
Chapter 31
Cyclic di-GMP and the Regulation
of Biofilm Dispersion

Karin Sauer

Abstract In nature, bacteria are primarily found as residents of surface-associated
communities called biofilms. The formation of biofilms is a cyclical process that is
initiated by single planktonic cells attaching to a surface, and comes full cycle when
cells disperse from the mature biofilm to resume a planktonic lifestyle. Dispersion
occurs in response to various signals and environmental cues, and results in surface-
attached organisms liberating themselves from matrix-encased biofilms, apparent by
single cells actively escaping from the biofilm, leaving behind eroded biofilms and
microcolonies having central voids. Given the cyclic process of biofilm formation,
it is not surprising that dispersion, like biofilm formation, is coincident with
significant changes in the levels of the second messenger cyclic di-GMP. However,
dispersion is not simply a reversion from the biofilm lifestyle to the planktonic mode
of growth, as dispersed cells have been described as having a phenotype that is
distinct from planktonic and biofilm cells. Using primarily the pathogen
P. aeruginosa as example, this chapter provides an up-to-date compendium of cyclic
di-GMP pathways connected to biofilm dispersion, including how sensing a diverse
array of dispersion cues leads to the destruction of cyclic di-GMP, the escape from
the biofilm matrix, and the appropriate phenotypic responses associated with dis-
persed cells.
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31.1 Dispersion as a Flight Response

Biofilms are defined as a structured community of bacterial cells enclosed in a self-
produced polymeric matrix and adherent to inert or living surfaces [1]. The ability to
form a biofilm is a common trait of a diverse array of microbes, including lower
order eukaryotes, with biofilms being the predominant mode of bacterial growth in
nature [2]. The sessile lifestyle affords bacteria multiple protective advantages,
allowing bacteria to remain within a favorable environmental niche or host. Com-
pared to free-swimming bacteria, biofilms are better adapted to withstand nutrient
deprivation, pH changes, oxygen radicals, biocides, and antimicrobial agents
[3]. However, being in a biofilm is not only advantageous. As a biofilm grows in
size, some cells will become increasingly separated from the bulk liquid interface
and essential sources of energy or nutrients. Accumulation of waste products and
toxins in the interior of biofilms pose additional challenges. Being trapped deep
within a biofilm can, therefore, threaten cell survival. Thus, biofilm cells have
evolved mechanisms which enable escaping the sessile mode of growth as a
means of self-preservation, by liberating themselves from matrix-encased biofilms,
and reverting back to the planktonic mode of growth. The transition to the planktonic
mode of growth is referred to as dispersion [4–7]. Moreover, dispersion is consid-
ered a mechanism by which enables dissemination to new locales for colonization
[4, 5, 8]. First described by Davies in 1999 [9], dispersion is apparent by single cells
actively escaping from the biofilm, leaving behind eroded biofilms and
microcolonies having central voids (Fig. 31.1) [4–7, 10–15]. Dispersion rarely
involves the entire biofilm, with no more than 80% of the biofilm biomass being
removed upon induction of dispersion [10, 13, 16–18]. Instead, selected
microcolonies or areas within a biofilm will undergo a dispersion event at any
particular time, in a manner often dependent on microcolony diameter [8].

microcolonies 

having central 

voids
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biofilmsDispersion

Fig. 31.1 Appearance of the remaining biofilm architecture post induction of dispersion. Repre-
sentative drawings and confocal images of P. aeruginosa biofilms prior to and post dispersion are
shown
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31.2 Dispersion Induces a Switch in the Mode of Growth

Considering that dispersed cells escape from the biofilm as single cells suggests that
dispersion is a way for bacteria to transition from the surface-associated to the
planktonic mode of growth. Transition to and from the surface have been linked to
the modulation of the intracellular signaling molecule bis-(30-50)-cyclic dimeric
guanosine monophosphate (cyclic di-GMP). More specifically, biofilm formation
or the sessile lifestyle have been associated with high levels of cyclic di-GMP, with
elevated cyclic di-GMP levels, in turn, resulting in increased production of biofilm
matrix components, adhesiveness/autoaggregation, and antimicrobial tolerance, but
repressed motility [19–26]. In contrast, low cyclic di-GMP levels have been associ-
ated with a motile or planktonic existence. Levels of cyclic di-GMP are enzymati-
cally modulated by diguanylate cyclases (DGCs), proteins containing a GGDEF
domain, and phosphodiesterases (PDEs) harboring either an EAL or HD-GYP
domain. In agreement with dispersion coinciding with single cells actively escaping
from the biofilm and transitioning toward a motile mode of growth, dispersed cells
are motile, characterized by increased expression of fliC (encoding flagellin type B),
and cyclic di-GMP levels comparable to or lower than those found in planktonic
cells [12, 13, 27, 28].

31.3 Translation of Dispersion Cue Perception into
the Modulation of the Intracellular
Cyclic di-GMP Pool

How is dispersion induced and how does dispersion result in a reduction in cyclic di-
GMP levels? Dispersion occurs in response to a number of cues and signals
including fatty acid signaling molecule belonging to the family of diffusible signal-
ing factors (DSF), pH, ammonium chloride, heavy metals, and nitric oxide (NO),
host factors such as bile salts, and availability of oxygen, iron, amino acids, and
carbon sources (Table 31.1). The mechanism of dispersion cue perception has been
determined in more detail for a select number of dispersion agents including fatty
acid signals, carbon sources, and NO. In each case, dispersion cue sensing was found
to require at minimum a membrane-bound sensory protein, and a protein involved in
the modulation of cyclic di-GMP levels such as a phosphodiesterase or in the case of
NO sensing, a bifunctional enzyme harboring GGDEF-EAL domains (Fig. 31.2).
The components form a signal transduction cascade that upon dispersion cue
perception likely initiate a phosphorelay to the cyclic di-GMP modulating enzyme,
resulting in the activation of the phosphodiesterase activity, and thus, the reduction
of cellular levels of cyclic di-GMP (Fig. 31.2). Our current understanding of selected
dispersion signaling pathways resulting in the alteration in the cellular level of cyclic
di-GMP is discussed in detail below.
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Table 31.1 Cues and signals linked to biofilm dispersion

Species Effector regulatory system Source

Oxygen depletion, cessation of flow

Pseudomonas aeruginosa PDE RbdA [29]

Shewanella oneidensis Transcriptional regulators ArcA and CRP [23, 30]

Hydrogen peroxide

Aggregatibacter
actinomycetemcomitans

Upregulation of dspB expression encoding Dispersin B [31]

Carbon starvation

P. putida Release of LapA (biofilm matrix degradation) [32]

P. fluorescens [33, 34]

P. aeruginosa [35, 36]

Nutrient availability (glucose, glutamate, succinate, citrate)

P. aeruginosa • Phosphorylation-dependent signaling (response
inhibited with phosphatase inhibitor)
• Increased cellular PDE activity
• Chemotaxis transducer BdlA
• PDE DipA
• DGC GcbA
• Sensory protein NicD, DGC activity

[11–16,
37–39]

Acinetobacter sp [40]

Streptococcus
pneumoniae

[41]

Ammonium chloride

P. aeruginosa • Phosphorylation-dependent signaling (response
inhibited with phosphatase inhibitor)
• Chemotaxis transducer BdlA
• PDE DipA

[12, 13,
16]

Heavy metals (mercury chloride, sodium arsenate, silver nitrate)

P. aeruginosa • Chemotaxis transducer BdlA
• PDE DipA
• DGC GcbA

[12, 13,
15]

Nitric oxide

E. coli
Vibrio cholerae
B. licheniformis
Serratia marcescens
Legionella pneumophila

• Sensing via proteins with heme nitric oxide/oxygen
(H-NOX) domains
• GGDEF-EAL domain

[17, 42,
43]

Shewanella woodyi Sensing via proteins with heme nitric oxide/oxygen
(H-NOX) domains

[44]

Nitrosomonas europaea,
N. gonorrhoeae

[45]

P. aeruginosa • Sensory protein NbdA, PDE activity
• MucR, dual activity (PDE, DGC)
• Increased cellular PDE activity
• Decreased cellular cyclic di-GMP levels
• Chemotaxis transducer BdlA

[18, 38,
39]

(continued)
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31.3.1 Fatty Acids as Dispersion Signals

Akin to cell–cell signaling molecules, fatty acid signals are involved in intra-species,
inter-species, and cross-kingdom communication where they regulate community-
associated behavior including biofilm dispersion. The fatty acid acting as a disper-
sion autoinducer of P. aeruginosa biofilms has been identified as cis-2-decenoic acid
(cis-DA) [10]. Additional dispersion autoinducer molecules include cis-11-methyl-
2-dodecenoic acid (DSF) that has been shown to disaggregate flocs by Xanthomonas
campesitris in liquid [46], and the Burkholderia cenocepatia cis-2-dodecenoic acid
(BDSF) [47]. The dispersion response to cis-unsaturated fatty acids is fairly con-
served, as cis-DA has been shown to induce dispersion of biofilms by Escherichia
coli, Klebsiella pneumoniae, Proteus mirabilis, Streptococcus pyogenes, Bacillus
subtilis, Staphylococcus aureus, and yeast Candida albicans biofilms [10], while the
B. cenocepatia BDSF has been shown to trigger dispersion of Francisella novicida
biofilms [47]. Amari et al. [51] demonstrated that production of cis-DA requires an
enoyl-CoA synthetase encoded by dspI (PA14_54640, a PA0745 ortholog), with
dspI inactivation resulting in significantly reduced dispersion and defective
swarming motility. Microarray analysis furthermore suggested cis-DA to affect the
expression of 666 genes encoding proteins involved in motility, chemotaxis, cell
attachment, TCA cycle, exopolysaccharides and LPS synthesis and secretion, viru-
lence, iron uptake, and respiration [52]. Rahmani-Badi et al. [52] furthermore
predicted PA4982–PA4983 encoding a two-component system, to be involved in
cis-DA signal perception. No experimental evidence, however, for cis-DA being
sensed via PA4982–PA4983 exist. While mechanism by which cis-DA is perceived

Table 31.1 (continued)

Species Effector regulatory system Source

Fatty acid signaling

Xanthomonas campesitris • cis-11-Methyl-2-dodecenoic acid (DSF)
• Fatty acid synthase RpfF
• Sensory protein RpfC
• Phosphodiesterase RpfG

[46]

Burkholderia cenocepatia
Francisella novicida

cis-2-Dodecenoic acid (BDSF) [47]

P. aeruginosa
Escherichia coli
Klebsiella pneumonia
Bacillus subtilis
Proteus mirabilis
Staphylococcus aureus
Streptococcus pyogenes
Candida albicans

• cis-2 Decenoic acid (cis-DA)
• Fatty acid synthase DspI

[10]

Iron

P. aeruginosa [48, 49]

Bile salt taurocholate

Vibrio cholerae [50]
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by P. aeruginosa and relayed to result in dispersion has yet to be elucidated, much is
known about DSF signal sensing by X. campesitris (Fig. 31.2a) which requires the
rpf gene cluster. While RpfF directs the synthesis of DSF, a two-component sensory
transduction system comprising the hybrid sensor kinase RpfC and the response
regulator RpfG has been implicated in the perception of the DSF signal and signal
transduction [46]. DSF perception by RpfC is believed to lead to its
autophosphorylation and subsequent phosphorelay to RpfG. RpfG is unique in that
it contains no DNA-binding domain, but an HD-GYP domain that exhibits phos-
phodiesterase activity capable of degrading cyclic di-GMP to GMP [46, 53–
55]. Phosphorylation is thought to activate RpfG for cyclic di-GMP degradation.
In this way, RpfC/RpfG link perception of the cell–cell signal DSF to alteration in
the cellular level of cyclic di-GMP.

31.3.2 Nutrient-Induced Dispersion

Both starvation and the sudden excess of nutrients have been shown to induce
dispersion by Pseudomonas sp (Table 31.1). Nutrient cues include glucose, gluta-
mate, succinate, citrate and induce dispersion when biofilms are exposed to a sudden
increase in the carbon source concentration. Basu Roy and Sauer [11] demonstrated
that while L-glutamate supported growth of P. aeruginosa, D-glutamate did not.
However, both D- and L-glutamate were capable of inducing dispersion, indicating
that nutrient cues are not metabolized in order to induce dispersion. Instead, in
P. aeruginosa, nutrient cues including glutamate, citrate, and glucose are sensed by
the diguanylate cyclase NicD belonging to a family of seven transmembrane (7TM)
receptors (Fig. 31.2b). NicD directly interacts with BdlA and the phosphodiesterase
DipA, with NicD contributing to the membrane association of the protein complex
[11, 37]. Nutrient cue perception by NicD is believed to lead to dephosphorylation,
with posttranslational modification coinciding with increased cyclase activity. Thus
activated NicD contributes to the non-processive proteolysis and activation of the
chemotaxis transducer protein BdlA, via phosphorylation and temporarily elevated
cyclic di-GMP levels [11, 14]. BdlA activation requires an unusual, non-processive
proteolytic cleavage found to be stimulated by increased cyclic di-GMP levels, and
dependent on the protease ClpP, the chaperone ClpD, and BdlA phosphorylation
[14, 37]. BdlA, in turn, activates the phosphodiesterase DipA, and recruits a second
phosphodiesterase, RbdA, to ultimately reduce cellular cyclic di-GMP levels
(Fig. 31.2b). An additional player is the diguanylate cyclase GcbA. GcbA contrib-
utes to BdlA cleavage during biofilm growth and has been shown to play an essential
role in allowing biofilm cells to disperse in response to a variety of substances
including carbohydrates, heavy metals, and NO [14, 15]. Likewise, BdlA and DipA
appear to be required for P. aeruginosa biofilm dispersion in response to NO and
heavy metals [12, 13], indicating GcbA, BdlA, and DipA to play a central role in the
translation of a large variety of dispersion cues into the modulation of the intracel-
lular cyclic di-GMP pool.
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31.3.3 NO-Induced Dispersion

The diatomic gas nitric oxide (NO), a well-known signaling molecule in both
prokaryotes and eukaryotes, is able to induce the dispersal of P. aeruginosa and
other Gram-negative bacterial biofilms (Table 31.1). NO was first suggested by
Webb et al. [56] to stimulate the release of planktonic cells from an established
P. aeruginosa biofilm. The finding of NO serving as dispersion inducer was con-
firmed by Barraud et al. [18, 57] using several NO donors. Moreover, the studies
linked NO to low cyclic di-GMP levels and changes in phosphodiesterase activity in
a dose-dependent manner. In most species, NO is sensed by H-NOX (heme-nitric
oxide/oxygen-binding) domain proteins, by NO binding to the heme moiety of H-
NOX. H-NOX can directly interact with DGC to regulate cyclic di-GMP synthesis
and degradation. In Legionella pneumophila or Shewanella woodyi, the H-NOX
protein interacts upon NO binding with the bifunctional GGDEF-EAL (HaCE)
protein, and lowers cyclic di-GMP levels by inhibiting the DGC activity but
stimulation the PDE activity of the HaCE [58] (Fig. 31.2c). In Vibrio cholerae or
S. oneidensis, interaction of the NO-bound H-NOX domain with a coupled histidine
kinase (H-NOK) controls the phosphorylation activity of the kinase (Fig. 31.2c).
Specific phosphorylation events lead to a decrease in cyclic di-GMP levels, either by
stimulating the hydrolysis of cyclic di-GMP by a cognate PDE (via the fused REC
domain) or by controlling the transcriptional response through a dedicated transcrip-
tion regulator (HTH) [58]. In P. aeruginosa, NO sensing likewise involves the
activation of cyclic di-GMP-specific phosphodiesterases in P. aeruginosa, ulti-
mately leading to cyclic di-GMP decrease and biofilm dispersal (Fig. 31.2d). How-
ever, P. aeruginosa does not encode H-NOX proteins. Instead, NO sensing in
P. aeruginosa was found to be linked to NbdA, an MHYT domain harboring
phosphodiesterase [38, 58]. MHYT is a transmembrane domain of seven predicted
membrane spanning helices and proposed to possess putative sensory function for
diatomic gases like oxygen, carbon monoxide, or NO through protein-bound copper
ions [59]. Considering that inactivation of bdlA, dipA, and gcbA impairs dispersion
by P. aeruginosa biofilms in response to NO, the signaling cascade likely requires,
in addition to NbdA, also BdlA, DipA, (Fig. 31.2d), and GcbA.

31.4 The Dispersion Phenotype

The cellular cyclic di-GMP levels noted upon dispersion cue sensing and induction
of dispersion have been reported to be comparable to or lower than those found in
planktonic cells [12, 13, 27, 28]. The low cyclic di-GMP levels explain much of the
similarities found between dispersed and planktonic cells. Relative to biofilms, both
are motile, and are susceptible to antimicrobial agents [16, 60–62]. However, dis-
persed cells are not identical to planktonic cells [4, 60, 61]. Instead, dispersed cells
were found to be highly virulent when tested using various acute and chronic
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virulence models, to produce more matrix degrading enzymes, to be more primed to
re-attach following egress from the biofilm, and to exhibit protein production and
gene expression profiles that are distinct from planktonic cells and biofilms from
which they escaped [4, 39, 60, 61, 63]. The distinct phenotype of dispersed cells,
however, was found to be reversible and short-lived. Using qRT-PCR and antimi-
crobial susceptibility assays, Chambers et al. [60] demonstrated that in
P. aeruginosa, differences between planktonic and dispersed cells remained for
2 h post-dispersion, with additional time being required for dispersed cells to display
expression of genes indicative of exponential growth.

31.5 Cyclic di-GMP Levels and Downstream Pathways

The finding of dispersed cells being characterized by reduced cyclic di-GMP levels
has led to the hypothesis that dispersed cells can be generated by reducing the
intracellular cyclic di-GMP content through modulation of PDEs [28]. However, the
cyclic di-GMP activated pathways have not been fully elucidated. Considering that
dispersion coincides with biofilm erosion and single cells escaping the biofilm struc-
ture (Fig. 31.1), dispersion likely relies on factors that weaken the biofilm matrix. The
biofilm matrix is composed of polysaccharides, eDNA, and adhesins [64], with
Pseudomonas sp. using cyclic di-GMP regulated adhesins to reinforce the biofilm
matrix. These adhesins have been identified in P. putida and P. fluorescens as the large
outer-membrane protein LapA [27, 65–67], and CdrA in P. aeruginosa [67, 68]. Ele-
vated cyclic di-GMP levels contribute to the localization of LapA to the cell surface,
while low cyclic di-GMP levels result in LapA being released from the outer mem-
brane via cleavage by the periplasmic cysteine protease LapG [66]. Gjermansen et al.
[27] demonstrated that in P. putida, carbon starvation decrease the level of LapA, with
LapA release resulting in biofilm dispersal, a response that was absent in ΔlapG
mutant biofilms. Additionally, a plethora of matrix degrading factors such as pro-
teases, deoxyribonucleases, and glycoside hydrolases have been linked to biofilm
dispersal [39, 61, 69–72]. However, most studies have relied on inducing dispersion
by the exogenous addition of these factors. For instance, PslG, a glycosyl hydrolase
involved in the synthesis/degradation of a key biofilm matrix exopolysaccharide Psl in
P. aeruginosa, disassembles existing biofilms within minutes at nanomolar concen-
trations when supplied exogenously [71]. However, as PslG is not predicted to be
released from the cell, it is unlikely that PslG indeed contributes to matrix degradation
during dispersion or activated in a low cyclic di-GMP environment. As for now,
specific matrix degrading factors remain elusive.

Dispersion furthermore coincides with bacteria escaping from the biofilm being
susceptible to antimicrobial agents. Recent findings suggested a link between cyclic
di-GMP and drug susceptibility [60, 73, 74]. For instance, Gupta et al. [73] demon-
strated that P. aeruginosa planktonic cells were rendered more resistant to antimi-
crobial agents upon increasing intracellular cyclic di-GMP, from 10–30 pmol/mg, to
cyclic di-GMP levels more commonly found in biofilm cells (�80 pmol/mg).

554 K. Sauer



Additionally, drug tolerance by P. aeruginosa biofilms and dispersed cells has been
linked to the cyclic di-GMP-responsive transcriptional regulator BrlR [60, 75]. BrlR
contributes to biofilm drug tolerance by activating the expression of multidrug efflux
pumps and ABC transporters [76–78]. Low cyclic di-GMP levels, however, nega-
tively impact BrlR levels and BrlR-DNA binding [26].

31.6 Concluding Remarks

Being a near-ubiquitous second messenger that coordinates diverse aspects of
bacterial growth and behavior, it is not surprising that cyclic di-GMP has become
known as the “second messenger extraordinaire” [79]. However, despite the large
number of bacterial behavior and functional outputs that have been characterized
since its discovery in the late 1980s, there is still much to learn, especially when it
comes to the role of cyclic di-GMP in biofilm dispersion. While future experiments
will be required to elucidate cyclic di-GMP dependent pathways leading to disper-
sion, indirect evidence suggests a role of AmrZ and FleQ. Originally described to
inversely regulate alginate production and swimming motility in P. aeruginosa,
AmrZ is now recognized as a global regulator of multiple virulence factors, includ-
ing cyclic di-GMP, extracellular polysaccharide production including Pel and Psl
polysaccharides, and flagella [80]. Support for AmrZ playing a role in dispersion
stems from AmrZ affecting gcbA expression and inversely regulating
exopolysaccharide production and motility [80]. Additionally, Chua et al. [61]
demonstrated amrZ to be differentially expressed in dispersed relative to planktonic
cells using RNA-seq. Similarly, FleQ may contribute to the cyclic di-GMP depen-
dent pathways to induce dispersion. This cyclic di-GMP responsive transcriptional
inversely contributes to the expression of pel genes required for Pel polysaccharide
biosynthesis and of flagellar genes in response to cyclic di-GMP [81–83]. At high
cyclic di-GMP levels, FleQ induces the expression of the pel operon while at low
cyclic di-GMP levels, FleQ regulates the expression of flagellar genes but represses
transcription of the pel operon required for Pel polysaccharide biosynthesis. It is of
interest to note that FleQ is under the transcriptional control of AmrZ [80].
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