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Abstract Superhydrophobic surfaceswith small-scale features have recently gained
interest, because impacting droplets may bounce-off faster with respect to a flat
superhydrophobic surface. For such surfaces the correct numerical prediction of the
impact phenomena is very difficult. Our goal is the numerical study of drop impact
on such surfaces using Free Surface 3D (FS3D), our in-house code for the simulation
of incompressible multi-phase flows. Until recently, FS3D was not able to represent
the interaction of a droplet with a complex textured solid surface. In this work, we
show how we added this feature to the code by implementing the representation of
embedded arbitrary-shaped boundaries using a Cartesian grid. Two approaches were
developed; a preliminary simplified approach and an ultimate, more rigorous one.
We discuss both implementations and we show a comparison of the two approaches
for a test case. The results show that the predictions for impact dynamics of the two
approaches slightly differ. Although, the simplified approach shows only small errors
in mass conservation, it is fundamentally not conservative. With the introduction of
a new approach we were able to improve the conservativeness of our simulations.

1 Introduction

Superhydrophobic surfaces are of great technical interest because of their non-
wetting behavior. Recently, it has been shown that superhydrophobic surfaces with
macro-scale features with dimensions between 10−1 and 100 mm can enhance wa-
ter repellency by reducing the contact time between a water droplet and the solid
surface. In particular, Bird et al. [1] have shown that the contact time for a droplet
impacting on a superhydrophobic surface with a ridge was shorter than the contact
time on a flat superhydrophobic surface because of the changed impact morphology.
Gauthier et al. [2] found a relationship between contact time and number of liquid
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sub-units formed during impact for droplet impacting on a superhydrophobic surface
with a wire. The same trend between contact time and number of liquid sub-units was
reproduced by Regulagadda et al. [3] for a drop impacting on the top and between
superhydrophobic triangular ridges. The majority of literature dealing with contact
time reduction on superhydrophobic surfaces with submillimetric- and millimetric-
scale features consists of experimental studies. Chantelot et al. [4] performed both
experiments and lattice Boltzmann simulations for drop impact on a superhydropho-
bic surface with a small spherical feature. Shen et al. [5] have presented experimental
and numerical results for a drop bouncing on short cones. More numerical research
exists for drop impact on superhydrophobic curved surfaces. Khojasteh et al. [6]
have studied drop impact on hydrophobic and superhydrophobic spheres of different
diameters. They used a Level-Set method for their simulations. Liu et al. [7] studied
experimentally and numerically with a lattice Boltzmann method drop rebound on
a cylindrical surface and analyzed the total momentum distribution in the directions
parallel and perpendicular to the surface curvature. A numerical study on drop im-
pact on hydrophobic and superhydrophobic cylinders at different wettabilites and
impact velocities was also performed by Liu et al. [8]. It is apparent that only very
few numerical research has dealt with drop impact on superhydrophobic surfaces
with small scale features. This manuscript explain the method used in Free Surface
3D (FS3D) for predicting drop impact on textured surfaces. FS3D is a program for
the Direct Numerical Simulation (DNS) of incompressible multi-phase flows, which
was originally created at the Institute of Aerospace Thermodynamics at the Univer-
sity of Stuttgart and it is continuously being improved with new features. Up to now,
FS3D has successfully been used for the prediction of various phenomena such as
evaporation of oscillating droplets [9], drop collisions impact [10], jet break-up [11],
ice formation [12] and sublimation [13]. Rauschenberger et al. [14] implemented
a method to represent the motion of rigid particles immersed in a continuous fluid
phase. However, until recently FS3D could not handle the motion of a fluid inter-
face on a rigid body of arbitrary shape. Therefore, a prerequisite of our study was a
method to represent arbitrary-shaped boundaries in a Cartesian grid. In this paper,
after an illustration of FS3D’s numerical fundamentals, we will discuss two meth-
ods for the implementation of solid boundaries embedded in a Cartesian grid; a first
approximate method and a second more rigorous method inspired by the work of
Popinet [15]. With the first method, which was developed as a simplified approach,
we introduced the necessary data structures and routines that later enabled us to
develop the more rigorous method. After having illustrated the concepts on which
the preliminary approach is based, we will discuss its problematics which led to the
development of the second approach. After this, the second more rigorous method
will be explained. Finally in Sect. 4 we compare results for a water drop impacting
on a superhydrophobic surface with macro-ridges obtained with the two approaches.
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2 Numerical Methods

In this section, the numerical fundamentals of FS3D are illustrated briefly; the work
of Eisenschmidt et al. [16] provides a broader overview. Here we focus on the case of
an incompressible Newtonian fluid of a single liquid phase immersed in a continuous
gas phase. The flow is assumed to be isothermal without phase change. Thus, the
energy equation does not need to be considered. The governing equations of the flow
are then the conservation of mass:

∇ · u = 0 , (1)

and momentum transport:

∂(ρu)

∂t
+ ∇ · (ρu ⊗ u) = −∇p + ∇ · S + ρg + fσ . (2)

The fσ term in Eq. (2) represents the surface tension force per unit volume which is
different from zero only at the interface. This term is modeled with the Continuum
Surface Stress (CSS) model of Lafaurie et al. [17]. A further equation is necessary
for interface tracking. In FS3D, this equation is obtained with the Volume of Fluid
(VOF) method of Hirt and Nichols [18]. The liquid disperse phase is represented by
a colour function χ(x) defined as follows:

χ(x) =
{
1 inside the liquid phase

0 outside the liquid phase
. (3)

It is assumed that each material property of the flow ψ , as for example density ρ or
dynamic viscosity μ, is constant within each phase and is given by

ψ(x) = ψfχ(x) + (1 − χ(x))ψg , (4)

where ψf and ψg are the material property constant values in the liquid and gas
phase, respectively. The equation for interface tracking is obtained by considering
the volume fraction f = (1/�)

∫
�

χ(x)dx, where � is an arbitrary control volume.
The transport equation for f is:

∂f

∂t
= −∇ · (f u) . (5)

In a space discretized domain, fi denotes the liquid volume fractionwithin the compu-
tational cell of index i = ie1 + je2 + ke3. The interface is then located by identifying
those cells in which 0 < fi < 1 and reconstructed with the Piecewise Linear Inter-
face Calculation (PLIC) scheme of Rider and Kothe [19]. Thus, in each interface cell
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the interface is approximated by a plane of direction −n̂ = ∇f / ‖∇f ‖ and position
determined analytically by the values of f .

2.1 FS3D’s Advection Scheme

In FS3D two different methods are implemented for the numerical treatment of
advection, a split and an unsplit scheme. Here the discussion is limited to the split
scheme, since it was used for the presented results in this paper. Let us consider the
advection equation for a generic scalar variable φ:

∂φ

∂t
+ u · ∇φ = 0 , (6)

which can also be written as:

∂φ

∂t
= −∇ · (φu) + φ∇ · u . (7)

The variable φ can be the fluid volume fraction f or a component of momentum
ρu = ρ(ue1 + ve2 + we3). The advection of φ is then carried out in each direction
separately in three different steps (or sweeps) [19, 20]. Time integration of Eq. (7)
is carried out subsequently for each sweep. For example, in e1 direction and for the
first sweep one obtains:

φ∗ − φn

	t
= −∂(φu)

∂x
+ [(1 − β)φn + βφ∗]∂u

∂x
, (8)

where the superscript ∗ indicates an intermediate auxiliary time step. The second
term on the right hand side is the divergence correction [19, 20], and 0 ≤ β ≤ 1 a
coefficient which indicates its implicit or explicit nature [20]. Space discretization
of Eq. (7) leads to the discretized sweep equations. For example, in e1-direction:

�
φ∗

i−φn
i

	t = −Ae1

{ (
Fi+ 1

2 e1(u, φ) − Fi− 1
2 e1(u, φ)

)
+ [

(1 − β)φn
i + βφ∗

i

] (
ui+ 1

2 e1 − ui− 1
2 e1

) }
, (9)

where� = (	xe1 × 	ye2) · 	ze3 = 	x	y	z is a Cartesian control volume, Ae1 =
‖	ye2 × 	ze3‖ = 	y	z its face perpendicular to e1. In Eq. (9), it was assumed that∫
�

φ∇ · udx ≈ φ
∫
�

∇ · udx = φ[	y	z(ui+ 1
2 e1 − ui− 1

2 e1)e1 + 	z	x(vi+ 1
2 e2− vi− 1

2 e2)e2 + 	x	y(wi+ 1
2 e3 − wi− 1

2 e3)e3]. The terms Fi± 1
2 e1(u, φ) in Eq. (9)

denote the numerical fluxes. These are discretized with a second order Godunov
scheme for the case of momentum components [20], whereas the geometrical pro-
cedure indicated by Rider and Kothe [19] is used to calculate the f -fluxes.
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2.2 Solution of the Discretized Poisson Problem

Because the flow is incompressible, an equation for pressure is needed to solve
Eq. (2). This equation is obtained by applying the divergence-free condition of the
velocity field to the time-discretized Eq. (2). One obtains:

∇ · ũ
	t

= ∇2p

ρ
, (10)

where ũ = ũe1 + ṽe2 + w̃e3 is an auxiliary velocity fieldwhere all acceleration terms
of Eq. (2) but the pressure gradient have been added. By integrating Eq. (10) over a
control volume � and using of the Gauss theorem one obtains:

∫
∂�

ũ · n̂
	t

dx =
∫

∂�

∇p · n̂
ρ

dx , (11)

where n̂ denotes the normal vector to the surface ∂�. Discretization of Eq.11 leads
to a system of equations of the form:

Ap = b , (12)

whereA is the systemmatrix with dimensionNcell × Ncell , p and b are the vectors for
the discrete p values and for the right hand side, respectively. Because the pressure
gradient in Eq. (11) is discretized with central finite differences, on each line of
the system corresponding to the control volume of index i all coefficients of A
are zero but for the ones with positions SA = {0,±e1,±e2,±e3} with respect to i.
SA is called the structure of A [21]. Equation (12) is solved by a multigrid solver
embedded into FS3D which is specialized to deal with matrices which have the
structure SA = {0,±e1,±e2,±e3} for each computational cell.

3 Treatment of Embedded Boundaries

3.1 The Simplified Approach

To represent embedded boundaries, an additional volume fraction variable fb is in-
troduced and the boundary surface is also approximated with the PLIC scheme.
Embedded boundaries are then treated as rigid bodies of infinite density. This is ob-
tained by setting to zero all coefficients of Eq. (12), which correspond to momentum
control volumes in which fb > 0. This is equivalent to solving Eq. (12) for the stair-
step approximation of the boundary (see Fig. 1a). As a consequence however, the
velocities on all faces of the vast majority of the boundary-cut cells are set to zero.
One a-posteriori treatment of the velocity field is then necessary to advect the fluid
volume fraction in these cells. Boundary-cut cells with zero velocities on all their
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(a)

(b)

Fig. 1 The simplified approach to embed solid structures in a Cartesian grid. a Stair-step approx-
imation of embedded boundaries. b Merging of critical cells with the neighbor in the direction of
the largest normal component n̂b.

faces are marked as slaves and linked to the neighbor in the direction of the largest
component of n̂b, which becomes their master (see Fig. 1b). This is made possible
by the apposite structured data type boundary cell:

boundary cell

{
type(boundary cell), pointer: master, slave

integer(1:3): i = ie1 + je2 + ke3

which is allocated in each boundary-cut cell and in its neighborhood. The advection
of f is then carried out on the total volume of master-slave pairs using an averaged
velocity field. The averaging of the velocity field after the solution of the Poisson
equation causes an error in mass conservation. Even if those errors are very small in
our simulations, this approach is fundamentally not conservative. With the purpose
of improving conservativeness, we started the development of a new approach.

3.2 The New Approach

As in the simplified approach described in Sect. 3.1, embedded boundaries are rep-
resented by their volume fraction fb and their surface is approximated with the PLIC
scheme. However, instead of being treated as rigid bodies of infinite density, the
boundaries are cut-off from the computational domain. Following the approach of
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Popinet [15], the discretized equations for momentum transport (Eq. 2) and pressure
(Eq. 10) are rewritten in terms of boundary-cut cell volume and faces. The same
treatment is applied to the equations for interface transport (Eq. 5) and mass conser-
vation (Eq. 1). Information about “free” volume and lateral “free” faces, as well as
the orientation nb and position l∗ of the plane approximating the surface must then
be stored for each boundary-cut control volume. The structured data type boundary
cell is then modified as follows:

boundary cell

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

real : l∗b , fb
real(1:3): n̂b
real(1:3,1:2): ab i

type(boundary cell), pointer: master, slave

integer(1:3): i = ie1 + je2 + ke3

where ab i are the ratios of the lateral free to whole faces. For example:

ab i(1, 1) ≡ a−
b e1

= A−
i e1

Ai e1
, ab i(1, 2) ≡ a+

b e1
= A+

i e1

Ai e1
. (13)

where A±
i e1 are the “free” lateral areas at positions i ± 1

2e1. The master and slave
pointer attribute are still needed to avoid problems caused by very small cut-cells,
which we will address in Sect. 3.2.1. Since the grid is staggered, the structured data
type boundary cell has to be allocated in staggered control volumes as well. There-
fore, the new data type boundary cell array, is introduced:

boundary cell array

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
type(boundary cell): bcellc
type(boundary cell): bcellx
type(boundary cell): bcelly
type(boundary cell): bcellz

This data structure serves as container for boundary cell data types, one for each
control volume associated with a position of index i of the computational domain
(one scalar control volume and three staggered control volumes). The boundary cell
array is allocated in each position of the computational domain, in which at least
one of the associated control volumes is intercepted by the boundary surface and
in its neighborhood. Since phase change is not considered here, the treatment of
the advection term is the point of interest for interface tracking (Eq. 5). In the case
of momentum transport (Eq. 2), apart for advection and pressure, other terms have
to be considered: the viscous stresses ∇ · S, the body forces ρg, and the surface
tension force fσ . For the surface tension force no special treatment is needed, since
it only depends on the interface orientation n̂. Body forces and viscous stresses are
calculated by using material properties calculated on boundary-cut cell volumes.
That is
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ψi = min
(∣∣∣∣ fi

1 − fb, i

∣∣∣∣ , 1
)

ψl +
(
1 − min

(∣∣∣∣ fi
1 − fb, i

∣∣∣∣ , 1
))

ψg , (14)

where 0 < fb, i < 1 and ψ is a material property as density ρ or viscosity μ. Apart
for this, the usual FS3D schemes for calculating viscous terms and body forces
are used. This is equivalent to consider computational nodes on whole cell centres
instead of boundary-cut cell centres. Of course, this simplification comes at the cost
of slightly reduced accuracy, but it spares the computational overhead of calculating
the barycentres of boundary-cut cells and the distance between the barycentres to
compute gradients and linear interpolations of needed variables.

3.2.1 Advection in Boundary-Cut Cells

The split advection scheme, illustrated in Sect. 2.1, is also used on boundary-cut
cells. Here Eq. (9) takes the form:

�(1 − fb, i)
φ∗

i−φn
i

	t =
−Ae1

(
a+
b e1

Fi+ 1
2 e1(u, φ) − a−

b e1
Fi− 1

2 e1(u, φ)
)

+[
(1 − β)φn

i + βφ∗
i

](
Vi+ 1

2 e1 − Vi− 1
2 e1

)
, (15)

wherea±
b e1

are the free towhole area ratio at positions i ± 1
2e1 andV denotes an altered

form of the divergence correction. For momentum advection, Vi± 1
2 e1 = Ae1a

±ui± 1
2 e1 ,

for f -advection, V is calculated geometrically and it corresponds to the ratio of the
cut cell volume enclosed by Ae1ui± 1

2 e1	t in upwind control volumes to the time step
	t. FS3D’s usual schemes are used to compute the numerical fluxes. As already
mentioned in Sect. 3.2, this is equivalent to considering computational nodes on
whole cell centres and, consequently, faces. In the case of f -advection, the volume
of arbitrary polyhedra has to be calculated in order to compute the fluxes. For this,
geometrical algorithms similar to these proposed by Pathak and Raessi [22] are used.
The interface position is calculated iteratively until the volume of the polyhedron
representing the liquid phase corresponds to the liquid volume fraction f . As reported
by Popinet [15], the occurrence of very small cells leads to prohibitively small time
steps in order to satisfy the Courant-Friedrichs-Lewy (CFL) condition. Small cells
are then marked as slaves and merged to the neighbor in the direction of the largest
normal component, which becomes their master. Advection is then carried out in the
whole master-slave control volume.

3.2.2 Discretization of the Poisson Problem on Boundary-Cut Cells

Discretization of Eq. (10) on boundary-cut volumes leads to:
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∑
k

(
Aab

∇p

ρ

)
k

= 1

	t

∑
k

(Aabu)k (16)

where k = i ± 1
2e1, 2, 3 are the positions of the faces of the considered scalar control

volume. As already mentioned in Sects. 3.1 and 3.2.1, we consider computational
nodes on whole face centres instead of boundary-cut cell centres. The pressure gradi-
ent (∇p)k can then be discretized by finite differences. Then, the formulation of Eq.
(16) for each control volume leads to a system of equations analogously to Eq. (12).
We observed that the use of whole-face centres may cause inaccurate values of the
velocity field at very small boundary-cut cells. Better accuracy may be achieved by
discretizing the pressure gradient differently, as indicated by Johansen and Colella
[23]. However, this would change the structure of the system matrix A, requiring a
modification of the multigrid solver.

4 Results

In this section, a comparison of the two methods is shown for the case of a water
drop impacting on the valley between two trapezoidal ribs at a Weber numberWe =
(ρRU 2

0 )/σ = 11.2 (see Fig. 2). This setup is analogous to one of the cases studied
by Regulagadda et al. [24]. Because of the symmetry of the problem, only a quarter
of the computational domain was simulated with a total of Nx × Ny × Nz = 192 ×
192 × 192 computational cells. The mesh was refined near the impact area.

In Fig. 3a comparison of the results obtained with the two methods is shown for
different times during impact. It can be noted how the whole velocity field is affected
by the choice of the method. Indeed, a difference is visible even before the drop
touches the ribs. This is probably caused by the different treatment of the discretized
elliptic Poisson equation. The impact occurs at a higher velocity in the new method,
even if both simulations were initialized identically. Indeed, in Fig. 3b the droplet
rim is thinner and faster and reaches a larger extension in the direction parallel to the
ribs. The major differences however take place during the retraction phase. In both
methods, the droplet assumes a three-lobed shapewhile retracting; in the approximate
method however, these liquid sub-units merge just before take-off. The different

Fig. 2 Setup of the investigated case, which is analogous to one used in the experiments of Regu-
lagadda et al. [24]
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Fig. 3 Simulation results for drop impact on the valley between two trapezoidal ribs atWe = 11.2.
a Approximate approach. b New approach
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Fig. 4 Mass conservation error over time

impact morphology also explains the difference in contact time prediction. Indeed,
according to Richard [25], the contact time t0 on a flat superhydrophobic surface
does not depend on impact velocity. Instead, it scales with the inertial-capillary time
scale τ = √

ρR3/σ . For the case of a droplet impacting on a wire, Gauthier et al.
[2] found that the contact time tc was approximately t0/

√
Nl , where Nl denotes the

number of liquid sub-units formed during impact. The same trend was confirmed by
Regulagadda et al. [3] for a drop impacting on the top and between triangular ribs.
For the new approach, tc/t0 is closer to 1/

√
(3), as expected from the number of

liquid sub-units. The formation of three lobes was also observed by Regulagadda et
al. for impact on the valley between two triangular ribs at higher impact velocities.
Both methods however underestimate the contact time for this case, which is close
to 2τ = 13.316 ms, as can be seen from a further publication from the same authors
[24]. For both cases, we observe an un-physical rupture of the lamella at t ≈ 6
ms, which in the new approach comes together with the ejection of a very small
secondary droplet. This occurs probably because the grid used for the comparison
is too large to capture the thin film on the top of the solid surface. With the new
method, a significant improvement in mass conservation was obtained. In Fig. 4 the
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mass errorEm = (m(t) − m0)/m0 is shown for both simulations as a function of time.
The sudden step in the mass error for the new approach at t ≈ 9.2 ms is due to the
ejection of the satellite droplet. It can be seen that the error inmass conservation could
be reduced of about a factor of 3.We have indeedEm, ∞, old = ‖(m(t) − m0)/m0‖∞ =
3.27 × 10−4 for the approximate approach and Em, ∞, new = 1.01 × 10−4 for the new
one. This is a remarkable achievement considering the fact that the contact time
between liquid and ribs is short. Better performances are expected for cases in which
the interaction between droplet and solid structures has a longer duration. Further
investigation on the causes of the residual error in mass conservation is planned.

5 Conclusions

Two methods to embed boundaries of arbitrary shape in a Cartesian grid have been
presented, one approximate and a more rigorous one. A comparison between the
two approaches for the case of a droplet impacting between two trapezoidal ribs has
shown a considerable difference in impact dynamics. The cause of this discrepancy
still needs to be clarified, but we expect it to be due to the different treatment of the
discretized Poisson problem. Even if the newer approach has shown a slightly larger
discrepancy for the contact time prediction for the case under consideration, further
research is needed to assess its accuracy for other surface geometries and impact
velocities. On the other hand, a remarkable reduction of the mass conservation error
was obtained. Small error in mass conservation are still present however, the cause
of which will be addressed by further research.
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