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Abstract. Today Cognitive computing and Artificial Intelligence (AI)
face the same challenges namely, simulate human thought processes and
mimic the way human brain works. The main difference between Cog-
nitive computing and AI is: (i) AI models various functions of human
intelligence, where computer is one of the modelling means though often
the most important one, i.e. intelligence is in the focus while (ii) Cog-
nitive computing models human thought processes and simulates the
hypothetical way human brain works as computation.

Our aim is to develop a theoretically and methodologically well-
founded theory of AI together with a unified computational theory, which
will provide specific tools and methods for Cognitive computing.

To achieve our goal we follow a methodology triangle, consisting of a
conceptual-philosophical, a system theoretical and a logical-mathematical
component. Computing will play a fundamental role in both system-
theoretical and logical-mathematical methodological components.

Hereby we concentrate on the development of the logical-mathematical
foundation in detail by the use of category theory, which provides an excel-
lent frame for defining all notions necessary for developing a universal the-
ory for computing, specification, cognitive reasoning, information, knowl-
edge and their various combinations. Foundation theory is by the use of
the so-called constitutions, the mathematical basis for the cognitive com-
putation. Logical foundation will be developed as a special constitution
and cognitive computing processes are defined by using situations, infons
and information. The main properties are discussed with some examples.

Keywords: Categorical theoretical foundation · Cognitive
computing · Specification theory · Cognitive reasoning · Computing
theory · Logic programming

1 Introduction

1.1 Artificial Intelligence Today

What is meant by artificial intelligence? So far not a single conceptual appara-
tus has been formed, nor there is a single conceptual justification and a single
scientifically based methodology. Besides, there has not yet been developed a
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generally accepted philosophical foundation in the form of such epistemology
and ontology, which would consider and respond to the challenges that arise
during the development of the field of artificial intelligence (AI).

The High-Level Expert Group on AI of the European Commission dealing
with the definition of AI provides the following definition for AI [1] as a scien-
tific discipline: AI includes several approaches and techniques, such as machine
learning (of which deep learning and reinforcement learning are specific exam-
ples), machine reasoning (which includes planning, scheduling, knowledge repre-
sentation and reasoning, search, and optimization), and robotics (which includes
control, perception, sensors and actuators, as well as the integration of all other
techniques into cyber-physical systems).

Today, modern dictionary definitions focus on AI since it is a field that applies
computer science and how machines can imitate human intelligence (human-like
rather than becoming human). The English Oxford Living Dictionary [31] gives
this definition: The theory and development of computer systems able to perform
tasks normally requiring human intelligence, such as visual perception, speech
recognition, decision-making, and translation between languages.

At the same time The Encyclopedia Britannica defines artificial intelligence
as it the ability of a digital computer or computer-controlled robot to perform
tasks commonly associated with intelligent beings. The term is frequently applied
to the project of developing systems endowed with the intellectual processes char-
acteristic of humans, such as the ability to reason, discover meaning, generalize,
or learn from past experience [32].

The term artificial intelligence is frequently applied to systems endowed with
the intellectual processes characteristic of humans, such as the ability to make
decisions, to solve problems, to understand texts, to recognize pictures, to learn
from an actual activity and a past experience, etc. There are different technolo-
gies that get ranked as artificial intelligence and there are different types of AI.

The current wave of AI innovation focuses on several real-life applications
of artificial intelligence that often start with words such as smart, intelligent,
predictive and, indeed, cognitive, depending on the exact application and vendor.
One major issue is that artificial intelligence is indeed a broad concept and
reality, covering many technologies and realities that lead to misunderstandings
about what it exactly means. Some people are actually speaking about machine
learning when they talk about AI. The most advertised AI tools by Google,
Facebook etc. are mainly or only machine learning and, mostly, deep learning
related. This is why the wide public thinks that all new AI applications are
carried out only with this type of machine learning. However, neither machine
learning, nor deep learning are synonyms for AI. They are only one of the many
areas of AI research. Moreover, deep learning is a technology of the 1980’s while
trained with more data, 1970’s neural networks with hidden layers gave better
results; and then it was renamed as deep learning and was hyped as such.

Today, AI is a conglomerate of techniques, technologies and of various
research and development directions. Machine learning and especially deep
learning are the most common methods. However, deep learning technology, from
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the application point of view has been close to its limit. Artificial intelligence
urgently needs to be promoted to a new stage, and to achieve breakthroughs in
the development of an appropriate underlying theory.

1.2 Cognitive Computing

As AI applications became more and more widespread, a new name, Cognitive
computers appeared. This actually is a renaming that has not brought much
new to the content of AI. Cognitive computing is a term really, that has been
popularized by IBM mainly to describe the current wave of artificial intelligence
with a twist of purpose, adaptiveness, self-learning, contextuality and human
interaction. The latter, the human one is the key here and without a doubt, also
easier to digest than all those AI-related science fiction scenarios.

Note that thanks to science fiction, many people think of artificial intelli-
gence as a computer or robot thinking like a person, including self-awareness
and independent will. Instead, what we call cognitive computing uses the ideas
behind neuroscience and psychology to augment human reasoning with better
pattern matching while determining the optimal information a person needs to
make decisions.

However, if we peel off the marketing catches from the notion of Cognitive
computing used by IBM then we get back AI with one important difference.
Namely, Cognitive computing emphasizes the augmentation of human intelli-
gence instead of mimicking it. This is why it is claimed that IBM’s Watson
is armed with perception and understanding that is refined and expanded with
every interaction. Moreover, it should be appropriate for supporting the solution
of problems that encompass enormous amounts of information and discernment.

Cognitive computing is primarily a marketing term indicating a computing
service that is able to understand, reason and learn from the data it is sup-
plied with. In essence, it is the application of machine learning and artificial
intelligence to data processing. IBM is the flag bearer for cognitive computing.
Presumably, it wanted a term that differentiated its Watson cloud based service
from the ocean of other such services. IBM has its own definition of cognitive
computing, cited below [8]:

Cognitive computing refers to next-generation information systems that
understand, reason, learn, and interact. These systems do this by continually
building knowledge and learning, understanding natural language, and reasoning
and interacting more naturally with human beings than traditional programmable
systems.

IBM’s volatile, often science-fiction-like allegations have provoked serious
criticism (see e.g. Schank [23]) . Independently from IBM’s way Cognitive com-
puting has its history, see for a brief state of the art Gutierrez-Garcia and López-
Neri [15]. The notion of Cognitive computing appeared in Schank [22], where
natural language understanding and knowledge structures were in the focus. e
structures were in the focus.

Valiant [25] defined cognitive computing as a discipline that links together
neurobiology, cognitive psychology and artificial intelligence. Brasil et al. [6] state
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that cognitive computing is a collection of emerging technologies inspired by the
biological processing of information in the nervous system, human reasoning,
decision making, and natural selection.

Today, Cognitive computing refers to the ability of automated systems to
handle conscious, critical, logical, attentive, reasoning modes of thought. Seman-
tic computing facilitates and automates the cognitive processes involved in defin-
ing, modelling, translating, transforming, and querying the deep meanings of
words, phrases, and concepts. This claim is very similar to that of AI.

Therefore, Cognitive computing faces the same challenges that AI does. Cog-
nitive computing aims to simulate human thought processes and mimic the way
human brain works, addressing complex situations are characterized by ambi-
guity and uncertainty. AI aims to perform operations analogous to learning and
decision making in humans. Intelligent personal assistants can recognize voice
commands and queries, respond with information, or take desired actions quickly,
efficiently, and effectively.

Today the main difference between Cognitive computing and AI is the
following:

1. AI aims to model various functions of human intelligence with different levels
of detail and abstraction, where computer is one of the modelling means but
very often the most important one, i.e. intelligence is in the focus while,

2. Cognitive computing aims to model human thought processes and simulate
the hypothetical way the human brain works, i.e. computing is in the focus.

The fundamental shortcoming of the two areas is that neither has a uniform
system of concepts, theoretical and methodological foundations. Instead, both
consist of a conglomerate of technologies and methods. For example, Cognitive
computing would also need a unified computational theory that should be devel-
oped with specific tools and methods that support the modelling of the main
features of cognizing and thinking processes. However, such theory does not exist
as yet, though there had been some attempts, see e.g. Amir [3].

At the same time there is a complex approach to provide a theoretical
framework for cognitive computing together with some advances in the study
of cognitive computing theories and methodologies in cognitive informatics, soft
computing, and computational intelligence, see Wang [27] and [28]. This app-
roach provides conceptual and behavioural models of cognitive computing. It
also introduces mathematical tools such as inference algebra and denotational
mathematics to deal with the design and implementation of cognitive computing
systems.

Note Wang [27] defines Cognitive computing as the conglomerate of more
intelligent technologies beyond imperative and autonomic computing, which
embodies major natural intelligence behaviours of the brain such as thinking,
inference, learning, and perceptions.

However, it is important to emphasize that the formal modelling of the
cognitive processes aims to mimic the fundamental mechanisms of the brain.
This approach develops a model for the brain architecture called Layered Ref-
erence Model of the Brain (LRMB), see Wang [26]. This model formally and
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rigorously explains the functional mechanisms and cognitive processes of the
natural intelligence. A comprehensive and coherent set of mental processes and
their relationships is identified in LRMB, that encompasses 37 cognitive pro-
cesses at six layers known as the sensation, memory, perception, action, meta
cognitive, and higher cognitive layers from the bottom-up. The modelling tools
are computers. Therefore this approach leads to the area where the processes
of human intelligence are to be modelled by the use of computers. This is the
area of computational mind. Computationalism is the main way of seeing the
cognitive processes. Computationalism is a family of theories about the mecha-
nisms of cognition. The main relevant evidence for testing computational theories
comes from neuroscience, though psychology and AI are relevant, too. Compu-
tationalism comes in many versions, which continue to guide competing research
programs in philosophy of mind as well as psychology and neuroscience. Com-
putation theoretic approach is grounded in the idea that the mind, in many
ways works like a digital computer; the mind is parsing internal representations
(symbols) in algorithmic ways.

In order to appropriately use the notion of computing it is important to
clarify its nature. Computation is an ambiguous concept and computer scientists,
philosophers and cognitive scientists who use the concept can contest some claim
using it and do not realise they are not actually in disagreement with each other,
even though it looks as if they were. For a deep and detailed analysis of the notion
of computing we refer to Fresco [10].

Moreover, instead of going into detail review of the main approaches to the
computation theory of mind we refer to some good works that represent the
current state of the art in this area, such as Ivancevic [17], Milkowski [20] and
Piccinini [21].

1.3 What We Offer

Our aim is to develop a theoretically and methodologically well founded theory of
AI, where this abbreviation means Amplifier for Intelligence. This AI will be able
to act as genuine problem-solving companion understanding and responding to
complex problem situations. This AI system will be able to act either as a partner
system for cooperative functioning with a human agent or as an autonomous
cognitive system for a well-defined problem area. As to become a cooperative
partner for human agents, the system has to function very similarly to humans.
e.g., it should be able to communicate and understand natural language, reason
in a compatible way, learn from its experience, etc. AI will be able to cognize
the environment and itself including the co-operative partner. Namely, this AI
will be able to self-reflection.

The cognizing activity may run on a wide scale from learning objects, events
till discovering various tendencies and regularities. This expected activity would
realise the data → information → knowledge transformation and processing at
different computation levels. Special attention will be devoted to the knowledge
change and management that results during the data → information → knowl-
edge transformation and processing.
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The long-term vision is to develop a theoretically well-founded, coherent,
integrated theory, technology and design methodology for a new computation
paradigm – the so-called COgnitive Intelligence co-Operating System (COIOS).
COIOS supports Collaborative Intelligence, where humans and AI systems are
joining their abilities. Therefore, in our case AI will be a symbiosis rather, instead
of a replacement.

Unlike traditional computers within the von Neumann paradigm, COIOS-
systems will be able to interpret and gain novel insights from data, solve prob-
lems and make decisions without explicit algorithmic instructions from humans.
Instead of being programmed to perform pre-defined tasks, they will act as gen-
uine problem-solving companions able to understand and respond to complex
problem situations. Unlike data-centric processing of the traditional computers
COIOS analyses data and processes information in a cognitive way and deals
with knowledge in a goal-oriented way. Essentially this processing targets the
reduction of the uncertainty of a problem situation of ignorance.

According to the proposed vision COIOS-systems take problem situations
with various uncertainties as their input, and they resolve or decrease these
uncertainties via cognitive reasoning, without relying on predefined problem-
solving algorithms known in advance. Bearing this in mind COIOS will realise
a reasoning-based, uncertainty-driven, upper-level computation.

To achieve our goal we follow a methodology triangle which consists of a
conceptual-philosophical, a system theoretical and a logical-mathematical com-
ponent. In the proposed approach computing will also play a fundamental role
in both system-theoretic and logical-mathematical methodological components.
The conceptual-philosophical component provides a formal epistemology with
cognizing agents and ontology characterising the world to be cognized. Formal
epistemology deals with data analysis, information extraction and knowledge
acquisition with respect to an actual problem situation and the active cognizing
agent. System-theoretic component provides the main principles for the organi-
sation of cognizing processes, which are controlled by directed thinking. Directed
thinking is goal-oriented and connected with a cognizing agent’s problem solving
activity.

It will be developed by the use of category theory, which provides an excellent
frame for defining all notions necessary for elaborating a universal theory for
computing, specification, cognitive reasoning, information, knowledge and there
various combinations. The foundation theory is provided by the use of so-called
constitutions, which form the mathematical basis for cognitive computation. The
logical foundation will be developed as a special constitution.

Two constructive versions of set theory will be provided:

1. clFSA theory of finite sets with atoms and classes,
2. cclFSA theory of finite sets with atoms, classes and co-classes.

It is shortly described how clFSA permits to describe the entire traditional
computation theory including e.g. program semantics, computation power of
various programming languages, various programming paradigms like instruc-
tional, declarative programming and program specification. It is shown how
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cclFSA can support the description of the programs that use metadata called
information and knowledge in a strong mathematical frame.

It is shown how various specific approaches such as granular programming
or probabilistic programming can be represented in the proposed approach.

In a general setting, the mathematical theory provides an important method
to extend a given theory according to specific needs. This method is the inductive
and co-inductive extension in constitutions.

By the use of the proposed mathematical tools it is shown how cognitive
reasoning can be handled in the proposed logical-mathematical framework. The
main specificities of cognitive reasoning for cognitive computing are connected
with the possibility to handle

1. The dynamic nature of the reasoning-based cognitive computation processes.
The dynamic characterisation of the cognitive computation processes will be
based on the representation of a cognitive reasoning process as a motion from
ignorance to knowledge.

2. Spatial strategies, which permit to combine data driven statistical and cog-
nitive data processing with the logic based modification calculi.

3. The semantic or contentual aspects of reasoning, whereas traditional instruc-
tional and declarative programming articulate statements inferentially,
according only to their shape, without regard to reference. A referential rea-
soning is proposed, which is based on a special dual (semantic-syntactic)
approach, which uses a set of axioms, which entirely and uniquely describes
the semantic structure. The latter is considered as a model of our initial
knowledge about the subject domain.

4. Indeterminacy and temporal contradictions of the cognitive computation pro-
cesses in contrast to correctness of traditional instructional and declarative
programs. A special formal approach can be provided to deal with the logical
contradictions.

5. It provides a scientifically well-founded general approach that possesses meth-
ods and tools for modelling, designing and generating information processing
responsible for the formation of cognitive processes of artificial cognitive sys-
tems. The proposed approach, at the same time, provides an innovative logical
foundation for the entire area of cognitive reasoning and it provides support
for cognitive system development at the following three levels of abstraction:
conceptual, formal, and realisational levels.

Cognitive computing processes will be defined using situations, infons and infor-
mation. However, the well-known constructions of situations, infons and infor-
mation (see e.g. Barwise [5] or Devlin [9]) are used in a modified way, which will
be formalised by the use of the proposed methods of extension. Here Cognition
Kernel will be one of the main constructs, which generalises (i) the information
theory and the corresponding data analysis together with a referential reasoning
system, and (ii) the multilevel organisation of situation related information and
knowledge management processes. Thus Cognitive Kernel will provide an ade-
quate framework to handle the data → information → knowledge transformation
and processing. Cognitive computing is defined by the use of Cognition Kernel.
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2 The Mathematical Foundation

Considering the formalism used in the present paper we first of all assume that
the reader is familiar with the basics of set theory and with a basic course on
mathematical logic. Moreover, reading Sect. 2 also requires familiarity with a
basic course in category theory. However, the reader not familiar with the latter
can avoid Sect. 2 and can read the paper as a constructive specification theory
based on the theory of finite sets which uses a special first order language as a
specification language.

2.1 Constitution Theory

The basic foundational construct is the so-called constitution theory, which pro-
vides a logical and category theoretical frame for the development of the cogni-
tive computation theory within the framework of the proposed approach. The
first order logic provides the operative tool-set for the constitution theory. Com-
pact constitutions form an important class, which provides the foundation for
(i) descriptive theory to describe and investigate various aspects of costructivity
necessary for any type of computations, (ii) specification theory to provide a
framework for specifying computational objects.

Definition 1. A pre-constitution P is a pair (Uni,Cons) where

1. Uni is a category.
2. Cons is a subcategory of Uni such that ObCons = ObUni.
3. For any diagram

•

•
c

��

f
�� •

where c ∈ Mor Cons there exists its colimit

• f ′
�� •

•
c

��

f
�� •

c′

��

such that c′ also belongs to Mor Cons. This property is called hierarchy
persistence property of the pre-constitution P.

Example 1. Let First denote the category of all first order theories and theory
morphisms between them. A morphism Th1 → Th2 is called conservative iff it is
a composition of a renaming map and of a conservative extension in the original
sense. Let FCons denote the subcategory of First generated by the class of all
conservative theory morphisms. It is an easy exercise using Craig interpolation
theorem to prove that the pair (First ,FCons) is a pre-constitution, further on
be denoted as FOL.
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Example 2. The following logical systems satisfy the Craig interpolation prop-
erty and hence their theories with the conservative extensions form a pre-
constitution:

– classical first order logic;
– classical higher-order logic;
– ω-logic;
– intuitionist first order logic;
– intuitionist type theory;
– classical temporal logic;
– intuitionist temporal logic.

Example 3. In Burstall, Goguen [7] introduced the notion of institution to give
a categorical-theoretical approach to model theory. For an institution can be
defined the interpolation property as well. It can easily prove that institutions
with interpolation property form a pre-constitution.

Example 4. (For details see Gergely, Ury [12]) It is well-know that a Cartesian-
closed category having a subobject classifier is called topos. A topos form a
pre-constitution. Moreover if Uni is an arbitrary finitely cocomplete category
within which partial maps are representable then (Uni ,Mon(Uni)) is a pre-
constitution. Accordingly a famous theorem partial maps in topoi are repre-
sentable. For details see Gergely, Ury [12]

Definition 2. A constitution L on a pre-constitution P = (Uni, Cons) is a
function L from Uni to the category Mor(Uni) such that:

1. if Th is an object of Uni then L(Th) is a conservative morphism over Th
called the superstructure of Th;

2. if f is a morphism then π1(L(f)) = f ;
3. for all Th ∈ Obj (Uni) the following diagram is a colimit with respect to

(L(Th), f) where:

• π2(L(f)) �� •

Th

L(Th)

��

f �� Th′
L(Th′)

��

Definition 3. Let (Uni ,Cons) be a pre-constitution. A constitution L on it is
said to be perfect for an object Th ∈ ObUni iff there is a morphism redTh

such that

(L(cod(L(Th)), redTh)

is a projection system, i.e. the diagram below commute:

Th
L(Th) �� Sp(Th)

L(Sp(Th)) �� Sp(Sp(Th))

redTH

��
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where Sp(Th) and Sp(Sp(Th) is the codomain of L(Th) and L(L(Th)), respec-
tively. Sp(Th) is called the superstructure of Th.

Definition 4. A constitution L on a pre-constitution P = (Uni ,Cons) is com-
pact iff for all object of Th ∈ ObUni L is perfect for Th.

Definition 5. Fix a pre-constitution P = (Uni ,Cons). Let C(P) be the following
category:

ObC(P) � {L | L is a constitution on P}
Mor(C(P)) � {F : L1 → L2 | F : Obj (Uni) → Mor(Uni) such that L1(Th) ◦
F (Th) = L2(Th)}.

The last condition in the definition of Mor(C(P)) means that the following
diagram commutes:

Sp1(Th)
F (Th) �� Sp2(Th)

Th

L1(Th)

����������� L2(Th)

�����������

Theorem 1. Let P = (Uni ,Cons) be a pre-constitution and let L be a constitu-
tion on it. Let us suppose that Uni has countable coproducts. There is a unique
(up to natural isomorphism) constitution L′ and a morphism F : L → L′ such
that

1. L′ is compact;
2. for any G : L → L′′ with closed L′′ there is a factorization through F ; i.e.

there is a (unique) H such that L
F ��

G ���
��

��
��

L′

H����
��
��
��

L′′

commutes in C(P).

3. This L′ is denoted as L∗

2.2 FOL-Based Constitutions

In this subsection we define a compact constitution Y called fixed-point con-
stitution. The superstructures of this constitution add least and greatest fixed-
point to each monotone operators. From now we will work in the first-order
pre-constitution FOL. A constitution called FOL-based if it is a constitution
on a full subcategory of FOL. In the sequel we give some examples for such
constitution usable in computing, AI and cognitive computing.

The well-know notion of transitive closure can be turned into a constitution.

Definition 6. Let Th = (σ,Ax) be a fixed first-order theory.
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1. A first-order operator in Th is a triple (Φ,R,X) written as Φ(R,X) where R
is an X-type new relation symbol, Φ is a σ ∪ {R}-type formula free variables
of which belongs to X. The set of variables X is called the type of Φ(R,X)

2. Φ(R,X) is called monotone iff for any new X-type relation symbols S

Ax � (∀X R(X) → S(X)) → ∀X (Φ(R,X) → Φ(S,X))

3. For any ψ(X) let

Φ̃(ψ)(X) be the formula Φ(R,X)[ψ/R].

It is clear that Φ̃ is a function of type Formσ(X) → Formσ(X)
4. Let us denote ΔTh be denote the set of all monotone first-order operator

in Th.

Let �X and ⊥X be denote the X-type truth and falsity, respectively. If a
first-order operator Φ(R,X) is monotone in Th then we got an infinite chain

⊥X → Φ̃(⊥X) → Φ̃(Φ̃(⊥X)).......Φ̃(Φ̃(�X)) → Φ̃(�X) → �X

where each individual implication is provable in Th.

Definition 7. Th = (σ,Ax) be a fixed first-order theory and fix a set F of
monotone first-order operators.

1. Let Φ̃ ∈ F be an X-type monotone first-order operation. A formula ψ(X) is
called a left fixed-point of Φ̃ iff Ax � Φ̃(ψ) → ψ and called a right fixed-point
of Φ̃ iff Ax � ψ → Φ̃(ψ).

2. For any Φ̃ ∈ F let add two new X-type relation symbols Φμ and Φν together
the following axioms:
(a) Φ̃(Φμ) → Φ and Φ → Φ̃(Φμ)
(b) for an arbitrary σ-type formula ψ(X) : (ψ → Φ̃(ψ)) → (Φν → ψ)
(c) for an arbitrary σ-type formula ψ(X) : (Φ̃(ψ) → ψ) → (ψ → Φμ)
(d) Let Ind(F) denote this new set of axioms.

Theorem 2. Let Th = (σ,Ax) be a fixed first-order theory. For an arbitrary
F ⊂ ΔTh the axiom system Ax∪ Ind(F) is conservative over Ax. It means that
there is a constitution Ind on the pre-constitution FOL which renders each Th
the conservative extension Ax ∪ Ind(ΔTh)

Let us suppose that the restriction of first-order operations are categorical. It
means that for all Th there is a ThF ⊂ ΔTh given in such a way that a theory
morphism Th1 → Th2 transfer Th1

F into a subset of Th2
F . If so then there is

a constitution IndF on the pre-constitution FOL which renders each Th the
conservative extension ThAx ∪ Ind(ThF ). One of the most well-known example
of such a restriction is as follows. For any σ let us consider the positive existential
formulas of the form ψ(X,X ′) where ψ free variables as stated and X is a
copy of X ′. Any such formulas generate a monotone first-order operators as
∃UR(U) ∧ ψ(U,X). For any Th let T R let denote the set of all monotone first-
order operator defined in such a way. Let Tran be denote this constitution on
the pre-constitution FOL.

Theorem 3. Tran is a compact constitution on the pre-constitution FOL.
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2.3 Inductive and Coinductive Extensions in Constitutions

It is obvious that it is not enough to just add fixed-points to underlying theory.
Let Th = (σ,Ax) be a first order theory. There are many situations when we
need to add new types, functions and relations to the original similarity type σ.
All these additional symbols we can collect into a new similarity type θ. Of course
the similarity type has not, but the axiom system Ax has to improve new axioms
and axiom schemas. If these axioms are short to inductive and coinductive ones
then we can formulate a theorem similar to Theorem 1.

In details. Let us fix a similarity type η. Let FOL(η) denote the pre-constituti-
on containing only those theories (σ,Ax) where η ⊂ σ. Let ζ be a new similarity
type and let Eq and Eqc be a set of quasi-equations and quasi-coequations,
respectively based on the similarity type ζ + η.

Theorem 4. Let η, ζ and Eq,Eqc as in above. There is a least (up to natural
isomorphism) constitution denoted by Y(η, ζ, Eq,Eqc)

1. Y(η, ζ, Eq,Eqc) is compact,
2. All superstructures satisfy Eq + Eqc,
3. All monotone operators in each superstructures have least and greatest fixed

points,
4. If L is such a constitution on FOL(η) that satisfies the previous assumptions

then there is a unique (up to natural isomorphism) morphism (up to natural
isomorphism) Y(η, ζ, Eq,Eqc) → L.

For any Th ∈ ObjFOL(η) the superstructure of Th, i.e. the codomain of the
morphism Y(η, ζ, Eq,Eqc)(Th) is called canonical d-inductive extension of
Th (d for double because extension was constructed by using both equations and
coequations. If Eqc is empty we simply say inductive extension or if we want to
emphasize that Eqc is empty we say simple inductive extension. If L is such
a constitution that satisfies the first three assumption of the theorem then L is
also called d-inductive extension of the extension system (η, ζ, Eq,Eqc).

In Subsect. 3.2 we demonstrate that for a large part of computing theory
the simple inductive extensions are sufficient. Coequations need to speak about
cognitive aspects of computation.

Remark 1. There is a clear definition of quasi-equations. Let σ be an arbitrary
similarity type. A σ-type formulas in the form τ1 = τ2 where τi(i = 1, 2) are σ
terms are called equation. A formula in the form

∧

j=1..n

ej → e

where ej(j = 1..n), e are σ-type equations is called a quasi-equation. If n = 0
then we get back the notion of equation. See Grätzer [14]. Unfortunately there
is no such an elegant and easily usable definition for quasi-coequations.

One of the main advantages of the d-inductive extensions is, that there are univer-
sal ones. Let η, ζ be fixed and let EQ(η, ζ) denote the set of all (η + ζ)-type equa-
tions. Let d∇(η, ζ) be the category of all d-inductive extensions on (η, ζ, Eq,Eqc)
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where Eq,Eqc ⊂ EQ(η, ζ). The morphisms are the natural transformations
between the functors. Also let ∇(η, ζ) be the category of all simple inductive
extensions on (η, ζ, Eq, ∅)

Theorem 5. Let η, ζ be arbitrary but fixed similarity types.

– Both d∇(η, ζ) and ∇(η, ζ) are really categories;
– d∇(η, ζ) has terminal objects. Any terminal object of d∇(η, ζ) is called

d-universal extension on (η, ζ).
– ∇(η, ζ) has terminal objects. Any terminal object of ∇(η, ζ) is called simple

universal extension or just universal extension on (η, ζ).

2.4 Constitutional Set Theories

Two versions of set theory are provided by the modification of the von Neumann-
Bernays-Gödel set theory. The modification augments the set theoretic oper-
ations with fixed points of monotone operators. Namely, the so obtained set
theories are as follows:

– cHF is a compact constitution where superstructures are the finite sets with
atoms and classes augmented with least fixed points of positive existential
operators (cl stands for classes),

– clFSA is a compact constitution where superstructures are the finite sets with
atoms and classes augmented with least fixed points of monotone operators
(cl stands for classes),

– cclFSA (ccl stands for classes and coclasses) a compact constitution where
superstructures are the finite sets with atoms, classes and co-classes aug-
mented with least and greatest fixed points of monotone operators.

It is shortly explained how clFSA permits to describe the entire traditional com-
putation theory including e.g. program semantics, computation power of vari-
ous programming languages, various programming paradigms like instructional,
declarative programming and program specification, see e.g. Ury, Gergely [24].
For a short description of how clFSA looks like see 7.1. It is clear that for a fixed
similarity type σ and the axiom system Ax the new axioms of clFSA(σ,Ax)
depends only on σ. Let cFSAσ denote this set of axioms.

The unifying theories developed in [16] can build using cHF instead of ZFC.
Note that the use of the above two set theories is useful because they are

universal as can be seen in the following theorem.

Theorem 6. Let η, ζ be arbitrary but fixed similarity types.

– clFSA(η) is a simple universal extension on (η, ζ)
– cclFSA(η) is a d-universal extension on (η, ζ).

Remark 2. We emphasize that there was not any assumption “how large” is ζ
or the set of equations. However we suppose that both of them are recursively
enumerable then clFSA(η) and cclFSA(η) are also recursively enumerable.
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3 Examples

3.1 Specifications as Constitutions

Given a pre-constitution P = (Uni ,Cons) we can think that a specification itself
defines the object perfectly. Later on we shall see that the elements of Ob(Uni)
are generally a set of algebraic equations or formulas. However, in our definition
the notion of a specification is in an abstract form without any fixed meaning.
Whatever we can say about the specifications it is identical with the properties
of the category Uni .

One of the most important properties of the specifications is that they can
be interpreted by each other. In the case of algebraic and logical specification
theories these interpretations turn out to be homomorphisms or theory presen-
tations. However, in our definition the notion of interpretation is as abstract as
those of the specifications. See in Maibaum [19].

Definition 8. Let P = (Uni ,Cons) be a pre-constitution and let L be a consti-
tution on it. An L-refinement is a pair of morphisms (f, c) as shown below iff
there are two morphisms c′, d′ such that if

Th1
f �� Thc

2

Th2

c

��

then c splits such that

1. the diagram below commutes:

Th2

L(Th2) 		���
����

����
����

���
c �� Thc

2

d′

Sp(Th2)
c′

��������������������

2. and (c′, d′) is a projection pair.

Theorem 7. Let P = (Uni ,Cons) be a pre-constitution and let L be a con-
stitution on it. L-refinements are closed under composition iff L is a compact
constitution.

An abstract specification theory is developed by the use of category theory,
which allows the characterization of specification languages and the provision of
the necessary conditions to operate with specifications, e.g. to put them together
or to refine or to modularize them. Here only shown the condition necessary for
stepwise refinement of specifications is shown. A specification classical first order
language which can be used as a specification one. As it can be seen this theory
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is appropriate to support formal specifications with a “constructive” definition
theory. It is shown how the specification language Z can be developed in this
set theoretical framework so that it becomes more transparent from semantical
point of view and more useable due to the “constructive” fixed point theory.
Moreover, we develop the constructive version of the specification theory by using
logic programming ideas. First, logic programming is defined for the abstract
specification theory and then logic programming is developed in the proposed
set theoretic framework.

One of the desired properties of a specification theory is the correct handling
of the hierarchical specification. In our frame any interpretation c : P → S
can be considered as a hierarchical specification. Specification P contains the so
called primitive specification part and by using c and S we add some extra to
this primitive specification part. It is a natural assumption with respect to the
hierarchical specifications that any interpretation of the primitive part can be
extended to an interpretation of the entire hierarchical specification. It means
that any f : P → P ′ can be extended to a commutative diagram below:

S
f ′

�� S′

P

c

��

f
�� P ′

c′

��

However, in most cases initial and terminal specifications do not exist at all.
This is the reason why we restrict the hierarchical specifications to conservative
ones. Definition 8 (1) axiomatizes the existence of the initial specification for
conservative hierarchical specifications.

3.2 Computing Theory

3.2.1 Instructional Programs
Intuitively it is evident that the main problem in defining the IO-relation of a
program is connected with the definition of program iteration. Since e.g. deno-
tational semantics renders a relation to a program, the reflexive and transitive
closure of this relation corresponds to iteration. We are interested in internaliz-
ing, thus we deal with the formulas defining the relations. Therefore the main
question is whether the reflexive and transitive closure of an arbitrary formula is
definable. It is an easy exercise to prove that using least fixed-points the deno-
tation of the while programs can be defined. However, Hoare, Jifeng [16] shows
that the correct definition of the denotation of recursive procedure calls requires
the greatest fixed-points.

Programs operate on their data environments. If we are interested in the
change caused by the execution of a program in its environment then the input-
output semantics defined as a binary relation on data sequences, is suitable. A
great variety of program properties are connected with the relational semantics,
e.g. partial correctness, quasi-total correctness, pseudo-total correctness, etc. See
e.g. Gergely, Ury [13].
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3.2.2 Logic Programs
The traditional way of programming according to Wirth can be represented
as programs = algorithms + data structures (see Wirth [29]). An important
combination of traditional programming with the declarative one can take place
in the case of data declaration. The latter means that data structure component
of the Wirth’s characterization of programs should be given by declarative tools,
i.e. by the use of logic. In this case programs = algorithm + logic + realisation,
where logic may consists of functional and relational parts. The logic component
allows to define abstract data types which by the use of realization define the
constructive model over which the execution of algorithms, i.e. the computation
takes place.

Logic programming takes place in models constructed according to the logic
programs. We suppose that a similarity type δ given. Any logic program contains
definitions of new relation symbols. The goal of a logic program, i.e. the question
which one should be answered reflects these new relations, see e.g. Gergely, Szőts
[11]. Let us fix a rich enough similarity type η and a constructive interpretation
μ : δ → cTermη. We consider how we can define relations new with respect to
μ by the use of logical program’s approach.

Since we aim to develop logic programming in cclFSA, so the constructivity
should be defined with respect to this system axioms. Intuitive meaning of a
constructive model is that any component of that is computable in cclFSA.
To define the required notion of constructive model first we have to define an
appropriate notion of model, and the notion of computability over this model.

If η a given similarity type and Ax is an η-type set of formulas let cFSAη(Ax)
denote the axioms of the superstructure cclFSA(η,Ax). If Ax is empty we simply
write cFSAη.

Definition 9. Let σ be a fixed similarity type. A function μ : σ → cTermη is
called an interpretation of σ in cFSAη. An interpretation η generates a
σ-type model in a model V∈Mod(cFSAη) iff the followings hold in V:

(a) for all s∈sort(σ), η(s) is a non-empty class in V;
(b) for all ρ ∈ rel(σ), μ(ρ) is a subclass of �{μ(si)|i = 1, . . . , n}, where ρ :

s1, . . . , sn is the arity of ρ;
(c) for all f ∈ fun(σ), μ(f) is a functional class of the form �{μ(si)|i =

1, . . . , n} → μ(s), where f : s1, . . . , sn → s is the arity of f .

We say that μ generates a σ-type model in cFSAη iff for all V∈Mod(cFSAη)
μ generates a σ-type model in V. The σ-type model A generated by μ in V is
denoted by V(μ).

Proposition 1. Let μ be an interpretation. There is a class formula IM ?(μ)
which is valid in a model iff μ generates a model in that set-theory, i.e.

V |= IM ?(μ) iff V(μ) exists.

An interpretation μ : σ → cTermη is said to be correct in V iff the model
V(μ) exists.
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Let us see how to restrict the investigation of formulas to a given interpreta-
tion only.

Definition 10. Let μ : σ → cTermη be fixed and let ϕ∈cFormσ. Let us define
the relativization ϕμ of ϕ along μ by induction on the complexity of ϕ in the
following way.

(A) First for any term τ ∈ Termσ let us define a relation Rτ (x, yτ ) (where
x = var(τ) and yτ is a new variable) which expresses the fact that τ(x) = y:

– if τ = x is an s-sorted variable then Rτ (x, yτ ) � x = yτ ∧ x∈μ(s);
– if τ = f(x1, . . . , xn) and f : s1, . . . , sn → s then Rτ (x, yτ ) �∧

{Rτi(x, yτi)|i∈n} ∧ (yτ1, . . . , yτn, uτ )∈μ(f) ∧ yτ ∈μ(s).

We remark that Rτ (x, y) implies that y∈μ()s where s = sort(τ).

(B)

– if ϕ = ρ(τ1, . . . , τn) then
ρμ � ∃yτ1 . . . ∃yτn

∧
{Rτi(x, yτi)|i∈n} ∧ (yτ1, . . . , yτn)∈μ(ρ)

– if ϕ = ¬ψ then ϕμ � ¬(ψμ)
– if ϕ = ψ1 ∨ ψ2 then ϕμ � (ψ μ

1 ) ∨ (ψ μ
2 )

– is ϕ = ∃xψ then ϕμ � ∃x(x∈μ(s) ∧ (ψμ)), where s = sort(x)

The following statement shows that relativization restricts the investigation
of validity of formulas to the given interpretation.

Theorem 8. Let μ : σ → cTermη be an interpretation and let V(μ) be the
model generated by μ in V. Let ϕ∈cFormσ and let k∈V al(V(μ))

V(μ) |= ϕ[k] iff V |= ϕμ[k]

Definition 11. Let μσ : σ → cV be a fixed injection. μσ is called the canonical
interpretation of σ in cFSAη. Let ϕσ denote the relativization of ϕ along μσ.

Definition 12. Let V |=σ ϕ denote the fact that a closed formula is true
in every interpretation of σ in V. If so we say that ϕ is valid in V. Take
cFSAη |=σ ϕ iff for all V∈Mod(cFSAη), V |=σ ϕ. If so we say that ϕ is valid
in cFSAσ.

Let us consider the main properties of this notion of validity. Let μ : σ →
cTermη be an arbitrary interpretation. Let μ = μσ be a shorthand for the
formula

∧
{μ(l) = μσ(l)|l∈σ}.

Theorem 9. Let us suppose that ϕ is a closed σ-type formula. Let V be an
arbitrary model of cFSAη. Let μ : σ → cTermη be an interpetation.

(A) Let us suppose that u generates a model in V. The followings are equivalent:

– V(μ) |= ϕ;
– V |= ϕμ;
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– Th(V) + IM ?(μσ) + (μ = μσ) |= ϕσ.

(B) V |=σ ϕ iff Th(V) + IM ?(μσ) |= ϕσ

(C) cFSAη |=σ ϕ iff cFSAη + IM ?(μσ) |= ϕσ.

Now we define the computability in cFSAη by the use of the theory of pro-
grams developed for the programming language Pη. The necessary notions used
bellow can be found in Appendix 1.

Definition 13. (A) Let C be a class in a model V of cFSAη. C is called com-
putable in V iff there is a program p∈Pη such that

C = dom DenV�p�

(B) A class C is called enumerable in V iff there is a computable surjection
ω → C.

(C) The class C is called p∃-definable in V iff there is a term

t∈cTermΣ+(η; {D})

such that C = Y t, i.e. C is the least fixed point of the equation D = t(D).

Theorem 10. Let V be a model of cFSAη, and suppose that the class Atom �
{x|atom(x)} is enumerable in V. The p∃-definable, the enumerable and the com-
putable classes are the same in V.

We remark that the assumption of Theorem 5.9 in most cases is true, e.g. if
Atom is finite or equivalent with ω.

Theorem 11. If Atom is enumerable in V then AC holds in V.

Definition 14. An interpretation μ :→ cTermη is called constructive in V
iff for all l∈σ, μ(l) is computable in V.

Example 5. Let σ contain the following symbols:

0, 1 :→ d
+,× : d, d → d

Let interpret these symbols in the ‘usual’ way:

μ(d) � ω
μ(0) � 0
μ(1) � {0}
μ(+) � λx, y. x + y
μ(×) � λx, y. x ∗ y

where + and * is the sum and product of natural numbers. It is clear that μ
generates a model in cFSAσ and in any V it is constructive.
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Example 6. From the point of view of functional programming it is a very inter-
esting question whether a factor of a constructive model is constructive again.
Consider the following simple example. Again let σ be as in 5.12. Take the fol-
lowing interpretation:

ξ(d) � ω × ω
ξ(0) � (0, 0)
ξ(1) � ({0}, 0)
ξ(+) � λ(a, b), (c, d) . (a + c, b + d)
ξ(∗) � λ(a, b), (c, d) . (ac + bd, ad + bc)

Clearly ξ is a correct interpretation in any model of cFSAσ. Moreover, ξ is
clearly constructive.

Let us define the following equivalence on ξ(d):

(a, b) ≡ (c, d) iff a + d = b + c

One can check that equiv is a congruence relation on V(ξ). Clearly V(ξ)/ ≡ is
a model for integer numbers (Z, 0, 1,+, ∗). It is a question whether V(ξ)/ ≡ is
constructive.

The following theorem gives an answer to this question.

Theorem 12. Let μ : σ → cTermη be a constructive and correct interpretation
of σ in a model V. Let us suppose that ≡ is a decidable congruence relation
on V(η), i.e. both ≡ and its complement are computable in V. Moreover, let
us suppose that all the classes μ(s) ∈ sort σ are enumerable in V. If so then
V(μ)/ ≡ is constructive in V.

Now we can turn to prove the existence of μ/ ≡. Take

μ/ ≡ (s) � {x|x∈μ(s) ∧ ∀y(�y� < �x� → ¬y ≡ x)}

By using the computability of �� and the decidability of ≡ the right hand side
of this equation is a p∃ term in cFSAη. Hence μ/ ≡ is well defined on sort(σ).
Take

μ/ ≡ (ρ) � {(x1, . . . , xn)|∃y1, . . . ,∃yn

∧
xi ≡ yi ∧ ρ(y1, . . . , yn)}

µ/ ≡ (f) �
{(x1, . . . , xn, x)|∃y1, . . . , ∃yn,∃y

∧
xi ≡ yi ∧ x ≡ y ∧ f(y1, . . . , yn) = y} (1)

It is clear that μ/ ≡: σ → cTermη is an interpretation. Since ≡ is a congruence
relation μ/ ≡ is correct in V. By using the enumerability of classes one can
check that μ/ ≡ is a computable relation.

Returning to the example it is easily provable that ω × ω is enumerable
in cFSAη and of course ≡ is decidable. It means that ξ/ ≡ exists and it is
computable in any model of cFSAη.
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Definition 15. Let σ be a similarity type. Let

Γσ � {Ps|s∈sort σ} ∪ {Pf |f ∈func σ} ∪ {Pρ|ρ∈rel σ}

be a fixed set of class variables. Any function Φ : Γσ → cTermΣ+(η;Γσ) is called
a presentation of σ in cFSAσ. A presentation is correct in a model V of
cFSAσ if the interpretation Y Φ : σ → cTermη is correct, i.e. if V(Y Φ) exists.

Theorem 13. Let us suppose that Atom is enumerable in V. Let Φ be a correct
presentation of σ in V. V (Y Φ) is a constructive model of σ in V.

It is clear that the models of cFSAσ, within which Atom is enumerable, have
significant properties. So we give the following definition:

Definition 16. A model V of cFSAσ is called textbiconstructive iff Atom is
enumerable in V.

Proposition 2. ‘Atom is enumerable’ is definable in cFSAη.

Proof. Let U(x, y) be a universal computable relation with respect to the com-
putable classes. ‘Atom is enumerable’ is expressible with the following class
formula:

∃x({y|U(x, y)} = Atom)

��

Theorem 14. ‘Atom is enumerable’ is independent from cFSAη.

Proof. Clearly cFSAη + ‘Atom is enumerable’ is a conservative extension of
cFSAη. Let A be an uncountable set and fix a standard model V in such a way
that Atom in V is just A. One can check that

V |= ¬‘Atom is enumerable’.

We note, that by the downward Lövenheim-Skolem theorem there is also a com-
putable V within which Atom is not enumerable. ��

Theorem 15 (on the existence on constructive models). Let V be a constructive
model of cFSAη. In V the p∃-definable and computable classes are the same
and therefore any correct presentation Φ : σ → cTermη generates a constructive
model V(Y Φ) of σ in V.

This theorem plays an important role in the forthcoming chapters.

Definition 17. Let η1 ⊃ η and let μ : η1 → cTermη be such a correct interpre-
tation of η1 in cFSAη that for all V∈Mod(cFSAσ) V(μ)�η= V. Moreover let
μ be constructive. In this case μ is called a constructive extension of cFSAη.

Theorem 16. Let η2 ⊃ η1 ⊃ η0 and μi+1 be a constructive extension of cFSAηi

(i = 0, l). μ2 is a constructive extension of cFSAη0.
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Definition 18. Let R be a set of new relation symbols. A rule is of the form

ρ(τ1, . . . , τ2) ⇐ ϕ

where τi ∈Termη1, ϕ∈p∃(0, δ ∪ R).
A logic program is a finite set of rules. A logic program u is called well-

formed iff whenever u contains two rules of the form

ρ(τ i
1 , . . . , τ i

ni) ⇐ ϕi (i = 1, 2)

then ρ1 = ρ2(∈ R) implies n1 = n2 and sort(τ 1
j ) = sort(τ 2

j ) (j = 1, . . . , n1).
Let LPδ(R) denote the set of all well-formed logic programs.

Let S = sort δ. Let S′ be a copy of S with bijection ι. Define an S′-sorted
similarity type σu for any u∈LPη(R). Take sort σu � S′. Define

rel σu � {ρ∈R| there is a rule ρ(. . .) ⇐ ϕ inu} ∪ rel δ.

The arity of ρ is ρ : ι(s1), . . . , ι(sn) and u contains a rule of the form

ρ(τ1, . . . , τn) ⇐ ϕ

and for all i = 1, . . . , n ιi = sort(τi). Since u is well-formed, this definition of
arity is correct. Let

func σu � func δ.

Let X � (x1, . . . , xn). Let X ∈Γ be a shorthand for
∧

{xi ∈Γsi|i∈n}, where si

is the sort of xi. Let ϕ[Γ ] denote the relativization of σ along μσu.

Definition 19. Let u ∈ LP (R) be a well–formed logic program. By using u we
define a presentation uˆ in the following way:

(a) Let ρ∈rel σu. Take
uˆ(ρ) �

∪ {{x|∃y1, . . . ,∃yn

∧
{yi = τi|i∈n} ∧ ϕ[Γ ]}|ρ(τ1, . . . , τn) ⇐ ϕ′ ∈u}

(b) uˆ(s) �
∪ {{x|∃x1, . . . ,∃xn x = xi

∧
(x1, . . . , xn)∈Γρ}|ρ∈relσnsort xi = s}

∪ {{f(x1, . . . , xn)|X ∈Γ}|y∈func σ f : s′
1, . . . , s

′
n → s}

(c) uˆ(s) �
{(x1, . . . , xn, y)|y = f(x1, . . . , xn) ∧ X ∈Γ}

where f : s′
1, . . . , s

′
n → s′.

Proposition 3. Let u be a well–formed logic program. Then u ˆ is a correct
presentation with respect to μ.
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Definition 20. Any logic program u generates a set of axioms Ax(u) which is
called the logic generated by the logic program u in the following way:

Ax(u) � {ϕ → ρ(τ1, . . . , τn)|ρ(τ1, . . . , τn) ⇐ ϕ′ ∈u}.

Similarly, you can give another set of axioms which describes how uˆ was gener-
ated from the original sorts and functions. Let Gen(uˆ) denote this fact. Namely
if σ � σu then take:

Gen(uˆ) � {μσ(s) ⊂ μ(s)|s∈sort δ}
∪{μσ(f) ⊂ μ(f)|f ∈func δ}
∪{μσ(ρ) = μ(ρ)� μσ(s1) × . . . × μσ(sn)|ρ : s1, . . . , sn ∈rel δ}

Theorem 17. Let u be a well-formed logic program and V∈Mod(cFSAη) be a
model. V(Y uˆ) is called the denotation of u and it is denoted by DenV�u�.
Clearly DenV�u�∈Modσ. If V and μ : δ → cTermη are constructive then so is
DenV�u�.

Theorem 18. Let u be a well-formed logic program and fix a V∈Mod(cFSAη).
Take σ � σu. Let ρ(τ1, . . . , τk) be a positive ground atomic formula from Formσ.
Then

DenV�u� |= ρ(τ1, . . . , τk) iff
Th(V) + IM ?(μσ) + Gen(u) � Ax(u)σ → ρ(τ1, . . . , τn)σ

To formalize the initial property of DenV�u� let us consider the following
category C. Let us fix a model V ∈ Mod(cFSAσ). The objects of C are pairs
(ξ, ι) where ξ : σu → cTermσ and ι : ξ � func σ → μ is a morphism between two
interpretations in V. Moreover, we suppose that ι is an embedding.

The morphisms of C are the morphisms κ : ξ1 → ξ2 which commute with ι’s:

ξ1 � δ
κ ��

ι1

���
��

��
��

��
��

��
� ξ2 � δ

ι2

		
		
		
		
		
		
		

μ

This category is called the model category generated by u and denoted
by C(u) .

Theorem 19. DenV�u� with the natural injection is the initial object in C(u).

We show that logic programming based on Horn-formulas is only a particular
case of our definition. Indeed let δ be a similarity type such that rel δ is empty.
Let Herb(0, δ) be the minimal Herbrand model generated from δ in cFSAη.
Clearly, there is an interpretation Θ : δ → cTermη which defines this model.
Clearly Θ is constructive in cFSAη.
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Definition 21. A well-formed logic program u∈LPδ(R) is called a Horn-type
logic program iff each rule ρ(τ1, . . . , τn) ⇐ ϕ belonging to u is Horn-type, i.e.
ϕ → ρ(τ1, . . . , τn) is a Horn-formula.

It is clear that the mathematical tools defined in Chaps. 5.1–5.3 fits well for
Horn-type logic programs. By using Theorem 5.29 and the construction of Θ we
can give another version of initiality. Let u∈LPΘ(R) be a fixed Horn-type logic
program. Take σ � σu. Let V be a fixed constructive model of cFSAη.

Theorem 20. Let C be the category the objects of which are σ-type correct
interpretations in a constructive model V, and the morphisms of which are the
interpretations between them. Then V(Y uˆ) is the initial object of C.

Corollary 1. Let u be a well-formed Horn-type logic program. Let ρ(τ1, . . . , τn)
be a positive ground atomic formula from Formσ.

cFSAη |= ρ(τ1, . . . , τn) iff
cFSAη + IM ?(μσ) � Ax(u)μ → ρ(τ1, . . . , τn)μ

Moreover, let V be a fixed model of cFSAσ. Then

V(Y uˆ) |= ρ(τ1, . . . , τn) iff
Th(V) + IM ?(μσ) � Ax(u)μ → ρ(τ1, . . . , τn)μ

By the use of a fixed point theory, which allows us to have solutions definable
in cFSAσ we will be able to work with definable least fixed points. To achieve
this we use the positive existential (or constructive) functionals over which the
fixed point theory with the usual properties may be developed. Note that this
functional class consists of only the functions considered as computable. By the
use of this fixed point theory we get the traditional logic programming case. Let
us suppose that η′ contains finitely many new constant symbols: A1, . . . , An. Let
us denote the formula

∧
{atom(Ai)|i = 1, . . . , n} ∧ ∀xatom(x) →

∨
{x = Ai|i = 1, . . . , n}

by Const.

Theorem 21. cFSAη
′ + Const has an initial term model Vi.

Let μ be the same as in the previous example.

Theorem 22. Let u be a well-formed logic program. Let ρ(τ1, . . . , τn) be a pos-
itive ground atomic formula from Formσ. Then

Vi(u) |= ρ(τ1, . . . , τn) iff
cFSAη + IM ?(μσ) + Const � Ax(u)μ → ρ(τ1, . . . , τn)μ
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3.2.3 Other Programming Paradigm
The proposed theoretic frame is appropriate to describe and analyse various
other approaches in programming. We mention here only the rough set theory,
which was proposed as an approach to support intelligent data analysis and
data mining. Approximation is the basic concept of rough set theory. Let us
suppose that a set X should be described with the terms of attribute values
from a given set A. Then according to the rough set theory two operations are
defined assigning to every X two sets A*(X) and A*(X) called the A-lower and
the A-upper approximation of X, respectively. Note that the A-lower approx-
imation of a set is the union of all A-granules that are included in the set,
whereas the A-upper approximation of a set is the union of all A-granules that
have a nonempty intersection with the set. Rough set theory gives us one of the
important backgrounds for that type of computing when the aim is to deal with
inexact solutions of computational problems. Rough set theory plays an impor-
tant role in granular computing. The basic ingredients of granular computing
are granules such as subsets, classes, objects, clusters, and elements of a uni-
verse. These granules are composed of finer granules that are drawn together by
distinguishability, similarity and functionality. Based on complexity, abstraction
level and size, granules can be measured in different levels. A problem domain
may exist at the highest and coarsest granule. Granules at the lowest level are
composed of elements of the particular model that is used. Granulation is one
of the key issues in granular computing for problem solving. See e.g. Akama et
al. [2], Kumar et al. [18] and Yao [30]. Note that the two-sided approximation of
the sets used by rough set theory can be provided by the fixed point equations.
The approximation itself is realized by the smallest and largest fixed points. At
the same time the granules to be used in the approximation will be given in the
universe that will correspond to the actual problem domain.

4 Cognitive Computing

4.1 Motivations

Computing is the basic method for representing, model and investigate processes
of human intelligence in the fields of Artificial Intelligence, Cognitive comput-
ing and Computational theory of mind. Thus, our goal is to develop a general
computation theory that considers all the important aspects of this modelling.
It is essential to handle the various levels of computation, from computation
that uses purely syntactic digits to computation at the content level that among
others interprets data, information and knowledge. Our further aim is to provide
a theoretical framework, which will able to consider all the processes of the data
→ information → knowledge transformation and processing.

The theoretical framework - developed above - will permit to represent, model
and investigate the main processes of cognizing under the control of direct think-
ing by the use of appropriately defined and constructed computing, which we
call cognitive computing.
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4.2 Basic Definitions

Let Th = (σ,Ax) be a fixed theory. Cognitive processes are defined by the use
of situations, infons and information. The proposed extension will formalise the
well-known constructions of situations and information. See Devlin [9] or Barwise
[5]. Let ι be a new similarity type containing the followings.

1. A sort s for situations,
2. A sort b, i for basic infons and infons respectively,
3. A sort tv for truth values,
4. A functional symbol κ : s, i → tv. κ gives the truth value to an infon in a

situation
5. A sort k for knowledge.
6. A function τi : k, s → i. τ is the query function which in a given situation

produces an infon by the use of the actual knowledge.

Let us add an axiom stating that infons form the greatest set containing all
the basic infons and if A is an infon and S is a situation then the triple κ, S,A
is also an infon. Let I be the fixed-point equation describing this. According to
Barwise [5] well-founded infons are the elements of the least fixed-points of the
equation I. Let BCι denote this set of axioms.

It is clear that Th → Th + BCι form a constitution on FOL. According to
Theorem 1 there is a least compact constitution containing this constitution. Let
CB denote this constitution. CB is the so-called cognitive base constitution
(compact by definition).

4.3 Cognitive Processes

We recall the modification calculi from Anshakov, Gergely [4] see Chapters 10
and 18. To treat non-monotonity of reasoning process we need to

1. differentiate external and internal truth values
2. add a new type r for reasoning to clarify why we think that about the truth

value of an infon in a given situation
3. have inference rules for handling records which can contain infons, information

and/or knowledge (see Anshakov, Gergely [4] pp. 145–149).

Now we are ready to give a short description of what we mean by cognitive
process. Again, fix a theory Th = (σ,Ax). Using the superstructure SPCB(Th)
a cognitive process

1. is a logic program in the sense of 3.2.2, its inner logic is the above stated mod-
ification calculus. This is able to extract infons, to generate new information
and knowledge.

2. is also a process that can generate new processes, start, terminate and elimi-
nate processes and can communicate with other processes.

3. can have a lot of query functions to interact with its environment.
4. can have a predefined goal.
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Let PCι denote the axioms describing the aboves. Again we can define a
closed constitution CK over FOL being the least compact-one containing the
axiom systems BCι and PCι.

Note that only those processes are called cognitive processes, which can gener-
ate, store and use new elements of the sort k, i.e. new information and knowledge
elements.

Now we define the important notion Cognition Kernel as follows.

Definition 22. Cognitive Kernel is a compact constitution C on FOL

together with an embedding (in functor category) of CK into itself.

5 Cognitive Computing

A goal-oriented organisation of cognitive processes form cognitive computing.
The goal is usually related to the solution of a given problem situation, i.e. to
the reduction of the uncertainty level of a problem situation.

The Cognitive computing theory will provide a mathematically well-defined
classification of the possible types of computing and it will consider a special the-
ory of realisation. The Cognitive computing theory allows the investigation and
the determination of the theoretical limitations of the computing based mod-
elling of intelligent processes. Thus in addition to the computational capabilities
and limitations of different programming paradigms, the multi-layer cognitive
computing can be explored and a framework can be developed that support the
realization of the data → information → knowledge transition processes that
use thought-driven cognitive processes. At the beginning generic and/or specific
data analytical methods will provide infons from the data and then from the
generated set of infons the corresponding information will be built. This infor-
mation is used to decrease the uncertainty of the actual problem situation. The
methods and information successfully used in the solution of the problem situ-
ation will form knowledge candidates. The latters will become knowledge only
after a successful checking done by the use of the existing knowledge repository.

In this context, generalizations of the concept of Church- and Turing-
computa-bility can be given and the computational possibilities and limitations
of cognitive computing can be investigated. A multilayer theory of complexity
can be defined to characterise the problem situations. It can be shown that cog-
nitive processes necessary for the solution of problems of certain complexity will
not be cognitive computable, but they will become so by a cognitive computing
system with oraculum.

6 AI Based on Cognitive Computing

The proposed cognitive computing theory permits to design systems, which are
able to lean on and interact naturally with users to extend the capability of
humans and/or machines. So that humans would able to do more of what
they could do on their own normally without cognitive computing support.
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A cognitive computing system will be able to respond to the environment in
an autonomous regime too, without pre-programming. It can sense, learn, infer
and interact. Cognitive computing systems can sense or perceive the environ-
ment and collect the data on the basis of needs and situations. They understand,
interpret and analyse the context based on collected data and information, and
they make decision based on reasoning and act accordingly. Various semantics
and knowledge-driven cognitive data analysis methods can be represented and
realised in a constructive way within the proposed Cognitive computing app-
roach.

Cognitive computing theory provides a possibility for the use of compu-
tational approach to realise the understanding processes of natural language.
Namely, this theory provides tools to interpret natural language texts in the
various levels of cognitive computing.

The development of cognitive computing covers the basics of computing from
language design to evaluator implementation with the aim of explaining existing
systems at a deep enough level. This will help to adopt and use any of both,
the languages and systems that are currently used in artificial intelligence and
cognitive system area thus enabling the next generation of cognitive computing
designers and implementers to use this as a foundation to build upon which.
This is associated/augmented with a methodology that supports the selection of
an appropriate specification method together with a constructive language that
permits to describe the problem situation so that it prescribes the realization
of the cognitive computing processes necessary for the solution of the actual
problem situation.

Therefore, the proposed cognitive computing theory provides a constructive
foundation of AI, where this abbreviation means Amplifier for Intelligence. This
AI will be able to act as genuine problem-solving companion understanding
and responding to complex problem situations. This AI system will be able to
act either as a partner system for cooperative functioning with a human agent
or as an autonomous cognitive system for a well-defined problem area. As to
become a cooperative partner for human agents, the system has to function very
similarly to humans. E.g., it should be able to communicate and understand
natural language, reason in a compatible way, learn from its experience, etc.
AI will be able to cognize the environment and itself including the co-operative
partner.

7 Appendixes

7.1 Axiomatization of clFSA

In order to interpret program execution and different data and control struc-
tures, our theory of programming needs appropriate models to be obtained from
a relation structure (models) of a given similarity type by building up the cor-
responding superstructure as we have seen so far. However, to use these super-
structures in our theory of programming we have to introduce an appropriate
formalism which allows to provide a theory (an axiomatization) the models of
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which are the structures in question and by the use of which, statements can be
formulated and proved about these structures. According to our aim to develop
a first order theory of programming the axiomatization of superstructures will
be done in an appropriate first order language.

Superstructure construction is followed by a set–theoretic approach so the
signature of the language has to contain at least:

– a unary relation symbol atom : d

to distinguish the elements of the original relation structure from which the
superstructure is built up. These elements may be considered as elementary
data;

– the ‘element’ relation symbol ∈: d, d
– and the constant symbol 0 :→ d

which reflects the empty set.
A similarity type σ is called rich enough iff it contains the above symbols.

We use /∈ for the negation of element relation.
The variable symbols of the language correspond to sets and atoms. There-

fore, sets and their elements are of the same nature, if the latter ones are not
atoms. In other words, we consider hereditary sets the elements of which are
either atoms or hereditary sets etc. Though atoms have no elements they are
not equivalent to the empty set. Therefore we have to be careful while providing
the Axiom of Extensionality and defining some of the set-theoretic operations.

A relation symbol of σ is called non set-theoretical iff it is not equal with
either ∈ or 0 or to atom.
The system of axioms FSAσ axiomatizes the hereditarily finite sets with atoms.
Why do we need atoms? As we know the Zermalo-Fraenkel axiomatization is
powerful enough to make atoms unnecessary. Set theory, as formalized in ZFC,
provides an elegant and powerful way to organize mathematics but it is too
strong for the programming theory. The aim to build up an adequate axiom
system for this theory dictates to develop a set theory weaker than ZFC, weak
in the principles of set existence which they attempt to formalize e.g. by allowing
atoms. The latters just have a programming interpretation as elementary data
or, if you think about the relation structures as the object modelling computers
where the programs run then atoms represent the registers where the data are
stored. Atoms also break the finiteness which we intend to axiomatize since they
may be infinitely many. We axiomatize the hereditarily finite sets with atoms by
modifying the axiom system ZF as follows:

FSA0: Existential axiom of atoms:
∃x atom(x)

FSA1: Extensionality axiom:
(¬atom(x) ∧ ¬atom(y)) → ((x = y) ↔ ∀z(z∈x ↔ z∈y))

FSA2: Empty set axiom:
∀x(¬x∈0)
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FSA3: Significance axiom of atoms:
∀z(atom(z) ↔ (z �= 0 ∧ ∀x(x /∈ z)))

This axiom together with FSA1 declares that though atoms have no elements
they differ from the empty set 0.

FSA4: Foundation axiom:
∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y)))

This axiom says that every non-empty set has a minimal element with respect
to ∈.

FSA5σ: Comprehension Scheme. For each σ-type formula ϕ:
∀z∀w1 . . . ∀wn∃y∃x(x∈y ↔ [x∈z ∧ ϕ(x, z, w1, . . . , wn)])

The y asserted to exist is unique by Extensionality Axiom and it is
denoted by

{x|x∈z ∧ ϕ(x, y, w1, . . . , wn)} or {x∈z|ϕ}.

Intuitively for a given formula ϕ(x) there need not necessarily exist a set {x :
ϕ(x)} this collection may be too large to form a set. However, Comprehension
Scheme says that if the collection is a subcollection of a given set then it does
exist. The following axioms say that certain sets, which should exist, really do
exist.

FSA6: Pairing axiom:
∀x∀y∃z(x∈z ∧ y∈z)

FSA7: Union axiom:
∀F∃G∀y((y∈F ∧ x∈y) → x∈G)

FSA8σ: Replacement scheme. For each σ-type formula ϕ:

∀F∀w1 . . . ∀wn(∀x∈F∃!y ϕ(x, y, F,w1, . . . , wn) →
∃G(∀x∈F∃y∈G ϕ(x, y, F,w1, . . . , wn))

Intuitively (using also FSA5σ) this axiom says that if H(x) is the unique y
satisfying ϕ(x, y, . . .) then {H(x)|x∈F} is a set.

FSA9: Finiteness axiom:

∀x(set(x) → ∃y∃z(z is a bijection between x and y) ∧
(y is finite ordinal))

Definition 23. The set of axioms of the hereditarily finite sets with atoms is:

FSAσ � {FSAi|i = 0, 1, 2, 3, 4, 6, 7, 9} ∪ {FSAiϕ|i = 5, 8, ϕ∈Formσ}.

If R1, . . . , Rk; f1, . . . , fn are new relation and function symbols respec-
tively then FSAσ(R1, . . . , Rk; f1, . . . , fn) stands for FSAσ∗ where σ∗ = σ ∪
(R1, . . . , Rk; f1, . . . , fn).
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The Finiteness Axiom implies the Axiom of Choice, i.e.:

Proposition 4. In FSAσ the following statements hold:

(i) Each set can be well-ordered.
(ii) There exists a choice function on sets.

Moreover, basically from the Finiteness Axiom, it follows that for any set
there exists the power set, i.e. the Power Set Axiom is a consequence of FSAσ.

Proposition 5. The axioms of FSAσ ensure that for any set there exists the
power set:

FSAσ |= ∀x(¬atom(x) → ∃y∀z(z∈y ↔ z ⊂ x)).

Therefore, the axiom system FSAσ is equivalent with the Zermalo-Fraenkel
axiom system with the Axiom of Infinity and the Power Set Axiom deleted and
Finiteness Axiom added.

Note that all the notions introduced in ZFC can be introduced in FSAσ as
well. E.g. relation, domain, range, function, bijection, surjection, injection are
such notions. The expressions that define these notions can also be used as a
definition of new relation or function symbols. Adding these new symbols to
the similarity type o and their definitions to FSAσ, we obtain a conservative
extention of FSAσ.

Since in FSAσ all sets are finite, therefore the following preposition holds for
ordinals:

Proposition 6. Each ordinal is finite in FSAσ and the usual addition and
multiplication on ordinals are commutative.

Note that in set theory natural numbers are identified with finite ordinals.
Namely, an ordinal α is a natural number if for all β ≤ α if β �= 0 then β is a
successor of some γ. Again the Finiteness Axiom implies the following:

Proposition 7. The natural numbers, the ordinals (and the cardinals) are the
same in FSAσ.

A programming theory needs, among others, tools to handle infinite objects
e.g. to represent infinite computation processes. Therefore, beyond finite sets as
finite objects, we also have to be able to speak about infinite objects.

Different approaches provide different techniques for this aim, e.g. denotation
approach to semantics makes the topological space complete. We introduce the
notion of class to handle infinity. This notion is also important in ZFC axiom
system, where e.g. the class of all ordinals On is often used. In the axiom system
FSAσ the notion of class has a more important role, since the majority of the
usual sets (namely, all infinite sets) cannot be identified with any set in FSAσ.

Intuitively, a class is but a conglomerate of elements x which satisfy a given
formula ϕ(x). Since each σ-type model of FSAσ has constructive objects (atoms
or finite sets) as elements a class is but a defined or specified conglomerate of
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these objects. Due to the significant role of classes in our further investigations
they will frequently appear and we therefore have to precisely define what type of
statements can be stated about classes. The definition is based on the followings.
Having a given model a class does not consist of arbitrarily collected elements
of the universe, but they may be collected only by the use of a given formula.
Therefore, we extend the language such that it may contain statements about
classes. Let us first fix an arbitrary set cV of the so called class variable. The
intended meaning of a class variable in a model of FSAσ is a conglomerate of
objects of the universe.

Let σ be a rich similarity type. In order to handle classes we extend the σ-
type classical first order language by adding class terms which provide definable
conglomerate of objects of the universe of the models and the class formulas
which allow to formulate statements about classes.

Definition 24. (a) The set of σ-type class terms (cTermσ) consists of the
terms in the form {x|ϕ} where x∈V and ϕ∈cFormσ.

(b) The set of σ-type class formulas (cFormσ) is the minimal set satisfying
the followings:
– Atomσ ⊂ cFormσ;
– if x∈Termσ and C ∈cV then x∈C belongs to cFormσ;
– if ϕ,ψ are of cFormσ then ¬ϕ and ϕ ∧ ψ also belong to cFormσ;
– if ϕ is of cFormσ, x∈V then ∃vϕ also belong to cFormσ.

Now let us see how the semantics of cFormσ can be defined. First of all, we
extend the notion of valuation for class variables. A valuation of a class variable
is a subset of the universe of the model under consideration.

Definition 25. Let A be an arbitrary but fixed σ-type model. A class valuation
is a function k such that

– dom(k) = C ∪ cV ;
– k(x)∈A for any x∈V ;
– k(x)∈Sb(A) for any class variable x∈cV .

As usual let cV alA denote the family of all class valuations.

Having the valuation we can define the meaning of class terms and class
formulas with respect to a given valuation in an arbitrary but fixed model.

Definition 26. Let a model A∈Modσ be given.

(a) The meaning of a class term t = {x|ϕ} in the model A with respect to k is
the following family:

tA � {a|A |= ϕ[k + (x, a)]}.

(b) For any class formula ϕ ∈ cFormσ and valuation k ∈ cV alA we define the
validity ϕ in A with respect to k (written as A |= ϕ[k]) by induction on the
complexity of ϕ:
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if ϕ∈Atomσ then the validity is defined as in (i) and (ii) of 1.2.10;
if ϕ � τ ∈C then A |= (τ ∈C)[k] iff τA[k] is an element of k(C) ;
and (iv) are defined as in (iii) of 1.2.10 (i.e as usual).

In order to make the class valuation more transparent the σ-type models may
be extended such that they will contain an entity which refers to classes.

Definition 27. A pair V = (A, Class) is called a class extention of A iff

– A is a σ-type model;
– Class ⊂ Sb(A);
– for any class term t ∈ cTermσ and valuation k ∈ cV alA we have k(cV ) ⊂

Class implies tA[k]∈Class.

Let cModσ denote the family of all class extentions of σ-type models. If V∈
cModσ then let V alV denote those class valuations k for which k(cV ) ⊂ Class
holds.

Definition 28. Let V = (A, Class) be an arbitrary class extention belonging to
cModσ. Let ϕ∈cFormσ.

(i) We say that ϕ is valid in V with respect to a valuation k iff k∈V alV
and V |= ϕ[k].

(ii) The class formula ϕ is valid in V iff it is valid with respect to all k∈V alV
i.e.

V |= ϕ iff for all k∈V alV,V |= ϕ[k]

(iii) A class formula ϕ is said to be valid in a σ-type model A iff for all class
extention V = (A, Class) we have V |= ϕ.

So we have defined the σ-type class language as a triple

CLσ � (cFormσ, cModσ, |=)

This language is really a two-sorted one. The first sort corresponds to sets and
atoms and the second one to classes. However, quantification is allowed only for
set variables.

A variable x ∈ V ∪ cV can also be considered as a shorthand for the class
term {y|y ∈x} To have a clearer view of a variable let us see how the “element
relation” ∈ and the equality are defined for class terms.

– {x|ϕ}∈{y|ψ} � ∃y(∀x(x∈y ↔ ϕ) ∧ ψ);
– {x|ϕ} = {y|ψ} � ∀x(ϕ ↔ ψ[x/y]).

Depending on how we look at x as a variable or a=j a shorthand for {y|y∈x}
the class formulas x ∈ y and x ∈ C have different meanings. However, they are
equivalent if we take the Extensionality Axiom (FSA1).

Proposition 8. (i) FSA1 |= (x∈y) ↔ ({z|z∈x}∈w|w∈y)
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(ii) FSA1 |= (x∈C) ↔ ({z|z∈x}∈{w|w∈C})

Proof. We prove only the statement (i). Working in axiom system {FSA1} we
have the following chain of semantic equivalences:

{z|z∈x}∈{w|w∈y} ≡ ∃u(∀z(z∈x ↔ z∈u) ∧ u∈y) ≡ u(x = u ∧ u∈y) ≡ x∈y.

��

By using the above proposition we can define the following abbreviations:

C = D � ∀x(x∈C ↔ x∈D)
C = y ↔ ∀x(x∈C ↔ x∈y)
C ∈x � ∃y(C = y ∧ y∈x)
C ∈D � ∃y(C = y ∧ y∈D)

For the classical first order languages we have defined the simultaneous substitu-
tion of terms. This notion can be extended even to the class language. However,
we have to make a careful distinction between substitution for variables and for
class–terms. The only question is how substitute into a formula x∈C?

First let τ be a term belonging Termσ. If so then take (x∈C)[τ/C] � x∈τ .
Clearly x∈τ belongs to cFormσ. In the case of class terms take (x∈C)[τ/C] �
ϕ[x/y] where τ = {y|ϕ}. This definition is comform with the fact that x∈{y|ϕ}
is just a shorthand for ϕ[x/y]. In the end if D is a class variable then take
(x∈C)[D/C] � x∈D.

Without spelling out the whole definition we use the notation ϕ[τi/xi] k
i for

the simultaneous substitution of terms τi for variables xi, respectively.

Lemma 1. Let V ∈ cModσ and let ϕ ∈ cFormσ be arbitrary. Let us suppose
that var(ϕ) ∩ cV = {C1, . . . , Ck}. Then for any class terms τ1, . . . , τn if V |= ϕ
then V |= ϕ[τi/Ci] k

i .

In order to handle classes axiomatically the axiom system FSAσ is to be
appropriately extended. The extended axiom system denoted by cFSAσ con-
sists of

– axioms which remain the same as they were in FSAσ dealing with sets only;
– axioms the scope of which is extended to classes;
– the extentions of the axiom schemas by allowing class formulas.

Namely, by extending the axiom system we get the following axiom system
cFSAσ where variables f, g, x, y, z, w,w1, . . . , wn are from V and C,D are
from cV .

FSA0 Existential axiom of atoms:
∃x atom(x)

FSA1 Extensionality axiom:
(¬atom(x) ∧ ¬atom(y)) → ((x = y) ↔ ∀z(z∈x ↔ z∈y))

FSA2 Empty set axiom:
∀x(¬x∈0)
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FSA3 Significance axiom of atoms:
∀z(atom(z) ↔ (z �= 0 ∧ ∀x(x /∈ z)))

This axiom together with FSA1 declares that though atoms have no elements
they differ from the empty set 0.

FSA4 Foundation axiom:
∀z(∃x(x∈z) → ∃x(x∈z ∧ ¬∃y(y∈x ∧ y∈z)))

FSA5σ Comprehension schema:

∀z∀w1 . . . ∀wn∃y∃x(x∈y ↔ [x∈z ∧ ϕ(x, z, w1, . . . , wn)])

(where ϕ∈cFormσ!)
FSA6 Pairing axiom:

∀x∀y∃z(x∈z ∧ y∈z)

We remark that since classes have only sets as elements the Pairing Axiom
is not extended to classes.

Before reformulating FSA7 we remark that for any term t one can define its
union by taking ∪t = {x|∃y(x ∈ y ∧ y ∈ t)}. However, our original axiom states
that if t is not proper then ∪t is also not proper! Therefore, we have to use FSA7

without any changes.

FSA7 Union axiom:
∀x∃z[∀y∀w(y∈x ∧ w∈y) → w∈z]

FSA8σ Replacement scheme. For each σ-type formula ϕ:

∀f∀w1 . . . ∀wn(∀x∈f∃!y ϕ(x, y, f, w1, . . . , wn) →
∃g(∀x∈f∃y∈g ϕ(x, y, f, w1, . . . , wn))

(where ϕ∈cFormσ)

Similarly to the modification of the Comprehension schema we allow the use
of class formulas in the scope of the Replecement schema as well.

FSA9 Finiteness axiom:
Each set is equivalent with a finite ordinal

Now having the axiom system cFSAσ we clarify some notions. Let V =
(A, Class) be an arbitrary class extention of A.

– The elements of A are called objects.
– Let a∈A be an object. If V |= atom(x)[(a, x)] then a is said to be an atom,

otherwise it is a set.
– The elements of Class are said to be classes.
– An object a and a class U are called equal iff V |= ∀y(y∈x ↔ y∈C)[(x, a) +

(C,U)].
– A class U ∈Class is called a proper class iff it is not equal to any object of V.

Namely U is a proper class if it satisfies the formula V |= ¬∃x(x = C)[(C,U)].
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We redefine predicate ‘set’ by taking:

cset(C) � ∃x(x = C ∧ ¬atom(x)).

The ¬atom(x) part of the conjunction is needed only when one substitutes
a variable x for class-variable C:

cset(C)[x/C] ≡ ∃y(y = x ∧ ¬atom(y) ≡ ¬atom(x)).

Next we omit ‘c’ from the name of this redefined predicate because on sets
the new and old meanings are the same.

The predicate ‘proper’ can be defined by taking:

proper(C) � ¬∃x(x = C).

According to the above defined predicates a class term τ is called relational
or functional iff Rel(τ) or Func(τ) holds respectively.

The followings are two useful proper classes:

– Universe = {x|x = x};
– ω = {x|Nat(x)}.
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