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Abstract. Semantic web technologies have significantly contributed
with effective solutions for the problems of data integration and knowl-
edge graph creation. However, with the rapid growth of big data in
diverse domains, different interoperability issues still demand to be
addressed, being scalability one of the main challenges. In this paper,
we address the problem of knowledge graph creation at scale and pro-
vide MapSDI, a mapping rule-based framework for optimizing semantic
data integration into knowledge graphs. MapSDI allows for the seman-
tic enrichment of large-sized, heterogeneous, and potentially low-quality
data efficiently. The input of MapSDI is a set of data sources and
mapping rules being generated by a mapping language such as RML.
First, MapSDI pre-processes the sources based on semantic information
extracted from mapping rules, by performing basic database operators;
it projects out required attributes, eliminates duplicates, and selects rel-
evant entries. All these operators are defined based on the knowledge
encoded by the mapping rules which will be then used by the seman-
tification engine (or RDFizer) to produce a knowledge graph. We have
empirically studied the impact of MapSDI on existing RDFizers, and
observed that knowledge graph creation time can be reduced on average
in one order of magnitude. It is also shown, theoretically, that the sources
and rules transformations provided by MapSDI are data-lossless.

Keywords: Knowledge graph creation · Semantic data integration ·
Transformation rules · Data integration system

1 Introduction

Knowledge graph creation as a method for knowledge representation has been
through a significant progress with the development of semantic web technologies
in recent years. The semantic web perspective of making the data and informa-
tion more accessible to machines [1] by providing a unified view of data residing
in different sources with heterogeneous structures, had made semantic web tech-
nologies desirable candidates to be used in semantic data integration systems
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and knowledge graph creation. Coordinately, with the rapid growth of available
big data in different domains, semantic data integration systems are required
to be scaled up in order to transfer big data into an actionable knowledge rep-
resented in knowledge graphs. RDF1 or Resource Description Framework, as a
standard model on the web for describing the metadata of resources, is a com-
mon data model to create linked data and knowledge graphs. Nevertheless, in
many domains such as biomedicine and biology, a massive amount of generated
big data is not available in this format. To create a knowledge graph from non-
RDF big data sources, it is required to define mapping rules for data model
transformation along with semantic data integration. However, to scale up to
big data, RDFizers need to be empowered with efficient processes for removing
duplicates, and projecting and selecting only relevant attributes and data.

Problem and Objective: We tackle the problem of semantic big data integra-
tion into a knowledge graph and focus on scalability issues present in existing
mapping rule-based RDFizers. As proof of concept, we concentrate on RML [5],
a mapping language that expresses mappings from hierarchical sources into a
RDF graph, and the RMLmapper and SDM-RDFizer as engines for RML triple
maps. We show how dominant dimensions of big data, e.g., volume, variety, and
veracity, negatively impact on the performance of these two engines and prevent
them from scaling up to large datasets composed of duplicated data.

Our Proposed Approach: The main idea of this article is to present MapSDI,
a framework for transforming big data into a knowledge graph. As traditional
frameworks for knowledge graph creation, MapSDI resorts to semantification
engines for creating RDF triples; however, to minimize the impact of big data
dimensions, MapSDI performs transformations in the input datasets to elimi-
nate irrelevant attributes and duplicates. MapSDI is able to exploit knowledge
encoded in the triple maps to determine which attributes and data are required.
It also falls back on well-known properties of the relational algebra operators,
e.g., pushing down of the projections and selections, in order to pre-process the
input datasets before the mappings are executed. First, by projecting out the
attributes that are mentioned in a mapping rule, duplicates are eliminated and
the size of the input data is reduced. Similarly, the projection of attributes posi-
tively impacts on the performance of joins between triple maps. We have empir-
ically studied the performance of MapSDI framework on a testbed of real-world
datasets. Observed results suggest that MapSDI framework is able to empower
the performance of the studied RDFizers, reducing the semantification time by
up to one order of magnitude (on average). While, we show theoretically that
mentioned pre-processing of input datasets does not lead to any data lossness in
the output i.e., generated knowledge graph remains the same.

Contributions: The main contribution of this work is MapSDI, a framework
able to pre-process big datasets with the aim of empowering scalability of exist-
ing RDFizers. Another important contribution represents both theoretical and
empirical evaluation of the effect of the MapSDI framework on the tasks of
1 https://www.w3.org/RDF/.

https://www.w3.org/RDF/
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knowledge graph creation; the testbeds are defined over real-world datasets of
genomic data and show the benefits of the pre-processing step in the MapSDI
framework.

This article is structured as follows: Sect. 2 motivates the problem of semantic
data integration over a set of biomedical datasets, Sect. 3 describes the MapSDI
framework, the main transformation rules and their correctness, and Sect. 4
reports on the results of the empirical study. Related work is presented in Sect. 5,
and finally, Sect. 6 concludes and give insights for future work.

Fig. 1. Motivating example. A traditional framework where datasets characterized
by big data dominant dimensions, i.e., volume, variety, and veracity, are semantically
enriched and integrated into a knowledge graph. A semantification engine performs the
schema-level integration by executing mapping rules, e.g., RML triple maps. Because
data can be duplicated across the input datasets, a large number of RDF triples can
be generated, e.g., 2,049,442,714 RDF triples. However, when duplicates are removed
and cleaning techniques are performed, only 102,549 RDF triples (duplicated-free) are
included in the knowledge graph.

2 Motivating Example

We motivate our work with a traditional pipeline for transforming three datasets
into instances of a knowledge graph. The datasets contain information about
mutations of genes, downstream genes, and drug resistances caused by muta-
tions. These files are composed of up to 39 attributes (the mutation dataset),
and their sizes are 186.4 MB, 71.9 GB, and 559 KB, respectively. The seman-
tification of these datasets just for the concept transcript is performed using
three RML triple maps. These triple maps consider only the attribute that rep-
resents transcript using a different name in each dataset (enst, downstream gene,



MapSDI 61

transcript id). This process ends up producing 2,049,442,714 RDF triples. How-
ever, because of overlaps across the three files, a large number of duplicates
are generated, being reduced the output to only 102,549 duplicate-free RDF
triples when cleaning and duplicate elimination are performed. Figure 1 illus-
trates this pipeline; it receives the three datasets and outputs the RDF triples
to be included in the knowledge graph. As observed, in this real-world example,
the pipeline for this semantic integration task is performed via two separated
steps including: (I) Schema-level integration: Ontology based data semantifi-
cation and mapping rule-based data transformations. (II) Data-level integra-
tion: Redundancy elimination and cleaning. To explain the situation reported
in this example, let us consider the meaning of these three datasets. A tran-
script refers to a ribonucleic acid via which a gene is expressed; it is used to
synthesize a protein [11]. As it can be seen in Fig. 1, transcript as a concept,
can be represented with different labels in various databases which means that
it cannot be distinguished and treated as the same concept unless being seman-
tified according to the unified schema. Therefore, the first step of integration in
the framework is to unify all the concept representations residing in different
datasets by defining RML triple maps while transforming the data into RDF.
The data semantification allows for also detecting duplicated data that were
not recognizable before. Consequently, in the second step, the redundant data
that are now represented as RDF triples are eliminated. It should be noted that
the overall number of generated triples from different sources are 16,445 times
the number of non-redundant triples which means that there is a considerable
amount of duplicated data that could not be detected in the raw files. Consid-
ering the fact that similarity-based comparisons between RDF triples are more
expensive than between the relational data model, specifically in case of having
huge amount of data, leaves room to think about providing a more efficient and
low-cost approach to create knowledge graphs. In this paper, we address the
problem of semantic data integration motivated in this example, and present
MapSDI, a framework able to pre-process input datasets and avoid the genera-
tion of duplicated RDF triples. MapSDI is able to extract from the RML triple
maps the knowledge required to pre-process the input datasets by means of the
execution of basis relational algebra operations like the projection of attributes.
Albeit simple, the transformations executed by MapSDI enable to project out
only attributes that are utilized in the three triple maps, allowing the RDFizer
to produce 102,549 duplicate-free RDF triples.

3 The MapSDI Framework

The MapSDI framework relies on a data integration system DISG which enables
the transformation and integration of heterogeneous data in a knowledge graph
G. The data integration system DISG = 〈O,S,M〉 is defined in terms of three
components i.e., O a unified schema or ontology, S a set of data sources, and M
a set of mapping rules [10].
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• The unified schema O is defined as a triple, O = (C,P,Axioms) where C and
P correspond to the signature of O and represent the classes and properties
of O. The set Axioms denotes a collection of axioms staying the main charac-
teristics of the properties of O; these asserted statements implicitly comprise
knowledge describing the modeled universe of discourse.

• The data sources of DISG are represented by means of the set of signatures
S = 〈SA1

1 , . . . , SAn
n 〉 where each symbol Sj stands for a data source, e.g., a

file or relational table, and Aj corresponds to the attributes of Sj :
• The transformation of the data collected from the sources in S into instances

of the knowledge graph G is expressed using the Global As View paradigm
(GAV), i.e., the classes and properties in O are described in terms of the
sources S. The set M comprises mapping rules ri where a class cj is described
as a conjunctive query on the sources and attributes in S.

ri : cj(X,X)
︸ ︷︷ ︸

Head of the Rule

: −S1(X1), S2(X2), . . . , Sm(Xm)
︸ ︷︷ ︸

Body of the Rule

• cj is a class in C, X is a variable, and X is a set of pairs (Pi,j ,Xi,j) where
Pi,j is a property of C, i.e., cj is the domain of Pi,j , and Xi,j is a variable.
The variables Xi,j and X appear all in the body of the rule, i.e., ri is a
safe conjunctive rule.

• The predicate Sz(Xz) represents a source Sz in S and Xz is a set of pairs
(ai,z,Xi,z) where Xi,z is a variable and atti,z is an attribute of Sz, i.e.,
SAz
z and atti,z belong to S and Az, respectively.

Given a data integration system DISG = 〈O,S,M〉, the evaluation of each
of the rules ri in M according to the data in the sources in S, generates the
RDF knowledge graph G. The evaluation of ri, eval(ri, µ), is defined over a map
µ of the variables in ri to values in the sources in the body of ri. A map µ
corresponds to a function from variables V in the rules in M to the set D which
denotes the union of all the data items in the data sources in S, i.e., µ : V → D.

Given a source predicate Sz(Xz) in the body of a rule ri, the evaluation of
Sz(Xz) on µ, eval(Sz(Xz), µ), corresponds to a set µSz

of pairs, such that, for
every pair (atti,z,Xi,z) in Xz, the following statements hold:

– The pair (Xi,z, µ(Xi,z)) belongs to µSz
and

– If 〈att1,z, . . . , attq,z〉 are the attributes of Sz in Xz, then the tuple

〈(att1,z, µ(X1,z)), . . . , (attq,z, µ(Xq,z))〉 belongs to the data extension of Sz

The evaluation of a rule ri on a map µ, eval(ri, µ), corresponds to a set of
RDF triples t = (s p o) defined as follows:

– If the rule ri is cj(X,X) : −S1(X1) and the pair (X,µ(X)) belongs to µS1 ,
then for each (Xi,1, µ(Xi,1)) in µS1 and (Pi,1,Xi,1) in X, the RDF triple
t = (µ(X) Pi,1 µ(Xi,1)) belongs to eval(ri, µ).
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– Suppose the rule ri is cj(X,X) : −Body, µ is defined over all the variables of
the sources SZ in Body, and the pair (X,µ(X)) belongs to at least one µSz

.
Then for each (Xi,z, µ(Xi,z)) in µSz

and (Pi,z,Xi,z) in X, the RDF triple
t = (µ(X) Pi,z µ(Xi,z)) belongs to eval(ri, µ).

Given a data integration system DISG = 〈O,S,M〉 the function RDFize(.)
maps DISG with a knowledge graph G resulting from the evaluation of all the
rules in M with the maps µ in the extensions of the sources in S. The result of the
function RDFize(.) only dependents on the mapping rules in M and the exten-
sions of the sources in S over which these rules are evaluated. Nevertheless, in
presence of data sources characterized with a large number of duplicates, the exe-
cution time of the function RDFize(.) can be negatively impacted. In this paper,
we tackle the problem of rewriting a data integration system DISG = 〈O,S,M〉
into another data integration system DIS′

G = 〈O,S′,M ′〉 whose evaluation pro-
duces the same results while the execution time is minimized.

Problem Statement: Given a data integration system DISG = 〈O,S,M〉, the
problem of knowledge graph creation is defined as the problem of identifying a
data integration system DIS′

G = 〈O,S′,M ′〉 such that:

– The results of evaluating the two data integration systems is the same, i.e.,
RDFize(DISG = 〈O,S,M〉) = RDFize(DIS′

G = 〈O,S′,M ′〉).
– The execution time of the evaluation of RDFize(DIS′

G = 〈O,S′,M ′〉) is min-
imal, i.e., there is no other DIS′′

G different from DIS′
G that generates the

same RDF knowledge graph G but in a lower execution time.

Proposed Solution: We propose MapSDI, an optimized alternative to tradi-
tional semantic data integration pipelines to create knowledge graphs. As it is
shown in Fig. 2, MapSDI receives a data integration system DISG = 〈O,S,M〉
as input and generates an RDF knowledge graph that corresponds to the result
of evaluating RDFize(DISG = 〈O,S,M〉). Without lost of generality, MapSDI
assumes that the mapping rules in M are represented in a mapping language,
e.g., the RDF mapping language RML.

Before evaluating the function RDFize(.), MapSDI applies transformations
to the sources in S and the mapping rules in M in order to generate a data inte-
gration system DIS′

G = 〈O,S′,M ′〉 that corresponds to a solution of the problem
of knowledge graph creation. MapSDI resorts to transformation rules applied to
mapping rules and source depending on the attributes, variables, and sources
that compose the mapping rules in M . That is, in a rule ri, the attributes from
the data sources in the Body of ri are detected, and the corresponding sources
in S are transformed in order to have in S′ only data sources associated with
the attributes utilized in the mapping rules. Accordingly, mapping rules are also
rewritten with the aim of reusing the attributes of the sources in S′. By project-
ing out only the attributes required in the mapping rules, duplicates from the
extensions of the sources are removed, avoiding thus, the generation of the same
RDF triple multiple times during the evaluation of the function RDFize(.). Since
only duplicates in the data sources are removed from the input, the resulting
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Fig. 2. The MapSDI framework. MapSDI receives as input a data integration sys-
tem and produces as output RDF triples to be included in a knowledge graph. MapSDI
extracts from the mapping rules information related to the attributes that are used
from each file. Then, different operations are executed to project out the required
attributes; projection eliminates duplicates inside each dataset. Next, datasets com-
prising equivalent attributes are merged and duplicates are eliminated. The mapping
rules are rewritten accordingly in order to access the transformed files, and finally, the
mapping rules are executed

knowledge graph remains being the same, while the time of producing duplicated
RDF triples is reduced.

3.1 Transformations Performed in the MapSDI Framework

We present the transformation rules applied by the MapSDI framework in order
to reduce duplicated data and speed up the execution time of the evaluation of
a data integration system. The transformation rules are based on the axioms
of the relational algebra [15] and in particular, the ones that stay when the
project operator can be pushed down into the relations in a relational algebra

Fig. 3. Example of Transformation Rule 1- Projection of Attributes. Only
four attributes of a data source are utilized in the RML rule; processing the values of
these four attributes conduce to many duplicated RDF triples.
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(a) Portion of a Source File about Genes

(b) Source File After the Transformation Rule 1

Fig. 4. Example of RML Triple Maps. Two RML Triple Maps connected by a join
condition on the attribute Genename. Due to the number of duplicated values of the
attribute Genename, the evaluation of the join condition generates a large number of
duplicates. The projection of the relevant attributes reduce the number of duplicated
values and RDF triples.

expression. Furthermore, MapSDI extracts information from the mapping rules
to decide when two or more datasets have equivalent attributes while represented
with different attribute labels and must be merged into one file; and in case the
merging is conducted, the corresponding rules are also merged.

Transformation Rule 1: Projection of Attributes: A triple map may only
use a subset of the attributes of a data source, generating thus high overhead
whenever the number of attributes used in the triple map and the number of
attributes in the data source differ considerably. To illustrate this situation con-
sider the RML triple map in Fig. 3 whose evaluation produces many duplicates.
Additionally, the data source in Fig. 5a comprises eight attributes but only four
attributes are used in the rules. The values of the attributes ENSG, SYMBOL,
SPECIES, and ACC are repeated, e.g., the rows 1, 2, and 3 have the same values
in these attributes, and similarly rows 4 and 5, and 6, 7, 8, and 9, respectively.
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Fig. 5. Example of Transformation Rule 1. Projection of Attributes: (a) RML
Triple Map; only four attributes of the file are utilized in the rule; processing the
values of these four attributes conduce to the generation of many duplicated RDF
triples. (b) A file with information about genes; several values are duplicates across the
file. (c) The file resulting of the projection of the attributes utilized in the triple map;
the file does not have repeated attributes and the execution of the triple map does not
produce duplicated RDF triples

Coincidentally, the evaluation of the triple map in Fig. 3 creates RDF triples
from these four attributes and because during the execution of this triple map
the data source is blindly traversed, several duplicated RDF triples are gener-
ated. Transformation rule 1 reduces the overhead caused whenever a triple map
utilizes only a subset of the attributes of a data source; it pushes down the
projection of the triple map object attributes before the triple map is executed.
Thus, during the execution of the triple map only three rows are processed and
no duplicated RDF triples are generated. In the case reported in Fig. 5, pro-
cessing the original file in Fig. 5a and the RML triple map (Fig. 3) generate five
duplicated RDF triples. Contrary, when file in Fig. 5b is utilized, no duplicates
are produced, thus the overhead during knowledge graph creation is considerably
reduced. The time savings are reported in Sect. 4.

Transformation Rule 2: Pushing Down Projection into Joins: This rule
is applied whenever a join exists between two triple maps r1 and r2 defined
over data sources with a large number of attributes that are not utilized in r1
and r2. To illustrate this case, consider Fig. 4; the triple maps TripleMap1 and
TripleMap2 are joined by the join condition highlighted in bold in TripleMap1.
When this join is executed on datasets in Figs. 6a and b, 22 duplicated RDF
triples are generated. Duplicate generation considerably impacts on the per-
formance of a knowledge graph creation, particularly, whenever duplicates are
blindly generated and then, eliminated. To reduce the effect of duplicates during
the evaluation of join conditions between two triple maps, MapSDI pushes the
projections of the relevant attributes down before the triple maps are executed.
As observed in Fig. 7, this transformation considerably reduces the number of
matches of the join condition and the resulting RDF triples.

Once the attributes mentioned in the triple maps in Fig. 4 are projected out
(files in Figs. 7a and b), the execution of these triples maps still produces RDF
triples that are duplicated. However, the number of duplicates is reduced from 22
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(a) Portion of a Source File about Genes (Outer Source File)

(b) Portion of the Source File about Chromosomes (Inner Source File)

Fig. 6. Example of Transformation Rule 2. Pushing down Projections into a
Join: (a) and (b) Files containing data to be considered as the outer and inner data
sources of TripleMap1 (Fig. 4), respectively. Duplicates in the join attribute conduce
the generation of 22 duplicated RDF triples
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(a) Projection on Genes (b) Projection on Chromosomes

(c) RDF triples with reduced duplicates

Fig. 7. Example of Transformation Rule 2. Pushing down Projections into a Join:
(a) and (b) Projecting out from files in Figs. 6a and 6b the attributes mentioned in
triple maps in Fig. 4. (c) RDF triples produced by the triple maps over the projected
attributes; duplicates are reduced from 22 to four

to four. Considerably reducing thus, the workload required to generate, check,
and eliminate duplicated RDF triples. Results of the experimental study will
show the improvements of the MapSDI framework.

Transformation Rule 3: Merging Data Sources with Equivalent
Attributes: This rule is applied whenever there exist two or more triple map-
ping rules that generate the same type of subjects associated with the same
predicates, but the data is collected from different data sources with attributes
that may have different names. This rule allows the MapSDI framework to first,
project the relevant attributes, and then merge the data sources; duplicates
are eliminated from the merged data source. Additionally, the triple maps are
merged in one triple map that will access the merged data source and duplicated
RDF triples are not generated (See Fig. 1).

MapSDI applies the transformation rules 1–3 over the input data integration
system DISG = 〈O,S,M〉 in order to generate DIS′

G = 〈O,S′,M ′〉; these rules
are applied until a fixed point over S′ and M ′ is reached.
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3.2 Correctness of the Transformation Rules

We demonstrate the correctness of the transformation rules 1–3 by proving that
the application of each of these rules preserves the set of RDF triples produced
during the evaluation of the original data integration system; these proofs are
grounded on the axiomatic system of the Relational Algebra [13].

Transformation Rule 1: Projection of Attributes. For each mapping rule
ri in M with sources Sz(Xz) in the body of ri, the transformation rule 1, adds
new sources S′

z to S′, in the way, that S′
z is equal to

∏

Att Sz and Att is the
set of attributes utilized in Xz. The rule ri is removed from M ′ and a new
mapping rule r′

i where all the sources Sz(Xz) are replaced by S′
z(Xz). Since

the attributes from the sources Sz used in Xz are maintained in the new data
sources S′

z and in the rule r′
i, the results of RDFize(DISG = 〈O,S,M〉) and

RDFize(DIS′
G = 〈O,S′,M ′〉) are the same.

Transformation Rule 2: Pushing Down Projection into Joins. Transfor-
mation rule 2 is applied over a mapping rule ri whenever there exist attributes
and variables in the sources of the body of ri that are not required to evaluate
ri, i.e., they are neither used to instantiate the head of ri nor to join two or more
data sources in the body of ri. If so, transformation rule 2 projects out from the
sources Sz(Xz) in the body of ri the attributes and variables that are required.
Formally, the rewriting of ri is defined as follows: Let Z be the set of variables
in the head of ri or in the join of at least two sources in the body. That is, Z is
the union of variables in X, X, and the variables that appear in more than one
Sp(Xp) and Sq(Xq) in the body of ri.

ri : cj(X,X) : −S1(X1), S2(X2) . . . Sm(Xm)

The application of the transformation rule 2, replaces ri by the rule r′
i:

r′
i : cj(X,X) : −S1(X ′

1), S2(X ′
2) . . . Sm(X ′

m)

where each X ′
j , 1 ≤ j ≤ m, is defined as follows:

X ′
j = Xj − {(atti,j ,Xi,j) | (atti,j ,Xi,j) ∈ Xj and Xi,j /∈ Z}

The transformation 2 is grounded on the axiomatic system of the Relational
Algebra, specifically, on the rule axiom that states the properties of distributing
the Project operator over a Join (rule number 8 in [13]). Thus, after applying this
transformation rule and replacing ri by r′

i in M ′, the results of RDFize(DISG =
〈O,S,M〉) and RDFize(DIS′

G = 〈O,S′,M ′〉) are the same.

Transformation Rule 3: Merging Data Sources with Equivalent
Attributes. This rule is applied over two mapping rules, ri and rj , when-
ever both rules share the same head but the bodies are composed of different
data sources, i.e., ri : cq(X,X) : −Si(Xi) and rj : cq(X,X) : −Sj(Xj). The
result of applying the transformation rule 3 is a new data source Si,j that is
populated with values of the attributes from Si and Sj that are required for
instantiating cq(X,X). Further, ri and rj are replaced by the rule ri,j in M ′,
ri,j : cq(X,X) : −Si,j(Xi,j)
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– Si,j is the union of
∏

Atti
Si and

∏

Attj
Sj such that Atti and Attj , respec-

tively, are the attributes in Xi and Xj related with variables in cq(X,X).
– The projected attributes in Si,j are renamed and these new attributes are

used in Xi,j associated with the corresponding variables in cq(X,X).

The transformation 3 is also supported on the axiomatic system of the Rela-
tional Algebra, specifically, on the rule axiom that states the properties of dis-
tributing the Project operator over a Union (rule number 12 in [13]). Thus, after
applying this transformation rule and replacing ri and rj by ri,j in M ′, and
adding the data source Si,j to S′, the results of RDFize(DISG = 〈O,S,M〉) and
RDFize(DIS′

G = 〈O,S′,M ′〉) are the same.

4 Experimental Study

We compare the performance of MapSDI to the traditional framework for knowl-
edge graph creation which we refer to as “T-framework” from now on in this
paper. We aim to answer the following questions: (Q1) Does applying MapSDI
lead to creation of the same knowledge graph? (Q2) Does MapSDI reduce the
required time for knowledge graph creation compared to T-framework? (Q3)
How influential is the performance of MapSDI framework, when data volume
increases or data quality decreases? (Q4) Does MapSDI perform efficiently in
case of having more complication in mapping rules e.g., join condition?

We set up the following testbeds:

Datasets. To prevent any bias that may arise due to using a specific database
or data generated by a particular lab, several datasets have been combined. For
the first experimental scenario, a dataset with an overall size of 312,1 MB and
19,503,200 records is created from the combination of three different datasets
including mutations, drug-resistant mutations, and protein-RNA interaction pre-
dictions; they are collected from different data providers: (i) The datasets related
to mutations and drug-resistant mutations are collected from COSMIC2, an open
source database of somatic mutations in human cancer diseases. (ii) A dataset
defined by Lang et al. [9] at CRG3, this dataset includes protein-RNA interac-
tion predictions. The second studied dataset is generated by collecting different
attributes from various publicly available datasets including the GENCODE ref-
erence annotation for the human and mouse genomes [6]. In this dataset, a large
amount of selected data relates to exon, the sequence represented in the mature
RNA whose mutations can directly affect the sequence of a protein [11]. Since
there are overlaps between the data in these datasets, as we will explain later,
there exist a large number of duplicates.

2 https://cancer.sanger.ac.uk/cosmic.
3 https://www.crg.eu/.

https://cancer.sanger.ac.uk/cosmic
https://www.crg.eu/
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(a) rmlmapper - 75% veracity (b) SDM-RDFizer - 75% veracity

(c) rmlmapper - 50% veracity (d) SDM-RDFizer - 50% veracity

(e) rmlmapper - 25% veracity (f) SDM-RDFizer - 25% veracity

Fig. 8. Results of experiment group A with different percentage of veracity.
The performance of MapSDI and T-framework on four different sized datasets with
75% redundancy: (a) applying rmlmapper (b) using SDM-RDFizer. MapSDI is able to
reduce duplicated and exhibits better performance independently of the data volume
and RDFizer. But, the difference between the execution time of two frameworks is
much higher when rmlmapper is evaluated
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Metrics. Performance is measured in terms of execution time; it is computed
as the elapsed time in seconds between the submission of an execution of the
framework and the generation of all the RDF triples. The time command of the
Linux operating system is utilized to measure time. The timeout is set to 500 s;
the results are visualized based on milliseconds.

Table 1. Four instance datasets size. The size of four datasets applied in experi-
ments group A with the results being shown in Fig. 8. The values show how the size of
datasets are reduced after the two steps of attribute projection and duplicate removal
have been applied on, as part of MapSDI framework.

Data volume Original size (KB) Pre-processed size (KB)

25% 59,200 895

50% 117,900 955

75% 176,400 982

100% 235,000 997

Implementations. MapSDI and T-framework are compared on SDM-RDFizer4

and the rmlmapper-java5. The MapSDI framework is implemented in Python
3.6.3 and GNU bash 4.4.12(1) jointly. The experiments are executed on an
Ubuntu 17.10 (64 bits) machine with Intel Xeon W-2133, CPU 3.6 GHz, 1 phys-
ical processor; 6 cores, 12 threads and 64 GB RAM.

Experimental Scenarios. We perform in overall 51 experiments; divided into
two groups of studies. (Group A) The first group of experiments are designed
to study the impact of the size of input datasets and their quality in terms
of redundancy, on required time for semantic enrichment and integration. In
order to avoid the experiments being influenced by other variables such as the
number of included attributes and mapping rules, in all experiments of this
group, the same one concept is utilized; this concept is represented as a different
attribute in each dataset. Additionally, to highlight the difference between the
performance of two frameworks, a minimal setup consisting of one attribute
in each dataset and consequently one RML triple map, are evaluated. Each
12 experiments that are performed based on a separated framework using a
different RDFizer, can be divided into four categories based on the data volume:
the 25%, 50%, 75%, and 100% volume; they are produced by randomly
selecting 25%, 50%, 75% and 100% of the records in created dataset, respectively.
Subsequently, each mentioned category is divided into three subcategories based
on data redundancy; from each generated dataset in the volume category, three
datasets are produced by cleaning 25%, 50% and 75% of the data from duplicates.
It should be noted that all selections of data have been performed randomly to
avoid any sampling bias. (Group B) The second experiment setup is conducted
to study the impact of data redundancy on performance of each framework in

4 https://github.com/SDM-TIB/TIB-RDFizer.
5 https://github.com/RMLio/rmlmapper-java.

https://github.com/SDM-TIB/TIB-RDFizer
https://github.com/RMLio/rmlmapper-java
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case of join condition rules inclusion. Following the same objective, the minimum
amount of required attributes are considered. Accordingly, three experiments are
performed on joining two datasets: (a) No dataset with duplicates removal; (b)
One dataset being duplicates-free; and (c) Both datasets being duplicates-free.

Fig. 9. Results of Experiment Group B. MapSDI and T-framework on two
datasets joined by two triple maps. MapSDI performs Transformation Rule 2 and
Rule 3 and it is able to push down projection into the join. With the transformations
conducted by MapSDI, the rmlmapper timed out at 500 s

4.1 Experimental Results

Experimental Results Group A: The results of the experiment group A are
shown in Figs. 8. As it can be observed, MapSDI outperforms T-framework in
terms of execution time in all the experiments independently of the RDFizers
and percentage of duplicates. This instance of the MapSDI framework performs
the Transformation Rule 3, i.e., the datasets are merged; while the Transfor-
mation Rule 1 is performed in the two frameworks during the creation of the
datasets. According to the results depicted in Figs. 8, regardless of the RDFizer,
the more duplicated data in the datasets, the higher the execution time of the
T-framework. It is also important to highlight, the diverse performance ratios of
MapSDI and T-framework in terms of the growth of dataset size and data dupli-
cates. MapSDI performs more stable than T-framework. These observations can
be explained according to the two steps of pre-processing including attributes
projection and duplicates removal that are executed former to the transforma-
tion step in the MapSDI framework. The mentioned steps decrease the size of the
original datasets considerably. Table 1 reports on the reduced size of the input
datasets after the pre-processing steps in the experiments conducted over the
dataset with 25% data duplicates (Fig. 8).

Experimental Results Group B: Figure 9 illustrates the results of experi-
ments in group B. The rmlmapper timed out in all experiments of group B,
the results only refer to the performance of MapSDI and T-framework applying
SDB-RDFizer. As it can be observed, the execution time of MapSDI is con-
siderably lower than T-framework in case of having join condition in mapping
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rules independent of having data duplicates. This instance of MapSDI frame-
work performs the Transformation Rule 3 as well as Transformation Rule 2.
The application of these two transformations considerably reduces the number
of duplicates and enhances the performance of the SDM-RDFizer during the
execution of the join condition between two triple maps.

5 Related Work

The problem of knowledge graph creation is one of the trending topics which
also involves different problems such as data integration. Lenzerini et al. [10]
provides an overview on the components required to define a data integration
system. Gawriljuk et al. [7] suggest a scalable framework for building knowl-
edge graphs. Szekely et al. [14] propose an approach for building knowledge
graphs and devise the DIG system which resorts to KARMA [8], a semantic
data integration system proposed by Knoblock et al., for integration at the level
of schema. Collarana et al. introduce MINTE [4], a semantic integration tech-
nique for RDF graphs. In Benbernou et al. [2] presents an approach to integrate
big RDF data. Although the mentioned approaches are effective, they either
differentiate between the integration at the level of schema and the data-level
integration or only focus on one of the two tasks. This distinction leads to a
dramatic increase in the cost of semantic data integration in case of consuming
big data. In contrast, in MapSDI both integration tasks are conducted simul-
taneously. Moreover, the semantics encoded in the schema and mapping rules
is utilized in order to first, remove the data redundancy and then, transform
the input data into RDF triples. Diverse mapping languages for transforming
relational data into RDF have been introduced, reported in 2009 for the first
time as a survey by W3C incubator group. Sequeda et al. explain the limitations
of semantic technologies in relational databases integration in [12]. During the
recent years several extension to R2RML have been proposed in order to repre-
sent mapping rules such as RML [5] by Dimou et al. or D2RML [3] by Chortaras
et al. The same applies for the implementation of tools to execute mapping rules
in different languages. In this work, we present MapSDI, a framework that is
able to speed up the execution time of the task of knowledge graph creation
independently of the mapping language or tools for knowledge graph creation.
Experimentally, we have observed that MapSDI empowers the performance of
the RDFizers regardless of the number of duplicates and size of the input data.

6 Conclusions and Future Work

We tackled the problem of optimizing semantically integrating data into a knowl-
edge graph and presented MapSDI; it is devised for enabling the semantic enrich-
ment of data characterized by the dominant dimensions of big data, i.e., volume,
variety, and veracity. MapSDI resorts to the properties of the relational algebra
operators and to the knowledge encoded in the mapping rules to identify the
transformations that need to be performed to the input data to empower the per-
formance of existing knowledge graph creation tools. Thus, our resource broadens
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the repertoire of techniques available to integrate heterogeneous datasets into a
knowledge graph, and we hope that these techniques will help the community
in the development of more scalable knowledge graph based applications. In the
future, we will extend the MapSDI framework to include other transformations
and mapping languages. Furthermore, the development of applications on top of
the MapSDI framework is part of our future plans.
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