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Abstract In today’s globalized environment, companies compete fiercely for busi-
ness. They need world class product quality, no cost overrun and schedule slippage.
Customer satisfaction is number 1 and cannot afford system development failures.
Practicing systems engineering is the answer. It is an old subject but has been revital-
ized since the mid 90s. Systems engineering is now a major theme in this century has
led to reduction in time-to-market, improving quality and reducing costs. However,
systems engineering has not been sufficiently understood by the majority of workers
(technical and nontechnical, professional and non-professional, and financial, etc.),
evidenced by many failures been reported, specifically in US Government Account-
ability Office (GAO) reports. Therefore, continuous systems engineering education
is still needed, which is the major theme of this chapter. In this chapter a history
of systems engineering is introduced; including why it is needed, its evolution and
revitalization. the fundamentals are presented. The requirement management pro-
cess needs to be followed to analyze, derive, allocate and trace the requirements.
Functional analysis can assist requirement hierarchy developed, vice versa; require-
ments can also feed function architecture development. This chapter is concluded by
overview of the functional allocation and the system synthesis.
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2.1 Introduction

In today’s globalized environment,manufacturing and designing companies compete
for business. To be successful, companies need to practice strategies that minimize
the possibility of degradation of product quality, cost overrun, schedule slippage,
customer dissatisfaction and system development failures. Systems engineering is
the answer to the above statement. It is different frommechanical, aeronautical, elec-
trical and other engineering disciplines and yet bridges these traditional engineering
disciplines. Systems engineering is focused on the system as a whole. While the
primary purpose of systems engineering is to guide, it does not mean that systems
engineers do not themselves play a key role in system design. Systems engineering
is needed now and in the future to meet the following challenges:

• Constantly changing requirements

– Requirements for new system are frequently changing
– Changes in mission thrusts
– Continuous introduction of new technologies

• More emphasis on “systems”

– Greater emphasis on total system versus the components of a system
– Functions need to be performed in an effective and efficient manner
– Look at the system throughout its entire life cycle

• Increasing system complexities

– System becomesmore complex, such as, system-of-systems for network-centric
applications

– System design changes should be incorporated quickly, efficiently, and with-
out causing a significant impact of the overall configuration of the system-of-
systems, system, or subsystem

• Increasing globalization

– More trading and dependency on different countries
– Introduction of rapid and improvement communications

• Greater international competition
• Increasing globalization can also trigger more international competition
• More outsourcing

– More suppliers associated with any given program
– Needs early definition and allocation of system level requirements

Systems engineering fundamentals in this chapter will cover the following subjects:

1. Introduction to Systems Engineering.
2. Requirements Management.
3. Functional Analysis and Architecture.
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Section 2.2 Introduction to Systems Engineering will explain why we need sys-
tems engineering; evolution of systems engineering; the history of systems engi-
neering revitalization; and the role of systems engineers. The systems engineering
methods and processes presented in this chapter can be directly applied to the job.
Learn how to analyze and develop requirements in Sect. 2.3; and how to validate,
trace and allocate requirements. Four (4) elements of functional analysis and Allo-
cation are discussed in Sect. 2.3. In Sect. 2.3 the Functional Flow Block Diagrams
and Integrated Definition for Functional Modeling are presented, as well as the rela-
tionships between functional allocation and system synthesis, and decision Analysis
as needed during the design, development and manufacturing life cycle.

2.2 Introduction to Systems Engineering

In this section, we discuss in detail the poor performance of engineering projects
in current industries, especially with respect to cost overruns and schedule delays.
Practicing systems engineering (SE) may be the answer to correct these problems.
The value of SE is presented. SE is not a new subject; therefore, the evolution of
SE is discussed in this section. Many people may not know what SE revitalization
is. It will be presented and discussed here. Finally, the role of systems engineers is
explained.

2.2.1 Why Systems Engineering

This is often a question in people’s mind. Why do I need to know and understand
systems engineering? What is good for me? One obvious reason that we can give is
[1]:

Systems Engineering provides theory andmethods for the management of complexity.With-
out Systems Engineering, we can expect additional developmental failures, cost overruns,
schedule slippages, customer dissatisfaction, and environmental disasters.

Figure 2.1 is extracted fromMetrics and Case Studies for Evaluating Engineering
Designs, Moody et al. [2]. It shows that the cost overrun decreases as the systems
engineering (SE) effort as a percentage of total program cost increases for most of
the space programs in the past. Figures 2.2 and 2.3 [3] show that the cost ratio of
actual to plan and schedule ratio of actual to plan, respectively, decreases as SE effort
increases. The SE effort is defined as the product of SE quality and the ratio of SE
cost to actual cost [4].

United States (US) Government Accountability Office (GAO) [5] have found
problems related to quality that have resulted in major impacts to the 11 Department
of Defense (DoD) weapons systems, billions of dollars in cost overrun and years-
long delays, and decreased capabilities for the warfighter. GAO’s analysis of 11 DoD
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Fig. 2.1 Cost overrun versus systems engineering effort [2]
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Fig. 2.3 Schedule ratio of actual to plan [3]

weapon systems illustrates those defense contractors’ poor practices of systems engi-
neering activities as well asmanufacturing and supplier quality problems. A study [6]
was undertaken why cost overrun and schedule delays have occurred and continue
to occur in large-scale US federal defense and intelligence acquisition programs.
One of the major reasons is inadequate systems engineering practices. Requirements
redefinition and creep was discussed as a major problem. The acquisition strategy for
programs must embrace the systems engineering processes and philosophies early in
the program life cycle [7]. Systems engineering practices provide a program baseline
where customer and stakeholder needs are satisfied, when diligently followed early
and throughout the acquisition process.

It is emphasized by a customer, “…Imperative for all the programs is to focus
more attention on the application of Systems Engineering principles and practices
throughout the system life cycle” [8]. It is further directed, “Improve SE through-
out the acquisition process, including workforce …education and training; tools …
guidance; Provision for contractor’s Board to consider contract performance when
setting top executives’ salaries/bonuses.” One year later, “Application of rigorous
systems engineering discipline is paramount to the department’s ability to meet the
challenge of developing and maintaining needed warfighting capability” [9].

The industries, especially defense and aerospace, are crying for the application of
systems engineering practice in their companies, as described in the presentations of
“Systems Engineering in Today’s Competitive Environment” [10], and “Current and
Future Trends in Systems Engineering” [11]. The four (4) key metrics for a company
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to achieve business targets are: Revenue Growth, NetMargins, Operating Cash Flow,
and Return on Net Assets. The actions required to meet these four (4) metrics are all
related to systems engineering practices. They are:

• Meet customer requirements
• Validate and verify requirements to final products
• Mitigate risks
• Make the best decision
• Continuously measure performance
• Shorten Cycle Times
• Execute to plan and schedule
• Best organization and budget control

With world-wide web communications nowadays, the newest technology will
be most likely spread within two year or less; therefore, technology is a common
commodity in most cases. The winner is not determined by the possession of the
technology. It is the one who can first deliver the product to the market with the best
quality and sell at the cheapest price. Then what are the challenges? They are cost
and schedule.

There are three (3) basic arguments for the value of systems engineering: First,
assurance that the system will accomplish its objectives; Secondly, the cost-time
trade-off as shown in Fig. 2.4 [12] that the later problems are discovered, the more it
costs tofix them; and thirdly, insurance against serious low-probability consequences.
Well-practiced SE is for adequate upfront planning, adequate scope definition, and
understanding customers intent, expectations and requirements definition at the early
phase of a project. A well-executed team work can achieve the value of systems
engineering.

Fig. 2.4 Cost-time trade
effect [12]
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2.2.2 Evolution of Systems Engineering

SE is an old subject that started in ancient time; like Egyptian built pyramids, Chinese
built the great wall, and Roman built the forum and bridge. During that time, it was
not called systems engineering but they must used the system principle and method
to build huge and durable structures, not to mention the tower of Pisa as a bad system
example.

In 1957, the Soviet Union launched the human-made satellite orbiting around
the earth and also had the intercontinental ballistic missile (ICBM), a guided ballis-
tic missile with a minimum range of 5500 km (3400 mile) primarily designed for
nuclear weapons delivery (delivering one or more thermonuclear warheads). The US
suddenly fell behind. For national survival and space race, US government spent
billions of dollars to build the satellite and ICBM. These are complicated systems
that require a systematic approach with precision and sound management; therefore,
SE was adopted and expanded rapidly. System performance for mission success
was emphasized, as well as project management for technical performance, delivery
schedule, and cost control. A driving force for high system reliability led to the devel-
opment of parts traceability, materials and process control, change control, product
accountability, formal interface control, and requirements traceability. These are all
SE tasks and processes.

2.2.3 Systems Engineering Revitalization

After successful completion of the Apollo Program, US space race and ICBM pro-
gram won over Soviet Union. The government significantly cut back funding for
space and defense programs. The contractors suffered severely shortages of funding
and forcedmajor reductions inmanpower. This was in the early 1970s. In the next ten
(10) years, government slowly increased funding for space and defense programs.
The contractors also gradually recovered and increased personnel hiring. In the late
1980s, more space and defense programs suffered cost overruns and schedule delays
that raised government concerns. The newly hired employees were not aware of sys-
tems engineering principles, methods and processes. SE has faded away. In the mid
1990s, US Air Force started an initiative to revitalize systems engineering practices
that were executed successfully in the 1950–1960 period to win the space race and
ICBM competition. A year later DoD led the systems engineering revitalization until
today.MichaelW.Wynne, acting under the secretary of defense for acquisition, tech-
nology and logistics, and Mark D. Schaeffer, principal deputy, defense systems and
director, systems engineering, Office of the USD (AT&L), called for the revitaliza-
tion of systems engineering across the Department of Defense [13]. “Analyses of a
sampling of major acquisition programs show a definite linkage between escalating
costs and the ineffective application of systems engineering,” Wynne and Schaeffer
called for the “systemic, effective use of systems engineering as a key acquisition
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management planning and oversight tool” and said that, in addition, DoD would
“promote systems engineering training and best practices among our acquisition
professionals.”

In its present form, the systems engineering process is broadened and combines
elements of many disciplines:

• Operations research and analysis
• System modeling and simulation
• Decision analysis
• Project management and control
• Software engineering
• Specialty engineering
• Industrial engineering.

2.2.4 Role of Systems Engineers

Systems engineering (SE) is not a rocket science but it may be harder than rocket
science. It deals with people, management and engineering. SE is with a project or a
program from womb to tomb, and from cradle to grave. SE principles and methods
can also be applied to individual’s daily life.

Systems engineering differs from traditional disciplines in the following ways:
It is focused on the system as a whole; it is concerned with customer needs and
operational environment; systems engineering leads system conceptual design; and
bridges traditional engineering disciplines and gaps between specialties.

The systems engineers can be:

• Deputy to Project Manager
• Customer Interface
• Requirements Owner
• System Architect
• System Analyst
• IMP/IMS Generator and Keeper
• Risk Management Administrator
• Trade Study Facilitator
• Interface Manager
• Verification Plan Owner and Administrator
• Process Owner
• Coordinator.

A Successful Systems Engineer should be a good problem solver, and welcome
challenges,well-grounded technicallywith broad interests, analytical and systematic,
but also creative, and a superior communicator with leadership skills.

Recommended systems engineers’ role in a program is shown in Fig. 2.5 [14].
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Fig. 2.5 Systems engineers’ roles on the program [12]

2.3 Requirements Management

A general systems engineering process is shown in Fig. 2.6 [14]. On the left of the
figure are customer requirements. As you can see that the customer requirements
come in different forms, from highly sophisticated customers, like US government
with fully developed user system specifications indicating performance, supportabil-
ity, measures of effectiveness; and the constraints as affordability, interoperability,
system evolution, and component reuse, etc., to casual customer requirements walk-
ing on the street with a few words. Regardless what forms customer requirements
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have, they have to be validated before deriving system level requirements. It leads
to the middle top block “Requirements Management” which is the subject of this
section.

The definition of Requirements Management is

The identification, derivation, allocation, and control in a consistent, traceable, correlatable,
verifiable manner of all the system functions, attributes, interfaces, and verification methods
that a system must meet including customer, derived (internal), and specialty engineering
needs.

The objectives of Requirements Management are:

• Ensure specified requirements have been completely decomposed and met in the
design

• Ensure that any impacts to the design due to Requirements modification are com-
pletely understood

• Ensure no extraneous requirements (or components) have been introduced
• Ensure requirements have been completely verified.

Refer to the Requirements Management Process as shown in Fig. 2.7 [14], in the
first-round of the requirement loop shouldworkwith customers to derive the top-level
system requirements. For commercial products, derive the top-level system require-
ments based on validated customer requirements. Each system requirement needs
to be allocated to function, organization or individual. This is called requirements
allocation to ensure the ownership for each requirement. Under Implementation Pro-
cess, there is no system design and supplier hardware/software development for the
first-round. Each system requirement needs to have one or more verification require-
ments. For the second-round the systems engineers should also work with customers
to derive the second-level system requirements. In sum, each requirement needs to be
allocated and has one or more verification requirements. The second-round implies

Fig. 2.7 Requirements management process [14]
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Fig. 2.8 Requirements management role in a system life cycle

conceptual design but not yet the hardware/software development under Implemen-
tation Process. With each more round, more lower-level requirements are derived for
lower-level designs and hardware/software developments. Then the requirements
hierarchy is formed and the requirement management process spans the product
hierarchy and is iterative across all organizational levels. Requirements are central
to all facets of the product. Requirements can be found everywhere and will depend
upon each other; therefore, the continuous involvement and coordination with all
interested parties must be accomplished. All impacted areas must be tied together to
ensure an optimal solution.

The RequirementsManagement role in a system life cycle is illustrated in Fig. 2.8.
The outside circle is a system life cycle fromConcept Exploration to Engineering and
Manufacturing Development (EMD) to Disposal. The middle cycle is the require-
ments for different phases in a system life cycle. The inner circle is the steps for each
requirement from identification to allocation for the requirement, implementing the
requirement by designers and verification requirement for insuring the product sat-
isfying the requirement. At the beginning of developing requirements for Concept
Exploration, the project team is formed on day 1, a concurrent engineering practice.
All the required team members are gathered including representatives from each life
cycle phase. The requirements will be developed for all phases of the life cycle at the
beginning. Use X to represent the consideration and inclusion during the design of
a product, such as, reliability, maintainability, survivability, safety, test, fabrication,
assembly, operation and product support, etc. The goal of applying SE is to fulfil
“Design for X” to cover the development and usage of a product in its entire life
cycle.
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2.3.1 Validate Requirements

We need to fully understand the customer requirements with no ambiguity. If we do
not understand even with slightly doubt, we cannot derive and develop requirements.
A better way to convey the concept of validating requirements is to use a cup of
coffee as an example as shown in Table 2.1. A cup of coffee is a simple and small
system. It does not need system requirements and derive design requirements are
derived directly from customer requirements. Commercial customers have very loose
requirements. If customers are asked what kind of coffee they would like to drink,
they will say “taste good”. You would scratch your head what does “taste good”
means? You need to validate the requirement of “taste good”. One way is to make
ten (10) cups of coffee and you know exactly the flavour percentage in each cup
of coffee. You need to get 90% of general population to taste your ten (10) cups
of coffee. The number and kinds of people selected to satisfy the 90% is similar to
polling process. If majority of the population like the taste of No. 5 cup of coffee.
Then you have validated the “taste good” requirement that is the flavour percentage
of No. 5 cup. The next customer requirement is “be hot”. You can make five (5)
cups of coffee with 70, 75, 80, 85, and 90 °C. Again, gather 90 percentile of general
population to taste these five (5) cups of coffee. If the majority population think No.
4 cup is “be hot”. Then you know 85 °C is the validate requirement for “be hot”.
Customers would like the coffee “wake me up” especially in the morning. You know
“wake me up” relates to “quantity of caffeine”; however, the “quantity of caffeine”
competes with “level of acidity”, which corresponds to customers’ “not upset my
stomach”. You make ten (10) cups of coffee. Each has different levels of caffeine and
acidity. You know that the higher level of caffeine, the higher level of acidity. With
90 percentile of population to taste these ten (10) cups of coffee, you find out that
the No. 2 cup of coffee the majority of customers feel enough “quantity of caffeine”
to “wake me up” and yet “not upset my stomach”. Then you have validated these
two customer requirements with exact “quantity of caffeine” and “level of acidity”.
The last customer requirement “be cheap” competes with all the above customer
requirements since better taste, higher temperature, and more quantity of caffeine
will increase the base cost of a cup of coffee. You can validate this requirement by
comparing the price of your cup of coffee with the price of other equivalent brand(s).
When all these customer requirements are validated, you need to verify that each
cup of your coffee will be made to No. 5 cup of flavour percentage, No. 4 cup 85 °C,

Table 2.1 Customer
requirements driving the
design requirements

Customer requirements Design requirements

Taste good Flavor components

Be hot Serving temperature

Wake me up Quantity of caffeine

Not upset my stomach Level of acidity

Be cheap Cost per cup
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No. 2 cup of coffee “quantity of caffeine” and “level of acidity”, and the price of
“be cheap”. You may have an idea now how to validate customer requirements and
verify design requirements.

2.3.2 Requirements Analysis

The requirement and different kinds of requirements are defined below:

• Requirement—A statement of required performance or design constraint to which
a product must conform.

• Customer Requirements—Statements of fact and assumptions that define the
expectations of the system by customer.

• System Requirements—The necessary task, action or activity that must be accom-
plished. System Requirements identified in requirements analysis will be used as
the top-level requirements.

• Design Requirements—The “build to”, “code to”, and “buy to” requirements for
products and “how to execute” requirements for processes expressed in technical
data packages and manuals.

• Derived Requirements—Requirements that are implied or transformed from
higher-level requirement.

A requirement must be related to the function on which is to be performed, verifiable,
which means testable, analyzable, demonstrable and inspectable (not applicable to
customer requirements), precisely worded, and be unique.

First, we need to analyze customer requirements (CRs). After validation of cus-
tomer requirements, we need to define customer functional and performance require-
ments. Also need to identify, understand, and define customer constraints. The
specialty engineering requirements, such as, reliability, maintainability, availabil-
ity, safety, survivability, and human factor. of the system are important to know at
the onset of requirements analysis.

The next step is to analyze and derive the top-level system requirements. The
sophisticated customers, like DoD (Department of Defense), NASA (National Aero-
nautics and Space Administration), and other government agencies, will provide
systems specifications to contractors. If this is the case, we need to break down para-
graphs in the system specification down to each sentence as a requirement. If the
requirements are mandatory, remember to use the word of “shall” in front of the
verb; otherwise, the designer or owner of this requirement does not have to follow
the requirement. If we received compound and complex Statements from customers,
we need to decompose these statements into a set of single requirements.

The design requirement drives the design as a one-way street. The design should
be developed from these requirements. If a requirement is derived from the existing
design, it is called reverse engineering that defeats the purpose of deriving require-
ments from CRs. Most likely, the design will not meet the CRs. Each requirement
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shall be a complete, simple, specific, and straightforward sentencewith concise quan-
tifiable meaning. Without quantity, how can the requirement be used for design or
verification? It is often to read “TBD” (to be determined) included in the require-
ment writing. This is not allowed since quantity value have to be indicated clearly in
the requirement statement. For compliance with military and commercial standards,
specifications, or any documents, the section number of the document shall be cited in
the requirement. The requirement sentence cannot contain any adjectives which will
be interpreted differently by different people, for example, beautiful, comfortable,
etc. Margin in a requirement will provide design flexibility and tolerance for ease in
manufacturing. As a result, margin in requirements can reduce cost for design and
manufacturing. How can you determine the margin in a requirement? The answer is
to use trade-off studies if necessary to determine the optimum margin.

The requirement should be written in positive tense, not passively. Requirements
engineers who write requirements can be categorized as “words engineer” since the
words used in the requirement dominate the design and verification. Requirement
documents are legal documents as part of the contract.

2.3.3 Requirements Allocation

Requirements should be allocated. Allocation means to set apart, assign, or allot for
a particular purpose. Requirements allocation is the assignment of requirements to
a responsible party. There are several ways of allocation. Partition a value assigned
to a parent requirement into parts that are assigned to child requirements. Require-
ments can also be allocated to functions, organizations, or experts. Sometimes, a
requirement is for a specific time period, for example, most of the people witnessed
the countdown of rocket launch the last 10 s. In reality, the countdown starts at years
or months ago. There are requirements associated with different year or time period.

Requirements allocation can be tabulated in a table, with requirement numbers,
requirement sentences, associated verification requirements, verification methods,
and allocation. This table is called Requirements Allocation Sheets (RAS).

2.3.4 Requirements Traceability

Each requirement should be traceable to the higher level requirement(s) all the way
to customer requirements (CRs). If not traceable to a CR, it could be a new CR
or this requirement is not needed. The top-level of requirements traceability hier-
archy is CRs, followed by top-level systems requirements, then the next level sys-
tems requirements and continue to the lowest level requirements, usually component
requirements. This total traceability is necessary to insure all the CRs are incor-
porated and complied. Requirements traceability for the top two levels of systems
requirements should be developed jointly by customer and contractor. Requirements
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traceability is two-way protection between customers and contractors. The customer
will know which CR or CRs are ignored; on the other hand, if the upward trace finds
new CR or CRs, it will be out-of-scope and the customer has to increase the scope
in cost and schedule; otherwise, the customers should delete the extra CR or CRs.
Once the traceability hierarchy tree is established, any impact of top-level CR or CRs
on the lower-level requirements can be easily found. Conversely, the impact of any
middle-level requirement changes or removals can be easily found on higher level as
well lower level requirements. Parent requirements flow down the hierarchy to the
immediate lower level child requirements. Traceability means having clear knowl-
edge of the ancestry of every requirement in terms of the parent requirements that
make it necessary. CRs have child requirement. The lower level requirements have
both parents and children requirements. Orphan requirement(s) that has no parent
requirement is not allowed. Through a traceability tree one can spot those orphan
requirements. The orphan requirements need parent requirement(s) or have to be
deleted. Software is usually the source of problem for hardware systems as well as
software-intensive system; therefore, it is important to have total traceability from
CRs down to lines of coding.

There are three (3) ways to develop a requirements traceability tree. One way is
to use block diagrams to show the traceability from top-level to lower-level require-
ments. A second way is a dedicated traceability matrix. The third way is to use
computer tools. The most commonly one used in the systems engineering commu-
nities is DOORS [15].

2.3.5 An Example

After discussions of requirements analysis, allocation, and traceability in the above,
an example may be necessary to reinforce the understanding. The example is to
develop CRs, system requirements, design requirements, RAS and a traceability tree
for a Mouse Trap [16].

The Mouse Trap CRs are shown in Table 2.2. As discussed above, CRs have no
rules and restrictions. It could come in different formats and styles, sometimes, not
even a sentence, just words or phrases. But shown here in Table 2.2, CRs are nicely
written, at least understandable; therefore, the validation of CRs is not necessary. The

Table 2.2 Mouse trap customer requirements

No. Requirement Description

CR1 Simple device There is a need to kill mice with a simple device

CR2 Simple to operate This device should be simple to operate and affordable by
the general population

CR3 Harmed instantaneously The mouse will be harmed instantaneously

CR4 Price cheap The price for the Mouse Trap device should be cheap
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Table 2.3 Mouse trap system requirements

No. Requirement Description

SR1 Cost ≤ $0.50 The cost of the simple device shall not be more than $0.50

SR2 Mechanical design This device shall be mechanically designed without any
sensors and software

SR3 Attracted to enter A mouse shall be attracted by cheese to enter the device

SR4 Harm when bait disturbed The device shall harm the mouse in less than 1/2 s when
the bait is disturbed

SR5 Operated by 90 percentile The device shall be simple to be operated at least by
90 percentile of the general population

system requirements (SRs) are shown in Table 2.3. As can be seen from Table 2.3,
the complete sentences of SRs are simple, specific and straightforward, using the
word “shall”. SR1 is derived from CR4 and CR1 by comparing with the market
prices of mouse traps. SR1 contains quantity of $0.50. SR2 is derived from CR1 and
CR2. Mechanical design is corresponding to simple device and simple to operate.
SR3 is derived from CR3, the need to kill mice. SR3 specifically refers to cheese
(requirement engineer’s choice). SR4 is derived from CR2 and CR3 to harm the
mice in less than one-half second (this is a quantity) when the bait is disturbed and
simple to operate. Less than one-half second is determined by trade-off studies or by
building a prototype. We should strive to get the slowest possible action time since
the slower the action time the less the cost. It is because a lower spring strength
will give a higher action time with lower spring costs. This satisfies the margin for a
requirement discussed above. SR5 is derived fromCR2 simple to operate by meeting
90 percentile (a quantity) of general population. The design requirements (DRs) are
shown in Table 2.4. DR1 is derived from SR1, SR2 and SR5 to hold the cheese
firmly and in the meantime to set up the Lock Wire in its place. DR2 is derived from
SR1, SR2, and SR4 to release the Kill Mechanism in one-half second or less. DR3
is derived from SR1, SR2, and SR4 to hit the mouse with 20 lb. force. We should
strive to get the smallest possible impact force since the smaller the impact force the

Table 2.4 Mouse trap design requirements

No. Requirement Description

DR1 Hold cheese The Bait System shall be designed to firmly hold the cheese and
lock wire in its place in one step by meeting 90 percentile of
population abilities

DR2 Release ≤ ½ s The Trigger Systems shall be designed to release the Kill
Mechanism in less than one-half second

DR3 20 lb force The Power System shall be designed to hit the mouse with 20 lb
force

DR4 Platform support A platform shall be designed to house all the subsystems of this
device
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lowest the costs. It is because the lower spring strength will give a smaller impact
force with lower spring costs. This is, again, to satisfy the margin for a requirement
as discussed above. DR4 is derived from SR1, SR2, SR3, and SR4 to support the
subsystems. Different individuals or teams may develop different set of SRs and
DRs. For example, peanut butter may be used for bait rather than cheese; action time
could be different from one-half second; and the impact force could be different
from 20 lb. force, as may be known later in functional analysis. Different functional
and system architectures are possible. We can apply synthesis analysis, basically
through trade-off studies, to choose the best conceptual design from these different
architectures. In a systems engineering process one can select the best conceptual
design objectively and directly from CRs.

The Requirements Allocation Sheet (RAS) for the mouse trap SRs is shown in
Table 2.5. RAS applies to any levels of requirements. For the example shown here the
RAS applies to SRs. DRs can also have its RAS. Every SR has its verification require-
ment (VR). A VR follows the same requirement rules with a complete sentence. One
may notice that a VR repeats words as used in SR, especially concerning quantities
and compliance standards. This is necessary since a VR will verify these quantities
and compliances with standards. Later on, the VRs and SRs will be dissected. SRs
are given to a designer and VRs will be distributed to verification specialists. The
verificationmethods are only for recommendation. Final methods will be determined

Table 2.5 Requirements allocation sheet (RAS)

No. Requirement Verification
requirement

Method Department

SR1 The cost of the
simple device shall
not be more than
$0.50

VR1: it shall be
verified when the
mouse trap is
assembled that the
cost for
manufacturing shall
be less than $0.50

Demonstration Manufacturing and
design

SR2 This device shall be
mechanically
designed without any
sensors and software

VR2: every
component of the
mouse trap shall be
mechanically
designed

Inspection Quality

SR3 A mouse shall be
attracted by cheese to
enter the device

VR3: a cheese shall
be placed on a holder
with a clear visibility
without any
obstruction and easy
to be reached by
90 percentile of
mouse population

Demonstration Human factor

(continued)
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Table 2.5 (continued)

No. Requirement Verification
requirement

Method Department

SR4 The device shall
harm the mouse in
less than 1/2 s when
the bait is disturbed

VR4: it shall be
verified by test that a
mouse shall be
harmed in less than
one-half second

Test Design

SR5 The device shall be
simple to be operated
at least by
90 percentile of the
general population

VR5: it shall be
verified by
demonstration that
placing bait on Bait
Holder and locking
wire to the bait
holder can be
handled by
90 percentile of
population

Demonstration Human factor

by verification specialists. In this example the SRs are allocated to departments for
ownership. One should be aware that requirements may also be allocated to functions
or individuals, etc.

Both block diagrams and traceabilitymatrices are applied to themouse trap. Block
diagrams are shown in Table 2.6. The traceability matrix is shown in Table 2.7.
For a simple device like a mouse trap, the block diagrams for only three levels
already appear complicated. For a larger device or system, it will be overwhelmingly
complicated. A traceability matrix can contain more levels, i.e., more columns. If
there are more requirements in each level, just add more rows can be added. A
traceability matrix is more convenient and adaptable for large systems with more
requirements and hierarchy levels.

Table 2.6 Mouse trap
requirements traceability
using block diagram

Customer
requirements

System
requirements

Design
requirements

CR1: simple
device

SR1: price ≤
$1.00

DR1: hold cheese

CR2: simple to
operate

SR2: mechanical
design

DR2: release ≤ ½
second

CR3: harmed
instantaneously

SR3: attract to
enter

DR3: 20 lb force

CR4: price cheap SR4: harm when
bait disturbed

DR4: platform
support

SR5: operated by
90 percentile
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Table 2.7 Mouse trap
requirements traceability
matrix

Customer
requirement

System
requirement

Design
requirements

CR1 SR1 DR1, DR2, DR3

CR1 SR2 DR1, DR2

CR2 SR2 DR1, DR2

CR2 SR4 DR3, DR4

CR2 SR5 DR1

CR3 SR3 DR1, DR4

CR3 SR4 DR3, DR4

CR4 SR1 DR1, DR2, DR3

2.4 Functional Analysis and Allocation

When referring to Fig. 2.6, Requirements Analysis is followed by Functional Analy-
sis in an iterative way. If one recalls the RAS in which each system requirement can
be allocated to a function, more than one system requirement can be allocated to the
same function. After the two top-level system requirements have been developed,
the top-level functional analysis can be performed using the functions allocated from
the top-level system requirements. If there are inconsistencies with top-level system
requirements, requirements analysis and functional analysis will be iterated to cor-
rect the inconsistencies. functional analysis will be continued to the next level using
the functions allocated from the next level system requirements. Again, if there are
inconsistencies between the next level functional analysis and the next level system
requirements, they should be corrected iteratively. Then the top and next level func-
tional architecture is formed. The lower level functional analysis and architecture
can be continuously developed without waiting for the corresponding lower level
requirements developed. The lower level functional analysis and architecture can
assist the requirements analysis to develop lower level requirements. Some of the
organizations, such as the Commercial Satellite Division of The Boeing Company,
develop the functional analysis and architecture first. Then the developed functional
architectures were used to develop requirements for all levels. The iteration between
requirement analysis and functional analysis is called requirements loop as shown
in Fig. 2.6.

When the top two levels of functional architectures are developed, through func-
tional allocation, the two top levels system (product) architectures are developed.
As discussed in Sect. 2.3.5, several system architectures may be developed. system
synthesis can be performed to select the best system architecture to develop the best
conceptual design. The developed system architectures can be checked against the
functional architectures for consistencies since functional architectures are derived
from customer requirements. These consistency checks will be iterative throughout
the system architectural hierarchical levels between system synthesis and functional
analysis and allocation. It is called design loop iteration as shown in Fig. 2.6.
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2.4.1 Functional Analysis

Functional analysis is an important first step in determining system performance. It
includes functions necessary for the product or service to operate properly. It is a
structured approach for describing howa systemmight be used. The functional blocks
will be defined through a series of functional analysis in all levels. The contractually
specified usage modes are also included in functional blocks which are usually in
the top or higher levels. These functional blocks in all levels hierarchically form a
functional architecture for which system products and services can be designed. The
operational sequence in time steps, for example, the last ten (10) seconds to launch
a rocket, can be arranged as time sequence in functional blocks, that can be used to
analyze time-critical requirements. The functional blocks, like the requirements, are
arranged in a traceable and logical sequence.

Functions describe how users use a product or service. A functional statement
begins with a verb and follows with a direct object, for example, fly airplane, surf
internet, or enter password. As one moves away from user-interface level and into
lower levels of details, functional descriptions become statements about what the
system does, for example, compute coordinates, sense hydraulic pressure, or track
target. Function name should identify the action or transformation accomplished by
the function. Avoid the pitfalls of “provide” and “accept” functions since these two
words cannot send out clear message. What does the function mean with either of
these two words? For example, “provide diagnostics”, what kind of diagnostics? A
better way to write this function is “Perform BIT (Built in Test)”. “Provide aircraft
position”, a more clear message is “Compute aircraft position.”

2.4.1.1 Functional Flow Block Diagram

One of the often used functional analysis methods is Functional FlowBlockDiagram
(FFBD). Refer to Fig. 2.9 [17], the top-level function blocks are transformed from top
level system requirements. There are two ways of transforming system requirements
to functional blocks. One way to convert system requirements to functional blocks is
through interpretation and judgement. If the system requirements have already been
allocated to functions, it will be simply using the allocated functions as top-level
functional blocks. The function blocks are connected in certain sequences, as shown
in Fig. 2.9, Functions A to B to C to D, and Function A also to E to C to F. You would
not want to be overwhelmed by too many blocks to perform complicated sequential
relationships, one to one, one to many, and many to one, etc. It is recommended
between five (5) to nine (9) blocks up to your preference. Each functional block is
numbered, Function A as 1.0, Function B as 2.0, Function C as 3.0, Function D as
4.0, Function E as 5.0, and Function F as 6.0. Each block will have the next level
functions. Let us choose Function E, 5.0. Continue to Fig. 2.10 for the next level
FFBD. Since the Functions are all under Function E, aka 5.0, they will be numbered
as 5.x. The functional sequences will be Function 5.1 to Function 5.3 to Function
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System Requirements

System Top-Level FuncƟonsSystem Top-Level FuncƟons

FuncƟon A

FuncƟon F

FuncƟon E

FuncƟon DFuncƟon CFuncƟon B

0.1 0.1

0.5 0.5

2.0 0.3 0.30.2 4.04.0

0.6 0.6

To Second-Level FuncƟonsTo Second-Level FuncƟons

Fig. 2.9 Top-level functional flow block diagram [17]

Second-Level FuncƟonsSecond-Level FuncƟons

From System Top-Level FuncƟonFrom System Top-Level FuncƟon

To Third-Level FuncƟonsTo Third-Level FuncƟons

1.5 1.5

2.5 2.5

5.3 5.53.5 5.5

4.5 4.5

Fig. 2.10 Second-level functional flow block diagram [17]
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Third-Level FuncƟons

From Second-Level FuncƟons

1.5.5

4.5.5

2.5.5 3.5.5

5.5.5

Fig. 2.11 Third-level functional flow block diagram [17]

5.5 to Function 5.4, Function 5.1 to Function 5.2 to Function 5.4, and Function 5.4
to Function 5.3. Now you may begin to appreciate why the functions are numbered.
Each of 5.x Functions can have lower level functions. Let us choose Function 5.5, as
shown in Fig. 2.10, to develop lower level functions. Continue to Fig. 2.11 to view the
next lower level FFBD. The functional sequences will be Function 5.5.1 to Function
5.5.2 to Function 5.5.3, and Function 5.5.1 to Function 5.5.4 to Function 5.5.5 to
Function 5.5.3. Then we can continue to next lower level functions, for example,
from Function 5.5.5, as shown in Fig. 2.11. All the functional blocks 1.0, 2.0, 3.0,
4.0, 5.0, and 6.0 at the top-level are grand-parents level; all the functional blocks
5.1, 5.2, 5.3, 5.4, and 5.5 are parents level under grand-parent 5.0; all the functional
blocks 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5 are children level under parent level 5.5.
Therefore, from the function numbers can identify the hierarchy level under which
function and above which functions. The top-level has only one FFBD. The second-
level can have six (6) FFBDsunder each grand-parents functional block. The numbers
of FFBD in third-level will depend on how many functions under each functional
blocks of second-level. For example, under second-level Function 5.5 will have five
(5) FFBDs. It could be as many as thirty (30) FFBDs if each second-level function
has five (5) FFBDs. All these functional blocks in each level piled in hierarchical
layers, it forms functional architecture as shown partially in Fig. 2.12 focused on the
branch of Function 5.0 to Function 5.5. As you can see that the functional architecture
is fanned out from top-level to lower levels.
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Mission
FuncƟon 

0.0 0.0

1.0 2.0 3.0 4.0 5.0 6.0

5.1 5.2 5.3 5.4 5.5

5.5.1 5.5.2 5.5.3 5.5.4 5.5.5

Fig. 2.12 Partial functional architecture [17]

Example 1 Use “Drive a Car”, as shown in Table 2.8, as an example for FFBD.
In the table lists the functions of driving a car. Each individual will drive the car
in different ways. Shown in Fig. 2.13 is one way of driving a car. There are many
functional sequences for driving a car pending on who is driving.

Example 2 Use “Dishwasher”, as shown in Figs. 2.14, 2.15, 2.16, 2.17, 2.18 and 2.19
[18], as another example for FFBD. It is shown in Fig. 2.14 that through interpretation
and judgement, top-level system requirements for dishwasher has been transformed
to top-level FFBD for which Function 1.0 to Function 2.0 to Function 3.0 to Function
4.0. From the top-level four (4) functions generate four (4) second-level FFBDs. The

Table 2.8 Functions for
driving a car

Drive a car

Accelerate car

Decelerate car

Turn car

Start car

Stop car

Start car Accelerate car Turn car

Decelerate car Stop car

Fig. 2.13 Functional flow block diagrams—car
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System  RequirementsEliminate 
Bacteria Price ≤ $300 Operated by 90 

PercenƟle
Water Usage 
≤ 4 Gallons

Wash ≤ 80 
Minutes Sound ≤ 50 dBA

System  Top-Level
FuncƟons

1.0 
Select Cycle

2.0 
Wash Dishes

3.0 
Rinse Dishes

4.0 
Dry Dishes

1.1
Cycle SelecƟon 

Sets
Wash Timer

1.2
Cycle SelecƟon 

Sets
Wash Jets

1.3
Cycle SelecƟon 

Sets
Rinse Timer

1.4
Cycle SelecƟon 

Sets
Rinse Jets

1.5
Cycle SelecƟon 

Sets
Dry Timer

2.1
Start Flow of 

Water

2.2
Combine Water 
with Detergent

2.3
Heat 

Water/Soap 
Mixture

2.4
Direct Jets 

around EnƟrety 
of Load

2.5
Stop Jets/

Water

2.6
Drain Dirty 

Water

3.1
Start Flow of 

Water

3.2
Combine Water 
with Rinse Aid

3.3
Direct Jets 

around EnƟrety 
of Load

3.4
Stop Jets/

Water

4.1
IniƟate HeaƟng 

Element

4.2
Start Fan

4.3
Stop Fan/ 
HeaƟng 
Element

Fig. 2.14 Top-level and second-level functional flow block diagram—dishwasher [18]

AND

Ref 1.1
Cycle 

SelecƟon Sets
Wash Timer

Ref 1.2
Cycle 

SelecƟon Sets
Wash Jets

2.4

2.4.1
Only Selected 
Jets IniƟate

2.4.2
Upon IniƟaƟon 
of Jets, begin 
Wash Timer

2.4.3
Signal to Stop 

Jets is set when 
Timer Elapses

Ref 2.5
Stop Jets/

Water

AND

Ref 1.3
Cycle 

SelecƟon Sets
Rinse Timer

Ref 1.4
Cycle 

SelecƟon Sets
Rinse Jets

3.3

3.3.1
Only Selected 
Jets IniƟate

3.3.2
Upon IniƟaƟon 
of Jets, begin 
Rinse Timer

3.3.3
Signal to Stop 

Jets is set when 
Timer Elapses

Ref 3.4
Stop Jets/

Water

Ref 1.5
Cycle 

SelecƟon Sets
Dry Timer

4.2

4.2.1
Upon IniƟaƟon 
of Fans, begin 
Rinse Timer

4.2.2
Signal to Stop 

Fans is set when 
Timer Elapses

Ref 4.3
Stop Fan/
HeaƟng 
Element

Fig. 2.15 Third-level functional flow block diagram—dishwasher [18]
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0.0
Wash Dishes

1.0
Select Cycle

2.0
Wash Dishes

3.0
Rinse Dishes

4.0
Dry Dishes

1.1
Cycle SelecƟon sets 

Wash Timer

1.2
Cycle SelecƟon sets 

Wash Jets

1.3
Cycle SelecƟon sets 

Rinse Timer

1.4
Cycle SelecƟon sets 

Rinse Jets

1.5
Cycle SelecƟon sets 

Dry Timer

System Top-Level 
FuncƟons

System Top-Level 
FuncƟons

Fig. 2.16 Function 1.0 functional architecture—dishwasher [18]

0.0
Wash Dishes

1.0
Select Cycle

2.0
Wash Dishes

3.0
Rinse Dishes

4.0
Dry Dishes

System Top-Level 
FuncƟons

System Top-Level 
FuncƟons

2.1
Start Flow of 

Water

2.2
Combine Water 
with Detergent

2.3
Heat Water/
Soap Mixture

2.4
Direct Jets around 

EnƟrety of Load

2.5
Stop Jets/ 

Water

2.6
Drain Dirty

Water

2.4.1
Only Selected Jets 

IniƟate

2.4.2
Upon IniƟaƟon of Jets, 

begin Wash Timer

2.4.3
Signal to Stop Jets is set 

when Timer Elapses

Fig. 2.17 Function 2.0 functional architecture—dishwasher [18]

functional sequences are shown in each of the second-level FFBD. The third-level
FFBDs for the second-level Function 2.4, Function 3.3, and Function 4.2 are shown
in Fig. 2.15. The external functions connected to each third-level FFBD are also
shown in Fig. 2.15. It can be seen that the external interfaced functions can be in
different levels. The word of “Ref” does not have to be included. When the FFBDs
are completed, the generated functional blocks can be piled hierarchically in different
levels to establish functional architecture. Function 1.0 branch, Function 2.0 branch,
Function 3.0 branch, and Function 4.0 branch functional architectures are shown in
Figs. 2.16, 2.17, 2.18, and 2.19, respectively.
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0.0
Wash Dishes

1.0
Select Cycle

2.0
Wash Dishes
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Fig. 2.18 Function 3.0 functional architecture—dishwasher [18]

0.0
Wash Dishes
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2.0
Wash Dishes

3.0
Rinse Dishes

4.0
Dry Dishes
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FuncƟons

System Top-Level 
FuncƟons

3.1
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3.2
Start Fan
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Stop Fan/ 

HeaƟng  Element

2.4.1
Upon IniƟaƟon of Fans, 

begin Dry Timer

2.4.2
Signal to Stop is set 
when Timer Elapses

Fig. 2.19 Function 4.0 functional architecture—dishwasher [18]

2.4.1.2 Integrated Definition for Functional Modeling

There are as many as fourteen (14) Integrated Definition for Functional Modeling
diagrams, i.e., IDEF0, IDEF1, 2, 3, 4, and 5, up to 14. IDEF0 is another commonly
used functional analysismethod. It is a functionalmodel or processmodel of a system;
amethod designed tomodel the decisions, actions, and activities of an organization or
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system. It is useful in establishing the scope of an analysis, especially for a functional
analysis. As a communication tool, IDEF0 enhances domain expert involvement and
consensus decision-making through simplified graphical devices. As an analysis
tool, IDEF0 assists the modeller in identifying what functions are performed, what
is needed to perform those functions, what the current system does right, and what
the current system does wrong.

The IDEF0modeling diagram is shown in Fig. 2.20 [19]. There are two additional
inputs as comparedwithFFBD.TheControl enters the topof the box.TheMechanism
points up to the bottom of the box to show the supporting means for performing the
function. Use “Perform detail design” function as an example, shown in Fig. 2.21,
to show how to form the IDEF0 diagram. The input data to the left-hand side of
the box is Preliminary Design Data; the output data from the right-hand side of the
box is Recommended Detailed Design; the control data from the top of the box is
Design Requirements; and themechanism data enters the bottom of the box is Design
Engineer. The control input can also include the standards (industrial, commercial,
and military), constraints, and processes, etc. The mechanism data can also include
resources (facilities, computer, etc.), people, and tools, etc. IDEF0 can have functions
at different levels same as FFBD, as shown in Fig. 2.22. The output data does not

FuncƟon Name

Control

Input

Mechanism

Output

Fig. 2.20 IDEF0 modeling diagram [19]

Perform Detailed 
Design

Design Requirements

Preliminary 
Design Data

Design Engineer

Recommended 
Detailed Design

Fig. 2.21 IDEF0 modeling diagram—example
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Fig. 2.22 Three levels of IDEF0 diagrams [19]

have to be the input data to the next connected diagram; instead, it can input as control
data or mechanism data, as shown in Fig. 2.22. An example of IDEF0 diagram is
shown in Fig. 2.23 [19]. IDEF0 can also use numbering system for each function
same as that in FFBD, as shown in Fig. 2.24 [20], another IDEF0 diagram example
included in Architecting the Communication and Navigation Networks for NASA’s
Space Exploration Systems. The IDEF0 diagramFunctionA1.3.1 to FunctionA1.3.2
to Function A1.3.3 sequence are children functions of A1.3.

Remove and 
replace

Detected or suspended malfuncƟon, or 
item is scheduled for bench-checkIn-service 

asset Replaced asset

Spare
asset

Replaced
or original
(repaired)

Schedule into 
shop

Reparable
asset

Status records

Asset 
awaiƟng 
parts

Inspect or 
repair

Asset 
(before
repair)

Supply
parts

Monitor and 
route

Asset 
(aŌer
repair)

Completed asset

Spare

1

2

3

4

Fig. 2.23 IDEF0 diagram example—maintain reparable spares [19]
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Fig. 2.24 IDEF0 diagram for operational activities flow diagram in support of Rendezvous and
Dock [20]

2.4.1.3 Functional Decomposition

As discussed above, functions from top-level down to the lowest levels are developed
by using FFBD or IDEF0 functional analysis method. Functions developed through
this process are time consuming, especially for a large and complex system.A simpler
way is to decompose top-level functions to the lowest levels in its most basic form
a simple hierarchical decomposition of the functions. Functional decomposition is
the breaking down of a high level function into smaller pieces of function that can
be more easily managed and understood. Decomposing the top-level functions into
sub-functions (i.e. Level 1 and 2, etc.) can also form functional architecture.

The primary steps for functional decomposition are:

1. Brainstorm functions performed.
2. Pick out the five to ten truly top level functions and arrange in sequence (if

appropriate).
3. Place the other functions below the top-level functions.

A practical approach is to use a roll of white paper with 22 inches or similar width.
Roll out the roll of white paper. Draw the top-level, second-level, third-level, and
fourth-level regions, etc. on the roll of white paper. Teammembers write the names of
functions on post-it notes. Remember to use the verb-noun naming function format.
Team members can lay the post-it notes on different regions which already drawn
on the roll of white paper. If there is a contention about where a function belongs,
make a duplicate post-it note and put in both regions. When you get uncomfortable
about further decomposition, it is usually the end of decomposition. Then the team
members will align the functions in different regions. The top-level region can have
only 5–9 functions. In the second-level region, group of 5–9 functions should be
aligned to each function in the top-level region. In the third region, group of 5–9
functions should be aligned to each function in the second-level region. In the fourth
region, group of 5–9 functions should be aligned to each function in the third-level
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region. In the same manner, work to further lower regions if there are more. The
groups under each function should be between 5 and 9. The outcome from functional
decomposition is a functional architecture.

2.4.2 Elements of Functional Analysis

There are four elements:

• Functional Decomposition
• Functional Sequencing
• Information/Data Flow
• Interface Definition

Function decomposition was discussed above in Sect. 2.4.1.3. Referring to
Figs. 2.9, 2.10, 2.11, 2.13, 2.14 and 2.15, it can be seen that the functional blocks
are connected in certain directions and sequences. This is the element of functional
sequencing.When the two functional blocks are connected, information/data is trans-
ferred from one block to another block. It is directionally oriented. For example,
Block A connects in the direction to Block B, asking “have you had dinner yet?”
Block B connects in the direction back to Block A, answering “yes, I had dinner.”
This is the element of information/data flow. The information/data between the two
blocks can be expanded to include all the necessary interface information/data. This
is the element of interface definition where the interface requirement is defined and
developed. The functional definition (requirement) shall be fulfilled by physical inter-
face definition (requirement) that will be discussed under the systems engineering
subject of Interface Management.

2.4.3 Functional Allocation and System Synthesis

The functionswill ultimately be performed or accomplished through the use of equip-
ment, personnel, facilities, software, or a combination. The functional architecture
will need to be transformed into a physical, or software architecture by defining phys-
ical or software components needed to perform the functions. Functional partitioning
is the process of grouping functions that logically fit with the components likely to
be used, and to minimize functional interfaces. Functions at system, sub-system,
segments and components levels should be allocated to the corresponding levels
of physical or software system, sub-system, segments, and components. Functional
analysis and allocation is repeated to define successively lower level functions and
allocations, as shown in Fig. 2.25. When the allocations are performed to the lowest
level, a system architecture, physical or software, is formed. The functional/physical
matrix, shown in Fig. 2.26 [21], can be used to assist the functional allocation.
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Since there may be several physical or software architectures developed from
different functional architectures or from the same functional architecture through
different ways of allocations, design synthesis sets the stage for trade studies to select
the best among the candidate architectures.

2.5 Summary and Prospective

Referring to Fig. 2.6, there are more systems analysis and management subjects
than what are presented here in this chapter, for example, risk management [22],
Work Breakdown System (WBS) [23], Integrated Master Planning (IMP)/Integrated
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Master Scheduling (IMS) [24, 25], Technical Performance Measurement (TPM)
[26], Verification and Validation [27], and System Integration, etc. [28]. One could
write a whole book and more on systems engineering. As these are fundamentals
and important subjects they may be presented in another book.

It is worth discussing here how to educate people to become systems engineers.
In the past seventeen (17) years, the author has taught systems engineering. In the
author’s opinion, every employee should be a systems engineer in addition to their
domain knowledge. In Japan, there is no Quality Assurance Department in the com-
pany organization since every employee, whether engineer, manufacturing worker,
software programmer, or subcontractor employee, etc., is equipped with quality
knowledge, methods, and conscientiousness. The same strategy can be applied to
systems engineering.
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