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Foreword by the University Rectors
(Università degli Studi di Bergamo
and Universität Stuttgart-A Strategic
Partnership)

The regions of Lombardy in Italy and Baden-Württemberg in Germany are tied by
close economic relations for hundreds of years. Today, there are permanent com-
mercial structures between privately owned companies on the one side and publicly
owned undertakings on the other side as well as between the Chambers of
Commerce and Industry (CCI) of regional locations in Bergamo and Stuttgart. In
addition, the research universities of Bergamo (Università degli Studi di Bergamo)
and Stuttgart (Universität Stuttgart) foster a deepened scientific and academic
collaboration since many years. Both universities have declared this relationship as
a strategic partnership and have installed this partnership in their international-
ization strategies. The main goal of strategic partnership is a widespread integration,
global networking, and teamwork on all levels:

– Jointly supporting young academics, particularly through cooperation in doc-
toral training and by integrating career path models

– Strengthening international research collaborations and benefitting from syn-
ergies with complementary university facilities

– Promoting cooperation in teaching, for example, in the development and
implementation of double degree programs

– Diversifying and establishing mobility options for students, for example, by
establishing joint summer schools

– Development and establishment of sustainable structured mobility models for
researchers and administrative staff

– Specifically supporting researchers in the acquisition of third-party funding to
promote joint research and teaching projects.

From the beginning, not only the research institutes have taken in the center
stage, but also the academic exchange of students, libraries, language centers,
members of both Rectorates, and administration people as far as academic
orchestras and choirs. Every year several bilateral visits cultivate the scientific and
cultural exchange and thus introduce an international profile and cultural choice to
both universities, of which all university staff and university members can benefit
from.
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The International Research Training Group (IRTG) for Droplet Interaction
Technologies (DROPIT), which has been established in October 2016 by the
German Research Foundation (DFG), is an impressive example of the strategic
partnership between the two universities. The IRTG brings researchers from
Bergamo and Stuttgart together to work on droplet dynamics. DROPIT is a
structured doctoral program, which leads the accepted doctoral students to gradu-
ation within three years. The doctoral program is supervised by professors of both
universities. Under the management of Prof. Bernhard Weigand (Stuttgart) and
Prof. Gianpietro Elvio Cossali (Bergamo), a close and successful research coop-
eration has been developed. Hereinafter, the scientific results of DROPIT will be
presented.

Prof. Dr. Wolfram Ressel
Rector, Universität Stuttgart

Stuttgart, Germany

Prof. Dr. Remo Morzenti Pellegrini
Rector, Università degli Studi di Bergamo

Bergamo, Italy
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Preface

Droplet interaction technologies find application in a large number of technological
and industrial processes. These include spray cooling in the food and chemical
industry, spray drying absorption for waste and pollutant treatment in process
engineering, droplet collisions for the generation of powders and encapsulated
material in the food and pharmaceutical industry, drop evaporation and droplet–
wall interaction in internal combustion and aeronautical engines as well as in
coating technologies. In all these applications, small-scale fluid dynamics may have
a huge impact on the large-scale flow pattern, leading to drag reduction, heat
transfer enhancement or depression, phase transition kinetics (e.g., drop conden-
sation or nucleate boiling), acoustic impedance, and optical reflection.

To date, the consequences of the presence of different length scales on macro-
scopic properties and the associated amplification of surface transport have
remained largely unexplored, being limited mainly to the formulation of empirical
correlations based solely on macroscopic observations. On this basis, the
International Research Training Group (IRTG) “Droplet Interaction Technologies -
DROPIT” (GRK 2160/1) was established in October 2016 to focus on detailed
droplet processes. The project is supported on the German side by the DFG
(Deutsche Forschungsgemeinschaft), the German Science Foundation.

The objective of DROPIT is to identify the mechanisms through which
small-scale interactions at the interface can couple with and influence large-scale
features in the main flow. Here a systematic study is undertaken to investigate the
interdependencies between small-scale and large-scale dynamics in the field of
droplet interaction technologies. Due to the complexity of the problem, the analysis
of such micro-/macro-interactions is not limited to a single aspect. Rather, an
integrated approach is chosen that evolves along three parallel pathways, namely a
numerical, experimental, and theoretical approach.
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DROPIT is a joint initiative of the University of Stuttgart in Germany, the
University of Bergamo, and the University of Trento in Italy. The project consists
of 17 sub-projects, which are structured into three main research areas (drop–
gas interaction, drop–wall interaction, and drop–liquid interaction). It involves
researchers from a large number of different disciplines like mathematics, envi-
ronmental engineering, aerospace and mechanical engineering, civil engineering,
informatics and computer sciences and visualization. The project further consists of
an extensive qualification program, which aims at fostering the education of young
scientists and providing them the knowledge and skills to conduct independent
research. More detailed information concerning the International Research Training
Group GRK 2160/1 can be found online: www.project.uni-stuttgart.de/dropit/.

After three years of very successful work, selected current results of this project
have been summarized in the present book.

In order to broaden the scope of this book, also two invited chapters have been
included. These are written by Prof. Dr. S. S. Sazhin (University of Brighton) about
“Classical and novel approaches to modelling droplet heating and evaporation” and
by Prof. Dr.-Ing. G. Brenn (University of Graz) about “Droplet Shape Oscillations.”

The DROPIT project is strongly linked with the international workshop on
Droplet Impact Phenomena and Spray Investigations (DIPSI), which is held yearly
in Bergamo. The DIPSI workshop, which is now at its thirteenth edition, represents
an important opportunity to share recent knowledge on droplets and sprays in a
variety of research fields and industrial applications. Thus, some selected contri-
butions of the DIPSI workshop of 2019 have been added in order to enlarge the
scope of this book towards additional practical applications on spray processes.

Many people helped us in all phases of the preparation of this book. We are very
grateful for all the support in bringing this manuscript together. First of all, we
would like to thank all doctoral students and Postdocs involved in DROPIT for their
contributions to the book. In addition, we thank all principal investigators of the
project for their support. Special thanks go to all reviewers of the book contribu-
tions for their support and very good comments, and to Prof. Sazhin and Prof.
Brenn for their invited contributions to this book and to the whole project, through
the seminars delivered to the doctoral students along the past three years.

In addition, we would like to thank Dr. Anne Geppert for her help during the
preparation of this book.

All members of the DROPIT project are very thankful for the financial support
from the Deutsche Forschungsgemeinschaft (German Science Foundation) and for
the financial support from the University of Bergamo.

We kindly acknowledge the permission of Cambridge University Press and of
AIP Publishing for reprinting some of the figures in this book.
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Finally, we are very grateful that this book could be published in this series
and thank Prof. André Thess for his help. In addition, we would like to acknowl-
edge the very good cooperation with Springer Press during the preparation of this
manuscript. Here we would like to thank in particular Mrs. Petra Jantzen,
Mr. Arulmurugan Venkatasalam, and Dr. Jan-Philip Schmidt for their support.

Stuttgart, Germany Grazia Lamanna
Bergamo, Italy Simona Tonini
Bergamo, Italy Gianpietro Elvio Cossali
Stuttgart, Germany Bernhard Weigand
December 2019
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An Analytical Approach to Model
the Effect of Evaporation on Oscillation
Amplitude of Liquid Drops in Gaseous
Environment

Gautham Varma Raja Kochanattu, Gianpietro Elvio Cossali
and Simona Tonini

Abstract The combined effect of evaporation and oscillation of liquid drops in
gaseous stagnant environment is analytically modelled. Mechanical energy andmass
balances are used to derive the time evolution of drop size and amplitude of oscil-
lation. Two approaches, based on different assumptions about the kinetic energy
distribution inside the drop, are used to evaluate the energy loss due to evaporation.
Conditions for oscillation damping by evaporation are derived. Application of the
model to the case of water, acetone and n-dodecane drops evaporating in hot air
shows a non neglectful decrease of drop lifetime, with respect to non-oscillating
drops.

1 Introduction

Evaporation of liquid drops in a gaseous environment is a process widely studied
and the available scientific literature on this subject is vast (see [1, 2] for a deep and
recent literature review). This is due to the prominent interest on this phenomenon
in a wide range of applications, from spray injection in automotive and aeronautics
engines, to fire suppression, medical aerosol, etc. Mathematical modelling of the
processes is very challenging due to the interaction of different phenomena (which
comprise heat and mass transfer, drop/gas interaction, internal drop motion, etc.).
When analytic approaches are chosen, mainly with the aim to develop simplified and
CPU efficient analytical or semi-analytical models for implementation in CFD codes
for dispersed flow prediction, the challenge becomes evenmore demanding. The ana-
lytical approach needs often drastic simplifications to yield manageable solutions,

G. Varma Raja Kochanattu (B) · G. E. Cossali · S. Tonini
Department of Engineering and Applied Sciences, University of Bergamo, Bergamo, Italy
e-mail: g.varmarajakochan@studenti.unibg.it
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4 G. Varma Raja Kochanattu et al.

but from the first models that accounted for the effect of Stefan flow [3], many sim-
plifying assumptions were relieved. Many researchers devoted considerable effort
to better model the effect of external convection [4], the effect of high pressure [5],
variability of gas properties [6–8], the presence of more than one component [9–11],
the effect of non-sphericity [12–14], the effect of finite liquid conductivity and diffu-
sivity [1, 15], the effect of drop shrinkage [16–19] to cite just a few of the available
studies. Only recently the unsteady drop shape (oscillation) has been considered as
a possible further phenomenon that may affect drop evaporation. The study of drop
oscillation, after the first remarkable results on inviscid [20] and viscous [21] drops,
has produced an extensive scientific literature to account for the many phenomena
affecting the oscillation characteristics. The previously cited results were extended to
predict the effect of host medium with non-negligible density [22], oscillation decay
by viscous effects [23], effect of viscosity of the host medium [24], initial value
effects [25], second order effects [26], internal circulation [27, 28], mode coupling
in large amplitude oscillations [29, 30], non-Newtonian effects [31], to cite some of
the most important achievements. Surprisingly, it is hard to find studies that consider
the interaction between oscillation and evaporation. Almost all the available experi-
mental observations are reported for low evaporation conditions (see for example [29,
32–34]), with few recent exceptions (see for example [35]). On the modelling side
the papers [36, 37] were likely the first papers to report a phenomenological model
for taking into account the effect of evaporation on oscillation, while recently an
analytical attempt to model the effect of oscillation on evaporation rate was reported
[38].

This lack of analytical studies on the problem of oscillating and evaporating drops
motivates the present work, which represents an attempt to analytical modelling
possible effects of interaction between the shape oscillation and the evaporation
phenomena.

2 The Mathematical Model

Evaporationmay affect the dynamics of an oscillating drop in differentways. It iswell
known that the frequency of a free drop oscillating in a non interacting environment,
subject to surface tension as unique restoring force, is expressed, for the mode n, by
the equation [20]:

ωn =
√

σ

R3
dρL

n(n − 1)(n + 2) (1)

where Rd is the drop radius when the drop is in a spherical shape. The evaporation
decreases the drop mass, and so Rd , thus increasing the oscillation frequency. Beside
this, one can expect that evaporation may affect also the amplitude of oscillation
and in the present section a simplified model to evaluate the effect of evaporation on
the oscillation amplitude, and vice versa, is developed. Consider first an evaporating
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non-oscillating (spherical) drop. Given a time step t0, the evaporatedmass�m can be

calculated as�m = 1
t0

t0∫
0
ṁevdt , where ṁev is the instantaneous evaporation rate. The

loss of mechanical energy, under the form of surface energy since the drop kinetic
energy is assumed to be constantly nil, is:

�ET = Eσ, f − Eσ,i = 4πσ
(
R2
d, f − R2

d,i

)
(2)

where suffixes i and f indicate the starting and ending of the time interval t0, respec-
tively. This loss of energy is the minimum loss, always present also when no kinetic
energy can be lost or dissipated.

Considering now an oscillating drop, and excluding evaporation over the time
interval t0, which now is taken equal to the oscillating period, the sum of kinetic (Ek)
and surface (Eσ ) energy can be assumed constant when viscous dissipation is nil. It is
known that the oscillating mode n = 2 is the one less affected by viscous dissipation
[23] and it is then the one that may survive longer after the oscillation starts, as also
reported by many experimental evidences [27–29]. The surface of the drop in this
mode can be approximated by that of a spheroid oscillating between a prolate and
an oblate shape, and this will be assumed in the following development. The starting
point of the oscillation is quite arbitrary since it is a periodic phenomenon; usually
it is taken as the point where the deformation is maximum and the kinetic energy is
then minimum or even nil (see [25, 26]). In the present case, at the beginning of a
cycle, the drop is assumed to be spherical, with minimum surface energy (equal to
Eσ,i = 4πσ R2

d,i ) and maximum kinetic energy. The drop evolves deforming to an
oblate shape, reaching a maximum deformation when the kinetic energy is assumed
to be nil and the surface extension to be maximum, and then again toward a spherical
shape and a prolate one (with again maximum surface energy and nil kinetic energy)
recovering the spherical shape at the end of the cycle. In a non evaporating drop under
inviscid flow approximation (no energy dissipation) the total (mechanical) energy
balance is:

ET = EK (t) + Eσ (t) = 1

2
ρL

∫
V
u2LdV + σ A(t) = const. (3)

In this case, during drop deformation, surface energy Eσ (t) transforms (ideally
in a reversible way) to kinetic energy Ek(t) and back, and the maximum surface
extension reached in the oblate and prolate shapes must be the same, and the kinetic
energy at the beginning and at the end of each cycle must be the same too.

In an evaporating drop this is not anymore true since loss of mass due to evap-
oration implies loss of energy. The oscillation period, using Eq. (1) with n =
2,

t0 = 2π

ω2
= π

4

√
R3
dρL

σ
(4)
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is of the order of
√
R3
dρL

/
σ and it is assumed to be always much shorter than the

drop lifetime τ LT , which can be estimated as the ratio of the initial drop mass and
the evaporation rate, i.e. of the order of R2

dρL
/(

D10ρg
)
. For drops larger than few

microns, under a wide range of ambient conditions, τ LT is some orders of magnitude
larger than t0. The drop mass, oscillating frequency and total energy can then be
considered constant over one oscillation period, and the mass and energy lost by
evaporation are evaluated under a quasi-steady approximation. Thus, new mass,
energy and frequency will be set up for the next period. The kinetic energy in the
most deformed (oblate or prolate) state is assumed nil, then the total energy during
a cycle can be calculated as

ET = 4πR2
dσβmax (5)

where βmax is the maximum value of the non-dimensional drop surface β(t) =
A(t)

/(
4πR2

d

)
. The variation of the surface energy after each cycle is still given by

Eq. (2) while variation of the kinetic energy can be evaluated as:

�EK = EK , f − EK ,i = �m ēK = �m
1

t0

t0∫
0

eK (t)dt (6)

where ēK and eK (t) are the average kinetic energy over a cycle and the instantaneous
kinetic energy per unit of mass abandoning the drop, respectively, while �m is the
drop mass variation in a cycle, that can be defined as:

�m = 4

3
πρL

(
R3
d, f − R3

d,i

)
. (7)

The loss of mass can also be obtained, under quasi-steady approximation (see [38]
for a discussion), integrating the instantaneous evaporation rate ṁev over a cycle:

�m = −
t0∫

0

ṁevdt = −
t0∫

0

Γ (t)ṁsphere
ev dt = −ṁsphere

ev t0
1

t0

t0∫
0

Γ (t)dt = −ṁsphere
ev t0


(8)

where ṁsphere
ev = 4πRdρgD10 ln(1 + BM) is the evaporation rate of a spherical drop

of radius Rd ; the parameter 
, given by:


 =
∣∣1 − ε2

∣∣1/2
ε1/3

⎧⎪⎨
⎪⎩

1

ln
(
ε+√

ε2−1
) prolate spheroidal

1

π−2 arctan
(√

1+ε
1−ε

) oblate spheroidal
(9)
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Fig. 1 a Prolate (left) and oblate (right) spheroids and definition of axial (az) and radial (ar)
spheroid half-axes. b F(βmax) as predicted by the “bulk” and “surface” kinetic energy models and
limit for drop oscillation damping

depends on the actual drop shape, which is defined by the drop aspect ratio ε = az
/
ar

[13], where az and ar are the half-axes of the spheroid (see Fig. 1a), and the quantity

̄ is the time average of
 over a cycle, which is shown (see appendix) to be a function
only of the maximum value of β in the most deformed prolate and oblate shapes,
βmax, i.e. 
̄ = 
̄(βmax).The quantity ēK can be evaluated using different approaches,
as it will be shown later, but all of them rely on the actual time-profile of the drop
deformation, i.e. on the function β = β(t). The minimum physical constraint on
this profile is a consequence of the above discussed assumptions, i.e. the maximum
value of β in the most deformed prolate and oblate shapes, βmax, must be the same.
A simple choice that satisfies these constraints is the following:

β = 1 − βmax

2
cos(2ω2t) + 1 + βmax

2
. (10)

It should be noticed that the actual profile of β(t) is then expected to be a critical
element of the modelling. The evaluation of the kinetic energy of the mass that is
lost by evaporation over a cycle may be based on two opposite assumptions that lead
to different estimations of the kinetic energy loss.

2.1 Bulk Kinetic Energy Approach

It is assumed that the internal flowfield produces an efficientmixing, then the average
kinetic energy per unit of mass leaving the drop eK (t) is equal to the average kinetic
energy over thewhole drop, i.e.: eK (t) = EK (t)/m. Since the totalmechanical energy
is assumed constant and equal to 4πσ R2

dβmax over a cycle, the instantaneous drop
kinetic energy EK (t) can be related to the instantaneous surface energy by Eq. (3),
then:
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ēK = 1

m t0

t0∫
0

EK (t)dt = 3σ

RdρL

(
βmax − β̄

) = R2
dω

2
2
3

16
(βmax − 1) (11)

where β̄ = (1 + βmax)
/
2 is the average value of β over a cycle (see Eq. 10) and the

oscillation frequency for the mode n = 2 was used (see Eq. 1).

2.2 Surface Kinetic Energy Approach

This approach assumes that the local kinetic energy is not uniform inside the drop.
Then the kinetic energy associated to the evaporating mass, i.e. that close to the
drop surface, may be used to evaluate ēK . It is then necessary to introduce first the
instantaneous value of the kinetic energy per unit of mass, eK (t), associated to the
liquid mass close to the drop surface, which can be estimated as:

eK (t) = 1

2

∫
A

|v|2d A
A

(12)

where |v|2 is the absolute value of the liquid velocity at the surface location, which
can be set equal to the interface velocity since nomass flux is assumed to pass through
the interface during a cycle. Then the average kinetic energy, per unit mass, which
is associated to the evaporating mass, is calculated averaging Eq. (12) over a cycle.

2.2.1 Surface Velocity

Since the local surface velocity will be integrated over the ellipsoidal surface, it is
necessary to evaluate it at any value of η, the angular coordinate in a spheroidal
coordinate system:

x = a
√

ζ 2 − 1
√
1 − η2 cosϕ x = a

√
ζ 2 + 1

√
1 − η2 cosϕ

y = a
√

ζ 2 − 1
√
1 − η2 sin ϕ y = a

√
ζ 2 + 1

√
1 − η2 sin ϕ

z = aζη z = aζη

prolate spheroidal oblate spheroidal

. (13)

In these systems, the spheroidal surface is given by the equation ζ = ζ0. The

condition of constant volume of the oscillating drop is aza2r = R3
d
.Writing a

√
ζ 2
0 ± 1

in terms ofRd and ε = az/ar , yields a parametrical equation of the spheroidal surface:

r =
√
x2 + z2 = Rdε

−1/3
√
1 − η2; z = Rdε

2/3η (14)
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and the shape oscillation is then described by the variation of ε over time. Due to the
assumed symmetry around the z-axis, the local surface value of |v|2 is

|v|2 = v2
r + v2

z =
(

∂r

∂t

)2

η

+
(

∂z

∂t

)2

η

= R2
d ε̇

2

9ε8/3
[
1 + (

4ε2 − 1
)
η2

]
(15)

and the integration of |v|2 over the drop surface yields

eK (t) =
∫ |v|2d A

2A
= R2

d

36

ε̇2

β(ε)ε10/3
I (ε) (16)

I (ε) =A(ε) + B(ε)

⎧⎨
⎩
log

(
1+√

1−ε3

1−√
1−ε3

)/√
1 − ε2 ε < 1

2 arctan
(√

ε2 − 1
)/√

ε2 − 1 ε > 1
;

A(ε) = (2+5ε2−4ε4)
4(1−ε2)

B(ε) = ε2(4−3ε2−4ε4)
8(1−ε2)

. (17)

The average of eK (t) over an oscillation period can be written (see appendix) in a
form that is similar to Eqs. (11), in fact both cases yield the relation:

ēK = R2
dω

2
2F(βmax) (18)

where F(βmax) is a function only of βmax and equal to FB(βmax) = 3(βmax − 1)
/
16

for the “bulk” model and to FS(βmax) = 1
72πω2

t0∫
0

I (ε)
β(ε)ε10/3

(
β̇

β ′

)2
dt for the “surface”

model and the two functions are shown in Fig. 1b.

3 Model Implementation

In the previous section it was shown how the mass loss over a cycle and the kinetic
energy associated to this mass can be estimated. From the mass loss�m over a cycle,
given by Eq. (8), the new drop equivalent radius Rd,f is calculated as:

R3
d, f = R3

d,i − 3

4πρL
�m = R3

d,i − 3

4πρL
Γ̄ ṁsphere

ev
t0 (19)

and all quantities on the RHS are evaluated at the beginning of the cycle. The total
mechanical energy variation is the sum of the variations of the kinetic and surface
energy, then the new value of ET is:

ET, f = ET,i + �ET = ET,i + �mēK + 4πσ
(
R2
d, f − R2

d,i

)
. (20)
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The values of the drop radius and mechanical energy at the beginning of the next
cycle are then set equal to Rd,f and ET,f , respectively, a new value of ω2 and t0 can
then be calculated for the next cycle, as well as the new value of βmax:

βmax = ET, f

4πR2
d, f σ

. (21)

It can be observed that βmax can be interpreted as a non-dimensional form of the
mechanical energy.

Beside the mechanical energy balance, a thermal energy balance could be set,
which can be seen as a separated balance, as far as viscosity is assumed nil, and drop
temperature would then enter into the model. Since the scope of the present work
is to show the single effect of evaporation on oscillation, the drop temperature will
be assumed to remain constant (isothermal process) and the thermal energy balance
can be dismissed. It is worth to note that such a condition (isothermal process) can
actually be observed in real processes, when a drop, after a first period of heating (or
cooling), reaches the so called “plateau” temperature, i.e. a condition of very small
temperature variation with time (refer to [1] for more details).

3.1 The Conditions for Oscillation Damping

It is known that viscous forces have a damping effect on the oscillation, since energy
is dissipated. Also evaporation produces a loss of energy, but, since the amplitude of
oscillation, βmax, depends on the total energy and on the drop radius (see Eq. 21), and
evaporation causes a decrease of both, then the variation of the maximum amplitude
of oscillation with time depends on the relative variation of both energy and radius.
Clearly for a non evaporating drop, a loss of energy results in a decrease of oscillation
amplitude because the radius is constant. It can be observed that Eq. (20) implies
ET, f < ET,i and, from Eq. (5), this yields the inequality:

R2
d,iβmax,i > R2

d, f βmax, f . (22)

The oscillation “damping” condition βmax, f < βmax,i is not implied by Eq. (22),
since R2

d,i > R2
d, f . It is then of a certain importance to analyse when damping by

evaporation may occur. Imposing the inequality βmax, f < βmax,i , then from Eq. (5):

ET,i

R2
d,i

>
ET, f

R2
d, f

. (23)

Using Eq. (20) to eliminateET,f fromEqs. (23) and (5) to eliminateET,i and Eq. (7)
to evaluate �m, yields the following inequality:
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ēK >
3σ

ρL

(
Rd,i + Rd, f

)
(
R2
d,i + Rd, f Rd,i + R2

d, f

) (βmax − 1) (24)

which shows that there exists a minimum value of the average kinetic energy per unit
mass, associated to the evaporated mass, which assures the decrease of oscillation
amplitude. Equations (18) and (1) can be used to eliminate ēK and, observing that
over a cycle the variation of drop radius is expected to be small (i.e. Rd, f � Rd,i ),
the following condition for oscillation damping is found:

F(βmax) >
1

4
(βmax − 1). (25)

In Fig. 1b this limit is reported and it can be seen that for the “bulk” kinetic energy
model, the condition is never satisfied, and under these conditions the evaporation
would enhance oscillation, that may also lead to drop break-up. When the “surface”
kinetic energymodel is used, instead, the condition is always satisfied and evaporation
would damp oscillation.

4 Results and Discussion

The coupled effect of oscillation and evaporation of drops made of different liq-
uids immersed in stagnant environment is analysed by applying the model above
described. The drop temperature is assumed constant within the liquid. The gaseous
mixture properties are calculated at reference temperature conditions, using the
“1/3rd rule” [4], and different drop temperatures have been considered, with the
aim to cover a wide-range of applicative test cases. As already stated, the drops are
considered isothermal, a condition that is often reached, after the initial tempera-
ture variation, when a single component drop is evaporating in gaseous environment
[1]. This assumption allows pointing out the single effect of drop oscillation on
evaporation characteristics. Figure 2 shows the transient profiles of the drop size,
non-dimensionalised with its initial value, for a water drop evaporating in stagnant
air at 1000 K and at two liquid temperatures equal to 339.5 K and 370 K; three
cases are analysed: (a) a non-oscillating spherical drop, (b) an oscillating drop when
the “bulk kinetic energy” approach is used; (c) an oscillating drop when the “sur-
face kinetic energy” approach is applied. The two drop temperatures correspond to
the so-called ‘plateau’ temperature in a gaseous environment at 1000 K [8] and to
conditions close to the boiling point. The maximum deformation has been imposed,
for the oscillating test cases, setting βmax = 1.35. Figure 2 also reports the transient
profile of βmax as predicted by the three models (equal to 1 for the non-oscillating
case). The results show the typical transient profiles of size reduction according to
the well-known “D2-law”, which occurs when the evaporation is assumed isother-
mal, and this holds also for the oscillating drops. The drop oscillation, on the other
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Fig. 2 Effect of drop oscillation on the transient profile of non-dimensional drop size as predicted
by three models, for water drop with initial βmax equal to 1.35 and liquid temperature equal to
(a) 339.5 K and (b) 370 K, vaporising in stagnant air at 1000 K

hand, noticeably accelerates the evaporation process, having a direct effect on the
evaporation rate. The drop lifetime, which has been calculated when the drop vol-
ume reduces to 10−3 times the initial value, decreases to about 11%, compared to the
non-oscillating case, when the loss of kinetic energy is calculated according to the
“bulk” kinetic energy approach and to about 5% when the “surface” kinetic energy
approach is used. The use of the non-dimensional time defined as τ = t Dv/

(
Rd,0

)2
shows that the relative effect is independent of the liquid drop temperature, which
has clearly an effect on the absolute drop lifetime.

As expected the “bulk” kinetic energy approach predicts an increase of the max-
imum surface excess area, i.e. of the oscillation amplitude, which has a steeper
increase as the drop size reduces, while the “surface” kinetic energy approach pre-
dicts a reduction of the oscillation amplitude (see Sect. 3.1). These findings have
been confirmed changing the drop initial size, temperature, surface excess area and
varying the liquid species. The results are summarised in Fig. 3, which shows the
effect of drop oscillation on the relative reduction of the drop lifetime (compared to
the non-oscillating case) as predicted by the twomodels (“bulk” and “surface” kinetic
energy approaches) as function of the initial value of βmax, for different fluids (water,
n-dodecane, acetone), evaporating in stagnant air at 1000 K and with drop tempera-
ture varying from 300 K up to the boiling point of each species. The reduction of the
drop lifetime due to oscillation, as predicted by the “bulk” kinetic energy approach, is
almost linear as βmax increases, and it is practically independent of the liquid species
and temperature. The “surface” kinetic energy approach predicts a lower reduction of
the drop lifetime, again independently on the drop composition and temperature. The
value of the gas temperature, here chosen to be 1000 K, affects the results through
the value of the reference temperature at which the thermo-physical properties are
calculated, then again it affects the absolute value of the drop lifetime, but not its
relative reduction due to oscillation, in the limits of the simplifying assumptions
above described. It is worth to notice that the results predicted by the two models
may be seen as two extreme cases, and more detailed models, which may account
for effects neglected by the present approaches (as viscous dissipation, temperature
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Fig. 3 Effect of drop oscillation on the drop lifetime as predicted by the two kinetic energy models,
as function of the maximum drop initial deformation, for different drop species

variation, etc.), may predict a reduction of the drop lifetime that lays between the
values above reported.

5 Conclusions

The transient evaporation of isothermal liquid drops in stagnant gas is analytically
predicted, accounting for the oscillation between oblate and prolate shape. The loss
of kinetic energy due to oscillation is calculated using two different assumptions: (a)
perfect mixing, (b) stratified distribution of kinetic energy. The two approaches lead
to different evolutions of the drop deformation: the first model predicts an increase
of drop oscillation amplitude, while an oscillation damping due to evaporation is
predicted by the second model. The effect of drop oscillation results in an almost
linear reduction of the drop lifetime as a function of the initial drop deformation (first
model), while the reduction is less than linear for the second energy model. These
conclusions are found to be almost independent of the drop species and operating
conditions, as confirmed by the reported parametrical analysis on water, acetone and
n-dodecane drops under different evaporating conditions. The results predicted by the
two models may be seen as two extreme cases and more detailed models, accounting
for effects neglected by the present approach (non-isothermal conditions, effect of
viscosity, etc.) may predict a reduction of the drop lifetime that lays between those
above reported.
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Appendix

The surface of a spheroid can be calculated as A = 4π R2
dβ, where [13]

β = A

4πR2
d

= 1

2ε2/3

⎧⎨
⎩
1 + ε2√

1−ε2
1
2 log

(
1+√

1−ε2

1−√
1−ε2

)
oblate (ε< 1)

1 + ε2√
ε2−1

arctan
(√

ε2 − 1
)
prolate (ε> 1)

. (A1)

When evaluating the time-integrals over a cycle, it is convenient to observe first
that, given any function of β(t), the integral can be broken into the sum of two
integrals, over the two half-periods where the drop is in a prolate and oblate shape,
respectively. Each of these integrals can in turn be split into the integral from the
spherical shape (β = 1) to themaximum deformation (β = βmax) and back. Changing
the variable of integration from t to β, the integrals over time can be transformed
into integral over β, from 1 to βmax, for the two cases (oblate and prolate):

t0∫
0

f (β)dt = 2

βmax∫
1

prolate

f (β)∣∣β̇∣∣ dβ + 2

βmax∫
1

oblate

f (β)∣∣β̇∣∣ dβ (A2)

with β̇ = dβ
dt . If the integral contains explicitly ε, equation (A1) can be used to

substitute ε by ε(β) and, if ε̇ appears explicitly, then the variable transformation

ε̇ = dε

dt
= dε

dβ

dβ

dt
= β̇

β ′ (A3)

where β ′ = dβ
dε
, allows to eliminate it in favour of β and β ′. From Eqs. (A1) and

(10), the derivatives β̇ and β ′ can be written as function of β:

β̇ = dβ

dt
= ω2 f (β, βmax); β ′ = ± 3+ε2/3β(ε2−4)

3ε5/3(1−ε2)
−oblate, + prolate

. (A4)

To calculate the integral Γ̄ = 1
t0

t0∫
0

Γ (t)dt , first apply the transformation (A2)

and then from Eqs. (A4) and (4) one obtains:

Γ̄ = 1

π

⎡
⎢⎢⎣

βmax∫
1

prolate

Γ (β)

| f (β, βmax)|dβ +
βmax∫
1

oblate


(β)

| f (β, βmax)|dβ

⎤
⎥⎥⎦ (A5)
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where the symbol 
(β) is used for 
[ε(β)], showing that Γ̄ is only a function
of βmax and it is independent of the oscillation frequency. To calculate the integral

ēK = 1
t0

t0∫
0
eK (t)dt ,where eK (t) is givenbyEq. (16), the integrand canbe transformed,

using Eq. (A3), (A4) and (A1), to a function ofβ; then, applying again transformation
(A2) and using Eq. (4):

ēK = R2
dω

2
2

36π

⎡
⎢⎢⎣

βmax∫
1

prolate

I (β)

βε10/3(β)

f (β, βmax)

β ′2 dβ +
βmax∫
1

oblate

I (β)

βε10/3(β)

f (β, βmax)

β ′2 dβ

⎤
⎥⎥⎦

(A6)

where I(ε) was transformed in a function of β using again equation (A1). Again the
term in square brackets is a function of βmax only and

ēK = R2
dω

2
2Fs(βmax). (A7)
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Improvement of the Level-Set
Ghost-Fluid Method for the
Compressible Euler Equations

Christoph Müller, Timon Hitz, Steven Jöns, Jonas Zeifang,
Simone Chiocchetti and Claus-Dieter Munz

Abstract This paper describes improvements of a level-set ghost-fluid algorithm in
the scope of sharp interface multi-phase flow simulations. Themethod is used to sim-
ulate drop-drop and shock-drop interactions. Both, the level-set and the bulk phases
are discretized by a high order discontinuous Galerkin spectral element method. The
multi-phase interface and shocks are captured with a finite volume sub-cell method.
The first improvement, is the use of the finite-volume sub-cells to capture disconti-
nuities in the level-set equation. This allows the simulation of merging droplets. The
second improvement is the introduction of an increased polynomial degree for the
level-set equation in comparison to the Euler equations. The goal of this modification
is to reduce parasitic currents. Additionally, the whole method is validated against
experimental results.

1 Introduction

The simulation of compressible multi-phase flow is a key challenge in scientific and
industrial applications. There are two major concepts: sharp and diffuse interface
methods. Among the former category both volume-of-fluid and level-set ghost-fluid
method are popular. The latter was first introduced by Fedkiw et al. [6]. Several
improvements were proposed over the years, e.g. Liu et al. [12, 13] and Wang et al.
[22]. A variant, where a multi-phase Riemann problem is solved to obtain the ghost
states at the interface was proposed by Merkle and Rohde [14]. Fechter et al. [3–5]
extended the idea by using approximate multi-phase Riemann solvers and applied
them within a high order level-set ghost-fluid framework. Thereby, both the level-set
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and the bulk phases are discretized by a high order Discontinuous Galerkin Spectral
Element Method (DGSEM) [8]. The multi-phase interface and shocks are captured
with a finite volume sub-cell method [20].

Here, we introduce two improvements to the scheme of Fechter [3] First, finite-
volume sub-cells are used to capture discontinuities in the level-set equation as well.
This is required if two droplets approach each other and merge. Secondly, we in-
troduce the possibility of an increased polynomial degree for the level-set equation,
which allows a more accurate calculation of the level-set curvature.

In this work we restrict ourselves to the in-viscid case, so the Euler equations
govern the bulk phases. An extension of the described sharp interface method to the
viscid case is beyond the scope of this paper.

The paper is structured as follows: After introducing the governing equations in
Sect. 2 we summarize the numerical framework and outline the two improvements in
Sect. 3. Afterwards, in Sect. 4, we show the capability of the new scheme to handle
merging droplets, investigate the benefits of a more accurate curvature calculation
with respect to parasitic currents and conclude by presenting a comparison with
experimental results for a complex shock-drop interaction.

2 Governing Equations

Both the liquid and the gaseous phase are modeled by the Euler equations

∂q
∂t

+ ∇ · F(q) = 0, with q =
⎛
⎝

ρ

ρu
ρe

⎞
⎠ and F(q) =

⎛
⎝

ρu
ρuu + Ip
(ρe + p)u

⎞
⎠ . (1)

The density ρ, the momentum m = ρu with the velocity vector u = (u, v,w)T and
the total energy per unit volume E = ρe are conserved quantities and the equations
above are conservation laws for mass, momentum and energy. The static pressure p
and the unit tensor I are the remaining quantities. The total energy of the system is

the sum of the internal energy per unit volume ρε and the kinetic energy
1

2
ρu · u

E = ρe = ρε + 1

2
ρu · u. (2)

In order to close the equation system we have to specify an equation of state (EOS)
to link the pressure and the internal energy per unit mass ε:

p = p(ρ, ε), ε = ε(ρ, p). (3)

Here, we use the algebraic stiffened gas EOS, see Saurel et al. [17], to approximate
the equation of state for each phase. For more complex EOS the tabulation technique
by Föll et al. [7] can be used.
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In addition to the bulk phases we solve a level-set equation in conservative form

∂φ

∂t
+ ∇ (sφ) = φ∇ · s (4)

with the level-set velocity field s. Equation (4) describes the transport of a signed
distance function. Since this property is lost if the velocity field is non trivial the
level-set equation has to be reinitialized by solving a Hamilton-Jacobi equation [21]

∂φ

∂τ
+ sgn(φ) (|∇φ| − 1) = 0. (5)

The re-establishment of the signed-distance property allows the calculation of the
normal vector nLS and the curvature κ as

nLS = ∇φ

|∇φ| , κ = −1

2
∇ · (nLS), (6)

by derivating the level-set field. Here, the level-set zero determines the position of
the phase boundary between the liquid and the gaseous phase. The dynamics of
the phases at this interface determine the velocity of the phase-boundary which is
extrapolated into the volume by solving the Hamilton-Jacobi equations

∂si

∂τ
+ ∇si · nLS = 0 i = 1, 2, 3, (7)

according to [1]. Hereby s denotes the extrapolated velocity field used for the level-set
advection.

3 Numerics

In this section the building blocks of the level-set ghost-fluid framework are summa-
rized.

3.1 The DGSEM Framework with Finite Volume Sub-cells

The DGSEM [8] with the shock-capturing based on finite-volume sub-cells [20] is
used to discretize both the Euler equations in the bulk phases as well as the level-set
equation. A novel aspect of our development is the use of the shock-capturing with
the finite volume sub-cells also for the level-set equation. We come back to this point
later.
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The DGSE method is formulated on a hexahedral mesh. Each element is mapped
to the unit cube, where the transformed equations are solved in the weak form. For
this, the equations are multiplied by a test function and integrated in space. Both, the
solution and the test functions are chosen from the same polynomial space, which
is spanned by the tensor product of one-dimensional Lagrange polynomials. The
integration is approximated by a quadrature rule. If the interpolation and integration
points are the same one obtains the DGSE method. For the time integration low stor-
ageRunge-Kutta schemes [11] are used.Between the elementsRiemannproblems are
solved to calculate numerical fluxes. The DGSEM scheme is efficient and accurate if
the solution is smooth. However, high order schemes generate spurious oscillations at
strong gradients. Therefore, we apply a sub-cell finite volume regularization follow-
ing Sonntag andMunz [20]. Critical areas are identified by applying amodal smooth-
ness indicator following Huerta et al. [9] and Persson et al. [15]. Another option is
the use of geometrical information, for example the level-set function. In potentially
unstable Discontinuous Galerkin (DG) cells we perform a conservative switch to a
finite volume sub-cell representation, where each degree of freedom is represented
by one finite volume sub-cell. On the sub-cells a first or second order finite-volume
scheme is used. The coupling between DG and FV cells happens on element sur-
faces. The method of choice is to calculate the numerical fluxes in the finite volume
representation and to project them onto the DG representation for the DG element.

The second new feature we present is the use of different polynomial degrees for
the bulk phases and the level-set. The increased resolution of the latter allows a more
accurate calculation of the level-set normals and curvature, which reduces errors
known as parasitic currents. The main benefit is that the higher resolution is only
added for the level-set, which helps to control the additional computational effort.

3.2 The Solution of the Hamilton-Jacobi Equations and the
Derivatives of the Level-Set Field

The reinitialization as well as the velocity extrapolation require the solution of a
Hamilton-Jacobi (HJ) equation.We use a 5th orderWENO scheme [10] and combine
itwith a 3rd order low storageRunge-Kuttamethodwith three stages [11]. This allows
the efficient and stable solution of both equations. Following Fechter [3], another 5th
order WENO scheme is used to calculate ∇φ and ∇ · (∇φ) and hence the normal
vector of the level-set nLS and its curvature κ .

3.3 The Level-Set Ghost-Fluid Method (LSGFM)

In this section we combine the previously described numerical methods and the
level-set ghost-fluid framework. First, an overview over the interaction of the solvers
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in one time-step is provided. Afterwards, a detailed account of the functionality of
the ghost-fluid method is given including the decomposition of the domain and the
determination of the phase boundary conditions. The six main steps of the level-set
ghost-fluid algorithm are performed at the end of every time-step:

1. The level-set is reinitialized.
2. The domain decomposition into liquid and gaseous phase is updated based on the

zero of the level-set function.
3. The DG-FV distribution is updated based on the modal smoothness indicator and

geometrical information about the level-set zero.
4. The normal vector of the level-set and its curvature are calculated.
5. The boundary conditions at the surrogate phase boundary and its velocity are

calculated.
6. The interface velocity is extrapolated into the volume to obtain a velocity field

for the level-set transport.

Within the next time step the solution in the bulk phase and the advection of the
level-set field can be calculated. The scheme is only first order in time. A higher
order in time could be reached if all steps are performed after each Runge-Kutta
stage. However, for the domain decomposition this is not possible. Within a Runge-
Kutta time step the phase of each sub-cell has to remain constant to calculate a
thermodynamically reasonable result.

All other steps could be performed in every stage, but we choose to update only
the phase boundary conditions, since reinitialization and velocity extrapolation have
a high computational effort. Next we explain both, the domain decomposition and
the calculation of the phase boundary conditions at the surrogate surface. In Fig. 1 the
domain decomposition into the two phases is demonstrated. The level-set zero marks
the position of the actual phase boundary. The color jump indicates a surrogate phase
interface. It is implicitly defined by determining the phase of each computational cell
or sub-cell. The usedmetric is the sign of the level-set function at the cell’s barycenter.
As shown in the figure, we choose to swap all DG cells that touch the level-set zero
to a finite volume representation. This allows a more detailed surrogate surface since

Fig. 1 Spatial
decomposition with
zero-level of the level-set
function and the surrogate
phase interface in the
DG-FV method

DG cell

FV sub-cells

phase boundary

surrogate
phase boundary

liquid

vapor
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the sub-cell approach mimics a grid refinement for this step. If the surrogate surface
moved compared to the last time step, at least one finite volume sub-cell swapped its
phase. Its state is determined by interpolating the states between the neighboring sub-
cells of the same phase. This step violates the conservation laws. This is not avoidable
and is inherent to ghost-fluid methods. The conservation is also violated by the final
step, the calculation of the interface boundary conditions. The original ghost fluid
method was described by Fedkiw et al. [6]. Several improvements were proposed
over the years, e.g. Liu et al. [12, 13] and Wang et al. [22]. Here we use a variant,
where a multi-phase Riemann problem is solved to obtain the ghost states at the
interface (Merkle and Rohde [14]) and directly evaluate fluxes following the idea of
e.g. Fechter et al. [4]. For theEuler equations there are twodifferent options.We either
solve the exact multi-phase Riemann problem iteratively in a fixed point formulation
orwe use an approximate solver, e.g. theHLLPRiemann solver [4, 18]. In both cases,
complex equations of state can be used that distinguish between the two phases, and
surface tension effects can be modeled by modifying the jump conditions across the
contact discontinuity. The HLLP solver is an extension of the HLLC Riemann solver
to the two-phase case. Its wave pattern is shown in Fig. 2. In the following we explain
inmore detail how theRiemann solver is incorporated into the framework. Themulti-
phase Riemann problem has to be solved normal to the level-set zero iso-surface to
apply the surface tension effect correctly. In multi-dimensional problems the normal
vector of the level-set and the curvature are interpolated linearly to the sub-cell sides.
This happens on the finite volume sub-cell grid associatedwith polynomial degreeN .
Since the quantities are calculated on a grid associated with NLS , the solution has to
be projected first. The corresponding orthonormal coordinate system is obtained by
applying a Gram-Schmidt orthonormalization to the interpolated normal vector. The
initial data UL and UR are rotated and the Riemann problem is solved normal to the
level-set zero iso-surface. We calculate the integral fluxes, one for each phase, and
then rotate them back. The use of the integral fluxes is necessary within the HLLP
framework since the intermediate states are not thermodynamically consistent. As
mentioned before, the calculated boundary conditions do not satisfy the conservation
laws in general. This is an inherent feature of ghost-fluid methods and is necessary to
avoid oscillations. This problem arises since the mesh is aligned with the surrogate

Fig. 2 Two-phase
finite-volume sub-cell
boundary with the structure
of the HLLP two-phase
Riemann solver
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interface and not the exact level-set zero iso-surface. Additionally, wewant to remark
that the method is first order accurate in space directly at the surrogate surface, since
the phase interface is a strong discontinuity that cannot be captured by higher order
methods without oscillations.

4 Results

Three different problems are investigated. First, the parasitic currents around a sta-
tionary droplet are investigated to show the benefit of an increased resolution for
the level-set field. Second, two droplets are merged to showcase this possibility due
to finite volume sub-cells in the level-set operator. Finally, a comparison between
experimental and simulation results is presented for a shock-droplet interaction at
Ma = 2.4.

4.1 Parasitic Currents Around a Stationary Droplet

Parasitic currents occur if the surface tension force is not modeled or calculated
correctly. Detailed investigations have been made for incompressible flow, see e.g.
[16]. A very common testcase is the investigation of parasitic currents around a
stationary droplet. We follow the setup described in Albadawi et al. [2] and modify
it for the compressible case. The setup is shown in Fig. 3a. The domain size is
[0.0, 0.05] × [0.0, 0.05] and it is discretized by 55 × 55 DG cells. The polynomial
degrees for the bulk phases and the level-set are N = 1, 2, 3 and NLS = 2, . . . , 5,
respectively. The center of the drop is located at [x, y] = [0.025, 0.025]with a radius
of 0.005. Both phases are modeled with the stiffened gas law. The surface tension
coefficient is σ = 0.01. The initial conditions and EOS parameters for the droplet
and the surrounding atmosphere are

(ρ, u, v, p, γ, p∞)T =
{

(1000, 0, 0, 3, 1.4, 0)T droplet,

(1, 0, 0, 1, 1.4, 0)T gas.

This is a numerical testcase, so dimensionless quantities are used. In particular the
pressure level is only chosen this way to observe the parasitic currents properly. The
simulation is run until t = 0.1. In contrast to the work of Albadawi et al. [2], we
neglect viscous effects. The pressure level has a huge effect on the parasitic currents
in the compressible case. Therefore, a direct comparison with incompressible results
is meaningless. As a result we determine only trends in the following investigation.
As a measure for the intensity of the parasitic currents we use the kinetic energy in
the whole domain. The target value for a perfect scheme would be zero. In principle,
we should approach this value to machine accuracy. However, in Table 1 we can
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Fig. 3 Setups for the testcases

Table 1 Parasitic currents measure by the kinetic energy for different resolutions

NLS = 2 NLS = 3 NLS = 4 NLS = 5

N = 1 0.128 × 10−11 0.518 × 10−12 0.445 × 10−12 0.391 × 10−12

N = 2 0.631 × 10−12 0.275 × 10−12 0.247 × 10−12 0.243 × 10−12

N = 3 – 0.109 × 10−12 0.610 × 10−13 0.571 × 10−13

observe a different behavior. A higher polynomial degree for the level-set field leads
to a reduction in the parasitic currents, though the decrease is quite slow. In addition,
the effect of a higher polynomial degree for the fluid solution is more significant.
The probable cause of this behavior is the interpolation of the curvature and level-set
normal vector to the surrogate surface. This procedure is a one-dimensional linear in-
terpolation on the finite-volume grid associated with polynomial degreeN . Although
we increase the accuracy of the calculation by increasing NLS , we loose accuracy by
the projection to the lower polynomial degree and the low order interpolation.
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4.2 Merging Droplets Without Surface Tension

The merging of droplets is a major challenge in compressible level-set ghost-fluid
methods. There are two major problems: First, the method must be able to capture
the merging process. Second, the curvature has to be calculated correctly during
the merge. Here, we target only the first problem and neglect the second since no
surface tension is considered. The setup is shown in Fig. 3b. The domain size is
[0.0, 0.05] × [0.0, 0.05] and it is discretized by 55 × 55 DG cells. The polynomial
degrees for the bulk phases and the level-set are N = 4 and NLS = 4, respectively.
Drop 1 is located at [x, y] = [0.019, 0.019] with a radius of 0.006 and drop 2 is
located at [x, y] = [0.031, 0.031] with a radius of 0.0025. Both phases are modeled
with the stiffened gas EOS. The initial conditions and EOS parameters for the droplet
and the surrounding atmosphere are

(ρ, u, v, p, γ, p∞)T =

⎧⎪⎨
⎪⎩

(1000, 0.2, 0.2, 10, 1.4, 1000)T droplet 1,

(1000,−0.5,−0.5, 10, 1.4, 1000)T droplet 2,

(4, 0, 0, 10, 1.4, 0)T gas.

Since this is only a numerical testcase, dimensionless quantities are used. The simula-
tion is run until t = 0.05. In Fig. 4 the time frames t = 0.01, 0.012, 0.014 are shown.
In the first row, results are shown for a DG-FV representation of the level-set field,
whereas in the second row a DG representation for the level-set is used. In contrast
to the second case, the droplets merge for the first case. As a result the velocities are
much higher in the second row and the droplet surfaces oscillate if they are close to
each other. In addition, the simulation does not run until the end but crashes. This
testcase demonstrates very clearly that finite volume sub-cells for the level-set field
allow the merging of droplets.

4.3 Shock-Droplet Interaction at Ma = 2.40

Finally, we compare the experimental data of Sembian et al. [19] with our simu-
lation. The setup is shown in Fig. 3c. The domain size is [−0.045m, 0.045m] ×
[0.0m, 0.037m] and it is discretized by 150 × 61 DG cells. The polynomial degrees
for the bulk phases and the level-set are N = 5 and NLS = 6, respectively. The shock
is located at xs = −0.040m and is defined by the conditions

(ρg, u, v, p)
T =

{
(580.7 kg

m3 , 0 m
s , 0 m

s , 500 bar)T x ≤ −0.04m,

(1.17 kg
m3 , 0 m

s , 0 m
s , 1.01 bar)T x > −0.04m.

This results in a shock strength of Ma = 2.4 The center of the drop is located
at [x, y] = [0.0m, 0.0m] with a radius of 0.011m and its initial condition is
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Fig. 4 |v| and droplet surface (black) for merging droplets in 2D without surface tension, top row:
DG-FV representation for level-set, bottom row: DG representation for level-set

(ρg, u, p)T = (1000 kg
m3 , 0 m

s , 1.01 bar)T . The gas phase is modeled with a perfect
gas law and the liquid phase with the stiffened gas EOS, which is identical to Tait’s
equation of state. The parameters are chosen identical to Sembian et al. [19]. The
setup is shown in Fig. 3c. Note that surface tension effects are neglected due to
the high Weber number of We = 3.7966 × 105. A comparison between our highly
resolved simulation and the experimental data of Sembian et al. [19] is shown in
Fig. 5. The simulation data is post processed to generate the numerical Schlieren
image. The time is taken from the simulation. The images are chosen to find a good
match to the data of Sembian et al. [19] This is necessary since there is no information
about the time in the experimental images.

In the early time instances we see an almost perfect agreement between simulation
and experiment. For example at t = 4.8 × 10−5 s there is an agreement regarding the
reflected and transmitted shock, as well as the Mach stem and the triple point. Both
the wave structure and the locations of those phenomena are almost identical. At t =
6.4 × 10−5 s differences occur: the shock speed of the reflected shock is higher in the
experiment and micromist occurs around the droplet. This in turn leads to a different
attachment point for the shock wave after the drop. However, at t = 9.4 × 10−5 s we
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Fig. 5 Comparison of numerical Schlieren images (bottom) with experimental results (top) repro-
duced from Sembian et al. [19] (with permission of AIP Publishing)

see almost identical re-circulation zones. Finally, at t = 1.84 × 10−4 s the droplet
shape starts to deform in the simulation, which is not observed in the experiment.

Overall the main physical features of the shock-droplet interaction are captured
well by our numerical method. This supports the validity of the presented framework
for simulations in the considered regime. The differences can be attributed to three
main reasons: First, as we mentioned above Sembian et al. [19] did not provide
the physical time to their image series, so the matching between experiment and
simulation is not precise. Additionally, we run a 2D simulation. This means, the
stripping of the water from the column wall is not possible in the simulation and
so micromist cannot occur. The lack of this mist leads to different shock systems
after the droplet due to different attachment points and might also explain the minor
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differences in the re-circulation zone. Finally, the fluid behavior is approximated by a
stiffened gas EOS. It is well known that this might lead to different sound speeds and
hence is a possible explanation for the different shock speeds of the reflected shock.
The interface deformation is not visible in the experiment since the area is clouded
by micromist. If it is in fact not deformed, the lack of micromist in the simulation
and the different EOS behavior might explain the differences.

5 Conclusion and Outlook

In this paper we provided an overview over a high order level-set ghost-fluid method
based on the work of Fechter et al. [3–5]. Two improvements were introduced: fi-
nite volume sub-cells for the level-set field and different polynomial degrees for the
solution of the level-set field and the Euler equations. Afterwards, we demonstrated
that a higher polynomial degree of the level-set field leads to lower parasitic cur-
rents, although the effect is smaller than expected. This we attribute to the low order
interpolation of the level-set normal and the curvature to the surrogate surface. An
investigation into alternative interpolation methods is currently under way.

Afterwards, we showed that finite volume sub-cells are a possible solution of the
discretization if merging droplets shall be simulated. A pure DG representation of
the level-set field leads to a wrong behavior if two interfaces approach each other
and ultimately to a crash of the simulation. The calculation of the curvature in this
case remains unsolved for now but is a topic of future research. The main goal being
droplet collisions with surface tension as well as drop wall interactions.

Ultimately, we demonstrated that our scheme is well designed to solve shock-
drop interactions by showing a good agreement of our simulations with experimental
results.
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A Solver for Stiff Finite-Rate Relaxation
in Baer–Nunziato Two-Phase Flow
Models

Simone Chiocchetti and Christoph Müller

Abstract In this paper we present a technique for constructing robust solvers for
stiff algebraic source terms, such as those typically used for modelling relaxation
processes in hyperbolic systems of partial differential equations describing two-
phase flows, namely models of the Baer–Nunziato family. The method is based
on an exponential integrator which employs an approximate linearised source term
operator that is constructed in such a way that one can compute solutions to the
linearised equations avoiding any delicate matrix inversion operations.

1 Introduction

Stiff algebraic source terms, accounting for mechanical relaxation and phase transi-
tion in two-phase flow models of the Baer–Nunziato type [3, 12, 14], are one of the
key difficulties in computing solutions to these systems of hyperbolic partial differ-
ential equations (PDE). Their accurate solution is relevant for the study of droplet
dynamics with Baer–Nunziato models. These weakly compressible phenomena can
be accurately described by the reduced models that assume instantaneous pressure
and velocity equilibrium like the one forwarded by Kapila et al. [10]. Solving more
general sets of equations like [3, 12, 14] in the stiff relaxation limit gives results
that are similar to those obtained from the instantaneous equilibrium model, while
allowingmoremodelling flexibility, since less physical assumptions have to bemade.

A simple computational strategy for dealing with stiff sources is the splitting
approach [15, 18]. The procedure consists of two steps: at each timestep, first one
solves the homogeneous part of the PDE
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∂tQ + ∇ · F(Q) + B(Q)∇Q = S(Q), (1)

for example with a path-conservative [5, 11] MUSCL–Hancock [17] method, ob-
taining a preliminary solution QH and then one can use this state vector as initial
condition for the Cauchy problem

dQ

dt
= S(Q), Q(tn) = QH, t ∈ (tn, tn+1), (2)

of which the solution will then yield the updated quantities at the new time level
tn+1. This way, the problem is reduced to the integration of a system of ordinary
differential equations (ODE), and general-purpose ODE solvers or more specialised
tools can be employed for this task.

It is often the case that the time scales associatedwith relaxations sources aremuch
shorter than those given by the stability condition of the PDE scheme, thus one must
be able to deal with source terms that are potentially stiff. In order to integrate stiff
ODEs with conventional explicit solvers, one has to impose very severe restrictions
on the maximum timestep size, and for this reason implicit methods are commonly
preferred [16]. Unfortunately implicit solvers, are, on a per-timestep basis, much
more expensive than explicit integrators, and they still might require variable sub-
timestepping in order to avoid under-resolving complex transients in the solution.

In this work, we will develop a technique for constructing a solver for stiff finite-
rate mechanical relaxation sources, specifically those encountered in models of the
Baer–Nunziato type.

The proposed method overcomes the issues typical of explicit solvers with three
concurrent strategies: first, the update formula is based on exponential integration [6,
13], in order to mimic at the discrete level the behaviour of the differential equation;
second, information at the new time level tn+1 is taken into account by iteratively
updating a linearisation of the ODE system, this is achieved without resorting to a
fully implicit method like those introduced in [4], and for which one would need to
solve a system of nonlinear algebraic equations at each timestep tn; third, the method
incorporates a simple and effective adaptive timestepping criterion, which is crucial
for capturing abrupt changes in the state variables and dealing with the different time
scales that characterise the equations under investigation.

2 Model Equations

We are interested in the solution of two-phase flow models of the Baer–Nunziato
family, which can be written in the general form (1), with a vector of conserved
variables defined as

Q = [α1 ρ1, α2 ρ2, α1 ρ1 u1, α2 ρ2 u2, α1 ρ1 E1, α2 ρ2 E2, α1]T, (3)
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a conservative flux F and a non-conservative term B∇Q written as

F(Q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 ρ1 u1

α2 ρ2 u2

α1 (ρ1 u1 ⊗ u1 + p1 I)
α2 (ρ2 u2 ⊗ u2 + p2 I)
α1 (ρ1 E1 + p1) u1

α2 (ρ2 E2 + p2) u2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B(Q)∇Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

−pI ∇α1

+pI ∇α1

−pI uI · ∇α1

+pI uI · ∇α1

uI · ∇α1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

and a source term vector written as

S(Q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

λ (u2 − u1)

λ (u1 − u2)

λ (u2 − u1) · uI + ν pI (p2 − p1)
λ (u1 − u2) · uI + ν pI (p1 − p2)

ν (p1 − p2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Here we indicate with α1 and α2 the volume fractions of the first phase and of the
second phase respectively,withρ1 andρ2 the phase densities,u1 = [u1, v1, w1]T and
u2 = [u2, v2, w2]T indicate the velocity vectors, α1 ρ1 E1 and α2 ρ2 E2 are the partial
energy densities. The pressure fields are denoted with p1 and p2, and the interface
pressure and velocity are named pI and uI = [uI, vI, wI]T. Finally, the parameters λ

and ν control the time scales for friction and pressure relaxation kinetics respectively.
In the following,wewill study the systemof ordinary differential equations arising

from the source term (5) only, that is, the one constructed as given in equation (2)
and specifically its one-dimensional simplification in terms of the primitive variables

V = [
u1, u2, p1, p2, α1

]T
, with an initial condition V0 = [

u01, u02, p01, p02, α0
1

]T
.

Since no source is present in the mass conservation equations, they have a trivial
solution, that is, α1 ρ1 and α2 ρ2 remain constant in time; for compactness, these
quantities will be included in our analysis as constant parameters, rather than as
variables of the ODE system.

The one-dimensional ODE system is written as

du1
dt

= λ

α1 ρ1
(u2 − u1), (6)

du2
dt

= λ

α2 ρ2
(u1 − u2), (7)

dp1
dt

= ν (pI + k1a p1 + k1b)

α1 k1a
(p2 − p1) + λ (uI − u1)

α1 k1a
(u2 − u1), (8)
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dp2
dt

= ν (pI + k2a p2 + k2b)

α2 k2a
(p1 − p2) + λ (uI − u2)

α2 k2a
(u1 − u2), (9)

dα1

dt
= ν (p1 − p2). (10)

The choices for interface pressure and velocity are pI = p2 and uI = u1. Finally,
one can verify that, using the stiffened-gas equation of state for both phases, we
have k1a = 1/(γ1 − 1), k2a = 1/(γ2 − 1), k1b = γ1 �1/(γ1 − 1), and k2b = γ2 �2/

(γ2 − 1).

3 Description of the Numerical Method

The methodology is described in the following with reference to a generic nonlinear
first order Cauchy problem

dV

dt
= S(V, t), V(tn) = Vn, (11)

for which the ODE can be linearised about a given state V∗ and time t∗ as

dV

dt
= B∗ + J∗(V∗, t∗) (V − V∗). (12)

Here we defined the Jacobian matrix of the source J∗ = J(V∗, t∗) and analogously
the source vector evaluated at the linearisation state is B∗ = S(V∗, t∗). We then
introduce the vector

C∗ = C∗(B∗, J∗) = C∗(V∗, t∗) (13)

which will be used as an indicator for the adaptive timestepping algorithm and may
be constructed for example listing all of the components of the matrix J∗ together
with all the components of the vector B∗ and the state V∗, or only with a selection of
these variables, or any other relevant combination of the listed variables, that is, any
group indicative of changes in the nature or the magnitude of the linearised source
operator.

It is then necessary to compute an accurate analytical solution of the non-
homogeneous linear Cauchy problem

dV

dt
= S∗(V; V∗, t∗) = B∗ + J∗(V∗, t∗) (V − V∗), V(tn) = Vn. (14)

We will denote the analytical solution of the IVP (14) as Ve(t; S∗, tn, Vn). As for
S∗(V; V∗, t∗), the semicolon separates the variable onwhichVe andS∗ continuously
depend (t or V) from the parameters used in the construction of the operators. The
state vector at a generic time level tn is written as Vn, the variable timestep size is
Δtn = tn+1 − tn.
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3.1 Timestepping

Marching from a start time t0 to an end time tend is carried out as follows. First, an
initial timestep size Δt0 is chosen, then, at each time iteration, the state Vn+1 at the
new time level tn+1 is computed by means of the iterative procedure described below.
The iterative procedure will terminate by computing a value for Vn+1, together with
a new timestep sizeΔtn+1 = tn+2 − tn+1 based on an estimator which is embedded in
the iterative solution algorithm. There is also the possibility that, due to the timestep
size Δt being too large, the value of Vn+1 be flagged as not acceptable. In this
case, the procedure will return a new shorter timestep size for the current timestep
Δtn = tn+1 − tn and a new attempt at the solution for Vn+1 will be carried out.
Specifically, in practice we choose the new timestep size to be half of the one used
in the previous attempt.

3.2 Iterative Computation of the Timestep Solution

At each iteration (denoted by the superscript k) we define an average state vector
V∗k

n+1/2 = (Vn + V∗k−1
n+1)/2 to be formally associated with an intermediate time level

tn+1/2 = (tn + tn+1) /2. For the first iteration we need a guess value for V∗k−1
n+1, with

the simplest choice being V∗k−1
n+1 = Vn. Then the coefficients C∗k

n+1/2 are computed
as

C∗k
n+1/2 = C∗k

n+1/2(V
∗k
n+1/2, tn+1/2). (15)

In a joint way, one can build the affine source operator

S∗k
n+1/2 = S∗k

n+1/2(V; V∗k
n+1/2, tn+1/2). (16)

Then one can solve analytically

dV

dt
= S∗k

n+1/2(V; V∗k
n+1/2, tn+1/2), V(tn) = Vn, (17)

by computing

V∗k
n+1 = Ve

(
tn+1; S∗k

n+1/2, tn, Vn

)
. (18)

It is then checked that the state vectorV∗k
n+1 be physically admissible: in our case this

means verifying that internal energy of each phase be positive and that the volume
fraction be bounded between 0 and 1.Also one can check for absence of floating-point
exceptions. Additionally, one must evaluate

C∗k
n+1 = C∗k

n+1

(
V∗k

n+1, tn+1

)
. (19)
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This vector of coefficients will not be employed for the construction of an affine
source operator S∗k

n+1, but only for checking the validity of the solution obtained
from the approximate problem (17) by comparing the coefficients vector C∗k

n+1 to
C∗

n, as well as comparing the coefficients C∗k
n+1/2 used in the middle-point affine

operator for the initial coefficientsC∗
n. At the end of the iterative procedure, one will

setC∗
n+1 = C∗k

n+1, so that this will be the new reference vector of coefficients for the
next timestep. The convergence criterion for stopping the iterations is implemented
by computing

r = max

⎛
⎝

∣∣∣V∗k
n+1 − V∗k−1

n+1

∣∣∣
∣∣∣V∗k

n+1

∣∣∣ +
∣∣∣V∗k−1

n+1

∣∣∣ + εr

⎞
⎠ , (20)

and checking if r ≤ rmax, with rmax and εr given tolerances, or if the iteration count
k has reached a fixed maximum value kmax. Note that in principle any norm may be
used to compute the error metric given in Eq. (20), as this is just a measure of the
degree to which V∗k

n+1 was corrected in the current iteration. Moreover we found
convenient to limit the maximum number of iterations allowed, and specifically
here we set kmax = 8, but stricter bounds can be used. For safety, we decide to flag
the state vector V∗k

n+1 as not admissible, as if a floating-point exception had been
triggered, whenever the iterative procedure terminates by reaching the maximum
iteration count.

After the convergence has been obtained, in order to test if the IVP (11) is well
approximated by its linearised version (17), we compute

δn+1/2 = max

( ∣∣C∗
n+1/2 − C∗

n

∣∣
∣∣C∗

n+1/2

∣∣ + ∣∣C∗
n

∣∣ + εδ

)
, (21)

δn+1 = max

( ∣∣C∗
n+1 − C∗

n

∣∣
∣∣C∗

n+1

∣∣ + ∣∣C∗
n

∣∣ + εδ

)
, (22)

and we verify if δ = max(δn+1/2, δn+1) ≤ δmax. The user should specify a tolerance
δmax as well as the floor value εδ , which is used in order to prevent that excessive
precision requirements be imposed in those situations when all the coefficients are
so small than even large relative variations expressed by Eqs. (21) and (22) do not
affect the solution in a significant manner. If δ ≤ δmax we confirm the state vector at
the new time level to be Vn+1 = V∗k

n+1 and a new timestep size is computed as

Δtn+1 = λ
δmax

δ + ε
, with λ = 0.8, ε = 10−14, (23)

otherwise the solution of the IVP (17) is attempted again with a reduced timestep
size, specifically one that is obtained by halving the timestep used in the current
attempt. The same happens if at any time the admissibility test on V∗k

n+1 fails.
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3.3 Analytical Solution of the Linearised Problem

The general solution to an initial value problem like (17) can be written as

V(t) = exp
(
J∗ (t − tn)

) (
V(tn) + J∗−1 B∗ − V∗

)
− J∗−1 B∗ + V∗. (24)

Note that, in addition to evaluating the matrix exponential exp
(
J∗ (t − tn)

)
, one must

also compute the inverse Jacobian matrix J∗−1. Computation of matrix exponentials
can be carried out rather robustly with the aid of the algorithms of Higham [9] andAl-
Mohy and Higham [1, 2], while inversion of the Jacobian matrix can be an arbitrarily
ill-conditioned problem.

For this reason we propose the following strategy for choosing a more suitable
linearisation and computing analytical solutions of the linearised problem for the
ODE system (6)–(10). First, it is easy to see that the velocity sub-system (equations
for u1 and u2) can be fully decoupled from the other equations, as the partial densities
α1 ρ1 and α2 ρ2 remain constant in the relaxation step.

Then the solution of the velocity sub-system can be immediately obtained as

u1(t) = λ

k

(
u01

α2 ρ2
+ u02

α1 ρ1
+ u01 − u02

α1 ρ1
exp (−k (t − tn))

)
, (25)

u2(t) = λ

k

(
u01

α2 ρ2
+ u02

α1 ρ1
+ u02 − u01

α2 ρ2
exp (−k (t − tn))

)
, (26)

with k = 1/α1 ρ1 + 1/α2 ρ2.
In a second step, the pressure sub-system (8)–(9) is linearised as

dp1
dt

= kp (p2 − p1) + ku (uI − u1) (u2 − u1), (27)

dp2
dt

= kp (p1 − p2) + ku (uI − u2) (u1 − u2), (28)

where kp and ku are constant coefficients directly obtained from Eqs. (8)–(9). This
way, at the cost of suppressing the dependence on α1 in the Jacobian of the pressure
sub-system, the homogeneous part of Eqs. (27)–(28) has the same simple structure
found in the velocity sub-system, with the addition of a non-homogeneous term,
which is known, as u1(t) and u2(t) already have been computed. The solution can
again be evaluated using standard scalar exponential functions, which are fast and
robust, compared to matrix exponentials and especially so, because one no longer
needs to perform the inversion of the Jacobian matrix of the full system.

Finally, the solution to Eq. (10) can be integrated analytically from the expressions
of p1(t) and p2(t). Full coupling of the system is restored in the successive iterations
by recomputing the constant coefficients kp and ku using an updated midpoint value
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Fig. 1 Visual comparisonbetween the structure of the complete Jacobianmatrix for theODEsystem
(6)–(10) and the proposed three-step simplified structure. The RHS label indicates dependencies
that are accounted for as non-homogeneous terms in the pressure sub-system, while the zeros mark
dependencies that are suppressed entirely

for α1. A visual representation of the approximate Jacobian matrix associated with
the proposed solution method can be found in Fig. 1.

4 Test Problems

We provide validation of the proposed method first by computing solutions to the
ODE system (6)–(10) and comparing the results with a reference solution obtained
from a sixth order, fully implicit, Runge–Kutta–Gauss–Legendremethod [4] (labeled
RKGL3) employing adaptive timestepping (test problems A1 and A2, Figs. 2 and 3).
Furthermore, test problem A1 is employed also for carrying out a convergence study
of the scheme (Fig. 4), showing that second order convergence is easily achieved.
The initial data for the ODE tests are, for test A1 (Fig. 5),

u01 = −5m s−1, u02 = 5m s−1, p01 = 0.1 Pa, p02 = 20 Pa, α0
1 = 0.9, (29)

while for test A2,

u01 = 0m s−1, u02 = 0m s−1, p01 = 2.0 × 108 Pa, p02 = 1 Pa, α0
1 = 0.4. (30)

The parametric data are, for test A1,

α1 ρ1 = 1.0 kgm−3, α2 ρ2 = 4.0 kgm−3, γ1 = 6, γ2 = 1.4,

�1 = 0 Pa, �2 = 0 Pa, λ = 109 kgm−1 s−1, ν = 10 Pa−1 s−1.
(31)
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Fig. 2 Time evolution of velocities and pressures for test problem A1. In the top frames the
linearisation tolerance parameter is set as δmax = 0.5, employing 15 timesteps to reach the final
time of 1.0ms, while in the bottom frames we impose an extremely loose tolerance δmax = 100,
still showing good agreement with the reference solution but using only 4 timesteps for the full run

Fig. 3 Time evolution of volume fraction and pressure for test problem A2. The solution is well
captured in 11 timesteps, using a linearisation tolerance δmax = 1.1
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Fig. 4 Convergence results relative to 40 runs of test problem A1. On the bilogarithmic plane, the
slopes of the regression lines are Sp1 = 2.18 and Sα1 = 2.24 for the variables p1 and α1 respectively,
indicating second order convergence

Fig. 5 Solution of test Problem RP1 on two uniform meshes of 2000 cells and 20,000 cells respec-
tively, showing convergence with respect to mesh refinement

and for test A2,

α1 ρ1 = 780.0 kgm−3, α2 ρ2 = 0.22 kgm−3, γ1 = 6, γ2 = 1.4,

�1 = 100 Pa, �2 = 0 Pa, λ = 109 kgm−1 s−1, ν = 10 Pa−1 s−1.
(32)

Then, we show an application of the method in the solution of the mixture-energy-
consistent formulation of the six-equation reduced Baer–Nunziato model forwarded
in [12], where the detailed description of the test cases can be found. For these
simulations the interface pressure is computed as

pI = Z2 p1 + Z1 p2
Z1 + Z2

, with Z1 = ρ1 a1 and Z2 = ρ2 a2. (33)

The first two shock-tube problems show that the method is able to deal with
very stiff (ν = 1020 Pa−1 s−1) sources, and in particular in Fig. 5 (RP1, featuring
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a strong right-moving shockwave) we show mesh convergence of the solution by
comparing two runs, both employing the HLLEM Riemann solver proposed in [7],
on two different meshes consisting of 2000 uniform control volumes and 20,000
control volumes respectively. In Fig. 6 (RP2, two diverging rarefaction waves) we
then show that, with very stiff relaxation (ν = 1020 Pa−1 s−1), the solution matches
the one computed by solving directly the five-equation instantaneous equilibrium
model [10], again using a mesh consisting of 2000 uniform cells for the six-equation
model and a mesh of 20,000 uniform cells for the reference solution. All tests are run
using a second order path-conservativeMUSCL-Hancock schemewith kCFL = 0.95.

Finally, in Fig. 7we show the behaviour of the solution of a thirdRiemann problem
(RP3) with several different values of the pressure relaxation parameter ν (ranging
from 10−8 to 1020 Pa−1 s−1), highlighting the vast range of solution structures that
can be obtained not onlywith stiff relaxation (the pressure profiles p1 and p2 coincide)
or in total absence of it, but also with finite values of the relaxation time scale. For
RP3, the initial data on the left are

ρL
1 = 1.0 kgm−1 s−1, ρL

2 = 0.2 kgm−3, uL = 0.0m s−1,

pL1 = 1.0 Pa, pL2 = 1.0 Pa, αL
1 = 0.55,

(34)

while on the right one has

ρR
1 = 0.125 kgm−3, ρR

2 = 2.0 kgm−3, uR = 0.0m s−1,

pR1 = 0.1 Pa, pR2 = 0.1 Pa, αR
1 = 0.45.

(35)

The initial jump is located at x = 0.6m, the domain is x ∈ [0m, 1m] and the
final time is tend = 0.15 s. The parameters of the stiffened gas EOS are γ1 = 2.0,
γ2 = 1.4, �1 = 2.0 Pa, �2 = 0.0 Pa.

Fig. 6 Solution of test Problem RP2 computed from the six-equation Baer–Nunziato model (BN6)
with stiff relaxation, compared with the five-equation Kapila model (BN5), showing convergence
to the limit reduced model
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Fig. 7 Behaviour of the pressure variables in RP3 with several values of ν. It is clear that, in the
stiff regime (ν = 1020 Pa−1 s−1), p1 and p2 converge to the same value, while they evolve in a
completely distinct fashion if relaxation is set to act on longer timescales
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5 Conclusions

We presented a technique for integrating ordinary differential equations associated
with stiff relaxation sources and promising results have been shown for a set of
test problems. The method can efficiently resolve very abrupt variations in the so-
lution and adapt to multiple timescales. A key feature of the algorithm is that it can
avoid delicate linear algebra operations entirely, thus improving the robustness of the
scheme. Future applications will include liquid-gas and liquid-solid phase transition,
strain relaxation for nonlinear elasticity [8] and the computation of material failure
in elasto-plastic and brittle solids.
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Techniques for the Isentropic Euler
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and Andrea Beck

Abstract For the accurate and efficient discretization of the low-Mach isentropic
Euler equations, which can be used for the description of droplet dynamics, several
IMEX splitting schemes have been introduced in literature. In this work, we cast
multiple splittings into a common framework, which makes it possible to compare
themnumerically. Temporal discretization is donewith IMEXRunge-Kuttamethods,
while for the spatial part, we rely on the discontinuous Galerkin spectral element
method. It is shown that, while the influence of the splitting on accuracy is small, it
has a large impact on efficiency.

1 Introduction

When considering weakly compressible droplet dynamics the physical phenomena
often can be described by the isentropic Euler equations. For example in [15], they
are used in a sharp interface ghost fluidmethod for the simulation of two-phase flows.
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This necessitates efficient schemes for the non-dimensionalized Euler equations at a
low reference Mach number ε. Those equations are given by

∂tρ + ∇ · (ρu) = 0,

∂t(ρu) + ∇ · (ρu ⊗ u) + 1

ε2
∇p = 0,

(1)

with the equation of state p(ρ) := κργ and κ > 0, γ ≥ 1. ρ, u and p denote density,
velocity vector and pressure, respectively. Considering so-calledwell-prepared initial
data, see e.g. [5], one can show that there is a well-behaved limit as ε → 0 [10]. This
limit can be described by the incompressible Euler equations which are given by

ρ(0) ≡ const. > 0, ∇ · u(0) = 0,

∂tu(0) + ∇ · (u(0) ⊗ u(0)) + ∇p(2)

ρ(0)
= 0,

(2)

with p(2) denoting the hydrodynamic pressure.
In situations with small Mach numbers, the wave speeds of the different char-

acteristics of the compressible equations differ tremendously, since the speed of
sound tends to infinity for a vanishing Mach number. When using explicit numerical
time integration methods, this requires the use of an impractically small time step
�t = O(ε) (or even smaller if the influence of overly diffusive schemes is consid-
ered [4]) due to the CFL condition.

Many attempts have been made to overcome this issue; for a recent overview see
e.g. [2] and the references therein. One particular idea is to perform a flux splitting,
see, e.g., [3–5, 9, 11, 14], where the flux is split into two parts: A flux related to
the fast characteristics (‘acoustic waves’) treated IMplicitly and a part related to
the slow parts (‘material waves’) treated EXplicitly, resulting in so-called IMEX
schemes. One specific idea of a flux splitting, described in [8, 9, 16], is the so-called
RS-IMEX splitting. Here, the splitting is based on a linearization around a given
reference solution (RS) to obtain the implicitly treated flux.

The aim of this work is to compare the RS-IMEX splitting for the isentropic Euler
equations with the splittings introduced in [4, 5] and to improve the efficiency of the
RS-IMEX splitting by considering different possibilities of choosing the reference
solution. The split equation system is discretized with a high order nodal discontin-
uous Galerkin scheme in space [6, 12] and a high order IMEX Runge-Kutta scheme
in time [1, 13]; see [16] for more details on the implementation.

The paper is structured as follows: In Sect. 2 we introduce the different split-
tings. In Sect. 3 the numerical framework for the comparison is briefly summarized.
Section 4 then shows numerical results for a variety of splittings including the com-
parison of performance. Finally, Sect. 5 offers conclusion and outlook.
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2 A Generalized Splitting

In conservative form, the isentropic Euler equations, Eq. (1), can be written as

∂tw + ∇ · f(w) = 0,

with the state vector w := (ρ, ρu). With a suitable identification of ‘fast’ and ‘slow’
parts, the flux can be split into a part˜f that is treated implicitly and a part̂f that is
treated explicitly, i.e.,

∂tw + ∇ · f(w) = ∂tw + ∇ · (

˜f(w) +̂f(w)
) = 0.

In [7], Kaiser introduced a generalized notation for splitting the isentropic Euler
equations given by

˜f :=
(

(1 − M)ρu
K(ρ, u) + H(ρ)

ε2
Id

)

and ̂f :=
( Mρu

ρu ⊗ u − K(ρ, u) + p(ρ)−H(ρ)

ε2
Id

)

, (3)

withM,K andH being chosen such that the explicit and implicit parts are hyperbolic.
In [7] it has been shown that a splitting according to Eq. (3) with an IMEX Runge-
Kutta discontinuous Galerkin discretization is asymptotic consistent under some
restrictions on M, K and H. For more details the reader is referred to [7].

We can cast the splittings used in this work into the above-mentioned framework:

1. Splitting by Degond and Tang [4] (DeTa): Take

M = 0, K = 0 and H = (

1 − ε2
)

p(ρ).

2. Splitting by Haack et al. [5] (HJL): Take

M = ε2, K = 0 and H = a(t)ρ,

where a(t) := minx p′(ρ(x, t)) with p′ = ∂p/∂ρ evaluated explicitly, i.e., for the
implicit flux we use a(t) evaluated at the previous stage.

3. RS-IMEX splitting [9]: For a given, so-called reference solution wref, the RS-
IMEX splitting is defined by setting

M = 0, K = −ρuref ⊗ uref + ρu ⊗ uref + uref ⊗ ρu and

H = p(ρref) + p′(ρref)(ρref − ρ).

The idea behind this splitting is a linearization of the convective fluxes around the
reference solution wref and taking the remainder as an explicit flux contribution.
In previous works, the reference solution was chosen to be the solution of the
incompressible equations, Eq. (2), computed with the same order of accuracy as
done for the compressible equations. In this work, we also present other choices:
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• RS-IMEX-qCqI : Here, the computation of the compressible solution is done
with polynomial order qC , while the incompressible solution is computed with
polynomial order qI ≤ qC to reduce computational effort.

• RS-IMEX-min: The explicitly evaluated reference solution is defined by

wref := min
x

w(x, t).

• RS-IMEX-mean: With the initially given ρ(0), wref = (ρref, uref)
T is defined by

ρref := ρ(0) and uref := 1

|�|
∫

�

udx,

with uref being evaluated explicitly on the domain �.

3 Numerical Method

3.1 Discretization

The spatial discretization is done by applying the discontinuous Galerkin spectral
element discretization [12] to the split equation as done in [16]. This discretization is
based on an approximation of the solution as the tensor-product of one-dimensional
Lagrange polynomials. A detailed description of the present spatial discretization
method can be found in [6].

Temporal discretization is performed using IMEX Runge-Kutta methods [1, 13],
which are combinations of implicit and explicit Runge-Kutta schemes. Depending
on the splitting, a (non-)linear system of equations has to be solved for every IMEX
Runge-Kutta stage. For this, we use a matrix-free (Newton-)GMRES method. To
gain computational efficiency, a block-Jacobian preconditioner is equipped. A more
detailed description of the solution strategy can be found in [16].

3.2 Calculation of the RS-IMEX Reference Solution

The reference solution forRS-IMEX-qCqI requires the solution of the incompressible
systemwith a polynomial ansatz of degree qI which can be different (smaller than) the
degree qC for the compressible solution. This introduces an algorithmic challenge in
that two distinct discretization operatorsmust exist in parallel during the computation
(on the same grid) which are coupled uni-directionally via the reference solution.
An elegant way of achieving this is running two instances of the framework, which
communicate by message passing interfaces (MPI). Note that in the following, we
limit the investigations to the coarsest case of qI = 1. The reference solution is
computed using the artificial compressibility-type incompressible solver described
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in [16]. It is equipped with a fully implicit time discretization using the implicit part
of the IMEX Runge-Kutta schemes. In the following we denote the RS-IMEX-qCqI
scheme with qC = qI as RS-IMEX-standard. All other splittings and both parts of
the RS-IMEX-qCqI splitting are parallelized by distributing the elements evenly on
the available processors.

3.3 Discretization of HJL and DeTa Splitting

It is worth noting that the splittings proposed by Haack et al. [5] and Degond and
Tang [4] were originally not intended to be used directly in a straightforward IMEX
setting. Instead, the authors derived elliptic equations on the semi-discrete level that
they then solved. In this work, however, we cast the splittings into our generalized
form and discretize them via IMEX Runge-Kutta DG.

4 Numerical Results

In this section, we evaluate the accuracy and efficiency of the different splitting
techniques discussed in Sect. 2. Therefore, we consider two testcases: For the first
example an exact solution is known and it can hence be used for the evaluation of
accuracy and efficiency. The second testcase is more complex and no exact solution
is known. Hence, it is employed only to indicate if a splitting is able to predict a
complex three-dimensional behavior and to evaluate its efficiency. Based on these
testcases, we aim to answer the following specific questions:

• Do the splitting schemes differ in terms of accuracy? Given the unified form of
the splitting techniques derived in this work and the common discretization by
an IMEX discontinuous Galerkin discretization, what can be deduced about their
computational efficiency?

• For the novel RS-IMEX splitting scheme, what is the influence of choosing the
reference solution as outlined in Sect. 2 on its properties?

4.1 Testcase 1: HOT-Vortex

The high order traveling vortex (HOT-vortex) has previously been used in [8, 16] to
investigate the transport properties of the schemes. The exact solution of this testcase
describes the convection of a smooth vortex.

4.1.1 Initialization and Discretization

The initial conditions of the vortex are periodic and given on domain � = [0, 1]2:
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ρ(x, t = 0) = 2 + (500ε)2
{

1
2e

2
�r �r − Ei

(

2
�r

)

r < 1
2

0 otherwise

u(x, t = 0) =
(

1/2
0

)

+ 500

( 1
2 − x2

x1 − 1
2

)

·
{

e
1

�r r < 1
2

0 otherwise
,

(4)

with r :=
√

(x1 − 1
2 )

2 + (x2 − 1
2 )

2, �r := r2 − 1
4 and Ei(x) := ∫ x

−∞
et

t dt. The

equation of state for pressure is defined by p(ρ) = 1
2ρ

2. We obtain the initialization
of the incompressible solver, required for the RS-IMEX-standard and the RS-IMEX-
qCqI , by setting ε = 0 in Eq. 4 and p(2) = κγρ

γ−1
(0) ρ(2).

We consider this testcase on a grid with 162 elements for the Mach numbers
ε ∈ {10−1, 10−2, 10−3, 10−4} and compare the errors for the different splittings at
t = 2. The abort criteria of the linear and non-linear solvers are given in theAppendix,
Table 2. Note that the time step prescribed by the convective velocity is kept fixed for
the different splittings. Here, we use a third and fourth order discretization in space
and time (qC = 2 with IMEX-ARS-443 [1], qC = 3 with IMEX-ARK-4A2 [13]).

4.1.2 Evaluation of Accuracy

Table 1 shows that there are only very slight differences between the different split-
tings concerning their errors. Note that for the DeTa splitting with ε = 10−4 no stable
solution could be found as machine accuracy issues become dominant for the matrix-
free implementation of the nonlinear scheme. Hence, we can determine the required
computational time with these parameters as done in the next paragraph.

Table 1 Total L2 error at t = 2 for 3rd (upper) and 4th (lower) order scheme for the different
splittings defined in Sect. 2

Total L2
error

RS-IMEX-
standard

RS-IMEX-
qCqI

RS-IMEX-
mean

RS-IMEX-
min

HJL DeTa

ε = 10−1 8.36E−3 8.48E−3 8.35E−3 8.32E−3 7.02E−3 8.36E−3

ε = 10−2 8.39E−3 8.47E−3 8.39E−3 8.26E−3 6.99E−3 8.40E−3

ε = 10−3 8.39E−3 8.47E−3 8.39E−3 8.26E−43 6.98E−3 8.39E−3

ε = 10−4 8.39E−3 8.47E−3 8.39E−3 8.25E−3 6.98E−3 –

ε = 10−1 5.65E−4 5.65E−4 5.69E−4 7.81E−4 6.95E−4 5.79E−4

ε = 10−2 5.26E−4 5.27E−4 5.25E−4 7.19E−4 6.70E−4 5.22E−4

ε = 10−3 5.22E−4 5.23E−4 5.22E−4 7.34E−4 6.76E−4 5.22E−4

ε = 10−4 5.21E−4 5.22E−4 5.21E−4 7.29E−4 6.75E−4 –
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4.1.3 Evaluation of Efficiency and RS-IMEX Reference Solution
Variant

Figure 1 shows a qualitatively similar behavior for qC = 2 and qC = 3: All schemes
have a qualitatively similar behavior, showing convergence to a limit in computational
time for a decreasingMach number. We see that the DeTa splitting, the HJL-splitting
and the RS-IMEX-mean/min require almost the same computational resources. In
case that thematrix-free implementation is able to find a solution to theDeTa splitting,
it is slightly more efficient than the other approaches.

Regarding the differences between the RS-IMEX variants, we note from Table 1
that no perceivable differences for the selected reference solution versions occur in
terms of accuracy. In terms of computational resources however (Fig. 1), the RS-
IMEX-mean and RS-IMEX-min are very similar but cheaper than the RS-IMEX-
qCqI variants. Note that deviations of RS-IMEX-31 from the expected shape can be
caused by the non optimized load balancing introduced by coupling the compressible
and incompressible solver.

4.2 Testcase 2: Taylor-Green-Vortex

The Taylor-Green vortex for the Euler equations has been adopted to the non-
dimensional isentropic Euler equations in [16]. For details on the initialization the
reader is referred to [16]. This inviscid testcase is used as an indicator if the split-
tings are able to predict a complex three-dimensional behavior. Secondly, we use it
to evaluate the computational costs.

Fig. 1 Comparison of computational time on 24 cores of different splittings for HOT-vortex at
different Mach numbers (left: 3rd order, right: 4th order). For ε = 10−4, the DeTa splitting is not
plotted due to machine accuracy issues
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4.2.1 Evaluation of Solution Quality

We use a Cartesian box with 163 elements, a polynomial degree of qC = 3 and the
IMEX-ARS-443 scheme from [1]. The convergence criteria of the linear and non-
linear solvers are given in the appendix.

We consider the change of the scaled compressible kinetic energy as a measure
for the dissipative properties of the schemes. For the chosen resolution it can be
expected that the kinetic energy remains constant and starts decreasing after some
time. Figure 2 illustrates that all considered splitting schemes have the same expected
behavior.Wehave omitted the graphs for ε ∈ {10−2, 10−3, 10−4} as they show similar
results as for ε = 10−1. The results of the RS-IMEX-min are not displayed as large
oscillations in the change rate of the kinetic energy are present. This instability can
be cured by a smaller time step, indicating that for this more complex testcase, the
choice of the reference solution could become more crucial than for the HOT-vortex.
This issue warrants future study.

4.2.2 Evaluation of Efficiency and RS-IMEX Reference Solution
Variant

Figure 2 shows that all linear schemes converge to a limit in computational time
for a decreasing Mach number. The DeTa-splitting shows an increase in computa-
tional time for ε = 10−4, possibly caused by machine accuracy issues. Here, the
HJL-splitting and the RS-IMEX-mean are the most efficient schemes for all Mach
numbers. It is obvious that modifying the standard RS-IMEX scheme results in large
savings in computational time.

Fig. 2 Left: Scaled change rate of compressible kinetic energy for TGV with different splitting
schemes (163 spatial elements, qC = 3, IMEX-ARS-443) at ε = 10−1. Symbols additionally visu-
alize superposing curves. Right: Comparison of computational time with 144 cores
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Comparing the RS-IMEX-standard with the RS-IMEX-31 scheme shows a nearly
constant saving in computational costs, i.e., we see the savings calculating the in-
compressible solution on a lower polynomial degree, but do not see a Mach number
dependent influence of a less accurate incompressible reference solution. The same
results hold for the RS-IMEX-mean variant, which is slightly more efficient than the
RS-IMEX-31 scheme.

5 Conclusion and Outlook

In the lowMach number limit, explicit time integration of the isentropic Euler equa-
tions becomes inefficient due to the prohibitively strict CFL condition. Established
methods of overcoming this limitation are based on flux splittings which aim at sep-
arating fast and slow waves. A number of different formulations exist in literature,
but the identification of the best approach is still elusive.

In this work, we have presented a contribution towards the goal of identifying and
evaluating suitable splittings. A generalized form of a number of splittings has been
introduced in [7]. Taking advantage of this form, we have established a numerical
framework based on an IMEX Runge-Kutta discontinuous Galerkin discretization
that allows a side-by-side comparison of the splitting methods. The considered test-
cases show that the particular choice of the splitting has hardly any influence on
accuracy, but it can affect stability and efficiency. With the considered testcases, it is
not possible to identify the most efficient scheme as it differs for the two testcases.
It occurred that the splitting based on Degond and Tang (DeTa) [4] and the splitting
based on Haack, Jin and Liu (HJL) [5] are most efficient but the RS-IMEX-mean
scheme can compete in all cases. Nevertheless, the RS-IMEX-standard splitting
scheme can be improved either using RS-IMEX-mean or RS-IMEX-qCqI . Espe-
cially if the calculation of the incompressible solution is computationally costly as
for the Taylor-Green-Vortex, RS-IMEX-qCqI can improve the standard RS-IMEX
scheme significantly. Choosing the minimum as a reference solution (RS-IMEX-
min) for this testcase results in a less stable scheme, while the - comparably simple
- RS-IMEX-mean variant was successful.

Future research will include a more detailed view on the stability of the splittings.
Moreover, testcases where both fast and slow characteristics have a significant influ-
ence on the solution and testcases related to droplet dynamics will be considered for
the comparison. Furthermore the splittings will be compared against a fully explicit
or implicit scheme.
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Appendix

The relative convergence tolerances for the implicit method used in Sect. 4 are sum-
marized in Table 2.

Table 2 Relative abort tolerances used by the implicit solver for HOT-vortex (left) and TGV (right).
Note that ic denotes the tolerances for the incompressible solver
Tolerance εGMRES εNewton εGMRES,ic εNewton,ic εGMRES εNewton εGMRES,ic εNewton,ic

RS-
IMEX-
standard

10−6 – 10−4 10−3 10−3 – 10−3 10−3

RS-
IMEX-
qCqI

10−6 – 10−4 10−3 10−3 – 10−3 10−3

RS-
IMEX-
mean

10−6 – – – 10−3 – – –

RS-
IMEX-
min

10−6 – – – – – – –

HJL 10−6 – – – 10−3 – – –

DeTa 10−2 10−6 – – 10−1 10−3 – –
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Enabling Simulations of Droplets
with the Direct Simulation Monte
Carlo Method

Wladimir Reschke, Marcel Pfeiffer and Stefanos Fasoulas

Abstract The evaporation behaviour of droplets changes with their size.
Most numerical tools to simulate evaporation phenomena of droplets solve macro-
scopic models such as the Navier-Stokes equations. These numerical tools have an
advantage in computational effort compared to tools solving microscopic models
such as the Boltzmann equation. However, macroscopic models lose physical valid-
ity for microscopic scales. One goal is therefore to estimate the necessary level of
microscopic modelling for droplet evaporation. This requires a tool capable of solv-
ing a microscopic model, simulating evaporation of droplets, and which can be used
on large computational domains. For this, the Direct SimulationMonte Carlomethod
is applied, which is capable of capturingmicroscopic effects on a larger domain. Two
functionalities have been added to simulate droplets: a literature-based microscopic
evaporation model and spherical moving bodies, which are independent of a body
fitted mesh. With these functionalities, droplet size change resulting from evapora-
tion and Brownian motion is simulated. This marks the first steps in order to compare
results with macroscopic based simulation tools and estimate the necessary level of
microscopic modelling.

1 Introduction

Droplet evaporation is an essential part in many technical applications such as
combustion or spray injections. These applications often involve droplets of micro-
scopic scale and the evaporation behaviour drastically changes with droplet size
because of microscopic phenomena. Most numerical approaches for handling of
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droplet evaporation are solving macroscopic models such as the Navier-Stokes equa-
tion. These models often assume local thermodynamic equilibrium which is not
valid for microscopic scales. Microscopic based simulations that solve the Boltz-
mann equation have the advantage to capture the occurring physical processes but
are limited to small scales because of the high computational effort.

Simulations of gas-liquid interactions solvingmicroscopicmodels in literature are
often limited to small scales and are conducted in order to understand and characterize
evaporation processes [15, 17, 18]. Only a few researchers conducted microscopic-
based simulations of droplet evaporation [9] and condensation growth [4] for larger
scale problems. Up to date, the impact of microscopic models on macroscopic scales
is of major interest, especially, when estimating the necessary level of detail that is
required for the simulation of droplet-gas interactions.

Our goal is to investigate the necessity ofmicroscopicmodelling and its influences
on macroscopic properties. Here, we show the first steps that enable micro-droplet
simulations on amacroscopic scale usingmicroscopic modelling.We use the particle
simulation tool PICLas1 [5] and extend the therein incorporated Direct Simulation
Monte Carlo (DSMC) method [2]. The DSMC method approximately solves the
Boltzmann equation

∂ f

∂t
+ v · ∇x f = ∂ f

∂t

∣
∣
∣
∣
Coll

, (1)

which describes the microscopic gas state and its changes, using the particle distri-
bution function f (x, v, t) that depends on the particles’ position x, velocity v, time
t , and ∂ f

∂t |Coll , which represents the Boltzmann collision integral. The solution of
the gas state is found by directly simulating particles and their interaction with one
another. Herein, the particle distribution function f (x, v, t) of the gas system is sta-
tistically approximated with Np representative discrete particles distributed in space.
Additionally, not all real molecules Nreal are simulated but the simulation particles
Nsim are weighted with Wp = Nreal/Nsim. Particle collisions are treated statistically
and the appropriate probabilities are calculated with phenomenological models [3].

This paper summarises the new developments towards simulation of droplets with
the DSMC method. The extensions include a model to treat liquid surfaces and an
approach to simulate moving spherical droplets within a DSMC domain inside a
body-fitted mesh. First, the implemented models for the treatment of liquid surface
boundaries are introduced. Next, the implementation of macroscopic spheres that
are required for the treatment of droplets and the necessary extensions of particle-
tracking algorithms are explained. In the last section, results obtained from two
simulations for testing the implementations are shown.

1https://github.com/piclas-framework/piclas.

https://github.com/piclas-framework/piclas
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2 Liquid Surface

The interaction of simulation particles with surfaces is described by scattering ker-
nels [12, 19]. Here, particles are diffusively scattered on the surface by sampling the
new velocities from probability distribution functions [20]. In tangential direction the
velocities are sampled from a normal distribution FN and the perpendicular velocity
from a Rayleigh distribution FR.

DSMC particles that collide with liquid surfaces are treated with a model intro-
duced by Tsuruta [17] where the probability for a particle to condense and being
removed from the gas domain is defined by the condensation coefficient

σc = α

[

1 − β exp

(

− mp v2⊥
2 kB Tliq

)]

, (2)

with the species specific condensation parametersα andβ, the velocity perpendicular
to the surface v⊥, the Boltzmann constant kB, the mass of the incident particle mp,
and the liquid temperature Tliq. Velocities perpendicular to the surface of reflected
particles are sampled from a scaled Rayleigh distribution [18] given by:

Fr,⊥ =
(

1 − α + αβ exp

(−mp v2⊥
2 kB Tliq

)) (

1 − α
1 − β

2

)−1

FR. (3)

For the emission from liquid type surfaces, an appropriate number (Nin) of parti-
cles are created on the surface. The particle surface flux ṅ that represents the evap-
oration flux is calculated using the Hertz Knudsen equation [7]. For a liquid surface
area Aliq it is derived from the equilibrium distribution at a given temperature Tliq
and effective saturation pressure p�

s , yielding

ṅ = σc Aliq
p�
s

√

2π mp kB Tliq
. (4)

The saturation pressure ps for flat surfaces is calculated with the Antoine equation [1]

log10(ps) = A − B

C + Tliq
, (5)

with the species specific parameters A, B, and C that are taken from the NIST
database [11]. The effective saturation pressure is influenced by the surface curvature
of the liquid interface, which can change drastically at microscopic droplet sizes.
Consequently, it is calculated according to the Kelvin law [10]:

p�
s = ps

[

exp

(
τsM

ρNAkBTliq

2

r

)]

, (6)



60 W. Reschke et al.

with surface tension τs, molar mass M , Avogadro number NA, the liquid density ρ,
and the droplet radius r . Velocities of emitted particles in perpendicular direction to
the surface are again sampled from a scaled Rayleigh distribution [18] given by:

Fe,⊥ =
(

1 − β exp

(−mp v2⊥
2 kB Tliq

)) (

1 − β

2

)−1

FR. (7)

3 Spheres Inside the DSMC Domain

PICLas uses body-fitted, hexahedral and unstructured computational meshes [8].
Consequently, it is necessary to track each particle in order to consider boundary
interactions as well as to find the respective computational cell where it is located in
or moves to. In PICLas, different tracking algorithms are implemented that differ by
the representation of grid faces and the corresponding particle localization concept.
The grid faces are either approximatedwith triangles and particles are traced in regard
to these triangles [16], or the grid faces are described with (bi-)linear and curvilinear
faces [13]. Depending on the chosen face representation, the respective algorithms
are used.

Here, each particle is traced starting from the initial particle position c until its
end position is reached and the appropriate element is found. Therefore, all faces
of the respective elements it travels through, are checked for intersections. For this
purpose, the particle position is described by its path

x = c + α1t1 | α1 ∈ [0, 1], (8)

where x is the end position of the considered particle, c is the initial position, α1 is
the relative length of particle trajectory within a simulation time step, and t1 is the
particle trajectory. In the case a considered particle intersects a face (0 ≤ α1 ≤ 1),
the next adjacent element is checked or the corresponding boundary condition of this
face is applied.

3.1 Extension of the Tracking Routines

The described tracking routines were extended to treat computational cells, which
contain macroscopic spheres. These spheres are independent from the computational
mesh,move freely inside the domain and interactwithDSMCparticles.Here, the con-
sidered macroscopic sized spheres with r = (rx , ry, rz) : rx = ry = rz are described
by

|χ − (ζ + α2t2)|2 = |r|2 | α2 ∈ [0, 1], (9)
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with the position of the sphere surface χ , the center position ζ , the radius r, the
relative length of the center trajectory α2, and the center trajectory t2.

The first step to consider macroscopic spheres in a computational cell is the trans-
formation of the DSMC particles’ position to a relative position of the sphere center.
Additionally, the particle trajectory is transformed relative to the sphere trajectory.
This procedure is schematically shown in Fig. 1 and calculated according to

c� = c − ζ , (10)

t� = t1 − t2. (11)

This transformation reduces the problem to an intersection of a vector and a non-
moving sphere. Subsequently, the solution of the quadratic equation

Aα2
1 + Bα1 + C = 0, (12)

with the parameters

A = |t�|2,
B = c� · t�,
C = |c�|2 − |r|2 ,

provides the solution for α1 and the intersection position is calculated with Eq. (8).
The position of the macroscopic sphere center ζ is updated according to Eq. (9) after
all DSMC particles were tracked.

Fig. 1 Sketch showing the transformation of position and trajectory. The left sketch shows the
position and trajectory in mesh reference coordinates. The left sketch visualizes the transformed
position and trajectory in reference to the sphere center
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3.2 Intersection with Spheres After Boundary Interactions

If a particle collides with a surface boundary during one time step before an intersec-
tion with a macroscopic sphere is calculated, additional conditions have to be con-
sidered. The particle trajectory changes (t1,0 → t1,1) and consequently the spheres’
center position and trajectory length have to be adapted for the next intersection
treatment.

Figure2 shows a sketch of such a tracking trajectory alteration and the necessary
adaptions during one time step. In this case, Eqs. (10) and (11) are extended to

c� = c − (ζ + α̂t2), (13)

t� = t1,i − (1 − α̂)t2. (14)

where α̂ represents the relative particle trajectory that the DSMC particle has already
moved in the current time step. For each tracked particle, the relative trajectory is
adapted after each boundary or sphere intersection according to

α̂n = α̂n−1 + (1 − α̂n−1)α1. (15)

3.3 Influence of Collisions on Macroscopic Spheres

Each macroscopic sphere is described by a spin, momentum and internal energy that
change due to collisions with DSMC particles. The transmitted momentum and spin
rate are calculated according to

Fig. 2 Sketch showing the
geometry, paths and
transformation of a tracked
DSMC particle after a
boundary interaction for the
purpose of calculating
intersections with a sphere
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Fi = mi
vi

t

, Mi = ri × Fi , (16)

whereFi is the transmitted force,Mi the corresponding angular momentum in regard
to the intersection point (ζ + ri ),mi a DSMC particles’ mass and
t the correspond-
ing time step. The total force F and spin momentum M are calculated by summing
over the number of collisions Ncoll

F =
Ncoll∑

i

Fi , M =
Ncoll∑

i

Mi , (17)

and are used to adjust the velocity v and spin ω using the macroscopic sphere mass
mMS and moment of inertia �MS


v = m−1
MS · F
t, 
ω = �−1

MS · M
t. (18)

4 Simulations

The new DSMC-extensions of PICLas were tested using two simulation setups,
which are presented here. In both setups, a resting sphere with a radius of r =
2 × 10−6 m, having a density of ρH2O = 997 kgm−3 and temperature Tliq = 300K,
is positioned at the center of the simulation domain. The domain consists of a cube
of 10 × 10 × 10 computational cells and a cube edge length of x = 1 × 10−5 m. The
gas inside the simulation domain is initialized with two species (H2O, O2) using the
parameters from Table1. At the domain boundaries, a surface flux [6] is applied,
which is comparable to a pressure condition leading to a constant temperature and
density inside the domain. That means, particles that leave the domain are removed
and additional particles are emitted into the domain using the parameters in Table1.

Table 1 Selected simulation parameters (time step, end time, gas temperature, particle weighting
factor, and molecule number density for H2O and O2). The same parameters are applied at the
surface flux boundaries

Setup 
t (s) tend (s) T (K) Wp (−) nH2O,vap

(m−3)
nO2 (m

−3)

1 1 × 10−9 1.0 × 10−5 300–320 1 × 104 0, 5 × 1023 5, 8,
12 × 1023

2 1 × 10−10 1.5 × 10−5 300 1 × 103 0 1 × 1025
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4.1 Droplet Evaporation

In the first setup, particles evaporate from a single spherical droplet and therefore,
the sphere changes its size. Meanwhile, the sphere center remains stationary and the
droplet temperature remains constant in each simulation. The simulation is repeated
for different temperatures in the chosen temperature range. Additionally, different
density cases are considered: first, two pure-vapour density cases without oxygen
density (nO2 = 0) and then three oxygen density cases without initial vapour density.

In every simulation the droplet radius decreases constantly (
r

t = const.), because

the sphere temperature remains constant, which is in a good agreement with the
results published in Ref. [9]. Consequently, the decrease is described with the initial
and the end state at t = 10µs as depicted in Fig. 3.

Figure4 shows the change of the radius at different temperatures and the corre-
sponding densities. The solid black lines represent the radius decrease for nH2O,vap =
0 and 5 × 1023m−3 without oxygen background gas. The radius of the droplet
decreases slower for higher vapour densities because of an increasing condensa-
tion rate. At the saturation density nH2O,vap = nH2O,sat the droplet radius starts to
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Fig. 3 Results for macroscopic sphere evaporation with nH2O,vap = 0, nO2 = 5 × 1023m−3 and
T = 300K at start (left) and end (right) of the simulation
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Fig. 4 Sphere radius decrease at different temperatures for various pure vapour (solid) and pure
oxygen gas (dashed) densities
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increase. For the temperatures 300, 310, and 320K, the corresponding saturation
number densities are 8.53 × 1023, 1.46 × 1024, and 2.39 × 1024 m−3.

Increasing the oxygen density without initial vapour density decelerates the evap-
oration because a vapour layer is formed around the droplet and the evaporation
becomes diffusion driven. The density of the formed vapour layer can be estimated
from Fig. 4 by comparing the dashed lines (oxygen background gas) with the solid
lines (pure vapour simulations).

4.2 Brownian Motion

The momentum exchange is tested with the second simulation while evaporation
processes at the sphere are disabled. The simulation is repeated three times with
different random-number seeds. For each case, this leads to different initial velocities
and spatial distribution of the DSMC particles.

The spheres display a randommotion in the simulations and the path of the sphere
centers is shown in Fig. 5. Each sphere starts to move because of the non-uniform
pressure on the sphere surface resulting from the momentum exchange with DSMC
particle collisions. This behaviour is similar to Brownian motion [14], which is
observed in experiments.

5 Conclusion and Outlook

Understanding micro-droplet gas interactions is necessary for many industrial appli-
cations. Most common approaches neglect thermodynamic non-equilibrium effects
for the simulation of droplets or are limited to quasi-steady conditions. In order to
simulate micro-droplet gas interactions from amicroscopic point of view, the DSMC
module of the particle simulation tool PICLas has been extended.

The boundary modelling was extended by a literature-based model for the treat-
ment of liquid interfaces. Here, condensation is treated by a description of a con-
densation coefficient and an appropriate particle flux is calculated for emission.
Additionally, perpendicular velocities of reflected and emitted DSMC particles are
sampled from a scaled Rayleigh distribution.

Simulations show a constant evaporation rate during each chosen case. The mag-
nitude of the evaporation rate is dependent on temperature and vapour density. An
increase in vapour density results in a decrease of evaporation rate. Similarly, an
increase in non-vapour density results in the formation of a vapour layer around the
droplet that leads to a decrease of evaporation rate.

The particle tracking algorithms in PICLas were extendedwithmacroscopic sized
spheres to account for droplets inside the gas domain that interact with DSMC parti-
cles. These interactions lead tomomentum and energy exchange between the spheres
and DSMC particles.
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Fig. 5 Spatial evolution of macroscopic sphere center due to non-uniformly distributed collisions
of DSMC particles on the sphere surface and momentum exchange

The tracking extensions allow for momentum and energy transfer on the macro-
scopic sphere, which lead to a randommotion of the sphere. Enabling evaporation in
addition to motion of the sphere might additionally influence this motion, and vice
versa. In the evaporation simulations, the background density of a non-vapour gas
reduced the evaporation rate because a vapour layer formed around the droplet. With
Brownian motion, this vapour layer might be changed, which leads to an increase of
the evaporation rate. However, further simulations and comparison with experiments
are necessary.

The shown implementations and tests are a first step towards enabling simu-
lations to evaluate the necessity of non-equilibrium assumptions on micro-droplet
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gas interaction. Therefore, further simulations must be performed and compared to
experiments as well as to simulations using equilibrium solvers.
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Impact Experiments
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Abstract The continuously increasing importance of micro-structured surfaces in
technical applications and research require further development and use of reliable
manufacturing processes as well as investigation methods for quality assurance. An
overview of possible reproduction processes will be given and a new fabrication
route in combination of laser lithography and nickel electroplating to provide stable
mold inserts is introduced. Three methods for inspecting the reproduction quality
of the polymeric micro-structured surfaces are presented discussing the respective
advantages and disadvantages aswell as the limiting factors diminishing the resolving
power. The replication quality of four micro-structured surfaces produced with the
hot embossing method is investigated, and the results are compared using these
three techniques. Additionally, the principle investigation strategy of a test rig for
droplet impact experiments on micro-structured surfaces is going to be outlined.
Finally, preliminary results of droplet impacts on a structured surface are shown and
discussed.
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1 Introduction

The research on micro-structured surfaces over the last 25years has tremendously
increased, as the number of annual publications is indicating. The statistics show
the number of publications per year searching for “micro-structured surfaces” and
“microstructured surfaces” in Google Scholar. While there were only 1320 items
published in the year 2000, the number of publications in 2010 quintupled to 6950.
In 2018, this number almost doubled again with 12670 publications. This strong in-
crease shows significantly the growing importance of research with micro-structured
surfaces. This can be explained by the scientific progress but also by the further
increasing capabilities of manufacturing and investigation techniques as well as a
technical need of such surfaces.

Based on the classical works of Wenzel in 1936 [28] as well as Cassie and Bax-
ter in 1944 [2], many researchers have investigated the interaction of droplets with
smooth and structured surfaces. Droplet impacts have been systematically investi-
gated by Rioboo et al. [20] and Marengo et al. [13] using different surfaces with
varying structure and wettability. Courbin et al. [3] have focused on the dynamics of
the spreading and imbibition process on surfaces with well-defined micro-patterns.
Especially complex surface structures are used tomodify the surface wettability used
for technical applications like self-cleaning surfaces or improved coating quality. An
increase in surface roughness will lead to an increase of the intrinsic wettability in
case of hydrophilic surfaces and to a decrease of the intrinsic wettability in case of
hydrophobic surfaces [14]. For structured surfaces with a well-defined pattern, de-
posited droplets on these surfaceswill deviate from spherical caps. As a consequence,
a variation of the contact angle and the projected distance of the opposite triple points
can be observed, as reported in [1, 3, 5, 12, 14]. A deviation of the outcomes com-
pared to perfectly smooth surfaces can not be seen only for static droplet-structure
interactions but also for dynamic droplet impacts on structured walls. One type of
deviation is e.g. the determination of preferential wetting directions, [11, 22, 25].
In conclusion, the shape and the size of the structure pattern are main parameter on
which the wetting morphology depends on significantly.

Consequently, a proper manufacturing and evaluation of these surfaces are very
crucial for any research in this topic as well as for the technical applications. What
follows, is an overview of possible manufacturing processes of which the mold insert
fabrication for the hot embossing process is further outlined. Possible evaluation
methods with the respective advantages and disadvantages and first experimental
results for droplet impacts on structured surfaces are also discussed.
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2 Surface Reproduction and Experimental Methods

2.1 Reproduction of Micro-structured Surface Samples

A vast number of different micro-fabrication techniques are available, which can be
chosen in considering the used material, the dimensions of the structure, the number
of reproductions and the application of the produced micro-structures. Among them
are lithographic processes, etching processes, sputtering, additivemicro-fabrications,
micro-milling, or molding processes which can be used for the micro-fabrication
[21]. For the evaluation of droplet impacts on micro-structured surfaces, it is advan-
tageous to vary the structure patterns and thematerials for differentwetting behaviors.
In the framework of the International Research Training Group “Droplet Interaction
Technologies” (GRK 2160/1: DROPIT), an investigation of droplet impacts onto
structured walls from the top and lateral perspective but also from the bottom view is
envisaged. This requires not only a proper micro-structure but also a transparent ma-
terial whenever possible. Therefore, the surface materials Lexan® (PC), Plexiglas®

(PMMA) and Teflon® (PTFE) have been selected.
The produced patterns are steep grooves and arrays of steep squared pillars at

micrometric dimensions, as they are depicted in Fig. 1 and given in Table1. The
grooves with a height of 20 µm are due to manufacturing requirements specifically
very long pillars with a width of 60µm and a length of 500µm. In the direction of the
grooves, a gap between each pillar of 15µm can be found. The spacing perpendicular
to the grooves is also 60 µm, see Fig. 1a. The squared pillars with an edge length of
60 µm, 30 µm or 15 µm have also a height of 20 µm, see Fig. 1b and Table1. The
spacing between each pillar is the same size as the width of the respective pillar. In
conclusion, the solid fraction remains the same for all structures while the Wenzel
roughness factor is increasing with decreasing edge length, see [2, 28]. Acquired
images of the surfaces using three different techniques can be found in Figs. 3, 4 and 5.

The polymeric surface samples were manufactured by the Karlsruhe Nano Micro
Facility (KNMF) at the Karlsruhe Institute of Technology (KIT), Germany, using

(a) (b)

Fig. 1 Available structure patterns of a grooves and b pillars produced by the KNMF in Karlsruhe,
Germany, with the given parameters in Table1
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Table 1 Dimensions of micro-structured surfaces. No. S1 corresponds to grooves, see Fig. 1a and
no. S2-S4 are corresponding to pillars, see Fig. 1b

No. Edge length Distance Height

S1 w1 = 60µm,
w2 = 500µm

d1 = 60µm,
d2 = 15µm

h = 20µm

S2 w = 60µm d = 60µm h = 20µm

S3 w = 30µm d = 30µm h = 20µm

S4 w = 15µm d = 15µm h = 20µm

Table 2 Process parameters for the hot embossing reproduction of polymeric micro-structured
surfaces

Material Temperature Force (kN)

Embossing (◦C) Demolding (◦C)

Lexan® (PC) 165 105 200

Plexiglas® (PMMA) 140 40 200

Teflon® (PTFE) 200 100 175

the hot embossing technique. This technique allows a high replication rate of micro-
structured surfaces in pressing a mold with high pressure and temperature into the
respective polymeric blank, see Table2. A broad description of the hot embossing
technique can be found e.g. in the book of Worgull [29]. Due to the high efforts
of the mold insert production, all four structured patterns were placed next to each
other with a blank area in between, see Fig. 2. After the production, the differently
structured surfaces are cut into single pieces for the individual experiments.

2.2 Mold Insert Fabrication

The combination of laser lithography and electroplating was used to create a highly
pressure and temperature stable thick nickel mold insert for hot embossing experi-
ments. For the master fabrication, first, a 200 nm thick layer of antireflective coating
AZ BAR-Li (Microchemicals GmbH, Ulm Germany), which is also an adhesion pro-
motor, was spin-coated onto a 2 mm thick 4” silicon wafer and then baked at 200 ◦C
for 60 s. Second, a 20 µm thick resist layerMR10 (micro resist technologies GmbH,
Berlin, Germany) was spin-coated, followed by a baking step at 95 ◦C for 30 min.

The latterly four described structure patternswerewritten into the photoresist with
the laser writerDWL66fs (Heidelberg Instruments GmbH, Heidelberg, Germany) us-
ing a 10 mm write head at a laser power of 125 mW. The laser writing allows the
fabrication of steep resist structures at micrometric dimensions, as they are depicted
in Fig. 1 and given in Table1. The written structures were then subjected to a Post
Exposure Bake (PEB) at 75 ◦C and subsequently developed in PGMEA for 90 min.
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Fig. 2 a Silicon wafer with structured resist after laser lithography and bNickel mold insert before
removal of Cr/Au layer

A rinsing step in isopropanol and drying with air circulation at 30 ◦C terminates the
fabrication of the structured master, see Fig. 2a. In order to transfer these polymeric
structures into a stable metallic mold for the hot embossing process, thermal evap-
oration was used to prepare the resist structures for electroplating. 7 nm chromium
acts as adhesive layer for a 50 nm gold layer as conducting plating base. Afterwards,
a microscopic inspection of the resist structures was performed by means of SEM.

Nickel electroplating was carried out within a homemade boric acid containing
nickel sulfamate electrolyte at a temperature of 52 ◦C (plating equipment with an
electrolyte volume of 45 L from Carl Dittmann GmbH & Co. KG, Karlsruhe, Ger-
many), a pH of 3.5 and a current density started at 0.1 A/dm2 and increased up to
1.25 A/dm2. To guarantee a good stability of the mold insert for the hot embossing
experiments, the final thickness of the mold was chosen to 2.0 mm. To achieve this,
galvanic deposition was carried out up to a height of approximately 2.8 mm (plating
time≈10d). The desired height was realized using wire-EDM. To continue the mold
fabrication, the thick silicon substrate was removed by wet-chemical etching with
30 w.−% KOH solution at 80 ◦C. The BAR-Li layer was removed by 15 min Reac-
tive Ion Etching with O2 using Etchlab 200–380 (Sentech GmbH, Berlin, Germany)
and the resist was stripped using O2/CF4 Plasma Etching (STP2020; R3T GmbH,
Taufkirchen, Germany) for 30 min at 1200 W and 22 ◦C. To generate the final outer
dimensions of the mold with a diameter of 81 mm, see Fig. 2b, the structures were
protected by AZ resist and a second wire-EDM step was performed. After chemical
treatment with AZ400K (Microchemicals GmbH) and isopropanol, followed by the
wet-chemical etching of the Cr/Au metallization layers, the SEM characterization of
the microstructures concludes the mold insert fabrication. The SEM showed, that all
structural elements have been transferred in detail and with sharp edges, what can
be also seen by the finally reproduced structure patterns in Figs. 3, 4 and 5.
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2.3 Evaluation Methods for Investigating Micro-structured
Surfaces

For evaluating micro-structured polymeric surfaces, a compromise between accu-
racy, effort and gathered information has to be found. In the following, three differ-
ent methods for surface evaluation are presented: the classical optical microscopy,
the Scanning Electron Microscopy (SEM) and the micro Computed Tomography
(microCT). The mentioned methods were exemplarily carried out on the Lexan®

surfaces.
The non-intrusive inspections of surface patterns for major damages using a clas-

sical optical microscope working with transmitted light is very fast, economical and
easy. However, the two-dimensional perspective allows only the inspection in the di-
rection of transmittance. This is the reason why local damages might not be detected
properly because tilted sides or partial ruptures of the pillar bases might be hidden.
Also the interpretation of the projected defects can be very difficult. However, glob-
ally extended or severe damages, like rip-off, missing pillars or not fully embossed
structures can be detected.

The resolving power of light microscopes is limited to approximately 0.3µm due
to light diffraction and interference and can be calculated by the Abbe criterion:

d0 = 0.61λ/(n sin α) (1)

where d0 represents the minimum resolvable separation, λ the wavelength of the
light, n the refractive index and α the half-angle of the aperture of the microscope
objective. The numerical aperture, defined as n sin α is usually indicated on the
respective microscope objectives. The calculated distance d0 is the half diameter of
the “Airy disk” which is the distance between the first-order peak and first-order
trough of the focused light dot [27, 30].

AScanningElectronMicroscope (SEM) can be used if a highermagnification than
approximately 1000× of a classical optical microscope is needed. A well working
electron optical system can create a beam diameter of 1 nm or finer, which will lead
to a very high magnification. However, delocalization of imaging signals, constraints
on beam size due to contrast and visibility considerations, mechanical stability of the
setup and the vacuum, degradation of the sample and other influences can limit the
resolving power. Nevertheless, for good experimental conditions a magnification of
100,000× or more can be reached [8, 30]. SEM is also a non-intrusive method, if no
sputtering of the samples is needed. Twoadvantages of SEM,which are helpful for the
interpretation of structures, are a tiltable specimen stage, allowing also inspections
of the structure from a non-perpendicular position, as well as a spatial view.

Both methods, the classical optical microscope and the SEM, are only two-
dimensional imaging techniques. MicroCT, instead, is reconstructing a three-
dimensional shape from single X-Ray projections, which have been acquired at sev-
eral angle steps with help of reconstruction algorithms [18, 26]. The reconstructed
geometries can be exported and used for further analysis e.g. in CAD-systems or for
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numerical simulations. The resolving power of the microCT is dependent amongst
other influences on the focal spot size of theX-Ray source, the number of projections,
the pixel resolution of the X-Ray detector and the detector aperture [9]. Advanced
microCT systems can achieve a resolving power of about 1µm/voxel. For high
resolving power, the sample needs to be small enough to allow optimal projection
onto the detector, and must also be mounted very close to the X-Ray source. At a
resolution of about 3–4 µm, the micro-structured surface samples had to be cut into
4 × 4mm2 sized pieces. Although the measurement principle itself is non-intrusive,
this technique is intrusive for this application because of the need to cut samples
down in size. Artifacts, e.g. due to non-optimal scan parameters (exposure time, en-
ergy levels, contrast challenges), a sample movement, degradation of the material by
X-Rays and, if significant, X-Ray scattering can lead to lower reconstruction quality.
Additionally, the low attenuation of thin polymeric structures can be a challenge for
reconstruction.

2.4 Experimental Test Facility for Investigating Dynamic
Droplet Impacts

The droplet impacts on micro-structured surfaces shall be investigated using three
different perspectives. Two shadowgraphs, one from the top and one from the lateral
perspective are captured simultaneously with one high-speed camera. This will help
to determine the morphology of the droplet impact. The bottom view, captured by a
second high-speed camera, is in a total-internal reflection configuration and allows
to track the liquid spreading inside the structure and the imbibition into the structure.
All three perspectives are acquired synchronously at 10 kHz and a resolution of 1
MPx. However, the results discussed in the following will be limited only to the
lateral and the top view.

In future, the test rig shall be used to explore the occurring droplet impact phe-
nomena on flat and structured surfaces for full-wetting cases but also for the complete
range from wetting to non-wetting behavior.

3 Results and Discussion

3.1 Surface Evaluation

The acquired images with the optical largefield microscope LEITZ Metalloplan are
shown in Fig. 3. The resolution of the images is 0.93 µm/Px and 0.24 µm/Px,
respectively. The increasing magnification was necessary due to an easier investi-
gation of the finer structure items. One drawback of the optical microscope is the
bad recognition of the topology of three-dimensional structures. Only by knowing
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the structure beforehand, it can be determined which areas are elevated and which
areas are the channels of the structure. For simple structures, like presented, this
is “straight forward”. For more complex structures, it can be helpful to adjust the
focal plane incrementally in order to recognize the topology. This multifocal plane
approach is also used by modern light microscopes rastering the focal planes and
combining the images to one imagewith fully focal depth over the height of rastering.
This avoids then blurriness for out of focus areas. Further, it is important to notice,
that the images in Fig. 3, taken by an IDS UI-3080CP-M-GL Rev.2 with 5.04 MPx
and a resolution of 0.24 µm/Px is at the limit of the resolving power of the optical
microscope. A further increase of pixels of the camera will not lead to a significant
improvement of image quality due to the optical limitations as described in Sect. 2.3
and the Abbe criterion in Eq. (1). For a higher camera resolution, the not perfectly
distinct structures will be only smeared over more pixels compared to cameras with
a lower resolution.

The SEM images are displayed in Fig. 4. With the help of the significantly higher
magnification, a spatial view and the tiltable specimen stage, some ridges on the
top of the structure can be detected and measured. In the optical microscope, the
corresponding areas of these ridges can be only detected by some darker areas on the
structures, e.g. the top and right sides of each pillar in Fig. 3c. Though, the proper
interpretation of these areas would have been almost impossible without the SEM
investigations. The output of the SEM are only two-dimensional pictures, as shown
in Fig. 4. For measuring the dimension of the ridges or also the whole pillars, it is
only possible to obtain the dimensions such as the height or the depth in considering
the projection of the tilted structure onto the image plane. The tilt of the specimen
stage for the shown images is set to 30◦.

In contrast to this, the reconstructed microCT-scans, with a resolution of
3.3 µm/voxel in Fig. 5, can give much more information about the pillar shape.
With the help of a specially developed routine for evaluating the ridge height, the
shape of the pillars and height of the ridges can be determined, see also Fig. 6. How-
ever, in comparison to the SEM and the optical microscope, the resolving power of
the microCT is usually significantly lower in part because of the very low X-Ray at-
tenuation of thematerial. This means that features, which are in the size of two voxels
and smaller, might not be resolved properly. But also for larger features, the resolv-
ing power might not be sufficiently high. The smallest pillars with an edge length of
15 µm (surface S4) are only represented by approximately 5 voxel for each spatial
direction. This leads to a blurry and not well defined shape, so that often no orthog-
onal edges can be determined, see Fig. 5d. The challenge in the post-processing of
reconstructed microCT-data is to transform the voxelized representation of surfaces
into a smooth triangulated surface. This will make the surfaces usable for further in-
vestigations such as numerical simulations. There are several smoothing routines in
commercial software packages like Avizo [24], but also in open-source software. For
this post-processing step, a compromise between smoothing and shape conservation
has to be found. In conclusion, a change of shape due to smoothing is acceptable if
its magnitude is far lower than the resolution of the microCT scans. Under consid-
eration of the limits in resolving power and the need of smoothing, the possibility
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Fig. 3 Micro-structured Lexan®-surfaces of different dimensions acquiredwith opticalmicroscope
using a combination of transmitted and reflected light. The magnification of each image is given at
the respective image

of the surface export is, nevertheless, very powerful, since simulations can use the
same surface patterns for droplet impacts as the experiment itself. The magnitude of
deviations between real, exported surfaces and perfect, generic surfaces on the out-
come of numerical simulations of droplet impacts will be investigated in the future.
Here, also the influence of resolving power of the microCT on the numerical results
need to be studied.

In the following, the dimension of one single but “defect” 60 µm pillar of the
reconstructed microCT S2 surfaces is analyzed. For the detailed analysis, a separate
microCT-scan was performed with a resolution of 2.7 µm/voxel and compared to
SEM images. Due to sample preparation and availability of themeasurement devices,
the scanned surface samples were not identical so that not exactly the same pillar
was measured with the SEM and microCT. The surface was reconstructed, exported
and the profile along several slices of the pillar analyzed, as depicted in Fig. 6. The
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Fig. 4 Micro-structured Lexan®-surfaces of different dimensions acquired with Scanning Electron
Microscopy (SEM). Themagnification of each image is given at the respective image. The specimen
stage was tilted by 30◦

elevation of the ridge measured by microCT was about 3 voxel or approximately 8
µm andmatches very well to the SEMmeasurements. These findings were expected,
since the production procedure can be considered as very reliable during the hot
embossing process. The reason for the partially elevated rim might be a sticking
nickel mold on the pillars side during the demolding phase of the hot embossing
process. The resulting high local forces lead to the observed local deformations in
case of large pillars or might elongate the whole pillar in case of smaller edge lengths.
In general, the influence of non-perfectly shaped pillars are assumed to be neglectable
since themagnitude aswell as the number of defect pillars are not very high.However,
a numerical simulation of droplets impacting on these exported surfaces might give
further information in the future.
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Fig. 5 Micro-structured Lexan®-surfaces of different dimensions acquired with micro Computed
Tomography (microCT), reconstructed and exported as stl.-surface. Resolution: 3.3 µm/voxel

3.2 Droplet Impact on Micro-structured Surfaces

Preliminary experiments on the previously mentioned test rig are used to determine
the fundamental morphology of droplet impacts on such micro-structured surfaces.
For the experiment presented in the following a blunt needle with 0.40 mm outer
and 0.22 mm inner diameter was used as droplet generator. The produced droplets
had always a reproducible diameter D in the range of (1.78 ± 0.03) mm and a
reproducible velocity uimp in the range of (1.22 ± 0.01) m/s. The Reynolds number
Re, Weber number We, Capillary number Ca and Ohnesorge number Oh can be
calculated as follows [19]:

Re = ρDuimp

μ
, We = ρDu2imp

σ
, Ca = uimpμ

σ
, Oh = μ√

ρDσ
(2)

The dimensionless time τ for the droplet impact is defined as
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τ = t
uimp

D
(3)

In the following, a droplet impact of isopropanol (2-propanol) with a diameter
of D = 1.77mm and an impact velocity of uimp = 1.22m/s will be further dis-
cussed, see also Fig. 7. The density for isopropanol, the surface tension and the dy-
namic viscosity of ρ = 785 kg/m3, σ = 23.0mN/m and μ = 2.43mPa s have been
used [15, 23]. With Eqs. (2) the dimensionless parameters can be determined to:
Re = 699.3, We = 90.5, Ca = 0.129 and Oh = 0.0136. The free surface energies
for isopropanol, σ

p
L = 3.5mN/m and σ d

L = 19.5mN/m, [15], can predict a full-
wetting behavior on flat PC surfaces using the OWRK-model [10, 16, 17]. Conse-
quently, it can be expected that for all kind of structures on the PC-wafer a full-wetting
behavior will occur. This can be confirmed by the experiments on 60 × 60µm2 pil-
lars of PC (surface S2).

(a) (b)

(c)

(d)

Fig. 6 Procedure for the evaluation of one single pillar with an edge length of 60 µm (surface
S2) acquired by microCT with 2.7 µm/voxel: a single slice of reconstructed three-dimensional
volume, b volume rendering of reconstructed three-dimensional volume, c exported single pillar
with positions of sections, d height profile of each slice



Fabrication and Evaluation Methods of Micro-structured … 83

Fig. 7 Chronological sequence of a drop impact of isopropanol with a diameter of D = 1.77mm
and an impact velocity of uimp = 1.22m/s on a structured PC surface (S2) with 60 × 60µm2 pillars
at a Re = 699.3 and We = 90.5. Left image: top view, scale: 29.8µm/pixel; right image: lateral
view, scale: 19.2µm/pixel

The overall morphology is following a deposition behavior and match the de-
scribed splash/non-splash limits in [19], see Fig. 7. Two spreading regimes can be
observed, the inertia driven spreading at the beginning of the droplet impact and the
viscous spreading during the end of the impact. The inertia driven regime occurs at
τ � 10.93. The very slow spreading viscous regime at τ � 10.93 is mainly driven
by capillary forces and follows the observations of [4]. The authors have observed a
“zipping” of the liquid, which is the energetically favorable way of viscous imbibi-
tion into micro-structures. If one row of pillars is completely filled with liquid, the
liquid will advance at a very limited area, mostly in between two pillars, to the next
row. Afterwards, the liquid is “zipping” to the side filling the whole row inside the
structure until the liquid will proceed to the next row of pillars.
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3.3 Film Thickness Measurement of Droplet Lamella

During the droplet impact on smooth surfaces, the formation of a droplet lamella can
be expected. Thickness measurements of droplet lamellas are very challenging due
to the high dynamics of the impact and the large range of expected film thicknesses.
The experimental test rig, will use the newly developed LASER Pattern ShiftMethod
(LPSM) to measure the lamella thickness during the droplet impact. The method is
evaluating the parallel shift of a laser pattern which is directly proportional to the
film height, [6]. In using the Position Sensitive Detector (PSD) 1L30_SU2 of SITEK
Electro Optics, the sampling rate can be increased to 500 kHz so that the temporal
development of the lamella thickness can be captured [7].

The development of the LPSM will be continued, in order to measure the liquid
film thickness inside the structure during the droplet impact. A three-dimensional
profile of the film thickness as output will then give further information about the liq-
uid distribution which can be used e.g. for validating detailed numerical simulations.

4 Conclusion

The influence of micro-structures on deposited droplets and droplet impacts can be
determined by deviations from the spherical shape and preferential spreading di-
rections. The dimensions of structure have a significant influence of the outcome.
Therefore, a high reproduction quality and reliable inspection technique for such
micro-structured surfaces are needed. Due to the requirements of dimensions and
shape, the surfaces were produced with the hot embossing process. Also other repro-
duction possibilities for micro-structured surfaces were mentioned. As investigation
methods for the surface structure the optical largefield microscope, the Scanning
Electron Microscopy (SEM) and the micro Computed Tomography (microCT) have
been used. While the Abbe criterion is mainly limiting the resolving power of the
optical microscope the quality of SEM is limited by the electron beam quality. The
resolving power of microCT is mainly influenced by focal spot size and the speci-
men size, and limited by X-Ray absorption, which is what produces image contrast.
Choosing the right method is not easy, since it is always a compromise between
availability of the technique, effort and information which can be extracted from
the different techniques. The optical largefield microscope and SEM are two imag-
ing methods, which can be used for measuring the dimensions from the images.
However, the projection into the image plane needs to be considered for the deter-
mination of dimensions. Both techniques are either very economical or can provide
a very high magnification of up to 100,000× or more. MicroCT, instead, has a lower
resolving power, but can provide an export of the digitalized volumes of the scanned
surfaces. These exported volumes can be then used e.g. for numerical simulations.
The analyzed micro-structured surfaces show mainly a proper reproduction quality.
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The influence of the deviation between experimental and generic surfaces onto the
droplet impact outcomes needs to be numerically investigated in the future. Finally,
preliminary results of a droplet impact on the structured surfaces have shown pref-
erential spreading directions. Future investigations will then also focus on the effect
of the flow inside the structure and on the heat transfer on micro-structured walls.
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Use of X-ray Micro Computed
Tomography for the Investigation
of Drying and Salt Precipitation
in a Regular Glass Bead Structure

Robert Haide and Maurizio Santini

Abstract Micro computed tomography is a powerful tool for the inspection of
porous media since it essentially provides the possibility to reconstruct a three di-
mensional volume of an object at micrometric spatial resolution. The technique is
non-intrusive, while still being capable of dealing with matter that is opaque at the
wavelengths of visible light. The processing of the obtained data such as segmenta-
tion andmorphology characterization in multi-phase porous systems is a challenging
research topic for the comprehension of countless physical problems in a variety of
technical applications. This research project is dedicated to the investigation and
optimization of all aspects along the process chain, starting from the preparation of
adequate porous samples towards the acquisition of the computed tomographies and
data processing until pore-scale fluid displacement processes in multi-phase systems
can eventually be visualized and characterized. Presented here are the production
process of a regular glass bead pack, the data acquisition and processing methods
and the obtained results for tomographic experiments during which the pack is con-
taining distilled water, dopedwith potassium iodide and air and is subjected to drying
in ambient atmosphere. The sample design allows validation of values derived from
tomographic data with analytically predictable values.
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1 Introduction

Systems of porous media containing two or more fluid phases are crucially relevant
for applications such as oil and gas recovery, chemical separations, drying processes,
catalysis, material manufacturing and a great variety of other engineering applica-
tions. The fluids distribute within the solid in a way tominimize system energy, while
being strongly influenced by the system’s wettability. Wetting fluids spread over the
solid areas, whereas non-wetting fluids occupy the pore centers. The pore struc-
ture usually is microscopic and is, in general, orders of magnitude smaller than the
characteristic scales governing the overall processes [1]. Evaporation from a porous
medium, for example, is a typical multi-phase system, where the invading gaseous
phase, usually wet air, replaces the evaporating liquid. The macroscopic measurable
behavior of the system is the drying rate, which is affected by atmospheric condi-
tions, pore morphology as well as transport properties such as thermal and hydraulic
conductivities and vapor diffusion. These complex and highly dynamic interactions
between the medium properties, transport processes and boundary conditions make
the prediction of drying rates a challenging task.

Recently, an exponentially increasing amount of studies utilizes micro computed
tomography in order to determine pore scale properties of materials and investigate
their effect on parameters, such as mass transfer [2, 3] and capillary pressure to
interfacial area to saturation relationships. Running experiments with glass beads
as the solid porous matrix is a common practice [4, 5]. The properties of glass
beads, such as a smooth surface and their X-ray attenuation coefficient, provide the
optimal basis to develop robust experimental and post-processing routines. For a
comprehensive overview of the principles of computed tomography see e.g. [6].

2 Materials and Methods

In the following, the tomography equipment and the sample production will be de-
scribed. The choice of fluids will be elucidated, and an overview of the used data
processing methods will be given.

2.1 Tomography Equipment

The tomography setup at the faculty laboratory is a prototype assembly of high-
performance building blocks, that overcome a lot of the limitations of ready-made
tomography systems that are currently on the market. It is based on an open-type X-
ray source (160 kVp@ 200 µA), a high-precision air-bearing rotating stage and a flat
panel X-ray detector. The detector is characterized by a custom-designed scintillator
plate, a high dynamic range, full programmability and triggerability. It is based on
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an amorphous silicon (a-Si) sensor array, acquiring 16-bit gray level images with
a pixel matrix of 4096 by 4096, where each quadratic pixel has an edge length of
100µm. For a more detailed description of the setup, refer to [7].

2.2 Materials

The solid structure of the porousmedium is built up of precision glass beads, arranged
in a regular manner. It was considered advantageous to choose a material that can be
manufactured to high precision grades in millimetric and even micrometric dimen-
sions, since a regular arrangement of the sample can provide a structure with easily
predictable geometric parameters, which can in turn be used to validate the tomo-
graphic acquisition process. Preliminary experiments were additionally conducted
with steel and ceramic beads, yet it was confirmed that glass is the most suitable ma-
terial, due to its X-ray attenuation behavior. Eventually, high-precision glass beads
with a diameter of 0.7± 0.01mm (soda-lime glass) were chosen (SiLibeads® type P).

The fluid phases were chosen to be bi-distilledwater, dopedwith potassium iodide
(KI) and ambient air, as they can be considered immiscible once the air is saturated
and are easily available. Potassium iodide serves as a contrast agent. It allows for
a clear segmentation of the phases in the reconstructed volume. The initial mass
ratio of KI to water was chosen to be 1:3. It was necessary to choose a fairly high
amount of contrast agent in the presented experiments due to a large variation of
the attenuation coefficient of the beads. This variation occurs as beads from different
production batches are mixed. The unavoidable variation of components during glass
production leads to the differing in attenuation values. During drying, the relative
percentage of KI increases and when the sample has dried out by approximately
78%, the solution is fully saturated and salt precipitation occurs.

2.3 Sample Production and Filling

A sealable sample holder was custom-designed and manufactured in-house by fused
deposition modeling 3D printing, using ABS (Acrylonitrile Butadiene Styrene). Af-
ter printing, the container was treated in acetone fume, in order to seal the surface. A
closing cap and a lid, to keep the upmost layer of beads in place weremanufactured in
the same way. The used material provides the necessary properties such as high tran-
sitivity to X-rays, low deterioration under X-ray radiation, chemical stability versus
the used materials and a low thermal expansion coefficient around room tempera-
ture. The chosen spatial dimensions are a compromise between highest achievable
scanning resolution and volume of the inner porosity-based representative elemen-
tary volume (REV). In order to minimize the influence of the container walls on the
fluids contained in the REV a distance of at least one and a half bead diameters from
the REV is deemed necessary. Furthermore, the whole sample holder assembly is
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designed to allow for frictionless, air-tight sealing and opening, in order to not dis-
turb the porous material and its content during those operations. This is achieved by
adding a small basin at the bottom end of the container that is to be filled with butyl-
rubber tape (Tacky Tape®). The closing cap then has to be put over the container,
and its rim has to be submerged into the rubber.

Due to the precise shape of the container, it was possible to construct a regular,
hexagonal close packing of the glass beads by placing them manually, while using a
limited amount of nylon support structures to bolster the sides. Thereby, two sets of
characteristical pore shapes are formed. They are called tetrahedral and octahedral
pores. The beadswere cleaned in acetone before theywere packed.A hexagonal close
packing exhibits, alongside the cubic close packing, the densest possible packing
structure of equally sized spheres that is currently known [8]. The packing density
η, which is defined as the relation of the volume of the beads contained in an REV
to the total volume of the REV, is in this case

η = π

3
√
2

≈ 0.74 (1)

The complete packing consists of 755 glass beads, arranged in 9 layerswith a layering
structure of A-B-A-C-A-B-A-C-A [9] and 12 nylon support bars (see Fig. 1).

For the purpose of filling, a small hole was included by design into the bottom
of the container, that can be connected to the tubing of a peristaltic pump (Ismatec®

ISM596). This provides the possibility to infiltrate the porous medium from the
bottom side at a slow rate of 53 µl/min, thus avoiding undesired enclosing of air in
the pores. After filling, this hole is sealed.

Fig. 1 CAD model of porous structure and top view of sample container with packed beads and
nylon support bars; the nominal diameter of one glass bead is 0.7mm
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2.4 Scanning Parameters

TheX-ray attenuation of materials is dependent on their density, their atomic number
and their dimensions. The scanning parameters were carefully iterated, in order for
the acquired data to provide the highest information content. A tube voltage of 90
kV and a target current of 14 µA were deemed optimal.

During preliminary experiments, it became clear that theX-ray beamhas to be pre-
filtered before passing through the object, in order to avoid beam hardening artifacts.
Beam hardening is a common effect that occurs when X-rays from a poly-chromatic
source pass through an object, and their lower-energy portion is filtered out. This
induces difficulties for the reconstruction algorithm, that may result in artifacts. For
elucidation of the beam hardening effect, see e.g. [10]. In the case at hand, the beam
is filtered through 1.5mm of glass directly after it is produced at the source.

The required exposure time per projection in this configuration in order to achieve
sufficient contrast is 2.3 s. A maximum scanning resolution of roughly 5 µm is pos-
sible, considering the size of the porous sample. At such a high resolution, achieving
high-quality reconstructions with conventional reconstruction algorithms requires a
large amount of projections to be taken, resulting in acquisition times of up to two
and a half hours. In Fig. 2, a single X-ray projection of the solid porous structure is
depicted.

2.5 Reconstruction

Reconstructions of the obtained data are to this date done with the reconstruction
module of the commercial software package VGSTUDIO MAX by Volume Graph-
ics GmbH [11]. Here, the conventional and well-approved filtered back projection
algorithm enhanced for cone beam tomography [12] is utilized. It provides reliable,
high-quality reconstructions, and the software package has several functionalities
implemented that allow for correction of minor misalignment of the components

Fig. 2 Single X-ray
projection of the sample at a
resolution of 5 µm per pixel
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of the tomography setup. The downside to this procedure is the necessity of fine
sampling, resulting, as mentioned, in large acquisition times.

An effort is currently underway, to use powerful algebraic reconstruction algo-
rithms, such as SIRT (Simultaneous Iterative Reconstruction Technique) [13] or
DART (Discrete Algebraic Reconstruction Technique) [14] in the flexible, open
source software framework ASTRA [15] for this project. Given the fact, that the
sample only consists of a limited number of materials, the full potential of the dis-
crete reconstruction technique could be attained. This could potentially result in a
significant decrease of required projections and thereby a decrease of acquisition
time.

2.6 Segmentation

Adequate segmentation of the phases poses one of the central challenges. The most
promising method currently in use, is segmentation by k-means clustering [16]. It
relys on adequate pre-processing of the reconstructed data. Here, non-local means
filtering [17] with previous estimation of the noise standard deviation σ [18] is
applied. The slice-wise image processing and segmentation strategy employed for
the discussed data set is described in the Fig. 3.

The used input parameters for the non-local means filter are a 5 by 5 similarity
neighborhood, a 13 by 13 search window and a filtering parameter of 10 σ .

Crop to ROI
Estimation of
noise standard
deviation

Non local
means filtering

K-means
clustering
to isolate

water cluster

Mask out the
water cluster in
original slice

Histogram
equalization of
masked slice

K-means
clustering to
isolate beads

Isolate air as
remainder

Fig. 3 Segmentation strategy
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3 Results and Discussion

3.1 Preliminary Experiments

The applicability of the process chain was tested and validated through a set of
preliminary experiments. The influence of reducing the resolution and the detector
dynamic range was evaluated in order to ensure the robustness of the used methods.
It was found, that the influence of the dynamic detector range on the quality of the
tomographic data is not dominant for the configuration at hand. This implicates, that
the utilized dynamic range could be restricted to 14 bits, resulting in faster scanning
times. Considering the bead size and pore sizes of the medium, a resolution higher
than 15 µm is necessary to adequately reproduce analytically calculated values for
the global porosity from the tomographic data. The diameter tolerance of±0.01mm,
indicated by themanufacturer, could be reproduced throughoverlayingfitting spheres
on the reconstructed volume of the beads, using the software package GOM Inspect
[19]. The analytical value for the global porosity in a regular pack is supposed to be
26%. The value measured from the tomographic data in the inner ROI (Region Of
Interest) by voxel counting was 26.6%.

3.2 Evaporation Experiments

Drying curves, that have been logged for the regular pack containing two phases
indicate, that the characteristic drying periods, described in literature, can be observed
(see Fig. 4). An extended range of constant drying rate is present, that spans from the
initial full saturation down to a saturation of approximately 10% before the typical

Fig. 4 Drying curve of regular bead pack; temperature during drying was 298 ± 0.5 K and relative
humidity was 35 ± 5%
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falling rate period sets in [20]. The drying curves were acquired in order to gain
information on the necessary time steps between the tomographic experiments.

For the set of tomographic experiments, the regular pack was fully saturated with
KI-doped water and then subjected to drying intervals with a water loss of between
5 and 15% each. The drying occurred in ambient atmosphere, while logging the
temperature and the relative humidity of the surrounding laboratory space. After a
drying interval was completed, the sample holder was sealed and a relaxation period
of 10hours was granted in order for the interfaces to redistribute and achieve a
minimumof free surface energy.Then, a scanwas taken respectively. In the following,
the results of four time steps are presented. Two time steps during the initial period
at liquid saturation states of 98 and 72% (positions A and B in Fig. 4), and two time
steps at the conversion to the falling rate period, where the liquid saturation ranges
between 15 and 8% (positions C, D in Fig. 4).

3.3 Pore Size Distribution

The obtained data was segmented, using the mentioned segmentation strategy. An
exemplary depiction can be seen in Fig. 5. The pore size distribution is obtained by
using the ‘Separate Objects’ module of the software package Avizo® by Thermo
Fisher Scientific [21]. Here, the pores are separated, using the watershed algorithm
[22]. A value of 1 is used for the seed marker extent and the operation is conducted in
3Dwith a neighborhood connectivity of 26. The pore sizes given in Fig. 6 correspond
to the diameter of volume-equivalent spheres. The bi-modal pore size distribution of

Fig. 5 Slice of the reconstructed volume (upper left) and segmentation; total pore space (upper
right), water (lower left), combined (lower right)
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Fig. 6 Pore size distribution (continuous line) and distribution of air-filled pores at a saturation of
15% (dashed line)

the structure represents the two sets of pores that were created by regularly packing
the beads. A minor amount of diverse-sized pores is present at the outer boundaries
of the volume. The original pore size distribution (continuous line in Fig. 6) can be
compared to the distribution of air-filled pores at an intermediate state of saturation
(dashed line in Fig. 6). Here, the bi-modality of the pore size distribution is still
represented, while the total number of pores has decreased due to the omitting of
water-filled pores. The appearing smaller values reflect partially filled pores.

3.4 Distribution of the Fluid Clusters

The evolution of the respective clusters can be traced and visualized using Avizo®.
Water films of a thickness down to approximately twice the scanning resolution are
included (see Fig. 7).

Fig. 7 Morphological change of a liquid cluster in the ROI; liquid saturation from the left:
98, 72, 15, 8%
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During drying a main liquid cluster develops, which is connected through the
sample from bottom to top. Through this cluster, liquid is fed to the drying front by
capillary suction. The main cluster is maintained until the liquid saturation reaches
roughly 10% and the second, mainly diffusion controlled drying period sets in [20].
Apart from the main cluster, several isolated clusters form that consist in general of
pendular rings. Here, the liquid is trapped in the crevices that are formed between to
touching beads due to the balance of interfacial forces [23]. In Fig. 8, pendular rings
can be clearly distinguished from the main cluster. The number of isolated clusters
increases and reaches its maximum at approximately 10% liquid saturation. After
that the number of clusters decreases again, as individual clusters dry out completely.
In Fig. 9 on the left side, the number of clusters for the four representative saturation
states is given. The saturation profiles over the sample height (Fig. 9 right side) show
a decrease of saturation towards the bottom end of the sample. This can be attributed
to the fact that the air phase can also invade the ROI from the sides after the irregular
pores close to the container wall are dried out. Figure10 illustrates the relation of
the total volume of the main cluster to the cumulative volume of the disconnected
clusters.

Fig. 8 Drying of the main cluster and formation of pendular rings; 3D visualization of the liquid
cluster of the whole volume

Fig. 9 Number of disconnected liquid clusters and saturation over sample height at the saturation
states depicted in Fig. 6
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Fig. 10 Relation of the volume of the main cluster to the cumulative volume of the disconnected
clusters; the red bars on the left correspond to the main cluster, i.e. the largest connected volume

3.5 Salt Precipitation

As soon as the water is saturated with salt, precipitation occurs. During the drying
period that is controlled mainly by the connected liquid cluster, salt gets transported
to the drying front. Thereby, the salt concentration is increased at the top of the sam-
ple, and the formation of a salt crust begins [24]. Only after the main cluster gets
disconnected from the surface, crystallization happens within the porous medium. In
the experiment presented here, 90% of the salt precipitates at the surface. This is con-
sistent with the value of the Peclet number, which is in porous media defined as [25]

Pe = e h

De ε
(2)

where e is the evaporation rate, h the sample height and De the effective diffu-
sion coefficient of the dissolved salt. The effective diffusion coefficient incorporates
the influence of the pore structure on diffusion. It is assumed here, that this influ-
ence is negligible in a first approximation, since the pores are well connected and
several orders of magnitude larger than the solute particles. Assuming an effective
diffusion coefficient of D ≈ 2 · 10−9m2/s [26] and an average evaporation rate of
e ≈ 1.5 × 10−7 m/s, which is obtained by dividing sample height by the time it takes
until a sample filled with pure water has dried out completely, the Peclet number
is roughly 2.3 and thereby considerably greater than 1. This indicates a capillary-
controlled precipitation behavior [25]. The formation of the crust has additional
effects on the drying rate due to the creation of a new micro-porous structure [27].
Here, those effects are neglected, since they are not very pronounced and barely
observable due to the fact that the crust forms late in the drying process and doesn’t
cover the sample surface completely. A slice comparison before crust formation and
after the crust is fully developed at the end of the drying process and a 3D visualiza-
tion of the crust, as well as the grid structure of the lid, are depicted in Fig. 11. It can
be seen, that the salt crust is creeping upwards, through the grid of the lid.
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Fig. 11 Formation of the salt crust on the upmost bead layer and in the grid of the lid

4 Conclusions

In the presented work a regular glass bead sample was created in a precise man-
ner, utilizing the flexibility offered by the fused deposition modeling 3D printing
process. The structure is considered advantageous for the validation of tomographic
multi-phase flow experiment through the comparison of analytically predictable and
tomography-derived parameters. The conducted tomographic experiments provide
the possibility to gain insight into drying and salt precipitationmechanisms in porous



Use of X-ray Micro Computed Tomography for the Investigation … 99

media. Improved reconstruction and robust segmentation methods play a key role
for the adequate evaluation and visualization of the acquired tomographic data.

In the next step of the project, more experimental sets will be conducted, including
the introduction of n-dodecane as a second liquid phase. A reduction of the used con-
trast agent is aspired. Interfacial area and curvature measurements will be extracted
from the tomographic data. It is envisaged to eventually couple fluid displacement
processes that occur on the pore scale to larger scale flow models and to derive
necessary parameters that can be fed into extended pore network model simulations.

Acknowledgements The authors acknowledge the help and guidance of Dr.-Ing. Stephanie Fest-
Santini.
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Image Processing of Two-Phase Data
for Drop-Surface Interaction Obtained
by X-Ray Microtomography

Stephanie Fest-Santini

Abstract Easier access to X-ray microtomography facilities has provided new
insight from high-resolution imaging for various problems in drop-surface interac-
tion research. Surface characterisation with respect to functional properties usually
requires several of the following conditions: (a) imagining with sufficient resolution,
(b) segmentation of the intensity data into different classes (c) triangulation and (d)
curvature estimation. Two different test volumes are examined: scientific sand for
discussing topics (a) as well as (b) and their influence on the example of porosity
and pore classifications; and size-calibrated spheres with certificated sphericity for
(c) and (d).

1 Introduction

Understanding drop-surface interaction is of central importance to many natural
and engineered processes. The micro-scale is the scale at which many physical and
chemical phenomena are rooted. Large-scale processes are often governed by these
small-scale phenomena and, thereby, require also an inspection on the micro-scale.
Tomography is one of the non-destructive techniques that allows, combined with
three-dimensional visualization and analysis, the most comprehensive internal and
external characterization of materials and structures at both micro-and macro-scale.

The principle of X-ray microtomography (microCT) relies on the principle of
irradiating a sample with an X-ray beam and the acquisition of absorption images
at different angular steps. The acquired so-called projection images represent views
of the sample, providing internal details due to the penetration of X-rays. Projec-
tions are used in a mathematical reconstruction process to generate a volumetric
data set. The latter consists of volumetric pixels (voxels) featuring a certain bright-
ness. At a certain beam energy, this brightness is related to the X-ray density of the
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material which depends on the physical density and the atomic mass. The microCT
enables not only the visualization of inner and outer structures but also dimensional
measurements and advanced 3D analysis, such as wettability and interfacial capil-
lary pressure measurements [1–4]. Examples for dimensional measurements include
morphological analysis like pore sizes of porous media or texture dimensions of
structured surfaces. Instead, the principle idea behind advanced analysis is to dis-
cretize the interfaces within the volume and to define vectors that have a direction
perpendicular to these surfaces.

The contact angle θ is, then, found from the dot product of the vectors describing
the fluid-fluid interface n|z1 and the solid surface n|z2 .

θ = π − cos−1
(
n|z1 · n|z2

)
(1)

The capillary pressure Pc can be written as

Pc = 2σ km (2)

where σ is the interfacial tension between the wetting and the non-wetting phase
and km the interfacial mean curvature. The latter is defined as the average of the two
principle curvatures k1 and k2.

km = 0.5 · (k1 + k2) (3)

This paper addresses analysis and quantification of the commonly large tomo-
graphic datasets for drop-surface interaction. Image based analysis requires always
the identification of different phases as function of the individual voxels’ bright-
ness and the segmentation in different classes. The article is organized as follows:
in Sect. 2, the performance of different thresholding methods and the resolution
effect are evaluated by means of a tomographic test data set free of noise and blur.
Section 3 addresses surface triangulations and a sensitive analysis is given for a
known geometry. Recommendations for best practise are summarized in Sect. 4.

2 Analysis and Quantification

2.1 Segmentation

Image segmentation is a crucial step in image processing and affects all subsequent
analysis. In absorption contrast tomography the intensity value associated with each
voxel is proportional to its X-ray attenuation, which is a function of density, atomic
number and the energy of the incident X-ray. Thereby, a common approach for
decomposing an object into segments is the global thresholding. Here, classes are
assigned to voxels by histogramevaluation only,without considering howgray values
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are spatially distributed in the corresponding microCT volume. Plenty of different
thresholding methods exist and have been reviewed by several authors [5–8]. Four of
them—entropy, factorization, moments and minimum error method—were chosen
for their performance evaluation using unconsolidated sand as a microCT test set.

The classic approach of the entropy principle relies here on the Shannon entropy as
a measure of information content of a signal. Two classes are defined in the intensity
histogram, and a threshold value is searched by minimizing the total classes’ entropy
(refer to [9, 10]). The factorization method is based on the Otsu criterion (see [11]
for details) and maximizes the between-class variance. The moment method uses
the moment-preserving bi-level thresholding described by Tsai [12]. Instead, the
minimum error approach assumes the histogram composed of normal distribution
for each class [13], which usually overlap at certain gray values. Assigning those
voxels to one class would lead to misclassification error. The threshold is set for
minimizing that error.

To generate the here investigated test data set, lose scientific sand (ACCUSAND®

ASTM 100 grade no. 50/70) was scanned at 90 kV @ 10 μAtarget and an emission
focal spot of about 1.5μm. The integration timewas adapted to use the full detector’s
dynamic range of 16 bits and amounts 1.9 s. The angle step between radiographies
depends on the specific magnification and size of the projected object. Those values
were chosen according to the Nyquist theorem and are equal to 0.075°. The effective
microCT resolution of about 3.007 μm is obtained according to [14].

The unconsolidated sand, its rendered microCT volume is shown in Fig. 1a, is
composed by 99.8% (weight) of silicon dioxide and contains 0.2% (weight) of amate-
rial with higher X-ray attenuation (compare Fig. 4). For segmentation the microCT
volume in grain and void space, see Fig. 1b and 1c, respectively, the threshold is often
chosen by hand. Even there is a universal agreement that automated methods should
be preferred, since they save operator time and eliminating operator subjectivity and
bias.

However, the application of automated segmentation method requires sufficiently
clean images resulting in a clear global bimodal intensity histogram as shown in
Fig. 2. The “true” optimum threshold can be estimated by the intersection points

Fig. 1 a 3D render of microCT volume b highlighted solid matrix and c void space. Here, the
factorization method was applied
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Fig. 2 Clear double-peaked
(bimodal) histogram of the
sand sample

of the individual gray value frequencies within each class and is shown as dashed
line in Fig. 2. The tested automated segmentation methods are affected by bias
in different directions. The moments approach bias towards the class with highest
volume fraction, minimum error and factorization are shifted to lower thresholds.
Instead, the entropy method fails completely in identifying a meaningful threshold.

The results of global segmentation methods are depicted in Fig. 3. The void space
is shown white colour and the sold matrix in black colour. The factorisation and
the minimum error approach exhibit smooth object boundaries. Misclassified voxel
intensities applying the entropy and the moments method are highlighted by red
frames.

One of the simpler measurements that can be made from tomographic images is
the determination of the sample porosity (defined as fraction of the volume of voids
over the total volume) which can be estimated by counting the number of voxels
assigned to each class. Hence, a reliable segmentation is required. The obtained
global porosities are summarized in Table 1. Factorisation, moments and minimum
error methods lead to similar porosity values even if their bias directions of the
threshold are different.

Fig. 3 Segmentation results for the four different segmentation methods. The void space is
shown in white and grains in black: a original slice, b entropy method, c factorisation method,
d moments method, e minimum error method. Coloured frames highlight failures for various
methods
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Table 1 Global porosities for
the selected segmentation
methods

Method Porosity (%)

Entropy 39.4

Factorization 35.4

Moments 36.4

Minimum error 35.3

It can be concluded that for sufficiently high-quality images, e.g. clear bimodal
distribution of the intensity histogram and smooth object boundaries, automated seg-
mentation canworkwell (see also [15]). Threshold’s position, obtained by automated
methods, in the intensity histogram should be always verified.

2.2 Resolution

Usually, the goal of microCT is to image at a high enough resolution to capture the
geometry of microscopic features. Often, their size is previously unknown, and a
sufficient resolution is evaluated on the basis of an intensity histogram. The latter
should feature a bimodal shape as shown in Fig. 4c. With decreasing resolution, the
two peaks merge to one, and the resolution is insufficient to capture details on the
micro-scale.

Instead for representing the pore-space distribution, the ability to image on a
micro-scale resolution, i.e. distinguish precisely between individual grains, pores

Fig. 4 aSlice of unconsolidated sand at 21.049μm,with insufficient resolution to capture the geom-
etry of features, b slices of the same region at 3.007 μmwith sufficient resolution, c corresponding
intensity histograms of single- and double-peaked distributions



106 S. Fest-Santini

and fluid phases, is required. In the following, the influence of the resolution on the
pore size distribution is discussed.Herefor, the projections of the unconsolidated sand
sample are binned and afterwards reconstructed obtaining microCT volumes twice,
fourth and six times of the original resolution. Their intensity histograms have still the
above discussed double-peak characteristic and would be evaluated as “sufficient”
for micro-scale inspection. Segmentation, applying the factorisation approach, and
subsequent counting of voxels assigned to the void spaces lead to global porosities.
Their values are summarized in Table 2. With increasing micrometres-voxel scale
(decreasing resolution), higher porosities are determined. However, the observed
differences are smaller than those caused by the choice of an inadequate segmentation
approach (compare to the entropy method in Table 1). It is necessary to highline
that the accessed porosity does not increase with increasing resolution (decreasing
voxel size) as may would be expected [16]. Note that, resolution effects are usually
discussed on different field of views so that the dimension of the digitalized volume
varies. Here, the field of view is kept constant.

The 3D void spaces are divided into single pores in the commercial program
Avizo® [17] using a combination of watershed, distance transform und numerical
reconstruction algorithm. Hereby, the marker extent factor was set to 1 and the
connectivity to 26. From single pore volumes, sphere equivalent diameters are deter-
mined. The obtained volume-based cumulative pore size distributionsQ3 are depicted
in Fig. 5. Distribution curves are shifted to larger pore sizes with decreasing resolu-

Table 2 Global porosities
and mean pore diameters
d50,3 for different resolutions

Resolution (μm) Porosity (%) d50,3 (μm)

3.007 35.4 189.9

6.014 35.6 230.4

12.028 36.2 300.4

18.042 38.0 360.7

Fig. 5 Volume based
cumulative pore size
distribution for different
resolutions. The abbreviation
“e” denotes for the
segmentation method
entropy and “f” for
factorisation
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tion (increasing micrometres-voxel scale). Small details, like pore throats, cannot be
detected so that pores appear connected and are interpreted as a unique larger pore.
Consequently, the mean pore diameter d50,3 is overestimated. In the specific test case,
the mean pore diameter is estimated twice as large, when decreasing the resolution
by a factor six. In consequence, only integral values of porosity or fluid saturation can
be determined at resolution beyond the micro-scale. The preceding discussion shows
that, for the accurate detection of pore-scale features, the evaluation of microCT data
cannot be simply based on the intensity histogram, as commonly done.

In the following, it is discussed, which would be the best or what is an adequate
resolution? Firstly, both low and high resolution microCT can generate misleading
results of either less accurate or less representative values. For example, linking pore
scale parameters to transport properties like diffusivity [18] or permeability [19];
diffusion will occur on both small and large pores while larger pores contribute pre-
dominantly to permeability over smaller pores. The resolution for diffusion analysis
should be higher than that for permeability analysis and need to be adapted on the
specific task and pore sample. The solution may lie in how to obtain representative
(or larger) field of views while the accuracy remains constant. In Fig. 5, the pore
size distribution of the data set with a resolution of 3.007 μm segmented with the
entropy approach is also shown. The entropy method failed in predicting a global
threshold and led to the highest calculated global porosity. Consequently, single pores
are determined to be larger, and the cumulative curve in Fig. 5 is shifted to the right
compared to the results obtained by the factorisationmethod for the same resolution.
The mean pore diameter has an error of only 3% in comparison to the one obtained
with the segmentationmethod factorisation. Hence, the bias caused by an inadequate
segmentation method is much smaller than insufficient resolution for describing the
pore size.

3 Surface Triangulations and Curvature Estimation

For complex measures in drop-solid interaction such as wetted surface area, fluid-
fluid interfacial area and surface curvatures, simply counting of voxel faces results in
an overestimation of the surface area. The latter cannot be corrected by a finer resolu-
tion. Therefore, surface mesh generating techniques in combination with smoothing
algorithms should be applied in constructing triangulation of the surfaces. Widley
used is e.g. the marching cubes algorithm [20]. Here, grayscale image data are seg-
mented and from the resulting isosurfaces, the triangle mesh is computed. Herefor,
linear interpolation is applied to identify surface patches. Another method is the
Delaunay triangulation [21, 22].

The test data set for triangulations, according to ISO 3290 calibrated sphere of
1 mm in radius, was acquired scanning with 60 kV @ 15 μAtarget and an emission
focal spot of about 1.5 μm. The integration time amounts to 1.6 s and the step angle
was 0.18°. The surface mesh is generated in Avizo® [17] based on the implemented
marching cubes algorithm [23] and is rendered in Fig. 6a. A detail of the sphere is
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Fig. 6 Triangulated surface without surface smoothing (a) with surface smoothing (b) and
respective detailed in (c) and (d)

depicted in Fig. 6c. Once a triangulated surface has been created, it is possible to
directly measure the surface area by adding up the area of all triangles. Since the
theoretical surface area and the volume of the calibrated sphere are known, their
error can be determined. Both are overestimated, the surface by 8.6% and the vol-
ume by 0.09%. The inaccurate determination of the surface area frommeasured data
arises from the fact that the triangles are only orientated parallel to the grid axis.
As a consequence, the mesh is characterized by a staircase-like surface. Note that,
imprecision eventually made during reconstruction, segmentation etc. are included
in these errors. The application of the in Avizo® [17] implemented smoothing routine
during surface generation can reduce the voxelized character of the boundary region.
Here, the surface is smoothed using 7× 7× 7 kernel size applying subvoxel weights
such that the interface is naturally smoothed. By doing so, the labels are not modi-
fied. In general, smoothing should be applied with caution, and volume preserving
needs to be always verified. In Fig. 6b, the smoothed surface mesh is depicted. The
overestimating error of the surface area could be almost resolved and amounts to
0.12% keeping a constant volume. However, the close up in Fig. 6d shows that the
mesh still features the voxelized character. The orientation of the triangles is limited
to be parallel or at 45° inclined to the grid axis. This is a restriction of the marching
cubes algorithm.

Since contact angle determination is based on the normal vectors to the surface,
its calculation depends strongly on the orientation of the surface triangles, see Fig. 7.
As described above, the margin cubes algorithm limits the normal vector direction
so that an additionally volume-preserving Gaussian smoothing is recommend [3,
24], see the result in Fig. 7c. Here, normal and tangential smoothing filters were
applied. The first reduces blocky voxel segmentation artefacts. Vertex displacement
along the surface normal was restricted to half of the voxel size, and a total normal
displacement was avoided applying a compensating shift in the vertex neighbours.

Instead, the curvature is a differential property and, thereby, extremely noise
sensitive. The definition of mean and Gaussian curvature is shown in Eqs. (3) and
(4), respectively.
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Fig. 7 Orientation of face normal vectors without surface smoothing (a) with surface smoothing
(b) and additional tangential and vertical volume preserving Gaussian smoothing (c)

kG = k1 · k2 (4)

Flynn and Jain [25] stated that the quality of curvature calculation is poor unless the
mesh has been smoothed. Surface meshes based on tomographic data are affected by
mesh resolution, regularity, valence and noise.A general overview can be found in the
work from Gatzke and Grimm [26] comparing the sensitivity of different algorithms
for estimating curvatures on triangular meshes. Local least-square approximation of
the interface using quadric functions can improve significantly the curvature predic-
tion [2, 13]. Here, a Monge patch [13] relative to the local tangent plane was used,
so that the height function can be expressed by

f (x, y) = ax2 + by2 + cxy + dx + ey + f (5)

The verticeswere fitted to Eq. (5) considering the third-ring neighbourhood. Then,
the eigenvectors and eigenvalues of the Hessian matrix were used to calculate the
mean and Gaussian curvature. The averaged Gaussian curvature calculated for all
vertexes, mesh quality depicted in Fig. 7c, could be precisely determined and cor-
respond to the theoretical value of 1.00 × 10−6 μm2 ± 0.13 × 10−6 μm2. The
derivation of measured radius curvatures of each vertex for this dataset was found to
be less than twice the voxel size and more accurate than comparative values specified
in the literature [2].

4 Conclusions

The application of microcomputed tomography allows rather sophisticated analysis.
Their interpretation and results are not anymore presented in a mere qualitative way.
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Based on the data obtained and analysis performed on the two tomographic data,
the following conclusions can be drawn:

• Bimodal intensity distributions are required for avoiding segmentation errors.
• Tomographic data featuring bimodal intensities distributions may not have micro-
scale resolution.

• Insufficient resolution has larger impact on the morphological characterisation
than an unproper chosen segmentation method.

• Advanced 3D analysis based on surface triangulations requires ad hoc volume
preserving smoothing. Differential properties need an additional polygon fitting
considering the vertexes’ neighbourhood.
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A Phase Field Approach to Compressible
Droplet Impingement

Lukas Ostrowski, Francesco Carlo Massa and Christian Rohde

Abstract We consider the impingement of a droplet onto a wall with high
impact speed. To model this process we favour a diffuse-interface concept. Pre-
cisely, we suggest a compressible Navier–Stokes–Allen–Cahn model following [5].
Basic properties of the model are discussed. To cope with the fluid-wall interaction,
we derive thermodynamically consistent boundary conditions that account for dy-
namic contact angles. We briefly discuss a discontinuous Galerkin scheme which
approximates the energy dissipation of the system exactly and illustrate the results
with a series of numerical simulations. Currently, these simulations are restricted to
static contact angle boundary conditions.

1 Introduction

In many fluid dynamic scenarios the compressibility of a liquid is negligible. This
allows for simplifications such that direct numerical simulations can rely on simpler
incompressible models. In the context of droplet impingement incompressibility is
only justified for small impact speeds. High impact speeds trigger compressibility
effects of the liquid droplet, which can determine the flow dynamics significantly.
Examples for high speed droplet impact scenarios can be found in many industrial
applications such as liquid-fueled engines, spray cooling or spray cleaning. In [9]
it has been shown that incompressible models are not adequate to describe high
speed impacts, especially due to the fact that the jetting dynamics are influenced
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by a developing shock wave in the liquid phase [8]. The time after the impact of
the droplet until jetting is actually smaller than the predicted time of incompressible
models due to the shock wave pattern. In [9] a compressible sharp-interface model
is used for the simulations. However, sharp-interface models become intricate in the
presence of changes in droplet topology and contact line motion. For this reason,
we introduce a diffuse-interface model in this contribution, namely a compressible
Navier–Stokes–Allen–Cahn phase field model which allows for complex interface
morphologies and dynamic contact angles.

2 Phase Field Models

Phase field models form a special class of diffuse-interface models. In contrast to
sharp-interface models, the interface has a (small) finite thickness and in the interfa-
cial region the different fluids are allowed to mix. An additional variable, the phase
field, is introduced which allows to distinguish the different phases. This concept
has the advantage that only one system of partial differential equations on the en-
tire considered domain needs to be solved, whereas for sharp-interface models bulk
systems need to be solved, which are coupled across the interface by possibly com-
plex conditions. Based on energy principles, phase field models can be derived in a
thermodynamic framework, see [2, 6] for an overview. They fulfill the second law
of thermodynamics, meaning that the Clausius–Duhem inequality [19] is fulfilled.
In the case of isothermal models this is equivalent to an energy inequality. There
are several (quasi-)incompressible [1, 12], compressible [3, 5, 20] and recently even
incompressible–compressible phase field models [14, 18]. In this section we intro-
duce a compressible Navier–Stokes–Allen–Cahn model.

2.1 A Compressible Navier–Stokes–Allen–Cahn System

We consider a viscous fluid at constant temperature. The fluid is assumed to exist
in two phases, a liquid phase denoted by subscript L and a vapor phase denoted
by subscript V. In each phase the fluid is thermodynamically described by the cor-
responding Helmholtz free energy density � fL/V(�). The fluid occupies a domain
� ⊂ R

d , d ∈ N. Let � > 0 be the density of the fluid, v ∈ R
d the velocity and

ϕ ∈ [0, 1] the phase field. Following [5] we assume that the dynamics of the fluid is
described by the isothermal compressible Navier–Stokes–Allen–Cahn system.

∂t� + div(�v) = 0, (1)

∂t (�v) + div(�v ⊗ v + pI) = div(S) − γ div(∇ϕ ⊗ ∇ϕ) in� × (0, T ), (2)

∂t (�ϕ) + div(�ϕv) = −ημ. (3)
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The Helmholtz free energy density � f is defined as

� f (�, ϕ,∇ϕ) = h(ϕ)� fL(�) + (1 − h(ϕ))� fV(�) + 1

γ
W (ϕ) + γ

2
|∇ϕ|2 (4)

=: �ψ(ϕ, �) + 1

γ
W (ϕ) + γ

2
|∇ϕ|2. (5)

It consists of the interpolated free energy densities � fL/V of the pure liquid and vapor
phases with the nonlinear interpolation function

h(ϕ) = 3ϕ2 − 2ϕ3, (6)

and a mixing energy [4] using the double well potential W (ϕ) = ϕ2(1 − ϕ)2.
The hydrodynamic pressure p is determined through the Helmholtz free energy

� f by the thermodynamic relation

p = p(�, ϕ) = −� f (�, ϕ) + �
∂(� f )

∂�
(�, ϕ). (7)

We define the generalized chemical potential

μ = 1

γ
W ′(ϕ) + ∂(�ψ)

∂ϕ
− γ	ϕ, (8)

which steers the phase field variable into equilibrium. Additionally, we denote by
η > 0 the (artificial) mobility.

The dissipative viscous part of the stress tensor reads asS = S(ϕ,∇v) = ν(ϕ)(∇v
+ ∇v� − div(v)I) with an interpolation of the viscosities νL/V of the pure phases
ν(ϕ) = h(ϕ)νL + (1 − h(ϕ))νV > 0.

The energy of the system (1)–(3) at time t is defined as

Ẽ(t).. = Efree(t) + Ekin(t)

=
∫

�

�(x, t) f (�(x, t), ϕ(x, t),∇ϕ(x, t)) + 1

2
�(x, t)|v(x, t)|2 dx. (9)

Remark 1 1. The phase field ϕ is in general an artificial variable, however in this
case it can be viewed as a mass fraction ϕ = mV

m , with the mass mV of the vapor
constituent and the total mass m of the fluid.

2. The special form of the nonlinear interpolation function h with h′(0) = h′(1) �=
0 guarantees that (1)–(3) allows for physical meaningfull equilibria. This can
be easily seen by considering a static single-phase equilibrium v = 0, ϕ ≡ 0. If
h′(0) �= 0 then the right hand side of the phase field equation (3) does not vanish.
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Assuming an impermeable wall, the velocity must satisfy the boundary condition

v · n = 0 on ∂�. (10)

Additionally, the system is endowed with initial conditions

� = �0, v = v0, ϕ = ϕ0 on � × {0}, (11)

using suitable functions (�0, v0, ϕ0) : � → R
+ × R

d × [0, 1].
However, in order to close the system, Eq. (10) does not suffice. In the following

sectionwe derive a complete set of boundary conditions that allow formoving contact
lines (MCL).

2.2 Boundary Conditions

The system (1)–(3) needs to be complemented with initial and boundary conditions.
We are interested in MCL problems. With a sharp-interface point of view, the con-
tact line is the intersection of the liquid-vapor interface with the solid wall. The
requirement of a contact line moving along the wall renders the derivation of bound-
ary conditions nontrivial. Figure1 depicts a sketch of a compressible droplet impact
scenario with the rebound shock wave dynamics and a moving contact line. We de-
rive appropriate boundary conditions to handle MCL problems with the phase field
system (1)–(3) in this section.

For the incompressible case, so called general Navier boundary conditions
(GNBC) have been derived [16, 17]. Motivated by these works we extend GNBC to
the compressible case.

Because phase field modelling goes well with energy principles we add a wall
free energy term

∫
∂�

g(ϕ) ds to the energy Ẽ from (9) and obtain

E(t) = Ẽ(t) + Ewall(t)

=
∫

�

�(t) f (�(t), ϕ(t),∇ϕ(t)) + 1

2
�(t)|v(t)|2 dx +

∫
∂�

g(ϕ(t)) ds. (12)

Fig. 1 Sketch of a
compressible droplet
impingement on a flat wall
with moving contact line

x1

x2

x3

Ω
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Fig. 2 Illustration of
Young’s equation
σ cos(θs) = σS − σLS.

Here g(ϕ) is the interfacial free energy per unit area at the fluid-solid boundary
depending only on the local composition [17]. The specific choice for g is motivated
by Young’s equation. With a sharp-interface point of view we have

σ cos(θs) = σS − σLS, (13)

with the surface free energy σ of the liquid, the static contact angle θs, surface free
energy σS of the solid, and interfacial free energy σLS between liquid and solid, see
Fig. 2. We prescribe the difference in energy for g, i.e.

σS − σLS = g(0) − g(1). (14)

Then, we choose a smooth interpolation between the values ±	g
2 = ± g(1)−g(0)

2 .
However, it was shown in [16] that the choice of the kind interpolation has no large
impact. Hence, for reasons of consistency we use h as interpolation function. With
(13) we obtain

g(ϕ) ..= −σ cos(θs)

(
h(ϕ) − 1

2

)
. (15)

A variation δϕ of ϕ leads to a variation δE of the energy (12), that is

δE =
∫

�

μδϕ dx −
∫

∂�

L(ϕ)
∂ϕ

∂τ

δϕτ .

Here,

L(ϕ) := γ
∂ϕ

∂n
+ g′(ϕ)

can be interpreted as uncompensated Young stress [16]. The boundary tangential
vector is denoted by τ and n denotes the outer normal. Thus, L(ϕ) = 0 is the Euler–
Lagrange equation at the fluid-solid boundary for minimizing the energy (12) with
respect to the phase field variable. We assume a boundary relaxation dynamics for ϕ

given by

∂tϕ + v · ∇τϕ = −α

�
L(ϕ), (16)
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with a relaxation parameter α > 0. Here∇τ
..= ∇ − (n · ∇)n is the gradient along

the tangential direction. Since v · n = 0, we have v · ∇τϕ = vτ
∂ϕ

∂τ
, and finally we

obtain

∂tϕ + vτ

∂ϕ

∂τ
= −α

�
L(ϕ) on ∂�. (17)

In order to complete the derivation of the GNBC we incorporate a slip velocity
boundary condition. In single phase models, the slip velocity is often taken propor-
tional to the tangential viscous stress. However, in our case we also have to take
the uncompensated Young stress into account. In [16] it is shown from molecular
dynamic simulations that the slip velocity should be taken proportional to the sum of
the tangential viscous stress and the uncompensated Young stress. Hence, with the
slip length β > 0 we prescribe the boundary condition

βvτ + ν(ϕ)
∂vτ

∂n
− L(ϕ)

∂ϕ

∂τ
= 0 on ∂�. (18)

Away from the interface the last term in (18) drops out and we have the classical
Navier-slip condition but in the interface region the additional term acts and allows
for correct contact line movement.

In summary we obtain the following GNBC for the MCL problem

v · n = 0, (19)

βvτ + ν(ϕ)
∂vτ

∂n
− L(ϕ)

∂ϕ

∂τ
= 0, on ∂�. (20)

∂tϕ + vτ

∂ϕ

∂τ
= −α

�
L(ϕ) (21)

The GNBC (19), (20), (21) contain certain subcases. For α → ∞ we obtain the
static contact angle boundary condition and with β → ∞ we end up with no-slip
boundary conditions.

Remark 2 Since currently our dynamic contact angle model is not yet implemented,
wewill adress a validation of theGNBC in futurework. In [13] the analog to (19)–(21)
for an incompressible phase field model is validated with numerical experiments.

2.3 Energy Inequality

For isothermal models thermodynamical consistency means to verify that solutions
of the problem at hand admit an energy inequality. The energy introduced in (12)
consists of the bulk and wall free energies and the kinetic energy. To describe the
total energy the entropic part is missing. That means the entropy production of the
system (1)–(3) is exactly − d

dt E(t). Hence, by assuring that the energy E decreases
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over time, we show increasing entropy and therefore thermodynamical consistency.
For the system (1)–(3) we have the following result.

Theorem 1 (Energy inequality) Let (�, v, ϕ) with values in (0,∞) × R
d × [0, 1]

be a classical solution of (1)–(3) in (0, T ) × � satisfying the boundary conditions
(19)–(21) on (0, T ) × ∂�. Then for all t ∈ (0, T ) the following energy inequality
holds:

d

dt
E(t) = d

dt
(Efree(t) + Ekin(t) + Ewall(t))

= d

dt

(∫
�

� f (�, v, ϕ,∇ϕ) + 1

2
�|v|2 dx +

∫
∂�

g(ϕ) ds

)

= −
∫

�

η

�
μ2 dx −

∫
�

S : ∇v dx −
∫

∂�

β|vτ |2 ds −
∫

∂�

α

�
|L(ϕ)|2 ds ≤ 0. (22)

As expected, we have entropy production due to phase transition, viscosity, wall
slip, and composition relaxation at the solid interface.

Proof In a straightforward way we compute:

d

dt
E(t) = d

dt

(∫
�

� f (�, ϕ, ∇ϕ) + 1

2
�|v|2 dx +

∫
∂�

g(ϕ) ds

)

= d

dt

(∫
�

1

γ
W (ϕ) + �ψ(�, ϕ) + γ

2
|∇ϕ|2 + 1

2
�|v|2 dx +

∫
∂�

g(ϕ) ds

)

=
∫
�

ϕt

(
1

γ
W ′(ϕ) + ∂(�ψ)

∂ϕ
− γ	ϕ

)
+ �t

(
∂(�ψ)

∂�
− 1

2
|v|2

)
+ (�v)t · v dx

+
∫
∂�

ϕt (g
′(ϕ) + γ∇ϕ · n) ds.

Now we use (1)–(3) to replace the time derivatives in the volume integrals. Using
(7) we obtain after basic algebraic manipulations

d

dt
E(t) = −

∫
�

div(�v)
(

∂(�ψ)

∂�
− 1

2
|v|2

)
+ div(�v ⊗ v) · v dx −

∫
�

η

�
μ2 dx

−
∫

�

v · �∇
(

∂(�ψ)

∂�

)
− div(S) · v dx +

∫
∂�

ϕt L(ϕ) ds.

We integrate by parts and have

d

dt
E(t) = −

∫
�

η

�
μ2 dx −

∫
�

S : ∇v dx +
∫

∂�

ϕt L(ϕ) ds

+
∫

∂�

Sv · n − �v
(

∂(�ψ)

∂�
+ 1

2
|v|2

)
· n ds.
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With the boundary conditions (19)–(21) we finally obtain

d

dt
E(t) = −

∫
�

η

�
μ2 dx −

∫
�

S : ∇v dx −
∫

∂�

β|vτ |2 ds −
∫

∂�

α

�
|L(ϕ)|2 ds.

This concludes the proof. �

2.4 Surface Tension

There are different interpretations of surface tension. It can be either viewed as a force
acting in tangential direction of the interface or as excess energy stored in the interface
[10]. In linewith our energy-based derivationwe consider a planar equilibriumprofile
and integrate the excess free energy density over this profile. We assume that static
equilibrium conditions hold, i.e. v = 0. The planar profile is assumed to be parallel
to the x-axis and density, velocity and phase field are independent from t, y, and z.
Then the equilibrium is governed by the solution of the following boundary value
problem on the real line.

Find � = �(x), ϕ = ϕ(x) such that

(
−�ψ − 1

γ
W (ϕ) − γ

2
ϕ2
x + �

∂(�ψ)

∂�

)
x

= −γ (ϕ2
x )x , (23)

1

γ
W ′(ϕ) + ∂(�ψ)

∂ϕ
− γ ϕxx = 0, (24)

and
�(±∞) = �V/L, ϕ(−∞) = 0, ϕ(∞) = 1, ϕx (±∞) = 0. (25)

Multiplying (24) with ϕx and subtracting from (23) yields

∂(�ψ)

∂�
= const. (26)

Multiplying (24) with ϕx , integrating from −∞ to some x ∈ R using (23) and (25)
leads to

1

γ
W (ϕ(x)) + �(x)ψ(�(x), ϕ(x)) − �V(x)ψ(�V(x), 0) = γ

2
ϕ2
x (x). (27)

From (27) we obtain for x → ∞

�Lψ(�L, 1) = �Vψ(�V, 0) =: �ψ. (28)
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As mentioned before, surface tension can be defined by means of excess free
energy. Roughly speaking an excess quantity is the difference of the quantity in the
considered system and in a (sharp-interface) reference system where the bulk values
are maintained up to a dividing interface. The interface position x0 is determined by
vanishing excess density.

In summary we define surface tension σ via the relationship

σ =
∫ x0

−∞
� f (�, 0, ϕ, ϕx ) − �Vψ(�V, 0) dx

+
∫ ∞

x0

� f (�, 0, ϕ, ϕx ) − �Lψ(�L, 1) dx, (29)

where (�, ϕ) is a solution of (23)–(25). Using (27) we have

σ =
∫ x0

−∞
γ ϕ2

x dx +
∫ ∞

x0

γ ϕ2
x + (�Vψ(�V, 0) − �Lψ(�L, 1)) dx . (30)

With (28) it follows

σ =
∫ ∞

−∞
γ ϕ2

x dx = √
2

∫ ϕL

ϕV

√
W (ϕ) + γ (�ψ(�(ϕ), ϕ) − �ψ) dϕ. (31)

In the last step we used the transformation from x to ϕ integration. This is possible
since � can be written in dependence on ϕ: Assuming convex free energies � fL/V

in (4), we have convex �ψ in � and from (26) follows with the implicit function
theorem � = �(ϕ).

One can see that the surface tension is mainly dictated by the double well potential
W (ϕ). There is a contribution due to the equations of state of the different phases,
however in the sharp-interface limit, i.e. γ → 0 this contribution vanishes. This is a
difference to (quasi-)incompressible models like [12]. There is no contribution due
to the equation of states and the surface tension is purely determined by the double
well function. Of course surface tension is a material parameter and given by physics
depending on the fluids and walls considered. Therefore, in simulations the double
well should be scaled accordingly to yield the correct surface tension. However, this
can lead to numerical difficulties. To match typical surface tension values, W has to
be scaled with very small parameters. This in turn demands an even smaller γ and
therefore a high spatial resolution of the computational mesh. For that reason, we
use a moderate scaling in our numerical experiments below.
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3 Numerical Experiments

The phase field system (1)–(3) is of mixed hyperbolic-parabolic type. This com-
plicates the derivation of discretization methods. An appropriate choice are dis-
cretizations based on discontinuous Galerkin methods. In fact even versions which
reproduce the energy dissipation precisely are available [7, 11, 18]. The key idea
behind those schemes is to achieve stabilization through the exact approximation of
the energy, that means the energy inequality (22) should be fullfilled exactly on the
discrete level without introducing numerical dissipation. This helps to prevent in-
crease of energy and possibly associated spurious currents. Additionally, the schemes
are designed such that they preserve the total mass. Motivated by [7, 11] we derived
such a scheme for the system (1)-(3), for details we refer to [15]. In the following we
present three numerical simulations using this scheme. We note that we present aca-
demic examples, i.e. chosen densities, velocity, and regimes of physical parameters
do not match realistic fluids. The reason behind this is that for realistic equation of
states and density values for current numerical schemes there is a slight mismatch be-
tween the density and phase field profile. This leads to a slightly too high percentage
of liquid at very low density in the mixing zone and thus large negative pressures.

3.1 Choice of Parameters

For the equations of state in the bulk phases, we choose stiffened gas equations

� fL/V(�) = αL/V� ln(�) + (βL/V − αL/V)� + γL/V,

with parameters αL/V > 0, βL/V ∈ R, γL/V ∈ R. In order to avoid preferring on of
the phases, we choose the minima of the two free energies to be at the same height.

Due to surface tension the density inside a liquid droplet is slightly higher than
the value which minimizes � fL. The value of the surrounding vapor is slightly lower
than the minimizer of � fV. We choose the initial density profile accordingly. For the
bulk viscosities we set νL = 0.0125 and νV = 0.00125. If not stated otherwise, the
capillary parameter is taken γ = 5 · 10−4 and the mobility η = 10. The polynomial
order of the DG polynomials is 2.

3.2 Merging Droplets

In order to illustrate that phase field models are able to handle topological changes,
we consider the example of two merging droplets. Initially we have no velocity
field, v0 = 0 and look at two kissing droplets. The computational domain is [0, 1] ×
[0, 1]. The droplets are located at (0.39, 0.5) and (0.6, 0.5) with radii 0.08 and 0.12.
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Fig. 3 Merging droplets. Density � at times t = 0, t = 0.2, and t = 2 for η = 10.

Fig. 4 Energy E over time
for droplet merging
simulation with different
values for the mobility η

The parameters for the equations of states are αL = 5, βL = −4, γL = 11, αV =
1.5, βV = 1.8, γV = 0.324. The inital density profile is smeared out with value �L =
2.23 inside and �V = 0.3 outside the droplet. As expected the droplets merge into
one larger droplet. This evolution with η = 10 is depicted in Fig. 3.

We can observe that the model handles topological changes easily. However, the
dynamics of the phase field relaxation are determined by the mobility η which needs
to be chosen according to the problem. This is illustrated in Fig. 4, where the energy
over time for different values of the mobility η is plotted.

The numerical scheme is designed to mimic the energy inequality (22) on the
discrete level. The discrete energy decreases, as expected from (22) the higher the
value of η, the faster the energy dissipation.

3.3 Contact Angle

In this example we address droplet wall interactions. We consider the case of static
contact angle. This means we let the relaxation parameter α in (17) tend to infinity.
In the limit we obtain the static contact angle boundary conditions:

We set the static contact angle θs = 0.1π ≈ 18◦. The computational domain,
density values and EOS parameters are like in Sect. 3.2. As initial condition we use
a droplet sitting on a flat surface with a contact angle of 90◦. The droplet position is
(0.5, 0) with radius 0.2. Since the initial condition is far away from equilibrium we
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Fig. 5 Wetting of smooth wall with (GNBC) boundary conditions for the static limit α → ∞ and
contact angle θs = 0.1π . Density � at t = 0 and t = 0.9

have dynamics on the wall-boundary towards the equilibrium configuration. Thus,
we can observe a wetting dynamic, see Fig. 5.

The wall contribution leads to a large force on the boundary, which renders the
system stiff. Althoughwe have an implicit schemewe increased the interfacewidth to
be able to handle the boundary terms. Hence, we chose in this simulation γ = 10−2.

3.4 Droplet Impingement

With this example we consider droplet impingement. The computational domain
is the same as in Sect. 3.2. As initial condition we use a droplet at (0.5, 0.2) with
radius 0.1. The parameters for the equations of states are αL = 5, βL = −0.8, γL =
5.5, αV = 1.5, βV = 1.8, γV = 0.084. The iniital density profile is smeared out with
value �L = 1.2 inside and �V = 0.3 outside the droplet. The initial velocity inside
the droplet is vy = −1.

Sharp-interface models based on the Navier–Stokes equations in the bulk become
ill-posed if no-slip conditions are imposed. However, solutions of phase field models
come with contact line movement even if no-slip conditions are used. This is due to
the fact that the contact line is regularized and the dynamics are driven by evolution
in the phase field variable rather than advective transport. This can be seen in Fig. 6
where a droplet impact with no-slip conditions is simulated. This is a special case of
the GNBC, with α → ∞ and β → ∞.

It can be seen that the generalized chemical potential μ is low at the contact line
which leads to fast dynamics in the phase field. This leads to a moving contact line.
Additionally, especially in the Schlieren picture, we can see the (smeared out) shock
waves in the vapor phase and also in the liquid phasewhere the shocksmove faster due
to a higher speed of sound in the liquid phase. In order to verify the compressibility of

the droplet we plot the maximum of the local Mach number Mρ f = v̄
√

ρ̄

ρ̄ f
in Fig. 7.

We can observe a peak right after the impact.



A Phase Field Approach to Compressible Droplet Impingement 125

Fig. 6 Droplet impact simulation. Density ρ, chemical potential μ and Schlieren picture at times
t = 0.005, t = 0.13, t = 0.21.

Fig. 7 Droplet impact
simulation. Maximum of the
local Mach number inside
the liquid phase

4 Summary and Conclusions

In this work we presented a phase field approach to model and simulate compress-
ible droplet impingement scenarios. To be precise, we introduced a compressible
Navier–Stokes–Allen–Cahnmodel inSect. 2.1.Wediscussedmodelling aspects,with
emphasis on the energy-based derivation. We highlighted the connection of thermo-
dynamic consistency with an energy inequality. Further, we proved in Theorem 1
that solutions to the system fulfill this inequality. Surface tension can be interpreted
as excess free energy. We quantified the amount of surface tension present in the
model in Sect. 2.4. Moving contact line problems need special attention with respect
to boundary conditions. Hence, physical relevant boundary conditions were derived
as Generalized Navier Boundary Conditions in Sect. 2.2. In Sect. 3 numerical exam-
ples were given. In future work we implement the general, dynamic version of the
GNBC to obtain jetting phenomena in the impact case.
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Numerical Simulation for Drop Impact
on Textured Surfaces

Martina Baggio and Bernhard Weigand

Abstract Superhydrophobic surfaceswith small-scale features have recently gained
interest, because impacting droplets may bounce-off faster with respect to a flat
superhydrophobic surface. For such surfaces the correct numerical prediction of the
impact phenomena is very difficult. Our goal is the numerical study of drop impact
on such surfaces using Free Surface 3D (FS3D), our in-house code for the simulation
of incompressible multi-phase flows. Until recently, FS3D was not able to represent
the interaction of a droplet with a complex textured solid surface. In this work, we
show how we added this feature to the code by implementing the representation of
embedded arbitrary-shaped boundaries using a Cartesian grid. Two approaches were
developed; a preliminary simplified approach and an ultimate, more rigorous one.
We discuss both implementations and we show a comparison of the two approaches
for a test case. The results show that the predictions for impact dynamics of the two
approaches slightly differ. Although, the simplified approach shows only small errors
in mass conservation, it is fundamentally not conservative. With the introduction of
a new approach we were able to improve the conservativeness of our simulations.

1 Introduction

Superhydrophobic surfaces are of great technical interest because of their non-
wetting behavior. Recently, it has been shown that superhydrophobic surfaces with
macro-scale features with dimensions between 10−1 and 100 mm can enhance wa-
ter repellency by reducing the contact time between a water droplet and the solid
surface. In particular, Bird et al. [1] have shown that the contact time for a droplet
impacting on a superhydrophobic surface with a ridge was shorter than the contact
time on a flat superhydrophobic surface because of the changed impact morphology.
Gauthier et al. [2] found a relationship between contact time and number of liquid
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sub-units formed during impact for droplet impacting on a superhydrophobic surface
with a wire. The same trend between contact time and number of liquid sub-units was
reproduced by Regulagadda et al. [3] for a drop impacting on the top and between
superhydrophobic triangular ridges. The majority of literature dealing with contact
time reduction on superhydrophobic surfaces with submillimetric- and millimetric-
scale features consists of experimental studies. Chantelot et al. [4] performed both
experiments and lattice Boltzmann simulations for drop impact on a superhydropho-
bic surface with a small spherical feature. Shen et al. [5] have presented experimental
and numerical results for a drop bouncing on short cones. More numerical research
exists for drop impact on superhydrophobic curved surfaces. Khojasteh et al. [6]
have studied drop impact on hydrophobic and superhydrophobic spheres of different
diameters. They used a Level-Set method for their simulations. Liu et al. [7] studied
experimentally and numerically with a lattice Boltzmann method drop rebound on
a cylindrical surface and analyzed the total momentum distribution in the directions
parallel and perpendicular to the surface curvature. A numerical study on drop im-
pact on hydrophobic and superhydrophobic cylinders at different wettabilites and
impact velocities was also performed by Liu et al. [8]. It is apparent that only very
few numerical research has dealt with drop impact on superhydrophobic surfaces
with small scale features. This manuscript explain the method used in Free Surface
3D (FS3D) for predicting drop impact on textured surfaces. FS3D is a program for
the Direct Numerical Simulation (DNS) of incompressible multi-phase flows, which
was originally created at the Institute of Aerospace Thermodynamics at the Univer-
sity of Stuttgart and it is continuously being improved with new features. Up to now,
FS3D has successfully been used for the prediction of various phenomena such as
evaporation of oscillating droplets [9], drop collisions impact [10], jet break-up [11],
ice formation [12] and sublimation [13]. Rauschenberger et al. [14] implemented
a method to represent the motion of rigid particles immersed in a continuous fluid
phase. However, until recently FS3D could not handle the motion of a fluid inter-
face on a rigid body of arbitrary shape. Therefore, a prerequisite of our study was a
method to represent arbitrary-shaped boundaries in a Cartesian grid. In this paper,
after an illustration of FS3D’s numerical fundamentals, we will discuss two meth-
ods for the implementation of solid boundaries embedded in a Cartesian grid; a first
approximate method and a second more rigorous method inspired by the work of
Popinet [15]. With the first method, which was developed as a simplified approach,
we introduced the necessary data structures and routines that later enabled us to
develop the more rigorous method. After having illustrated the concepts on which
the preliminary approach is based, we will discuss its problematics which led to the
development of the second approach. After this, the second more rigorous method
will be explained. Finally in Sect. 4 we compare results for a water drop impacting
on a superhydrophobic surface with macro-ridges obtained with the two approaches.
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2 Numerical Methods

In this section, the numerical fundamentals of FS3D are illustrated briefly; the work
of Eisenschmidt et al. [16] provides a broader overview. Here we focus on the case of
an incompressible Newtonian fluid of a single liquid phase immersed in a continuous
gas phase. The flow is assumed to be isothermal without phase change. Thus, the
energy equation does not need to be considered. The governing equations of the flow
are then the conservation of mass:

∇ · u = 0 , (1)

and momentum transport:

∂(ρu)

∂t
+ ∇ · (ρu ⊗ u) = −∇p + ∇ · S + ρg + fσ . (2)

The fσ term in Eq. (2) represents the surface tension force per unit volume which is
different from zero only at the interface. This term is modeled with the Continuum
Surface Stress (CSS) model of Lafaurie et al. [17]. A further equation is necessary
for interface tracking. In FS3D, this equation is obtained with the Volume of Fluid
(VOF) method of Hirt and Nichols [18]. The liquid disperse phase is represented by
a colour function χ(x) defined as follows:

χ(x) =
{
1 inside the liquid phase

0 outside the liquid phase
. (3)

It is assumed that each material property of the flow ψ , as for example density ρ or
dynamic viscosity μ, is constant within each phase and is given by

ψ(x) = ψfχ(x) + (1 − χ(x))ψg , (4)

where ψf and ψg are the material property constant values in the liquid and gas
phase, respectively. The equation for interface tracking is obtained by considering
the volume fraction f = (1/�)

∫
�

χ(x)dx, where � is an arbitrary control volume.
The transport equation for f is:

∂f

∂t
= −∇ · (f u) . (5)

In a space discretized domain, fi denotes the liquid volume fractionwithin the compu-
tational cell of index i = ie1 + je2 + ke3. The interface is then located by identifying
those cells in which 0 < fi < 1 and reconstructed with the Piecewise Linear Inter-
face Calculation (PLIC) scheme of Rider and Kothe [19]. Thus, in each interface cell
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the interface is approximated by a plane of direction −n̂ = ∇f / ‖∇f ‖ and position
determined analytically by the values of f .

2.1 FS3D’s Advection Scheme

In FS3D two different methods are implemented for the numerical treatment of
advection, a split and an unsplit scheme. Here the discussion is limited to the split
scheme, since it was used for the presented results in this paper. Let us consider the
advection equation for a generic scalar variable φ:

∂φ

∂t
+ u · ∇φ = 0 , (6)

which can also be written as:

∂φ

∂t
= −∇ · (φu) + φ∇ · u . (7)

The variable φ can be the fluid volume fraction f or a component of momentum
ρu = ρ(ue1 + ve2 + we3). The advection of φ is then carried out in each direction
separately in three different steps (or sweeps) [19, 20]. Time integration of Eq. (7)
is carried out subsequently for each sweep. For example, in e1 direction and for the
first sweep one obtains:

φ∗ − φn

	t
= −∂(φu)

∂x
+ [(1 − β)φn + βφ∗]∂u

∂x
, (8)

where the superscript ∗ indicates an intermediate auxiliary time step. The second
term on the right hand side is the divergence correction [19, 20], and 0 ≤ β ≤ 1 a
coefficient which indicates its implicit or explicit nature [20]. Space discretization
of Eq. (7) leads to the discretized sweep equations. For example, in e1-direction:

�
φ∗

i−φn
i

	t = −Ae1

{ (
Fi+ 1

2 e1(u, φ) − Fi− 1
2 e1(u, φ)

)
+ [

(1 − β)φn
i + βφ∗

i

] (
ui+ 1

2 e1 − ui− 1
2 e1

) }
, (9)

where� = (	xe1 × 	ye2) · 	ze3 = 	x	y	z is a Cartesian control volume, Ae1 =
‖	ye2 × 	ze3‖ = 	y	z its face perpendicular to e1. In Eq. (9), it was assumed that∫
�

φ∇ · udx ≈ φ
∫
�

∇ · udx = φ[	y	z(ui+ 1
2 e1 − ui− 1

2 e1)e1 + 	z	x(vi+ 1
2 e2− vi− 1

2 e2)e2 + 	x	y(wi+ 1
2 e3 − wi− 1

2 e3)e3]. The terms Fi± 1
2 e1(u, φ) in Eq. (9)

denote the numerical fluxes. These are discretized with a second order Godunov
scheme for the case of momentum components [20], whereas the geometrical pro-
cedure indicated by Rider and Kothe [19] is used to calculate the f -fluxes.
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2.2 Solution of the Discretized Poisson Problem

Because the flow is incompressible, an equation for pressure is needed to solve
Eq. (2). This equation is obtained by applying the divergence-free condition of the
velocity field to the time-discretized Eq. (2). One obtains:

∇ · ũ
	t

= ∇2p

ρ
, (10)

where ũ = ũe1 + ṽe2 + w̃e3 is an auxiliary velocity fieldwhere all acceleration terms
of Eq. (2) but the pressure gradient have been added. By integrating Eq. (10) over a
control volume � and using of the Gauss theorem one obtains:

∫
∂�

ũ · n̂
	t

dx =
∫

∂�

∇p · n̂
ρ

dx , (11)

where n̂ denotes the normal vector to the surface ∂�. Discretization of Eq.11 leads
to a system of equations of the form:

Ap = b , (12)

whereA is the systemmatrix with dimensionNcell × Ncell , p and b are the vectors for
the discrete p values and for the right hand side, respectively. Because the pressure
gradient in Eq. (11) is discretized with central finite differences, on each line of
the system corresponding to the control volume of index i all coefficients of A
are zero but for the ones with positions SA = {0,±e1,±e2,±e3} with respect to i.
SA is called the structure of A [21]. Equation (12) is solved by a multigrid solver
embedded into FS3D which is specialized to deal with matrices which have the
structure SA = {0,±e1,±e2,±e3} for each computational cell.

3 Treatment of Embedded Boundaries

3.1 The Simplified Approach

To represent embedded boundaries, an additional volume fraction variable fb is in-
troduced and the boundary surface is also approximated with the PLIC scheme.
Embedded boundaries are then treated as rigid bodies of infinite density. This is ob-
tained by setting to zero all coefficients of Eq. (12), which correspond to momentum
control volumes in which fb > 0. This is equivalent to solving Eq. (12) for the stair-
step approximation of the boundary (see Fig. 1a). As a consequence however, the
velocities on all faces of the vast majority of the boundary-cut cells are set to zero.
One a-posteriori treatment of the velocity field is then necessary to advect the fluid
volume fraction in these cells. Boundary-cut cells with zero velocities on all their
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(a)

(b)

Fig. 1 The simplified approach to embed solid structures in a Cartesian grid. a Stair-step approx-
imation of embedded boundaries. b Merging of critical cells with the neighbor in the direction of
the largest normal component n̂b.

faces are marked as slaves and linked to the neighbor in the direction of the largest
component of n̂b, which becomes their master (see Fig. 1b). This is made possible
by the apposite structured data type boundary cell:

boundary cell

{
type(boundary cell), pointer: master, slave

integer(1:3): i = ie1 + je2 + ke3

which is allocated in each boundary-cut cell and in its neighborhood. The advection
of f is then carried out on the total volume of master-slave pairs using an averaged
velocity field. The averaging of the velocity field after the solution of the Poisson
equation causes an error in mass conservation. Even if those errors are very small in
our simulations, this approach is fundamentally not conservative. With the purpose
of improving conservativeness, we started the development of a new approach.

3.2 The New Approach

As in the simplified approach described in Sect. 3.1, embedded boundaries are rep-
resented by their volume fraction fb and their surface is approximated with the PLIC
scheme. However, instead of being treated as rigid bodies of infinite density, the
boundaries are cut-off from the computational domain. Following the approach of
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Popinet [15], the discretized equations for momentum transport (Eq. 2) and pressure
(Eq. 10) are rewritten in terms of boundary-cut cell volume and faces. The same
treatment is applied to the equations for interface transport (Eq. 5) and mass conser-
vation (Eq. 1). Information about “free” volume and lateral “free” faces, as well as
the orientation nb and position l∗ of the plane approximating the surface must then
be stored for each boundary-cut control volume. The structured data type boundary
cell is then modified as follows:

boundary cell

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

real : l∗b , fb
real(1:3): n̂b
real(1:3,1:2): ab i

type(boundary cell), pointer: master, slave

integer(1:3): i = ie1 + je2 + ke3

where ab i are the ratios of the lateral free to whole faces. For example:

ab i(1, 1) ≡ a−
b e1

= A−
i e1

Ai e1
, ab i(1, 2) ≡ a+

b e1
= A+

i e1

Ai e1
. (13)

where A±
i e1 are the “free” lateral areas at positions i ± 1

2e1. The master and slave
pointer attribute are still needed to avoid problems caused by very small cut-cells,
which we will address in Sect. 3.2.1. Since the grid is staggered, the structured data
type boundary cell has to be allocated in staggered control volumes as well. There-
fore, the new data type boundary cell array, is introduced:

boundary cell array

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
type(boundary cell): bcellc
type(boundary cell): bcellx
type(boundary cell): bcelly
type(boundary cell): bcellz

This data structure serves as container for boundary cell data types, one for each
control volume associated with a position of index i of the computational domain
(one scalar control volume and three staggered control volumes). The boundary cell
array is allocated in each position of the computational domain, in which at least
one of the associated control volumes is intercepted by the boundary surface and
in its neighborhood. Since phase change is not considered here, the treatment of
the advection term is the point of interest for interface tracking (Eq. 5). In the case
of momentum transport (Eq. 2), apart for advection and pressure, other terms have
to be considered: the viscous stresses ∇ · S, the body forces ρg, and the surface
tension force fσ . For the surface tension force no special treatment is needed, since
it only depends on the interface orientation n̂. Body forces and viscous stresses are
calculated by using material properties calculated on boundary-cut cell volumes.
That is
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ψi = min
(∣∣∣∣ fi

1 − fb, i

∣∣∣∣ , 1
)

ψl +
(
1 − min

(∣∣∣∣ fi
1 − fb, i

∣∣∣∣ , 1
))

ψg , (14)

where 0 < fb, i < 1 and ψ is a material property as density ρ or viscosity μ. Apart
for this, the usual FS3D schemes for calculating viscous terms and body forces
are used. This is equivalent to consider computational nodes on whole cell centres
instead of boundary-cut cell centres. Of course, this simplification comes at the cost
of slightly reduced accuracy, but it spares the computational overhead of calculating
the barycentres of boundary-cut cells and the distance between the barycentres to
compute gradients and linear interpolations of needed variables.

3.2.1 Advection in Boundary-Cut Cells

The split advection scheme, illustrated in Sect. 2.1, is also used on boundary-cut
cells. Here Eq. (9) takes the form:

�(1 − fb, i)
φ∗

i−φn
i

	t =
−Ae1

(
a+
b e1

Fi+ 1
2 e1(u, φ) − a−

b e1
Fi− 1

2 e1(u, φ)
)

+[
(1 − β)φn

i + βφ∗
i

](
Vi+ 1

2 e1 − Vi− 1
2 e1

)
, (15)

wherea±
b e1

are the free towhole area ratio at positions i ± 1
2e1 andV denotes an altered

form of the divergence correction. For momentum advection, Vi± 1
2 e1 = Ae1a

±ui± 1
2 e1 ,

for f -advection, V is calculated geometrically and it corresponds to the ratio of the
cut cell volume enclosed by Ae1ui± 1

2 e1	t in upwind control volumes to the time step
	t. FS3D’s usual schemes are used to compute the numerical fluxes. As already
mentioned in Sect. 3.2, this is equivalent to considering computational nodes on
whole cell centres and, consequently, faces. In the case of f -advection, the volume
of arbitrary polyhedra has to be calculated in order to compute the fluxes. For this,
geometrical algorithms similar to these proposed by Pathak and Raessi [22] are used.
The interface position is calculated iteratively until the volume of the polyhedron
representing the liquid phase corresponds to the liquid volume fraction f . As reported
by Popinet [15], the occurrence of very small cells leads to prohibitively small time
steps in order to satisfy the Courant-Friedrichs-Lewy (CFL) condition. Small cells
are then marked as slaves and merged to the neighbor in the direction of the largest
normal component, which becomes their master. Advection is then carried out in the
whole master-slave control volume.

3.2.2 Discretization of the Poisson Problem on Boundary-Cut Cells

Discretization of Eq. (10) on boundary-cut volumes leads to:
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∑
k

(
Aab

∇p

ρ

)
k

= 1

	t

∑
k

(Aabu)k (16)

where k = i ± 1
2e1, 2, 3 are the positions of the faces of the considered scalar control

volume. As already mentioned in Sects. 3.1 and 3.2.1, we consider computational
nodes on whole face centres instead of boundary-cut cell centres. The pressure gradi-
ent (∇p)k can then be discretized by finite differences. Then, the formulation of Eq.
(16) for each control volume leads to a system of equations analogously to Eq. (12).
We observed that the use of whole-face centres may cause inaccurate values of the
velocity field at very small boundary-cut cells. Better accuracy may be achieved by
discretizing the pressure gradient differently, as indicated by Johansen and Colella
[23]. However, this would change the structure of the system matrix A, requiring a
modification of the multigrid solver.

4 Results

In this section, a comparison of the two methods is shown for the case of a water
drop impacting on the valley between two trapezoidal ribs at a Weber numberWe =
(ρRU 2

0 )/σ = 11.2 (see Fig. 2). This setup is analogous to one of the cases studied
by Regulagadda et al. [24]. Because of the symmetry of the problem, only a quarter
of the computational domain was simulated with a total of Nx × Ny × Nz = 192 ×
192 × 192 computational cells. The mesh was refined near the impact area.

In Fig. 3a comparison of the results obtained with the two methods is shown for
different times during impact. It can be noted how the whole velocity field is affected
by the choice of the method. Indeed, a difference is visible even before the drop
touches the ribs. This is probably caused by the different treatment of the discretized
elliptic Poisson equation. The impact occurs at a higher velocity in the new method,
even if both simulations were initialized identically. Indeed, in Fig. 3b the droplet
rim is thinner and faster and reaches a larger extension in the direction parallel to the
ribs. The major differences however take place during the retraction phase. In both
methods, the droplet assumes a three-lobed shapewhile retracting; in the approximate
method however, these liquid sub-units merge just before take-off. The different

Fig. 2 Setup of the investigated case, which is analogous to one used in the experiments of Regu-
lagadda et al. [24]
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Fig. 3 Simulation results for drop impact on the valley between two trapezoidal ribs atWe = 11.2.
a Approximate approach. b New approach
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Fig. 4 Mass conservation error over time

impact morphology also explains the difference in contact time prediction. Indeed,
according to Richard [25], the contact time t0 on a flat superhydrophobic surface
does not depend on impact velocity. Instead, it scales with the inertial-capillary time
scale τ = √

ρR3/σ . For the case of a droplet impacting on a wire, Gauthier et al.
[2] found that the contact time tc was approximately t0/

√
Nl , where Nl denotes the

number of liquid sub-units formed during impact. The same trend was confirmed by
Regulagadda et al. [3] for a drop impacting on the top and between triangular ribs.
For the new approach, tc/t0 is closer to 1/

√
(3), as expected from the number of

liquid sub-units. The formation of three lobes was also observed by Regulagadda et
al. for impact on the valley between two triangular ribs at higher impact velocities.
Both methods however underestimate the contact time for this case, which is close
to 2τ = 13.316 ms, as can be seen from a further publication from the same authors
[24]. For both cases, we observe an un-physical rupture of the lamella at t ≈ 6
ms, which in the new approach comes together with the ejection of a very small
secondary droplet. This occurs probably because the grid used for the comparison
is too large to capture the thin film on the top of the solid surface. With the new
method, a significant improvement in mass conservation was obtained. In Fig. 4 the
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mass errorEm = (m(t) − m0)/m0 is shown for both simulations as a function of time.
The sudden step in the mass error for the new approach at t ≈ 9.2 ms is due to the
ejection of the satellite droplet. It can be seen that the error inmass conservation could
be reduced of about a factor of 3.We have indeedEm, ∞, old = ‖(m(t) − m0)/m0‖∞ =
3.27 × 10−4 for the approximate approach and Em, ∞, new = 1.01 × 10−4 for the new
one. This is a remarkable achievement considering the fact that the contact time
between liquid and ribs is short. Better performances are expected for cases in which
the interaction between droplet and solid structures has a longer duration. Further
investigation on the causes of the residual error in mass conservation is planned.

5 Conclusions

Two methods to embed boundaries of arbitrary shape in a Cartesian grid have been
presented, one approximate and a more rigorous one. A comparison between the
two approaches for the case of a droplet impacting between two trapezoidal ribs has
shown a considerable difference in impact dynamics. The cause of this discrepancy
still needs to be clarified, but we expect it to be due to the different treatment of the
discretized Poisson problem. Even if the newer approach has shown a slightly larger
discrepancy for the contact time prediction for the case under consideration, further
research is needed to assess its accuracy for other surface geometries and impact
velocities. On the other hand, a remarkable reduction of the mass conservation error
was obtained. Small error in mass conservation are still present however, the cause
of which will be addressed by further research.
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Upscaling of Coupled Free-Flow
and Porous-Medium-Flow Processes

Sina Ackermann, Rainer Helmig and Stephanie Fest-Santini

Abstract The behavior of a coupled free-flow/porous-medium-flow system strongly
depends on the pore-scale processes happening at the shared interface. Under certain
conditions, drops form at this interface and affect the exchange of mass, momentum,
and energy. The mutual influence of droplet-related pore-scale processes and the
surrounding’s macro-scale flow behavior poses a challenge for both the conceptual
and the numerical model. The aim of this work is to develop a computationally
efficient model concept, which takes the processes at both scales into account. We
use a lower-dimensional interface domain to embed the drop dynamics into a coupled
macro-scale model. In this domain, the droplet-related processes are modeled with
separate balance equations. Coupling conditions take the fluxes from and to the
macro-scale flow regimes into account. First results of a simple test case show that
drop formation, growth, and detachment can be represented with this multi-scale
three-domain approach.

1 Introduction

Drops at the interface between a porous medium and an adjacent free flow influ-
ence flow and transport processes in many technical applications and environmental
scenarios. Fluxes across the common interface transfer mass, momentum, and en-
ergy between the two flow regimes. Pore-scale processes at the interface drive this
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exchange and therefore influence the macroscopic flow behavior in both adjacent
flow regimes. In a two-phase flow in a porous medium, the liquid phase reaches the
interface to a gaseous single-phase free flow under certain conditions. Then, the liq-
uid either evaporates immediately, or it forms interfacial drops. These drops reduce
the available area for the gas exchange as well as the available cross-section for the
free flow. In addition, they might accelerate the evaporation from the porous medium
due to a larger liquid surface area. Besides formation and growth, processes such as
spreading, merging, detaching or shrinking can impact the exchange processes and
therefore the macroscopic flow behavior in the coupled system.

Modeling such systems is challenging due to the different temporal and spatial
scales. REV-scale variables and balance equations are sufficiently accurate and com-
putationally efficient to describe the macroscopic flow behavior in free flow and flow
in porous media for real-life scenarios. However, droplet-related processes require
a precise description on the pore-scale and a higher resolution in numerical simula-
tions compared to the macroscopic flow regimes. The aim of this work is to develop a
multi-scale, multi-physics model, which combines the advantages of model concepts
on both scales to understand and predict the influence of droplet-related processes
on the macroscopic behavior in a coupled free-flow/porous-medium-flow system.
This model concept could help to design and improve technical applications, such
as water management in fuel cells or heat management in turbines.

A two-domain approach to describe a coupled system with compositional flow
under non-isothermal conditions is presented in [1]. The authors assume that all liquid
that reaches the common interface evaporates immediately into the gaseous free flow.
Based on this approach, a coupled macro-scale model, which includes the influence
of interfacial drops is developed in [2]. The drop-dependent coupling concept is
derived at the pore-scale. It extends the simple coupling concept by allowing the
liquid phase to enter the thin interface region and form drops on the porous surface.
This concept allows to model drop formation, growth and detachment depending on
the conditions in the surrounding flow regimes. A simple homogenization concept
transfers the pore-scale information to the REV-scale. A mortar method is applied
to compute the drop volume in addition to the conventional primary variables. This
approach limits the model’s flexibility and does not allow to take lateral fluxes along
the interface into account.

We extend the model concept presented in [2] by applying a three-domain ap-
proach to gain more flexibility in modeling drop dynamics. We compute all droplet-
related processes in an additional lower-dimensional interface domain [3], which is
plugged in between the free flow and the porous medium. This separate interface do-
main allows to take lateral fluxes along the porous surface into account. In addition,
the infiltration of condensed drops into the porous medium can be represented. For
a first analysis of the multi-scale model, only vertical fluxes across the interface are
taken into account with the aim to obtain comparable results to the work in [2].
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We present the model concepts for free flow (Sect. 2.1) and flow in porous media
(Sect. 2.2) at the beginning of the following section. Then, we introduce our drop
model concept (Sect. 2.3) and the adapted three-domain coupling concept (Sect. 2.4).
In Sect. 3, we show the results of a simple test case. Section4 contains a summary,
conclusion and outlook.

2 Model and Coupling Concept

The focus of this investigation is on drops which form at the mutual interface under
certain conditions. The underlyingmodel concept is presented in the following.More
details on the numerical aspects are given in [4].

Figure1 shows an exemplary model domain �, which consists of the two non-
overlapping sub-domains �ff and �pm. The sub-domains are separated by the inter-
face � such that �̄ = �̄ff ∪ �̄pm, �ff ∩ �pm = ∅ and �̄ff ∩ �̄pm = �. The interface
� is of one dimension less than �ff and �pm. The description of the droplet-related
processes is derived in the full-dimensional interface domain�if first. Then, a simple
homogenization technique is applied to reduce the dimension such that the descrip-
tion can be used for the lower-dimensional interface domain �.

We assume a non-isothermal system. Each phase consists of the components
water and air, which mix according to binary diffusion. Table1 lists the common
variables. Assumptions, balance equations and primary variables for the individual
flow regimes are given in Sects. 2.1, 2.2 and 2.3. The coupling concept is presented
in Sect. 2.4. An overview of the discretization techniques is given in Sect. 2.5.

Fig. 1 The coupled
three-domain system with
the lower-dimensional
interface � and the
corresponding
full-dimensional domain �if

Table 1 List of symbols

γ surface tension � porosity K permeability tensor

θ contact angle cs solid heat capacity k relative permeability

λ heat conductivity D diffusion coefficient n unit outer normal vector

μ dynamic viscosity g gravity vector S saturation

� density h enthalpy u internal energy
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2.1 Free Flow

We consider a single-phase gaseous free flow in �ff. The gas is assumed to be a
compressible Newtonian fluid, flowing under laminar conditions. The four balance
equations given in Table2 are solved to obtain the gas pressure pg , the mass fraction
of water in air X H2O

g , the gas velocity vg and the temperature T .

2.2 Flow in Porous Media

In the porous medium �pm, a two-phase flow through a solid, rigid, homogeneous
matrix is considered. In our case, the liquid phase is considered to be the non-wetting
phase. Local thermodynamic equilibrium between all phases is assumed.We suppose
slow flow velocities (Re < 1) and therefore apply Darcy’s law for the momentum
balance. For the mass transport, dispersion is neglected. Instead of resolving the
porous medium on the pore-scale, we choose an REV-scale approach to model the
flow and transport processes. The balance equations in Table3 are solved for the gas
pressure pg , the mass fraction of water vapor in gas X H2O

g and the temperature T .
Applying Darcy’s law allows to compute the phase velocities as secondary variables
and reduces the number of partial differential equations. The closure relations in
Table4 further reduce the number of unknowns to fit the number of equations.

Table 2 Balance equations for the free flow

Total mass
∂�g

∂t
+ ∇ · (�gvg) = qg

Momentum
∂(�gvg)

∂t
+ ∇ ·

(
�gvgvTg

)
= −∇ · (

pgI
) + ∇ ·

(
μg

(
∇vg + ∇vTg

))
+ �gg

Water mass
∂(�gX w

g )

∂t
+ ∇ ·

(
�gvgX w

g − Dw
g �g∇Xw

g

)
= qwg

Energy
∂(�gug)

∂t
+ ∇ · (

�gvghg − λg∇T
) = qT

Table 3 Balance equations for flow in porous media

Mass
∑

α∈{l,g}
�

∂(�αSα)

∂t
+ ∇ ·

(
∑

α∈{l,g}
�αvα

)
= ∑

α∈{l,g}
qα

Momentum vα = −K
krα
μα

(∇pα − �gg
)

Water mass
∑

α∈{l,g}
�

∂(�αXw
α Sα)

∂t
+ ∇ ·

(
∑

α∈{l,g}
(�αvαXw

α − D
w,pm
α �α∇Xw

α )

)
= ∑

α∈{l,g}
qwα

Energy
∑

α∈{l,g}
�

∂(�αuαSα)

∂t
+ (1 − �)

∂(�scsT )

∂t
+ ∇ ·

(
∑

α∈{l,g}
�αvαhα − λpm∇T

)
= qT
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Table 4 Closure relations for flow in porous media

Saturations Sg + Sl = 1 Mole fractions xal = pag
Ha
gl

(Henry’s law)

Mass fractions Xw
α + X a

α = xwα + xaα = 1 Mole fractions xwg = pwsat, Kelvin
pg

Capillary
pressure

pc = pn − pw

2.3 Interfacial Drops

Drops forming at the interface between a single-phase gaseous free flow and a two-
phase flow in a porous medium pose a challenge to REV-scale coupling concepts.
Due to a pressure gradient in the respective direction, the liquid phase might actually
reach the common interface. If the liquid pressure in the porous medium is larger
than the pore entry pressure and the gas pressure in the free flow, the liquid phase
enters the surface pores:

ppml ≥ pffg + 2γlg cos θ

rpore
. (1)

If the liquid phase is the non-wetting phase with respect to the porous medium,
drops form on top of the interface in a region which is actually a part of the free flow.
However, with the assumption of a single-phase gaseous free flow it is impossible to
take liquid drops on the porous surface into account.
Therefore,we introduce an additional interface domain to the coupledmodel concept,
where both phases can be present. Within this domain, all droplet-related processes
are described with a separate set of equations. These equations take parameters into
accountwhich depend on themacroscopic flow regimes on both sides of the interface.
In return, the behavior of the drops within the interface influences the macroscopic
flow regimes through the exchange of mass, momentum, and energy.
In the following, a full-dimensional description of the droplet-related processes in
�if is presented. With the simple homogenization technique from [2], we obtain a
lower-dimensional description of the interface which is then valid on the interface �

as given in Fig. 1.
The full-dimensional interface domain consists of a thin layer of the porous

medium and a thin layer of the free flow as depicted in Fig. 1. The pores are as-
sumed to be vertical, parallel and constant in diameter. They are connected to the
pores in the porous medium below. If the formation condition in (1) is fulfilled, the
pore is assumed to be filled immediately, such that a liquid cap of half-spherical
shape with the radius rpore forms on the pore as shown in Fig. 2.

In this first approach, the drops are assumed to be non-deforming and symmetrical
as illustrated in Fig. 3. They have a circular contact line and a constant contact angle
towards the solid. Regardless of these simplifications, a drag force Fdrag due to the
free flowing fluid acts on the drops. This force is balanced by the retention force Fret
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Fig. 2 If the drop formation
condition in (1) is fulfilled,
the pore is assumed to be
liquid-filled and immediately
occupied by a drop of
Vdrop = 2

3πr3pore

Fig. 3 Simplified spherical
drops with constant contact
angle. If the drag force
Fdrag > Fret, the drop
detaches

which depends on the drop’s contact angle, radius and surface tension. If the drag
force exceeds the retention force, the drop detaches and is carried away by the free
flow. Both forces are computed as given in [2].

Instead of resolving all pores on the interface, a simple homogenization approach
derived in [2] is applied. The interfacial pores are grouped in pore classes with a
mean pore radius. In a homogeneous porous medium, the same pore size distribution
holds in each control volume. All pores within a certain area �drop are assumed to
contribute to one global drop. Evaluating the drop formation condition (1) and sum-
ming up all of the resulting drop volumes leads to the global drop’s initial volume.
With geometrical relations as presented in [2], the drop-covered fraction adrop of the
drop domain �drop can be determined. This area fraction is applied to the coupling
fluxes as explained in Sect. 2.4.

A separate set of equations becomes necessary to describe the droplet-related
processes within the interface domain. The toal mass balance is given as

∑
α∈{l,g}

�
∂(�αSα)

∂t
+ ∇ ·

⎛
⎝ ∑

α∈{l,g}
�αvα

⎞
⎠ = qif,ff + qif,pm + qdetach . (2)

The first two source terms are equal to the coupling fluxes in (6) and (7) in the
following section. The mass of the detached drops is represented in the source term
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qif,detached =
{
0 drop has not detached
�l Vdrop

�t drop has detached.
(3)

For the two components κ ∈ {a,w}, the following component mass balance holds:

∑
α∈{l,g}

�
∂(�αX κ

α Sα)

∂t
+ ∇ ·

⎛
⎝ ∑

α∈{l,g}
(�αvαX

κ
α − Dκ,pm

α �α∇X κ
α )

⎞
⎠

= qif,ff,κ + qif,pm,κ + qdetach,κ . (4)

The source terms are defined corresponding to (3), (6) and (7). The same holds for the
energy balance equation under the assumption of local thermodynamic equilibrium:

∑
α∈{l,g}

�
∂(�αuαSα)

∂t
+(1 − �)

∂(�scsT )

∂t
+ ∇ ·

⎛
⎝ ∑

α∈{l,g}
�αvαhα − λpm∇T

⎞
⎠

= qif,ff,T + qif,pm,T + qdetach,T . (5)

These equations are valid in the interface domain �. In a first step, we neglect
horizontal flow along the interface for simplicity. Therefore, no fluxes occur across
the boundaries of the lower-dimensional interface domain and the balance equations
contain only storage and source terms.

2.4 Coupling Concept

The exchange of mass, momentum and energy between the free flow and the porous
medium happens due to convective, diffusive and conductive fluxes across the com-
mon interface. These fluxes have been described in a simple coupling concept for
compositional flows in [1, 5]. The simple coupling concept is valid for a two-domain
approach with a single-phase gaseous free flow and a two-phase flow in a porous
medium. The interface cannot store mass or energy, since it is devoid of thermody-
namic properties. In the following, we extend the simple coupling concept for our
three-domain approach and take the influence of surface drops into account.

For the three-domain approach, two sets of coupling conditions becomenecessary:
one for the exchange between the free flow and the interface domain, and one for
the porous medium and the interface domain. Due to the first simplification that only
vertical fluxes occur, only an area of�A� is available for exchange on both the upper
and lower boundary of the interface domain. Between the interface domain and the
porous medium, both gas and liquid fluxes can occur. Here, three cases need to be
distinguished: gas flux through gas-filled pores, direct evaporation from liquid-filled
pores and drop formation from liquid-filled pores. We neglect the second case for
simplicity and therefore scale the gas fluxes with ag and the liquid fluxes with adrop.
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Therefore, the total mass flux between the porous medium and the interface domain
is multiplied by these fractions to account for the available interface area:

qpm,if = [(�gvg) · n]upagA� + [(�lvl) · n]upadropA� , (6)

where �α and vα are taken from the upstream domain up ∈ {pm, if}. Between free
flow and interface domain, only the gas phase can be exchanged across the area
�A� = (ag + adrop)A�:

qff,if = [(�gvg) · n]up(ag + adrop)A� , (7)

with the upstream domain up ∈ {ff, if}.
The same scaling applies to all other fluxes across the interface (see [1]). The set
of equations for the local thermodynamic equilibrium holds in the three-domain as
well and can be applied for the free-flow/interface and interface/porous-medium local
thermodynamic equilibrium respectively. In contrast to the simple coupling concept,
the interface can now store mass and energy within the drops.

2.5 Numerical Model

The three-domain approach is implemented in DuMux [6], a free and open-source
simulator for flowand transport processes in porousmedia and free flow, by extending
the available coupled two-domainmodel for free-flow/porous-medium-flow systems.
A staggered grid discretization is applied for the free flow, while a cell-centered
finite volume approach is chosen for both the interface and the porous medium. The
temporal discretization is done with an implicit Euler method. The respective code
to reproduce the following results is available under https://git.iws.uni-stuttgart.de/
dumux-pub/Ackermann2019a.

3 Results and Discussion

The new interface concept is tested with a simple two-dimensional set-up as shown
in Fig. 4. The free flow domain exceeds the porous medium domain to stabilize the
flow field before interacting with the interface and porous medium. We set an inflow
boundary condition on the left boundary and an outflow boundary condition on the
right boundary. The upper boundary is a non-permeable wall. The porous medium’s
left and right boundaries are no-flow boundaries. On the lower boundary, a gas
pressure that is slightly higher than the initial pressure within the porous medium is
set to provoke a pressure gradient towards the interface.
Figure 4 shows the gas pressure in the whole model domain at t = 15s. In addition,
the gas velocity in the free flow is depicted by gray arrows to indicate the flow field.

https://git.iws.uni-stuttgart.de/dumux-pub/Ackermann2019a
https://git.iws.uni-stuttgart.de/dumux-pub/Ackermann2019a
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Fig. 4 Gas pressure in the free flow (upper half) and porous medium (lower half). The arrows
indicate the gas velocity in the free flow

Fig. 5 Evolution of drop volume over time in one interface grid cell

The interface domain� cannot be seen here due to its lower-dimensional appearance.
We analyse the interface processes by looking at the evolution of a drop over time.
Figure 5 illustrates the drop volume in an interface grid cell in the center. Drop
formation, growth and detachment for several drops can be observed.

As expected, the drops grow in several time steps as soon as the formation con-
dition is fulfilled, and are detached when the drag force exceeds the retention force
due to the increasing drop volume and radius. The results agree qualitatively with
the findings in [2].
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4 Conclusions

Including the influence of drops on the interface between a free flow and a flow in a
porous medium poses a challenge for REV-scale model concepts. The three-domain
approach developed in this work is able to represent simple drop dynamics such as
formation, growth and detachment within a coupled macroscopic model.

Naturally, some pore-scale information is lost due to the upscaling and homog-
enization approach. However, the presented approach is computationally efficient
while taking pore-scale processes into account.

The presented model is a first step towards a multi-scale approach to model the
complex droplet-related processes at the interface between a free flow and a flow
in a porous medium. With the assumption that only vertical fluxes take place, drop
formation, growth and detachment can be taken into account. Dynamic processes
such as spreading, merging, sliding, rolling and film flow along the porous surface
are neglected. An extension to consider such lateral fluxes is conceptually developed
and will be implemented. Additionally, a comparison with experiments to validate
the concept is planned.
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A Locally-Refined Locally-Conservative
Quadtree Finite-Volume Staggered-Grid
Scheme

Melanie Lipp and Rainer Helmig

Abstract Simulating flow between porous media and adjacent free-flow regions
in sufficient detail becomes computationally expensive when complex flow profiles
develop. This is e.g. the case if a variety of strongly coupled physical processes is
involved or if the surface between the two flow domains is rough. However, it is
often sufficient to only use a fine grid resolution in regions of interest. Here, we
present a locally-refined quadtree finite-volume staggered-grid scheme for the two-
dimensional Navier-Stokes equations. Local mass and momentum conservation at
lines, at which the sides of two finer control volumes touch the side of one coarser
control volume, is ensured by defining the fluxes at the sides of coarser control
volumes to be equal to the negative sum of fluxes at the two sides of finer control
volumes. Themethod has been successfully applied to locally resolve the flow details
in the vicinity of dividing streamlines in a fluid-flow test case. Being developed for
the fully-coupled fully-implicit solution of the Navier-Stokes equations, this locally-
refined grid scheme is a good basis for increasing the efficiency of simulations of
free flow, which is strongly coupled to flow in adjacent domains.

1 Introduction

Flow and transport processes between porous media and adjacent free-flow regions
are significant for a variety of industrial [9], environmental [13] andmedical [6] appli-
cations.Multiple strongly coupled physical processes and non-flat surface geometries
lead to a complex profile in such free flows, such that a small spatial resolution is
required to capture the main flow features. The urgency of a small spatial resolution
in the free-flow domain differs locally. In the following, three examples are given, in
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(a) Drops (blue) com-
ing out of pores at an
interface.

(b) Rough surface. (c) Viscous sublayer.
Dashes: boundary layer.
Arrows: velocities.

(d) Pore-network model
(blue).

Fig. 1 This figure illustrates situations in which local grid refinement is helpful within the context
of porous-medium-flow free-flow coupling. The free-flow domain is represented in light grey, the
porous-medium-flow domain in dark grey

which it is essential for fast and accurate simulations to locally refine the free-flow
domain.

First, local refinement is required to capture large vortices developing after ob-
stacles, in the context of flow over droplets developing at the free-flow porous-
medium-flow interface (see Chap. of Sina Ackermann and Fig. 1a) and in the context
of surface roughness (see Fig. 1b). Those vortices change the exchange processes
across a porous-medium surface noticeably. Second, in the context of turbulent flow
the viscous sublayer (see Fig. 1c) is extremely small. When using wall functions, it
is required that the grid cells nearest to the wall are of small extension normal to the
wall. For a rough wall, a grading of the grid is not sufficient to refine the interface
region. Local refinement is required if overall refinement should be avoided. Addi-
tionally, for a flat wall, grading has the unfavorable effect of high-aspect-ratio grid
cells. This can be avoided by local refinement. The viscous sublayer has a crucial ef-
fect on the local processes, e.g. evaporation processes, at a fluid-fluid-solid interface.
Third, regions where thin pore throats of a pore network (see Fig. 1d) are in contact
with a free flow should be locally resolved according to the pore size. Pore-network
models are one way to describe the porous medium adjacent to a free-flow domain
in detail [25].

To avoid oscillations of pressure and to ensure local conservation, the Navier-
Stokes equations, which are used to model the free flow, are discretized using a
finite-volume marker-and-cell (MAC) [11] approach, in which the control volumes
for the mass balance and the control volumes for the components of the momentum
balance build grids which are staggered with respect to each other, see Fig. 2a. The
primary variable pressure p is situated on the cell centers (shown as black squares in
Fig. 2), while the primary variable velocity u = (u, v)ᵀ is located on the cell faces
(see arrows in Fig. 2).Within the finite-volume scheme, themass balance is integrated
over the grid cells (see red squares) and the x/y-component of themomentumbalance
is integrated over a control volumes shifted in x/y-direction with respect to the grid
cells (see green/blue rectangles).
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(a) Not refined. (b) Locally-refined example geometry.

Fig. 2 This sketch shows the control volumes and degrees of freedom in a not refined (left side)
or refined (right side) non-graded staggered grid

One possibility to achieve local refinement of staggered grids is to use quadrilat-
eral staggered grids as in [12]. However, this approach is less flexible than quadtree
grids with hanging nodes. Another alternative is a generalization of theMAC scheme
to non-rectangular meshes, as given for the Stokes equations in [4, 21]. The disad-
vantage of general meshes is their larger memory consumption when compared to
quadtree data structures.

As to quadtree schemes, there are some approaches in the finite-difference context,
e.g. [5, 10, 17, 20, 22] for staggered grids and [3] for hybrid staggered non-staggered
grids, and in the finite-element context, e.g. [2]. However, they do not fulfill local
mass conservation. In the finite-volume context, one approach is to use quadtree grids
for the mass-balance control volumes, and define corresponding Voronoi meshes of
non-rectangular momentum-balance control volumes [7]. A more commonly used
approach, see e.g. [19, 23, 24], is to define corresponding rectangular momentum-
balance control volumes, forwhichhangingnodes occur. In contrast to the approaches
[19, 23, 24], which solve the Navier-Stokes equations by pressure-correction meth-
ods, this chapter presents a quadtree finite-volume staggered-grid scheme for a fully-
coupled solution method of the Navier-Stokes equations. This is required for the
intended application to free-flow porous-medium-flow coupling, in which realistic
physical problems currently have to be solved by a monolithic approach.

Section2 presents a locally-conservative discretization of theNavier-Stokes equa-
tions on a locally-refined quadtree grid. This discretization is applied to a stationary
flow test case in Sect. 3, before conclusions are drawn in Sect. 4.

2 Methods

In this section, the numerical method is introduced, including details on stencils,
interpolation factors and local conservation. The first subsection shows the equations
which are solved within this work.
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2.1 Governing Equations

The free flow ismodeled by theNavier-Stokes equations for laminar, single (gaseous)
phase, one-component, isothermal flow assuming aNewtonian fluid. Themomentum
balance reads

∂u
∂t

+ ∇ · (uuᵀ) − μ

�
∇ · (∇u + ∇uᵀ) + 1

�
∇p − g − qu = 0 (1)

with velocity u, time t, dynamic viscosity μ, density �, pressure p, gravity g and
momentum sources/sinks qu. The mass balance is formulated as

∇ · u − qp = 0 (2)

with mass sources/sinks qp.

2.2 Discretization Concept

The equations are discretized on a staggered grid, see Fig. 2. The (possibly-graded)
staggered grid is locally refined in this work by a quadtree structure with hanging
nodes (h-refinement). In the unrefined case, one velocity degree of freedom is located
on each face of the grid cells. In the refined case, coarse and fine cells touch, rising the
question if velocity unknowns should exist in the center of the coarse face, see e.g.
[24], or in the centers of the fine faces, see e.g. [3, 10]. The latter option is chosen.
Furthermore, cells are divided into four equally-sized parts upon refinement.

A variety of geometries occur in locally-refined staggered grids. For instance,
a coarse cell can be surrounded by zero, one, two, three or four refined cells. For
simplicity, direct as well as diagonal neighbors are restricted to differ at most by
one refinement level in this work. Grids from automatic refinement criteria (future
work) have to be manipulated in order to fulfill the geometry rules. For this, the
refined regions have to possibly be extended, the coarsened regions have to possibly
be shrinked, as described e.g. in [18].

Control volumes In a refined grid, see Fig. 2b, three types of control volumes occur:
coarse ones (big squares), fine ones (small squares) and transitional ones (rectangles).

In the case of Dirichlet boundary conditions for velocity, the velocities at the
boundary are known, and for this reason they are no degree of freedom. The balance
equations are only integrated over the fully-colored control volumes. For outflow
boundary conditions (fixed pressures at the boundaries, zero velocity gradients nor-
mal to the boundaries), velocities are unknowns and balance equations are addition-
ally integrated over the lightly colored control volumes:
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Fig. 3 Virtual stencils are defined for any control volume

Virtual stencils To ease the discretization of the Navier-Stokes equations, virtual
stencils are introduced, see Fig. 3. They consist of real nodes, at which there exist
degrees of freedom or boundary values, and virtual nodes, at which there exist nei-
ther degrees of freedom nor boundary values. For example, for the hatched control
volumes in Fig. 2b, the nodes pl , vld and ul are virtual. In cases, in which the dotted
rectangles in Fig. 3a are not grid cells, it is possible to interpret them as ghost cells.

The timederivative is discretizedby aBackwardEulermethod, the advective terms
are fully upwinded, and the diffusive terms are approximated by central differences.
The spatial discretization of the x-component of the momentum balance is given by

I� + I�l + I�r + I�lu + I�ru + I�ld + I�rd = 0 (3)
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with the integrals

I� = �xl + �xr

2
�yc

∂uc

∂t
+ �xl + �xr

2
�yc

(−gx − qx,u
)

(4)

I�l/r = sgn(nl/r)

(

�yc
(
ul/r, uc

)

up

ul/r + uc

2
− 2

μ

�
�yc

uc/r − ul/c

�xl/r
+ �yc

�
pl/r

)

(5)

I�lu/ru/ld/rd = sgn(nu/u/d/d )

(
�xl/r/l/r

2

(
uc, uu/u/d/d

)

up
vlu/ru/ld/rd (6)

−μ

�

�xl/r/l/r

2

⎛

⎝vru/ru/rd/rd − vlu/lu/ld/ld

�xl+�xr
2

+ uu/u/c/c − uc/c/d/d

�yc+�yu/u/d/d

2

⎞

⎠
)

(7)

with
sgn(nl) = −1, sgn(nr) = 1, sgn(nu) = 1, sgn(nd ) = −1 (8)

over the area � and over the boundary segments �i, i = l, r, lu, ru, ld , rd of the control
volume. In the compact notations, the slash is used to define several integrals simultaneously,
e.g. to define I�l and I�r by I�l/r . The expressions (·)up denote an upwind decision, and the
velocities and lengths are defined in Fig. 3a. Integrals for the y-component of the momentum
balance are defined analogously. The discretization of the mass balance reads

I� + I�l + I�r + I�u + I�d = 0 (9)

with
I�l/r = sgn

(
nl/r

)
�yul/r, I�u/d = sgn

(
nu/d

)
�xuu/d , I� = −�x�yqp (10)

with virtual mass-balance-stencil components illustrated in Fig. 3b and signs as in Eq. (8).
The virtual stencil in Fig. 3a defines positions of (possibly virtual) velocities ul , ur ,

vlu, vru, vld , vrd in the surrounding of uc. The positions of the parallel velocities uu =
u (x, y + (�yc + �yu) /2) and ud = u (x, y − (�yc + �yd ) /2) in the case of a control vol-
ume around u(x, y), in contrast, depend on the surrounding geometry, as the distances�yu and
�yd are not represented within the control volume. The algorithm, which is used to choose the
positions of those parallel velocities, is explained exemplarily for u (x, y + (�yc + �yu) /2)
in Fig. 3c.

At boundaries, three special stencils occur, which are briefly discussed for control volumes
around velocities u in the following. If there is a boundary with a Dirichlet velocity condition
instead of an upper(u)/lower(d ) neighboring cells, one sets�xu/d = 0 and uu/d = uboundary.
If there is a boundary with an outflow condition instead of an upper(u)/lower(d ) neighboring
cells, one sets uu/d = uc. For control volumes at outflow boundaries (at the right/left of the
physical domain), which only extend to one side of the unknown boundary velocity uc, one first
sets pl/r = pboundary, vld/rd = vrd/ld , vlu/ru = vru/lu and ul/r = uc and then �xl/r = 0.
The variable pboundary denotes the Dirichlet pressure value at the boundary.

Degrees of freedom contributing to virtual nodesAny velocity or pressure value at a virtual
node is calculated from a bilinear interpolation from one to four values, as also e.g. in [19,
20, 24]. Figure4 shows, for all possible geometries, which degrees of freedom are chosen
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Fig. 4 Degrees of freedom (blue) contribute to the virtual nodes (red). Some geometries focus on
cell centered primary variables (squares), some on face-centered ones (arrows)

to interpolate from. Any geometry should be considered representative up to reflection and
rotation.

Interpolation factors Interpolations from one value are given the prefactor one. Otherwise,
the interpolate �(x, y) is built from two to four values, which can either be located at two
different x-values x1 and x2 and one to three y-values or at three different x-values and two
different y-values y1 and y2 (see Fig. 4, considering reflection and rotation). In the former
case, the interpolate is formulated as

�(x, y) = (x2 − x)

(x2 − x) − (x1 − x)
�(x1, y) + (x1 − x)

(x1 − x) − (x2 − x)
�(x2, y) (11)

with �(xi, y), i = 1, 2 either being degrees of freedom or being interpolates

�(xi, y) = (y2 − y)

(y2 − y) − (y1 − y)
�(xi, y1) + (y1 − y)

(y1 − y) − (y2 − y)
�(xi, y2) (12)

from degrees of freedom �(xi, y1), �(xi, y2). In the latter case, an interpolation (12) with
xi = x is done, in which �(x, y1) and �(x, y2) are either degrees of freedom or interpolates
of degrees of freedom according to Eq. (11) with y = yi, i = 1, 2.

Localmass andmomentumconservationToensure localmass andmomentumconservation,
the discretization concept has to be modified. Fluxes I� have to be continuous across the lines
separating control volumes. With the unmodified scheme described above, fluxes are not yet
continuous.

Consider, for example, the flow sketched in Fig. 5. It occurs between two plates with a
parabolic inflow profile u(0, y) = umaxy (ymax − y), no-flow no-slip conditions at the top and
bottom and outflow conditions with fixed pressure p at the right. The stationary solution for
this flow is u(x, y) = u(y) = u(0, y). Of special interest is the region around an interface (red
line) between coarse (C, blue) and transitional (T1, green and T2, red) control volumes for
the x-component of the Navier-Stokes equation. The velocities represented by dotted arrows
are interpolates from the velocities shown as solid arrows. Center (c), left (l), right (r), down
(d ) and up (u) positions are relevant, as are the surrounding control volumes (light blue). The
flux contribution

F
(
�yc, ul/r, uc

)
= sgn(nl/r)�yc

(
ul/r, uc

)

up

ul/r + uc

2
(13)
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from Eq. (5) along the marked line gives, considering interpolations, a flux

FC,r

(

2�y,
ucT1 + ucT2

2
, ucC

)

(14)

over the right side of the coarse control volume C. This is in general unequal to the negative
of the sum

FT ,l = FT1,l

(
�y,

3ucC + uuC
4

, ucT1

)
+ FT2,l

(

�y,
3ucC + udC

4
, ucT2

)

(15)

of the fluxes over the left sides of the transitional control volumes T1 and T2. In the example
geometry Fig. 2b, such flux discontinuities occur along the pink dashed lines between the
momentum control volumes. When the linear interpolations are replaced by higher-order
interpolations, flux discontinuities additionally occur along the pink dashed line between the
mass control volumes in Fig. 2b.

This need for a modified scheme does neither vanish when defining only one veloc-
ity degree of freedom at the coarse-fine grid-cell interface, nor when using more accu-
rate interpolations for ul/r , nor when using a higher-order method instead of the up-

winding
(
ul/r, uc

)

up
. With one velocity degree of freedom at the interface, the coarse-

transitional interface is simply shifted by one cell-in Fig. 5 that is to the right. For the
remaining two aspects, consider the channel flow example in Fig. 5. Even for an ex-
act interpolation, the flux FC,r (2�y, u (3�y) , u (3�y)) will be unequal to the negative
ofFT ,l = FT1,l (�y, u (3.5�y) , u (3.5�y)) + FT2,l (�y, u (2.5�y) , u (2.5�y)). In a similar
way, a higher-order method will use more (possibly interpolated) nodes at y = 3�y instead of(
uinterpolated (3�y) , u (3�y)

)
up for FC,r , while it will use more (possibly interpolated) nodes

at y = 3.5�y and y = 2.5�y for FT1,l and FT2,l , not improving the flux continuity.
The scheme is modified in such a way, that coarse fluxes, in the above example FC,r , are

discarded and replaced by the negative of the respective fine fluxes, in the above example
FT1,l + FT2,l .

Fig. 5 This sketch shows an example setup of a flow between two plates to explain issues of local
conservation
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3 Numerical Test

The local refinement of the staggered grid has been implemented in the open-source numerical
simulator DuMuX [14, 15], with the grid data structure provided byALUGrid [1]. A numerical
example case introduced by Kovasznay [16] is presented. A stationary flow, the analytical
solution of which is visualized by streamlines in Fig. 6(a), is simulated numerically. Dirichlet
velocities coherent with the analytical solution

p = 1

2
(1 − exp (2λx)) , u =

(
1 − exp (λx) cos (2πy)

λ
2π exp (λx) sin (2πy)

)
, λ = 1

2ν
−

√
1

4ν2
+ 4π2 (16)

are set at all boundaries, pressures are fixed to analytical-solution values along the left bound-
ary. The fluid has a kinematic viscosity of ν = 0.025 and a density of � = 1. Neither sources
or sinks nor gravity are part of this example case. With refinement along dividing streamlines,
the flow is simulated by solving Eqs. (1) and (2) using the Newton method and the direct linear
solver UMFPACK [8]. The local refinement in Fig. 6d allows to, with slightly less grid cells,
resolve the flow in the region of the diving streamlines in more detail than with the uniform
grid in Fig. 6c.

Fig. 6 As a numerical example case, a stationary flow with dividing streamlines is simulated
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4 Conclusion

A locally-refined locally-conservative quadtree finite-volume staggered-grid scheme was de-
veloped for the Navier-Stokes equations in two dimensions. The discretization presented here
has proven suitable to resolve local flow features in more detail, e.g. along dividing lines.
In contrast to the pressure-correction methods used by similar approaches [19, 23, 24] to
solve the Navier-Stokes equations, the proposed scheme is developed in the context of the
fully-coupled fully-implicit solution of the Navier-Stokes equations. This allows to use the
locally-refined grid for simulations of free flows which is strongly coupled to adjacent do-
mains, this way contributing to more accurate and efficient simulations of e.g. evaporation
processes. To show a gain in computational time, the current code has to be optimized.Without
focus on performance, a local refinement of a finite-volume staggered-grid scheme has been
implemented, while preserving local mass and momentum conservation.
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Droplet–Liquid Interaction



A New Perspective for the
Characterization of Crown Rim
Kinematics

Ronan Bernard, Visakh Vaikuntanathan, Grazia Lamanna
and Bernhard Weigand

Abstract Droplet impact on wall-films are typical examples where ‘splashing’, the
fragmentation of the crown rim during its expansion, takes place. The triggering in-
stability mechanisms are directly linked to crown rim kinematics. This experimental
study analyseswhich geometrical parameter is physically themost suited for studying
crown rim kinematics during expansion. The problems associated with the classical
geometrical parameters rim radius RR and height HR (often considered separately)
are presented. First, the radial and axial rim expansions have different durations
which prevents the definition of rim expansion in a unified way. Second, considering
separately HR and RR leads to an incomplete picture of the impact process in terms
of momentum transfer to the rim since the crown aspect ratio HR/RR varies strongly
with the impact conditions. We show that considering the crown rim displacement
instead solves these problems: a single peak during the impact process enables a
clear definition of rim expansion (duration and magnitude). Furthermore, the tempo-
ral evolution of the rim displacement during expansion could systematically be fitted
by a quadratic curve with high accuracy, which indicates a constant deceleration
process. Thus, considering the rim displacement reveals important features of the
crown rim kinematics.

1 Introduction to Rim Kinematics

The most common events, where the outcome of droplet impacting a wall-film can
be seen, are during heavy rain falls: in the blink of an eye, a conical liquid structure
of fewmillimeters forms and its upper part disintegrates, ejecting many tiny droplets.
This phenomenon has been first studied by Worthington at the end of the nineteenth
century [29]. From this point on, the interest for droplet impact on wall-films has
not stopped growing since this phenomenon is encountered in many technical ap-
plications where droplets interact with a thin liquid layer: spray cooling, coating,
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extinguishing film fuelled fires, microfluidics in the pharmaceutical industry, fuel
injection in combustion chamber with lubricating oil films... Besides, droplet im-
pact on wall-films offers a synthesis of interesting phenomena of fluid mechanics
among liquid/wall interaction in thin layers, short liquid/liquid interaction, strong
flow redirection, and liquid sheet fragmentation. The latter is of particular interest
since it involves liquid instabilities, which are encountered in even more natural
and industrial processes. In the case of a droplet impact on a wall-film, liquid sheet
fragmentation is associated with the so-called ‘crown splashing’ [3, 8, 18]. This
impact outcome results from the destabilisation of the crown rim, the liquid torus
at the top of the crown. A typical example of ‘crown-type splashing’ is given in
Fig. 1 and is explained in detail in Sect. 1.1. In order to understand the processes
leading to splashing, a deeper insight into the instability mechanisms occurring at
the rim is necessary, the first step being the study of their main input parameters:
the rim kinematics. In Sect. 2, the limitations of the geometrical parameters usually
used to describe crown rim kinematics (rim height and radius) are presented. The
corresponding problems are solved by considering the crown rim displacement from
the impact point introduced in Sect. 3, revealing interesting kinematic features of the
crown rim expansion.

1.1 Impact Process and Morphological Features

When a droplet impacts on a thin wall-film, the liquid of the droplet interacts strongly
during few milliseconds with the wall-film liquid initially at rest. This results in a
complex and fascinating liquid structure shown in Fig. 1.

Before the impact, the droplet of diameter Dd approaches the film with the ve-
locity Vd orthogonally to the wall-film surface in our study. The wall-film liquid is
at rest, and has a thickness hf , which is usually non-dimensionalised by the droplet
diameter, δ = hf/Dd . The characteristic “thin films” investigated here refers to wall-
film thicknesses between 0.1 and 0.5 times the droplet diameter. The time at which
the droplet touches the wall-film is taken as the beginning of impact, i.e. t = 0ms
in Fig. 1. As the droplet impacts the film, the liquids are deformed and a kinematic
discontinuity is formed between the droplet with high momentum and the film at
rest [30]. This leads to a liquid lamella expanding axially and radially, the so-called
‘crown’. At the upper edge of the crown the ‘rim’, a liquid torus forms accumu-
lating liquid from the crown-wall. Under certain impact conditions, the crown rim
destabilises, forming a wavy structure. These instabilities may grow and develop into
tiny liquid ligaments, ‘the fingers’, which then disintegrate into secondary droplets.
The succession of all these events leading to the atomization of the crown during
its expansion is referred to as “crown-type splashing”. Investigating the instability
mechanisms responsible for the number and growth of these fingers is necessary to
understand how splashing is triggered. These instabilitymechanisms are still a highly
discussed topic in the literature: most of the studies [5, 8, 21, 32] report a link to the
Plateau-Rayleigh instability to explain the undulations on the crown rim considered
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Fig. 1 Typical high-speed images of a crown formed during droplet impact on a wall-film (case
of ‘crown-type splashing’). The primary impact parameters (droplet diameter Dd , droplet impact
velocity Vd , and wall-film thickness hf ), as well as the morphological features of interest (rim,
fingers) are highlighted. The classical geometrical parameters of the crown rim (radius RR and
height HR) of the crown are marked, as well as the crown rim displacement from the impact point
SR. Impact conditions: B10 droplet impacting on B5 wall-film (see liquid properties in Table 1),
Dd = 2.02 mm, Vd = 2.99 m/s, δ = 0.10

as the liquid cylinder. Other studies [13, 15, 22] explained it by the Rayleigh-Taylor
instability, or by its impulsive limit, the Richtmyer-Meshkov instability. An interplay
of both Rayleigh-Taylor and Plateau-Rayleigh instabilities was also proposed [1].
However, to explain the diminution of splashing at low ambient pressure, the pre-
dominance of the Kelvin-Helmholtz instability was also suggested [31]. Although
the mechanisms associated to these models are different, they all rely on the kine-
matic parameters of the crown rim as input parameter: the velocity difference with
the air for the Kelvin-Helmholtz instability, and the crown rim acceleration for the
Rayleigh-Taylor/Richtmyer-Meshkov instabilities. The Rayleigh-Plateau instability
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is dependent on the rim thickness, which is in turn linked to rim acceleration accord-
ing to a recent study on unsteady sheet fragmentation [28]. Thus, an extensive study
on crown rim kinematics is needed to investigate the dominant instability mecha-
nisms for different impact conditions. As a first step, the focus of this work is to
find a relevant geometrical parameter representative of the rim motion during crown
expansion.

1.2 Experimental Set-Up and Methodology

The experimental set-up for droplet impact on a wall-film consists of three main
elements: a droplet generation system, a high-speed shadowgraphy imaging system
and a thin pool. The droplet is dripping off by gravity from a needle of 0.8 mm
diameter. The height of the needle is used to vary the droplet impact velocity Vd .
Shortly before the impact, the single droplet goes through a laser barrier that trig-
gers the high-speed camera (Photron FASTCAM SA1.1, 20,000 frames per second,
shutter 1/92ms). The thin pool, where the droplet impacts, is illuminated in backlit
mode by two LEDs orthogonal to each other in the horizontal plane, the two light
paths being directed with mirrors and lenses to the camera. Thus, a two-perspective
shadowgraphy is obtained on a single frame of the high-speed camera. This allows a
temporal resolution of 0.05ms and a temporal resolution of 80µm/pixel of the impact
process. More details on the experimental set-up can be found in Geppert et al. [11]
who developed it. The impact pool consists of a thin metallic ring (inner diameter
60mm, height 0.6 or 1.2mm) glued on a transparent plate. This transparent plate is
made of sapphire providing a high refractive index compared to the liquids used to
make the measurement of the wall-film thickness reliable with a confocal chromatic
sensor (micro-Epsilon IFS2405-3) that enables a measurement error below 1% in
the range of this study [11]. The thin pool is filled till the desired film thickness hf
prior to impact. The droplet diameter Dd and droplet velocity Vd are measured from
the post-processed high-speed images shortly before impact (≈1.5ms) by using an
in-house MATLAB® routine with a measurement error below 3% [11]. This routine
also enables the extraction of the primary geometrical parameters of the rim; the rim
height HR and the rim radius RR.

The liquids used for the droplet and the wall-film were different, i.e. a binary
droplet/wall-film system. Besides the important technical applications of binary
droplet/wall-film systems (e.g. Selective Catalytic Reduction with different urea-
water concentration [26], or fuel/lubricant interaction in combustion engines [11]),
it gives a deeper insight into the distinct role of the droplet and wall-film, especially
of their respective viscosity [2]. In this work, different silicone oils combinations
between droplet and wall-film were systematically investigated. The corresponding
ranges of droplet diameterDd and impact velocity Vd , wall-film thickness hf , as well
as their respective liquid properties are summarized in Table 1. The choice of these
liquids allows a large variation of dynamic viscosities (2.70–96.3mPas), by keeping
a small variability of density (±3.5%) and surface tension (±8%).
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Table 1 Silicone oils used with their respective liquid properties, as well as the experimental range
of the primary impact parameters (droplet diameter Dd and impact velocity Vd , and/or wall-film
thickness hf

Oil μ (mPas)a ρ (kg/m3)a σ (mN/m)a Dd (mm)b Vd (m/s)b hf (µm)c

B3 2.70 900 18.0 1.93–2.02 1.80–4.29 198–1058

B5 4.60 920 19.2 – – 199–1056

B10 9.45 945 20.2 1.96–2.07 1.93–4.35 200–1034

B20 19.1 955 20.6 – – 199–1051

B50 48.0 960 20.8 1.95–2.18 2.31–4.37 199–1054

B100 96.3 963 20.9 – – 200–1005
aSupplier data, bMeasured from high-speed images, cMeasured using confocal chromatic sensor

The normalized wall-film thickness δ varied between 0.1 and 0.5, which corre-
sponds to a thin wall-film case. At a given δ and liquid combinations, the impact
velocity is progressively increased till crown-type splashing is reached. Thus, the
experimental database contains both deposition and splashing outcomes.

2 Classical Geometrical Parameters of Crown Rim and
Associated Problems

There have been numerous experimental investigations [6, 7, 9–12, 16–19, 21, 24,
25, 27, 30] on the macroscopic crown properties such as crown rim height HR and
crown rim radius RR. These two parameters, which are the first intuitive geometrical
parameters related to the crown rim are very often studied separately in literature [18,
30]. Surprisingly, contradictory conclusions regarding the effect of impact conditions
(e.g. wall-film thickness, droplet impact velocity, etc.) on both parameters taken
independently can be found in the literature. While some studies [6] report a major
dependency of Weber number (We) and Reynold number (Re) on the crown height
HR, others [7, 24, 25] found a significant increase of HR with δ, or different trends
depending on its values [12, 19] i.e. strong increase for small δ (smaller than 0.25)
and diminuing influence at high wall-film thicknesses. For the rim radius RR, most
of the literature follows a theoretical square-root dependency of the form RR/Dd =
C (τ − τ0)

n [30], with n = 1/2, and τ = tVd/Dd the normalized inertial time and τ0 its
initial value at the moment of impact. Most of the discussion in literature focuses on
the sensitivity of the parameter C to the impact parameters, again with contradictory
conclusions. While some works [9] found a strong influence of the surface tension
(and with it the Weber number), many studies [6, 10, 16, 17, 21, 27, 30], report
only a weak dependence of Weber and Reynolds numbers with the parameter C
being mostly driven by the wall-film thickness δ despite different conclusions on
its influence. Further, a recent study [11] showed that the square-root dependency
is only valid at the early stage of impact, other effects such as rim contraction and
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crown inclination playing a significant role in the later times. All these contradictory
conclusions suggest that considering separately HR and RR may not be suitable to
study crown rimkinematics during expansion in a unifiedmanner. Indeed, the relation
betweenHR and RR is dependent on the impact parameters, their temporal behaviour
(see Sect. 2.1) as well as in their magnitude (see Sect. 2.2). Thus, it is not possible
to capture an overall picture of rim expansion process by considering separately HR

and RR.

2.1 Radial and Axial Expansions of Crown Rim

Two typical temporal evolutions of crown rim radius RR and height HR are shown in
Fig. 2 with red triangles and blue circles, respectively. The corresponding maxima of
each geometrical parameter are highlighted with white circles. These maximum val-
ues are used to define the magnitude and duration of the corresponding expansions.
In Fig. 2a, both maxima occur simultaneously which makes the definition of a rim
expansion phase possible, corresponding to the time until the maxima are reached
highlighted by a vertical dashed line. To the contrary in Fig. 2b, RR and HR have
maxima at different times; RR keeps increasing slowly while HR recedes. A recent

(a) (b)

Fig. 2 Typical temporal evolutions of the classical geometrical parameter of crown rim, height HR
and radius RR. The maxima corresponding to the end of radial (RR) and axial (HR) rim expansions
are marked by white circles. The relative difference between them is highlighted with an orange
shaded area. The corresponding difference in morphologies are shown with high-speed images
corresponding to the time at which HR,max is reached. Impact conditions: a B10 droplet on B5
wall-film (see Table 1), Dd = 2.03 mm, Vd = 2.99 m/s, δ = 0.298; b B10 droplet impacting on B3
wall-film (see Table 1), Dd = 2.05 mm, Vd = 2.15m/s, δ = 0.294
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study investigating the scaling of crown rim radius [4] has shown that in these cases,
the maximum value of RR is not representative of the expansion phase. This continu-
ous increase of RR during the entire impact process is not an exception. The duration
of the radial expansion (RR) is, in most of the cases, longer than the axial expansion
(HR): in 70% of the experiments in our silicone oil database, the expansion duration
of crown radius is 10% longer than that of crown height, and in averaged 33% longer
for the entire database. In these cases where the radial and axial expansion durations
are different, a unified definition of the crown rim expansion can not be provided in
terms of either RR of HR.

2.2 Crown Aspect Ratio Dependent on Impact Parameters

The relative importanceofHR toRR is significant in termsofmomentum transfer to the
rim in the radial and axial directions. Considering a single geometrical parameter (HR

orRR) to describe rim kinematics and link it to the impact conditions is reliable only if
they vary the same way with the impact parameters. In other words if the momentum
repartition between axial and radial directions remains the same, regardless of the
impact conditions. In Fig. 2, this relative importance is qualitatively highlighted with
an orange shaded area up toHR,max. In Fig. 2a, only small differences betweenHR and
RR can be observed, the temporal evolution of HR and RR are of similar magnitude,
i.e. the momentum transferred to the rim is split quite equally in axial and radial
directions. To the contrary in Fig. 2b, HR is much smaller than RR, the expansion is
less pronounced in the axial direction than in the radial one. The high-speed images
in Fig. 2 show how the crown is smaller for case (b) than in case (a), despite similar
values of crown radius. These differences between RR and HR can be quantified
by considering the crown aspect ratio HR/RR(%). Since this ratio varies over time as
can be seen qualitatively in Fig. 2 from the orange shaded area, the aspect ratio
is averaged over time during crown expansion as defined in Sect. 3 (i.e. based on
crown rim displacement SR). With this, an aspect ratio of 100% would mean that
the crown height is as big as the crown rim radius in average during expansion. The
corresponding value of aspect ratios for the cases presented in Fig. 2 are 81% in
case (a) and 59% in case (b). The aspect ratios for the entire experimental database
are plotted in Fig. 3 (each symbol corresponds to one experiment) in function of a
modified impact parameter:

κf ,avg = Reavg
0.25Weavg

0.5 = hf
0.75Vd

1.25
(
ρd + ρf

)0.75

20.25
(
σd + σf

)0.5 (
μdμf

)0.125 (1)

Themodified impact parameter κf ,avg represents the overall droplet/wall-film sys-
tem by considering impact parameters such as the film-thickness hf and droplet im-
pact velocity Vd , and taking into account both droplet and wall-film liquid properties
(density ρ, surface tension σ and dynamic viscosity μ). It is derived from a classical
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Fig. 3 Crown aspect ratio HR(t)/RR(t) averaged over time during rim expansion as a function of the
impact parameter κf ,avg (Eq. 1). The crown aspect ratio gives an indication of the relative importance
of momentum/energy transfer in radial and axial directions. Each symbol corresponds to a given
dimensionless wall-film thickness δ

definition of the impact parameter κ = Re0.25We0.5 [20], which is widely used in the
literature in this form or a similar one (see the review article of Liang and Mudawar
[18]). However, the liquid properties used here in the classical Reynolds and We-
ber numbers are averaged between droplet and wall-film, and the length scale used
is the wall-film thickness hf and not the droplet diameter, i.e. Reavg = ρavgVd hf/μavg

and Weavg = ρavgVd
2hf/σavg. The necessity of averaging droplet and wall-film proper-

ties has been already shown for binary droplet/wall-film [3]. However, the type of
averaging to be used remains a challenging question. Based on previous attempts
[3, 12, 14] and our observations from our silicone oil database, the averaged liquid
properties between droplet and wall-film (subscript avg) are calculated as follows:
ρavg = (ρd+ρf )/2, σavg = (σd+σf )/2, and μavg = √

μdμf .
In Fig. 3, the averaged aspect ratio is increasing with increasing κf ,avg , but at

different values depending on the wall-film viscosity. Here, it is interesting to note
that the aspect ratio varies over a very large range, from around 10% for small κf ,avg
and high wall-film viscosities to almost 140% for high κf ,avg and small wall-film
viscosities. This large range of variations of the relative importance of HR to RR

suggests that considering only HR or RR leads to an incomplete picture in terms of
momentum repartition, necessary to understand rim kinematics during expansion.
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3 Relevance of the Crown Rim Displacement from the
Impact Point

In order to provide a more unified approach for all crown morphologies (i.e. for
different aspect ratios), a geometrical parameter more suited to track the rim motion
during expansion is necessary. The crown rim displacement from the impact point
SR =

√
RR

2 + HR
2 seems to be a good candidate since it combines both rim radius

and height. The corresponding temporal variation of the rim displacement SR is
shown in Fig. 4 in green for the two cases already presented in Fig. 2. From these
two examples, it is possible to see the advantages of considering SR as described in
Sects. 3.1 and 3.2.

3.1 Length Scale of Crown Rim Expansion

From the temporal evolution of SR in the two cases of Fig. 4, a single peak during the
impact process (marked with a white circle) can systematically be observed. Hence,
this single peak enables the definition of the expansion phase of the rim corresponding
to the phase before the receding of SR. This defines a unique expansion duration

(a) (b)

Fig. 4 Typical temporal evolution of the parameters crown rim height HR and radius RR, as well
as the crown rim displacement SR for the two cases presented in Fig. 2. The maxima of each
geometrical parameters are marked with white circles. The end of the expansion phase, defined
with the maximum value of crown rim displacement SR,max is highlighted with a vertical dashed
line. The high-speed images corresponding to the end of the expansion phase are given with a
semicircle of radius SR,max embedding the entire rim motion
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and a unique expansion magnitude SR,max (marked by vertical and horizontal green
dashed lines in Fig. 4, respectively). The maximum rim expansion SR,max can be
seen as the radius of a hemispherical surface (represented in the high-speed images
of Fig. 4 with green shaded area) embedding the entire rim motion. Thus, SR,max

is a good candidate as typical length scale of the expansion process valid for all
crown morphologies. Furthermore, the rim motion during expansion mostly occurs
along the rim displacement vector itself, the azimuthal angle of the rim displacement
playing only a minor role in this phase. SR alone gives then a more reliable picture of
the rim expansion process than HR or RR alone. Focusing on the distancing from the
impact point with SR, a representative picture of the crown rim expansion kinematic
can be achieved.

3.2 Quadratic Distancing from the Impact Point

Another interesting feature of SR is that the temporal evolution during expansion
could be fitted by a second degree polynomial. The resulting parabolic curve is
shown in Fig. 4 for the two examples presented in Fig. 2. The choice of a parabolic
curve comes from the existing theoretical models in literature [10, 23, 24] for which
the equation of crown motion indicates a maximum possible degree of 2 in time for
crown length scales. These parabolic fits revealed very good coefficients of deter-
mination R2 for our entire experimental database with an average of 0.994. Hence,
considering SR enabled us to observe a quadratic distancing of the rim from the impact
point with time. This is particularly interesting since it corresponds to a constant de-
celeration process, often assumed in the literature for such droplet impact phenomena
as recently in a study on unsteady sheet fragmentation [28]. Considering SR during
the impact process shows that the assumption of a constant deceleration process can
be reasonably used for droplet impact on wall-films. Furthermore, SR, combining the
radial and axial expansion, opens the possibility of a universal treatment of droplet
impact kinematics on dry and wetted surfaces. The kinematic parameter, such as av-
eraged velocity and acceleration, can be directly extracted from the fit coefficients.
The plot of all constant decelerations is given in Fig. 5 as function of the impact
parameter κf ,avg (defined in Sect. 2). The error of the acceleration measurements
from the quadratic fits (confidence bounds of 95%) is of 7.5% in average for the
entire database with a standard deviation of 6.0%. The wall-film thickness δ seen
as the most influencing parameter is represented with different symbols in Fig. 5.
All constant decelerations collapse in a single universal trend with κf ,avg since it
gives a overall representation of the droplet/wall-film system. It is worth noting here
that no particular separation in the trend between deposition and splashing outcomes
can be observed when using an inertial non-dimensionalisation of the rim deceler-
ation. This universal trend can now be very useful to input rim deceleration into
the corresponding instability models (presented in Sect. 1) for a large range of im-
pact conditions, and thus get a deeper insight into the underlying physical processes
leading to splashing.
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Fig. 5 Universal trend of
non-dimensionalised
deceleration of crown rim
expansion in function of the
modified impact factor κf ,avg
(Eq. 1) representative of the
droplet/wall-film system

4 Conclusion

This article focuses on the phenomena of droplet impact on wall-films. The morpho-
logical features and the temporal evolution of the liquid structures formed during
the impact process have been presented: the crown rim can destabilise into fingers
and then into secondary droplets, leading to ‘splashing’. Looking into the crown
rim kinematics in the expansion phase will help getting a better understanding of
the underlying instability mechanisms. Thus, this study analyses which geometrical
parameter is physically the most suited to get meaningful information on crown rim
kinematics. A large experimental database of binary droplet/wall-film systems of
different silicone oils (viscosities between 2.70–96.3 mPas) is used. The wall-film
thicknesses are varied between 0.1 and 0.5 times the droplet diameter. The difficulties
to describe the crown expansion process with the classical geometrical parameters
rim radius RR and heightHR (often considered separately) are presented. First, radial
and axial rim expansions have different durations, the radial expansion being more
prolonged compared to the axial one of about 30% in average for our database. These
different durations prevent the definition of the rim expansion phase in a unified way.
Second, considering separately HR and RR leads to an incomplete picture of the im-
pact process in terms of momentum transfer to the rim since the crown aspect ratio
HR/RR varies strongly with the impact conditions (from 10 to almost 140% in aver-
aged during expansion). This complex interdependency of HR and RR may explain
the different—sometimes contradictory—conclusions on their sensitivity to impact
conditions in literature. Thus, the crown rim displacement SR is used instead of HR

or RR. The temporal evolution of SR systematically exhibits a single peak. Hence, a
clear definition of the crown rim expansion (duration and magnitude) is possible for
all crown morphologies. The maximum displacement SR,max embeds the entire rim
motion and, thus, can be seen as a typical length scale of expansion. Furthermore, the
temporal evolution of the rim displacement during expansion could systematically
be fitted by a quadratic curve with high accuracy. As often assumed in literature,
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this corroborates a constant deceleration process of rim expansion for droplet impact
on wall-film. All non-dimensionalised constant decelerations could be merged into
a single universal trend with a modified impact parameter. Hence, the crown rim
displacement SR seems to be the correct length scale for describing the rim expan-
sion. Thus, it provides a unified approach for all crown morphologies and offers the
possibility of extracting the kinematic parameters and makes it a suited parameter to
describe crown rim kinematics.
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Analytical Model for Crown Spreading
During Drop Impact onto Wetted Walls:
Effect of Liquids Viscosity on Momentum
Transfer

Anne Geppert, Ronan Bernard, Bernhard Weigand and Grazia Lamanna

Abstract Drop impact onto wetted surfaces is of relevance to any spray coating ap-
plication since the maximum spreading diameter and the residual film thickness of
the applied liquid droplets affect the efficient distribution of the coating materials. In
this paper, we propose a modification to existing models for crown propagation dur-
ing single drop impact onto a wall-film based on the stagnation-point flow solution
of Hiemenz. This offers two main advantages: a simple estimation of the film thick-
ness decay rate, induced by the impulse transfer from impacting droplet to resting
wall-film. Besides, the self-similarity of Hiemenz’s solution allows a straightforward
estimation of themomentum losses during radial liquid spreading along thewall. The
incorporation of these estimations into existing inviscidmodels provides an excellent
agreement with experiments over the entire crown elevation phase. Additionally, the
effect of fluid viscosity and initial film thickness on the momentum transfer from
droplet to wall-film is highlighted.

1 Introduction

Drop impact onto wetted walls is of relevance to many industrial applications as well
as to natural science, such as soil erosion, pesticide spraying, icing on plane wings
and spray coating applications, e.g. in robotic car painting or food processing. For
spray coating applications, both the maximum spreading diameter and the residual
thickness of the applied liquid films are of paramount importance for the efficient
and uniform distribution of the coating material. Reducing the coating procedure
to the basic phenomenon of a single droplet impacting onto a wetted surface, the
impact process proceeds as follows: immediately after the impact the droplet diameter
expands radially along the surface and may generate an upward growing crown,
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provided the impact kinetic energy is sufficiently high to overcome energy losses due
to deformation and viscous effects (splashing regime). A detailed characterization
of the impact outcomes and the splashing/deposition limit can be found in [8, 9,
19, 29]. For the onset of the splashing regime the non-dimensional parameter K
represents the widely accepted choice. It can be expressed as a function of Weber
(We = ρU 2

0 D0/σ ) and Reynolds (Re = U0D0/ν) numbers as K = We0.5Re0.25.
Here U0 and D0 are the impacting droplets velocity and diameter, and ν, ρ, and σ

are the liquids kinematic viscosity, density, and surface tension, respectively. Several
empirical correlations that express the threshold parameter K in terms of the non-
dimensional film thickness δ = h/D0 are published [2, 6, 7, 14, 21, 26, 28, 30].

From a theoretical point of view, it is generally accepted to model the crown as
a kinematic discontinuity, thereby neglecting any influence of viscous losses. This
assumption dates back to the pioneering work of Yarin andWeiss [30], who proposed
a square-root dependence for the crown base radius RB upon the non-dimensional
time τ = tU0/D0: RB = C

√
(τ − τ0). Here the value τ0 corresponds to the initial

value at the moment of impact. The non-dimensional constant C was determined
empirically by fitting the experiments of Levin and Hobbs [17], according to C =
[2/(3δ)]1/4. Thus, this modelling approach assumes a constant crown propagation
speed equal toU0. Several authors slightly modified the empirical parameterC of the
square-root dependence to improve the agreement to their experimental results [1,
3–6, 10, 13, 18, 22, 23, 27, 30]. The dependence of the parameter C on the Weber
andReynolds numbers is a controversial issue. According to Refs. [1, 13, 18, 23], the
crown radius is independent of both Weber and Reynolds number, while Fujimoto et
al. [5] showed that surface tension indeed plays an important role on the evolution of
the crown’s radius. Gao and Li [6] recently clarified this controversy by introducing
a correction factor λ = u∞/U0 in the parameter C = (2λ2/3δ)1/4. This factor takes
into account momentum losses at the moment of drop impact due to deformation,
viscous and inertial forces. The importance of energy losses during drop impact is
corroborated by numerical simulations of Davidson [4], who showed that surface
energy losses during drop impact can amount up to 10% of the total impact kinetic
energy. Gao and Li [6] derived an empirical correlation for the energy loss factor
from their experiments, which reads λ = 0.26Re0.05/(We0.07δ0.34). The correlation
shows that the dominating effect is provided by film inertia (δ0.34), whileWe and Re
play only subordinate roles. Thus, the Gao-Li model still employs a constant crown
propagation speed u∞ = λU0, but it is significantly reduced due to the inclusion of
energy losses compared to the crown propagation speed of the Yarin-Weiss model
(U0). Summarizing, classical inviscid modelling approaches assume the parameterC
to be constant in time andmainly dependent upon the dimensionless film thickness δ.
Furthermore, these models where validated with experimental data only up to τ ≈ 3.

A comparison over the entire duration of the impact process between experimen-
tal data for silicon oil B3 (ν = 3mm2 s−1) and inviscid models [6, 30] is shown in
Fig. 1. Except for the initial phase (τ ≈ 3) both inviscid models overestimate the
spreading rate of the crown base radius and exhibit a reverse δ-dependence with
respect to the experiments. The inviscid model’s prediction of a slower spreading
rate results from the increase in film inertia due to an increased initial film thickness
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Fig. 1 Temporal evolution of the crown base radius: comparison between experiments and two
inviscid models. Fluids: silicon oil B3 (ν = 3mm2 s−1) for both droplet and wall film

δ. In the experiments, the opposite trend is observed. The decrease in film inertia
is counterbalanced by the increased importance of viscous losses due to boundary
layer effects. Boundary layer effects in general have been studied by several authors
[20, 24, 27]. Marcotte et al. [20] demonstrated that the crown spreading consists of
two distinct sheets, originating from the droplet and film, respectively. The sheets
evolve on separate time scales and their merging time is mainly depending upon the
viscosity ratio. Roisman [24] solved analytically the axisymmetric instationary vis-
cous flow in a spreading film, generated by normal drop impact onto a rigid, planar,
dry surface. He also provided an expression for the height of the residual film thick-
ness. The existence of a residual film thickness has been confirmed experimentally
by Kuhlmann et al. [15]. The authors measured the cavity film thickness for single
droplet impact ontowettedwalls in a range of 140 < We < 1000 and 0.2 < δ < 1.0.
They demonstrated the existence of a constant thickness region (sub-cavity) within
the crown base area. Despite the noteworthy progress, none of the above studies led to
the formulation of a model for the crown spreading rate that encompasses boundary
layer effects.

These findings motivate the present work, where an alternative modelling ap-
proach for the temporal evolution of the crown base radius RB is proposed, which
explicitly incorporates momentum losses. It follows that the parameterC is no longer
constant, but rather decreases in time with the decrease in the crown propagation
speed induced by viscous losses. This requires an accurate estimation of the strain
rate in the boundary layer, which not only depends on the fluid viscosity, but also on
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the thinning rate of the initial wall-film [16]. The smooth transition from the inertia-
driven to the viscous-controlled regime of crown propagation enables the accurate
prediction of the crown base spreading rate over the entire crown elevation phase.

2 Modelling Approach

Our modelling strategy is based on the geometrical resemblance of the drop im-
pact problem with the two-dimensional, orthogonal stagnation-point flow (SPF), as
shown in Fig. 2a. This strategy offers two main advantages: simple estimation of the
film height decay rate and a straightforward estimation of the momentum losses in
the boundary layer because of the self-similarity of Hiemenz’s solution for a plane
stagnation point flow (SPF) [25]. This modelling approach divides the drop impact
onto a wetted surface into two sub-processes [16], which are shown in Fig. 2. The
first sub-process describes the momentum transfer during the drop’s collision with
the wall-film (phase a), which induces a decrease in wall-film thickness h(t) with

Fig. 2 Schemeof stagnationpoint flow(SPF)basedmodelling approach. Phase (a): impulse transfer
from impacting drop to wall-film. Decay in film height modelled with potential theory. Phase (b):
radial spreading along the surface with decreasing averaged velocity ū(t), including momentum
losses calculated by Hiemenz’s solution
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time. The impulse transfer, phase a, is modelled based on the assumption that, at the
moment of impact and within a region close to the impact point, the flow inside the
droplet resembles the potential flow of the stagnation point problem. The spreading
phase b is modelled by assuming that droplet and wall-film liquids merge perfectly
and start spreading radially outwards with an average velocity ū(t). In contrast to in-
viscid models, this modification assumes a progressively decreasing speed of crown
base propagation in time due to boundary layer effects.

2.1 Description of the Film Thickness Decay Rate

For themodelling of the film thickness decay ratewe assume that the flowdistribution
within the impacting droplet is a frictionless potential flow. Additionally, sliding
effects at the interface between droplet and liquid film are considered negligible.
The x- and y-velocity components of the potential flow are expressed as ux = ax
and uy = −ay, where a is the strength of the potential flow. In the framework of
the droplet impact problem, the constant a represents the momentum per unit length
transmitted by the droplet to the wall-film at the moment of impact. Its value depends
on the initial conditions of the impact process as a = (λU0)/D0. The assumption of
potential flowwithin the droplet is strictly valid only for an inviscid fluid. For viscous
fluids it is necessary to include the effects of the boundary layer flow on the external
potential flow. Hence, the concept of displacement thickness δ∗ is introduced. It
describes the displacement of the wall for an inviscid flow, in order to have the
same mass transport as the viscous flow along the original wall [16]. Thus, the
vertical velocity component of the external flowmust be corrected for a viscous flow
by δ∗ [11, 12], yielding uy = −a(y − δ∗). The displacement thickness for a plane
stagnation-point flow is defined as δ∗ = 0.6479

√
ν/a in [11].

The decay rate of the wall-film thickness is expressed by h(t) = h0 − a(y − δ∗)t ,
where h0 is the initial wall-film thickness. Being h(t) = y at each time instant, the
film thickness decay rate reads

h(t) = h0 + 0.6479
√

νa t

1 + at
. (1)

Figure 3 depicts the film thickness decay rate for two selected experiments from
Table I (see Sect. 3.2). The dashed lines represent the thickness of the flow boundary
layer according to hBL = 2.4

√
ν/a [25]. The intersection point between solid and

dashed lines (same colour) marks the validity limit of the inviscid flow solution. As
can be seen, for the B3-case (red) the inviscid solution is valid till t ≈ 3.2ms, which
corresponds to τ ≈ 4.5, the time where the Gao-Li model starts deviating from the
experimental data (see Fig. 1). For the B50-case applying the inviscid solution is not
valid at all, since the initial wall-film thickness is already smaller than the boundary
layer height, i.e. there is no intersection point between green solid and dashed lines
in Fig. 3. Furthermore, an increase in liquid viscosity leads to a less steep curve
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Fig. 3 Film thickness decay rate compared to boundary layer height [25] for silicon oils B3
(ν = 3mm2 s−1) and B50 (ν = mm2 s−1) at δ = 0.2

progression of the film thickness decay rate. The increased viscous losses within the
droplet itself reduce the momentum transfer to the wall-film and therefore inhibit the
decay in wall-film thickness.

2.2 Momentum Loss Estimation

For the estimation of the momentum losses we will assume the following: before
the wall-film thickness reaches the boundary layer height, the crown propagates
at a constant average speed of ū(t) = λU0. Afterwards friction losses decrease the
crown’s propagation speed. Therefore, it is sufficient to determine the velocity profile
within the boundary layer of a stagnation-point flow (SPF) to estimate themomentum
losses. Following the methodology laid out by Hiemenz [25], the subsequent self-
similar transformation leads to a reduction of the Navier-Stokes equations into an
ordinary differential equation:

η =
√
a

ν
y, f (η) = ψ

x
√

νa
(2)

where ψ is the stream function. In the stagnation point region, the velocity compo-
nents can be then expressed as ux = u∞(x) f ′(η) = ax f ′(η) and uy = −√

νa f (η).
The transformed ordinary differential equation reads then as follows
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f ′′′ + f f ′′ + 1 − f ′2 = 0, (3)

and is subject to the boundary conditions of no-slip and inviscid flow limit:

η = 0 : f = 0, f ′ = 0; η → ∞ : f ′ = 1. (4)

Equation 3 is solved numerically with a shooting method to determine the non-
dimensional velocity profiles f ′(η) = ū/u∞. The momentum losses are then esti-
mated by introducing a profile-averaged non-dimensional velocity according to:

f̄ ′ = 1

ηmax

∫ ηmax

0
f ′dη (5)

where ηmax coincides with the scaled height of the wall film, i.e. ηmax = √
a/ν h(t).

Since both functions f ′(η) and f (η) cross the origin, the integration of Eq. (5)
yields no integration constant [16, 25]. Hence, the non-dimensional profile-averaged
velocity can be expressed as

f̄ ′ = ū

u∞
= 1

ηmax
f (ηmax). (6)

Even though the self-similar solution f (η) itself does not change in time, the profile-
averaged non-dimensional velocity f̄ ′ will vary in time because ηmax is a function
of the time dependent film thickness h(t).

The lamella’s spreading velocity ū(t) is estimated from the analytical solution.
Therefore, the profile-averaged velocity f̄ ′ needs to be transformed back to the
physical coordinate system in agreement with

ū

u∞
= 1√ a

ν
h(t)

f

(√
a

ν
h(t)

)
. (7)

The velocity outside the boundary layer, defined by potential theory, is herein denoted
u∞. It is assumed to be constant in the spreading phase (flow parallel to wall) and
defined according to u∞ = λU0, thus taking into account energy losses occurring
during drop impact.

2.3 Implementation in Crown Base Evolution Model

This section describes the incorporation of the previously estimated time-dependent,
average crown propagation speed ū in the modelling approach of the crown base
radius RB . As introduced by Gao and Li [6], the crown speed is scaled with respect
to the initial droplet impact velocity U0. Hence, a modified correction factor λAG is
proposed according to
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λAG = ū

U0
= λ√ a

ν
h(t)

f

(√
a

ν
h(t)

)
. (8)

Finally, the evolution of the crown’s base radius is modelled as follows:

RB

D0
= 0.5 +

(
2λ2

AG

3δ

)1/4 √
τ . (9)

There are three main difference between Eq. (9) and the Gao-Li model: the funda-
mental difference is the time-dependent factor λAG , which takes into account the
decreasing spreading velocity of the lamella due to viscous losses. Second, the tem-
poral offset parameter τ0 is set to zero, since the moment of impact can be accurately
determined in the present experiments. Third, the 0.5-shift results from the crown
tracking in the experiments. It starts as soon as the droplet is no longer visible in
the images, which occurs approximately when the crown radius equals the droplet
radius.

3 Results and Discussion

The purpose of this section is two-fold: first, the effect of liquids viscosity and
initial film thickness on the momentum transfer from the impacting droplet to the
resting wall-film is discussed. Second, the effectiveness of the SPF-based modelling
approach in reproducing the temporal evolution of the crown base radius RB is
demonstrated.

3.1 How Momentum Transfer is Affected by Fluids Viscosity
and Initial Film Thickness

The effect of viscosity on the momentum transfer is apparent in three ways [16]: first
of all, an increase in fluid viscosity leads to higher impact losses, which is captured
by the empirical correlation of the energy loss factor λ = 0.26Re0.05/(We0.07δ0.34).
Higher impact losses lead to a reduction of the available momentum that can be
transferred to the wall-film, measured by λU0. This causes the second effect of
viscosity: if less momentum is transferred, the decay rate of the film thickness h(t)
is also reduced. This is shown in Fig. 3. As can be seen, the decay rate h(t) of
silicon oil B50 (green curve) is much slower compared to B3 (see also Eq. 1), even
so the droplets impact velocity U0 is much higher in the case of B50 (see legend
of Fig. 3). Finally, the effect of viscosity on the lamella’s spreading velocity ū(t) is
discussed. Therefore, Fig. 4 is consulted. For the low viscosity oil B3 (dashed red
curve) lower impact losses result in a highermomentum transfer (higher starting value
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Fig. 4 Temporal evolution of the profile-averaged velocities for silicon oils B3 (ν = 3mm2 s−1)
and B50 (ν = 50mm2 s−1) at δ = 0.2

for ū(t)), but due to the higher spreading velocity also more momentum is dissipated.
In contrast, for the high viscous oil B50 less momentum is available (higher impact
losses), but also the momentum dissipation is lower because of the lower spreading
velocity. Thus, towards the end of drop impact experiment (0.01–0.02 s) only small
differences in the spreading velocity ū(t) are observed in Fig. 4.

In addition, the wall film inertia, i.e. the initial film thickness δ, strongly influ-
ences the spreading velocity [16]. Recalling the definition of the constant C(t) =
(2λ2

AG/3δ)1/4, a reduced initial film thickness will result in lower inertial losses and
therefore more momentum is transferred to the spreading lamella. This excess in
momentum, however, is rapidly dissipated because viscous losses increase with de-
creasing film thickness δ. This corroborates the observation of only small differences
in spreading velocity ū(t) at the end of the drop impact process.

Regarding the evolution of the crown base radius RB , the counterbalancing effects
of inertial and viscous forces explain the similar curve progressions of the experimen-
tal data observed in Fig. 5. The SPF-model captures this interplay between viscous
and inertial forces, which results in a very good prediction of the crown base radius
evolution over the entire duration of the impact process.
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Table 1 Listing of experimental parameters. All experimental details can be found in [9, 16]
Fluid D0 U0 h0 δ λ a ρ ν σ

mm ms−1 µm – – s−1 kgm−3 mm2 s−1 mNm−1

B3 2.01 3.21 200 0.1 0.51 824 900 3.0 18.0

B3 1.98 2.75 400 0.2 0.41 572 900 3.0 18.0

B3 2.00 2.61 600 0.3 0.35 461 900 3.0 18.0

B3 1.98 2.73 800 0.4 0.32 447 900 3.0 18.0

B50 2.08 4.04 210 0.1 0.44 859 960 50.0 20.8

B50 2.11 4.35 420 0.2 0.33 690 960 50.0 20.8

B50 2.09 4.35 630 0.3 0.27 570 960 50.0 20.8

3.2 Effectiveness of SPF-Based Modelling Approach

The effectiveness of the SPF-based modelling approach is demonstrated in Fig. 5,
where the temporal evolution of the crown base radius RB obtained by experimental
investigation is compared to predictions of the inviscid Gao-Li model as well as
the SPF-based model. As can be seen, for both fluids the SPF-model’s prediction
agrees very well with the experimental data over the entire duration of the splashing
event. The SPF-model therefore provides a significant improvement in comparison
with the inviscid model of Gao and Li [6]. Furthermore, this new approach correctly
captures the complex interplay among impact, inertial and viscous loss without the
introduction of any empirical parameters.

But Fig. 5 also reveals the limitations of the SPF-modelling approach so far. Devi-
ations from the experimental trend may be observed during the receding phase of the
crown (τ > τ(Hcr,max)), where the flow is susceptible to capillary forces, which are
not included in the SPF-model yet. For thicker wall-films and higher fluid viscosity
(B50), the SPF-model’s capability to reproduce the curvature of the experimental
RB-profile is also reduced because sliding effects at the interface between droplet
and wall-film liquid as well as the formation of a cavity flow beneath the liquid
surface are not considered.

4 Conclusion

A new approach for modelling the crown base propagation by employing the an-
alytical stagnation point flow solution of Hiemenz is presented in this paper. The
drop impact process on a wetted solid substrate is therefore divided into two sub-
processes. The first sub-process, the impulse transfer fromdrop towall-film, inducing
a decrease in film thickness h(t), is modelled based on the assumption that the flow
inside the droplet resembles the potential flow of the stagnation point problem. The
second sub-process, the spreading of the liquid lamella, is modelled by assuming
perfectly mixed liquids that start spreading radially outwards with an average veloc-
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(b) Silicon oil: B50

(a) Silicon oil: B3

Fig. 5 Temporal evolution of non-dimensional crown base radius RB : comparison between exper-
iments, Gao-Li model [6] and SPF-based modelling approach. Vertical lines mark the time when
maximum crown height is reached and crown receding begins. Table 1 lists impact conditions
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ity ū(t). The average velocity ū(t) decreases over time due to viscous losses, which
are estimated from Hiemenz’s solution for the boundary layer of a plane stagnation
point flow. Introducing an adapted energy loss factor λAG , the time dependent ve-
locity ū(t) is integrated into the inviscid model of Gao and Li [6] for the crown base
radius evolution RB(t). Thus, the new SPF-based modelling approach differs from
inviscid theories because the assumption of a constant crown propagation speed is
not retained. A comparison of the SPF-model predictions with experimental data for
the crown base radius evolution RB shows a very good agreement over the entire
duration of the impact process. Therefore, the SPF-model provides a significant im-
provement with regard to inviscid modelling approaches. The momentum transfer
from drop to wall-film and thereof also the evolution of the crown’s base radius are
affected by liquids viscosity and initial film thickness. A higher fluid viscosity leads
to increased impact losses, which reduces the efficiency of the momentum transfer
and slows down the film thickness decay rate. But since less momentum is available,
the spreading velocity is lower and therefore the momentum dissipation is reduced.
The higher amount of available momentum for low-viscous fluids leads to a higher
spreading velocity and therefore to a higher momentum dissipation. The influence of
the initial film thickness is similar: thinner initial film thicknesses result in lower in-
ertial losses, but the excess momentum transferred to the spreading lamella is rapidly
dissipated because viscous losses increase with decreasing film thickness. The SPF-
model accurately captures this interplay between inertial and viscous forces, which
is the reason for the model’s excellent predictive capacity. But, the effectiveness of
the SPF-modelling has also limitations because neither capillary forces during crown
receding, sliding effects at the liquids interface or cavity flow are considered. Never-
theless, the SPF-modelling approach is a significant step towards fully understanding
and predicting the crown propagation after drop impact onto wetted surfaces.
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An Implicit High-Order Discontinuous
Galerkin Approach for Variable Density
Incompressible Flows

Francesco Carlo Massa, Francesco Bassi, Lorenzo Botti
and Alessandro Colombo

Abstract In this work we present a high-order discontinuous Galerkin approach for
the simulation of variable density incompressible (VDI) flows. Here, the density is
treated as a purely advected property tracking possiblymultiple (more than two) com-
ponents, while the fluids interface is captured in a diffuse fashion by the high-degree
polynomial solution thus not requiring any geometrical reconstruction. Specific care
is devoted to deal with density over/undershoots, spurious oscillations at flows inter-
faces and Godunov numerical fluxes at inter-element boundaries. Time integration is
performed with high-order implicit schemes thus preventing any time step restriction
condition. Promising results with high-degree polynomial representation and rela-
tively coarse meshes are achieved on numerical experiments involving high-density
ratios (water–air) and the possible interaction of more than two components.

1 Introduction

Multi-component flows are peculiar of many industrial and technological processes,
for instance the extraction and transport of hydrocarbons or the pollutants treatment.
In the context of multi-component problems involving incompressible flows, the
variable density incompressible (VDI) flowmodel shows interesting features. Indeed,
the density is a purely advected property, which can be used to distinguish different
components of different densities. The interface between components can be handled
in a diffuse fashion as smooth variations of the density field. The main advantage
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is that no reconstruction at the interface is required and, therefore, really complex
three-dimensional interface topologies can be easily captured with no extra cost.
However, an accurate representation of the interface is of fundamental importance
in order to control the spreading and ensure meaningful results. The application of a
high-order space discretization is thus very attractive since it can help in controlling
the interface thickness by enhancing the accuracy of the solution approximation.

Discontinuous Galerkin (dG) methods are a class of high-order space discretiza-
tion schemes, which approximates the problem solution with piecewise continuous
polynomial functions inside mesh elements without imposing continuity constraints
at inter-element boundaries. Favourable dispersion and dissipation properties and
the ability to achieve a very high accuracy even on arbitrarily shaped mesh elements
are peculiar features that make dGmethods very appealing [1]. Nevertheless, several
challenging numerical issues arise when applying high-order dG methods to VDI
equations to deal with multi-component flow problems. In particular, specific care
must be taken to formulate the inter-element inviscid Godunov fluxes, to ensure the
positivity of the density and to control spurious oscillations of the density field arising
at the interfaces.

Time integration of the discretised set of equations can be performed with tem-
poral schemes. Among different types, the implicit schemes proved to be able to
greatly enhance the computational efficiency of flow simulations [2]. Indeed, they
can achieve very high orders of accuracy even in the context of differential alge-
braic equations, i.e., incompressible flows, and can be designed to have optimal
stability properties. In particular, the linearly implicit Rosenbrock-type Runge-Kutta
schemes, A-stable up to order five, have the appealing feature to be linearly implicit.
Accordingly, they require to solve only linear systems and the Jacobian matrix must
be assembled and factored only once per time-step, thus improving considerably the
time integration efficiency.

The VDI flow model and the dG discretization are described in Sects. 2 and 3,
respectively. Particular emphasis is given to the treatment of the above mentioned
numerical issues: (i) Godunov fluxes, (ii) density positivity, (iii) Gibbs type phenom-
ena. Section4 reports two selected test cases of multi-component problem involving
high density ratios. In Sect. 5 conclusions are given.

2 Variable Density Incompressible Flow Model

The model, which describes VDI flows in a d -dimensional space, comprises the
divergence constraint, the momentum equation and the mass conservation equation
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∂uj
∂xj
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(ρui) + ∂

∂xj
(ρuiuj) = − ∂p

∂xi
+ ∂τij

∂xj
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(ρuj) = 0,

(1)

with i, j = 1, . . . , d and

τij = 2μ

[
1

2

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 1

3

∂uk
∂xk

δij

]
. (2)

The dynamic viscosity can be defined as a suitable function of the density μ = μ(ρ)

while the body acceleration is typically set constant |g| = g.
The distinguish feature of the model (1) lies in the simultaneous presence of the

divergence free constraint and the continuity equation. As a consequence, the density
is treated as a purely advected property, i.e., a property with null material derivative,
that acts like a phase variable able to discriminate different components with different
densities.

In the context of multi-component problems involving incompressible flows, the
model (1) shows some advantages. Indeed, while different components are solely
identified by different values of the density field, the interfaces between components
are handled in a diffuse fashion as smooth (and possibly sharp) variations of the
density variable.

3 The Discontinuous Galerkin Discretization

The model (1) can be written in the following compact form

D
∂u
∂t

+ ∇ · Fc(u) + ∇ · Fv(u,∇u) + s(u) = 0, (3)

where u = {p, ui, ρ} ∈ R
m is the vector of the m conservative variables, Fc,Fv ∈

R
m ⊗ R

d are the convective and viscous flux functions, s is the source term and
D ∈ R

m ⊗ R
m is the difference between the identity and a single-entry matrices

D = I − J11. The system (3) can be also formulated in terms of a generic set of
variables w named working variables

DP(w)
∂w
∂t

+ ∇ · Fc(w) + ∇ · Fv(w,∇w) + s(w) = 0. (4)

The matrix P(w) takes into account the transformation from conservative to working
variables.
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By multiplying Eq. (4) by an arbitrary smooth test function v = {v1, . . . , vm}, and
integrating by parts, we obtain the weak formulation

∫
�

v ·
(
DP (w)

∂w
∂t

)
dx −

∫
�

∇v : [Fc (w) + Fv (w,∇w)] dx

+
∫

∂�

v ⊗ n : [Fc (w) + Fv (w,∇w)] dσ +
∫

�

v · s(w)dx = 0, (5)

where n is the unit vector normal to the boundary.
To discretize Eq. (5) by means of discontinuous Galerkin (dG) methods [1] we

replace the solution w and the test function v with a finite element approximation
wh and a discrete test function vh, respectively, where wh and vh belong to the space
of the polynomials of maximum degree k defined on each element K of the mesh
Th and the subscript h denote the mesh element dimension. Here, for each of the
m equations of system (5) and for any mesh element K , we choose as the set of
shape and test functions the set {φ} of orthogonal and hierachical basis functions
in that element. With this choice each component wh,j, j = 1, . . . ,m, of wh can be
expressed as wh,j = φlWj,l , l = 1, . . . ,NK

dof , ∀K , where Wj,l are the components of
the global vector W of the unknown degrees of freedom (DoFs). Therefore, the dG
discretization of the governing equations consists in seeking, for j = 1, . . . ,m, the
elements of W such that

∑
K∈Th

∫
K

φiDj,tPt,k (wh) φl
dWk,l

dt
dx

−
∑
K∈Th

∫
K

∂φi

∂xn

[
Fc,j,n (wh) + Fv,j,n (wh,∇hwh + r ([[wh]]))

]
dx

+
∑

∂K∈Fh

∫
∂K

[[φi]]n
[
F̂c,j,n

(
w±

h

) + F̂v,j,n
(
w±

h , (∇hwh + ηFrF ([[wh]]))
±)]

dσ

+
∑
K∈Th

∫
K

φisj (wh) dx = 0, (6)

for i = 1, . . . ,NK
dof . Repeated indices imply summation over ranges k = 1, . . . ,m,

l = 1, . . . ,NK
dof , n = 1, . . . , d . Fh is the set of element boundaries and [[·]] the jump

operator. A further integration by parts of the equation (6) leads to the so called
strong formulation [1]. In the current work the strong formulation is adopted for the
convective flux contribute while the weak formulation is considered for the viscous
flux treatment.
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3.1 Numerical Fluxes

The dG discretization entails the definition of the numerical fluxes F̂c and F̂v.
The numerical convective flux F̂c is here computed from the exact solution of local

Riemann problems perturbed bymeans of the artificial compressibility. The approach
takes inspiration from the work of Elsworth and Toro [3] and Bassi et al. [4]. The key
idea is to add solely at the local problem level an artificial compressibility term,which
allows to recover a tiny coupling between pressure and velocity.However, no pressure
time derivative is added to the global divergence equation. A comprehensive analysis
of three Riemann solvers for VDI flows and based on the artificial compressibility
perturbation can be found in [5].

The numerical viscous flux F̂v is based on the BR2 scheme, proposed in [6] and
theoretically analyzed in [7, 8]. Following this scheme, the viscous numerical flux
is given by

F̂v
(
w±

h , (∇hwh + ηFrF ([[wh]]))
±) def= {Fv (wh,∇hwh + ηFrF ([[wh]]))} (7)

where {·} is the average operator. The stability parameter ηF is defined according to
[8].

3.2 Working Variables

Among different sets of working variables w, e.g., conservatives and primitive ones,
we want to use a set comprising the pressure, the velocity and a new variable named
hereinafter working density ρ̃. The density ρ = ρ(ρ̃) is defined as a function of the
new variable.

This choice wants to solve twomain issues: (i) the density positivity, to be ensured
at the discrete level; (ii) the control of density under/overshoots, deriving from the
discretization of discontinuities inside density field, i.e., density interfaces, when
dealing with multi-component flow problems. Indeed, both issues can be handled at
the same time by means of a suitable definition of the function ρ(ρ̃). In particular,
here we impose that

ρ = ρ+
rρ + 1 + (

rρ + 1
)
tanh(σsρ̃)

2rρ
, (8)

where ρ+ (resp. ρ−) is the user-defined maximum (resp. minimum) density field
value, rρ = ρ+/ρ− is the maximum density ratio and σs ∈ R\ {0} is a scaling factor.

It is an easy matter to see that the function (8) on one hand ensures the positivity
of the density regardless the working density value, on the other hand limits the
under/overshoots to the ρ− value. The scaling factor σs is a free parameter that can
be set in order to limit the initial range
ρ̃ = ρ̃(ρ+) − ρ̃(ρ−) of the working variable
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ρ̃ to the maximum value 
iρ̃ = 1

σs = max

[
1


iρ̃
ln

(
rρ

) ; 1
]
. (9)

The set of working variables is thus

w = [p, ui, ρ̃]T , (10)

and starting from conservative variables u = [p, ρui, ρ]T , the transformation matrix
reads

P (w) = ∂u
∂w

=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 ρ 0 0 ρρ̃u1
0 0 ρ 0 ρρ̃u2
0 0 0 ρ ρρ̃u3
0 0 0 0 ρρ̃

⎤
⎥⎥⎥⎥⎦ , (11)

where ρρ̃ = dρ/d ρ̃.

3.3 Spurious Oscillations Control

The introduction of the variable ρ̃ ensures the positivity of the density and limits
its over/undershoots. However, Gibbs-type phenomena arising from high-order dis-
cretization of discontinuities, i.e., interfaces between different components, cannot
be controlled with a simple change of a working variable. For this purpose we adopt
an oscillation control approach which originates from the shock capturing strategies
based on artificial viscosity [9, 10]. The key idea is to add to the original set of
equations an additional diffusion term

DP(w)
∂w
∂t

+ ∇ · (Fc(w) + Fv(w)) + s(w) = ∇ · (νε∇u(w)) . (12)

The parameter νε , named artificial viscosity, drives this diffusion and should be
defined in such a way that its value is not null only where discontinuities occur.

The unique type of discontinuities in VDI flow problems is the contact disconti-
nuity and only the density can change across it. Since we introduce and discretize
the working density, we need to control ρ̃ oscillations in order to control the density
ones. The first step in such direction lies in the definition of a discontinuity detector,
named also as smoothness sensor s. The adopted approach follows the algorithm pro-
posed in [10] where for each element K the modal decay of the DoFs of the chosen
variable, i.e., ρ̃, is analysed. When the density field is smooth, the modal decay is
quick and s � 1. Conversely, at contact discontinuities the DoFs decays slowly and
s ≈ 1. The artificial viscosity νε is then defined according to [9] as
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νε =

⎧⎪⎪⎨
⎪⎪⎩

νε0 if s < s0 − 
s
νε0

2

[
1 − sin

(
π
s0 − s

2
s

)]
if s0 − 
s ≤ s ≤ s0 + 
s

0 otherwise,

(13)

where νε0 is the maximum value of the artificial viscosity, s0 is the user-defined
threshold value of the smoothness sensor and 2
s is the range of smoothness sensor
values for which the viscosity assumes intermediate values between 0 and νε . Fur-
thermore, in [9] it is proposed to set νε0 ∝ O(h/k), with h the mesh element size.
This choice fits very well with dG approximation since it introduces a small quan-
tity of viscosity which decreases with higher polynomial order allowing to capture
discontinuities as thin layers with continuous sharp gradients inside a single mesh
element. Here we consider s0 = 1, 
s = 0.75 and νε0 = h/k.

Since pressure and velocity gradients are not involved in density spurious oscil-
lations at contact discontinuities, we can rewrite the additional diffusion term as

∇ · (νε∇u(w)) → ∇ · (bνε∇ρ) , (14)

where b = {
0, ui=1,...,d , 1

}
. The dG discretization of (14) entails the treatment of

viscous numerical fluxes. In order to avoid this issue we follow the idea proposed
in [11] where the numerical flux contribute is neglected. Accordingly, the artificial
viscous term acts like a conservative source term which spreads the density inside
the single mesh element leaving untouched its mean value.

3.4 Time Integration

The numerical integration of the dG discretised set of equations by means of suitable
Gauss quadrature rules leads to a system of nonlinear differential algebraic equations
that can be summarised as

MP(W)
dW
dt

+ R(W) = 0, (15)

where R(W) is the vector of residuals and MP(W) is the global block diagonal
matrix arising from the discretization of the first term in Eq. (6). The time integration
schemes adopted to solve the system (15) are the linearly implicit Rosenbrock-type
Runge-Kutta (Rosenbrock) schemes [12] with optimal stability properties up to order
five. The global time marching is adaptive [13].

Since linearly implicit, Rosenbrock schemes entail the solution of several linear
systems of equations solved using the Generalized Minimal Residual (GMRES)
method [14] with a preconditioning based on the Additive Schwarz Method (ASM)
[15]. It is interesting to note that, thanks to the peculiar treatment of the convective
numerical fluxes, the Jacobian matrix has non null pressure degrees of freedom.
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Accordingly, the global matrix arising from the implicit time discretization is non
singular. A comprehensive analysis of Rosenbrock schemes for a dG discretization
can be found in [2].

4 Numerical Results

In this section the proposed dG appoach is tested on two selected cases: the Dry bed
inviscid dambreak problem and the double dry bed inviscid dambreack problem.

4.1 Dry Bed Inviscid Dambreak Problem

The dambreak problem over a dry bed is a free surface problem that consists on a
sudden collapse of a dam that separates water from air. The exact solution for shallow
water (SW) equations has been derived by Ritter [16] in 1892.

As initial condition, the domain of dimension [−50, 50] × [0, 4] contains water
in the region [−50, 0] × [0, 1.4618] and air elsewhere. The density ratio is rρ = 800.
Null velocity, hydro-static pressure profile are imposed as initial condition. The grav-
ity field is downward and the Froude number is Fr = 0.3193. Transmissive condition
is applied to the top boundary and slip wall condition is considered for remaining
borders. Solutions are obtained using a sixth degree dG polynomial discretization on
a coarse (260 × 8) and a fine (520 × 16) mesh. In particular, meshes are generated in
order to ensure the exact projection of the initial working density field (see Fig. 1 for
finer mesh). Time integration is performed with the fourth order Rosenbrock scheme
RODASP [2].

Fig. 1 Inviscid dambreak problem—initial density contour with the finer mesh
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Fig. 2 Dambreak—comparison of coarse and fine mesh results with respect to the exact shallow
water solution [16] at time t = 5. Free surface position and velocity profile at the bottom boundary
are depicted on top and on bottom, respectively

In Fig. 2 results with both meshes are compared with the exact solution of the
shallowwater model at non-dimensional time t = 5, where the reference time is t0 =
1s. An excellent agreement is achieved except for the predicted position of the liquid
front which is moved forward in the shallow water solution. This behaviour is well
known for shallow water equations where no vertical accelerations are considered
[17].

4.2 Dry Bed Inviscid Double-Dambreak Problem

In this section we formulate a new test case. The goal is to show the capabilities
of the proposed dG variable density incompressible formulation to deal with more
than two fluids. The test case is an inviscid problem with two dambreaks and three
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components: two different liquids and one gas. The gas and the first liquid are again
air and water while the second liquid, hereinafter named oil, has an intermediate
density, i.e., the arithmetic mean value, between air and water. This test case is
challenging since entails both high (water–air, oil–air) and low (water–oil) density
ratio interactions.

The domain [−5, 5] × [0, 8] contains two liquid regions [−5,−3.8] × [0, 3.6]
and [3.8, 5] × [0, 3.6] for water and oil, respectively, and is filled with air for the
remaining part. Null velocity and hydrostatic pressure profile are imposed as initial
conditions and slip wall condition is applied to all boundaries. The gravity field is
downward and the Froude number is Fr = 0.3193. Solutions are computed using a
sixth degree dG polynomial approximation and the forth order RODASP scheme on
a mesh of 50 × 40 quadrangular elements.

No references are available for this test case, therefore only the evolution in
time of the multi-component problem is analysed. In Fig. 3 the density contours at
non-dimensional times t = 0.005, 0.25, 0.50 and 0.75 are shown, where again the
reference time is t0 = 1s. At early times the problem evolves as two single dambreak
problems until liquid fronts collide (t = 0.25). After that, a wave of both water and
oil rises (t = 0.5) and then collapses incorporating a small air bubble while the water
front goes forward into the oil region (t = 0.75).

Fig. 3 Inviscid double-dambreak problem—density contour at different times. Blue is water (left)
and red is oil (right)



An Implicit High-Order Discontinuous Galerkin Approach for Variable Density … 201

5 Conclusions

An implicit high-order discontinuous Galerkin method for the simulation of vari-
able density incompressible flows has been proposed. Godunov fluxes are treated by
means of the exact solution of an artificial compressibility based Riemann solver.
The introduction of a suitable change of variables and of an artificial viscosity shock
capturing approach allows to deal with multi-component problems ensuring the den-
sity positivity and the control of Gibbs type phenomena at contact discontinuities.
Thanks to the high order dG approximation promising results have been obtained
despite the coarse meshes. In particular, the proposed method have shown the ca-
pability to deal with multi-component problems involving high density ratios and
more than two fluids. However, no physical interaction between components at the
material interface, e.g., surface tension, have been considered. This issue will be
considered in future works.

Acknowledgements F. Massa is supported by the Supporting Talented Researchers (STaRS) pro-
gramm of the University of Bergamo.
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Visualization Techniques for Droplet
Interfaces and Multiphase Flow

Alexander Straub and Thomas Ertl

Abstract The analysis of large multiphase flow simulation data poses an interesting
and complex research question, which can be addressed with interactive visualiza-
tion techniques, as well as semi-automated analysis processes. In this project, the
focus lies on the investigation of forces governing droplet evolution. Therefore,
our proposed methods visualize and allow the analysis of droplet deformation and
breakup, droplet behavior and evolution, and droplet-internal flow. By deriving quan-
tities for interface stretching and bending, we visualize and analyze the influence of
surface tension force on breakup dynamics, and forces induced by Marangoni con-
vection. Usingmachine learning to train a simplemodel for the prediction of physical
droplet properties, we provide a visual analysis framework that can be used to analyze
large simulation data. Computing droplet-local velocity fields where every droplet
is observed separately in its own frame of reference, we create local, interpretable
visualizations of flow within droplets, allowing for the investigation of the influence
of flow dynamics on droplet evolution.

1 Introduction

The simulation of multiphase flow is currently a very important topic, its applications
covering awide range in industry, from turbines and combustion engines in aerospace
engineering to spray cooling in food processing. Here, droplets and their interaction
with other liquids and solid objects come into play. Therefore, phenomena related
to free surfaces, especially the influence of forces acting on the interface between
fluids, have to be investigated. As simulation data is usually very large and complex,
visualization lends itself well as a tool for analyzing the data. In our case, we want
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Fig. 1 Overview of the Colliding Drops dataset showing different time steps: from before impact
to disintegration into small droplets

to visually analyze the effects of surface tension force and Marangoni convection on
droplet deformation, the evolution of droplet properties, as well as droplet-internal
flow.

The simulation data used in our work was obtained from direct numerical sim-
ulations (DNS), performed by the computational fluid dynamics (CFD) solver Free
Surface 3D (FS3D) [3]. The data consists of a velocity field, as well as a volume of
fluid (VOF) [12] field, which provides the information necessary to track the phases
in the simulation, and which can be used for reconstructing the fluid interface. Like
in the solver, we use piecewise linear interface calculation (PLIC) [30] for inter-
face reconstruction and its visualization [14]. As a framework for visualizing and
analyzing the data, we use ParaView [1], a tool which is also used by our coopera-
tion partners and domain experts from the Institute of Aerospace Thermodynamics
(ITLR) at the University of Stuttgart. The temporal evolution of an example dataset,
which is used in the following, can be seen in Fig. 1. It shows the simulation of an
off-center head-on collision of two water droplets, which after impact form a disc
and eventually disintegrate into numerous smaller droplets.

This book chapter is based on the extended abstracts Visual Analysis of Interface
Deformation in Multiphase Flow [25] and Visualization and Visual Analysis for
Multiphase Flow [24], and as such contains figures from these publications.

2 Interface Deformation

As in multiphase flow the simulation of the free surfaces becomes of importance, so
does the analysis of those forces involved in its physical description. Among others,
surface tension force and forces induced by Marangoni convection influence the
evolution of droplet interfaces, being in part responsible for the cohesion or breakup
of droplets [20]. Thus, to help better understand this influence, we want to visualize
interface deformation and show the correlation between deformation and topological
changes. This work is based on the Master’s thesis by Straub [23], and has been in
part published in extended abstracts by Straub et al. [24, 25], aswell as in an overview
paper by Lamanna et al. [16].
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2.1 Method

In order to visualize interface deformation of droplets inmultiphase flow simulations,
we derive two quantities from the velocity and volume of fluid fields, called metric
and shape tensor. Their calculation is based on the two fundamental forms from
differential geometry and are described by Floater and Hormann [5]. The results are
two perpendicular vectors orthogonal to the interface normal, respectively. They are
all visualized as tube glyphs indicating direction, and colored with respect to the
magnitude of deformation.

The calculation of interface stretching is based on the first fundamental form
from differential geometry, defined for the deformation rate of the fluid interface.
This metric tensor has been previously described by Obermaier and Joy [21]. Note
that we use the term interface stretching for a graphical and intuitive description and
acknowledge that it is not a physically correct expression. Because the result of this
calculation is a 2 × 2 symmetric matrix, we get two orthogonal eigenvectors and cor-
responding eigenvalues defined on the interface space, which, after transformation
back into 3D space, represent the directions vi andmagnitudes λi of interface stretch-
ing. The values lie in the range 0 < λi < ∞, with λi being the factor of stretching.
This means, that values smaller than 1 show interface contraction, and values larger
than 1 show interface stretching.

For the calculation of interface bending, we use the second fundamental form,
which is called shape tensor in the following. This tensor, describing the change in
curvature at a point on the fluid surface, can be defined based on the difference of
two paraboloids, similar to Grinspun et al. [6]. The first paraboloid is fitted to the
original interface, represented by a set of neighboring interface positions, using least
squares, whereas the second paraboloid is fitted to the advected interface positions.
This method of parabola fitting is also used in the solver FS3D and was described
by Popinet [22]. After transforming both paraboloids into the same reference system
〈r, s〉, their difference in the form a0r2 + a1s2 + a2rs can be used to define the shape
tensor

S =
(
2a0 a2
a2 2a1

)
.

From this tensor, both principal curvatures κi and their respective directions ki

can be computed and transformed back into 3D space. Here, the values are zero-
centered, where positive values indicate an increase in concavity, and negative values
an increase in convexity.

2.2 Results

Interface stretching is a useful quantity to find and analyze regions in which droplet
breakup occurs, or interface-related forces lead to strong cohesion. An example for
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Fig. 2 Interface stretching and contraction for two time steps in the Colliding Drops dataset from
left to right. Blue tube glyphs visualize smaller values indicating contraction on the left side of each
image, large values are represented by red tube glyphs indicating stretching on the right side

the visualization of breakup dynamics in a dataset of two colliding water drops
(see Fig. 1) can be seen in Fig. 2. Here, the ligaments connecting the larger droplets
disintegrate over time. Looking at the values of stretching and contraction and their
respective directions, this topological change can already be predicted from time
steps before the actual breakup. In the first time step visualized in Fig. 2a, one can see
smaller values represented by blue tube glyphs on the left side, indicating contraction
along the curvature of the cylindrical structure. This contraction leads to a thinning
of the ligaments. At the same time, stretching is visualized using red tube glyphs
on the right side, acting in the directions towards the larger droplets. Looking at
both stretching and contraction, this can be interpreted as fluid flow from the tunnels
towards their endpoints, eventually leading to disintegration. In a subsequent time
step, shown in Fig. 2b, the topological change of the lower horizontal tunnels can be
observed.

On the other side, bending lends itself well to the analysis of simulations in which
the change in curvature dominates the deformation process. As an example, a simu-
lation of two drops of different species—left water and right ethanol—at the onset of
coalescence is visualized for different time steps in Fig. 3. Both droplets have a diam-
eter of 0.1495cm. Due to a large difference of surface tension coefficients where the
two drops meet, the Marangoni convection induces advection of the fluid from the
ethanol drop, coating the surface of the water drop. Because of this advection along
the surface, a capillary wave is formed, moving from where the drops are touching
around the water drop on the left. This is an expected effect that was previously
observed in experiments by Thoroddsen et al. [26], and can now be investigated
further with our method. In Fig. 3a–c, the top row shows tube glyphs indicating an
increase in convexity in front of the moving capillary wave, while in the bottom
row one can see tube glyphs indicating an increase in concavity in the wake of the
capillary wave.
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µs(a) 127 µs(c) 377µs(b) 250

Fig. 3 Interface bending for a time series in the Marangoni dataset, where two initially static and
barely touching droplets started to coalesce. In the top row, the negative values are depicted as
blue tube glyphs indicating an increase in convexity. Red tube glyphs in the bottom row visualize
positive values indicating an increase in concavity

3 Machine Learning for Droplet Behavior Prediction

While machine learning is already investigated for use in flow simulation solvers,
e.g., for predicting regions of high uncertainty [17] or to speed up simulations [27], it
can also be used in visualization. For visual analysis, an overview is given by Endert
et al. [4].

The analysis of droplet behavior and droplet properties, especially due to the high
dimensionality of the property space and the large number of different droplets, is
not an easy task. Therefore, we want to use machine learning in order to predict
droplet behavior, with respect to their properties, and to find droplets for which the
learned model encounters a high prediction error. These droplets can be considered
interesting, as they do not behave as predicted by the model and hence merit further
investigation. This work is based on the Master’s thesis by Heinemann [11].

3.1 Method

Themethod basically consists of three steps: segmentation of the simulation data into
droplets and calculation of their characteristic properties for each time step, training
a model using a deep neural network, and providing a visual analysis framework for
the interactive visualization of the results.

As a first step, the simulation data has to be processed. This entails the segmen-
tation into different droplets by analyzing the connectivity of non-empty cells in
the volume of fluid field. While the segmentation is primarily done in order to be
able to calculate droplet-specific properties, we also save the evolution of droplets
in a graph, regarding topological changes due to collision and breakup. This graph
is used later to define traces of droplets in subsequent time steps that can be used
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for training. As properties, we aggregate many derived per-droplet quantities, such
as the average velocity, rotational velocity, energies, surface-to-volume ratio, and so
on.

For our machine learning approach, we train our model based solely on the input
quantities, the input being one large vector storing all previously calculated properties
per droplet. Our feed-forward neural network is then given k subsequent time steps
of a droplet, as well as the following time step as result. Because droplet collision in
multiphase flow is not influenced by the droplet’s properties, we need to omit data
which contains a collision. Here, we use our previously computed graph in order to
filter out traces with collision events. Because one global trained model yields large
prediction errors for certain properties, we train one separate model per property. In
order to account for over-fitting, we use part of the data only for verification.

The resulting visualization framework allows us to analyze the trained results. In
an overview, the total prediction error is visualized per droplet in a 3D view. Here,
we can find and filter droplets based on prediction error or different properties. Then,
a selected droplet can be analyzed further by visualizing the prediction error for each
property, and comparing it to droplets with similar properties. Additionally, filtering,
as well as brushing and linking allows the user to interactively analyze the data.

3.2 Results

All visualization steps are combined in a single visual analysis framework. Here,
the simulation data, as well as all data generated by segmentation and training from
machine learning, is visualized. An example is shown in Fig. 4. The window is split
into sidebars where information about the selected droplet and the simulation data
is shown and the user can apply filters. In the center, the simulation data and time
series for similar droplets are shown in interactive 3D views.

The user is able to render a single time step or all time steps at once, and to filter
for different properties. Additionally, color legends and the range of values can be
adjusted, as well as different properties for visualization can be selected. All settings
have an immediate effect on the rendered views, with rendering performed in real-
time. To further analyze a droplet of interest, it can be selected by clicking on it.
The views showing droplet properties are updated according to the selection. In the
graphs, all relative errors for the droplet property predictions are visualized. Traces
that show similar properties to the selected droplet are shown, with the top row show-
ing the selected droplet’s trace and the rows below showing the most similar traces,
all visualized using the same color-coding. For further analysis of an interesting
droplet found in our framework, external programs can be used, such as ParaView
[1] for the example shown in Fig. 5.
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Fig. 4 Visual analysis framework for droplet behavior prediction. (1) Time step selection and
filtering, here, filtering based on total error. (2) Color settings for visualized property. (3), (8) Bar
and spider chart visualizing the relative error for different properties of the selected droplet. (4)
3D interactive overview showing the droplets of the jet dataset. (5) 3D interactive view of similar
droplet traces. (6) Property view for the selected droplet. (7) Information about similar traces for
the selected droplet

Fig. 5 Time series of a droplet deemed anomalous and found through the framework, indicating
the general movement direction of the droplet, as well as visualizing the internal flow

4 Droplet-Local Flow

Topological changes and deformations are mostly influenced by the surface tension
force [20]. However, fluid dynamics and thus interior flow of droplets are still of
importance and impact droplet evolution. Therefore, to visualize the local flow of
droplets, we propose modifications to streamlines, pathlines, and streaklines for the
adaptation to 3D multiphase flow, as well as feature-based and droplet-local frames
of reference. This work has been published in part by Straub et al. [24].

While streamlines, pathlines, and streaklines are well-established methods in
flow visualization for 2D vector fields, they suffer from occlusion and visual clutter
from overdraw in 3D. Therefore, different approaches have been developed in order
to mitigate these problems. Popular techniques focus, e.g., on streamline seeding
[18, 19] and opacity optimization [8, 9]. Our method’s focus is on reducing occlu-
sion and visual clutter by removing the translational and rotational velocity [13] of
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droplets, essentially decomposing the input field [2]. This can be described as setting
a frame of reference [7, 28]. Hence, it is even possible to combine our technique
with seeding strategies and opacity optimization.

4.1 Method

Our method is composed of two steps. First, we have to compute the droplet-local
velocity field by setting an individual frame of reference for each droplet. Then,
streamlines, pathlines, or streaklines are drawn.

We calculate the translational velocity at the center of mass for each droplet, as
well as the axis of rotation. In the following, we assume a cell-based grid where
the velocity is defined at the cell center with a mass assigned to the whole cell.
As the translational velocity uc is simply the average velocity, it can be trivially
described as the sum of all velocities ui , weighted by their respective masses mi .
The axis of rotationω is calculated byminimizing the norm of the resulting velocities
‖ũi‖ = ∥∥ui − uc − ω × r′

i

∥∥, with r′
i the positions relative to the center of mass. This

minimization can be easily computed using least squares. The resulting droplet-local
velocity field is defined by ũi = ui − uc − ω × r′

i .
Similarly to the droplet-local velocity field, a feature-based velocity field can be

computed. Here, the idea is to use line integration for the analysis of features, such
as Lagrangian coherent structures (LCS) [10], e.g., finite time Lyapunov exponent
(FTLE), or vortex core lines [15]. To this end, a velocity field is calculated, where
the given structure, i.e., LCS or vortex core line, is fixed over time. This enables the
user to analyze the flow relative to the given feature.

While there are no modifications needed for streamlines, some are needed for
path- and streaklines. This is due to the fact that the local velocity field ũ(x, t) is
defined on the same domain as the original velocity field u(x, t), hence it is not
transformed. Therefore, the idea is to compute the original path- (or streak-) line and
use its path x(t) for sampling at the correct position in the local velocity field. The
local pathline is then defined by the initial value problem

∂ x̃(t)
∂t

= T−1
ω ũ(x(t), t), (1)

with initial position x̃(t0) = x(t0) = x0. Additionally, the velocities have to be trans-
formed back into the droplet’s original coordinate system at seeding time t0, using
the inverse rotation T−1

ω given by integrating over all previous rotations ω(t). The
local streakline can be computed analogously, with the addition that the seed has
to be moved, too. Those generalized streaklines have been previously introduced by
Wiebel et al. [29]. Here, it is achieved by translating the seed with the translational
velocity and rotating it around the axis of rotation.
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Fig. 6 Original and local streamlines for the Jet dataset. Visualization of streamlines for the original
vector field in the left image yields mostly straight lines. Interesting flow patterns can be observed
in the local vector field on the right. The color indicates the flow direction from white to red

Fig. 7 Original and droplet-local pathlines for three examples in the Colliding Drops dataset.
Pathlines for the original velocity field are shown in the top row, droplet-local pathlines in the
bottom row. Again, the color indicates the flow direction from white to red

4.2 Results

Avery trivial case, in which our method yields a better andmore useful visualization,
is for the Jet dataset depicted in Fig. 6. Here, the streamlines computed on the original
field are mostly just straight lines due to the high translational velocity of the inflow.
Hence, further analysis of the flow pattern is impossible. With our method, however,
more detailed flow can be observed.

Some more complex cases can be observed in Fig. 7. In Fig. 7a, the pathlines
for a ligament, which is moving upwards, is depicted. It is already observable from
the original pathlines in the top image that the fluid is slightly moving towards the
larger knobs at the side. In the visualization of the droplet-local pathlines, however,
one can see that the relative movement of the particles within the ligament is directly
towards those knobs, indicating that these will eventually form two separate droplets.
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Figure7b shows a droplet where in the visualization of the droplet-local pathlines
two counter-rotating parts can be seen. In Fig. 7c one can observe a saddle structure
in the droplet-local image in the bottom. However, this is not observable from the
original pathlines in the top image.

5 Conclusion

Being driven by complex phenomena, free surfaces and flow dynamics have to be
investigated. To this end, the presented work combines different approaches and
methods for the visualization and analysis of droplets. Considering different aspects,
the influences of different phenomena on droplet evolution, e.g., on breakup and
deformation, are investigated in each of the projects using different visualization
techniques:

• the influence of forces acting on the surface by visualizing shape changes,
• the influence of droplet and simulation properties using machine learning, and
• the influence of flow dynamics visualized as stream-, streak- and pathlines.
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On the Measurement of Velocity Field
Within Wall-Film During Droplet Impact
on It Using High-Speed Micro-PIV

Visakh Vaikuntanathan, Ronan Bernard, Grazia Lamanna,
Gianpietro Elvio Cossali and Bernhard Weigand

Abstract The relationship between ‘microscopic’ velocity field and ‘macroscopic’
outcomes of liquid droplet impact on wall-films is not yet fully understood. This
article reports a preliminary experimental investigation to measure the velocity field
within wall-film when a droplet impacts on it, using micro-Particle Image Velocime-
try (µ-PIV). The challenges associated with measuring the velocity field within the
wall-film are outlined. In this context, the limitations of the traditional µ-PIV tech-
nique are discussed, leading to the adoption of high-speed µ-PIV as the suitable
technique for measuring the spatio-temporal evolution of velocity within wall-film.
The salient features of the high-speed µ-PIV set-up are discussed. Further, results
from preliminary experimental investigations on water droplet impacting on water
wall-film at moderate impact velocities are presented. It is seen that the current high-
speed µ-PIV set-up can be used to obtain reliable measurements of in-plane radial
velocity, V, at ‘intermediate’ values of radial, r, and temporal, t, coordinates. Within
the measurement range of the current set-up, it is observed that V scales with r and
t as V ∝ r/t, which is similar to that reported in literature based on analytical con-
siderations. The limitations of the current set-up, and the requirements for further
experiments and validation are highlighted.

1 Introduction

The interaction of spray dropletswithwall-films has been studied fromamacroscopic
perspective for quite some time [1]. However, the interaction of a liquid droplet with
a wall-film made of a different liquid has not been explored in the same detail. Such
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droplet/wall-film interactions are commonly encountered in the form of fuel spray
droplet impacting on lubricant wall-film in internal combustion engines [2] and spray
droplets of aqueous urea solution impacting on wall-films of aqueous urea solution
in automotive Selective Catalytic Reduction (SCR) systems [3–5]. Secondly, even
though there have been numerous studies on the macroscopic outcome of a liquid
droplet impacting on a wall-film of the same liquid (see the review article [1]),
and a few recent studies with droplet and wall-film made of different liquids [2, 5–
13], the microscopic velocity field within the wall-film responsible for the observed
macroscopic outcomes is not known/studied to the same extent. These aspects set
the broad motivation for the study presented in this chapter.

Macroscopically, when a liquid droplet impacts on a wall-film, a cylindrical
crown-like structure is ejected radially outward and axially upward from the impact
location. At some impact conditions, the rim of this crown destabilizes resulting in
the formation of undulations on its surface, referred to as ‘fingers’. When the growth
rate of this rim instability is large enough, these fingers grow and undergo break-up
to form secondary droplets—this outcome is commonly referred as ‘crown splash’.
When no such secondary droplets are formed, the outcome is referred as ‘deposi-
tion’. The boundary between deposition and splash outcomes has been experimen-
tally investigated from a macroscopic perspective, providing empirical correlations
for the boundary in terms of non-dimensional parameters associated with impact
such as Reynolds number, Ohnesorge number, and normalized wall-film thickness
(see, for example, one of the earliest studies in [14] and the review article [1] for
more details). However, the velocity and wall-film thickness fields responsible for
the transition from deposition to crown splash are not yet understood. This sets the
specific direction of the current study, that is, to understand the microscopic mecha-
nisms leading to the macroscopic outcomes observed in liquid droplet impact on thin
wall-films. More precisely, the study is directed towards understanding the velocity
field within the wall-film responsible for the macroscopic outcomes of deposition
and splashing (see Fig. 1). Additionally, finding the link between the velocity field
within the wall-film and the crown angle at its base as well as the phenomenon of
crown bottom breakdown [15] are of interest. For measuring the velocity field within
the wall-film, the experimental approach based on µ-PIV is explored.

Wall-film
(f, f, f)

Vd

DdDroplet
(d, d, d)

hf

DEPOSITION CROWN SPLASH

V

?? ??

Fig. 1 Schematic illustration showing the phenomenon of droplet impact on wall-film, the
associated parameters of interest, and macroscopic outcomes of deposition and crown splash
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There are several challenges in using the traditional µ-PIV technique to study
droplet impact on wall-films. The traditional µ-PIV technique, based on a double-
pulsed low repetition rate laser and a high-resolution low frame rate camera, gives
high temporal and spatial resolutions at a localized space-time coordinate in the
flow field [16]. This is ideally suited for steady flows in micro-channels where it
has been widely used [16]. The droplet impact phenomenon, on the other hand,
is highly unsteady characterised by spatio-temporal changes in the velocity field
within the wall-film as well as the wall-film thickness. Hence the traditional µ-PIV
technique cannot be employed here to get an overall picture of velocity field within
the wall-film. This is particularly true for droplet impacting on a wall-film made of
a different liquid, since repetitive runs at shifted space and time coordinates would
entail cleaning up the ‘impure’ wall-film and re-constructing the wall-film after each
experimental run, out of hundreds of runs, at a given impact condition. Hence an
alternative simpler strategy to this cumbersome experimentation process is needed.

This article reports the alternative set-up based on high-speed µ-PIV and its
salient features in Sect. 2, followed by the results and discussion from a preliminary
experimental investigation on distilled water droplet impacting on distilled water
wall-film using this set-up in Sect. 3, and a summary of the main findings and
recommendations for future work in Sect. 4. It should be noted here that even though
the performance of the current set-up is demonstrated for distilled water droplet
impacting on distilled water wall-film (details in Sects. 2 and 3), it could also be used
for cases where the droplet and wall-film are made of different liquids.

2 Materials and Methods

In order to overcome the limitations of traditional µ-PIV technique, high-speed
µ-PIV is employed. The entire set-up is shown in Fig. 2. A high-speed camera
(FASTCAM SA-X2, Photron) together with a high intensity and high repetition rate
light source (LED Constellation120E, Veritas) is used. A similar arrangement has
been used formeasuring velocity field inside droplets impacting on dry solid surfaces
[17]. In the present case, the illumination is either in shadowgraphmode (as in Fig. 2)
or from the bottom of the wall-film. Thewall-film is formed on top of a sapphire glass
plate of thickness≈ 1mm. Liquid droplet impact on this wall-film is imaged through
the sapphire glass plate from its bottom with the help of microscope objectives (Carl
Zeiss) giving overall magnifications from 12.5× to 400×. The image is projected
onto the sensor of the high-speed camera giving spatial and temporal resolutions
of ≈ 11 µm (at 12.5×) and ≈ 80 µs (at 12,500 fps), respectively. The wall-film is
seeded with polystyrene (PS) tracer particles of diameter around 30 µm.

For this preliminary investigation, distilled water is used as the experimental
liquid for both the droplet and the wall-film. Both the droplet and wall-film liquids
are seeded with the PS tracer particles. Distilled water droplets of radius, Rd around
1.65 mm (±0.02 mm) could be repeatedly produced by pushing the liquid stored in
a syringe (1 or 10 mL) through a blunt-tipped needle. The height of the needle tip
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Fig. 2 The experimental set-up to perform high-speed µ-PIV, highlighting its salient components:
Side view (red outline), magnified side view (right) showing the needle, laser barrier, and wall-film
(red outline), and inclined front view (green outline)

from the surface of wall-film could be adjusted to simulate different droplet impact
velocities. To create the wall-film of a desired thickness, the corresponding volume
(knowing the diameter of the pool geometry) is taken in using a micro-pipette and
gradually injected over the sapphire glass plate surface until a film is formed. All the
data presented in this chapter correspond to a droplet impact velocity, Vd of around
2.66 m/s (±0.07 m/s) and wall-film thickness, hf of around 0.5 mm (±0.05 mm).
This corresponds to a non-dimensional wall-film thickness, δ = hf /2Rd of around
0.15 (±0.02). Considering the properties of the droplet and wall-film (density, ρd =
ρ f ≈ 1000 kg/m3; dynamic viscosity, μd = μf ≈ 1 mPa s; surface tension, σ d =
σ f ≈ 72.8 mN/m), the non-dimensional parameters corresponding to Vd ≈ 2.66 m/s
can be calculated as follows: Re = 2ρdVdRd /μd ≈ 8778;We = 2ρdV 2

dRd /σ d ≈ 321;
and Oh = We0.5/Re ≈ 0.0020.

3 Results and Discussion

Figure 3 shows typical high-speed microscopic shadowgraphy images of a water
droplet impacting on water wall-film. One of the limitations of the shadowgraphy
approach is the inability to observe the velocity field within the wall-film near the
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Fig. 3 Typical high-speed images captured using the high-speed µ-PIV set-up (Fig. 2). The time
coordinate corresponding to each frame is indicated above the corresponding frame. Impact con-
ditions: Droplet: distilled water; wall-film: distilled water; droplet radius, Rd ≈ 1.65 mm; droplet
impact velocity, Vd ≈ 2.66 m/s; wall-film thickness, hf ≈ 0.5 mm. Both the droplet and wall-film
are seeded with polystyrene tracer particles of diameter around 30 µm

neck region of the crown base (dark region in Fig. 3) and at the impact location dur-
ing the early stages of impact. Another limitation of this technique is the inability to
directly measure the out-of-plane velocity component, which is significant near the
crown wall and at the impact location during the early stages of impact. Hence the
current technique is ideally suited only for velocity field measurements at ‘interme-
diate’ values of the radial and time coordinates (r and t). Keeping these limitations
and the measurement range of the set-up in mind, the results from the preliminary
experimental investigations are presented and discussed below.

Figure 4 (right) shows the in-plane radial velocity, V, extracted from a typical
high-speed image (Fig. 4 (left)), corresponding to a given time coordinate, t, using
the open-source MATLAB application PIVlab [18]. The measurements are obtained
at three typical radial coordinates (highlighted by circles marked as R1, R2, and R3
in Fig. 4 (left)). The variation of V with the azimuthal coordinate along each of these
three circles is shown in Fig. 4 (right). The azimuthal coordinate along each of the
circles is expressed in radians in X-axis, the radial velocity in Y-axis is expressed in
pixels/frame, radial coordinates of the circles R1, R2, and R3 are indicated in pixels,
and the scaling factors to convert pixels to metres and frames to seconds are given
in Fig. 4 (right). Three main observations can be made from Fig. 4 (right):

(i) At a given radial location, V shows fluctuations along the azimuthal coordi-
nate, with the corresponding average, Vavg, and the standard deviation of the
fluctuations shown respectively by continuous and dashed horizontal lines of
the same colour.
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Fig. 4 (Right) Variation of in-plane radial velocity, V, (symbols connected by lines) with the
azimuthal coordinate/angle measured along circles at three typical radial coordinates (R1, R2, and
R3) as highlighted in a typical high-speed image at a given time coordinate t (left). The values of
V measured at a given radial coordinate are averaged to get Vavg (continuous horizontal lines), and
the corresponding upper and lower limits of V (dashed horizontal lines) are calculated as Vavg +
Vσ and Vavg − Vσ , Vσ being the standard deviation of V from Vavg

(ii) The average radial velocity, Vavg, increases with increase in radial coordinate
from R1 to R2. This is in line with the scaling reported in literature based on
analytical considerations [19].

(iii) The average radial velocity, Vavg, decreases with a further increase in radial
coordinate from R2 to R3. It is clear from Fig. 4 (left) that in the vicinity of R3
there is an accumulation of particles as evidenced by a higher concentration
of particles. This accumulation of particles is possibly due to a higher radial
inflow compared to radial outflow of mass, and the difference in the mass flow
may be re-directed normal to the plane of observation. This is highly plausible
since the crownwall, where an intense out-of-plane re-direction of mass flow is
expected, is in the vicinity of R3. Furthermore, the interface of droplet andwall-
film, defined by a thick droplet rim, could be in the vicinity of R3, and hence the
appearance of a ‘bump-like’ structure, where particles are accumulated due to
an out-of-plane velocity component associated with the ‘bump’. The decrease
in Vavg from R2 to R3 could, hence, be due to an unaccounted out-of-plane
velocity component, which is not directly measured using the current set-up.

Figure 5 shows the variation of Vavg with the radial coordinate at four typical
times during the expansion of the crown base. During ‘early’ stages of the impact (t
� 3 ms), Vavg increases with r, reaches a maximum, and then decreases with further
increase in r. This non-monotonous trend of Vavg with r, as discussed with Fig. 4,
could be due to the increase in out-of-plane velocity component with increasing r,
associated with the flow re-direction into the crown wall. The effect of this flow
re-direction becomes less important at ‘later’ stages (t � 3 ms) as evidenced by
the absence of a non-monotonous trend at t = 3.36 ms and t = 4.24 ms. At these
later stages, Vavg increases with r and then remains constant after a certain radial
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Fig. 5 Variation of
azimuthally averaged radial
velocity, Vavg, with radial
coordinate at four typical
time coordinates during the
expansion of the crown base

coordinate (see the blue triangles and green circles in Fig. 5). Moreover, at a given
radial coordinate,Vavg decreaseswith t, especially during the ‘early’ stages of impact.
The velocitymeasurements in the vicinity of the ‘bump-like’ structure, where particle
accumulation is seen, are marked by a dashed envelope in Fig. 5.

Figure 6 shows the azimuthally averaged radial velocity as a function of the
similarity variable r/t. The data of Vavg in the vicinity of the ‘bump-like’ structure
is not included in this plot. It is evident that there is a one-to-one correspondence
between Vavg and r/t, suggesting a scaling between the two parameters; that is,
Vavg ∝ r/t. This is quite similar to the scaling for velocity within the film/lamella, Vl

during droplet impact onwetted surfaces,Vl = r/(t + τ ) reported, based on analytical
considerations, in the literature (τ is a constant defined by initial conditions) [19].

Fig. 6 Variation of
azimuthally averaged radial
velocity, Vavg, with the
similarity coordinate, r/t.
The error bars correspond to
one standard deviation of the
measurements from the
average value. The dashed
line plots the trend Vavg = r/t
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4 Conclusions

An experimental investigation to measure the velocity field within a wall-film liquid
when a liquid droplet impacts on it was reported. The challenges associated with
the spatial and temporal scales associated with the droplet impact phenomenon, as
well as the highly unsteady nature of the process were highlighted. The limitations
associated with the application of traditional µ-PIV technique to this challenging
problem were highlighted. Based on these, it was concluded that a high-speed µ-
PIV technique is well-suited to measure the spatio-temporal variation of velocity
within the wall-film when a droplet impacts on it.

The salient features of the high-speed µ-PIV set-up were detailed. Results from
preliminary experimental investigations using the high-speed µ-PIV set-up were
presented and discussed. At ‘intermediate’ values of radial, r and time, t coordinates,
itwas seen that the azimuthally averaged radial velocity,Vavg follows the scaling,Vavg

∝ r/t. This is quite similar to the scaling reported in literature for droplet impact on dry
and wet solid surfaces based on analytical considerations [19]. However, the current
methodology based on high-speed shadowgraphy, relatively low magnification, and
relatively large tracer particles restricts it from measuring z-resolved velocity field
in the vicinity of crown wall and at very early stages in the vicinity of droplet impact
location. In addition, the current methodology does not allow for the measurement
of the out-of-plane velocity component responsible for the emergence of crown wall.

The ongoing experimental campaign uses a combination of shadowgraphy and
bottom-lit illumination, and higher magnification with smaller tracer particles to
measure z-resolved velocity field near the crown neck. Using smaller tracer particles
is especially important when quantitatively comparing the experimental results with
the predictions from analytical models, since the Stokes number, Stk, associated with
the flow around the tracers should ideally be much less than 1 for an accurate mea-
surement of the flow field. For PS particles (density, ρp = 1050 kg/m3) of diameter,
dp = 30 µm used in this preliminary study with distilled water, Stk ≈ ρpVddp/18μf

≈ 4.7 (with the velocity scale for flow around the particle approximated by Vd).
However, with further studies on more viscous wall-films (such as silicone oils with
μf ≥ 5mPa.s), these PS particles in smaller size (dp = 10µm) could bemore suitable.
Incorporating macroscopic high-speed imaging in the current high-speed µ-PIV set-
up is needed to relate one-to-one between the macroscopically observed outcomes
and the microscopic velocity field measured within the wall-film. Furthermore, to
measure out-of-plane velocity component in this region, astigmatism µ-PTV [20]
and calculation using an additional measurement of the film thickness field will be
explored. Tracer particles suitable for fuel droplets (say, diesel) and lubricant wall-
films (say, silicone oil) will be used, to understand fuel-oil interactions in automotive
engines.
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Single-Camera 3D PTV Methods
for Evaporation-Driven Liquid Flows
in Sessile Droplets

Massimiliano Rossi and Alvaro Marin

Abstract The experimental characterization of liquid flows in sessile evaporating
droplets is an important task for the fundamental understanding of the complex phe-
nomena occurring in these apparently simple systems. The liquid flow induced by
the droplet evaporation has a strong three-dimensional character and conventional
visualization methods are typically difficult to apply. A more effective approach is
to look inside the droplets from the substrate where the droplet lies and use single-
camera 3D particle tracking velocimetry (PTV) methods to reconstruct the whole
flow field. This paper discusses the implementation of an experimental setup for the
quantitative characterization of the flow inside sessile evaporating droplets based on
two single-camera 3D PTV methods: the Astigmatic Particle Tracking Velocimetry
(APTV) and the General Defocusing Particle Tracking (GDPT). Exemplary results
on different types of sessile evaporating droplets are reported and discussed. The pre-
sented approach is easy to implement, does not require special or costly equipment,
and has the potential to become a standard tool for this type of experiments.

1 Introduction

The evaporation of droplets of water or other liquids is a ubiquitous phenomenon in
nature and in many engineering and technological processes. The internal and super-
ficial flows that spontaneously develop during the evaporation process are not trivial
and depend on the droplet composition, substrate material, temperature and humid-
ity of the surrounding, and other factors. The characterization and understanding of
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such flows is an active field of research and have important implications in many
technological and biological processes, especially when the control or prediction of
the shape and composition of the stain left at the end of the evaporation process is
needed [1–3].

A classic example encountered in our everyday life is the ring-shaped stain
observed when a spilled droplet of coffee dries out. Deegan et al. [4] in 1997 showed
that particles are pushed to the ring-shaped stain due to a capillary flow that forces
liquid (and the coffee particles dispersed in the liquid) toward the contact line to
replenish the liquid lost during evaporation andmaintain a minimal liquid-air surface
(Fig. 1a). Additionally, the evaporation process cools down the liquid to a temper-
ature lower than the one in the substrate, therefore temperature and surface tension
gradients build up across the droplet and drive a Marangoni flow at the liquid-air
surface [5]. In the case of water at room temperature, the thermal Marangoni flow is
directed from the contact line toward the drop summit and has a strong influence on
the final particle deposit (Fig. 1b).

The presence of surfactants, mineral salts or surface-active components dissolved
in the liquid phase also has a huge impact on the internal and superficial flows [6,
7]. For example, chaotropic salts, such as NaCl, when dissolved in polar liquids as
water increase the surface tension. In an evaporating water salty droplet, salt quickly
concentrates at the drop corner where the liquid evaporation rate is stronger. This
can reverse the direction of the Marangoni flow and the circulation of the internal
flow, which must comply with the volume conservation (Fig. 1c). Surfactants lead to
even more complex and unpredictable scenarios, due to the complexity of surfactant
adsorption/desorption from the interface, micelle formation in the bulk, and the

(a)

(c)

(b)

(d)

Fig. 1 Example of internal and superficial flows in sessile evaporating droplets: a Capillary flow,
b thermal Marangoni flow, c concentration-driven Marangoni flow, d flow with surfactants
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continuous decrease of liquid/air interface during the evaporation process [8, 9].
For this reason, very different liquid flow configurations can be observed depending
on the nature of the surfactant and the stage of the droplet evaporation, as will be
described below (Fig. 1d). Note that all cases discussed in the following chapters
will use water as working liquid.

The experimental visualization or quantification of such flows is of paramount
importance for the understanding of these phenomena and for the development and
validation of numerical simulations or analytical models. Flow measurements inside
evaporating droplets are, however, not an easy task, since conventional 2D or 3D
visualization techniques fail when looking through a curved moving interface, as
the drop interface. Another option is to look inside the drop from the bottom, but
conventional methods will provide in this case a 2D projection of a complex 3D
flow which is, in the best case scenario, difficult to interpret, but often gives a wrong
picture of the flow field.

A solution is provided by the use of particle tracking methods based on a single-
camera view, that allow to track the three-dimensional displacement of tracer parti-
cles dispersed in the fluid. In particular, methods based on defocusing have recently
been used to characterize with unprecedented resolution the internal and superficial
flow of different types of evaporating droplets [10–12]. In comparison with other
methods such as confocal microscopy or holography, these methods do not need
costly equipment and can be implemented using conventional inverted microscopes.
Additionally, confocal microscopy and optical coherence tomography suffer of sev-
eral constraints on both recording frame rates and total length of record, which can
be easily avoided using single-camera 3D-PTV methods. In this work, we consider
two methods, the Astigmatic Particle Tracking Velocimetry (APTV) and the Gen-
eral Defocusing Particle Tracking (GDPT), which have been successfully used to
characterize the full flow field in evaporating droplets with excellent spatial and tem-
poral resolution during the whole evaporation process [10–12]. In Sect. 2, the general
guidelines to implement a suitable experimental setup are discussed as well as the
basic principles of the methods. In Sect. 3, some examples of the results obtained
with these methods on different types of sessile evaporating droplets are presented.
Conclusions are provided in Sect. 4.

2 Materials and Methods

2.1 Experimental Setup

A schematic of a general experimental setup to perform single-camera 3D PTVmea-
surements on sessile evaporating droplets is depicted in Fig. 2. The droplets are gently
deposited on a transparent substrate (typically a microscope slide) and then placed
inside a measurement chamber. The first purpose of the chamber is to protect the
droplet from unwanted air flows, which can significantly disturb the superficial and
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h

Fig. 2 Typical experimental setup to measure the internal flow of sessile evaporating droplets using
the GDPT method including a side view camera to monitor the evaporation process

internal flows. For experiments where the active control of temperature or humidity
is not required [11, 12], their values can be approximated to the ones measured in
the laboratory. In this case, it is important that the chamber is not sealed otherwise
the relative humidity inside will increase due to the evaporation process, changing
continuously the boundary conditions. If active control of temperature and humidity
is required, the chamber must be equipped with a suitable feedback-control sys-
tem. The temperature control can be achieved using Peltier elements or microscope
incubators [10]. The equipment for full humidity control is more complicated and
expensive, however, for chambers relatively small (less than 0.2 l with droplet diam-
eters of 1–10 mm), the vapour supply provided by the droplet is sufficient to rapidly
saturate the chamber, therefore the humidity can be regulated simply by a controlled
flow of dry air [10].

The global parameters to characterize the evaporation process, which are droplet
radius, volume, and contact angle (CA), can be measured simultaneously from a
side view of the droplet, as shown in Fig. 2. A teleobjective lens or a long-range
microscope [10–12] are normally needed to achieve sufficient resolution. The drop
radius, height, andCAcan directly bemeasured after proper calibration from analysis
of the side-view images, whereas the volume can be derived from these parameters
considering that sessile water droplets always assume a spherical-cap geometry, as
long as the radius/height of the droplet is below the liquid’s capillary length.

To perform the flow velocity measurement with particle tracking, the liquid
droplets need to be previously seeded with tracer particles. The particles in the
fluid are observed from the bottom through the transparent substrate by means of an
inverted microscope. The optical system is chosen in order to have particle images
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with different shape depending on their depth position (as a consequence of defocus-
ing or astigmatism, as described in the next section), therefore the full 3D displace-
ment of each particle within a certain measurement volume can be determined. This
approach allows to look at the internal flow of the droplets avoiding problems due
to curved and moving surfaces, as it would be if the particles were observed from a
top or side view.

As tracer particles, polystyrene spheres with a diameter of 1–2μm functionalized
with sulfate or carboxyl groups are typically used for measurements. The parti-
cle functionalization is specially important to disperse the polystyrene particles in
polar liquids as water, which will be the liquid used for the cases discussed. Smaller
particles would be strongly affected by the Brownian motion, whereas larger parti-
cles will tend to sediment within the time of a typical evaporation experiment (the
polystyrene density ρPS = 1050 kg/m3 is slightly larger than the one of water). To
improve the image quality, the particles are commonly labelled with a fluorescent
dye and observed with an epifluorescent system. In such system, the particles are
illuminated with a monochromatic light (provided by a laser or high-power LED)
at the excitation wavelength of the fluorescent dye, and a suitable dichroic mirror
with longpass filter is used to acquire images only by collecting the light emitted by
the particles. With this approach, most of the noise due to reflection or background
patterns can be eliminated, and clear bright particle images on a dark background
can be obtained (see example figure in Fig. 2).

2.2 Single-Camera 3D PTV Methods

The single-camera 3D PTV methods used to obtain the results presented in the fol-
lowing section rely on the fact that the tracer particles in the droplet are observed
through an optical system with small depth of field (such as microscope objectives).
In this case, the particle images are not in focus but have different degree of defocus-
ing depending on their depth position. In general, the more a particle moves away
from the focal plane of the objective lens, the larger will be the diameter of the cor-
responding particle image. This information can be used to obtain the depth position
of the particle. A simple measurement of the particle image diameter, however, is
not sufficient to determine whether the particle is behind or after the focal plane, due
to symmetry reasons. Therefore, more sophisticated approaches are needed.

Astigmatic Particle Image Velocimetry (APTV). A clever approach to encode
more efficiently the defocusing information is to induce an astigmatic aberration in
the optical path using a cylindrical lens in front of the camera sensor [13]. In this way,
there is no single focal plane and a particle image will be in focus in the horizontal
direction in a different position than in the vertical direction, resulting in elliptical
particle images. From the measurement of the length of major and minor axis of the
particle images is then possible to measure the corresponding depth position of the
particle (see Fig. 3a and Refs. [14, 15]).
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(a) (b)

Fig. 3 Measurement methods for 3D particle tracking with a single camera. a Astigmatic Particle
Tracking Velocimetry (APTV) [13–15]. b General Defocusing Particle Tracking (GDPT) [16, 17]

General Defocusing Particle Tracking (GDPT). Amore general approach is to cre-
ate a look-up table that maps the different particle images with their depth positions.
Afterwards, a pattern recognition algorithm can be used to compare the recorded par-
ticle image with the ones in the look-up table and obtain the depth position [16]. In
particular, we used here the peak value of the normalized cross-correlation between
target and calibration images to rate their similarity (See Fig. 3b), with values from
0 to 1 (being 1 the perfect match). This approach has the advantage to be com-
pletely general and to rely only on the assumption that the particle images change
in a systematic fashion with respect to their depth position. GDPT can work well
with astigmatic optics but also with conventional optics that show a certain degree of
spherical aberration (present in most conventional lenses). The spherical aberration
introduces also an asymmetry in the particle image shape depending if it is behind
or after the focal plane [18]. More information on this method and a freely-available
software for GDPT analysis can be found in [17].

3 Results and Discussion

The results presented in this section have been obtained using the general experimen-
tal setup described in Sect. 2, and GDPT or APTV as single-camera PTV method.
As tracer particles, polystyrene spheres with a diameter of 1 or 2 μm were used.
For the liquids and evaporation conditions analysed, it has been demonstrated exper-
imentally that this type of tracer particles follow faithfully the flow and the effect
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of Brownian motion or sinking velocity is negligible [10]. For more details about
experimental procedures and data processing, we refer to Refs. [10–12].

3.1 Ultrapure Water

In the simplest case of evaporation of sessile droplets of ultrapure water (UPW),
the capillary flow described by Deegan et al. [4] is the dominant one, pushing the
liquid in the bulk toward the contact line. Additionally, a weak but persistent tem-
perature gradient develops across the droplet, since the liquid is cooled down by the
evaporation process driving a heat flux from the substrate at larger temperature. The
temperature gradient is extremely small, far below 1 K/mm, but sufficient to drive a
thermal Marangoni flow on the surface.

Flowmeasurements performed with GDPT on a 2-mm-diameter sessile droplet of
UPWare shown in Fig. 4a, for different CAs. Note that since CAdecreases linearly in
time, it is proportional to the remaining evaporation time, i.e. the time left before the
end of the evaporation process. The measurements are originally three-dimensional
but have been converted to cylindrical coordinates and plotted on the rz-plane on
account of the axisymmetry of the system. The capillary flow is clearly visible, with
the flow velocity increasing as it approaches the contact line, with velocities up to
4 μm/s. The thermal Marangoni flow is also present on the surface, directed toward
the drop summit. A more detailed picture of the Marangoni flow is given in Fig. 4b,
where the intensity of the superficial flow as a function of radial position and CA
is shown. It can be seen as the larger magnitude of the Marangoni flow is observed
close to the contact line (r/a = 0.9, with a being the droplet radius) with values
around 2 μm/s, and it decreases as the droplet evaporates (i.e. for smaller CA).
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Fig. 4 a GDPT measurements of the flow field inside sessile evaporating droplets of UPW for
different CA. b Magnitude of the thermal Marangoni flow as a function of radial position and CA
[10]
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3.2 Mineral Water

The measurements in Fig. 4 are in good qualitative agreement with numerical and
analytical simulations, however they show values that are 2–3 orders of magnitude
smaller than what predicted by the simulations [10, 19, 20]. The origin of this dis-
agreement is still an open question and it is often suggested that it is due to the
presence of insoluble surfactants. However, this assumption has never been proven
experimentally, neither the nature of such insoluble surfactant contaminant identified.
One strategy to check the effect of tiny amount of contaminants in the evaporation
process is to look at different types of drinkable water and compare it with the results
obtained with UPW.

In Fig. 5, the flow velocity fields measured for three types of commercially avail-
able mineral waters are reported. The velocity measurements are taken using GDPT
and 1-μm-diameter polystyrene spheres as tracer particles [10]. The mineral waters,
namely ViO, Vittel, and Gerolsteiner, have been chosen with an increasing content
of dissolved mineral salts. When the content of mineral salts is low (ViO), the flow
patterns and velocity magnitudes are very close to the ones of UPW droplets, sug-
gesting that the superficial flow is still of thermocapillary nature and not affected by
the small ionic contamination. For larger content of mineral salts (Vittel and Gerol-
steiner), a recirculating flow,moving the fluid in the bottom toward the droplet center,
appears. The superficial flow maintains the characteristics of a thermal Marangoni
flow (moving from the contact line toward the drop summit), but it starts to slow
down, probably because of the onset of the recirculating flow. These results suggest
that the presence of tiny amount of contaminants cannot be the only reason for the dis-
crepancy between experiments and simulations, and a more complex thermofluidic
scenario must be considered.
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Fig. 5 GDPT measurements of the flow field inside sessile evaporating droplets of three different
bottled mineral waters with increasing content of dissolved mineral salts: ViO, Vittel, Gerolosteiner
[10]
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3.3 Salty Solution

For a larger amount of salt in the water droplets, a reversal of the capillary flow is
observed due to the strong solutal Marangoni flow generated by the accumulation
of salt at the contact line. This local increase of salt generates a surface tension
gradient and consequently a strong flow directed toward the contact line, which
consequently drives the bulk flow toward the center of the droplet to comply with
volume conservation. It has been shown that this flow can also lead to the formation
of ring-shaped stains, however the stain morphology is radically different since the
particles forming the stain arrive along the liquid-air surface, forming a monolayer
of particles along the surface. 3D PTV measurements can be used to reveal this
mechanism [11].

Measurements performed with APTV on a salty water droplet are shown in Fig. 6.
The droplet had an initial volume of 0.8 μl, with initial CA of 40º and initial salt
(NaCl) concentration of 100mM.Figure 6a shows some exemplarymeasured particle
trajectories: a reversed circulatory pattern is observed, with particles on the drop
surface moving toward the contact line. The corresponding measured flow velocity
profiles are shown in Fig. 6b.

Fig. 6 APTVmeasurements of the flow field inside sessile evaporating droplets of salty water with
an initial concentration of 100 mM NaCl [11]. a Particle trajectories and b velocity profiles
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3.4 Surfactants

More complex scenarios can be observed in droplets with surfactants. The interfacial
flows and the continuous droplet surface decrease influence critically the surfactant
adsorption/desorption equilibrium at every instant of the evaporation process, giving
rise to a very complex and dynamic liquid flow configuration that depends strongly on
the surfactant nature. 3D PTVmeasurements are an indispensable tool to understand
the effect of different surfactants at different concentrations. Velocity profiles calcu-
lated from APTV measurements on different types of droplets are shown in Fig. 7
[12]. In Fig. 7a, the reference experiment on UPW is shown, with the bulk capil-
lary flow toward the contact line, and the thermal Marangoni flow toward the drop
summit. Adding the surfactant Polysorbate 80 (P80) at its critical micelle concen-
tration (CMC) changes dramatically this picture. As shown in Fig. 7b, P80 reduces
the surface mobility, creating a rigid droplet surface that drastically reduces the bulk
flow as a consequence of increased viscous dissipation. P80 is known to form fairly
rigid and stable interfaces when the CMC is reached, which agrees with the results
obtained from 3D PTV measurements. On the contrary, the ionic surfactant Sodium
Dodecyl Sulfate (SDS) is known to generate very elastic andmobile interfaces. At 50
times the CMC it promotes strong flows inside the droplet with the establishment of
two counter-rotating recirculating flows, as shown in Fig. 7c. These measurements

Fig. 7 APTVmeasurements in droplets with different surfactants [12]. aReference casewithUPW.
b Droplet with surfactant P80 at 1 × CMC. c Droplet with surfactant SDS at 50 × CMC
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provide a first quantitative picture of these complex phenomena, and provide the
basis for the testing and improvement of numerical models and simulations.

4 Conclusions

We have presented an experimental approach for the quantitative characterization
of the 3D flow inside sessile evaporating droplets based on single-camera 3D PTV
methods. In particular, we applied two well-established 3D PTV methods based
on defocusing: the Astigmatic Particle Tracking Velocimetry (APTV) and the Gen-
eral Defocusing Particle Tracking (GDPT). The effectiveness of this approach is
demonstrated by presenting results obtained on different types of sessile droplets,
at different experimental conditions. The presented experimental approach can be
easily implemented on conventional inverted microscopes, and has the potential to
become a standard procedure for these types of measurements.
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Towards Sprays



Drop Shape Oscillations

Günter Brenn

Abstract The present invited contribution to this book reviews the state of
understanding and application of shape oscillations of liquid drops in a gaseous
environment. The oscillations influence transport processes across the surface of
spray drops, the drag as well as heat and mass transfer. The physical basics of
linear and nonlinear oscillations are presented and discussed. For the linear case,
the characteristic equation of the drop is derived, and the equations of motion are
solved, accounting for the fact that the characteristic equation has pairs of complex
conjugate solutions. The effects characterising the nonlinear case are reviewed and
discussed. Shape oscillations of non-Newtonian, viscoelastic liquid drops exhibit
interesting influences from time scales of the viscoelastic liquid relative to the oscil-
lation period. The liquid elasticitymay take over from surface tension as the restoring
effect. Drop shape oscillations are used for measuring material properties of the drop
liquid, such as dynamic viscosity and surface tension, as well as rheological and
interfacial parameters. The most important measurement techniques and measured
liquid properties are presented and discussed.

1 Introduction

Shape oscillations of drops have been of scientific and technical interest since more
than a century. The oscillations change the shape and, for dropswhich are spherical in
equilibrium, they increase the surface. The motion and increase of the drop surface
may influence transport processes across the interface between the drop and the
ambient medium. The effect on heat and mass transfer is more important for drops
in a liquid than in a gaseous environment. The aerodynamic drag in a gas, however,
may still be different for oscillating from non-oscillating drops. In the present context
we review the state of knowledge on linear and nonlinear drop shape oscillations in
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a gaseous environment, i.e., we restrict our discussion to spray drops. We aim to
review the state of understanding of the drop shape oscillation physics, both linear
and nonlinear, including non-Newtonian liquids. We also address the use of drop
shape oscillations for the measurement of liquid and interfacial material properties.

2 The Physics of Drop Shape Oscillations

2.1 Linear Oscillations

The scientific analysis of drop shape oscillations started in the late 19th century
by Rayleigh’s work [1]. His paper treated the capillary instability of liquid jets, but
included in itsAppendix II an analysis of small-amplitudeoscillations of a liquidmass
around a spherical equilibrium shape. The analysis was carried out for an inviscid
liquid drop in a dynamically inert environment (called a “vacuum”). The essential
result was the angular frequency of oscillation of a drop with radius a, density ρ and
surface tension σ for mode m, reading αm,0 = √

m(m − 1)(m + 2)
√

σ/ρa3. This
corresponds to the eigenfrequency of an elastic system with spring constant σ and
mass ρa3. The mode m counts the number of lobes of the drop shape. The smallest
possible number m = 2 corresponds to spheroidal deformations (with two lobes),
while shapes with m = 3 and higher exhibit the corresponding higher numbers of
lobes on the surface (Fig. 1). Rayleigh‘s result for the angular frequency says that, in
the base modem = 2, a water drop with a diameter of 5.1 cm vibrates at a frequency
of 1 Hz [1].

Lamb [2, 3] generalised Rayleigh’s result by accounting for the drop viscosity
μ and the density of the ambient medium. The threshold Ohnesorge number Oh =
μ/(σaρ)1/2 of the drop for the onset of aperiodic behaviour was predicted. A further
generalisation of the analysis of linear drop shape oscillations was achieved in [4]
by account for both the viscous and the inertial influences from the ambient medium
hosting a viscous oscillating drop. A normal-mode analysis of shape oscillations of

Fig. 1 Deformed drop shapes for modes m = 2, 3, 4. The dotted lines mark the spherical equilib-
rium shape
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drops in an immiscible ambient fluid is due to Prosperetti [5, 6]. The important aspect
of the onset of the oscillatory motion in a drop initially deformed and at rest, i.e.
the initial-value problem, was analysed in [7]. Prosperetti showed that the analyses
of linear drop oscillations by the normal-mode approach used in all investigations
before may miss the fact that, in the range 0.5657 ≤ Oh ≤ 0.7665 of the Ohnesorge
number, oscillations starting out aperiodically may turn into periodic with ongoing
time. The most important results of the here cited highlight papers are the angular
frequency and damping rate of the oscillations, as well as the shapes of the deformed
drops in linear motion.

2.1.1 Equations of Motion and Their Solutions

Linear oscillations of viscoelastic drops are analysed by solving the linearised
equations of motion, following the normal-mode approach and using a linearised
viscoelastic material law. The linearisation bases on small liquid velocities, so that
products with their spatial derivatives are negligibly small.

The equations of motion are the equation of continuity and the linearised momen-
tum equation without body force

∇ · v = 0 ; ρ
∂v
∂t

= −∇p + ∇ · τ . (1)

The linearised viscoelastic material law is the Jeffreys model [8]. The time depen-
dency of all the flow variables is given by an exponential function. In axisymmetric
flow, the extra stress tensor τ may therefore be written in the form

τ = T(r, θ) · e−αmt (2)

where T (r, θ) is an amplitude function of the spatial coordinates and αm is the
complex angular frequency for mode m. The Jeffreys model then yields the stress
tensor

τ = 2η0
1 − αmλ2

1 − αmλ1
D = 2η(αm)D, (3)

where η0 is the zero-shear viscosity of the fluid and D = (∇v + ∇vT )/2 the rate-of-
deformation tensor. This material lawmakes the structure of themomentum equation
formally identical to that for a Newtonian fluid, except that the dynamic viscosity
depends on the frequency of the deformation and on the two polymeric time scales
stress relaxation time λ1 and deformation retardation time λ2.

The continuity and momentum equations are solved subject to the kinematic
boundary condition that the rate of radial displacement of the drop surface rs(θ, t)
(Fig. 2) equals the radial velocity component at the location of the equilibrium drop
radius a, and the dynamic boundary condition that the shear stress at the drop surface,
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Fig. 2 Equilibrium and
deformed drop shapes in the
spherical coordinate system
for mode m = 2. The
deformed shape given by the
dashed line may be
represented as rs(θ, t) =
a + ε0Pm(cos θ)e−αmt

evaluated at r = a, is negligibly small for a drop in a gas. The second dynamic bound-
ary condition, stating that the (r, r) component of the total stress tensor vanishes at
the drop surface, will reveal the characteristic equation of the system.

As a solution of the linear problem, the velocity components inside the drop in
the radial and the polar angular directions may be preliminarily written as

vr = −
[
C1mr

m−1 + C2mq
2 jm(qr)

qr

]
m(m + 1)Pm(cos θ)e−αmt (4)

and

vθ =
[
C1m(m + 1)rm−1 + C2mq

2

(
(m + 1)

jm(qr)

qr
− jm+1

)]
sin θP′

m(cos θ)e−αmt,

(5)
respectively, where q ≡ √

αm/ν. The two integration constants C1m and C2m are
determined by the kinematic and the zero shear stress boundary conditions. With the
deformed drop shape in Fig. 2, the integration constants read

C1m = ε0αm

m(m + 1)am−1

[

1 + 2
(
m2 − 1

)

2qajm+1(qa)/jm(qa) − q2a2

]

(6)
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C2m = − 2(m − 1)ε0αma

mq[2qajm+1(qa) − q2a2jm(qa)] . (7)

This solution is formally identical with the results of [9] and [10].
The pressure field is readily obtained with the known velocity field by integration

of the radial momentum equation and reads

p = −C1m(m + 1)ραmr
mPme

−αmt . (8)

An integration “constant”, which would be a function of θ and t, is zero in order that
the zero normal stress boundary condition is satisfied.

2.1.2 The Characteristic Equation of the Drop and the Final Form
of the Flow Field

The characteristic equation, allowing the complex angular frequency αm to be deter-
mined, emerges from the zero normal stress boundary condition. Using the angular
frequency of oscillation αm,0 of a nearly spherical inviscid body in a dynamically
inert medium for mode m from Sect. 2.1, and the two integration constants (6) and
(7), the characteristic equation of the drop reads

1

�2
m

:= α2
m,0

α2
m

= 2(m2 − 1)

q2a2 − 2qajm+1/jm
− 1 + 2m(m − 1)

q2a2

[
1 + 2(m + 1)jm+1/jm

2jm+1/jm − qa

]

(9)

Here, the spherical Bessel functions jm and jm+1 are taken at the value qa of their
arguments. The equation is identical to the results in [2] and [9]. Note that, for a
viscoelastic liquid, the kinematic viscosity ν involved in the equation is a function
of the complex oscillation frequency αm. The oscillation frequency and damping
rate for the special case of a Newtonian liquid drop are shown in Fig. 3 as func-
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Fig. 3 a Angular frequency and b damping rate of shape oscillations of Newtonian drops with
varying Ohnesorge number for modes m = 2, 3, 4
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tions of the Ohnesorge number for the three modes m = 2, 3, 4. It is seen that the
characteristic equation for a Newtonian liquid yields pairs of complex conjugate
αm. The imaginary part of α2, i.e. the angular frequency for mode m = 2, vanishes
for Ohnesorge numbers Oh ≥ 0.7665 [7]. Initially deformed Newtonian drops with
Ohnesorge numbers in that range return to the equilibrium shape in an aperiodic way,
i.e., without oscillating.

Due to the complex conjugate solutions of the characteristic equation, α+
m and α−

m ,
the flow field in the drop reads

vr = −
{[

C+
1mr

m−1 + C+
2mq

+2 jm(q+r)
q+r

]
e−α+

m t (10)

−
[
C−
1mr

m−1 + C−
2mq

−2 jm(q−r)
q−r

]
e−α−

m t
}
m(m + 1)Pm(cos θ)

vθ =
{[

C+
1m(m + 1)rm−1 + C+

2mq
+2

(
(m + 1)

jm(q+r)
q+r

− jm+1

)]
e−α+

m t (11)

+
[
C−
1m(m + 1)rm−1 + C−

2mq
−2

(
(m + 1)

jm(q−r)
q+r

− jm+1

)]
e−α−

m t
}
sin θP′

m(cos θ)

p = −C+
1m(m + 1)ρα+

m r
mPm(cos θ)e−α+

m t − C−
1m(m + 1)ρα−

m r
mPm(cos θ)e−α−

m t (12)

Account for both solutionsα+
m andα−

m of the characteristic equation in the description
of the flow field in the oscillating drop allows for two initial conditions to determine
the amplitudes in the coefficients C1m and C2m.

2.2 Nonlinear Oscillations

Nonlinear shape oscillations of drops occur as a consequence of strong periodic
surface forces from the environment or, in free oscillations, of strong initial surface
deformation from the equilibrium shape. A theoretical description of this nonlinear
motion was unavailable before 1983. The forced oscillations case was investigated
experimentally by Trinh and co-workers in a neutrally buoyant immiscible liquid-
liquid system [11]. Drops were levitated in the host liquid and acoustically driven to
large-amplitude shape oscillations, ultimately leading to drop fission. Visualisation
of the flow fields inside the drops at large oscillation amplitude showed circulation
patterns not present at low amplitude. Free oscillations were studied extensively
by the group of Kowalewski and co-workers in the 1990s [12, 13], leading to an
equation for the damped oscillatory evolution of small deformation amplitudes with
time and a theory of nonlinear drop shape oscillations. The authors investigated
the oscillations of drops pinching off from disintegrating liquid jets in a state of
strong deformation (Fig. 4). An investigation of the spectral composition of the drop
surface shape from Legendre polynomials showed quantitatively the importance of
the various deformation modes m = 2, 3, 4, . . . and their rates of damping. The
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Fig. 4 Initially strongly deformed 0.4mm ethanol drop (bottom left) oscillating after pinch-off
from a jet. Time instants after breakoff from the jet, from bottom left to top right: 0.05 ms, 0.19,
0.31, 0.45, 0.64, 0.75, 2.79, 12.8 ms [12], reproduced with permission

Fig. 5 Decay of non-dimensional modal deformations in a free damped shape oscillation of an
ethanol drop. m = (a) 2, (b) 3, (c) 4, (d) 5 [12], reproduced with permission

higher modes contribute less to the deformation and are more strongly damped than
the lower ones (Fig. 5).

First computational investigations of nonlinear drop shape oscillations with large
amplitudes are due to [14]. Nonlinear oscillations of inviscid drops and bubbles were
investigated theoretically in [15]. The authors found shapes deviating from the linear
results, and angular frequencies decreasingwith increasing oscillation amplitude (for
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amaximumprolate aspect ratio of 1.4 by approx. 5%ofαm,0). Theirwork showed that,
as a consequence of the nonlinear flow dynamics, the drop spends a longer part of the
oscillation period in the prolate than in the oblate state. The sinusoidal dependency
of the shape on time is therefore lost with increasing oscillation amplitude. The
theoretical results agree well with data from the computations by Foote [14].

The corresponding theoretical analysis of viscous drop shape oscillations using the
weakly nonlinear approach is presently underway, following the preceding analysis
[16] of weakly nonlinear liquid jet instability.

2.3 Shape Oscillations of Non-Newtonian Liquid Drops

Shape oscillations of drops from non-Newtonian, viscoelastic liquids were analysed
linearly. In [17] it is shown for linear shape oscillations that the oscillation frequency
depends on both theOhnesorge number and the stress relaxation time λ1 of the liquid,
represented by the Deborah number De1 = αm,0λ1. For the ratio of the deformation
retardation to stress relaxation times λ2/λ1 = 1/10 it is shown that, atDe1 = 16 and
Oh ≈ 6, angular oscillation frequencies up to 15% higher than the inviscid value are
reached. Khismatullin and Nadim showed that, at small valuesDe1 ≈ 0.05, the drop
behaviour, which is aperiodic at Ohnesorge numbers greater than 0.72, turns into
damped periodic at Oh ≈ 2.1 again [10], as also found in [17]. At these relatively
large Ohnesorge numbers, the physical origin for the elasticity enabling drop shape
oscillations is liquid elasticity rather than surface tension.

3 Measuring Techniques Building on Drop Shape
Oscillations

The dependency of linear drop shape oscillations on liquid material properties has
been used since the 1980s for measuring those material properties. For moderate Oh
numbers, the oscillation angular frequency depends on the liquid interfacial tension
against its ambient medium and on its density. For drops of complex liquids, more
liquid material properties, such as the surface extensional viscosity and bending
modulus, as well as material time scales, influence the angular oscillation frequency
[4, 10].

This “oscillating dropmethod” was first applied for measuring the surface tension
of the drop liquid against the ambient air [18] and the interfacial tension between im-
miscible liquids [19]. The former authors determined the drop oscillation frequency
from visualised drop images, the latter measured the resonance frequency to derive
the interfacial tension, with the densities of the two liquids given.

The dynamic viscosity of aerodynamically levitated drops was measured in [20],
making use of the resonance behaviour of the oscillating drop with account for the
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Fig. 6 Drop formation and shape oscillations in ink-jet printing. Numbers below the images are
the times in μs after jet tip emergence from the nozzle [27]

spheroidal drop shape. The dynamic viscosity follows from a correlation with the
width of the resonance peak, which the authors derive. The accurately measurable
dynamic liquid viscosity ranges between 2 mPas and 150 mPas. The authors propose
to apply the method to materials in the semisolid state [20]. Similarly, in [21] the
damped oscillations of drops of the eutectic Pd78Cu6Si16 were used formeasuring the
dynamic viscosity for varying temperature. The dropswere observed inmicrogravity,
so that an extra levitation technique was not needed. At the eutectic temperature of
1033 K, the measured dynamic viscosity was found to agree very well with results
known from the literature.

For viscoelastic systems, the oscillating drop method was used for investigating
rheological properties of the surface in [22, 23]. The materials were surfactant solu-
tions, and the dropswere levitated in themicrogravity environment of the experiment.
In the study [22], complementary effects of the bulk and the surface viscosities were
found.Due to the coupling between the surface elastic and viscous effects, the surface
viscosities can enhance or lower the damping rate of the drop. Experimental studies
based on drop visualisation under microgravity conditions determined the frequency
and damping rate of free drop oscillations excited by loudspeakers. The experiments
quantified both bulk and surface viscoelastic properties of surfactant solutions with
the aim of developing rational models of the behavior of the surfactants [23]. A study
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with crude oil in water used the oscillating pendant drop method to determine the
dilatational elasticitymodulus and the dynamic interfacial tension of the oil [24]. The
aim of that study was to quantify the absorption behaviour of crude oil surfactants at
oil-water interfaces. A review of oscillating drop and bubble techniques is given in
[25]. More recently, in [26] an oscillating drop method was developed for measuring
the polymeric time scales λ1 and λ2 together with the zero-shear viscosity of semi-
dilute and concentrated polymer solutions. For a given polymer-solvent system, the
ratio λ2/λ1 turns out fairly constant over a wide range of concentrations, exhibiting
a value O(10−3), i.e. orders of magnitude smaller than, e.g., the value of 1/10 used
in many studies before. Successful oscillating-drop measurements of surface tension
and viscosity of complex fluids in ink-jet printing (Fig. 6) are due to Hoath et al. [27].

4 Summary and Conclusions

Shape oscillations of liquid drops may affect transport processes across the drop sur-
face due to influences on the velocity fields in both the drop and the ambient gas phase.
The oscillations lead to a systematic increase of the drop surface over the spherical
equilibrium shape. Small-amplitude oscillations may be treated linearly. Theoretical
predictions of both their oscillation frequency and damping rate agree well with the
experiment. Nonlinear oscillations may be driven by forces from the environment or
may be due to strong initial deformations of the drops. The nonlinear motion reduces
the oscillation frequency and enhances the damping rate. Furthermore, in the basic
mode of deformation m = 2, during one period of oscillation the drop spends more
time in the prolate than in the oblate shape. Non-Newtonian, viscoelastic drops may
exhibit linear shape oscillations with frequencies greater than the corresponding in-
viscid drop. Furthermore, at a sufficiently high Ohnesorge number, the viscoelastic
drop may exhibit damped oscillations, while the corresponding inelastic drop is ape-
riodic. The experimental oscillating drop method has been developed and applied
since the 1980s for measuring liquid material properties, making use of drop shape
oscillations. The method allows Newtonian and non-Newtonian, viscoelastic liquid
as well as interfacial properties to be measured.
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Classical and Novel Approaches
to Modelling Droplet Heating
and Evaporation

Sergei Stepanovich Sazhin

Abstract Classical approaches to modelling the processes during droplet heating
and evaporation are summarised. Novel approaches to modelling these processes
are described. In these approaches, commonly used assumptions that the sum of
vapour and air densities does not depend on the distance from the droplet surface,
and that droplet thermal conductivity is infinitely high are relaxed. The most recent
approaches to modelling these processes are briefly described.

1 Introduction

The importance of modelling droplet heating and evaporation has been widely dis-
cussed in the literature [1]. Key approaches to this modelling were derived more
than half a century ago (e.g. [2]) and were summarised and further developed by
Abramzon and Sirignano [3]. Formulae, originally derived in [2] and [3], have been
widely used in various applications (see the discussion of this matter in [1]). On
many occasions, the users of these formulae did not clearly understand how they
were derived and what sort of additional assumptions were used during their deriva-
tion. Often they have ignored these assumptions and have used the formulae with
sets of parameters to which they do not apply. More recent models without some of
the restrictions used when deriving the original classical formulae have not attracted
the attention of many researchers.

In this paper, the classical models of droplet heating and evaporation will be
revisited paying particular attention to the assumptions used for the derivation of
key formulae. The most important recent developments, in which some of these
assumptions are relaxed, will be briefly summarised.
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2 Classical Approaches

All classical models of droplet heating and evaporation are based on several key
assumptions which are not always clearly explained by the model developers and
in some well known textbooks. Firstly, it is commonly assumed that vapour at the
droplet surface is always saturated. In this case, the problem of droplet evaporation
reduces to the problem of diffusion of vapour from the droplet surface to the ambient
gas (air). The limitations of this assumption have been discussed since about one
hundred years ago [4]. A more rigorous approach to this problem should take into
account the kinetic effects in the immediate vicinity of the droplet surface. The
discussion of these effects, however, is beyond the scope of this paper (see [1]).

Another assumption commonly used in classical models is that all processes are
quasi-steady-state. This means that at each time step the parameters in the vicinity
of the evaporating droplets depend on the position in space but not on time; they can
change from one time step to another. In other words, it is assumed that the thermal
and vapour boundary layers are instantaneously formed at the beginning of each time
step. The limitation of this assumption is discussed at length in [1], where a fully
transient solution to the problem of droplet heating (but not evaporation) is presented
and discussed.

Finally, it is commonly assumed that liquid thermal conductivity is infinitely
large which allows modellers to ignore all temperature gradients inside droplets.
This assumption is justified by the fact that the thermal conductivity of liquid is
indeed larger than that of gas. However, the formation of the liquid thermal boundary
layer is controlled not by thermal conductivity but by thermal diffusivity. Due to
the difference between liquid and gas densities, the thermal diffusivity of liquid is
commonly about 2 orders of magnitude smaller than that of gas. This makes this
assumption questionable.

In what follows, the derivation of some key classical equations describing droplet
heating and evaporation is presented, using the above-mentioned assumptions. Ad-
ditional assumptions used for the derivation of these equations are outlined.

Remembering the assumption that droplet evaporation is quasi-steady-state, the
droplet evaporation rate is equal to the vapour mass rate through a sphere at any
distance from the droplet centre. Taking into account that this mass rate is formed
due to diffusion and convection (Stefan flow) processes, and making additional as-
sumptions that the droplet is stationary and mono-component, we can present the
vapour mass balance equation as:

ṁd = 4πR2

(
Dv

dρv

dR
− ρvU

)
= 4πR2

(
Dv

dρv

dR
− Dv

ρv

ρg

dρg

dR

)
, (1)

where Dv is the diffusion coefficient between the vapour and ambient gas (air), ρv

(ρg) is vapour (gas) density, U is Stefan flow velocity, R > Rd is the distance from
the droplet centre, Rd is the droplet radius; note that ṁd < 0.
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Equation (1) cannot be solved in the general case since we do not know the
dependencies of ρv and ρg on R. The solution to this equation, however, becomes
possible if following [2] and [3] we assume that ρtotal = ρg + ρv = const. In this
case its integration from R = Rd to R = ∞ (after some rearrangements) gives the
following expression for ṁd [1, 3]:

ṁd = −4πRdDvρtotal ln (1 + BM) , (2)

where BM = (Yvs − Yv∞)/(1 − Yvs) is the Spaldingmass transfer number,Yvs (Yv∞)
is the mass fraction of fuel vapour near the droplet surface (ambient gas). These mass
fractions depend on temperature in the general case.

Equation (2) is the well known work horse for modelling droplet evaporation,
although the assumptions based on which it was derived are often overlooked. The
most important of these assumptions is ρtotal = ρg + ρv = const, which limits the
range of its applicability because it introduces uncontrollable errors in modelling.
This becomes particularly important when cold droplets are introduced to a very hot
gas.

For constant droplet surface temperature, BM is constant is well. In this case,
Equation (2) leads to the statement dR2

d/dt is constant, leading to a well known
D2-law (D = 2Rd ) [1].

An alternative approach to estimation of ṁd can be based on the energy balance
equation. Assuming, as in the case of Equation (1), that the droplet is stationary this
equation can be presented as [1]:

4πR2kg
dT

dR
= −ṁdcpv(T − Ts) − ṁd L(Ts) + |q̇d |, (3)

where kg is gas thermal conductivity, T (Ts) is gas (surface) temperature, L is specific
heat of evaporation, cpv is specific vapour heat capacity at constant pressure, |q̇d | is
heat spent on raising droplet temperature.

In contrast to Eqs. (1), (3) could be integrated if the temperature dependencies
of kg and cpv were known. In most commonly used approaches to the solution of
Eq. (3), however, both these parameters are assumed to be constant. In this case, its
rearrangement and integration gives [1, 3]:

ṁd = −4πkg Rd

cpv
ln(1 + BT ), (4)

where

BT = cpv(Tg − Ts)

L(Ts) − (|q̇d |/ṁd)
(5)

is the Spalding heat transfer number. Note that in some papers cpv was replaced by
cp, and the latter was implicitly identified with the heat capacity of the ambient gas
(see [1] for the details).
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Since the left hand sides of Eqs. (1) and (4) are the same, a relation between BT

and BM can be obtained [1, 3]. Possible generalisations of Eqs. (1) and (4), leading
to the well known Abramzon and Sirignano model, are discussed in [1, 3].

Equations (1) and (4) are not closed as they contain an external parameter Ts which
cannot be inferred from the gas phase model. To obtain the value of this parameter
the gas phase model needs to be supplemented by the liquid phase model.

In the simplest case, the liquid phase model can be based on the assumption that
the droplet temperature is homogeneous but is allowed to change with time. In that
case, the rate of change of this temperature can be inferred from the energy balance
equation [1]:

4

3
πR3

dρl cl
dTd
dt

= 4πR2
dh(Tg − Td), (6)

where h is the convection heat transfer coefficient, ρl and cl are liquid density and
specific heat capacity, respectively, Td (Tg) is the droplet (ambient gas) temperature.
Assuming that h, ρl and cl are constant, the analytical solution to Eq. (6) becomes
straightforward. This assumption is satisfied with confidence when Eq. (6) is applied
within a short time step.

Note that h is closely linked with parameter |q̇d | used in Eqs. (3) and (5). The
details of calculating h for evaporating droplets are discussed in [1].

As mentioned earlier, the model described by the equations derived in this section
is almost universally used by researchers focused on modelling droplet heating and
evaporation and is implemented inmost Computational FluidDynamics (CFD) codes
known to us.More advancedmodels of these processes are discussed in the following
sections.

3 The Tonini and Cossali Model

As mentioned in Sect. 2 the key limitation of Eq. (2) is that it is based on the assump-
tion that ρtotal = ρg + ρv = const, the validity of which is questionable in many
practical applications. The Tonini and Cossali [5] model was developed to relax this
assumption and to provide a model which can be used for a much wider range of
problems than the model based on Eq. (2). Their model is focused on the vapour
phase. They assumed that there is no temperature gradient inside droplets, but their
model could be linked with any other liquid phase model if necessary.

The analysis of [5] is based on steady-state mass, momentum and energy balance
equations for the vapour and gas (air) mixture surrounding a liquid droplet:

d

dR

(
R2ρvU − R2Dvρtotal

dYv

dR

)
= 0, (7)

d

dR

(
R2ρaU − R2Dvρtotal

dYa
dR

)
= 0, (8)
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ρtotalU
dU

dR
= dptotal

dR
+ μmix

(
d2U

dR2
+ 2

R

dU

dR

)
, (9)

ρtotalUcpv
dT

dR
= kmix

(
d2T

dR2
+ 2

R

dT

dR

)
, (10)

where U is the Stefan flow velocity described earlier, transport and thermodynamic
properties of the mixture of vapour (v) and air (a) are assumed to be constant. In
contrast to the model described by Eq. (2), both ρtotal and T are allowed to depend
on R. Partial (pv and pa) and total (ptotal) pressures are inferred from the ideal gas
and Dalton laws. See Appendix A of [10] for the derivation of (10).

These are the boundary conditions for System (7)–(10): T (R = Rd) = Ts , T (R =
∞) = Ta,∞, Yv(R = ∞) = Yv,∞, pv(R = Rd) = pvs(Ts). Rearranging this system
and assuming that

RuTa, ∞R2
d

MvD2
v

� 1 (11)

allows us to obtain the following implicit equation for the normalised vapour mass
flow rate:

m̂d +
⎛
⎝ m̂d

1 − exp
(
− m̂d

Le

) − Le

⎞
⎠ (

Ts
Ta

− 1

)
= − p̂v, cr ln

[
p̂v, cr − p̂v,s

p̂v, cr − Yv, ∞

]
, (12)

where

p̂v, cr = 1 + θTC

1 − Yv, ∞
, θTC = Mv − Ma

Ma
, p̂v,s = pv,sMv

RuTa, ∞ρa, ∞
,

pv,s is the saturation vapour pressure corresponding to Ts , Ru is the universal gas
constant, Mv and Ma are molar masses of vapour and air,

ξTC = Rd/R, GTC = ln(Ya), m̂d = −ρ̃
dGTC

dξTC
, ρ̃ = ρtotal(R)/ρtotal(R = ∞).

Equation (12) can be solved numerically. Once m̂d has been obtained, the dimen-
sional mass evaporation rate can be estimated from the following equation [5]:

ṁd = m̂d4πDvRdρtotal(R = ∞). (13)

For the isothermal case and weak evaporation the solution to (12) coincides with
Expression (2) in the limit when the contribution of convection (Stefan velocity)
can be ignored. In this case Expression (2) reduces to the Maxwell equation [1]. An
extension of this approach to non-spherical droplets is discussed in [6].
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4 Modelling of the Liquid Phase

As mentioned in Sect. 2, the commonly used assumption that heat supplied to the
surface of the droplet instantaneously spreads over the whole volume of the droplet
leading to homogeneous temperature distribution within it is questionable. A more
rigorous approach to the analysis of the processes in the liquid phase is based on the
solution to the transient heat transfer equation inside the droplet:

∂T

∂t
= κ

(
∂2T

∂R2
+ 2

R

∂T

∂R

)
, (14)

where κ = kl/(clρl), subject to the boundary condition at its surface

h(Tg − Ts) = kl
∂T

∂R

∣∣∣∣
R=Rd−0

, (15)

Ts = Ts(t) is the droplet’s surface temperature, Tg = Tg(t) is the ambient gas tem-
perature (the effect of evaporation was ignored).

In most cases, Eq. (14), subject to the above-mentioned boundary and initial
(T (t = 0) = Td0(R)) conditions, has been solved numerically. However, a series of
papers summarised in [1] demonstrated a more efficient approach to this problem,
based on the numerical solution to this equation at each time step and incorporation
of this numerical solution into the general numerical scheme.

Assuming that h = const, the analytical solution to this equation subject to these
boundary and initial conditions can be presented as:

T (R, t) = Rd

R

∞∑
n=1

{
qn exp

[
−κRλ2nt

]
− sin λn

|| vn ||2 λ2n
μ0(0) exp

[
−κRλ2nt

]

− sin λn

|| vn ||2 λ2n

∫ t

0

dμ0(τ )

dτ
exp

[
−κRλ2n(t − τ)

]
dτ

}
sin

[
λn

(
R

Rd

)]
+ Tg(t), (16)

where λn are solutions to the equation:

λ cos λ + h0 sin λ = 0, (17)

|| vn ||2= 1

2

(
1 − sin 2λn

2λn

)
= 1

2

(
1 + h0

h20 + λ2
n

)
,

qn = 1

Rd || vn ||2
∫ Rd

0
T̃0(R) sin

[
λn

(
R

Rd

)]
dR, κR = kl

clρl R2
d

, μ0(t) = hTg(t)Rd

kl
,

h0 = (hRd/kl) − 1, T̃0(R) = RTd0(R)/Rd . The solution to Eq. (17) gives a set
of positive eigenvalues λn numbered in ascending order (n = 1, 2, ...). In the limit,
kl → ∞, solution (16) reduces to the solution to Eq. (6) as expected [1].
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The effect of droplet evaporation in Solutions (16) can be taken into account by
replacing gas temperature with the effective temperature:

Teff = Tg + ρl LdRd/dt

h
. (18)

The source term taking into account the volumetric absorption of external thermal
radiation in the droplet can be incorporated into Eq. (14) and its Solution (16) [1]. The
distribution of temperature inside the droplet, predicted by Solutions (16), allows us
to obtain the heat rate supplied from a gas to the droplet and spent on raising droplet
temperature from the following equation:

q̇d = 4πR2
dkl

∂T

∂R

∣∣∣∣
R=Rd−0

, (19)

where T (R) is determined by Expression (16). Substitution of (16) into (19) gives:

|q̇d | = 4πRdkl

∞∑
n=1

{
qn exp

[−κRλ2
nt

] − sin λn

|| vn ||2 λ2
n

μ0(0) exp
[−κRλ2

nt
]−

− sin λn

|| vn ||2 λ2
n

∫ t

0

dμ0(τ )

dτ
exp

[−κRλ2
n(t − τ)

]
dτ

}
[−1 − h0] sin λn. (20)

The authors of [7] (see also [8]) attempted to compare the predictions of the
parameters of heated and evaporated droplets based on twomodels. In the first model,
the values of |q̇d | were inferred from the definition of the Spalding heat transfer
number (Expression (5)). In the second model these values were taken directly from
Expression (20). The predictions of these models were qualitatively similar, but the
actual values of the rate of droplet evaporation and time evolution of temperature
were visibly different. The reasons for this are not clear to us.

5 Recent Developments

The models discussed so far have focused on mono-component droplet heating and
evaporation. In the case of multi-component droplets, evaporation of individual com-
ponents leading to diffusion of species inside the droplets needs to be taken into
account. The species diffusion equation can be written in a similar form to Equation
(14), but with different boundary conditions, leading to a solution to this equation that
differs from (16) [1]. Amodel based on the analytical solution to the species diffusion
equation was developed, and the results are summarised in [1, 8]. For cases where
droplets contain many components (one hundred or more) a modified version of this
model, known as the multi-dimensional quasi-discrete model, was developed [9].
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Another limitation of the models considered in the previous sections is that they
are applicable only to spherical droplets. The generalisation of some of these models
to the case of spheroidal droplets is discussed in [10]. The analysis in this paper was
focused onmono-component droplets and spheroids with eccentricity close to 1. The
analysis of strongly deformed multi-component droplets leading to a liquid film is
presented in [11].

The third limitation of the models considered so far is that it was assumed that
droplet heating and evaporation processes can be isolated from ignition and combus-
tion processes. This assumption is particularly important in the case of fuel sprays
(e.g. in internal combustion engines). Possible approaches to the modelling of spray
heating, evaporation and ignition processes are discussed in [12, 13].
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The Influence of Curvature
on the Modelling of Droplet Evaporation
at Different Scales

Grazia Lamanna, Gianpietro Elvio Cossali and Simona Tonini

Abstract The evaporation of liquid drops in stagnant gaseous environment is
modelled, accounting for the effect of drop curvature and size at the macro- and mi-
croscopic scales. At themacro-scale level, the validity of the conjectured dependence
of the local fluxes on the drop surface curvature is analysed. Analytical solutions to
the gas-phase conservation equations for five drop shapes (sphere, oblate and prolate
spheroids and inverse oblate and prolate spheroids), under uniform Dirichlet bound-
ary conditions, are used to calculate the local vapour and heat fluxes. The analysis
shows that in general non-dimensional fluxes do not solely depend on local curva-
ture, but possibly the effect of the whole drop shape must be taken into account. At
the micro-scale level, the equilibrium vapour pressure at a convex curved surface
is higher than that at a flat surface, thus leading to a considerable enhancement of
the evaporation rate for nanometre sized droplets. To model the increase in equilib-
rium vapour pressure, we consider the Kelvin correction. Our analysis shows that
the Kelvin correction is strictly required for droplet radii below 20 Å, as typically
encountered for modelling the growth of critical clusters in phase transition pro-
cesses initiated by homogeneous nucleation. At these conditions, it is mandatory to
consider also the repartition of molecules in the different phases, in order to prevent
a significant overestimation of the equilibrium vapour pressure.
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1 Introduction

The phenomenon of drop evaporation has attracted the attention of the scientific
community since decades for its wide range of industrial applications, like spray
combustion, spray cooling, fire suppression, medical aerosols, to cite but a few.

The models of drop evaporation are classified into two main cathegories [1]:
hydrodynamic and kinetic or molecular dynamicsmodels. The hydrodynamicmodels
assume that vapour in the vicinity of the drop surface is always saturated, then both the
liquid and the gas phases can be treated as a continuum and the boundary conditions
at the liquid/gas interface are function of the operating conditions (temperature,
pressure and composition). The kinetic or molecular dynamics models account for
the details of the detachment of molecules from the drop surface and they are based
on the kinetic Boltzman equation (kinetic models, [2–4]) or molecular dynamics
simulations (molecular dynamics models, [4–6]). In these models the assumption
that both liquid and gas phases can be treated as a continuum is no longer valid and
a much more complex dependence of the boundary conditions on the operating and
geometry characteristics must be taken into account.

The first hydrodynamic model for drop evaporation is that of Maxwell [7], which
assumes that steady-state evaporation from a spherical liquid drop suspended in stag-
nant air is driven by the diffusion of the vaporising species. Since then a huge amount
of work was done on this subject, analysing the effect of drop composition, shape
and temperature distribution, thermo-physical properties, equilibrium conditions at
the liquid/gas interface, etc. (refer to [1, 8] for recent reviews on this subject). The
majority of analytical models of drop evaporation assumes that the drop may be
described as a perfect sphere (refer to [9] as the most common model of drop evap-
oration, usually implemented in CFD codes for spray applications). However, there
exists experimental evidence (see for example [10]) that drops in spray applications
are far from being spherical and drop deformation must be taken into account both
locally, with a direct effect on the heat and mass fluxes, and globally, on the total
heat and mass rates.

Since the early works on non-spherical drop evaporation modelling [11, 12], the
effect of drop shape was considered through a direct influence of the surface curva-
ture on the local fluxes. The cited work [12] evidenced, from the results of numerical
simulations, using the Galerkin finite element method, the existence of a correlation
for the rate of evaporation of deformed drop and showed that the mass flux varies
along the surface of the deformed drop. The author proposed a correlation between
the evaporation mass flux and the local surface curvature, based on a suggestion of
Lian and Reitz, which in a work on the instability of evaporating liquid jets [13],
postulated that the local evaporation flux, from a deformed surface, could be equated
to that from a spherical drop having a mean curvature equal to the local mean cur-
vature of the surface under consideration. More recently [14] it was shown, through
an analytical solution of the species and energy conservation equation in spheroidal
coordinates, that the local heat and mass flux on a spheroidal surface (either prolate
or oblate) is proportional to the fourth root of the local Gaussian curvature. Later on
it was shown that the same results holds also for triaxial ellipsoids [15].
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On this account, it is important to point out that the effect of curvature on the
evaporation and heat transfer from a droplet floating in a gaseous atmosphere can
be analysed in different ways depending on the observation scale. When the scale is
large enough so that the continuous assumption holds, i.e. the molecular constitution
of the fluids can be disregarded, the effect of droplet shape can be separated from that
of the boundary conditions [16, 17]. Under such assumption, the effect of droplet
shape on the evaporation characteristics becomes a purely geometrical problem,
and the local evaporation characteristics (vapour and heat fluxes) are usually linked
to local shape characteristics, like surface curvature. On the other hand, when the
observation scale becomes small enough, kinetic theory rather than continuous fluid
mechanics must be used to model the phenomena. The appropriate non-dimensional
number to identify the kinetic regime of droplet evaporation is the droplet Knudsen
number Knd = �

2rd
, where � is the mean free path and rd the droplet radius. When

Kn � 1, the rate ofmass and energy transfer between the droplet and the surrounding
ambient gas is described by the molecular fluxes towards the droplet surface and
emanating from it. At this scale, boundary conditions may become dependent on the
drop size, and possibly shape, through the local effect of the surface curvature on
the balance between incoming and outcoming molecules. Specifically, the curvature
of the vapor-liquid interface alters the equilibrium pressure in the vapour phase, as
described first by the Kelvin equation [18] and later corrected by Gibbs [19–21]. The
Kelvin equation is valid for a pure component, assuming an incompressible liquid
and an ideal gas, and it yields

psv,r = psv,∞ exp

(
2σ

ρlRvTd rd

)
(1)

where Rv is the gas constant, Td denotes the droplet temperature, psv,r and psv,∞
represent the saturated pressure of the pure vapour for a curved and planar surface,
respectively. As can be seen, the equilibrium vapor pressure at a convex curved
surface is higher than that at a flat surface, thus leading to a considerable enhancement
of the evaporation rate in the case of nanometre sized droplets. By taking the variation
of the total thermodynamic Gibbs potential of the system of noninteracting droplets
in equilibrium with the saturated vapor, Kuz [22] demonstrated that Eq. (1) is strictly
valid until the molar interfacial volume can be neglected in relation with the molar
liquid volume of the droplet. This condition is fulfilled for droplet size down to
rd ≈ 4nm and limits the range of investigated sizes for the kinetically controlled
regime of droplet evaporation. For modelling the growth of crystals or liquid clusters
from homogeneous nucleation, instead, an improved relation should be employed
that includes the mole number of each bulk phase and of the surface phase.

Based on the above considerations, the present paper discusses the influence of
surface curvature on the droplet evaporation rate. The overall goal is to understand
under which conditions curvature effects are no longer negligible for the accurate
prediction of dropwise evaporation. In the process, an overview of macroscopic and
kinetic modelling approaches is also provided.
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2 Drop Evaporation Models at Different Scales

2.1 Effect of Surface Curvature at the Macroscopic Scale

The available analytical modelling of the evaporation from a liquid drop is based on
the solution of the conservation equations for a continuous medium, accounting for
the presence of interfaces. In such approach the interface is considered as a sufficient-
ly smooth surface that separates two phases (liquid and gaseous), and evaporation
is responsible for mass and energy flows across such interface. It has been observed
[16] that the predicted heat and mass fluxes on this surface, under uniform Dirichlet
boundary conditions, can be written in such a way that the properties of the gaseous
mixture and the boundary conditions can be separated from the effects caused by the
surface shape. In particular, the local heat and mass fluxes can be written under the
form:

n(1)
v,n = −fm∇n� (2)

qn = −ft∇n� (3)

where the quantities fm and ft were analytically derived in [17] and found to depend
only on the thermophysical properties of the gaseous phase and the boundary condi-
tions (see [17] for all the details), while the function � is the solution of the Laplace
problem:

∇2� = 0 (4a)

�(surface) = 1; �(∞) = 0 (4b)

and ∇n� is the component of the gradient of � normal to the surface.
It is then evident that, in this framework, the effect of the drop shape is fully

contained in the formof the function�, and it is separated from the effect of boundary
conditions and thermophysical properties.

As previously stated, in all the available analytical modelling of non-spherical
drop evaporation, the local fluxes were considered directly influenced by the local
surface curvature [12–15]. In particular, it was shown that for ellipsoidal (spheroidal
and triaxial) drops the local heat and mass fluxes are proportional to the fourth root
of the local Gaussian curvature. Although the extension of this result to the case of
generally shaped smooth surfaces is tempting, it can be shown that it is not a general
rule.

Given any smooth (twice differentiable) surface, the two principal curvatures
κ1, κ2, can be related to mean, C, and Gaussian, KG , curvatures by the relations [23]:



The Influence of Curvature on the Modelling of Droplet … 263

C = κ1 + κ2 (5)

KG = κ1κ2 (6)

The aim of the following analysis is to show that, contrary to what usually pos-
tulated and obtained for a special class of surfaces (ellipsoids), the values of these
curvatures alone are not enough to define the local mass and heat fluxes from a non-
spherical drop evaporating in a stagnant environment. To this end, it is sufficient to
show that the mass flux (and consequently the heat flux) from surfaces of different
shape having the same mean, C, and Gaussian, KG , curvatures at given points, is not
the same.

Let search the solution of the problem (4) in different systems of coordinates in
order to find the fluxes on the surface of a drop having the shape of one coordinate
surface. Following [24], let consider the five curvilinear orthogonal coordinate sys-
tems: spherical, prolate and oblate spheroidal, inverse prolate and oblate spheroids,
which can be defined in a unique form as:

x = aA (ζ, η, α) cos (ϕ) (7a)

y = aA (ζ, η, α) sin (ϕ) (7b)

z = aB (ζ, η, α) (7c)

where −1 ≤ η ≤ +1,

A (ζ, η, α) =
√

ζ 2 + α

� (ζ, η, α)

√
1 − η2; B (ζ, η, α) = ζη

� (ζ, η, α)
(8)

and the range of the ζ -coordinate, the parameter α and the function �(ζ, η, α)

are given in Table 1, while a is a size parameter (refer to [25] for details on these
coordinate systems).

In these coordinate systems the surfaces defined by the parametric equation ζ = ζ0
have typically the form reported in Fig. 1.

Fig. 1 Samples of inverse oblate, oblate, spherical, prolate and inverse prolate drop surface
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Table 1 Non-dimensional mean and Gaussian curvatures for spherical, spheroidal and inverse
spheroidal surfaces

Shape α � Range of ζ �n

Sphere 0 1 0 ≤ ζ < 1 ζ n+1

Oblate +1 1 0 ≤ ζ < ∞ Qn (iζ )

Prolate −1 1 1 ≤ ζ < ∞ Qn (ζ )

Inverse oblate +1 ζ 2 + α
(
1 − η2

)
0 ≤ ζ < ∞ Pn (iζ )

Inverse prolate −1 ζ 2 + α
(
1 − η2

)
1 ≤ ζ < ∞ Pn (ζ )

These shapes can be observed in real experiments on oscillating drops (the oblate
and prolate spheroids) and in binary drop collisions (inverse oblate and prolate drops)
[26], then the following analysis has also an applicative value. It is worth to mention
that the coordinates η and ζ and the parameter a have different meanings in different
coordinate systems; for example for the spherical coordinate system, ζ = r

rd
, η =

cos θ , where r is the radial coordinate, θ is the polar (zenithal) angle and rd is the
radius of the droplet defined by the equation ζ = 1, and in this case a = rd . Assuming
that the problem has rotational symmetry and observing that the scale functions in
these coordinate systems are [25]:

hζ = a

�

√(
ζ 2 + αη2

)
(
ζ 2 + α

) ; hη = a

�

√(
ζ 2 + αη2

)
(
1 − η2

) ; hϕ = a

�

√(
ζ 2 + α

) (
1 − η2

)
(9)

the Laplace Eq. (4) can be written as (see [25]):

∂

∂ζ

[(
ζ 2 + α

)
�

∂�

∂ζ

]
+ ∂

∂η

[(
1 − η2

)
�

∂�

∂η

]
= 0 (10)

The solution of this equation can be written in a unified form as (see again [25]
for each coordinate system):

� = �1/2
∞∑
n=0

gn
�n (ζ )

�n (ζ0)
Pn (η) (11)

where the functions �n are reported in Table 1 for each coordinate system and the
coefficients gn are found by satisfying the Dirichlet condition � = 1 on the surface
ζ = ζ0 and can be analytically calculated, thanks to the orthogonality of the Legendre
polynomials, as:

gn = 2n + 1

2

∫ 1

−1

Pn (η)

�1/2
dη (12)
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It can be easily observed that the spheroidal drop cases degenerate in a 1D solution,
in fact in such cases � = 1 and

gn = 2n + 1

2

∫ 1

−1
Pn (η) dη = δn0 (13)

then

� =

⎧⎪⎨
⎪⎩

Q0(iζ )

Q0(iζ0)
= arctan(ζ )−π/2

arctan(ζ0)−π/2 oblate

Q0(ζ )

Q0(ζ0)
= log

(
ζ+1
ζ−1

)

log
(

ζ0+1
ζ0−1

) prolate
(14)

Having found �, the evaporation flux can be calculated from Eq. ( 2). To perform
the wanted comparison we will assume that all the compared drops have the same
volume, which can be obtained by properly choosing the size parameter a in relation
to the equivalent drop diameter defined as rd = (

3V
4π

)1/3
. This yields the following

evaluation of a:
a = rd

fr (ζ0)
(15)

where

fr (ζ0) =

⎧⎪⎨
⎪⎩

(
ζ 2
0 + α

)1/3
ζ
1/3
0 spheroidal{

1
8

ζ0

(ζ 2
0 +α)

[
5ζ 2

0 +2α
ζ 4
0

+ I(ζ0)

(ζ 2
0 +α)

1/2

]}1/3

inverse spheroidal
(16)

and

I (ζ0) =

⎧⎪⎪⎨
⎪⎪⎩

3
2 ln

(√
ζ 2
0 +1+1√

ζ 2
0 +1−1

)
inverse oblate

3 arctan

(
1√
ζ 2
0 −1

)
inverse prolate

(17)

while for the spherical case fr (ζ0) = 1 (see also [15] for details).

2.1.1 Curvatures

Considering the rotationally symmetric surface parametrically defined by the equa-
tion ζ = ζ0, the principal curvatures can be calculated as [27]:

κ1 = AηηBη − AηBηη(
A2

η + B2
η

)3/2 ; κ2 = Bη

|A| (A2
η + B2

η

)1/2 (18a)

and the following non-dimensional mean and Gaussian curvatures can be defined,
using the equivalent drop radius, as:
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C∗ = rd (κ1 + κ2) (19)

K∗
G = r2d κ1κ2 (20)

where Table 2 reports their values for the drop shapes considered here.
The ranges of the coordinates ζ and η, reported in Table 1, limit the values of the

mean and Gaussian curvatures. Figure2a shows, on the C∗ − K∗
G plane, the different

regions for the different shapes.
From this map, it can be appreciated that there exists an overlapping among the

regions corresponding to spheroids (oblate and prolate) and inverse spheroids (oblate
and prolate). This must be interpreted as follows: chosen a point inside such region,
say

(C∗
1 ,K

∗
G1

)
, there exist an oblate spheroid, a prolate spheroid, an inverse oblate

and an inverse prolate spheroid that, somewhere on their surfaces, have the same
non-dimensional mean and Gaussian curvatures. If the evaporation flux depends
only on the surface curvatures (either mean, Gaussian or both) then all these drops
should have, at that given point on the surface, the same value of the non-dimensional
evaporation flux, and this should happen for all the pairs

(C∗,K∗
G

)
belonging to the

common region above mentioned.

Table 2 Non-dimensional mean and Gaussian curvatures for spherical, spheroidal and inverse
spheroidal surfaces

Shape C∗ K∗
G

Sphere 2 1

Spheroids ζ
4/3
0

2ζ 20 +α
(
1+η2

)
(
ζ 20 +αη2

)3/2(
ζ 20 +α

)1/6 ζ
8/3
0

(
ζ 20 +α

)2/3
(
ζ 20 +αη2

)2

Inv. spheroids ζ0

[
2ζ 40 +αζ 20 −1+[

5αζ 20 +4
]
η2+η4√

ζ 20 +α
(
ζ 20 +αη2

)3/2
]
fr (ζ0)

ζ 20

(
ζ 20 +α

(
1+η2

))(
ζ 20 +α

(
3η2−1

))
(
ζ 20 +αη2

)2 f 2r (ζ0)

Fig. 2 a C∗ − K∗
G regions for the selected drop shapes; b C∗ − K∗

G overlapping region for the
selected drop shapes (black) and selected points (white circles) for flux comparison (see Table3)
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2.1.2 Calculation of Fluxes and Curvatures

According to Eqs. (2) and (3) the heat and mass fluxes are function of the gradient
of the function �, obtained by Eqs. (11) and (12).

The non-dimensionalisation of the fluxes can be obtained in two different ways.
From Eqs. (2) and (3), a simple way to non-dimensionalise is:

n∗
v,n = nv,n

fmrd
= −rd∇n� = qn

fT rd
= q∗

n (21)

where the quantity −rd∇n� is a purely geometrical one and it can be explicitly
defined as:

− rd∇n� = − rd
hζ (ζ0, η)

(
∂�

∂ζ

)
ζ=ζ0

(22)

On the other hand, the following non-dimensionalisation was used in [14, 15]:

n̂v,n = nv,n4πr2d
mev

(23)

where the evaporation rate mev can be written as:

mev =
∫
A
nv,ndA (24)

and the the two non-dimensional forms can be related to each other by:

n̂v,n = n∗
v,n4πr

2
d∫

A n
∗
v,ndA

(25)

It is interesting now tonotice that for spheroids, thefirstway to non-dimensionalise
the fluxes yields the explicit form:

n∗
v,n =

(
ζ 2
0 + α

)−1/6
ζ
1/3
0√(

ζ 2 + αη2
)

{ 2
(π−2 arctan(ζ0))

oblate
2

log
(

ζ0+1
ζ0−1

) prolate (26)

which can be related to the local Gaussian curvature by the relation:

n∗
v,n = (

K∗
G

)1/4 1(
ζ 2
0 + α

)1/3
ζ
1/3
0

{ 2
(π−2 arctan(ζ0))

oblate
2

log
(

ζ0+1
ζ0−1

) prolate (27)
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where (
K∗
G

)1/4 = ζ
2/3
0

(
ζ 2
0 + α

)1/6
√(

ζ 2
0 + αη2

) (28)

Instead, for the second non-dimensionalisation method (23), since

∫
A
n∗
v,ndA = 8πr2d(

ζ 2
0 + α

)1/3
ζ
1/3
0

{ 1
(π−2 arctan(ζ0))

oblate
1

log
(

ζ0+1
ζ0−1

) prolate (29)

then

n̂v,n = n∗
v,n4πR

2
d∫

A n
∗
v,ndA

=
(
ζ 2
0 + α

)1/6
ζ
2/3
0√(

ζ 2 + αη2
) = (

K∗
G

)1/4
(30)

Both non-dimensional forms yield a variation of the flux over the surface propor-
tional to the fourth root of the Gauss curvature, which on the surface depends on the
coordinate η; but the second one yields a form that is independent of the shape, i.e.
it holds for both prolate and oblate. The use of the integral (29) seems to eliminate
the dependence on the shape, maintaining only that on the local characteristics (the
curvature).

2.1.3 Interdependence Between Fluxes and Local Curvature

Toanalyse thepossible existenceof a direct relationshipbetween thenon-dimensional
fluxes (Eq.23) and the local curvatures, the non-dimensional flux, n̂v,n, is calculated
on points of the drop surfaces of differently shaped drops where both C∗ and K∗

G
(or equivalently κ1 and κ2) have specified values, and the results are then compared
to each other. The set of values of C∗ and K∗

G are chosen to belong to the above
mentioned overlapping region in the C∗ − K∗

G map and they are enlightened as white
circles in Fig. 2b. These values of the mean and Gaussian curvatures can be found on
some parts of the surface of spheroidal and inverse spheroidal drops; if the conjecture
about the influence of curvatures on evaporation and heat fluxes were correct, the
resulting values of n̂v,n should coincide on those points of the surface of differently
shaped drops having locally the same curvatures. Table3 reports the values calculated
from the solution (4) for the four cases of oblate/prolate spheroids and oblate/prolate
inverse spheroids. It is evident that for the spheroids the non-dimensional flux is ex-
actly equal to

(
K∗
G

)1/4
, as reported in [14] and [15], while for the case of oblate and

prolate inverse spheroids the non-dimensional flux assumes different values. This is
enough to prove that the sole curvature of a surface (which is completely defined
by C∗ and KG , or κ1 and κ2) does not define the evaporation and heat fluxes. Likely,
there exists other geometrical parameters, possibly depending on the drop shape, that
may completely define the geometrical effect on evaporation and heat fluxes, that at
present are not yet evident.
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Table 3 Non-dimensional fluxes for spheroids and inverse spheroids (oblate and prolate)

C∗ K∗
G n̂v,n

Spheroids Inverse oblate Inverse prolate

1.600 0.301 0.746 0.280 0.930

1.644 0.381 0.786 0.327 0.940

1.689 0.452 0.820 0.384 0.950

1.733 0.523 0.851 0.449 0.960

1.778 0.594 0.878 0.522 0.969

1.822 0.666 0.903 0.600 0.978

1.867 0.737 0.926 0.681 0.986

1.911 0.808 0.948 0.762 0.992

1.956 0.879 0.968 0.840 0.998

2.000 0.950 0.987 0.911 1.002

2.2 Effect of Surface Curvature at the Microscopic Scale

The objective of this section is to investigate the size range for which the Kelvin
correction (see Eq.1) induces a significant enhancement to the droplet vaporisation
rate. For this purpose, two representative sizes are considered, namely rd = 600
nm and rd = 6 nm. For a physically accurate description of the mass and energy
transfer between the droplet and the surrounding gas, a refinement to the classical
diffusion-based evaporation theories must be considered. For this purpose, Langmuir
[28] introduced the concept of a Knudsen layer, which is defined as a thin vapor
layer surrounding the liquid droplet in the order of the molecular mean free path,
where heat and mass transport are dominated by collision effects and have to be
described by kinetic molecular theory [29]. The importance of the Knudsen layer
correction is twofold. First, it is able to describe continuously the transition from a
diffusion-controlled to a kinetic-controlled mechanism of mass and energy transfer
in terms of the Knudsen number of the droplet Knd . If the droplet radius is much
smaller than the molecular mean free path (i.e. Knd � 1), then the Knudsen layer
occupies a large volume around the droplet, with respect to the size of the droplet,
and the heat and mass transfer are controlled by collisions of vapour molecules
within the Knudsen layer. In contrast, if Knd 	 1, the Knudsen layer shrinks towards
the droplet surface and the diffusion-controlled evaporation/condensation regime is
recovered. Langmuir-type models, therefore, automatically assure that the correct
description of the mass/energy transfer mechanism is adopted with increasing Knd
(or equivalently decreasing droplet size). Second, it enables the inclusion of local
non-equilibrium effects in the standard fluid dynamic equations formodelling droplet
evaporation/condensation. The latter become dominant for large departure from the
equilibrium state of the droplets and therefore are not considered here.
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2.2.1 The Young Model

The Young model has been already extensively described and validated in literature
[30–32]. Hence, only a short summary is presented hereafter. As can be seen in Fig. 3,
the vapour-liquid interface is modelled as a sharp interface. Furthermore, vapour
molecules leaving the droplet surface are assumed to have a Maxwellian velocity
distribution function, corresponding to the temperature of the liquid, in agreement
with recent findings from MD simulations [4, 33, 34]. In addition, saturated vapour
density is assumed on the droplet surface, based on recent findings from Zhakhovsky
et al. [4]. For the calculation of saturated properties, we included mixture and real
gas thermodynamics. The equation of state and thermodynamic properties for the
fluid mixtures are obtained from REFPROP [35] (®NIST). Curvature effects on the
saturation pressure are also included, according to Eq. (1).

At the border of the Knudsen layer rd , Young selected the Grad’s distribution
function, because it reproduces with high accuracy the (reverse) temperature jump
predicted by analytical solutions of the Boltzman equation for large departure from
the droplet equilibrium state [29, 36]. Note that the vapour properties at the Knudsen

Fig. 3 Schematic drawing
of the Young model, based
on Langmuir’s Knudsen
layer concept
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border, e.g. TKn
v and pKnv , are unknown and are calculated, at each time step, by

employing a flux matching condition at rKn. Specifically, the net energy and mass
flow rates are calculated independently both in the Knudsen layer (Ėfm, Ṁ fm) by
employing gas kinetic theory and in the continuum region (Ėct, Ṁ ct) by employing
diffusion. Conservation of mass and energy across the Knudsen border (rKn) yields
a system of equation in the unknowns TKn

v and pKnv

Ėfm = Ėct = Ė
(
Td ,T

amb,TKn
v , pamb

v , psv,r, p
Kn
v , rd , rKn

)
(31a)

Ṁ fm = Ṁ ct = Ṁ
(
Td ,T

amb,TKn
v , pamb

v , psv,r, p
Kn
v , rd , rKn

)
(31b)

Here the parameters Td, rd and rKn are inputs. As soon as the temperature and vapour
pressure at the Knudsen border are known, the net mass and energy transfer (Ṁ , Ė)
can be obtained from their respective free molecular or continuum expressions, sub-
ject to a new set of boundary conditions: [Td , psv,r(Td )] and [TKn

v , pKnv ] for the free
molecular regime and [TKn

v , pKnv ] and [T amb, pamb
v ] for the continuum region. Hence,

the effects of the Knudsen layer (i.e. the effects of the kinetic correction and of cur-
vature) are felt on the continuum scale as a new set of boundary conditions. Note
that the location of the Knudsen border is set at rKn = rd + β�, where β is an ar-
bitrary constant in the range 0.5 < β < 1.5. Young [30] proposed to use the value
β = 0.75, since it gave a good agreement with kinetic studies of Chernyak [37] for
pure monatomic vapours. In this work, we kept the same choice until further results
from MD simulations will be available for polyatomic gases.

Finally, the temporal variation of the droplet temperature can be obtained by
performing an energy balance at the droplet surface according to

mdcp,l
dTd
dt

= −Ė − Ṁ L + Ṁ hsv (32)

where L is the latent heat, md the droplet mass, cp,l the heat capacity of the liquid
and hsv the saturated specific enthalpy of the vapour molecules evaporating from the
droplet surface. In Eq. (32), it is implicitly assumed that the energy and mass flow
rates are positive when leaving the droplet. As can be seen, quasi-steady evaporation
at constant wet-bulb temperature is not a prerequisite for the Young model. It is au-
tomatically reached when the net energy transfer from the gaseous phase is balanced
by the energy losses due to evaporation.

2.2.2 The Effect of the Kelvin Correction

In order to understand the importance of curvature on the droplet evaporation rate,
two representative droplet sizes are considered, namely rd = 600 nm and rd = 6 nm.
All other properties are instead kept constant, specifically T amb = 500 K, pamb = 10
bar and Td = 363 K. The result of this comparison is discussed below. As can be
seen, for droplet diameters in the order of micrometers as shown Fig. 4, the effects
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Fig. 4 Temporal evolution of the droplet radius. Initial conditions: T amb = 500 K, pamb = 10 bar
and Td = 363 K, rd = 600 nm. Fluids: n-heptane in nitrogen

of curvature are basically negligible during the entire droplet evaporation process.
This is because the Kelvin correction (see Eq.1) is extremely sensitive to the droplet
size and becomes relevant only for nanometer sized droplets, as shown in Fig. 5. The
associated increase in the saturated vapour pressure due to the curvature correction
is shown in Fig. 6, which explains the faster evaporation rate observed in Fig. 5 with
the Kelvin correction.

At this point, it is important to revise critically the obtained results and recall
the analysis on the validity of the Kelvin correction presented in Sect. 1. First of
all, it is important to point out that the accuracy of the Young model predictions
for nanometer-sized droplets at high-pressure was verified in [31, 32] and hence the
presented results can be considered reliable. Second, for the modelling of droplet
evaporation, the Kelvin effect on the saturation pressure can be safely neglected
even in the nanometer-size range. Indeed, as can be deduced from Fig. 5, the error
in the prediction of the droplet size stays below 1nm during most of the droplet
lifetime, which is well below the accuracy of any experimental measurement. Large
deviations are observed only for droplet radii below 20 Å. The implication of this
result is twofold. First, it shows that the Kelvin correction is strictly required only for
the prediction of the critical cluster size in themodelling of phase transition processes
initiated by homogeneous nucleation. Second, it corroborates the theoretical findings
of Kuz [22], who proposed a correction to Eq. (1) to take into account the number
of moles in the bulk and interfacial phases, according to
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Fig. 5 Temporal evolution of the droplet radius. Initial conditions: T amb = 500 K, pamb = 10 bar
and Td = 363 K, rd = 6 nm. Fluids: n-heptane in nitrogen

Fig. 6 Temporal evolution of the droplet radius. Initial conditions: T amb = 500 K, pamb = 10 bar
and Td = 363 K, rd = 6 nm. Fluids: n-heptane in nitrogen
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psv,r = psv,∞ exp

[
1

(1 + nv/nl + nσ /nl)

3σ

ρlRvTd rd

]
(33)

here nv, nl and nσ represent the number of moles in the vapour, liquid and interfacial
systems, respectively. By comparing Eqs. (1) and (33), it is clear that the classical
Kelvin correction is recovered for any droplet size such that the interfacial volume
is negligible in relation to the molar liquid volume of the droplet, namely V σ 	 V l

or equivalently nσ 	 nl . Under these circumstances, the following relation results
between the number of moles in the liquid and vapour phase for the classical Kelvin
correction to be valid: nv = 0.5nl . The exponential increase in the saturated vapour
pressure observed in Fig. 6 for droplet radii below 20 Å is therefore not realistic and
is due to the omission of the mole fraction correction in the estimation of the Kelvin
factor.

3 Conclusions

The effect of drop shape and liquid-gas interface curvature on drop evaporation
is investigated at the macro- and micro-scale levels, by applying hydro-dynamic
and kinetic modelling, respectively. According to the macroscopic approach, the
analytical solution of the conservation equations is obtained in the natural curvilinear
coordinate systems for the selected five drop shapes: sphere, oblate and prolate
spheroids and oblate and prolate inverse spheroids.

At the macroscopic scale, the effect of operating conditions (thermo-physical
properties and boundary conditions) is fully separated from that of the drop geometry.
For spherical and spheroidal drops the geometrical term of the non-dimensional local
flux only depends on the surface local curvature (it is proportional to the forth root of
the Gaussian curvature). However it is shown that for general drop shapes the fluxes
cannot only depend on the surface local curvature, but possibly on other geometrical
parameters describing the drop shape.

At the microscopic scale, boundary conditions may become dependent on the
drop size and surface tension, in order to take into account the effect of local curva-
ture. Specifically, the curvature of the vapour-liquid interface alters the equilibrium
pressure in the vapour phase, thus leading to a significant enhancement of the e-
vaporation rate. Our analysis shows that the Kelvin correction is strictly required
only for the prediction of the critical cluster size in the modelling of phase transition
processes initiated by homogeneous nucleation. At these conditions, it is mandatory
to consider the repartition of molecules in the different phases, in order to prevent a
significant overestimation of the equilibrium vapour pressure.
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On the Importance of Kinetic Effects
in the Modelling of Droplet Evaporation
at High Pressure and Temperature
Conditions

Grazia Lamanna, Christoph Steinhausen and Bernhard Weigand

Abstract This work analyses whether the inclusion of interfacial temperature jumps
is necessary in the modelling of droplet evaporation at high pressure. The analysis
is divided into two parts. First, we revise the major findings from theoretical models
and molecular dynamics simulations on the conditions leading to the inception of
interfacial jumps and the main parameters affecting them. Second, an evaporation
model is considered that includes a diffuse transition layer (Knudsen layer), in the
order of a few mean free paths around the droplet, where transport processes are
described by kinetic molecular theory. The analysis shows that discontinuities in
temperature and chemical potential across the interface are importantwhenmolecular
collisions control transport processes and result in large heat and mass fluxes. This
may occur not only at low pressures, but also at high pressures and temperatures
for conditions sufficiently far from global thermodynamic equilibrium and/or for
sufficiently small droplets. On a macroscopic scale, the resulting correction to the
boundary conditions for classical diffusion-controlled models may be significant at
high evaporation rates.

1 Introduction

Understanding the simultaneous transfer of energy and mass through a liquid-vapour
interface during evaporation is important both from a fundamental and technological
point of view. The increasing progression of micro/nanofluidic devices has called
for the inclusion of kinetic corrections in classical diffusion-controlled models of
evaporation. The kinetic correction is required not only to take into account rarefac-
tion effects induced by the downsizing of the devices, but also due to the increasing
importance of local non-equilibrium effects at high evaporation rates. This occurs
mainly for large departure from the droplet equilibrium state, measured in terms of
temperature and chemical potential differences (or vapour pressure for measurable
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quantities) between the droplet surface and the ambient gas. Physically, it can be
explained because vapour molecules, evaporating from the droplet surface, adapt to
the ambient conditions through collisions with gas molecules. This process mainly
takes place outside the “collision-free” zone, which extends typically over one or
two mean free paths �. From a theoretical standpoint, this requires the implemen-
tation of gas kinetic theory, which does not necessarily guarantee the continuity of
temperature and vapour pressure across the interface. An elegant way to include
local non-equilibrium effects in classical diffusion-based evaporation/condensation
theories was proposed by Langmuir [18], who introduced the concept of a Knudsen
layer. The latter can be regarded as as a diffuse, non-equilibrium transition layer in
the order of a few mean free paths, where the transport of mass and energy in the
vapour phase is described by molecular collisions, as shown schematically in Fig. 1.

Due to its relevance for the predictions of macroscopic temperature and vapour
pressure jumps, we consider here the modelling of the rate of mass transfer from the
droplet to the ambient gas mixture within the Knudsen layer. Specifically, it can be
expressed as

Ṁ f m = αeφI − (1 − αc)φI I + φI I = αeφI + αcφI I (1)

Fig. 1 Microscopic description of the liquid droplet—ambient gas system under unsteady evapo-
ration conditions. Note that at the molecular length scale, both the vapour-liquid interface and the
Knudsen layer interface are planar, even though they have a curvature in the macroscopic scale.
The kinetic boundaries I and II represent the location of the sharp interface rd and of the Knudsen
layer border rKn in the macroscopic scale
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whereαe andαc are the evaporation and condensation coefficients, respectively. Their
physical meaning is explained in Sect. 2. The kinetic boundary conditions (KBCs)
φI and φI I represent the molecular mass fluxes at the vapour-liquid sharp interface
and at the Knudsen border, respectively. As can be deduced from Eq. (1), the mass
transfer in the free-molecular region consists of three contributions, representing the
mass flux from evaporated, reflected and incoming vapour molecules. Here carrier
gas molecules do not contribute to the net mass flux, since they do not condensate
nor evaporate. At the border of the Knudsen layer rKn, a flux matching condition is
imposed to assure continuity of mass and energy transfer between the free-molecular
and continuum regions.

Note that the kinetic expression for mass flux Ṁ f m gains in importance with
decreasing droplet size. This is controlled through the extent of the Knudsen layer,
defined as rKn = rd(1 + 2 β Knd) with Knd = �

2rd
and β a kinetic coefficient in the

range 0.5 < β < 1.5. Hence forKnd � 1 theKnudsen layer occupies a large volume
around the droplet and the energy and mass transfer are kinetically controlled. Alter-
natively, for Knd � 1 the Knudsen layer basically merges with the droplet surface
and the diffusion-controlled evaporation/condensation (continuum) regime is recov-
ered. However, by solving the linearised Boltzmann equation for binary vapour-gas
mixtures, Onishi [21] demonstrated that, for Knd � 1 and simultaneously large de-
parture from equilibrium, the influence of the kinetic correction is no longer negli-
gible and leads to a significant increase in the predicted evaporation/condensation
mass flux [15, 21]. Sincemacroscopic jumps in thermodynamic variables are directly
proportional to the evaporating mass flux, it follows that they may become signif-
icant even in the continuum limit (i.e. for diffusion-controlled models of droplet
evaporation).

Experimentally, temperature discontinuities at the liquid-vapour interface have
been measured by different authors [1–3, 8, 9, 20, 24]. Recently, the validity and
accuracy of these measurements has been recently questioned by several authors
[3, 7, 10], reaching opposite conclusions on the existence of interfacial jumps. This
controversy has been lately clarified by Polikarpov et al. [25]. The authors pointed
out that, even under rarefied conditions, thermocouple measurements are always
made too far from the upper boundary of the Knudsen layer. When these values are
used as input in classical models, they result in a considerable overestimation of
the evaporation rate. To overcome this limitation, Polikarpov et al. [25] suggested
that kinetic theory should be employed to obtain the appropriate kinetic boundary
conditions (KBCs) for evaporation models. In the following sections, we provide a
brief overview of the main characteristics of KBC I and II, as derived by molecular
dynamic simulations. Then we discuss how these findings can be incorporated into
macroscopic models for droplet evaporation, suited for engineering applications.
Finally, we investigate under which conditions macroscopic jumps in temperature
may become significant even at high pressure conditions, where typically diffusion-
controlled theories are employed for modelling droplet evaporation.
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2 Review of Kinetic Boundary Conditions for Engineering
Applications

With reference to Eq. (1), it is immediately clear that, for engineering applications,
the complex description of transport processes in the non-equilibrium transition layer
can be omitted by specifying kinetic boundary conditions (KBCs) at the entrance (I)
and at the exit (II) of the Knudsen layer. Specifically, one needs to specify the molec-
ular mass fluxes φI and φI I . Macroscopically, the kinetic boundary is equivalent to
impose the location of the sharp vapour-liquid interface rd and the Knudsen layer in-
terface rKn. For dropwise condensation/evaporation, rd represents the droplet radius
and rKn the upper border of the Knudsen layer, measured from the droplet centre.
The molecular mass flux φI I (KBC II) can be obtained analytically by solving the
Boltzmann equation in the Knudsen layer with the boundary condition KBC I. For
determining φI , instead, molecular dynamics (MD) simulations or mean-field ki-
netic theory have been employed [12, 14–16, 32]. Specifically, recent advances have
shown that φI can be expressed as linear combination of reflection and condensation
conditions according to

φI = ρI f̂ = [αeρ
sat
v (Td) + (1 − αc)σ ] f̂ (Td) (2)

where f̂ is the normalised Maxwellian distribution at the temperature of the liquid
and σ has the units of density [12, 13]. The coefficients αe and αc are equal to one
at equilibrium (i.e. ρI = ρsat

v ) and close to unity for pure vapours [32]. For binary
mixtures, they decrease with increasing concentrations of dissolved carrier gas in the
liquid [13], thus implying that the assumption of equilibrium vapour density at the
droplet interface is no longer valid. A major drawback in the determination of αe and
αc is that they strongly depend upon the position of the sharp interface rd [12]. Due
to this ambiguity, a new procedure was recently proposed to derive KBC I, based on
the regression coefficients βe and βc yielding [12, 14–16],

φI = [βi (TL)(ρ
sat
v − σ) + σ ] f̂ (TL), with i = e, c (3)

Note that all parameters (βi , ρ
sat
v , σ, f̂ ) depend only upon the liquid temperature.

This means that the evaporating molecules retain the VDF of the liquid (i.e. semi-
Maxwellian), albeit not at the saturated density. In addition, it can be assured that,
when Eq. (3) is used as KBC I, the correct values of mass and energy fluxes are ob-
tained, irrespective of the position of the sharp interface [12]. The only drawback is
that the regression coefficients βi have been obtained only for monoatomic gases and
therefore Eq. (3) cannot be employed for modelling evaporation/condensation prob-
lems in polyatomic gas mixtures. Ishiyama et al. [6] performed molecular dynamic
simulations for determining KBC I at the interface between a polyatomic vapour
and its condensed phase under steady evaporation conditions. The authors showed
that KBC I is qualitatively similar to the kinetic conditions found for monoatomic
vapours, thus confirming the appropriateness of assuming a Maxwellian distribu-
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tion for the molecular velocity distribution function (VDF) of evaporating vapour
molecules.

Based on the above results, Young [31] proposed a Langmuir-type evapo-
ration/condensation model with two different VDFs as KBCs, namely a semi-
Maxwellian VDF with equilibrium vapour density at the droplet interface and
the Grad VDF at the border of the Knudsen layer. The model is valid for poly-
atomic vapour-gas mixtures at any concentration of inert gas and at arbitrary Knud-
sen number Knd . It is also not restricted to the quasi-steady regime of evapora-
tion/condensation and can reproduce the (reversed) temperature jump within the
Knudsen layer at high evaporation/condensation rates. In agreement with analytical
solutions of the Boltzmann equation [21] and with more recent results from MD
simulations [13], the Young model also predicts a decrease in macroscopic jumps
with increasing inert gas concentration. Finally, the model is computationally effi-
cient and has been validated for dropwise evaporation/condensation both at low [5,
29, 31] and high pressure conditions [19, 22, 23].

In the following section, we will therefore employ the Young model to investigate
under which conditions the inception of temperature jumps may be observed also at
high pressure and temperature conditions. To assess the plausibility of our analysis,
the predictions from theYoung’smodel are compared to results fromnon-equilibrium
molecular dynamics (NEMD). Themain advantage ofNEMDsimulations is that both
thermodynamic and transport properties are obtained from intermolecular interac-
tions with no additional assumptions on the equation of state or on the interface [4,
11, 27, 30] and its shape. In particular, we refer to the work of Qiao et al. [26], who
employed NEMD to simulate dropwise evaporation at high pressure. Specifically,
the authors studied the evaporation process of a nano-sized n-heptane droplet in a
nitrogen atmosphere, at various ambient temperatures (500 < T < 900K) and pres-
sures (1 < p < 20MPa). The simulations are used to corroborate our estimations of
the temperature jump across the Knudsen layer and to address some of the limitations
of the Young model.

3 Results

In order to investigate the importance of the Knudsen layer correction on the temper-
ature jump, we follow closely the theoretical framework laid down by Onishi [21]
and briefly summarised in Sect. 1. As a first step, we verify that for large droplets
(i.e. droplet diameters of at least 1mm), the diffusion controlled regime is recovered,
irrespectively of the temperature difference between the droplet and the ambient gas.
For this purpose, we consider single droplet evaporation of n-alkanes into a nitro-
gen atmosphere with T amb = 1300K and pamb ∈ {46 bar, 60 bar}, while the droplet
temperature varies in the range Td = 0.5–0.98 Tcrit , where Tcrit denotes the critical
temperature of the n-alkanes. According to Onishi‘s analysis, under these conditions
corresponding to Knd O(10−6), the diffusion-controlled regime of droplet evapora-
tion should be recovered. This verification has been presented in Lamanna et al. [17]
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and therefore is not reproduced here. In addition, the temperature jump across the
Knudsen layer should be always negligible under all conditions.

Figs. 2 and 3 show the temperature jumps at KBC I and II. For the jumps’ es-
timations at the droplet interface (KBC I), we adopted the methodology presented
in [17], based on the evaluation of the interfacial resistivities. As shown in [17],
for the present conditions, all interfacial resistivities are in the order of O(10−7)

(or even smaller) and result in negligible thermal losses across the vapour-liquid
interface. This finding indirectly corroborates the assumption of local equilibrium at
the droplet surface. This also implies that vapour molecules leave the droplet surface
with a semi-Maxwellian VDF, corresponding to the temperature of the liquid droplet,
as currently assumed by the Young model.

Fig. 2 Comparison of temperature jumps �T at KBC I and II, respectively, for two charac-
teristic droplet sizes. Fluids: n-heptane in nitrogen. Ambient conditions: T amb = 1300K and
pamb = 60 bar. Each value represents one particular point in time of a dynamic simulation

Fig. 3 Comparison of temperature jumps �T at KBC I and II, respectively, for two characteristic
droplet sizes. Fluids: n-dodecane in nitrogen. Ambient conditions: T amb = 1300K and pamb =
46 bar. Each value represents one particular point in time of a dynamic simulation
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The temperature jump predicted at Knudsen border (KBC II) is also insignificant
for engineering applications. However, it remains one or two orders of magnitude
larger than the temperature jumps at KBC I. In addition, while the jumps at KBC I do
not vary with increasing droplet radius, the temperature jumps across the Knudsen
layer decrease of roughly one order ofmagnitudewhen the droplet radius is increased
from 0.5 to 1.0mm. These differences can be easily explained by recalling that local
non-equilibrium effects are implicitly included in the predictions of theYoungmodel.
This result is in agreement with the theoretical predictions of Onishi [21]. Onishi
demonstrated that, for a given degree of departure from the droplet equilibrium state,
the importance of the kinetic correction on the predicted evaporating/condensing
mass flux increases with increasing Knd . For the present simulations, the Knudsen
number increases from 4.1 × 10−6 to 8.3 × 10−6, thus explaining the increase in the
predicted temperature jump with the Young model.

As a second step, we systematically reduce the droplet size, while maintaining
large temperature differences between the droplet and ambient gas. The associated
increase in Knd implies that the “collision-free zone” (Knudsen layer) expands, thus
retarding the temperature adaptation of vapour molecules to the ambient tempera-
ture. Under these conditions, the Young model [31] predicts a drastic increase in the
Knudsen layer temperature jump, as shown in Table1. As can be seen, significant
temperature jumps across the Knudsen layer may exists even for Knd � 1, in agree-
ment with the findings by Onishi [21]. This theoretical result is also corroborated by
experimental findings at medium vacuum [2, 9, 20, 28], where a direct correlation
was found between the increase in the measured temperature jump and the associ-
ated mass flux. Instead, if the droplet radius is kept constant, the value of temperature
jump/mass flux increases with increasing temperature difference (T amb − Td). This
trend has been also confirmed experimentally in [3]. Finally, note that temperature
jumps become relevant for rd < 6µmwhich is characteristic for spray applications.

To validate the predictions from the Young model, Table2 shows the comparison
with NEMD results from Qiao et al. [26], who performed NEMD simulations for
sub-critical droplet evaporation at high pressure conditions. As can be seen, also in
the NEMD simulations, a temperature jump between the liquid phase and the sur-
rounding vapour is observed. For t = 3ns, the temperature gradient of the NEMD
results extends over 1–2 mean free paths into the vapour phase (up to r ≈ 12 nm).
This approximately coincides with the Knudsen layer used in the Young model, ex-
tending up to rKn ≈ 15 nm. Despite the good agreement in the predicted temperature
jumps, a deviation is observed in the predicted mass flux and hence in the resulting
development of the droplet radius over time. Several factors may be responsible for
this deviation. First, the exact location of KBC II of the Knudsen layer is not clearly
defined, which has a direct influence on the predictedmass flux, as pointed out in [12,
13]. Second, the choice of the VDF at KBC II influences the flux of vapour molecules
and should be confirmed by NEMD simulations. Third, in the present simulations,
we assumed the evaporation αe and condensation αc coefficients to be unity, which
directly affects the calculated mass flux. This assumption needs to be revised for



284 G. Lamanna et al.

Table 1 Predicted temperature jumps across the Knudsen layer for droplets with various radii
using the evaporation model of Young [31]. Test system: liquid n-heptane droplet in nitrogen at two
representative ambient temperatures (T amb = 500K and 1200K), ambient pressure pamb = 10 bar
and droplet temperature Td = 363K. Mass and energy fluxes are also listed

rd (nm) Knd �TYoung (K) Jm (kgm−2s−1) |Je| (Wm−2)

Case I : T amb = 500K

6 O(1) 84.5 199.8 4.08×103

60 O(10−1) 18.4 53.2 1.96×103

600 O(10−2) 2.1 3.36 240

6000 O(10−3) 0.21 0.33 24.3

Case I I : T amb = 1200K

6 O(10) 646 1.46×103 1.09×104

60 O(1) 248 1.06×103 2.26×104

600 O(10−2) 35.1 6.80 1.30×103

6000 O(10−3) 3.6 0.60 129.9

Table 2 Comparison of temperature jumps from NEMD results by Qiao et al. [26], and the model
of Young [31] at a representative time t = 3 ns. Test system: liquid n-heptane droplet in nitrogen
at ambient temperature T amb = 500K, ambient pressure pamb = 10 bar and droplet temperature
Td = 363K

�Tjump rd Jm |Je|
K nm kgm−2s−1 Wm−2

NEMD 85 ≈ 2.5 ≈ 500 –

Young 88 5.1 199 4.08 ×103

large concentrations of non-evaporating vapour components and polyatomic fluids.
Results from NEMD simulations of evaporating droplets might help removing some
of the above mentioned uncertainties.

4 Conclusion

This paper presented a detailed discussion on the need to include interfacial tem-
perature jumps in the modelling of droplet evaporation. This topic is of particular
relevance for engine applications, where micrometer-sized droplets are injected at
high pressure and temperature conditions. For this purpose, the evaporationmodel by
Young [31] that includes non-linear kinetic effects is employed to obtain the temper-
ature discontinuity across the Knudsen layer. The analysis revealed that interfacial
discontinuities in temperature and chemical potential become significant when mass
and energy transfer are controlled by kinetic effects. This may occur not only at mod-
erate vacuum conditions, but also at high pressures and temperatures in presence of
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large perturbations to the droplet equilibrium state. The above findings indicate that
consideration of temperature and chemical potential jumps becomes more important
for decreasing droplet size and, therefore, should be considered in combustion appli-
cations including small droplets. The current approach is to assume amodel in which
heat andmass transfer are diffusion-controlled, after which empirical correlations are
applied to enhance predicted transfer rates in order to match experimental data. As
demonstrated in this paper, at high pressure and temperature conditions, assuming a
diffusion-controlled model alone is not justified for small droplets (i.e. rd ≤ 20µm),
which would lead to significant underestimation of the droplet evaporation rate. Our
analysis, however, also enabled us to highlight some of the limitations of the Young
model. For example, both the positioning of the Knudsen layer and the modelling of
the molecular mass flux at the droplet interface have an important influence on the
predicted evaporation rate. To that end, a joint comparative study, based on the results
from NEMD simulations at high pressures, would be highly desirable to reduce the
above uncertainties for high temperatures and pressures.
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Direct Numerical Simulations
of Evaporating Droplets at Higher
Temperatures: Application
of a Consistent Numerical Approach

Karin Schlottke, Jonathan Reutzsch, Corine Kieffer-Roth
and Bernhard Weigand

Abstract A method for the numerical simulation of three-dimensional evaporation
processes is applied to the evaporation process of isooctane droplets under slow in-
flow conditions and to the evaporation of a water droplet tandem in quiescent air. The
method is a thermodynamically consistent numerical framework and was developed
for the requirements of the evaporation of hot, liquid droplets. It is implemented
into the in-house multi-phase code FS3D, which uses a Direct Numerical Simulation
approach based on the Volume-of-Fluid method. Three different simulation cases
are presented for the isooctane droplets and their results are in good agreement with
literature correlations. The influence of the near drop neighbourhood can be observed
in the simulation of the water droplet tandem.

1 Introduction

The numerical simulation of multi-phase flows is important to describe many
processes in nature and engineering. In a lot of these applications, it is not only
the coexistence of different phases which is of interest, but it is rather the heat and
mass transfer including phase change between them where the focus of research
is centred. The multi-phase code Free Surface 3D (FS3D) [2] has been especially
developed to solve the Navier-Stokes equations and the energy equation for incom-
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pressible flows with arbitrary free surfaces using the method of Direct Numerical
Simulation (DNS).

The present paper summarizes the recently implemented new modelling of the
evaporation process and shows its application to the simulation of both single
evaporating isooctane droplets and an evaporating droplet tandem. A more elaborate
description of the method including extensive derivations, a more detailed valida-
tion, and further DNS results can be found in [15]. The following Sect. 2 will give
an overview of the mathematical formulation including the underlying assumptions,
the conservation equations, and the jump conditions. Then, the numercial approach
will be summed up briefly in Sect. 3. We will also explain here how the evaporation
method works and how it is implemented and solved numerically. Section4 will pro-
vide a comparison of simulation results with experimental and analytical literature
data, and finally, Sect. 5 will draw overall conclusions.

2 Mathematical Formulation

This section provides a short description of the mathematical framework used in
the software package FS3D for simulating evaporation processes. This includes the
interface capturing method, the conservation equations and the corresponding jump
conditions. Several assumptions are made a priori. First, the liquid phase is a pure
substance. Second, the gaseous phase does not diffuse into the liquid phase. In gen-
eral, all fluids are considered to be Newtonian and the flow is considered to be
incompressible. At the interface, local thermal equilibrium is assumed. Both viscous
dissipation and thermal radiation are neglected.

2.1 Interface Capturing and Material Properties

Hirt and Nichols [4] developed the Volume-of-Fluid (VOF) method in order to dis-
tinguish between different phases: An additional indicator variable, f1, is introduced
for the volume fraction of the liquid phase in each cell, where

f1 (x, t) =
⎧
⎨

⎩

1 in the dispersed phase,
]0, 1[ for interfacial cells,
0 in the continuous phase.

(1)

A second indicator variable f2 can be introduced for the volume fraction of the vapour
phase [3]. According to the used one-field formulation, the material properties are
calculated using the VOF variables f1 and f2. The density ρ, for example, can be
expressed throughout the whole domain as

ρ = ρl f1 + ρv f2 + (1 − f1 − f2)ρg, (2)
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where ρl , ρv , and ρg correspond to the densities of the liquid, vapour, and inert gas,
respectively. An ideal mixture of vapour and inert gas is assumed in the gaseous
phase (subscript gp). Following [19], we calculate the local vapour mass fraction Xv

by

Xv = f2
1 − f1

ρv

ρgp
. (3)

2.2 Conservation Equations

The flow field is computed by solving the conservation equations for mass, momen-
tum and energy. The conservation of mass is given by

ρt + ∇ · (ρu) = 0. (4)

Using the density of Eq. (2) and substituting it into the mass conservation Eq. (4),
the transport equations of the VOF variables f1 and f2 then read

( f1)t + ∇ · ( f1ul) = − ṁ ′′′

ρl
(5)

and

( f2)t + ∇ · (
f2ugp

) = ∇ · (Dbin∇ f2) + ṁ ′′′

ρv

. (6)

Here, we have the velocity vector u, the volumetric vapour mass source ṁ ′′′, and
the binary diffusion coefficient Dbin. The differences between the velocities of the
gaseous and the liquid phase, ugp and ul , respectively, will be addressed in Sect. 3.
The conservation of momentum is given by

(ρu)t + ∇ · [(ρu) ⊗ u] = ∇ · (S − Ip) + ρg + fγ , (7)

where p denotes the static pressure, g the volume forces such as gravity, and fγ is
a body force used to model surface tension at the phase interface. For Newtonian
fluids, the viscous stress tensor S can be written as

S = μ
[∇u + (∇u)T

]
, (8)

where μ denotes the dynamic viscosity.
Finally, the conservation of total energy is solved using the temperature form of

the energy equation. Based on [18], a two-field approach is used. Here, each phase j
is assigned a temperature field, Tl for the liquid phase and Tgp for the gasoues phase,
respectively,
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(
ρ j cp, j Tj

)

t + ∇ · (
ρ j cp, j Tju

) = ∇ · (k j∇Tj
) + q̇ ′′′

j . (9)

We have the (isobaric) specific heat capacity cp, the heat conductivity k j , and the
volumetric heat source q̇ ′′′

j in interface cells. Especially at the interface, this method
leads to a more precise temperature evolution compared to a one-field approach.

2.3 Jump Conditions

The conservation equations above are all given in differential form. They are only
valid if the integrands are continuous. However, as this is not generally the case
for multi-phase flows, additional constraints in the form of jump conditions are re-
quired. A detailed derivation of these jump conditions starting from the conservation
equations in integral form can be found in [18].

With regards to the area specific mass flow rate ṁ ′′ across the interface, the jump
condition for the conservation of mass at the interface reads

− ṁ ′′ = ρl (ul − V) · n = ρgp
(
ugp − V

) · n, at the interface. (10)

The vector n is the normal of the interface pointing from the liquid to the continuous
phase, and V represents the total velocity of the interface.

From the mass jump condition we derive the local area specific evaporation rate
as [5]

ṁ ′′ = Dbinρgp

1 − Xv

(∇Xv)n . (11)

It should be noted that this term inherently includes the effect of the Stefan flow. The
only remaining unknown is the vapourmass fraction Xv directly at the interface.Here,
saturation is assumed locally. Hence, Xv = Xv,sat at the surface can be calculated
using the saturation pressure psat, which in turn is determined using the Wagner
equation [8]. The binary diffusion coefficient Dbin is also taken from [8]. From the
local area specific evaporation rate ṁ ′′, we can define an interfacial growth velocity
due to the phase change as [12]

V� = − ṁ ′′

ρl
. (12)

It is a relative velocity (between the liquid and the interface) solely caused by the
phase change and does not include convection.

The jump condition of the energy equation can be expressed as

q̇l − q̇gp = ṁ ′′�Hv (13)

following previous works, e.g. [18]. Here, q̇l = (∇Tl)n , q̇gp = (∇Tgp)n , and Hv rep-
resents the latent heat of vaporisation.
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3 Numerical Approach

This section contains the numerical schemes involved in the calculation of the
evaporation process used in FS3D. A detailed description of the general numeri-
cal framework and the results of the wide applicability of the FS3D code package
can be found in literature [2, 3, 11, 13, 16, 17]. The following is a summary of the
recently implemented framework for evaporation processes [15] which comprises
the advection of the liquid and the gas phase followed by a consistent phase change
loop.

3.1 Advection of Liquid and Gaseous Phase

The advection of both the liquid and the gaseous phase is uncoupled from the phase
change loop and is executed before the latter. Due to the volume change at the
interface, which is caused by the evaporation, the velocities of the gaseous and the
liquid phase differ from each other in interfacial cells. This means, we need to extract
two different velocities ul and ugp from the mass averaged velocity u, which in turn
is obtained from the solution of the momentum equation.

If we now combine the volume conservation and the momentum conservation
Eq. (7), we obtain

∇ · u − ∇ · ũ
�t

= ∇ ·
[

− 1

ρ ( f1, f2)
∇ p

]

. (14)

This is the Poisson equation for pressure, where ũ is a preliminary velocity vector,
which already accounts for all occurring forces except for the pressure. The resulting
elliptical equation system has to be solved implicitly (e.g. by using a multigrid
scheme).

In general, the velocity fields of both phases, ugp and ul , need to be known for
the determination of the volume source term∇ · u in the Poisson equation. However,
they can only be obtained after the velocity field u has been calculated. This, in
turn, requires again the knowledge of the velocities of the two phases. To escape
this dilemma, a method was found to first calculate the volume source term from the
evaporation rate and then determine the velocity fields of both phases. In contrast to
previousmethods, there is no need to distribute a velocity divergence error afterwards.
The exact way how the velocities are extracted can be found in [15], along with a
derivation of the volume source term. For the here presented study, the averaging
method using the volume fractions was employed.

Now that the velocities of both phases, ugp and ul , are known, the corresponding
VOF variables can be advected. For the liquid phase, a Godunov type scheme is
used, where each spatial direction can be treated independently from the others, and
hence, three one-dimensional transport equations are solved successively. Through
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proper permutation of the order of these transport equations (Strang splitting [21]), a
second order temporal accuracy is achieved. After each step, a divergence correction
is applied to all cells immerged in the liquid phase. As the velocity field in interfacial
cells, however, is not divergence free, the divergence correction has to be revoked
in these cells after the transport steps are completed. Otherwise, mass would not be
conserved anymore, as the divergence correction would lead to the loss or generation
of mass in these non-divergence-free interfacial cells.

For the vapour phase advection, the calculation of geometrical fluxes is not nec-
essary as the gaseous phase is assumed to be an ideal mixture of the vapour phase
and the inert gas. Here, the fluxes are simply calculated using the wetting of the cell
phases and the velocity field of the gaseous phase ugp. The temperature fields of the
liquid and the gaseous phase, Tl and Tgp, respectively, are advected using the same
fluxes as for the corresponding VOF variables, f1 and f2.

3.2 Phase Change Loop

The implemented phase change loop is based on the solution procedure for sub-
limating ice particles of [13]. It is adapted and considerably extended to fit the
requirements of evaporation processes. This is crucial as the evaporation process is
much faster than the sublimation and highly non-linear effects play a major role. A
detailed description of the algorithm and an extensive discussion of theses issues can
be found in [15]. The main idea is to consistently solve the coupling between the
phase change, the diffusion of vapour, and the temperature distribution through the
jump conditions. The coupling elements are the interface temperature Tint and the
vapour mass fraction Xv .

All terms of the conservation equations are treated in a single consistent loop,
except for the advective terms (cf. Sect. 3.1). The source term ṁ ′′′ in Eq. (5) is
calculated using the growth velocity V� , which means that the movement of the
interface due to phase change is interpreted as a consequence of a flux rather than a
mass source term.The interface is then advectedwith this velocity using a geometrical
unsplit advection scheme. The source term in Eq. (6) is solved implicitly with the
diffusion term as a Dirichlet boundary condition at the interface. We solve the heat
conduction in a similarway for both phases by applying the heat fluxes at the interface.
Convergence of the whole loop is achieved by relaxing the growth velocity V� .

4 Results

The following sections show the application of the described consistent approach.
First, a study of evaporating isooctane droplets is presented. The droplets are exposed
to a slow inflow with two different temperature levels and two different vapour mass
fractions. The results are then compared to experimental data and correlations from
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literature. Additionally, an evaporating water droplet tandem is investigated. Here,
the influence of the second droplet on the evaporation behaviour is of special interest.
The result is compared to an analytical approach.

4.1 Single Isooctane Droplets

This section includes the results of applying the presented phase change loop to
the simulation of isooctane droplets evaporating inside the combustion chamber of a
gasoline engine. The results are then compared to literature data. The numerical setup
is identical for all three simulations presented in the following. The 3D computational
domain is of equal size in all three spatial directions and is resolved by 128 cells per
dimension, as depicted in Fig. 1. The droplet is initialised in the centre of the domain
with a diameter of D = 11µm and an inital temperature of Tdrop = 380K. It is
resolved with 26 cells per diameter. A uniform inflow boundary condition is chosen
on one side, where nitrogen is injected with a well defined vapour mass fraction,
velocity, and temperature. On the outflow, a continuous boundary condition is used.
On the lateral sides, a free-slip condition is imposed. The inflow velocity is set such
that the resulting Weber number is We = (u2Dρg)/σ = 1 for all three cases (with
σ being the surface tension). The overall pressure is set to p = 600.0 hPa. Table1
contains the values of the three varied parameters: the temperature of the nitrogen
Tgas as well as the vapour mass fraction Xv,inflow of the incoming flow, and the inflow
velocity uinflow. Additionally, this table also contains the resulting Reynolds numbers
Re = (ρgD uinflow)/μg and Schmidt numbers Sc = μg/(ρgDbin).

Fig. 1 Setup of numerical
grid. Cubic domain with
edge length of 5 D and a
resolution of 1283 cells

Table 1 Temperature Tgas, vapourmass fraction Xv,inflow, and velocity uinflow of incoming nitrogen
flow, as well as resulting Reynolds number Re and Schmidt Sc number of the droplet

Case Tgas Xv,inflow uinflow Re Sc

A 470K 0.0 15.55m/s 29.4 3.08

B 470K 0.18 15.55m/s 29.4 3.08

C 560K 0.0 16.97m/s 23.8 3.47
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Material properties for isooctane and nitrogen were obtained from the NIST Stan-
dard Reference Database [7]. The binary diffusion coefficient was calculated ac-
cording to the Chapman-Enskog theory [8] at the respective film temperature Tfilm =
(Tdrop + Tgas)/2.

The simulations are evaluated after an initial development phase has been com-
pleted and a stationary Sherwood number has been reached,

Sh = βD

Dbin
. (15)

Here, β denotes the local mass transfer coefficient. The Sherwood number for the
evaporating droplet is calculated as an area average over the total droplet surface.
Figure2 shows the temperature distribution for caseA in the xz-direction at the centre
of the domain at the time the Sherwood number was evaluated. All three simulation
cases are compared quantitatively to existing experiments and correlations from
literature predicting the Sherwood number. A commonly used correlation is the one
by Ranz and Marshall [9]

Sh = 2 + 0.6 Re1/2Sc1/3, (16)

which is based on their own experiments [10]. Additional, more recent experimen-
tal results by Schwarz and Smolik [20] lead Kulmala and Vesala to the following
correlation [6]

Sh = 2.009 + 0.514 Re1/2Sc1/3. (17)

The comparison of the FS3D simulations with the mentioned experimental
results [20] as well as the two correlations are shown in Fig. 3. Cases A and B
basically result in the same Sherwood numbers and only vary slightly due to small

Fig. 2 Temperature
distribution of case A in the
xz-direction at the centre of
the domain
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Fig. 3 Sherwood number:
comparison of simulation
results from FS3D with
experimental results and
correlations according to
Eqs. (16) and (17)
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Schwarz and Smolik (1994)
Ranz and Marshall (1952)
Kulmala et al. (1995)
Case A
Case B
Case C

numerical deviations. This behaviour is expected as the Sherwood number, i.e. the
comprised localmass transfer coefficient, already takes into account the initial vapour
mass fraction of the surrounding gas. As this parameter is the only difference between
case A and case B, the Sherwood numbers should be equal. All three cases lie above
the correlation by Ranz and Marshall [9]. This is due to the fairly high evaporation
rates at the chosen conditions.

For increasing vapour mass rates, the influence of the Stefan flow on the boundary
layer and, thus, on the Sherwood number, becomes more important. It is accounted
for in the correlation

Sh(1 + BM)0.7 = 2 + 0.87 Re1/2m Sc1/3film. (18)

proposed by Renksizbulut et al. [14] in the factor (1 + BM)0.7. The Spalding mass
number BM is defined as BM = (Xv,sat − Xv,∞)/(1 − Xv,sat). The subscript film in-
dicates that the material properties are evaluated at film conditions (i.e. at the film
temperature Tfilm). The Reynolds number Rem is calculated using mixed properties
from both film and free stream conditions following [14], Rem = (ρgD uinflow)/μfilm.
When the simulation results of the three cases are compared to this correlation, they
lie below the predicted values as seen in Fig. 4. This behaviour indicates that the pre-
sented cases lie in the transition zone between low and high evaporating conditions.

4.2 Water Droplet Tandem

This section contains the simulation results of a water droplet tandem evaporating at
a temperature of 293K, which were already presented on the DIPSI workshop 2019.
The temperature and vapour profiles in the near droplet neighbourhood are analysed
and the evaporation rate is compared to the analytical model by [1]. The two droplets
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Fig. 4 Comparison of
simulation results with the
correlation according to
Eq. (18). Data extracted
from [14]

have a nondimensional distance of κ = L/D = 2, with L referring to the distance
of the droplet centres. The surrounding gas is quiescent air. Both droplets have the
same diameter of D = 6 × 10−4 m. The 3D computational domain is of equal size
(5D) in all three spatial directions and is resolved by 128 cells per dimension. The
contour plots of both the vapour volume fraction and the temperature distribution
on a centre slice through the domain can be seen in Fig. 5. The figure also shows
the expected symmetry of the problem. At the droplet surface, a temperature drop
can be observed, even though the simulation is started in isotherm conditions (with
the surrounding air also being at 293K). This decrease is due to the latent heat of
evaporation required for the phase change. Figure6, which shows the distribution
along the centre line, highlights this temperature drop as well.

The temperature and vapour profiles are significantly influenced by the existence
of a second droplet. First, the total evaporation rate of the tandem is smaller compared
to that of two single, isolated droplets. This is due to the fact that vapour accumulates
between the droplets and cannot diffuse as easily to the surrounding. This causes a
decrease in the gradient of the vapour volume fraction and therefore, to a lower
evaporation rate. Second, the air between the droplets starts to cool down, which
causes a further decrease of the evaporation rate.

The simulation results are then compared to an analytical solution using the so
called screening factor. The latter compares the total evaporation rate of the tandem
to the sum of the evaporation rates of two isolated droplets. It is defined as

	 = mev,1 + mev,2

mev,is,1 + mev,is,2
. (19)

From the DNS, we obtain a value of 	DNS = 92.98%, wheras the analytical
approach results in a value of 	analytical = 80.48%. These values are in the same
range, however, further investigations will give more insight why the simulations
show a much weaker influence of the neighbouring droplet.
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Fig. 5 Distribution of vapour volume fraction (left) and temperature (right) in the xz-direction at
the centre of the domain

Fig. 6 Distribution of vapour volume fraction (left) and temperature (right) along centre line of
the domain

5 Conclusion

A numerical framework was presented for the simluation of evaporation processes
within a Finite Volume scheme using the VOF method. The used two-field formu-
lation allows to set Dirichlet conditions on the sharp interface for the concentration
of vapour and the temperature. The actual phase change is then solved in a con-
sistent loop including the diffusive vapour transport and the energy equation. The
framework is an extension of an already existing numerical scheme for the simu-
lation of sublimating ice particles. It was adapted to fit the specific requirements
when simulating the evaporation of hot, liquid droplets (as opposed to cold, rigid ice
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particles). When simulating single evaporating isooctane droplets in hot nitrogen, a
comparison with literature correlations shows that the chosen boundary conditions
lead to evaporation rates in the transition zone between low and high evaporating
conditions. The simulation of a water droplet tandem highlights the influence of the
near droplet neighbourhood on the evaporation process.
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Effects of Very High Injection Pressures
on GDI Spray Structure

Alessandro Montanaro and Luigi Allocca

Abstract The flexibility in managing the air-fuel mixture formation in engines
equipped with Gasoline Direct Injection (GDI) has demonstrated being an effec-
tive system to pursue the growing demand of energy efficiency and reduction of
pollutant emissions. This injection modality improves the spray characteristics in
terms of a better atomization of the fuel, finer droplet size and better distribution
in the combustion chamber to enhance the combustion efficiency. Nowadays, it is
known that very high-pressure injections are adopted in GDI systems to improve
the spray atomization and, subsequently, the evaporation processes in the engine
combustion chamber. In this study, the investigation of the influence of the pressure
on gasoline spatial spread and thermo-dynamic status was carried out for different
ambient densities (from 0.2 to 11.50 kg/m3) and gas temperatures (from room to
200 °C) by a hybrid optical setup, shadowgraph and Mie scattering, to acquire in a
cycle-resolved mode both the vapor and the liquid phases of the spray. The study
was performed in a constant volume chamber (CVC) using a ten-hole GDI injector,
0.10 mm in diameter, with the injection pressure ranging from 40.0 to 100.0 MPa.
The influences of the ambient and injection conditions on the characteristic param-
eters of the jets, such as tip penetration, cone-angle, and fuel spread, were extracted
by a customized image-processing procedure developed in C#.

1 Introduction

The use ofGasolineDirect Injection (GDI) continuously increases due to the growing
demand of efficiency and power output for i.c. engines. The optimization of the
fuel injection process is essential to prepare an air-fuel mixture capable to promote
efficient combustion, reduced fuel consumption and pollutant emissions. Good spray
atomization facilitates fuel evaporation in i.c. engines thus contributing to the fuel
economy and lowering the emissions. One of the key features of a multi-hole injector
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is to provide an optimal spray pattern in the combustion chamber and a good mixture
homogenization considering the engine-specific characteristics such as fuel mass-
flow rate, cylinder geometry, injector position and charge motion.

Different approaches allow pursuing the emission limit targets improving the
combustion process inside the i.c. engines, through a progressive hybridization, more
efforts in the transportation efficiency, and exploring advanced combustion strategies
like gasoline compression ignition (GCI). The combustion by the GCI approach
requires the fuel being injected at high pressures to reach the improvements in the
thermal efficiency that several studies have demonstrated [1, 2].

In this context, the increase of the fuel injection pressure is believed to be a key
feature to improve the fuel atomization degree and contribute to a fast and better
vaporization of the mixture preparation [3–6]. Pressures up to 100 MPa and more
are experienced for future market requirements, especially to meet the more and
more stringent future emission legislation limits [7]. In particular, the increase of
the injection pressure is considered a good way for particle number (PN) reduction
due to improved spray atomization, faster evaporation and better mixture formation
[8, 9].

Moreover, flash boiling phenomena is considered another relevant way to produce
an optimal fuel spray with advantages in generating finer droplets, enhancing fuel/air
mixture, improving the combustion, and reducing PN emissions [10–14]. Flash boil-
ing, which features a two-phase flow that constantly generates vapor bubbles inside
the liquid spray is ideal to achieve fast evaporation and combustion inside direct-
injection (DI) gasoline engines. Many studies were implemented to understand the
features and mechanisms of flash boiling sprays under conventional injection pres-
sures (lower than 20.0 MPa) but few studies have been done to investigate how the
spray structure varies at very-high injection pressure.

Within this context, this work aims to report the results of a complete campaign of
investigation on the behaviour of gasoline injected by a high-pressure GDI injector in
a constant volume vessel filled with gas (N2) at diverse pressures and temperatures.
Liquid and vapor phases of a GDImulti-hole spray were investigated to studymainly
the effects of high injection pressure on spray morphology over a wide range of
ambient and injection conditions. Moreover, the results will be able to provide a
robust data set for combustion ambient design aswell as for advancedCFDnumerical
models.

2 Materials and Methods

The study was performed by injecting commercial gasoline in a constant volume
combustion vessel by a high-pressure GDI injector. The nozzle has ten identical
holes with diameter (d0) of 100 μm and L/d = 7, having a static flow of 10.55 g/s
@10.0MPa. The fuel is supplied through a rail, heated by an electrical resistance and
controlled in temperature (Tf) by a J-type thermocouple. The injector is allocated in
a holder containing a jacket for fluxing a cooling liquid connected to a chiller for the
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Table 1 Experimental
conditions

pinj [MPa] 40.0–55.0–70.0

tin j [μs] 1000

Tamb [◦C] 20–100–200

ρg(N2) [kg/m3] 0.2–1.12–5.7–11.5

Fuel Gasoline (ρ = 720 kg/m3@15 ◦C)

Ti − T f [◦C] 20–90

temperature control of the nozzle nose (Ti). The morphology of the fuel spray was
depicted as function of the injection pressure (pinj), ambient temperature (Tg), and gas
density (ρg), keeping constant the energizing timing (tinj) at 1000 μs. Nitrogen (N2)
was used to achieve the desired gas densities according with the different ambient
temperatures, seeTable 1.Ten consecutive sequenceswere acquired for each injection
condition for an evaluation of the spray spread.

The spray morphology was investigated by two optical techniques, shadowgraph
and Mie-scattering, acquiring the images along the same line-of-sight. This optical
setup was arranged to visualize the liquid phase from Mie scattering images while
the corresponding shadowgraph were employed to underline both liquid and vapor
fraction of the spray. A pulsed LED was used as the shadowgraph light source while
a high-intensity flash, synchronized with the injection event, provided the illumina-
tion for Mie-scattering. The spray images were collected by a high-speed C-Mos
camera at a rate of 16,000 frames per second (fps) with an image window of 512
× 448 pixels. The camera was equipped with a 90 mm objective, f 1:2.8, resulting
the spatial resolution 5.90 pixel/mm. The images acquired in the different operat-
ing conditions were analyzed by means of a post-processing software developed in
C# environment. Shadowgraph and Mie-scattering images were processed by slight
different procedures because presenting diverse intensity of the images. Procedure
of background subtraction, gamma correction, morphology filtering and threshold
filtering were applied on the shadowgraph and Mie-scattering spray images in order
to better outline the contours of both vapor and liquid phase. The resulting spray
images were then processed to compute the main macroscopic features of the spray,
according to SAEJ2715 rule [15].More details on optical setup as well as the adopted
images processing procedure are reported in [16].

3 Results and Discussion

Figure 1 reports a shadowgraph spray image under evaporative conditions (Tamb:
200 °C) at 55.0MPa and 5.7 kg/m3 as injection pressure and ambient density, respec-
tively. The shapes of the sprays appear structured into two lobes outlining the division
of five jets per lobe with respect to the C-Mos camera line of sight. The spray image
gives an immediate evidence of the vaporizing process occurring at high ambient
temperature. The picture clearly show a dense liquid core (dark part), liquid portion,
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Fig. 1 Liquid and vapor
portion at high ambient
temperature (200 °C)

surrounded by a mixed area including ligaments, finely atomized droplets, and vapor
phase. The noisy background is a consequence of the combined effect of both the
high gas density and the high ambient temperature.

The influence of the ambient temperature on the liquid spray evolution at the gas
density of 5.7 kg/m3 is illustrated inFig. 2 through spray evolution at different ambient
temperatures and 40.0 MPa as injection pressure. Mie scattering spray images are
reported at different time from the start of injection (SOI). The consequences of
the temperature increase on the liquid part of the spray were well emphasized by the
images collected by theMie-scattering technique giving an immediate evidence of the
vaporizing process. A strong reduction along of both the axial and the radial direction
was registered because of the vaporization that mainly affects the jets periphery,
where finely atomized particles are present. Under evaporative conditions, the spray
forms and develops as follows: at the beginning, the liquid phase atomizes and
progresses; in the meanwhile, enough heated gas is entrained to warm and vaporize
the fuel; then, the liquid penetration slows downwhile the vapor phase still penetrates.
At room temperature, the jets are bulky and longest penetrations are reached. Instead,
the increase of the temperature causes the spray became skinny and the penetration
shorter because of the evaporation process.

The corresponding liquid penetration profiles versus time are reported in Fig. 3.
The spray penetration length is defined here as the maximum distance between the
nozzle exit and farthest point of the spray tip along the spray axis. Each data point
is an average of ten injection events for evaluating the cycle to cycle variation and
the error bars are the standard deviation of the data. After an initial overlapping
of the profiles, the general trend shows well-scaled penetrations versus. ambient
temperatures with a strong inverse effect.

Figure 4 depicts the effects of the injection pressure on the spray evolution at
room ambient temperature and gas densities of 1.12 (top) and 11.50 kg/m3 (bottom).
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Fig. 2 Ambient temperature effect on liquid spray fraction, pinj: 40 MPa and ρg: 5.7 kg/m3

Fig. 3 Effect of ambient
temperature on liquid
penetration profiles
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Fig. 4 Injection pressure
effects on global spray
structure

g:11.5 kg/m3

pinj: 40 MPa pinj: 55 MPa pinj: 70 MPa

g:1.12 kg/m3

The pictures are shadowgraph frames that give evidence of the vapor phase (red
color) and englobing the remaining liquid part (blue contour) extracted from Mie
scattering images. The increase of the injection pressure produces a growth of the
amount of injected fuel and thus of the momentum, since the injection duration was
kept constant (1 ms). The increment of the injection pressure produces a better fuel
atomization and a faster vaporization. The vaporized areas appear mainly confined
at the front and on the periphery of the jets, where the fluidynamic interaction with
the gas is strongest, the droplets are finely atomized and faster vaporize.

At atmospheric condition (top), the spray images show insignificant effects of the
injection pressure on the spray penetration, whereas the spray plume width becomes
wider when the injection pressure increases from 40 to 70.0MPa. Vice versa, a slight
tendency to increase the fuel penetration with growing the injection pressure can be
noticed for the condition with 11.5 kg/m3 as gas density. To confirm this, the global
penetration lengths of the spray in Fig. 5 show differences of the fuel tip development
versus time as function of the diverse injection pressures and ambient densities. In the

Fig. 5 Effect of the
injection pressure on global
spray penetration for two gas
densities
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figure, a negligible effect of the injection pressure at atmospheric condition is shown
where the three profiles overlap all along the injection durationwhile little differences
occur at the highest density of the ambient gas. These trends differ from the typical
spray evolution under conventional injection pressure values (lower than 20.0 MPa)
where the increasing of the injection pressure generates a significant increase of the
spray penetration. The effect of the highest injection pressures produces a greatest
momentum of the fuel and, at the same time, a strongest atomization of the droplet
itself with a reduction in size. A balancing effect between the two process seems
being highlighted in the penetration behavior.

In Fig. 6, the behavior of the fuel for different densities of the gas kept at the
temperature of 200 °C is described. The temperature effects on the background gas
are highlighted by the convective modes inside the sampling volume and figured by
turbulences: their depictions are almost negligible at ρ = 1.12, light intense at 5.7 and
very strong at 11.5 kg/m3. Their effects are irrelevant for the purpose of the image
processing because the characteristic evolution time of the convectivemodes are very
slow with respect to the spray evolution; practically, they appear fixed. The spray
images show a stronger sensitivity of the spray development to ambient pressure
respect to the effect of the fuel injection pressure previously discussed.

At atmospheric condition of the gas (left) the evolution of the single plumes is
still quasi-visible while, at the increasing of the gas density the jets become undis-
tinguishable each other. An increase of the umbrella cone angle is registered and two
main compact lobes appear. In addition to the brake effect due to the increased gas
density, an additional reduction of the penetration is generated by the compression

g: 1.12 kg/m3
g: 5.7 kg/m3

g: 11.5 kg/m3

T amb
20oC

Tamb
100oC

T amb
200oC

Fig. 6 Shadowgraph spray images for different gas densities; pinj: 40 MPa and Tg: 200 °C
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Fig. 7 Effect of gas density
on global penetration; pinj:
40 MPa, Tg: 200 °C

of the spray front, mainly constitute of vapor, easy to constrict. This effect appears
more evident moving from 5.7 to 11.5 kg/m3 of the gas density.

The corresponding measurements of the effects of the gas density on the tip
penetration are described in Fig. 7.A scaling factor of the lengths vs. the gas density in
the vessel appears clear: the higher is the density and the lower is the fuel penetration.
This is strictly related to the brake effect of the gas in the chamber against the fuel
propagation. At atmospheric density, the profile shows a quasi-linear trend for all
the injection duration while a saturation of the penetration trend toward the highest
densities is recorded in the propagation of the jet plumes. The short error bars per
each density and all along the spray evolution confirm the stability of the spray shape
repetitions. Similar behavior was observed also for the other investigated injection
pressures (55.0 and 70.0 MPa) and ambient temperatures (20 and 100 °C) with
well-scaled trends versus the ambient densities with a strong inverse effect.

The results discussed so farwere obtainedbykeeping constant both fuel andnozzle
temperature at room value. As known, the combined effect of the fuel temperature
increase and the reduction of the ambient pressure is a common way to increase
the fuel superheat degree and thereby increase the spray flash-boiling effect. In the
last section of the work, we will discuss on flash boiling conditions under higher
injection pressure. For multi-hole fuel injectors, a high level of flash boiling causes
the plumes tomerge into a single plume, usually better known as “spray collapse”. As
consequence of this phenomenon, a thinner and longer spray is generally generated
[16, 17]. Main portion of this effect is given by the fuel temperature but the huge
contribution comes from the reduced backpressure on the spray blowing. It would
increase the possibility of fuel-wall impingement in engines due to its longer spray
penetration, which might result in a significantly increased amount of fuel adhered
on the wall of the combustion chamber, and consequently cause the deposit, soot, and
super-knock [18]. The increase of the injection pressure can be considered an option
to suppress the plume-to-plume interaction of flash-boiling spray. The experimental
results of the high injection pressure impact were summarized in Fig. 8, where
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Fig. 8 Flash boiling
conditions: effects of the
high injection pressure on
spray morphology

pinj: 40 MPa pinj: 55 MPa pinj: 70 MPa

contours of the liquid andvapor phases of the spray, superimposed to the shadowgraph
images are shown at the fixed time of 625 μs from SOI.

The inner (blue) contours were derived from the Mie scattering images and rep-
resent the liquid phase. The outer (red) contours were derived from the shadowgraph
images and include the liquid core and vapor phase. The overlaying of the liquid
phase contour onto the shadowgraph image allows the determination of the line-of-
sight phase boundary. Both the fuel (Tf) and injector nozzle temperature (Ti) were
fixed to 90 °C while the ambient pressure at 0.02 MPa realizing an ambient den-
sity of 0.23 kg/m3 being the ambient temperature constant at room value. The spray
images clearly show a different morphology with increasing of injection pressure
under the same fuel temperature and ambient pressure, a strong reduction of the
plume-to-plume interaction appears. At the lowest injection pressure (40.0 MPa),
the spray plumes become fully collapsed to form a single body. Large vapor vortexes
are visible at the bottom part of the spray and the individual plumes are no more
identifiable. At increasing of the injection pressure (55.0 MPa), the characteristic
spray collapse shape looks less evident: the vapor vortexes disappear, the spray cone
angle increases and the global spray begins to separate into two main lobes. Finally,
at further increasing of the injection pressure (70.0 MPa), the spray appears almost
completely separated in two with a gap in the middle and the collapsed structure is
not more evident. As a consequence, the phenomenon of collapse is usually depicted
as that of adjacent plumes expanded by the flash boiling and connected in a way to
form a ring shape, enclosing an empty region in the spray core. Hence, no gas can
be trapped or transferred in the closed central region, generating a depression with
a further fall of the plumes towards the spray core. This characteristic outcome of
the spray, when flash boiling conditions occur, vanishes at higher injection pressures
due to the increase of the spray velocity in the axial direction, as consequence of the
momentum growing, became the dominant effect.

Figure 9 reports the global penetration profiles vs. time for different ambient con-
ditions including the flashing one (green curve) at 70MPa as injection pressure. After
an initial overlapping of the curves at early stage, the spray develops in agreement
with the diverse ambient conditions. The blue curve displays the penetration increase
by moving from atmospheric (red curve) to sub-atmospheric (0.2 kg/m3) ambient
pressure due to the lower gas drag force. The combined effect of the sub-atmospheric
conditions and high fuel temperature causes flash boiling conditions with consequent
reduction of spray cone angle and spray penetration as shown in Fig. 9 (green curve).
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Fig. 9 Global penetration
profiles for different ambient
conditions

4 Conclusions

Liquid and vapor phases of a GDImulti-hole spray were investigated to studymainly
the effects of very-high injection pressure on spraymorphology under different ambi-
ent and injection conditions. The fuel spray was injected in a constant volume vessel
and the change of the morphology was studied as function of the injection pressure,
ambient temperature, and gas density in the vessel, representing different engine
conditions.

The inverse proportionality of the penetrations to the gas densities indicates a
stronger sensitivity of the spray development to ambient pressure. The increase of
injection pressure produces a better fuel atomization and so an easier vaporization.
The vaporized areas appear mainly confined at the front and on the periphery of
the jets, where the fluidynamic interaction with the gas is strongest, the droplets are
finely atomized and faster vaporize. The effect of the highest fuel momentum as
consequence of the greatest injection pressures looks to be balanced by the effect
of the strongest fuel atomization that produces the reduction of the droplet size and,
therefore, of the spray development.

The characteristic outcome of the spray, at flash boiling conditions, weaken at
higher injection pressures because of the increase in the spray velocity and the droplet
momentum becomes the dominant effect.

Further investigations are planned to study the effects of the high injection pressure
on spraymorphologygenerated by injectors of the same family as the one investigated
in this work but with different nozzles and L/D ratio.

Finally, the obtained results will provide useful data set for the CFD numerical
models validation.

Acknowledgements The authorswould like to acknowledge theMagnetiMarelli S.p.A.Powertrain
for the hardware supply and the technical support to the experimental work.



Effects of Very High Injection Pressures on GDI Spray Structure 311

References

1. Kalghatgi, G.T., Risberg, P., Ångström, H.-E.: Partially pre-mixed auto-ignition of gasoline to
attain low NOx at high load in a compression ignition engine and comparison with a diesel
fuel. SAE Int. (2007). https://doi.org/10.4271/2007-01-0006

2. Manente, V., Johansson, B., Cannella, W.: Gasoline partially premixed combustion, the future
of internal combustion engines? Int. J. Engine Res. 12(3), 194–208 (2011). https://doi.org/10.
1177/1468087411402441

3. Hoffmann, G., Befrui, B., Berndorfer, A., Piock, W., et al.: Fuel System pressure increase for
enhanced performance of GDi multi-hole injection systems. SAE Int. J. Engines 7(1), 519–527
(2014)

4. Postrioti, L., Cavicchi, A., Brizi, G., Berni, F., et al.: Experimental and numerical analysis of
spray evolution, hydraulics and atomization for a 60 MPa injection pressure GDI System. SAE
Technical Paper 2018-01-0271 (2018). https://doi.org/10.4271/2018-01-0271

5. Medina,M., Fatouraie,M.,Wooldridge,M.:High-speed imaging studies of gasoline fuel sprays
at fuel injection pressures from 300 to 1500 bar. SAE Technical Paper 2018-01-0294 (2018).
https://doi.org/10.4271/2018-01-0294

6. Herweg, R., Haase, D., Dieler, T., Berndt, F., Rottenkolber, G.: Lean burn combustion for
gasoline engines: potential of high frequency ignition and high pressure injection. In: 13th
Stuttgart International Conference Automotive and Engine Technology (2013)

7. Commission Regulation (EU) No 459/2012 of 29 May 2012. https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=celex%3A32012R0459

8. Klauer, N., Klüting, M., Schünemann, E., Schwarz, C., Steinparzer, F.: BMW TwinPower
turbo gasoline engine technology—enabling compliancewithworldwide exhaust gas emissions
requirements. In: 34th Vienna Motor Symposium (2013)

9. Stadler, A., Brunner, R., Härtl, M., Wachtmeister, G., Sauerland, H.: Experimental investiga-
tions on high pressure gasoline injection up to 800 bar for different combustion modes. In: 27th
Aachen Colloquium Automobile and Engine Technology, 1089 (2018)

10. Zeng, W., Xu, M., Zhang, Y., Wang, Z.: Laser sheet dropsizing of evaporating sprays using
simultaneous LIEF/MIE techniques. Proc. Combust. Inst. 34(1), 1677–1685 (2013)

11. Yang, J., Xu, M., Hung, D.L.S., Wu, Q., Dong, X.: Influence of swirl ratio on fuel distribution
and cyclic variation under flash boiling conditions in a spark ignition direct injection gasoline
engine. Energy Convers. Manag. 138, 565–576 (2017)

12. Dong,X., Yang, J., Hung,D.L.S., Li, X., Xu,M.: Effects of flash boiling injection on in-cylinder
spray, mixing and combustion of a spark-ignition direct-injection engine. Proc. Combust. Inst.
(2018)

13. Senda, J., Wada, Y., Kawano, D., Fujimoto, H.: Improvement of combustion and emissions in
diesel engines by means of enhanced mixture formation based on flash boiling of mixed fuel.
Int. J. Engine Res. 9(1), 15–27 (2008)

14. Yang, J., Dong, X., Wu, Q., Xu, M.: Influence of flash boiling spray on the combustion char-
acteristics of a spark-ignition direct-injection optical engine under cold start. Combust. Flame
188, 66–76 (2018)

15. Hung, D., Harrington, D., Gandhi, A., Markle, L., et al.: Gasoline fuel injector spray measure-
ment and characterization—a new SAE J2715 recommended practice. SAE Int. J. Fuels Lubr.
1(1), 534–548 (2009)

16. Allocca, L., Montanaro, A., Meccariello, G.: Effects of the ambient conditions on the spray
structure and evaporation of the ECN spray G. SAE Technical Paper 2019-01-0283 (2019)

17. Montanaro, A., Allocca, L., Lazzaro, M.: Iso-Octane spray from a GDI multi-hole injector
under non- and flash boiling conditions. SAE Technical Paper 2017-01-2319 (2017)

18. Guo, H., Ma, X., Li, Y., Liang, S., Wang, Z., Xu, H., Wang, J.: Effect of flash boiling on
microscopic and macroscopic spray characteristics in optical GDI engine. Fuel 190, 79–89
(2017)

https://doi.org/10.4271/2007-01-0006
https://doi.org/10.1177/1468087411402441
https://doi.org/10.4271/2018-01-0271
https://doi.org/10.4271/2018-01-0294
https://eur-lex.europa.eu/legal-content/EN/TXT/%3furi%3dcelex%253A32012R0459

	Foreword by the University Rectors (Università degli Studi di Bergamo and Universität Stuttgart-A Strategic Partnership)
	Preface
	Contents
	 Droplet–Gas Interaction
	 An Analytical Approach to Model the Effect of Evaporation on Oscillation Amplitude of Liquid Drops in Gaseous Environment
	1 Introduction
	2 The Mathematical Model
	2.1 Bulk Kinetic Energy Approach
	2.2 Surface Kinetic Energy Approach

	3 Model Implementation
	3.1 The Conditions for Oscillation Damping

	4 Results and Discussion
	5 Conclusions
	Appendix
	References

	 Improvement of the Level-Set Ghost-Fluid Method for the Compressible Euler Equations
	1 Introduction
	2 Governing Equations
	3 Numerics
	3.1 The DGSEM Framework with Finite Volume Sub-cells
	3.2 The Solution of the Hamilton-Jacobi Equations and the Derivatives of the Level-Set Field
	3.3 The Level-Set Ghost-Fluid Method (LSGFM)

	4 Results
	4.1 Parasitic Currents Around a Stationary Droplet
	4.2 Merging Droplets Without Surface Tension
	4.3 Shock-Droplet Interaction at Ma = 2.40

	5 Conclusion and Outlook
	References

	 A Solver for Stiff Finite-Rate Relaxation in Baer–Nunziato Two-Phase Flow Models
	1 Introduction
	2 Model Equations
	3 Description of the Numerical Method
	3.1 Timestepping
	3.2 Iterative Computation of the Timestep Solution
	3.3 Analytical Solution of the Linearised Problem

	4 Test Problems
	5 Conclusions
	References

	 An Investigation of Different Splitting Techniques for the Isentropic Euler Equations
	1 Introduction
	2 A Generalized Splitting
	3 Numerical Method
	3.1 Discretization
	3.2 Calculation of the RS-IMEX Reference Solution
	3.3 Discretization of HJL and DeTa Splitting

	4 Numerical Results
	4.1 Testcase 1: HOT-Vortex
	4.2 Testcase 2: Taylor-Green-Vortex

	5 Conclusion and Outlook
	References

	 Enabling Simulations of Droplets  with the Direct Simulation Monte Carlo Method
	1 Introduction
	2 Liquid Surface
	3 Spheres Inside the DSMC Domain
	3.1 Extension of the Tracking Routines
	3.2 Intersection with Spheres After Boundary Interactions
	3.3 Influence of Collisions on Macroscopic Spheres

	4 Simulations
	4.1 Droplet Evaporation
	4.2 Brownian Motion

	5 Conclusion and Outlook
	References

	 Droplet–Wall Interaction
	 Fabrication and Evaluation Methods  of Micro-structured Surfaces for Droplet Impact Experiments
	1 Introduction
	2 Surface Reproduction and Experimental Methods
	2.1 Reproduction of Micro-structured Surface Samples
	2.2 Mold Insert Fabrication
	2.3 Evaluation Methods for Investigating Micro-structured Surfaces
	2.4 Experimental Test Facility for Investigating Dynamic Droplet Impacts

	3 Results and Discussion
	3.1 Surface Evaluation
	3.2 Droplet Impact on Micro-structured Surfaces
	3.3 Film Thickness Measurement of Droplet Lamella

	4 Conclusion
	References

	 Use of X-ray Micro Computed Tomography for the Investigation  of Drying and Salt Precipitation  in a Regular Glass Bead Structure
	1 Introduction
	2 Materials and Methods
	2.1 Tomography Equipment
	2.2 Materials
	2.3 Sample Production and Filling
	2.4 Scanning Parameters
	2.5 Reconstruction
	2.6 Segmentation

	3 Results and Discussion
	3.1 Preliminary Experiments
	3.2 Evaporation Experiments
	3.3 Pore Size Distribution
	3.4 Distribution of the Fluid Clusters
	3.5 Salt Precipitation

	4 Conclusions
	References

	 Image Processing of Two-Phase Data for Drop-Surface Interaction Obtained by X-Ray Microtomography
	1 Introduction
	2 Analysis and Quantification
	2.1 Segmentation
	2.2 Resolution

	3 Surface Triangulations and Curvature Estimation
	4 Conclusions
	References

	 A Phase Field Approach to Compressible Droplet Impingement
	1 Introduction
	2 Phase Field Models
	2.1 A Compressible Navier–Stokes–Allen–Cahn System
	2.2 Boundary Conditions
	2.3 Energy Inequality
	2.4 Surface Tension

	3 Numerical Experiments
	3.1 Choice of Parameters
	3.2 Merging Droplets
	3.3 Contact Angle
	3.4 Droplet Impingement

	4 Summary and Conclusions
	References

	 Numerical Simulation for Drop Impact on Textured Surfaces
	1 Introduction
	2 Numerical Methods
	2.1 FS3D's Advection Scheme
	2.2 Solution of the Discretized Poisson Problem

	3 Treatment of Embedded Boundaries
	3.1 The Simplified Approach
	3.2 The New Approach

	4 Results
	5 Conclusions
	References

	 Upscaling of Coupled Free-Flow  and Porous-Medium-Flow Processes
	1 Introduction
	2 Model and Coupling Concept
	2.1 Free Flow
	2.2 Flow in Porous Media
	2.3 Interfacial Drops
	2.4 Coupling Concept
	2.5 Numerical Model

	3 Results and Discussion
	4 Conclusions
	References

	 A Locally-Refined Locally-Conservative Quadtree Finite-Volume Staggered-Grid Scheme
	1 Introduction
	2 Methods
	2.1 Governing Equations
	2.2 Discretization Concept

	3 Numerical Test
	4 Conclusion
	References

	 Droplet–Liquid Interaction
	 A New Perspective for the Characterization of Crown Rim Kinematics
	1 Introduction to Rim Kinematics
	1.1 Impact Process and Morphological Features
	1.2 Experimental Set-Up and Methodology

	2 Classical Geometrical Parameters of Crown Rim and Associated Problems
	2.1 Radial and Axial Expansions of Crown Rim
	2.2 Crown Aspect Ratio Dependent on Impact Parameters

	3 Relevance of the Crown Rim Displacement from the Impact Point
	3.1 Length Scale of Crown Rim Expansion
	3.2 Quadratic Distancing from the Impact Point

	4 Conclusion
	References

	 Analytical Model for Crown Spreading During Drop Impact onto Wetted Walls: Effect of Liquids Viscosity on Momentum Transfer
	1 Introduction
	2 Modelling Approach
	2.1 Description of the Film Thickness Decay Rate
	2.2 Momentum Loss Estimation
	2.3 Implementation in Crown Base Evolution Model

	3 Results and Discussion
	3.1 How Momentum Transfer is Affected by Fluids Viscosity and Initial Film Thickness
	3.2 Effectiveness of SPF-Based Modelling Approach

	4 Conclusion
	References

	 An Implicit High-Order Discontinuous Galerkin Approach for Variable Density Incompressible Flows
	1 Introduction
	2 Variable Density Incompressible Flow Model
	3 The Discontinuous Galerkin Discretization
	3.1 Numerical Fluxes
	3.2 Working Variables
	3.3 Spurious Oscillations Control
	3.4 Time Integration

	4 Numerical Results
	4.1 Dry Bed Inviscid Dambreak Problem
	4.2 Dry Bed Inviscid Double-Dambreak Problem

	5 Conclusions
	References

	 Visualization Techniques for Droplet Interfaces and Multiphase Flow
	1 Introduction
	2 Interface Deformation
	2.1 Method
	2.2 Results

	3 Machine Learning for Droplet Behavior Prediction
	3.1 Method
	3.2 Results

	4 Droplet-Local Flow
	4.1 Method
	4.2 Results

	5 Conclusion
	References

	 On the Measurement of Velocity Field Within Wall-Film During Droplet Impact on It Using High-Speed Micro-PIV
	1 Introduction
	2 Materials and Methods
	3 Results and Discussion
	4 Conclusions
	References

	 Single-Camera 3D PTV Methods for Evaporation-Driven Liquid Flows in Sessile Droplets
	1 Introduction
	2 Materials and Methods
	2.1 Experimental Setup
	2.2 Single-Camera 3D PTV Methods

	3 Results and Discussion
	3.1 Ultrapure Water
	3.2 Mineral Water
	3.3 Salty Solution
	3.4 Surfactants

	4 Conclusions
	References

	 Towards Sprays
	 Drop Shape Oscillations
	1 Introduction
	2 The Physics of Drop Shape Oscillations
	2.1 Linear Oscillations
	2.2 Nonlinear Oscillations
	2.3 Shape Oscillations of Non-Newtonian Liquid Drops

	3 Measuring Techniques Building on Drop Shape Oscillations
	4 Summary and Conclusions
	References

	 Classical and Novel Approaches  to Modelling Droplet Heating  and Evaporation
	1 Introduction
	2 Classical Approaches
	3 The Tonini and Cossali Model
	4 Modelling of the Liquid Phase
	5 Recent Developments
	References

	 The Influence of Curvature  on the Modelling of Droplet Evaporation at Different Scales
	1 Introduction
	2 Drop Evaporation Models at Different Scales
	2.1 Effect of Surface Curvature at the Macroscopic Scale
	2.2 Effect of Surface Curvature at the Microscopic Scale

	3 Conclusions
	References

	 On the Importance of Kinetic Effects  in the Modelling of Droplet Evaporation  at High Pressure and Temperature Conditions
	1 Introduction
	2 Review of Kinetic Boundary Conditions for Engineering Applications
	3 Results
	4 Conclusion
	References

	 Direct Numerical Simulations  of Evaporating Droplets at Higher Temperatures: Application  of a Consistent Numerical Approach
	1 Introduction
	2 Mathematical Formulation
	2.1 Interface Capturing and Material Properties
	2.2 Conservation Equations
	2.3 Jump Conditions

	3 Numerical Approach
	3.1 Advection of Liquid and Gaseous Phase
	3.2 Phase Change Loop

	4 Results
	4.1 Single Isooctane Droplets
	4.2 Water Droplet Tandem

	5 Conclusion
	References

	 Effects of Very High Injection Pressures on GDI Spray Structure
	1 Introduction
	2 Materials and Methods
	3 Results and Discussion
	4 Conclusions
	References




