
Gennady S. Osipov
Aleksandr I. Panov
Konstantin S. Yakovlev (Eds.)

Tu
to

ria
l

LN
AI

 1
18

66

5th RAAI Summer School
Dolgoprudny, Russia, July 4–7, 2019
Tutorial Lectures

Artificial Intelligence

Lecture Notes in Artificial Intelligence 11866

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Gennady S. Osipov • Aleksandr I. Panov •

Konstantin S. Yakovlev (Eds.)

Artificial Intelligence
5th RAAI Summer School
Dolgoprudny, Russia, July 4–7, 2019
Tutorial Lectures

123

Editors
Gennady S. Osipov
Federal Research Center
“Computer Science and Control”
Moscow, Russia

Aleksandr I. Panov
Federal Research Center
“Computer Science and Control”
Moscow, Russia

Konstantin S. Yakovlev
Federal Research Center
“Computer Science and Control”
Moscow, Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-33273-0 ISBN 978-3-030-33274-7 (eBook)
https://doi.org/10.1007/978-3-030-33274-7

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustration: Illustration of different types of conflicts, taken from Stern et al. [37]. LNAI 11866,
p. 97. Used with permission.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5329-6234
https://orcid.org/0000-0002-9747-3837
https://orcid.org/0000-0002-4377-321X
https://doi.org/10.1007/978-3-030-33274-7

Preface

The 5th RAAI Summer School on Artificial Intelligence was held in Dolgoprudy,
Russia at the Moscow Institute of Physics and Technology (MIPT) during July 4–7,
2019. MIPT is one of the leading universities in Russia, especially renowned for its
achievements in the fields of physics, mathematics, and computer sciences. The school
was organized by the Russian Association for Artificial Intelligence which is a major
academic non-profit organization in the field of AI in Russia.

More than 100 participants from all over the world (mostly from Russia, but also
from Germany, Sweden, China, Turkey, Armenia, Syria, and Iran) took part in a
four-day marathon comprised of lectures, workshops, hackathons, industry sessions,
etc.

This tutorial book is composed of the selected tutorials by the invited speakers of
RAAI Summer School 2019 and of the best students’ papers. In total 20 student
submissions were received and only 5 of them were chosen by the international
Program Committee to be included in the book.

We appreciate the financial support of the school’s sponsors (i.e.: MIPT, Yandex,
Huawei, AimTech, NLMK, and Tinkoff) without which it would not have been
possible to invite top AI experts to deliver the talks and make the participation free for
all students.

July 2019 Gennady S. Osipov
Aleksandr I. Panov

Konstantin S. Yakovlev

Organization

Program Committee

Gennady S. Osipov
(Co-chair)

President of RAAI, head of Artificial Intelligence
Research Institute of Federal Research Center
“Computer Science and Control” of the Russian
Academy of Sciences, Russia

Ricardo Ribeiro Gudwin
(Co-chair)

University of Campinas, Brazil

Alexey Averkin Federal Research Center “Computer Science and
Control” of the Russian Academy of Sciences,
Russia

Ildar Batyrshin Instituto Politecnico Nacional, Mexico
Mikhail Burtsev Moscow Institute of Physics and Technology, Russia
Vadim Vagin National Research University MPEI, Russia
Michal Valko Inria Lille, France
Tamás Gergely Applied Logic Laboratory, Hungary
Vladimir Golenkov Belarusian State University of Informatics and

Radioelectronics, Belarus
Valeria Gribova Institute of Automation and Control Processes of the

Far Eastern Branch of RAS, Russia
Alexandr Eremeev National Research Nuclear University MPEI, Russia
Valery Karpov NRC “Kurchatov Institute”, Russia
Namkug Kim University of Ulsan, South Korea
Sergey Kovalev Rostov State Transport University, Russia
Vladik Kreinovich University of Texas at El Paso, USA
Sergey O. Kuznetsov Higher School of Economics in Moscow, Russia
Oleg Kuznetsov Trapeznikov Institute of Control Sciences, Russia
Hermann Ney RWTH Aachen University, Germany
Evgeny Osipov Luleå University of Technology, Sweden
Vladimir Pavlovsky Keldysh Institute of Applied Mathematics, Russia
Boris Palyukh Tver State Technical University, Russia
Witold Pedrycz University of Alberta, Canada
Andrei Raigorodskii Moscow Institute of Physics and Technology, Russia
Galina Rybina National Research Nuclear University MEPhI, Russia
Ruslan Salakhutdinov Carnegie Mellon University, USA
Vadim Stefanuk Institute for Information Transmission Problems

of RAS, Russia
Valery Tarasov Bauman University, Russia
Alexander Tulupyev St. Petersburg Institute for Informatics and Automation

of RAS, Russia

Andrey Filchenkov ITMO University, Russia
Igor Fominykh National Research University MPEI, Russia
Vladimir Khoroshevsky Federal Research Center “Computer Science and

Control” of the Russian Academy of Sciences,
Russia

Roni Stern Ben Gurion University of the Negev, Israel

Organizing Committee

Aleksandr I. Panov
(Co-chair)

Artificial Intelligence Research Institute of Federal
Research Center “Computer Science and Control”
of the Russian Academy of Sciences, Russia

Andrei Raigorodskii Moscow Institute of Physics and Technology, Russia
Konstantin Yakovlev Artificial Intelligence Research Institute of Federal

Research Center “Computer Science and Control”
of the Russian Academy of Sciences, Russia

Alena Suvorova Higher School of Economics in Saint-Petersburg,
Russia

Nikolay Bazenkov Trapeznikov Institute of Control Sciences, Russia
Elena Fontalina National Research Nuclear University MEPhI, Russia
Maria Koroleva Bauman University, Russia
Margarita Suvorova Artificial Intelligence Research Institute of Federal

Research Center “Computer Science and Control”
of the Russian Academy of Sciences, Russia

viii Organization

Contents

Tutorial Papers

Hybrid Intelligent Systems Based on Fuzzy Logic and Deep Learning 3
Alexey Averkin

Data Science: Similarity, Dissimilarity and Correlation Functions 13
Ildar Z. Batyrshin

Mathematical Foundation of Cognitive Computing Based
Artificial Intelligence . 29

Tamás Gergely and László Ury

A Review of Motivational Systems and Emotions in Cognitive
Architectures and Systems . 65

Ricardo R. Gudwin

Selected Challenges in Grammar-Based Text Generation
from the Semantic Web . 85

Simon Mille

Multi-Agent Path Finding – An Overview . 96
Roni Stern

Young Scientist School Papers

The Use of Reinforcement Learning in the Task of Moving Objects
with the Robotic Arm . 119

Ermek E. Aitygulov

Ontology Models in Intelligent System Engineering: A Case
of the Knowledge-Intensive Application Domain. 127

Karina A. Gulyaeva and Irina L. Artemieva

Automated Acquisition, Representation and Processing of Temporal
Knowledge in Dynamic Intelligent Systems . 140

Galina V. Rybina and Elena S. Fontalina

Natural Language Processing with DeepPavlov Library and Additional
Semantic Features . 146

Oleg Sattarov

Toward Faster Reinforcement Learning for Robotics:
Using Gaussian Processes . 160

Ali Younes and Aleksandr I. Panov

Author Index . 175

x Contents

Tutorial Papers

Hybrid Intelligent Systems Based
on Fuzzy Logic and Deep Learning

Alexey Averkin(&)

Federal Research Centre of Informatics and Computer Science of RAS, Moscow,
Vavilova, 42, Moscow, Russia
averkin2003@inbox.ru

Abstract. The purpose of this lecture is to establish the fundamental links
between two important areas of artificial intelligence - fuzzy logic and deep
learning. This approach will allow researchers in the field of fuzzy logic to
develop application systems in the field of strong artificial intelligence, which
are also of interest to specialists in the field of machine learning. The lecture also
examines how neuro-fuzzy networks make it possible to establish a link between
symbolic and connectionist schools of artificial intelligence. A lot of methods of
rule extraction from neural networks are also investigated.

Keywords: Deep learning � Neural networks � Rule extraction � Convolutional
neural network � Machine learning � Artificial intelligence

1 Introduction

This lection introduces the terms and definitions of machine learning that are relevant
to the context of extracting rules from classical and deep neural networks. It includes
the problem of classification as a whole, as well as rule-based teaching methods and
neural networks. Then, we will look at the current state of rule extraction from neural
networks. Here we define the problem as well as the main approaches to its solution
and present some of the existing rules extraction algorithms. The last part discusses
specific problems when working with deep neural networks. At this stage, we also
propose some algorithms that can successfully extract rules from these more complex
neural networks.

Artificial Neural Networks (ANN) are widely known parallel computing models
that exhibit excellent behavior in solving complex problems of artificial intelligence.
However, many researchers refuse to use them due to their being a “black box”. This
means that determining why a neural network makes a specific decision is a difficult
task.

This is a significant drawback, since it is difficult to trust the reliability of the
network that solves real problems without the ability to make acceptable decisions. For
example, this is the case in critical, in terms of safety, applications where hidden failure
can lead to life-threatening actions or huge economic losses.

In addition, studying how neural networks extract, store and transform knowledge
can be useful for future machine learning methods. For example, increasing the
transparency of neural networks can help detect the so-called hidden dependencies that

© Springer Nature Switzerland AG 2019
G. S. Osipov et al. (Eds.): Artificial Intelligence, LNAI 11866, pp. 3–12, 2019.
https://doi.org/10.1007/978-3-030-33274-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-33274-7_1

are not present in the input data, but appear as a result of their integration into the
neural network.

To overcome this lack of neural networks, researchers came up with the idea of
extracting rules from neural networks, which can became a bridge between symbolic
and connectionist models of knowledge representation in artificial intelligence.

Most authors focus on extracting the most understandable rules, and at the same
time they should mimic the behavior of the neural network as precisely as possible,
right up to an isomorphic representation of fuzzy rules in the form of a neuro-fuzzy
system. Since 1992, since Chang’s doctoral thesis on neuro-fuzzy networks, much
work has been done in this area, which ended with the creation of the direction of soft
computing. Since then, many methods for extracting rules from neural networks have
been developed and evaluated, and excellent results have been obtained for many
approaches.

However, despite the fact that there are quite a few available algorithms, none of
them has ever been explicitly tested in deep neural networks. In addition, most authors
focus on networks with only a small number of hidden layers.

Only in the last few years pioneering work has appeared on the analysis of specific
methods for extracting rules from deep-seated networks and new algorithms are pre-
sented that are capable of performing this task.

2 Methods for Extracting Rules from the Neural Network

In artificial intelligence, neural networks and rule-based learning methods are two
approaches to solving classification problems. Both methods are known variants of
studying models that predict classes for new data. For many tasks, NN rules-based
teaching methods excel in accuracy.

However, neural networks have one major drawback: the ability to understand what
a trained concept models, NN is not as strong as for rule based approaches. The
concepts learned by neural networks are difficult to understand because they are rep-
resented using a large set of parameters [1].

Increasing the transparency of neural networks by extracting rules has two main
advantages. First, it gives the user some insight into how the neural network uses input
variables to make a decision—and can even reveal hidden functions in NN when the
rules are used to explain individual neurons. Identification of particularly important
attributes or identification of the causes of neural network errors can be part of the
understanding. Trying to make opaque neural networks more understandable, methods
for extracting rules eliminate the gap between accuracy and clarity [2–4].

A more comprehensible form is required if, for example, a neural network is to be
used in safety-critical applications, such as aircraft and power plants. In these cases, it
is extremely important that the system user have the opportunity to check the output of
the artificial neural network under all possible input conditions [5].

To formalize the task of extracting rules from a neural network, we give Craven’s
definition: “Given the trained neural network and the data on which it was trained,
create a description of the network hypothesis that is understandable, but comes close
to the network prediction behavior” [6].

4 A. Averkin

To distinguish between different approaches for extracting rules from neural net-
works, Andrews introduced the widely used multidimensional taxonomy [5]. The first
dimension they describe is a form (for example, IF-THEN rules or a variant of fuzzy
production rules).

The third dimension is the quality of the rules extracted. Since quality is a broad
term, it is divided into several criteria, namely, accuracy, fidelity, consistency and
comprehensibility. While accuracy measures the ability to “correctly classify previ-
ously unseen examples”, validity measures the degree to which rules can “imitate” the
behavior of a neural network well [2].

The second dimension is called transparency and describes the strategy followed by
the algorithm for extracting rules. If the method uses a neural network only as a black
box, regardless of the architecture of NN, we call the pedagogical approach. If, instead,
the algorithm takes into account the internal structure of the neural network, we call this
approach decompositional. If the algorithm uses components of both pedagogical and
decomposition methods, then this approach is called eclectic.

The third dimension is the quality of the rules extracted. Since quality is a broad
term, it is divided into several criteria, namely, accuracy, fidelity, consistency and
comprehensibility. While accuracy measures the ability to correctly classify previously
unseen examples, validity measures the degree to which rules can imitate the behavior
of a neural network well [2].

Fidelity can be considered as accuracy relative to the output of NN. Consistency
can only be measured when the rule extraction algorithm involves learning the neural
network instead of processing the already trained NN: The extracted rule set is con-
sidered consistent when the neural network generates rule sets that correctly classify
test data for different training sessions. Comprehensibility is considered here as a
measure of the size of the rules, that is, short and few rules are considered more
understandable [5].

In this review we will focus only on the three criteria described. In accordance with
[7], we focus on methods that do not impose special requirements on how the neural
network was trained before the rules were extracted. In addition, only algorithms that
are capable of extracting rules from direct propagation neural networks, despite any
other characteristics of the architecture, are analyzed. According to [3] we want the
algorithm to offer a high level of generality.

Let us analyze some methods for extracting rules that meet the above character-
istics. We start with decomposition approaches. As mentioned earlier, decomposition
approaches for extracting rules from neural networks operate at the neuron level.
Usually, the decomposition method analyzes each neuron, and forms rules that imitate
the behavior of this neuron. For various reasons, we do not take into account all
available decomposition approaches in the subsequent review. We consider here the
KT algorithm, Tsukimoto’s approach and rule extraction through decision tree
induction (CRED algorithm).

The KT algorithm was one of the first decomposition approaches for extracting
rules from neural networks was presented in [29]. The KT algorithm describes each
neuron (layer by layer) with the IF-THEN rules by heuristically searching for com-
binations of input attributes that exceed the threshold of the neuron. The rewrite
module is used to obtain rules that refer to the original input attributes, and not to the

Hybrid Intelligent Systems Based on Fuzzy Logic and Deep Learning 5

outputs of the previous level. To find suitable combinations, the KT method applies a
search on the tree, that is, a rule (represented as a node in the tree) at this level generates
its child nodes by adding an additional available attribute [8]. In addition, the algorithm
uses a number of heuristics to stop the growth of a tree in situations where further
improvement is impossible. The algorithm searches for both confirming and non-
confirming rules. These are the rules that predict the triggering of a neuron if there is a
certain input configuration.

Polinomial Tsukimoto’s approach to extracting rules from a neural network is very
similar to the KT method. It also uses a layered decomposition algorithm to extract the
IF-THEN rules for each neuron, and also monitors the strategy for finding input
configurations that exceed the threshold of the neuron. The main advantage of the
Tsukimoto method is its computational complexity, which is polynomial, while the KT
method is exponential [9]. The algorithm achieves polynomial complexity by searching
for relevant terms using the space of multilinear functions. In the second stage, these
terms are used to create IF-THEN rules. Subsequently, if any, training data is used to
improve the accuracy of the rules. In the last step, the Tsukimoto algorithm attempts to
optimize clarity by removing non-essential attributes from the rules.

Another method for extracting rules through decision tree induction was introduced
in [10]. Their CRED algorithm converts each output unit of a neural network into a
solution, where tree nodes are tested using nodes of a hidden layer, and leaves represent
a class. After this, intermediate rules are extracted from this step. Then for each split
point used in these rules, another decision tree is created using split points on the input
layer of the neural network. In the new trees, the leaves do not directly choose the class.
Extracting the rules from the second decision tree leads us to the description of the state
of hidden neurons, consisting of input variables. As a final step, intermediate rules that
describe the output layer through the hidden layer and those that describe the hidden
layer based on the inputs of the neural network are replaced. Then they are combined
into construction rules that describe the output of the neural network based on its input
data.

The next group of pedagogical approaches of rule extraction based on validity
interval analysis, approaches for rule extraction using sampling and rule extraction by
reverse engineering the neural network.

Pedagogical approaches, as opposed to decomposition, do not take into account the
internal structure of the neural network. The motive in pedagogical approaches is to
treat trained NN at the lowest possible level of granularity, that is, as a whole or,
alternatively, as a black border [11]. Their idea is to extract the rules by directly
matching the input data with the output data [12]. More formally, we can assume that
pedagogical approaches have access only to the function of the neural network. This
function returns the output of the neural network for random input, but offers no
understanding of the internal structure of NN or any weights (except for the number of
inputs and outputs in NN). Having NN, this class of algorithms tries to find coherence
between possible input variations and outputs created by the neural network, while
some of them use specified training data, and some do not. As in the previous section,
we will not discuss all possible algorithms, but only briefly go over the main ones.

Rule extraction based on interval analysis approach uses the interval confidence
analysis (VIA), a kind of sensitivity analysis, to extract rules that mimic the behavior of

6 A. Averkin

a neural network [13]. The main idea of this method is to find the input intervals in
which the output signal NN is stable, that is, the predicted class is the same for slightly
changing input configurations. As a result, VIA provides the basis for reliably correct
rules.

Retrieving rules using sampling represents several methods that follow more or less
the same strategy for extracting rules from a neural network using sampling, that is,
they create an extensive set of data as a basis for extracting rules. After that, the
selected data set is submitted to a standard learning algorithm for generating rules that
simulate the behavior of a neural network. In [2] it is proved that the use of sample data
exceeds the use of training data in the problems of extracting rules.

One of the first methods that followed this strategy was the Trepan algorithm [14].
Trephine works very much like C4.5 by searching for split points on training data for
individual instances of different classes. The main differences from C4.5 are the best
strategy for expanding the tree structure, additional split points in the M-of-N style and
the ability to choose additional learning examples at deeper points of the tree. As a
result, the algorithm also creates a decision tree, which, however, can be transformed
into a set of rules, if necessary.

Another of these very general pedagogical approaches that use sampling to extract
rules from the neural network is presented in [13]. The algorithm, called Binarized
Input-Output Rule Extraction (BIO-RE), is capable of processing only NN with binary
or binarized input attributes. BIO-RE creates all possible input combinations and
requests them from the neural network. Using the NN output, a truth table is created for
each example. From the truth table it is just as easy to go to the rules, if necessary.

ANN-DT is another decision-based sampling method for describing the behavior of
a neural network [14]. The overall algorithm is based on CART with some variations in
the initial implementation. ANN-DT uses the sampling method to expand the training
set so that most of the training sample is still representative. This is “achieved using the
nearest neighbor method, in which the distance from the sample point to the nearest
point in the training data set is calculated” [14] and compared with the reference value.

The idea of creating a large set of instances at the first stage is also implemented by
the STARE algorithm [15]. Like BIO-RE, STARE also forms extensive truth tables for
learning. The advantage of STARE is its ability not only to handle binary and discrete
attributes, but also to work with continuous input data. For the formation of truth tables,
the algorithm rearranges the input data, while for each continuous attribute “it is
necessary to sample it over the entire range of values with a high frequency”.

The last pedagogical approach using a sample of educational data that we want to
briefly present here is KDRuleEx [4]. Like Trepan, the Sethi algorithm also generates
additional learning cases where the basis for the following separation points is too
small. KDRuleEx uses a genetic algorithm to create new training examples. The
technique leads to a decision table that can be converted, for example, into IF-THEN
rules, if desired.

Eclectic approach are the methods for extracting rules include elements of both
pedagogical and decompositional, then such methods are known as eclectic [3]. In
particular, eclectic approaches use knowledge of the internal architecture and/or weight
vectors in the neural network to complement the symbolic learning algorithm [5].

Hybrid Intelligent Systems Based on Fuzzy Logic and Deep Learning 7

The fast retrieval of rules from a neural network approach includes the FERNN
approach, which first tries to identify the corresponding hidden neurons, as well as the
corresponding inputs to the network. For this step, a decision tree is constructed using
the well-known algorithm C4.5. The rule extraction process leads to the generation of
M-of-N and IF-THEN rules. Having a set of properly classified teaching examples,
FERNN analyzes the activation values of each hidden unit. For each hidden unit,
activation values are sorted in ascending order. Then use the C4.5 algorithm to find the
best split point to form the decision tree. The most interesting from the point of view of
this study is the extraction of rules using neuro-fuzzy models On the other hand,
systems based on fuzzy rules (FRBS), developed using fuzzy logic, have become a
field of active research over the past few years. These algorithms have proven their
strengths in tasks such as managing complex systems, creating fuzzy controls. The
relationship between both worlds (ANN and FRBS) has been carefully studied. Indeed,
this is a close relationship, since equivalence results were obtained [17].

This link gives two immediate and important conclusions. First, we can apply what
was discovered for one of the models to the other. Secondly, we can translate the
knowledge embedded in the neural network into a more cognitively acceptable lan-
guage - fuzzy rules. In other words, we get a clear interpretation of neural networks
[18–20].

3 Extracting Rules from Deep Neural Networks

Since 2012, the revolution began networks of deep learning. Consider one of the first
and probably the most cited works in convolutional NN- Alexnet - it has 7 hidden
layers, 650,000 neurons, 60,000,000 parameters. Studied at 2 GPU for 1 week (Pic-
ture 1). Where do we get enough images to train her?

In 2010 dataset Imagenet has appeared. The emergence of Imagenet brought the
learning of neural networks to a whole new level. Parallel rapidly developed computing
power, which led computer vision to the kind that we know and love it now. Since
2010, the annual Imagenet competition has also been held, where for the first time in
2012, the Alexnet convolutional neural network won and, since then, the National
Assembly has not lost its positions. The last winner, the National Assembly presented
by scientists from China, contained 269 layers (Picture 2).

Picture 1. Alexnet - first deep learning champion in image recognition

8 A. Averkin

To semantic intepretation of the deep learning blackbox neuro-fuzzy networks can
be use used instead of full connection layer (Fig. 3). For example, ANFIS (adaptive
neuro-fuzzy system) [25] is a multilayer feed forward network. This architecture has
five layers such as fuzzy layer, product layer, normalized layer, de - fuzzy layer and
total output. The fixed nodes are represented by circle and the node s represented by
square are the adapted nodes. ANFIS gives the advantages of the mixture of neural
network and fuzzy logic.

Picture 2. Dataset Imagenet.

Fig. 3. Structure of ANFIS model for time series forecasting

Hybrid Intelligent Systems Based on Fuzzy Logic and Deep Learning 9

The aim of mixing fuzzy logic and neural networks is to de-sign an architecture,
which uses a fuzzy logic to show knowledge in fantastic way, while the learning nature
of neural network to maximize its parameters. ANFIS put forward by Jang in 1993
integrate the advantages of both neural network and fuzzy systems, which not only
have good learning capability, but can be interpreted easily also. ANFIS has been used
in many applications in many areas, such as function approximation, intelligent control
and time series prediction.

A hypothetical system can be created using two components [26]. The first is deep
learning feature generation which can be used to create representative features from
text directly. The deep learning system would initially be trained on unlabeled data.
Once these features are extracted from the deep learning system, they will be integrated
into fuzzy-inference systems. These systems can incorporate both the features detected
from the deep learning as well as subjective information from an analysts as a method
of biasing the system. These two pieces together can be used for classification pur-
poses. The final system would therefore be able to report both classification results and
the specific features and rules that were activated for the system to arrive at its con-
clusion. Additionally, the final system could be further biased by an analyst as a form
of feedback.

In previous part has shown that there is a wide variety of algorithms to describe a
one-hidden-layer neural network’s behavior by rules.. In [21] it was made a first step in
investigating the problem of extracting rules from deep neural networks. DNNs have a
few characteristics that, compared to one-hidden-layer neural networks, can complicate
the rule extraction process. For deep neural networks, the rule extraction problem is
very complex. We must not only to explain an output’s behaviour, but also to describe
the behaviour of a neuron in a hidden layer. In [21] authors give an overview of how
decompositional rule extraction algorithms like DeepRED or pedagogical approaches
can be used to analyse and explain the behaviour of a DNN.

Very interesting approach is suggested in [22, 23], where the author established a
fundamental connection between two important fields in artificial intelligence i.e. deep
learning and fuzzy logic. He shows, how deep learning could benefit from the com-
parative research by re-examining many trail-and-error heuristics in the lens of fuzzy
logic, and consequently, distilling the essential ingredients with rigorous foundations.
The author proposed deep generalized hamming network (GHN) as such not only lends
itself to rigorous analysis and interpretation within the fuzzy logic theory but also
demonstrates fast learning speed, well-controlled behaviour and state-of-the-art per-
formances on a variety of learning tasks. In [24] it is presented another approach for
incorporating such rule based methodology into neural networks by embedding fuzzy
inference systems into deep learning networks.

4 Conclusion

The study of fuzzy logic culminated in the end of the 20th century, and since then has
begun to decrease [27]. This decrease can be partly attributed to the lack of results in
machine learning. Extracting rules is one way to help understand neural networks.
These studies will pave the way for fuzzy logic researchers to develop applications in

10 A. Averkin

artificial intelligence and solve complex problems that are also of interest to the
machine learning community. Experience and knowledge in the field of fuzzy logic are
well suited for modeling ambiguities in big data, modeling uncertainty in the repre-
sentation of knowledge and providing transmission training with non-inductive infer-
ence, etc.

References

1. Craven, M., Shavlik, J.W.: Using sampling and queries to extract rules from trained neural
networks. In: ICML, pp. 37–45 (1994)

2. Johansson, U., Lofstrom, T., Konig, R., Sonstrod, C., Niklasson, L.: Rule extraction from
opaque models–a slightly different perspective. In: 5th International Conference on Machine
Learning and Applications. ICMLA 2006, pp. 22–27 (2006)

3. Craven, M., Shavlik, J.: Rule extraction: where do we go from here. In: University of
Wisconsin Machine Learning Research Group Working Paper, pp. 99–108 (1999)

4. Sethi, K.K., Mishra, D.K., Mishra, B.: KDRuleEx: a novel approach for enhancing user
comprehensibility using rule extraction. In: 2012 Third International Conference Intelligent
Systems, Modelling and Simulation (ISMS), pp. 55–60 (2012)

5. Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for extracting
rules from trained artificial neural networks. Knowl.-Based Syst. 8(6), 373–389 (1995)

6. Craven, M.W.: Extracting comprehensible models from trained neural networks. Ph.D.
thesis, University of Wisconsin-Madison (1996)

7. Thrun, S.: Extracting provably correct rules from artificial neural networks. Technical report,
University of Bonn, Institut für Informatik III (1993)

8. Fu, L.: Rule generation from neural networks. IEEE Trans. Syst. Man Cybern. 24(8), 1114–
1124 (1994)

9. Tsukimoto, H.: Extracting rules from trained neural networks. IEEE Trans. Neural Networks
11(2), 377–389 (2000)

10. Sato, M., Tsukimoto, H.: Rule extraction from neural networks via decision tree induction.
In: International Joint Conference on Neural Networks. Proceedings. IJCNN 2001, vol. 3,
pp. 1870–1875 (2001)

11. Tickle, A.B., Andrews, R., Golea, M., Diederich, J.: The truth will come to light: directions
and challenges in extracting the knowledge embedded within trained artificial neural
networks. IEEE Trans. Neural Networks 9(6), 1057–1068 (1998)

12. .
13. Thrun, S.: Extracting rules from artificial neural networks with distributed representations.

In: Advances in Neural Information Processing Systems, pp. 505–512 (1995)
14. Craven, M.W., Shavlik, J.W.: Extracting tree-structured representations of trained networks.

In: Advances in Neural Information Processing Systems, pp. 24–30 (1996)
15. Taha, I.A., Ghosh, J.: Symbolic interpretation of artificial neural networks. IEEE Trans.

Knowl. Data Eng. 11(3), 448–463 (1999)
16. Towell, G.G., Shavlik, J.W.: Extracting refined rules from knowledge-based neural

networks. Mach. Learn. 13(1), 71–101 (1993)
17. Setiono, R., Leow, W.K.: FERNN: an algorithm for fast extraction of rules from neural

networks. Appl. Intell. 12(1–2), 15–25 (2000)
18. Averkin, A., Yarushev, S.: Hybrid neural networks for time series forecasting. In:

Kuznetsov, S.O., Osipov, G.S., Stefanuk, V.L. (eds.) RCAI 2018. CCIS, vol. 934, pp. 230–
239. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00617-4_21

Hybrid Intelligent Systems Based on Fuzzy Logic and Deep Learning 11

http://dx.doi.org/10.1007/978-3-030-00617-4_21

19. Pilato, G., Yarushev, S.A., Averkin, A.N.: Prediction and detection of user emotions based
on neuro-fuzzy neural networks in social networks. In: Abraham, A., Kovalev, S., Tarassov,
V., Snasel, V., Sukhanov, A. (eds.) IITI’18 2018. AISC, vol. 875, pp. 118–125. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-01821-4_13

20. Averkin, G.P., Yarushev, S.A.: An approach for prediction of user emotions based on
ANFIS in social networks. In: Second International Scientific and Practical Conference
Fuzzy Technologies in the Industry, FTI 2018–CEUR Workshop Proceedings, pp. 126–134
(2018)

21. Zilke, J.R., Loza Mencía, E., Janssen, F.: DeepRED – rule extraction from deep neural
networks. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956,
pp. 457–473. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_29

22. Fan, L.: Revisit fuzzy neural network: demystifying batch normalization and ReLU with
generalized hamming network. In: NIPS 2017 (2017)

23. Fan, L.: Revisit Fuzzy Neural Network: Bridging the Gap between Fuzzy Ljgic and Deep
Learning. Technical Report (2017)

24. Bonanno, D., Nock, K., Smith, L., Elmore, P., Petry, F.: An approach to explainable deep
learning using fuzzy inference. In: Proceedings of the SPIE 10207, Next-Generation
Analyst V, 102070D (2017)

25. Jang, S.R.: ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man
Cybernet. 23, 665–685 (1992)

26. Bonanno, D., Nock, K., Smith, L., Elmore, P., Petry, F.: An approach to explainable deep
learning using fuzzy inference. In: Hanratty, T.P., Llinas, J. (eds.) Next-Generation
Analyst V. Proceedings of the SPIE, vol. 10207 (2017)

27. Goodfellow, I., et al.: Generative ad- versarial nets. In: Ghahramani, Z., Welling, M., Cortes,
C., Lawrence,N. D., Weinberger, K.Q., éditeurs: Advances in Neural Information Processing
Systems 27, pp. 2672–2680. Curran Associates, Inc. (2014)

12 A. Averkin

http://dx.doi.org/10.1007/978-3-030-01821-4_13
http://dx.doi.org/10.1007/978-3-319-46307-0_29

Data Science: Similarity, Dissimilarity
and Correlation Functions

Ildar Z. Batyrshin(&)

Instituto Politécnico Nacional, Centro de Investigación en Computación,
Av. Juan de Dios Bátiz S/N, Nueva Industrial Vallejo,

07738 Ciudad de México, CDMX, Mexico
batyr1@gmail.com

Abstract. The lecture presents a new, non-statistical approach to the analysis
and construction of similarity, dissimilarity and correlation measures. The
measures are considered as functions defined on an underlying set and satisfying
the given properties. Different functional structures, relationships between them
and methods of their construction are discussed. Particular attention is paid to
functions defined on sets with an involution operation, where the class of
(strong) correlation functions is introduced. The general methods constructing
new correlation functions from similarity and dissimilarity functions are con-
sidered. It is shown that the classical correlation and association coefficients
(Pearson’s, Spearman’s, Kendall’s, Yule’s Q, Hamann) can be obtained as
particular cases.

Keywords: Similarity measure � Pearson’s product-moment correlation �
Spearman’s rank correlation � Kendall’s rank correlation � Yule’s Q

1 Introduction

Data Science is the buzzword of the last decade. One of the goals of Data Science is to
extract knowledge, insights and usable information from various types of data. Data
Science courses typically include the topics on statistical data analysis, machine
learning methods and data mining. Correlation, association, similarity, relationship and
interestingness coefficients or measures play an important role in data analysis, clas-
sification tasks and data mining. Dozens of such measures have been created for
various types of data, and articles on these indicators are cited in hundreds and
thousands of papers [3, 13, 14, 20, 23–25, 27]. Such measures are defined for
dichotomous or real valued variables measured for sampling units, for rankings, binary
or real valued vectors of attributes, time series, fuzzy sets of different types, proba-
bilistic distributions, images, rating profiles etc. These measures used in information
retrieval, data classification, machine learning, analysis of relationships and decision
making in ecology, computational linguistics, image and signal processing, financial
data analysis, bioinformatics and social sciences. Often, measures introduced for one
type of data give misleading results when they are used for analysis of relationships
between data of another type [8]. There is a need in construction of a general theory of
similarity, correlation and association measures, which will be able to analyze general

© Springer Nature Switzerland AG 2019
G. S. Osipov et al. (Eds.): Artificial Intelligence, LNAI 11866, pp. 13–28, 2019.
https://doi.org/10.1007/978-3-030-33274-7_2

http://orcid.org/0000-0003-0241-7902
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-33274-7_2

properties of these measures independent on domain or for large class of data types.
Such a theory will make it possible to transfer the methods of constructing association
measures from one domain to another and propose such measures for new data types.

The first steps in construction of the general theory of similarity, dissimilarity and
correlation measures have been done in [7, 9, 10] where the fundamental results on
definition and construction of association measures (correlation coefficients) on sets
with involution operations have been proposed. It was shown that many known cor-
relation coefficients can be considered as functions defined on an underlying set with
involution operation and satisfying a simple set of properties. The general methods of
construction of these functions from suitable similarity or dissimilarity functions have
been proposed. These results can be considered as an alternative solution of the
Kendall’s problem of construction of general correlation coefficient [22]. Kendall
proposed a formula that gives as particular cases Pearson’s product-moment correla-
tion, Spearman’s and Kendall’s rank correlation coefficients but it was not clear how to
obtain from this formula other known association and correlation coefficients and how
to build correlation coefficients for other domains. The approach proposed in [7, 9, 10]
gives possibility to construct the classical correlation coefficients that can be obtained
from Kendall’s formula, the Yule’s Q and Hamann coefficients together with some
other association coefficients for binary data and gives a tool for constructing new
correlation coefficients on new domains.

Similarity, dissimilarity and correlation measures or coefficients are considered in
this lecture as functions defined on an underlying set X and satisfying some reasonable
sets of properties. Generally, these functions can be considered as association func-
tions, measuring (may be non-statistical) associations or relationships between objects.
The methods of construction of such functions, the transformations of them and rela-
tionships between them studied in [7, 9, 10]. This paper presents a short and updated
description of some part of author’s Lecture on RAAI Summer School 2019. Due to the
limit on the size of the paper it was not possible to include all topics discussed in [9]
and in this lecture. The presented paper can be considered as complementary to the [9].
It includes new methods of construction of correlation functions presented recently on
INES 2019 [10] and contains more examples of (dis)similarity and correlation func-
tions illustrating these methods. The list of references includes only several works.
Hundreds or thousands papers have been published on related topics during more than
one hundred years. Of course it was not possible to include most of them. Some useful
references can be found in the papers cited in the list of references.

2 Examples of Similarity Measures and Correlation
Coefficients for Different Domains

2.1 Binary n-Tuples

Consider n-tuple x ¼ x1; . . .; xnð Þ, xi 2 0; 1f g; i ¼ 1; . . .; n. It can represent an object
x described by n binary features, attributes or properties such that xi ¼ 1 if the object
x possesses the i-th attribute and xi ¼ 0 in the opposite case. Denote X the set of
attributes possessed by x. In statistics, a binary n-tuple can denote n measurements of a

14 I. Z. Batyrshin

dichotomous variable or property x for n sampling units. xi ¼ 1 denotes that the
property x fulfilled for the unit i, and xi ¼ 0 otherwise. We use here the first inter-
pretation of binary n-tuples. For two binary n-tuples x ¼ x1; . . .; xnð Þ; y ¼ y1; . . .; ynð Þ
denote:

• a the number of attributes possessed by both objects x and y, when xi ¼ yi ¼ 1;
• b the number of attributes possessed by x and not by y, when xi ¼ 1; yi ¼ 0;
• c the number of attributes possessed by y and not by x, when xi ¼ 0; yi ¼ 1;
• d the number of attributes not possessed by both objects x and y, when xi ¼ yi ¼ 0:

The numbers a and d usually referred to as the numbers of positive and negative
matches, respectively. Below are examples of similarity and association measures for
binary n-tuples [13]:

Jaccard similarity measure:

SJ ¼ a
aþ bþ c

¼ X \ Yj j
X [Yj j ;

Simple Matching similarity measure:

SSM ¼ aþ d
aþ bþ cþ d

¼ X \ Yj j þ �X \ �Yj j
n

;

Hamann coefficient:

AH ¼ aþ dð Þ � bþ cð Þ
aþ bþ cþ d

¼ X \ Yj j þ �X \ �Yj j � X \ �Yj j � �X \ Yj j
n

;

Yule’s Q association coefficient:

AY�Q ¼ ad � bc
adþ bc

¼ X \ Yj j � �X \ �Yj j � X \ �Yj j � �X \ Yj j
X \ Yj j � �X \ �Yj j þ X \ �Yj j � �X \ Yj j :

2.2 Real Valued n-Tuples

Consider n-tuples x ¼ x1; . . .; xnð Þ; y ¼ y1; . . .; ynð Þ with real valued components.

Cosine similarity measure:

cos x; yð Þ ¼
Pn

i¼1 xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x

2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 y

2
i

p ;

where xi; yi � 0, i ¼ 1; . . .; n.

Data Science: Similarity, Dissimilarity and Correlation Functions 15

Pearson’s product-moment correlation coefficient:

r ¼
Pn

i¼1 xi � �xð Þ yi � �yð ÞffiPn
i¼1 xi � �xð Þ2

q ffiPn
i¼1 yi � �yð Þ2

q ;

where �x ¼ 1
n

Pn
i¼1 xi, �y ¼ 1

n

Pn
i¼1 yi:

For both measures, it is supposed that denominators do not equal to zero.

2.3 Rankings

Consider two rankings of n objects x ¼ x1; . . .; xnð Þ; y ¼ y1; . . .; ynð Þ containing n dif-
ferent integer ranks, 1� xi; yi � n, i.e. “without ties”.

Spearman’s rank correlation coefficient [12, 18, 22]:

q ¼ 1� 6
Pn

i¼1 d
2
i

n n2 � 1ð Þ ;

where di ¼ xi � yi; i ¼ 1; . . .; n.

Kendall’s rank correlation coefficient [12, 18, 22] for real valued n-tuples x ¼
x1; . . .; xnð Þ; y ¼ y1; . . .; ynð Þ without ties, i.e. xi 6¼ xj, yi 6¼ yj for all i; j:

s ¼ NC � ND
n n� 1ð Þ=2 ;

where NC is the number of concordant pairs i; jð Þ calculated as follows:

NC ¼
Xn�1

i¼1

Xn

j¼iþ 1
sij; and sij ¼ 1; if xi � xj

� �
yi � yj
� �

[0
0; otherwise

�
;

and ND is the number of disconcordant pairs calculated as follows:

ND ¼
Xn�1

i¼1

Xn

j¼iþ 1
dij; and dij ¼ 1; if xi � xj

� �
yi � yj
� �

\0
0; otherwise

�
:

Note that only the ordering of the component values of n-tuples is used.

2.4 Finite Probabilistic Distributions

Suppose x ¼ x1; . . .; xnð Þ is a finite probabilistic distribution, i.e. xi � 0, for all

i ¼ 1; . . .; n, and
Pn
i¼1

xi ¼ 1.

16 I. Z. Batyrshin

Bhattacharyya coefficient is defined as follows [1]:

S x; yð Þ ¼
Xn

i¼1

ffiffiffiffiffiffiffi
xiyi

p
:

2.5 Kendall’s General Correlation Coefficient

Kendall [22] considered the problem of constructing general correlation coefficient.
For two n-tuples x ¼ x1; . . .; xnð Þ and y ¼ y1; . . .; ynð Þ he defined it as:

r ¼
Pn

i;j¼1 aijbijffiPn
i;j¼1 a

2
ij

Pn
i;j¼1 b

2
ij

q ;

where the values aij calculated from the values xi and xj, similarly bij calculated from yi
and yj, such that the following conditions are fulfilled: aij ¼ �aji, bij ¼ �bji, aii ¼
bii ¼ 0 for all i; j ¼ 1; . . .; n. As particular cases of this formula he obtained Spearman’s
and Kendall’s rank correlation coefficients, and Pearson’s product-moment correlation
coefficient. How to obtain other correlation coefficients from this formula does not
clear.

3 Similarity and Dissimilarity Functions

The examples of similarity measures and correlation coefficients considered in the
previous section show that there is a variety of such indicators for different types of
data. Generally, there are introduced tens of such measures and coefficients [13, 14,
27]. To analyze the general properties of these measures, possible relationships
between them and to study the methods of their construction in [9] it was proposed to
consider these measures as functions defined on a universal domain X and satisfying
some simple sets of properties. Three main types of such functions have been con-
sidered: similarity, dissimilarity and correlation functions, which can be used as models
of similarity, dissimilarity and correlation measures and coefficients, respectively.
Below we introduce these functions and consider some of their properties. More results
can be found in [9].

Further, for brevity, similarity and dissimilarity functions will be referred to as (dis)
similarity functions or as resemblance functions.

3.1 Definition of Similarity, Dissimilarity and Correlation Functions

Let X be a nonempty set that will be referred to as a universal domain or an underlying
set in definition of similarity and correlation functions. As X we can consider domain
specific for a considered data type: the set of all binary n-tuples, the set of all real
valued vectors of the length n, the set of all fuzzy sets defined on some domain X, the
set of some images or objects considered in some problem, etc.

Data Science: Similarity, Dissimilarity and Correlation Functions 17

A function S : X� X ! 0; 1½ � is called a similarity function on X if for all x, y in X
it is symmetric:

S x; yð Þ ¼ S y; xð Þ;

and reflexive:

S x; xð Þ ¼ 1:

A function D : X� X ! 0; 1½ � is a dissimilarity function on X if for all x, y in X it
is symmetric:

D x; yð Þ ¼ D y; xð Þ;

and irreflexive:

D x; xð Þ ¼ 0:

These functions are called complementary if for all x, y in X it is fulfilled:

S x; yð ÞþD x; yð Þ ¼ 1:

For complementary (dis)similarity functions we have:

S x; yð Þ ¼ 1� D x; yð Þ;D x; yð Þ ¼ 1� S x; yð Þ: ð1Þ

A function A : X� X ! �1; 1½ � is a correlation function (association measure) on
X if for all x, y in X it is symmetric:

A x; yð Þ ¼ A y; xð Þ;

reflexive:

A x; xð Þ ¼ 1;

and negative: A x; yð Þ\0 for some x, y in X.
Such correlation functions will be referred to as weak correlation functions if they

will not satisfy inverse relationship property considered in Sect. 4. In Sect. 4 we define
a strong (invertible) correlation function on a set X with involution operation.

It is easy to see that the indicators considered in the previous section belong to the
following classes of functions:

• Similarity functions: Jaccard, Simple Matching, Cosine (if all xi and yi have non-
negative values) similarity measures and Bhattacharyya coefficient;

• Correlation functions: Hamann and Yule’s Q coefficients, Pearson’s product-
moment correlation coefficient, Spearman’s and Kendall’s rank correlation coeffi-
cients, Cosine (if xi and yi can have positive and negative values).

18 I. Z. Batyrshin

3.2 Examples of Complementary (Dis)Similarity Functions

Jaccard (see Sect. 2.1):

SJ x; yð Þ ¼ a
aþ bþ c

¼ X \ Yj j
X [Yj j ;

DJ x; yð Þ ¼ bþ c
aþ bþ c

¼ X � Yj j
X [Yj j :

Simple Matching (Sect. 2.1):

SSM x; yð Þ ¼ aþ d
aþ bþ cþ d

¼ X \ Yj j þ �X \ �Yj j
n

;

DSM x; yð Þ ¼ bþ c
aþ bþ cþ d

¼ X � Yj j
n

¼ 1
n

Xn

1
xi � yij j:

Cosine (Sect. 2.2):

cos x; yð Þ ¼
Pn

i¼1 xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x

2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 y

2
i

p ; xi; yi � 0; i ¼ 1; . . .; n:

D x; yð Þ ¼ 1
2

Xn

i¼1

xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x

2
i

p � yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 y

2
i

p !2

:

Bhattacharyya (Sect. 2.4):

S x; yð Þ ¼
Xn

i¼1

ffiffiffiffiffiffiffi
xiyi

p
:

D x; yð Þ ¼ 1
2

Xn

i¼1

ffiffiffiffi
xi

p � ffiffiffiffi
yi

p� �2
:

The last dissimilarity function is called Hellinger discrimination, Matusita measure
or Squared-Chord distance.

3.3 Fuzzy Relations and Kleene Algebra of Resemblance Functions

Here, similarity and dissimilarity functions will be also referred to as resemblance
functions. A resemblance function is a symmetric function R : X� X ! 0; 1½ �, which
is reflexive or irreflexive. We will say that two resemblance functions have the same
type if both are reflexive or both are irreflexive.

Resemblance function R can be considered as a fuzzy relation [2, 17, 28, 29], given
by membership function: lR : X� X ! 0; 1½ �, where lR x; yð Þ is the strength of the
relation R between x and y. The properties of fuzzy relations can be extended on
resemblance functions.

Data Science: Similarity, Dissimilarity and Correlation Functions 19

Denote P Sð Þ;P Dð Þ and P Rð Þ the sets of all similarity, dissimilarity and resem-
blance functions, respectively, defined on the set X. We have P Sð Þ;P Dð Þ 	 P Rð Þ and
P Sð Þ [P Dð Þ ¼ P Rð Þ. Define the operations intersection \ and union [of resem-
blance functions R1 and R2 on the set X for all x, y in X as follows:

R1 \R2ð Þ x; yð Þ ¼ min R1 x; yð Þ;R2 x; yð Þf g;

R1 [R2ð Þ x; yð Þ ¼ max R1 x; yð Þ;R2 x; yð Þf g:

The set P Rð Þ will be a distributive lattice [11], partially ordered by the relation:

R1
R2 if R1 x; yð Þ�R2 x; yð Þ for all x; y inX.

The sets P Sð Þ and P Dð Þ are distributive sublattices of P Rð Þ. For all similarity
functions S1; S2 2 P Sð Þ and dissimilarity functions D1;D2 2 P Dð Þ it is fulfilled:

S1 \ S2; S1 [S2 2 P Sð Þ; D1 \D2;D1 [D2 2 P Dð Þ;

S1 \D1 2 P Dð Þ; S1 [D1 2 P Sð Þ:

Consider similarity and dissimilarity functions defined for all x, y in X by:

D0 x; yð Þ ¼ 0; D1 x; yð Þ ¼ 0; if x ¼ y
1; otherwise

�
:

S0 x; yð Þ ¼ 1; if x ¼ y
0; otherwise

�
; S1 x; yð Þ ¼ 1;

D0 is the least element of P Dð Þ and P Rð Þ, S1 is the greatest element of P Sð Þ and
P Rð Þ, S0 is the least element of P Sð Þ and D1 is the greatest elements of P Dð Þ.

The complement N Rð Þ of a resemblance function R is defined for all x, y in X by:
N Rð Þ x; yð Þ ¼ 1� R x; yð Þ. This operation is involutive, i.e. for all R in P Rð Þ we have:
N N Rð Þð Þ ¼ R. The complement of the similarity and dissimilarity functions will be
equal to their complementary dissimilarity and similarity functions (1), respectively:

N Dð Þ ¼ S; N Sð Þ ¼ D:

The lattice P Rð Þ with the complement N will be a normal De Morgan (Kleene)
algebra [5] where for any resemblance functions R1 and R2 De Morgan laws:

N R1 \R2ð Þ ¼ N R1ð Þ [N R2ð Þ; N R1 [R2ð Þ ¼ N R1ð Þ \N R2ð Þ;

and normality:

R1 \N R1ð Þ
 R2 [N R2ð Þ;

are fulfilled.

20 I. Z. Batyrshin

Entropy of Resemblance Functions. On the Kleene algebra of resemblance functions
one can introduce a measure of non-probabilistic entropy of these functions [5, 9, 15].
Similarity and dissimilarity functions such that S x; yð Þ ¼ D x; yð Þ ¼ 0:5 for all x 6¼ y in
X, have the maximal entropy and the uncertainty of making decision “x and y are
similar” is maximal for such functions [9].

3.4 Min-Transitivity and Hierarchical Clustering

A symmetric and reflexive fuzzy relation S : X� X ! 0; 1½ � is called a fuzzy similarity
(fuzzy equivalence) relation [29] if for all x, y, z in X it satisfies min-transitivity:

S x; zð Þ�min S x; yð Þ; S y; zð Þf g:

A dissimilarity function D complementary to min-transitive similarity function is
called an ultrametric and satisfies for all x, y, z in X the ultrametric inequality:

D x; zð Þ�max D x; yð Þ;D y; zð Þf g:

For any a 2 0; 1½ � the a-cut of fuzzy relation S defines a crisp relation Sa
X� X as
follows: Sa ¼ x; yð Þ 2 X� XjS x; yð Þ� af g. a-cuts are nested such that from a[b it
follows Sa
 Sb.

Optimal and Invariant Hierarchical Clustering. All a-cuts of the min-transitive
similarity function (fuzzy equivalence relation) E : X� X ! 0; 1½ � are non-fuzzy
equivalence relations; hence they define nested partitions of the set X on equivalence
classes of these relations. These properties of fuzzy equivalence relations give rise to
consider hierarchical clustering [21] of the set X with similarity function S as a min-
transitive transformation of this similarity function S into a fuzzy equivalence relation
E. Tamura et al. [26] proposed to transform S into its transitive closure Ŝ that will be
fuzzy equivalence relation. It was shown [16, 19], that this method coincides with a
spanning tree clustering and with a version of the single linkage hierarchical clustering
algorithm.

Batyrshin [4, 6] showed that the solution of the problem of optimal approximation of

similarity function by fuzzy equivalence relation has the form E ¼ dF Sð Þ , i.e. it can be
presented as the min-transitive closure of similarity function F Sð Þ, where F is a “cor-
rection” of S such that F Sð Þ
 S. In addition, it was studied the problem of construction
of invariant hierarchical clustering algorithms which are invariant under monotone
transformations of similarity values and under initial numbering (indexing) of objects.

The solution of this problem also have been presented in the form E ¼ dF Sð Þ , where
F Sð Þ
 S. The parametric family of invariant corrections F has been proposed [4, 6].

3.5 Equivalent Resemblance Functions

Two resemblance functions R1 and R2 of the same type defined on the set X called
equivalent (by ordering) [3, 24] if for all x, y, u, v in X it is fulfilled:

Data Science: Similarity, Dissimilarity and Correlation Functions 21

R1 x; yð Þ�R1 u; vð Þ if and only if R2 x; yð Þ�R2 u; vð Þ:

It is clear that two equivalent resemblance functions should have the same type.
A continuous, strictly increasing function u : 0; 1½ � ! 0; 1½ � such that u 0ð Þ ¼ 0 and

u 1ð Þ ¼ 1 is called an automorphism of the interval 0; 1½ �.
Proposition 1. If R is a resemblance function on X and u is an automorphism of the
interval [0,1] then the function R1 defined for all x, y in X by:

R1 x; yð Þ ¼ u R x; yð Þð Þ;

will be a resemblance function equivalent to R.
Below there are examples of simplest equivalent transformations of resemblance

functions:

R1 x; yð Þ ¼ R2 x; yð Þ; R1 x; yð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
R x; yð Þp

:

For example, instead of dissimilarity function

D x; yð Þ ¼ 1
2

ffiXn

i¼1

xi � �xffiPn
i¼1 xi � �xð Þ2

q � yi � �yffiPn
i¼1 yi � �yð Þ2

q
0B@

1CA
2

vuuuut ;

one can use the equivalent dissimilarity function

D x; yð Þ ¼ 1
4

Xn

i¼1

xi � �xffiPn
i¼1 xi � �xð Þ2

q � yi � �yffiPn
i¼1 yi � �yð Þ2

q
0B@

1CA
2

:

Equivalent Resemblance Functions and Invariant Clustering. Equivalence of (dis)
similarity functions supposes that the use of such functions in some classification
algorithm will give equivalent results. As such clustering algorithms one can use
hierarchical clustering algorithms invariant under monotone transformations of simi-
larity values discussed in previous section.

4 Correlation Functions

4.1 Correlation Functions and Correlation Triplets

In Sect. 3 we introduced the definition of correlation function as follows.
A function A : X� X ! �1; 1½ � is a correlation function (association measure) on

X if for all x, y in X it is symmetric:

22 I. Z. Batyrshin

A x; yð Þ ¼ A y; xð Þ;

reflexive:

A x; xð Þ ¼ 1;

and negative: A x; yð Þ\0, for some x, y in X.
Correlation function will be called a weak correlation function if it does not satisfy

the inverse relationship property considered below. Here we consider and extend some
results introduced in [10].

Proposition 2. Suppose S and D are similarity and dissimilarity functions on X such
that for some x, y in X it is fulfilled: S x; yð Þ\D x; yð Þ, then the function defined for all
x, y in X by:

A x; yð Þ ¼ S x; yð Þ � D x; yð Þ; ð2Þ

is a correlation function. If S and D are complementary then the function A will be a
correlation function if for some x, y in X it is fulfilled: S x; yð Þ\0:5.

The obtained formula for A has the reasonable interpretation: the correlation
between x and y is positive if the similarity between them is greater than the dissim-
ilarity, and the correlation is negative in opposite case.

If the similarity S and dissimilarity D functions are complementary then the cor-
relation function A defined by (2) is called complementary to S and D. Complementary
functions S, D and A will be denoted as (S, D, A) and called a correlation triplet. From
the definition of the complementary (dis)similarity functions and from (2) it follows
that the similarity, dissimilarity and correlation functions from the correlation triplet
(S, D, A) can be obtained one from another for all x, y in X as follows:

S x; yð Þ ¼ 1� D x; yð Þ; D x; yð Þ ¼ 1� S x; yð Þ; ð3Þ

A x; yð Þ ¼ 2S x; yð Þ � 1; S x; yð Þ ¼ 1
2 A x; yð Þþ 1ð Þ: ð4Þ

A x; yð Þ ¼ 1� 2D x; yð Þ; D x; yð Þ ¼ 1
2 1� A x; yð Þð Þ: ð5Þ

4.2 Examples of Constructing Correlation Functions from (Dis)Similarity
Functions

Hamann coefficient AH (see Sect. 2.1). The Simple Matching similarity measure
SSM x; yð Þ ¼ aþ d

aþ bþ cþ d has the complementary dissimilarity function DSM x; yð Þ ¼
bþ c

aþ bþ cþ d. From (2) we obtain:

A x; yð Þ ¼ S x; yð Þ � D x; yð Þ ¼ aþ d
aþ bþ cþ d

� bþ c
aþ bþ cþ d

¼ aþ dð Þ � bþ cð Þ
aþ bþ cþ d

¼ AH :

Data Science: Similarity, Dissimilarity and Correlation Functions 23

Yule’s Q association coefficient AY�Q (Sect. 2.1). The function SY x; yð Þ ¼ ad
adþ bc is the

similarity function and the function DY x; yð Þ ¼ bc
adþ bc is it’s complementary dissimi-

larity function. From (2) we obtain:

A x; yð Þ ¼ S x; yð Þ � D x; yð Þ ¼ ad
adþ bc

� bc
adþ bc

¼ ad � bc
adþ bc

¼ AY�Q:

Note that similarly to Yule’s Q association and Hamann coefficients it is easy to
construct the most of correlation functions considered for binary data [13].

Pearson’s product-moment correlation coefficient r (Sect. 2.2). The function

D x; yð Þ ¼ 1
4

Xn

i¼1

xi � �xffiPn
i¼1 xi � �xð Þ2

q � yi � �yffiPn
i¼1 yi � �yð Þ2

q
0B@

1CA
2

;

is the dissimilarity function. From (5) obtain Pearson’s product-moment correlation
coefficient:

A x; yð Þ ¼ 1� 2D x; yð Þ ¼ 1� 1
2

Xn

i¼1

xi � �xffiPn
i¼1 xi � �xð Þ2

q � yi � �yffiPn
i¼1 yi � �yð Þ2

q
0B@

1CA
2

¼
Pn

i¼1 xi � �xð Þ yi � �yð ÞffiPn
i¼1 xi � �xð Þ2

q ffiPn
i¼1 yi � �yð Þ2

q ¼ r:

Spearman’s rank correlation coefficient q (see Sect. 2.3). Consider the function:

D x; yð Þ ¼ 3
Pn

i¼1 xi � yið Þ2
n n2 � 1ð Þ :

It satisfies the properties of dissimilarity functions and from (5) we obtain the

Spearman’s rank correlation coefficient: A x; yð Þ ¼ 1� 2D x; yð Þ ¼ 1� 6
Pn

i¼1
d2i

n n2�1ð Þ ¼ q:

Kendall’s rank correlation coefficient s (Sect. 2.3). Consider the functions:

S x; yð Þ ¼
Pn�1

i¼1

Pn
j¼iþ 1 sij

n n� 1ð Þ=2 ¼ NC
n n� 1ð Þ=2 ;

D x; yð Þ ¼
Pn�1

i¼1

Pn
j¼iþ 1 dij

n n� 1ð Þ=2 ¼ ND
n n� 1ð Þ=2 :

They are the complementary similarity and dissimilarity functions, respectively,
such that S x; yð ÞþD x; yð Þ ¼ 1, and from (2) we obtain A x; yð Þ ¼ NC�ND

n n�1ð Þ=2 ¼ s.

24 I. Z. Batyrshin

4.3 Strong (Invertible) Correlation Functions on the Sets with Involution
Operation

Initially the correlation function (association measure) was defined on the set with
involution operation [7] as function satisfying inverse relationship property considered
below. Such correlation functions will be called here strong or invertible correlation
functions. It is surprising that all correlation functions considered above are invertible.
For this reason, the correlation function which is not invertible will be called a weak
correlation function.

A function N : X ! X is called a reflection or a negation on X if it satisfies for all
x in X the involutivity property:

N N xð Þð Þ ¼ x;

and if it is not an identity function, i.e. for some x in X it is fulfilled: N xð Þ 6¼ x.
An element x in X such that N xð Þ ¼ x is called a fixed point and the set of all fixed

points of the reflection N on X is denoted as FP N;Xð Þ or FP Xð Þ.
Definition 1. [7] Let N be a reflection on X and V be a subset of XnFP Xð Þ closed
under N. A strong correlation function (association measure) on V is a function A :
V � V ! �1; 1½ � satisfying for all x, y in V the properties:

A x; yð Þ ¼ A y; xð Þ; ðsymmetryÞ
A x; xð Þ ¼ 1; ðreflexivityÞ
A x;N yð Þð Þ ¼ �A x; yð Þ: ðinverse relationshipÞ

The strong correlation function also will be referred to as an invertible correlation
function.

Theorem 1. The correlation function A from a correlation triplet (S, D, A) is invertible
if and only if the complementary similarity and dissimilarity functions satisfy the
following properties:

S x; yð Þþ S x;N yð Þð Þ ¼ 1; D x; yð ÞþD x;N yð Þð Þ ¼ 1:

These properties will be called bipolarity properties and corresponding functions
S and D will be called bipolar, see [8, 10]. The value 1 equals to the sum of the pole
values 0 and 1 of the interval [0, 1] of similarity and dissimilarity values. It is clear that
S is bipolar if and only if its complementary dissimilarity function D is bipolar.

Similarly, the property of inverse relationship of correlation function can be written
in the form of bipolarity:

A x; yð ÞþA x;N yð Þð Þ ¼ 0;

taking into account that 0 ¼ �1þ 1, i.e. zero equals to the sum of the pole values of the
interval �1; 1½ � of correlation values. With this terminology the Theorem 1 can be
formulated as follows: The correlation function A from a correlation triplet (S, D, A) is
bipolar if and only if the similarity and dissimilarity functions S and D are bipolar.

Data Science: Similarity, Dissimilarity and Correlation Functions 25

The proof follows, for example, from (4):
A x; yð ÞþA x;N yð Þð Þ ¼ 2S x; yð Þ � 1þ 2S x;N yð Þð Þ � 1 ¼ 2 S x; yð Þþ S x;N yð Þð Þ � 1ð Þ,
and the first sum equals to zero if and only the last sum equals to zero.

For complementary (dis)similarity functions we have: S x; yð ÞþD x; yð Þ ¼ 1 and
bipolarity of these functions is equivalent to the properties:

D x; yð Þ ¼ S x;N yð Þð Þ; S x; yð Þ ¼ D x;N yð Þð Þ: ð6Þ

Hence to prove the inverse relationship property of the correlation function A it is
sufficient to show the fulfillment of the bipolarity or (6) properties for the (dis)similarity
functions S or D used in construction of A by means of (2), (4) or (5).

One can show that all correlation functions considered in Sect. 4.2 are invertible
with respect to suitable involutions. See some results in [10].

4.4 Constructing Strong Correlation Functions from Co-symmetric (Dis)
Similarity Functions

Similarity S and dissimilarity D functions are consistent on the set X with involution
N if for all x in X it is, respectively, fulfilled [9]:

S x;N xð Þð Þ ¼ 0; D x;N xð Þð Þ ¼ 1:

Resemblance function R is co-symmetric on the set X with involution N if for all
x, y in X it is fulfilled [9]:

R N xð Þ;N yð Þð Þ ¼ R x; yð Þ:

It was shown [7, 9] that a resemblance function R is co-symmetric if and only if for
all x, y in X it is fulfilled the following property:

R x;N yð Þð Þ ¼ R N xð Þ; yð Þ:

Proposition 3 [7]. Invertible correlation function is co-symmetric.

Proposition 4 [10]. Bipolar resemblance function is consistent and co-symmetric.
Theorem 1 says that for construction of invertible correlation function from its

complementary (dis)similarity functions by (2), (4) or (5) we need to have bipolar (dis)
similarity functions. To construct such functions for specific domain is not always easy.
From Proposition 4, one can conclude that consistent and co-symmetric (dis)similarity
functions may be not so restrictive than bipolar functions, and it is easier to construct
such (dis)similarity functions than bipolar functions. The following theorem shows
how to use them for constructing invertible correlation functions.

Theorem 2 [7]. Let N be a reflection on X and V be a nonempty subset of XnFP Xð Þ
closed under reflection N. Let S : V � V ! 0; 1½ � be a co-symmetric and consistent
similarity function, then the function A : V � V ! �1; 1½ � defined for all x, y in V by:

26 I. Z. Batyrshin

A x; yð Þ ¼ S x; yð Þ � S x;N yð Þð Þ; ð7Þ

is a strong correlation function on V.
The formula (7) has the simple interpretation: the correlation between x and y is

positive if x is more similar to y than to its negation and the correlation is negative in
the opposite case.

More general methods of constructing invertible correlation functions (association
measures) have been proposed in [7, 9, 10]. These methods instead of difference
operation in (7) use pseudo-difference operations and instead of consistent similarity
functions in (7) they can use similarity functions satisfying weaker conditions.

5 Conclusion and Future Directions of Research

This work presents a short and updated version of a part of author’s Lecture on RAAI
Summer School 2019. The presented paper can be considered as complementary to the
[9]. It includes new methods of construction of correlation functions presented recently
on INES 2019 [10] and contains more examples of (dis)similarity and correlation
functions illustrating these methods. As a future work, it is supposed to extend the
developed approach on other types of association and relationships measures and on
other domains.

Acknowledgements. This works partially supported by the project SIP 20196374 IPN and by
Organizing Committee of RAAI Summer School. The author thanks all organizers of RAAI
Summer School and editors of this book. Special thanks to doctors Gennady Osipov, Alexander
Panov and Maria Koroleva.

References

1. Aherne, F.J., Thacker, N.A., Rockett, P.I.: The Bhattacharyya metric as an absolute
similarity measure for frequency coded data. Kybernetika 34, 363–368 (1998)

2. Averkin, A.N., Batyrshin, I.Z., Blishun, A.F., Silov, V.B., Tarasov, V.B.: Fuzzy sets in
models of control and artificial intelligence. Pospelov, D.A. (ed.) Nauka, Moscow (1986). (in
Russian)

3. Batagelj, V., Bren, M.: Comparing resemblance measures. J. Classif. 12, 73–90 (1995)
4. Batyrshin, I.Z.: Methods of system analysis based on weighted relations, Ph.D. dissertation.

Moscow Power Engineering Institute, Moscow (1982). (in Russian)
5. Batyrshin, I.Z.: On fuzzinesstic measures of entropy on Kleene algebras. Fuzzy Sets Syst.

34, 47–60 (1990)
6. Batyrshin, I., Rudas, T.: Invariant hierarchical clustering schemes. In: Batyrshin, I.,

Kacprzyk, J., Sheremetov, L., Zadeh, L.A. (eds.) Perception-Based Data Mining and
Decision Making in Economics and Finance, pp. 181–206. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-36247-0_7

7. Batyrshin, I.Z.: On definition and construction of association measures. J. Intell. Fuzzy Syst.
29, 2319–2326 (2015)

Data Science: Similarity, Dissimilarity and Correlation Functions 27

http://dx.doi.org/10.1007/978-3-540-36247-0_7

8. Batyrshin, I., Monroy-Tenorio, F., Gelbukh, A., Villa-Vargas, L.A., Solovyev, V.,
Kubysheva, N.: Bipolar rating scales: a survey and novel correlation measures based on
non-linear bipolar scoring functions. Acta Polytechnica Hungarica 14, 33–57 (2017)

9. Batyrshin, I.: Towards a general theory of similarity and association measures: similarity,
dissimilarity and correlation functions. J. Intell. Fuzzy Syst. 36(4), 2977–3004 (2019)

10. Batyrshin, I.Z.: Constructing correlation coefficients from similarity and dissimilarity
functions. In: INES 2019, IEEE 23rd IEEE International Conference on Intelligent
Engineering Systems, Hungary, 25–27 April. IEEE, Gödöllő (2019)

11. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1967)
12. Chen, P.Y., Popovich, P.M.: Correlation: Parametric and Nonparametric Measures. Sage,

Thousand Oaks (2002)
13. Choi, S.S., Cha, S.H., Charles, C.T.: A survey of binary similarity and distance measures.

J. Syst. Cybern. Inform. 8, 43–48 (2010)
14. Clifford, H.T., Stephenson, W.: An Introduction to Numerical Classification. Academic

Press, New York (1975)
15. De Luca, A., Termini, S.: A definition of a nonprobabilistic entropy in the setting of fuzzy

sets. Inform. Control 20, 301–312 (1972)
16. Dunn, J.C.: A graph theoretic analysis of pattern classification via Tamura’s fuzzy relation.

IEEE Trans. Syst. Man Cybern. 3, 310–313 (1974)
17. Fodor, J.C., Roubens, M.R.: Fuzzy Preference Modelling and Multicriteria Decision

Support, vol. 14. Springer, Dordrecht (1994). https://doi.org/10.1007/978-94-017-1648-2
18. Gibbons, J.D., Chakraborti, S.: Nonparametric Statistical Inference, 4th edn. Dekker, New

York (2003)
19. Gower, J.C., Ross, G.J.S.: Minimum spanning trees and single linkage cluster analysis.

Appl. Stat. 18, 54–64 (1969)
20. Janson, S., Vegelius, J.: Measures of ecological association. Oecologia 49, 371–376 (1981)
21. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32, 241–254 (1967)
22. Kendall, M.G.: Rank Correlation Methods, 4th edn. Griffin, London (1970)
23. Legendre, P., Legendre, L.F.: Numerical Ecology, 2nd edn. Elsevier, Amsterdam (1998).

English edn.
24. Lesot, M-J., Rifqi, M., Benhadda, H.: Similarity measures for binary and numerical data: a

survey. Int. J. Knowl. Eng. Soft Data Paradigms 1, 63–84 (2009)
25. Rauschenbach, G.V.: Proximity and similarity measures. In: Analysis of Non-Numerical

Information in Sociological Research, Nauka, Moscow, pp. 169–202 (1985). (in Russian)
26. Tamura, S., Higuchi, S., Tanaka, K.: Pattern classification based on fuzzy relations. IEEE

Trans. Syst. Man Cybern. 1, 61–66 (1971)
27. Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for

association patterns. In: 8th Proceedings of Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 32–41 (2002)

28. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
29. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3, 177–200 (1971)

28 I. Z. Batyrshin

http://dx.doi.org/10.1007/978-94-017-1648-2

Mathematical Foundation of Cognitive
Computing Based Artificial Intelligence

Tamás Gergely(B) and László Ury

Applied Logic Laboratory, Budapest, Hungary
gergely@all.hu, uss@t-online.hu

Abstract. Today Cognitive computing and Artificial Intelligence (AI)
face the same challenges namely, simulate human thought processes and
mimic the way human brain works. The main difference between Cog-
nitive computing and AI is: (i) AI models various functions of human
intelligence, where computer is one of the modelling means though often
the most important one, i.e. intelligence is in the focus while (ii) Cog-
nitive computing models human thought processes and simulates the
hypothetical way human brain works as computation.

Our aim is to develop a theoretically and methodologically well-
founded theory of AI together with a unified computational theory, which
will provide specific tools and methods for Cognitive computing.

To achieve our goal we follow a methodology triangle, consisting of a
conceptual-philosophical, a system theoretical and a logical-mathematical
component. Computing will play a fundamental role in both system-
theoretical and logical-mathematical methodological components.

Hereby we concentrate on the development of the logical-mathematical
foundation in detail by the use of category theory, which provides an excel-
lent frame for defining all notions necessary for developing a universal the-
ory for computing, specification, cognitive reasoning, information, knowl-
edge and their various combinations. Foundation theory is by the use of
the so-called constitutions, the mathematical basis for the cognitive com-
putation. Logical foundation will be developed as a special constitution
and cognitive computing processes are defined by using situations, infons
and information. The main properties are discussed with some examples.

Keywords: Categorical theoretical foundation · Cognitive
computing · Specification theory · Cognitive reasoning · Computing
theory · Logic programming

1 Introduction

1.1 Artificial Intelligence Today

What is meant by artificial intelligence? So far not a single conceptual appara-
tus has been formed, nor there is a single conceptual justification and a single
scientifically based methodology. Besides, there has not yet been developed a
c© Springer Nature Switzerland AG 2019
G. S. Osipov et al. (Eds.): Artificial Intelligence, LNAI 11866, pp. 29–64, 2019.
https://doi.org/10.1007/978-3-030-33274-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-33274-7_3

30 T. Gergely and L. Ury

generally accepted philosophical foundation in the form of such epistemology
and ontology, which would consider and respond to the challenges that arise
during the development of the field of artificial intelligence (AI).

The High-Level Expert Group on AI of the European Commission dealing
with the definition of AI provides the following definition for AI [1] as a scien-
tific discipline: AI includes several approaches and techniques, such as machine
learning (of which deep learning and reinforcement learning are specific exam-
ples), machine reasoning (which includes planning, scheduling, knowledge repre-
sentation and reasoning, search, and optimization), and robotics (which includes
control, perception, sensors and actuators, as well as the integration of all other
techniques into cyber-physical systems).

Today, modern dictionary definitions focus on AI since it is a field that applies
computer science and how machines can imitate human intelligence (human-like
rather than becoming human). The English Oxford Living Dictionary [31] gives
this definition: The theory and development of computer systems able to perform
tasks normally requiring human intelligence, such as visual perception, speech
recognition, decision-making, and translation between languages.

At the same time The Encyclopedia Britannica defines artificial intelligence
as it the ability of a digital computer or computer-controlled robot to perform
tasks commonly associated with intelligent beings. The term is frequently applied
to the project of developing systems endowed with the intellectual processes char-
acteristic of humans, such as the ability to reason, discover meaning, generalize,
or learn from past experience [32].

The term artificial intelligence is frequently applied to systems endowed with
the intellectual processes characteristic of humans, such as the ability to make
decisions, to solve problems, to understand texts, to recognize pictures, to learn
from an actual activity and a past experience, etc. There are different technolo-
gies that get ranked as artificial intelligence and there are different types of AI.

The current wave of AI innovation focuses on several real-life applications
of artificial intelligence that often start with words such as smart, intelligent,
predictive and, indeed, cognitive, depending on the exact application and vendor.
One major issue is that artificial intelligence is indeed a broad concept and
reality, covering many technologies and realities that lead to misunderstandings
about what it exactly means. Some people are actually speaking about machine
learning when they talk about AI. The most advertised AI tools by Google,
Facebook etc. are mainly or only machine learning and, mostly, deep learning
related. This is why the wide public thinks that all new AI applications are
carried out only with this type of machine learning. However, neither machine
learning, nor deep learning are synonyms for AI. They are only one of the many
areas of AI research. Moreover, deep learning is a technology of the 1980’s while
trained with more data, 1970’s neural networks with hidden layers gave better
results; and then it was renamed as deep learning and was hyped as such.

Today, AI is a conglomerate of techniques, technologies and of various
research and development directions. Machine learning and especially deep
learning are the most common methods. However, deep learning technology, from

Foundation of Cognitive Computing Based AI 31

the application point of view has been close to its limit. Artificial intelligence
urgently needs to be promoted to a new stage, and to achieve breakthroughs in
the development of an appropriate underlying theory.

1.2 Cognitive Computing

As AI applications became more and more widespread, a new name, Cognitive
computers appeared. This actually is a renaming that has not brought much
new to the content of AI. Cognitive computing is a term really, that has been
popularized by IBM mainly to describe the current wave of artificial intelligence
with a twist of purpose, adaptiveness, self-learning, contextuality and human
interaction. The latter, the human one is the key here and without a doubt, also
easier to digest than all those AI-related science fiction scenarios.

Note that thanks to science fiction, many people think of artificial intelli-
gence as a computer or robot thinking like a person, including self-awareness
and independent will. Instead, what we call cognitive computing uses the ideas
behind neuroscience and psychology to augment human reasoning with better
pattern matching while determining the optimal information a person needs to
make decisions.

However, if we peel off the marketing catches from the notion of Cognitive
computing used by IBM then we get back AI with one important difference.
Namely, Cognitive computing emphasizes the augmentation of human intelli-
gence instead of mimicking it. This is why it is claimed that IBM’s Watson
is armed with perception and understanding that is refined and expanded with
every interaction. Moreover, it should be appropriate for supporting the solution
of problems that encompass enormous amounts of information and discernment.

Cognitive computing is primarily a marketing term indicating a computing
service that is able to understand, reason and learn from the data it is sup-
plied with. In essence, it is the application of machine learning and artificial
intelligence to data processing. IBM is the flag bearer for cognitive computing.
Presumably, it wanted a term that differentiated its Watson cloud based service
from the ocean of other such services. IBM has its own definition of cognitive
computing, cited below [8]:

Cognitive computing refers to next-generation information systems that
understand, reason, learn, and interact. These systems do this by continually
building knowledge and learning, understanding natural language, and reasoning
and interacting more naturally with human beings than traditional programmable
systems.

IBM’s volatile, often science-fiction-like allegations have provoked serious
criticism (see e.g. Schank [23]) . Independently from IBM’s way Cognitive com-
puting has its history, see for a brief state of the art Gutierrez-Garcia and López-
Neri [15]. The notion of Cognitive computing appeared in Schank [22], where
natural language understanding and knowledge structures were in the focus. e
structures were in the focus.

Valiant [25] defined cognitive computing as a discipline that links together
neurobiology, cognitive psychology and artificial intelligence. Brasil et al. [6] state

32 T. Gergely and L. Ury

that cognitive computing is a collection of emerging technologies inspired by the
biological processing of information in the nervous system, human reasoning,
decision making, and natural selection.

Today, Cognitive computing refers to the ability of automated systems to
handle conscious, critical, logical, attentive, reasoning modes of thought. Seman-
tic computing facilitates and automates the cognitive processes involved in defin-
ing, modelling, translating, transforming, and querying the deep meanings of
words, phrases, and concepts. This claim is very similar to that of AI.

Therefore, Cognitive computing faces the same challenges that AI does. Cog-
nitive computing aims to simulate human thought processes and mimic the way
human brain works, addressing complex situations are characterized by ambi-
guity and uncertainty. AI aims to perform operations analogous to learning and
decision making in humans. Intelligent personal assistants can recognize voice
commands and queries, respond with information, or take desired actions quickly,
efficiently, and effectively.

Today the main difference between Cognitive computing and AI is the
following:

1. AI aims to model various functions of human intelligence with different levels
of detail and abstraction, where computer is one of the modelling means but
very often the most important one, i.e. intelligence is in the focus while,

2. Cognitive computing aims to model human thought processes and simulate
the hypothetical way the human brain works, i.e. computing is in the focus.

The fundamental shortcoming of the two areas is that neither has a uniform
system of concepts, theoretical and methodological foundations. Instead, both
consist of a conglomerate of technologies and methods. For example, Cognitive
computing would also need a unified computational theory that should be devel-
oped with specific tools and methods that support the modelling of the main
features of cognizing and thinking processes. However, such theory does not exist
as yet, though there had been some attempts, see e.g. Amir [3].

At the same time there is a complex approach to provide a theoretical
framework for cognitive computing together with some advances in the study
of cognitive computing theories and methodologies in cognitive informatics, soft
computing, and computational intelligence, see Wang [27] and [28]. This app-
roach provides conceptual and behavioural models of cognitive computing. It
also introduces mathematical tools such as inference algebra and denotational
mathematics to deal with the design and implementation of cognitive computing
systems.

Note Wang [27] defines Cognitive computing as the conglomerate of more
intelligent technologies beyond imperative and autonomic computing, which
embodies major natural intelligence behaviours of the brain such as thinking,
inference, learning, and perceptions.

However, it is important to emphasize that the formal modelling of the
cognitive processes aims to mimic the fundamental mechanisms of the brain.
This approach develops a model for the brain architecture called Layered Ref-
erence Model of the Brain (LRMB), see Wang [26]. This model formally and

Foundation of Cognitive Computing Based AI 33

rigorously explains the functional mechanisms and cognitive processes of the
natural intelligence. A comprehensive and coherent set of mental processes and
their relationships is identified in LRMB, that encompasses 37 cognitive pro-
cesses at six layers known as the sensation, memory, perception, action, meta
cognitive, and higher cognitive layers from the bottom-up. The modelling tools
are computers. Therefore this approach leads to the area where the processes
of human intelligence are to be modelled by the use of computers. This is the
area of computational mind. Computationalism is the main way of seeing the
cognitive processes. Computationalism is a family of theories about the mecha-
nisms of cognition. The main relevant evidence for testing computational theories
comes from neuroscience, though psychology and AI are relevant, too. Compu-
tationalism comes in many versions, which continue to guide competing research
programs in philosophy of mind as well as psychology and neuroscience. Com-
putation theoretic approach is grounded in the idea that the mind, in many
ways works like a digital computer; the mind is parsing internal representations
(symbols) in algorithmic ways.

In order to appropriately use the notion of computing it is important to
clarify its nature. Computation is an ambiguous concept and computer scientists,
philosophers and cognitive scientists who use the concept can contest some claim
using it and do not realise they are not actually in disagreement with each other,
even though it looks as if they were. For a deep and detailed analysis of the notion
of computing we refer to Fresco [10].

Moreover, instead of going into detail review of the main approaches to the
computation theory of mind we refer to some good works that represent the
current state of the art in this area, such as Ivancevic [17], Milkowski [20] and
Piccinini [21].

1.3 What We Offer

Our aim is to develop a theoretically and methodologically well founded theory of
AI, where this abbreviation means Amplifier for Intelligence. This AI will be able
to act as genuine problem-solving companion understanding and responding to
complex problem situations. This AI system will be able to act either as a partner
system for cooperative functioning with a human agent or as an autonomous
cognitive system for a well-defined problem area. As to become a cooperative
partner for human agents, the system has to function very similarly to humans.
e.g., it should be able to communicate and understand natural language, reason
in a compatible way, learn from its experience, etc. AI will be able to cognize
the environment and itself including the co-operative partner. Namely, this AI
will be able to self-reflection.

The cognizing activity may run on a wide scale from learning objects, events
till discovering various tendencies and regularities. This expected activity would
realise the data → information → knowledge transformation and processing at
different computation levels. Special attention will be devoted to the knowledge
change and management that results during the data → information → knowl-
edge transformation and processing.

34 T. Gergely and L. Ury

The long-term vision is to develop a theoretically well-founded, coherent,
integrated theory, technology and design methodology for a new computation
paradigm – the so-called COgnitive Intelligence co-Operating System (COIOS).
COIOS supports Collaborative Intelligence, where humans and AI systems are
joining their abilities. Therefore, in our case AI will be a symbiosis rather, instead
of a replacement.

Unlike traditional computers within the von Neumann paradigm, COIOS-
systems will be able to interpret and gain novel insights from data, solve prob-
lems and make decisions without explicit algorithmic instructions from humans.
Instead of being programmed to perform pre-defined tasks, they will act as gen-
uine problem-solving companions able to understand and respond to complex
problem situations. Unlike data-centric processing of the traditional computers
COIOS analyses data and processes information in a cognitive way and deals
with knowledge in a goal-oriented way. Essentially this processing targets the
reduction of the uncertainty of a problem situation of ignorance.

According to the proposed vision COIOS-systems take problem situations
with various uncertainties as their input, and they resolve or decrease these
uncertainties via cognitive reasoning, without relying on predefined problem-
solving algorithms known in advance. Bearing this in mind COIOS will realise
a reasoning-based, uncertainty-driven, upper-level computation.

To achieve our goal we follow a methodology triangle which consists of a
conceptual-philosophical, a system theoretical and a logical-mathematical com-
ponent. In the proposed approach computing will also play a fundamental role
in both system-theoretic and logical-mathematical methodological components.
The conceptual-philosophical component provides a formal epistemology with
cognizing agents and ontology characterising the world to be cognized. Formal
epistemology deals with data analysis, information extraction and knowledge
acquisition with respect to an actual problem situation and the active cognizing
agent. System-theoretic component provides the main principles for the organi-
sation of cognizing processes, which are controlled by directed thinking. Directed
thinking is goal-oriented and connected with a cognizing agent’s problem solving
activity.

It will be developed by the use of category theory, which provides an excellent
frame for defining all notions necessary for elaborating a universal theory for
computing, specification, cognitive reasoning, information, knowledge and there
various combinations. The foundation theory is provided by the use of so-called
constitutions, which form the mathematical basis for cognitive computation. The
logical foundation will be developed as a special constitution.

Two constructive versions of set theory will be provided:

1. clFSA theory of finite sets with atoms and classes,
2. cclFSA theory of finite sets with atoms, classes and co-classes.

It is shortly described how clFSA permits to describe the entire traditional
computation theory including e.g. program semantics, computation power of
various programming languages, various programming paradigms like instruc-
tional, declarative programming and program specification. It is shown how

Foundation of Cognitive Computing Based AI 35

cclFSA can support the description of the programs that use metadata called
information and knowledge in a strong mathematical frame.

It is shown how various specific approaches such as granular programming
or probabilistic programming can be represented in the proposed approach.

In a general setting, the mathematical theory provides an important method
to extend a given theory according to specific needs. This method is the inductive
and co-inductive extension in constitutions.

By the use of the proposed mathematical tools it is shown how cognitive
reasoning can be handled in the proposed logical-mathematical framework. The
main specificities of cognitive reasoning for cognitive computing are connected
with the possibility to handle

1. The dynamic nature of the reasoning-based cognitive computation processes.
The dynamic characterisation of the cognitive computation processes will be
based on the representation of a cognitive reasoning process as a motion from
ignorance to knowledge.

2. Spatial strategies, which permit to combine data driven statistical and cog-
nitive data processing with the logic based modification calculi.

3. The semantic or contentual aspects of reasoning, whereas traditional instruc-
tional and declarative programming articulate statements inferentially,
according only to their shape, without regard to reference. A referential rea-
soning is proposed, which is based on a special dual (semantic-syntactic)
approach, which uses a set of axioms, which entirely and uniquely describes
the semantic structure. The latter is considered as a model of our initial
knowledge about the subject domain.

4. Indeterminacy and temporal contradictions of the cognitive computation pro-
cesses in contrast to correctness of traditional instructional and declarative
programs. A special formal approach can be provided to deal with the logical
contradictions.

5. It provides a scientifically well-founded general approach that possesses meth-
ods and tools for modelling, designing and generating information processing
responsible for the formation of cognitive processes of artificial cognitive sys-
tems. The proposed approach, at the same time, provides an innovative logical
foundation for the entire area of cognitive reasoning and it provides support
for cognitive system development at the following three levels of abstraction:
conceptual, formal, and realisational levels.

Cognitive computing processes will be defined using situations, infons and infor-
mation. However, the well-known constructions of situations, infons and infor-
mation (see e.g. Barwise [5] or Devlin [9]) are used in a modified way, which will
be formalised by the use of the proposed methods of extension. Here Cognition
Kernel will be one of the main constructs, which generalises (i) the information
theory and the corresponding data analysis together with a referential reasoning
system, and (ii) the multilevel organisation of situation related information and
knowledge management processes. Thus Cognitive Kernel will provide an ade-
quate framework to handle the data → information → knowledge transformation
and processing. Cognitive computing is defined by the use of Cognition Kernel.

36 T. Gergely and L. Ury

2 The Mathematical Foundation

Considering the formalism used in the present paper we first of all assume that
the reader is familiar with the basics of set theory and with a basic course on
mathematical logic. Moreover, reading Sect. 2 also requires familiarity with a
basic course in category theory. However, the reader not familiar with the latter
can avoid Sect. 2 and can read the paper as a constructive specification theory
based on the theory of finite sets which uses a special first order language as a
specification language.

2.1 Constitution Theory

The basic foundational construct is the so-called constitution theory, which pro-
vides a logical and category theoretical frame for the development of the cogni-
tive computation theory within the framework of the proposed approach. The
first order logic provides the operative tool-set for the constitution theory. Com-
pact constitutions form an important class, which provides the foundation for
(i) descriptive theory to describe and investigate various aspects of costructivity
necessary for any type of computations, (ii) specification theory to provide a
framework for specifying computational objects.

Definition 1. A pre-constitution P is a pair (Uni,Cons) where

1. Uni is a category.
2. Cons is a subcategory of Uni such that ObCons = ObUni.
3. For any diagram

•

•
c

��

f
�� •

where c ∈ Mor Cons there exists its colimit

• f ′
�� •

•
c

��

f
�� •

c′

��

such that c′ also belongs to Mor Cons. This property is called hierarchy
persistence property of the pre-constitution P.

Example 1. Let First denote the category of all first order theories and theory
morphisms between them. A morphism Th1 → Th2 is called conservative iff it is
a composition of a renaming map and of a conservative extension in the original
sense. Let FCons denote the subcategory of First generated by the class of all
conservative theory morphisms. It is an easy exercise using Craig interpolation
theorem to prove that the pair (First ,FCons) is a pre-constitution, further on
be denoted as FOL.

Foundation of Cognitive Computing Based AI 37

Example 2. The following logical systems satisfy the Craig interpolation prop-
erty and hence their theories with the conservative extensions form a pre-
constitution:

– classical first order logic;
– classical higher-order logic;
– ω-logic;
– intuitionist first order logic;
– intuitionist type theory;
– classical temporal logic;
– intuitionist temporal logic.

Example 3. In Burstall, Goguen [7] introduced the notion of institution to give
a categorical-theoretical approach to model theory. For an institution can be
defined the interpolation property as well. It can easily prove that institutions
with interpolation property form a pre-constitution.

Example 4. (For details see Gergely, Ury [12]) It is well-know that a Cartesian-
closed category having a subobject classifier is called topos. A topos form a
pre-constitution. Moreover if Uni is an arbitrary finitely cocomplete category
within which partial maps are representable then (Uni ,Mon(Uni)) is a pre-
constitution. Accordingly a famous theorem partial maps in topoi are repre-
sentable. For details see Gergely, Ury [12]

Definition 2. A constitution L on a pre-constitution P = (Uni, Cons) is a
function L from Uni to the category Mor(Uni) such that:

1. if Th is an object of Uni then L(Th) is a conservative morphism over Th
called the superstructure of Th;

2. if f is a morphism then π1(L(f)) = f ;
3. for all Th ∈ Obj (Uni) the following diagram is a colimit with respect to

(L(Th), f) where:

• π2(L(f)) �� •

Th

L(Th)

��

f �� Th′
L(Th′)

��

Definition 3. Let (Uni ,Cons) be a pre-constitution. A constitution L on it is
said to be perfect for an object Th ∈ ObUni iff there is a morphism redTh

such that

(L(cod(L(Th)), redTh)

is a projection system, i.e. the diagram below commute:

Th
L(Th) �� Sp(Th)

L(Sp(Th)) �� Sp(Sp(Th))

redTH

��

38 T. Gergely and L. Ury

where Sp(Th) and Sp(Sp(Th) is the codomain of L(Th) and L(L(Th)), respec-
tively. Sp(Th) is called the superstructure of Th.

Definition 4. A constitution L on a pre-constitution P = (Uni ,Cons) is com-
pact iff for all object of Th ∈ ObUni L is perfect for Th.

Definition 5. Fix a pre-constitution P = (Uni ,Cons). Let C(P) be the following
category:

ObC(P) � {L | L is a constitution on P}
Mor(C(P)) � {F : L1 → L2 | F : Obj (Uni) → Mor(Uni) such that L1(Th) ◦
F (Th) = L2(Th)}.

The last condition in the definition of Mor(C(P)) means that the following
diagram commutes:

Sp1(Th)
F (Th) �� Sp2(Th)

Th

L1(Th)

����������� L2(Th)

�����������

Theorem 1. Let P = (Uni ,Cons) be a pre-constitution and let L be a constitu-
tion on it. Let us suppose that Uni has countable coproducts. There is a unique
(up to natural isomorphism) constitution L′ and a morphism F : L → L′ such
that

1. L′ is compact;
2. for any G : L → L′′ with closed L′′ there is a factorization through F ; i.e.

there is a (unique) H such that L
F ��

G ���
��

��
��

L′

H����
��
��
��

L′′

commutes in C(P).

3. This L′ is denoted as L∗

2.2 FOL-Based Constitutions

In this subsection we define a compact constitution Y called fixed-point con-
stitution. The superstructures of this constitution add least and greatest fixed-
point to each monotone operators. From now we will work in the first-order
pre-constitution FOL. A constitution called FOL-based if it is a constitution
on a full subcategory of FOL. In the sequel we give some examples for such
constitution usable in computing, AI and cognitive computing.

The well-know notion of transitive closure can be turned into a constitution.

Definition 6. Let Th = (σ,Ax) be a fixed first-order theory.

Foundation of Cognitive Computing Based AI 39

1. A first-order operator in Th is a triple (Φ,R,X) written as Φ(R,X) where R
is an X-type new relation symbol, Φ is a σ ∪ {R}-type formula free variables
of which belongs to X. The set of variables X is called the type of Φ(R,X)

2. Φ(R,X) is called monotone iff for any new X-type relation symbols S

Ax � (∀X R(X) → S(X)) → ∀X (Φ(R,X) → Φ(S,X))

3. For any ψ(X) let

Φ̃(ψ)(X) be the formula Φ(R,X)[ψ/R].

It is clear that Φ̃ is a function of type Formσ(X) → Formσ(X)
4. Let us denote ΔTh be denote the set of all monotone first-order operator

in Th.

Let �X and ⊥X be denote the X-type truth and falsity, respectively. If a
first-order operator Φ(R,X) is monotone in Th then we got an infinite chain

⊥X → Φ̃(⊥X) → Φ̃(Φ̃(⊥X)).......Φ̃(Φ̃(�X)) → Φ̃(�X) → �X

where each individual implication is provable in Th.

Definition 7. Th = (σ,Ax) be a fixed first-order theory and fix a set F of
monotone first-order operators.

1. Let Φ̃ ∈ F be an X-type monotone first-order operation. A formula ψ(X) is
called a left fixed-point of Φ̃ iff Ax � Φ̃(ψ) → ψ and called a right fixed-point
of Φ̃ iff Ax � ψ → Φ̃(ψ).

2. For any Φ̃ ∈ F let add two new X-type relation symbols Φμ and Φν together
the following axioms:
(a) Φ̃(Φμ) → Φ and Φ → Φ̃(Φμ)
(b) for an arbitrary σ-type formula ψ(X) : (ψ → Φ̃(ψ)) → (Φν → ψ)
(c) for an arbitrary σ-type formula ψ(X) : (Φ̃(ψ) → ψ) → (ψ → Φμ)
(d) Let Ind(F) denote this new set of axioms.

Theorem 2. Let Th = (σ,Ax) be a fixed first-order theory. For an arbitrary
F ⊂ ΔTh the axiom system Ax∪ Ind(F) is conservative over Ax. It means that
there is a constitution Ind on the pre-constitution FOL which renders each Th
the conservative extension Ax ∪ Ind(ΔTh)

Let us suppose that the restriction of first-order operations are categorical. It
means that for all Th there is a ThF ⊂ ΔTh given in such a way that a theory
morphism Th1 → Th2 transfer Th1

F into a subset of Th2
F . If so then there is

a constitution IndF on the pre-constitution FOL which renders each Th the
conservative extension ThAx ∪ Ind(ThF). One of the most well-known example
of such a restriction is as follows. For any σ let us consider the positive existential
formulas of the form ψ(X,X ′) where ψ free variables as stated and X is a
copy of X ′. Any such formulas generate a monotone first-order operators as
∃UR(U) ∧ ψ(U,X). For any Th let T R let denote the set of all monotone first-
order operator defined in such a way. Let Tran be denote this constitution on
the pre-constitution FOL.

Theorem 3. Tran is a compact constitution on the pre-constitution FOL.

40 T. Gergely and L. Ury

2.3 Inductive and Coinductive Extensions in Constitutions

It is obvious that it is not enough to just add fixed-points to underlying theory.
Let Th = (σ,Ax) be a first order theory. There are many situations when we
need to add new types, functions and relations to the original similarity type σ.
All these additional symbols we can collect into a new similarity type θ. Of course
the similarity type has not, but the axiom system Ax has to improve new axioms
and axiom schemas. If these axioms are short to inductive and coinductive ones
then we can formulate a theorem similar to Theorem 1.

In details. Let us fix a similarity type η. Let FOL(η) denote the pre-constituti-
on containing only those theories (σ,Ax) where η ⊂ σ. Let ζ be a new similarity
type and let Eq and Eqc be a set of quasi-equations and quasi-coequations,
respectively based on the similarity type ζ + η.

Theorem 4. Let η, ζ and Eq,Eqc as in above. There is a least (up to natural
isomorphism) constitution denoted by Y(η, ζ, Eq,Eqc)

1. Y(η, ζ, Eq,Eqc) is compact,
2. All superstructures satisfy Eq + Eqc,
3. All monotone operators in each superstructures have least and greatest fixed

points,
4. If L is such a constitution on FOL(η) that satisfies the previous assumptions

then there is a unique (up to natural isomorphism) morphism (up to natural
isomorphism) Y(η, ζ, Eq,Eqc) → L.

For any Th ∈ ObjFOL(η) the superstructure of Th, i.e. the codomain of the
morphism Y(η, ζ, Eq,Eqc)(Th) is called canonical d-inductive extension of
Th (d for double because extension was constructed by using both equations and
coequations. If Eqc is empty we simply say inductive extension or if we want to
emphasize that Eqc is empty we say simple inductive extension. If L is such
a constitution that satisfies the first three assumption of the theorem then L is
also called d-inductive extension of the extension system (η, ζ, Eq,Eqc).

In Subsect. 3.2 we demonstrate that for a large part of computing theory
the simple inductive extensions are sufficient. Coequations need to speak about
cognitive aspects of computation.

Remark 1. There is a clear definition of quasi-equations. Let σ be an arbitrary
similarity type. A σ-type formulas in the form τ1 = τ2 where τi(i = 1, 2) are σ
terms are called equation. A formula in the form

∧

j=1..n

ej → e

where ej(j = 1..n), e are σ-type equations is called a quasi-equation. If n = 0
then we get back the notion of equation. See Grätzer [14]. Unfortunately there
is no such an elegant and easily usable definition for quasi-coequations.

One of the main advantages of the d-inductive extensions is, that there are univer-
sal ones. Let η, ζ be fixed and let EQ(η, ζ) denote the set of all (η + ζ)-type equa-
tions. Let d∇(η, ζ) be the category of all d-inductive extensions on (η, ζ, Eq,Eqc)

Foundation of Cognitive Computing Based AI 41

where Eq,Eqc ⊂ EQ(η, ζ). The morphisms are the natural transformations
between the functors. Also let ∇(η, ζ) be the category of all simple inductive
extensions on (η, ζ, Eq, ∅)

Theorem 5. Let η, ζ be arbitrary but fixed similarity types.

– Both d∇(η, ζ) and ∇(η, ζ) are really categories;
– d∇(η, ζ) has terminal objects. Any terminal object of d∇(η, ζ) is called

d-universal extension on (η, ζ).
– ∇(η, ζ) has terminal objects. Any terminal object of ∇(η, ζ) is called simple

universal extension or just universal extension on (η, ζ).

2.4 Constitutional Set Theories

Two versions of set theory are provided by the modification of the von Neumann-
Bernays-Gödel set theory. The modification augments the set theoretic oper-
ations with fixed points of monotone operators. Namely, the so obtained set
theories are as follows:

– cHF is a compact constitution where superstructures are the finite sets with
atoms and classes augmented with least fixed points of positive existential
operators (cl stands for classes),

– clFSA is a compact constitution where superstructures are the finite sets with
atoms and classes augmented with least fixed points of monotone operators
(cl stands for classes),

– cclFSA (ccl stands for classes and coclasses) a compact constitution where
superstructures are the finite sets with atoms, classes and co-classes aug-
mented with least and greatest fixed points of monotone operators.

It is shortly explained how clFSA permits to describe the entire traditional com-
putation theory including e.g. program semantics, computation power of vari-
ous programming languages, various programming paradigms like instructional,
declarative programming and program specification, see e.g. Ury, Gergely [24].
For a short description of how clFSA looks like see 7.1. It is clear that for a fixed
similarity type σ and the axiom system Ax the new axioms of clFSA(σ,Ax)
depends only on σ. Let cFSAσ denote this set of axioms.

The unifying theories developed in [16] can build using cHF instead of ZFC.
Note that the use of the above two set theories is useful because they are

universal as can be seen in the following theorem.

Theorem 6. Let η, ζ be arbitrary but fixed similarity types.

– clFSA(η) is a simple universal extension on (η, ζ)
– cclFSA(η) is a d-universal extension on (η, ζ).

Remark 2. We emphasize that there was not any assumption “how large” is ζ
or the set of equations. However we suppose that both of them are recursively
enumerable then clFSA(η) and cclFSA(η) are also recursively enumerable.

42 T. Gergely and L. Ury

3 Examples

3.1 Specifications as Constitutions

Given a pre-constitution P = (Uni ,Cons) we can think that a specification itself
defines the object perfectly. Later on we shall see that the elements of Ob(Uni)
are generally a set of algebraic equations or formulas. However, in our definition
the notion of a specification is in an abstract form without any fixed meaning.
Whatever we can say about the specifications it is identical with the properties
of the category Uni .

One of the most important properties of the specifications is that they can
be interpreted by each other. In the case of algebraic and logical specification
theories these interpretations turn out to be homomorphisms or theory presen-
tations. However, in our definition the notion of interpretation is as abstract as
those of the specifications. See in Maibaum [19].

Definition 8. Let P = (Uni ,Cons) be a pre-constitution and let L be a consti-
tution on it. An L-refinement is a pair of morphisms (f, c) as shown below iff
there are two morphisms c′, d′ such that if

Th1
f �� Thc

2

Th2

c

��

then c splits such that

1. the diagram below commutes:

Th2

L(Th2) 		���
����

����
����

���
c �� Thc

2

d′

Sp(Th2)
c′

��������������������

2. and (c′, d′) is a projection pair.

Theorem 7. Let P = (Uni ,Cons) be a pre-constitution and let L be a con-
stitution on it. L-refinements are closed under composition iff L is a compact
constitution.

An abstract specification theory is developed by the use of category theory,
which allows the characterization of specification languages and the provision of
the necessary conditions to operate with specifications, e.g. to put them together
or to refine or to modularize them. Here only shown the condition necessary for
stepwise refinement of specifications is shown. A specification classical first order
language which can be used as a specification one. As it can be seen this theory

Foundation of Cognitive Computing Based AI 43

is appropriate to support formal specifications with a “constructive” definition
theory. It is shown how the specification language Z can be developed in this
set theoretical framework so that it becomes more transparent from semantical
point of view and more useable due to the “constructive” fixed point theory.
Moreover, we develop the constructive version of the specification theory by using
logic programming ideas. First, logic programming is defined for the abstract
specification theory and then logic programming is developed in the proposed
set theoretic framework.

One of the desired properties of a specification theory is the correct handling
of the hierarchical specification. In our frame any interpretation c : P → S
can be considered as a hierarchical specification. Specification P contains the so
called primitive specification part and by using c and S we add some extra to
this primitive specification part. It is a natural assumption with respect to the
hierarchical specifications that any interpretation of the primitive part can be
extended to an interpretation of the entire hierarchical specification. It means
that any f : P → P ′ can be extended to a commutative diagram below:

S
f ′

�� S′

P

c

��

f
�� P ′

c′

��

However, in most cases initial and terminal specifications do not exist at all.
This is the reason why we restrict the hierarchical specifications to conservative
ones. Definition 8 (1) axiomatizes the existence of the initial specification for
conservative hierarchical specifications.

3.2 Computing Theory

3.2.1 Instructional Programs
Intuitively it is evident that the main problem in defining the IO-relation of a
program is connected with the definition of program iteration. Since e.g. deno-
tational semantics renders a relation to a program, the reflexive and transitive
closure of this relation corresponds to iteration. We are interested in internaliz-
ing, thus we deal with the formulas defining the relations. Therefore the main
question is whether the reflexive and transitive closure of an arbitrary formula is
definable. It is an easy exercise to prove that using least fixed-points the deno-
tation of the while programs can be defined. However, Hoare, Jifeng [16] shows
that the correct definition of the denotation of recursive procedure calls requires
the greatest fixed-points.

Programs operate on their data environments. If we are interested in the
change caused by the execution of a program in its environment then the input-
output semantics defined as a binary relation on data sequences, is suitable. A
great variety of program properties are connected with the relational semantics,
e.g. partial correctness, quasi-total correctness, pseudo-total correctness, etc. See
e.g. Gergely, Ury [13].

44 T. Gergely and L. Ury

3.2.2 Logic Programs
The traditional way of programming according to Wirth can be represented
as programs = algorithms + data structures (see Wirth [29]). An important
combination of traditional programming with the declarative one can take place
in the case of data declaration. The latter means that data structure component
of the Wirth’s characterization of programs should be given by declarative tools,
i.e. by the use of logic. In this case programs = algorithm + logic + realisation,
where logic may consists of functional and relational parts. The logic component
allows to define abstract data types which by the use of realization define the
constructive model over which the execution of algorithms, i.e. the computation
takes place.

Logic programming takes place in models constructed according to the logic
programs. We suppose that a similarity type δ given. Any logic program contains
definitions of new relation symbols. The goal of a logic program, i.e. the question
which one should be answered reflects these new relations, see e.g. Gergely, Szőts
[11]. Let us fix a rich enough similarity type η and a constructive interpretation
μ : δ → cTermη. We consider how we can define relations new with respect to
μ by the use of logical program’s approach.

Since we aim to develop logic programming in cclFSA, so the constructivity
should be defined with respect to this system axioms. Intuitive meaning of a
constructive model is that any component of that is computable in cclFSA.
To define the required notion of constructive model first we have to define an
appropriate notion of model, and the notion of computability over this model.

If η a given similarity type and Ax is an η-type set of formulas let cFSAη(Ax)
denote the axioms of the superstructure cclFSA(η,Ax). If Ax is empty we simply
write cFSAη.

Definition 9. Let σ be a fixed similarity type. A function μ : σ → cTermη is
called an interpretation of σ in cFSAη. An interpretation η generates a
σ-type model in a model V∈Mod(cFSAη) iff the followings hold in V:

(a) for all s∈sort(σ), η(s) is a non-empty class in V;
(b) for all ρ ∈ rel(σ), μ(ρ) is a subclass of �{μ(si)|i = 1, . . . , n}, where ρ :

s1, . . . , sn is the arity of ρ;
(c) for all f ∈ fun(σ), μ(f) is a functional class of the form �{μ(si)|i =

1, . . . , n} → μ(s), where f : s1, . . . , sn → s is the arity of f .

We say that μ generates a σ-type model in cFSAη iff for all V∈Mod(cFSAη)
μ generates a σ-type model in V. The σ-type model A generated by μ in V is
denoted by V(μ).

Proposition 1. Let μ be an interpretation. There is a class formula IM ?(μ)
which is valid in a model iff μ generates a model in that set-theory, i.e.

V |= IM ?(μ) iff V(μ) exists.

An interpretation μ : σ → cTermη is said to be correct in V iff the model
V(μ) exists.

Foundation of Cognitive Computing Based AI 45

Let us see how to restrict the investigation of formulas to a given interpreta-
tion only.

Definition 10. Let μ : σ → cTermη be fixed and let ϕ∈cFormσ. Let us define
the relativization ϕμ of ϕ along μ by induction on the complexity of ϕ in the
following way.

(A) First for any term τ ∈ Termσ let us define a relation Rτ (x, yτ) (where
x = var(τ) and yτ is a new variable) which expresses the fact that τ(x) = y:

– if τ = x is an s-sorted variable then Rτ (x, yτ) � x = yτ ∧ x∈μ(s);
– if τ = f(x1, . . . , xn) and f : s1, . . . , sn → s then Rτ (x, yτ) �∧

{Rτi(x, yτi)|i∈n} ∧ (yτ1, . . . , yτn, uτ)∈μ(f) ∧ yτ ∈μ(s).

We remark that Rτ (x, y) implies that y∈μ()s where s = sort(τ).

(B)

– if ϕ = ρ(τ1, . . . , τn) then
ρμ � ∃yτ1 . . . ∃yτn

∧
{Rτi(x, yτi)|i∈n} ∧ (yτ1, . . . , yτn)∈μ(ρ)

– if ϕ = ¬ψ then ϕμ � ¬(ψμ)
– if ϕ = ψ1 ∨ ψ2 then ϕμ � (ψ μ

1) ∨ (ψ μ
2)

– is ϕ = ∃xψ then ϕμ � ∃x(x∈μ(s) ∧ (ψμ)), where s = sort(x)

The following statement shows that relativization restricts the investigation
of validity of formulas to the given interpretation.

Theorem 8. Let μ : σ → cTermη be an interpretation and let V(μ) be the
model generated by μ in V. Let ϕ∈cFormσ and let k∈V al(V(μ))

V(μ) |= ϕ[k] iff V |= ϕμ[k]

Definition 11. Let μσ : σ → cV be a fixed injection. μσ is called the canonical
interpretation of σ in cFSAη. Let ϕσ denote the relativization of ϕ along μσ.

Definition 12. Let V |=σ ϕ denote the fact that a closed formula is true
in every interpretation of σ in V. If so we say that ϕ is valid in V. Take
cFSAη |=σ ϕ iff for all V∈Mod(cFSAη), V |=σ ϕ. If so we say that ϕ is valid
in cFSAσ.

Let us consider the main properties of this notion of validity. Let μ : σ →
cTermη be an arbitrary interpretation. Let μ = μσ be a shorthand for the
formula

∧
{μ(l) = μσ(l)|l∈σ}.

Theorem 9. Let us suppose that ϕ is a closed σ-type formula. Let V be an
arbitrary model of cFSAη. Let μ : σ → cTermη be an interpetation.

(A) Let us suppose that u generates a model in V. The followings are equivalent:

– V(μ) |= ϕ;
– V |= ϕμ;

46 T. Gergely and L. Ury

– Th(V) + IM ?(μσ) + (μ = μσ) |= ϕσ.

(B) V |=σ ϕ iff Th(V) + IM ?(μσ) |= ϕσ

(C) cFSAη |=σ ϕ iff cFSAη + IM ?(μσ) |= ϕσ.

Now we define the computability in cFSAη by the use of the theory of pro-
grams developed for the programming language Pη. The necessary notions used
bellow can be found in Appendix 1.

Definition 13. (A) Let C be a class in a model V of cFSAη. C is called com-
putable in V iff there is a program p∈Pη such that

C = dom DenV�p�

(B) A class C is called enumerable in V iff there is a computable surjection
ω → C.

(C) The class C is called p∃-definable in V iff there is a term

t∈cTermΣ+(η; {D})

such that C = Y t, i.e. C is the least fixed point of the equation D = t(D).

Theorem 10. Let V be a model of cFSAη, and suppose that the class Atom �
{x|atom(x)} is enumerable in V. The p∃-definable, the enumerable and the com-
putable classes are the same in V.

We remark that the assumption of Theorem 5.9 in most cases is true, e.g. if
Atom is finite or equivalent with ω.

Theorem 11. If Atom is enumerable in V then AC holds in V.

Definition 14. An interpretation μ :→ cTermη is called constructive in V
iff for all l∈σ, μ(l) is computable in V.

Example 5. Let σ contain the following symbols:

0, 1 :→ d
+,× : d, d → d

Let interpret these symbols in the ‘usual’ way:

μ(d) � ω
μ(0) � 0
μ(1) � {0}
μ(+) � λx, y. x + y
μ(×) � λx, y. x ∗ y

where + and * is the sum and product of natural numbers. It is clear that μ
generates a model in cFSAσ and in any V it is constructive.

Foundation of Cognitive Computing Based AI 47

Example 6. From the point of view of functional programming it is a very inter-
esting question whether a factor of a constructive model is constructive again.
Consider the following simple example. Again let σ be as in 5.12. Take the fol-
lowing interpretation:

ξ(d) � ω × ω
ξ(0) � (0, 0)
ξ(1) � ({0}, 0)
ξ(+) � λ(a, b), (c, d) . (a + c, b + d)
ξ(∗) � λ(a, b), (c, d) . (ac + bd, ad + bc)

Clearly ξ is a correct interpretation in any model of cFSAσ. Moreover, ξ is
clearly constructive.

Let us define the following equivalence on ξ(d):

(a, b) ≡ (c, d) iff a + d = b + c

One can check that equiv is a congruence relation on V(ξ). Clearly V(ξ)/ ≡ is
a model for integer numbers (Z, 0, 1,+, ∗). It is a question whether V(ξ)/ ≡ is
constructive.

The following theorem gives an answer to this question.

Theorem 12. Let μ : σ → cTermη be a constructive and correct interpretation
of σ in a model V. Let us suppose that ≡ is a decidable congruence relation
on V(η), i.e. both ≡ and its complement are computable in V. Moreover, let
us suppose that all the classes μ(s) ∈ sort σ are enumerable in V. If so then
V(μ)/ ≡ is constructive in V.

Now we can turn to prove the existence of μ/ ≡. Take

μ/ ≡ (s) � {x|x∈μ(s) ∧ ∀y(�y� < �x� → ¬y ≡ x)}

By using the computability of �� and the decidability of ≡ the right hand side
of this equation is a p∃ term in cFSAη. Hence μ/ ≡ is well defined on sort(σ).
Take

μ/ ≡ (ρ) � {(x1, . . . , xn)|∃y1, . . . ,∃yn

∧
xi ≡ yi ∧ ρ(y1, . . . , yn)}

µ/ ≡ (f) �
{(x1, . . . , xn, x)|∃y1, . . . , ∃yn,∃y

∧
xi ≡ yi ∧ x ≡ y ∧ f(y1, . . . , yn) = y} (1)

It is clear that μ/ ≡: σ → cTermη is an interpretation. Since ≡ is a congruence
relation μ/ ≡ is correct in V. By using the enumerability of classes one can
check that μ/ ≡ is a computable relation.

Returning to the example it is easily provable that ω × ω is enumerable
in cFSAη and of course ≡ is decidable. It means that ξ/ ≡ exists and it is
computable in any model of cFSAη.

48 T. Gergely and L. Ury

Definition 15. Let σ be a similarity type. Let

Γσ � {Ps|s∈sort σ} ∪ {Pf |f ∈func σ} ∪ {Pρ|ρ∈rel σ}

be a fixed set of class variables. Any function Φ : Γσ → cTermΣ+(η;Γσ) is called
a presentation of σ in cFSAσ. A presentation is correct in a model V of
cFSAσ if the interpretation Y Φ : σ → cTermη is correct, i.e. if V(Y Φ) exists.

Theorem 13. Let us suppose that Atom is enumerable in V. Let Φ be a correct
presentation of σ in V. V (Y Φ) is a constructive model of σ in V.

It is clear that the models of cFSAσ, within which Atom is enumerable, have
significant properties. So we give the following definition:

Definition 16. A model V of cFSAσ is called textbiconstructive iff Atom is
enumerable in V.

Proposition 2. ‘Atom is enumerable’ is definable in cFSAη.

Proof. Let U(x, y) be a universal computable relation with respect to the com-
putable classes. ‘Atom is enumerable’ is expressible with the following class
formula:

∃x({y|U(x, y)} = Atom)

��

Theorem 14. ‘Atom is enumerable’ is independent from cFSAη.

Proof. Clearly cFSAη + ‘Atom is enumerable’ is a conservative extension of
cFSAη. Let A be an uncountable set and fix a standard model V in such a way
that Atom in V is just A. One can check that

V |= ¬‘Atom is enumerable’.

We note, that by the downward Lövenheim-Skolem theorem there is also a com-
putable V within which Atom is not enumerable. ��

Theorem 15 (on the existence on constructive models). Let V be a constructive
model of cFSAη. In V the p∃-definable and computable classes are the same
and therefore any correct presentation Φ : σ → cTermη generates a constructive
model V(Y Φ) of σ in V.

This theorem plays an important role in the forthcoming chapters.

Definition 17. Let η1 ⊃ η and let μ : η1 → cTermη be such a correct interpre-
tation of η1 in cFSAη that for all V∈Mod(cFSAσ) V(μ)�η= V. Moreover let
μ be constructive. In this case μ is called a constructive extension of cFSAη.

Theorem 16. Let η2 ⊃ η1 ⊃ η0 and μi+1 be a constructive extension of cFSAηi

(i = 0, l). μ2 is a constructive extension of cFSAη0.

Foundation of Cognitive Computing Based AI 49

Definition 18. Let R be a set of new relation symbols. A rule is of the form

ρ(τ1, . . . , τ2) ⇐ ϕ

where τi ∈Termη1, ϕ∈p∃(0, δ ∪ R).
A logic program is a finite set of rules. A logic program u is called well-

formed iff whenever u contains two rules of the form

ρ(τ i
1 , . . . , τ i

ni) ⇐ ϕi (i = 1, 2)

then ρ1 = ρ2(∈ R) implies n1 = n2 and sort(τ 1
j) = sort(τ 2

j) (j = 1, . . . , n1).
Let LPδ(R) denote the set of all well-formed logic programs.

Let S = sort δ. Let S′ be a copy of S with bijection ι. Define an S′-sorted
similarity type σu for any u∈LPη(R). Take sort σu � S′. Define

rel σu � {ρ∈R| there is a rule ρ(. . .) ⇐ ϕ inu} ∪ rel δ.

The arity of ρ is ρ : ι(s1), . . . , ι(sn) and u contains a rule of the form

ρ(τ1, . . . , τn) ⇐ ϕ

and for all i = 1, . . . , n ιi = sort(τi). Since u is well-formed, this definition of
arity is correct. Let

func σu � func δ.

Let X � (x1, . . . , xn). Let X ∈Γ be a shorthand for
∧

{xi ∈Γsi|i∈n}, where si

is the sort of xi. Let ϕ[Γ] denote the relativization of σ along μσu.

Definition 19. Let u ∈ LP (R) be a well–formed logic program. By using u we
define a presentation uˆ in the following way:

(a) Let ρ∈rel σu. Take
uˆ(ρ) �

∪ {{x|∃y1, . . . ,∃yn

∧
{yi = τi|i∈n} ∧ ϕ[Γ]}|ρ(τ1, . . . , τn) ⇐ ϕ′ ∈u}

(b) uˆ(s) �
∪ {{x|∃x1, . . . ,∃xn x = xi

∧
(x1, . . . , xn)∈Γρ}|ρ∈relσnsort xi = s}

∪ {{f(x1, . . . , xn)|X ∈Γ}|y∈func σ f : s′
1, . . . , s

′
n → s}

(c) uˆ(s) �
{(x1, . . . , xn, y)|y = f(x1, . . . , xn) ∧ X ∈Γ}

where f : s′
1, . . . , s

′
n → s′.

Proposition 3. Let u be a well–formed logic program. Then u ˆ is a correct
presentation with respect to μ.

50 T. Gergely and L. Ury

Definition 20. Any logic program u generates a set of axioms Ax(u) which is
called the logic generated by the logic program u in the following way:

Ax(u) � {ϕ → ρ(τ1, . . . , τn)|ρ(τ1, . . . , τn) ⇐ ϕ′ ∈u}.

Similarly, you can give another set of axioms which describes how uˆ was gener-
ated from the original sorts and functions. Let Gen(uˆ) denote this fact. Namely
if σ � σu then take:

Gen(uˆ) � {μσ(s) ⊂ μ(s)|s∈sort δ}
∪{μσ(f) ⊂ μ(f)|f ∈func δ}
∪{μσ(ρ) = μ(ρ)� μσ(s1) × . . . × μσ(sn)|ρ : s1, . . . , sn ∈rel δ}

Theorem 17. Let u be a well-formed logic program and V∈Mod(cFSAη) be a
model. V(Y uˆ) is called the denotation of u and it is denoted by DenV�u�.
Clearly DenV�u�∈Modσ. If V and μ : δ → cTermη are constructive then so is
DenV�u�.

Theorem 18. Let u be a well-formed logic program and fix a V∈Mod(cFSAη).
Take σ � σu. Let ρ(τ1, . . . , τk) be a positive ground atomic formula from Formσ.
Then

DenV�u� |= ρ(τ1, . . . , τk) iff
Th(V) + IM ?(μσ) + Gen(u) � Ax(u)σ → ρ(τ1, . . . , τn)σ

To formalize the initial property of DenV�u� let us consider the following
category C. Let us fix a model V ∈ Mod(cFSAσ). The objects of C are pairs
(ξ, ι) where ξ : σu → cTermσ and ι : ξ � func σ → μ is a morphism between two
interpretations in V. Moreover, we suppose that ι is an embedding.

The morphisms of C are the morphisms κ : ξ1 → ξ2 which commute with ι’s:

ξ1 � δ
κ ��

ι1

���
��

��
��

��
��

��
� ξ2 � δ

ι2

		
		
		
		
		
		
		

μ

This category is called the model category generated by u and denoted
by C(u) .

Theorem 19. DenV�u� with the natural injection is the initial object in C(u).

We show that logic programming based on Horn-formulas is only a particular
case of our definition. Indeed let δ be a similarity type such that rel δ is empty.
Let Herb(0, δ) be the minimal Herbrand model generated from δ in cFSAη.
Clearly, there is an interpretation Θ : δ → cTermη which defines this model.
Clearly Θ is constructive in cFSAη.

Foundation of Cognitive Computing Based AI 51

Definition 21. A well-formed logic program u∈LPδ(R) is called a Horn-type
logic program iff each rule ρ(τ1, . . . , τn) ⇐ ϕ belonging to u is Horn-type, i.e.
ϕ → ρ(τ1, . . . , τn) is a Horn-formula.

It is clear that the mathematical tools defined in Chaps. 5.1–5.3 fits well for
Horn-type logic programs. By using Theorem 5.29 and the construction of Θ we
can give another version of initiality. Let u∈LPΘ(R) be a fixed Horn-type logic
program. Take σ � σu. Let V be a fixed constructive model of cFSAη.

Theorem 20. Let C be the category the objects of which are σ-type correct
interpretations in a constructive model V, and the morphisms of which are the
interpretations between them. Then V(Y uˆ) is the initial object of C.

Corollary 1. Let u be a well-formed Horn-type logic program. Let ρ(τ1, . . . , τn)
be a positive ground atomic formula from Formσ.

cFSAη |= ρ(τ1, . . . , τn) iff
cFSAη + IM ?(μσ) � Ax(u)μ → ρ(τ1, . . . , τn)μ

Moreover, let V be a fixed model of cFSAσ. Then

V(Y uˆ) |= ρ(τ1, . . . , τn) iff
Th(V) + IM ?(μσ) � Ax(u)μ → ρ(τ1, . . . , τn)μ

By the use of a fixed point theory, which allows us to have solutions definable
in cFSAσ we will be able to work with definable least fixed points. To achieve
this we use the positive existential (or constructive) functionals over which the
fixed point theory with the usual properties may be developed. Note that this
functional class consists of only the functions considered as computable. By the
use of this fixed point theory we get the traditional logic programming case. Let
us suppose that η′ contains finitely many new constant symbols: A1, . . . , An. Let
us denote the formula

∧
{atom(Ai)|i = 1, . . . , n} ∧ ∀xatom(x) →

∨
{x = Ai|i = 1, . . . , n}

by Const.

Theorem 21. cFSAη
′ + Const has an initial term model Vi.

Let μ be the same as in the previous example.

Theorem 22. Let u be a well-formed logic program. Let ρ(τ1, . . . , τn) be a pos-
itive ground atomic formula from Formσ. Then

Vi(u) |= ρ(τ1, . . . , τn) iff
cFSAη + IM ?(μσ) + Const � Ax(u)μ → ρ(τ1, . . . , τn)μ

52 T. Gergely and L. Ury

3.2.3 Other Programming Paradigm
The proposed theoretic frame is appropriate to describe and analyse various
other approaches in programming. We mention here only the rough set theory,
which was proposed as an approach to support intelligent data analysis and
data mining. Approximation is the basic concept of rough set theory. Let us
suppose that a set X should be described with the terms of attribute values
from a given set A. Then according to the rough set theory two operations are
defined assigning to every X two sets A*(X) and A*(X) called the A-lower and
the A-upper approximation of X, respectively. Note that the A-lower approx-
imation of a set is the union of all A-granules that are included in the set,
whereas the A-upper approximation of a set is the union of all A-granules that
have a nonempty intersection with the set. Rough set theory gives us one of the
important backgrounds for that type of computing when the aim is to deal with
inexact solutions of computational problems. Rough set theory plays an impor-
tant role in granular computing. The basic ingredients of granular computing
are granules such as subsets, classes, objects, clusters, and elements of a uni-
verse. These granules are composed of finer granules that are drawn together by
distinguishability, similarity and functionality. Based on complexity, abstraction
level and size, granules can be measured in different levels. A problem domain
may exist at the highest and coarsest granule. Granules at the lowest level are
composed of elements of the particular model that is used. Granulation is one
of the key issues in granular computing for problem solving. See e.g. Akama et
al. [2], Kumar et al. [18] and Yao [30]. Note that the two-sided approximation of
the sets used by rough set theory can be provided by the fixed point equations.
The approximation itself is realized by the smallest and largest fixed points. At
the same time the granules to be used in the approximation will be given in the
universe that will correspond to the actual problem domain.

4 Cognitive Computing

4.1 Motivations

Computing is the basic method for representing, model and investigate processes
of human intelligence in the fields of Artificial Intelligence, Cognitive comput-
ing and Computational theory of mind. Thus, our goal is to develop a general
computation theory that considers all the important aspects of this modelling.
It is essential to handle the various levels of computation, from computation
that uses purely syntactic digits to computation at the content level that among
others interprets data, information and knowledge. Our further aim is to provide
a theoretical framework, which will able to consider all the processes of the data
→ information → knowledge transformation and processing.

The theoretical framework - developed above - will permit to represent, model
and investigate the main processes of cognizing under the control of direct think-
ing by the use of appropriately defined and constructed computing, which we
call cognitive computing.

Foundation of Cognitive Computing Based AI 53

4.2 Basic Definitions

Let Th = (σ,Ax) be a fixed theory. Cognitive processes are defined by the use
of situations, infons and information. The proposed extension will formalise the
well-known constructions of situations and information. See Devlin [9] or Barwise
[5]. Let ι be a new similarity type containing the followings.

1. A sort s for situations,
2. A sort b, i for basic infons and infons respectively,
3. A sort tv for truth values,
4. A functional symbol κ : s, i → tv. κ gives the truth value to an infon in a

situation
5. A sort k for knowledge.
6. A function τi : k, s → i. τ is the query function which in a given situation

produces an infon by the use of the actual knowledge.

Let us add an axiom stating that infons form the greatest set containing all
the basic infons and if A is an infon and S is a situation then the triple κ, S,A
is also an infon. Let I be the fixed-point equation describing this. According to
Barwise [5] well-founded infons are the elements of the least fixed-points of the
equation I. Let BCι denote this set of axioms.

It is clear that Th → Th + BCι form a constitution on FOL. According to
Theorem 1 there is a least compact constitution containing this constitution. Let
CB denote this constitution. CB is the so-called cognitive base constitution
(compact by definition).

4.3 Cognitive Processes

We recall the modification calculi from Anshakov, Gergely [4] see Chapters 10
and 18. To treat non-monotonity of reasoning process we need to

1. differentiate external and internal truth values
2. add a new type r for reasoning to clarify why we think that about the truth

value of an infon in a given situation
3. have inference rules for handling records which can contain infons, information

and/or knowledge (see Anshakov, Gergely [4] pp. 145–149).

Now we are ready to give a short description of what we mean by cognitive
process. Again, fix a theory Th = (σ,Ax). Using the superstructure SPCB(Th)
a cognitive process

1. is a logic program in the sense of 3.2.2, its inner logic is the above stated mod-
ification calculus. This is able to extract infons, to generate new information
and knowledge.

2. is also a process that can generate new processes, start, terminate and elimi-
nate processes and can communicate with other processes.

3. can have a lot of query functions to interact with its environment.
4. can have a predefined goal.

54 T. Gergely and L. Ury

Let PCι denote the axioms describing the aboves. Again we can define a
closed constitution CK over FOL being the least compact-one containing the
axiom systems BCι and PCι.

Note that only those processes are called cognitive processes, which can gener-
ate, store and use new elements of the sort k, i.e. new information and knowledge
elements.

Now we define the important notion Cognition Kernel as follows.

Definition 22. Cognitive Kernel is a compact constitution C on FOL

together with an embedding (in functor category) of CK into itself.

5 Cognitive Computing

A goal-oriented organisation of cognitive processes form cognitive computing.
The goal is usually related to the solution of a given problem situation, i.e. to
the reduction of the uncertainty level of a problem situation.

The Cognitive computing theory will provide a mathematically well-defined
classification of the possible types of computing and it will consider a special the-
ory of realisation. The Cognitive computing theory allows the investigation and
the determination of the theoretical limitations of the computing based mod-
elling of intelligent processes. Thus in addition to the computational capabilities
and limitations of different programming paradigms, the multi-layer cognitive
computing can be explored and a framework can be developed that support the
realization of the data → information → knowledge transition processes that
use thought-driven cognitive processes. At the beginning generic and/or specific
data analytical methods will provide infons from the data and then from the
generated set of infons the corresponding information will be built. This infor-
mation is used to decrease the uncertainty of the actual problem situation. The
methods and information successfully used in the solution of the problem situ-
ation will form knowledge candidates. The latters will become knowledge only
after a successful checking done by the use of the existing knowledge repository.

In this context, generalizations of the concept of Church- and Turing-
computa-bility can be given and the computational possibilities and limitations
of cognitive computing can be investigated. A multilayer theory of complexity
can be defined to characterise the problem situations. It can be shown that cog-
nitive processes necessary for the solution of problems of certain complexity will
not be cognitive computable, but they will become so by a cognitive computing
system with oraculum.

6 AI Based on Cognitive Computing

The proposed cognitive computing theory permits to design systems, which are
able to lean on and interact naturally with users to extend the capability of
humans and/or machines. So that humans would able to do more of what
they could do on their own normally without cognitive computing support.

Foundation of Cognitive Computing Based AI 55

A cognitive computing system will be able to respond to the environment in
an autonomous regime too, without pre-programming. It can sense, learn, infer
and interact. Cognitive computing systems can sense or perceive the environ-
ment and collect the data on the basis of needs and situations. They understand,
interpret and analyse the context based on collected data and information, and
they make decision based on reasoning and act accordingly. Various semantics
and knowledge-driven cognitive data analysis methods can be represented and
realised in a constructive way within the proposed Cognitive computing app-
roach.

Cognitive computing theory provides a possibility for the use of compu-
tational approach to realise the understanding processes of natural language.
Namely, this theory provides tools to interpret natural language texts in the
various levels of cognitive computing.

The development of cognitive computing covers the basics of computing from
language design to evaluator implementation with the aim of explaining existing
systems at a deep enough level. This will help to adopt and use any of both,
the languages and systems that are currently used in artificial intelligence and
cognitive system area thus enabling the next generation of cognitive computing
designers and implementers to use this as a foundation to build upon which.
This is associated/augmented with a methodology that supports the selection of
an appropriate specification method together with a constructive language that
permits to describe the problem situation so that it prescribes the realization
of the cognitive computing processes necessary for the solution of the actual
problem situation.

Therefore, the proposed cognitive computing theory provides a constructive
foundation of AI, where this abbreviation means Amplifier for Intelligence. This
AI will be able to act as genuine problem-solving companion understanding
and responding to complex problem situations. This AI system will be able to
act either as a partner system for cooperative functioning with a human agent
or as an autonomous cognitive system for a well-defined problem area. As to
become a cooperative partner for human agents, the system has to function very
similarly to humans. E.g., it should be able to communicate and understand
natural language, reason in a compatible way, learn from its experience, etc.
AI will be able to cognize the environment and itself including the co-operative
partner.

7 Appendixes

7.1 Axiomatization of clFSA

In order to interpret program execution and different data and control struc-
tures, our theory of programming needs appropriate models to be obtained from
a relation structure (models) of a given similarity type by building up the cor-
responding superstructure as we have seen so far. However, to use these super-
structures in our theory of programming we have to introduce an appropriate
formalism which allows to provide a theory (an axiomatization) the models of

56 T. Gergely and L. Ury

which are the structures in question and by the use of which, statements can be
formulated and proved about these structures. According to our aim to develop
a first order theory of programming the axiomatization of superstructures will
be done in an appropriate first order language.

Superstructure construction is followed by a set–theoretic approach so the
signature of the language has to contain at least:

– a unary relation symbol atom : d

to distinguish the elements of the original relation structure from which the
superstructure is built up. These elements may be considered as elementary
data;

– the ‘element’ relation symbol ∈: d, d
– and the constant symbol 0 :→ d

which reflects the empty set.
A similarity type σ is called rich enough iff it contains the above symbols.

We use /∈ for the negation of element relation.
The variable symbols of the language correspond to sets and atoms. There-

fore, sets and their elements are of the same nature, if the latter ones are not
atoms. In other words, we consider hereditary sets the elements of which are
either atoms or hereditary sets etc. Though atoms have no elements they are
not equivalent to the empty set. Therefore we have to be careful while providing
the Axiom of Extensionality and defining some of the set-theoretic operations.

A relation symbol of σ is called non set-theoretical iff it is not equal with
either ∈ or 0 or to atom.
The system of axioms FSAσ axiomatizes the hereditarily finite sets with atoms.
Why do we need atoms? As we know the Zermalo-Fraenkel axiomatization is
powerful enough to make atoms unnecessary. Set theory, as formalized in ZFC,
provides an elegant and powerful way to organize mathematics but it is too
strong for the programming theory. The aim to build up an adequate axiom
system for this theory dictates to develop a set theory weaker than ZFC, weak
in the principles of set existence which they attempt to formalize e.g. by allowing
atoms. The latters just have a programming interpretation as elementary data
or, if you think about the relation structures as the object modelling computers
where the programs run then atoms represent the registers where the data are
stored. Atoms also break the finiteness which we intend to axiomatize since they
may be infinitely many. We axiomatize the hereditarily finite sets with atoms by
modifying the axiom system ZF as follows:

FSA0: Existential axiom of atoms:
∃x atom(x)

FSA1: Extensionality axiom:
(¬atom(x) ∧ ¬atom(y)) → ((x = y) ↔ ∀z(z∈x ↔ z∈y))

FSA2: Empty set axiom:
∀x(¬x∈0)

Foundation of Cognitive Computing Based AI 57

FSA3: Significance axiom of atoms:
∀z(atom(z) ↔ (z �= 0 ∧ ∀x(x /∈ z)))

This axiom together with FSA1 declares that though atoms have no elements
they differ from the empty set 0.

FSA4: Foundation axiom:
∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y)))

This axiom says that every non-empty set has a minimal element with respect
to ∈.

FSA5σ: Comprehension Scheme. For each σ-type formula ϕ:
∀z∀w1 . . . ∀wn∃y∃x(x∈y ↔ [x∈z ∧ ϕ(x, z, w1, . . . , wn)])

The y asserted to exist is unique by Extensionality Axiom and it is
denoted by

{x|x∈z ∧ ϕ(x, y, w1, . . . , wn)} or {x∈z|ϕ}.

Intuitively for a given formula ϕ(x) there need not necessarily exist a set {x :
ϕ(x)} this collection may be too large to form a set. However, Comprehension
Scheme says that if the collection is a subcollection of a given set then it does
exist. The following axioms say that certain sets, which should exist, really do
exist.

FSA6: Pairing axiom:
∀x∀y∃z(x∈z ∧ y∈z)

FSA7: Union axiom:
∀F∃G∀y((y∈F ∧ x∈y) → x∈G)

FSA8σ: Replacement scheme. For each σ-type formula ϕ:

∀F∀w1 . . . ∀wn(∀x∈F∃!y ϕ(x, y, F,w1, . . . , wn) →
∃G(∀x∈F∃y∈G ϕ(x, y, F,w1, . . . , wn))

Intuitively (using also FSA5σ) this axiom says that if H(x) is the unique y
satisfying ϕ(x, y, . . .) then {H(x)|x∈F} is a set.

FSA9: Finiteness axiom:

∀x(set(x) → ∃y∃z(z is a bijection between x and y) ∧
(y is finite ordinal))

Definition 23. The set of axioms of the hereditarily finite sets with atoms is:

FSAσ � {FSAi|i = 0, 1, 2, 3, 4, 6, 7, 9} ∪ {FSAiϕ|i = 5, 8, ϕ∈Formσ}.

If R1, . . . , Rk; f1, . . . , fn are new relation and function symbols respec-
tively then FSAσ(R1, . . . , Rk; f1, . . . , fn) stands for FSAσ∗ where σ∗ = σ ∪
(R1, . . . , Rk; f1, . . . , fn).

58 T. Gergely and L. Ury

The Finiteness Axiom implies the Axiom of Choice, i.e.:

Proposition 4. In FSAσ the following statements hold:

(i) Each set can be well-ordered.
(ii) There exists a choice function on sets.

Moreover, basically from the Finiteness Axiom, it follows that for any set
there exists the power set, i.e. the Power Set Axiom is a consequence of FSAσ.

Proposition 5. The axioms of FSAσ ensure that for any set there exists the
power set:

FSAσ |= ∀x(¬atom(x) → ∃y∀z(z∈y ↔ z ⊂ x)).

Therefore, the axiom system FSAσ is equivalent with the Zermalo-Fraenkel
axiom system with the Axiom of Infinity and the Power Set Axiom deleted and
Finiteness Axiom added.

Note that all the notions introduced in ZFC can be introduced in FSAσ as
well. E.g. relation, domain, range, function, bijection, surjection, injection are
such notions. The expressions that define these notions can also be used as a
definition of new relation or function symbols. Adding these new symbols to
the similarity type o and their definitions to FSAσ, we obtain a conservative
extention of FSAσ.

Since in FSAσ all sets are finite, therefore the following preposition holds for
ordinals:

Proposition 6. Each ordinal is finite in FSAσ and the usual addition and
multiplication on ordinals are commutative.

Note that in set theory natural numbers are identified with finite ordinals.
Namely, an ordinal α is a natural number if for all β ≤ α if β �= 0 then β is a
successor of some γ. Again the Finiteness Axiom implies the following:

Proposition 7. The natural numbers, the ordinals (and the cardinals) are the
same in FSAσ.

A programming theory needs, among others, tools to handle infinite objects
e.g. to represent infinite computation processes. Therefore, beyond finite sets as
finite objects, we also have to be able to speak about infinite objects.

Different approaches provide different techniques for this aim, e.g. denotation
approach to semantics makes the topological space complete. We introduce the
notion of class to handle infinity. This notion is also important in ZFC axiom
system, where e.g. the class of all ordinals On is often used. In the axiom system
FSAσ the notion of class has a more important role, since the majority of the
usual sets (namely, all infinite sets) cannot be identified with any set in FSAσ.

Intuitively, a class is but a conglomerate of elements x which satisfy a given
formula ϕ(x). Since each σ-type model of FSAσ has constructive objects (atoms
or finite sets) as elements a class is but a defined or specified conglomerate of

Foundation of Cognitive Computing Based AI 59

these objects. Due to the significant role of classes in our further investigations
they will frequently appear and we therefore have to precisely define what type of
statements can be stated about classes. The definition is based on the followings.
Having a given model a class does not consist of arbitrarily collected elements
of the universe, but they may be collected only by the use of a given formula.
Therefore, we extend the language such that it may contain statements about
classes. Let us first fix an arbitrary set cV of the so called class variable. The
intended meaning of a class variable in a model of FSAσ is a conglomerate of
objects of the universe.

Let σ be a rich similarity type. In order to handle classes we extend the σ-
type classical first order language by adding class terms which provide definable
conglomerate of objects of the universe of the models and the class formulas
which allow to formulate statements about classes.

Definition 24. (a) The set of σ-type class terms (cTermσ) consists of the
terms in the form {x|ϕ} where x∈V and ϕ∈cFormσ.

(b) The set of σ-type class formulas (cFormσ) is the minimal set satisfying
the followings:
– Atomσ ⊂ cFormσ;
– if x∈Termσ and C ∈cV then x∈C belongs to cFormσ;
– if ϕ,ψ are of cFormσ then ¬ϕ and ϕ ∧ ψ also belong to cFormσ;
– if ϕ is of cFormσ, x∈V then ∃vϕ also belong to cFormσ.

Now let us see how the semantics of cFormσ can be defined. First of all, we
extend the notion of valuation for class variables. A valuation of a class variable
is a subset of the universe of the model under consideration.

Definition 25. Let A be an arbitrary but fixed σ-type model. A class valuation
is a function k such that

– dom(k) = C ∪ cV ;
– k(x)∈A for any x∈V ;
– k(x)∈Sb(A) for any class variable x∈cV .

As usual let cV alA denote the family of all class valuations.

Having the valuation we can define the meaning of class terms and class
formulas with respect to a given valuation in an arbitrary but fixed model.

Definition 26. Let a model A∈Modσ be given.

(a) The meaning of a class term t = {x|ϕ} in the model A with respect to k is
the following family:

tA � {a|A |= ϕ[k + (x, a)]}.

(b) For any class formula ϕ ∈ cFormσ and valuation k ∈ cV alA we define the
validity ϕ in A with respect to k (written as A |= ϕ[k]) by induction on the
complexity of ϕ:

60 T. Gergely and L. Ury

if ϕ∈Atomσ then the validity is defined as in (i) and (ii) of 1.2.10;
if ϕ � τ ∈C then A |= (τ ∈C)[k] iff τA[k] is an element of k(C) ;
and (iv) are defined as in (iii) of 1.2.10 (i.e as usual).

In order to make the class valuation more transparent the σ-type models may
be extended such that they will contain an entity which refers to classes.

Definition 27. A pair V = (A, Class) is called a class extention of A iff

– A is a σ-type model;
– Class ⊂ Sb(A);
– for any class term t ∈ cTermσ and valuation k ∈ cV alA we have k(cV) ⊂

Class implies tA[k]∈Class.

Let cModσ denote the family of all class extentions of σ-type models. If V∈
cModσ then let V alV denote those class valuations k for which k(cV) ⊂ Class
holds.

Definition 28. Let V = (A, Class) be an arbitrary class extention belonging to
cModσ. Let ϕ∈cFormσ.

(i) We say that ϕ is valid in V with respect to a valuation k iff k∈V alV
and V |= ϕ[k].

(ii) The class formula ϕ is valid in V iff it is valid with respect to all k∈V alV
i.e.

V |= ϕ iff for all k∈V alV,V |= ϕ[k]

(iii) A class formula ϕ is said to be valid in a σ-type model A iff for all class
extention V = (A, Class) we have V |= ϕ.

So we have defined the σ-type class language as a triple

CLσ � (cFormσ, cModσ, |=)

This language is really a two-sorted one. The first sort corresponds to sets and
atoms and the second one to classes. However, quantification is allowed only for
set variables.

A variable x ∈ V ∪ cV can also be considered as a shorthand for the class
term {y|y ∈x} To have a clearer view of a variable let us see how the “element
relation” ∈ and the equality are defined for class terms.

– {x|ϕ}∈{y|ψ} � ∃y(∀x(x∈y ↔ ϕ) ∧ ψ);
– {x|ϕ} = {y|ψ} � ∀x(ϕ ↔ ψ[x/y]).

Depending on how we look at x as a variable or a=j a shorthand for {y|y∈x}
the class formulas x ∈ y and x ∈ C have different meanings. However, they are
equivalent if we take the Extensionality Axiom (FSA1).

Proposition 8. (i) FSA1 |= (x∈y) ↔ ({z|z∈x}∈w|w∈y)

Foundation of Cognitive Computing Based AI 61

(ii) FSA1 |= (x∈C) ↔ ({z|z∈x}∈{w|w∈C})

Proof. We prove only the statement (i). Working in axiom system {FSA1} we
have the following chain of semantic equivalences:

{z|z∈x}∈{w|w∈y} ≡ ∃u(∀z(z∈x ↔ z∈u) ∧ u∈y) ≡ u(x = u ∧ u∈y) ≡ x∈y.

��

By using the above proposition we can define the following abbreviations:

C = D � ∀x(x∈C ↔ x∈D)
C = y ↔ ∀x(x∈C ↔ x∈y)
C ∈x � ∃y(C = y ∧ y∈x)
C ∈D � ∃y(C = y ∧ y∈D)

For the classical first order languages we have defined the simultaneous substitu-
tion of terms. This notion can be extended even to the class language. However,
we have to make a careful distinction between substitution for variables and for
class–terms. The only question is how substitute into a formula x∈C?

First let τ be a term belonging Termσ. If so then take (x∈C)[τ/C] � x∈τ .
Clearly x∈τ belongs to cFormσ. In the case of class terms take (x∈C)[τ/C] �
ϕ[x/y] where τ = {y|ϕ}. This definition is comform with the fact that x∈{y|ϕ}
is just a shorthand for ϕ[x/y]. In the end if D is a class variable then take
(x∈C)[D/C] � x∈D.

Without spelling out the whole definition we use the notation ϕ[τi/xi] k
i for

the simultaneous substitution of terms τi for variables xi, respectively.

Lemma 1. Let V ∈ cModσ and let ϕ ∈ cFormσ be arbitrary. Let us suppose
that var(ϕ) ∩ cV = {C1, . . . , Ck}. Then for any class terms τ1, . . . , τn if V |= ϕ
then V |= ϕ[τi/Ci] k

i .

In order to handle classes axiomatically the axiom system FSAσ is to be
appropriately extended. The extended axiom system denoted by cFSAσ con-
sists of

– axioms which remain the same as they were in FSAσ dealing with sets only;
– axioms the scope of which is extended to classes;
– the extentions of the axiom schemas by allowing class formulas.

Namely, by extending the axiom system we get the following axiom system
cFSAσ where variables f, g, x, y, z, w,w1, . . . , wn are from V and C,D are
from cV .

FSA0 Existential axiom of atoms:
∃x atom(x)

FSA1 Extensionality axiom:
(¬atom(x) ∧ ¬atom(y)) → ((x = y) ↔ ∀z(z∈x ↔ z∈y))

FSA2 Empty set axiom:
∀x(¬x∈0)

62 T. Gergely and L. Ury

FSA3 Significance axiom of atoms:
∀z(atom(z) ↔ (z �= 0 ∧ ∀x(x /∈ z)))

This axiom together with FSA1 declares that though atoms have no elements
they differ from the empty set 0.

FSA4 Foundation axiom:
∀z(∃x(x∈z) → ∃x(x∈z ∧ ¬∃y(y∈x ∧ y∈z)))

FSA5σ Comprehension schema:

∀z∀w1 . . . ∀wn∃y∃x(x∈y ↔ [x∈z ∧ ϕ(x, z, w1, . . . , wn)])

(where ϕ∈cFormσ!)
FSA6 Pairing axiom:

∀x∀y∃z(x∈z ∧ y∈z)

We remark that since classes have only sets as elements the Pairing Axiom
is not extended to classes.

Before reformulating FSA7 we remark that for any term t one can define its
union by taking ∪t = {x|∃y(x ∈ y ∧ y ∈ t)}. However, our original axiom states
that if t is not proper then ∪t is also not proper! Therefore, we have to use FSA7

without any changes.

FSA7 Union axiom:
∀x∃z[∀y∀w(y∈x ∧ w∈y) → w∈z]

FSA8σ Replacement scheme. For each σ-type formula ϕ:

∀f∀w1 . . . ∀wn(∀x∈f∃!y ϕ(x, y, f, w1, . . . , wn) →
∃g(∀x∈f∃y∈g ϕ(x, y, f, w1, . . . , wn))

(where ϕ∈cFormσ)

Similarly to the modification of the Comprehension schema we allow the use
of class formulas in the scope of the Replecement schema as well.

FSA9 Finiteness axiom:
Each set is equivalent with a finite ordinal

Now having the axiom system cFSAσ we clarify some notions. Let V =
(A, Class) be an arbitrary class extention of A.

– The elements of A are called objects.
– Let a∈A be an object. If V |= atom(x)[(a, x)] then a is said to be an atom,

otherwise it is a set.
– The elements of Class are said to be classes.
– An object a and a class U are called equal iff V |= ∀y(y∈x ↔ y∈C)[(x, a) +

(C,U)].
– A class U ∈Class is called a proper class iff it is not equal to any object of V.

Namely U is a proper class if it satisfies the formula V |= ¬∃x(x = C)[(C,U)].

Foundation of Cognitive Computing Based AI 63

We redefine predicate ‘set’ by taking:

cset(C) � ∃x(x = C ∧ ¬atom(x)).

The ¬atom(x) part of the conjunction is needed only when one substitutes
a variable x for class-variable C:

cset(C)[x/C] ≡ ∃y(y = x ∧ ¬atom(y) ≡ ¬atom(x)).

Next we omit ‘c’ from the name of this redefined predicate because on sets
the new and old meanings are the same.

The predicate ‘proper’ can be defined by taking:

proper(C) � ¬∃x(x = C).

According to the above defined predicates a class term τ is called relational
or functional iff Rel(τ) or Func(τ) holds respectively.

The followings are two useful proper classes:

– Universe = {x|x = x};
– ω = {x|Nat(x)}.

References

1. A definition of AI: main capabilities and scientific disciplines, Brussels
(2018). https://ec.europa.eu/digital-single-market/en/news/definition-artificial-
intelligence-main-capabilities-and-scientific-disciplines

2. Akama, S., Murai, T., Kudo, Y.: Reasoning with Rough Sets - Logical Approaches
to Granularity-Based Framework. Springer, Switzerland (2018). https://doi.org/
10.1007/978-3-319-72691-5

3. Amir, A. et al.: Cognitive computing programming paradigm: a corelet language for
composing networks of neurosynaptic cores, In: Proceedings of IEEE International
Joint Conference on Neural Networks (IJCNN) (2013)

4. Anshakov, O., Gergely, T.: Cognitive Reasoning - A Formal Approach. Springer,
Berlin (2010). https://doi.org/10.1007/978-3-540-68875-4

5. Barwise, J.: The situation in logic. CSLI Lecture Notes Number, vol. 17 (1989)
6. Brasil, L.M., et al.: Hybrid expert system for decision supporting in the medical

area: complexity and cognitive computing. Int. J. Med. Inform. 63(1), 19–30 (2001)
7. Goguen, J.A., Burstall, R.M.: Introducing institutions. In: Clarke, E., Kozen, D.

(eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 221–256. Springer, Heidelberg
(1984). https://doi.org/10.1007/3-540-12896-4 366

8. Cognitive Catalyst. https://www.ibm.com/downloads/cas/OMZMGNP5
9. Devlin, K.: Logic and Information. Cambridge University Press, Cambridge (1991)

10. Fresco, N.: Physical Computation and Cognitive Science. Springer, Berlin (2014).
https://doi.org/10.1007/978-3-642-41375-9

11. Gergely, T., Szőts, M.: Cuttable formulas for logic programming, In: Proceedings
of the Symposium on Logic Programming, IEEE Press (1984)

12. Gergely, T., Ury, L.: Programming in topoi. a generalized approach to program
semantics, In: Categorical and Algebraic Methods in Computer Science and System
Theory, Herdecke, Germany (1980)

https://ec.europa.eu/digital-single-market/en/news/definition-artificial-intelligence-main-capabilities-and-scientific-disciplines
https://ec.europa.eu/digital-single-market/en/news/definition-artificial-intelligence-main-capabilities-and-scientific-disciplines
https://doi.org/10.1007/978-3-319-72691-5
https://doi.org/10.1007/978-3-319-72691-5
https://doi.org/10.1007/978-3-540-68875-4
https://doi.org/10.1007/3-540-12896-4_366
https://www.ibm.com/downloads/cas/OMZMGNP5
https://doi.org/10.1007/978-3-642-41375-9

64 T. Gergely and L. Ury

13. Gergely, T., Ury, L.: First-Order Programming Theories. EATCS Monographs on
Theoretical Computer Science, vol. 24. Springer-Verlag, Berlin (1991). https://doi.
org/10.1007/978-3-642-58205-9

14. Grätzer, G.: Universal Algebra, 2nd edn. Springer-Verlag, New York (1979).
https://doi.org/10.1007/978-0-387-77487-9

15. Gutierrez-Garcia, J.O., Lopez-Neri, E.: Cognitive computing: a brief survey and
open research challenges, In: 3rd International Conference on Applied Comput-
ing and Information Technology/2nd International Conference on Computational
Science and Intelligence, pp. 328–333 (2015)

16. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall, New
Jersey (1998)

17. Ivancevic, V.G., Ivancevic, T.T.: Computational Mind - A Complex Dynamics Per-
spective, Studies in Computational Intelligence 60. Springer-Verlag, Berlin (2007).
https://doi.org/10.1007/978-3-540-71561-0

18. Kumar, V.S., Dhillipan, J., Shanmugam, D.B.: Survey of recent research in granular
computing. Int. J. Emerg. Technol. Comput. Sci. Electron. 24(3), 976–1353 (2017)

19. Maibaum, T.S.E.: Role of abstraction in program development. In: Kugler, H.J.
(ed.) Information Processing 1986. Elsevier Science Publisher, Amsterdam (1986)

20. Milkowski, M.: Explaining the Computational Mind. The MIT Press, Cambridge
(2013)

21. Piccinini, G.: The computational theory of cognition. In: Müller, V.C. (ed.) Funda-
mental Issues of Artificial Intelligence, Synthese Library 376, pp. 203–221. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-26485-1 13

22. Schank, R.: The Cognitive Computer: On Language Learning and Artificial Intel-
ligence. Addison Wesley, Reading (1984)

23. Schank, R.: The fraudulent claims made by IBM about Watson and AI (2019).
https://www.rogerschank.com/fraudulent-claims-made-by-IBM-about-Watson-
and-AI

24. Ury, L., Gergely, T.: A constructive specification theory. In: Declarative Systems
Elsevier Science Publishers, pp. 33–83 (1990)

25. Valiant, L.G.: Cognitive computation. In: Proceedings of IEEE 36th Annual Foun-
dations of Computer Science, Milwaukee, WI, USA, pp. 2–3 (1995)

26. Wang, Y., et al.: A layered reference model of the brain (LRMB). IEEE Trans.
Syst. Man Cybern. (Part C) 36(2), 124–133 (2006)

27. Wang, Y.: On cognitive computing. Int. J. Softw. Sci. Comput. Intell. 1(3), 1–15
(2009)

28. Wang, Y.: On denotational mathematics foundations for the next generation of
computers: cognitive computers for knowledge processing. J. Adv. Math. Appl.
1(1), 121–133 (2012)

29. Wirth, N.: Algorithms + Data Structures = Programs. Prentice Hall, New Jersey
(1976)

30. Yao, Y.: Artificial intelligence perspectives on granular computing. In: Pedrycz,
W., Chen, S.-M. (eds.) Granular Computing and Intelligent Systems ISRL 13, pp.
17–34. Springer-Verlag, Berlin (2011). https://doi.org/10.1007/978-3-642-19820-
5 2

31. https://www.lexico.com/en/definition/artificial-intelligence
32. https://www.britannica.com/technology/artificial-intelligence

https://doi.org/10.1007/978-3-642-58205-9
https://doi.org/10.1007/978-3-642-58205-9
https://doi.org/10.1007/978-0-387-77487-9
https://doi.org/10.1007/978-3-540-71561-0
https://doi.org/10.1007/978-3-319-26485-1_13
https://www.rogerschank.com/fraudulent-claims-made-by-IBM-about-Watson-and-AI
https://www.rogerschank.com/fraudulent-claims-made-by-IBM-about-Watson-and-AI
https://doi.org/10.1007/978-3-642-19820-5_2
https://doi.org/10.1007/978-3-642-19820-5_2
https://www.lexico.com/en/definition/artificial-intelligence
https://www.britannica.com/technology/artificial-intelligence

A Review of Motivational Systems
and Emotions in Cognitive Architectures

and Systems

Ricardo R. Gudwin(B)

DCA-FEEC-UNICAMP, Av. Albert Einstein 400, Campinas, SP 13.083-852, Brazil
gudwin@unicamp.br

http://faculty.dca.fee.unicamp.br/gudwin

Abstract. Motivational Systems are specific modules of Cognitive
Architectures, responsible for determining the behavior of artificial
agents based on cognitive models of human motivations and emotions.
In this work we discuss how these ideas coming from psychology can be
used in the field of cognitive architectures, explaining how motivational
systems differ from other kinds of systems, and how they can be used to
build control systems for artificial agents.

Keywords: Motivational systems · Emotions · Cognitive
architectures · Intelligent systems

1 Introduction

Cognitive Architectures is a field of research within Artificial Intelligence where
computational models of cognitive abilities, like e.g. perception, attention, mem-
ory, reasoning, learning, behavior generation, and others, are used to build con-
trol systems for artificial agents. Furthermore, cognitive architectures can be
theoretical models about how cognitive processes interact and also computa-
tional frameworks which can be reused through different applications. Moti-
vational Systems are specific modules of Cognitive Architectures, responsible
for determining the behavior of artificial agents based on cognitive models of
human motivations. The traditional approach in motivational systems is based
on Hull’s theory of behavior (Hull 1943, 1952), which identifies the origin of
behavior in a set of internal needs, either ontogenetically inherited by the crea-
ture, or learned during the course of its life, and providing motivation in the
generation of behavior. According to this theory, the level of satisfaction of each
of these needs is measured, giving rise to drives. These drives are connected
to a set of automatic behaviors, which are supposed to decrease the level of
these drives, providing satisfaction to the corresponding need. This mechanism
works like a process of homeostasis, regulating drives and satisfying the agent’s
needs. The generated behavior is said to be a motivated behavior. According to
Maslow (1943), needs can be organized in layers, being the lower levels related to
c© Springer Nature Switzerland AG 2019
G. S. Osipov et al. (Eds.): Artificial Intelligence, LNAI 11866, pp. 65–84, 2019.
https://doi.org/10.1007/978-3-030-33274-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-33274-7_4

66 R. R. Gudwin

physiologic needs (food, water, sleep, shelter, sex, etc.), followed by safety needs
(maintenance, physical integrity, etc), social needs (social belonging, friendship,
intimacy, family) and self-esteem (strength, achievement, adequacy, mastery of
competence, reputation, prestige, etc). The higher level needs might be related
to self-actualization needs, the need to transcend itself, to evolve and fulfill all its
potential. These layers provide a priority among needs in order for them to affect
the overall agent behavior, where lower needs are satisfied first, and only after
they are satisfied, middle layer needs are considered and only after these, the
higher level needs start commanding the agent’s overall behavior. The standard
approach assumes these needs are all pre-designed and embedded in the motiva-
tional system, working since the beginning in the behavior generation process.
In this work we discuss how these ideas coming from psychology can be used in
the field of cognitive architectures, explaining how motivational systems differ
from other kinds of systems, and how they can be used to build control systems
for artificial agents. We start introducing the main concepts on what are moti-
vated behaviors and emotions, according to the main theories from psychology
and philosophy used within cognitive architectures. Next, we review the main
available models for motivations and emotions, focusing in the many differences
among the available models. Finally, we propose a new definition for motivations
and emotions, which tries do unify the many different approaches and provide a
perspective that can conciliate the many different models presented before.

2 What Is a Motivated Behavior?

The study of motivational or emotional capabilities inserts itself under the
broader field of behavior systems. Human beings and animals are able to per-
form many different kinds of behavior, since external behavior, affecting the
world, up to internal behavior, affecting internal organs of the body, or even
internal behaviors affecting just the mind. There are many possible ways for
categorizing behavior. One possible way, inspired on the work of the semiotician
Charles Sanders Peirce is to apply his universal categories (firstness, secondness
and thirdness)1 to the possible origin of behaviors, and categorize them on the
following classes:

1 According to Peirce, firstness is the mode of being of that which is such as it is,
positively and without reference to anything else (CP 8.328; 1.295). The idea of
First is predominant in the ideas of freshness, life, freedom (CP 1.302), novelty,
creation, originality, potentiality, randomness. Secondness is the mode of being of
that which is such as it is, with respect to a second but regardless of any third (CP
8.328; 1.296). The idea of second is predominant in the ideas of causation and of
static force (CP 1.325), comparison, opposition, polarity, differentiation, existence
(opposition to everything else). Thirdness is the mode of being of that which is
such as it is, in bringing a first and second into relation to each other (CP 8.328;
1.297). The idea of third is predominant in the ideas of generality, infinity, continuity,
diffusion, growth, intelligence (CP 1.340), meaning, mediation and representation.

A Review on Motivational Systems and Emotions 67

– Original Behaviors
– Reactive Behaviors
– Motivated Behaviors

Following the idea of firstness, original behaviors are those which do not
depend on any sensory input to be generated. In its simplest version, they might
be completely random, without influence of anything else. In a more pragmatic
account, though, we might have random transformations on previously gener-
ated behaviors, making them new behaviors and so, original. What all original
behaviors have in common is the fact that, being original, its effect at the environ-
ment is previously unknown. Original behaviors are very important for learning.
A cognitive architecture might generate original behaviors and test their effect in
the world, under many different situations. Depending on the effects they cause
in the environment, these original behaviors might be reused in the future. The
generation of original behaviors is the source of creativity within a cognitive
architecture, allowing the discovery of new means to act in the world. In sit-
uations where no other kinds of behaviors are possible, original behaviors also
allow the system to move from a problematic state, moving it to a different one,
which hopefully, will be treatable. Differently from original behavior, reactive
behaviors are behaviors that depend on some kind of input, to which the sys-
tem reacts, following the principles of secondness. Usually, this input is some
kind of sensory input, which is transformed internally into an output by the
system. The output of a reactive system is basically a deterministic function of
its inputs, and possibly some sort of internal variables of the system. Reactive
behaviors can be implemented in cognitive architectures in many different ways.
They might be generated by rule-based systems, by neural networks or by fuzzy
systems. What they all have in common is that reactive behaviors are usually
blind to what they cause in the world. They are just mechanically generated and
applied, following a recipe, and depending on a situation. Both original behaviors
and reactive behaviors are typical in machines and other non-animated objects.
Original behaviors are those which do not account on past states to be applied,
and reactive behaviors are dependent from the past information in order to
be applied. The understanding of the third category is a little bit more trick-
ier. Motivated behaviors are typical in living systems, particularly animals. The
idea of a motivated behavior is that this behavior is not just an original behav-
ior or a reaction to something else. The idea of a motivated behavior is that
there is a finality in that behavior, a goal that must the reached, a purpose to
be accomplished. There is a deep discussion in philosophy regarding this issue.
This discussion starts in Aristotle and his notion of final cause, passing through
subsequent discussions on teleology, teleonomy and finally reaching cybernetics:
the science of control.

There are simple kinds of motivated behaviors. Any closed-loop control sys-
tem, like a thermostat, performs a sort of motivated behavior. When a thermo-
stat determines the control signals to a cooler system, it is not simply reacting
to an input, but they are changing the environment in order for a goal (e.g. a
reference temperature) to be reached. And due to the inherent feedback of a

68 R. R. Gudwin

closed-loop system, the environment slowly converges to this temperature. It is
important to differentiate, though, motivated behaviors from reactive behaviors.
A reactive behavior does not have an envisioned future state to achieve. It sim-
ply reacts to the inputs, without the requirement of what should come in the
future. Motivated systems, on the contrary, have an envisioned future to reach.
System outputs are in some sense committed with this expected future.

But motivated systems can be very much more complex than a simple ther-
mostat. The goal to be achieved might require a previous plan, a set of steps
which must be performed in order to reach a desired state. The system needs
to anticipate the future and select a behavior which will maximize the chance
to reach this desired future state. Many things can happen at the environment,
and the system needs to find the best behavior to circumvent these extraneous
events such that the environment state converges to the desired one. There are
many models in the literature trying to explain motivated behavior. The work of
(Hull 1943) on the principles of behaviors is one of such models. According
to Hull, goal-directed behavior is explained in terms of needs intrinsic to liv-
ing beings, which drive their behavior at the environment. These needs are the
motivation for their behavior, and drive the outputs of a living being. Systems
which are described in terms of needs, driving their behavior are called then
motivational (or motivated) systems.

Motivational systems are being studied in many different works, becoming
a field of research in itself (Toates 1986; Baumeister 2016; Reeve 2016). Also,
several cognitive architectures provide some sort of implementation of models
of motivational systems (Sun 2009; Breazeal et al. 1998; Pezzulo et al. 2014;
Bach 2015; McCall 2014). Nevertheless, according to Baumeister (2016), there is
still no consolidated theory for explaining all aspects of motivations. According
to him, there are at least two important kinds of motivations, which need to
be considered, the first one, based on Hull’s idea of drives, and another one he
calls impulses. The first kind of motivation (drives) are related to broad disposi-
tional tendencies, recurrent pattterns of desire and frequent behavioral tenden-
cies which are more perennial in its motivational aspect. The second concept of
motivation (impulse) refers to a particular desire to perform a particular behav-
ior on a particular occasion. While drives are always being computed, becom-
ing stronger or weaker while affecting behavior, impulses appear in particular
instances of time, and disappear as soon as they are satisfied. There is an intrin-
sic relation between drives and impulses. A motivated creature will always have
a hunger drive, causing always the action to eat to reduce it, but the impulse to
eat a specific apple you saw in the market store starts at some point (e.g., when
you see the apple, or while you remember that there are apples in the market
store), and ceases after you eat the apple. In this sense, we might consider that
impulses are a specific strategy that evolution created for satisfying drives.

Finally, another important remark from Baumeister (2016) is the dichotomy
liking×wanting (Berridge et al. 2009). Both liking and wanting appear to
be related to the motivation mechanism, but in different ways. Liking is a phe-
nomenon that is intrinsic to the present. It happens in the present time, without,

A Review on Motivational Systems and Emotions 69

in principle, any connection to the future. I sense something which I like or dis-
like. And that’s it! Wanting, otherwise, occurs in the present but is related to a
future, where the wanted thing will consolidate. So, apparently, wanting has a
direct connection to motivation, providing a goal to be fulfilled. Wanting is an
important part in the mechanism of impulse. I want something, I figure out how
to make it happen, I act in the world in order to make my wanting to consolidate.
But even though they are clearly different things, liking and wanting are in some
form imbricated to each other, because most of the times, I want something I like,
even though it is possible to want something I might not like (Pool et al. 2016).
What counts here is the expected reward, not the real reward I receive. Accord-
ing to Pool et al. (2016), the incentive salience hypothesis challenged the drive
reduction theory that accounted for motivated behaviors exclusively in terms of
the need to reduce drives in order to reestablish homeostasis. In other words,
there might be different kinds of reinforcements (rewards/punishments) than
simply drive reduction, motivating our behavior. The incentive salience hypoth-
esis postulates that reward processing involves multiple components, including
one that is motivational (wanting) and another that is hedonic (liking), which
rely on separate neural networks that can be dissociated under particular cir-
cumstances.

3 What Are Emotions?

The transposition of ideas from psychology to the construction of artificial sys-
tems can be many times misleading, causing a certain discomfort for psycholo-
gists and philosophers. This is exactly what happens with the term “emotion”.
For many researchers, emotions are a unique characteristic of human beings and
animals, which should not be used to describe components of a synthetic mind,
created by men. In this line of thought, emotions and feelings should be unique
to living beings, allowing ourselves to experience the world from a conscious
perspective, and should not be attributed to artificial creatures. But is this just
human vanity or is really the case? After all, what are emotions? Everyone knows
what is to feel fear, happiness, joy, the emotion of our first love, of succeeding
in our first job, to be rejected or suffer a punishment for something wrong. But
what is the true nature of this phenomenon? Even though everyone has an intu-
itive idea of what is an emotion, the attempts to formally explain its nature are
many and diverse. We can say that we still lack a clear and consensual definition
for what are emotions2. If we look in the literature, we will discover that emo-
tions are studied in many different fields of knowledge. There are many models,
usually incompatible to each other, trying to explain the phenomenon, according
to Cabanac (2002) and Izard (2010). Besides that, the term emotion is somewhat
linked to many other correlate terms, like affect, feeling, desires, impulses, will,
drives, motivations, needs and so on.

2 Izard (2010) compiled 92 different definitions for the term “emotion”, collected from
books and articles in journals.

70 R. R. Gudwin

If, in a naive move, we look for the term “emotion” at the Wikipedia, for
example, we might find the definition of emotion as being “a mental state asso-
ciated with the nervous system brought on by chemical changes variously asso-
ciated with thoughts, feelings, behavioural responses, and a degree of pleasure
or displeasure. There is currently no scientific consensus on a definition. Emo-
tion is often intertwined with mood, temperament, personality, disposition, and
motivation.”.

In a search for the etymological origin of the term, emotion comes from Latin
emovere “to move out, remove, agitate” from assimilated form of ex (out) to
movere (to move), i.e. the etymology is associated to the expression of emotions,
but this does not give us a hint on what is the phenomenon from an internal,
cognitive perspective.

Even though a great number of models are apparently inconsistent to each
other, as Johnson (2009) shows, the use of emotions in intelligent system and
particularly in artificial creatures has many interesting contributions (Bates et al.
1994; Blumberg 1997; Koda and Maes 1996; Reilly 1996; El-Nasr 1998; Velásquez
1999; Ventura 2000; Tomlinson and Blumberg 2002; Ortony 2002; Malfaz and
Salichs 2004; Sarmento 2004; Cañamero 2005; Meyer 2006; Ziemke and Lowe
2009).

The earlier roots in the study of emotions can be traced back to philosophy,
with the distinction between action and passion, the state to be active or pas-
sive, as shown by James (1997) and Dixon (2003). In this context, important
philosophers as Aristotle, St. Thomas Aquinas, Descartes, Hobbes and Spinoza,
just to cite a few, already wrote about the theme. According to Rorty (1982),
the concept of passion was gradually refined, in order to achieve the modern
concept of emotion, used in psychology. Starting from the idea of passion as a
mere passivity to something external to the mind, we evolve to the concepts
of feeling, pleasure and displeasure as appraisal reactions to possible courses of
actions. From a mere passivity in the beginning, emotions turn into an action of
mind, guiding intelligent behavior, assuming an important role in the process of
rationality, which was not originally acknowledged3.

Dixon (2012) points out that the modern concept of “emotion”, studied in
psychology, appears only at the XIX century, as an abstraction to many dif-
ferent related concepts like appetites, passions, affects and feelings, subjects of
philosophical investigation since its beginnings. According to Dixon, the mod-
ern concept of emotion was created by the Scottish thinker Thomas Brown
(1778–1820), being later used by Darwin and William James. Cornelius (2000)
presents the 4 main theoretical perspectives in the modern study of emotions:

The first perspective comes from Darwin (1872), and presents emotions as
the result of an evolutionary process. In this process, natural selection gradually
shaped a set of behavioral expressions with characteristic functions, important
in determining an individual survival while interacting to its environment, in
different animal species.

3 See the concept of emotional intelligence defended by Goleman (1995), where emo-
tions are pointed out as a foundation in the process of rationality.

A Review on Motivational Systems and Emotions 71

The second perspective originates in the work of James (1884), which
describes emotions as the perception of affections in the body, causing feelings,
perspective also shared by Damasio (1994, 1999, 2003). From his side, Darwin
is more concerned with the expression of emotions, documented in his work
about the expression of emotions in men and animals. Now James focuses on
how the emotional experience modifies the body, before evoking a behavioral
disposition, viewed as a tendency on prototypical actions, as a consequence of
an evolutionary process (where he agrees with Darwin). So, for James (and also
Damásio), emotions are connected to body changes, in a first glance, followed by
a feeling, considered as the cognitive effect of the emotion, and further causing
a behavioral consequence.

Still, according to Cornelius (2000), the third perspective is a cognitive one.
It starts with the work of Arnold (1960) and maybe is one of the most influ-
ential in the study of emotions nowadays in psychology. The central idea on
this perspective is that thoughts and emotions are inseparable processes. More
specifically, emotions are seen as appraisals, i.e. the process by which environ-
mental events are judged good or bad by an individual. Arnold accuses James
of too much simplicity in saying that emotions are just the perception of body
changes. According to Arnold, James failed in noticing this appraisal aspect of
emotions, which will distinguish it from a mere perception. In the same way that
James was not able to conceive emotions without body changes, Arnold could
not conceive emotions without this appraisal character.

Finally, the fourth perspective about emotions, more recent and more con-
troversial, is the social-constructivist perspective. Opposed to more biological
perspectives, which argues for emotions as an adaptation of an evolutionary
process, the social-constructivist perspective believes that emotions are a cul-
tural byproduct of learning social rules. According to their defenders, to fully
understand the spectrum of complexities around emotions, it is necessary to go
beyond the evolutionary aspect and to dig into socio-cultural aspects involving
human interaction and their social rules.

These four perspectives implicitly suggest different models to the emotional
phenomenon, pointing us to different aspects which might be important in the
modeling of emotions. The modeling of emotions is not just related to changes
in the body (expression of emotions), or its appraisal aspect, affecting decision-
making and behavior. Some authors start to detect other dimensions which seem
to be important in the comprehension of the emotional phenomenon. Schlosberg
(1954), for example, points out the importance of what he calls the “activation
level”, or intensity of a given emotion, something which further authors will call
the “arousal aspect” of an emotion, pointing out the difference between “strong”
emotions and “weak” emotions. Using this dual aspect of appraisal and arousal,
different models, as e.g. the PAT (Pleasure-Arousal Theory) from Reisenzein
(1994) or the Circumplex Model of affect, developed by Russell (1980) and
Posner et al. (2005), besides others, just like e.g. Barrett (1998). After that, other
authors start increasing the number of dimensions beyond those. Among them,
the dominance-submission axis, according to Russell and Mehrabian (1977) and
Mehrabian (1996), or the temporal duration or even a polemic dimension of

72 R. R. Gudwin

“quality”, according to Cabanac (2002), possibly created due to the fact emo-
tions like fear and hunger have different qualities. The unsolved question of
what would be this “quality” started finding a solution when the community
decided to substitute a unique hedonic pleasure/displeasure dimension by multi-
ple appraisal dimensions. Then, the term appraisal started being understood as
a process evaluating the significance of many different factors for the well being
of an individual. This notion of “well being of an individual” started to incorpo-
rate the satisfaction or dissatisfaction of potentially multiple needs, values, goals
and beliefs of the individual. In other words, anything that should matter for an
individual, as pointed out by Moors et al. (2013).

This last evolution in the models of emotions pass through an obvious con-
nection with the model of motivational behavior developed by Hull (1952), which
started to be of great importance in the development of new models of emotions
in the context of artificial cognition. According to Hull, motivated behavior can
be explained due to a set of needs, which drive corresponding actions on the
environment. It is implicit in this model that this action should cause a reduc-
tion in the corresponding need, or, in other words, that this need should be
satisfied by the results of this action. Hull developed then, the concept of drive,
as a measure evaluating how much a need is not satisfied. A high drive indicates
that its corresponding need has a low level of satisfaction, causing more effect
in the behavioral decisions. A low drive indicates that the need was properly
satisfied. According to Hull, a living organism might have a full set of needs,
each of them with a corresponding intensity (or dissatisfaction) level, at each
time instant. The role of a motivational system is to evaluate the state of satis-
faction of these needs, measured by their corresponding drives, and choose the
best action in the sense of satisfying the needs with most intense drives. Drives
can be physiological or social. Physiological needs give rise to the so called low
level primary drives. Examples of this kind of drives, pointed out in the litera-
ture are hunger, thirst, sleep and safety (preservation from physical damages).
Social needs give rise to the so called high level primary drives. Examples of such
include friendship, social inclusion, reciprocity, curiosity, autonomy, and honor.

Some work in the literature propose a whole hierarchy of needs, as the work
from Maslow (1943). In this hierarchy, instead of just two levels (low and high) of
priority (low level drives have more priority), different hierarchical levels might
be conceived, creating a whole hierarchy of priorities among needs. The literature
also points out the existence of secondary drives, which are not only determined
by sensory information, as in the case of primary drives. In secondary drives, the
need satisfaction is determined by either sensory information and other drives.
So, secondary drives are those which are originated from other drives.

It is clear, here, that there is a great connection between theories about emo-
tions and theories about motivations, according to Buck (1988). In fact, in some
cases it is either difficult to distinguish where emotions and motivations are dif-
ferent, because both themes are largely imbricated. Needs, drives, motivations
and emotions seem to be just components of a more complex motivational sys-
tem, being an important part in the determination of either human or animal
behavior.

A Review on Motivational Systems and Emotions 73

Finally, it is important to point out the relevance of emotions for the
rational behavior, discussed more recently in works like those from Damasio
(1994, 1999, 2003) and Goleman (1995). The authors propose that a rational
behavior depends directly from the appraisal aspect of emotions. Without emo-
tions as a criteria, rationality becomes impossible, according to them. In the
next sections, we present some of the models developed using these theories
about emotions and motivations in building a cognitive architecture.

4 The OCC Model: Ortony, Clore, Collins

One of the pioneer studies of emotions, originated from models in cognitive
psychology, but with a great impact in the development of artificial cognitive
systems is the model developed by Ortony et al. (1990), regarding the cognitive
structure of emotions, called here the OCC Model. It is a typical model origi-
nated from the appraisal/arousal dichotomy, called by authors as valency and
activation. According to the OCC Model, emotions are internal mental states
which can have different intensities, and which are predominantly related to
affects. Affects are considered as evaluative reactions to situations considered to
be good or bad, being these reactions bounded to:
– Events and their consequences (things which happen and are perceived by an

individual);
– Agents and their actions (other people or animated beings actuating in the

world - including an estimate of these agent’s mental states, giving rise to
emotions like proud, admiration, shame and criticism);

– Objects and their properties (emotions aroused from perceptions regarding
the object).

The OCC Model specifies 22 emotions implemented in terms of local and
global variables. One of the differentials from the OCC Model is the fact of
employing artificial intelligence tools in the modeling. These appear in the form
of rules, considering the triggering potential of an emotion, the threshold for
the triggering of an emotion and the intensity of such emotion. The triggering
potential of an emotion can be a desire (of a consequence or of an event), a
deserve (of an action onto an agent), or an appeal (of an object). The distinction
of the reactions to events, agents and objects, which is a characteristic of the
OCC Model, allows us to distinguish between tree different kinds of emotions:
– To be happy or unhappy (with the occurrence of an event - reaction to events)
– Reactions of approval or disapproval (to actions realized by other agents -

reaction to agents)
– To like or dislike (a given object or state - reaction to objects)

The OCC Model is a meta-model4 highly cited in many works involving cog-
nitive architectures for artificial creatures, and the synthesis of artificial emotions
(Bates et al. 1994; Reilly 1996; Koda and Maes 1996; El-Nasr 1998; El-Nasr et al.
2000; Velásquez 1998; Wallach et al. 2008).
4 A meta-model is a model of a model, i.e., a kind of abstract model which demands

an instance in a concrete model, in order to be used.

74 R. R. Gudwin

5 Damásio and the Somatic Marker

The work of Damasio (1994, 1999, 2003) is another highly cited in many arti-
cles involving emotions and intelligent systems, as e.g. the works of Velásquez
(1998, 1999), Ventura (2000), Tomlinson and Blumberg (2002), Malfaz and
Salichs (2004), Sarmento (2004), Ziemke and Lowe (2009). In “Descartes Error”,
Damasio (1994) proposes rationality with emotions, and the requirement of a
body in the process. The author proposes a distinction between emotions and
feelings, proposing that an emotion will be a modification in the body due to
external stimuli (following basically the ideas from William James) and feel-
ings would be a cognitive counterpart of emotions, appearing after the conscious
acquisition of emotions.

Damásio classifies emotions into primary and secondary. Primary emotions
are those we experience since our childhood, those for which there might be a
pre-organized inborn mechanism. Secondary emotions are those proper to adult
individuals, learned through experience since childhood to adulthood. Primary
emotions would be those like fear, joy, sadness, rage, etc. Secondary emotions
would be those like jealousy, guilt, pride, etc. Primary emotions are normally
triggered due to external or internal stimuli, from sensory organs. Secondary
emotions would require cognitive events.

Damásio elaborates then his hypothesis of somatic marker, where emotions
are seen as marks of different aspects of situations or the result of possible
actions, which might be used as differential aspects in the process of decision-
making. When we experience an emotion, the immediate result is a body change,
like e.g. an acceleration in our heart beating, or an increase in sweating. To
this emotion there would be a related feeling, a cognitive evaluation regarding
the convenience or inconvenience of the situation for the individual. This body
change marks the situation causing it. In the future, other similar situations will
be recognized and classified as good or bad, in the same way. This affects our
subsequent decision-making, according to the evoked body changes. More than
that, he advocates that the brain systems participating in emotion arousal and
decision-making are both involved in the cognitive control and social behavior
determination.

Emotions, in this context, work both as an initial criteria in decision-making,
where an elaborated reasoning was not yet developed (a kind of unconscious
reasoning, instinctive, almost reactive, but clearly motivational), and those more
elaborated clearly deliberative reasoning. In the first case, depending on the
intensity of the body change, the decision can be really visceral, definitive. In
the second case, usually different possible scenarios are analyzed and one of them
chosen. In both cases, the judgment criteria comes from an appraisal, originated
from an emotional memory.

A Review on Motivational Systems and Emotions 75

6 Simon and Sloman: Emotions as Attention Filters and
Alarms

A researcher with many contributions in the modeling of emotions and affect
in artificial systems is Aaron Sloman, actually at the University of Birmingham
- UK, where he directs the project “Cognition and Affect” since 1976 (but in
Birmingham since 1991). One of the reasons for us to explicitly mention this line
of research (Sloman et al. 2001) is his peculiar model of emotions, which is quite
different from the other models presented since so far.

Sloman et al. (2001) developed his model based on a theory of emotions as
interruptions, previously proposed by Simon (1967). In this theory, Simon also
uses the need theory from Hull as a basis, but with different results. According
to Simon, there were three different kinds of needs: those from uncertain and
non-predictive environmental events (as e.g., the appearance of a predator in
the forest); the physiological needs (as e.g. hunger, thirst); and the needs com-
ing from cognitive associations (as, e.g. those associations leading to anxiety).
According to Simon, environmental events, memory evocations or motivations
might change the current subject’s goals, causing its interruption. The unex-
pected appearance of a predator, for example, might cause the interruption of
an animal previous behavior, and the generation of new goals, as the escape from
a danger. Simon dedicated to deeply study the process on how goals and targets
are interrupted and the consequent change in behavior occasioned by emotions.
His theory was that emotions comprise a complex mechanism of interruption,
working like a monitor to the many parallel goals managed by the motivational
system, causing behavioral changes due to relevant changes in the experienced
situation.

Based on the “emotions as interruptions” theory from Simon, Sloman and
Croucher (1981), Sloman (1987, 1992) develops then his Attention Filter Pene-
tration Theory (AFP), to explain emotions. Differently from Simon, which ter-
minally aborts the interrupted motivational processes, in Sloman’s AFP, the
attention filters triggered by emotions just caused a momentary disruption in
the course of actions targeting a goal, with the possibility of returning to it later,
if the event causing the emotion (and the disruption) was successfully treated.
In this new perspective, emotions work as attention filters, or as Sloman (1998)
calls it later, alarms. The idea of an alarm is that of a process (usually fast and
efficient), able to detect specific patterns and trigger a reaction chain determining
radical changes in behavior. The justification for these alarms is that behavior
generation processes might be slow to generate, and in some particular critic
situations, maybe the system might not have time enough to deliberate what to
do5, being a fast action required, even though this action is not necessarily the
optimum action. In the animal world, this might happen, e.g., in predatory situa-
tions, or other lethal danger. In the human being, this might happen always that
dangerous situations are detected or, in an analogous way, while an advantage

5 I.e., in critical situations, there is not enough time for slow decision-making processes,
and a fast behavior might be necessary to take the system out of the critical situation.

76 R. R. Gudwin

opportunity (which might cease quickly) requiring a fast move is necessary. So,
Sloman (1998) conceives an emotional system as global alarm system, working
as an attention filter in either reactive or deliberative processes, aborting certain
kinds of behavior and emphasizing others.

7 Cañamero and the Modulation of Motivations

The model developed by Cañamero (1997, 1998, 2001, 2003, 2005) differentiates
from the previous ones in many aspects. This researcher proposes an emotional
system for autonomous agents where emotions work as motivation modulators,
with the definition of synthetic hormones affecting the many homeostatic pro-
cesses associated to the needs of virtual creatures.

The motivational system developed by Cañamero assumes a set of body
variables generating drives for regulatory behavior, with the aim of making the
values of such body variables among determined parameters. The body vari-
ables are: adrenaline level, blood pressure, blood glucose rate, endorphine level,
energy level, heart beat, pain, respiratory rate, temperature and vascular vol-
ume. Each of these variables has a reference value and a current value. The
difference between the reference value and the current value works as a drive to
trigger certain kinds of behavior which, beyond the effect they cause at the envi-
ronment, actualize the current value of these body variables, in a homeostasis
mechanism. So, both the creatures actions and their pragmatic effect in world,
affect the regulation of body variables.

At each instant, based on the difference between current and reference values
of the many body variables, a landscape of drives is determined (i.e., a set of
performance indexes informing how far the body variables are from their refer-
ence values). The drive with the highest intensity (i.e., indicating a body variable
which is the most far from its reference value) is selected to determine the imme-
diate behavior for the creature, triggering an action over the environment, and at
the same time reducing the corresponding drive. This is the basic motivational
system, still without emotions.

The emotional mechanism, according to Cañamero, is independent from the
motivational mechanism, even though affecting it. Critical situations from the
environment trigger the emotion mechanism. The emotions used by Cañamero
are: fear, rage, happiness, sadness, boredom and curiosity. Only one of these
emotions is active in a given instant. Situations from the environment determine
different levels of arousal for each of the emotions, and the one with the greatest
arousal, since greater than a threshold, is chosen as the current emotion. This
emotion causes the release of a hormone, affecting the body variables and caus-
ing a change in their values. The same hormone might affect in different ways
different variables. Changing the values of body variables, emotions (i.e. the hor-
mones) affect the final behavior, by changing the landscape of drives directing
their behavior, modulating it to the criticality of the situation.

In Cañamero’s model, emotions are not directly linked to the appraisal aspect
of motivations, but work as second order modulators, or amplifiers of motiva-
tions, causing a momentary unbalance on the homeostatic process. This turns

A Review on Motivational Systems and Emotions 77

some drives more intense than others, under special situations, as e.g. those sit-
uations of high risk or extremely favourable situations, which do not repeat too
often, demanding an opportunistic move in order to bring expressive benefits to
the goals of a creature.

8 Picard and Affective Computing

Finally, the last work we want to highlight is the work of Rosalynd Picard, not
because it brought a specific model of emotions, but because it brought structure
to the study of emotions in artificial systems. Picard (1997) organized the study
of what she called Affective Computing, considering different uses of emotions in
artificial systems. First, Picard draws our attention that emotions can be used
in three different ways in artificial system:

– To recognize Emotions
– To express Emotions
– To have Emotions

In this way, a creature (or system) can simply be able to recognize emotions in
human beings or other creatures, without effectively expressing them or having
them, indeed. In the same way, it might be capable of expressing a behavior
which might be interpreted as being derived from an emotional state (so, just
simulating them, without really having them, i.e., without using them from a
cognitive standpoint). This could be the case, e.g., when the system is interacting
with humans, aiming at evoking in them emotions, but without truly using them
internally. And finally, we might want the creature or system to truly “have”
emotions, i.e., being truly affected in its behavior due to the recognition of
perceived situations. Even though these abilities are independent, it might be
the case we want the artificial system to hold all of them together, to be able to
recognize emotions, to express emotions and to really “have” emotions.

Picard also proposed the possibility of testing the “emotional performance”
of a system. In this analysis, she pretend to evaluate the “emotional behavior”
of a system, trying to answer the following questions about it: Does the system
appears to have emotions? Does it provide a fast response to specific stimuli?
Does it interpret the current situation and evaluates it? Does it appear to have
different feelings for different emotions? Does these emotions make any influence
in its behavior? So, regarding emotions, she asks if these exert any influence on
learning and/or on decision-making, or memory recovery.

Also, Picard attempts for the possibility of having many different levels of
representation for emotions. In its lower levels, we might have emotional signals
(properties), like e.g. emotive response decay, repetitive stimuli, influences in
mood and personality, non-linearity, time invariance, saturation, physical and
cognitive feedback, background mood. In the medium level, she analyses the
subject of emotion expression, in terms of patterns or models. Finally, on the high
level, she analyses the cognitive exploitation of emotions, in terms of concepts
and ideas, and how these are affected by emotions.

78 R. R. Gudwin

9 Discussion

The many works involving emotions, since from a purely cognitive modeling
point of view up to its use in cognitive architectures, for the construction of
artificial systems, allows us to state a great number of considerations.

First, it is necessary to acknowledge that there is no unique model, neither a
mainstream model in the research regarding emotions and motivations. From one
side, we have the studies originated from Darwin on the expression of emotions
and the effect they cause in body, something which is recognized by William
James, Damásio and others. The idea that emotions affect initially the body, and
further leading to its cognitive use leads us to the Appraisal/Arousal dichotomy.
The appraisal aspect relates to the evaluative aspect of emotions. The arousal is
more related to the dynamic aspect of emotions, the specific reaction to objects,
events and situations, as pointed out in the OCC model.

The appraisal aspect of emotions might provide a connection to how motiva-
tions work for the human being, influencing a homeostatic process where some
internal variables are regulated, just as in a control system, affecting the way
we behave and do decision-making. But also here, we have the work of Sloman,
which sees emotion only on exception handling behavior, working as alarms,
or even the drive modulation scheme, amplifiers of the values affecting judg-
ment, as pointed out by Cañamero. We see then that the notion of emotions
is fragmented together with motivations, and each proponent has a good argu-
mentation to background their models. Besides that, these models appear to be
radically different among themselves.

Would it be possible to develop a model unifying all these points, such that
each of the arguments could be considered, at least in part? It seems to us that
the great difficulty in having a unifying model is that there is a unique term:
emotion, which is associated to different facets of a behavior generation process,
where each author uses as a tag, but focusing in different aspects, mistakenly
identifying these parts with emotions as a whole. In other words, maybe this
difficulty comes from the non-technical use of the word emotion, as in common
language, or even in the use of metaphors in the construction of a definition.

In this sense, trying to consider the many different arguments from multiple
authors, and in the attempt of unifying all the proposals, we propose here a
new definition for what emotions really are, and what is the relation between
emotions and motivations. Even though, this is “one more” definition, in a topic
already overloaded of definitions, it is our opinion that this might possibly solve
the question of considering all the many different viewpoints.

In the model for motivational/emotional systems we propose in this arti-
cle, we defend that emotions are a “feature” of advanced motivational systems,
particularly used when two or more motivational systems develop some kind
of communication among each other, and they need to exchange information
regarding their motivations, for the purpose of collaboration and/or competi-
tion. The reader should observe that it is a radical move from other definitions
of emotions, which propose emotions as foundational elements in their models.

A Review on Motivational Systems and Emotions 79

To defend our proposal, we develop an evolutionary analysis regarding emo-
tions in animals, and the evolution of their brains. It is remarkable that moti-
vational behavior appears even in evolutionary older vertebrates, like fishes and
reptiles (and either in some kinds of invertebrates like insects). Even though this
might be potentially controversial6, emotional behavior is easily acknowledged
only in birds and mammals, where the so called limbic system is more evolved.
Now, only on the human being (and possibly some kinds of animals like mon-
keys, chimpanzees, dolphins and maybe others), the neocortex is more evolved.
So, just like Cañamero points out, maybe the motivational systems appeared first
in evolutionary older species, still without emotional capacity. Probably, emo-
tional systems only evolved later, since the development of the limbic system, as
suggests Panksepp (1982). Then, only after the development of the neocortex,
reason was incorporated. Even though appearing later, they don’t replace older
systems, but enhance them, aggregating new functionalities.

So, our hypothesis is that motivational systems, with a repertoire of needs,
with a measure for the satisfaction of these needs (drives), and a homeostatic
mechanism generating actions on the environment, causing the reduction of these
drives, is an older mechanism, appearing even in animals still without the capac-
ity of emotions. This mechanism is what we call the “Basic Motivational Sys-
tem”, maybe found in reptiles and older animals (in the evolutionary scale).
These mechanisms might be implemented also in artificial creatures and sys-
tems, and should not be confused with emotions.

Even these basic motivational systems are already sophisticated, since the
homeostasis process leads us to the satisfaction of the creatures assigned needs.
Then, creating a suitable repertoire of needs, we might create artificial creatures
with a rather sophisticated behavior, becoming apt to perform rather complex
purposive behavior. The reader should observe, though, that these systems still
do not have emotional capabilities.

A first sophistication we should introduce on basic motivational systems is
to give them the ability to substitute drives for impulses. If we start designing
motivational systems, assigning a large number of needs, it will become almost
impossible to find actions that are able to reduce all the drives at the same
time. Some kind of priority should be established in order to reduce drives.
Even though we might think of a system with fixed priorities, in a hierarchy of
needs (using ideas like those from Maslow (1943)), maybe a better enhancement
would be to treat drive reduction indirectly, with a different strategy, consid-
ering impulses. Then, instead of having the responsibility of discovering drive
reducing actions, able to completely solve the problem (something which could
be difficult, depending on the needs we have), we discretize the problem by gen-
erating impulses, and then creating strategies for solving them. So, while my
hunger drive starts to increase, instead of finding an action to reduce this drive,
we generate an impulse, which if satisfied, will reduce the drive. Observe that
this strategy is just an enhancement of the basic motivational mechanism, but

6 Some people might understand that animals without a limbic system might be able
to perform emotional behavior.

80 R. R. Gudwin

which opens great opportunities for newer enhancements. But still, these systems
would not be considered emotional, in our proposal, because everything happens
still within one creatures “mind”, being still inaccessible to others. According
to our proposal, emotions will only appear in these systems, when they start
sharing and communicating their motivations to each other, with the purpose of
collaboration or competition.

And how this should happen? According to our thesis, at some point, evo-
lution discovered that sharing our motivations to others should bring some evo-
lutionary advantage in terms of making collaboration/competition easy. This
started with the appearance of the limbic systems in animals. Then, instead of
just internalizing drives and using them to generate behavior, the drive deter-
mination mechanism was enhanced to include an intermediate step, where some
body change was first created, and later internalized in order to generate drives.
The result was that now, these body changes could be used to communicate to
other creatures, our drives. By observing in other animals the body changes,
a creature might estimate their internal drives and design an interaction strat-
egy to foster collaboration or competition with them. This is the expression of
emotions, compatible with the ideas of Darwin, James and Damásio.

Observe that the idea of others are not discarded with our proposal. We still
might have body changes, as pointed out by Darwin, James and Damásio, we
still might have an internalization of this body change in order to measure how
specific needs are being (or not) satisfied (the appraisal aspect, pointed out in
the OCC model), we still might have alarms, in the generation of particular
impulses in order to give preference in critical situations, and we might still have
the modulation of motivations, as proposed by Cañamero. We are just not calling
them emotions, but reserving this word only in the case the communication of
motivations is being exercised among interacting creatures. Observe that this
proposal also gives rise to more complex emotional behaviors, where things like
moods or personalities are considered.

There is only one final remark which is necessary to approach: the dichotomy
liking ×wanting, and how it fits with our proposition for the concept of emotion.
Many models consider the hedonic dimension (liking) as being in the roots of
what is an emotion. We are not making this connection here. In our proposition,
what we might call feeling is a composition of two different kinds of informa-
tion, embedded into internal states: drives and reinforcements. The mechanism
exploiting drives, in order to generate impulses and then actions, are in the ker-
nel of our wanting mechanism, which is the basis of our model for a motivational
system. So, a drive is a measure of insatisfaction of an internal need. A drive
is reduced by the generation of an impulse, attached to a particular situation
where this drive is reduced, creating a goal for the motivational system. The sys-
tem then must generate a plan for satisfying this goal, and execute it, reaching
a future state where this need is satisfied. But this mechanism considers only
the wanting. What is liking good for? Well, in a first glance we are considering
that the liking first appeared (in an evolutionary point of view) as an instan-
taneous measure of drive change in time, used with the purpose of learning the

A Review on Motivational Systems and Emotions 81

actions able to fulfill the purpose of reducing drives and making the motiva-
tional machine operational. So, in our hypothesis, maybe the first motivational
creatures might not have liking at all, only wanting. Then, evolution just dis-
covered that there is a cost in measuring drive change in time, and eventually
created innate liking mechanisms which might accelerate the process of making
the motivation machine fully operational faster, providing evolutionary advan-
tage. The main purpose of the liking mechanism is to allow learning through
reinforcements. Over time, eventually evolution started to provide ontogenetic
support for other kinds of reinforcements, not necessarily tied to drive change
in time, creating the basis for a full mechanism of reinforcement learning in our
cognitive architecture. The result is that today’s creatures are equipped with
both drives and reinforcements, to provide motivational behavior and learning.
And what about emotions? Well, because emotions for us is the process of com-
munication of motivational components among creatures, the messages which
are exchanged are exactly these feelings: drives and reinforcements. This is the
reason while earlier modelers associated emotions with the hedonic dimension
(the liking component of feelings). So, feelings are not emotions, but are the mes-
sages which are exchanged in an emotional system. So, our proposal seems to be
coherent also with these earlier models, just providing a better understanding
on how feelings connect with emotions.

10 Final Considerations

As we have seen along this work, there are many available models both for
emotions and for motivations, which can be used as a background for the con-
struction of cognitive architectures. Even though they seem to be in conflict, we
proposed here a view which unifies all these contributions in a coherent unified
model, which describes both a motivational system, based in drive reduction
homeostasis, and impulses (as specified by Baumeister (2016)), capable of fulfill-
ing both models for wanting and liking, where the wanting mechanism enables
purposive behavior to consolidate and liking is used with the purpose to provide
reinforcement learning capabilities to our cognitive architecture.

Aligned with an evolutionary perspective on how emotions appeared in ani-
mals, we tried not to use the word emotion to designate phenomena which we
understand are exclusive to the scope of a motivational system, but reserved this
word only to designate a particular strategy, developed by evolution, to commu-
nicate motivational information among creatures, with the purpose of collab-
oration/competition. In this sense, emotions are messages exchanged between
creatures, informing their internal motivational components, like e.g. wanting
and liking information, such that with the possession of these information, the
motivational system is able to develop more enhanced strategies for dealing with
collaboration and competition.

In this work, we presented our ideas in a more conceptual format, sometimes
lacking a more precise description of all the involved mechanisms. Even with
this constraint, we occupied several pages in order to organize all these ideas.

82 R. R. Gudwin

We are aware that a more precise and mathematical formulation of these ideas
is necessary, and we intend to provide such formalization in a future work.

Acknowledgments. The authors thank Ericsson Research Brazil, Ericsson Telecomu-
nicações S.A. Brazil (Proc. FUNCAMP 4881.7) and CEPID/BRAINN (Proc. FAPESP
2013/07559-3) for supporting this research.

References

Arnold, M.B.: Emotion and Personality. Columbia University Press, New York (1960)
Bach, J.: Modeling motivation in MicroPsi 2. In: Bieger, J., Goertzel, B., Potapov, A.

(eds.) AGI 2015. LNCS (LNAI), vol. 9205, pp. 3–13. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21365-1 1

Barrett, L.F.: Discrete emotions or dimensions? The role of valence focus and arousal
focus. Cogn. Emot. 12(4), 579–599 (1998)

Bates, J., et al.: The role of emotion in believable agents. Commun. ACM 37(7), 122–
125 (1994)

Baumeister, R.F.: Toward a general theory of motivation: problems, challenges, oppor-
tunities, and the big picture. Motiv. Emot. 40(1), 1–10 (2016)

Berridge, K.C., Robinson, T.E., Aldridge, J.W.: Dissecting components of reward: ‘lik-
ing’, ‘wanting’, and learning. Curr. Opin. Pharmacol. 9(1), 65–73 (2009)

Blumberg, B.M.: Old tricks, new dogs: ethology and interactive creatures. Ph.D. thesis,
Massachusetts Institute of Technology (1997)

Breazeal, C., et al.: A motivational system for regulating human-robot interaction. In:
AAAI/IAAI, pp. 54–61 (1998)

Buck, R.: Human Motivation and Emotion. Wiley, Chichester (1988)
Cabanac, M.: What is emotion? Behav. Process. 60(2), 69–83 (2002)
Cañamero, L.: A hormonal model of emotions for behavior control. In: VUB AI-Lab

Memo 2006, pp. 1–10 (1997)
Cañamero, L.: Issues in the design of emotional agents. In: Emotional and Intelligent:

The Tangled Knot of Cognition. Papers from the 1998 AAAI Fall Symposium, pp.
49–54 (1998)

Cañamero, L.: Emotions and adaptation in autonomous agents: a design perspective.
Cybern. Syst. 32(5), 507–529 (2001)

Cañamero, L.: Designing emotions for activity selection in autonomous agents. Emot.
Hum. Artifacts 115, 148 (2003)

Cañamero, L.: Emotion understanding from the perspective of autonomous robots
research. Neural Netw. 18(4), 445–455 (2005)

Cornelius, R.R.: Theoretical approaches to emotion. In: ISCA Tutorial and Research
Workshop (ITRW) on Speech and Emotion (2000)

Damasio, A.R.: Descartes’ Error: Emotion, Reason, and the Human Brain. Penguin
Books, New York (1994)

Damasio, A.R.: The Feeling of What Happens: Body and Emotion in the Making of
Consciousness. Harcourt, New York (1999)

Damasio, A.R.: Looking for Spinoza: Joy, Sorrow, and the Feeling Brain. William Heine-
mann, London (2003)

Darwin, C.: The Expression of the Emotions in Man and Animals. John Murray, Alber-
marle St., London (1872)

https://doi.org/10.1007/978-3-319-21365-1_1
https://doi.org/10.1007/978-3-319-21365-1_1

A Review on Motivational Systems and Emotions 83

Dixon, T.: From Passions to Emotions: The Creation of a Secular Psychological Cate-
gory. Cambridge University Press, Cambridge (2003)

Dixon, T.: “Emotion”: the history of a keyword in crisis. Emot. Rev. 4(4), 338–344
(2012)

El-Nasr, M.S.: Modeling emotion dynamics in intelligent agents. Ph.D. thesis, Texas A
& M University (1998)

El-Nasr, M.S., Yen, J., Ioerger, T.R.: Flame-fuzzy logic adaptive model of emotions.
Auton. Agents Multi-Agent Syst. 3(3), 219–257 (2000)

Goleman, D.: Emotional intelligence. Bantam Books, New York (1995)
Hull, C.L.: Principles of Behavior: An Introduction to Behavior Theory. Appleton-

Century, Oxford (1943)
Hull, C.L.: A Behavior System; An Introduction to Behavior Theory Concerning the

Individual Organism. Yale University Press, New Haven (1952)
Izard, C.E.: The many meanings/aspects of emotion: definitions, functions, activation,

and regulation. Emot. Rev. 2(4), 363–370 (2010)
James, S.: Passion and Action: The Emotions in Seventeenth-Century Philosophy.

Oxford University Press, Oxford (1997)
James, W.: What is an emotion? Mind 9, 188–205 (1884)
Johnson, G.: Theories of emotion. In: Internet Encyclopaedia of Philosophy: A Peer-

Reviewed Academic Resource (2009)
Koda, T., Maes, P.: Agents with faces: the effect of personification, In: Proceedings

5th IEEE International Workshop on Robot and Human Communication. RO-MAN
1996, Tsukuba, pp. 189–194. IEEE (1996)

Malfaz, M., Salichs, M.A.: A new architecture for autonomous robots based on emo-
tions. In: Fifth IFAC Symposium on Intelligent Autonomous Vehicles. Citeseer
(2004)

Maslow, A.H.: A theory of human motivation. Psychol. Rev. 50(4), 370 (1943)
McCall, R.J.: Fundamental motivation and perception for a systems-level cognitive

architecture. Ph.D. thesis, University of Memphis (2014)
Mehrabian, A.: Pleasure-arousal-dominance: a general framework for describing and

measuring individual differences in temperament. Curr. Psychol. 14(4), 261–292
(1996)

Meyer, J.-J.C.: Reasoning about emotional agents. Int. J. Intell. Syst. 21(6), 601–619
(2006)

Moors, A., Ellsworth, P.C., Scherer, K.R., Frijda, N.H.: Appraisal theories of emotion:
state of the art and future development. Emot. Rev. 5(2), 119–124 (2013)

Ortony, A.: On making believable emotional agents believable. In: Trappl, R., Petta, P.,
Payr, S. (eds.) Emotions in Humans and Artifacts, Chap. 6, pp. 189–212. Bradford
Book, MIT Press, Cambridge, London (2002)

Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cambridge
University Press, Cambridge (1990)

Panksepp, J.: Toward a general psychobiological theory of emotions. Behav. Brain Sci.
5(3), 407–422 (1982)

Pezzulo, G., Verschure, P.F., Balkenius, C., Pennartz, C.M.: The principles of goal-
directed decision-making: from neural mechanisms to computation and robotics.
Philos. Trans. R. Soc. B 369(1655), 20130470 (2014)

Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)
Pool, E., Sennwald, V., Delplanque, S., Brosch, T., Sander, D.: Measuring wanting and

liking from animals to humans: a systematic review. Neurosci. Biobehav. Rev. 63,
124–142 (2016)

84 R. R. Gudwin

Posner, J., Russell, J.A., Peterson, B.S.: The circumplex model of affect: an integra-
tive approach to affective neuroscience, cognitive development, and psychopathology.
Dev. Psychopathol. 17(3), 715–734 (2005)

Reeve, J.: A grand theory of motivation: why not? Motiv. Emot. 40(1), 31–35 (2016)
Reilly, W.S.: Believable social and emotional agents. Ph.D. thesis, Carnegie Mellon

University, Pittsburgh, PA (1996)
Reisenzein, R.: Pleasure-arousal theory and the intensity of emotions. J. Pers. Soc.

Psychol. 67(3), 525 (1994)
Rorty, A.O.: From passions to emotions and sentiments. Philosophy 57(220), 159–172

(1982)
Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161 (1980)
Russell, J.A., Mehrabian, A.: Evidence for a three-factor theory of emotions. J. Res.

Pers. 11(3), 273–294 (1977)
Sarmento, L.M.: An emotion-based agent architecture. Master’s thesis, FC University

of Porto, Artificial Intelligence and Computer Science (2004)
Schlosberg, H.: Three dimensions of emotion. Psychol. Rev. 61(2), 81 (1954)
Simon, H.A.: Motivational and emotional controls of cognition. Psychol. Rev. 74(1),

29 (1967)
Sloman, A.: Motives, mechanisms, and emotions. Cogn. Emot. 1(3), 217–233 (1987)
Sloman, A.: Prolegomena to a theory of communication and affect. In: Ortony, A.,

Slack, J., Stock, O. (eds.) Communication from an Artificial Intelligence Perspective,
pp. 229–260. Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-642-58146-
5 12

Sloman, A.: Damasio, descartes, alarms and meta-management. In: SMC 1998: Con-
ference Proceedings of 1998 IEEE International Conference on Systems, Man, and
Cybernetics (Cat. No. 98CH36218), vol. 3, pp. 2652–2657. IEEE (1998)

Sloman, A., Croucher, M.: Why robots will have emotions. In: Proceedings of the 7th
International Joint Conference on Artificial Intelligence, vol. 1, pp. 197–202. Morgan
Kaufmann Publishers Inc. (1981)

Sloman, A., et al.: Beyond shallow models of emotion. Cogn. Process. 2(1), 177–198
(2001)

Sun, R.: Motivational representations within a computational cognitive architecture.
Cogn. Comput. 1(1), 91–103 (2009)

Toates, F.M.: Motivational Systems. Propblems in the Behavioral Sciences, vol. 4.
Cambridge University Press, Cambridge (1986)

Tomlinson, B., Blumberg, B.: Social synthetic characters. Comput. Graph. 26(2), 5–7
(2002)

Velásquez, J.: A computational framework for emotion-based control. In: Proceedings
of the Workshop on Grounding Emotions in Adaptive Systems. International Con-
ference on SAB, pp. 62–67 (1998)

Velásquez, J.D.: From affect programs to higher cognitive emotions: An emotion-based
control approach. In: Proceedings of the Emotion-Based Agent Architecture Work-
shop at the International Conference on Autonomous Agents, pp. 114–120. Citeseer
(1999)

Ventura, R.: Emotion-based agents. Master’s thesis, Instituto Superior Técnico, Lisboa,
Portugal (2000)

Wallach, W., Allen, C.: Moral Machines: Teaching Robots Right from Wrong. Oxford
University Press, Oxford (2008)

Ziemke, T., Lowe, R.: On the role of emotion in embodied cognitive architectures: from
organisms to robots. Cogn. Comput. 1(1), 104–117 (2009)

https://doi.org/10.1007/978-3-642-58146-5_12
https://doi.org/10.1007/978-3-642-58146-5_12

Selected Challenges in Grammar-Based
Text Generation from the Semantic Web

Simon Mille(B)

Universitat Pompeu Fabra, Barcelona, Spain
simon.mille@upf.edu

http://www.springer.com/gp/computer-science/lncs

Abstract. In this paper, based on the recent outcome of two shared
tasks on structured data verbalisation, and examining one system in
particular, we present some evidence why grammar-based systems are
particularly relevant for the verbalisation of structured data as found in
the Semantic Web. We then define possible future lines of research, cen-
tered around the FORGe system and the linguistic grounding of Semantic
Web datasets.

Keywords: Natural Language Generation · Semantic Web ·
Grammar-based systems

1 Introduction

Nowadays, thanks to Semantic Web (SW) initiatives such as the W3C Linking
Open Data project1, a tremendous amount of structured knowledge is publicly
available in the form of language-independent triples. The Linked Open Data
(LOD) cloud2 currently contains over a thousand interlinked datasets (as, for
instance, DBpedia3 or Wikidata4), which cover a large range of domains and
amount to billions of different triples. Table 1 shows three DBpedia triples –
Subject, Property, Object- related to black rice (arròs negre), representing its
origin and two of its ingredients.5

The LOD datasets are frequently enriched, manually or automatically, by
extracting knowledge from, e.g., multimedia and textual data, and populate
already available domain models (i.e., known class and property definitions), as
well as acquire new –unknown– ones (ontology learning). Their formal knowledge
representation allows for applying powerful algorithms which have proved crucial

1 https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/
LinkingOpenData.

2 http://lod-cloud.net/.
3 https://wiki.dbpedia.org/.
4 https://www.wikidata.org/wiki/Wikidata:Main Page.
5 This information appears in the infobox of the corresponding Wikipedia page:

https://en.wikipedia.org/wiki/Arr%C3%B2s negre.

c© Springer Nature Switzerland AG 2019
G. S. Osipov et al. (Eds.): Artificial Intelligence, LNAI 11866, pp. 85–95, 2019.
https://doi.org/10.1007/978-3-030-33274-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_5&domain=pdf
http://orcid.org/0000-0002-8852-2764
https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://lod-cloud.net/
https://wiki.dbpedia.org/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://en.wikipedia.org/wiki/Arr%C3%B2s_negre
https://doi.org/10.1007/978-3-030-33274-7_5

86 S. Mille

Table 1. Sample triples from the food domain (from the English DBpedia).

Subject Property Object

Triple 1 Arròs negre Country Spain

Triple 2 Arròs negre Ingredient White rice

Triple 3 Arròs negre Ingredient Squid

in fields such as Question Answering [19]. However, there has been relatively little
research in applying Natural Language Generation (NLG, or Text Generation)
techniques to the multilingual verbalisation from Semantic Web contents, as
exemplified in Table 2.

Table 2. Possible verbalisations of the triples from Table 1.

Language Possible verbalisation

English 1 Arròs negre is a dish from Spain. It contains white rice and squid

English 2 White rice and squid are basic ingredients of the Spanish dish
called Arròs negre

Spanish 1 Arròs negre es un plato español basado en arroz blanco y calamar

Existing NLG systems for Semantic Web contents are, on the one hand,
not adapted to the richness nor the constant evolution of the LOD cloud and its
target users, and, on the other hand, application- and language-specific, and thus
have coverage and/or reliability issues. As a result, their usefulness, robustness
and portability –some of the most challenging issues in NLG nowadays [8]– are
limited. In the remainder of the paper, we argue that grammar-based NLG is
efficient for text generation from LOD data; we give a short overview of the
most widely used NLG techniques for generating texts from structured data,
point out their current limitations, and define a few aspects that would need to
be developed in the near future in order to ensure scalability and reusability.

2 Natural Language Generation in the Context of the
Semantic Web

2.1 Approaches and Limitations

The Semantic Web and Natural Language Generation communities have for a
long time been disconnected: one of the primary applications of the Seman-
tic Web resources is Question Answering, for which the understanding of the
questions and the retrieval of the answers is the main focus, rather than the
verbalisation of the triples; indeed, returning a simple list of triples as answer to

Selected Challenges in Grammar-Based Text Generation from the SW 87

a question may suffice [17]. Very recently, in 2015, the first International Work-
shop on Natural Language Generation from the Semantic Web was organised
in France (WebNLG6). As mentioned in the workshop call of papers, on the
one hand, Semantic Web applications need to make the contents accessible the
potential users, and on the other hand, NLG-based approaches have been used
for verbalising structured data coming from, e.g., ontologies [5,13] or time series
[3,7]. These two areas are complementary but relatively few attempts have been
made to bring them together.

Traditionally, Natural Language Generation is viewed a sequence of three
subtasks: (i) content selection, which is responsible for determining the con-
tents to be rendered as text, (ii) text planning, which takes care of packaging
the contents into discursively organised units (i.e., sentences) and (iii) linguistic
generation, which realises the contents as well-formed text [30]. The advantage
of splitting language generation into specific tasks is to allow for a precise and
independent modelling of each level of language description (semantics, syntax,
topology, morphology).

For the verbalisation of structured data, there are three main approaches to
realise each of these subtasks [8,16]: (i) filling slot values in predefined sentence
templates (e.g. [1]), (ii) applying grammars (rules) that encode different types of
linguistic knowledge (e.g. [35]), and (iii) predicting statistically the most appro-
priate output (e.g. [4,15]). Template-based systems are very reliable in terms
quality, but are the worst in terms of portability since new templates need to be
defined for every new domain, style, language, etc. Statistical systems have the
widest coverage, but the relevance and the quality of the produced texts can-
not be ensured. Furthermore, they are fully dependent on the available –scarce
and mostly monolingual– training data [23]. The development of grammar-based
systems is time-consuming and usually they have coverage issues, but they are
easy to port to a new domain (and also style, language, etc.), do not require
training material, allow for a greater control over the outputs (e.g. for mitigat-
ing possible errors or tuning the output to a desired style), and the linguistic
knowledge used for one domain or language can be reused for other domains and
languages. However, due to their complexity, such approaches have undergone
few developments within the open-source community in the recent years [16]. In
addition, a number of systems actually address the whole sequence as one step,
by combining approaches (i) and (iii) and filling the slot values of pre-existing
templates using neural network techniques [26].

Last but not least, let us note that another limitation to the Natural Lan-
guage Generation from Semantic Web data is that until recently, NLG from
SW data has been applied to independent datasets only, leaving aside multiple
interlinked datasets,7 and a large part of it has focused on the description of the
knowledge model rather than on the verbalisation of the contents [33].

6 http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=45093.
7 One of the first papers mentioning multiple datasets was published in 2012 [10].

http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=45093

88 S. Mille

2.2 FORGe: An Example of a Grammar-Based System

FORGe is an open-source generator developed at the Pompeu Fabra University,
implemented as graph-transducers and that covers the last two NLG subtasks
(text planning and linguistic generation). FORGe, according to the lines of the
Meaning-Text Theory [21], is based on the notion of linguistic dependencies,
that is, the semantic, syntactic and morphologic relations between the compo-
nents of the sentence. Input predicate-argument structures are mapped onto
sentences by applying a series of rule-based graph-transducers. The generator
handles Semantic Web (SW) inputs by means of introducing abstract predicate-
argument (PredArg) templates and micro-planning grammars as previous steps
to the core linguistic generation module. A sample PredArg template is shown
in Fig. 1: the DBpedia property floorArea is mapped to the predicate floor area,
which has two arguments, a building and a surface area, which are respectively
the subject and the object of the property. Lists of such instantiated (populated)
PredArg structures are passed on to the generator.

subject floor area object
dpos=NP definiteness=INDEF class=Literal

A1 A2

Fig. 1. Sample PredArg template for the floor area of a building

For micro planning, on the one hand, generic rules look for shared pairs of
predicate and subject argument in the populated templates, and introduce coor-
dinations or quasi-coordinations between the two objects as in: [Alan Bean]S
[was born]P [in Wheeler]O1 [on March 15, 1932]O2. Other generic rules check if
an argument of a predicate appears further down in the ordered list of PredArg
structures. If so, the PredArg structures are merged by fusing the common
argument; during linguistic generation, this results in the introduction of post-
nominal modifiers such as relative and participial clauses or appositions; e.g.
250 Delaware AvenueS , which has a [floor area]P2 of [30843.8 square meters]O2,
[is]P1 in BuffaloO1). On the other hand, rules specific to a domain (e.g restau-
rant domain here) have been implemented so as to aggregate objects that have
not been aggregated by the generic rules; between the brackets, detail of the
restrictions about co-occurring properties:

– eatTypeP1 + priceRangeP2: a cheapO2 pubO1.
– eatTypeP1 + familyFriendlyP2: a family-friendlyO2 restaurantO1.
– etc.

For rendering of the aggregated PredArg structures into sentences, the core
FORGe grammars [24] perform the following actions: (i) syntacticisation of

Selected Challenges in Grammar-Based Text Generation from the SW 89

predicate-argument graphs; (ii) introduction of function words; (iii) linearisa-
tion and retrieval of surface forms. First, a deep-syntactic structure is gener-
ated: missing parts of speech are assigned, the syntactic root of the sentence
is chosen, and from there, a syntactic tree over content words is built node by
node. Then, idiosyncratic words (prepositions, auxiliaries, determiners, etc.) are
introduced and fine-grained (surface-)syntactic labels are established, using a
subcategorisation lexicon. For this purpose, lexical resources are used that can
be derived from PropBank [18] or VerbNet [31]; see [25]. Personal and relative
pronouns are introduced using the class feature, which allows for distinguishing
between human and non-human antecedents. Finally, morpho-syntactic agree-
ments are resolved, the syntactic tree is linearised, through the ordering of (i)
governor/dependent and (ii) dependents with each other, and the surface forms
are retrieved. Post-processing rules are then applied: upper casing, replacement
of underscores by spaces, etc.

For illustrating these three steps, consider the floorArea property of Fig. 1,
from the WebNLG dataset, and selected phenomena: (i) the support verb be is
established as the root, (ii) the preposition of is introduced, and (iii) the subject
relation between be and floor area causes the former to be placed after the latter
and get morphological agreement features from it (third person singular): the
floor area3sg of building X > is3sg N m2.

3 What Grammar-Based Systems Are Good For: Lessons
Learnt from the WebNLG and E2E Challenges

3.1 The WebNLG and E2E Challenges

In the past two years, two NLG challenges starting from structured data took
place, namely WebNLG [14] and E2E [27], and different types of systems were
used to produce outputs: template-based, rule-based, statistical machine transla-
tion-based, recurrent neural network-based, etc.; see respective overview papers.

In the framework of the WebNLG challenge, the task consisted in generating
texts from up to 7 DBpedia triples from 15 different categories, covering in total
373 different DBpedia properties. 9 categories appeared in the training data
(Astronaut, Building, University, Monument, ComicsCharacter, Food, Airport,
SportsTeam and WrittenWork), and six categories were “unseen”, in that they
did not appear in the training data (Athlete, Artist, City, MeanOfTransporta-
tion, CelestialBody, and Politician). At the time of the challenge, the WebNLG
dataset contained about 25K data-text pairs for about 10K distinct inputs, that
is, about 2.5 reference sentences per triple set. The challenge thus focused on
verbalising a wide range of inputs.

The input for the E2E challenge is very similar to the WebNLG challenge
in the sense that it consisted of a list of up to 8 triples, corresponding to 8
properties from the Restaurant domain (name, location, nearby restaurants, type
of food, type of restaurant, price range, customer rating, kid friendliness). The
E2E data consisted of about 50K data-text pairs; only 108 different combinations

90 S. Mille

of properties are found in the training set, which gives an average of about
500 reference sentences per triple set. Thus, unlike WebNLG, E2E focuses on
the (many) different ways to render a specific set of properties. The evaluation
data does not contain unseen combinations of properties. For both challenges,
the datasets were released in triple format (Subject, Property, Object). In the
following, another DBpedia triple and a target reference sentence are shown:

320 South Boston Building ‖ architect ‖ George Winkler
George Winkler designed the 320 South Boston Building.

For both challenges, automatic and human evaluations were carried out; only
the common metrics are reported here. BLEU [28] and METEOR [2] are n-gram-
based metrics that compare word-to-word a candidate with a reference sentence.
BLEU matches exact words only, whereas METEOR matches also synonyms; 100
and 1 respectively indicate sameness. For human evaluations, judges are asked
to either rank or rate candidate sentences in terms of their adequacy with the
input (Semantics), their linguistic correctness (Grammar), and their Fluency.
Nine systems were evaluated for WebNLG, and twenty-one for E2E, and most
competing systems follow statistical approaches.

3.2 Results and Discussion

Table 3 shows the results obtained by the FORGe system (see Sect. 2.2). The
results of the two shared tasks were informative in different aspects. First of all,
the best systems (neural systems) score much better than a rule-based system
such as FORGe according to basic automatic evaluation metrics: for the BLEU
metric, the difference is of about 20 points on seen data (WebNLG: 60.59/40.88,
E2E 68.05/42.07), and FORGe obtains core among the lowest. However, when
synonymy is taken into account, as in the METEOR metric, the gap is much
smaller, and the system ranks can even sometimes be inverted (e.g,. WebNLG
seen, in which FORGe ranks 3–4 instead of 8 according to BLEU). Second, the
results of the human evaluations are rather different, with FORGe ranking much
higher than according to the automatic evaluations: at WebNLG, FORGe is con-
sistently in the first half of the ranking, and for E2E, in which the systems end up
being clustered in five groups of equivalent ratings, it reaches the second cluster.
In other words, even though the outputs produced by a grammar-based system
do not reflect faithfully the reference outputs, they tend to be well accepted
by human judges, in any case better accepted than suggested by the automatic
metrics.

Finally, the evaluation on the unseen properties at WebNLG shows that
FORGe was the most adaptable system, attaining the first rank according to
both automatic and human metrics. When statistical systems have no training
data, they are simply not able to generate correct texts, but a grammar-based
system does not rely on the training data, and it is thus possible to tune it to new
inputs at a reduced cost.8 Note however that when enough good quality data is
8 It took about two hours to adapt FORGe to a hundred new DBpedia properties.

Selected Challenges in Grammar-Based Text Generation from the SW 91

Table 3. Scores (and rankings) of FORGe according to BLEU and METEOR, and
rankings according to human evaluations (Semantics, Grammar, Fluency).

Dataset BLEU METEOR Semantics Grammar Fluency

WebNLG all 38.65 (3–4) 0.39 (1) 1 1 1–2

WebNLG seen 40.88 (8) 0.40 (3–4) 2–4 1–2 4–5

WebNLG uns. 35.70 (1) 0.37 (1) 1 1 1

E2E all (seen) 42.07 (20) 0.37 (20) 10–14 (cluster 2/5)

provided, the human evaluations of some neural systems can be astounding and
even outperform human-written texts, as it was the case for the ADAPT system
[11] on the WebNLG seen properties [32].

4 Towards an Efficient Verbalisation of Structured Data

4.1 Challenges for the FORGe Generator

In order to target a multilingual Natural Generation System, a large part of
the core resources need to be language-independent and their portability to new
languages need to be ensured, as well as their flexibility, so that the tool can
be used not only in question/answering systems, but also in applications with
more complex input structures that proceed from analysed text, such as text
summarisation, text simplification and dialogue interfaces.

With respect to the development of graph-transduction grammars, three criti-
cal issues currently need to be highlighted: (i) the packaging of the selected triples
into coherent groups (micro-planning), (ii) the definition of a valid sentence
structure over each group of triples, and (iii) the creation of grammar-compatible
NLG-oriented lexical resources. For the first subtask, micro-planning grammars
need to be improved in the sense that they should allow for more types of aggre-
gation than the one described in Sect. 2.2, and be made as domain-independent
as possible. This can be done by looking at large amounts of textual data in
order to compile the common aggregation patterns in the different languages
and domains, and adapting the rules accordingly. For the second subtask, the
sentence structuring module needs to be tested on a large scale in order to
obtain wide coverage and ensure flexibility and multilinguality. Most of the rules
at this level are generic and produce complete syntactic structures, but there
is no validation of their correctness so far. As the input structures get more
complex (i.e. as the number of triples to verbalize increases), defining a correct
sentence structures can get more challenging, and here again the compilation of
language-specific preferred syntactic patterns would help controlling the process.
For the third subtask, the automatic extraction of NLG- and dependency-suited
information from lexica and annotated data (e.g. VerbNet, PropBank) needs to
be investigated. In particular, the syntactic information about the participants
(e.g. if a preposition is needed –ingredient of) is not expressed directly in the

92 S. Mille

existing resources. However, this subcategorisation information can be derived
from, e.g., VerbNet, which is neither NLG– nor dependency-friendly. Some steps
in this direction have already been done in [20,25].

4.2 Challenges in the Linguistic Grounding of LOD Datasets

As far as input representations are concerned, an NLG pipeline needs to be fed
with linguistic structures. These are quite different from the triples found on the
LOD cloud, in which the Properties are labeled with an open vocabulary and
only two types of relations (Subject and Object) are used. The triples should be
mapped onto linguistic concepts and relations, preferably according to standard
lexico-semantic resources to ensure reusability (e.g. VerbNet, NomBank [22] and
PropBank, which, thanks to the amount of multilingual resources connected to
them, can be used as interlingua). For instance, the property ingredient as seen in
Table 1 would need to be mapped to, e.g., the PropBank predicate contain.01, or
the NomBank predicate ingredient.01, and the Subject and Object to be mapped
to the corresponding participant slot according to their respective subcategori-
sation frames. Participant slots can be simple predicate-argument relations –first
argument, second argument, etc.– or more “conceptual” relations such as Agent,
Patient, Beneficiary. For an informed generation process, basic properties of the
participants, e.g. classes such as their type (Country, Ingredient, Person) and
gender (Female or Male), found on the LOD cloud in the form of respective
class and property assertions, need to be added to the linguistic representation.

To the best of our knowledge, little research has been carried out so far on
bringing together SW contents and standard linguistic resources in the context
of NLG: on the one hand, standard SW approaches such as lemon [34] or word
embeddings [29] define their own lexicons to be associated with the properties,
and on the other hand linguistic resources such as VerbNet, NomBank and Prop-
Bank are generally not connected with SW knowledge bases. One exception is
the PreMOn model [9], which specifically aims at linking VerbNet, NomBank,
PropBank and FrameNet [12] with an ontology that models semantic classes and
their roles; however, PreMon leaves open the mapping to specific LOD datasets
such as DBpedia.9

The linguistic grounding challenge is thus focused on the mapping of triples
onto abstract linguistic structures to serve as input for the NLG pipeline; this
includes the mapping of (both known and unknown) properties, as well as of their
arguments (Subject and Object), onto minimal language-independent linguistic
structures that contain all the information needed for being verbalised. There is a
need to innovate according to the linguistic grounding of database sub-structures
based on class and property statements onto sentential semantic structures. Lin-
guistically motivated interface structures based on PropBank and/or VerbNet
representations need to be defined, as well as the mappings from both known
and unknown LOD triples, to account for the high degree of dynamism of SW
databases. The connection of SW lexicons with language-oriented ones need to

9 See also [6] for an overview of models to represent linked data and their issues.

Selected Challenges in Grammar-Based Text Generation from the SW 93

be investigated, together with the use of the semantics of the underlying schema
(e.g. taxonomical information) in order to derive basic features (e.g. class, gen-
der, etc.) or generalising the concepts in case some contents are very specific and
cannot be mapped onto the exact concept.

5 Conclusions

Statistical text generation systems have been the main focus of the Natural Lan-
guage Generation community in the past years. However, their low portability
to new languages and domains and the lack of control over the final output, as
well as the very limited amount of actual linguistic knowledge used during the
generation process are currently obstacles to the widespread use of such systems
on Semantic Web structured data. In this paper, we show how grammar-based
systems are suitable for the verbalisation of structured data and discuss open
challenges and future lines of research, centered around (i) the increase of both
grammatical and lexical coverage and (ii) the linguistic grounding of Semantic
Web datasets.

Acknowledgements. The work reported in this paper has been partly supported
by the European Commission in the framework of the H2020 Programme under the
contract numbers 700475-IA, 700024-RIA, 779962-RIA, 786731-RIA and 825079-ICT-
STARTS.

References

1. Androutsopoulos, I., Lampouras, G., Galanis, D.: Generating natural language
descriptions from OWL ontologies: the naturalowl system. J. Artif. Intell. Res. 48,
671–715 (2013)

2. Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with
improved correlation with human judgments. In: Proceedings of the ACL Workshop
on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or
Summarization, pp. 65–72 (2005)

3. Belz, A.: Automatic generation of weather forecast texts using comprehensive prob-
abilistic generation-space models. J. Nat. Lang. Eng. 14(4), 431–455 (2008)

4. Belz, A., White, M., Espinosa, D., Kow, E., Hogan, D., Stent, A.: The first sur-
face realisation shared task: overview and evaluation results. In: Proceedings of
the Generation Challenges Session at the 13th European Workshop on Natural
Language Generation (ENLG), Nancy, France, pp. 217–226 (2011)

5. Bontcheva, K., Wilks, Y.: Automatic report generation from ontologies: The
MIAKT approach. In: Meziane, F., Métais, E. (eds.) NLDB 2004. LNCS, vol.
3136, pp. 324–335. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27779-8 28

6. Bosque-Gil, J., Gracia, J., Montiel-Ponsoda, E., Gómez-Pérez, A.: Models to rep-
resent linguistic linked data. Nat. Lang. Eng. 24(6), 811–859 (2018)

7. Bouayad-Agha, N., Casamayor, G., Mille, S., Wanner, L.: Perspective-oriented
generation of football match summaries: old tasks, new challenges. ACM Trans.
Speech Lang. Process. 9(2), 3:1–3:31 (2012)

https://doi.org/10.1007/978-3-540-27779-8_28
https://doi.org/10.1007/978-3-540-27779-8_28

94 S. Mille

8. Bouayad-Agha, N., Casamayor, G., Wanner, L.: Natural language generation in
the context of the semantic web. Semant. Web 5(6), 493–513 (2014)

9. Corcoglioniti, F., Rospocher, M., Aprosio, A.P., Tonelli, S.: PreMON: a lemon
extension for exposing predicate models as linked data. In: Proceedings of the
10th International Conference on Language Resources and Evaluation (LREC),
pp. 877–884 (2016)

10. Dannélls, D., Damova, M., Enache, R., Chechev, M.: Multilingual online generation
from semantic web ontologies. In: Proceedings of the 21st International Conference
on World Wide Web, pp. 239–242. ACM (2012)

11. Elder, H., Gehrmann, S., O’Connor, A., Liu, Q.: E2E NLG challenge submission:
towards controllable generation of diverse natural language. In: Proceedings of
the 11th International Conference on Natural Language Generation, pp. 457–462
(2018)

12. Fillmore, C.J., Baker, C.F., Sato, H.: The FrameNet database and software tools.
In: Proceedings of the 3rd International Conference on Language Resources and
Evaluation (LREC), Las Palmas, Canary Islands, Spain, pp. 1157–1160 (2002)

13. Galanis, D., Androutsopoulos, I.: Generating multilingual descriptions from lin-
guistically annotated OWL ontologies: the naturalowl system. In: Proceedings of
the Eleventh European Workshop on Natural Language Generation, pp. 143–146.
Association for Computational Linguistics (2007)

14. Gardent, C., Shimorina, A., Narayan, S., Perez-Beltrachini, L.: Creating training
corpora for micro-planners. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Vancouver, Canada, August 2017

15. Gardent, C., Shimorina, A., Narayan, S., Perez-Beltrachini, L.: The WebNLG chal-
lenge: generating text from RDF data. In: Proceedings of the 10th International
Conference on Natural Language Generation, pp. 124–133 (2017)

16. Gatt, A., Krahmer, E.: Survey of the state of the art in natural language generation:
core tasks, applications and evaluation. J. Artif. Intell. Res. 61, 65–170 (2018)

17. Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngonga Ngomo, A.C.:
Survey on challenges of question answering in the semantic web. Semant. Web
8(6), 895–920 (2017)

18. Kingsbury, P., Palmer, M.: From TreeBank to PropBank. In: Proceedings of the
3rd International Conference on Language Resources and Evaluation (LREC), Las
Palmas, Canary Islands, Spain, pp. 1989–1993 (2002)

19. Kwok, C., Etzioni, O., Weld, D.S.: Scaling question answering to the web. ACM
Trans. Inf. Syst. (TOIS) 19(3), 242–262 (2001)

20. Lareau, F., Lambrey, F., Dubinskaite, I., Galarreta-Piquette, D., Nejat, M.:
GenDR: a generic deep realizer with complex lexicalization. In: Proceedings of the
11th International Conference on Language Resources and Evaluation (LREC),
Miyazaki, Japan, pp. 3018–3025 (2018)

21. Mel’čuk, I.: Dependency Syntax: Theory and Practice. State University of New
York Press, Albany (1988)

22. Meyers, A., et al.: The NomBank project: an interim report. In: Proceedings of
the Workshop on Frontiers in Corpus Annotation, Human Language Technology
Conference of the North American Chapter of the Association for Computational
Linguistics (HLT/NAACL), Boston, MA, USA, pp. 24–31 (2004)

Selected Challenges in Grammar-Based Text Generation from the SW 95

23. Mille, S., Belz, A., Bohnet, B., Graham, Y., Pitler, E., Wanner, L.: The first multi-
lingual surface realisation shared task (SR 2018): overview and evaluation results.
In: Proceedings of the 1st Workshop on Multilingual Surface Realisation (MSR),
56th Annual Meeting of the Association for Computational Linguistics (ACL),
Melbourne, Australia, pp. 1–12 (2018)

24. Mille, S., Carlini, R., Burga, A., Wanner, L.: FORGe at SemEval-2017 task 9: deep
sentence generation based on a sequence of graph transducers. In: Proceedings of
the 11th International Workshop on Semantic Evaluation (SemEval-2017), Van-
couver, Canada, pp. 917–920. Association for Computational Linguistics, August
2017. http://www.aclweb.org/anthology/S17-2158

25. Mille, S., Wanner, L.: Towards large-coverage detailed lexical resources for data-
to-text generation. In: Proceedings of the First International Workshop on Data-
to-text Generation, Edinburgh, Scotland (2015)

26. Nayak, N., Hakkani-Tür, D., Walker, M.A., Heck, L.P.: To plan or not to plan?
discourse planning in slot-value informed sequence to sequence models for language
generation. In: Proceedings of INTERSPEECH, Stockholm, Sweden, pp. 3339–3343
(2017)

27. Novikova, J., Dušek, O., Rieser, V.: The E2E dataset: new challenges for end-to-
end generation. In: Proceedings of the 18th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, Saarbrücken, Germany (2017). https://arxiv.
org/abs/1706.09254, arXiv:1706.09254

28. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, pp. 311–318. Association for Compu-
tational Linguistics (2002)

29. Perez-Beltrachini, L., Gardent, C.: Learning embeddings to lexicalise RDF prop-
erties. In: * SEM 2016, The Fifth Joint Conference on Lexical and Computational
Semantics, pp. 219–228 (2016)

30. Rambow, O., Korelsky, T.: Applied text generation. In: Proceedings of the 3rd
Conference on Applied Natural Language Processing (ANLP), Trento, Italy, pp.
40–47 (1992)

31. Schuler, K.K.: VerbNet: a broad-coverage, comprehensive verb lexicon. Ph.D. the-
sis, University of Pennsylvania (2005)

32. Shimorina, A., Gardent, C., Narayan, S., Perez-Beltrachini, L.: The WebNLG chal-
lenge: report on human evaluation. Technical report, Université de Lorraine, Nancy,
France (2017)

33. Stevens, R., Malone, J., Williams, S., Power, R., Third, A.: Automating generation
of textual class definitions from OWL to English. J. Biomed. Semant. 2, S5 (2011).
BioMed Central

34. Walter, S., Unger, C., Cimiano, P.: M-ATOLL: a framework for the lexicalization
of ontologies in multiple languages. In: Mika, P., et al. (eds.) ISWC 2014. LNCS,
vol. 8796, pp. 472–486. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11964-9 30

35. Wanner, L., Bohnet, B., Bouayad-Agha, N., Lareau, F., Nicklaß, D.: MARQUIS:
generation of user-tailored multilingual air quality bulletins. Appl. Artif. Intell.
24(10), 914–952 (2010)

http://www.aclweb.org/anthology/S17-2158
https://arxiv.org/abs/1706.09254
https://arxiv.org/abs/1706.09254
http://arxiv.org/abs/1706.09254
https://doi.org/10.1007/978-3-319-11964-9_30
https://doi.org/10.1007/978-3-319-11964-9_30

Multi-Agent Path Finding – An Overview

Roni Stern(B)

Ben Gurion University of the Negev, Be’er Sheva, Israel
sternron@post.bgu.ac.il

Abstract. Multi-Agent Pathfinding (MAPF) is the problem of finding
paths for multiple agents such that every agent reaches its goal and the
agents do not collide. In recent years, there has been a growing interest in
MAPF in the Artificial Intelligence (AI) research community. This inter-
est is partially because real-world MAPF applications, such as warehouse
management, multi-robot teams, and aircraft management, are becoming
more prevalent. In this overview, we discuss several possible definitions
of the MAPF problem. Then, we survey MAPF algorithms, starting with
fast but incomplete algorithms, then fast, complete but not optimal algo-
rithms, and finally optimal algorithms. Then, we describe approximately
optimal algorithms and conclude with non-classical MAPF and pointers
for future reading and future work.

Keywords: Multi-Agent Pathfinding · Heuristic search

1 Introduction

MAPF is the problem of finding paths for multiple agents such that every
agent reaches its desired destination and the agents do not conflict. MAPF
has real-world applications in warehouse management [50], airport towing [27],
autonomous vehicles, robotics [45], and digital entertainment [26].

Research on MAPF has been developing rapidly in the past decade. In this
paper, we provide an overview of MAPF research in the Artificial Intelligence
(AI) community. The purpose of this overview is to help researchers and practi-
tioners that are less familiar with MAPF research better understand the problem
and current approaches for solving. It is not to intended to serve as a compre-
hensive survey on MAPF research.

This overview paper is structured as follows. In Sect. 2, we define the prob-
lem formally, and discuss several of its notable variants. Then, a simple analysis
of the problem is given to illustrate its difficulty. Section 3 starts by describing
prioritized planning [34], which is still the most common approach in practice to
solve MAPF problems. We discuss the limitation of this approach, in particular,
the lack of completeness or optimality. Then, we mention several MAPF algo-
rithms that are fast and complete, but may return solutions that are not optimal.

Supported by ISF grant 210/17 to Roni Stern.

c© Springer Nature Switzerland AG 2019
G. S. Osipov et al. (Eds.): Artificial Intelligence, LNAI 11866, pp. 96–115, 2019.
https://doi.org/10.1007/978-3-030-33274-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_6&domain=pdf
http://orcid.org/0000-0003-0043-8179
https://doi.org/10.1007/978-3-030-33274-7_6

Multi-Agent Path Finding – An Overview 97

Section 4 surveys several families of MAPF algorithms that are guaranteed to
return an optimal solution. Section 5 covers approximately optimal algorithms,
i.e., algorithms that guarantee the solution they return is at most a constant
factor more costly than an optimal solution. Finally, the paper concludes with
a partial list of MAPF extensions (Sect. 6), and pointers to further reading and
resources (Sect. 7). In addition, throughout this paper, we point to interesting
directions for future work.

2 Problem Definition

The literature includes multiple definitions of the MAPF problem. In this paper,
we mostly focus on what is called classical MAPF [37]. Section 6 discusses other
variants of MAPF. A classical MAPF problem with k agents is defined by a
tuple 〈G, s, t〉 where:

– G = (V,E) is an undirected graph whose vertices are the possible locations
agents may occupy and every edge (n, n′) ∈ E represents that an agent can
move from n to n′ without passing through any other vertex.

– s is a function that maps an agent to its initial location.
– t is a function that maps an agent to its desired destination location.

Time is discretized into time steps. In every time step, each agent can per-
form a single action. There are two types of actions: wait and move. An agent
performing a wait action stays in its current location for one time step. A move
action moves an agent from its location to some other location. Move action
takes exactly one time step, and can only move an agent from its current loca-
tion to one of its adjacent locations. A valid solution to a MAPF problem is
a joint plan that moves all agents to their goals, in a way that agents do not
collide. Next, we define the terms valid solution, joint plan, and collision, in a
formal way.

Fig. 1. Illustration of different types of conflicts, taken from Stern et al. [37]: (a) a
vertex conflict, (b) a swapping conflict, (c) a following conflict, and (d) a cycle conflict.

A single-agent plan for an agent i is a sequence of actions that if agent i
performs these actions in location s(i) it will end up in location t(i). Formally,
a single-agent plan for agent i is sequence of actions π = (a1, . . . an) such that

an(· · · a2(a1(s(i))) · · ·) = t(i) (1)

98 R. Stern

A joint plan is a set of single-agent plans, one for each of the k agents. For a
joint plan Π, we denote by Πi its constituent single-agent plan for agent i. A
pair of agents i and j have a vertex conflict in a joint plan Π if according to
their respective single-agent plans Πi and Πj both agents are planned to occupy
the same vertex at the same time. Similarly, agents have a swapping conflict in a
joint plan if they are planned to swap locations over the same edge at the same
time. A valid solution to a MAPF problem is a joint plan that has none of these
conflicts.

Some MAPF applications have stricter requirements from a valid solution,
prohibiting other types of conflicts. Two notable types of conflicts are following
conflicts and cycle conflicts. A following conflict occurs if an agent plans to
occupy at time step t + 1 a location that was occupied by some other agent at
time step t. A cycle conflict occurs if a set of agents i, i + 1, . . . j plan to move
in the same time step t in a circular pattern, i.e., agent i plans to move in time
step t + 1 to agent’s i + 1 location at time step t, agent i + 1 plans to move in
time step t + 1 to agent’s i + 2 at time step t, and so on, while agent j plans to
move in time step t + 1 to agent’s i location at time step t. Figure 1 illustrates
all these different types of conflicts. See Stern et al. [37] for a comprehensive
discussion on different types of conflicts and the relationships between them.

2.1 Optimization

MAPF problems can have more than one valid solution. In many MAPF appli-
cations, one would like to find a valid solution that optimizes some objective
function. The two most common objective functions used for evaluating a MAPF
solution are makespan and sum of costs. The makespan of a joint plan Π, denoted
M(Π) is the number of time steps until all agents reach their goal.

M(Π) = max
1≤i≤k

|πi| (2)

The sum of costs of a joint plan Π, denoted SOC(Π) is the sum of actions
performed until all agents reach their goal.

SOC(Π) =
∑

1≤i≤k

|πi| (3)

Following most prior work, we assume that when an agent waits in its desti-
nation then it also increase the SOC of the overall joint plan, unless that agent
is not planned to move later from its destination location. For example, consider
the case where agent i reaches its destination at time step t, leaves it at time
step t′, arrives back to its destination at time step t′′, and stays there until all
agents reach their destinations. Then this single-agent plan contributes t′′ to the
SOC of the corresponding joint plan.

2.2 From Single-Agent Pathfinding to MAPF

A single-agent shortest-path problem (SPP) is the problem of finding the shortest
path in a graph G = (V,E) from a given source vertex s ∈ V to a given target

Multi-Agent Path Finding – An Overview 99

vertex t ∈ V . MAPF can be reduced to a shortest-path problem in a graph
known as the k-agent search space. This graph, denoted Gk, is different from
the single-agent graph G. A vertex in G represents a location that an agent may
occupy in a particular time step. A vertex in Gk represents a set of locations, one
per agent, that the agents can occupy in a particular time step. Thus, a vertex
in Gk is a vector of k vertices in G. An edge in Gk represents a joint action of
all agents, that is, a set of k actions, one per agent, that the agents can perform
simultaneously in a particular time step. Joint actions that result in a conflict,
will not have a corresponding edge in Gk. The cost of an edge in Gk corresponds
to the cost of the corresponding joint action.

Observation 1. A lowest-cost path in Gk from
(
s(1), . . . , s(k)

)
to(

t(1), . . . t(k)
)
is an optimal solution to the MAPF problem 〈G, s, t〉 and vice

versa.

Heuristic Search and the A* Algorithm. Heuristic search in general and
the A* algorithm in particular [18] are commonly used to solve shortest-path
problems. For completeness, we provide a brief background on A*.

A* is a best-first search algorithm. It maintains a list of vertices called Open.
Initially, Open contains the source vertex. In every iteration, a single vertex is
removed from Open and expanded. To expand a vertex means to go over each of
its neighbors and generate it. To generate a vertex means creating it and adding
it to Open, unless it has already been generated before. For every generated
vertex n, A* maintains several values.

– g(n) is the cost of the lowest-cost path found so far from the source vertex
to n.

– parent(n) is the vertex before n on that path.
– h(n) is a heuristic estimate of the cost of the lowest-cost path from n to the

target vertex.

Let h∗(n) be a perfect heuristic estimate for n, that is, the cost of the lowest-
cost path from n to a goal. If h∗(n) is known for all nodes, then one can find
the shortest path from the source vertex to the target by choosing to go to the
vertex with the smallest h value. A heuristic function h is called admissible iff for
every vertex n it holds that h(n) ≤ h∗(n). The A* algorithm chooses to expand
the vertex n in Open that has the smallest g(n) + h(n) value.

Theorem 1 (Optimality of A* [18]). Given an admissible heuristic, A* is
guaranteed to return an optimal solution, i.e., a shortest path from the source
vertex to its target.

Observation 1 and Theorem 1 mean that one can solve a given MAPF problem
by running A* on the k-agent search space. A simple way to obtain an admissible
heuristic for the k-agent search space is by considering the cost of the shortest
path in G from every vertex v ∈ V to every target vertex t(1), . . . t(k). This is
done as follows. Let d(v, t(i)) be the cost of the shortest path from v to t(i).

100 R. Stern

Computing d(v, t(i)) for every v ∈ V and i ∈ {1, . . . , k} can be done in time that
is polynomial in |V | and k, in the beginning of the search. Then, the following
is an admissible heuristic when optimizing for sum of costs

h
(
(v1, . . . vk)

)
=

∑

i∈{1,...,k}
d(vi, t(i)) (4)

and the following is an admissible heuristic when optimizing makespan

h
(
(v1, . . . vk)

)
= max

i∈{1,...,k}
d(vi, t(i)) (5)

Challenges in Solving MAPF with A*. A very rough way to estimate the
hardness of solving a shortest path problem, with A* and other algorithms, is
by considering the size of the search space and its branching factor, which in
our case corresponds to the number of vertices in Gk and its average outgoing
degree. Thus, in the worst case, the size of the search space is |V |k and the

branching factor is
(

|E|
|V |

)k

. As can be seen, both values are exponential in the
number of agents.

To get an estimate of these numbers, consider a MAPF problem with 20
agents on a 4-connected grid with 500 × 500 cells. In this case, the size of the
search space is 25,00020 ≈ 9.09 · 1087 and the branching factor is 420 ≈ 1.1 ·
1012 |V | ≈ 25,000. The exponential branching factor is especially problematic
for A*, since A* must at least expand all vertices along an optimal path. The
computational cost of expanding a vertex, however, is at least linear in the
branching factor. Thus, textbook A* cannot be used to solve a MAPF problem
with a large number of agents, even with a perfect heuristic function.

3 Fast MAPF Algorithms

A fundamental approach to address this combinatorial explosion is to try to
decouple the MAPF task to k single-agent pathfinding problems with as minimal
interaction as possible. Perhaps one of the most popular approaches to do so is
prioritized planning.

3.1 Prioritized Planning

The first step in prioritized planning is to assign each agent a unique number
from {1, . . . k}. Then, a single-agent plan is found for each agent in order of
their priority. When an agent searches for a plan, it is required to find a plan
that avoids creating a conflict with plans already found for agents with higher
priority.

A fundamental difference between a textbook shortest-path problem and the
problem of finding a plan for the agent with the ith priority is that in the latter
an optimal solution may require an agent to wait in its location. Thus, to find

Multi-Agent Path Finding – An Overview 101

a plan for the ith agent, is, in fact, a shortest path problem in a time-expansion
graph [34]. In a time-expansion graph, every vertex represents a pair (v, t), where
v is a vertex in the underlying graph G and t is a time step. There is an edge
between vertices (v, t) and (v′, t′) in the time-expansion graph iff t′ = t+1 and v′

is either equal to v or it is one of its neighbors. The size and branching factor of
the corresponding search space is manageable: the number of vertices is |V |×T ,
where T is an upper bound on the solution makespan, and the branching factor
is |E|

|V | + 1. For example, in a MAPF problem with 20 agents on a 4-connected
grid with 500 × 500 cells, assuming T = 1,000, we have a search space size of
25,000,000 and a branching factor of 5. A* has been successfully applied to much
larger search spaces.

The computational efficiency and simplicity of prioritized planning algo-
rithms is the main reason for their widespread adoption by practitioners. Imple-
menting prioritized planning includes many design choices. For example, several
methods have been proposed for setting the agents’ priorities [1,7]. The Win-
dowed Hierarchical Cooperative A* algorithm (WHCA*) [34] also allowed inter-
leaving planning and execution in a prioritized planning framework. In WHCA*,
the agents plans to avoid conflicts only for the next X time steps (the “window”).
After performing these X steps, the agents can re-plan the next X steps in the
same manner.

Prioritized planning is a sound approach for MAPF, in the sense that it
returns valid solutions. However, it is neither complete nor optimal. That is,

– Not complete. A prioritized planning algorithm may not find any solution
to a solvable MAPF problem.

– Not optimal. The solution returned by a prioritized planning algorithm
may not be optimal, w.r.t. to a given objective function (e.g., sum of costs or
makespan).

s(1) t(1)
t(2) s(2)

Fig. 2. A MAPF problem in which prioritized planners will not find any solution.

As an example of these prioritized planning limitations, see the MAPF prob-
lem depicted in Fig. 2. In this example, any prioritized planning algorithm will
fail to find a solution, regardless of which agent has a higher priority. The prob-
lem, however, is clearly solvable, by having agent 1 move to the middle grid cell
in the upper row, allowing agent 2 to move to its target (t(2)), and then moving
to its own target (t(1)).

102 R. Stern

3.2 Complete MAPF Solvers

We say that a MAPF algorithm is fast if its worst-case time complexity is poly-
nomial in the size of the graph G, and not exponential in the number of agents.
Surprisingly, there are fast and complete algorithms for solving MAPF problems.
The most general of those is Kornhauser’s algorithm [20], which is complete and
runs in a worst case time complexity of O(|V |3). This algorithm is regarded as
complicated to implement. Thus, a variety of algorithms have been proposed that
are also fast and complete, at least for some restricted classes of MAPF prob-
lems. Below, we provide a partial list of such algorithms and classes of MAPF
problems.

The Push-and-Swap algorithm [24] and its extensions Parallel Push-and-
Swap [31] and Push-and-Rotate [11], are fast MAPF algorithms that are com-
plete for any MAPF problem in which there are at least two unoccupied vertices
in the graph. Very roughly, these algorithms work by executing a set of macro-
operators that move an agent towards its goal (push) and swap the location of
two agents (swap).

A MAPF problem is well-formed if, for any pair of agent i and j, there exists
a path from s(i) to t(i) that does not pass through s(j) and t(j). Čáp et al. [9]
proved that prioritized planning algorithms that compulsory avoid start locations
are complete for well-formed MAPF problems.

A MAPF problem is slidable if for any triple of locations v1, v2, and v3,
there exists a path from v1 to v3 that does not go through v2.1 Wang and
Botea [49] proposed a fast algorithm called MAPP that is complete for slidable
MAPF problems. The BIBOX algorithm is also fast and complete under these
conditions [38].

While all the above algorithms are fast and, under certain conditions, com-
plete, they do not provide any guarantee regarding the quality of the solution
they return. In particular, they do not guarantee that the resulting solution is
optimal, either w.r.t. sum-of-costs or makespan. In fact, finding a solution that
has the smallest makespan or the smallest sum of costs, is NP hard [39,53].
Nevertheless, solution quality is important in many applications, e.g., saving
operational costs in an automated warehouse. Also, modern MAPF algorithms
can find provably optimal solutions in a few minutes to problems with more than
a hundred agents [14,21,32].

In the next section, we present the state-of-the-art in MAPF algorithms
that are guaranteed to return a solution that is optimal with respect to a given
objective function. Such algorithms are referred to as optimal MAPF algorithms.

4 Optimal MAPF Solvers

It is possible to classify optimal MAPF algorithms to four high-level approaches:

1 The exact definition of slidable is slightly more involved. The interested reader can
see the exact definition in Wang and Botea’s paper [49].

Multi-Agent Path Finding – An Overview 103

– Extensions of A*. These are algorithms that search the k-agent search
space using a variant of the A* algorithm.

– The Increasing Cost Tree Search [33]. This algorithm splits the MAPF
problem into two problems: finding the cost added by each agent, and finding
a valid solution with these costs.

– Conflict-Based Search [32]. This algorithmic family solves MAPF by solv-
ing multiple single-agent pathfinding problems. To achieve coordination, spe-
cific constraints are added incrementally to the single-agent pathfinding prob-
lems, in a way that verifies soundness, completeness, and optimality.

– Constraints programming [6,39]. This approach compiles MAPF to a set
of constraints and solves them with a general purpose constraints solver.

4.1 Extensions of A*

Standley [36] proposed two very effective extensions to A* for solving MAPF
problems.

Operator Decomposition. The first extension is called Operator Decomposi-
tion (OD). OD is designed to cope with the exponential branching factor of the
k-agent search space. In OD, the agents are sorted according to some arbitrary
order. When expanding the source vertex

(
s(1), . . . , s(k)

)
, only the actions of

one agent are considered. This generates a set of vertices that represent a possi-
ble location for the first agent in time step 1, and the locations all other agents
are occupying at time step 0. These vertices are added to Open. When expand-
ing one of these vertices, only the actions of the second agent are considered,
generating a new set of vertices. These vertices represent a possible location for
the first and second agents in time step 1, and the locations of all other agents
are occupying at time step 0. The search continues in this way. Only the kth

descendent of the start vertex is a vertex that represents a possible location of
all agents at time step 1. Vertices that represent the location of all agents at the
same time step are called full vertices, while all other vertices are called interme-
diate vertices. The search continues until reaching a full vertex that represents
the target

(
t(1), . . . , t(k)

)
.

The obvious advantage of A* with OD compared to A* without OD is the
branching factor. With OD, the branching factor is that of a single agent, while
without OD, it is exponential in the number of agents. However, the solution is
k times deeper when using OD, since there are k vertices between any pair of
full states. In the case of MAPF, this tradeoff is usually beneficial due to the
heuristic function. A high heuristic value for an intermediate vertex can help
avoid expanding the entire subtree beneath that vertex.

OD can be viewed as a special case of the Enhanced Partial Expansion A*
(EPEA*) algorithm [17]. EPEA* is a variant of A* that can avoid generating
some of the vertices A* would generate when expanding a vertex. For details on
EPEA* and how it relates to OD, see Goldenberg et al. [17].

104 R. Stern

Independence Detection. The second A* extension proposed by Standley [36]
is called Independence Detection (ID). ID attempts to decouple a MAPF problem
with k agents to smaller MAPF problems with fewer agents. It works as follows.
First, each agent finds an optimal single-agent plan for itself while ignoring all
other agents. If there is a conflict between the plans of a pair of agents, these
agents are merged to a single meta-agent. Then, A* +OD is used to find an
optimal solution for the two agents in this meta-agent, ignoring all other agents.
This process continues iteratively: in every iteration a single conflict is detected,
the conflicting (meta-)agents are merged, and then solved optimally with A*
+OD. The process stops where there are no conflicts between the agents’ plans.2

In the worst case, ID will end up merging all agents to a single meta-agent
and solving the resulting k-agents MAPF problem. However, in other cases, an
optimal solution can be returned and guaranteed by only solving smaller MAPF
problems with fewer agents. This can have a dramatic impact on runtime. ID is
a very general framework for MAPF solvers, as one can replace A* +OD with
any other complete and sound MAPF solver.

M*. The M* algorithm [47] also search the k-agent search space like A*. To
handle the exponential branching factor, M* dynamically changes the branching
factor of the search space, as follows. Initially, whenever a vertex is expanded,
it generates only a single vertex that corresponds to all agents moving one step
in their own, individual, optimal path. This generates a single path in the k-
agent search space. Since the agents are following their individual optimal path,
a vertex n may be generated that represents a conflict between a pair of agents
i and j. If this occurs, all the vertices along the path from the start vertex to
n are re-expanded, this time generating vertices for all combinations of actions
agents i and j may perform. In general, a vertex in M* stores a conflict set,
which is a set of agents for which it will generate all combinations of actions.
For agents not in the conflict set, M* only considers a single action – the one on
their individual optimal path. Recursive M* (rM*) is a notable improved version
of M*. rM* attempts to identify sets of agents in the conflict set that can be
solved in a decoupled manner.

M* is similar to OD in that it limits the branching factor of some vertices.
rM* also bears some similarity to ID, in that it attempts to identify which sets
of agents can be solved separately. Nevertheless, rM*, OD, and ID, can be used
together: rM* can be used by ID to find optimal solutions to conflicting meta-
agents, and rM* can search the k-agent search space with A* with OD instead
of plain A*. The latter is referred to as ODrM* and was shown to be effective
in some scenarios [47].

2 This is actually a description of the simple ID algorithm. In the full ID algorithm,
the conflicting agents attempt to individually avoid the conflict while maintaining
their original solution cost.

Multi-Agent Path Finding – An Overview 105

4.2 The Increasing Cost Tree Search (ICTS)

The Increasing Cost Tree Search (ICTS) [33] algorithm does not search the k-
agent search space directly. Instead, it interleaves two search processes. The first,
referred to as the high-level search, aims to find the sizes of the agents’ single-
agent plans in an optimal solution for the given MAPF problem. The second,
referred to as the low-level search, accepts a vector of plan sizes (c1, . . . , ck), and
verifies if there exists a valid solution (π1, . . . , πk) to the given MAPF problem
in which the size of every single agent plan πi is exactly ci.

The high-level search of ICTS is implemented as a search over the increasing
cost tree (ICT). The ICT is a tree in which each node is a k-dimensional vector
of non-negative values. The root of the ICT is a vector (c1, . . . , ck) where for
every agent i, the value ci is the size of its individual optimal path. The children
of a node n in this tree are all vectors that result from adding one to one of
the k elements in n. The high-level of ICTS searches the ICT in a breadth-first
manner. This is done to verify that the first valid solution found by the low-level
search is an optimal solution.

As mentioned above, the low-level search of ICTS accepts an ICT node
(c1, . . . ck) from the high-level search, and searches for a valid solution
(π1, . . . , πk) in which ∀i : |πi| = ci. To do so efficiently, ICTS computes for each
agent i all single-agent plans of size ci. Generating these set of plans is done
with a simple breadth-first search, and they are stored compactly in a Multi-
valued Decision Diagram (MDD) [35]. The cross product of the agents’ MDDs
is a subgraph of the k-agent search space that contains all joint plans that cor-
respond to the given ICT node. Observe that this cross product is a subgraph of
the k-agent search space. ICTS searches this cross product of MDDs for a valid
solution. Since this search solves a satisfaction problem and not an optimization
problem, a simple depth-first branch-and-bound is commonly used.

An effective way to speedup ICTS is to prune the ICT by quickly identifying
subsets of single-agent plan costs for which there is no valid solution [33]. For
example, assume an ICT node (c1, . . . ck) given to the low-level search. One can
check if there is a pair of single-agent plans for agents 1 and 2 such that their
costs is c1 and c2, respectively, and they do not conflict. If no such pair of
plans exists, then the low-level search can safely return that there is no valid
solution for the corresponding ICT node. While this technique for pruning the
ICT is highly effective in practice, there is no current theory about how to choose
which subsets of costs to check. This is an open question for future research.

4.3 Conflict-Based Search

Conflict-Based Search (CBS) [32] is an optimal MAPF algorithm. It is unique in
that it solves a MAPF problem by solving a sequence of single-agent pathfinding
problems.

In more detail, CBS, similar to ICTS, runs two interleaving search processes:
a low-level search and a high-level search. The CBS low-level search accepts as
input an agent i and a set of constraints of the form 〈i, v, t〉, representing that

106 R. Stern

agent i must not be at vertex v in time step t. The task of the CBS low-level
search is to find the lowest-cost single-agent plan for agent i that does not violate
the given set of constraints. Existing single-agent pathfinding algorithms, such
as A*, can be easily adapted to serve as the CBS low-level search.

The CBS high-level searches a set of constraints to impose on the low-level
search so that the resulting joint plan is a cost-optimal valid solution. This search
is performed over the Constraint Tree (CT). The CT is a binary tree in which
each node n is a pair (n.cont, n.Π) where n.cont is a set of CBS constraints and
n.Π is a joint plan consistent with these constraints. A CT node n is generated
by first setting its constraints and then using the CBS low-level search to find a
single-agent plan for each agent that satisfies its constraints. The root of the CT
is a CT node with an empty set of constraints. The objective of the high-level
search is to find node n in the CT in which n.Π is a cost-optimal valid solution.

The high-level search achieves this objective by searching the CT as follows.
First, the root of the CT is generated. If the joint plan for the root has no
conflict, meaning it is a valid solution, then the search returns it. Otherwise,
one of the conflicts in the joint plan is chosen. Let i, j, x, and t be the pair of
agents, location, and time steps for which this conflict has occurred. Two new
CT nodes, ni and nj , are generated and added as children to the root node.
The CT node ni is generated with the constraint 〈i, x, t〉 and the CT node nj

is generated with the constraint 〈j, x, t〉. The cost of a CT node is the cost of
the joint plan it represents. The high-level search continues to search the CT
in a best-first manner, choosing in every iteration to expand a CT node with
the lowest cost. Expanding a CT node means choosing one of its conflicts, and
resolving them by generating two new CT nodes with an additional constraint
as shown above. The search halts when a CT node n is found in which n.Π has
no conflicts. Then, n.Π is returned, and is guaranteed to be optimal.

CBS has many extensions and improvements. Meta-agent CBS [32] is a gen-
eralization of CBS in which instead of adding new constraints to resolve a conflict
between two agents, the algorithm may choose to merge the conflicting agent to
a single meta-agent. Improved CBS [8] attempts to reduce the size of the CT
by intelligently choosing which conflict to resolve in every iteration. HCBS [14]
adds an admissible heuristic to the high-level search to prune more nodes from
the CT. Recent work suggested a different scheme for resolving conflicts. For a
conflict in location x at time t between agents i and j, they proposed to generate
three CT nodes: one with a constraint that agent i must occupy x at time t,
one with a constraint that agent j must occupy x at time t, and one with a
constraint that neither agent i nor agent j can occupy x at time t. The benefit
of this three-way split is that the sets of solutions that satisfy them is disjoint.

4.4 Constraint Programming

Constraint Programming (CP) is a problem-solving paradigm in which one mod-
els a given problem as a Constraints Satisfaction Problem (CSP) or a Constraint
Optimization Problems (COP), and then use a general-purpose constraints solver
to find a solution. A notable special case of CP is to model a problem as a

Multi-Agent Path Finding – An Overview 107

Boolean Satisfiability (SAT) problem, which is a special case of CSP, and use a
general-purpose SAT solver.

CP is a very general paradigm because many problems, including MAPF, can
be modeled as a CSP or a COP. The major benefit of using CP is that current
general-purpose constraints solver are very efficient and are constantly getting
better. In particular, modern SAT solvers are extremely efficient, solving SAT
problems with over a million variables.

A common approach for finding a solution to a given MAPF problem with
optimal makespan with CP is by splitting the problem to two problems: (1)
finding a valid solution whose makespan is equal to or smaller than a given
bound T , and (2) finding a value of T that is equal to the optimal makespan.
Next, we provide a brief description of this approach.

Finding a Valid Solution for a Given Makespan Bound. For every triplet
of agent a, vertex v ∈ V , and time step t, we define a Boolean variable Xa,v,t. Set-
ting Xa,v,t to true means that a is planned to occupy v at time t. The constraints
imposed on these variables ensure that:

1. Agent occupies one vertex in each time step. For every time step and
agent there is exactly one variable Xa,v,t that is assigned true. that is assigned
a true value.

2. No conflicts. For every time step and location, there is at most one variables
Xa,v,t that is assigned true.3

3. Agents start and ends in the desired locations. For every agent i,
Xi,s(i),1 and Xi,t(i),C .

4. Agents move along edges. For every time t before T , agent i, and pair of
vertices v and v′, if the variables Xi,t,v and Xi,t,v′ are both true then there is
an edge (v, v′) ∈ E.

Any assignment of values to the variables Xa,v,t corresponds to a valid solu-
tion for our MAPF problem whose makespan is at most T .

Finding the Optimal Makespan. To find the optimal makespan, we start by
setting T to be a lower bound on the optimal makespan. Such a lower bound can
be easily obtained by taking the maximum over the agents’ individual shortest
path to their goal. Then, a constraints solver is used to search for a solution to
the CSP defined above. If a solution has been found, we have found an optimal
solution. If not, T is incremented by one, and the constraints solver is used again
to solve the new CSP. This process continues until an optimal solution is found.
Finding a solution with optimal sum-of-costs is also possible with CP, but it
requires some additional constraints and changes to the process [6,42].

3 Actually, this constraint only prevents vertex conflicts. To prevent swapping conflicts,
an additional constraint is needed, in which for every time step t before T , pair of
agents a and a′, and pair of locations v and v′, if the variables Xi,t,v and Xi,t′,v′ are
both true then the variables Xj,t,v′ and Xj,t′,v must not be both true.

108 R. Stern

It is important to note that the above is not the only way to solve MAPF
with CP. Surynek explored five different ways to model MAPF using SAT,
showing how different modeling choices impact the SAT solver’s runtime [40].
Barták et al. [6] modeled several variants of MAPF using Picat [54], a higher-
level CP language. A CP written in Picat can be automatically compiled and
solved with either SAT, a CP solver, or a Mixed Integer-Linear Program (MILP)
solver [44]. They showed that different modelings and solvers are effective for dif-
ferent MAPF variants and problems. Still, how to choose the best model and
solver for a given MAPF problem is, to-date, an open question.

It is worth noting that solving MAPF with CP is, in it self, a special case of
a more general approach for solving MAPF in which one compiles MAPF to a
different problem, solves it with an algorithm designed for that problem. Promi-
nent examples are MAPF compilation to Answer Set Programming (ASP) [13],
to SAT Modulu Theory (SMT) [41], and to multi-commodity network flow [52].
Such MAPF algorithms are sometimes referred to as reduction-based MAPF
solvers [15].

4.5 Summary of Optimal Solvers

Unfortunately, there are no clear guidelines to predict which of the MAPF algo-
rithms detailed above would work best for a given MAPF problem. Prior work
suggested the following rules-of-thumb:

– A*-based and CP approaches are effective for small graphs that are dense
with agents.

– CBS and ICTS are effective for large graphs.

However, this rules-of-thumb has not been grounded theoretically and its
empirical support is weak. We expect that future work will explore automated
methods to select the best solver to use for a given problem. Another appealing
direction for future work is to create hybrid algorithms that enjoy the comple-
mentary benefits of different MAPF solvers.

5 Approximately Optimal Solvers

While modern optimal MAPF algorithms have pushed the state of the art
impressively, there are still many MAPF problems for which current algorithms
cannot solve optimally in reasonable time. In such cases, one can always use
one of the fast MAPF algorithms described in Sect. 3, but that would mean the
solution returned may be very costly.

Approximately optimal MAPF algorithms, also known as bounded-suboptimal
algorithms, lie in the range between these algorithms and optimal algorithms.
An approximately optimal algorithm is an algorithm that accepts a parameter
ε > 0 and returns a solution whose cost is at most 1 + ε times the cost of
an optimal solution. Ideally, an approximately optimal algorithm would return
solutions faster when increasing ε, thus providing a controlled trade-off between

Multi-Agent Path Finding – An Overview 109

runtime and solution quality. Approximately optimal MAPF algorithms have
been proposed based on each of the optimal MAPF approaches described in the
previous section. We describe them briefly below.

5.1 A*-based

Creating an approximately optimal version of an A*-based MAPF algorithm is
straightforward, since there are many approximately optimal A*-based algorithm
in the heuristic search literature. Perhaps the most well-known approximately
optimal A*-based algorithm is Weighted A* [30], which is a best-first search
that uses the g + (1 + ε)h evaluation function to choose which node to expand
in every iteration. All A*-based MAPF algorithms can use the same evaluation
function and obtain the guarantee: that the solution cost is at most 1 + ε times
the cost of an optimal solution. Such a variant was mentioned explicitly for M*
[47], under the name inflated M*.

An interesting direction for future work is to use more modern A*-based
approximately optimal algorithms to improve the performance of approximately
optimal A*-based MAPF algorithms. Explicit Estimation Search (EES) [43] and
Dynamic Potential Search (DPS) [16] are some examples of such approximately
optimal A*-based algorithms.

5.2 ICTS

To the best of our knowledge, there is no approximately optimal ICTS-based
algorithm for classical MAPF. The challenge in creating such an algorithm is
that the ICTS high-level search is done in a breadth-first manner. Thus there
is no heuristic to inflate, preventing the clear application of Weighted A* and
other approximately optimal search algorithms.

However, there is an approximately optimal variant of ICTS for MAPF prob-
lems in which moving an agent across different edges can have different costs.
This algorithm is based on the Extended ICTS (eICTS) algorithm [48], which is
an ICTS-based algorithm designed for this type of MAPF problems. In eICTS,
each ICT node is associated with a lower and upper bound. The high-level search
in this case becomes a best-first search on the lower bound, and low-level search
looks for optimal solutions within these bounds. This allows creating an approx-
imately optimal version of eICTS called wICTS, in which suboptimality is added
to both high-level and low-level search.

5.3 CBS

Enhanced CBS [4] is an approximately optimal MAPF algorithm that is based
on CBS. It introduces suboptimality in the low-level search and in the high-level
search. The low-level search in CBS can be any optimal shortest path algorithm,
such as A*. As noted above, there are several approximately optimal algorithms
that are based on A*, including Weighted A* [30], EES [43], and DPS [16].

110 R. Stern

Thus, introducing suboptimality to the low-level search can be done by simply
using one of these approximately optimal algorithms.

Introducing suboptimality to the high-level search is slightly more involved.
To do so, ECBS uses a focal search framework for its high-level search. Focal
search is a heuristic search framework introduced by Pearl and Kim [28] in
which the node expanded in every iteration is chosen from a subset of nodes
called FOCAL. FOCAL contains all nodes in Open that may lead to a solution
that may be approximately optimal. To choose which node to expand From
FOCAL, a secondary heuristic can be used. Importantly, this heuristic can be
inadmissible and domain-dependent. ECBS uses the focal search framework, and
uses a MAPF-specific secondary heuristic that prioritizes CT node with fewer
conflicts. For details, see Barer et al. [4]. Later work proposed an extension
to ECBS in which user-defined paths called highways are prioritized to further
improve runtime [10].

5.4 Constraint Programming

eMDD-SAT is a recently proposed approximately optimal MAPF algorithm
from the CP family. This algorithm models MAPF as a SAT problem. It follows
the high-level approach we described in Sect. 4.4, except that it is designed for
(approximately) optimizing SOC and not makespan.

In a very high-level manner, eMDD-SAT works by creating a SAT model
that allows solutions with longer makespan and larger SOC. The suboptimality
is controlled by high much larger is the SOC from a computed SOC lower-bound.
To the best of our knowledge, there is no approximately optimal MAPF algo-
rithm from this family that is designed for finding solutions with approximately
optimal makespan.

In general, significantly less efforts have been dedicated, to date, to develop
approximately optimal MAPF algorithms. However, existing approximately opti-
mal MAPF algorithms demonstrate that adding even a very small amount of
suboptimality can allow solving much larger problems. For example, ECBS with
at most 1% suboptimality is able to solve MAPF problems with 250 agents on
large maps [4].

6 Beyond Classical MAPF

The scope of this overview is mostly limited to what is referred to as classical
MAPF [37]. Classical MAPF assumes that (1) every action takes exactly one
time step, (2) time is discretized into time steps, as oppose to continuous, and (3)
each agent occupies exactly one vertex. These assumptions do not necessarily
hold in real-world MAPF applications. With the maturity of classical MAPF
algorithms, recent years have also begun to explore MAPF problems that relax
these assumptions. Below, we provide a partial overview of these efforts.

Multi-Agent Path Finding – An Overview 111

6.1 Beyond One-Time Step Actions

The eICTS algorithm [48] mentioned above is designed for actions that may
require more than one time step. Such a setting is sometimes called MAPF with
non-unit edge cost. Adapting the CBS algorithm to non-unit edge cost settings
is straightforward, as it only requires changing the conflict-detection step.

Barták et al. [5] proposed a CP-based algorithm for MAPF with non-unit
edge costs. Their model uses scheduling constraints to support actions with
different duration.

6.2 Beyond Discrete Time Steps

Time is continuous, and thus every time step discretization is, by definition an
abstraction of the real-world. This abstraction in the context of MAPF may lead
to suboptimality and even incompleteness.

As long as the agents do not need to wait, there is no need to directly deal
with this problem: the duration of move actions depend on the time required
to traverse the corresponding edge. However, when an agent needs to wait and
time is not discretized, then each agent has an infinite number of possible wait
actions in each vertex.

The key technique used so far to address this problem is to use the Safe
Interval Path Planning (SIPP) [29] algorithm. SIPP is a single-agent pathfind-
ing algorithm that is designed to avoid moving obstacles. Since obstacles are
moving, the single agent may choose to wait in its location, which raises again
the challenge of dealing with continuous time. SIPP addresses this challenge by
identifying safe intervals in which the agent can occupy each vertex, and runs an
A* search on (vertex, safe interval) pairs. Andreychuck et al. showed how to use
SIPP to solve MAPF problems with continuous time, in a prioritized planning
framework [51] and in a CBS framework [2].

Surynek [41] recently proposed to use a CP-related approach for continuous
time. Instead of modeling the problem as a CSP or SAT problem, Surynek
proposed to model it as a SAT Modulu Theory (SMT) problem, and then apply
an SMT solver.

6.3 Beyond One-Agent per Vertex

The graph G of possible location in classical MAPF is an abstraction of the real
world the agents are moving in. Arguably, in most real-world MAPF applications
the agents are moving in Euclidean space and have some geometric shape. Thus,
an agent may conflict if they stop in different areas, because their geometric
shapes overlap. Li et al. [22] referred to this as MAPF with large agents. In such
settings, an agent may “occupy” multiple vertices and a move action may create
a conflict with agents occupying multiple vertices.

Li et al. [22] proposed a CBS-based algorithm for addressing this setting.
They showed how to design suitable constraints for large agents and proposed
an admissible heuristic to speedup the search. They also described an A*-based

112 R. Stern

algorithm and a SAT-based algorithm for this setting. Atzmon et al. [12] pro-
posed another CBS-based algorithm that can consider agents of arbitrary shape,
even without a reference point that is stable to rotations.

Robustness and Kinematic Constraints. Even if an agent only occupies a
single vertex, it is still desirable in many scenarios to add a buffer around each
agent to further minimize the chance of collisions. Such a buffer can be either
spatial or temporal. A prime motivation for having such a buffer is to account
for the inherent uncertainty during the executing of the solution. That is, to
have the agents’ joint plan be valid and executable even if some agents do not
fully follow it.

The MAPF-POST [19] algorithm was designed to address such requirements.
MAPF-POST accepts as input a solution for a classical MAPF problem and
adapts it to consider safety and kinematic constraints. A limitation of MAPF-
POST is that it does not retain any guarantee on solution quality. For adding
robustness to temporal delays during execution, Atzmon et al. [3] proposed an
optimal CBS-based algorithm and CP-based algorithm.

6.4 Beyond One-Shot MAPF

In addition, classical MAPF is a one-shot, offline problem. In some MAPF appli-
cations, there is a sequence of related MAPF problems that are being solved
sequentially. Some recent work also addresses several types of online MAPF set-
tings. This includes settings where there is a fixed set of agents and a stream of
pathfinding tasks [25], as well as a setting where new agents appear over time
but each agent has a single navigation task [46]. The former setting is referred to
as the MAPF warehouse model and the latter as the MAPF intersection model.

Also, so far we assumed the allocation of agents to goals is given. In the
Multi-Agent Pickup-and-Delivery (MAPD) problem, this is not the case [23]. In
MAPD, there is a fixed set of agents that need to solve a batch of pickup and
delivery of tasks. A MAPD algorithm needs to plan paths without conflicts, and
also to allocate which agent should go to which destination.

7 Conclusion

This paper provides an overview of the current research on Multi-Agent Path
Finding (MAPF). After providing several definitions of MAPF were given, we
presented polynomial-time algorithms for solving the problem. Then, a range
of algorithms was described that return optimal solutions. These algorithms
can be split into four families: A*-based, ICTS, CBS, and CP. Following, we
described how to transform several of these optimal algorithms to be approxi-
mately optimal algorithms, allowing trading solution quality for runtime. Finally,
we presented some extensions of classical MAPF, including non-unit edge costs,
continuous time, large agents, and online MAPF. Throughout this paper, we
suggested several directions for future work.

Multi-Agent Path Finding – An Overview 113

It is our hope that this paper will be useful to both researchers and prac-
titioners looking for a brief introduction to MAPF. For formal definitions
of MAPF variants and benchmarks, see [37]. For additional MAPF-related
resources, including pointers to publications and additional tutorials, see the
http://mapf.info web site, created by Sven Koenig’s group.

References

1. Andreychuk, A., Yakovlev, K.: Two techniques that enhance the performance of
multi-robot prioritized path planning. In: International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), pp. 2177–2179 (2018)

2. Andreychuk, A., Yakovlev, K., Atzmon, D., Stern, R.: Multi-agent pathfinding
with continuous time. In: International Joint Conference on Artificial Intelligence
(IJCAI), pp. 39–45 (2019)

3. Atzmon, D., Stern, R., Felner, A., Wagner, G., Barták, R., Zhou, N.F.: Robust
multi-agent path finding. In: International Conference on Autonomous Agents and
Multi Agent Systems (AAMAS), pp. 1862–1864 (2018)

4. Barer, M., Sharon, G., Stern, R., Felner, A.: Suboptimal variants of the conflict-
based search algorithm for the multi-agent pathfinding problem. In: Symposium
on Combinatorial Search (SoCS) (2014)

5. Barták, R., Švancara, J., Vlk, M., et al.: A scheduling-based approach to multi-
agent path finding with weighted and capacitated arcs. In: International Conference
on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 748–756. Inter-
national Foundation for Autonomous Agents and Multiagent Systems (AAMAS)
(2018)

6. Barták, R., Zhou, N., Stern, R., Boyarski, E., Surynek, P.: Modeling and solving
the multi-agent pathfinding problem in picat. In: IEEE International Conference
on Tools with Artificial Intelligence (ICTAI), pp. 959–966 (2017)

7. Bnaya, Z., Felner, A.: Conflict-oriented windowed hierarchical cooperative A. In:
IEEE International Conference on Robotics and Automation (ICRA), pp. 3743–
3748 (2014)

8. Boyarski, E., et al.: ICBS: improved conflict-based search algorithm for multi-agent
pathfinding. In: International Joint Conference on Artificial Intelligence (IJCAI)
(2015)

9. Čáp, M., Vokř́ınek, J., Kleiner, A.: Complete decentralized method for on-line
multi-robot trajectory planning in well-formed infrastructures. In: International
Conference on Automated Planning and Scheduling (ICAPS) (2015)

10. Cohen, L., Uras, T., Koenig, S.: Feasibility study: using highways for bounded-
suboptimal multi-agent path finding. In: Symposium on Combinatorial Search
(SoCS) (2015)

11. De Wilde, B., Ter Mors, A.W., Witteveen, C.: Push and rotate: a complete multi-
agent pathfinding algorithm. J. Artif. Intell. Res. 51, 443–492 (2014)

12. Atzmon, D., Diei, A., Rave, D.: Multi-train path finding. In: Symposium on Com-
binatorial Search (SoCS) (2019)

13. Erdem, E., Kisa, D.G., Oztok, U., Schüller, P.: A general formal framework for
pathfinding problems with multiple agents. In: AAAI Conference on Artificial Intel-
ligence (2013)

14. Felner, A., et al.: Adding heuristics to conflict-based search for multi-agent path
finding. In: International Conference on Automated Planning and Scheduling
(ICAPS) (2018)

http://mapf.info

114 R. Stern

15. Felner, A., et al.: Search-based optimal solvers for the multi-agent pathfinding prob-
lem: summary and challenges. In: Symposium on Combinatorial Search (SoCS), pp.
29–37 (2017)

16. Gilon, D., Felner, A., Stern, R.: Dynamic potential search-a new bounded subop-
timal search. In: Symposium on Combinatorial Search (SoCS) (2016)

17. Goldenberg, M., Felner, A., Sturtevant, N.R., Holte, R.C., Schaeffer, J.: Optimal-
generation variants of EPEA. In: SoCS (2013)

18. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. SSC-4(2), 100–107
(1968)

19. Hönig, W., et al.: Summary: multi-agent path finding with kinematic constraints.
In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 4869–4873
(2017)

20. Kornhauser, D., Miller, G., Spirakis, P.: Coordinating pebble motion on graphs, the
diameter of permutation groups, and applications. In: Symposium on Foundations
of Computer Science, pp. 241–250. IEEE (1984)

21. Li, J., Harabor, D., Stuckey, P., Felner, A., Ma, H., Koenig, S.: Disjoint splitting for
multi-agent path finding with conflict-based search. In: International Conference
on Automated Planning and Scheduling (ICAPS) (2019)

22. Li, J., Surynek, P., Felner, A., Ma., H., Kumar, T.K.S., Koenig, S.: Multi-agent
path finding for large agents. In: AAAI Conference on Artificial Intelligence (2019)

23. Liu, M., Ma, H., Li, J., Koenig, S.: Task and path planning for multi-agent pickup
and delivery. In: International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), pp. 1152–1160 (2019)

24. Luna, R., Bekris, K.E.: Efficient and complete centralized multi-robot path plan-
ning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 3268–3275 (2011)

25. Ma, H., Li, J., Kumar, T., Koenig, S.: Lifelong multi-agent path finding for online
pickup and delivery tasks. In: Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 837–845 (2017)

26. Ma, H., Yang, J., Cohen, L., Kumar, T.K.S., Koenig, S.: Feasibility study: moving
non-homogeneous teams in congested video game environments. In: Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE), pp. 270–272
(2017)

27. Morris, R., et al.: Planning, scheduling and monitoring for airport surface opera-
tions. In: AAAI Workshop: Planning for Hybrid Systems (2016)

28. Pearl, J., Kim, J.H.: Studies in semi-admissible heuristics. IEEE Trans. Pattern
Anal. Mach. Intell. PAMI-4, 392–399 (1982)

29. Phillips, M., Likhachev, M.: SIPP: safe interval path planning for dynamic environ-
ments. In: IEEE International Conference on Robotics and Automation (ICRA),
pp. 5628–5635 (2011)

30. Pohl, I.: Heuristic search viewed as path finding in a graph. Artif. Intell. 1(3–4),
193–204 (1970)

31. Sajid, Q., Luna, R., Bekris, K.E.: Multi-agent pathfinding with simultaneous exe-
cution of single-agent primitives. In: SoCS (2012)

32. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for opti-
mal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015)

33. Sharon, G., Stern, R., Goldenberg, M., Felner, A.: The increasing cost tree search
for optimal multi-agent pathfinding. Artif. Intell. 195, 470–495 (2013)

34. Silver, D.: Cooperative pathfinding. In: AIIDE, vol. 1, pp. 117–122 (2005)

Multi-Agent Path Finding – An Overview 115

35. Srinivasan, A., Ham, T., Malik, S., Brayton, R.K.: Algorithms for discrete function
manipulation. In: IEEE International Conference on Computer-Aided Design, pp.
92–95 (1990)

36. Standley, T.S.: Finding optimal solutions to cooperative pathfinding problems. In:
AAAI Conference on Artificial Intelligence, pp. 173–178 (2010)

37. Stern, R., et al.: Multi-agent pathfinding: definitions, variants, and benchmarks.
In: Symposium on Combinatorial Search (SoCS) (2019)

38. Surynek, P.: A novel approach to path planning for multiple robots in bi-connected
graphs. In: IEEE International Conference on Robotics and Automation (ICRA),
pp. 3613–3619 (2009)

39. Surynek, P.: An optimization variant of multi-robot path planning is intractable.
In: AAAI (2010)

40. Surynek, P.: Makespan optimal solving of cooperative path-finding via reductions
to propositional satisfiability. arXiv preprint arXiv:1610.05452 (2016)

41. Surynek, P.: Multi-agent path finding with continuous time viewed through satis-
fiability modulo theories (SMT). arXiv preprint arXiv:1903.09820 (2019)

42. Surynek, P., Felner, A., Stern, R., Boyarski, E.: Efficient sat approach to multi-
agent path finding under the sum of costs objective. In: European Conference on
Artificial Intelligence (ECAI), pp. 810–818 (2016)

43. Thayer, J.T., Ruml, W.: Bounded suboptimal search: a direct approach using
inadmissible estimates. In: International Joint Conference on Artificial Intelligence
(IJCAI) (2011)

44. Van Roy, T.J., Wolsey, L.A.: Solving mixed integer programming problems using
automatic reformulation. Oper. Res. 35(1), 45–57 (1987)

45. Veloso, M.M., Biswas, J., Coltin, B., Rosenthal, S.: CoBots: robust symbiotic
autonomous mobile service robots. In: IJCAI, p. 4423 (2015)

46. Švancara, J., Vlk, M., Stern, R., Atzmon, D., Barták, R.: Online multi-agent
pathfinding. In: AAAI Conference on Artificial Intelligence (2019)

47. Wagner, G., Choset, H.: Subdimensional expansion for multirobot path planning.
Artif. Intell. 219, 1–24 (2015)

48. Walker, T.T., Sturtevant, N.R., Felner, A.: Extended increasing cost tree search for
non-unit cost domains. In: International Joint Conference on Artificial Intelligence
(IJCAI), pp. 534–540 (2018)

49. Wang, K.H.C., Botea, A.: MAPP: a scalable multi-agent path planning algorithm
with tractability and completeness guarantees. J. Artif. Intell. Res. 42, 55–90
(2011)

50. Wurman, P.R., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. AI Mag. 29(1), 9 (2008)

51. Yakovlev, K., Andreychuk, A.: Any-angle pathfinding for multiple agents based on
SIPP algorithm. In: International Conference on Automated Planning and Schedul-
ing (ICAPS), pp. 586–593 (2017)

52. Yu, J., LaValle, S.M.: Multi-agent path planning and network flow. In: Frazzoli,
E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics
X. STAR, vol. 86, pp. 157–173. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36279-8 10

53. Yu, J., LaValle, S.M.: Structure and intractability of optimal multi-robot path
planning on graphs. In: AAAI (2013)

54. Zhou, N.-F., Kjellerstrand, H., Fruhman, J.: Constraint Solving and Planning with
Picat. Springer Briefs in Intelligent Systems. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-25883-6

http://arxiv.org/abs/1610.05452
http://arxiv.org/abs/1903.09820
https://doi.org/10.1007/978-3-642-36279-8_10
https://doi.org/10.1007/978-3-642-36279-8_10
https://doi.org/10.1007/978-3-319-25883-6
https://doi.org/10.1007/978-3-319-25883-6

Young Scientist School Papers

The Use of Reinforcement Learning
in the Task of Moving Objects

with the Robotic Arm

Ermek E. Aitygulov(&)

Moscow Institute of Physics and Technology, Moscow, Russia
aytygulov@phystech.edu

Abstract. The article describes the task of controlling a robotic arm to transfer
objects in front of it. To select actions, the reinforcement learning algorithm is
used. In conclusion, there are presented the results of experiments in the Gazebo
simulation environment with two different inputs: either with information about
the position of the hand and the object, or with information about the position of
the hand and the image with the camera.

Keywords: Robotic arm � Reinforcement learning � Object manipulation

1 Introduction

The purpose of this work is to use reinforcement learning algorithm [6] in the task of
forming the rules of object manipulating by the robototechnical system.

Reinforcement learning is a machine learning approach that allows an agent to
develop desired behavior through interaction with an environment. This method uses a
system of penalties and rewards as response of environment on agent’s actions, which
allows taking into account the experience of previous interactions. Two variants of
input data were considered: either information about the position of the hand and the
object, or information about the position of the hand and the image from the camera. To
work with the first version of the input data (the position of the hand and the object)
was written synthetic environment. The agent studied there, and then the model was
transferred to the simulator. To speed up the calculations in the second case (the arm
position and the image from the camera) the server was used.

There are two approaches in reinforcement learning: value-based and policy-based.
In the first approach, the reward maximizes through value function optimization, in the
second, directly through the policy optimization.

An example of the application of the first approach in a similar task on the for-
mation of the rules for moving a manipulator can be found in [1]. In this work, the
Q-learning algorithm was used [7], but before that, the action space was reduced. The
use of the neural network in [2] made it possible to use Q-learning for a more complex
task. As a manipulator, a hand with seven degrees of freedom was used and the agent,
using a convolutional neural network, found the value function with image as input.
However, in this work, the action space also consisted of a finite number of actions: the
agent could change the angle in one of the joints by one degree.

© Springer Nature Switzerland AG 2019
G. S. Osipov et al. (Eds.): Artificial Intelligence, LNAI 11866, pp. 119–126, 2019.
https://doi.org/10.1007/978-3-030-33274-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-33274-7_7

Various extensions make it possible to use reinforcement learning for tasks with the
continual space of actions, as was done in [5]. It is worth noting that the authors
experimented with real robots and to speed up the learning process they used several
agents that asynchronously updated the strategy. In this paper, the action space is also
continual and the policy-based method had been used for learning. In this work TRPO
algorithm (Trust Region Policy Optimization) [4] was selected. It is based on the
strategy gradient theorem [6], which also allows the work with the continuum action
space.

2 Reinforcement Learning

2.1 Agent Interaction Model

As a method for actions synthesizing, the method of reinforcement learning was used -
learning, uses the agent interacts with the environment and for each actions that change
the state of the system, receives a response from the environment (Fig. 1).

The agent is a simulation of the CRUMB robotic system, consists of a Turtlebot 2
and a Widow X arm. The task is to learn how to move an object located on the table in
front of it (Fig. 2).

To describe the activity of an agent, the probability distribution pða j sÞ is used,
which characterizes the probability that an agent chooses an action a in state s. The
probability distribution is called a strategy.

pða j sÞ ¼ Pðat ¼ a j st ¼ sÞ

The agent, following the strategy, applies actions and moves from state to state,
receiving reward rðÞ, which can be either positive or negative.

Fig. 1. Agent interaction model.

120 E. E. Aitygulov

The fundamental equations in reinforcement learning in the presence of information
about the environment are the Bellman equations:

1. VpðsÞ ¼ Ep½rðstþ 1Þþ cVðstþ 1Þ j st ¼ s�,
2. Qpðs; aÞ ¼ Ep½rðstþ 1Þþ cVðstþ 1Þ j st ¼ s; at ¼ a�,

Where VpðsÞ denotes the value of the state s with the strategy p, and Qpðs; aÞ
denotes the value of the action a in the state s with the strategy p.

As an evaluation of the strategy, the value gðpÞ is considered, which is the
mathematical expectation of the discounted reward for the entire session:

gðpÞ ¼ Ep½
X1
t¼0

ctrðstÞ�:

The TRPO algorithm described in this paper uses a surrogate function, the maxi-
mization of which, with the right choice of step, leads to an optimization of the value
gðpÞ. Combining with the Natural policy gradient [3] algorithm significantly improves
the performance of the algorithm.

2.2 TRPO Algorithm

To describe the agent’s interaction with the environment, the Markov decision-making
process ðS;A;P; r; cÞ is used, where S-the set of states, A-the set of actions,
P : S� A� S ! ½0; 1� - the distribution of transition probabilities, the reward function
and the discounting factor c.

In this paper, the action space is continual, therefore, to determine the strategy p, a
multidimensional normal distribution Nðl;PÞ is used, where l and

P
are defined by a

neural network. Thus, the strategy p is parameterized by the weights h of the neural
network, and all functions of p are functions of h.

Fig. 2. CRUMB in Gazebo

The Use of Reinforcement Learning in the Task of Moving Objects 121

The function gðhÞ, which is the estimation of the strategy ph, is replaced by the
following surrogate function, which binds two strategies:

Lhð~hÞ ¼ gðhÞþEph

p~hða j sÞ
phða j sÞ ðQhðs; aÞ � VhðsÞÞ;

where Qh and Vh - value functions defined by following equations:

Qhð~st; ~atÞ ¼ Ephð
X1
l¼0

clrðstþ lÞ j st ¼ ~st; at ¼ ~atÞ;

VhðestÞ ¼ Ephð
X1
l¼0

clrðstþ lÞjst ¼ ~stÞ:

Optimization of Lh with a limit on the average Kullback-Leibler divergence:

D
h
KLðhold; hÞ ¼ Eh½DKLðphð� j sÞ jj phold ð� j sÞÞ� � d

entails an increase in the original function. The method of natural policy gradient,
which uses linear approximation of L and quadratic approximation DKL, is applied to
search in the optimal direction problem:

maximaze
h

½rhLhold ðhÞ jh¼hold � ðh� holdÞ�
with 1

2 ðhold � hÞTKðholdÞðhold � hÞ� d, where KðholdÞ ¼ DhD
hold
KL .

update rule: hnew ¼ hold þ aKðholdÞ�1rhLðhÞjh¼hold .

The value of step is found by solving the equation:

KðholdÞx ¼ rhLðhÞjh¼hold

the value a is matched by a linear search for the maximum of L with D
hold
KL ðhold ; hÞ� d

restrictions.

2.3 Experiments

The work was done in the simulator Gazebo. The written environment used the
OpenAI Gym library interface. The interaction between the robot and the written
environment occurred through the ROS operating system, which organizes the inter-
action between the components of the robot and the simulator, allowing to obtain the
necessary information and also control the robot. An additional node is created to sent
messages to other nodes, which may be responsible for the position of the hand or for
the image from the camera, etc. In TRPO, different estimates are used, so a large
number of episodes played are needed to reduce the variance. To speed up the work in
the first version, the model was trained in a simpler (synthetic) environment, and in the
second version, the server was used.

122 E. E. Aitygulov

The training took place as follows: the agent, following the current strategy, passed
several sessions, no longer n, a total length no more m, then the weights h of the neural
network changed according to TRPO. The training was repeated until the average
reward did not exceed the value l.

Experiments with Synthetic Environment
To use the TRPO algorithm, two environments were created: a synthetic learning
environment and a environment for applying the algorithm in Gazebo. Two environ-
ments have the same state and action spaces. To describe the interaction of the agent
with them, an example of the capture of an object on the table by a manipulator is
considered.

Figure 3 shows a model of a manipulator in a synthetic environment in the two-
dimensional case. Points 1–4 are joints by manipulators. The action is to change the
angle in one of them (in three-dimensional rotation is added around the vertical axis).
The point B is the target point where the agent must move point 4.

The reward system works as follows: if as a result of the action, the length of the

vector 4B
�!

has decreased, then the agent receives a reward in the amount of vector
length, if not changed, then he is fined by 5, and if increased, he is penalized by double
vector length. If successful, the agent receives a +100 reward.

The state of the agent is a sequence ða1; a2; a3Þ (a4 added in 3D), where ai are angles
between the following vectors:

a1 ¼ \ð 14�!; 1B
�!Þ; a2 ¼ \ð 24�!; 2B

�!Þ; a3 ¼ \ð 34�!; 3B
�!Þ:

In such a state space, the inequality a1 � 0 means that the target point B is below the
vector and you need to make a turn in junction 1 by the corresponding angle. Such a
representation of the position of the manipulator relative to the target point makes the
strategy p less dependent on the position B.

A neural network returns a strategy p. Because the space of states and actions for
two environments are identical, the neural network trained in a synthetic environment
can be used in an environment that interacts with Gazebo. Figure 4 shows the change
in the average reward depending on the iteration number with parameters
ðn;m; lÞ ¼ ð500; 5000; 530Þ. With a random position of the cube at the beginning of the

Fig. 3. Model of manipulator in synthetic environment.

The Use of Reinforcement Learning in the Task of Moving Objects 123

episode, the lack of knowledge about the environment, the algorithm shows a steady
improvement in the result.

After learning in a synthetic environment, the model is applied in an environment
that interacts with Gazebo (this is possible because the state and action spaces are
identical) (Fig. 5).

Experiments with Server
To speed up the simulation worked on the server. It also helped speed up the process of
optimizing the approximator using the GPU. When working with the simulation
environment, the manipulator can come to such positions from which it cannot escape;
therefore, only changes in the angle between −0.6 radians and +0.6 radians are allowed
in the environment. Thus the following reward system is used:�r � a2, where r is the
distance from the manipulator’s hand to the object, and a is the angle change in one of
the joints. At a successful capture, the agent receives a +100 reward.

Unlike the first option, the state value function has been added to the gradient of the
target functional:

Fig. 4. Change in the average reward depending on the iteration number

Fig. 5. Synthetic model applying scheme

124 E. E. Aitygulov

1
m

Xm
i¼1

XH�1

t¼0

rh log phðuðiÞt jsðiÞt Þð
XH�1

k¼t

RðsðiÞk ; uðiÞk Þ � VpðsðiÞt ÞÞ

The sign of the gradient depends not on the sign of the total reward, but on the sign
of the following expression:

ð
XH�1

k¼t

RðsðiÞk ; uðiÞk Þ � VpðsðiÞt ÞÞ:

There is the difference between the received award and the expected one, which
allows to reduce the variance. For approximation of the state value function, a separate
neural network was used. The learning process took place in a similar way, but the
additional network approximating of the value function was learned with the image and
angles in the joints as input. Also in order to reduce the value function sharp change,
there were also episodes from the previous series in the training set. In total, the
network was trained in portions of 256 steps from old and new steps (the sample was
mixed, because the order is not important) for 20 epochs. An example of a network that
calculates a parameter: the image is fed to the input of a convolutional layer, processed
by 3 convolutional layers, and then merged with the layers that process the corners
(Fig. 6).

3 Conclusion

During the work, one of the reinforcement learning algorithms was implemented. Two
options were considered: in the first case, the agent knew the exact location of the cube,
in the second case, he received an image at the input and then chose an action. Because
of the need for a large number of episodes in both cases, additional funds were used to
solve the problem. Work in a synthetic environment does not take into account various
factors when learning. For example, the presence of the table, hand constraints, turning
error are not taken into account, however, the obtained strategy copes with the first
option of the input data. Training in the image in the simulation is closer to reality,

Fig. 6. Change in the average reward depending on the iteration number

The Use of Reinforcement Learning in the Task of Moving Objects 125

however, also does not take into account various problems (such as the charge of the
manipulator). In this regard, further it is planned to modify the algorithm that would
take into account the model of the environment, in order to improve convergence and
application to the manipulator in the laboratory.

References

1. Albers, A., Yan, W., Frietsch, M.: Application of Reinforcement Learning for a 2-DOF Robot
Arm Control, November 2009

2. James, S., Johns, E.: 3D Simulation for Robot Arm Control with Deep Q-Learning. 2016
3. Kakade, S.: A natural policy gradient (2002)
4. Schulman, J., Levine, S., Moritz, P., Jordan, M., Abbeel, P.: Trust region policy optimization

(2015)
5. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic

manipulation with asynchronous off-policy update (2016)
6. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (1998)
7. Watkins, C.J.C.H.: Learning from delayed rewards (1989)

126 E. E. Aitygulov

Ontology Models in Intelligent System
Engineering: A Case of the Knowledge-

Intensive Application Domain

Karina A. Gulyaeva(&) and Irina L. Artemieva

Far Eastern Federal University, Vladivostok, Russia
kgulyayeva@gmail.com, artemeva.il@dvfu.ru

Abstract. The article describes the application of the ontological approach to
intelligent system engineering. This approach suggests that the ontology models
be presented in the form of interconnected modules of applied logic theories.
This approach turns out to be effective in the case of a knowledge-intensive
application domain, such as chemistry. Intelligent system that is being devel-
oped is supposed to solve the problem of organic compound reaction capacity
identification. The problem is solved utilizing the concept systems of several
chemistry subdomains. The ontology model is presented. The intelligent system
model is provided. The analysis of the intelligent system requirements and
interface quality attributes has brought into sharp focus several advantages of the
utilized approach, i.e. the extensibility of the system due to the possibility to
correct knowledge and metaknowledge during the system lifecycle, the potential
to add problem solvers for new classes of tasks, and the increase in user con-
fidence due to the utilization of user-understandable concept systems. These
advantages become of paramount importance for the vitality of intelligent sys-
tems in the field where the intensification of knowledge-retrieval procedures and
constant accumulation of knowledge (associated primarily with organic syn-
thesis) make such knowledge more and more difficult for humans to conceive.

Keywords: Ontology � Intelligent system � Organic chemistry � Applied logic
theory

1 Introduction

Today the scientific community is facing diverse knowledge-intensive problems in
many domains. Hereinafter “knowledge-intensive” denotes “knowledge-based, or
expert” (wrt. system, or information system), “complex-structured” [4] (wrt. applica-
tion domain), or “requiring complex-structured application domain knowledge base”
(wrt. problem, task, or challenge). Problems that arise in the dynamic and fast-paced
application areas are of major interest since information systems designed to solve such
tasks become obsolete quickly. It can be attributed to the fact that rapid increase in the
amount of empirical data leads not only to the alterations in the application area
knowledge but also to the changes in the application area metaknowledge, which is
contained in the application area ontology models.

© Springer Nature Switzerland AG 2019
G. S. Osipov et al. (Eds.): Artificial Intelligence, LNAI 11866, pp. 127–139, 2019.
https://doi.org/10.1007/978-3-030-33274-7_8

http://orcid.org/0000-0003-0226-5072
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-33274-7_8

Due to the development of organic synthesis, which has provoked not only the
emergence of novel molecular compounds but also the clarification of structure-activity
relationships and reaction mechanisms, organic chemistry is one of these knowledge-
intensive application domains, where tasks require as accurate, reliable and time-
sensitive knowledge bases as possible.

In 2014 the number of compounds in the Chemical Abstracts Service (CAS) reg-
istry reached 100 million. Notably, CAS registered more compounds in 2014 alone
than during 1965–1990 [6]. For the most part, this increase is due to organics. Ever
since, the amount of data and knowledge in this field has been growing. To solve the
tasks that require computer assistance, organic chemists frequently utilize (in the
multistep procedures) various information resources: software products ranging from
scientific calculators to MD/QM systems based on molecular dynamics/quantum
mechanics (many of such systems are proprietary: “BIOVIA Discovery Studio” [5],
“GAUSSIAN16” [7], etc.); taxonomies (e.g. “Open Biological and Biomedical
Ontologies” (OBO) [19]); compound and reaction databases (e.g. Molbase [16], NIST
[17], Reaxys [18]); other information systems. Although there is an evident advantage
in the fact that the amount of reference data and generated knowledge continues to
expand and the number of methods to solve various classes of problems steadily
increases, one of the major challenges is that such information volumes are almost
human-inconceivable. Here comes the idea of artificial intelligence applications for a
variety of knowledge-intensive tasks in organic chemistry. The DENDRAL project has
shown that adequate and impeccable knowledge representation can alter the problem
status from unsolvable to manageable (e.g. reminisce of a savvy representation of the
degree of unsaturation and a “common language of graphs”, which helps all Plan-
Generate-Test components to communicate) [15].

The article is dedicated to the analysis and application of the ontological approach
for intelligent system (IS) engineering in the knowledge-intensive domain of organic
chemistry. The major task for the IS centers around the organic compound reaction
capacity identification. It has been stated by the Department of Organic Chemistry at
Far Eastern Federal University, and it has always been one of the tasks that chemists
solve applying not only the laws of chemical kinetics and thermodynamics but also
their knowledge and expertise acquired during the years of professional training and
experiment trials. Reaction capacity is tightly connected to the electron density dis-
tribution in the molecule. It is generally described in the terms of mesomeric and
inductive effects (by organic chemists) and applying various approximations related to
quantum mechanics (by chemists working in the field of physical, or more specifically,
quantum chemistry). In many cases, when the problem itself and the procedures to find
a solution are described in the concept systems of various subdomains of the initial
domain, the initial domain is called “complex-structured” [4]. Its ontology model
development can facilitate IS engineering. It should be noted that ontology models in
the form of taxonomies (e.g. OBO) are of minor interest for this research, and the
article advocates the development of ontology models in the form of applied logic
theories. This methodology, as well as the IS model, and the structure of IS underlying
ontology for the organic compound reaction capacity identification are presented in the
following sections.

128 K. A. Gulyaeva and I. L. Artemieva

2 Ontology Models in Intelligent System Engineering.
The Methodology of Applied Logic Theories

The approach of IS engineering based on application domain ontology models has been
developed by Alexander Kleschev and his collaborators at the Institute of Automation
and Control Processes (Far Eastern Branch of RAS). Ontology has been defined by the
Stanford researcher Thomas Gruber as “an explicit specification of a conceptualization”
[8]. Ontology imposes structure on the domain and restrains possible term interpreta-
tions. As a rule, ontology is not supposed to alter and represents a uniform under-
standing of concepts by the domain experts.

A.S. Kleschev and his colleagues have applied the mathematical apparatus of
algebraic systems to give a precise definition of “ontology”, “knowledge base”, and
“input and output data”. Basic definitions and the examples related to organic chem-
istry domain are the following.

2.1 Mathematical Abstractions

Ontology
Ontology can be viewed as a signature

X
¼ O; F; Pf g ð1Þ

Where
O – object symbol (e.g. “Compound structural formula”);
F – functional symbol (e.g. “Elementary reaction stage”, which depends on the time

of observation);
P – predicate symbol (e.g. “To be saturated”) [11].

Knowledge Base
The knowledge base can be viewed as a set of axioms A – sentences in the language of
the signature

P
. Set of axioms A is not a specification of a particular problem. Instead,

it is a distinct kind of problem input data.

Given Problem Input Data

Observation Results
U0 � U, where U is a carrier set of algebraic system in the signature

P
& F1 � F &

P1 � P, for the elements of which partial interpretations are set.

Problem constraints
Problem constraints can be viewed as a set of C – sentences in the language of the
signature

P
. Set of sentences A[C must be consistent taking into account symbol

interpretation in the signature
P

.

Ontology Models in Intelligent System Engineering 129

Given Problem Output Data
Given problem output data is a search result among all algebraic systems in the sig-
nature

P
that satisfy the following conditions:

1. U0 � U, where U is a carrier set of algebraic system in the signature
P

;
2. The interpretation of functional symbols of F1 and predicate symbols of P1 is the

extension of the input datum interpretation up to a complete definition of functions
and predicates;

3. All sentences from the set A[C are true.

2.2 Semantic Constraints and the Need for Ontology Models Defined
as Interconnected Modules of Applied Logic Theories

Evidently, the set of IS input data cannot be defined precisely due to semantic con-
straints (the set of all theorems of untrivial mathematical theory is undefined). As a
rule, it is convenient to define an extended set, which the input data (comprised of a
knowledge base, observation results, and problem constraints) belongs to. For this
purpose, it is suggested that the application domain ontology model be developed.
Afterwards, the knowledge base is developed in the concept system specified by the
ontology model. It should be noted that the ontology model is a set of interconnected
modules of applied logic theories. Each theory is described with the help of the lan-
guage of applied logics. The language is declarative. The language includes a modest
kernel and the possibility to add extensions. The details of the approach are specified in
[9, 10], and the specification of the language (including several extensions, namely
“Standard extension” (ST), “Intervals”, “Mathematical quantifiers”) can be found in the
series of articles [12–14]. Special considerations are the following.

Application domain ontology model includes the modules that are related to its
subdomains. For instance, the ontology model of the knowledge-intensive domain
“Chemistry” is comprised of the modules related to “Analytical chemistry”, “Physical
chemistry”, “Organic chemistry”, etc. Ontology models of the mentioned subdomains
are, in their turn, modular. These modules encompass the terms that allow to describe
various properties of chemical objects (e.g. elements, compounds, reactions) that each
of the subdomains focuses on. The terms of each module are thematically connected.
They form a distinct concept system. Modularity makes the model more flexible and
feasible for the developer (since the representation of a separate subdomain in a sin-
gular module can be cumbersome). The major challenge originates in a necessity to
describe the relationships among the terms of different modules involving several
“Chemistry” subdomains. Moreover, not only the knowledge ontology but also the
context ontology, or ontology of situations, should be considered. The former defines
the terms that allow to describe the knowledge of the subdomains. The terms of the
latter are used to represent the input data and the output data of a problem.

Each applied logic theory is identified by its title. The parameters of applied logic
theory demonstrate the extensions needed to define the theory. Propositions of a typical
applied logic theory are comprised of supplementary terms, principal terms, and
ontology conventions. The following examples clarify some of the mentioned ideas.

130 K. A. Gulyaeva and I. L. Artemieva

Example 1. Applied logic theory. Its Form and Components
Modules “Electron configuration”, “Functional groups”, and “Carbon skeleton” are
needed in the definition of applied logic theory “Chemical compound structural for-
mula” (as well as ontology constants). “Chemical compound structural formula”
module utilizes the standard extension of applied logic language, “Intervals” and
“Mathematical quantifiers” extensions.

Chemical compound structural formula(ST, Intervals, Mathe-
matical quantifiers) = < {Electron configuration, Functional
groups, Carbon skeleton, Ontology constants}, SS>

Where SS = {propositions of the theory “Chemical compound
structural formula”}

Example 2. Supplementary Term
Supplementary terms are introduced to make principal terms and ontology conventions
less cumbersome.

Chemical bond � {single, double, triple}

Example 3. Principal Term
Principal terms denote the concepts. Subject names of a module denote the sets of
objects or object characteristics of the subdomain. Functional and predicate names of
the module denote the relationships among the objects of the subdomain.

Sort Stable: the characteristics of a compound that depend on
temperature and pressure(L)

“Stable” is a predicate (true – if the compound is stable at current temperature and
pressure, otherwise - false)

Example 4. Ontology Convention
Each ontology convention defines the relationship among ontology terms. It is com-
prised of ontology terms and mathematical terms that impose certain constraints.

(cc: Chemical compound)(t: Temperature tabular values)(p:
Pressure tabular values) Density(cc,t,p) = Molar mass(cc)/
Molar volume(cc,t,p) = Molar mass(cc)/Molar volume(cc,t,p)

2.3 Ontology Model Use in the Intelligent System Development

Intelligent system is supposed to adapt to any alterations in the application domain. The
development of IS implies the development and maturation of its information com-
ponents. In turn, these changes provoke the alterations in the classes of tasks requiring
new program components.

Each module of the application domain ontology model is comprised of the
structured and the unstructured parts. The structured part can be stored by the means of
a database management system (DBMS). Each subdomain is matched with a database,
the name of which coincides with the subdomain title. The unstructured part is the text

Ontology Models in Intelligent System Engineering 131

(in the language of applied logics) of ontology conventions and application domain
principles. The editor of ontology conventions and application domain principles
analyzes the correctness of formulas and generates a parse tree (can be stored by the
means of the DBMS as well). The unstructured part of the ontology model and the
knowledge is used during the verification of the referential-integrity constraints and the
development of task solvers for various classes of tasks. Additionally, it is used by the
subsystems of task solver generators.

The process of ontology model (presented as interconnected modules of applied
logic theories in the language of applied logics) use in the IS development is depicted
in Figs. 1, 2, and 3. Application domain knowledge ontology defines the structure of
the information stored in the knowledge base and referential-integrity constraints
verified by the editors. Application domain knowledge ontology is used during the
development of knowledge editors. Application domain context ontology and task class
ontology are utilized in the task class input system development, as well as in the
output interpretation system development. Task class solution system, in its turn, uses
problem statements and terms from both task class ontology and task solution proce-
dure ontology.

Fig. 1. Application domain knowledge ontology in intelligent system component development

132 K. A. Gulyaeva and I. L. Artemieva

F
ig
.2

.
A
pp

lic
at
io
n
do

m
ai
n
co
nt
ex
t
on

to
lo
gy

an
d
ta
sk

cl
as
s
on

to
lo
gy

in
in
te
lli
ge
nt

sy
st
em

co
m
po

ne
nt

de
ve
lo
pm

en
t

Ontology Models in Intelligent System Engineering 133

3 Ontology Model for Intelligent System Solving the Task
of Organic Compound Reaction Capacity Identification

3.1 The Model

“Chemistry” application domain can be named “complex-structured” [4]. Each module
of its ontology model is a separate concept system presented as a distinct applied logic
theory. “Elementary particle physics”, “Laws of thermodynamics (0-3)”, and “Methods
of quantum mechanics” are applied logic theories defined outside the “Chemistry”
application domain. The scheme of all modules is depicted in Fig. 5. Model notations
are presented in Fig. 4.

Fig. 4. Notations used in the ontology model (scheme of modules)

Fig. 3. Task class ontology and task solution procedure ontology in intelligent system
component development

134 K. A. Gulyaeva and I. L. Artemieva

F
ig
.
5.

O
nt
ol
og

y
m
od

el
(s
ch
em

e
of

m
od

ul
es
)
fo
r
in
te
lli
ge
nt

sy
st
em

so
lv
in
g
th
e
ta
sk

of
or
ga
ni
c
co
m
po

un
d
re
ac
tio

n
ca
pa
ci
ty

id
en
tifi

ca
tio

n

Ontology Models in Intelligent System Engineering 135

3.2 (*) Large Dotted Arrow Use Notation

Large dotted arrow is used in the ontology model if the following condition is true
(lev ¼ 3 is adequate for the presented model size):

LA ¼ l1A ; l2A ; . . .; l Aj jA
� �

- tuple of module A level names;
LB ¼ l1B ; l2B ; . . .; l Bj jB

� �
- tuple of module B level names;

l Aj jA ¼ A;

liA 6¼ liB 8i ¼ 1;min k; levð Þ; k ¼ min Aj j; Bj jð Þ: ð2Þ

Example

LA ¼ CHEMISTRY; PHYSICAL CHEMISTRY;CHEMICAL KINETICSh i
LB ¼ CHEMISTRY; PHYSICAL CHEMISTRY;CHEMICAL THERMODYNAMICS;h

CHEMICAL REACTION CRITERIONi

k ¼ min Aj j; Bj jð Þ ¼ min 3; 4ð Þ ¼ 3; l3A 6¼ l3B) Large dotted arrow is used to
connect module A to module B.

3.3 The Precedents of Ontology Models in the Form of Applied Logic
Theories

Several ontology models based on the applied logic theory methodology have been
developed for the “Nanomaterials” [2], “Foams and emulsions” [3], and “Disperse
systems” [1] application domains. These ontology models can be utilized for the ref-
erence purposes.

4 Intelligent System Model

The intelligent system model is designed on the grounds of requirement analysis and
interface quality attribute identification. The requirement analysis has shown that the
major criteria consist in the opportunity to change knowledge and metaknowledge in
the IS (if empirical evidence has been strong enough to alter scientific community
shared understanding of a particular concept or concept relations), and the ability to add
problem solvers for new classes of tasks. Granular classification of IS tasks can be
found in [11]. Notably, the advocated ontological approach allows the IS information
and program components to be easily extendible since each module is a separate entity.
Additional IS requirements include the presence of a distributed database of experi-
ments and a precedent search subsystem.

136 K. A. Gulyaeva and I. L. Artemieva

Interface quality includes the following attributes: user confidence in the IS (due to
the use of a concept system that is universally understood by the users), the ability to
customize IS interface for a distinct scientific group, and the presence of knowledge-
intensive domain-specific interfaces, such as organic compound structural formula
graphic interface, several chemical datum formats (e.g. SMILES, CAS, etc.), and
interfaces for several graph types (e.g. histogram, function curve, etc.).

Figure 6 captures the IS model for organic compound reaction capacity identifi-
cation. The IS model is comprised of information system, support system, and program
components. Its information components are based on the ontology model described
above. Its architecture considers IS requirements and interface quality attributes.

Fig. 6. Intelligent system architecture diagram.

Ontology Models in Intelligent System Engineering 137

5 Conclusion

The amount of knowledge in the knowledge-intensive application domains, such as
organic chemistry, grows rapidly. The adverse effects of this process involve scientific
progress impediment due to the human-inconceivable knowledge amounts. Intelligent
system engineering is supposed to resolve the issue. Organic compound reaction
capacity identification is a knowledge-intensive task. To develop intelligent system that
can provide a solution for this task, one should effectively represent the complex-
structured application domain. The article utilizes the methodology of ontology model
creation in the form of interconnected modules of applied logic theories. The ontology
model (scheme of modules) and the intelligent system model are presented. The
analysis of intelligent system requirements and interface quality attributes has shown
that the use of ontology models for intelligent system design has distinct advantages,
such as the intelligent system extensibility. This is due to the fact that the described
approach allows knowledge and metaknowledge to be adjusted and new problem
solvers to be added to the system. Moreover, due to the use of the concept systems
uniformly understood by the users, the users of the intelligent systems (that are
developed on the grounds of the described approach) are more confident in the system.
The future work is supposed to present a meticulous analysis of the intelligent system
implementation.

Acknowledgements. The reported study was funded by RFBR, project number 19-37-90137.

References

1. Artemieva, I.L., Ryabchenko, N.V.: Disperse system ontology model. Adv. Comput. Sci.
Res. 9, 365–368 (2015)

2. Artemieva, I.L., Ryabchenko, N.V.: Nanomaterials ontology model. Adv. Mater. Res. 905,
65–69 (2014). https://doi.org/10.4028/www.scientific.net/AMR.905.65

3. Artemieva, I.L., Ryabchenko, N.V.: The foams and emulsions ontology model. Appl. Mech.
Mater. 835, 723–727 (2016). https://doi.org/10.4028/www.scientific.net/AMM.835.723

4. Artemieva, I.L.: Ontology development for domains with complicated structures. In: Wolff,
K.E., Palchunov, D.E., Zagoruiko, N.G., Andelfinger, U. (eds.) KONT/KPP -2007. LNCS
(LNAI), vol. 6581, pp. 184–202. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22140-8_12

5. BIOVIA Discovery Studio. http://accelrys.com/products/collaborative-science/biovia-
discovery-studio/. Accessed 09 July 2018

6. Chemical Abstracts Service. 100-millionth-fun-facts. https://www.cas.org/support/
documentation/chemical-substances/cas-registry-100-millionth-fun-facts. Accessed 09
May 2019

7. GAUSSIAN16. http://gaussian.com/gaussian16/. Accessed 27 Apr 2019
8. Gruber, T.: A translation approach to portable ontology specifications. Knowl. Acquisi-

tion J. 5(2), 199–220 (1993)
9. Kleschev, A.S., Artemeva, I.L.: Neobogashchennye sistemy logicheskikh sootnoshenii.

Part 1. NTI, ser. 2(7), 18–28 (2000)

138 K. A. Gulyaeva and I. L. Artemieva

http://dx.doi.org/10.4028/www.scientific.net/AMR.905.65
http://dx.doi.org/10.4028/www.scientific.net/AMM.835.723
http://dx.doi.org/10.1007/978-3-642-22140-8_12
http://dx.doi.org/10.1007/978-3-642-22140-8_12
http://accelrys.com/products/collaborative-science/biovia-discovery-studio/
http://accelrys.com/products/collaborative-science/biovia-discovery-studio/
https://www.cas.org/support/documentation/chemical-substances/cas-registry-100-millionth-fun-facts
https://www.cas.org/support/documentation/chemical-substances/cas-registry-100-millionth-fun-facts
http://gaussian.com/gaussian16/

10. Kleschev, A.S., Artemeva, I.L.: Neobogashchennye sistemy logicheskikh sootnoshenii.
Part 2. NTI ser. 2(8), 8–18 (2000)

11. Kleschev, A.S., Shalfeeva, E.A.: An ontology of intellectual activity tasks. Ontol. Designing
5, 179–205 (2015). https://doi.org/10.18287/2223-9537-2015-5-2-179-205

12. Kleshchev, A.S., Artemjeva, I.L.: A mathematical apparatus for domain ontology
simulation. An extendable language of applied logic. Int. J. Inf. Theor. Appl. 12(2), 149–
157 (2005)

13. Kleshchev, A.S., Artemjeva, I.L.: A mathematical apparatus for domain ontology
simulation. Logical relationship systems. Int. J. Inf. Theor. Appl. 12(4), 343–351 (2005)

14. Kleshchev, A.S., Artemjeva, I.L.: A mathematical apparatus for domain ontology
simulation. Specialized extensions of the extendable language of applied logic. Int. J. Inf.
Theor. Appl. 12(3), 265–271 (2005)

15. Lindsay, R.K., Buchanan, B.G., Feigenbaum, E.A., Lederberg, J.: Applications of Artificial
Intelligence for Organic Chemistry. The DENDRAL Project. McGraw-Hill, New York
(1980)

16. MOLBASE. https://www.molbase.com/. Accessed 04 Apr 2019
17. NIST. https://www.nist.gov/data. Accessed 04 Apr 2019
18. Reaxys. https://www.reaxys.com/. Accessed 04 Apr 2019
19. The OBO Foundry. http://www.obofoundry.org/. Accessed 09 July 2018

Ontology Models in Intelligent System Engineering 139

http://dx.doi.org/10.18287/2223-9537-2015-5-2-179-205
https://www.molbase.com/
https://www.nist.gov/data
https://www.reaxys.com/
http://www.obofoundry.org/

Automated Acquisition, Representation
and Processing of Temporal Knowledge

in Dynamic Intelligent Systems

Galina V. Rybina(&) and Elena S. Fontalina

National Research Nuclear University MEPhI, Moscow, Russia
galina@ailab.mephi.ru

Abstract. This paper analyzes the results of automated knowledge base con-
struction for dynamic intelligent systems, in particular dynamic integrated expert
systems on the basis of the so-called combined method of knowledge acquisition
with temporal extensions. Dynamic intelligent systems are actively in demand in
commercial and industrial applications. However, the effect of their application
largely depends on the availability of modern software tools that automate the
development of intelligent systems. At AI laboratory of NRNU MEPhI we
develop dynamic integrated expert systems with AT TECHNOLOGY – software
platform that implements problem-oriented methodology.

Keywords: Intelligent systems � Dynamic integrated expert systems �
Temporal knowledge acquisition � Automated knowledge acquisition �
Temporal inference

1 Introduction

Dynamic intelligent systems, in particular dynamic integrated expert systems are
actively in demand in commercial and industrial applications. However, the effect of
their application largely depends on the availability of modern software tools that
automate the development of intelligent systems.

At AI laboratory of NRNU MEPhI we develop dynamic integrated expert systems
with AT–TECHNOLOGY– software platform that implements problem-oriented
methodology [1]. This platform supports and automates processes of prototyping and
maintaining integrated expert systems throughout their lifecycle. For a number of
criteria (such as knowledge representation models, reasoning tools, object-oriented
design support, etc.) AT–TECHNOLOGY is comparable to G2 (Gensym corp., US) –
leading software platform for real-time expert systems. Considering the built-in sub-
system of outer world simulation, AT–TECHNOLOGY even goes ahead of G2.

While G2 and some other tools lack automated knowledge acquisition, our platform
offers original hybrid knowledge acquisition tools enabling fuzzy and temporal
knowledge acquisition from various sources. These tools significantly improve the
development of knowledge bases in various domains and levels of complexity.

© Springer Nature Switzerland AG 2019
G. S. Osipov et al. (Eds.): Artificial Intelligence, LNAI 11866, pp. 140–145, 2019.
https://doi.org/10.1007/978-3-030-33274-7_9

http://orcid.org/0000-0002-4077-3660
http://orcid.org/0000-0003-3154-365X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-33274-7_9

2 Representation and Processing of Temporal Knowledge

Acquisition, representation, and processing of temporal knowledge (i.e., knowledge
considering time as an entity of a problem domain) play important role in the context of
the systematic approach to development of dynamic integrated expert systems.

In [1] we have described basic models of knowledge representation and inference
tools of AT-TECHNOLOGY – AT–SOLVER. Here we consider temporal aspects of
inference performed on knowledge bases containing some unreliable knowledge, i.e.,
knowledge with such negative factors as uncertainty, inaccuracy, fuzziness, and with
constraints on variables.

Generalized model of temporal inference with production rules for dynamic inte-
grated expert systems involves processing of knowledge with temporal dependencies
together with basic knowledge of the problem domain.

We see the purpose of temporal inference in construction of the event flow model
interpretation and in generation of a list of controlling actions for the problem domain.
So we applied Allen’s logic [2] with some enhancements together with Osipov’s logic
of control over time [3]. We define global event flow model by a set of temporal objects
(events and intervals). Local event flow models in rules are defined by formulas of
Allen’s logic. Event flow model interpretation may be given as a set of timestamps of
events and intervals. We define interval as a pair of timestamps corresponding to the
beginning and the ending of an interval.

Formally temporal inference model may be presented in the form of a 5-tuple [4]:

I ¼ \V ; S;R;W ;D[;

where

V – process of selection of active rules suitable for problem solving on each
inference loop;
S – process of matching of antecedents of active rules with facts, matching temporal
and non-temporal parts of rules including construction of event flow model inter-
pretation, as well as fuzzification and various evaluations and transformations of
negative factors;
R – conflict resolution process that selects a single rule out of the matched ones to
be applied to the working memory;
W – rule firing process where truth values of consequents are evaluated considering
negative factors;
D – process of defuzzification of fuzzified variables.

The matching stage is complemented by processes that ensure modification of event
flow model interpretation and match temporal parts of active rules. Processes are
carried out on each inference loop except for D which is executed as the final step of the
whole inference. The event flow model interpretation is modified on each loop. When
we integrated the basic inference tools and temporal tools [4] we paid special attention
to two things: the update operation for the event flow model interpretation and
matching of local event flow models in rules with global event flow model interpre-
tation for all types of temporal statements.

Automated Acquisition, Representation and Processing of Temporal Knowledge 141

To represent temporal knowledge in dynamic integrated expert systems we
enhanced knowledge representation language of AT-TECHNOLOGY – AT-KRL [5].
Now it allows representing temporal knowledge together with basic knowledge
including knowledge with uncertainty, inaccuracy, and fuzziness. To do so, we
introduced new basic types of objects: events and intervals; new type of object prop-
erties: condition of event occurrence. We modified the structure of rule antecedents: we
added local event flow model requirements. At last, Osipov’s control over time con-
cepts lead to adding new rule types into AT–KRL:

• reactions, aimed to provide quick response to certain, usually urgent, events in
problem domain, and

• periodic rules, aimed to track certain duty cycles.

Reaction rules generally correspond to enhanced Allen’s logic. Their antecedents
are formulas where each operand is a single temporal object (an event or an interval).
Antecedents of periodic rules contain extra condition with firing period.

These enhancements of AT-KRL allow us to describe temporal relationships of
objects in a problem domain by rules. Decision making is now performed taking into
account actual event flow of the problem domain.

As for inference process, the major changes were made in matching procedures: we
implemented evaluation of formulas containing temporal arguments in rule ante-
cedents, and construction of event flow interpretation on each inference loop.

When forming event flow interpretation, events and intervals are bound to the time
axis by identifying the facts of their occurrence and considering the history of events.
Processing of temporal parts of antecedents uses the results of event flow interpretation
construction. For active rules AT-SOLVER matches local event flow models with
constructed event flow interpretation.

Thus, the synergy of AT-SOLVER and temporal tools addresses both static and
dynamic domains. Note that complex discrete systems produce input data for temporal
inference in dynamic integrated expert systems. Issues related to models, methods,
algorithms, and software for simulation modeling are considered in a number of papers,
for example [4, 5].

3 Acquisition of Temporal Knowledge from Various Sources
of Knowledge

In expert systems development we can automate experts’ work by implementing
methods and tools for detecting and extracting temporal knowledge from natural lan-
guage texts (NL-texts) (Text Mining and Natural Language Processing) and from
databases (Data Mining and Knowledge Discovery in Databases). In world practice
there is a number of approaches to temporal dependencies acquisition but most of them
are focused on processing of English-language texts. Moreover, they do not consider
obtaining temporal knowledge for temporal knowledge bases for dynamic intelligent
systems and for dynamic integrated expert systems in particular.

142 G. V. Rybina and E. S. Fontalina

Our combined method of knowledge acquisition (CMKA) has proven its efficiency
in development of static integrated expert systems with AT-TECHNOLOGY. It
automates interviewing of experts using natural sublanguage (business prose style),
data mining, and verification of knowledge bases. In [1] we described the client-server
architecture and tools for knowledge acquisition from geographically distributed
sources of knowledge of various types: experts, natural language texts, databases. In
dynamic integrated expert systems methods of automated detection of temporal
knowledge remain an unexplored problem. In particular, for extracting information
about time from texts in Russian, only the few approaches are proposed that partly help
to automate these processes, e.g. [6, 7]. Therefore, we focused on further evolution of
combined method of knowledge acquisition and especially its temporal enhancement
by developing new methods and tools for automated construction of temporal
knowledge bases in dynamic integrated expert systems.

Our approach to knowledge acquisition (directly from experts by automated inter-
viewing) bases on original technique of using patterns for solving typical problems [1].
We have put meta knowledge about strategies of solving into heuristic solving patterns
for specific cases: diagnostics, engineering, planning, control, learning, and some other.
To support these solving patterns we developed a number of methods and tools for
modeling dialog scenarios used in interviewing. These methods address both thematic
structure of a dialog, i.e. problem solving pattern, and local structure of a dialog, i.e.
dialog steps – specific actions and reactions between the expert and the system.

As computer-aided interviewing of an expert goes on, the problem solving pattern
fills with structured data that can be exported to knowledge base. To derive the “action
- reaction” model of dialog we use several techniques, e.g., simulation of consultation.
Interviewing of experts is carried out automatically by dialog scenario interpreter. The
interpreter also generates dialog screens for entering answers and data including such
things as uncertainty, imprecision, fuzziness. The specialized linguistic processor and a
set of dynamically replenished dictionaries [1] support knowledge acquisition process.
Computer-aided interviewing of experts, natural language processing, data mining
from databases are tightly coupled in AT-TECHNOLOGY.

In [1] we defined the model of knowledge acquisition method as a 5-tuple:

M ¼ \N; S;F;K; Z[;

where

N – unstructured descriptions in problem domain (expertise, documents, databases);
S – structured descriptions in problem domain (intermediate representation of
knowledge as objects and rules);
F – procedures of mapping N into S;
K – procedures of knowledge formalization using AT-KRL (or another);
Z – knowledge base fragments produced by K.

Each object in S corresponds to one or more answers that an expert gives during an
interviewing session. The thematic structure of the dialog and questions themselves are
built in such a way that allow to interpret each answer as an object, an attribute, a type,
a value, a range of values, or a statement in a rule antecedent or action.

Automated Acquisition, Representation and Processing of Temporal Knowledge 143

For temporal knowledge, the process of structuring objects and rules involves
events and intervals. Antecedents and actions of rules among other things consider
relationships between these entities. Accordingly, F-component contains such proce-
dures as obtaining descriptions from distributed sources, matching various structured
knowledge fragments (including those with temporal data), combining of structured
knowledge fragments.

We developed a technique of detection and interpretation of the simplest temporal
pointers (i.e., independent individual words and phrases denoting time) within a single
sentence. We used generic classification of temporal pointers presented in [8, 9]
together with vocabulary of Russian-language lexemes indicating temporal relations.
To model dialogs we used business prose linguistic model for medical diagnostics and
specialized linguistic processor [1].

We adopted the Random Forest algorithm [8] to work with databases containing
temporal data [9]. The ensemble of decision trees is constructed in accordance with the
basic Random Forest algorithm. We use multidimensional feature space, one of which
is the timestamp. However, the calculation method of the partitioning criterion value
has changed to the arithmetic mean of entropy values. Also, the construction of the tree
is carried out until all the elements of the subsample are processed without using cut-off
procedure.

To convert the ensemble of decision trees to knowledge base format we use some
helper tools:

• the main object containing all features of the feature space as attributes;
• the counter to measure time;
• vote counters.

Each leaf is converted to a rule of the following form: if the duration of all intervals
corresponding to vertices on the path to the root is greater than zero, then increment the
vote counter for the class that corresponds to the current vertex.

When we extract knowledge containing temporal data from various sources of
different types (experts, texts, and databases), we get multiple fragments containing
objects, types, and rules. To merge all the fragments of knowledge together we use
methods, algorithms, and software tools of the combined method of knowledge
acquisition from distributed sources taking into account temporal data. Knowledge
verification is not considered in this paper but is implemented in AT–TECHOLOGY
as well.

4 Conclusion

We implemented temporal extensions for the combined method of knowledge acqui-
sition, including mining of production rules from databases. We studied the distributed
knowledge acquisition process where temporal databases in medical domain were used
as additional sources of knowledge. We noticed that knowledge base growth ratio lies
between 12–25% with 15% in average.

144 G. V. Rybina and E. S. Fontalina

Acknowledgements. This work was partially funded by the RFBR (Russian Foundation for
Basic Research), project No. 18-01-00457.

References

1. Rybina, G.V.: Theory and Technology of Integrated Expert System Construction.
Nauchtehlitizdat, Moscow (2008). (in Russian)

2. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. Assoc. Comput.
Mach. 22, 832–843 (1983)

3. Osipov, G.S.: Dynamic intelligent systems (in Russian). Iskusstvennyj intellekt i prinyatie
reshenij 1, 47–54 (2008)

4. Rybina, G.V., Demidov, D.V., Chekalin, D.B.: Collaboration of all-purpose static solver,
temporal reasoning and simulation modeling tools in dynamic integrated expert systems. Adv.
Intell. Syst. Comput. 449, 191–196 (2016)

5. Rybina, G.V., Mozgachev, A.V.: The use of temporal inferences in dynamic integrated expert
systems. Sci. Tech. Inf. Process. 41(6), 390–399 (2014)

6. Efimenko, I.V.: Semantic of time: models, methods, and identification algorithms for NLP-
systems (in Russian). In: Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta.
Seria “Linguistics”, vol. 2, Moscow, MSRU, pp. 179–185 (2007)

7. Arutyunova, N.D., Yanko, T.E.: Logical analysis of language: language and time. Indrik,
Moscow (1997). (in Russian)

8. Tzacheva, A.A., Bagavathi, A., Ganesan, P.D.: MR - random forest algorithm for distributed
action rules discovery. Int. J. Data Min. Knowl. Manag. Process (IJDKP) 6(5), 15–30 (2016)

9. Kaufmann, M., et al.: Timeline index: a unified data structure for processing queries on
temporal data in SAP HANA. In: Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pp. 1173–1184 (2013)

Automated Acquisition, Representation and Processing of Temporal Knowledge 145

Natural Language Processing with DeepPavlov
Library and Additional Semantic Features

Oleg Sattarov(&)

Moscow Institute of Physics and Technology, Moscow, Russia
oleg.sattarov@phystech.edu

Abstract. In this paper some basic methods of NER task managing in Deep-
Pavlov library along with new neural network modifications with additional
semantic features are observed. Means of DeepPavlov library were slightly
improved and applied to new dataset with unique additional features, which
caused feasible improvement of the neural model.

Keywords: Neural networks � Natural language processing � Named entity
recognition � DeepPavlov

1 Introduction

Modern society has a great demand to many different automatic natural language
processing problems, such as search on demand, classification, knowledge mining,
machine translation, named entity recognition and many others. The approaches based
on machine learning and on deep learning and neural networks in particular, have now
reached the greatest efficiency in solving such problems. A primitive model of neural
network has three layers – an input layer in a form of vector, an output layer, which is
also a vector and a hidden layer between them. In the hidden layer so-called neurons
are situated. Each neuron receives an input vector, makes a linear transformation with
coefficients, which can then be altered (or trained), and then imposes nonlinear
transformation, which also has trainable coefficients, on this result. The result of many
of these independent neurons all sum up to form the final response. For the text
processing problem, the input vector of a neural network is usually a vector repre-
sentation of a word in a multidimensional space that is constructed the way that similar
words in it are close and dissimilar are far. Such representation might also be obtained
by machine learning methods. Thus, during text processing, the neural network
receives only general information about the word based on the statistics of its occur-
rence in various texts, but the role of this word in this particular case and its syntactic
and semantic connection with the rest of the words in this sentence are unknown, and it
has to “guess” them during the learning process. The syntactic and semantic structure
of the sentence reveals the essence of this sentence and it contains the most important
connections between the words it is composed of. Obviously, using this information, it
is possible to improve the performance of existing neural networks. For better
understanding of what we are talking about, let’s focus on the basic ideas of syntactic
and semantic description of the text. Syntactic analysis or parsing is the process of

© Springer Nature Switzerland AG 2019
G. S. Osipov et al. (Eds.): Artificial Intelligence, LNAI 11866, pp. 146–159, 2019.
https://doi.org/10.1007/978-3-030-33274-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-33274-7_10

mapping a sequence of words of a language with its formal grammar. Most models rely
either on the dependency grammar [14] or on the phrase grammar structure [15].
Dependency grammar assumes that text sentences are dependency trees in which words
are connected by directed graphs denoting syntactic subordination. It is believed that
this formalism well reflects the specificity of languages with an arbitrary word order,
such as Russian, German or Czech, in which a significant number of intersecting
connections can be present between words. In the phrase grammar structure sentences
are represented as a hierarchy of components (syntactic groups): all the sentence is
divided into disjoint groups, which in turn consist of smaller groups, etc. up to the
atomic groups – the words of the sentence, forming a syntactic tree (see Fig. 1).
Semantic structure reveals the meaning of the sentence and its words. By semantic
analysis of the text we mean the establishment of generalized categorical meaning of
syntax and semantic links between them. Syntaxeme represents the minimum syntactic
and semantic unit of language that carries a generalized, categorical meaning. For
example, among the semantic roles can be such as “agent” - an animated initiator and
controller of the action, “tool” of the action, “patient” - a participant undergoing
significant changes, and many others.

Using the arsenal of methods of automatic semantic and syntactic analysis of texts,
we can apply the results of this analysis to compose new features that can be added to
the input of the neural network, with the aim of improving the quality of its work. This
idea leads us to the topic of this article.

2 DeepPavlov and Neural Networks

In this paper, a study of the model of natural language processing from the library
DeepPavlov, the model of recognition of named entities in particular, was conducted.
The architecture of this model was supplemented with the use of semantic features,
resulting in an increase in the accuracy of model predictions and the speed of its
learning. All models for neural networks for the problem of named entities recognition
in this library are based on the approach described in the following article: “Application
of a Hybrid Bi-LSTM-CRF model to the task of Russian Named Entity Recognition”
[6] (which in turn is based on the results of another article: [7]) However, the

Fig. 1. Syntactic tree.

Natural Language Processing with DeepPavlov Library 147

parameters can vary from model to model, and it is possible to use other approaches
with this library. To understand how this particular model works, it is necessary to
focus on some key concepts.

2.1 LSTM

Recurrent neural networks are a family of neural networks that operate with data
sequences. The input of such a network receive some sequence of vectors xt (for
example, pre-trained sequences of word embeddings), and the output is a sequence of
some other vectors ht, which contain some information about the part of initial
sequence at each step t. At each step such a network receives not only the vector xt, but
also the previous output vector ht. In theory, such networks can remember information
about all elements of the original sequence: the last vector ht must contain all previous
information. In fact, this does not happen, and the last resulting vector mainly reflects
information about the last seen input vector. This is due to the gradient descent effect in
the update of the output vector during training. LSTM’s (Long Short Term Memory
networks) are created to deal with this difficulty. The following formulas are used to
calculate each of the ht vectors (there are several slightly different versions of these
formulas, but the idea is always the same):

it ¼ r Wxixt þWhiht�1 þWcict�1 þ bið Þ

ct ¼ 1� itð Þ � ct�1 þ it � tanh Wxcxt þWhcht�1 þ bcð Þ

ot ¼ r Wxoxt þWhoht�1 þWcoct þ boð Þ

ht ¼ ot � tanh ctð Þ

The vector it is responsible for how much the current input vector
xt is taken into account by the neural network. If this value is close to one, the
network “forgets” previous experience, and relies on the current vector. If it is close to
zero, the network does not perceive the current vector and remains almost unchanged
comparing to the previous step. The o vector is responsible for what information to use
to generate ht: some elements may not be involved in the current step, but the network
will “remember” them to use in the next steps. It is shown empirically that networks
with such a configuration are able to detect dependencies between words, even if there
is a large number of other words in the text between them. The problem of gradient
descent is not so obvious here, and this can be explained by the fact that the network is
able to “forget” words if they are not important, and gradients do not have to propagate
through the LSTM cells responsible for these words (Fig. 2).

148 O. Sattarov

2.2 Bi-LSTM

Applications to NER use the vector ht from the chain trained on the sequence of words
of the text and corresponding to the vector xt of the word to decide which class the
word belongs to. However, if we recall the method of constructing LSTM, it becomes
clear that in this case the vector ht contains only information about the previous words,
but information about the subsequent words, which play an equally important role in
the NER problem, is not included in this vector. To solve this problem, the so-called
Bi-LSTM is used, that is an architecture that use the union of two vectors obtained from
two independent LSTM networks, one of which is trained on the direct sequence of
words of the text, and the other – on the reverse sequence. Thus, the resulting vector
contains information from neighboring words on both sides (Fig. 3).

Fig. 2. LSTM scheme.

Fig. 3. Bi-LSTM scheme.

Natural Language Processing with DeepPavlov Library 149

2.3 CRF

CRF or Conditional Random Field – is a statistical modeling class which is a type of
Markov random field. Let there be a sequence of words, each of which has its own
marker from a limited set (the word belongs to one of the classes), and the marker is
unknown to us. Let yi be an assumed label for the word with number i, and probabilities
Pi;yi that the word with number i has such a label are known. Let the probability of a
word with a marker yi appearance also depends on the marker of the previous word and
is Ayi;yiþ 1 . Then the problem of predicting the most probable sequence of markers is
reduced to the problem of maximizing the following expression:

s X; yð Þ ¼
Xn

i¼0

Ayi;yiþ 1 þ
Xn

i¼1

Pi;yi

Due to the fact that in the NER task there is a relation between neighboring labels
(e.g., in IOB naming the I-PER can’t follow B-LOC), the use of CRF on top of a deep
learning model is a reasonable approach. In this case, the probabilities Pi;yi are cal-
culated by the neural network, for example, Bi-LSTM.

2.4 Batch Normalization

It is known that any machine learning algorithm, including deep learning algorithms,
learns faster and better if the input of the model is supplied with data that has good
statistics, that is, if the data is normalized. The Batch-Norm technique develops this
approach. If a neural network has multiple layers, then after passing through one layer,
the data, that used to be normalized before it, is no longer normalized in the output.
Between the layers of the neural network artificial normalization of intermediate
parameters can be carried out – this is the method of Batch-Norm [8]. In general, it can
be described as follows: Let there be a mini-batch of some vectors x1...m: B ¼ x1...mf g,
then the mean of this vector is (see (1))

lB ¼ 1
m

Xm

i¼1
xi ð1Þ

and variance is (see (2))

r2B ¼ 1
m

Xm

i¼1
ðxi � lBÞ2 ð2Þ

Normalized vector then is as follows: (see (3))

x̂i ¼ xi � lBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2B þ 2

q ð3Þ

and the next layer receive a vector (see (4))

150 O. Sattarov

yi ¼ cx̂i þ b � BNc;b xið Þ ð4Þ

where c and b parameters are trainable. It should be noted that this procedure is not
“forced”: due to the fact that the normalization parameters are trainable, the neural
network can learn to cancel this normalization if it worsens the properties of the model.
In the original paper, where this approach was first proposed, it was shown that adding
batch-normalization between layers of the neural network can accelerate the conver-
gence of the model by more than ten times.

2.5 CNN

In a conventional perceptron, which is a part of a fully connected neural network, each
neuron is connected to all the neurons of the previous layer, and each link has its own
personal weighting factor. In convolutional neural network, only a limited matrix of
weights of a small size is used in the convolution operation, which is “moved”
throughout the processed layer, after each shift forming an activation signal for the
neuron of the next layer with a similar position. It means that for different neurons of
the output layer, the same weight matrix is used, which is also called the convolution
kernel. It is interpreted as a graphical coding of some feature. The result of the con-
volution with one kernel is called a feature map. With the use of multiple kernels,
different feature maps are obtained. After that, the operation of subsampling (or
pooling) performs the reduction of dimensionality of the generated feature maps.
A typical convolutional neural network consists of a large number of layers. After the
initial layer, the signal passes through a series of alternating convolutional and sub-
sampling (pooling) layers. Usually, after passing through several layers, a single feature
map degenerates into a vector or even a scalar, but there are hundreds of such feature
maps. At the output of the convolutional layers of the network, several layers of a fully
connected neural network (perceptron) are added, which receive the terminal feature
maps as input. This architecture is well established in the problem of pattern recog-
nition in images (Fig. 4).

Fig. 4. CNN scheme.

Natural Language Processing with DeepPavlov Library 151

3 Used Datasets

3.1 CoNLL 2003

This dataset [1] was composed of a collection of news articles of the Reuters Corpo-
ration “Reuters Corpora”. (Reuters is one of the world’s largest international news and
financial information agencies.) The data itself consists of four columns: in the first
column there is a word, in the second - corresponding part of speech (POS-tag), in the
third there is a label of belonging to the so-called “syntactic chunk”, that is, a certain
sequence of words connected semantically (for example, they include noun or verb
phrases), and, finally, in the fourth column there is a label of a named entity. In this
dataset, words are divided into five categories: persons, geographic locations, organi-
zation names, other named entities (miscellaneous) and words that do not belong to
named entities. This dataset uses the IOB naming approach (inside, outside, begin-
ning): before the label of each named entity there is the prefix I-, except for the
situation when two different named entities of the same type follow each other. In this
case, the label of the first word from the second entity is prefixed with B- (Table 1).

3.2 Ontonotes

This dataset [2] consists of news articles, television news recordings, telephone con-
versations and texts from the Internet, with a total volume of about 1.5 million words.
The data in it are presented in the form of a complex structure that reveals the semantic
links in the sentence, the specific meaning of the word (word sense) and the predicate
arguments. The dataset uses designations and markup methods similar to those in Penn
Treebank and Penn PropBank. Omega Ontology nodes are used to combine words with
a common meaning. Named entities divided into several categories: PERSON (people,
including fictional characters), the NORP (nationality, religious and political groups),
FACILITY (buildings, airports, roads, bridges), ORGANIZATION (companies,
agencies, institutions, and so on), GPE (countries, cities, states), LOCATION (loca-
tions that are not included in GPE, mountains, bodies of water), PRODUCT (names of
vehicles, weapons, food and so on), EVENT (hurricane names, the names of battles,
wars, sports events and so on), WORK OF ART (titles of books, songs and so on),
LAW (titles of documents and laws), LANGUAGE (language names) (Fig. 5).

Table 1. CoNNL dataset example.

U.N. NNP I-NP I-ORG

official NN I-NP O
Ekeus NNP I-NP I-PER
heads VBZ I-NP O
for IN I-NP O
Baghdad NNP I-NP I-LOC
. . O O

152 O. Sattarov

3.3 DSTC

This dataset [3] from the eponymous competition (Dialogue State Tracking Challenge)
contains two types of dialogue records: search for tourist information and search for
information on restaurants. It was marked up mainly with an emphasis on the task of
the dialogue state tracking but from the point of view of named entities recognition, it is
only important to note the types of entities placed in it: area, food, pricerange and
name.

3.4 Collection3 (Named_Entities_3)

This dataset [4] is an improved version of Persons-1000 [5], and includes the markup
of named entities into three types: people names, organization names, and geographical
names. The dataset is a set of news reports and includes 1000 documents all in Russian
language. Markup and unmodified text are located in different files, separately for each
document. The markup file has a following structure: in the first column there is a
number of the named entity in this file, in the second - label of this named entity, in the
third - number of the first character of this entity and the number of the first character of
the word immediately following it, separated by a space. In the fourth column, the

Fig. 5. Ontonotes dataset example.

Natural Language Processing with DeepPavlov Library 153

unchanged word in Russian is located. Entities marked “O” are skipped in this file
(Table 2).

To train the model with DeepPavlov API, a redesigned dataset was used. It is
presented in a single text file in a format similar to the CoNLL format (Table 3):

4 DeepPavlov Models Description

Now we are ready to describe the approaches that stand behind DeepPavlov [9] models
in named entities recognition task:

4.1 ner_rus

Firstly, the model allocates a sequence of words from the text of the dataset (x_tokens).
The words are lowercased and the diacritical marks (x_san) are removed. The dic-
tionary of words of this dataset, as well as the dictionary of named entities is compiled.
Source words (x_tokens) are separated by letters, and a dictionary of letters is com-
piled. Every word (x_san) is mapped to the corresponding pre-trained embedding.
Capital letter features for each letter of the word are created. After that the letters of
each word in a sentence are being loaded into Bi-LSTM to get word representations at
the letter level. In this model, they have a dimension of 100. Further, these represen-
tations of words are combined with pre-trained embedding (in the case of ner_rus
model it is a 100-dimensional representation trained on news articles dataset based on
Lenta.ru [12] portal) and a capital letter feature is added (this information is otherwise
would be lost during preprocessing at the stage of lowercasing). These new embed-
dings are fed to the input of another Bi-LSTM network. On top of this layer two more
dense (without dropout) layers of the neural network are trained. All of this is done

Table 2. Collection3 dataset example.

T1 LOC 0 6 Poccия
T2 LOC 50 53 CШA
T3 LOC 57 63 Гpyзию
T4 LOC 87 93 MOCКBA

Table 3. Collection3 dataset example for DeepPavlov (with Russian texts).

Бapaк B-PER

Oбaмa I-PER
нaзнaчит O
дoктopa O
Toмaca B-PER
Фpидeнa I-PER

154 O. Sattarov

with batch-normalization between each two layers, as well as dropout mechanism
(random disconnection of some neurons during training, which has a regularizing
effect). In addition, to speed up the learning process, “Nvidia cuDNN” optimization of
calculations on the GPU is used. The result for each word is a probability vector that
characterizes belonging of this word to each of the named entities labels. The CRF
layer is trained on top of this probability distribution. Hidden layers of Bi-LSTM and
dense layers before CRF have a dimension of 128. This model has learning rate of
10�2, and dropout probability of 0.3 (dropout_keep_prob = 0.7) (Fig. 6).

Most of the other models presented here use the same architecture except for a few
changes.

4.2 ner_ontonotes

As word embeddings 100-dimentional GloVe [13] vectors are used in this model.
Letter embeddings dimensionality is reduced to 32. Hidden layer dimensionality is
extended to 256, while amount of layers raised to three. Learning rate is reduced to
3 � 10�3 and input layer dropout is turned off.

4.3 ner_connl2003

As word embedings it uses 100-dimensional GloVe [13] vector. The dimension of the
letter embedding is reduced to 32. The dropout probability increased to 0.5.

4.4 ner_dstc2

Here, due to the simplicity of the dataset, the approach to solving the problem is
different: as before, first of all, the sequence of text words (x_tokens) is selected from
the dataset and the words are lowercase. A dictionary of these words and named entities
tags is compiled, random 100-dimensional embeddings are initialized. These embed-
ding without addition of other additional features are used in a two-layer convolutional
neural network with 64 nodes in each layer. The width of a convolutional kernel is set

Fig. 6. ner_rus model scheme.

Natural Language Processing with DeepPavlov Library 155

to 7. Further, the network architecture is the same as after the second Bi-LSTM in the
models described earlier. Learning rate in this model is 10�2, and dropout probability –

0.5. Input layer dropout is turned off.

4.5 “Chiu and Nichols 2016”

The article “Chiu and Nichols 2016” [10] uses another but very similar approach:
As in DeepPavlov, firstly, word representations at the letter level are constructed,

however, this time it is done using CNN. Further, these representations are supple-
mented by indicators of the case of the letter. To get a word-level representation, pre-
trained embedding (also GloVe) are concatenated together with the indication of capital
letters for whole words (all caps/starts with upper/mixed) and the labels that are
obtained after comparison of the words in the text with external knowledge dictionary.
Special SENNA and DBpedia named entities dictionaries are used as external
knowledge. The comparison is as follows: for each type of named entity, a window
with length corresponding to the maximum length of the named entity in the dictionary
is taken, after that all groups of words in which the rate of a word match with one of the
elements of the dictionary is greater than some set threshold are marked with the
corresponding label. Now these embeddings at the letter level and at the word level are
concatenated and fed to the Bi-LSTM input. After Bi-LSTM, as in the architecture
from DeepPavlov, there is the CRF layer. In the implementation, which is presented
here, there are some differences comparing to the original article, the most important of
which is the lack of dictionaries of external knowledge. For this reason, the model was
not able to achieve the results indicated in the article (Fig. 7).

5 Experiments Description

5.1 Standard DeepPavlov Models Results

The following are the results of the training of named entity recognition models pre-
sented in the DeepPavlov library, as well as the implementation of the model from the

Fig. 7. “Chiu and Nichols 2016” scheme.

156 O. Sattarov

article “Chiu and Nichols 2016” and their comparison with the officially announced
results. All models were trained on Tesla K80 GPU provided by Google
Coollaboratory.

The results for DeepPavlov and “Chiu and Nichols 2016” are presented in the
following table (Table 4):

It is easy to see that the obtained results are in good agreement with those obtained
earlier, and the training time of the models was not too long, which is important for
applications.

The implementation of the model from the article “Chiu and Nichols 2016” for the
conll_2003 dataset was taken from the repository [11]. This implementation has some
differences from the original article, which are presented in the following table
(Table 5):

On Google Collab GPU a model with such parameters was learning for approxi-
mately 60 min, and achieved results of 87 units F1-mesure. By increasing the number
of epochs to 80 F1-measure increases to 88.54 or 89 points. It was argued that the
model with this implementation can reach the F1-mesure exceeding 90 points at the
80th epoch, but this did not happen. If such a model really cannot achieve F1-measure
more than 90 points, it might be explained by the fact that this implementation does not
use dictionaries of named entities (“lexicons”), which, according to the authors of the
article, have made a significant contribution to improving the quality of the model.

Table 4. Models learning results.

Model Dataset F1-mesure
(declared)

F1-mesure
(reproduced)

Approximate learning
time Colab (min)

ner_ontonotes OntoNotes 87.07 86.97; 86.65 180
ner_rus Collection3 95.25 95.41; 95.30 45
ner_dstc2 DSTC2 97.17 97.04; 97.37 1
ner_conll2003 CoNLL_2003 89.94 89.98; 89.60 60
“Chiu and
Nichols 2016”

CoNLL_2003 91.62 88.54; 89 (80
epochs)

130

Table 5. Differences in “Chiu and Nichols 2016” realization.

Original paper Realization

Epochs 80 30
Dropout 0.68 0.5
LSTM state size 275 200
Optimizer SGD Nadam
Lexicons (external knowledge) Yes No
Final F1-mesure 91.62 87.09

Natural Language Processing with DeepPavlov Library 157

5.2 Experiments with New Dataset and Additional Features

For these experiments dataset Collection5 (Named_Entities_5 [4]) was used, which is
similar to dataset Collection3, except that it has five marked types of named entities:
three from the previous dataset and additional media, and geopolitical names (e.g.,
States). This dataset was transformed to the format of CoNLL2003, in accordance with
DeepPavlov library API. To obtain syntactic and semantic features and part of speech
tags, each sentence of the dataset was studied using a special analyzer [16] created by
the Institute for System Analysis of the Russian Academy of Sciences. At this moment,
there are only the simplest semantic role indicators that are used it this model and in
future versions full complexity of semantic and syntactic structure of a sentence will be
used. As a result, the resulting dataset has the structure shown in the table (Table 6):

For training the net_rus model described above with some modifications and
changes was used. First of all, to concatenated vector representations of the word
described in the section “net_rus”, one-hot embeddings of labels of the part of speech
and semantic role are added. To make use of that change with DeepPavlov API, the
“conll2003_reader” class in the DeepPavlov library has been slightly modified. The
table below shows the results of experiments on the Collection5 dataset without
additional features, with POS tags, semantic roles, and both additional features
(Table 7).

As we see, the original NER network without any additional features has almost the
same result as with additional features, which indicates that these features do not add
any new information to the network: it simply figures out these features itself. This

Table 6. New dataset, based on Collection5, structure (with Russian texts).

Word Part of speech tag Semantic role Named entity tag

Глaвa N UNK O
aвиaкoмпaнии N UNK O
Bитaлий N UNK B-PER
Caвeльeв N Argument I-PER
зaявлял V Predicate O
жypнaлиcтaм N Argument O

Table 7. Experiment results.

Name F1-mesure Learning time (min) Architecture changes

ner_rus_col5 93,88 25 Learning rate = 10�3

ner_rus_col5+POS 94,15 35 Learning rate = 10�3

ner_rus_col5+SEM 93,63 21 Learning rate = 10�3

ner_rus_col5+POS+SEM 94,02 25 Learning rate = 10�3

158 O. Sattarov

leads us to conclusion that simplest semantic and syntactic features that are used in this
work are not enough to improve the network. It is not very surprising, because the full
potential of all acquired by analyzer [16] information is still not used and further work
in using more complex features should be done.

6 Conclusion

The paper describes the main methods of solving the NER problem in the DeepPavlov
library, as well as new techniques for modifying neural networks in the application to
this problem, using syntactic and semantic features. The library tools have been refined
and applied to a new dataset with additional features. It is shown that for modern
complex neural networks used for NER task it is ineffective to add POS tagging,
because it has no significant effect on F1-measure. Inefficiency of adding simplest
semantic features is also shown, however, the effectiveness of adding complex
semantic and syntactic features in their full potential is still unclear, and should be
validated in future studies.

References

1. CoNLL-2003 shared task page. https://www.clips.uantwerpen.be/conll2003/ner/
2. OntoNotes Release 5.0 page. https://catalog.ldc.upenn.edu/LDC2013T19
3. Dialog State Tracking Challenge 2 & 3 page. http://camdial.org/*mh521/dstc/
4. Named_Entities_5 and 3 collection page. http://labinform.ru/pub/named_entities/descr_ne.

htm
5. Persons-1000 collection page. http://ai-center.botik.ru/Airec/index.php/ru/collections/28-

persons-1000
6. Anh, L.T., Arkhipov, M.Y., Burtsev, M.S.: Application of a Hybrid Bi-LSTM-CRF model to

the task of Russian Named Entity Recognition. ArXiv preprint, arXiv:1709.09686 (2017)
7. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural Architectures

for Named Entity Recognition. ArXiv preprint arXiv:1603.01360 (2016)
8. Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift. ArXiv preprint, arXiv:1502.03167 (2015)
9. Deeppavlov library documentation. http://docs.deeppavlov.ai/en/latest/components/ner.

html#id20
10. Chiu, J.P.C., Nichols, E.: Named Entity Recognition with Bidirectional LSTM-CNNs.

ArXiv preprint arXiv:1511.08308 (2016)
11. Bi-LSTM-CNN python implementation on Github. https://github.com/mxhofer/Named-

Entity-Recognition-BidirectionalLSTM-CNN-CoNLL
12. Corpus of news articles of Lenta.RU. https://github.com/yutkin/Lenta.Ru-News-Dataset
13. Global Vectors for Word Representation page. https://nlp.stanford.edu/projects/glove/
14. Tesnière L. Elements de syntaxe structurale. Editions Klincksieck (1959)
15. Chomsky, N.: Syntactic Structures, p. 117. Mouton, The Hague (1957)
16. Syntactic-semantic analyzer by Institute for Systems Analysis page. http://nlp.isa.ru/index.

php/component/portal/?view=projsintsemanalysis

Natural Language Processing with DeepPavlov Library 159

https://www.clips.uantwerpen.be/conll2003/ner/
https://catalog.ldc.upenn.edu/LDC2013T19
p://camdial.org/~mh521/dstc/
http://labinform.ru/pub/named_entities/descr_ne.htm
http://labinform.ru/pub/named_entities/descr_ne.htm
http://ai-center.botik.ru/Airec/index.php/ru/collections/28-persons-1000
http://ai-center.botik.ru/Airec/index.php/ru/collections/28-persons-1000
http://arxiv.org/abs/1709.09686
http://arxiv.org/abs/1603.01360
http://arxiv.org/abs/1502.03167
http://docs.deeppavlov.ai/en/latest/components/ner.html#id20
http://docs.deeppavlov.ai/en/latest/components/ner.html#id20
http://arxiv.org/abs/1511.08308
https://github.com/mxhofer/Named-Entity-Recognition-BidirectionalLSTM-CNN-CoNLL
https://github.com/mxhofer/Named-Entity-Recognition-BidirectionalLSTM-CNN-CoNLL
https://github.com/yutkin/Lenta.Ru-News-Dataset
https://nlp.stanford.edu/projects/glove/
http://nlp.isa.ru/index.php/component/portal/?view=projsintsemanalysis
http://nlp.isa.ru/index.php/component/portal/?view=projsintsemanalysis

Toward Faster Reinforcement Learning
for Robotics: Using Gaussian Processes

Ali Younes1 and Aleksandr I. Panov2,3(B)

1 Bauman Moscow State Technical University, Moscow, Russia
ay20-5-1994@hotmail.com

2 Artificial Intelligence Research Institute,
Federal Research Center “Computer Science and Control”

of the Russian Academy of Sciences, Moscow, Russia
pan@isa.ru

3 Moscow Institute of Physics and Technology, Moscow, Russia

Abstract. Standard robotic control works perfectly in case of ordinary
conditions, but in the case of a change in the conditions (e.g. damaging
of one of the motors), the robot won’t achieve its task anymore. We
need an algorithm that provide the robot with the ability of adaption
to unforeseen situations. Reinforcement learning provide a framework
corresponds with that requirements, but it needs big data sets to learn
robotic tasks, which is impractical. We discuss using Gaussian processes
to improve the efficiency of the Reinforcement learning, where a Gaussian
Process will learn a state transition model using data from the robot
(interaction) phase, and after that use the learned GP model to simulate
trajectories and optimize the robot’s controller in a (simulation) phase.
PILCO algorithm considered as the most data efficient RL algorithm. It
gives promising results in Cart-pole task, where a working controller was
learned after seconds of (interaction) on the real robot, but the whole
training time, considering the training in the (simulation) was longer.
In this work, we will try to leverage the abilities of the computational
graphs to produce a ROS friendly python implementation of PILCO, and
discuss a case study of a real world robotic task.

Keywords: Robot learning · Reinforcement learning · Gaussian
process · Data efficient

1 Introduction

The standard control methods in robotics are based on the dynamical model of
the robot, and also on the model of the dynamics of the environment to build
the needed closed loop control scheme [1–6]; in the real world to realize such
methods for manipulators, we have to follow the following steps: (1) taking an
observation of the environment using cameras or sensors (2) estimating the state

This work was supported by the Russian Science Foundation, project no. 18-71-00143.

c© Springer Nature Switzerland AG 2019
G. S. Osipov et al. (Eds.): Artificial Intelligence, LNAI 11866, pp. 160–174, 2019.
https://doi.org/10.1007/978-3-030-33274-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33274-7_11&domain=pdf
http://orcid.org/0000-0002-9747-3837
https://doi.org/10.1007/978-3-030-33274-7_11

Toward Faster Reinforcement Learning for Robotics 161

of the robot and the task (e.g. position of the end-effector and the goal position)
(3) planning the trajectory of motion of the end-effector to achieve the task
(4) using low-level controllers (or force controller for harder tasks) to ensure
following the planned path by minimizing the errors (5) sending the resulting
commands to the joints of the robot. The errors which are occurred in each step,
accumulated to produce a cumulative error making the control process hard to
realize with desired accuracy.

The essence of the robot learning is to find a way to develop robotic behavior
to a human’s level behavior. Hence the Reinforcement Learning (RL) [6,7] seems
to be the most viable way for robot learning, where the learning process depends
on an agent taking actions, noticing the changes in the environment’s state and
the resulted reward of that action. The goal of RL is to learn the best possible
policy to achieve a task by a trial and error hypothesis.

The state of the art deep reinforcement learning algorithms, which has tried
to handle robotic tasks can be classified to two major classes: (1) model-free
algorithms: (TRPO [9], PPO [10], DDPG [11]) which can learn to achieve the
task after sampling training sets from interacting with environment, so we can
consider the robot’s model as a black-box (2) model-based algorithms ([12–14]):
depends on a learned transition model of the environment. The model-free algo-
rithms need days of training to learn basic robotic tasks. On the other hand,
ordinary model-based algorithms can learn much faster (less than an hour), but
mostly can’t adapt to unforeseen situation (the learned model is no longer valid)
such in case a damaged motor [15–17].

Model-based algorithms learns a state transition model, that represent how
would the next state will be in case of taking an action, without knowing the
dynamic model of the robot. When using deterministic models, the results of the
RL depend on the accuracy of the model, and mostly it failed with unforeseen
states.

In this paper we are interested in the idea of using probabilistic models in RL
algorithms [18–21], to handle the uncertainty of model and reduce its training
time. The approach uses a Gaussian process (1) its input will be a state xt (the
robot joints’ angles and positions) and the control u, (2) the output will be the
resulted state xt+1 (or the difference xt+1 −xt). The reason to use the Gaussian
process is its ability to learn from small data sets. After training the model we
will use it to simulate the task (generate trajectories), and optimize the controller
over that trajectories. We have chosen PILCO algorithm [22], which considered
the most data efficient RL algorithm, we are interested in using of computational
graphs to implement PILCO, and see how our work could scale to robotic tasks.

The following sections are structured as follows. First we will outline some
preliminaries (Sect. 2), which will be a brief introduction to RL, GP, PILCO and
computational graphs. Then we describe our work (Sect. 3) and experiments on
a robotic task (Sect. 4). Then we discuss out the results (Sect. 5). Finally, we add
a discussion (Sect. 6) and future work (Sect. 6).

162 A. Younes and A. I. Panov

2 Preliminaries

2.1 Reinforcement Learning

Reinforcement learning is a part of the machine learning, which study how should
the agent have to interact in its working space, in order to minimize (maximize)
a long-term cost (reward) (see Fig. 1).

AgentAgent

Environment

Action
ut

State
xt+1

cost
ct+1

Fig. 1. Reinforcement learning paradigm

We represent the RL problem as a Markov Decision Process (MDP) at Fig. 2.

x0 x1

u1

x2

u2 u3

p(xt+1|xt, ut)

πθ(xt)

p(xt+1|xt, ut)

πθ(xt) πθ(xt)

Fig. 2. Markov decision process for RL problem

Where xt is the state, ut - control (action), c - cost (reward), the transition
function: xt+1 = f(x, ut) + ω, that we aim to learn in model based RL. The
policy function, which gives the best action for each state after the training
process (could be called as the controller): ut = π(xt, θ). The goal is to minimize
the expected long-term cost:

J(θ) =
T∑

t=1

E[c(xt)|θ].

2.2 Gaussian Processes

In probability theory and statistics, a Gaussian process is a stochastic process (a
collection of random variables indexed by time or space), such that every finite

Toward Faster Reinforcement Learning for Robotics 163

collection of those random variables has a multivariate normal distribution, i.e.
every finite linear combination of them is normally distributed.

In other words, a Gaussian process is a probability distribution over possible
functions. Gaussian process defined by mean function m(.) and a covariance
function (kernel) k(., .).

We will use an independent Gaussian process for each dimension (variable)
of the output. It will describe how would be the next state beginning from the
current state and implementing control signal u, f : x → f(xt, u) = x(t + 1).
The Gaussian process will learn using the data collected from the real robot,
the data set consists of transitions xt, ut, xt+1, ct. And the learning process is a
regression problem, so if we start from a prior

P (f |x) ∼ N (μ,Σ).

We get a posterior

P (y∗|D,x) ∼ N (μ(y∗|D),Σ(y∗|D))

after a training epoch (the process is called Bayesian inference) (see Fig. 3).

Fig. 3. GP prediction at uncertain input. The input distribution p(xt, ut) (the blue
curve and term in the equation) propagates though the GP model (the gray model),
we obtain the expected distribution of the next state p(xt+1) (Color figure online)

And we will use the learned model to make a long term prediction (build
trajectories in the simulation steps), so if we make an action u in the state x,
we map it through the Gaussian process to get the output as the probability of
the next state. Using the formula:

The output distribution is irregular, so we use the moment matching algo-
rithm to approximate it.

164 A. Younes and A. I. Panov

2.3 PILCO Algorithm

PILCO (Probabilistic Inference for Learning COntrol) algorithm [22] is a model-
based policy search reinforcement learning algorithm, which achieved unprece-
dented data-efficiency of several control benchmarks. PILCO is a model based
algorithm, which means it consists of two alternating steps:

1. Interaction step in which we run the real robot (using a random policy in the
first episode, and the optimized policy afterward), collect the roll-out’s data,
and train the Gaussian process model on the collected data.

2. Simulation step in which we have to:
(a) Use the Gaussian process to build long-term predictions over a trajectory

from p(X0) to p(XT).
(b) After that compute the long term cost function:

J(θ) =
T∑

t=1

E[c(xt)|θ]

J(θ) =
T∑

t=1

∫
c(xt)N(xt|μt,Σt)dxt

(c) At the end use the computed cost to optimize the controller’s parame-
ters to minimize the cost, by using a line search algorithm based on the
gradient of the cost function (L-BFGS-B algorithm):

θ ← arg min
θ

J(θ)

PILCO is summarized by Algorithm 1.

Algorithm 1. PILCO
1 Define a model and a policy
2 Collect a random roll-out, record data
3 repeat
4 learn the model
5 Collect trajectories using the model

from p(x0) to p(xT)
6 evaluate the policy

J(θ) =
∑T

t=1 E[c(xt)|θ]
7 optimize policy

θ ← arg minθ J(θ)
8 run the policy and collect data
until task solved ;

Model bias is a problem that faced model-based algorithms, when selecting
only a single dynamic model and assuming that model is the correct model, and
hence the prediction errors in the model compound to produce a inaccurate long

Toward Faster Reinforcement Learning for Robotics 165

term predictions. PILCO uses Gaussian processes as a probabilistic models to
avoid model bias, by considering all plausible dynamics models in prediction of
the next states, i.e. give the model sufficient uncertainty. Which leads to a better
results in terms of data efficiency.

2.4 Computational Graphs for Gaussian Process Regression

Computational graphs are directed graphs, in which the nodes are either vari-
ables or operations, and the edges define the inputs to each node (see Fig. 4).

Fig. 4. Simple computation graph; the blue node is the input X, the yellow nodes are
constants, and the green nodes are the operations (Color figure online)

There are two key strength of using computational graphs:

– It can be used to form a complex operations from simple operation.
– They enable automatic differentiation, which is needed in optimization.

We propose using computational graphs for Gaussian process regression
(Algorithm 1, line 4), where the process of learning the model means fitting
a probability model to the collected data, in other words; we start from a (1)
prior distribution with zero mean function and an initial covariance function,
(2) observe the collected data and compute the posterior distribution, and after
that (3) learning the hyper-parameters (length-scales, signal variances and noise
variances which define the covariance function) of the GP via evidence maxi-
mization.

The bottle-neck in this process, is in (1) the computation of the posterior
over the data points, and (2) the differentiation which is needed in the process
of evidence maximization.

The formulas to find the mean and the variance of the posterior:

mt(x) = K(x,Xt)[K(Xt,Xt) + σ2
ε I)]−1yt

kt(x, x) = k(x, x) − K(x,Xt)[K(Xt,Xt) + σ2
ε I)]−1K(Xt, x)

where Xt is the observed inputs, x all possible input points, yt observed outputs
and σε noise variance.

We can compute then evidence (log marginal likelihood):

log p(y|X,φ) = −1
2
yT K−1

y y − 1
2

log |Ky| − n

2
log 2π

where Ky = K(X,X) + σ2
ε I is the covariance matrix of the noisy outputs y.

166 A. Younes and A. I. Panov

The hyper parameters of the GP:

φ = (l, σ2
f , σ2

ε)

length-scales l, signal variance σw
f , noise variance σ2

ε .
The evidence maximization goal:

φ̂ = arg max
φ

log(p(y|X,φ))

The evidence maximization process, make uses of the partial derivatives of
the log marginal likelihood with respect to the hyperparameters to find the
combination that maximize evidence.

By representing the previous relations as a computational graph, we can
(1) leverage the GPU by run the matrix operations on it, (2) use the auto-
matic differentiation property of the computational graph instead of compute
the derivatives analytically (see Fig. 5).

Fig. 5. High level representation of the computational graph used for Gaussian process
regression

3 Problem Formulation

We consider using Gaussian process to achieve better data efficiency for rein-
forcement learning in robotic tasks. We will use PILCO as a base algorithm for
our work (as it is the most data efficient RL algorithm). In this work, we start
from two observations about PILCO:

– The Robot Operating System (ROS) [25] is an open source, flexible framework
for writing robot software. It is a collection of tools, libraries, and conventions
that aim to simplify the task of creating complex and robust robot behavior
across a wide variety of robotic platforms. Most of the robotics laboratories
are using ROS in research experiments and projects, and it has been used
widely in the industry, making it as the most powerful tool in the robotics
community. ROS support C++ and Python only, but the official code release
of PILCO [26] was written in Matlab, which makes it not compatible with
ROS, So we decided to reproduce PILCO in Python to make it compatible
with ROS.

Toward Faster Reinforcement Learning for Robotics 167

– The recent revolution of the deep learning relies on exploiting the computing
power of the GPU, the father of the RL Richard Sutton has mentioned it
in his “bitter lesson” [27]. PILCO reduces the amount of interaction time
on the real robot, but it takes a relatively long time after that for inference
and controller optimization. Reducing this time may give the algorithm the
ability to learn in real time (or with a little latency), for robotics, it means
the ability to adapt to unforeseen cases, which is a step toward the intelligent
robot. We used GPflow library [23], which is a Gaussian process library that
uses TensorFlow for its core computations and Python for its front. GPflow
follows the computation graphs of the TensorFlow, which make the best use of
the GPU power. That facts reduce the training time (especially when working
with large scales).

We evaluated our implementation on a 7-DoF robotic arm task, in the Ope-
nAI gym [24] to robotic environment. In the following, we will discuss the Exper-
imental setup of this experiment, with an explanation that is needed to under-
stand the points of interest, and sample of results with discussion.

4 Experimental Setup

We applied our implementation on a 7-DoF robotic arm (Fig. 6). We assume that
we don’t know any thing about the model of the robotic arm or the environment,
we can just observe the coordinates of the end effector and joints’ angles, and
receive a reward (cost) after each movement. We can control the robotic arm
by sending 7 control signals to each of its joints. For the algorithm, it is not
needed to know what the state or the control signal represents, but to make our
experiment more applicable to real world robots, we will constrain the control
signal, and we will also constrain the length of the interaction phase.

Firstly we will define the following:

– State: the coordinates of the end effector and the joints’ angles

Xe = [xe, ye, ze, j0, ..., j7] ∈ R
10

– Target: the coordinates of the target

X∗ = [x∗, y∗, z∗] ∈ R
3

– Actions: the control signal for each joint

Uj = [u0, u1,, u7] ∈ R
7

– The cost function:

c(x) = 1 − exp(− 1
2σ2

c

d(Xe,X∗)2) ∈ [0, 1]

168 A. Younes and A. I. Panov

Fig. 6. A 7-Dof robotic arm’s task in simulation, the control signal u is just a relative
rotation angle for each joint, the state is the position of the end effector and joints’
angles, the goal is to reach the red point. The joint which is surrounded by an ellipse,
is the broken (unresponsive) joint in the second part in results (Color figure online)

– The transition model the model consists of an independent stochastic GP
regression model for each variable of the output. In our test case, we have
10 GPs, each one takes the state and the control command as an input, and
the output is resulted difference of one of the state variables (Fig. 7a).

– Controller we have used RBF (Radial Basis Function) as a controller. We
can use the RBF controller as a deterministic GP regression model, by consid-
ering it like that, we exploit the multi output GP class that we have already
used for the transition model (Fig. 7b).

5 Experimental Results

5.1 Classic Reaching Task

As we are interested in an implementation that could be applicable in the real
world robotics applications, we have tested our work on the task of reaching a
goal in the workspace of the robotic arm, that task is a sub task of any industrial
task for manipulators, in the following we will give the results of the experiment
with an analysis and comments.

For the following hyperparameters:

– Number of the basis function of the controller = 50.
– Number of the iterations in each episode on the real robot (horizon) = 50.
– The control function is constrained to 0.1.

Toward Faster Reinforcement Learning for Robotics 169

Fig. 7. (a) The transition model: multi-output Gaussian process regression model, the
input is a for each sub GP is the state Xt and the control Ut, the output is the resulted
difference of an output variable. (b) The controller: multi-output Gaussian process
regression model, the input a for each sub GP is the state Xt, the output is a control
variable ui.

The average time results was:

– The time of interaction (running the robot) = 21.22 s.
– The time of training the transition model = 37.53 s.
– The time of optimizing the controller = 1380.95 s.
– The program running time = 1598 s

The corresponding plots for this case are presented on Fig. 8.
The algorithm can learn the inverse kinematics of the robot and achieved the

task in a considerable time, and improved the trajectory also. Here we have to
mention that, the performance of the algorithm was impressing because of the
formulation of the experimental setup in a way exploiting the best of the PILCO
algorithm, and matching the needs of such algorithm.

One of the interesting experimental results, is to monitor the confidence of
our learned model, and how it match the real transition model. In the following
we will list samples form one step prediction for the three coordinates of the end
effector (Fig. 9).

5.2 Damaged Robot

To asses our implementation on one of the most interesting features of rein-
forcement learning algorithm, we have use a test case that could be happen for
any robot. The damage of any joint’s motor could lead the ordinary control
algorithms to a complete fail in achieving the task. In our test case, we are con-
sidering the damage of a joint’s motor (the joint which is surrounded by a red
ellipse in Fig. 4), so the joint will be unresponsive.

We have used the same implementation with similar hyperparameters from
the last experiment, the robot could adapt to the damage, and learned to achieve
the task. The plots for that case in the right (Figs. 10 and 11). The speed of the
learning process hasn’t been affected by the damaging of the motor, because the
algorithm doesn’t depend on the dynamical model of the robot.

170 A. Younes and A. I. Panov

Fig. 8. The distance between the end effector and the target position, (a) is the random
roll-out, (b) is the first roll-out after optimizing the controller in the simulation, we can
see the robot approaches the target point here, but after that go away from it, but in
(c) it learns to reach the goal after just 20 time steps, and improve that time by reach
it in 10 time steps only in (d)

5.3 Comparison with the Matlab Implementation

We were interested in comparing how much using the computational graph could
help us speed up the learning process for PILCO algorithm. We have tested our
implementation in the Cartpole environment, with a similar hyperparameters to
ones in the Matlab implementation, and same conditions.

The average time for running both implementations for 8 epochs:

– PILCO in python with computational graphs = 671 s.
– PILCO original implementation = 1265 s.

The using of the computational graphs, leverage the GPU power, and give
as a speed up by a factor

S =
TMatalb

Tpython
=

1265
671

= 1.885.

Which is considered as a satisfying result.

Toward Faster Reinforcement Learning for Robotics 171

Fig. 9. The one step prediction of the transition model: the plot shows the difference
between the states and the confidence level for each prediction; in (a) we can see the
model is not confident in the first iteration. After the first learning epoch (b) it reduce
the margin of uncertainty, but it failed to follow the real transition (orange line in the
plot), the model has reduce the uncertainty about transition over the next iterations
(c) and (d), reaching a small margin (d is better than c-check the scale of y-axis) (Color
figure online)

Fig. 10. The distance between the end effector and the target position - the case of
an unresponsive joint, similar results to the previous case, the robot approaches the
target in the second iteration (b) and third (c), reaches it in the in the fourth (d) after
just 8 time steps.

172 A. Younes and A. I. Panov

Fig. 11. The one step prediction of the transition model- the case of an unresponsive
joint; confidence over the x axis was bigger than other two coordinates in (b), but
the robot could learn to solve the task and reduce the margin of the uncertainty in
(c) and (d).

6 Discussion and Future Work

Our implementation for PILCO in Python, with the using of computational
graphs through GPflow gives the desired results in terms of the two goal pro-
prieties (1) ROS friendly, where it is in python, and it is easy to describe a real
world robotic experiment as a gym environment. (2) it leverage the computation
power of the new hardware, so it could learn faster; while we couldn’t feel the
importance of this feature for our simple experiments, it may play an important
role when working with more complex applications.

We have to mention to the compromise between long horizon and the accu-
racy of the model. Smaller horizon means less interaction on the real robot,
which is desirable; but also mean smaller data set, and worse model for the state
transition. So before deploying the learned controller, it is important to check
the one step prediction plots over test (plausible for our task) trajectories. It is
not recommended to deploy the controller after the first time achieving the task.

The importance of our work impedes in: (1) demonstrating the ability of
adapt for robots when using algorithms that doesn’t depends on the dynamical
model (e.g reinforcement learning), (2) it is desirable to adapt as fast as possible,
so it is important to work toward fast reinforcement learning, (3) using the prob-
abilistic models and computing power could be the right method in achieving
that goals.

We have many interesting points to work in this direction. While GP gives
a good results, but it has some down points, like it can’t handle discontinuities
in the state, so using our implementation we can easily try to use Deep GPs
instead of shallow GPs and compare the results. The computation complexity
of the GP equals O(n3) which cause problem when working on a scale, in our

Toward Faster Reinforcement Learning for Robotics 173

work we used computational graphs to speed up the inference process of GPs,
but we can work also on using GPU in other parts of the algorithm. In robotics,
sometimes we are working with sparse rewards, so we can study how to solve
such problems efficiently, and how we could make use of GPs.

References

1. McFarlane, D.C., Glover, K.: Robust Controller Design Procedure Using Nor-
malized Coprime Factor Plant Descriptions. Lecture Notes in Control and Infor-
mation Sciences, vol. 138. Springer, Heidelberg (1990). https://doi.org/10.1007/
BFb0043199

2. Rocco, P.: Stability of PID control for industrial robot arms. IEEE Trans. Robot.
Autom. 12(4), 606–614 (1996)

3. Åström, K.J., Wittenmark, B.: Adaptive Control. Courier Corporation, Mineola
(2013)

4. Wen, J.T., Murphy, S.H.: PID control for robot manipulators. Rensselaer Poly-
technic Institute (1990)

5. Teixeira, R.A., Braga, A.D.P., De Menezes, B.R.: Control of a robotic manipula-
tor using artificial neural networks with on-line adaptation. Neural Process. Lett.
12(1), 19–31 (2000)

6. Nesnas, I.A., et al.: CLARAty: challenges and steps toward reusable robotic soft-
ware. Int. J. Adv. Robot. Syst. 3(1), 5 (2006)

7. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, vol. 135. MIT
Press, Cambridge (1998)

8. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J.
Artif. Intell. Res. 4, 237–285 (1996)

9. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy
optimization. In: International Conference on Machine Learning, pp. 1889–1897,
June 2015

10. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

11. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971 (2015)

12. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
14. Deisenroth, M.P., Neumann, G., Peters, J.: A survey on policy search for robotics.

Found. Trends R© Robot. 2(1–2), 1–142 (2013)
15. Carlson, J., Murphy, R.R.: How UGVs physically fail in the field. IEEE Trans.

Robot. 21(3), 423–437 (2005)
16. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like ani-

mals. Nature 521(7553), 503 (2015)
17. Nagatani, K., et al.: Emergency response to the nuclear accident at the Fukushima

Daiichi Nuclear Power Plants using mobile rescue robots. J. Field Robot. 30(1),
44–63 (2013)

18. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The
MIT Press, Cambridge (2006)

https://doi.org/10.1007/BFb0043199
https://doi.org/10.1007/BFb0043199
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1509.02971

174 A. Younes and A. I. Panov

19. Ko, J., Klein, D.J., Fox, D., Haehnel, D.: Gaussian processes and reinforcement
learning for identification and control of an autonomous blimp. In: Proceedings
2007 IEEE International Conference on Robotics and Automation, pp. 742–747.
IEEE, April 2007

20. Wilson, A., Fern, A., Tadepalli, P.: Incorporating domain models into Bayesian
optimization for RL. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.)
ECML PKDD 2010. LNCS (LNAI), vol. 6323, pp. 467–482. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15939-8 30

21. Engel, Y., Mannor, S., Meir, R.: Bayes meets Bellman: The Gaussian process app-
roach to temporal difference learning. In: Proceedings of the 20th International
Conference on Machine Learning, ICML 2003, pp. 154–161 (2003)

22. Deisenroth, M.P., Fox, D., Rasmussen, C.E.: Gaussian processes for data-efficient
learning in robotics and control. IEEE Trans. Pattern Anal. Mach. Intell. 37(2),
408–423 (2015)

23. Matthews, D.G., et al.: GPflow: a Gaussian process library using TensorFlow. J.
Mach. Learn. Res. 18(1), 1299–1304 (2017)

24. Brockman, G., et al.: Openai gym. arXiv preprint arXiv:1606.01540 (2016)
25. http://www.ros.org
26. http://mlg.eng.cam.ac.uk/pilco/
27. http://www.incompleteideas.net/IncIdeas/BitterLesson.html

https://doi.org/10.1007/978-3-642-15939-8_30
http://arxiv.org/abs/1606.01540
http://www.ros.org
http://mlg.eng.cam.ac.uk/pilco/
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Author Index

Aitygulov, Ermek E. 119
Artemieva, Irina L. 127
Averkin, Alexey 3

Batyrshin, Ildar Z. 13

Fontalina, Elena S. 140

Gergely, Tamás 29
Gudwin, Ricardo R. 65
Gulyaeva, Karina A. 127

Mille, Simon 85

Panov, Aleksandr I. 160

Rybina, Galina V. 140

Sattarov, Oleg 146
Stern, Roni 96

Ury, László 29

Younes, Ali 160

	Preface
	Organization
	Contents
	Tutorial Papers
	Hybrid Intelligent Systems Based on Fuzzy Logic and Deep Learning
	Abstract
	1 Introduction
	2 Methods for Extracting Rules from the Neural Network
	3 Extracting Rules from Deep Neural Networks
	4 Conclusion
	References

	Data Science: Similarity, Dissimilarity and Correlation Functions
	Abstract
	1 Introduction
	2 Examples of Similarity Measures and Correlation Coefficients for Different Domains
	2.1 Binary n-Tuples
	2.2 Real Valued n-Tuples
	2.3 Rankings
	2.4 Finite Probabilistic Distributions
	2.5 Kendall’s General Correlation Coefficient

	3 Similarity and Dissimilarity Functions
	3.1 Definition of Similarity, Dissimilarity and Correlation Functions
	3.2 Examples of Complementary (Dis)Similarity Functions
	3.3 Fuzzy Relations and Kleene Algebra of Resemblance Functions
	3.4 Min-Transitivity and Hierarchical Clustering
	3.5 Equivalent Resemblance Functions

	4 Correlation Functions
	4.1 Correlation Functions and Correlation Triplets
	4.2 Examples of Constructing Correlation Functions from (Dis)Similarity Functions
	4.3 Strong (Invertible) Correlation Functions on the Sets with Involution Operation
	4.4 Constructing Strong Correlation Functions from Co-symmetric (Dis)Similarity Functions

	5 Conclusion and Future Directions of Research
	Acknowledgements
	References

	Mathematical Foundation of Cognitive Computing Based Artificial Intelligence
	1 Introduction
	1.1 Artificial Intelligence Today
	1.2 Cognitive Computing
	1.3 What We Offer

	2 The Mathematical Foundation
	2.1 Constitution Theory
	2.2 FOL-Based Constitutions
	2.3 Inductive and Coinductive Extensions in Constitutions
	2.4 Constitutional Set Theories

	3 Examples
	3.1 Specifications as Constitutions
	3.2 Computing Theory

	4 Cognitive Computing
	4.1 Motivations
	4.2 Basic Definitions
	4.3 Cognitive Processes

	5 Cognitive Computing
	6 AI Based on Cognitive Computing
	7 Appendixes
	7.1 Axiomatization of clFSA

	References

	A Review of Motivational Systems and Emotions in Cognitive Architectures and Systems
	1 Introduction
	2 What Is a Motivated Behavior?
	3 What Are Emotions?
	4 The OCC Model: Ortony, Clore, Collins
	5 Damásio and the Somatic Marker
	6 Simon and Sloman: Emotions as Attention Filters and Alarms
	7 Cañamero and the Modulation of Motivations
	8 Picard and Affective Computing
	9 Discussion
	10 Final Considerations
	References

	Selected Challenges in Grammar-Based Text Generation from the Semantic Web
	1 Introduction
	2 Natural Language Generation in the Context of the Semantic Web
	2.1 Approaches and Limitations
	2.2 FORGe: An Example of a Grammar-Based System

	3 What Grammar-Based Systems Are Good For: Lessons Learnt from the WebNLG and E2E Challenges
	3.1 The WebNLG and E2E Challenges
	3.2 Results and Discussion

	4 Towards an Efficient Verbalisation of Structured Data
	4.1 Challenges for the FORGe Generator
	4.2 Challenges in the Linguistic Grounding of LOD Datasets

	5 Conclusions
	References

	Multi-Agent Path Finding – An Overview
	1 Introduction
	2 Problem Definition
	2.1 Optimization
	2.2 From Single-Agent Pathfinding to MAPF

	3 Fast MAPF Algorithms
	3.1 Prioritized Planning
	3.2 Complete MAPF Solvers

	4 Optimal MAPF Solvers
	4.1 Extensions of A*
	4.2 The Increasing Cost Tree Search (ICTS)
	4.3 Conflict-Based Search
	4.4 Constraint Programming
	4.5 Summary of Optimal Solvers

	5 Approximately Optimal Solvers
	5.1 A*-based
	5.2 ICTS
	5.3 CBS
	5.4 Constraint Programming

	6 Beyond Classical MAPF
	6.1 Beyond One-Time Step Actions
	6.2 Beyond Discrete Time Steps
	6.3 Beyond One-Agent per Vertex
	6.4 Beyond One-Shot MAPF

	7 Conclusion
	References

	Young Scientist School Papers
	The Use of Reinforcement Learning in the Task of Moving Objects with the Robotic Arm
	Abstract
	1 Introduction
	2 Reinforcement Learning
	2.1 Agent Interaction Model
	2.2 TRPO Algorithm
	2.3 Experiments

	3 Conclusion
	References

	Ontology Models in Intelligent System Engineering: A Case of the Knowledge-Intensive Application Domain
	Abstract
	1 Introduction
	2 Ontology Models in Intelligent System Engineering. The Methodology of Applied Logic Theories
	2.1 Mathematical Abstractions
	2.2 Semantic Constraints and the Need for Ontology Models Defined as Interconnected Modules of Applied Logic Theories
	2.3 Ontology Model Use in the Intelligent System Development

	3 Ontology Model for Intelligent System Solving the Task of Organic Compound Reaction Capacity Identification
	3.1 The Model
	3.2 (*) Large Dotted Arrow Use Notation
	3.3 The Precedents of Ontology Models in the Form of Applied Logic Theories

	4 Intelligent System Model
	5 Conclusion
	Acknowledgements
	References

	Automated Acquisition, Representation and Processing of Temporal Knowledge in Dynamic Intelligent Systems
	Abstract
	1 Introduction
	2 Representation and Processing of Temporal Knowledge
	3 Acquisition of Temporal Knowledge from Various Sources of Knowledge
	4 Conclusion
	Acknowledgements
	References

	Natural Language Processing with DeepPavlov Library and Additional Semantic Features
	Abstract
	1 Introduction
	2 DeepPavlov and Neural Networks
	2.1 LSTM
	2.2 Bi-LSTM
	2.3 CRF
	2.4 Batch Normalization
	2.5 CNN

	3 Used Datasets
	3.1 CoNLL 2003
	3.2 Ontonotes
	3.3 DSTC
	3.4 Collection3 (Named_Entities_3)

	4 DeepPavlov Models Description
	4.1 ner_rus
	4.2 ner_ontonotes
	4.3 ner_connl2003
	4.4 ner_dstc2
	4.5 “Chiu and Nichols 2016”

	5 Experiments Description
	5.1 Standard DeepPavlov Models Results
	5.2 Experiments with New Dataset and Additional Features

	6 Conclusion
	References

	Toward Faster Reinforcement Learning for Robotics: Using Gaussian Processes
	1 Introduction
	2 Preliminaries
	2.1 Reinforcement Learning
	2.2 Gaussian Processes
	2.3 PILCO Algorithm
	2.4 Computational Graphs for Gaussian Process Regression

	3 Problem Formulation
	4 Experimental Setup
	5 Experimental Results
	5.1 Classic Reaching Task
	5.2 Damaged Robot
	5.3 Comparison with the Matlab Implementation

	6 Discussion and Future Work
	References

	Author Index

