueing model under study. The effect of the parameters
λ and θ on the key performance measures are analysed here.

Let us choose the following data so that the system is stable.

A =
[−12 6

5 −10

]
;B =

[−9 3
2 −8

]
;C =

[−12 8
8 −12

]
;

α =
[
0.3 0.7

]
;β =

[
0.4 0.6

]
;γ =

[
0.6 0.4

]
;

δ =
[
0.3 0.4 0.3

]
; ξ =

[
1 1.5 2

]T ;L = 3;M = 3.

Table 1. Effect of θ on various performance measures

λ = 2

θ 3 3.5 4 4.5 5 5.5

ρ 0.5309 0.5803 0.6266 0.6699 0.7103 0.7481

μ1 1.6367 1.9958 2.4136 2.8976 3.4560 4.0969

μ2 0.9242 1.2177 1.5694 1.9869 2.4778 3.0482

E1 0.2906 0.3432 0.3960 0.4482 0.4993 0.5489

E2 0.1537 0.1784 0.2026 0.2261 0.2487 0.2702

F1 0.5321 0.4974 0.4626 0.4281 0.3944 0.3618

F2 0.6797 0.6358 0.5918 0.5482 0.5054 0.4639

F3 0.2574 0.2537 0.2501 0.2463 0.2426 0.2388

F4 0.1017 0.1046 0.1073 0.1099 0.1121 0.1141

F5 0.1348 0.1600 0.1855 0.2108 0.2358 0.2602

F6 0.2105 0.2489 0.2874 0.3255 0.3629 0.3991

F7 0.0081 0.0107 0.0134 0.0164 0.0195 0.0226
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Table 2. Effect of λ on various performance measures

θ = 2

λ 2 2.5 3 3.5 4 4.5

ρ 0.4224 0.5280 0.6336 0.7392 0.8448 0.9504

μ1 1.0672 1.8760 3.2097 5.3483 8.6509 13.510

μ2 0.4818 1.0897 2.2077 4.0546 6.6089 9.3050

E1 0.1871 0.2755 0.3701 0.4617 0.5380 0.5840

E2 0.1035 0.1611 0.2281 0.2983 0.3646 0.4212

F1 0.6003 0.4952 0.3929 0.2992 0.2196 0.1566

F2 0.7652 0.6536 0.5337 0.4162 0.3115 0.2258

F3 0.2644 0.3057 0.3394 0.3654 0.3820 0.3843

F4 0.0957 0.1410 0.1895 0.2365 0.2756 0.2991

F5 0.0861 0.1340 0.1890 0.2453 0.2940 0.3242

F6 0.1352 0.1992 0.2676 0.3337 0.3874 0.4172

F7 0.0039 0.0062 0.0090 0.0119 0.0144 0.0160

Referring to Table 1, the traffic intensity ρ increases as the rate of consultation
θ increases. Also the effective rate of consulations and interruptions, E1 and E2

will increase with the increase of θ. Then the duration of time they spend for
consultation increases. This results in an increase in F5 and F6. As θ increases,
there are more frequent consultations, and so the upper bounds of number of
interruptions to the customer at the main server will reach sooner or the super
clock may realise faster. Then the main server has to complete the service of the
customer at him before further consultations and thus regular server has to wait
more time to get further consultation. So F7 increases. In this case restart of
the service at the regular server is more frequent and F4 increases. Since there
is increase in F5, F6 and F7, the customers compel to stay in the system and in
the queue for longer time. This results in a hike in μ1 and μ2. Thus the main
server and regular server get lesser time to be idle to make a decrease in F1 and
F2. As θ increases, main server spends more time in consultation. So the main
server gets much less time to serve its customers. Thus F3 decreases.

Referring to Table 2, there is an increase in traffic intensity ρ as the arrival
rate λ increases. More and more customers enter into the system and therefore
accumulation of customers enhances. So μ1 and μ2 increase. As the number
of customers increases, the servers get lesser time to be idle. Thus F1 and F2

decrease. In this case they have to serve customers for longer time and so F3 and
F4 increase. Since there are more service, consultations are more frequent. Thus
there is an increase in effective rates of consultations and interruptions. Therefore
E1 and E2 increse. So the servers have to spend more time in consultations which
results in a hike in F5 and F6. The possibility for the number of interruptions to
a customer at the main server to reach the upper bound or that for the super
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clock to be expired is high. So the duration of time at which the regular server
is waiting to avail consultation, F7 increses.

6 Conclusion

In this paper we analyse a two-server queueing model with consultation in ran-
dom environment by main server to the regular server. Quality of service is
enhanced by consultations. The interruptions to a customer at the main server
are controlled by upper bounds of interruptions and consultations and a super
clock. We establish stability condition and provide numerical illustrations. As
an extension of the model discussed, we can consider consultation in Markovian
environment. In this case the environmental factors will be related to each other
by a transition probability matrix.

Acknowledgement. The authors thank the reviewer(s) for comments that improved
the presentation of the paper.
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Abstract. In the paper, the retrial queueing system of M/GI/1 type
with input Poison flow of events, collisions and impatient calls is con-
sidered. The delay time of calls in the orbit and the impatience time of
calls in the orbit have exponential distribution. Service time on server is
with any distribution function. Asymptotic analysis method is proposed
for the solving problem of finding distribution of the number of calls in
the orbit under a long delay of calls in orbit and long time patience of
calls in the orbit condition. The theorem about the Gauss form of the
asymptotic probability distribution of the number of calls in the orbit is
formulated and proved. Numerical illustrations, results are also given.

Keywords: Retrial queueing system · Collisions · Impatient calls ·
Asymptotic analysis

1 Introduction

Nowadays one of the modern problems connected with traffic growth is the
problem of analysis and optimal designing of communication systems. Any busi-
ness process today is related to exchange of information. Therefore, develop-
ing of appropriate mathematical models of modern telecommunication systems
and modifying of existing ones are important. Queueing systems with repeated
calls, or retrial queueing systems, adequately describe such telecommunication
systems, networks, mobile networks, call-centres and etc. This is evidenced by
numerous papers and books devoted their study [1–11]. The main feature of
RQ-systems is that in these queueing systems unserved calls are not lost when
there are not available service devices (servers are busy or broken). So, the calls
that don’t get a service repeat to occupy server after a random time.

The present paper is advancing the results achieved in [12] and their con-
solidating in a way. The problem statement is common. We find the stationary
distribution of the number of calls in orbit for the system under consideration.
We continue to study retrial queueing system with collisions and impatient calls
as well. Collisions in the model usually arise in the task of studying communica-
tion networks and suggest the emergence of situations when another message is
c© Springer Nature Switzerland AG 2019
A. Dudin et al. (Eds.): ITMM 2019, CCIS 1109, pp. 230–242, 2019.
https://doi.org/10.1007/978-3-030-33388-1_19
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transmitted during the transmission of a message. Such messages collide, they
are considered distorted and go into the orbit, from where they ask the device
for servicing again after a random delay [12–15]. Impatience of calls in the orbit
is understood as case when a call in the orbit can leave the orbit after a ran-
dom time without server recalling. This approach was used in our previous paper
[16,17] and by others [14,18–25]. But there is one else way to specify impatience,
for example, in papers [18,19,25] authors use non-persistence.

In this study we use not exponential distribution of service time but any one
with distribution function B(x). The same discipline of service is described by
many scientists [13,26–29], etc.

In literature, the primary methods of studying RQ-systems are matrix meth-
ods [7,11,30,31], numerical methods [5,32,33], and simulation modeling, since
one can obtain exact analytic formulas only for the simplest models [6,7]. To
solve the problem we use asymptotic analysis method that is widely applied for
RQ-systems research. The method makes it possible to produce analytical result
for different types of queueing systems and networks under given asymptotic
condition. More information about the asymptotic analysis method is provided
in [6,16,17,22,26,27,29,31,34], etc.

The general information about mathematical model of the retrial queueing
system discussed in the paper and the problem statement are presented in the
Sect. 2. In the Sect. 3 the detailed derivation of the model and the system of
Kolmogorov equations for the stationary state probabilities are cited. The Sect. 4
consists of the decision of the problem under study by the asymptotic analysis
method. As a result of the section the Theorem about stationary probability
distribution of the calls number in the orbit for Retrial queueing system of
M/GI/1 type with collisions and impatient calls in the orbit under a long delay
of calls in orbit and long time patience of calls in the orbit condition is formulated
and proved. Some numerical results, graphs, that proved the theoretical results,
are performed in the Sect. 5. Section 6 concludes the paper.

2 Mathematical Model

We consider an RQ-system with one servicing device with Poisson arrival pro-
cess with intensity λ. A call that has found the device free takes it for service for
a random time, which has any distribution with function of distribution B(x).
If the device is busy, calls that arrive and are on the device enter into a “colli-
sion” and both go into orbit, or a source of repeated calls. On the orbit, each
call, independently of others, waits for a random time whose duration has an
exponential distribution with parameter σ, and then again accesses the device
with a second attempt to obtain servicing. If the device is free, then the call
from orbit occupies it for a random servicing time, and if the device is busy we
again have a “collision,” and both calls immediately go into orbit and wait there
once more for a random time interval. Moreover, a call in orbit leaves the system
after a random time, which has an exponential distribution with parameter α,
demonstrating the “impatience” property.
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The structure of the model of the RQ-system M/GI/1 with collisions and
impatient calls is presented in Fig. 1.

Fig. 1. Retrial queue M/GI/1 with collisions and impatient calls in the orbit

The problem is to find the stationary distribution of the number of calls in
orbit for the described system.

3 Process of the System States: Stationary Distribution

Let us consider Markovian process {k(t), i(t), z(t)} determined states of the
Retrial queue M/GI/1 with collisions and impatient calls in the orbit where
the random process i(t) is the number of calls in the orbit at the moment t,
i(t) = 0, 1, 2, 3, . . . , z(t) is the interval duration from the moment t to the end
of service of call on device, the random process k(t) defines device state at the
moment t and takes one of the following values

k(t) =
{

0, if server is free at the moment t;
1, if server is busy at the moment t.

Denote as P0(i, t) = P {k(t) = 0, i(t) = i} the probability that, at the
moment t, there are i calls in the orbit, i = 0, 1, 2, . . . , and the service device
is free. The probability that the server is busy at time t, there are i calls in
the orbit, i = 0, 1, 2, . . . , and the time that remains before the end of service is
shorter than z is denoted as P1(i, z, t) = P {k(t) = 1, i(t) = i, z(t) < z}. When
we say about probability that the device is busy at time t, there are i calls in
the orbit, i = 0, 1, 2, . . . , and the time that remains before the end of service is
unknown, we use notation P1(i, t) = P {k(t) = 1, i(t) = i, z(t) < ∞}.

To obtain the probability distribution P0(i, t), P1(i, t), P1(i, z, t) for the states
of the considered RQ-system, we construct a system of Kolmogorov differential
equations
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂P0(i, t)
∂t

=
∂P1(i, 0, t)

∂z
− (λ + iσ + iα) P0(i, t)

+(i + 1)αP0(i + 1, t) + λP1(i − 2, t) + (i − 1)σP1(i − 1, t),
∂P1(i, z, t)

∂t
=

∂P1(i, z, t)
∂z

− ∂P1(i, 0, t)
∂z

− (λ + iσ + iα) P1(i, z, t)

+(i + 1)αP1(i + 1, z, t) + λB(z)P0(i, t) + (i + 1)σB(z)P0(i + 1, t),

(1)

where Πk(i) = lim
t→∞ Pk(i, t), k = 0, 1, Π1(i, z) = lim

t→∞ P1(i, z, t). Then the system

of Kolmogorov equations for the stationary state probabilities Πk(i), Π1(i, z),
k = 0, 1, of the process {k(t), i(t), z(t)} is written as follows

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂Π1(i, 0)
∂z

− (λ + iσ + iα) Π0(i) + (i + 1)αΠ0(i + 1)

+λΠ1(i − 2) + (i − 1)σΠ1(i − 1) = 0,
∂Π1(i, z)

∂z
− ∂Π1(i, 0)

∂z
− (λ + iσ + iα) Π1(i, z)

+(i + 1)αΠ1(i + 1, z) + λB(z)Π0(i) + (i + 1)σB(z)Π0(i + 1) = 0.

(2)

We get in (2) the indefinite dimensional system of difference equations with
variable coefficients. In common case it is not possible to produce the exact
solution of this system. To find solution of (2), we use the method of asymptotic
analysis under a long delay of calls in orbit and long time patience of calls in
the orbit condition.

4 Asymptotic Analysis Method

The method of asymptotic analysis in queueing theory is the method of research
of the equations determining some characteristics of an queueing system under
some limit (asymptotic) condition, which is specific for any model and solving
problem.

We introduce the partial characteristic functions

Hk(u) =
∞∑

i=0

ejuiΠk(i), H1(u, z) =
∞∑

i=0

ejuiΠ1(i, z), (3)

Hk(0) =
∞∑

i=0

Πk(i) = Rk, H1(0, z) =
∞∑

i=0

Π1(i, z) = R1(z), (4)

where j =
√−1, k = 0, 1, and Rk are stationary state probabilities of the process

k(t), and lim
z→∞ R1(z) = R1.
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Using (3), (4),
∂Hk(u)

∂u
= j

∞∑
i=0

iejuiΠk(i),
∂H1(u, z)

∂u
= j

∞∑
i=0

iejuiΠ1(i, z),

∂H1(u, z)
∂z

=
∞∑

i=0

ejui ∂Π1(i, z)
∂z

, k = 0, 1, we can write the system (2) as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− λH0(u) + j
(
σ + α

(
1 − e−ju

))
H ′

0(u) + λe2juH1(u)

− jσejuH ′
1(u) +

∂H1(u, 0)
∂z

= 0,

λB(z)H0(u) − jσB(z)e−juH ′
0(u) − λH1(u, z)

+ j
(
σ + α

(
1 − e−ju

)) ∂H1(u, z)
∂u

+
∂H1(u, z)

∂z
− ∂H1(u, 0)

∂z
= 0.

(5)

In adding the first equation by the second equation of (5) we get the system
below⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− λH0(u) + j
(
σ + α

(
1 − e−ju

))
H ′

0(u) + λe2juH1(u)

− jσejuH ′
1(u) +

∂H1(u, 0)
∂z

= 0,

λB(z)H0(u) − jσB(z)e−juH ′
0(u) − λH1(u, z)

+ j
(
σ + α

(
1 − e−ju

)) ∂H1(u, z)
∂u

+
∂H1(u, z)

∂z
− ∂H1(u, 0)

∂z
= 0,

j (σ + α) e−juH ′
0(u) + λ

(
1 + eju

)
H1(u) − j

(
σ − αe−ju

)
H ′

1(u) = 0.

(6)

The system in (6) is the basic system for analysis of Retrial queueing system
of M/GI/1 type with collisions and impatient calls in the orbit under a long delay
of calls in orbit (σ → 0) and long time patience of calls in the orbit (α → 0)
condition. We summarize the results of our study in Theorem1.

Theorem 1. The stationary probability distribution of the calls number in the
orbit for Retrial queueing system of M/GI/1 type with collisions and impatient
calls in the orbit under a long delay of calls in orbit and long time patience of
calls in the orbit condition (with the Poisson arrival process of intensity λ, any
servicing distribution with function of distribution B(x), exponential distribu-
tion law of the random delay parameter σ, exponential distribution of a call’s
impatience with parameter α = qσ, and constant q > 0) can be approximated
by the Gaussian distribution with mean and variance equal to κ1/σ and κ2/σ
respectively, where κ1, and κ2 are determined by equations

2λ [1 − B∗(λ + κ1)] − κ1 [B∗(λ + κ1) − q (2 − B∗(λ + κ1))] = 0,

κ2 =
R0κ1 + qκ1 + λR1 − 2 (λ + κ1) a

R0 − R1 + q + 2 (λ + κ1) b
,

a =
R0κ1 (1 − B∗ (λ + κ1)) + qκ1 (R1 − R∗

1 (λ + κ1))
(λ + κ1) (2 − B∗ (λ + κ1))

,

b =
R1 − R∗

1 (λ + κ1) − R0 (1 − B∗ (λ + κ1))
(λ + κ1) (2 − B∗ (λ + κ1))

,
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where R0 =
1

2 − B∗(λ + κ1)
, R1 =

1 − B∗(λ + κ1)
2 − B∗(λ + κ1)

, B∗(s) =
∞∫
0

e−szdB(z),

R∗
1 (λ + κ1) = −dB∗(s)

ds

∣∣∣
s=λ+κ1

· (λ + κ1) R0.

Proof. The Theorem 1 proving will carried out in two stages.

Stage 1. Finding First-Order Asymptotic. In the basic system of (6), we make
the substitutions σ = ε, α = qε, u = εw, H0(u) = F0(w, ε), H1(u) = F1(w, ε),
H1(u, z) = F1(w, ε, z), where ε is infinitesimal value (ε → 0).

Since H ′
k(u) =

1
ε

∂Fk(w, ε)
∂w

, k = 0, 1, H ′
1(u, z) =

1
ε

∂F1(w, ε, z)
∂w

,
∂H1(u, z)

∂z
=

∂F1(w, ε, z)
∂z

, the equations system (6) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− λF0(w, ε) + j (1 + qjwε)
∂F0(w, ε)

∂w
+ λ (1 + 2jwε) F1(w, ε)

− j (1 + jwε)
∂F1(w, ε)

∂w
+

∂F1(w, ε, 0)
∂z

= o(ε2),

λB(z)F0(w, ε) − jB(z) (1 − jwε)
∂F0(w, ε)

∂w
− λF1(w, ε, z)

+ j (1 + qjwε)
∂F1(w, ε, z)

∂w
+

∂F1(w, ε, z)
∂z

− ∂F1(w, ε, 0)
∂z

= o(ε2),

j (1 + q) (1 − jwε)
∂F0(w, ε)

∂w
+ λ (2 + jwε) F1(w, ε)

− j (1 − q + qjwε)
∂F1(w, ε)

∂w
= o(ε2).

(7)

The transformation of equations of (7) under ε → 0 with Fk(w) =
lim
ε→0

Fk(w, ε), k = 0, 1, F1(w, z) = lim
ε→0

F1(w, ε, z), leads to equations system
as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− λF0(w) + j
dF0(w)

dw
+ λF1(w) − j

dF1(w)
dw

+
∂F1(w, 0)

∂z
= 0,

λB(z)F0(w) − jB(z)
dF0(w)

dw
− λF1(w, z)

+ j
∂F1(w, z)

∂w
+

∂F1(w, z)
∂z

− ∂F1(w, 0)
∂z

= 0,

j (1 + q)
dF0(w)

dw
+ 2λF1(w) − j (1 − q)

dF1(w)
dw

= 0.

(8)

We suggest to find the Eq. (8) solution Fk(w), k = 0, 1, F1(w, z) in the form

Fk(w) = RkΦ(w), k = 0, 1, F1(w, z) = R1(z)Φ(w), (9)

where Rk = Hk(0), k = 0, 1, lim
z→∞ R1(z) = R1.
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Substituting (9) in (8) we have
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
λR1 − λR1 +

dR1(0)
dz

)
Φ(w) + j (R0 − R1) Φ′(w) = 0,

(
λB(z)R0 − λR1(z) +

dR1(z)
dz

− dR1(0)
dz

)
Φ(w)

+ j (R1(z) − B(z)R0) Φ′(w) = 0,

2λR1Φ(w) + j (R0 − R1 + q) Φ′(w) = 0.

(10)

According to Eq. (10) we can found their solution

Φ(w) = exp {jκ1w} , (11)

where κ1 is defined below.
Using (9), (11) in (10) we get

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(λ + κ1) (R1 − R0) +
dR1(0)

dz
= 0,

dR1(z)
dz

− dR1(0)
dz

− (λ + κ1) (R1(z) − B(z)R0) = 0,

2λR1 + κ1 (R1 − R0) − qκ1 = 0.

(12)

Laplace and Stieltjes transformation the second equation of (12) lets to obtain

sR∗
1(s) − dR1(0)

dz
− (λ + κ1) (R∗

1(s) − R0B
∗(s)) = 0, (13)

where B∗(s) =
∞∫
0

e−szdB(z), R∗
1(s) =

∞∫
0

e−szdR1(z).

If in (13) s = 0, then
dR1(0)

dz
= − (λ + κ1) (R1 − R0). If in (13) s = λ + κ1,

then using
dR1(0)

dz
and R0 + R1 = 1 we finally get

R0 =
1

2 − B∗(λ + κ1)
, R1 =

1 − B∗(λ + κ1)
2 − B∗(λ + κ1)

. (14)

From the third equation of (12) and (14) we found equation that defines κ1

2λ [1 − B∗(λ + κ1)] − κ1 [B∗(λ + κ1) − q (2 − B∗(λ + κ1))] = 0. (15)

Pre-limit characteristic function h(u) is approximately equal to

H(u) = H0(u) + H1(u) ≈ h1(u).

So, the first-order asymptotic characteristic function h1(u) of the probability
distribution of the number of calls in the orbit under the assumption of a long
delay of calls in orbit and their high “patience” can be presented as

h1(u) = exp
{κ1

σ
ju

}
. (16)
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Stage 2. Finding the Second-Order Asymptotics . In the basic system of Eqs. (6)
with (16) we let

Hk (u) = exp
{κ1

σ
ju

}
H

(2)
k (u) , H1(u, z) = exp

{κ1

σ
ju

}
H

(2)
1 (u, z) , (17)

k = {0; 1}.
Let σ = ε2, α = qε2, u = εw, H

(2)
1 (u, z) = F

(2)
1 (w, ε, z), H

(2)
k (u) =

F
(2)
k (w, ε), k = {0; 1}, where ε is an infinitesimal, then (6) with some trans-

formations can be rewritten as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− [λ + (1 + qjwε) κ1] F
(2)
0 (w, ε) + [λ + κ1 + jwε (2λ + κ1)] F

(2)
1 (w, ε)

+ jε
∂F

(2)
0 (w, ε)
∂w

− jε
∂F

(2)
1 (w, ε)
∂w

+
∂F

(2)
1 (w, ε, 0)

∂z
= o(ε2),

B(z) [λ + (1 − jwε) κ1] F
(2)
0 (w, ε) − [λ + (1 + qjwε) κ1] F

(2)
1 (w, ε, z)

− jB(z)ε
∂F

(2)
0 (w, ε)
∂w

+ jε
∂F

(2)
1 (w, ε, z)

∂w

+
∂F

(2)
1 (w, ε, z)

∂z
− ∂F

(2)
1 (w, ε, 0)

∂z
= o(ε2),

[2λ + κ1 (1 − q) + jwε (λ + qκ1)] F
(2)
1 (w, ε) − j (1 − q) ε

∂F
(2)
1 (w, ε)
∂w

+ (1 + q) (jwε − 1) κ1F
(2)
0 (w, ε) + j (1 + q) ε

∂F
(2)
0 (w, ε)
∂w

= o(ε2).

(18)

When ε → 0 in (18) and lim
ε→0

F
(2)
k (w, ε) = F

(2)
k (w), lim

ε→0
F

(2)
1 (w, ε, z) =

F
(2)
1 (w, z), k = {0; 1}, we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (λ + κ1) F
(2)
0 (w) + (λ + κ1) F

(2)
1 (w) +

∂F
(2)
1 (w, 0)

∂z
= 0,

B(z) [λ + κ1] F
(2)
0 (w) − [λ + κ1] F

(2)
1 (w, z)

+
∂F

(2)
1 (w, z)

∂z
− ∂F

(2)
1 (w, 0)

∂z
= 0,

− (1 + q) κ1F
(2)
0 (w) + [2λ + κ1 − qκ1] F

(2)
1 (w) = 0.

(19)

The solution of equations system (18) has the following form
⎧⎪⎪⎨
⎪⎪⎩

F
(2)
k (w, ε) = (Rk + jwεfk) Φ2 (w) + o

(
ε2

)
, k = {0; 1} ,

F
(2)
1 (w, ε, z) = (R1(z) + jwεf1(z)) Φ2 (w) + o

(
ε2

)
,

R0 + R1 = 1,

(20)

where R0, R1, R1(z) are defined above, f0, f1, f1(z) are constants, and function
Φ(2)(w) is to be determined.
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Substituting (20) into (18) and taking into account (19), we write the system
under ε → 0 as {

A1wΦ2 (w) + B1Φ
′
2 (w) = 0,

A2wΦ2 (w) + B2Φ
′
2 (w) = 0,

(21)

where constants A1, A2, B1, B2 are defined by (22)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A1 = (λ + κ1) (f1 − f0) + (2λ + κ1) R1 − qκ1R0 + f ′
1(0),

B1 = R0 − R1,

A2=(λ+κ1) [B(z)f0−f1(z)]−κ1 [B(z)R0+qR1(z)]+f ′
1(z)−f ′

0(z),
B2 = R1(z) − B(z)R0.

(22)

The solution of system (21) has the form

Φ2 (w) = exp

{
κ2

(jw)2

2

}
, (23)

where κ2 = A1/B1 = A2/B2.
Using the same transformation as for the first-order asymptotics and addi-

tional condition f0+f1=0, we finally obtain expression for κ2

κ2 =
R0κ1 + qκ1 + λR1 − 2 (λ + κ1) a

R0 − R1 + q + 2 (λ + κ1) b
, (24)

a =
R0κ1 (1 − B∗ (λ + κ1)) + qκ1 (R1 − R∗

1 (λ + κ1))
(λ + κ1) (2 − B∗ (λ + κ1))

,

b =
R1 − R∗

1 (λ + κ1) − R0 (1 − B∗ (λ + κ1))
(λ + κ1) (2 − B∗ (λ + κ1))

,

where R0, R1 and κ1 are determined in (14), (15). Expression for R∗
1 (λ + κ1)

we obtain from (13) with differentiating by s and then letting s = λ + κ1. So,

R∗
1 (λ + κ1) = −dB∗(s)

ds

∣∣∣
s=λ+κ1

· (λ + κ1) R0.

Making the reverse substitutions, we get under z → ∞ with (19)

H
(2)
k (u) = F

(2)
k (w, ε) = (Rk + jwεfk) exp

{
κ2

(jw)2

2

}
+ o

(
ε2

)

≈ Rk exp

{
κ2

σ

(ju)2

2

}
,

(25)

then using (25) expressions (17) can be written as

Hk (u) = exp
{κ1

σ
ju

}
H

(2)
k (u) ≈ Rk exp

{
κ1

σ
ju +

κ2

σ

(ju)2

2

}
. (26)
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Taking into account (26), the characteristic function H(u) = H0(u)+H1(u),
provided that the calls in orbit have long delays and the “patience” is high, is a
Gaussian

h2 (u) = exp

{
κ1

σ
ju +

κ2

σ

(ju)2

2

}
. (27)

The Theorem 1 is proved.

5 Numerical Results

In this section we give some notes to Theorem 1 and several numerical examples.
As we consider retrial queueing systems where the service time has any

distribution function B(x) we can not produce exact solution of Eq. (15) and
as well as it is impossible to prove that root κ1 of the (15) is single. Let
B(x) = βγ/ (β + x)γ , where β, γ are shape and scale parameters of gamma
distribution B(x). It can be numerically shown that in most cases (for most
commonly used parameters of system) there is one root κ1 of the (15), but we
were able to find such system’s parameters set when (15) has three solutions:
κ1
1 = 0.201, κ2

1 = 4.544, κ3
1 = 16.628 when λ = 0.217, q = 0.01, β = γ = 2.5.

Figure 2 demonstrates behaviour of function of κ1.

Fig. 2. Function of the κ1 when λ = 0.217, q = 0.01, β = γ = 2.5

In this case we obtain distribution of number of call in the orbit consisting of
the three parts, each of which has Gaussian distribution form. And this question
requires further consideration.

Preliminary calculations suggest that theoretical results are consistent with
simulation ones. To compare the probability distribution of the number of calls
in the orbit of considered queueing system P (i) calculated via simulation and
its approximation Pasympt(i) constructed by using the asymptotic method for
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different values of the system parameters we use Kolmogorov distance Δ between

respective distribution functions: Δ = max
i≥0

∣∣∣∣
i∑

l=0

[P (l) − Pasympt(l)]
∣∣∣∣.

The comparison of the distributions is shown in Figs. 3 and 4.

Fig. 3. Comparison of the asymptotic (solid line) and the simulated (dashed line)
distributions for σ = 0.01, λ = 0.4, γ = β = 1.5, Δ = 0.032.

Fig. 4. Comparison of the asymptotic (solid line) and the simulated (dashed line)
distributions for σ = 0.1, λ = 1.3, γ = β = 1.5, Δ = 0.043.

6 Conclusion

In the present paper, retrial queueing system of M/GI/1 type with collisions
and impatient calls in the orbit is considered. It is proved that the probability
distribution of the calls number in the orbit can be approximated by the Gaussian
distribution under a long delay of calls in orbit and a long time patience of calls
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in the orbit condition. More detailed numerical results that allow to draw a
conclusion about an applicability area of the asymptotic result is the purpose of
the future studies.
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Abstract. In this paper, we consider an s; Sð Þ production inventory model in
which addition taking place to stock one at a time through a production process.
The model involves positive service time and there is only one server. The time
taken to produce an item and processing time of items are assumed to follow
exponential distribution. Arrivals are according to a Poisson process. Local
purchase is incorporated in the model to ensure customer satisfaction and
goodwill. The model has high significance in real life as it can be applied to
several small scale cottage industries, which result in upliftment of less privi-
leged, hence having much social relevance. The problem is modelled as a
continuous time Markov chain and we obtained stochastic decomposition of
system states. Several performance measures are obtained and convexity of cost
function is established numerically.

Keywords: Production inventory � Local purchase � Stochastic decomposition

1 Introduction

Sigman and Simchi-Levi [14] presented notable work on M=G=1 queue with inventory
with positive service time in 1992. In 1993, Berman et al. [1] considered inventory
management problem which involved deterministic and constant demand and service
rates. A survey by Krishnamoorthy et al. [3] presents more details on inventory with
positive service time. Krishnamoorthy and Raju [4, 5] introduced the concept of local
purchase in (s, S) inventory systems with negligible service time. Krishnamoorthy et al.
[6] considered N-policy in s;Qð Þ inventory systems with positive service time and lead
time, where they arrive at a product form solution for the system state distribution,
which owed to a local purchase of items. A continuous review s; Sð Þ production
inventory system was studied by Doshi et al. [2], which involved a compound Poisson
arrival of demands. An s; Sð Þ production inventory system which involve failure and
repair of machine was considered by Sharafali [13]. Here, the repair time is assumed to
follow general distribution.

The first work on M=M=1 queueing inventory system with positive lead time that
involve product form solution was carried out by Schwarz et al. [12]. Product form
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solution in an M=G=1 queueing inventory system with arbitrarily distributed lead time
was obtained by Saffari et al. [11].

Production inventory with positive service time with MAP arrivals and Markovian
production process (MPP) was first studied by Krishnamoorthy and Viswanath [7].
Stochastic decomposition in production inventory with positive service time was
obtained by Krishnamoorthy and Viswanath [8], owing to the assumption that no
customer joins the system when the inventory level falls to zero. Neuts [10] introduced
matrix analytic methods in M/G/1 and GI/M/1 type stochastic queueing models, where
an algorithmic analysis of the models was carried out. Latouche and Ramaswami [9]
also presents an in-depth discussion on matrix-analytic methods.

In this paper, we consider an s; Sð Þ production inventory model which involves
local puchase. Arrival of demands is according to a Poisson process with parameter k.
The production process is switched on when the inventory level reaches s. The items
are produced one by one, and the time to produce an item follows exponential dis-
tribution with parameter h. The produced item requires a processing time, which fol-
lows exponential distribution with parameter l. We keep the production process in
“on” mode, till the inventory level reaches S, and we switch it off, as and when the
inventory level reaches S. It is also assumed that as and when the inventory level
reaches zero, a local purchase of 1 unit is made at a higher cost, to avoid customer loss.
The supply of item is instantaneous in local purchase. We carry out local purchase to
avoid loss of customer, thereby ensuring customer satisfaction and goodwill. The
model can be applied to small scale cottage industries which are run at homes and
which involve cost-effective methods. Examples include making of garment, umbrella,
pickle or other food items, soap, soap powder, jewellery etc. Analysis of such a model
has high social relevance as it helps to reduce the total expected cost of production
process, which results in improving the profit in cottage industry.

We can model the situation as a continuous time Markov chain which is given
below.

2 Model Formulation and Analysis

Let XðtÞ = Number of customers in the system at time t,
IðtÞ = Inventory level at time t,
KðtÞ = Status of the production process:

KðtÞ ¼ 1; if production process is on at time t
0; if production process is off at time t

�

~YðtÞ ¼ XðtÞ; IðtÞ; KðtÞð Þ; t � 0f g is a continuous-time Markov chain with state space

i; jð Þ ji � 0; 1 � j � sf g [ ði; j; kÞ=i � 0; s þ 1 � j � S � 1; k ¼ 0; 1f g [ i; Sð Þ ji � 0f g
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2.1 Infinitesimal Generator Â

Infinitesimal generator Â of this model is obtained as

Â ¼
B1 A0

A2 A1 A0

A2 A1 A0

. .
. . .

. . .
.

2
6664

3
7775

where A0 ¼ kI2S�s�1 and

A1 ¼

~J1 h
~J1 h

. .
. . .

.

~J1 h
~J1 ~P1

~J2 ~P2

. .
. . .

.

~J2 ~P2
~J2 ~P3

~J3

2
66666666666666664

3
77777777777777775

where ~J1 ¼ �ðk þ h þ lÞ½ �, ~J2 ¼ � kþ lð Þ
� kþ hþ lð Þ

� �
and ~J3 ¼

�ðk þ lÞ½ �

A2 ¼

l
l

. .
.

l
l

M1

M2

. .
.

M2

M3 0

2
66666666666666664

3
77777777777777775

where M1 ¼ l
l

� �
, M2 ¼ lI2 and M3 ¼ l 0½ �.
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B1 ¼

J1 h
J1 h

. .
. . .

.

J1 h
J1 ~P1

J2 ~P2

. .
. . .

.

J2 ~P2

J2 ~P3

J3

2
66666666666666664

3
77777777777777775

where J1 ¼ �ðk þ hÞ½ �, J2 ¼ �k
� kþ hð Þ

� �
, J3 ¼ �k½ �,

~P1 ¼ 0 h½ �, ~P2 ¼ 0 0
0 h

� �
and ~P3 ¼ 0

h

� �
.

A0 ;A1 ;A2 and B1 are square matrices of order 2S � s � 1.

2.2 Steady-State Analysis

Let A ¼ A0 þ A1 þ A2 be the generator matrix. Then A is a square matrix of order
2S � s � 1 and is obtained as

A ¼

�h h
l Ĵ1 h

l Ĵ1 h

. .
. . .

. . .
.

l Ĵ1 h
l Ĵ1 ~P1

M1 Ĵ2 ~P2

M2 Ĵ2 ~P2

. .
. . .

. . .
.

M2 Ĵ2 ~P2

M2 Ĵ2 ~P3

M3 Ĵ3

2
666666666666666666664

3
777777777777777777775

where Ĵ1 ¼ �ðl þ hÞ½ �, Ĵ2 ¼ �l
� lþ hð Þ

� �
, Ĵ3 ¼ �l½ �.

The stationary distribution of A is obtained in the following theorem.

Theorem 1. The steady-state probability vector X of A is X ¼ ðx1; x2; . . .. . .; xs�1;
xs;~xsþ 1;~xsþ 2; . . .. . .~xS�1;~xSÞ where
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~xl1 ¼ ðxl1;0; xl1;1Þ; l1 ¼ sþ 1; . . .. . .; S� 1

xl ¼ l
h

� �s�l l
h

þ l
h

� �2
þ l

h

� �3
þ . . .

l
h

� �Q� �
xS and l ¼ 1; 2; . . .. . .; s:

xl;0 ¼ xS; where l ¼ s þ 1; . . .. . .; S � 1:

xl;1 ¼ l
h

þ l
h

� �2
þ l

h

� �3
þ . . .

l
h

� �S�1
� �

xS; l ¼ s þ 1; . . .. . .; S � 1:

When l 6¼ h; xS can be obtained by solving X �e ¼ 1 as

xS ¼ 1 � l
h

	 
2
l
h

l
h

	 
S � l
h

	 
s �Q
h i

þ Q � 1� l
h

	 
2 :

Proof. We can prove the result using �X A ¼ 0 and �X �e ¼ 1.

Remark. When l ¼ h we get the following:

xl ¼ Q xS; where l ¼ 1; 2; . . .. . .; s

xl;0 ¼ xS; where l ¼ s þ 1; s þ 2; . . .. . .; S � 1

xl;1 ¼ ðS � 1ÞxS; where l ¼ s þ 1; s þ 2; . . .. . .. . .; S � 1 and

xS ¼ sQ þ ðQ � 1Þ 1 þ Q
2

� �
þ 1

� ��1

:

2.3 Stability Condition

Theorem 2. The process under study is stable iff k\ l.

Proof. Since the process under consideration is level-independent quasi-birth-death
process, it is stable iff �XA0�e\ �XA2�e (Neuts [10]), where �X is the steady-state distri-
bution of the generator matrix A. Substituting A0 and A2 in the above equation, we get
the required result after some algebra.

Remark. After getting the stability condition, we are now in a position to analyse the
probability distribution of the system states in long-run. This will enable us to show
that the joint distribution of the system state can be expressed as the product of the
marginal distribution of its components.
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3 The Steady-State Probability Distribution of Â

3.1 Stationary Distribution When Service Time Is Negligible

Let Q̂ be the generator matrix associated with the Markov chain of the inventory
process, when service time is negligible, and D ¼ ðp1; p2; . . .pSÞ be the stationary
probability vector corresponding to Q̂. We get Q̂ as

Q̂ ¼

�h h
k J1 h

k J1 h
. .
. . .

. . .
.

k J1 h
k J1 ~P1

M̂1 J2 ~P2

M̂2 J2 ~P2

. .
. . .

. . .
.

M̂2 J2 ~P2

M̂2 J2 ~P3

M̂3 J3

2
666666666666666666664

3
777777777777777777775

where J1 ¼ �ðk þ hÞ½ �, J2 ¼ �k
� kþ hð Þ

� �
, J3 ¼ �k½ �, M̂1 ¼ k

k

� �
, M̂2 ¼ kI2

and M̂3 ¼ k 0½ �:
Theorem 3. The steady-state probability vector D of Q̂ is

D ¼ ðp1; p2; . . .; ps�1; ps; ~psþ 1; ~psþ 2; . . .~pS�1; ~pSÞ

where

~pl1 ¼ ðpl1;0; pl1;1Þ; l1 ¼ s þ 1; . . .; S � 1

pl ¼ k
h

	 
s�l k
h þ k

h

	 
2 þ k
h

	 
3 þ . . . k
h

	 
Q� �
pS where l ¼ 1; 2; . . .; s.

xl;0 ¼ pS; where l ¼ s þ 1; . . .; S � 1:

pl;1 ¼ k
h þ k

h

	 
2 þ k
h

	 
3 þ . . . k
h

	 
S�1
� �

pS;
l ¼ s þ 1; . . .; S � 1:

When k 6¼ h; pS can be obtained by solving D �e ¼ 1 as
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pS ¼ 1� k
h

	 
2
k
h

k
h

	 
S � k
h

	 
s �Q
h i

þ Q � 1� k
h

	 
2 :

Proof. We can prove the result using DQ̂ ¼ �0 and D�e ¼ 1.

Remark. When k ¼ h we get the following:

pl ¼ Q pS; where l ¼ 1; 2; . . .; s

pl;0 ¼ pS; where l ¼ s þ 1; s þ 2; . . .; S � 1

pl;1 ¼ ðS� 1Þ pS; where l ¼ s þ 1; s þ 2; . . .; S � 1 and

pS ¼ sQ þ ðQ � 1Þ 1 þ Q
2

� �
þ 1

� ��1

:

3.2 Stochastic Decomposition of System States

Theorem 4. Let �Z be the steady-state probability vector of Â and

�Z ¼ zð0Þ; zð1Þ; zð2Þ; . . .
� �

where

zðiÞ ¼ zði; 1Þ; zði;2Þ; zði;3Þ; . . .zði;sÞ; zði;sþ 1;0Þ; zði;sþ 1;1Þ; . . .; zði;S�1;0Þ; zði;S�1;1Þ; zði;SÞ
� �

where i ¼ 0; 1; 2; . . . and zði;jÞ ¼ limt!1 PðXðtÞ ¼ i; IðtÞ ¼ jÞ, zði;j;kÞ ¼
limt!1 PðXðtÞ ¼ i; IðtÞ ¼ j; KðtÞ ¼ kÞ: Then

zðiÞ ¼ KqiD; i � 0 ð1Þ

where D ¼ ðp1;p2; . . .; ps�1; ps; ~psþ 1; ~psþ 2; . . .~pS�1; pSÞ is the steady-state probabil-
ity vector when service time is negligible, K is a constant to be determined and q ¼ k

l.

Proof. �Z A ¼ �0 gives
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zð0ÞB1 þ zð1ÞA2 ¼ �0 ð2Þ

zðiþ 2ÞA2 þ zðiþ 1ÞA1 þ zðiÞA0 ¼ �0 ; i ¼ 0; 1; . . . ð3Þ

When (1) is substituted in (2) and (3), we get DQ̂ ¼ �0, which is true. Hence
stochastic decomposition of system states is verified.

3.3 Determination of K

On substitution of �Z ¼ zð0Þ; zð1Þ; zð2Þ; . . .
	 


and using stochastic decomposition given
by (1), �Z �e ¼ 1 gives K ¼ 1 � q where q ¼ k

l :

3.4 Explicit Solution

The steady-state probability vector can be obtained explicitly as follows:

Theorem 5. Let �Z be the steady-state probability vector of Â and �Z ¼
zð0Þ; zð1Þ; zð2Þ; . . .
	 


where

zðiÞ ¼ zði; 1Þ; zði;2Þ; zði;3Þ; . . .zði;sÞ; zði;sþ 1;0Þ; zði;sþ 1;1Þ; . . .; zði;S�1;0Þ; zði;S�1;1Þ; zði;SÞ
	 


where i ¼ 0; 1; 2; . . .. Then zðiÞ ¼ ð1 � qÞ qiD ; i � 0
where D ¼ ðp1; p2; . . .; ps�1; ps; ~psþ 1; ~psþ 2; . . .~pS�1; ~pSÞ is the steady-state prob-
ability vector when service time is negligible and is as given by Theorem 3, and
q ¼ k

l :

Remark. The result given in above Theorem indicates that the system possess
stochastic decomposition. We also get that the system state distribution is the product
of the distribution of its marginal, which means, one component is that of the classical
M=M=1 queue having long run distribution for i customers in the system as ð1 �
qÞ qi; i � 0 and the other component is the probability of j items in the inventory.

4 Performance Measures of the System

When k 6¼ h; we get the following measures:

(a) Expected number of customers in the system,

L ¼
X1
i¼0

ið1 � qÞqi

¼ k
l� k
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(b) Expected inventory held in the system,

EðIÞ ¼ P1
i¼0

Ps
j¼1

jzði;jÞ þ P1
i¼0

PS�1

j¼sþ 1
jðzði;j;0Þ þ zði;j;1ÞÞ þ P1

i¼0
Szði;SÞ and is obtained as

EðIÞ ¼ k
h

1�k
h

s � sþ 1ð Þ kh þ k
h

	 
sþ 1 � k
h

	 
Sþ 1 � s k
h

	 
Q þ ðS þ 1Þ k
h

	 
Qþ 1
� �n

þ ð1 � k
hÞ Q � 1ð Þðs þ Q

2Þ þ
k
h

1� h
k

k
h

	 
Q�1
1 � k

h

	 
�1 �ðs þ 1Þ
� �hh

þ ðs þ QÞ � 1 � k
h

	 
�1
ii

þ Sð1 � k
hÞ2
o

k
h

k
h

	 
S � k
h

	 
s �Q
h i

þ Q � 1 � k
h

	 
2h i�1
:

(c) Expected rate at which production process is switched ‘on’,

RON ¼ l
X1
i¼1

z i;sþ 1;0Þð Þ

¼ k 1� k
h

	 
2
k
h

k
h

	 
S � k
h

	 
s �Q
h i

þ Q � 1 � k
h

	 
2 :

(d) Expected production rate,

RP ¼ h ð
X1
i¼0

Xs
j¼1

zði;jÞ þ
X1
i¼0

XS�1

j¼sþ 1

zði;j;1ÞÞ

¼
h k

h

	 
Sþ 1 � k
h

	 
sþ 1 þ Q k
h

	 
 � k
h

	 
2h i
k
h

k
h

	 
S � k
h

	 
s �Q
h i

þ Q � 1 � k
h

	 
2 :

(e) Expected local purchase rate,

RLP ¼ l
X1
i¼1

zði;1Þ

¼
k k

h

	 
s � k
h

	 
S þ k
h

	 
sþ 1 þ k
h

	 
Sþ 1
h i

k
h

k
h

	 
S � k
h

	 
s �Q
h i

þ Q � 1 � k
h

	 
2 :
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(f) Mean waiting time of customers in the system,

WS ¼ L
k and can be obtained as WS ¼ 1

l�k on substituting L.

Remark. When k ¼ h, we get the performance measures as follows:

EðIÞ ¼ Qsðs þ 1Þ þ ðS þ 1ÞðQ � 1ÞðS þ sÞ
2

�
XS�1

j¼sþ 1

j2 þ S

" #
pS

RP ¼ Q
2

sðs þ 1Þ þ Q � 1½ �h pS

RON ¼ k pS

RLP ¼ kQ pS

5 Cost Analysis

To obtain a cost function, first we consider the various costs involved in the model as
follows:

HC: Inventory holding cost per unit item per unit time.
SC: Fixed cost to start the production process.
PC: Cost of production per unit time per unit inventory.
LPC: Local purchase cost per unit inventory per unit time.
WC: Cost of waiting time per customer per unit time.

When k 6¼ h, we get,

TC ¼ HC
k
h

1 � k
h

� ��� �1

s � ðs þ 1Þ k
h

þ k
h

� �sþ 1

� k
h

� �Sþ 1
"

� s
k
h

� �Q

þ ðs þ 1Þ k
h

� �Qþ 1
#
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þ 1 � k
h

� �
ðQ � 1Þ s þ Q

2

� �
þ

�
k
h

1 � h
k

� ��1 k
h

� �Q�1

1 � k
h

� ��1

�ðs þ 1Þ
 !

þ S � 1 � k
h

� ��1
#" #)

þ HCS þ SCkð Þ 1 � k
h

� �2

þ PCh þ LPCkð Þ k
h

� �Sþ 1

� k
h

� �sþ 1
" #

þ PCh Q
k
h
� k

h

� �2
 !

þ LPCk
k
h

� �s

� k
h

� �S
 !#

� k
h

k
h

� �S

� k
h

� �s

�Q

" #
þ Q � 1 � k

h

� �2
" #�1

When k ¼ h; we get the cost function as

TC ¼ HC Q
sðs þ 1Þ

2
þ ðS þ 1ÞðQ � 1Þ S þ s

2

� �
�
XS�1

j¼sþ 1

j2 þ S

" #(

þ PC
Qh
2

sðs þ 1Þ þ Q � 1½ � þ SCk þ LPCkQ

�
pS þ WC

1
l � k

� �
:

5.1 Numerical Analysis

Case 1. Analysis of TC as a function of s (when k 6¼ h).
Input Data:

HC ¼ 50; PC ¼ 200; SC ¼ 2000; LPC ¼ 220; WC ¼ 2250;

S ¼ 25; k ¼ 2; l ¼ 3; h ¼ 2:5

It is numerically verified that TC function is convex with respect to s from
Table 1, since we get that TC values decrease, reach a minimum at s ¼ 5 and
then increase, as s varies from 2 to 10.

Case 2. Analysis of TC as a function of S (when k 6¼ h).
Input Data:

HC ¼ 50; PC ¼ 200; SC ¼ 2000; LPC ¼ 220; WC ¼ 2250;

s ¼ 2; k ¼ 2; l ¼ 3; h ¼ 2:5

It is numerically verified that TC function is convex with respect to S from
Table 2, since we get that TC values decrease, reach a minimum at S ¼ 15 and
then increase, as S increases from 10 to 18.
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Case 3. Analysis of TC when ðs; SÞ varies simultaneously (when k 6¼ h).
Input Data:

HC ¼ 50; PC ¼ 200; SC ¼ 2000; LPC ¼ 220; WC ¼ 2250;
k ¼ 2; l ¼ 3; h ¼ 2:5

Table 1. Effect of s on TC (when k 6¼ h)

s TC

2 5182.2
3 5160.6
4 5149.6
5 5147.0
6 5151.3
7 5161.2
8 5175.9
9 5194.6
10 5216.9

Table 2. Effect of S on TC (when k 6¼ h)

S TC

10 5147.5
11 5125.0
12 5109.1
13 5098.5
14 5092.3
15 5089.9
16 5090.6
17 5094.0
18 5099.6

Table 3. Effect of ðs; SÞ on TC (when k 6¼ h)

ðs; SÞ TC

(2, 25) 5182.2
(3, 26) 5178.1
(4, 27) 5187.2
(5, 28) 5206.5
(6, 29) 5233.5
(7, 30) 5266.6
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It is numerically verified that TC function is convex from Table 3, since we get
thatTC values decrease, reach a minimum at the values ð3; 26Þ of ðs; SÞ
and then increase, as ðs; SÞ increases simultaneously.

Case 4. Analysis of TC as a function of S (when k ¼ h).
Input Data:

HC ¼ 50; PC ¼ 200; SC ¼ 2000; LPC ¼ 220; WC ¼ 2250;
k ¼ h ¼ 1:5; l ¼ 6; s ¼ 5:

It is numerically verified that TC function is convex with respect to S from Table 4,
since we get that TC values monotonically decrease as S increases.

6 Conclusion

In this paper, we considered an s; Sð Þ production inventory model with positive service
time that follows exponential distribution. Arrivals are according to a Poisson process.
Local purchase is incorporated in the model to ensure customer satisfaction and
goodwill. The problem is modelled as a continuous time Markov chain and we
obtained stochastic decomposition of system states. Explicit cost functions are analysed
encouraged by the stochastic decomposition property. Several performance measures
are obtained and convexity of cost function is established numerically. The result can
be extended to more general situations, such as MAP arrivals and phase type service
time.
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Abstract. In this paper we analyse a multi-resource queueing system
with renewal arrival process and arbitrary service time distribution.
In more detail, we apply the dynamic screening method to obtain the
asymptotic expression for the stationary probability distribution describ-
ing the process of the total volume of the occupied resource in the system.
Finally we verify the goodness of the obtained Gaussian approximation
by means of discrete event simulation.

Keywords: Queuing system · Asymptotic analysis method · Arbitrary
service time

1 Introduction

The methods of queuing theory are widely used to describe different economic
problems, to process large data in technical systems, as well as cloud computing.
Modern computer networks are characterized by the integration of heterogeneous
streams, including phone calls, text messages, video sources, etc., which require
the use of a more complex flow model [1–3]. To study such models, it is necessary
to take into account different kinds of resources needed for the transmission and
processing of the transmitted information. Thus, the development of computer
and mobile communication networks has led to the need of developping new
“resource” models that would allow us to estimate the amount of the occupied
resource. Queuing systems with resources, in which customers require a server
and a certain amount of resources for the duration of their service, allow modeling
any peculiarities of resource allocation in modern wireless networks. However,
the application of the queuing systems leads to complex computations [6,7].

Most often the analisys is limited to systems with incoming stationary Pois-
son flow and exponential service time. But the fact is that the Poisson flow
does not always accurately describe real flows and the service time is not always
exponential [8–10]. Therefore, it is very relevant in practice to consider a system
with an incoming non-Poisson (for example, renewal arrival process) flow and
an arbitrary service time.
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2 Mathematical Model

Consider a queuing system with infinite number of servers and arbitrary service
time. Renewal arrival process is determined by the distribution function A(z) of
the interarrival times.

Each arriving customer instantly occupies the first free server, with service
time distribution B(τ), and different resources (i = 1, . . . , n) with distribution
Gi(y), depending on the type i of the resource. When the service is completed, the
customer leaves the system. Resource amounts and service times are mutually
independent and do not depend on the epochs of customer arrivals. Figure 1
shows the structure of the system.

�GI(v)

V1(t), V2(t), . . . , Vn(t)

B(τ)

B(τ)

. . .

Fig. 1. Resource queuing system with infinite number of servers and renewal arrival
process

Denote by Vi(t) the total amount of i-th type resources (i = 1, . . . , n) occu-
pied at time t. Our goal is to derive the probabilistic characterization of the
n-dimensional process V (t) = [V1(t), . . . , Vn(t)]. This process is, in general, not
Markovian and, therefore, we use the dynamic screening method for its investi-
gation. Consider two time axes that are numbered as 0 and 1 (see Fig. 2). Let
axis 0 show the epochs of customers’ arrivals, while axis 1 corresponds to the
screened process.

We introduce the function (dynamic probability) S(t) that satisfies the con-
dition 0 ≤ S(t) ≤ 1. The incoming flow event can be screened on the axis 1 with
probability S(t) and not screened with probability 1 − S(t). Let the system be
empty at moment t0, and let us fix some arbitrary moment T in the future. S(t)
represents the probability that a customer arriving at the time t will be serviced
in the system by moment T . It is easy to show that S(t) = 1 − B(T − t) for
t0 ≤ t ≤ T .

Denote by Wi(t) the total amount of i-th type resource screened on axis i.
It easy to prove that

P {V(t) < x} = P {W(t) < x} , (1)

for all x = {x1, . . . , xn}, where the inequalities V(T ) < x and W(T ) < x mean
that V1(T ) < x1, . . . , Vn(T ) < xn and W1(T ) < x1, ...,Wn(T ) < xn, respectively.
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�
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0

1

Tt0

t

t

�

� ��

� � � �

� � �

Fig. 2. Screening of the customers arrivals

We use (1) to investigate the process {V(t)} via the analysis of the process
{W(t)}.

3 Kolmogorov Integro-Differential Equations

Let us consider the (n + 1)–dimensional Markovian process {z(t),W(t)}, where
z(t) is the residual time from t to the next arrival (in the renewal input process).
Denoting the probability distribution of this process by

P {z(t) < z,W(t) < w} = P (z,w, t)

and taking into account the formula of total probability, we can write the fol-
lowing system of Kolmogorov integro-differential equations

∂P (z,w, t)
∂t

=
∂P (z,w, t)

∂z
+

∂P (0,w, t)
∂z

(A(z) − 1) +

A(z)S(t)

⎡
⎣

w1∫

0

. . .

wn∫

0

∂P (0,w − y, t)
∂z

dGn(yn) . . . dG1(y1) − ∂P (0,w, t)
∂z

⎤
⎦ ,

where y = {y1, . . . yn} , with the initial conditions

P (z,w, t0) =

{
R(z),w = 0
0, otherwise,

where R(z) denotes the stationary probability distribution of the random vari-
able, which is determined by equality

R(z) = λ

z∫

0

(1 − A(x)) dx,

where
λ =

1
∞∫
0

(1 − A(x)) dx

.
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We introduce the partial characteristic function

h(z,v, t) =

∞∫

0

ejv1w1 . . .

∞∫

0

ejvnwnP (z, dw, t),

where j =
√−1 is the imaginary unit. Then, we can write the following differ-

ential equation

∂h(z,v, t)
∂t

=
∂h(z,v, t)

∂z
+

∂h(0,v, t)
∂z

[
A(z) − 1 + A(z)S(t)(G∗(v) − 1)

]
, (2)

where

G∗(v) =

∞∫

0

ejv1y1dG1(y1) . . .

∞∫

0

ejvnyndGn(yn),

with the initial condition
h(z,v, t0) = R(z). (3)

4 Asymptotic Analysis Method

In general, the exact solution of Eq. (2) is not available, but it may be found
under asymptotic conditions. In this paper, we consider the case of infinitely
growing arrival rate. Let us write the distribution function of the interarrival
times as A(Nz), where N is some parameter used for the asymptotic analysis
(N → ∞ in theoretical analysis [4,5]).

Then, the Eq. (2) takes the form

1
N

∂h(z,v, t)
∂t

=
∂h(z,v, t)

∂z
+

∂h(0,v, t)
∂z

[
A(z)−1+A(z)S(t) (G∗(v) − 1)

]
, (4)

with the initial condition (3).

Theorem 1. The first-order asymptotic characteristic function of the probabil-
ity distribution of the process {z(t),W(t)} has the form

h(z,v, t) = R(z) exp

⎧
⎨
⎩Nλ

n∑
i=1

jvia
(i)
1

t∫

t0

S(τ)dτ

⎫
⎬
⎭ ,

where a
(i)
1 is the mean amount of i-th type occupied resource.

Proof. By performing the substitutions

1
N

= ε,v = εy, h(z,v, t) = f1(z,y, t, ε), (5)

in expression (4), one obtains
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ε
∂f1(z,y, t)

∂t
=

∂f1(z,y, t)
∂z

+

∂f1(0,y, t)
∂z

[
A(z) − 1 + A(z)S(t) (G∗(εy) − 1)

]
, (6)

with the initial condition

f1(z,y, t0, ε) = R(z). (7)

Let us find the asymptotic solution of Problem (6)–(7) in two steps.
Step 1. Let ε = 0 in (6), then we obtain the following equation

∂f1(z,y, t)
∂z

+
∂f1(0,y, t)

∂z
(A(z) − 1) = 0.

We can conclude that f1(z,y, t) can be expressed as

f1(z,y, t) = R(z)Φ1(y, t), (8)

where Φ1(y, t) is some scalar function that satisfies the condition

Φ1(y, t0) = 1.

Step 2. Let z → ∞ in (6). We obtain

ε
∂f1(∞,y, t)

∂t
=

∂f1(0,y, t)
∂z

S(t)
(
G∗(εy) − 1

)
,

We substitute here the expression (8), use the expansion

ejεx = 1 + jεx + o(ε2),

divide by ε and perform the limit as ε → ∞. Taking into account that R′(0) = λ,
we obtain the following differential equation

∂Φ1(y, t)
∂t

= Φ1(y, t)λS(t)
n∑

i=1

jyia
(i)
1 , (9)

where a
(i)
1 =

∞∫
0

ydGi(y).

Taking into account the initial condition, the solution of (9) is

Φ1(y, t) = exp

⎧
⎨
⎩λ

n∑
i=1

jyia
(i)
1

t∫

t0

S(τ)dτ

⎫
⎬
⎭ .

By substituting Φ1(y, t) from (8) and performing replacements opposite to
(5) we obtain

h(z,v, t) = f1(z,y, t, ε) ≈ f1(z,y, t) = R(z) exp

⎧
⎨
⎩λ

n∑
i=1

jyia
(i)
1

t∫

t0

S(τ)dτ

⎫
⎬
⎭ =

R(z) exp

⎧
⎨
⎩Nλ

n∑
i=1

jvia
(i)
1

t∫

t0

S(τ)dτ

⎫
⎬
⎭ .
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The proof is complete.

Theorem 2. The second-order asymptotic characteristic function of the proba-
bility distribution of the process {z(t),W(t)} has the form

h(z,v, t) = R(z) exp

{
Nλ

n∑
i=1

jvia
(i)
1

t∫

t0

S(τ)dτ + N

n∑
i=1

(jvi)2

2

(
λa

(i)
2

t∫

t0

S(τ)dτ+

κ
(
a
(i)
1

)2 t∫

t0

S(τ)dτ
)
+κN

n∑
i=1

n∑
l=1
l �=i

jvijvl

2
a
(i)
1 a

(l)
1

t∫

t0

S2(τ)dτ

}
,

where κ = λ3(σ2 −a2), a and σ2 being the mean and the variance of the random
variable with distribution function A(z), respectively.

Proof. In Eq. (4) perform the replacement

h(z,v, t) = h2(z,v, t) exp

⎧
⎨
⎩Nλ

n∑
i=1

jvia
(i)
1

t∫

t0

S(τ)dτ

⎫
⎬
⎭ . (10)

Then, we can write

1
N

∂h2(z,v, t)
∂t

+ h2(z,v, t)λS(t)
n∑

i=1

jvia
(i)
1 =

∂h2(z,v, t)
∂z

+

∂h2(0,v, t)
∂z

[
A(z) − 1 + A(z)S(t) (G∗(v) − 1)

]
, (11)

with the initial condition
h2(z,v, t0) = R(z). (12)

Let us perform the following substitutions

ε2 =
1
N

,v = εy, h2(z,v, t) = f2(z,y, t, ε). (13)

Substituting these expressions into (11) and (12), we obtain the following
problem

ε2
∂f2(z,y, t, ε)

∂t
+ f2(z,y, t, ε)λS(t)

n∑
i=1

jεyia
(i)
1 =

∂f2(z,y, t, ε)
∂z

+
∂f2(0,y, t, ε)

∂z

[
A(z) − 1 + A(z)S(t) (G∗(v) − 1)

]
, (14)

with the initial condition
f2(z,y, t, ε) = R(z). (15)
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Let us find the asymptotic solution of this problem

f2(z,y, t) = lim
ε→0

f2(z,y, t, ε).

Step 1. Letting ε = 0 in (14), we obtain the following equation

∂f2(z,y, t, ε)
∂z

+
∂f2(0,y, t, ε)

∂z
(A(z) − 1) = 0.

Then, we can write

f2(z,y, t) = R(z)Φ2(y, t), (16)

where Φ2(y, t) is some scalar function, which satisfies the condition

Φ2(y, t0) = 1.

Step 2. The solution f2(z,y, t) can be represented in the expansion form

f2(z,y, t, ε) = Φ2(y, t)

{
R(z) + g(z)S(t)

n∑
i=1

jεyia
(i)
1

}
+ o(ε2), (17)

where g(z) is a suitable function. By substituting this expression in (14), using
the following decomposition

ejεx = 1 + jεx + o(ε2).

We obtained

λ
n∑

i=1

jεyia
(i)
1 S(t)R(z)Φ2(y, t) = Φ2(y, t)

[
R′(z) +

n∑
i=1

jεyia
(i)
1 S(t)g′(z)+

λ(A(z) − 1) + λS(t)A(z)
n∑

i=1

jεyia
(i)
1 + g′(0)S(t)(A(z) − 1)

n∑
i=1

jεyia
(i)
1

]
.

Taking into account that

R′(z) = λ(1 − A(z)),

and dividing both parts by
n∑

i=1

jεyia
(i)
1 S(t), we obtain the differential equation

for the unknown function g(z)

λR(z) = g′(z) + g′(0)(A(z) − 1) + λA(z),

whose solution is

g(z) = λ

z∫

0

(A(u) − R(u))du + g′(0)

z∫

0

(A(u) − 1)du.
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It is easy to show that

g′(0) = λg(∞) +
κ

2
, (18)

where κ = λ3(σ2 −a2), a and σ2 being the mean and the variance of the random
variable with distribution function A(z).

Step 3. Letting z → ∞ in (14) and taking advantage of the definition of the
function f2(z,y, t, ε), we can write

lim
z→∞

∂f2(∞,y, t, ε)
∂z

= 0.

Using this result and

ejεx = 1 + jεx +
(jεx)2

2
+ o(ε3),

we obtain

ε2
∂f2(∞,y, t, ε)

∂t
+ f2(∞,y, t, ε)λS(t)

n∑
i=1

jεyia
(i)
1 =

∂f2(z,y, t, ε)
∂z

S(t)
[ n∑

i=1

jεyia
(i)
1 +

n∑
i=1

(jεyi)2

2
a
(i)
2 +

n∑
i=1

n∑
l=1
l �=i

jεyijεyl

2
a
(i)
1 a

(l)
1

]
.

By substituting here the expansion (17) and considering the limit as z → ∞, we
can write

ε2
∂Φ2(y, t)

∂t
+ Φ2(y, t)λS(t)

n∑

i=1

jεyia
(i)
1 + Φ2(y, t)g(∞)

n∑

i=1

jεyia
(i)
1

n∑

l=1

jεyla
(l)
1 S2(t)λ =

Φ2(y, t)
(
λS(t)

[ n∑

i=1

jεyia
(i)
1 +

n∑

i=1

(jεyi)
2

2
a
(i)
2 +

n∑

i=1

n∑

l=1
l�=i

jεyijεyl

2
a
(i)
1 a

(l)
1

])
+o(ε3).

We divide by ε2, taking into account (18) and passing to the limit as ε → ∞,
we obtain the differential equation for the unknown function Φ2(y, t)

∂Φ2(y, t)
∂t

= Φ2(y, t)

[
λS(t)

n∑
i=1

(jεyi)2

2
a
(i)
2 + κS2(t)

n∑
i=1

(jεyi)2

2
(
a
(i)
1

)2

κS2(t)
n∑

i=1

n∑
l=1
l �=i

jεyijεyl

2
a
(i)
1 a

(l)
1

]
.
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The solution of the latter equation with the available initial condition gives the
expression

Φ2(y, t) = exp

{
n∑

i=1

(jyi)2

2

(
λa

(i)
2

t∫

t0

S(τ)dτ + κ(a(i)
1 )2

t∫

t0

S2(τ)dτ

)
+

κ
n∑

i=1

n∑
l=1
l �=i

jyijyl

2
a
(i)
1 a

(l)
1

t∫

t0

S2(τ)dτ

}
.

Substituting this expression in (16), we can write

f2(z,y, t) = R(z) exp

{
n∑

i=1

(jyi)2

2

(
λa

(i)
2

t∫

t0

S(τ)dτ + κ(a(i)
1 )2

t∫

t0

S2(τ)dτ

)
+

κ
n∑

i=1

n∑
l=1
l �=i

jyijyl

2
a
(i)
1 a

(l)
1

t∫

t0

S2(τ)dτ

}
. (19)

Substituting this expression into (19) and performing the substitutions that are
inverse to (10) and (13), we obtain the following expression for the asymptotic
characteristic function of the process {z(t),W(t)}

h(z,v, t) ≈ R(z) exp

{
Nλ

n∑
i=1

jvia
(i)
1 +

N

n∑
i=1

(jvi)2

2

(
λa

(i)
2

t∫

t0

S(τ)dτ + κ(a(i)
1 )2

t∫

t0

S2(τ)dτ

)
+

N
n∑

i=1

n∑
l=1
l �=i

jvijvl

2
a
(i)
1 a

(l)
1

t∫

t0

S2(τ)dτ

}
.

Corollary. When z → ∞, t = T and t0 → −∞, we obtain the characteristic
function of the process {V(t)} in the steady state regime. From the structure of
function (19) it is clear that the n-dimensional process {V(t)} is asymptotically
Gaussian with mean

a = Nλ
[
a
(1)
1 a

(2)
1 · · · a

(n)
1

]
b,

where

b =

∞∫

0

(1 − B(τ))dτ,

and covariance matrix
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K = N
(
λK(1)b + κK(2)β

)
,

where

K(1) =

⎡
⎢⎢⎢⎣

a
(1)
2 0 . . . 0
0 a

(2)
2 . . . 0

. . . . . . . . . . . .

0 0 . . . a
(n)
2

⎤
⎥⎥⎥⎦ ,K(2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

(
a
(1)
1

)2
a
(1)
1 a

(2)
1 . . . a

(1)
1 a

(n)
1

a
(2)
1 a

(1)
1

(
a
(2)
1

)2
. . . a

(2)
1 a

(n)
1

. . . . . . . . . . . .

a
(n)
1 a

(1)
1 a

(n)
1 a

(2)
1 . . .

(
a
(n)
1

)2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

β =

∞∫

0

(1 − B(τ))2 dτ.

5 Numerical Example

The Gaussian distribution is obtained under the asymptotic condition N → ∞.
Therefore, the result may be used just as an approximation and it is applicable
when N is great enough. So, we need to determine a lower bound of the parameter
N, which causes the approximation (19) be applicable. To do this we make
series of simulation experiments, considering two types of resources and compare
asymptotic distributions with empiric ones by using the Kolmogorov distance

Δ = max
x

| F (x) − A(x) | (20)

as an accuracy measure. Here F (x) is the cumulative distribution function of
total capacity of customers, constructed on the basis of simulation results, and
A(x) is the corresponding Gaussian approximation (its parameters for the two
classes are given in Table 1).

To investigate the goodness of the approximation, we consider the following
numerical example. In particular, we assume that the input renewal process is
characterized by the following distribution function

A(z) =

⎧
⎪⎨
⎪⎩

0, z < 0.5;
z − 0.5, z ∈ [0.5, 1.5];
1, z > 1.5.

Hence, the fundamental rate of arrivals is λ = 1 customers per time unit.
Moreover, each arriving customer occupies 2 types of resources and the cor-
responding customer capacities have uniform distribution in the range [0; 1]
and [0; 2], respectively. Service time has gamma distribution with parameters
α = β = 0.5 and so the fundamental rate of arrivals is N times the service rate.
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Table 1. Parameters of Gaussian approximations

Type of resource Mean Variance

First 0.5N 0.25N

Second 1N 1N

In the following we consider both the marginal and the bidimensional dis-
tributions of the amount of occupied resources at the system. In more detail,
Tables 2 and 3 report the values of the Kolmogorov distance for the two types
of resource, highlighting that the goodness of the approximation depends not
only on N , but also on the different statistical features of the considered types
of customer.

Table 2. Kolmogorov distance for the first type of resource

N 1 3 5 7 10 20 50 100

Δ 0.293 0.073 0.034 0.022 0.016 0.011 0.007 0.005

Table 3. Kolmogorov distance for the second type of resource

N 1 3 5 7 10 20 50 100

Δ 0.299 0.079 0.039 0.026 0.019 0.012 0.008 0.006

This conclusion is confirmed by Figs. 3 and 4, which compare the asymptotic
approximations with the empirical results for the total resource amount of each
type for two different values of N . A similar conclusion can be drawn also for
the joint distribution, as highlighted by Table 4 and Fig. 5.

a) N = 10 b) N = 100

Fig. 3. Distributions of the total resource amount for the first type
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a) N = 10 b) N = 100

Fig. 4. Distributions of the total resource amount for the second type

Table 4. Kolmogorov distance for bidimensional distributions

N 1 3 5 7 10 20 50 100

Δ 0.304 0.085 0.04 0.026 0.019 0.013 0.008 0.006

a) N = 10 b) N = 100

Fig. 5. Distributions of the total resource amount first and second type

6 Conclusions

In this paper we presented the analysis of Multi-resource GI(ν)/GI/∞ queue-
ing system with renewal arrival process and arbirtary service time. We applied
dinamic screening method to obtain asymptotic expression for the stationary
probability distribution of the process describing the total volume of the occupied
resource in the system. In more detail we derived first and second-order asymp-
totic approximations under the assumption of infinitely growing arrival rate, and
we showed that the n-dimensional probability distribution of the total resource
amount is asymptotically n-dimensional Gaussian. Numerical experiments and
simulations allow us to determine the applicability area of the asymptotic result
for different classes of users.
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Abstract. In this paper we investigate a single-server two-way com-
munication system by the help of retrial queuing systems with finite
source. From the finite source incoming primary calls enter into the sys-
tem according to an exponential distribution. If the server is idle then
the service of incoming customer starts immediately. Alternatively, if
an incoming customer discovers the server in busy state it is directed
towards the orbit, where after some exponentially distributed time retries
to reach the server again. As soon as the server becomes idle it can gener-
ate an outgoing call to the customers in the orbit after an exponentially
distributed time. In case of two-way communication after the service of
an outgoing call it returns to the source. In this work we concentrate on
emphasizing a phenomena of outgoing call on the mean waiting time of
incoming customers. The novelty of this paper is to carry out a sensitiv-
ity analysis comparing various distributions of service time of primary
customers on the performance measures like utilization of the server or
mean waiting time. By the use of simulation several graphical results and
comparison of the applied systems are illustrated.

Keywords: Retrial queues · Two-way communication · Sensitivity
analysis · Finite-source queuing systems · Simulation

1 Introduction

Finite-source retrial queues are effective and commonly used systems for mod-
eling real life problems arising in main telecommunication systems like cellular
mobile communication networks, computer networks, local-area networks with
random access protocols, call centers and CSMA-based wire-less networks. With
the decrement of the rate of generation of new calls the number of customers in
the system increases in case of many practical situation. This can be performed
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with the help of finite-source or quasi-random input models. Their importance
can be viewed by the reader in the following works, for example [4,10,11,14,15].

Systems with retrial feature are identified by a specific feature of arriving
customers when the server is occupied. These customers stay in the system
and spend their time in a virtual waiting room called orbit. Customers in the
orbit attempt to be served after a random time. Because the number of calls
are finite, the assumption of working with finite-source queuing systems follows
real circumstances. In this paper we examine two-way communication retrial
queuing system which is quite popular topic in the recent years. This can be
explained by the fact that using two-way communication scheme is very helpful
in many application fields to model real life problems. Especially in case of
call centers where service unit can perform certain other work in idle state like
selling, advertising and promoting products including serving incoming calls. In
such systems utilization of the service unit is always pivotal, see for example in
[1,2,6,9,13,16,20,22].

Once the server becomes idle it calls for customers inside and outside of
the system which is called an outgoing call. This is a typical feature of two-
way communication system. In our investigated model the idle service unit can
generate a call only from the orbit which arrives after a random time. It will only
be served if no customers from the finite source or from the orbit come. Otherwise
this outgoing call will be canceled. Papers dealing with two-way communication
systems by the help of retrial queues, where the source is infinite, are found in
[3,5,7,8,17–19,21].

Our aim is to study the operation of the system where the service unit is
reliable and can perform outgoing call from the orbit. The novelty of this paper
is to compare this system with the common finite source retrial system using
various distribution of service on performance measures like mean waiting time
of an incoming call or utilization of the server. We are mainly interested in how
the different distributions modify the characteristics of the system. To achieve
this goal a simulation program has been developed using the base of SimPack [12]
which contains a number of C/C++ libraries and executable programs. One of
the main reasons for its usage is that the user has the freedom what performance
measure are calculated and how the model is built up. SimPack toolkit also
provides a set of utilities that demonstrate how to build a working simulation
from a model description.

2 System Model

We consider a retrial queuing system of type M/G/1//N with a reliable server
which is capable to produce outgoing calls to the customers residing in the orbit.
N customers are located in the source, where all of them can generate incoming,
primary calls towards the server. The distribution of the inter-request times is
exponential with rate λ/N . In default of waiting queue an incoming customer
either from the source or orbit finds the server in an idle state then its ser-
vice begins instantly. The service times of incoming customers are assumed to
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be gamma, hypo-exponentially, hyper-exponentially, Pareto and lognormal dis-
tributed with different parameters but with the same mean value. Customers
return to the source after their service is terminated. If the server is busy, mean-
ing that a request is under service, an incoming customer remains in the system
and enters into the orbit. Customers located in the orbit are able to attempt to
access the server again after an exponentially distributed time with parameter
σ/N . In the other hand, when the server becomes idle it can make outgoing
call towards the customers in the orbit. It is performed after an exponentially
distributed time with parameter ν. The service time of these outgoing customers
follows gamma distribution with parameters α2 and β2. In a consecutive paper
we aim to investigate the same system by the help of asymptotic methods when
N tends to infinity and that is the reason we use λ/N and σ/N parameters.
All the random variables involved in the model construction are assumed to be
totally independent of each other.

3 Applied Distributions and Its Parameters

In this Section the reader gets an insight of the parameters of the applied
distributions and the process how to select them in order to execute a valid
comparison. To do so our program is integrated with random number genera-
tors according to gamma, hyper-exponential, hypo-exponential, lognormal and
Pareto distribution. These random number generators need input parameters
which are different in every distribution, thus parameter selection is crucial.
For valid comparison we use the same mean and variance in case of every dis-
tribution hence we take over every distribution and how the fitting process is
accomplished.

3.1 Gamma Distribution

Gamma distribution is a general type of statistical distribution and a random
variable X has a gamma distribution if its density function is the following:

f(x) =

{
0 if x < 0
β(βx)α−1e−βx

Γ (α) if x ≥ 0

where β > 0 and α > 0.

Γ (α) =
∫ ∞

0

tα−1 e−t dt

This is the so-called complete gamma function, which has two parameters:
α is called the shape parameter and β is called the scale parameter. These two
parameters are also the input parameters of the random number generator.

The coefficient C2
X = V ar(X)

(EX)2 is defined as the squared coefficient of variation
of random variable X.
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The mean value, variation and the squared coefficient of variation can be
calculated:

X =
α

β
, V ar(X) =

α

β2
, C2

X =
1
α

For a predetermined mean value and variance to obtain parameters α and β
the next calculation has to be done:

α =
1

C2
X

, β =
α

X

3.2 Pareto Distribution

A random variable X has a Pareto distribution if its density function is the
following:

f(x) =

{
0 if x < k

αkαx−α−1 if x ≥ k

Hence the distribution function is:

F (x) =

{
0 if x < k

1 −
(

k
x

)α

if x ≥ k

where α, k > 0.
It has two parameters: α is called the shape parameter and k is called the

location parameter. These two parameters are the input parameters of the ran-
dom number generator.

The mean value, variation and the squared coefficient of variation can be
calculated as follows:

X =

{
kα

α−1 if α > 1
∞ if α ≤ 1

V ar(X) =
k2α

α − 2
−

( kα

α − 1

)2

, C2
X =

(α − 1)2

α(α − 2)
− 1, α > 2.

For a predetermined mean value and variance to obtain parameters α and k
the following interrelation is used:

α = 1 +

√
1 + C2

X√
C2

X

, k =
α − 1

α
× X
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3.3 Lognormal Distribution

Let Y ∈ N(m,σ) a random variable with normal distribution, lognormal is
a continuous distribution in which the logarithm of a variable having a normal
distribution, namely X = eY has lognormal distribution with parameters (m,σ).
Its distribution and density function are the following:

Fx(x) = Φ
( ln(x) − m

σ

)
, x > 0.

fx(x) =
1

σx
ϕ
( ln(x) − m

σ

)
, x > 0.

The mean value, variance and the squared coefficient of variation can be
calculated:

X = em+σ2
2 , V ar(X) = e2m+σ2

(eσ2 − 1), C2
X = eσ2 − 1.

To obtain the two parameters of the lognormal distribution the following
interrelation is applied:

σ =
√

ln(1 + C2
X), m = ln(X) − σ2

2

3.4 Hypo-exponential Distribution

Continuous statistical distribution, let Xi ∈ Exp(μi)(i = 1, ..., n) be independent
exponentially distributed random variables. Then Yn = X1+...+Xn has n-phase
hypo-exponential distribution. Its density function is given by

fYn
(x) =

⎧⎨
⎩

0 if x < 0

(−1)n−1

[ ∏n
i=1 μi

] ∑n
j=1

e−μjx
∏n

k=1,k �=j(μj−μk)
if x ≥ 0.

The mean value, variance and the squared coefficient of variation can be
calculated:

Yn =
n∑

i=1

1
μi

, V ar(Yn) =
n∑

i=1

1
μ2

i

, C2
Yn

=

∑n
i=1

(
1
μi

)2

( ∑n
i=1

1
μi

)2 .

In our simulation program we used the 2-phase hypo-exponential distribution
where the parameters are the parameters of the two independent exponential
distribution (μ1, μ2). For a predetermined mean value and variance to obtain
parameters μ1 and μ2 the next equation system has to be solved:

X =
1
μ1

+
1
μ2

, V ar(X) =
1
μ2
1

+
1
μ2
2
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3.5 Hyper-exponential Distribution

Suppose X1,X2, · · · ,Xn are independent exponential random variables, where
the rate parameter of Xi is λi. The random variable X can be one of the n
independent exponential random variables X1,X2, · · · ,Xn such that X is Xi

with probability pi with p1 + · · · + pn = 1. Such a random variable X is said to
follow a hyper-exponential distribution. Its density function is given by

fX(x) =

{
0 if x < 0∑n

i=1 piλie
−λix if x ≥ 0.

Its distribution function is

FX(x) =

{
0 if x < 0
1 − ∑n

i=1 pie
−λix if x ≥ 0.

In the case when for a random variable X,C2
X > 1 then the the following

two-moment fit is suggested

fY (t) = pλ1e
−λ1t + (1 − p)λ2e

−λ2t.

Y is a 2-phase hyper-exponentially distributed random variable. The most
commonly used procedure is the balanced mean method, that is

p

λ1
=

1 − p

λ2
.

To obtain the three parameters of the hyper-exponential distribution the
following calculation is used:

p =
1
2

(√
C2

X − 1
C2

X + 1

)
, λ1 =

2p

X
, λ2 =

2(1 − p)
X

.

4 Simulation Results

4.1 Squared Coefficient of Variation is Greater than One

The values of the input parameters are shown in Table 1. In this section these
results are in connection with the effect of different service time distributions
of incoming customers where the mean and variance are equal, respectively.
We use hyper-exponential distribution if the squared coefficient of variation is
greater than one, Table 2 shows the exact values of parameters of service time of
incoming customers. Besides hyper-exponential, gamma, lognormal and Pareto
distributions are also used for comparisons.

Figure 1 shows the mean waiting time in function of arrival intensity of incom-
ing customers. For these values of parameters regardless of the applied distri-
bution a maximum value of the mean waiting time can be seen. This maximum
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Table 1. Numerical values of model parameters

N σ/N ν α2 β2

100 0.01 0.02 1 1.1

Table 2. Parameters of service time of incoming customers

Distribution Gamma Hyper-exponential Pareto Lognormal

Parameters α = 0.04 p = 0.48 α = 2.02 m = −1.629

β = 0.04 λ1 = 0.961 k = 0.505 σ = 1.805

λ2 = 1.04

Mean 1

Variance 25

Squared coefficient
of variation

25

Fig. 1. Mean waiting time vs. arrival intensity using various distributions

feature occurs for finite-source retrial queues, see for example [4,9,10,16]. Dif-
ferences can be observed among the values of mean waiting time especially in
the case of using gamma and Pareto distribution, despite the fact that the mean
and variance are the same. On this figure the effect of different distributions is
clearly observable.

Figures 2 and 3 illustrates how the utilization of the server grows with the
increment of the arrival intensity of incoming customers. The highest values can
be found at gamma distribution but the differences of the applied distributions
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Fig. 2. Utilization of server vs. arrival intensity using various distributions

Fig. 3. Utilization of server vs. arrival intensity using various distributions
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are as commensurable as in case of Fig. 1. As the arrival intensity increases the
probability of performing outgoing call become less so outgoing requests spend
less time at the service unit.

Fig. 4. Comparison of steady-state distributions

On Fig. 4 the comparison of steady-state distribution can be seen when the
distribution of service time of the incoming customers is different. It represents
the probability of how many customers residing in the orbit. Exploring the curves
in more detail they correspond to normal distribution. The same parameter
setting is used what Table 1 demonstrates where λ/N is 0.03.

To emphasize the importance of outgoing calls we compare our investigated
model to the model without outgoing calls. This model is named as the classical
retrial queuing system. On Fig. 5 comparison of the mean waiting time can be
seen and due to the phenomena of outgoing call customers spend less time in
the system, which is obvious looking at the curves. However, in our investigated
model the utilization of the service unit (Fig. 6) is much higher compared to
the classical retrial queuing system therefore it spends less time in idle state.
In this way the efficiency of the server grows such that the mean waiting time
decreases substantively. The distribution of service time of the incoming cus-
tomer is gamma at Figs. 5 and 6, but the ratio of difference is also true for the
other distributions, too. On this figure under total utilization of server we mean
the service of both the incoming and outgoing requests at the curve of with
outgoing call.
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Fig. 5. Comparison of our investigated model and the classical retrial queuing model
on the mean waiting time

Fig. 6. Comparison of our investigated model and the classical retrial queuing model
on the utilization of server
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4.2 Squared Coefficient of Variation is Less than One

The same input parameters are used as in the previous section, see Table 1. The
results are also in connection with the effect of different service time distributions
of incoming customers where the mean and variance are equal. Instead of hyper-
exponential distribution hypo-exponential distribution is used if the squared
coefficient of variation is less than one. Table 3 illustrates the values of parameters
of service time of incoming customers. In addition to hypo-exponential, we apply
gamma, lognormal and Pareto distributions to perform sensitivity analysis.

Table 3. Parameters of service time of incoming customers

Distribution Gamma Hypo-exponential Pareto Lognormal

Parameters α = 1.5504 μ1 = 1.3 α = 2.597 m = −0.249

β = 1.5504 μ2 = 4.333 k = 0.615 σ = 0.705

Mean 1

Variance 0.6449704142

Squared coefficient
of variation

0.6449704142

Fig. 7. Mean waiting time vs. arrival intensity using various distributions

Figure 7 demonstrates the mean waiting time in the function of arrival inten-
sity of incoming calls. Taking closer look at the curves it can be stated that
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the values of mean waiting time are almost identical regardless of the applied
distribution. With this parameter setting the interesting maximum value of the
mean waiting time appears as in the previous section.

Fig. 8. Utilization of server vs. arrival intensity using various distributions

Figures 8 and 9 illustrates how the utilization of the server increases with the
increment of the arrival intensity of incoming customers. As in case of mean wait-
ing time here using different distributions result the same utilization. It seems
that when the squared coefficient of variation is less than one using different dis-
tributions have no effect on the performance measures and the obtained results
are nearly identical.

Similarly to the previous section we compare the results between the classical
retrial queuing system and our investigated model. On Figs. 8 and 9 the same
tendency can be observed like when the the squared coefficient of variation is
greater than one, namely values of mean waiting time is lesser when the server
can make outgoing calls. But this also affects the utilization of the service unit
because with the help of outgoing calls server spend less time without satisfying
the needs of the customers. As in the previous section the service time of the
incoming customer follows gamma distribution at Fig. 10 and 11, but the ratio
of difference is also true for the other distributions, too.

From Figs. 5, 6, 10 and 11 it can be said that the utilization of service unit
escalates when outgoing calls are performed, but it also results lesser mean wait-
ing time of incoming customers. With a proper parameter setting in the case of
outgoing calls the utilization of the server is much higher in a way that customers
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Fig. 9. Utilization of server vs. arrival intensity using various distributions

Fig. 10. Comparison of our investigated model and the classical retrial queuing model
on the mean waiting time
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Fig. 11. Comparison of our investigated model and the classical retrial queuing model
on the utilization of server

spend less time in the orbit. In the case of with outgoing calls total utilization of
the server includes both incoming and outgoing requests occupying the service
unit.

5 Conclusion

A finite-source retrial queueing system is introduced where the server can pro-
duce outgoing calls towards the customers of the orbit. Several figures present
the effect of the applied distributions on the mean waiting time and on the uti-
lization of the server. Using stochastic simulation method results clearly indicate
that when the squared coefficient of variation is greater than one then the con-
trast of the values of the performance measures is quite high having the same
mean and variance.
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Abstract. The Pollaczek-Khinchin transform equation is usually
derived by means of the embedded Markov chain technique consider-
ing the number of customers in an M/G/1 queueing system at moments
just after having served customers. The probabilities contained in this
generating function, in [6] we determined them by using results from the
theory of regenerative processes. The approach was based on the determi-
nation of mean values of times spent in different states in a busy period.
Using the same general idea, we get an analogous result in the case of dis-
crete time, for the Geo/G/1 system and derive the discrete-time version
of the Pollaczek-Khinchin transform equation.

Keywords: Pollaczek-Khinchin transform equation · Discrete
queueing system · Geo/G/1

1 Introduction

The classical formula, the Pollaczek-Khinchin transform equation (e.g. [1])

P (z) =
∞∑

i=0

piz
i =

(1 − ρ)(1 − z)b(λ(1 − z))
b(λ(1 − z)) − z

(where λ is the arrival rate, τ the mean value of service time of a customer,
ρ = λτ , b(s) the Laplace-Stieltjes transform of distribution function of a cus-
tomer’s service time) is usually derived by means of the embedded Markov chain
technique considering the number of customers in the M/G/1 queueing system
at moments just after having served customers. The probabilities contained in
this generating function, in [6] we have determined them by using results from
the theory of regenerative processes. The approach was based on the determina-
tion of mean value of the regenerative cycle and the mean values of times spent
in different states in a busy period, it is described in [5]. This method may be
used even for more complicated service disciplines, e.g. the case of bulk arrivals
appears in [2], the case of vacation in [3] and [4]. Using this general idea, we get
an analogous result for the corresponding discrete time (Geo/G/1) system and
derive the discrete-time version of the Pollaczek-Khinchin transform equation.

The standard approach for the discrete-time system based on the use of
embedded Markov chain is presented in [9] or [8].
c© Springer Nature Switzerland AG 2019
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We will consider a queueing system with geometrically distributed interar-
rival and generally distributed service time, one server and FCFS service disci-
pline, i.e. the discrete analogue of the M/G/1 system. Introduce the notations:

r - the probability of arrival of a customer in a slot (time unit);
bk - the probability the service time is equal to k slots;
B(z) - the generating function of service time;
τ - the mean value of service time;
ρ = rτ ;
A(z) - the generating function of number of customers arriving for the service
time of a customer;
ζ =

τ

1 − ρ
- the mean value of length of busy period;

ζi - the mean value of time spent above the i-th level for a busy period;
ξi - the mean value of time spent on the i-th level in a busy period;

P (z) =
∞∑
i=0

piz
i - the generating function of ergodic distribution in the

Geo/G/1 system.

As in the case of M/G/1 system, we will consider the number of customers at
moments after having served a customer, each service will be identified with the
number of remaining in the system customers. This number is called the state
of system, sometimes we will tell the system is at a certain level.

The use of embedded Markov chain means that the system is considered only
at special moments, namely at moments tn +0 (when the n-th customer already
left the system). So we have a modified model, the arriving customers are taken
into account not at the moments of their real arrival, but at the moment when the
service of actual customer is completed. The quantity of present in the system at
this moment customers is called the state of the system. For our purposes it will
be more convenient to regard the system at the starting moments of services and
accept that it does not change till the completion of service. This will be called
the number of present customers in the system. The such defined notions of state
and present customers must be distinguished, the difference will be clear from the
following reasoning. For the busy period there change intervals of staying on the
first and above the first level. The services of customers when at the beginning
there is one customer in the system corresponds to the state 1 excluding two
cases. If the interval on the first level ends with a jump above the first level, then
the service of this last customer will correspond to the new level. But coming
down from the second level this service time will be returned to the first level.
The second case is the service of last customer in the busy period. From the
viewpoint of states it corresponds to the zero state (after service no customer
remains in the system), from the viewpoint of number of present customers it is
1 (at the beginning of service there is one customer), so it is necessary to exclude
from the number of customers served on the first level. In the case of other levels
the general number of customers served on these levels does not change.
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2 Ergodic Probabilities via Mean Values

We are going to consider a queueing system in which the service time has general
distribution with generating function

B(z) =
∞∑

k=1

bkz
k,

i.e. the service time is equal to k slots (time units) with probability bk; for a slot
a new customer enters independently of other slots with probability r, i.e. the
interarrival time has geometrical distribution

P{η = k} = (1 − r)k−1r (k = 1, 2, . . .).

The generating function of arrival of a customer for a slot is 1 − r + rz.
We have

Theorem 1. Let us consider a Geo/G/1 queueing system where in a time unit
(slot) a new customer arrives with probability r (there is no entry with probability
1 − r), the service time has general distribution with generating function B(z).
If the service time of a customer has a finite mean τ , rτ < 1, then there exists
an equilibrium distribution in the system. These equilibrium probabilities are
determined by the fractions pi = ξi/ζ (i = 0, 1, 2, . . .), where ζ is the mean value
of the busy period and ξi is the mean value of time spent on the i-th level during
the busy period.

Proof. The proof of the theorem is a direct consequence of Theorem 4.40 [7] (or
see [10] Theorems 1.3.2 and 1.3.3). The mean values appearing in the theorem
are given by the lemma below.

First we find the generating function of number of customers served in a busy
period, let us denote it by G(z). The generating function of arriving customers
for a service time is

A(z) =
∞∑

k=1

bk(1 − r + rz)k = B(1 − r + rz) =
∞∑

i=0

aiz
i.

Consider the structure of the busy period. After free state there appears a cus-
tomer, during its service arrive k new ones. Each of them with customers arriving
during their services generate periods with the same structure as the whole busy
period, i.e. G(z) satisfies the functional equation

G(z) = z

∞∑

i=0

aiG
i(z) = zA(G(z)) = zB(1 − r + rG(z)).

By means of derivation we obtain

G′(z) = B(1 − r + rG(z)) + zB′(1 − r + rG(z))rG′(z)
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and

G′(1) = 1 + B′(1)rG′(1),

from which

G′(1) =
1

1 − rB′(1)
=

1
1 − rτ

.

This result can also be found in [9].

Lemma 1. In the Geo/G/1 system

ξ0 = τ, ξ1 =
1 − a0

a0
τ, ξ2 =

1 − a0 − a1

a0
(ξ0 + ξ1), (1)

and ξk (k ≥ 3) satisfy the recurrence relation

ξk =
k−2∑

i=1

1 − a0 − a1 − . . . − ai

a0
ξk−i +

1 − a0 − a1 − . . . − ak−1

a0
(ξ0 + ξ1). (2)

Proof. Let j customers be present in the system. Then with probability a1 we
remain at this level, and with probability 1 − a1 we leave it, namely with prob-

ability
a0

1 − a1
come to the j − 1-st level, and with probability

1 − a0 − a1

1 − a1
to a

level above j.
The mean value of number of customers served for a period when only one

customer is present in the system is

∞∑

k=1

kak−1
1 (1 − a1) =

1
1 − a1

.

The mean value of number of customers served for a period above the first
level is

∞∑

k=2

ak

1 − a0 − a1
(k − 1)

1
1 − ρ

=
1

(1 − ρ)(1 − a0 − a1)
[ρ − a1 − (1 − a0 − a1)]

=
ρ − 1 + a0

(1 − ρ)(1 − a0 − a1)
,

where we used the equalities

ρ =
∞∑

k=1

kak and
∞∑

k=0

ak = 1.

We mention that the mean values can be measured either in time or in the
number of customers, the difference appears in the factor τ (the mean value of
a customer’s service time).
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For a busy period we have some periods during which there is only one
customer in the system, it can be finished in two different ways: either there is
no entry (it means the end of the busy period), or more than one customer enter.
We have 1, 2, . . . , k, . . . such periods with probabilities

a0

1 − a1
,

1 − a0 − a1

1 − a1

a0

1 − a1
, ...,

(1 − a0 − a1)k−1

(1 − a1)k−1

a0

1 − a1
, ...

The mean value of such periods is
∞∑

k=1

k
(1 − a0 − a1)k−1

(1 − a1)k−1

a0

1 − a1

τ

1 − a1
=

τ

a0
;

the mean value of periods above the first level will be
∞∑

k=1

k
(1 − a0 − a1)k

(1 − a1)k
a0

1 − a1

ρ − 1 + a0

(1 − ρ)(1 − a0 − a1)
τ =

ρ − 1 + a0

a0(1 − ρ)
τ.

The sum of two values is
τ

a0
+

ρ − 1 + a0

a0(1 − ρ)
τ =

τ

1 − ρ
,

it gives the mean value of the busy period.
Our above computations were based on the number of present customers, so

the mean value of time on the first level means the sum of times in states 0 and
1, i.e. ξ0 + ξ1. To the zero state in a busy period belongs only the last customer,
consequently ξ0 = τ and

ξ1 =
τ

a0
− τ =

1 − a0

a0
τ.

So, we were able to divide the busy period into two parts, to find the mean
values of times spent on the zero plus first levels and above the first level. In
the following we continue to divide the periods above the first level determining
the mean values of times above the k-th (k = 2, 3, . . .) level and finding on their
base the mean values of times spent on the concrete levels. First we consider the
second level. We have two possibilities:

1. from the first level we come to the second one;
2. from the first level we come at least to the third level.

Coming from the first level to the second one we are in the same situation
as in case of the first level: serving a certain number of customers on the second
level we come to the first one or above the second one. In the first case the
sojourns on and above the second level change, and spending on average ζ1 time
above the second level we come to the first one. In the second case from the first
level we jump above the second one, the return time to the second level is

∞∑

k=3

ak

1 − a0 − a1 − a2
(k − 2)

τ

1 − ρ
=

ρ − 2 + 2a0 + a1

(1 − ρ)(1 − a0 − a1 − a2)
τ = ε2.
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Now we are in the previous situation and spend ζ1 time above the second level.
The probabilities of two possibilities are

a2

1 − a0 − a1
and

1 − a0 − a1 − a2

1 − a0 − a1
,

so the average sojourn time above the second level for a period beginning and
ending on the first level is

a2

1 − a0 − a1
ζ1 +

1 − a0 − a1 − a2

1 − a0 − a1
(ζ1 + ε2) = ζ1 + ε′

2,

where

ε′
2 =

ρ − 2 + 2a0 + a1

(1 − ρ)(1 − a0 − a1)
τ.

During a busy period we will have i such intervals with probability

(1 − a0 − a1)i

(1 − a1)i
a0

1 − a1
,

so by using
∞∑

i=1

i
(1 − a0 − a1)i−1

(1 − a1)i−1
=

1
(
1 − 1−a0−a1

1−a1

)2 =
(1 − a1)2

a2
0

we get

ζ2 =
∞∑

i=1

i
(1 − a0 − a1)i

(1 − a1)i
a0

1 − a1
(ζ1 + ε′

2)

=
1 − a0 − a1

1 − a1

a0

1 − a1

∞∑

i=1

i
(1 − a0 − a1)i−1

(1 − a1)i−1
(ζ1 + ε′

2)

=
1 − a0 − a1

1 − a1

a0

1 − a1

(1 − a1)2

a2
0

ζ1

+
1 − a0 − a1

1 − a1

a0

1 − a1

(1 − a1)2

a2
0

ρ − 2 + 2a0 + a1

(1 − ρ)(1 − a0 − a1)
τ

=
1 − a0 − a1

a0
ζ1 +

1 − a0 − a1 − a2

a0

ρ − 2 + 2a0 + a1

(1 − ρ)(1 − a0 − a1 − a2)
τ

=
1 − a0 − a1

a0
ζ1 +

1 − a0 − a1 − a2

a0
ε2.

The mean value of time spent on the second level is obtained as the difference
of mean values of times spent above the first and second levels. Since

1 − a0 − a1 − a2

a0
ε2 =

ρ − 2 + 2a0 + a1

a0(1 − ρ)
τ =

ρ − 1 + a0

a0(1 − ρ)
τ − 1 − a0 − a1

a0(1 − ρ)
τ

= ζ1 − 1 − a0 − a1

a0

τ

1 − ρ
,
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consequently

ξ2 = ζ1 − ζ2 = ζ1 − 1 − a0 − a1

a0
ζ1 − 1 − a0 − a1 − a2

a0
ε2

= ζ1 − 1 − a0 − a1

a0
ζ1 − ζ1 +

1 − a0 − a1

a0

τ

1 − ρ

=
1 − a0 − a1

a0
(ζ − ζ1) =

1 − a0 − a1

a0
(ξ0 + ξ1).

The next step is to compute the mean value of time spent on the third level.
From the first level one can come to the second, the third and above the third
level. In the three cases the mean values of times to stay above the third level
are

− ζ2 (level 2),
− ζ1 + ζ2 (level 3),
− ε3 + ζ1 + ζ2 (above 3).

In the first case from the first level we come to the second one, the mean
value of time spent above the third level coincides with the case of second level
from the viewpoint of first level, so the desired mean value is ζ2. In the second
case the service begins on the third level, spending ζ1 time above the third level
we come to the second level and are in the previous situation. The corresponding
mean value is ζ1 + ζ2. In the third case the service starts above the third level,
let it be k, having served k − 3 customers and the generated by them ones we
reach the third level and the second case takes place. The mean value of time to
return to the third level is

ε3 =
∞∑

k=4

ak

1 − a0 − a1 − a2 − a3
(k − 3)

τ

1 − ρ
=

ρ − 3 + 3a0 + 2a1 + a2

1 − a0 − a1 − a2 − a3

τ

1 − ρ
.

The probabilities of three cases are
a2

1 − a0 − a1
,

a3

1 − a0 − a1
and

1 − a0 − a1 − a2 − a3

1 − a0 − a1
,

so the mean value of time spent above the third level for an interval beginning
and ending on the first level is

a2

1 − a0 − a1
ζ2 +

a3

1 − a0 − a1
(ζ1 + ζ2) +

1 − a0 − a1 − a2 − a3

1 − a0 − a1
(ε3 + ζ1 + ζ2)

= ζ2 +
1 − a0 − a1 − a2

1 − a0 − a1
ζ1 +

1 − a0 − a1 − a2 − a3

1 − a0 − a1
ε3.

For a busy period we have i intervals above the first level with probability
(1 − a0 − a1)i

(1 − a1)i
a0

1 − a1
, the mean value of time above the third level is

ζ3 =
∞∑

i=1

i
(1 − a0 − a1)

i

(1 − a1)i
a0

1 − a1

[
ζ2 +

1 − a0 − a1 − a2

1 − a0 − a1
ζ1 +

1 − a0 − a1 − a2 − a3

1 − a0 − a1
ε3

]

=
1 − a0 − a1

a0
ζ2 +

1 − a0 − a1 − a2

a0
ζ1 +

ρ − 3 + 3a0 + 2a1 + a2

a0

τ

1 − ρ
.
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We find the mean value of time on the third level as the difference of mean values
above the second and third levels, it is

ξ3 = ζ2 − ζ3,

where

ζ2 =
1 − a0 − a1

a0
ζ1 +

ρ − 2 + 2a0 + a1

a0

τ

1 − ρ
,

ζ3 =
1 − a0 − a1

a0
ζ2 +

1 − a0 − a1 − a2

a0
ζ1 +

ρ − 3 + 3a0 + 2a1 + a2

a0

τ

1 − ρ
.

Since

ρ − 2 + 2a0 + a1

a0

τ

1 − ρ
− ρ − 3 + 3a0 + 2a1 + a2

a0

τ

1 − ρ

=
1 − a0 − a1 − a2

a0

τ

1 − ρ
=

1 − a0 − a1 − a2

a0
ζ,

so

ξ3 =
1 − a0 − a1

a0
(ζ1 − ζ2) − 1 − a0 − a1 − a2

a0
ζ1 +

1 − a0 − a1 − a2

a0
ζ

=
1 − a0 − a1

a0
ξ2 +

1 − a0 − a1 − a2

a0
(ξ0 + ξ1),

i.e. in the case k = 3 the statement of the lemma is true.
We determine ζk (the mean value of time spent above the k-th level for a

busy period). ζk has the structure

ζk : ζk−1 (level 2)
ζk−2 + ζk−1 (level 3)
....................
ζk−i+1 + ζk−i+2 + . . . + ζk−1 (level i)
..................................
ζ1 + ζ2 + . . . + ζk−1 (level k)
ζ1 + ζ2 + . . . + ζk−1 + εk (above k)

From the first level we can come to the second, ..., k−1-st, k-th levels or to a
level above the k-th one. In the case of second level we are in the same situation
as in the case of k − 1-st level from the viewpoint of first one, so the mean value
is ζk−1.

In case of third level we have a period starting with the presence of three
customers and ending with the presence of two ones. This corresponds to the
situation: starting from the first level we consider the time spent above the k−2-
nd level, so the mean value is ζk−2. We are in the previous situation (there are
two customers), so the mean value of remaining part is ζk−1. So, the desired
mean value in this case ζk−2 + ζk−1.
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We consider the last possibility. Then we go to a level above the k-th one.
The mean value of time spent above the k-th level at the beginning is

∞∑

i=k+1

ai

1 − a0 − a1 − . . . − ak
(i − k)

τ

1 − ρ

=
ρ − k + ka0 + (k − 1)a1 + . . . + 2ak−2 + ak−1

(1 − ρ)(1 − a0 − a1 − . . . − ak)
τ = εk.

Now we are at the k-th level, spending ζ1 above the k-th one we come to k − 1,
spending ζ2 above k we come to k − 2, ..., and, finally, starting from the second
level spending ζk−1 above the k-th one we reach the first level. The desired
mean value is ζ1 + ζ2 + . . . + ζk−1 + εk. The probabilities of these possibilities

are
a2

1 − a0 − a1
,

a3

1 − a0 − a1
, ...,

1 − a0 − a1 − . . . − ak

1 − a0 − a1
.

Multiplying the conditional mean values with the corresponding probabilities
we get

ζk−1 +
1 − a0 − a1 − a2

1 − a0 − a1
ζk−2 + . . .

+
1 − a0 − a1 − . . . − ak−1

1 − a0 − a1
ζ1 +

1 − a0 − a1 − . . . − ak

1 − a0 − a1
εk

In a busy period we will stay i times above the first level with probability
(1 − a0 − a1)i

(1 − a1)i
a0

1 − a1
, so

ζk =
∞∑

i=1

i
(1 − a0 − a1)i

(1 − a1)i
a0

1 − a1

{
ζk−1 +

1 − a0 − a1 − a2

1 − a0 − a1
ζk−2

+ . . . +
1 − a0 − a1 − . . . − ak−1

1 − a0 − a1
ζ1

+ . . . +
1 − a0 − a1 − . . . − ak

1 − a0 − a1
εk

}

=
k−1∑

i=1

1 − a0 − a1 − . . . − ai

a0
ζk−i +

1 − a0 − a1 − . . . − ak

a0
εk

Substituting here the similar value for ζk−1 we obtain

ξk =
k−2∑

i=1

1 − a0 − a1 − . . . − ai

a0
ξk−i +

1 − a0 − a1 − . . . − ak−1

a0
(ξ0 + ξ1).

The lemma is proved.

3 The Derivation of the Pollaczek-Khinchin Transform
Equation

We give another method to derive the generating function.
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Theorem 2. The generating function of present customers in the Geo/G/1 sys-
tem

P (z) =
(1 − ρ)(1 − z)B(1 − r + rz)

B(1 − r + rz) − z
, (3)

may be obtained from (1), (2) by using the theory of regenerative processes.

Remark 1. We underline that in the Geo/G/1 system under the regenerative
cycle one has to understand the busy period, according to the definition of
embedded chain the service time of last customer corresponds to the free state.

Proof. Let us write the formulae of ξi for the first values. We have

ξ0 = ξ0,

ξ1 =
1 − a0

a0
ξ0,

ξ2 =
1 − a0 − a1

a0
ξ1 +

1 − a0 − a1

a0
ξ0,

ξ3 =
1 − a0 − a1

a0
ξ2

+
1 − a0 − a1 − a2

a0
ξ1 +

1 − a0 − a1 − a2

a0
ξ0,

ξ4 =
1 − a0 − a1

a0
ξ3 +

1 − a0 − a1 − a2

a0
ξ2

+
1 − a0 − a1 − a2 − a3

a0
ξ1 +

1 − a0 − a1 − a2 − a3

a0
ξ0,

ξ5 =
1 − a0 − a1

a0
ξ4 +

1 − a0 − a1

a0
ξ4

+
1 − a0 − a1 − a2

a0
ξ3 +

1 − a0 − a1 − a2 − a3

a0
ξ2

+
1 − a0 − a1 − a2 − a3 − a4

a0
ξ1 +

1 − a0 − a1 − a2 − a3 − a4

a0
ξ0,

........ ...............................................................................................................

Let us multiply the expression for ξi by zi and sum up them from the third
row excluding the last term (containing ξ0). We have

1 − a0 − a1

a0
z(ξ1z + ξ2z

2 + . . .) +
1 − a0 − a1 − a2

a0
z2(ξ1z + ξ2z

2 + . . .)

+
1 − a0 − a1 − a2 − a3

a0
z3(ξ1z + ξ2z

2 + . . .) + . . .

=
( ∞∑

i=1

ξiz
i

) {
1 − a0 − a1

a0
z +

1 − a0 − a1 − a2

a0
z2

+
1 − a0 − a1 − a2 − a3

a0
z3 + . . .

}

=
( ∞∑

i=1

ξiz
i

)
1
a0

{
z

1 − z
− a0z

1 − z
− a1z

1 − z
− a2z

2

1 − z
− a3z

3

1 − z
− . . .

}

=
( ∞∑

i=1

ξiz
i

)
1

a0(1 − z)
{z(1 − a0) − [A(z) − a0]}

=
[
P (z) − ξ0

]
1

a0(1−z) {z(1 − a0) − [A(z) − a0]} ,

(4)
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where P (z) =
∞∑
i=0

ξiz
i. For the term containing ξ0, we have

ξ0z

∞∑

i=1

1 − a0 − . . . − ai

a0
zi = ξ0z

1
a0(1 − z)

{z(1 − a0) − [A(z) − a0]}. (5)

Adding (4), (5), the first row and the second one multiplied by z, we obtain

P (z) = [P (z) − ξ0]
1

a0(1 − z)
{z(1 − a0) − [A(z) − a0]}

+ξ0z
1

a0(1 − z)
{z(1 − a0) − [A(z) − a0]} + ξ0 +

1 − a0

a0
ξ0z.

From it

P (z) =
(1 − z)A(z)
A(z) − z

ξ0.

Dividing it by the mean value of busy period
τ

1 − ρ
and taking into account that

ξ0 = τ , finally we obtain (3)

P (z) =
(1 − ρ)(1 − z)A(z)

A(z) − z
=

(1 − ρ)(1 − z)B(1 − r + rz)
B(1 − r + rz) − z

.
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Abstract. The problem of reducing loss probability in systems with
finite buffer and infinite service time dispersion. Efficient method of loss
reduction is developed for system M/Pa/1/m, in which Pareto distribu-
tion has infinite dispersion. The method is based on absolute priority
discipline with afterservice. At infinite buffer m = ∞ the introduction of
absolute priorities into the systems is proven to allow the transformation
of waiting time distribution in a way that its average values becomes
finite. This underlies the development of the numerical method for opti-
mal requests separation into priority classes with respect to minimal
average waiting time in a system with infinite buffer It is demonstrated
that the resulting priority assignment decreases the loss probability sig-
nificantly if the infinite buffer in a system is replaced by a finite one.
The method remains highly efficient even when extended to other sys-
tems GI/GI/1/m with infinite service time dispersion. The developed
priority assignment method has a number of important advantages over
other methods for dealing with requests losses. As a result, it can be effi-
ciently used in practice, namely, to lower the messages loss probability
in data networks with fractal traffic.

Keywords: Queueing systems · Fractal traffic · Loss probability in a
finite buffer system · Service discipline · Optimal priority assignment

1 Introduction

At the beginning of the 1990 s, random processes describing data network traffic
were found to have a fractal structure [1], which significantly affects the queueing
properties in the network devises. The main problem in networks design was
that of packet loss since fractal traffic is characterized by a large, in most cases
infinite, dispersion. This results in unpredictable sizes of the formed queues.
Consequently, “classical” models of the queues being inadequate for fractal traffic
were replaced by queueing systems with power-law distribution tails [2], namely,
queueing system with Pareto distribution, whose shape parameter lies in the
region accounting for infinite dispersion [3]. These models adequately represent
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the properties of the packet queue and allow developing the methods to lower
the packet loss probability in networks.

The following methods stand out as the main ones to lower the loss proba-
bilities: increasing the size of the buffer capacity, increasing the node operation
speed, increasing the number of channels operating in parallel and introducing
the priority service meachnism.

In fractal traffic, increasing the buffer size is an inefficient means to lower to
loss probability [4]. This can be explained by the fact that at infinite dispersion
Var(x) of service time x average queue length in the system with an infinite buffer
is infinite. In fact, let us consider the system M/Pa/1 with Pareto distribution of
service time, the system commonly used for modelling network devices. Pareto
distribution of random variable x is set by the following probability distribution
function:

F (t) = 1 −
(

K

t

)α

, K > 0, t ≥ K, (1)

where K is the least value of the random variable x (scale parameter), α > 0 is
shape parameter.

It is easy to verify that at α > 1 mathematical expectation (m.e.) E(x) < ∞,
and at α ≤ 2 the dispersion Var(x) = ∞. Therefore, the range 1 < α ≤ 2 of
parameter α values, frequently used at network devices modeling, determined
finite m.e. b and infinite time dispersion x. Consequently, the second moment
b(2) of time x is infinite as well.

Applying Pollaczek-Khinchine formula to the considered system with b(2) =
∞, stationary average waiting time for the system is found to be

W =
λb(2)

2(1 − ρ)
= ∞

at any load coefficient ρ < 1 and any non-zero rate λ of arriving requests flow.
Using Little’s formula L = λW , one determines that stationary average queue
length L in such system is also infinite (result L = ∞ is obtained by means
of moment generating function in the article [5]). In a physical sense, infinite
average waiting time explains not only inefficient increase of the buffer size as
a means to lower loss probability, but inefficient increase of channel processing
speed as well, since W = ∞ at any load coefficient ρ < 1. In [5] was established
that when the buffer m is finite the loss probability P decreases with the growth
m at asymptotical power rate: P ∼ Cm(1−α), where C is a constant.

A very effective method to reduce the loss probability is to increase the
number of channels in the system [6]. This method is associated with reasonable
expenses for additional equipment.

This article is devoted to the development of another effective method of deal-
ing with losses (no longer focused on additional hardware costs). The developed
method consists in the introduction of absolute priorities for incoming requests
due to their service time. Special feature of the developed method is the use of an
infinite number of priority classes, radically changing such systems’ properties.
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2 Formation of Priority Classes

Let us split the range K ≤ t < ∞ of possible service time x values, using a
sequence of points (markup)

{tk} = t0, t1, . . . , tk, . . . (2)

into intervals [t0, t1), [t1, t2), . . . , [tk−1, tk), . . . , where t0 = K. If the request
entering the system has a service time belonging to the kth interval, i.e. if
x ∈ [tk−1, tk), this request is associated with the kth priority class. Moreover,
the higher the number k of the request priority class, the lower its priority (thus,
negative priorities are allowed, since the number of priority classes is infinite in
general). Such absolute priority assignment will be called an assignment caused
by service time axis marking. If the number of intervals [tk−1, tk) is finite, in the
last one [tN−1, tN ) we get tN = ∞. Introducing absolute priorities, it is assumed
that the discipline of absolute priorities with afterservice is used.

Let us determine the average waiting time W in the system M/Pa/1 at such
division of arrival flow into priority components. Due to [7], average time Uk of
staying in the system for the request with the kth priority class can be expressed
as follows:

Uk =
bk

1 − σk−1
+

k∑
i=1

λib
(2)
i

2(1 − σk)(1 − σk−1)
, k = 1, 2, . . . , (3)

where bk is average service time for requests of the kth priority class, λi is
the arrival rate of requests with the ith priority class, b

(2)
i is the second service

moment for the requests of the ith priority class, σk =
k∑

i=1

ρi is the sum of system

load coefficients due to the requests of priority classes from the 1st to the kth,
ρi = λibi, σk−1 = σk − ρk.

Then average time U of requests staying in the system can be determined as
the sum

U =
∑

k

pkUk, (4)

(where pk = P(tk−1 ≤ x < tk) is the probability of arriving request classified as
the kth priority class), and average waiting time is a difference

W = U − b, (5)

where b = E(x).
Indicators (4) and (5) of the considered system depend on the marking of

{tk} = t0, t1, . . . , tk, . . . service time axis on intervals, defining priority classes
of requests. Let us find for the given marking {tk} the parameter values for the
system M/Pa/1, included in the right side of the formula (3).
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Because the probability pk = P(tk−1 ≤ x < tk) of interval [tk−1, tk) at service
time x distribution (1) equals

pk =
(

K

tk−1

)α

−
(

K

tk

)α

, (6)

conditional distribution function for service time x belonging to the kth interval
has the form:

Fk(t) = F (t|tk−1 ≤ x < tk) =

=
F (t) − F (tk−1)

pk
=

t−α
k−1 − t−α

t−α
k−1 − t−α

k

, tk−1 ≤ x < tk. (7)

Therefore, for formula (3) we obtain:

bk =

tk∫
tk−1

tdFk(t) =

tk∫
tk−1

t
αt−α−1

t−α
k−1 − t−α

k

dt =
α

α − 1
· t1−α

k−1 − t1−α
k

t−α
k−1 − t−α

k

, (8)

λk = pkλ, (9)

(all priority components of the arrival flow are Poisson),

b
(2)
k =

tk∫
tk−1

t2dFk(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α

α − 2
· t2−α

k−1 − t2−α
k

t−α
k−1 − t−α

k

, α �= 2,

2
t−2
k−1 − t−2

k

ln
(

tk
tk−1

)
, α = 2,

(10)

(here the uncertainty of 0/0 type at α = 2 is disclosed by L’Hopital rule),

ρk = λkbk.

σk =
k∑

i=1

ρi =
k∑

i=1

λibi,

σk−1 = σk − ρk. (11)

It is easy to verify that the obtained parameters of the priority components
into which the arrival flow is divided meet the verification conditions∑

k

pk = 1,
∑

k

pkFk(t) = F (t),
∑

k

pkbk = b,

∑
k

λk = λ,
∑

k

pkb
(2)
k = b(2),

∑
k

ρk = ρ. (12)

Now let us investigate average waiting time W (5) at various markings
{tk}. First, let us note that at 1 < α ≤ 2 any finite markings {tk} =
{tk}N

1 leave average time infinite since in the last, N th semi-infinite interval
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[tN−1, tN ) = [tN−1,∞) the second service time moment b
(2)
N represented by

Eq. (10) is infinite. Infinite moment b
(2)
N results into infinite average staying time

UN – see (3) – for requests of the lower N th priority class, into infinite uncon-
ditional average staying time U – see (4), and into infinite average waiting time
W – see (5). We, however, are interested in possibility to obtain finite average
time W due to absolute priorities at 1 < α ≤ 2. Therefore, further consideration
will be given only of the infinite markings {tk} = {tk}∞

1 , leaving no right semi-
infinite interval on the axis of service time distributed due to Pareto principle.
Let us start with the study of a regular marking.

3 Regular Service Time Axis Marking

Let us demonstrate that at regular marking

tk − tk−1 = Δ = const, (13)

i.e. in which the lengths of all intervals are equal, introducing the discipline of
absolute priorities with afterservice described above makes the average waiting
time finite.

T h e o r e m. Introducing discipline of absolute priorities with afterservice
into the system M/Pa/1 with ρ < 1, 1 < α ≤ 2, when priorities are determined
by infinite regular marking (13) with positive step Δ < ∞, makes the average
waiting time finite.

P r o o f. The average staying time in the system, due to the expressions (3)
and (4), is determined as follows:

U =
∑

k

pkUk =
∞∑

k=1

pkbk

1 − σk−1
+

∞∑
k=1

pk

k∑
i=1

λib
(2)
i

2(1 − σk)(1 − σk−1)
. (14)

Here the first sum on the right is finite due to the following relations:

∞∑
k=1

pkbk

1 − σk−1
≤

∞∑
k=1

pkbk

1 − ρ
=

1
1 − ρ

∞∑
k=1

pkbk =
b

1 − ρ

(see (12)), ρ < 1 is the system load coefficient.
The second sum is limited by the expression above

∞∑
k=1

pk

k∑
i=1

λib
(2)
i

2(1 − σk)(1 − σk−1)
≤

∞∑
k=1

pk

k∑
i=1

λib
(2)
i

2(1 − ρ)(1 − ρ)
=

1
2(1 − ρ)2

∞∑
k=1

pk

k∑
i=1

piλb
(2)
i =

λ

2(1 − ρ)2

∞∑
k=1

pk

k∑
i=1

pib
(2)
i ,
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and, therefore, only the finiteness of the sum S =
∞∑

k=1

pk

k∑
i=1

pib
(2)
i remains to be

proven.
By inserting the corresponding expressions (6) and (10), we obtain:

S =
∞∑

k=1

[(
K

tk−1

)α

−
(

K
tk

)α] k∑
i=1

[(
K

ti−1

)α

−
(

K
ti

)α] [
α

α−2 · t2−α
i−1 −t2−α

i

t−α
i−1−t−α

i

]
=

= αK2α

α−2

∞∑
k=1

[(
1

tk−1

)α

−
(

1
tk

)α] k∑
i=1

[(
1

ti−1

)α

−
(

1
ti

)α] [
t2−α
i−1 −t2−α

i

t−α
i−1−t−α

i

]
=

= αK2α

α−2

∞∑
k=1

(
t−α
k−1 − t−α

k

) k∑
i=1

(
t−α
i−1 − t−α

i

) (
t2−α
i−1 −t2−α

i

t−α
i−1−t−α

i

)
=

= αK2α

α−2

∞∑
k=1

(
t−α
k−1 − t−α

k

) k∑
i=1

(
t2−α
i−1 − t2−α

i

)
<

< αK2α

α−2

∞∑
k=1

(
t−α
k−1 − t−α

k

) k∑
i=1

(ti−1 − ti) =

= αK2α

α−2

∞∑
k=1

(
t−α
k−1 − t−α

k

) k∑
i=1

Δ = αK2α

α−2

∞∑
k=1

(
t−α
k−1 − t−α

k

)
kΔ =

= αK2αΔ
α−2

∞∑
k=1

(
t−α
k−1 − t−α

k

)
k. (15)

The last of the obtained sums is calculated, considering that the coordi-
nates of the regular marking (t0, t1, . . . , tk, . . . ) have the form (K,K + Δ,K +
2Δ, . . . , K + kΔ, . . . ):

S1 =
∞∑

k=1

(
t−α
k−1 − t−α

k

)
k =

∞∑
k=1

(
kt−α

k−1 − kt−α
k

)
=

=
(
1t−α

0 − 1t−α
1

)
+

(
2t−α

1 − 2t−α
2

)
+

(
3t−α

2 − 3t−α
3

)
+ · · · +

+
(
kt−α

k−1 − kt−α
k

)
+ · · · =

∞∑
k=0

t−α
k =

=
∞∑

k=0

(K + kΔ)−α = Δ−α
∞∑

k=0

(
k + K

Δ

)−α
= Δ−αζ (α,K/Δ) , (16)

where ζ (s, q) is Hurwitz’s zeta function [8]:

ζ (s, q) =
∞∑

k=0

(k + q)−s
. (17)

Using integral test for convergence (Cauchy test) for series (17), we see that
series converges for real s > 1 and q > 0 (zeta function is determined for complex
s, q if Re(s) > 1, Re(q) > 0). Thus, sum S1 (16) is finite for α > 1 and,
consequently, sum S (15), average staying time (14), and average waiting time
W (5) are finite.

The theorem is proved.
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The Hurwitz’s zeta function can be well calculated by existing mathematical
programs. For instance, calculating sum S1 (16) when α = 8/7, K = 0.0625,
Δ = 0.2 by means of the wolframalpha.com site, we obtain S1 = 68.767911 . . . ,
moreover, the number of significant digits of the result easily increases to several
hundred.

4 Optimization of Regular Marking Tick

When absolute priorities caused by infinite regular marking are introduced into
the system M/Pa/1/m, at any Δ, for example, at Δ = E(x), the loss probability
P decrease is achieved. Moreover, as demonstrated by the simulation experi-
ments, at increased buffer size m, P (m) lowers with exponential speed. These
qualitative changes can be explained by the fact that in queueing systems with
infinite buffer the introduction of absolute priorities caused by infinite marking
results in lower average waiting time W , and consequently, in lower queue length
L from the infinite value to the finite one.

At the same time the exact value of W depends on the marking parameter Δ,
therefore, it is natural to choose only the optimal Δ. The value of Δ will be called
optimal, if it minimizes the value of W . In other words, to determine optimal Δ
the following problem should be solved

W (Δ) = U − b =
∑

k

pkUk − b =

=
∞∑

k=1

pkbk

1 − σk−1
+

∞∑
k=1

pk

k∑
i=1

λib
(2)
i

2(1 − σk)(1 − σk−1)
− b → min

Δ
, (18)

where the indicators in a minimized expression depend on the used regular mark-
ing (t0, t1, . . . , tk, . . . ) = (K,K+Δ,K+2Δ, . . . ,K+kΔ, . . . ), determined by the
parameter Δ. Parameters λ,K, α of the system M/Pa/1/∞, for which problem
(18) is solved, are considered as set. Parameters in (18) are determined by the
marking (t0, t1, . . . , tk, . . . ) with the formulae (6)–(11). Due to the service time
of problem (18), it is reasonable to solve it with numerical methods. An example
of numerical optimization is shown in Fig. 1.

Line 1 on the left figure is calculated for parameters α = 1.9, K = 9/38,
line 2 is for α = 1.5, K = 1/6, line 3 is for α = 1.25, K = 0.1 and line 4 is
for α = 8/7, K = 0.0625. For all four cases, E(x) = 0.5, λ = 1, ρ = 0.5. The
purpose of the calculation is to determine the dependence of the optimum on
the parameter α.

The large red markers on the lines indicate the zones in which the optimal
values of Δ are located, delivering the minimum average time W . Significant
difficulties of calculating the dependences shown in the pictures are related to
the fact that at considered Δ it is necessary to calculate the sums in (18) for a
large number of summands.
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Fig. 1. Approximately calculated dependences of W on Δ at various α (on the left)
and comparison of an approximate dependence with the exact one. The position of the
found minimum zone does not change (Color figure online)

This is because the calculated sums converge very slowly. A special program
had to be written to calculate 10 million of such summands, and the whole
calculation of the figure took quite a long time. This, in particular, explains why
the neighborhoods of the minima on the curves in this figure are defined with
a rather large tolerance. Numerical calculation of W at Δ = 0 was of course
impossible. Therefore an analytical method had to be used to calculate W (Δ)
at Δ = 0.

The right side of Fig. 1 shows the most “difficult” dependence calculated
approximately (at α = 8/7, closest to one) which is compared to the exact one.
The exact calculation of the dependence was performed by substituting parts of
sums in (18), corresponding to values k ∈ (106,∞), with definite integrals. As
expected, the values of W at redefined calculation have changed markedly, but
the position the sought optimal Δ was preserved.

5 Calculation of W (Δ) at Δ → 0

At Δ → 0 we move from a discrete infinite marking to a continuous one, there-
fore, the numbering of the intervals becomes an inappropriate means. Let us turn
to the representation of the intervals in the form of [t, t + dt). The indicators
needed to calculate W due to formula (18) transform into the indicators of the
corresponding infinitesimal intervals, while the sums included in (18) transform
into integrals, respectively. As a result of such transformations for sum (18), we
obtain:
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W (0) = αKα

∞∫
K

t−α[
1 − λαKα

α−1 (K1−α − t1−α)
]dt +

+
λα2K2α

2(2 − α)

∞∫
K

t−1−α
(
t2−α − K2−α

)
[
1 − λαKα

α−1 (K1−α − t1−α)
]dt − b. (19)

By calculating (19), the values of W (0) are estimated for Fig. 1. The integrals
in (19) are well calculated by mathematical packages at the given values of
numerical coefficients. Calculating W (0) allows performing additional control of
the accuracy for the calculations of W (Δ) in the area of small Δ, where necessary
number of calculated summands in sum (18) becomes especially large.

6 Introduction of Priorities at α > 2

Regular marking can also be used to realize absolute priorities in such systems
M/Pa/1/∞, in which Pareto distribution has the parameter α > 2. At the same
time, the optimization of the regular marking tick can also be performed by a
numerical method. For example, Fig. 2 shows the calculation of the dependence
W (Δ) at λ = 1, K = 0.48, a = 2.5 (in this system b = 0.8, ρ = 0.8, b(2) = 1.152).

The dependence calculated by formula (18) is shown by the red curve, the
round markers on it show the corresponding values obtained by simulation. The
upper horizontal green line corresponds to the value of W0, which character-
izes the original system (the system without priorities). The lower horizontal
line corresponds to the value of W (0), which the system has when introducing
absolute priorities due to regular marking with infinitesimal intervals defining
priority classes. The fact that the curve starts almost from the upper horizontal
and ends almost with the lower horizontal indicates that a sufficiently wide range
of Δ values is considered. It can also be noted that for small Δ the calculated
curve slightly exceeds the exact limit value of W (0), to which it seems to be
asymptotically approaching from below. This indicates that 60 thousand sum-
mands which were used to calculate the values of W (Δ) according to formula
(18), were not enough at low Δ. A relatively small number of summands was
chosen in this case because at α > 2 the sums in (18) converge relatively quickly.

Optimal value Δ comprises the value Δopt ≈ 0.4653 here, at such Δ the
value W (Δopt) ≈ 1.236 is achieved. Evaluating the efficiency of introducing
absolute priorities at α > 2 by reduction coefficient ξ = W0/W (Δopt), we get
ξ = 2.88/1.236 ≈ 2.33.

Figure 3 shows the calculation of dependence W (Δ) in the system with
the parameters λ = 1, K = 0.48, α = 3.5 (in this system b = ρ = 0.672,
b(2) = 0.5376). Here Δopt ≈ 0.4046, W (Δopt) ≈ 0.6541, efficiency indicator
ξ = 0.8195/1.236 ≈ 1.25.

As seen in Fig. 3, at small Δ the values of W calculated by the finite sums are
almost equal to the value of W (0) calculated precisely by formula (18), though
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sums (18) were truncated to the same 60 000 summands at calculation, just
like in the calculation shown in Fig. 2. This can be explained by the sums (18)
convergence rate growing along with α.

The use of 60 000 summands in sums (18) allowed their calculation to be
realized in Excel, and, consequently, Δopt and W (Δopt) to be determined using
add-in ‘Solver’. Thus, a solution is searched within a couple of tens of seconds.
Therefore, the calculation of dependences in Figs. 2 and 3 was performed only
to verify the uniqueness of the sought local minimum.

Fig. 2. The calculation of the depen-
dence W (Δ) in the system M/Pa/1/∞
with the parameter α = 2.5 (Color
figure online)

Fig. 3. The calculation of the depen-
dence W (Δ) in the system M/Pa/1/∞
with the parameter α = 3.5

In numerical and simulation experiments, it was established that the effi-
ciency indicator ξ grows quickly when α approaches the value α = 2 from above,
reaching the infinity at α = 2 (and thus, it remains the same at the entire range
1 < α ≤ 2).

Figure 1 (see above) shows the calculation of W (Δ) at 1 < α ≤ 2, when
in sums (18) dozens of millions of summands had to be used. Therefore, stan-
dard functions of Excel cannot be used efficiently. Optimization means were not
included in a program specially written to calculate such sums. It was mainly
caused by the fact that a more efficient marking than regular one had been
found, so that the problem of optimizing the marking parameters, when calcu-
lating large sums, disappeared by itself.

7 Exponential Marking

Numerical experiment with a large number of other markings differing from
a regular one showed that the most efficient marking is infinite exponential
(t0, t1, . . . , tk, . . . ), in which points tk are distributed as follows:

t0 = K, tk = K + ceak, (k = 1, 2, . . . ), (20)



306 V. N. Zadorozhnyi and T. R. Zakharenkova

where c, a are coefficients that can be optimized to minimize the average waiting
time W at given λ,K, α.

In addition to this marking being able to significantly reduce the time W , its
advantage is that due to the rapid growth of the intervals between the points tk,
sufficiently remote marking horizons, providing the proximity of finite sums to
infinite ones in (18), overlap after only several tens of summands in these sums.
Because of this, the calculation of W can be performed in a few rows of Excel
spreadsheets, and at the same time it is possible to perform precise optimization
of the marking parameters c, a due to the gradient method built into add-in
‘Solver’.

A small number of practically realizable infinite exponential marking levels
(20) are also beneficial for the practical implementation of the absolute priorities.

8 Experiments with Loss Probabilities at Finite Buffer
Sizes

8.1 The Main Task Solved by the Introduction of Absolute
Priorities

The ultimate goal of the research carried out in the article is a radical reduction
of the failure probability in queueing systems with heavy distribution tails. The
developed method consists in introducing absolute priorities caused by infinite
markings in systems with a finite buffer. The created in the article method takes
into account the results of well-known empirical studies of systems operating
under fractal traffic [9] and achievements for the classical theory of priority dis-
ciplines optimization [10–12]. However, the proposed method differs significantly
from well-known ones by considering of infinite markings. We propose to opti-
mize the parameters of the used markings by numerical methods based on the
exact formulae of the queueing theory. Since there are no exact formulae to cal-
culate the considered systems with a finite buffer, we use the idea to optimize the
marking parameters on systems with an infinite buffer, i.e. to choose such mark-
ing parameters that minimize the average service time (average queue length)
in a system with an infinite buffer. Then, the subsequent buffer limit occurs
under conditions where the queue becomes on average as short as possible, and
therefore the loss probability should be reduced as much as possible. This heuris-
tic justification of the developed method also explains the independence of the
selected marking from the buffer length and, therefore, indirectly justifies the cal-
culation of the rapid decrease in the loss probability with the increasing buffer
size. This section describes the simulation experiments performed with different
systems with a finite buffer, which most convincingly confirm the effectiveness
of the method developed to reduce the loss probability.

8.2 Experiments with the Systems M/Pa/1/m at 1 < α ≤ 2

Figure 4 shows the results of six simulation experiments in which the dependences
of loss probabilities P on the buffer size m were determined for various systems
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M/Pa/1/m at 1 < α ≤ 2. The horizontal coordinate axis corresponds to the
buffer size m, and the vertical axis corresponds to the loss probability P . In all
experiments, 10 million requests were passed through the system.

Continuous red lines represent the graphs of the dependences P (m), obtained
at the optimal exponential markings. Blue round markers represent the depen-
dences P (m), obtained at the optimal regular markings.

Figure 4 illustrates that optimal exponential markings are as good as optimal
regular markings. Exponential markings, however, are much more economical,
since they require the use of only a few dozen priority classes. Figure 4 shows the
results of the experiments, in which 68 priority classes on exponential markings
were used, while optimal regular markings at 1 < α ≤ 2 lead to using tens of
millions of priority classes (see explanations to Fig. 1). Some of the best results
for minimizing P at the exponential markings in Fig. 4 can be explained by the
fact that regular markings are optimized less accurately.

Trajectory 1 in Fig. 4 corresponds to the experiments with the M/Pa/1/m
system where α = 1.5, ρ = 0.5. The optimal value of Δ for the corresponding
regular marking, determined up to two decimal digits, is 0.30. The optimal values
of the exponential marking parameters are as follows: a = 1.055, c = 0.08424.

Trajectory 2 is obtained for the system with the same ρ = 0.5, but with a
much heavier Pareto distribution tail, here, α = 8/7 ≈ 1.1428. From the com-
parison of trajectories 1 and 2, it can be concluded that the heavier distribution
tail only increases the efficiency of the proposed method, while in conventional
approaches heavier tail (a simple increase in the buffer volume or an increase
in the channel performance) leads to almost insurmountable problems. In the
experiments, whose results are shown on trajectory 2, Δopt = 0.15, optimal val-
ues of the parameters a and c for the exponential markings were 1.01007 and
0.03896, respectively.

Trajectory 3 corresponds to the system, where α = 1.5, but the load on the
system is increased, in this case ρ = 0.8. The parameters of the optimal markings
used here are as follows: Δopt = 0.45, a = 0.8980, c = 0.1424.

Another pair of experiments was carried out to compare the efficiency of the
proposed method and the usually recommended method of reducing the loss
probability, consisting in a simple increase in the buffer size without introducing
absolute priorities. Simulation experiments were carried out with the same sys-
tem, which was considered first in the previous series of experiments: this is the
system M/Pa/1/m, in which α = 1.5, ρ = 0.5. The results are shown in Fig. 5
(here coordinate axes are the same as in Fig. 4).

A continuous, sharply downward, red line is the result of the buffer build-
up, using absolute priorities due to optimal exponential marking (this line is
taken from trajectory 1 in Fig. 4). The line converges to a straight line that at
the logarithmic scale of the ordinate axis indicates that the dependence P (m)
represented by this line is asymptotically exponential.

The solid green line at the top of the diagram is calculated by simulating the
initial system that does not use priorities. Since the corresponding dependence is
power-law, here the line goes down with deceleration. At the buffer size m = 100,
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Fig. 4. Dependences P (m) in various
systems M/Pa/1/m with finite buffer
(Color figure online)

Fig. 5. Dependences P (m) in the nor-
mal and priority modes (Color figure
online)

the probability P decreases here only to 0.029, at m = 1000 we get P = 0.00764,
and at m = 10 000 we get P = 0.00125. As you can see from Fig. 5, when using
absolute priorities, such loss probability is achieved already at the buffer size
m = 5. Moreover, using buffers designed to store 10 000 packets in real network
devices is sure to make no sense because of the high cost of the corresponding
equipment and the large delays occurring in the corresponding queues.

The markers on the top line indicate the results obtained when using relative
priorities (with the same set of priority classes as with absolute priorities).

The effects observed at simulation should be somehow explained at the level
of physical meaning. The extraordinary efficiency of absolute priorities both in
terms of reducing the loss probability and in terms of transforming the average
infinite waiting time into a finite one seems to be due to the fact that the service
time x has an infinite dispersion in the systems under consideration. Absolute
priorities “reschedule” the order of service for arriving messages, and to change
the order of service is especially reasonable in cases when the service time of
arriving requests is of a considerable diversity. However, when comparing high
efficiency of absolute priorities with low efficiency of relative ones, it is necessary
to clarify the explanation with the following remark. At infinite dispersion of
service time x, the system occasionally receives requests with very high, “catas-
trophic” service time. If such a request enters the system and occupies a channel
in non-priority mode or relative priority mode, a long queue is created at the
system input during its service, which leads to an overflow of even a very large
buffer. In the mode of absolute priorities, incoming “non-catastrophic” requests
with a higher priority “do not notice” a catastrophic request and simply push it
out into the queue, consequently they are served as if there were no catastrophic
request. As a result, long queues accumulating does not occur.

These reasonings make us suppose that the proposed method will be as effec-
tive in any systems GI/GI/1/m, where service time x distribution is a heavy tail
distribution (HTR) with infinites (or simply large) dispersion.



Methods to Reduce Loss Probability 309

8.3 Other Systems with HTR

Figure 6 shows the results of modeling two systems Pa/Pa/1/m. The lower line is
the graph for the dependence P (m) in the system with the following parameters.
Both Pareto distributions have the shape parameter α = 1.5. The parameter K of
the first Pareto distribution is 4/15, while for the second one it is twice as small.
Therefore, the load coefficient of the systems is ρ = 0.5. The system uses the
absolute priorities with priority classes determined by an exponential marking.
The marking is not optimized; the first exponential marking is simply taken from
the precious six experiments (the marking with the parameters a = 1.055,
c = 0.08424). The upper line is the results of modeling the second system
Pa/Pa/1/m obtained from the first one by substituting both shape parameters
α = 1.5 with α = 1.25. The same exponential marking was used here. The
figure demonstrates the fact that, despite the use of non-optimized markings,
the proposed method provides low loss probabilities at small m. As m grows,
the loss probabilities decrease according to the asymptotically exponential law.

If necessary, the markings in such systems can be optimized using simulation.

Fig. 6. The results of modeling two
systems Pa/Pa/1/m

Fig. 7. The results of modeling system
gamma/Logn/1/m

Figure 7 shows the results of modeling a system in which the arrival flow is set
by the gamma distribution of the intervals and the service time x has a lognormal
distribution. The gamma distribution has a mathematical expectation of 1 and
a relatively high dispersion of 16 (the parameters β and α of the distribution
are chosen to be 16 and 1/16, respectively). Lognormal distribution has the
parameters μ = −10, σ = 4.3. At such parameters of the lognormal distribution,
for the service time x we get E(x) = b = 0.47, Var(x) = 5.938 · 1042.

The upper almost horizontal line in Fig. 7 shows the dependence P (m) in non-
priority mode: P decreases very slowly with the growth of m. At m = 10 000,
the probability P = 0.25436 was obtained, at m = 100 000, the probability
P = 0.234502. In Fig. 7 this sequence of probabilities begins with values of the
order 0.5...0.4.

The lower line in the diagram corresponds to the dependence P (m) obtained
in the experiment when using absolute priorities with infinite marking of service
time, i.e. the method developed in this article.



310 V. N. Zadorozhnyi and T. R. Zakharenkova

9 Conclusion

The article proposed a method to reduce loss probability for requests in systems
GI/GI/1/m with infinite service time x dispersion Var(x). Dispersion Var(x) =
∞ in the systems M/G/1 results in infinite average waiting time and infinite
average queue length, and in the systems M/G/1/m with finite buffer, the result
is high loss probability P slowly decreasing with the growth of m. This problem
is very relevant, for example, in the design of data networks, where the size of
the transferred files and, accordingly, the time of their service by network devices
are distributed according to the asymptotically power law, well approximated
by the Pareto distribution with a shape indicator α lying within 1 < α ≤ 2.

To solve the problems, which in practice result from an infinite dispersion
Var(x), the article develops a method based on introducing absolute priorities
for requests with a (formally) infinite number of priority classes.

In the course of the research carried out in the article, the following main
results were obtained.

1. The regular marking in which all intervals [tk−1, tk) have the same length Δ
is investigated. The theorem is formulated and proved that if the absolute
priorities determined by the regular marking are introduced into the system
M/Pa/1/∞ with infinite average waiting time (i.e. at 1 < α ≤ 2), its average
waiting time W becomes finite.

2. The problem of optimizing regular marking (i.e. its defining parameter Δ)
by criterion W → min is set and solved by numerical methods.

3. The calculation formula to determine the average waiting time W at Δ → 0
is obtained.

4. Among a large number of irregular markings, the most effective one is found,
i.e. the exponential marking, in which the length of successive intervals grows
as an exponent with two constant coefficients. It is shown that in terms of
reducing the average waiting time W the exponential marking not inferior to
regular one. At the same time, exponential marking is much more econom-
ical: at 1 < α ≤ 2, when tens of millions of priority classes are implemented
by the optimal regular marking, the optimal exponential marking requires
the implementation no more than 50 priority levels.

5. The efficiency analysis is performed for the developed method as a method
of reducing the average waiting time W at α > 2, where the original system
M/Pa/1 has a finite W . It is shown that the efficiency of the method in this
area (the reduction coefficient W ) increases quickly as α approaches 2 from
above and becomes infinite at the point α = 2.

6. The efficiency of applying the developed method to the systems M/Pa/1/m
with a finite buffer and Var(x) = ∞ is studied. It is established that the
introduction of absolute priorities determined by the infinite marking dras-
tically reduces the loss probability. In this case, the slow (with power speed)
decrease of P (m) turns into a decrease with an exponential speed.

7. It is assumed that the method will also be equally effective in other sys-
tems with infinite dispersion Var(x). In order to verify this assumption, a
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series of experiments with other systems was carried out. Experiments have
convincingly confirmed the high efficiency of the method in various systems
with infinite (or very large) dispersion of service time.
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Abstract. Models with postponement are an alternative to finite capac-
ity queues in which overflow jobs are irrevocably lost. If the buffer is
empty, an arriving customer enters in to it and his service starts immedi-
ately. In case the buffer is non-empty, but not full, with some probability
depending on the number of works in the buffer direct entry to buffer
is permitted. When a customer is rejected from the buffer, he is offered
a pool of postponed work of infinite capacity. In this case the customer
chooses to enter the pool with certain probability. On the contrary, if
the buffer is full at a customer arrival epoch, the customer decides to
join the orbit with certain probability; however the system may reject
him with some probability. At a service completion epoch, if the num-
ber of customers in the buffer is less than a pre-assigned quantity, head
of the pooled customers will be transferred to the buffer with a spec-
ified probability. In the N-policy introduced in this paper, the number
of continuously served customers, taken from the buffer, is counted at
each service completion epoch. When it reaches a pre-assigned number
N , then the one ahead of all waiting in the pool gets transferred to the
buffer for immediate service. We study its long run behaviour. Several
system performance measures, and a few numerical illustrations are pro-
vided. A game theoretical approach to the queue is also introduced.

Keywords: Phase type distribution · Quasi birth death process ·
Matrix geometric solution · Postponed work · N -policy

1 Introduction

In many practical situations, finite capacity queues are more realistic than those
with infinite capacity, considering the physical limitations of the system. But this
will result in overflow of jobs and make considerable loss to the system. With this
in view, Deepak et al. [3] introduced a concept called postponed work. Ajayaku-
mar and Pramod [1] introduced N -policy into Deepak et al. [3]. They analysed
such a system in great detail in the stationary case and provided a number of
system performance measures. No further development in this is reported so
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far. Nevertheless this notion of postponement of work has been introduced into
inventory by a few researchers (see Krishnamoorthy and Islam [5], Arivarignan
et al. [2], Paul Manuel et al. [9], Sivakumar and Arivarignan [10]). In the present
paper we modify the model described in [1] by introducing a selection rule for
entry into buffer if there is a vacancy.

At a service completion epoch, if the number in the buffer is less than a
pre-assigned quantity, a pooled customer is transferred to the buffer with some
probability. In the N-policy introduced in this paper, the number of continuously
served customers, taken from the buffer, is counted at each service completion
epoch. When it reaches a pre-assigned number N , then the one ahead of all wait-
ing in the pool gets transferred to the buffer for immediate service. A diagramatic
representation of the model is given in Fig. 1.

Rest of this paper is arranged as follows. Section 2 provides mathematical
formulation of the model and Sect. 3 analyses the system by describing stability
criterion and stationary distribution. Section 4 describes computation of some
expected values such as waiting time in buffer and pool, duration between two
consecutive transfers under N -policy and FIFO violation. Section 5 gives some
performance measures. Section 6 presents numerical results. A game theoretical
approach is given in Sect. 7. Conclusion is given in Sect. 8.

Fig. 1. Queue with postponed work under N -Policy

2 Mathematical Formulation

Consider an M/PH/1 queue with finite capacity K, called buffer and an infinite
capacity pool for postponed work. If the system is empty, an arriving customer
will join buffer and his service starts immediately. If the buffer has l persons
where 1 ≤ l ≤ K − 1, then a newly arriving customer will be allowed to enter
buffer only with probability sl. We assume that as l increases, the probability
sl decreases and that s0 = 1 and sK = 0. Customers who are denied admission
to the buffer on arrival even when a vacant slot is available in the buffer, are
directed to join the pool; at this epoch such customers decide to join the pool
with probability δ or to leave the system with probability 1 − δ. If the buffer is
full then the newly arriving customer may decide to join pool, with probability
γ1 or to leave with probability 1 − γ1. If he decides to join pool, then the server
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will permit him to join pool with probability γ2 or not admit with probability
1 − γ2. So in this case, customers join pool with rate λγ1γ2 or leave the system
at rates λ(1 − γ1) + λγ1(1 − γ2).

When at the end of a service, if there are customers in the pool, the system
operates as follows. If the buffer is empty, the one ahead of all waiting in the
pool gets transferred to the buffer for immediate service. If the buffer contains ξ
jobs, where 1 ≤ ξ ≤ L−1; 2 ≤ L ≤ K−1 at a service completion epoch, then the
customer at the head of the buffer starts getting service and with probability p,
the head of the queue in the pool is transferred (we call this a p-transfer) to the
buffer as the last among the waiting customers in it. With probability q = 1−p,
no such transfer takes place. If at a service completion epoch, the number of
customers in the buffer is L or more but at most K − 1, then no customer
transfer from pool to buffer is effected. At each service completion epoch, if the
pool contains at least one customer, the number of continuously served customers
taken from the buffer is counted. When it reaches N (N > 0), the one ahead
of all waiting in the pool gets transferred to the buffer for immediate service.
Customers arrive according to a homogeneous Poisson process of rate λ [4].
Service time of customers are iid phase type distributed with representation
(β , S) of order m. The vector S0 = −Se containing elements Sh0 represents the
absorption rate from the phase h, h = 1, 2, ...,m. Absorption (service completion)
occurs with probability 1 from any phase i in {1, 2, ......m} if and only if the
matrix S is non singular. Then the mean time until absorption is −βS−1e.
Also the equilibrium distribution of the excess life is PH(π∗, S) where π∗ is the
stationary probability vector satisfying π∗Q∗ = 0 and π∗e = 1 where Q∗ =
S + S0β. The model is studied as a Quasi Birth-Death(QBD) process and a
solution of the classical matrix geometric type is obtained ([8] and [7]).

The state space consists of all tuples of the form (i, j, b, h) with i ≥ 1, 1 ≤
j ≤ K; 0 ≤ b ≤ N ; 1 ≤ h ≤ m where i is the number of postponed work, j
is the number of work in the finite buffer including the unit in service, b is the
number of continuously served customers from the buffer at a service completion
and h is the phase of the service in progress at a time t. For a given value of i,
K(N +1)m states constitute the level i of the QBD. Now consider the boundary
level i = 0. Then we denote the empty system (0, 0, 0, 0) by 0. Also there are
Km states of the form (0, j, 0, h), 1 ≤ j ≤ K; 1 ≤ h ≤ m. This is due to the
fact that when the pool has no customers, N -policy is suspended. These have
the same significance as before, except that in these states, no postponed jobs
are present, but there are jobs in the finite buffer. These Km + 1 states make
up the boundary level 0 of the QBD. The infinitesimal generator of the QBD
describing the M/PH/1/K queue with postponed customers under N -policy is
of the form
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Q =

⎡
⎢⎢⎢⎢⎢⎣

B1 B0

B2 Q1 Q0

Q2 Q1 Q0

Q2 Q1 Q0

. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎦

where the matrix B0 is of dimension (Km+1)×K(N +1)m, B1 is square matrix
of order Km+1 and B2 is of dimension K(N +1)m× (Km+1). Q0, Q1 and Q2

are square matrix of order K(N + 1)m. Each of these matrices is itself highly
structured.

The matrix B1 corresponds to the transition from the level 0 to 0 in which
(l, l)th entries are Δl for l = 2, ...,K − 1, (l, l + 1)th entries are Ωl for l =
2, ...,K − 1, (1, 2)th entry is λβ, (l, l − 1)th entries are S0β for i = 3, ...,K,
(2, 1)th element is S0, (K,K)th element is Δ and (1, 1)th element is −λ. where
Δ = S−λγ1γ2Im, Δl = S−εlIm, Ωl = λslIm, εl = λ(sl+δ−slδ), l = 2, ....,K−1.

B0 =
[

0̄
diag(Γ1,Γ2,......, ΓK−1, Γ )

]

where Γl = λ(1 − sl)δt5 ⊗ Im, l = 1, 2, ...,K − 1; Γ = λγ1γ2t5 ⊗ Im and t5 is a
row vector of order N + 1 with first element 1 and all other elements zero with
Im representing identity matrix of order m. Also 0̄ is zero matrix of appropriate
order and diag(Γ1, Γ2, ..., ΓK−1, Γ ) represents a diagonal block matrix of order
K.

B2 =
[
0̄ diag

(
H1, H2, . . . , HL, HL+1, . . . , HK ,

) ]

where diag(H1,H2, ...,HL,HL+1, ...,HK) represents a diagonal block matrix of
order K with diagonal block entries H1 = t6 ⊗ S0β, H2 = ... = HL = t7 ⊗ S0β,
HL+1 = ... = HK = t8 ⊗ S0β and t6 is a column vector of order N + 1 with
all entries are 1, t7 is a column vector of order N + 1 with all elements are p
except 1 at (N, 1)th position, t8 is a column vector of order (N +1) with (N, 1)th

element is 1 and all other elements zero. Q0 = diag(ω1, ω2, ....., ωK−1, ω) where
ωl = λ(1 − sl)δIN+1 ⊗ Im, l = 1, 2, ....,K − 1; ω = λγ1γ2IN+1 ⊗ Im and IN+1 is
the identity matrix of order N + 1. Also Q2 = diag(Λ1,Λ2, ...,ΛL,ΛL+1, ...,ΛK)
where Λ1 = t1 ⊗ S0β, Λ2 = ... = ΛL = t2 ⊗ S0β, ΛL+1 = ... = ΛK = t3 ⊗ S0β,
t1 is a square matrix of order N + 1, given by

t1 =
[

0̄ IN

1 0̄

]

where IN is identity matrix of order N . t2 is a square matrix of order N + 1 in
which (l, l + 1)th and (N + 1, 1)th entries are p for l = 1, ..., N − 1, (N,N + 1)th

element is 1 and all other elements zero. t3 is a square matrix of order N + 1
with (N,N + 1)th entry is 1 and all other entries are zero.

In matrix Q1, (l, l)th entries are Θl for l = 1, ...,K − 1, (l, l + 1)th entries
are Φl for l = 1, ...,K − 1, (l, l − 1)th entries are ζ for l = 2, ..., L, and η for
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l = L+1, ...,K and (K,K)th element is Θ where ζ = t4⊗qS0β which corresponds
to the transition of the buffer size from j to j −1 for j = 2, 3, ..., L; η = t4 ⊗S0β
which corresponds to the transition of the buffer size from j to j − 1 for j =
L + 1, ...,K; Θ = IN+1 ⊗ (S − λγ1γ2Im) which corresponds to the transition of
the buffer size from K to K; Θj = IN+1 ⊗ (S − εjIm) which corresponds to the
transition of the buffer size from j to j for j = 1, 2, ..., L, L + 1, ...,K − 1 where
εj = λ(sj + δ − sjδ); Φj = λsjIN+1 ⊗ Im which corresponds to the transition of
the buffer size from j to j + 1 where j = 1, 2, ..., L, L + 1, ...,K − 1. Also t4 is a
square matrix of order N +1 in which (l, l+1)th entries are 1 for l = 1, ..., N −1,
(N, 1)th element is 1 and all other elements are zero.

3 Analysis of the System

3.1 Stability Criterion

Theorem 1. The system is stable if and only if

λγ1γ2

N∑
b=0

m∑
h=1

πKbh + λδ

K−1∑
j=1

1∑
b=0

n∑
h=1

(1 − sj)πjbh <
1

K(N+1)m∑
l=1

m1l

.

Proof. Let Gll′(k, x) be the conditional probability that the QBD process start-
ing in the state l = (i, j, b, h) (for i > 1) where 1 ≤ j ≤ K, 0 ≤ b ≤ N , 1 ≤ h ≤ m
at time t = 0 reaches the state l′ = (i−1, j′, b′, h′) where 1 ≤ j′ ≤ K, 0 ≤ b′ ≤ N ,
1 ≤ h′ ≤ m for the first time, involving exactly k transitions and completing
before time x. Because of the structure of Q, the probability Gll′(k, x) does not
depend on i. The matrix with elements Gll′(k, x) is denoted by G(k, x).

Now introduce the transform matrix,

Ĝ(z, θ) =
∞∑

k=1

zk

∞∫

0

e−θxdG(k, x)

for |z| ≤ 1, θ > 0. The matrix Ĝ(z, θ) satisfies the matrix equation

Ĝ(z, θ) = z(θI − Q1)−1Q2 + (θI − Q1)−1Q0Ĝ
2(z, θ).

Use the notations C0(θ) = (θI −Q1)−1Q2 and C2(θ) = (θI −Q1)−1Q0. Now the
transform matrix Ĝ(z, θ) is equal to the minimal non negative solution of the
matrix quadratic equation X(z, θ) = zC0(θ) + C2(θ)X2(z, θ) and it is obtained
by successive substitutions starting with the zero matrix. Also we have

lim
z→1,θ→0

Ĝ(z, θ) = G(k, x) = [Gll′(k, x)].

Suppose the matrix A = Q0+Q1 +Q2 is irreducible. Then the necessary and
sufficient condition for the positive recurrence of the process is that the matrix
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G is stochastic. For this, the condition πQ2e > πQ0e must be satisfied where
π is the stationary probability vector associated with A = Q0 + Q1 + Q2. That
is it is the unique solution to πA = 0 and πe = 1. The quantity ρ = πQ0e

πQ2e is
called the traffic intensity of the QBD process. G is obtained as the minimal non
negative solution to the equation G = C0 + C2G

2 where C0 = (−Q1)−1Q2 and
C2 = (−Q1)−1Q0. That is, G is the minimal non negative solution of the matrix
quadratic equation Q2 + Q1G + Q0G

2 = 0.
Let m1 = [m1l ] denotes the column vector of dimension K(N + 1)m where

m1l denotes the mean first passage time from the level i (i > 1) to the level i−1
given that the first passage time started in the state l. Then,

m1 =
[
− ∂

∂θ
Ĝ(z, θ)e

]

θ=0,z=1

= −(Q1 + Q0(I + G))−1e.

For the system stability, the rate of drift from level i to level i − 1 should be
greater than that to level i + 1. This means that the Markov Chain is stable if
and only if πQ2e > πQ0e. The rate of drift from level i to the level i+1 is given

by λγ1γ2
N∑

b=0

m∑
h=1

πKbh +λδ
K−1∑
j=1

1∑
b=0

n∑
h=1

(1 − sj)πjbh. It follows that the condition

πQ0e < πQ2e is equivalent to

λγ1γ2

N∑
b=0

m∑
h=1

πKbh + λδ

K−1∑
j=1

1∑
b=0

n∑
h=1

(1 − sj)πjbh <
1

K(N+1)m∑
l=1

m1l

.

So by an appropriate choice of γ1 and γ2, that is by postponing a fraction of
overflowing customers, one can obtain a stable system even if arrival rate is
greater than service rate.

3.2 Stationary Distribution

Since the model is studied as a QBD process [6], its stationary distribution, if
it exists, has a matrix geometric solution. Assume that the stability criterion
is satisfied. Let the stationary vector x of Q be partitioned by the levels in to
subvectors xi for i ≥ 0. Then xi has the matrix geometric form

xi = x1R
i−1 (1)

for i ≥ 2 where R is the minimal non negative solution to the matrix equation
Q0+RQ1+R2Q2 = 0 and the vectors x0, x1 are obtained by solving the equtions

x0B1 + x1B2 = 0, (2)
x0B0 + x1(Q1 + RQ2) = 0 (3)

subject to the normalising condition x0e + x1(I − R)−1e = 1.
From the above discussion it is clear that to determine x, a key step is the

computation of the rate matrix R. We can partition xi by sublevels as x0 =
(x00, x01, x02, ...., x0K) and xi = (xi1, xi2, xi3, ...., xiK) where i ≥ 1 and x00 is a
scalar and x0j , 1 ≤ j ≤ K are vectors of order m and xij = (xij0, xij1, ...., xijN )
where i ≥ 1, 1 ≤ j ≤ K and xijb, 0 ≤ b ≤ N are vectors of order m.
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4 Computation of Expected Values

In this section we derive the expected waiting time of a tagged customer in
buffer and pool, the expected duration between two consecutive transfers under
N -policy, the expected duration for the first N -policy transfer in a busy cycle
and the probability of FIFO violation.

4.1 Expected Waiting Time in Buffer

We denote the mean waiting time of customers who upon their arrivals enter
the buffer by E(W1).

Case1: N ≥ K; in this case the tagged customer is not affected by the
new arrivals in buffer and in pool. So we can calculate the waiting time
by considering the system state at which the tagged customer enters. Hence
E(W1) =

∑
i

∑
j

∑
b

∑
h

E(waiting time of the customer who finds the system in

state (i, j, b, h)) Pr(system is in state (i, j, b, h)).

E(W1) =
k−1∑
j=1

m∑
h=1

−βS−1e(j − 1)x0j0h

+
∞∑

i=1

K−1∑
j=1

N−1∑
b=0

m∑
h−1

−βS−1e(j − 1 + ψ)xijbh

+
∞∑

i=1

K−1∑
j=1

m∑
h=1

−βS−1e(j − 1)xijNh − π∗S−1e

where π∗Q∗ = 0, π∗e = 1, Q∗ = S + S0β and

ψ = 1 +
[
j − (N − b)

N

]
, 0 ≤ b < N

where [.] denotes the greatest integer of the value within paranthesis and
−π∗S−1e is the additional time required to complete the service of the customer
who is at the server when the tagged person enters the buffer.

In M/M/1 case with service rate μ,

E(W1) =
K−1∑
j=1

1
μ

jx0j0 +
∞∑

i=1

K−1∑
j=1

N−1∑
b=0

1
μ

(j + ψ)xijb

+
∞∑

i=1

K−1∑
j=1

1
μ

jxijN .

Case2: N < K; in this case, the tagged customer in the buffer will be affected
by the new arrivals in the pool and so the new arrivals in the buffer. So the wait-
ing time of the tagged customer depends on the various susequent developments
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in the pool such as visits to zero level one or more, but a finite number in the
pool joining after the tagged customer. Because of the complexity of calculation,
we may turn to computing an upper bound on the waiting time, by keeping in
mind, the fact that only a maximum finite number K of persons in the pool
will affect the tagged person. In the worst case we have N = 1 which represents
service alternating between buffer and pool. So an upper bound for the waiting
time of a customer who upon his arrival enters the buffer in the state (i, j, b, h),
is

UB(W1) =
k−1∑
j=1

m∑
h=1

−βS−1e(j − 1 + [
j

N
])x0j0h

+
∞∑

i=1

K−1∑
j=1

N−1∑
b=0

m∑
h=1

−βS−1e(j − 1 + ψ)xijbh

+
∞∑

i=1

K−1∑
j=1

m∑
h=1

−βS−1e(j − 1 + [
j − 1
N

])xijNh − π∗S−1e

where −π∗S−1e is the excess time required to complete the service of the cus-
tomer who is at the server when the tagged person enter buffer.

In M/M/1 case with service rate μ,

UB(W1) =
K−1∑
j=1

1
μ

(j + [
j

N
])x0j0 +

∞∑
i=1

K−1∑
j=1

N−1∑
b=0

1
μ

(j + ψ)xijb

+
∞∑

i=1

K−1∑
j=1

1
μ

(j + [
j − 1
N

])xijN .

4.2 Expected Waiting Time in Pool

We denote the expected waiting time of a customer who upon his arrival enters
the pool, by E(W2). To find this, first we define the Markov process {X(t)}
as follows. X(t) = (a, j, b, h) where a denotes the rank of the tagged customer
entered pool, j denotes the number of customers in the buffer, b denotes the
number of continuously served customers from buffer and h is the phase of the
service process at time t. The rank a of the customer is assumed to be r if he joins
as the rth customer in pool. His rank decreases to 1 with the customers ahead
of him transferred from the pool to the buffer. Since the customers who arrive
after the tagged customer cannot change his rank, level changing transitions in
{X(t)} can takeplace only to one side of the diagonal. We arrange the statespace
of {X(t)} as {r, r − 1, ......., 2, 1} × {1, 2, .....,K} × {0, 1, ....., N} × {1, 2, ......,m}
with absorbing state 0 in the sense that the tagged customer is either selected
to be served under N -policy or placed in the buffer with probability p or to the
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server with probability 1 if the buffer size reduces to 0 at the end of a service.
The infinitesimal generator of the process is

Q̃ =
[

T T 0

0̄ 0

]

where T has as entries transition rates in the transient part having dimension
rK(N + 1)m and T 0 has entries, which are absorption rates. Now the expected
absorption time of a particular customer is given by the column vector E

(r)
w =

−ĨT−1e where Ĩ =
[
IK(N+1)m 0̄

]
having order K(N + 1)m × rK(N + 1)m. So

the expected waiting time of the customer is

WL =
∞∑

r=1

xrE
(r)
w

where xr is the steady state probability vector corresponding to i = r. Also WL

gives the waiting time of a customer in the pool up to the epoch of his transfer
to the buffer.

Case1: N ≥ K; in this case, expected waiting time in pool is

E(W2) =
∞∑

i=1

K∑
j=1

N∑
b=0

m∑
h=1

xiKbhWL(xij(N−1)hsh0 + xi1bhsh0)

+
∞∑

i=1

N∑
b=0

m∑
h=1

xiKbh(WL + W (1)p(
L∑

j=1

xijbhsh0))

where

W (1) =
L∑

j=1

m∑
h=1

−βS−1e(j − 1)x0j0h

+
∞∑

i=1

L∑
j=1

N−1∑
b=0

m∑
h=1

−βS−1e(j − 1 + ψ)xijbh.

Case2: N < K; in this case we get an upperbound UB(W2) for the waiting
time in pool.

UB(W2) =
∞∑

i=1

K∑
j=1

N∑
b=0

m∑
h=1

xiKbhWL(xij(N−1)hsh0 + xi1bhsh0)

+
∞∑

i=1

N∑
b=0

m∑
h=1

xiKbh(WL + UB(W (1))p(
L∑

j=1

xijbhsh0))

where

UB(W (1)) =
L∑

j=1

m∑
h=1

−βS−1e(j − 1 +
[
j − 1
N

]
)x0j0h

+
∞∑

i=1

L∑
j=1

N−1∑
b=0

m∑
h=1

−βS−1e(j − 1 + ψ)xijbh.
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4.3 Expected Duration Between Two Consecutive Transfers Under
N-Policy

For computing expected duration between two consecutive transfers under N -
policy, we consider the Markov process {X(t)} described as follows. X(t) =
(b, i, j, h) where b is the number of continuously served customers from the buffer,
if pool has at least one person, at time t, measured from the service completion
of the last customer who was transferred under N - policy. So b = 0, 1, 2, ...., N .
Here we regard 0, 1, 2, ..., N −1 as transient states and N as absorbing state (that
is the state at which a new N -policy transfer occurs). i denotes the number of
postponed jobs at time t. Even if pool is of infinite capacity, we restrict here
it to be a finite value say V for sufficiently large V . So i = 0, 1, 2, ..., V . Now
j(= 0, 1, 2, ...,K) denotes the number of customers in the buffer at time t. Also
h = 1, 2, ...,m denotes the phase of the service in progress at a time t. The
process {X(t)} has the state space

{0, 1, 2, ..., N − 1, N} × {0, 1, 2, .., V } × {0, 1, 2, ...,K} × {1, 2, 3, ...,m.}
Infinitesimal Generator of the process is

Q̂ =
[

U U0

0̄ 0

]

where U has as entries transition rates in the transient part having dimension
(NV Km+Km+1)×(NV Km+Km+1) and U0 has entries, which are absorption
rates with dimension (NV Km+Km+1)×(KV m). The initial probability vector
of Q̂ is

δ =
[

1
KV m+Km+1∑

r=1
xr−1

[
x0 x1 · · · xKV m+Km+1

]
0̄
]

1×(NKV m+Km+1)

where x0 = x0000, xr = xij0h, 0 ≤ i ≤ V ; 1 ≤ j ≤ K; 1 ≤ h ≤ m and r varies from
1 to KV m + Km according to its lexicographic order. Then expected duration
between two consecutive transfers under N -policy follows PH distribution with
representation (δ, U) and it is given by NABSORB = −δU−1e.

4.4 Expected Duration for the First N-Policy Transfer in a Busy
Cycle

Here we compute the expected duration of the time elapsed from the epoch of
the first arrival to an idle system until the first N -policy transfer is effected.

The time elapsed, starting with an arrival to an idle system, until the real-
ization of the N -policy for the first time follows the PH-distribution with rep-
resentation (α,U) where

α =
1

m∑
r=1

xr

[
0 x1 x2 · · · xm 0̄

]
1×(NKV m+Km+1)
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where xr = x010h; 1 ≤ h ≤ m, r varies from 1 to m and U is described in
Sect. 4.3.

At the epoch of the first arrival to an idle system, process starts with the
service in one of the m phases with steady state probability xr = x010h; 1 ≤ h ≤
m, r varies from 1 to m. This justifies the form of the initial probability vector
α as given above. Then the expected duration for the realization of the above
random variable is NFIRST = −αU−1e.

4.5 Probability of FIFO Violation

It may be noted that the N -policy leads to violation of FIFO rule for customers
in the pool. For example assume that there are two or more customers in the
pool at a service completion epoch at which the number in the buffer droped to
L− 1 or below and the number of continuously served customers reached N − 1.
So the first in the pool may be selected under p-transfer and placed as the last
in the buffer. When the next service is completed, the current head of the pool
gets transferred to the buffer for immediate service there by violating the FIFO
rule for pooled customers. Further it may be noted that this situation does not
arise among the queued customers in the buffer. We compute the expectation of
the indicator random variable defined as FIFO violation in pool. Its expectation
is the probability for FIFO violation in pool which is given by

PFIFO =
∞∑

i=1

L∑
j=2

N−1∑
b=N−j+1

xijbhpSh0.

The FIFO may be violated by more than one successors if N < L. However
this can be overcome by making N sufficiently large than L. If N ≥ K, a
customer joining the pool will not overtake any of the customers in the buffer
who had joined before his entering to pool. At this time, FIFO is violated by
atmost one successor in pool. Even this can be overcome by a slight modification
by redefining the N -policy by resetting b in (i, j, b, h) as zero at the time of p-
transfer.

5 Performance Measures

1. The mean number of pooled customers is

μPOOL =
∞∑

i=1

iai = x1(I − R)−2e.

2. The mean buffer size is μBUFFER =
K∑

j=1

jbj .

3. The rate at which the customer who leave the system without service is

θLOST = λ(1 − δ)
K−1∑
j=1

(1 − sj)bj + λ(1 − γ1)bK + λγ1(1 − γ2)bK .
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Fig. 2. N versus μPOOL and μBUFFER

Fig. 3. N versus θLOST and θTR

Fig. 4. L versus μPOOL and μBUFFER

4. The rate at which pooled customers transfer in to the buffer is

θTR =
∞∑

i=1

N∑
b=0

m∑
h=1

xi1bhSh0 +
∞∑

i=1

L∑
j=2

N−2∑
b=0

m∑
h=1

xijbhpSh0
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+
∞∑

i=1

K∑
j=1

m∑
h=1

xij(N−1)hSh0 +
∞∑

i=1

L∑
j=2

m∑
h=1

xijNhpSho.

6 Numerical Results

We present some numerical results in order to illustrate the performance of the
system. It is meaningful if we consider the following probabilites as a measure
depending on the situations of the model as given below: γ1: Customer’s attrac-
tion to the pool when the buffer is full. γ2: Server’s interest on a new work to
postpone when the buffer is full. sx: Server’s interest on a new work to accept
in to the buffer by considering the buffer size. δ: Customer’s special interest to
the service station. Take

γ1 =
Lp

K
+

1
N

in order to bring out explicitly the dependence of γ1 on the system parameters.
This is justified as follows. Larger the L value, the customer encountering the
buffer full, will be inclined to join the pool with higher probability. Also same is
the relationship of γ1 with p. On the other hand, γ1 inversely varies with K. The
additional term 1

N comes through N -policy. Here as N increases γ1 decreases
so that γ1 and N vary inversely. But the relationship is feasible for those values
of L, p,K and N such that 0 ≤ γ1 ≤ 1. This is possible if N ≥ K and such
a selection is highly consistent. But N can be made less than K by suitably
selecting other variables so that 0 ≤ γ1 ≤ 1, and that can be considered as an
incentive to customers joining the pool.

The impact of N on various measures of descriptors with K = 6, L = 3,m =
2, λ = 7, p = 0.5, γ1 = Lp

K + 1
N ,

β =
[
0.3 0.7

]
S =

[−12.5 6.0
6.0 −12.5

]
S0 =

[
6.5
6.5

]

is shown in Figs. 2 and 3. As N increases μBUFFER, θTR decrease monotonically
whereas θLOST increases monotonically; but μPOOL decreases at first and then
increases. This is due to the fact that by our assumption γ1 varies inversely as N .
So as N increases, customer’s attraction to the pool decreases when the buffer
is full. So the pool size decreases. Also transfer rate decreases. This will make
the buffer size decreasing and not full. So the influence of δ increases and which
makes the pool size increasing.

By keeping K = 6, p = 0.5,m = 2, λ = 7, N = 5, γ1 = Lp
K + 1

N the effect of
L on various measures is shown in Fig. 4. Here also μBUFFER is monotonically
increasing as L increases, as expected. This will gradually makes the buffer full.
So the influence of δ decreases which makes the pool size decreasing and the effect
of γ1 increases which makes θLOST monotonically decreasing. The measures are
numerically computed for various values of p by keeping L = 3 and shown
in Table 1. Here also μPOOL, μBUFFER, θTR are monotonically increasing and
θLOST is monotonically decreasing as expected, in p. For a lower L, increase of
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p does not much influence to make the buffer full, the effect of δ much influences
the increasing of pool size. If sx = 1,∀x, x = 1, 2, ...,K − 1 and γ2 = 1 then we
get the model [1].

Table 1. K = 6, L = 3, m = 2, λ = 7, N = 5, γ1 = Lp
K

+ 1
N

p μPOOL μBUFFER θTR θLOST

0.3 1.6284441 2.8322663 1.0228137 0.3299661

0.4 1.6445645 2.8706489 1.0458466 0.3119004

0.5 1.6752849 2.9082990 1.0713297 0.2926464

0.6 1.7203127 2.9454260 1.0992774 0.2722456

0.7 1.7798784 2.9821990 1.1297385 0.2507135

7 A Game Theoretical Approach

If the buffer is full with K customers, a newly arrived customer may join the pool
with probability γ1 or leave the system without joining the pool with probability
1 − γ1. At the same time the server may permit a customer to join pool with
probability γ2 or may sent out from the system without permitting to enter the
pool with probability 1 − γ2. The situation can be modelled by a two-person
zero-sum game as follows.

Let the customer be treated as the player 1 and the system as the player 2.
The player 1 has two activities; (1) join pool (2) leave the system without join
pool. The player 2 has also two activities; (1) allow the customer to enter pool
(2) does not allow the customer to enter pool.

Let the mixed strategy of the player 1 be (γ1, 1 − γ1) where 0 < γ1 < 1 and
that of the player 2 be (γ2, 1 − γ2) where 0 < γ2 < 1 where γ1 is the probability
of the customer to join the pool and γ2 is the probability of the server to admit
the customer to the pool. Then the pay-off matrix of player 1 is

[C11 C12

C21 C22

]

where C11 is the gain to the customer when he decides to join the pool and the
server admit him to the pool; C12 is the gain to the customer when he decides to
join the pool and at the same time the server does not admit him to the pool;
C21 is the gain to the customer when he decides not to join the pool but the
server is ready to admit him to the pool; C22 is the gain to the customer when
he decides not to join the pool and the server decides not to admit him to the
pool. Now a valid assumption can be C11 > C12, C22 > C12 and C22 > C21. Then

γ1 =
C22 − C21

(C11 + C22) − (C21 + C12)
, γ2 =

C22 − C12

(C11 + C22) − (C21 + C12)

and the value of the game is γ = C11C22−C12C21
(C11+C22)−(C21+C12)

.
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8 Conclusion

This paper suggested modes of reducing loss of overflow customers in finite
capacity queues by introducing “a pool of postponed work” and certain policies
of transferring customers from this to the finite buffer. For several queueing
situations this can be employed to reduce customer loss through impatience. We
also introduced a game theoretic approach of customer joining strategy when he
is denied admission to the pool at his arrival epoch.
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