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Abstract. The lecture presents a new, non-statistical approach to the analysis
and construction of similarity, dissimilarity and correlation measures. The
measures are considered as functions defined on an underlying set and satisfying
the given properties. Different functional structures, relationships between them
and methods of their construction are discussed. Particular attention is paid to
functions defined on sets with an involution operation, where the class of
(strong) correlation functions is introduced. The general methods constructing
new correlation functions from similarity and dissimilarity functions are con-
sidered. It is shown that the classical correlation and association coefficients
(Pearson’s, Spearman’s, Kendall’s, Yule’s Q, Hamann) can be obtained as
particular cases.
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1 Introduction

Data Science is the buzzword of the last decade. One of the goals of Data Science is to
extract knowledge, insights and usable information from various types of data. Data
Science courses typically include the topics on statistical data analysis, machine
learning methods and data mining. Correlation, association, similarity, relationship and
interestingness coefficients or measures play an important role in data analysis, clas-
sification tasks and data mining. Dozens of such measures have been created for
various types of data, and articles on these indicators are cited in hundreds and
thousands of papers [3, 13, 14, 20, 23–25, 27]. Such measures are defined for
dichotomous or real valued variables measured for sampling units, for rankings, binary
or real valued vectors of attributes, time series, fuzzy sets of different types, proba-
bilistic distributions, images, rating profiles etc. These measures used in information
retrieval, data classification, machine learning, analysis of relationships and decision
making in ecology, computational linguistics, image and signal processing, financial
data analysis, bioinformatics and social sciences. Often, measures introduced for one
type of data give misleading results when they are used for analysis of relationships
between data of another type [8]. There is a need in construction of a general theory of
similarity, correlation and association measures, which will be able to analyze general
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properties of these measures independent on domain or for large class of data types.
Such a theory will make it possible to transfer the methods of constructing association
measures from one domain to another and propose such measures for new data types.

The first steps in construction of the general theory of similarity, dissimilarity and
correlation measures have been done in [7, 9, 10] where the fundamental results on
definition and construction of association measures (correlation coefficients) on sets
with involution operations have been proposed. It was shown that many known cor-
relation coefficients can be considered as functions defined on an underlying set with
involution operation and satisfying a simple set of properties. The general methods of
construction of these functions from suitable similarity or dissimilarity functions have
been proposed. These results can be considered as an alternative solution of the
Kendall’s problem of construction of general correlation coefficient [22]. Kendall
proposed a formula that gives as particular cases Pearson’s product-moment correla-
tion, Spearman’s and Kendall’s rank correlation coefficients but it was not clear how to
obtain from this formula other known association and correlation coefficients and how
to build correlation coefficients for other domains. The approach proposed in [7, 9, 10]
gives possibility to construct the classical correlation coefficients that can be obtained
from Kendall’s formula, the Yule’s Q and Hamann coefficients together with some
other association coefficients for binary data and gives a tool for constructing new
correlation coefficients on new domains.

Similarity, dissimilarity and correlation measures or coefficients are considered in
this lecture as functions defined on an underlying set X and satisfying some reasonable
sets of properties. Generally, these functions can be considered as association func-
tions, measuring (may be non-statistical) associations or relationships between objects.
The methods of construction of such functions, the transformations of them and rela-
tionships between them studied in [7, 9, 10]. This paper presents a short and updated
description of some part of author’s Lecture on RAAI Summer School 2019. Due to the
limit on the size of the paper it was not possible to include all topics discussed in [9]
and in this lecture. The presented paper can be considered as complementary to the [9].
It includes new methods of construction of correlation functions presented recently on
INES 2019 [10] and contains more examples of (dis)similarity and correlation func-
tions illustrating these methods. The list of references includes only several works.
Hundreds or thousands papers have been published on related topics during more than
one hundred years. Of course it was not possible to include most of them. Some useful
references can be found in the papers cited in the list of references.

2 Examples of Similarity Measures and Correlation
Coefficients for Different Domains

2.1 Binary n-Tuples

Consider n-tuple x ¼ x1; . . .; xnð Þ, xi 2 0; 1f g; i ¼ 1; . . .; n. It can represent an object
x described by n binary features, attributes or properties such that xi ¼ 1 if the object
x possesses the i-th attribute and xi ¼ 0 in the opposite case. Denote X the set of
attributes possessed by x. In statistics, a binary n-tuple can denote n measurements of a
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dichotomous variable or property x for n sampling units. xi ¼ 1 denotes that the
property x fulfilled for the unit i, and xi ¼ 0 otherwise. We use here the first inter-
pretation of binary n-tuples. For two binary n-tuples x ¼ x1; . . .; xnð Þ; y ¼ y1; . . .; ynð Þ
denote:

• a the number of attributes possessed by both objects x and y, when xi ¼ yi ¼ 1;
• b the number of attributes possessed by x and not by y, when xi ¼ 1; yi ¼ 0;
• c the number of attributes possessed by y and not by x, when xi ¼ 0; yi ¼ 1;
• d the number of attributes not possessed by both objects x and y, when xi ¼ yi ¼ 0:

The numbers a and d usually referred to as the numbers of positive and negative
matches, respectively. Below are examples of similarity and association measures for
binary n-tuples [13]:

Jaccard similarity measure:

SJ ¼ a
aþ bþ c

¼ X \ Yj j
X [ Yj j ;

Simple Matching similarity measure:

SSM ¼ aþ d
aþ bþ cþ d

¼ X \ Yj j þ �X \ �Yj j
n

;

Hamann coefficient:

AH ¼ aþ dð Þ � bþ cð Þ
aþ bþ cþ d

¼ X \ Yj j þ �X \ �Yj j � X \ �Yj j � �X \ Yj j
n

;

Yule’s Q association coefficient:

AY�Q ¼ ad � bc
adþ bc

¼ X \ Yj j � �X \ �Yj j � X \ �Yj j � �X \ Yj j
X \ Yj j � �X \ �Yj j þ X \ �Yj j � �X \ Yj j :

2.2 Real Valued n-Tuples

Consider n-tuples x ¼ x1; . . .; xnð Þ; y ¼ y1; . . .; ynð Þ with real valued components.

Cosine similarity measure:

cos x; yð Þ ¼
Pn

i¼1 xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x

2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 y

2
i

p ;

where xi; yi � 0, i ¼ 1; . . .; n.
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Pearson’s product-moment correlation coefficient:

r ¼
Pn

i¼1 xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi � �xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yi � �yð Þ2

q ;

where �x ¼ 1
n

Pn
i¼1 xi, �y ¼ 1

n

Pn
i¼1 yi:

For both measures, it is supposed that denominators do not equal to zero.

2.3 Rankings

Consider two rankings of n objects x ¼ x1; . . .; xnð Þ; y ¼ y1; . . .; ynð Þ containing n dif-
ferent integer ranks, 1� xi; yi � n, i.e. “without ties”.

Spearman’s rank correlation coefficient [12, 18, 22]:

q ¼ 1� 6
Pn

i¼1 d
2
i

n n2 � 1ð Þ ;

where di ¼ xi � yi; i ¼ 1; . . .; n.

Kendall’s rank correlation coefficient [12, 18, 22] for real valued n-tuples x ¼
x1; . . .; xnð Þ; y ¼ y1; . . .; ynð Þ without ties, i.e. xi 6¼ xj, yi 6¼ yj for all i; j:

s ¼ NC � ND
n n� 1ð Þ=2 ;

where NC is the number of concordant pairs i; jð Þ calculated as follows:

NC ¼
Xn�1

i¼1

Xn

j¼iþ 1
sij; and sij ¼ 1; if xi � xj

� �
yi � yj
� �

[ 0
0; otherwise

�
;

and ND is the number of disconcordant pairs calculated as follows:

ND ¼
Xn�1

i¼1

Xn

j¼iþ 1
dij; and dij ¼ 1; if xi � xj

� �
yi � yj
� �

\0
0; otherwise

�
:

Note that only the ordering of the component values of n-tuples is used.

2.4 Finite Probabilistic Distributions

Suppose x ¼ x1; . . .; xnð Þ is a finite probabilistic distribution, i.e. xi � 0, for all

i ¼ 1; . . .; n, and
Pn
i¼1

xi ¼ 1.
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Bhattacharyya coefficient is defined as follows [1]:

S x; yð Þ ¼
Xn

i¼1

ffiffiffiffiffiffiffi
xiyi

p
:

2.5 Kendall’s General Correlation Coefficient

Kendall [22] considered the problem of constructing general correlation coefficient.
For two n-tuples x ¼ x1; . . .; xnð Þ and y ¼ y1; . . .; ynð Þ he defined it as:

r ¼
Pn

i;j¼1 aijbijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i;j¼1 a

2
ij

Pn
i;j¼1 b

2
ij

q ;

where the values aij calculated from the values xi and xj, similarly bij calculated from yi
and yj, such that the following conditions are fulfilled: aij ¼ �aji, bij ¼ �bji, aii ¼
bii ¼ 0 for all i; j ¼ 1; . . .; n. As particular cases of this formula he obtained Spearman’s
and Kendall’s rank correlation coefficients, and Pearson’s product-moment correlation
coefficient. How to obtain other correlation coefficients from this formula does not
clear.

3 Similarity and Dissimilarity Functions

The examples of similarity measures and correlation coefficients considered in the
previous section show that there is a variety of such indicators for different types of
data. Generally, there are introduced tens of such measures and coefficients [13, 14,
27]. To analyze the general properties of these measures, possible relationships
between them and to study the methods of their construction in [9] it was proposed to
consider these measures as functions defined on a universal domain X and satisfying
some simple sets of properties. Three main types of such functions have been con-
sidered: similarity, dissimilarity and correlation functions, which can be used as models
of similarity, dissimilarity and correlation measures and coefficients, respectively.
Below we introduce these functions and consider some of their properties. More results
can be found in [9].

Further, for brevity, similarity and dissimilarity functions will be referred to as (dis)
similarity functions or as resemblance functions.

3.1 Definition of Similarity, Dissimilarity and Correlation Functions

Let X be a nonempty set that will be referred to as a universal domain or an underlying
set in definition of similarity and correlation functions. As X we can consider domain
specific for a considered data type: the set of all binary n-tuples, the set of all real
valued vectors of the length n, the set of all fuzzy sets defined on some domain X, the
set of some images or objects considered in some problem, etc.
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A function S : X� X ! 0; 1½ � is called a similarity function on X if for all x, y in X
it is symmetric:

S x; yð Þ ¼ S y; xð Þ;

and reflexive:

S x; xð Þ ¼ 1:

A function D : X� X ! 0; 1½ � is a dissimilarity function on X if for all x, y in X it
is symmetric:

D x; yð Þ ¼ D y; xð Þ;

and irreflexive:

D x; xð Þ ¼ 0:

These functions are called complementary if for all x, y in X it is fulfilled:

S x; yð ÞþD x; yð Þ ¼ 1:

For complementary (dis)similarity functions we have:

S x; yð Þ ¼ 1� D x; yð Þ;D x; yð Þ ¼ 1� S x; yð Þ: ð1Þ

A function A : X� X ! �1; 1½ � is a correlation function (association measure) on
X if for all x, y in X it is symmetric:

A x; yð Þ ¼ A y; xð Þ;

reflexive:

A x; xð Þ ¼ 1;

and negative: A x; yð Þ\0 for some x, y in X.
Such correlation functions will be referred to as weak correlation functions if they

will not satisfy inverse relationship property considered in Sect. 4. In Sect. 4 we define
a strong (invertible) correlation function on a set X with involution operation.

It is easy to see that the indicators considered in the previous section belong to the
following classes of functions:

• Similarity functions: Jaccard, Simple Matching, Cosine (if all xi and yi have non-
negative values) similarity measures and Bhattacharyya coefficient;

• Correlation functions: Hamann and Yule’s Q coefficients, Pearson’s product-
moment correlation coefficient, Spearman’s and Kendall’s rank correlation coeffi-
cients, Cosine (if xi and yi can have positive and negative values).
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3.2 Examples of Complementary (Dis)Similarity Functions

Jaccard (see Sect. 2.1):

SJ x; yð Þ ¼ a
aþ bþ c

¼ X \ Yj j
X [ Yj j ;

DJ x; yð Þ ¼ bþ c
aþ bþ c

¼ X � Yj j
X [Yj j :

Simple Matching (Sect. 2.1):

SSM x; yð Þ ¼ aþ d
aþ bþ cþ d

¼ X \ Yj j þ �X \ �Yj j
n

;

DSM x; yð Þ ¼ bþ c
aþ bþ cþ d

¼ X � Yj j
n

¼ 1
n

Xn

1
xi � yij j:

Cosine (Sect. 2.2):

cos x; yð Þ ¼
Pn

i¼1 xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x

2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 y

2
i

p ; xi; yi � 0; i ¼ 1; . . .; n:

D x; yð Þ ¼ 1
2

Xn

i¼1

xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x

2
i

p � yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 y

2
i

p !2

:

Bhattacharyya (Sect. 2.4):

S x; yð Þ ¼
Xn

i¼1

ffiffiffiffiffiffiffi
xiyi

p
:

D x; yð Þ ¼ 1
2

Xn

i¼1

ffiffiffiffi
xi

p � ffiffiffiffi
yi

p� �2
:

The last dissimilarity function is called Hellinger discrimination, Matusita measure
or Squared-Chord distance.

3.3 Fuzzy Relations and Kleene Algebra of Resemblance Functions

Here, similarity and dissimilarity functions will be also referred to as resemblance
functions. A resemblance function is a symmetric function R : X� X ! 0; 1½ �, which
is reflexive or irreflexive. We will say that two resemblance functions have the same
type if both are reflexive or both are irreflexive.

Resemblance function R can be considered as a fuzzy relation [2, 17, 28, 29], given
by membership function: lR : X� X ! 0; 1½ �, where lR x; yð Þ is the strength of the
relation R between x and y. The properties of fuzzy relations can be extended on
resemblance functions.
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Denote P Sð Þ;P Dð Þ and P Rð Þ the sets of all similarity, dissimilarity and resem-
blance functions, respectively, defined on the set X. We have P Sð Þ;P Dð Þ 	 P Rð Þ and
P Sð Þ [P Dð Þ ¼ P Rð Þ. Define the operations intersection \ and union [ of resem-
blance functions R1 and R2 on the set X for all x, y in X as follows:

R1 \R2ð Þ x; yð Þ ¼ min R1 x; yð Þ;R2 x; yð Þf g;

R1 [R2ð Þ x; yð Þ ¼ max R1 x; yð Þ;R2 x; yð Þf g:

The set P Rð Þ will be a distributive lattice [11], partially ordered by the relation:

R1
R2 if R1 x; yð Þ�R2 x; yð Þ for all x; y inX.

The sets P Sð Þ and P Dð Þ are distributive sublattices of P Rð Þ. For all similarity
functions S1; S2 2 P Sð Þ and dissimilarity functions D1;D2 2 P Dð Þ it is fulfilled:

S1 \ S2; S1 [ S2 2 P Sð Þ; D1 \D2;D1 [D2 2 P Dð Þ;

S1 \D1 2 P Dð Þ; S1 [D1 2 P Sð Þ:

Consider similarity and dissimilarity functions defined for all x, y in X by:

D0 x; yð Þ ¼ 0; D1 x; yð Þ ¼ 0; if x ¼ y
1; otherwise

�
:

S0 x; yð Þ ¼ 1; if x ¼ y
0; otherwise

�
; S1 x; yð Þ ¼ 1;

D0 is the least element of P Dð Þ and P Rð Þ, S1 is the greatest element of P Sð Þ and
P Rð Þ, S0 is the least element of P Sð Þ and D1 is the greatest elements of P Dð Þ.

The complement N Rð Þ of a resemblance function R is defined for all x, y in X by:
N Rð Þ x; yð Þ ¼ 1� R x; yð Þ. This operation is involutive, i.e. for all R in P Rð Þ we have:
N N Rð Þð Þ ¼ R. The complement of the similarity and dissimilarity functions will be
equal to their complementary dissimilarity and similarity functions (1), respectively:

N Dð Þ ¼ S; N Sð Þ ¼ D:

The lattice P Rð Þ with the complement N will be a normal De Morgan (Kleene)
algebra [5] where for any resemblance functions R1 and R2 De Morgan laws:

N R1 \R2ð Þ ¼ N R1ð Þ [N R2ð Þ; N R1 [R2ð Þ ¼ N R1ð Þ \N R2ð Þ;

and normality:

R1 \N R1ð Þ 
 R2 [N R2ð Þ;

are fulfilled.
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Entropy of Resemblance Functions. On the Kleene algebra of resemblance functions
one can introduce a measure of non-probabilistic entropy of these functions [5, 9, 15].
Similarity and dissimilarity functions such that S x; yð Þ ¼ D x; yð Þ ¼ 0:5 for all x 6¼ y in
X, have the maximal entropy and the uncertainty of making decision “x and y are
similar” is maximal for such functions [9].

3.4 Min-Transitivity and Hierarchical Clustering

A symmetric and reflexive fuzzy relation S : X� X ! 0; 1½ � is called a fuzzy similarity
(fuzzy equivalence) relation [29] if for all x, y, z in X it satisfies min-transitivity:

S x; zð Þ�min S x; yð Þ; S y; zð Þf g:

A dissimilarity function D complementary to min-transitive similarity function is
called an ultrametric and satisfies for all x, y, z in X the ultrametric inequality:

D x; zð Þ�max D x; yð Þ;D y; zð Þf g:

For any a 2 0; 1½ � the a-cut of fuzzy relation S defines a crisp relation Sa 
X� X as
follows: Sa ¼ x; yð Þ 2 X� XjS x; yð Þ� af g. a-cuts are nested such that from a[ b it
follows Sa 
 Sb.

Optimal and Invariant Hierarchical Clustering. All a-cuts of the min-transitive
similarity function (fuzzy equivalence relation) E : X� X ! 0; 1½ � are non-fuzzy
equivalence relations; hence they define nested partitions of the set X on equivalence
classes of these relations. These properties of fuzzy equivalence relations give rise to
consider hierarchical clustering [21] of the set X with similarity function S as a min-
transitive transformation of this similarity function S into a fuzzy equivalence relation
E. Tamura et al. [26] proposed to transform S into its transitive closure Ŝ that will be
fuzzy equivalence relation. It was shown [16, 19], that this method coincides with a
spanning tree clustering and with a version of the single linkage hierarchical clustering
algorithm.

Batyrshin [4, 6] showed that the solution of the problem of optimal approximation of

similarity function by fuzzy equivalence relation has the form E ¼ dF Sð Þ , i.e. it can be
presented as the min-transitive closure of similarity function F Sð Þ, where F is a “cor-
rection” of S such that F Sð Þ
 S. In addition, it was studied the problem of construction
of invariant hierarchical clustering algorithms which are invariant under monotone
transformations of similarity values and under initial numbering (indexing) of objects.

The solution of this problem also have been presented in the form E ¼ dF Sð Þ , where
F Sð Þ
 S. The parametric family of invariant corrections F has been proposed [4, 6].

3.5 Equivalent Resemblance Functions

Two resemblance functions R1 and R2 of the same type defined on the set X called
equivalent (by ordering) [3, 24] if for all x, y, u, v in X it is fulfilled:
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R1 x; yð Þ�R1 u; vð Þ if and only if R2 x; yð Þ�R2 u; vð Þ:

It is clear that two equivalent resemblance functions should have the same type.
A continuous, strictly increasing function u : 0; 1½ � ! 0; 1½ � such that u 0ð Þ ¼ 0 and

u 1ð Þ ¼ 1 is called an automorphism of the interval 0; 1½ �.
Proposition 1. If R is a resemblance function on X and u is an automorphism of the
interval [0,1] then the function R1 defined for all x, y in X by:

R1 x; yð Þ ¼ u R x; yð Þð Þ;

will be a resemblance function equivalent to R.
Below there are examples of simplest equivalent transformations of resemblance

functions:

R1 x; yð Þ ¼ R2 x; yð Þ; R1 x; yð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
R x; yð Þp

:

For example, instead of dissimilarity function

D x; yð Þ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

xi � �xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi � �xð Þ2

q � yi � �yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yi � �yð Þ2

q
0B@

1CA
2

vuuuut ;

one can use the equivalent dissimilarity function

D x; yð Þ ¼ 1
4

Xn

i¼1

xi � �xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi � �xð Þ2

q � yi � �yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yi � �yð Þ2

q
0B@

1CA
2

:

Equivalent Resemblance Functions and Invariant Clustering. Equivalence of (dis)
similarity functions supposes that the use of such functions in some classification
algorithm will give equivalent results. As such clustering algorithms one can use
hierarchical clustering algorithms invariant under monotone transformations of simi-
larity values discussed in previous section.

4 Correlation Functions

4.1 Correlation Functions and Correlation Triplets

In Sect. 3 we introduced the definition of correlation function as follows.
A function A : X� X ! �1; 1½ � is a correlation function (association measure) on

X if for all x, y in X it is symmetric:
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A x; yð Þ ¼ A y; xð Þ;

reflexive:

A x; xð Þ ¼ 1;

and negative: A x; yð Þ\0, for some x, y in X.
Correlation function will be called a weak correlation function if it does not satisfy

the inverse relationship property considered below. Here we consider and extend some
results introduced in [10].

Proposition 2. Suppose S and D are similarity and dissimilarity functions on X such
that for some x, y in X it is fulfilled: S x; yð Þ\D x; yð Þ, then the function defined for all
x, y in X by:

A x; yð Þ ¼ S x; yð Þ � D x; yð Þ; ð2Þ

is a correlation function. If S and D are complementary then the function A will be a
correlation function if for some x, y in X it is fulfilled: S x; yð Þ\0:5.

The obtained formula for A has the reasonable interpretation: the correlation
between x and y is positive if the similarity between them is greater than the dissim-
ilarity, and the correlation is negative in opposite case.

If the similarity S and dissimilarity D functions are complementary then the cor-
relation function A defined by (2) is called complementary to S and D. Complementary
functions S, D and A will be denoted as (S, D, A) and called a correlation triplet. From
the definition of the complementary (dis)similarity functions and from (2) it follows
that the similarity, dissimilarity and correlation functions from the correlation triplet
(S, D, A) can be obtained one from another for all x, y in X as follows:

S x; yð Þ ¼ 1� D x; yð Þ; D x; yð Þ ¼ 1� S x; yð Þ; ð3Þ

A x; yð Þ ¼ 2S x; yð Þ � 1; S x; yð Þ ¼ 1
2 A x; yð Þþ 1ð Þ: ð4Þ

A x; yð Þ ¼ 1� 2D x; yð Þ; D x; yð Þ ¼ 1
2 1� A x; yð Þð Þ: ð5Þ

4.2 Examples of Constructing Correlation Functions from (Dis)Similarity
Functions

Hamann coefficient AH (see Sect. 2.1). The Simple Matching similarity measure
SSM x; yð Þ ¼ aþ d

aþ bþ cþ d has the complementary dissimilarity function DSM x; yð Þ ¼
bþ c

aþ bþ cþ d. From (2) we obtain:

A x; yð Þ ¼ S x; yð Þ � D x; yð Þ ¼ aþ d
aþ bþ cþ d

� bþ c
aþ bþ cþ d

¼ aþ dð Þ � bþ cð Þ
aþ bþ cþ d

¼ AH :
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Yule’s Q association coefficient AY�Q (Sect. 2.1). The function SY x; yð Þ ¼ ad
adþ bc is the

similarity function and the function DY x; yð Þ ¼ bc
adþ bc is it’s complementary dissimi-

larity function. From (2) we obtain:

A x; yð Þ ¼ S x; yð Þ � D x; yð Þ ¼ ad
adþ bc

� bc
adþ bc

¼ ad � bc
adþ bc

¼ AY�Q:

Note that similarly to Yule’s Q association and Hamann coefficients it is easy to
construct the most of correlation functions considered for binary data [13].

Pearson’s product-moment correlation coefficient r (Sect. 2.2). The function

D x; yð Þ ¼ 1
4

Xn

i¼1

xi � �xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi � �xð Þ2

q � yi � �yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yi � �yð Þ2

q
0B@

1CA
2

;

is the dissimilarity function. From (5) obtain Pearson’s product-moment correlation
coefficient:

A x; yð Þ ¼ 1� 2D x; yð Þ ¼ 1� 1
2

Xn

i¼1

xi � �xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi � �xð Þ2

q � yi � �yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yi � �yð Þ2

q
0B@

1CA
2

¼
Pn

i¼1 xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi � �xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yi � �yð Þ2

q ¼ r:

Spearman’s rank correlation coefficient q (see Sect. 2.3). Consider the function:

D x; yð Þ ¼ 3
Pn

i¼1 xi � yið Þ2
n n2 � 1ð Þ :

It satisfies the properties of dissimilarity functions and from (5) we obtain the

Spearman’s rank correlation coefficient: A x; yð Þ ¼ 1� 2D x; yð Þ ¼ 1� 6
Pn

i¼1
d2i

n n2�1ð Þ ¼ q:

Kendall’s rank correlation coefficient s (Sect. 2.3). Consider the functions:

S x; yð Þ ¼
Pn�1

i¼1

Pn
j¼iþ 1 sij

n n� 1ð Þ=2 ¼ NC
n n� 1ð Þ=2 ;

D x; yð Þ ¼
Pn�1

i¼1

Pn
j¼iþ 1 dij

n n� 1ð Þ=2 ¼ ND
n n� 1ð Þ=2 :

They are the complementary similarity and dissimilarity functions, respectively,
such that S x; yð ÞþD x; yð Þ ¼ 1, and from (2) we obtain A x; yð Þ ¼ NC�ND

n n�1ð Þ=2 ¼ s.
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4.3 Strong (Invertible) Correlation Functions on the Sets with Involution
Operation

Initially the correlation function (association measure) was defined on the set with
involution operation [7] as function satisfying inverse relationship property considered
below. Such correlation functions will be called here strong or invertible correlation
functions. It is surprising that all correlation functions considered above are invertible.
For this reason, the correlation function which is not invertible will be called a weak
correlation function.

A function N : X ! X is called a reflection or a negation on X if it satisfies for all
x in X the involutivity property:

N N xð Þð Þ ¼ x;

and if it is not an identity function, i.e. for some x in X it is fulfilled: N xð Þ 6¼ x.
An element x in X such that N xð Þ ¼ x is called a fixed point and the set of all fixed

points of the reflection N on X is denoted as FP N;Xð Þ or FP Xð Þ.
Definition 1. [7] Let N be a reflection on X and V be a subset of XnFP Xð Þ closed
under N. A strong correlation function (association measure) on V is a function A :
V � V ! �1; 1½ � satisfying for all x, y in V the properties:

A x; yð Þ ¼ A y; xð Þ; ðsymmetryÞ
A x; xð Þ ¼ 1; ðreflexivityÞ
A x;N yð Þð Þ ¼ �A x; yð Þ: ðinverse relationshipÞ

The strong correlation function also will be referred to as an invertible correlation
function.

Theorem 1. The correlation function A from a correlation triplet (S, D, A) is invertible
if and only if the complementary similarity and dissimilarity functions satisfy the
following properties:

S x; yð Þþ S x;N yð Þð Þ ¼ 1; D x; yð ÞþD x;N yð Þð Þ ¼ 1:

These properties will be called bipolarity properties and corresponding functions
S and D will be called bipolar, see [8, 10]. The value 1 equals to the sum of the pole
values 0 and 1 of the interval [0, 1] of similarity and dissimilarity values. It is clear that
S is bipolar if and only if its complementary dissimilarity function D is bipolar.

Similarly, the property of inverse relationship of correlation function can be written
in the form of bipolarity:

A x; yð ÞþA x;N yð Þð Þ ¼ 0;

taking into account that 0 ¼ �1þ 1, i.e. zero equals to the sum of the pole values of the
interval �1; 1½ � of correlation values. With this terminology the Theorem 1 can be
formulated as follows: The correlation function A from a correlation triplet (S, D, A) is
bipolar if and only if the similarity and dissimilarity functions S and D are bipolar.
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The proof follows, for example, from (4):
A x; yð ÞþA x;N yð Þð Þ ¼ 2S x; yð Þ � 1þ 2S x;N yð Þð Þ � 1 ¼ 2 S x; yð Þþ S x;N yð Þð Þ � 1ð Þ,
and the first sum equals to zero if and only the last sum equals to zero.

For complementary (dis)similarity functions we have: S x; yð ÞþD x; yð Þ ¼ 1 and
bipolarity of these functions is equivalent to the properties:

D x; yð Þ ¼ S x;N yð Þð Þ; S x; yð Þ ¼ D x;N yð Þð Þ: ð6Þ

Hence to prove the inverse relationship property of the correlation function A it is
sufficient to show the fulfillment of the bipolarity or (6) properties for the (dis)similarity
functions S or D used in construction of A by means of (2), (4) or (5).

One can show that all correlation functions considered in Sect. 4.2 are invertible
with respect to suitable involutions. See some results in [10].

4.4 Constructing Strong Correlation Functions from Co-symmetric (Dis)
Similarity Functions

Similarity S and dissimilarity D functions are consistent on the set X with involution
N if for all x in X it is, respectively, fulfilled [9]:

S x;N xð Þð Þ ¼ 0; D x;N xð Þð Þ ¼ 1:

Resemblance function R is co-symmetric on the set X with involution N if for all
x, y in X it is fulfilled [9]:

R N xð Þ;N yð Þð Þ ¼ R x; yð Þ:

It was shown [7, 9] that a resemblance function R is co-symmetric if and only if for
all x, y in X it is fulfilled the following property:

R x;N yð Þð Þ ¼ R N xð Þ; yð Þ:

Proposition 3 [7]. Invertible correlation function is co-symmetric.

Proposition 4 [10]. Bipolar resemblance function is consistent and co-symmetric.
Theorem 1 says that for construction of invertible correlation function from its

complementary (dis)similarity functions by (2), (4) or (5) we need to have bipolar (dis)
similarity functions. To construct such functions for specific domain is not always easy.
From Proposition 4, one can conclude that consistent and co-symmetric (dis)similarity
functions may be not so restrictive than bipolar functions, and it is easier to construct
such (dis)similarity functions than bipolar functions. The following theorem shows
how to use them for constructing invertible correlation functions.

Theorem 2 [7]. Let N be a reflection on X and V be a nonempty subset of XnFP Xð Þ
closed under reflection N. Let S : V � V ! 0; 1½ � be a co-symmetric and consistent
similarity function, then the function A : V � V ! �1; 1½ � defined for all x, y in V by:
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A x; yð Þ ¼ S x; yð Þ � S x;N yð Þð Þ; ð7Þ

is a strong correlation function on V.
The formula (7) has the simple interpretation: the correlation between x and y is

positive if x is more similar to y than to its negation and the correlation is negative in
the opposite case.

More general methods of constructing invertible correlation functions (association
measures) have been proposed in [7, 9, 10]. These methods instead of difference
operation in (7) use pseudo-difference operations and instead of consistent similarity
functions in (7) they can use similarity functions satisfying weaker conditions.

5 Conclusion and Future Directions of Research

This work presents a short and updated version of a part of author’s Lecture on RAAI
Summer School 2019. The presented paper can be considered as complementary to the
[9]. It includes new methods of construction of correlation functions presented recently
on INES 2019 [10] and contains more examples of (dis)similarity and correlation
functions illustrating these methods. As a future work, it is supposed to extend the
developed approach on other types of association and relationships measures and on
other domains.
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