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Preface

Multimodal Brain Image Analysis (MBIA)

The 4th International Workshop on Multimodal Brain Image Analysis (MBIA 2019)
was held on October 17, 2019, in conjunction with the 22nd International Conference
on Medical Image Computing and Computer Assisted Intervention (MICCAI 2019) in
Shenzhen, China. This workshop, which focuses on brain image analysis employing
information from multiple modalities, has been well received when previously held in
2011 (Toronto), 2012 (Nice), and 2013 (Nagoya).

Multimodal brain imaging technologies, including structural MRI, perfusion MRI,
diffusion MRI, functional MRI, PET, SPECT, CT, EEG, and MEG can provide
distinctive yet complementary knowledge that is critical to the understanding of brain
structure, function, and their relationship. The objective of MBIA is to exchange the
ideas, methodologies, algorithms, software systems, validation approaches, benchmark
datasets, and neuroscience/clinical applications in multimodal brain image analysis
among researchers worldwide.

The MBIA 2019 proceedings contain 16 high-quality papers of 8 to 10 pages, and
all papers underwent a rigorous double-blind peer-review process. Each submission
was reviewed by at least 2 members of the Program Committee, comprising 15 experts
in the brain imaging field. Among these 16 accepted papers, 5 of them were selected for
oral presentations and the others were selected for poster presentations.

We are grateful to all the MBIA 2019 authors for their participation, the members
of the Program Committee for evaluating the papers, the presenters for their inspiring
presentations, and all who supported MBIA 2019 by attending the workshop.

August 2019 Dajiang Zhu
Jingwen Yan
Heng Huang

Li Shen
Paul M. Thompson
Carl-Fredrik Westin
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Preface

Mathematical Foundations of Computational Anatomy (MFCA)

This volume contains the proceedings of the 7th International Workshop on
Mathematical Foundations of Computational Anatomy (MFCA 2019), which was
held on October 17, 2019, in conjunction with the 22nd International Conference on
Medical Image Computing and Computer Assisted Intervention (MICCAI 2019) in
Shenzhen, China. The first workshop in the MFCA series was held in 2006 in
Copenhagen, Denmark. This was followed by workshops in New York, USA, in 2008;
Toronto, Canada, in 2011; Nagoya, Japan, in 2013; Munich, Germany, in 2015; and
Quebec City, Canada, in 2017.

The goal of computational anatomy is to analyze and to statistically model the
anatomy of organs in different subjects. Computational anatomic methods are generally
based on the extraction of anatomical features or manifolds which are then statistically
analyzed, often through a non-linear registration. There are nowadays a growing
number of methods that can faithfully deal with the underlying biomechanical behavior
of intra-subject deformations. However, it is more difficult to relate the anatomies of
different subjects. In the absence of any justified physical model, diffeomorphisms
provide the most general mathematical framework for enforcing topological
consistency. However, working with this infinite dimensional space raises some deep
computational and mathematical problems, in particular, for doing statistics. Likewise,
modeling the variability of surfaces leads to relying on shape spaces that are much
more complex than for curves. To cope with these, different methodological and
computational frameworks have been proposed (e.g., using smooth left-invariant
metrics, focusing on well-behaved subspaces of diffeomorphisms, or modeling surfaces
using currents, etc.). The goal of the MFCA workshop is to foster interaction between
researchers investigating the combination of geometry and statistics in non-linear
image and surface registration in the context of computational anatomy from different
points of view. A special emphasis is put on theoretical developments, with
applications and results being welcomed as illustrations.

The seven papers presented in this volume were carefully selected from a number of
very high-quality submissions following a thorough peer-review process. All of the
papers were presented as oral presentations, with ample time for in-depth discussions.
We would like to thank the authors of the papers and the members of the Program
Committee for their efforts in making a strong program for MFCA 2019.

October 2019 Xavier Pennec
Sarang Joshi
Mads Nielsen
Tom Fletcher

Stanley Durrleman
Stefan Sommer
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Non-rigid Registration of White Matter
Tractography Using Coherent Point Drift

Algorithm

Wenjuan Wang1,2, Jin Liu1,3, Tengfei Wang3,4, Zongtao Hu3,4,
Li Xia3,4, Hongzhi Wang3,4, Lizhuang Yang3,4(&),

Stephen T.C. Wong5, Xiaochu Zhang1, and Hai Li3,4(&)

1 University of Science and Technology of China, Hefei 230027, China
2 School of Science, Anhui Agricultural University, Hefei 230036, China

3 Anhui Province Key Laboratory of Medical Physics and Technology, Center
of Medical Physics and Technology, Hefei Institutes of Physical Science,

Chinese Academy of Sciences, Hefei 230031, China
lzyang@ustc.edu.cn, hli@cmpt.ac.cn

4 Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
5 Department of Systems Medicine and Bioengineering, Houston Methodist

Cancer Center, Weill Cornell Medicine, Houston, TX 77030, USA

Abstract. Axonal fibers in the white matter are in charge of bio-signal delivery
and relate information between neurons within the nervous system and between
neurons and peripheral target tissues. Tract-based analysis (TBA) can directly
bridge white matter and its connected cerebral cortex to achieve a joint analysis
of the brain’s structure and function. However, the accuracy of TBA is highly
dependent on the quality of spatial registration of fiber bundles of different
individuals to the standard space. In this paper, a non-rigid point registration,
Coherent Point Drift (CPD), is applied for registration of fiber bundles. Both the
fiber features and the registration accuracy are evaluated to determine the cor-
respondence among fiber bundles. Experiment results on twelve real data
showed higher registration accuracy of the proposed method on mean nearest
neighbor distance and fractional anisotropy (FA) profiles than traditional reg-
istration methods, such as affine, elastic and Iterative Closest Point (ICP).

Keywords: DTI � Tract-based analysis � Registration � CPD

1 Introduction

There are three approaches to analyze the fiber bundles, namely, ROI-based analysis
(RBA) [1], voxel-based morphometry (VBM) [2, 3], and tract-based analysis
(TBA) [4–6]. The ROI-based analysis identifies the differences about the region of
interest based on the brain map. Voxel-based morphometry searches local changes in
the grey matter density according to the T1-weighted structural MRI brain images.

Wenjuan Wang and Jin Liu contributed equally to this work.
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Although the two aforementioned approaches have been widely used, there is insuf-
ficient information about fiber bundles contained, thus making it difficult to correlate
fibers directly with the specific brain function [7]. To detect more fiber features,
quantitative analysis of DTI data along the white matter tracts is presented and is
known as tract-based analysis. Furthermore, tract-based spatial statistics (TBSS) [8] is
created combining VBM and TBA for estimating a group mean FA skeleton which
represents the centers of all fiber bundles. It is more sensitive to the FA value than
VBM, but the FA skeleton is easily break off at the crossing fiber bundles which
generates an inexact result. Spatial registration and analysis at the fiber level is a
promising research diretion to overcome the disadvantage of TBSS.

Registration on fiber bundles is essential to compare and analyze fibers from dif-
ferent subjects directly. The reliability of the quantitative analysis relies on the accuracy
of registration. During the past three decades, a large amount of studies have been
conducted on the registration of fibers. Consequently, three registration methods are
evolved, namely, scalar registration, tensor-based registration, and fiber-based regis-
tration. Based on the previous studies [9], the transformation matrix of registration is
calculated based on one or more channels of the scalar DTI images, such as FA and B0.
There are certain limitations of the scalar or vector registration for lacking the infor-
mation of orientation, only based on the intensity message. Tensor-based registration
methods take the directional signal into account in contrast to the scalar registration as
mentioned [10–12]. However, tensor reorientation may introduce extra errors for trac-
tography, thus restricting the application of tensor-based methods. Direct fiber regis-
tration is also proposed in [13, 14], where each fiber is projected into a high dimensional
feature space leading to model and target feature points sets. The paper utilized the
Coherent point drift (CPD) [15] algorithm to perform a non-rigid registration in order to
make a point-to-point correspondence along the fiber tract. According to the CPD
algorithm, every point on the fiber bundles is treated as a normal distribution while the
optimal matching is completed by the optimization procedure [16].

2 Methods

2.1 Overview and Preprocessing

The main steps of the proposed method for registration of fibers are presented in Fig. 1.
Preprocessing includes eddy current correction, tensor calculation, channel image
generation and tractography by Diffusion toolkit (DTK) [17]. In tractography, the FA
threshold is set as 0.15, and the turn angle threshold is set as 35°. After preprocessing,
automated fiber tract clustering is applied to obtain a set of reliable and compact fiber
tracts. Meanwhile, the central fiber for each fiber tract is extracted to represent the
whole bundle. Then, the center fibers are registered to establish the correspondence
among bundles for tract-based analysis. Each step is described in detail in the following
subsections.

4 W. Wang et al.



2.2 Clustering and Central Fiber Extracting

Here, using the white matter query language method described in [18], we extract the
corpus callosum (CC) connecting left/right frontal lobe, the uncinate fasciculus (UNC),
and the superior longitudinal fasciculus (SLF) for analysis. The model fibers and
reference fibers are described as point sets in 3D coordinates.

After clustering, the center fiber for each fiber bundle is extracted. The center fiber
fc of the fiber bundle F is defined as the fiber with the smallest average distance from all
other fibers in F, where the distance is measured by Hausdorff distance. The Hausdorff
distance refers to the maximum distance between one point set and the nearest point set
of another. dm,n is the Hausdorff distance of fiber m and fiber n.

dm;n ¼ maxpk�Fmminpl�Fn pk � plk k ð1Þ

where pk and pl are two point sets belong to fiber m and fiber n, respectively.

fc ¼ Argmin d fð Þ ð2Þ

Figure 2 shows the fiber tract clustering and central fiber extracting results for the
SLF, UNC, and CC connecting left/right frontal lobe are showed, and the red line
represents the central fiber for each bundle.

2.3 Non-rigid Registration

CPD is a non-rigid matching algorithm based on a uniform velocity field, which uses
the calculus of variations to register the maximum likelihood estimation after nor-
malization [15]. The basic idea of the proposed registration method is to measure the
correlation between two fiber sets by considering their continuous approximations.

Fig. 1. Main steps of the proposed method.

Non-rigid Registration of White Matter Tractography 5



To solve the flexible deformation and relative relation of the fiber point set data, we use
Gaussian mixture model (GMM) to fit the fiber point sets to get a probability distri-
bution. Then the EM (Expectation Maximization) algorithm is used to optimize the
parameters with the theory of the maximum likelihood estimation. The transformation
is derived after several terms of optimal iteration. Specifically, CPD not only can
achieve the registration of non-linear and non-rigid point sets, but also has an accurate
result in case of large noise and frequent changes.

We assume the point set of the model central fiber Mn*i = (M1, …, Mi)
T as the

kernel of GMM and the point set of the target central fiber data Tn*j = (T1, …, Tj)
T as

the data set of GMM. The starting point of the model fiber is Y = v(M0) + M0.

p tð Þ ¼ x
1
j
þ 1� xð Þ

Xi

x¼1

1
i
p tjxð Þ ð3Þ

p tjxð Þ ¼ 1

2pr2ð Þn2
exp � t �Mik k2

2r2

 !
ð4Þ

The formula above is the probability density of GMM. x 2 0; 1ð Þ is a weighting
parameter of spill points, redundant points and noise points. n represents the dimension
of the point set, which in this article is 1. The p(t) expresses the probability that t, the
data point, is generated by M GMM centers (including the influence of noise). After
setting the parameters of the model, EM algorithm is used to optimize the calculation to
get the transforming relationship between two point sets.

The centroid position of the point set Tj is adjusted by a series of transformation
parameters that can be estimated by minimizing the following negative log likelihood
function below.

Eðh;r2Þ ¼ �
XN

n¼1
log
XM

m¼1
p xð Þp tjxð Þ ð5Þ

EM Algorithm is used to calculate h and r2. E step establishes the target function
Q which represents the upper bound of the negative log-likelihood function (5). Based
on the Gaussian mixture model clustering and EM algorithm, E-step can be derived as
foll-ows:

Fig. 2. Results of the central fiber extracting, red lines represent the central fibers. (Color figure
online)
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Q Wð Þ ¼
XM

m¼1

XN

n¼1
p mjxnð Þ � xn � ym � G m;Rð ÞW

r

����
����
2

=2r
2 þD ð6Þ

Pmn ¼ exp � 1
2

ym � xn
r

��� ���2
� �

=
XM

m¼1
exp � 1

2
ym � xn

r

��� ���2
� �

ð7Þ

The posterior probability P can be obtained by calculating the parameter values,
where G is the matrix, m and R are the rows and columns of the matrix. By calculating
the partial derivative of W for the above equation, we can obtain Eq. (7) above.

3 Experiment and Results

3.1 Registration Based on CPD

All studies were obtained on 1.5T MR units (Siemens, Sonata, VA25 operating sys-
tem). Twelve DT imaging data were acquired by using a single-shot, echo-planar
imaging sequence with sensitivity encoding and a parallel imaging factor of 2.0. The
imaging matrix was 96 � 96 with a field of view of 240 � 240 mm. Diffusion
weighting was encoded along 30 independent orientations and the b-value was
700 s/mm2 [19]. Three kinds of fiber bundles are selected to make the registration
based on CPD, namely, CC, UNC and SLF. The registration results are showed in
Fig. 3. The blue line presents the model set while the red line shows the target. In order
to verify the reliability and superiority of the proposed tract-based registration method,
we chose three other classical registration methods for comparison, namely Affine [20],
Rigid [21], and ICP [22].

3.2 Evaluation Based on Distance Between Fiber Tracts

We choose to implement the mean of the closest distances since it provides an estimate
that uses all the available data. It is more discriminative than the minimum of the
closest distances. We use K-means algorithm to find the nearest point of the target fiber

Fig. 3. Results of fiber registration based on CPD

Non-rigid Registration of White Matter Tractography 7



set to the model set which is defined to be the mean nearest distance as the evaluation
based on the distance between fiber tracts. Here, Mean Nearest Neighbor Distance
(MND) is defined to be the index. The Euclidean distance is used to measure the
distance of two samples where Ni represent the nearest point of the registered fibers
from the model fiber point set Mi as Eq. (8) shows.

MND ¼ 1
n

Xn
i¼1

Ni �Mik k ð8Þ

Figure 4 shows the Mean Nearest Neighbor Distance between model fibers and the
reference fibers of twelve subjects. Smaller values of MND show a better registration
because it indicates the difference levels after registration between each subject and the
model. As we can see, CPD shows the lowest value while the other three methods
exhibits a higher result, indicating the CPD registration algorithm stands out among the
registration methods evaluated.

3.3 Evaluation Based on FA Profile Along the Fiber Tracts

A key function of registration is for comparison among individual images. So the
registration assessment performance also should be the measurement of anatomical
structures. A profile metric based on the normative correlation is calculated along each
fiber. The FA value is obtained on the corresponding points captured from template for
each registered subject. Figure 5 show the FA profile of three selected fibers from 12
subjects using different tract-based registration methods. In these figures, the
x-coordinate represents the arc length of the fiber bundles, and the y-coordinate is the
value of FA. According to the FA distribution, the mean FA distribution of CPD
algorithm has the highest degree of template fitting and almost coincides. However, the

Fig. 4. The Mean Nearest Neighbor Distance of CC (a), SLF (b), UNC (c), and the mean of
twelve subjects with the Standard deviation (d) on four registration methods

8 W. Wang et al.



distribution of other algorithms is not as high as the FA distribution of template fiber
bundles, which indicates that CPD algorithm guarantees the distribution of fiber bun-
dles’ characteristic parameters to the greatest extent while ensuring the registration
accuracy. Therefore, the application of CPD algorithm in fiber bundle registration
enables more accurate results to be obtained in subsequent analysis.

On the basis of the automatic clustering and marking offiber bundles, it is possible to
find the landmarks whose shape features are stable according to the shape information of
the fiber bundles. The feature points are described by maximum curvature along the fiber
bundles and the landmark is also defined to be the origin of the FA profile. pl is the
landmark point where the cosine value is the maximum. Figure 6 is the schematic
diagram of fiber landmark where the deeper the red is, the greater curvature it shows.

pl ¼ Argmax cos pi; pj
� � ð9Þ

Fig. 5. FA profiles of the CC (a), SLF (b), UNC (c) for the four registration methods.

Fig. 6. The schematic diagram of fiber landmark.
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4 Conclusion

In this paper, we proposed a novel tract-based analysis method based on the CPD non-
linear registration algorithm. CPD algorithm is applicable to multi-dimensional point
set registration under rigid and non-rigid transformation, it has strong robustness to the
influence of noise, out of line point and missing point. To evaluate the performance of
the proposed method, the mean nearest neighbor distance and the FA profile were
calculated and the comparison with three traditional registration methods was con-
ducted. The results support the superiority of CPD over the existing methods. Thus, the
tract-based analysis based on the new CPD non-linear registration poses an exciting
research direction for brain mapping.
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Abstract. The low resolution MRI in slice-select direction will lead to infor-
mation loss and artifacts in 2D multi-slices MRI, which is not conducive to the
diagnosis and treatment of diseases. Therefore, we proposed an edge enhanced
super-resolution generative adversarial networks (EE-SRGAN) for MRI super
resolution in slice-select direction. Firstly, a two-stage super-resolution gener-
ator network (TSSR) for solving the problem that the down-sampling ratio of
MRI resolution in single direction reached 12 times. In addition, in order to
overcome the problem of image smoothness caused by high peak signal-to-noise
ratio (PSNR) and improve the visual reality of reconstruction image, we con-
struct a generative adversarial networks based on TSSR. Finally, in order to
achieve more texture details, we proposed an edge enhanced loss function to
optimize the generator network. From the experimental results, we find that our
TSSR is better (increased 1.78 dB PSNR), EE-SRGAN provides more satis-
factory visual effect and beneficial to segmentation task (increased 2.14% Dice
index) than state-of-art super-resolution network.

Keywords: MRI Slice-Selection � Two-Stage Super-Resolution � Edge
enhanced

1 Introduction

Magnetic resonance imaging (MRI) is a medical imaging technique for producing
images of parts of the human widely used in hospitals and clinics for medical diagnosis.
Considering that conventional 3D imaging usually leads to infeasible scan times, 2D
multi-slice imaging is used instead for clinical diagnosis in most hospitals. Due to
hardware induced limitations on gradient strength, requirements on signal-to-noise
ratio (SNR), and other factors, the 2D multi-slices are usually relatively thick and
resolution that is high in-plane and is low in the slice-select direction, especially some
undesirable artifacts are observed due to the resolution reduction in the slice-select
direction. Such anisotropy negatively affects tissue segmentation, visualization and
disease diagnosis.

The isotropy and resolution of 2D multi-slice images can be improved by super-
resolution reconstruction (SRR) methods [1]. Super-resolution reconstruction algorithm
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can effectively balance the resolution, signal-to-noise ratio and scanning time of MR
images, which has important practical value and significance. Many studies and sub-
stantial advances have been studied in SRR methods. Early methods mainly focus on
interpolation technology such as bicubic interpolation and Lanczos resampling [2].
Interpolation method is very fast, but usually fails to recover the high-frequency image
information on an overly smooth solution. Sparse coding [3] methods use a learned
compact dictionary based on sparse signal representation to address the task of SISR.

In recent years, with the development of deep learning (DL), especially convolu-
tional neural network (CNN). Various network structure design and training strategies
have continuously improved SR performance for natural images field, especially peak
signal-to-noise ratio (PSNR) [4]. However, these PSNR-oriented methods tend to
output too smooth results without enough high-frequency details, because the PSNR
measurement is basically inconsistent with the subjective evaluation of human obser-
vers. Furthermore, the research on super-resolution reconstruction of medical images is
relatively few, while SRR processing of natural images does not take into account the
special characteristics of 2D Multi-Slice MR images, that is, the direction of low
resolution is only one-dimensional and the difference of resolution is greater than that
of natural images. Therefore, there are still many shortcomings and difficulties in the
research of super-resolution reconstruction algorithm in 2D Multi-Slice MR images.

In this study, we proposed an edge enhanced super-resolution generative adver-
sarial networks (EE-SRGAN) for MRI super resolution reconstruction in slice-selection
direction. Our contributions are as follow: Firstly, a two-stage super-resolution gen-
eration network (TSSR) for the phenomenon that single direction resolution of MRI
down-sampling ratio reached 12 times. In addition, in order to overcome the problem
of image smoothness caused by high PSNR and improve the visual reality of recon-
structed image, we construct a generative adversarial networks based on TSSR, and the
Wasserstein distance is used as the loss function of discriminator to ensure the stability
of network training. Finally, in order to make the reconstruction MRI with more texture
details, we proposed an edge enhanced loss function to optimize the generator network.
From the experimental results, we find that our TSSR is better in state-of-art super-
resolution network, the edge enhanced loss function provides a sharper edge and a
more satisfactory visual effect.

2 Method

Our super resolution reconstruction goal is to train a generator G, which estimates the
corresponding SR images for the given LR input image. To achieve this, we train a
generator network, which is a feed-forward CNN GhG with parameter hG. Here, hG ¼
W1:L; b1:Lf g represents the weights and deviations of L layer networks and can be

obtained by optimizing specific loss function LSR. Given training image IHRn , n ¼
1; � � � ;N and corresponding ILRn , the parameter hG is solved by minimizing the loss
function as follows:
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bhG ¼ argmin
1
NhG

XN

n¼1
LSR GhG ILRn

� �
; IHRn

� � ð1Þ

In this work, we have design a hybrid loss function LSR for edge enhancement,
which will be described in detail in Sect. 2.3. Our Edge Enhanced Super-Resolution
Generative Adversarial Networks consists of three parts (see Fig. 1), including gen-
erator network, discriminator network and edge enhancement hybrid loss function,
which will be described in detail below.

2.1 Two-Stage Super-Resolution Generator Network

Considering that the difference between low-resolution and high-resolution images of
medical images is only in one direction, and the difference is greater than that of natural
images, we designed a two-stage super-resolution generator network. Since VDSR
network has achieved good results in the field of super-resolution reconstruction, we
used VDSR network as the basic module to obtain the details of high-resolution
images. Most super-resolution reconstruction networks added the input (low-resolution
image) to the last layer of the reconstruction network to supplement the basic texture
information of the reconstruction image. However, information loss problem of the
slice-select direction low-resolution image of medical image is more serious than
natural images. The network with the input addition will introduce a lot of artifact
information. Therefore, we designed the two-stage module to further supplement the
high-frequency detail information of the reconstruction image, and to reduce volume
artifact brought by the basic reconstruction network importantly. The network structure
of two-stage SR Generator is shown in Fig. 2.

(1) Basic Reconstruction Network. Using the idea of VDSR in reference [5], we built
an initial reconstruction network to learn the difference between high-resolution
and low-resolution images. We used stack small filters to obtain a large receptive, it
can effectively help us to reconstruct super-resolution images. A global residual

Fig. 1. The network structure diagram of super-resolution reconstruction generator network. It
consists of two stages, the first stage is basic reconstruction network, and the second stage is
denoising and refinement network.
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connection is used to solve the gradient problem caused by deepening the network
and make network converge faster. The configuration is outlined in Fig. 2. The
number of convolution layers used is 20, except the first and last layers. These
convolution layers have same type: 64 convolution filters with kernel size of
3 � 3, and each convolution layer uses ReLU activation function. The first layer is
the input image. The last layer is used for image reconstruction, and consists of a
convolution filter with a kernel size of 3 � 3. Then, an addition operation is
performed with the input low-resolution image to obtain the reconstruction high-
resolution image.

(2) Denoising and Refinement Network. Although the basic reconstruction network
can learn a lot of image details, but most of the supplemented information is low-
level feature information, the fine structure of the image is less, and the recon-
struction image is still blur. Therefore, inspired by two information flows in FRRN
[6], we design a new residual unit, two information residual unit (TIRU). We use
five TIRUs to construct our denoising and refinement network. The network
consists of two information streams. This network combines high-low level fea-
tures: one steam is residual information, which is calculated by adding continuous
residual, which is low-level features, while the other information steam is pooling
information, which is the result of a series of convolution and pooling operations
applied to input, which is high-level features. Therefore, we use this structure after
the initial reconstruction network to supplement more high-low level features of the
image (shown in Fig. 2).

TIRU is the modification of residual element (shown in Fig. 3(a)). Each TIRU has
two inputs (Rn�1 and Pn�1) and two outputs (Rn and Pn), running simultaneously. Let
Rn�1 be the residual input of the n-th TIRU and Pn�1 be the concatenation input, then
the output is calculated as follows:

Rn ¼ Rn�1 þHPn�1;Rn�1;Wn ð2Þ

Pn ¼ G Pn�1;Rn�1;Wnð Þ ð3Þ

Fig. 2. The network structure diagram of super-resolution generator network. It consists of two
stages, the first stage is basic reconstruction network, and the second stage is denoising and
refinement network.
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2.2 Discriminator Network

Because multi-scale structure is the essence and attribute of image, different observa-
tion scales are very meaningful for image assessment. Therefore, Gaussian pyramid
multi-scale extraction method was first used to estimate three different scales images of
the input image of discriminator. Then three different scales of images are as three new
input images into different feature extraction layers. Finally, three feature extraction
layers are guaranteed to get the same size of features. After the concatenation of three
features extraction results, a global pooling layer is connected to compress the features.
Finally, a full connection layer (output dimension is 1) are connected to get the clas-
sification results of images (True high resolution image or Fake high resolution image).
As shown in Fig. 3(b), all convolution layers except the last layer use LeakyRelu
activation.

2.3 Edge Enhanced Hybrid Loss Function

The definition of loss function is very important to the performance of our generator
network and whole super resolution reconstruction network. Although most super-
resolution reconstruction networks are modeled based on mean square error (MSE),
SRGAN [7] designed a hybrid loss function, which includes a MSE and total variation
(TV) combined content loss, an adversarial loss and a perceptual loss. However, the
input of the perceptual loss function is extracted by the feature extractor obtained from
the training of natural images. After our experimental demonstration, we find that this
perceptual loss is not applicable to medical images and will produce many spot-like
artifacts. The total variation loss will cause the image to be too smooth. In addition, the
loss function based on MSE will also result in blurred images and obscure edges
between different tissues because of the serious information loss and partial volume
artifacts in medical images. Therefore, in order to solve these problems, we proposed a
edge enhanced hybrid loss function LSR, and it consists of MSE, adversarial loss and
edge loss, which are defined as follows:

Fig. 3. Illustration of two information residual unit (TIRU) and multi-scale discriminator
network. (a) Illustration of TIRU, Total 5 TIRUs in refinement network, N = 64, 64, 64,128,128
is the number of convolution filter. (b) Illustration of multi-scale discriminator network.
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LSR
MSE ¼ 1

WH

XW

x¼1

XH

y¼1
IHRx;y � G ILRx;y

� �� �2
ð4Þ

LSR
Adv ¼ min

hG
maxhDEXr DhD Xrð Þ½ � � EXf DhD Xf

� �� � ð5Þ

pt ¼
p if y ¼ 1

1� p otherwise;

� ð6Þ

LSR
Edge ¼ �at 1� ptð Þclog ptð Þþ 1� 2p � y

pþ y� p � y
	 


� 10 ð7Þ

LSR ¼ LSR
MSE þLSR

Adv þLSR
Edge ð8Þ

Where, GðÞ presents the generator network, DhDðÞ presents the discriminator net-

work, p is the pixel of E G ILRx;y
� �� �

, y is the pixel of E IHRx;y

� �
, EðÞ presents Sobel

operator edge extractor and threshold proceeding (threshold = 85% percentile), Xr

presents true high-resolution image, Xf presents reconstruction fake high resolution
image.

3 Experiment and Result

3.1 Dataset and Training Detail

The medical images used in this study were all from Neurosurgery Department of
Beijing Tiantan Hospital, Capital Medical University in China. With the approval of
the Ethics Committee, a total of 150 groups of 2D Multi-Slice preoperative T1-
weighted MR images were collected. The acquisition equipment was GE Discovery
MR750, and the standard MR imaging protocol was non-enhanced axial T1-weighted
(TR, 2031 ms; TE, 19.536 ms; slice thickness: 6.0–6.25 mm). The FOV is 24 cm, the
image size in-plane direction is 512 � 512 pixels, the pixel resolution is
0.46875 * 0.46875 mm, the image size of slice-selection direction is 512 � (23/24)
pixel.

The data of 150 patients were randomly divided into 130 groups and 20 groups,
which were used as training and testing set respectively. We use the in-plane direction
high-resolution image IHR as the ground truth, apply the Gauss filter to IHR, and then
use the down-sampling factor R in the y direction of the 2D image and then use linear
interpolation to obtain simulated large-thickness low-resolution MR slice-selection
images ILR with the same size of high-resolution images. In addition, considering that
there are 23/24 slices axial images for each patient in the original data, in order to
achieve data augmentation of training set, we interpolate the original 512 � 512 � 24
Multi-Slice data using MATLAB bicubic kernel function to obtain 512 � 512 �
(138–150) images, and then take many 512 � 512 images at intervals of 2 in slice
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direction. Finally, training set includes 9316 images and testing set includes 1585
images. The low resolution image input and the high resolution output of our network
are 512 � 512 pixel images. Our model training is divided into two stages. In the first
stage, the generator network is trained, the learning rate is 10−4, the loss function is
Eq. (4) + (7), and the Adam optimizer is used to optimize 50,000 iterations. In the
second stage, the model weights obtained from the first stage pre-training are used as
the initialization parameter model in the second stage, which can avoid undesirable
local optimum phenomena. In the second stage, the training of discriminator and the
generator are updated alternately. Both the discriminator and the generator adopt Adam
optimizer. The learning rate of the discriminator is 10−4, and the loss function is
Eq. (5). The learning rate of generator network is 10−4, and the loss function is Eq. (8).
The number of iterations in the second stage is 50,000. Keras-tensorflow framework
and an NVIDIA GTX 1080Ti GPU are used.

3.2 Results

Firstly, in order to verify the performance of our proposed two-stage super-resolution
reconstruction generator network, we quantitatively compared our method with some
state-of-art methods (including SRCNN, the pioneer of deep learning super-resolution
reconstruction field, VDSR is excellent MSE-based reconstruction method and ESR-
GAN [8] is the advanced SRGAN-based reconstruction method). The quantitatively
comparison results are shown in Tables 1 and 2. We evaluated the performance of the
super resolution reconstruction network on training set and testing set respectively.
From the Tables 1 and 2, it can be seen that our TSSR network outperforms the
generators VDSR and ESRGAN in the evaluation index of PSNR and SSIM. In
addition, in order to prove the advantages of our method, HR images of training set
were used to establish a tumor segmentation model, and the reconstructed images by
different methods were tested. The segmentation results are shown in Table 2, which
proves that our method is also better than other methods in segmentation task.

In order to further demonstrate the performance of our algorithm, we qualitatively
compared the reconstruction results of our method and other methods. As can be seen
from the Fig. 4, partial volume artifacts are very serious in the image obtained by
“bicubic” method. Compared with other CNN methods, SRCNN method achieves the
worst results and very blur images. VDSR has better reconstruction results than
SRCNN and ESRGAN. The main reason is that SRCNN network is too simple, and
ESRGAN used several dense blocks with input information cascades, while low-
resolution medical images with large thickness as input not only contain texture

Table 1. Quantitative comparison results of different reconstruction methods on training set

Indexs Method
Bicubic SRCNN VDSR ESRGAN TSSR EE-SRGAN

PSNR (dB) 26.84 28.17 29.92 28.54 31.70 31.88
SSIM 0.8720 0.8848 0.9025 0.8842 0.9187 0.9207
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information, but also it contains serious partial volume artifacts, which results in poor
quality of reconstructed images, as shown in the Fig. 4. From the Fig. 4, we can see
that the super-resolution image reconstructed by the EE-SRGAN using hybrid edge
enhanced loss function is more realistic than the image reconstructed by TTSR.

4 Conclusion

We have proposed a two-stage super-resolution generator network for the phenomenon
that down-sampling ratio of MRI resolution in single direction is very large. We have
proposed an edge enhanced hybrid loss for MRI-SR to achieve more image details. Our
EE-SRGAN achieved better experimental results for MRI slice-selection super reso-
lution reconstruction than state-of-art models. Our method is significant to reduce
scanning time under the image quality assurance for clinical application.
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Abstract. Exploring the brain as a complex, networked system and inferring
the dysfunction of diseased brains by abnormal functional connectivity has
received great attention in recent years. One critical problem in brain network
analysis is how to identify functionally homogeneous brain regions as network
nodes. Inspired by the nature of sparse population coding of the human brain,
we propose a novel data-driven method to identify whole-brain network nodes
based on group-wise sparse representation (gSR) algorithm. Using a publicly
available autism dataset as test-bed, we evaluate our method and compare it with
group-wise independent components analysis (gICA). The experimental results
demonstrate that the brain ROIs identified by our method are more functionally
homogeneous and thus may improve the sensitivity and accuracy of functional
connectivity biomarkers in differentiating autism and healthy controls.

Keywords: Resting-state fMRI � Brain network � Functional connectivity �
Sparse representation � Autism

1 Introduction

Identifying functional connectivity biomarkers to characterize dysfunction in diseased
brains have been drawing greater interest [1–4]. The common pipeline towards brain
network studies involves two steps. The first step is identifying isolated brain regions of
interest (ROIs) as network nodes. The second step is measuring functional connec-
tivities using functional magnetic resonance imaging (fMRI). In this pipeline, identi-
fying nodes as the structural substrate for connectivity mapping is a critical problem. It
is typically expected that a node should be functionally homogeneous [1, 2].

Independent component analysis (ICA) is a widely-used approach in brain network
studies. ICA aims at a blind separation of independent sources from the complex
mixture of signal resulting from different sources [1]. Despite the successful applica-
tions of ICA, it has been recognized that sparse population coding of a set of neurons is
likely to be more effective than independent exploration, that is, a sparse set of neurons
encode specific concepts rather than responding to the input stimuli independently [5].
Therefore, growing interest has been directed to fMRI analysis approaches by taking
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the intrinsic sparsity of human brain into consideration. For example, Lv et al.
demonstrated that both task-evoked and resting-state brain networks can be robustly
identified in normal brains using sparse representation (SR) [6, 7]. Lv et al. performed
SR on task-fMRI data for each subject separately, while the correspondence of the
components across subjects cannot be automatically established, which makes
assessing group differences of functional brain activities difficult. However, in [6, 7],
only the correspondence for the components related to task paradigm was established
by time-frequency analysis, which does not work for rsfMRI. Also, the advantages of
SR-based fMRI data analysis in identifying functional connectivity biomarkers in
diseased brains have rarely been explored.

In this study, we propose a new framework and a comparative study to assess the
performance of SR-based resting-state fMRI (rsfMRI) data analysis in identifying
functional connectivity biomarkers by taking autism spectrum disorder (ASD) as a test-
bed. To establish the correspondence across subjects, we adopt a group-wise sparse
representation method, and extract a dictionary matrix and a common coefficient matrix
for all the subjects. Our experimental results on both simulated fMRI data and ASD
rsfMRI data demonstrated that brain regions with improved functional homogeneity
can be identified by our method, and consequently, the sensitivity and accuracy of
functional connectivity biomarkers can be improved compared with ICA-based
method. While there have been several studies mainly focusing on default mode net-
work using rsfMRI in clinical analysis [8–10], in this paper, we use gSR to explore the
functional connectivity biomarkers in autism among the whole-brain. The identified
ASD biomarkers in our study not only cover those well documented brain regions in
the literature such as precuneus, angular and right temporal lobe [8–10], but also cover
some novel brain regions such as insular.

Fig. 1. The computational framework of group-wise sparse representation (gSR) of whole-brain
fMRI signals from two groups of subjects (GA: Autism, GC: Healthy control)
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2 Materials and Methods

2.1 Overview

Figure 1(a) shows the overview of our study. RsfMRI data for subjects in 2 groups
(GA: Autism, GC: Healthy control) are concatenated (Fig. 1(b)), which is then
decomposed into representative signal patterns (each column in dictionary D) and
associated spatial maps (each row in coefficient matrix A) by sparse representation
(Fig. 1(b)). Then, brain ROIs are localized using the spatial maps and are used as
common brain network nodes for functional connectivity analysis (Fig. 1(c)). We
examine the performance of functional connectivity biomarkers for ASD in differen-
tiating autism patients from health controls using a support vector machine classifier,
and compare our method with ICA-based method.

2.2 Data Acquisition and Pre-Processing

Simulated fMRI Dataset. Simulated fMRI dataset consists of 20 subjects, each with
up to 27 sources, 200 time points, and 136 � 136 voxels are generated using the
toolbox SimTB (http://mialab.mrn.org/software).

Autism Dataset. We used the dataset from Autism Brain Imaging Data Exchange
(http://fcon_1000.projects.nitrc.org/indi/abide/NYULangoneMedicalCenter/). Thirty
participants with autism (11.89 ± 3.66) and thirty healthy controls (11.34 ± 2.66) are
included in our study. The fMRI data were obtained on a 3T Siemens Allegra scanner.
The scanning parameters are TR/TE/FA/FOV of 2000 ms/15 ms/90°/240 mm, voxel
size of 3 mm � 3 mm � 4 mm, and data matrix of 64 � 80 � 33. The preprocessing
of rsfMRI data includes skull removal, motion correction, slice time correction, spatial
smoothing, detrend, and band-pass filtering (0.01 Hz–0.1 Hz). A common brain mask
is generated to extract whole-brain fMRI signals of all subjects.

2.3 Sparse Representation Theory

Sparse representation could be summarized as [11]:

s ¼ Da ¼ a1d1 þ a2d2 þ . . .þ amdm ð1Þ

where s ¼ ½s1; s2; . . .; sn�T is input signals.D ¼ ½d1; d2; . . .; dm�T is a dictionary with
each column di representing a basis, and a ¼ ½a1; a2; . . .; am�T is the associated coef-
ficient matrix. Equation (1) can be rewritten to account for small representation error
by:

s ¼ Daþ z ð2Þ
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where z is the representation error. Equation (2) can be approximately solved by using
the L1-norm minimization:

â ¼ argmin ak k1 subject to s�Da2k k � e ð3Þ

where ||.||1 and ||.||2 are L1-norm and L2-norm, respectively. e� 0 is the error tolerance.

2.4 Sparse Representation of Whole-Brain FMRI Data

Based on the assumption that the components of each voxel’s fMRI signal are sparse
and the neural integration of those components is linear [12], the whole-brain sparse
representation framework holistically considers the whole-brain signals and can
achieve a comprehensive collection of meaningful functional networks [6, 7]. In this
framework, the whole-brain fMRI signals of each subject are extracted and stacked into
a 2D signal matrix Sx (Fig. 1(b)). Each column in Sx is the fMRI signal for a voxel.
Then Sx for all the subjects are concatenated, resulting in a big matrix S (Fig. 1(b)).
S consists of two groups of subjects:

S ¼ ½SGA ; SGc �; SGA ¼ ½SA1; SA2; . . .; SAk�; SGC ¼ ½SC1; SC2; . . .;SCk� ð4Þ

We adopt a very effective online dictionary learning method in [13] to optimize
D and A, which can train dictionary from very large sets of samples and accelerate
convergence and improve the trained dictionary. Both D and A are shared by all the
subjects. Each atom in D corresponds to a representative fMRI signal pattern, and each
row in A represents a coefficient vector. We project each coefficient vector back to the
brain volume space. A classic t-statistic analysis, which converts a coefficient map to a
T-statistic spatial map, is used to evaluate the significance of the contribution of the
atom in fMRI signal reconstruction. In our gSR-based method, the number of dic-
tionary atoms m is set to be 200 empirically and experimentally.

2.5 Functional Connectivity Analysis

We experimentally use z = 2.3 as threshold to finalize the nodes from the spatial maps.
fMRI signals for each node are retrieved and averaged. Functional connectivity is
calculated as the Pearson correlation coefficient. In addition, gICA was performed
using FSL MELODIC (http://www.fmrib.ox.ac.uk/fsl). The number of independent
components is automatically estimated. Fifty-one components are extracted for both
two groups of subjects. Similar method (including the same z-score threshold) is used
to identify network nodes and estimate the functional connectivity.

A t-test with false discovery rate (FDR) correction is performed to identify the
connectivity biomarkers in ASD. A support vector machine (SVM) classifier [14] is
used to test the performance of the biomarkers. Due to the limited number of samples, a
leave-one-out cross-validation (LOO-CV) strategy is adopted in classifier testing.
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3 Result

3.1 Node Identification on Simulated Data

Both gSR and gICA are performed on the concatenated simulated data, which can
provide ground truth to compare two methods on real fMRI datasets. Thirteen corre-
sponding spatial nodes can be defined by these two methods. We perform a principal
component analysis (PCA) on the set of fMRI signals in a ROI to measure the func-
tional homogeneity of the ROI. In brief, the ratio between the first eigenvalue and the
sum of all the eigenvalues, which is typically used to evaluate how much information is
preserved by the first eigenvector, is used to measure the functional homogeneity. The
distribution of the functional homogeneity for each node is shown in Fig. 2(a). A two-
sample t-test is performed for the comparison of functional homogeneity between gSR
and gICA. Eight nodes identified by gSR have higher temporal consistency (as shown
in Fig. 2(b)). Functional homogeneity (FH), or spatial coherent, is a critical metric.
Lower FH indicates that the candidate ROI locates in the conjunction of multiple
functional systems of the brain, which will result in decreased reliability in following
functional connectivity analysis. It is seen that the nodes identified by gSR-based
method are more functionally homogeneous, which indicates its increased reliability in
functional connectivity analysis.

3.2 Node Identification on ASD Data

As shown in Fig. 3, 74 spatial common nodes are localized in total for all the subjects
by gSR. 62 nodes are extracted from gICA, while thirteen spatial common nodes that
have correspondence between gSR and gICA are selected to compare temporal con-
sistency. The correspondence of the nodes from gSR and gICA is identified by
matching with the AAL template and careful manual inspection. The distribution of the
temporal consistency in all 60 subjects for each node is shown in Fig. 4. Ten nodes
identified by gSR have significantly higher functional homogeneity (Temporal_Sup_L,
Temporal_Sup_R, Cingulum_Mid, ParaHippocampal_L, Occipital_Sup_L, Occipi-
tal_Sup_R, Precuneus, Frontal_Mid_Orb_R, Temporal_Mid_R, Precentral_L), indi-
cating that the nodes identified by gSR are more functionally homogeneous.

Fig. 2. (a) The temporal consistency of simulated signals in thirteen corresponding common
nodes, (b) eight nodes with higher values of temporal consistency identified by our method
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3.3 Functional Connectivity Biomarkers

For gSR, the functional connections are pairwise among all the 74 nodes. Then two-
sample t-tests (significance level 0.05 after FDR correction) are performed to identify
twenty connectivity biomarkers (p < 0.001), which are used as features for classifier
training (as shown in Fig. 5), while only twelve functional connections (p < 0.005) are
found to be significantly altered in gICA (as shown in Fig. 6). Left-tailed represents
that the control group has significantly higher functional connectivity than ASD
group. Interestingly, there are five connections commonly detected by both of the
methods, which are highlighted in different colors in Figs. 5 and 6. Furthermore, the
identified functional connectivity between node pair 64–47 in our method is in line
with what has been reported in the literature [8].

3.4 Classification Performance

In LOO-CV, the SVM classifier trained by the connectivity biomarkers resulted from
gSR successfully predicted 27 out of 30 autism subjects (90%), and 28 out of 30
controls (93.33%), with a total classification accuracy of 91.67%. In comparison, the
SVM classifier trained by the connectivity biomarkers resulted from gICA successfully
predicted 23 out of 30 autism subjects (76.66%), and 25 out of 30 control subjects

Fig. 3. Visualization of the 74 identified common network nodes by sparse representation

Fig. 4. The temporal consistency of fMRI signals in thirteen corresponding common nodes
identified by both methods (The box-plots are in the same order as that in Fig. 2 (a))
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(83.33%), with a total classification accuracy of 80%. The results demonstrated that the
connectivity biomarkers obtained in gSR have better (91.67%) discriminability com-
pared with those in gICA (80%). We speculate that this observation may attribute to the
improved functional homogeneity of the brain ROIs identified in gSR.

3.5 Anatomical Locations of Network Nodes

Table 1 lists the anatomical locations of the brain regions shown in Fig. 5. Node 10
and 21 are on the auditory cortex (Temporal_Sup), and node14 and 23 correspond to
primary motor cortex (Precentral gyrus). Tempral_Inf (node 2 and 69) is associated
with visual object recognition and receiving processed visual information. Node 15
(Occipital_Mid) is responsible for higher order visual processing. Node 64 and node 37
correspond to precuneus that is the core node of default mode network and angular
respectively. Parahippocampal (node 62) is involved in memory encoding and retrieval.
Among the brain regions above, precuneus, angular and right temporal lobe have been
reported to be related to autism. Furthermore, the brain region such as insular is also
associated with the functional connectivity biomarkers identified by our method, which
may provide new clues for autism study. Overall, more biomarkers with higher dis-
criminability have been detected by sparse representation-based method, compared
with that in ICA-based method, which perform much better in discriminating healthy
control and autism patients.

Fig. 5. Connectivity biomarkers detected by our method (sorted by p-value in ascending order)
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4 Conclusion

In this paper, we presented a novel framework and a comparative study to evaluate the
performance of group-wise sparse representation-based fMRI data analysis for
exploring functional connectivity biomarkers in ASD. In our experiments, we took
ASD as test-bed, and compared our method with ICA-based method. Our experiment
on discriminability analysis, classification performance and functional homogeneity
analysis demonstrated the feasibility and superiority of sparse representation-based
method in exploring functional connectivity biomarkers in brain diseases.
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Abstract. Mild Cognitive Impairment (MCI) is a clinically intermediate stage
in the course of Alzheimer’s disease (AD). MCI does not always lead to
dementia. Some MCI patients may stay in the MCI status for the rest of their
life, while others will develop AD eventually. Therefore, classification methods
that help to distinguish MCI from earlier or later stages of the disease are
important to understand the progression of AD. In this paper, we propose a
novel computational framework - named Augmented Graph Embedding, or
AGE - to tackle this challenge. In this new AGE framework, the random walk
approach is first applied to brain structural networks derived from diffusion-
weighted MRI to extract nodal feature vectors. A technique adapted from natural
language processing is used to analyze these nodal feature vectors, and a mul-
timodal augmentation procedure is adopted to improve classification accuracy.
We validated this new AGE framework on data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). Results show advantages of the proposed
framework, compared to a range of existing methods.

Keywords: Mild Cognitive Impairment � Brain structural network � Graph
embedding � Random walk � Natural Language Processing � Data augmentation

1 Introduction

Alzheimer’s Disease (AD) is the leading cause of dementia and there are approximately
50 million people living with AD. Treatment options for AD remain limited, and there
is no known cure. It is well known that AD causes progressive cell death in the brain,
but the pattern and rate of brain changes differs to some degree across individuals, and
the degenerative processes in two AD patients can follow very different trajectories.
Mild Cognitive Impairment (MCI), a clinically intermediate state between normal
aging and AD, can cause cognitive changes that are severe enough to be noticed by the
individuals experiencing them or by other people, but the changes are not severe
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enough to interfere with daily life or independent function [1]. Approximately 15 to 20
percent of people aged 65 or older have MCI. MCI patients, especially MCI involving
memory problems, are more likely to develop AD or other dementias than people
without MCI. However, MCI does not always lead to AD. Some MCI patients will stay
in the MCI status for the rest of their life while others develop AD eventually [2, 3]. In
order to better understand MCI, the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) divided MCI into early (EMCI) and late (LMCI) stages based on the severity
of memory impairment [4, 5]. Accurately classifying the stages of MCI – and features
that help to distinguish them - will significantly benefit clinical research on MCI and
AD and may offer insight into factors that affect disease progression.

A typical approach for disease classification tasks is to extract features from brain
imaging data (such as MRI or PET) and use these features to classify EMCI and LMCI,
prior to identifying potential biomarkers for MCI staging [6–11]. For example, Sha-
shank Tripathi et al. proposed to use hippocampal and sub-cortical morphological
features to classify EMCI and LMCI, yielding a classification accuracy of 70:95% [12].
In [13], the authors proposed a pipeline using learned features from semantically
labelled PET images to perform group classification; their results showed a consider-
able improvement in classification accuracy for EMCI versus LMCI (72.5%), using
FDG-PET compared to using PET scans with the AV-45 radiotracer. In work by La
Rocca et al., the authors computed several network features (e.g., clustering coeffi-
cients) from a 74� 74 brain network and then used a support vector machine
(SVM) classifier to compare EMCI and LMCI, with a classification accuracy of 70%
[14]. Although much effort has been devoted to the comparison of EMCI and LMCI,
more advanced techniques may be beneficial to improve classification accuracy for this
challenge.

Modeling the brain as a network using a connectome approach allows us to gain
systems-level insights into large-scale neuronal communication abnormalities associ-
ated with brain diseases (such as AD) and may also yield novel features to assist
diagnosis and prognosis. The brain’s structural network - derived from a tractography

Fig. 1. The proposed Augmented Graph Embedding (AGE) framework.
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algorithm applied to diffusion-weighted MRI data - can capture global structural
changes caused by different brain diseases including Alzheimer’s disease [14]. Prior
work [15] has shown the potential of analysis of brain structural networks in Alzhei-
mer’s research. Though several studies [16–18] have been carried out on MCI staging
tasks using brain structural networks, the classification performance is still far from
being useful clinically, so more powerful computation techniques are sorely needed.
Based on this challenge, this paper proposes a new technique to explore the brain
network’s intrinsic geometry based on the augmented graph embedding technique.
Initial results show a significant improvement, compared to baseline methods. The rest
of this paper is organized as follows: Sect. 2 describes the new augmented graph
embedding framework, Sect. 3 shows experimental results on the ADNI data, and
Sect. 4 concludes the paper.

2 Method

Figure 1 illustrates the proposed framework, named Augmented Graph Embedding or
AGE. Firstly, M N � N networks are reconstructed from diffusion MRI data for each
subject; then we apply a selective random walk process to extract a raw nodal feature
vector from each N � N network and obtain M N � L raw features; the next step is to
use a feature embedding technique to map these M N � L raw features into M N � K
features; next, we conduct a feature augmentation step by combining M N � K feature
matrices into one N � K feature matrix and train a cubic SVM classifier with the
resulting 1D feature vector with dimension of 1� N � Kð Þ. We will describe the three
main steps: feature preparation, feature embedding, and feature augmentation in the
following sections.

Table 1. Random walk procedure.
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2.1 Feature Preparation

Usually, the dimension of brain network features can be up to tens of thousands,
including hundreds to thousands of nodes and the weighted connections or “edges”
connecting the nodes. It is well known - as the ‘curse of dimensionality’ - that the
statistical performance and stability of machine learning algorithms can degrade as the
dimension of the input data increases, without steps for dimension reduction. Thus,
how to extract the hallmark features from N � N network can be very challenging.
Here we adopted a selective random walk [19] procedure to generate a sequence vector
for each node. In the random walk [19], three parameters a; b; hð Þ can be set up to assist
in determining the next node in the walk from the current node. Basically, any nodes
connecting to the current node will be candidates for the next walk node. For each of
these next step candidates: (A) If it is the node in the random walk immediately prior to
the current node, the weight between this candidate and the current node will be
multiplied by a factor a. (B) If it is one of the nodes that connects to the current node
but does not connect to the previous walk node, the weight between this candidate and
the current node will be multiplied by a factor b: (C) If it is one of the nodes that
connects to the current node as well as the previously visited node of the current node,
the weight between them will be multiplied by a factor h. In this way, all weights
between each next step candidate and the current node will be multiplied by a
parameter (either a; b; or h) to obtain the next walk controller (NWC). Then the can-
didate node with the largest NWC will be selected as the next walk node and saved in
the nodal sequence. The length of each nodal sequence is set to L. Each of the N nodes
in the network is set up as a starting point in the nodal sequence. Thereby N L-length
nodal sequences can be extracted from the N� N network. The entire procedure is
summarized in Table 1.

2.2 Feature Embedding

Inspired by Natural Language Processing, we can treat each node sequence as a sen-
tence encoding the semantics and each node as the word from a vocabulary. Given the
node sequences, we adopted a deep neural network model [19] to embed each node into
a low dimension vector. To train the model, we first define a window of size w. In each
step, we only focus on w nodes within the window. The node in the center of the
window is the pivot node p and other nodes beside the pivot node are target nodes,
T pð Þ. The window slides from the left of the node sequence to the right, so each node
in the sequence will be a pivot node with the nodes beside them as the target nodes.

Table 2. Feature embedding.
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The objective of this neural network model training is to find an optimal mapping
function f � to map each node in the network into a k-dimensional vector (k\L). Given
the set of pivot nodes as S, the optimal mapping function f � may be defined using
Eq. (1). This feature embedding procedure is summarized in Table 2.

f � ¼ argmaxf
X

p2S Log Prob T pð Þjf pð Þð Þð Þ½ � ð1Þ

2.3 Feature Augmentation

Once we have the embedded features, we can use a classification algorithm (e.g., SVM)
to classify groups. Here, we also propose a new augmentation procedure. Since our
framework is based on diffusion MRI-derived brain structural networks, there are many
published tractography algorithms that can be used to reconstruct a brain structural
network. In theory, different tractography algorithms for mapping structural connec-
tions should eventually provide a consistent anatomical description of the brain.
However, different tractography algorithms tend to reconstruct different fiber bundles
and thus generate very different networks [20]. Prior work has shown that directly
averaging multimodal networks may not be beneficial for a classification task [20];
therefore, we propose a multimodal augmentation strategy to combine multiple net-
works and reduce the possible biases arising from each unimodal network.

Firstly, each unimodal network can generate one nodal embedding vector for each
node using the procedures described in the above sections. Then the final feature
representation V�

i for node i from M networks may be defined by: V�
i ¼ PM

j¼1 WjVij.
Here Vij is the k-dimensional vector of node i computed using nodal embedding pro-
cedure described in Sect. 2.2 and Wj is the coefficient associated with the j-th network
and

PM
j¼1 Wj ¼ 1: Then we concatenate all the nodes’ feature representations together

into a 1D vector (dimension ¼ 1� N � Kð Þ) and then train the SVM classifier on this
1D vector. The optimal feature combination coefficients W� may be obtained using
Eq. (2):

W� ¼ argminW ;k k2
�� ���� ��þ

XK

i
max 0; 1� yig k

XM

j¼1
WjVj

� �� �h i
ð2Þ

Here K is the number of subjects, M is the number of networks for each subject, yi
is the label for subject i, k is the weights of cubic SVM classifier and g is the kernel
function of SVM.

3 Experiment

3.1 Data Description, Preprocessing and Network Reconstruction

Data used in this study are publicly available and were obtained from ADNI2, the 2nd

stage of the Alzheimer’s Disease Neuroimaging Initiative. In our experiments, we
analyzed diffusion-weighted MRI and T1-weighted MRI data from 111 subjects,
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including 72 EMCI (mean age = 71.20 ± 11.59, 47M) and 39 LMCI (mean age =
72.32 ± 5.83, 24M). No significant difference was identified in age between EMCI and
LMCI (P = 0.57). Details of the data collection protocols for both diffusion MRI and
T1-weighted MRI may be found at the ADNI website (http://www.adni-info.org).

FreeSurfer (surfer.nmr.mgh.harvard.edu) and FSL (fsl.fmrib.ox.ac.uk/fsl) were
used as the main tools for data preprocessing. For both T1 and diffusion MRI, we first
removed the extra-cerebral tissue and then visually inspected ‘skull-stripped’ volumes,
and manually edited them if needed. Skull-stripped T1 MRI then underwent intensity
inhomogeneity normalization and was linearly aligned into the Colin27 space and
parcellated into 113 ROIs using Harvard-Oxford Cortical and Subcortical Probabilistic
atlas. Using the skull-stripped diffusion MRI, we first corrected for head motion and
eddy current distortions, and then corrected the gradient table, and later elastically
registered to the corresponding preprocessed T1 MRI to correct for echo-planar
induced susceptibility artifacts. The preprocessed diffusion MRI and 113 ROIs were
used to reconstruct the brain structural networks.

For each subject, we reconstructed four 113� 113 brain structural networks using
four whole brain tractography algorithms, which include two tensor-based determin-
istic algorithms (TL [21] and SL [22]) and two ODF-based probabilistic algorithms
(Hough Voting [23] and PICo [24]). Deterministic tractography was conducted using
the Diffusion Toolkit (trackvis.org). Hough voting was performed using code provided
by the authorsm and PICo was conducted using Camino (cmic.cs.ucl.ac.uk/camino).
All fiber tracking was restricted to regions where fractional anisotropy (FA) >0.2 to
avoid GM and cerebrospinal fluid; fiber paths were stopped if the fiber direction
encountered a sharp turn (with a critical angle threshold >30°). The network was then
defined as the number of detected fibers connecting each pair of ROIs. This matrix is
symmetric, by definition, and has a zero diagonal (no self-connections). To avoid
computational bias in the experiments, we normalized each brain network by the
maximum value in the network, as matrices derived from different tractography
methods have different scales and ranges.

No significant group difference was identified on the raw network data, between
EMCI and LMCI, for each of these four networks.

3.2 Experimental Settings

To validate the proposed method, we chose four baseline methods from the published
literature. The first baseline method was to conduct Principal Components Analysis
(PCA) on the original network data, followed by the SVM. The second baseline
method was to run SVM classifier directly on the network measures. Here we sepa-
rately tested two network measures - modularity (MOD) and global efficiency (GLOB)
extracted from the brain network data. The last baseline method used LASSO
Regression (https://github.com/jiayuzhou/SLEP) to classify the networks.

For the proposed method, the nodal sequence length L was set to 25. We initially
set a range for each of the control parameters (a; b; hÞ based on our experiences:
a 2 6� 8½ �, b 2 1; 2½ � and h 2 0:001; 0:006½ �. The results are consistent therefore, we
set a ¼ 8; b ¼ 1 and h ¼ 0:001. Then we applied our selective random walk procedure
to each of the four 113� 113 brain networks generated in Sect. 3.1, to generate nodal
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sequences. After that, we then trained a nodal embedding model (or deep neural
network) to obtain the node feature vectors (dimension-reduced nodal feature vectors).
The input of the neural network is a series of brain nodal sequences. Each node will be
embedded into a vector with a length of 16. The learning rate was set to be 10�5.
Lastly, we concatenate all 113 nodal vectors into one vector of dimension 1808
(= 113 * 16) as the 1D vector representation for the entire 113� 113 brain network.
Based on the 1808-parameter representation for each of the four brain networks, we
conducted feature augmentation by combining four feature vectors into one final fea-
ture vectors using V� ¼ P4

j¼1 WjVj. Here, V� is the fused representation; W ¼ fWjjj ¼
1; 2; 3; 4g is the weighting coefficients for Vj and initially we treated everyone equally.
Then the optimal W� can be derived using Eq. 2. The actual searching procedure for
W� was as follows: first, the entire dataset was divided into two parts: 80% as the
training data and 20% as the test data. The training data was further divided into two
parts: 80% and 20%. We used 80% of the training data to train the model using the
initial value W, and 20% of the training data to verify the classification accuracy. By
gradually adjusting W to W�, we can maximize this classification accuracy. Once W� is
finalized, we can re-train the model on the entire training data and compute the final
classification accuracy on the testing data. For the classification, we adopted nonlinear
SVM as the classifier; we report the mean and standard deviation of classification
accuracy for each method on 5-fold cross-validation.

3.3 Comparison to Other Baseline Methods

In this section, the performances of the proposed method and other baseline methods
are assessed. Following the descriptions in the above section, we reported mean and
standard deviation of the classification accuracy from the 5-fold cross validation. The
classification results are summarized in Table 3, which shows that the graph embed-
ding outperforms all baseline methods. For example, using the Hough-based network,
all baseline methods have less than 60% accuracy while the proposed graph embedding
can achieve 64.9% accuracy. This trend is the same for all columns in Table 3, which
suggests that graph embedding technique is more powerful in preserving the features in
the dimension reduction process. Moreover, the multimodal network may not be a good
choice for the traditional methods (i.e., PCA+SVM, SL has 64.9% accuracy while AN
only has 63.1%). However, for the proposed method (AGE), there was a classification
accuracy of 72.4% ± 3.1%, which clearly demonstrates the advantage of graph
embedding in exploring the structure of this multimodal dataset.
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4 Conclusion

In this study, we proposed a new graph embedding framework to classify stages of
MCI, based on brain structural network data. Initial experiments on the ADNI2 dataset
suggest that graph embedding methods share prominent advantages over traditional
methods.
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Abstract. Human brain functions are underlined by spatially and temporally
coherent activity. Characterizing the spatio-temporal coherence (STC) of brain
activity is then important to understand brain function, which however is still
elusive in the literature. In this study, we proposed a new method to measure the
spatio-temporal incoherence (STIC) by segmenting the fMRI time series of
neighboring voxels into a series of continuous 4-dimensional elements and
recording the similarity of every element to all others. STIC was then calculated
as the log differential of the similarity sum of all elements and that when the time
window is increased by 1 – a process similar to and directly extended from the
time-embedding based approximate entropy calculation. Experiment results
showed that STIC revealed the correct irregularity difference between random
noise and spatio-temporally coherent signal. STIC was less sensitive to noise
than a multi-variate entropy measure. When applied to 917 young health sub-
jects’ resting-state fMRI, we identified highly replicable STIC maps with very
fine cortical structures. Females and more matured brain (older here) had higher
STIC. Higher STIC in putamen showed a trend of correlations with better
mental examination outcome. These data showed STIC as a potential functional
brain marker.

Keywords: Spatio-temporal coherence � Long-range coherence � Brain entropy
mapping

1 Introduction

Spatio-temporally coherent activity is fundamental to human brain functions. Recip-
rocally, characterizing the spatio-temporal coherence of brain activity (STCA) may
reveal information critical to the wellbeing or integrity of brain functions. Because of
the relatively high spatial and temporal resolution, fMRI has become a major tool for
assessing STCA. Over the past two decades, a variety of methods have been developed
to characterize STCA from different aspects using fMRI. Biswal et al. first used the
seed-based inter-regional temporal correlation analysis to study functional connectivity
between spatially distributed regions [1], but the correlational method can’t directly
infer local brain activity at each voxel. In [2], Kendal-tau was used to characterize
spatial correlations of neighboring voxels, but temporal coherence was not considered.
Independent component analysis [3] has been adopted to extract distributed brain
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networks but it lacks clear analytical descriptions for how the spatio-temporal coher-
ence is modeled. Temporal coherence of brain activity at each voxel can be assessed
with entropy. For example, approximate entropy such as the approximate negentropy
[4] the sample entropy (SampEn) [5] has been used to map the regional brain inco-
herence [6, 7] but in a univariate manner. To also consider spatial incoherence, Schutze
et al. proposed a multivariate entropy measure based on subspace projection of fMRI
data [8], but it was based on an assumption of a Gaussian distribution of the data and
only provides one value for the entire volume. One approach to quantify the spatio-
temporal incoherence at each voxel is to use the multivariate entropy such as SampEn
(mSampEn) [9] but those measures often don’t consider the spatial correlations among
the multiple variables as signals of all neighboring voxels are simply stacked together
to form a one-dimensional vector. There still lacks an explicit way to characterize the
spatio-temporal coherence or alternatively incoherence of brain activity. To solve this
problem, we proposed a new multivariate SampEn which quantifies the regional long-
range temporal coherence of brain activity (here rsfMRI signal) by examining the
likelihood of that a temporal segment of the timeseries of the neighboring voxels
matches the other segments of the timeseries for a given segment length of m and
m + 1. Spatial coherence is considered by including the neighboring voxels in the
segment matching process. We then used synthetic data to validate the new method as
compared to the current multivariate SampEn for differentiating multivariate signals
with known spatio-temporal coherence (or incoherence). Large human rsfMRI data
were then used to verify the spatio-temporal coherence patterns in normal healthy
subjects as well as their relations to age and sex. Contributions of this work include:
(1) we proposed a novel method to quantify the long-range spatio-temporal coherence
of brain activity; (2) we demonstrated highly replicable STIC maps with fine cortical
structures identified from a large dataset; (3) we showed sex and age effects of STIC
identified from the large data.

2 Method

2.1 A New Multivariate SampEn and Spatio-Temporal Coherence
Mapping (STCM)

In SampEn, temporal coherence (or regularity) of a time series is measured by the
“logarithmic likelihood” that a small segment (within a window of a length ‘m’) of the
data “matches” with other segments will still “match” the others if the segment window
length increases by 1. “match” is defined by distance < r times standard deviation of
the entire time series (r is a constant). For each voxel of the preprocessed fMRI
(resting-state fMRI (rsfMRI) in this paper) data, let’s denote the signal as
x ¼ x1; x2; . . .xN½ �, where N is the number of rsfMRI timepoints. A series of data
segments (also called the embedding vectors) can be extracted from x: ut ¼
xt; xtþ 1; . . .xtþm�1½ � where t ¼ 1 to N�mþ 1. The number of embedded vectors
uj j ¼ 1 to N�m; and j 6¼ tð Þ whose distance from ut ðdistðuj; utÞÞ are less than r is
recorded by Bm

t rð Þ. dist(uj, ut) is often chosen to be the L-infinity norm of the difference
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uj � ut, i.e., max
l¼0�m

ujl � utl
�
�

�
� (ujl means the l-th element of uj). The same procedure is

repeated for the dimension m + 1 to get Bmþ 1
t rð Þ. Defining

Bm rð Þ ¼ 1
N�mð Þ N�m� 1ð Þ

XN�m

t¼1
Bm
t rð Þ ð1Þ

Am rð Þ ¼ 1
N�mð Þ N�m� 1ð Þ

XN�m

t¼1
Bmþ 1
t rð Þ ð2Þ

we can then calculate SampEn as:

SampEn m; r;N; xð Þ ¼ �ln
Am rð Þ
Bm rð Þ

� �

ð3Þ

While Eq. 3 provides a statistical way to quantify the coherence or order implicit in
the itinerant fMRI dynamics over extended periods of time, it doesn’t consider the
spatial coherence among neighboring voxels. To solve that problem, we introduce a
neighborhood S for each voxel and replace the scalar value xt (t = 1 * N − m + 1)
with a vector xt

* ¼ 8xt;s 2 S (all voxels in the neighborhood S of current voxel at
current timepoint t). Accordingly, each embedding vector turns into an embedding
matrix Ut whose columns indicate the consecutive timepoints and rows indicate the
voxel locations in the 3D neighborhood. To compare a pair of embedding matrices,
correlation coefficients between the column vectors at each column position from the
two matrices are calculated as the column-wise distance: CC(Ujl�;Utl�) (Ujl� indicates
the l-th column vector of the embedding matrix Uj). We then defined

distðUj;UtÞ ¼ max
l¼0�m

j1� CCðUjl�;Utl�Þj ð4Þ

which satisfies the metric function defining properties. In SampEn, the L-infinity norm
is compared with r, which however is arbitrarily defined. A large r may produce too
many matches and a small r can result in no matches. The corresponding SampEn value
will be either very close to 0 or underdefined (in latter situation). Instead of using such
a hard-thresholding (a Heaviside function) based embedding vector matching process:
defining a “match” if distance is less than r or no “match” otherwise, we calculated
1 − minimum CC of the m columns as the L-infinity norm of the two embedding
matrices and recorded the sum of (1 − CCmin(Uj, Ut)) j ¼ 1to N�m; and j 6¼ tð Þ as

Bm
t and then got Bm ¼ 1

N�mð Þ N�m�1ð Þ
PN�m

t¼1 Bm
t � Bmþ 1

t and Am were similarly

defined. Finally, we defined the new metric for characterizing the spatio-temporal
incoherence (STIC) of fMRI data as:

STIC ¼ ln
Am

Bm

� �

ð5Þ
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We used incoherence rather than coherence as the measure defined in Eq. 5 indi-
cates the irregularity similar to what entropy measures. The advantages as compared to
the univariate and multivariate SampEn are: (1) STIC considers both spatial and
temporal coherence, (2) STC doesn’t need the arbitrary cut-off threshold r, (3) because
CC function is independent of the data scale, so does STIC.

STC was implemented in C++ and CUDA (Nvidia). Video cards with graphic
processing units (GPU) (Nvidia 1080Ti) were used to accelerate the computing pro-
cess. In the following, we dubbed the process of calculating STIC at each voxel as STC
mapping (STCM).

2.2 Evaluations with Numerical Simulations

Synthetic data were generated to evaluate the proposed new multivariate SampEn –

STIC– for differentiating multivariate signal with known irregularity difference as
compared to the existing simple data concatenation based mSampEn [9]. Brain acti-
vations were generated by convolving a boxcar function with a canonical hemody-
namic response function (HRF, provided by SPM (https://www.fil.ion.ucl.ac.uk/spm))
and were assigned to the center voxel of a 5 � 5 voxel patch. For the other voxels, the
synthetic activations were weighted by the inverse distance of the voxel to the center
(weights are inversely dependent on the distance). Random noise was generated for
each voxel, convolved, and weighted by the voxel’s inverse distance to the center.
Purely random noise was also generated for the 5 � 5 voxels as a control dataset.
mSampEn was calculated with m = 3, r = 0.3. All 5 � 5 voxels were used for cal-
culating STIC.

2.3 Evaluations with rsfMRI Data from Human Connectome
Project (HCP)

We then applied STIC to preprocessed rsfMRI data from 917 healthy young subjects
(age: 22–37 yrs) obtained
from HCP [10]. Each sub-
ject had 4 resting scans
using the same multi-band
sequence[11]. The readout
direction was left to right
(LR) for 2 scans and right
to left (RL) for the other 2.
Imaging parameters were:
TR/TE = 720/33.1 ms, flip
angle = 52o, FOV = 208
180 mm, 2 mm isotropic
voxels, 72 slices, multi-
band factor = 8, 1200 TRs,
total scan time = 14:33.

Fig. 1. Irregularity of multivariate noise and signal identified
by mSampEn and STIC. Random noise means the HRF-
convolved random brain signal + random gaussian noise.
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All data were pre-processed by HCP and were registered into the MNI standard space.
The final volume size is 91 � 109 � 91. To suppress the residual inter-subject brain
structural difference after brain normalization and errors in rsfMRI data introduced by
brain normalization, a Gaussian filter with full-width-at-half-maximum (FWHM) = 6
mm was used to smooth the rsfMRI images. To reduce the computation burden, a
spherical neighborhood with a radius of 4.1 mm was empirically chosen, resulting in
33 neighboring voxels for each intracranial voxel. 3 computers with totally 7 GPU
cards were used to calculate STIC. Mean STIC maps of the first LR and RL scans and
the second LR and RL scans were calculated for the following analyses. For SampEn,
the parameters were chosen to be m = 3 and r = 0.3 based on literature.

Test-retest stability is an important performance index for any neurophysiological
measure. Using the HCP data, we calculated the test-retest stability of STIC using intra-
class correlation coefficient (ICC) [12]. STIC maps of the LR and RL from the same
subjects were averaged for the first and second scan separately. ICC at each voxel was
calculated by ICC = (MSb − MSw)/(MSb + MSw), where MSb represents between-
subject variance and MSw means within-subject variance. ICC varies between −1 to 1
with higher value meaning higher stability. ICC > 0.3 is often considered reliable.

Human brain presents significant age and sex effects on both structural and func-
tional measures [13–15]. To examine the potential age and sex effects on STIC, simple
regression was performed using SPM to calculate the correlations between STIC at
each voxel and age and sex.
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3 Results

3.1 Numerical Simulation Results

Figure 1 shows the irreg-
ularity calculation results
of the synthetic data.
Although mSampEn and
STIC both differentiated
the multivariate correlated
brain activation signal
(blue line) from the
uncorrelated random noise
(red line), STIC success-
fully revealed higher
irregularity in the pure
noise than that of the noise
contaminated signal as it
should be. By comparison,
mSampEn produced the
opposite irregularity (in-
coherence) contrast: higher
irregularity in signal but
lower in noise. When SNR
increased, STIC of noise
didn’t change but STIC of
signal consistently
decreased because of less
noise contaminations.
mSampEn of noise
decreased with SNR

though it should not be the case; mSampEn of signal didn’t monotonically changed
when SNR increased.

Fig. 2. Mean STIC maps of session 1 and 2 of the 917 young
healthy subjects from HCP. C is the ICC map (thresholded at
0.3) of the 917 subjects’ test-retest STIC maps. D shows the
same slices from a representative rsfMRI image volume.
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3.2 Mean STIC Map and Test-Retest
Stability of STIC

Figure 2 shows the mean STIC maps calculated
from the 917 healthy subjects recruited in the HCP
project. STIC was multiplied by 1000 for the pur-
pose of visualization, meaning that the highest STIC
was around 0.1. Highly similar mean STIC maps
were observed in the resting scan 1 ((LR + RL)/2)
and scan 2 ((LR + RL)/2) (Fig. 2A, 2B). Interest-
ingly, the STIC maps revealed very high structural
details of brain gyri and sulci, much finer than what
can be seen from the raw rsfMRI image (Fig. 2D).
Figure 2C is the ICC map thresholded by ICC >=
0.3. High test-retest stability was found in the entire
brain.

3.3 Sex Effects on STIC

Nearly identical sex difference of STIC was found in both rsfMRI sessions. For this
reason, only the results of session 1 were displayed. Figure 3 shows that women have
larger spatio-temporal incoherence of resting brain activity than men in most of cortices
and some sub-cortical areas including hippocampus, thalamus, and striatum. The sta-
tistical threshold was p < 0.05. Multiple comparison correction was performed using
the family-wise error (FWE) based method [16].

3.4 Age Effects on STIC

Nearly identical age effects of STIC was found in
both rsfMRI sessions. Figure 4 shows the corre-
lation between age and STIC identified from the
1st rsfMRI session. Significant (p < 0.05 FWE
corrected) positive age vs STIC correlation was
found in putamen, middle and superior temporal
gyri, and cerebellum. To further explore the
potential value of STIC for mental health, we
examined the correlation between STIC and cog-
nitive impairment as measured by the mini-mental
state examination (MMSE) [17]. The bottom right
slice in Fig. 4 shows the trend (p < 0.01 uncor-
rected for multiple comparison) of a positive
relationship between STIC and MMSE in
putamen.

Fig. 4. STIC was positively related
to age (P < 0.05 (FWE corrected)).
The right bottom slice shows the
positive relation between STIC in
putamen and MMSE score.

Fig. 3. Women have higher resting
STIC (spatio-temporal incoherence)
than men. P < 0.05 (FWE
corrected).
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4 Discussion and Conclusion

We presented a new method to measure the regional spatio-temporal incoherence.
Evaluations showed that the new STIC measure provided more reasonable incoherence
calculation results in terms of stable incoherence for the random brain signal con-
taminated by different levels of noise; lower incoherence for the pseudo brain activity;
stable incoherence for the pseudo brain activity when SNR increases. Applied to 917
young healthy subjects’ rsfMRI data, the new STCM method showed high test-retest
stability. Significant sex and age effects were observed.

Less sensitivity to noise of our method than the traditional method was a result of
explicitly utilizing spatial correlations. Our method yielded lower STIC in signal than
in noise as expected. Standard multivariate SampEn produced an opposite irregularity
result for the signal and noise mainly because of the ignorance of spatial correlations
among neighboring voxels during the sequential signal concatenations. This wrong
irregularity contrast (between signal and noise) was not caused by the similarity
threshold r involved in SampEn though different r will produce different SampEn. The
high ICC in the entire brain suggests STIC as a reliable brain feature, which is con-
sistent with the fine brain sulci structures identified in the whole brain STIC
map. Measures derived from function MRI often lack structural details and appear to be
blurring. To our best of knowledge, STCM is the first functional brain mapping
approach that can reveal brain patterns with high structural details. Females showed
high resting brain irregularity, which is consistent with a previous study [18]. Older
subjects had higher resting brain incoherence. The regions are mainly located in the
motion-related subcortical area (putamen and cerebellum) and memory-related region
(temporal gyri). The age effects may indicate a further maturity in the brain so fewer
voxels are needed and recruited to facilitate motion and memory function. Interesting,
even in those young (22–37 yrs) healthy subjects, STIC in putamen (one of the regions
presenting the strongest age effects of STIC) was related to mental health: higher STIC
corresponds to better mental state (higher MMSE). Together, the age effects and the
trend of a positive STIC vs MMSE suggest a beneficial high incoherence in the resting
brain. Although this seems a little counter-intuitive, it may indicate an increased energy
use efficiency when the brain is in a better status since coherent activity needs energy to
coordinate. Another reason for the beneficial higher STIC is that incoherence (or
irregularity) is related to entropy and then information capacity. Higher STIC may then
represent a better capability of processing the apparently everywhere information to
and from the brain. That may partly explain the high STIC in females too.

The neighborhood size was arbitrarily defined to reduce the computation burden.
While different neighborhood sizes may yield different STIC values, that effect should
be consistent across subjects and should not affect the cross-subject STIC analysis such
as the age and sex association analyses results. To verify that, we ran additional STCM
with two different neighborhood sizes: 27 and 83 voxels and observed similar results as
we reported in Results.
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Abstract. Comparative evolution studies can advance the understating of the
brain’s functional and structural mechanisms. Efforts have been denoted in the
literature to identify structural common connectome preserved between a pair of
species, such as macaques and humans. However, very few studies were
reported to identify species-preserved structural connections systematically and
simultaneously across more than two species at a connectome-scale. In this
work, we used diffusion MRI (dMRI) and Brodmann areas as established tools
to estimate the whole-brain connectome for three primates: macaque, chim-
panzee and human. We designed a sparse tensor canonical correlation analysis
(STCCA) algorithm to identify the connective components that are strongly
correlated among the three species. Joint analysis of the components can help to
identify the white matter pathways preserved among three species. These pre-
served connections are consistent with the existing neuroscience reports,
demonstrating the effectiveness and promise of this framework.

Keywords: Species comparison � Diffusion MRI � Large-scale connectome

1 Introduction

Brain comparison among primates and their evolution has been an intriguing research
topic for centuries. It could help understand the mechanisms of higher cognitive
function development and the evolution of the underlying structural substrates [1]. It is
found in the literature that some white matter axonal bundles or cerebral cortical
regions are preserved among macaques, chimpanzees and humans while others are
specific to one species, such as the language related Wernicke’s area and arcuate
fasciculus [1–4]. However, these existing studies mainly focus on a number of specific
fasciculus or brain regions, e.g. dorsal prefrontal lobe [1, 3, 5]. Also, most published
studies focused only on a pair of species but very few studies are found to provide a
comprehensive and systematic comparative method among a group (>=3) of species at
a connectome-scale.

In this work, we aim at identifying the structural connectome preserved among
three primate species. We adopted diffusion MRI (dMRI) and tractography approaches
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to estimate the whole-brain connectome based on Brodmann parcellation scheme,
which is widely used across primate brains. We then propose a modified data-driven
framework based on tensor canonical correlation analysis (TCCA) [6] that is capable of
decomposing the most correlated components among more than two views. In this
method, we feed the connectome of the three species to obtain the optimized weight
vectors so that the connective components associated with large weights are identified,
which yield strong correlation among species. Because the connective feature dimen-
sion is larger than subject numbers, a constraint is added to TCCA to control sparsity of
the weights so that overfitting could be relieved or eliminated. Based on a joint analysis
of the weights, we identify the species-preserved connections and the associated white
matter fibers. The effectiveness and promise of the framework have been evaluated by
cross-validation and the consistency with the reports in the literature.

2 Materials and Methods

Generally, as illustrated in Fig. 1, we use T1-weighted MRI and dMRI data to estimate
structural connectomes for each of the three species (Hs, Cs and Ms). Then, each
connective matrix for a subject is converted to a feature vector, such that the feature
vectors for a species compose a feature matrix (Xp, p ¼ 1� 3). Next, the sparse TCCA
algorithm is adopted to identify the canonical components that are strongly correlated
among the three species. We currently focus on the components with the strongest
correlation in this work, and three weight vectors up are consequently yielded, the
element of which corresponds to the element of the connectivity matrices. The weight
vectors are converted inversely to the matrix format, Up, which are jointly analyzed. As
so, we determine the connectivities co-existed in all weight matrices and extract the
corresponding dMRI derived fibers which are suggested to be preserved across species.

Fig. 1. The flowchart of the framework. (a) Data preprocessing steps. (b) Sparse tensor CCA
used to identify species preserved connections.

50 Z. He et al.



2.1 Datasets

Human Brain Imaging
The human brain data is from the Q1 release of WU-Minn Human Connectome Project
(HCP) consortium. T1 weighted structural MRI parameters are as follows: voxels with
0.7 mm isotropic, three-dimensional acquisition, TR = 2400 ms, TE = 2.14 ms, flip
angle = 8 deg, image matrix = 260 � 311 � 260. The dMRI used in spin-echo EPI
sequence, TR = 5520 ms; TE = 89.5 ms; flip angle = 78 deg; refocusing flip angle =
160 deg; Fov = 210 � 180; matrix = 168 � 144; spatial resolution = 1.25 mm �
1.25 mm � 1.25 mm; echo spacing = 0.78 ms. Diffusion-weighting gradients applied in
90 directions on 3 shells of b = 1000, 2000, 3000 s/mm2, respectively.

Chimpanzee Brain Imaging
Chimpanzee subjects are from the National Primate Research Center. For T1-weighted
MRI data, they optimized at 3T used a TR = 2400 ms, TE = 4.13 ms, flip angle = 8
deg, an image matrix = 256 � 256 � 192, and resolution = 1.0 � 1.0 � 0.8 mm3.
For dMRI data, the spatial resolution is 1.8 � 1.8 � 1.8 mm3; TR = 5900 ms; TE =
84 ms; Fov = 130 � 130 mm; diffusion-weighting gradients applied in 60 directions
and b value of 1000 s/mm2.

Macaque Brain Imaging
Macaque subjects are from a publicly available resource at University of California
Davis (http://fcon_on_1000.projects.nitrc.org/indi/indiPRIME.html). The dataset
includes diffusion MRI and T1 weighted MRI data from 19 macaques. The voxel
resolution of T1-weighted structural MRI is 0.3 � 0.3 � 0.3 mm3, three-dimensional
acquisition, TE = 3.65 ms, TR = 2500 ms, TI = 1100 mm, flip angle = 7 deg, image
matrix = 480 � 512 � 512. The basic parameters for dMRI data acquisition are: voxel
resolution of 1.4 � 1.4 � 1.4 mm3, TE = 115 ms, TR = 6400 ms, slice gap = 1.4
mm. Diffusion weighted data consisted of 2 shells of b = 800, 1600 s/mm2 interspersed
with an approximately equal number of acquisitions on each shell.

2.2 Data Preprocessing

After data quality control, we select 15 subjects from each species dataset. For T1-weighted
MRI of human and chimpanzee, skull removal is performed automatically via FSL [7]. For
macaque, skull removal is manually conducted. FSL-fast is used to complete tissue seg-
mentation, based on which we reconstruct white matter cortical surface via FreeSurfer [8].
To align the surface to dMRI space, T1-weighted MRI image is linearly and nonlinearly
warped to b0 map of dMRI via FSL-flirt and FSL-fnirt in sequence. The linear transfor-
mation matrix and the nonlinear warp field are then applied to the surface. For dMRI data,
skull removal and eddy currents are performed via FSL. The model-free generalized Q-
sampling imaging (GQI) method [9] in DSI Studio is adopted to estimate the density of
diffusing water at different orientations. The deterministic streamline tracking algorithm
[10] in DSI Studio is used to reconstruct 4 � 104 fiber tracts for each subject using the
default fiber tracking parameters (max turning angle = 60o, streamline length between
30 mm and 300 mm, step length = 1 mm, quantitative anisotropy threshold = 0.2).
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2.3 Structural Connective Connectome Construction

DMRI streamline fibers and white matter surfaces are used to construct the structural
connectivity matrices (Fig. 1(a)). We use Brodmann areas parcellation scheme as a test
bed to develop and evaluate our framework. For human and chimpanzee, template T1-
weighted MRI are nonlinearly warped to individual spaces via FSL-fnirt [7], such that
Brodmann atlas can be warped to individual spaces accordingly and mapped to the
white matter surfaces. For macaque data, white matter surfaces are warped to the ‘F99’
macaque atlas space via surface registration method [11]. The Brodmann parcellation is
then mapped back to individual surfaces. Because the fibers and the surface with
Brodmann atlas are in same space for each individual, we use the Brodmann areas
(BAs) as the node to construct structural connective matrix for each individual (Hs, Cs
and Ms in Fig. 1(a)). The numbers of fiber tracts connecting two BAs are defined as the
connective strength between them. Finally, within each species, the upper triangular
part of each individual matrix is converted to a feature vector and those vectors of all
subjects comprise a feature matrix (Xp in Fig. 1(b)), which is used in the next section to
develop the sparse tensor CCA analysis method.

2.4 Sparse Tensor Canonical Correlation Analysis (STCCA)

As illustrated in Fig. 1(b), the feature matrices for three species are Xp
� �m

p¼1 �Xp ¼
xp1; xp2; . . .; xpN
� �

is a d � N matrix. In our problem, m ¼ 3, N ¼ 15 and each column
is a vector converted from the structural connective matrix. The variance matrix for a
species is as follows after Xp is centered (zero mean):

Cpp ¼ XpXT
p ¼ 1

N

XN

n¼1
xpnx

T
pn; p ¼ 1; 2; 3 ð1Þ

The covariance tensor among all species is as

C123 ¼ 1
N

XN

n¼1
x1n � x2n � x3n ð2Þ

where � is the tensor (outer) product and C123 is a tensor of dimension d � d � d.
Similar to the conventional CCA, the objective of tensor CCA (TCCA) is to maximize
the correlation between the canonical variables zp ¼ XT

php

argmax
hpf g

q ¼ corr z1; z2; z3ð Þ ¼ z1 � z2 � z3ð ÞTe s:t: zTp zp ¼ 1; p ¼ 1; 2; 3 ð3Þ

where hp is the canonical vector, � is the element-wise product of the canonical
correlation and e is an identity vector. The optimization problem is demonstrated in [6]
to be equivalent to the following one:

argmax
upf g

q ¼ C123�1hT1�2hT2�3hT3 s:t: h
T
pCpphp ¼ 1; p ¼ 1; 2; 3 ð4Þ
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where �1 is the p-mode contracted tensor-vector product. To control the model
complexity, the regularization term is introduced eCpp ¼ Cpp þ2I, where I is an
identity matrix and 2 is a trade-off parameter. By using the substitution

and up ¼ eC�1=2
pp hp, the problem is converted to its

final form

ð5Þ

where the l1-norm k up
�� ��

1 is added to control the sparsity of the canonical vector. The
solution to this problem is to find the best rank-1 approximation of , which is
fulfilled by the alternating least square algorithm [12]. Finally, the weight vectors {up}
are converted inversely to the matrix format {Up}(the last column in Fig. 1(b)), which
are of the same size of the original connective matrices (Hs, Cs and Ms in Fig. 1(a)).

3 Results

3.1 Cross-Validation

Currently, only the ipsilateral connections are studied. Contralateral Brodmann areas
with the same label are assumed to have the same brain function. Leave-one-out tests
are adopted to evaluate the reproducibility of Ups, where 14 subjects are randomly
selected from each species as ‘training’ samples to yield weight matrices Ups. This test
is repeated for 50 times. In Fig. 2, we show the optimized Ups from 5 tests. The
observable consistency demonstrates Ups are robust to the inter-individual variability.

Fig. 2. The weight matrices Ups of five tests yielded by leave-one-out cross-validation. The
standard errors of all Ups of all leave-one-out tests are shown on the right side.
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In each test, Ups are also applied to the remaining ‘testing’ samples to transform them
to the canonical space as canonical variables zp and the Pearson correlation coefficients are
computed between them. The averaged correlation coefficient values on the 50 tests are
0.60 ± 0.16, 0.52 ± 0.14 and 0.70 ± 0.15 for human-chimpanzee pair, human-
macaque pair and chimpanzee-macaque pair, respectively, suggesting the existence of
common connectomes across species and they can be detected by our methods.

The sparsity parameter k = 2 is selected from a pool of [0 10] with interval of 0.1. It
yields the highest inter-species correlation after Xps being transformed to the canonical
space by ups. It is noted that only the 1st canonical component is analyzed in this work.

3.2 DTI Tracts Comparison Between Human and Macaque

Fig. 3. The preserved connections and DMRI fibers among all the three species (left column),
between human and chimpanzee (H&C, middle column) and between chimpanzee and macaque
(C&M, right column). In each column, the corresponding fiber bundles across species have the
same color. The preserved connections highlighted by numbers are interpreted in the texts.
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The mean Ups are obtained by averaging those from the leave-one-out cross-validation
results in Sect. 3.1. Because the connectivity matrices of the three species are con-
structed on the same parcellation scheme, we can identify the preserved connections
among species by overlapping Ups. The top-left corner of Fig. 3 is the overlapped
weight matrix among all the three species (white elements indicate their co-existence
on all species). Three clusters on the matrix are observed. Cluster #1 consists of the
connections among somatosensory and motor related cortices (BA1–7). Cluster #2
consists of the connections between motor related cortices (BA6–8) and BA9 which is
engaged with some higher order functions, such as short term memory [13], attributing
intention [14] and etc. There are some scattered off-line connections, such as the ones
between motor cortices and superior temporal cortices (BA22). In the middle column,
we show the connections that only exist in human and chimpanzee. Most of such
connections are linked to anterior prefrontal cortex/orbitofrontal cortex (BA10–11).
Cluster #1 consists of the connections between BA10–11 and somatosensory
cortices/motor related cortices (BA2–4, 6). Cluster #2 consists of the connections
within BA10–11. Cluster #3 consists of the connections between BA10–11 and visual
cortices (BA18–19)/temporal lobes (BA20–21). For chimpanzee-macaque pair (the
right column), the preserved connections in Cluster #1 consist of connections within
somatosensory and motor related cortices (BA1–7). Other scattered connections
include those within visual cortices (Cluster #2) and those between motor cortex and
cingulate cortex (Cluster #3), which is engaged with functions such as error detection
and attention [15].

In summary, the connections preserved among all the three species and those
preserved between chimpanzee and macaque are mostly associated to the lower-order
cortices, such as somatosensory, motor and visual cortices. This observation is also
supported by previous reports, such as [4], where no significant phylogenetic difference
was found for BA4. In contrast, those preserved between human and chimpanzee are
associated with higher-order cortices, such as anterior prefrontal cortex/orbitofrontal
cortex, which is engaged with functions, such as processing rewards, decision making
and etc [16, 17]. This observation is in concordance with previous reports, such as [5],
where the prefrontal connections to the posterior brain regions were suggested to be
enhanced during the course of brain evolution. These comparative results partially
reflect the upgrading trend of brain functions from lower primates to higher ones.

4 Conclusion

In this work, the dMRI derived structural connectomes are estimated from brains of
three primates. The comparative studies of the connectomes among these three species
are performed based on the modified sparse tensor CCA algorithm, based on which the
sparse weights which yield strong correlated canonical components among species are
jointly analyzed among the three species. Structural connections and white matter fiber
bundles preserved across species and along the evolution line are identified and
interpreted, which also find supports from previous literature reports, demonstrating the
effectiveness and promise of this framework. Our works offer novel insights into the
species-preserved organizational architectures of primate brains and their evolution.
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Abstract. Cortical folding has been demonstrated to be correlated with brain
connective diagrams and functions. Identifying meaningful cortical folding
patterns and landmarks could be valuable for understanding the relation between
brain structure and function, the mechanism of brain organization. It also
facilitates brain disease studies such as autism spectral disease (ASD), which in
turn provides valuable clues to relate the abnormal folding morphology to
abnormal brain function. Recently, a novel cortical folding pattern was identi-
fied, which is the conjunction of multiple gyri, termed as a gyral hinge. The
uniqueness and importance of such a pattern lie in its maximal cortical thick-
ness, axon density and functional complexity. However, the morphology of this
pattern is not explicitly studied and related to brain structure and function on
either healthy or diseased brains. In this study, we conduct a comparative MRI
study between control group and ASD group in their gyral hinge morphology.
The identified difference in morphology and spatial distribution is associated
with the reported functional and cognitive differences. Our results demonstrate
that gyral hinges could be related to brain functions on disease brains and used
as potential predictors.

Keywords: Gyral hinge � Autism spectral disease � Cortical morphology

1 Introduction

Cortical folding patterns have been demonstrated to correlate to brain connective
structure and function [1, 2]. Quantitative description of folding patterns could help
investigate the relationship between brain structure and function [3], and could further
facilitate brain disease studies, such as autism spectral disease (ASD), which has cortical
structure abnormality resulting from malfunction of a single or a couple of brain
developmental processes, and is accompanied by cognitive problem [4]. Such a brain
disease in turn provides a valuable chance to study the relation between altered brain
structure and function. Along this line, we identify a novel cortical folding pattern,
which is located at the conjunction of multiple gyri, term gyral hinges (Fig. 1(c)). It is
noted that hinges having more than four arms are rarely seen, and we thus focus on those
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with three arms and use 3-hinges to denote them. The importance of 3-hinges is
embodied in their maximal cortical thickness [5], axon density [6] and functional
complexity [7]. These observations suggested that 3-hinges could be cortical hubs from
both structural and functional perspectives. Morphology of 3-hinges were quantified in a
recent work [8] by clustering them to different shape groups. This study provided an
analysis approach but was only applied to health subjects and the morphology of 3-
hinges was only related to their locations and global landscapes. Only developmental
mechanism was inferred but not their relation to brain structure and functions.

In this study, we conduct an MRI study and aim at exploring whether 3-hinges are
different between control group and ASD group in their morphology. By means of the
automated data-driven pipeline in [8], we identify 3-hinges on all subjects and compute
their morphological features. Then, we cluster all of them from both control and ASD
groups to shape groups. Shape patterns having different proportions between groups are
selected. Their morphology and spatial distribution are further studied and associated
with the group difference in the respective of brain function and cognition reported in
the literatures.

2 Materials and Methods

2.1 Datasets and Preprocessing

We use the NYU Langone Medical Center: Sample 1 data of Autism Brain Imaging
Data Exchange (http://fcon_1000.projects.nitrc.org/indi/abide/). It includes MR scans of
33 autism subjects and 20 healthy subjects. All subjects were scanned on a 3 T Siemens
Allegra. Currently, only the T1-weigthed MRI data was used. Important MRI param-
eters are: TR = 2530 ms, TE = 3.25 ms, Flip angle = 7 deg, FOV = 256 � 256 mm,
In-plane resolution = 1.3 � 1.0 mm2, Acquisition Time = 8 min:07 s. We use the
FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) to reconstruct white matter surfaces.

In general, the methods consist of four major steps: (1) identification of 3-hinges on
the white matter surfaces; (2) computation of 3-hinge morphological features and the
similarity between them; (3) shape clustering via a large-scale spectral clustering method
[9]; (4) comparison between control group and ASD group in terms of the shape clusters.

2.2 3-Hinges Detection

We adopt the automatic 3-hinge detection pipeline developed in [8]. To make the paper
self-contained, we provide a brief summary of the pipeline (Fig. 1).

The pipeline consists of two steps:

(1) White matter surface gyralnet detection (Fig. 1(b) and (d)–(f)): First, a smoothed
and inflated mid-line that separates gyri from sulci, term “mid-surface” [10] is used
to define gyral altitudes. A surface vertex has positive altitude value when it is above
the “mid-surface”, otherwise has negative value (Fig. 1(d)). Second, we apply the
watershed algorithm in [11] on the gyral altitude map to separate the gyral regions
and sulcal regions (Fig. 1(e)). Next, the tree marching algorithm is adopted that
starts from the centers of gyral regions to neighbors to connect gyral vertices till the
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borders between gyri and sulci are reached, such that a tree-shape graphs on the
entire gyral regions is obtained. Finally, the redundant branches of the graphs are
pruned, and the left main branches are defined as gyralnet (Fig. 1(b) and (f)).

(2) 3-hinges detection (Fig. 1(c)): the intersection vertices of the three branches on the
gyralnet are defined as 3-hinges (highlighted by red bubbles in Fig. 1(c) and (g)).
For all the 3-hinges, we empirically use r = 5 mm as the threshold to extract the
three arms from the gyralnet (the black curves in Fig. 1(c)), such that they could
provide enough information to develop morphological features in the next section.
Those 3-hinges whose arms are less than 5 mm are discarded.

2.3 3-Hinges Morphological Feature

Before the feature development, a few preprocessing steps are conducted on 3-hinges.
The three arms of the 3-hinges are smoothed by replacing the current vertices coor-
dinates with the average of all vertices coordinates within its 1st order neighborhood.
Then, 10 vertices are resampled on each arm with equal spacing. The coordinates of all
arm vertices are adjusted to the same coordinate system. For this coordinate system,
z-axis is represented by the surface normal on the hinge center. For x-axis, the principal
component analysis (PCA) is applied to all the coordinates. The primary direction
projected to the plane perpendicular to the z-axis is defined as y-axis.

Fig. 1. 3-hinges detection pipeline. Surfaces in (a), (b), (c), (d) and (g) are color coded by gyral
altitudes. Blue color indicates positive altitude and red indicates negative altitude. Red dots in
(e) indicate the gyral regions while green dots indicate the sulcal regions. Black curves in (b) and
(c) are the gyralnet. (g) is an enlarged view of the region highlighted by white circle in (c), and
the red bubbles in them indicate the locations of 3-hinges and the black curves are the three arms
of the 3-hinges extracted from gyralnet in (b). (Color figure online)
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After these processing steps, we extract 3 vertices (the 3rd, 6st and 9st) from each
arm as representors (9 vertices in total), and the coordinates of which, a 1 � 27 vector,
are used to develop a novel rigid transform invariant morphological feature. The feature
concludes six triplets f ¼ t10; t20; t30; t

p
10; t

p
20; t

p
30

� �
, where triplet tk includes the three

edge length values of the kth vertices on three arms, and tpk represents the projection of
three branches on the x� y plane. Based this feature, the similarity between two
morphological features is defined as:

s i; jð Þ ¼
Y6

k¼1

sði; jÞk

sði; jÞk ¼1� ak tk;i � tk;j
����
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����� �
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2.4 Large-Scale Spectral Clustering on Morphological Similarity Matrix

Based on the definition of morphological feature and similarity, we construct a simi-
larity matrix for all 3-hinges. It is worth noting that all 3-hinges from both control
group and ASD group are included in order to obtain a clustering result that applies to
both groups.

We apply the large-scale spectral clustering method [9]. To determine the optimal
cluster number, 4 thresholds (0.005, 0.01, 0.025, 0.05) are adopted to adjust the
sparsity of the similarity matrix. For each sparse similarity matrix, we use 5 predefined
clustering numbers (10, 20, 30, 40, 50). For each clustering parameter option, a sil-
houette coefficient [12] is obtained for each sample based on the clustering result. The
mean silhouette coefficient is adopted to evaluate the clustering performance for each
parameter option. A larger value indicates a better performance.

2.5 Data Analysis

To identify the shape patterns that differs between control group and ASD group in
numbers, we perform either ‘left tail’ or ‘right tail’ two-sampled t-test for each shape
cluster to see if the number of it in control group is significantly greater or fewer than
ASD group. The null hypothesis for the left tail t-test is that the mean value of ASD is
larger than control and is another way around for the right tail t-test. The spatial
distribution patterns of the 3-hinge locations of those identified shape patterns are
studied by using Desikan-Killiany parcellation scheme [13] as the reference.
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3 Results

3.1 3-Hinge Shape Clustering Results

In total, 24881 3-hinges are automatically extracted from 53 subjects (33 ASDs, 20
controls). The optimal cluster number is 20 and the optimal sparsity control parameter
is 0.005. The 20 shape clusters are shown in Fig. 2.

3.2 Distinctive Shape Patterns

On average, control group has significantly more cluster #2 and cluster #12 3-hinge
shape patterns than ASD group (red shades in Fig. 2), while has less cluster #11, #13

Fig. 2. Illustration of shapes of the 20 shape cluster centers. Red shade highlights those which
are more on control group, while yellow shade highlights the ASD > control ones. The
percentage of each cluster is listed in brackets. (Color figure online)
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and #17 shape patterns than ASD group (yellow shades in Fig. 2). To investigate the
spatial distribution of these distinctive patterns, we adopt Desikan-Killiany parcellation
as the reference. On each brain site, the 3-hinge number for each shape cluster is
averaged across subjects within each group. Figure 3 shows the spatial distributions of
the 5 distinctive shape patterns on all the brain sites. Superior frontal gyrus and middle
frontal gyrus are identified as the two of the typical gyri where the distinctive patterns
are densely located. Within the two gyri, it is interesting that the ASD < control
patterns (red panel) are located relatively more on middle frontal gyrus while the
ASD > control patterns (yellow panel) are located more on superior frontal gyrus.

Fig. 3. The spatial distribution of the 5 distinctive shape patterns. In the left panel, brain sites
(x-axis) in Desikan-Killiany parcellation scheme are used as the reference to show the numbers of
the shape clusters averaged over all subjects within each group. The average numbers are also
mapped to the example surfaces on the right panel. Two typical brain sites: superior frontal gyrus
(SFG) and middle frontal gyrus (MFG) are highlighted. 3 h is short for 3-hinge. The color shades
are of the same as the ones in Fig. 2. (Color figure online)
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Based on the spatial distribution histograms in Fig. 1, we compare the 20 shape
clusters within and between the two groups by using Pearson correlation coefficient as
the similarity between two spatial distributions. The similarity results are shown in
Fig. 4. Comparisons within ASD group and control group are in the top-left quarter and
bottom-right quarter, respectively. The other two quarters are the cross-group com-
parison. It is seen that the distributions of the 15 3-hinge patterns that are common in
both groups are similar to each other either within group (blocks 3, avg.: 0.85 ± 0.10
and 6, avg.: 0.84 ± 0.10) or across groups (block 9, avg.: 0.84 ± 0.1008). But the
distribution of the 5 distinctive 3-hinge patterns is more different from the common ones
in control group (block 5 with smaller avg. correlation coefficient, avg.: 0.78 ± 0.10)
than in ASD group (block 2, avg.: 0.81 ± 0.10). P-value of t-test between blocks 2 and
3 is 0.03 while the one between blocks 5 and 6 is 4.24 � 10−4. These results suggest that
the spatial distribution of 3-hinge patterns tend to be homogenous on ASD group in
contrast to the control group.

Fig. 4. The spatial distribution comparison between the 20 shape clusters on control and ASD
groups. Pearson correlation coefficient is used as the similarity between the spatial distribution
patterns. Dash lines separate the 20 shape clusters between ASD group and control group. Solid
lines separate the 5 distinctive shape clusters (Dis) and the 15 common clusters (Com). The
blocks highlighted by numbers are interpreted in the texts.
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4 Conclusion

We compare the morphological patterns of 3-hinges between healthy brains and ASD
brains. Five 3-hinge shape patterns distinctively between groups are identified and they
are mostly found in the gyri in frontal lobes, which is in line with the previous reports
that abnormal cortical folding was found in the frontal lobes [14] and with cognitive
reports that malfunction in executive control network, heavily located in the frontal
lobes [15]. In our previous works, 3-hinges were suggested to serve as functional hubs
in the cortices. Alteration of them could suggest that critical information distributing
among cortical patches or axonal pathways could be different from controls, which
might provide more clues to understanding the abnormality of ASD brain function and
cognition. Also, the spatial distributions of all 3-hinge pattern tend to be homogeneous
on ASD brain, which could provide some new clues to investigate the formation of the
abnormal cortices from the brain developmental and mechanical perspectives.
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Abstract. For decades, task-based functional MRI (tfMRI) has been widely
used in exploring functional brain networks and modeling brain activities.
A variety of brain activity analysis methods for tfMRI data have been devel-
oped. However, these methods are mainly shallow models and are limited in
faithfully modeling the complex spatial-temporal diverse and concurrent func-
tional brain activities. Recently, recurrent neural networks (RNNs) demonstrate
great superiority in modeling temporal dependency signals and autoencoder
models have been proven to be effective in automatically estimating the optimal
representations of the original data. These characteristics meet the requirement
of modeling hemodynamic response patterns in tfMRI data. In order to take the
advantages of both models, we proposed a novel unsupervised framework of
deep recurrent autoencoder (DRAE) for modeling tfMRI data in this work. The
basic idea of the DRAE model is to combine the deep recurrent neural network
and autoencoder to automatically characterize the meaningful functional brain
networks and corresponding diverse and complex hemodynamic response pat-
terns underlying tfMRI data simultaneously. The proposed DRAE model has
been tested on the motor tfMRI dataset of HCP 900 subjects release and all
seven tfMRI datasets of HCP Q1 release. Extensive experimental results
demonstrated the great superiority of the proposed method.
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1 Introduction

Task-based functional magnetic resonance imaging (tfMRI) has been a powerful and
popular noninvasive neuroimaging methodology for the study of brain activity patterns
and cognitive behaviors of the human brain [1]. To model the very informative but
complex tfMRI time series data, a variety of brain network reconstruction and
hemodynamic response modeling techniques have been developed in the literature.
These methods include model-driven methods such as the general linear model
(GLM) [2], and data-driven methods like principal component analysis (PCA) [3],
independent component analysis (ICA) [4] and sparse representation/dictionary
learning methods [5–7]. In general, these methods reconstructed hundreds of mean-
ingful functional brain networks and corresponding hemodynamic response patterns
from tfMRI datasets and greatly advanced our understanding of the regularity of brain
activities [2, 5].

However, the ability to represent and describe the tfMRI data still limited the per-
formance of hemodynamic response patterns modeling. Therefore, developing a
descriptive model that can sufficiently deal with diverse and complex tfMRI data, as well
as large noises, is the key towards automatic, effective and accurate modeling of those
hemodynamic response patterns in tfMRI data. Under tfMRI condition, participants need
to participate in predefined sequential tasks during the whole scan session and the
functional brain activity is modulated from the interactions of brain networks in different
time periods, which quite coincides with the characteristics of recurrent neural network
(RNN) models [8]. Therefore, it is straightforward and justified to adopt RNNs to explore
and represent hemodynamic response patterns. RNNs are feed forward neural networks,
which can use their internal memory units to process arbitrary sequences of inputs and
model the sequential and time dependencies. They are connectionist models with the
ability to selectively pass information across sequence steps. In order to characterize the
tfMRI brain activities, a deep recurrent neural network (DRNN) model [9] was proposed
to reconstruct the whole brain tfMRI signals from stimulus task design patterns. This
framework not only identified typical brain networks by traditional methods (e.g.,
GLM), but also simultaneously obtain a variety of temporal brain activity patterns at
multiple time scales. These results proved the great advantage of RNN model in char-
actering the temporal dependency signals in tfMRI data. However, the DRNNmodel still
highly relies on the prior knowledge of task stimulus patterns which greatly limited the
analysis power of the model.

In order to overcome current limitations in DRNN model, in this study, we pro-
posed a novel unsupervised framework of deep recurrent autoencoder (DRAE) for
modeling diverse and complex hemodynamic response patterns in tfMRI data. The
basic idea is combing the DRNN model and autoencoder to automatically estimate the
optimal task stimulus patterns of the tfMRI data and reconstruct the meaningful
functional brain networks simultaneously. Autoencoder [10] is an unsupervised model
that automatically learns a latent or compressed representation of the input data by
minimizing the error between the input and its reconstruction. In this study, we take
advantage of the autoencoder to automatically estimate the task stimulus patterns from
the original tfMRI data. When the model is converged, the learned weight matrix
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between the FC layers and reconstructed signals represents the spatial distributions of
functional brain networks underlying the tfMRI data and the output of the top RNN
layer in decoding part represents the diverse and complex hemodynamic response
patterns under the task condition. We adopted the motor tfMRI dataset of HCP 900
subjects release and the whole HCP Q1 release tfMRI datasets as test beds. Extensive
experimental results demonstrated that the proposed DRAE model can not only
automatically estimate the task stimulus patterns, but also reconstruct the meaningful
functional brain networks and corresponding complex and concurrent hemodynamic
response patterns with different time delays.

2 Materials and Methods

2.1 Data Acquisition and Pre-processing

The Human Connectome Project (HCP) dataset has been considered as one of the most
systematic and comprehensive neuroimaging datasets. Importantly, this dataset is
publicly available which makes it a good test bed for different research studies. The
design paradigms are available in [11]. There are 68 subjects in HCP Q1 release dataset
and over 800 subjects in HCP 900 subjects release dataset. The detailed acquisition
parameters of these HCP tfMRI data are as follows: 220 mm FOV, in-plane FOV:
208 � 180 mm, flip angle = 52, BW = 2290 Hz/Px, 2 � 2�2 mm spatial resolution,
90 � 104 matrix, 72 slices, TR = 0.72 s, TE = 33.1 ms. The preprocessing of the task
fMRI data sets includes skull removal, motion correction, slice time correction, spatial
smoothing, and global drift removal (high-pass filtering). All these preprocessing steps
were implemented in FSL FEAT. All of these individual fMRI datasets are first reg-
istered to the MNI common space for further study.

2.2 Deep Recurrent Autoencoder

Fig. 1. Pipeline of the DRAE model. (a) Signal matrix of whole brain tfMRI signals. (b) The
encoder which consists of a fully connected layer and deep RNN layers. (c) Extracted features
maps. (d) The decoder which consists of deep RNN layers and a fully connected layer. (e) Matrix
of reconstructed whole brain signals.
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The proposed deep recurrent autoencoder (DRAE) model is summarized as Fig. 1. It
consists of two components, the encoder (Fig. 1(b)) and the decoder (Fig. 1(d)). First,
for each subject, the extracted and normalized whole brain tfMRI signals are aggregated
into a big signal matrix (m voxels’ signals with t time series, Fig. 1(a)). During the
encoding stage, the signal matrix is compressed and mapped into a lower dimensional
subspace representing a latent structure through a fully connected layer ([m, k], k < m),
and then propagated through stacked RNN layers (k input units and n output units) to
extract a feature map (n features with t time series, Fig. 1(c)). Next, the decoder passes
the extracted feature map through another group of stacked RNN layers (n input units
and k output units) to simulate diverse and complex brain activities and then maps the
output of the top RNN layer into higher dimensional space (same as the original signals)
by a fully connected layer ([k, m]) to reconstruct the whole brain signals (Fig. 1(e)).
Specifically, the sequential output of each unit in the top RNN layer represents a
temporal brain activity pattern and the corresponding weight vector in the fully con-
nected layer which connects this unit to the reconstructed signals represents the spatial
distribution of a functional brain network. The objective of the DRAE model is to
minimize the reconstruction errors over all subjects of the training dataset, and the entire
training progress is completely data-driven and unsupervised.

2.3 Estimation of Hemodynamic Responses

In order to further explore the hemodynamic brain response patterns, for each feature,
we replaced the feature map with a testing one (Fig. 2(a)) by keeping one selected
feature a single impulse and setting the others to zeros, and propagated it through the
trained decoder. The decoder was stimulated by the impulse and simulates the brain
activities, and the output of each unit in the top RNN layer (Fig. 2(b)) represents the
hemodynamic response of the corresponding functional brain network to the certain
feature.

Fig. 2. A sketch map of exploring derive hemodynamic response patterns. (a) Testing feature
map which keeps one feature a single impulse and set the others to zeros to stimulate the trained
decoder. (b) Output of each unit in the top RNN layer representing the hemodynamic response
patterns to the certain feature.
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3 Experimental Results

In this work, the training was applied on the DRAE model with 2 RNN layers of 32
LSTM units and a feature size of 16. To be specific, we extracted 244,341 voxels’
signals for the motor tfMRI dataset of HCP 900 subjects release and 223,945 voxels’
signals for the HCP Q1 release tfMRI dataset. During the training stage, all subjects’
signals were used during the training stage, since training on grouped subjects’ data
will help avoid overfitting and either L1- or L2-norm regularization will increase the
training loss rapidly, only MSE was taken as the loss function.

3.1 Interpretation of Feature Maps and Spatial Patterns

After training of the DRAE model, a group of feature maps can be obtained for each
subject. That is, the whole brain activities can be divided and represented by several
feature activities. Since individual feature maps are unique, we work out group feature
maps by calculating the group-average values for further interpretation. Among these
group-averaged feature maps, a few feature maps which are quite correlated with the
task design patterns were identified, as shown in Fig. 3, which suggests that the DRAE
model has the ability to extract the whole brain activities to a lower dimensional
representation.

When the model is converged, we can also obtain a trained weight matrix of the
fully connected layer from the decoder. Specifically, each vector of the weight matrix
represents the spatial distribution of a typical functional brain network. Figure 4
illustrates a few identified functional brain networks on the motor task of HCP tfMRI
datasets using the DRAE model. As shown, the DRAE model can identify similar
functional brain networks for almost all task designs and high spatial overlap rates
suggest the reliability of the proposed method. Specifically, the spatial overlap rate is
defined as the intersection of the identified brain networks and corresponding GLM
activation results. However, the DRAE model was trained in a completely unsuper-
vised process and the functional brain networks can be obtained without prior
knowledge of the task designs. These results demonstrates the superiority of the pro-
posed method in modeling functional brain networks.

Fig. 3. Visualization of individual feature maps and group-averaged feature maps of motor task.
Task design stimuli and their corresponding HRF responses are also shown for comparison.
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3.2 Hemodynamic Response Patterns

Fig. 4. Visualization of identified functional brain networks by the DRAE model. The GLM-
derived group-wise activation maps are shown for comparison. M1–M6, S1 and S2 represent
different task designs in motor and social tfMRI datasets, respectively. Last column O represents
spatial overlap rate.

Fig. 5. A few typical and HRF-correlated hemodynamic response patterns.
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After model training, the feature maps represent the task stimulus patterns of the whole
brain signals and these signals can be reconstructed from this feature maps. The
decoder simulates the complex brain activities with its hierarchical inner cells of
stacked RNN units. Diverse hemodynamic response activities are invoked by these
features, thus the output of each unit in the top RNN layer just represents a temporal
response pattern.

When the formatted feature maps were passed through the decoder as described in
Sect. 2.3, both positive and negative response patterns were obtained. These response
patterns look similar to the theoretical HRF responses but have different shapes and
time delays. Figure 5 detailed shows a few typical and HRF-correlated hemodynamic
response patterns. There are several minor differences among these patterns, for
example, they have different raising speed when meeting the impulse; some patterns
start falling down after a period of time while some don’t fall down until the falling
edge of the impulse; some patterns have significant undershoots while some don’t have.
These hemodynamic response patterns are all possible and meaningful brain activity
patterns which are more specific but still interpretable, which suggests that the pro-
posed DRAE model can obtain many more meaningful brain activities through an
unsupervised method on unlabeled datasets. In order to further analyze the hemody-
namic response patterns, we drew the delay estimation maps trained on the DRAE
model with different depths of RNN layers (Fig. 6). Table 1 represents the average
values and standard deviations of the response delays. Since positive and negative
responses have similar response time delays, the negative response patterns were
inverted when calculating the response delays. For the DRAE model with just one
RNN layer, peak delays are almost before the falling edge (12.29 s delay) of the

Fig. 6. Estimation of the hemodynamic response delays. X-axis represents delay of peaks, Y-
axis represents delay of undershoots; red dots indicate positive response patterns, blue dots
indicate negative response patterns; solid lines represent raising edge of the testing impulse and
dashed lines represent falling edge of the testing impulse. Subfigures (a) to (f) show the results of
1, 2, 3, 4, 6 and 8 RNN layer(s), respectively. (Color figure online)
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impulse, since the network is very simple. As RNN depth goes deeper, response peaks
have larger time delays around the falling edge and larger standard deviations. These
response patterns also have various undershoots delays. In general, with deep recurrent
layers, the DRAE model is able to estimate diverse and complex hemodynamic
response patterns.

4 Discussion and Conclusion

In this work, we proposed a novel framework of deep recurrent autoencoder (DRAE)
for modeling diverse and complex hemodynamic response patterns and functional brain
networks. The proposed DRAE model combines the deep recurrent neural network
(DRNN) model and autoencoder to automatically estimate the optimal task stimulus
patterns of the tfMRI data, reconstruct the meaningful functional brain networks and
characterize the corresponding hemodynamic response patterns underlying tfMRI data
simultaneously. Diverse and complex hemodynamic response patterns can be obtained,
which brings a new way to reverse engineering of the brain’s response function pat-
terns. Furthermore, with deeper stacked RNN layers, the DRAE model is able to
simulate more complex hemodynamic response patterns with different time delay
estimations. In general, extensive experiment results demonstrated the superiority and
effectiveness of our proposed method.
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Abstract. Complex spatiotemporal correlation and dependency embedded in
functional magnetic resonance imaging (fMRI) data introduce critical challenges
in related analytical methodologies. Despite remarkable successes, most of
existing approaches only model spatial or temporal dependency alone and the
development of a unified spatiotemporal model is still a challenge. Meanwhile,
the recent emergence of deep neural networks has provided powerful models for
interpreting complex spatiotemporal data. Here, we proposed a novel convo-
lutional long-short term memory network (3DCLN) for spatiotemporal model-
ing of fMRI data. The proposed model is designed to decode fMRI volumes
belonging to different task events by joint training a 3D convolutional neural
network (CNN) for spatial dependency modeling and a long short-term memory
(LSTM) network for temporal dependency modeling. We also designed a 3D
deconvolution scheme for fMRI sequence reconstruction to inspect the feature
learning process in the 3DCLN. The experimental results on the motor task-
fMRI data from Human Connectome Project (HCP) showed that fMRI volumes
can be decoded with a relatively high accuracy (76.38%). More importantly, the
proposed 3DCLN can dramatically remove noises and highlights signals of
interest in the reconstructed fMRI sequence and hence improve the performance
of activation detection, validating the spatiotemporal feature learning in the
proposed 3DCLN model.

Keywords: Functional magnetic resonance imaging � 3D convolutional neural
network � Long short-term memory network � Spatiotemporal modeling

1 Introduction

Functional magnetic resonance imaging (fMRI) is one of the widely used noninvasive
imaging techniques for probing how brain functions [1]. The brain keeps undergoing
massive neural processes that are highly correlated both spatially and temporally,
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rendering complex spatiotemporal correlation and dependency in fMRI data [2]. Thus,
it is desired to develop analytical methodologies that can model such spatiotemporal
complexities to extract meaningful features from fMRI data.

Recent studies have shown the promises of deep neural networks in feature learning
in fMRI data. For example, Hjelm et al. applied a shallow restricted Boltzmann
machine (RBM) on fMRI volumes for blind source separation (BSS) and achieved
improved performance compared to independent component analysis (ICA) [3]. To
reduce model complexity and increase training samples, Hu et al. proposed to interpret
fMRI time series using an RBM [4]. Considering that deeper models are more powerful
in feature learning compared to shallow RBMs, Li et al. proposed a BSS method based
on deep belief network (DBN) consisting of multiple layers of RBM [5]. Meanwhile,
long short-term memory (LSTM) network has proven to have superb capabilities in
sequential and temporal data modeling [6]. Inspired by this, Wang et al. proposed a
method based on LSTM to capture temporal dependency for brain states modeling [7].
However, most of existing approaches model either temporal or spatial dependency
alone, and the development of a unified spatiotemporal model is still challenging.

The emergence of deep neural networks has largely improved spatiotemporal data
modeling [8]. Inspired by this, we proposed a novel 3D-convolutional LSTM network
(3DCLN) for spatiotemporal modeling of fMRI data. The 3DCLN takes the advantages
of convolutional neural network (CNN) in modeling spatial dependency and LSTM in
modeling temporal dependency. In order to inspect feature learning process in the
proposed 3DCLN, we developed a 3D deconvolution scheme for fMRI sequence
reconstruction. In the experiments, we used the task-fMRI dataset from Human Con-
nectome Project (HCP) [9] for evaluation and validation. The experimental results
showed that the 3DCLN can decode fMRI volumes with high accuracy. More
importantly, the proposed 3DCLN can dramatically suppress noises and highlight
signal of interest, showing its potential in spatiotemporal modeling of complex fMRI
data.

2 Methods

2.1 Overview

The proposed 3DCLN combines a CNN and an LSTM, as shown in Fig. 1. The CNN
is directly applied on 3D fMRI volumes to model spatial dependency. The feature
representations of consecutive fMRI volumes in the CNN are then fed to the LSTM to
model temporal dependency in an fMRI volume classification task. The CNN and
LSTM are jointly trained through back propagation to capture the spatial and temporal
dependency in fMRI data simultaneously.

2.2 Data Acquisition and Pre-processing

In the experiments, we used the motor task-fMRI data from HCP Q1 release (sixty-
eight subjects) to validate and evaluate the proposed method. The HCP motor task
consists of six events including visual cues (CUE), tapping left fingers (LF), tapping
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right fingers (RF), squeezing left toes (LT), squeezing right toes (RT) and moving
tongue (T). The detailed parameters in fMRI data acquisition are as follows: 90 � 104
matrix, 220 mm FOV, 72 slices, TR = 0.72 s, TE = 33.1 ms, flip angle = 52°, BW =
2290 Hz/Px, 2.0 mm isotropic voxels. For fMRI images, the preprocessing included
motion correction, spatial smoothing, temporal pre-whitening, slice time correction,
global drift removal [10]. The time series of each voxel was normalized to have zero
mean and standard deviation.

2.3 3D-Convolutional Long Short-Term Memory Network (3DCLN)

We consider a shallow CNN and a single cell LSTM for simplified illustration. For an
fMRI volume r, the s-th feature map ps in the convolutional layer of the CNN is
computed as:

ps ¼ F qs � rþ bsð Þ ð1Þ

where � denotes 3D convolution operation, qs and bs are the 3D-filters and bias for the
s-th feature map, respectively. F is the rectified nonlinearity unit (ReLu) activation
function. A convolutional layer is typically followed by a pooling layer. In this study,
the pooling layer is replaced by a convolutional layer through an increased stride with
step size of 3 to decrease information loss [11].

The CNN is followed by an LSTM, which have multiple gates to allow the network
memory cells to store and access information over long periods of time. A typical
LSTM is composed of three gates to control the proportions of information to forget
and to remember [6]. The LSTM transition functions are defined as follows:

Fig. 1. The framework of the proposed 3DCLN for spatiotemporal modeling of fMRI data.
(a) Spatial dependency modeling via CNN. (b) Temporal dependency modeling via LSTM.
The LSTM classifies fMRI volumes using the features of consecutive fMRI volumes in the CNN.
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※Gates:

it ¼ r wiht�1 þ vixt þ bið Þ ð2Þ
ft ¼ r wf ht�1 þ vf xt þ bf

� � ð3Þ

ot ¼ r woht�1 þ voxt þ boð Þ ð4Þ

※ Input transformation:

mt ¼ tanh wcht�1 þ vcxt þ bcð Þ ð5Þ

※ States update:

ct ¼ ft � ct�1 þ it � mt ð6Þ

ht ¼ ot � tanh ctð Þ ð7Þ

Here, it, ft, ot are the input, forget and output gate, respectively. r is a sigmoid
function, � is the multiplication operator, tanh is the hyperbolic tangent function. xt is
the input vector at time t, and ht denotes the hidden state vector which stores all the
useful information before time t. vi, vf , vo and vc are the weight of gates for input; wi,
wf , wo, wc are the weight for hidden state ht; bi, bf , bo, bc are the bias vectors. The
output of the LSTM connects with two fully connected layers to improve the non-
linearity of the output vector and then is followed by a softmax layer for fMRI volume
classification.

By using the deconvolution technique, Zeiler et al. [12] have shown that the feature
maps in CNN are far from being random, uninterpretable patterns. In order to inspect
the feature learning process in the proposed 3DCLN model, we extended the widely
used 2D deconvolution to 3D to reconstruct fMRI sequence using the learned feature
maps and filters. Taking the first convolutional layer as an example, the reconstruction
of input fMRI volume eR can be achieved by summarizing the convolution between
each of the feature maps ps with the learned filters Qs:

eR ¼
XS

s
ps � Qs ð8Þ

where � is the convolution operation. The filters Q are the transposed learned 3D filters,
S is the number of feature maps.

2.4 Training Sample Organization and Parameter Settings

In the experiments, we treated every four consecutive fMRI volumes in a sliding
window as a single training sample, as the visual cue event in the HCP motor task has
the shortest duration of 4 volumes. This sliding window strategy holds the sequential
structure of the input fMRI sequence and to some extent overcomes the limitation of
relatively small number of fMRI volumes in the dataset. Using the fMRI data of all the
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sixty-eight subjects of HCP Q1 release, we obtained 680 samples for visual cues, 1904
samples for each of the five motor events (LF, RF, LT, RT and T), and 2448 samples
for REST. We randomly selected 58 subjects as training set and the remaining 10
subjects as independent test set.

The structure and parameters in the proposed 3DCLN were set empirically to
maximize the classification accuracy. The CNN was composed of three convolutional
layers. The number of 3 � 3 � 3 3D filters in each layer was set as 8, 16 and 32,
respectively (Fig. 1a). With these settings, each of the input fMRI volume was rep-
resented by a 32 * 4 � 5 � 4 dimensional feature matrix. The feature matrices of four
consecutive fMRI volumes were vectorized and then fed to the LSTM that consists of 4
units. The state size in the LSTM was 1280 and initial state was 0. The LSTM was
followed by two fully connected layers with 1280 and 512 neurons, respectively.
A softmax layer was used to classify the input fMRI volumes into 7 categories (CUE,
LF, RF, LT, RT, T and REST, Fig. 1b). In order to improve the stability of model
training, we used the exponential decay to adjust the learning rate per 1000 steps to
0.99 after last update with initial learning rate 0.01. To prevent overfitting, we fixed the
dropout rate as 0.5 for the first fully connected layer and early stopping after 25 epochs.

3 Result

3.1 Accuracy of fMRI Volume Classification

The confusion matrix of the proposed 3DCLN in fMRI volume classification on the test
set is shown in Fig. 2. The model achieved a relatively high classification accuracy
(76.38%) in volume classification, indicating that the proposed 3DCLN can learn dis-
criminative features by interpret the spatial and temporal dependency simultaneously.

Fig. 2. The confusion matrix of the proposed 3DCLN in fMRI volume classification.
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3.2 Spatial and Temporal Validation

3.2.1 Spatial Validation
In this section, we performed activation detection using the reconstructed fMRI
sequence and compared the results with that by a standard general linear model
(GLM) applied on the original fMRI data for spatial validation of the feature learning
process in the proposed 3DCLN.

The activation map (Z > 5.7) in a standard GLM performed on the original fMRI
data is shown in Fig. 3(a). Using the reconstructed fMRI sequence, we firstly performed
a simple two sample t-test (3DCLN-TTEST) to find brain regions that have significantly
higher signal magnitude against the baseline (REST) in each task event, as shown in
Fig. 3(b). The activations in the 3DCLN-TTEST were highly overlapped with GLM
activations in most of the events, as detailed in the second row of Table 1. For further
inspection, we performed a standard GLM analysis on the reconstructed fMRI sequence
(3DCLN-GLM). The activation maps are shown in Fig. 3(c). The average overlap rate

Fig. 3. Spatial validation of the feature learning process in the proposed 3DCLN model.
(a) Activations in the standard GLM performed on the original fMRI data. (b) Activations in the
two sample T-test applied on the reconstructed fMRI data. (c) Activations in the standard GLM
applied on the reconstructed fMRI data. The average overlap rate between (a) and (b) is 60.5%.
The average overlap rate between (a) and (c) is 68.8%.

Table 1. Spatial overlap between the two methods with GLM

Methods Events
RF LF RT LT T CUE AVG

t-test 66.2% 69.4% 60.9% 59.1% 70.2% 37.1% 60.5%
3DCLN-GLM 80.3% 71.4% 71.1% 74.8% 82.8% 32.4% 68.8%
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between activations in the 3DCLN-GLM and that of the GLM applied on the original
fMRI data was 68.8% (the second row in Table 1). Those experimental results
demonstrated that the reconstructed fMRI sequence well preserved the signal contrast
elicited by task performance, validating the feature learning process in the proposed
3DCLN model. It is also notable that additional activations were observed in the events
of RF, RT, LT and T in 3DCLN-GLM compared to the GLM performed on original
fMRI data, which will be discussed in details in next section.

3.2.2 Temporal Validation
In this section, we provided temporal validation of the feature learning process in the
proposed 3DCLN by inspecting the signal patterns of the activations in the original and
reconstructed fMRI sequences. The task paradigms were used as references. Taking the
event of RF as an example, the white line in Fig. 4(a) shows the task paradigm. The red
line is the average original fMRI signal and the blue line is the average reconstructed
fMRI signal over the activations in the standard GLM applied on the original fMRI
data. It is seen that the noises are remarkably suppressed in the reconstructed fMRI data
(highlighted by white arrows), and the signal pattern of activations in 3DCLN-GLM is
better correlated with the task paradigm (0.80 against 0.65). Similar results are
observed in other events of LF, T and CUE (Fig. 4b–d). This improvement is less
observed in the event of LT and RT (Fig. 4e–f, yellow arrows). Nevertheless, those
experimental results showed that the feature learning process in the proposed 3DCLN
can largely suppress the noises in original fMRI data and highlight the signals of
interest.

Fig. 4. Temporal validation of the feature learning process in the proposed 3DCLN model.
(a) The event of RF. The white, red and blue lines show the task paradigm, averaged original
fMRI signal over the activations in the standard GLM and averaged reconstructed fMRI signal
over the activations in 3DCLN-GLM. (b–f) are for the events of LF, T, CUE, LT and RT
respectively. (Color figure online)
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As reported previously, additional activations were observed in the events of RF,
RT, LT and T in 3DCLN-GLM compared to the GLM performed on original fMRI
data. We further inspected the average reconstructed fMRI signal over the additional
activations in 3DCLN-GLM, as shown in Fig. 5(a–d) for the events of RF, RT, LT and
T, respectively. It is seen that the average reconstructed fMRI signals over the addi-
tional activations in 3DCLN-GLM for those four events are well correlated with the
task paradigms, indicating that the proposed 3DCLN model may help to decrease false
negative activations.

4 Conclusion

In this paper, we proposed a novel 3D-convolutional long short-term memory network
(3DCLN) to model complex spatial and temporal correlation and dependency
embedded in fMRI data simultaneously. The proposed 3DCLN model takes the
advantage of CNN in modeling spatial dependency and LSTM in modeling temporal
dependency. The experimental results on the motor task fMRI data from HCP
demonstrated that fMRI volumes can be decoded with a relatively high accuracy by the
proposed 3DCLN model. More importantly, the proposed model can dramatically
suppress noises and highlight signals of interest in the reconstructed fMRI sequence via
a deconvolution approach extended to 3D. In the future, we plan to train and evaluate
and validate the 3DCLN model using the HCP 1200 subjects fMRI data release. Also, a
limitation of the proposed model is that it works in a supervised fashion, making it
infeasible for resting-stage fMRI data analysis. In our further studies, we plan to
combine the proposed 3DCLN model with unsupervised autoencoders [13] to address
this problem.

Fig. 5. The average reconstructed fMRI signals over the additional activations in 3DCLN-GLM
for the events of RF, RT LT and T (a–d).
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Abstract. Alzheimer’s Disease (AD) is the main cause for age-related
dementia. Many machine learning methods have been proposed to iden-
tify important genetic bases which are associated to phenotypes indi-
cating the progress of AD. However, the biological knowledge is seldom
considered in spite of the success of previous research. Built upon neu-
roimaging high-throughput phenotyping techniques, a biological knowl-
edge guided deep network is proposed in this paper, to study the
genotype-phenotype associations. We organized the Single Nucleotide
Polymorphisms (SNPs) according to linkage disequilibrium (LD) blocks,
and designed a group 1-D convolutional layer assembling both local and
global convolution operations, to process the structural features. The
entire neural network is a cascade of group 1-D convolutional layer, 2-D
sliding convolutional layer and a multi-layer perceptron. The experimen-
tal results on the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
data show that the proposed method outperforms related methods. A set
of biologically meaningful LD groups is also identified for phenotype dis-
covery, which is potentially helpful for disease diagnosis and drug design.

1 Introduction

Alzheimer’s disease (AD) is a chronic neuro-degenerative disease. It is the 5th
leading cause of death for those aged 65 or older [2] in the United States, and 5.5
million people have Alzheimer’s dementia by estimation. In 2017, total payments
are estimated at $259 billions for all individuals with dementia.

Based on neuroimaging and genetics techniques, computational methods
[4,14] have been shown as powerful tools for understanding and assistant diagno-
sis on AD. As a result, many SNPs identified as risk factors for AD are listed by
the AlzGene database (www.alzgene.org). Among these, early efforts attempting
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on discovering the phenotype-genotype association mainly exploit linear regres-
sion models. Classical methods [1,10] apply individual regression at all time
points, ignoring potential progressive variations of brain phenotypes. Based on
linear models, sparse learning [14,21] is demonstrated to be highly effective. The
Schatten p-norm is used to identify the interrelation structures existing in the
low-rank subspace [16], with the idea further developed by capped trace norm [5].
Regularized modal regression model [15] is found to be robust to outliers, heavy-
tailed noise, and skewed noise. Clustering analysis [6], particularly auto-learning
based methods [17] to extract group structures can further help uncover the
interrelations for multi-task regression.

However, the aforementioned methods are driven mainly by machine learning
principles. Given the complex relation of significant SNP loci identification, an
emerging interest is to integrate advanced models and biological priors simulta-
neously for the phenotype-genotype prediction task. In this paper, we propose a
biological knowledge guided convolution neural network (CNN) benefiting from
both principles of sparse learning and non-linearity, to address the genotype-
phenotype prediction problem. SNPs are structural features equipped with bio-
logical priors, and in this paper, we group SNPs according to the Linkage Dise-
quilibrium (LD) blocks, which refers to alleles that do not occur randomly with
respect to each other in two or more loci. Based on LD blocks, we develop a
group 1-D convolutional layer. Our design modifies naive convolutional layer
by applying both group and global convolution, capable of handling structural
features as well as utilizing the sparsity of SNP-LD patterns. The entire struc-
ture is composed of a cascade of the novel group 1-D convolutional layer, 2-D
sliding convolutional layer, and multi-layer perceptron. The experiments verify
the impression that sparse learning, group structure, and non-linearity indeed
provide improvements, and the proposed method outperforms the related base-
lines. Also, some interesting LD blocks are identified as important biomarkers
for predicting phenotypes.

The rest of this paper is organized as follow: Sect. 2 describes the biological
knowledge guided neural network; Sect. 3 shows the experiment results on the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data; Sect. 4 concludes the
paper.

2 Methodology

2.1 Problem Definition and Methodology Overview

The proposed method aims at the genotype-phenotype prediction. The SNPs
of subject i are features with group structures Xi = [gi,1, gi,2, . . . , gi,c], where
gi,j ∈ R

cj is a feature vector of group j with size cj , and c is the number of
groups. In the proposed method, the SNPs are grouped according to the LD
blocks. The phenotypes of subject i are denoted as vector Yi ∈ R

m, where m is
the number of phenotypes. The task is to learn a model capturing the association
between Xi and Yi.
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Fig. 1. The network structure of the proposed method. The inputs are grouped features
(SNPs), sequentially processed by sparse group 1-D CNN and pooling, 2-D CNN, and
multi-layer perceptron. The output is the prediction of phenotypes.

In this paper, we design a biological knowledge guided deep neural network
based on SNP feature structures. As illustrated in Fig. 1, the network takes
sparse group feature Xi as the inputs and yields the phenotype prediction Ŷi

as the outputs. The pipeline of the proposed method involves three steps: first,
we obtain the embeddings encoding both local and global information of the
structural SNP features, via the novel group 1-D convolutional layer; then, the
embeddings are fed into the 2-D sliding convolutional layer for a secondary fea-
ture extraction; and at last, the prediction of phenotypes are attained using a
multi-layer perceptron.

2.2 Biological Knowledge Guided CNN for Genotype-Phenotype
Prediction

Naive convolution layer is not an immediate solution to the phenotype-genotype
prediction problems, and the reason is two-folded. First, by definition naive con-
volution layer is a global operation, thus fails to exploit the group structure of
SNPs. Second, the embeddings from the global operation extract the entangled
relations across SNPs, blurring the association within specific LD blocks and
associated phenotypes. In order to overcome these difficulty, we propose to use
additional local convolutional operations on each LD block, besides the global
convolutional operation encoding all SNPs. The embeddings yielded by both
local and global convolution are then concatenated for the successive 2-D convo-
lution. Formally, the group 1-D convolutional layer takes structural features Xi

as input and yields concatenated embeddings hi. A local 1-D convolution and
max-pooling is operated on each group. For group j, the feature is gi,j ∈ R

cj ,
and the 1-D convolution kernel is fj ∈ R

kj×dh , here kj is the kernel size for 1-D



BioGuided Geno-Pheno Prediction 87

convolution, dh is the number of channels. The output of a local convolution is
thus,

hi,j = P (gi,j ∗ fj), (1)

here ∗ is the convolution operation channel-wise, P (·) is 1-D max-pooling oper-
ation along each channel, and hi,j is the output of the local convolutions
and pooling. The output hi,j ∈ R

dh . Besides group-wise local operations, a
global convolution is also applied. The global convolution is similarly defined as
Eq. (2), by replacing the input with concatenated group features. The embed-
dings of all local convolutions and the global convolutions are then concatenated,
hi = [hi,1, hi,2, . . . , hi,c, hi,0], here hi,0 refers to the output of the global 1-D con-
volution, hi ∈ R

(c+1)×dh is the layer output defined above, and c is the number
of groups. Throughout this layer, each group has a distinct convolutional kernel.
The kernel size can be also tuned group-wise, as long as the channels are iden-
tical to keep the consistency of concatenation. In our data, the SNPs belongs
exclusively to each LD blocks, and the size of local convolution is quite limited.
Therefore we choose a shared-size local 1-D convolution for all groups, and a
separate large-size 1-D convolution kernel for the global embeddings.

The embeddings from group 1-D convolutions layer can be viewed as “sen-
tence” describing the genetic variations. Inspired by TextCNN [8], we design a
variant of the standard convolutions layer. Different from images where the spa-
tial coordinates are isotropic, in the embeddings of group SNPs, the convolution
kernels are supposed to take complete block information into consideration. Thus
we define the receptive field on entire neighboring block. Formally, we define the
2-D convolution kernel fc ∈ R

dh×dp×kc , here the kc is the number of channels,
dh × dp is the kernel size, and dh is the size of the concatenated embeddings
defined above. Max-pooling P (·) is utilized after the convolution operations. We
use hi to denote the output of the sparse group layer and h2d

i to denote the
output of the 2-D sliding convolutional layer,

h2d
i = P (hi ∗ fc), (2)

the input to the 2-D convolution layer is not padded, thus and the dimension
of output of one channel after the convolution operation is c + 2 − kc. P (·) is
max-pooling operation along each channel as in group 1-D convolution layer,
and the output of 2-D convolution layer h2d

i ∈ R
kc , which is a vector ready

for multi-layer perceptron. We adopt a standard MLP and mean squared error
objective for regression.

The proposed 1-D group layer can also be interpreted as a method with pre-
defined sparsity, as that the response of a local convolution can be obtained by
padding zeros on group features to full size, and discarding the zero responses
of padded areas after the convolution operation. Compared to classical methods
such as LASSO and group LASSO, the proposed method avoids some drawbacks.
In standard LASSO method, frequently only one feature is selected arbitrarily
from a set of highly correlated SNPs, particularly those grouped by LD blocks,
potentially misleading the identification of important SNPs. Via the proposed
group convolution, the contributions of LD blocks are properly assigned to each
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SNPs involved. On the other, group LASSO method applies group selections,
which potentially overlooks the cross-group contributions of SNPs. This phe-
nomenon can be alleviated by the global convolution operations.

Though the coincidence of the terminology, the proposed method is funda-
mentally different from previous methods exploiting the idea of processing chan-
nels of convolutional layers by groups, such as ShuffleNet [22] or ResNeXt [20].
Previous methods typically define their kernels on the entire inputs, and group
the middle layer embeddings to improve computational efficiency. These net-
works are designed to handle large-scale problems, and the convolution kernels
are still global. However in the proposed group 1-D convolutional layer, the
groups are a pre-defined biological structures on SNPs, thus only proper parts of
the features are visible for corresponding local convolutions operations. To sum
up, the “group” in the proposed method is used under a different meaning with
previous methods.

3 Experiments

3.1 Data Description

The experiments are conducted on the data obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative(ADNI) database (adni.loni.usc.edu). In our exper-
iment the genotype data [11] included all non-Hispanic Caucasian participants
from the ADNI Phase 1 cohort which were genotyped using the Human 610-
Quad BeadChip. Pre-processing on the SNP data include the standard quality
control (QC) and imputation. The QC criteria are composed of (1) call rate
check per subject and per SNP marker, (2) gender check, (3) sibling pair iden-
tification, (4) the Hardy-Weinberg equilibrium test, (5) marker removal by the
minor allele frequency and (6) population stratification. The QC’ed SNPs were
then imputed using the MaCH software [9] to estimate the missing genotypes.
Among all, we selected only SNPs within the boundary of ±20K base pairs of
the 153 AD candidate genes, listed on the AlzGene database (www.alzgene.org)
as of 4/18/2011 [3]. As a result, our analyses included 3,576 SNPs extracted
from 153 genes (boundary: ±20K) using the ANNOVAR annotation (http://
www.openbioinformatics.org/annovar/). The groups of SNPs are defined using
the linkage disequilibrium (LD) blocks, and a total of 800 blocks are marked.
2098 SNPs are selected with sufficient group information.

Each MRI T1-weighted image was anterior commissure posterior commis-
sure (AC-PC) aligned using MIPAV2, intensity in-homogeneity corrected using
the N3 algorithm [13], skull stripped with manual editing [19], and cerebellum-
removed [18]. The image is segmented using FAST [23] into gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF), and registered to a common
space using HAMMER [12]. GM volumes normalized by the total intracranial
volume were extracted as features, from 93 ROIs defined in [7]. The data for the
experiments includes all 737 subjects with sufficient data.

http://adni.loni.usc.edu
www.alzgene.org
http://www.openbioinformatics.org/annovar/
http://www.openbioinformatics.org/annovar/
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3.2 Experiment Settings

We compare the proposed method with several other regression methods: multi-
variate Linear Regression(LR), multivariate Ridge Regression(RR), Least Abso-
lute Shrinkage and Selection Operator(LASSO), the combination of L1 norm
ad L2 norm (Elastic) [14], Temporal Structure Auto-Learning Predictive Model
(TSALPM) [17], Regularized Modal Regression (RMR) [15], and naive CNN. For
both RR and LASSO, we set the coefficient of the regularization term through
grid search ranging from 0.01 to 10. For TSALPM and RMR, we use the default
parameter settings in original papers. For naive CNN, we replace the group
1-D convolutional layer with naive 1-D convolutional layer, and keep the output
channels consistent with the proposed method for a fair comparison. For the pro-
posed method, we used one sparse local CNN layer, one CNN layer and two-layer
perceptron. We used a shared-size local CNN for each group, with kj = 10 and
dh = 5. For global 1-D CNN, the kernel size is chosen as kj = 100. The kernel of
the first CNN layer is 400. The hidden units of the two-layer perceptron is 200,
and we use a dropout rate of 0.5 during training. The coefficient of regulariza-
tion term in the objective, λ, is 0.01. We use the momentum stochastic gradient
descent optimization method with a learning rate of 0.001, and the momentum
coefficient of 0.8. The batch size during training is 50. The scores of each ROIs
are normalized to zero mean and unit variance. We reported the average root
mean square error (RMSE) and mean absolute value (MAE) for each method
on five runs.

Table 1. The comparison of the proposed method with baselines. For both metrics,
smaller values indicate better results. The values are displayed as μ ± σ, here μ is the
mean and σ is the standard deviation from five tests. Best performance is shown using
bold font.

Method RMSE MAE

LR 1.5922 ± 0.0246 1.2595 ± 0.0178

RR 1.5818 ± 0.0244 1.2511 ± 0.0177

LASSO 1.2085 ± 0.0251 0.9354 ± 0.0139

Elastic 1.5123 ± 0.0262 1.1924 ± 0.0251

TSALPM 1.0942 ± 0.0216 0.8612 ± 0.0174

RMR 1.3452 ± 0.0295 1.1121 ± 0.0194

CNN 1.0113 ± 0.0180 0.7706 ± 0.0128

Proposed 0.9895± 0.0199 0.7567± 0.0146

3.3 Results and Discussions

We compare the proposed method against related baselines and the results are
summarized in Table 1. On both metrics, we observe that the proposed method
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outperforms baselines consistently. For linear methods, sparse methods includ-
ing LASSO, Elastic, and TSALPM achieve better prediction accuracy compared
to non-sparse methods, LR and RR. Non-linear models, including RMR, naive
CNN, and the proposed model, also improve the prediction performances against
linear models in general. The group information exploited by the proposed sparse
group CNN further improves the performance compared to all baselines on both
metrics. The results of the proposed method shows decent improvements over
naive CNN without sparse group layer. Naive CNN overlooks the group infor-
mation. Meanwhile, though the dropout layer during training exerts potentially
implicit sparsity in naive CNN, the linkage disequilibrium blocks in SNPs still
provides additional sparse structure given our task. This demonstrates that
the biological knowledge group structure is highly effective in the genotype-
phenotype prediction problem.

Fig. 2. Top-selected groups for phenotypes prediction.

We also include the top-selected linkage disequilibrium blocks with respect
to phenotypes. The importance for LD blocks are defined as Ic =

∑
i∈c,k,j |gki,j |,

here Ic is the importance of linkage disequilibrium block c, i ∈ c is SNP belong-
ing to c, and gki,j is the gradient accordingly. The results are summarized in
Fig. 2. Some most notable LD blocks from our experiments are: (1) group 629,
includes OLR1 1050289, OLR1 10505755, OLR1 3736234 and OLR1 3736233; (2)
group 349, includes CTNNA3 1948946 and CTNNA3 13376837; (3) group 363,
includes CTNNA3 10509276, CTNNA3 713250, CTNNA3 12355282. We expect
the results here indicate some complex interactions within these LD blocks,
which is promising for experimental assessment.

4 Conclusion

In this paper we propose a biological knowledge guided convolutional neural
network to address the genotype-phenotype prediction problem. We use LD
blocks to group SNPs, and develop a novel group 1-D convolutional layer to pro-
cess the structural features. The prediction is attained through the sequential
network of group 1-D convolutional layer, 2-D sliding convolutional layer, and
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a multi-layer perceptron. The experiments on ADNI data show that the proposed
method outperforms related methods. Particularly, the experiments demonstrate
the effectiveness of sparse structure compared to dense methods, and the advan-
tage of local CNN layer against naive CNN methods. We also identify a set of
biologically meaningful LD blocks for biomarker discovery, which is potentially
helpful for disease diagnosis and drug design.
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Abstract. Human cognitive control involves how mental resources are
allocated when the brain processes various information. The study of
such complex brain functionality is essential in understanding different
neurological disorders. To investigate cognition control, various cognitive
tasks have been designed and functional MRI data have been collected. In
this paper, we study uncertainty representation, an important problem
in human cognition study, with task-evoked fMRI data. Our goals are
to learn how brain region of interests (ROIs) are activated under tasks
with different uncertainty levels and how they interact with each other.
We propose a novel neural network architecture to achieve the two goals
simultaneously. Our architecture uses a 3D convolutional neural network
(CNN) to extract a high-level representation for each ROI, and uses a
graph neural network module to capture the interactions between ROIs.
Empirical evaluations reveal that our method significantly outperforms
the existing methods, and the derived brain network is consistent with
domain knowledge.

Keywords: Graph neural network · Brain network learning

1 Introduction

Cognitive control study learns how are mental resources allocated when the
human brain processes various information. It involves how the brain selects
and prioritizes different information processing tasks, which is crucial in under-
standing the mechanisms of different neurological disorders [4,20,23]. We study
a particular perspective of cognitive control, the uncertainty representation. We
design a task called Choice Reaction Time task to study the uncertainty rep-
resentation. In our experiments, the human subjects are displayed with arrows
of random directions and colors and instructed to press buttons accordingly.
c© Springer Nature Switzerland AG 2019
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Depending on the number of possible directions and colors, the task may have
different levels of uncertainty, measured as Shannon entropy [22].

Since our cognitive control task spans a very short time, each fMRI image
is only a single 3D image (see Fig. 1 for more details), unlike resting-state fMRI
or fMRI taken under tasks with long duration which can be considered 4D
data with one additional dimension for time sequences. The traditional brain
functional connectivity analysis methods [1,6] designed for fMRIs with time-
sequential information can not be applied to our data, which leaves us low flexi-
bility for analyzing the networks. Another method is to model the brain network
using Markov Random Field (MRF). However, current methods only apply when
a brain is represented by a single value [17,21,25], which can cause significant
loss of information. Recently, deep neural networks have been proved to be very
efficient in learning high-level representations for various types of data. For our
setting, however, we are not only interested in predicting uncertainty levels, but
also want to learn how different brain regions interact with each other at different
uncertainty levels.

Fig. 1. Left: Experiment setting. Human subjects are shown images of arrows and
click keys accordingly. The arrows may have one, two, or four possible directions, cor-
responding to uncertainty levels of zero, one, and two bits measured in Shannon’s
entropy [22]. Middle: More uncertainty is introduced by additional colors and cor-
responding actions. Green arrows require buttons with corresponding directions. Red
buttons require buttons with the opposite directions. In total there are six different
tasks, with various uncertainty levels. Right: An example of fMRI data. (Color figure
online)

In this paper, we propose a new neural network architecture to solve the
two tasks jointly: one as a classification task, the other as a graphical model
learning task. Our architecture uses a 3D convolutional neural network (CNN).
It extracts high-level feature representation for the classification of fMRIs for
different uncertainties, and a graph neural network (GNN) layer for extracting
the edge representations. The edge representations are further converted into a
Markov Random Field (MRF) and learned through a loss derived from the likeli-
hood of the MRF. Our architecture learns both ROI representations for tasks of
different uncertainty levels and a graphical model to encode how different ROIs
interacts. We test our method on a task-evoked fMRI dataset, and found that
our model outperforms the existing state-of-the-art classifiers. In the meantime,
our model generates a brain network for uncertainty representation.
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Related Work. The fMRI data are widely used for analyzing neurological dis-
orders and locating task-related key regions [8,15]. Recently, neural network
models have been broadly applied to fMRI data based study [2,5,30], and also
for learning brain networks [2,26,30]. Nie et al. [16] use 3D CNN for predict-
ing the overall survival time for brain tumor patients. Belilovsky et al. [2] use
convolutional neural networks for learning brain networks. Their model takes
pre-computed covariance matrices as inputs and outputs the same dimensional
matrices. The outputs can be viewed as adjacency matrices of the brain network.
Nonetheless, their method requires each region to be represented by one single
value, which might lose a lot of information. Instead of using pre-calculated
covariance matrix, we take all the information from brain regions as inputs for
our architecture and extract high-level features for each region. In our architec-
ture, valuable information is leveraged by the neural networks and can be used
for multitask learning. Zhang et al. [30] apply Graph Convolutional Network to
brain image analysis for the prediction of Parkinson’s disease. However, their
graph convolutional network is not used for learning brain networks.

2 Method

2.1 Network Architecture

We propose a novel neural network architecture to classify fMRI images, and
learn a brain network at the same time (Fig. 2). For our input, each fMRI
image is a 3D volumetric image with uncertainty level ranging between 1 and 6.
Our architecture uses a 3D convolutional layer for extracting high-level feature
embeddings for brain ROIs, and a GNN layer with MRF for structure learning of
human brain networks. We use traditional cross entropy loss for the classifying
uncertainty levels and meanwhile a maximum-likelihood-loss for MRF learning.
For each fMRI image, we extract R ROIs. The size of each ROI is 7× 7× 7. The
size of the input for the model is R×1×7×7×7, which can be viewed as R single-
channel 3D images. Let the number of inputs be N , and the number of ROIs be
R. For each image k ∈ {1, . . . , N}, we denote each ROI r as xk

r , r ∈ {1, . . . , R}.
Each image is labeled with an uncertainty level yk ∈ {1, . . . , 6}.

Fig. 2. The architecture of our model.
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Our model starts with feature extraction for each ROI. This is done with a
3D CNN layer of 16 channels with kernel size 3 × 3 × 3 (CNN(16@3 × 3 × 3))
followed by a fully connected layer (FC(16)). The output feature is a vector of
length 16 for each ROI. We perform two tasks on the output features:

– For the uncertainty classification task, we map the concatenation of the out-
put of all R ROIs to a 1D vector of length 6 with a fully connected layer
(FC(6)). The 1D vector is then fed to a softmax layer to calculate the label
probability. The loss from this task is the cross entropy loss LCE.

– For brain network structure learning, we feed the R output features to the
graph neural network layer and then use MRF to estimate the connection
between each ROI. More details will be discussed in Sect. 2.2. The loss from
this task is LMRF.

Our overall loss to minimize is L = LCE + LMRF.

2.2 Graph Neural Network Layer for Brain Network Learning

Graph neural network (GNN) has been proposed for learning the efficient repre-
sentation for many graph-structured data [10]. GNN usually employs a message-
passing schema, which means each node aggregates the information of its neigh-
bors and transforms into new representation using the information. The gener-
ated new representation of the nodes captures the structured information of the
inherited graph [13,27].

In this work, we build a brain network learning layer based on an existing
graph neural network called Graph Isomorphism Network (GIN) [29]. The input
of the layer is a set of 16-dimensional vectors, each of which represents one ROI
in the human brain. The output is edge potentials for each possible edge between
the ROIs. GIN is used for helping with the message passing between nodes and
edges in the graph. We use multi-layer perceptrons (MLPs) as our message-
passing function in our model. We assume the initial graph is a fully connected
graph with all possible edges. Thus, we have M = R × (R − 1)/2 edges. We use
the initial graph as input for GNN layer. Let N (v) be the neighbours of node
v, ht,v be the representation of node v at tth iteration, and εt be an arbitrarily
small number, the GIN updates the node representation as

ht,v = MLPt

(
(1 + εt) · ht−1,v +

∑
u∈N (v)

ht−1,u

)
(1)

where h0,v is the high-level representation of vth ROI after feature extraction.
We denote the final output of GIN layer as hv = hT,v.

After the GIN layer, we construct the edge representation as

φi,j = [hi;hj ]Wedge + bedge,

where Wedge ∈ R
16×32 and bedge ∈ R

16 are the weights for the linear layer, and
[·; ·] is the concatenation operation.
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For image k, the energy function E(xk
1 , . . . , x

k
R) can be calculated as the sum

of potentials for each edge fi,j . Thus, the MRF probability of data xk can be
calculated as:

P (xk) =
1
Z

exp(−E(xk)) =
1
Z

exp

⎛
⎝−

∑
(i,j)∈E

fi,j(hk
i , h

k
j )

⎞
⎠

=
1
Z

exp

⎛
⎝−

∑
(i,j)∈E

wi,j · 〈φk
i,j , θi,j〉

⎞
⎠,

where θi,j ∈ R
16 is used to map the edge representation to a real value potential,

wi,j ∈ R is used to re-weight each edge, and Z is the partition function.
In theory, Z should be calculated over all distribution space, which is imprac-

tical. To alleviate this problem, Z can be approximated using all samples of the
data, which is still very expensive to evaluate. In this paper, we approximate Z
with all examples in the same training batch. Z ≈ ∑B

k=1 exp
(−E(xk)

)
, in which

B is the batch size. Our MRF learning module uses the negative log-likelihood
as the loss, for data k, the MRF learning loss is:

LMRF = − log
N∏

k=1

P (xk) =
N∑

k=1

[
E(xk) + log Z

]
. (2)

3 Experiments and Discussions

We apply our method to task-evoked fMRI images. Our dataset is collected when
the subjects are instructed to perform Choice Reaction Time (CRT) tasks [28].
At each CRT task, the subjects are presented with an arrow and instructed
to press the corresponding buttons. The details can be found in Fig. 1. There
are 6 uncertainty conditions manipulated by the directions and colors of the
arrows, corresponding to 6 labels for the classification task. Our data contains
16 subjects. Each subject is asked to perform around 1000 trials. Each CRT
task trial only lasts for two seconds, thus only one 3D image is collected for
each trial. We collect 17226 fMRI 3D images in total from the 16 subjects. The
images are preprocessed using SPM8. Each gradient-echo planar imaging (EPI)
image volume was realigned to the first volume, registered with structural MRI,
and normalized to the Montréal Neurological Institute (MNI) ICBM152 space.
Then all the images are resampled to a voxel size of 2 × 2 × 2 mm, and spatially
smoothed. The dimension of the processed images is 79 × 95 × 68.

Neuroscience studies state that cognitive control network (CCN) and default
mode network (DMN) [12,18,24,28] are two major networks in the human brain
that are related to uncertainty tasks. In this work, we focus on R = 19 regions
of interests (ROIs) from the two brain networks. Control network (CCN) [7] is
composed of anterior cingulate cortex (ACC), anterior insula (AI), and frontal
eye field (FEF), etc. Default mode network (DMN) [9] consists of domain-specific
networks such as visual, auditory, etc. Each ROI is with dimension 7 × 7 × 7.
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Table 1. The average classification accuracy (%) for 16 subjects.

RF LG SVM 3D-CNN Our model

Accuracy 33.54 61.34 56.68 71.03 75.59

Our method is compared with Random Forest Classifier (RF), Linear Regres-
sion Classifier (LG), and SVM with Linear kernel (SVM) [3]. To prove the effec-
tiveness of our graph neural network layer, we also conduct an ablation experi-
ment which uses a simple 3D CNN model. The 3D CNN model is similar to our
model, but did not use the GNN layer, and only trained on cross-entropy loss.
For each subject, we test all methods. For all methods, we reserve the same 80%
of subject’s data as the training set, 10% as the validation set and 10% as the
testing set. The 3D-CNN model and our model are trained using stochastic gra-
dient descent optimizer (SGD) with learning rate = 0.001, ε = 0 for 1000 epochs.
The classification results are summarized in Table 1. We can find from Table 1
that 3D CNN model outperforms the traditional classifiers, and our GNN layer
further improves the classification performance.

Fig. 3. The brain network learned among the 19 ROIs. SMA/ACC: supplementary
motor area extending to anterior cingulate cortex. AI: anterior insular cortex. FEF:
frontal eye find. IPS: area around and along the intraparietal sulcus. TH: thalamus.
vmPFC: ventral medial prefrontal cortex. PCC: posterior cingulate cortex. MTG: mid-
dle temporal gyrus. ANG: angular gyrus. L: ROI located in left hemisphere of the
brain. R: ROI located in the right hemisphere. The red box indicates positive connec-
tion and the blue box indicates the negative connection. Darker color means stronger
connection.
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For brain network learning, we visualize the results in Fig. 3. In Neuroscience
studies, the CCN is known as a network responsible for cognitive processes [9,11].
The DMN is considered as the network handling human’s self-related activities
such as emotion and autobiographical memory [19]. The two networks work
together for processing uncertainty tasks [9,14]. From Fig. 3, we can find quan-
titative proof for the above statements. That is, we observe both intra-network
and inter-network edges. We further visualize the network in CCN and DMN
in brain templates respectively as in Fig. 4. The positive and negative edges are
colored in warm and cool colors respectively. We can find from Fig. 4 clearly that
the more connections can be found from CCN than DMN. The stronger intra-
network connection in CCN means that CCN is more crucial in uncertainty
processing, which is consistent with neuroscience knowledge about uncertainty
representation [11,28]. Overall, the GNN not only helps with the classification
task but also generates meaningful brain network for uncertainty processing.

(a)

(b)

Fig. 4. The network in CCN (a) and DMN (b) in three views of brain templates. The
nodes in red are the ROIs in CCN and blue nodes are the ROIs in DMN. The positive
edges are in warm color, while the negative edges are in cool colors. (Color figure online)

4 Conclusions

In this paper, we propose a novel neural network framework to classify the CRT
task-evoked fMRI data, and learn the brain network. Our framework integrates a
3D CNN for extracting high-level features for brain ROIs, a traditional softmax
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block trained on cross-entropy loss for classifying the fMRI images at different
uncertainty levels, and a graph neural network layer trained on MRF loss for
learning the structures of the brain network. Our method outperforms the tradi-
tional classifiers and the plain 3D CNN model. Besides, our model also learns the
structure of the brain network, which is, how the brain ROIs interact with each
other during the uncertainty tasks. Our model provides a quantitative assess-
ment for cognitive control study and has the potential to be applied to any other
labeled data with underlying graph structures.
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Abstract. This paper proposes a novel cascaded U-Net for brain tumor
segmentation. Inspired by the distinct hierarchical structure of brain
tumor, we design a cascaded deep network framework, in which the
whole tumor is segmented firstly and then the tumor internal substruc-
tures are further segmented. Considering that the increase of the net-
work depth brought by cascade structures leads to a loss of accurate
localization information in deeper layers, we construct between-net con-
nections to link features at the same resolution and transmit the detailed
information from shallow layers to the deeper layers. Then we present
a loss weighted sampling (LWS) scheme to eliminate the issue of imbal-
anced data. Experimental results on the BraTS 2017 dataset show that
our framework outperforms the state-of-the-art segmentation algorithms,
especially in terms of segmentation sensitivity.

Keywords: Brain tumor segmentation · Cascaded U-Net · Feature
fusion · Loss weighted sampling

1 Introduction

Glioma is the most common primary central nervous system tumor with high
morbidity and mortality. For glioma diagnosis, four standard Magnetic Reso-
nance Imaging (MRI) modalities are generally used: T1-weighted MRI (T1),
T2-weighted MRI (T2), T1-weighted MRI with gadolinium contrast enhance-
ment (T1ce) and Fluid Attenuated Inversion Recovery (FLAIR). Usually, it is a
challenging and time-consuming task for doctors to combine these four modali-
ties to complete a fine segmentation of brain tumors.
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Since deep learning has attracted considerable attentions from researchers,
convolutional neural network (CNN) has been widely applied to the brain tumor
segmentation. Havaei et al. [2] proposed a CNN architecture with two pathways
to extract features in different scales. Such an multi-scale idea was validated to
be effective in improving the segmentation results in many works [2,3,5]. In [12],
a triple cascaded framework was put forward according to the hierarchy of brain
tumor, though novel in framework, the patch-wise and sequential training process
leads to a somewhat inefficient processing. Shen et al. [9] built a tree-structured,
multi-task fully convolutional network (FCN) to implicitly encode the hierar-
chical relationship of tumor substructures. The end-to-end network structure
was much efficient than the patch-based methods. To improve the segmentation
accuracy of tumor boundaries, Shen et al. [10] proposed a boundary-aware fully
convolutional network (BFCN) and constructed two branches to learn two tasks
separately, one for tumor tissue classification and the other for tumor bound-
ary classification. However, the flaw inherent in the traditional FCN still exists,
that is, rough multi-fold up-sampling operation makes the results less refined.
To avoid the loss of location information caused by down-sampling operations
in traditional CNNs, Lopez et al. [7] designed a dilated residual network (DRN)
and abandoned pooling operations. This may be an effective solution to prevent
the network from losing the details, but is too time-consuming and memory-
consuming.

Ronneberger et al. [8] proposed a U-shape convolutional network (called
U-Net) and introduced skip-connections to fuse multi-level features, so as to help
the net decode more precisely. Many experimental results show that U-Net per-
forms well in various medical image segmentation tasks. Dong et al. [1] applied
U-Net to brain tumor segmentation and took the soft dice loss as loss function
to solve the issue of imbalanced data in brain MRI data. Though soft dice loss
may have better performance than cross entropy loss in some extremely class-
imbalanced situation, it has less stable gradient, which may make the training
process unstable even not convergent.

Inspired by the hierarchical structure within the brain tumor, we propose
a novel cascaded U-shape convolutional network for the multistage segmenta-
tion of brain tumors. To mitigate the vanishing gradient problem caused by the
increasing depth of neural networks, each basic block in our cascaded U-shape
convolutional network is designed as a residual block as in [4]. Moreover, the
decoding-layer supervision information is also considered during the training
process, and this is expected to further alleviate the problem of vanishing gradi-
ents. To reduce the information loss in the deeper layers, we design between-net
connections to facilitate the efficient transmission of high resolution informa-
tion from the shallow layers to the corresponding deeper layers, which leads
to obtain more refined segmentation results. Additionally, to address the class-
imbalanced problem, we define a new cross entropy loss function by introducing
a loss weighted sampling scheme.



104 H. Liu et al.

The main contributions of this paper can be summarized as follows.

– We propose a novel cascaded U-Net framework for brain tumor segmentation.
– Some between-net connections are designed to facilitate the efficient trans-

mission of high resolution information from shallow layers to deeper layers.
And the residual block is introduced to fit in with the excessive depth.

– Moreover, we also present a loss weighted sampling scheme to address the
severe class-imbalance problem.

– Finally, our experimental results show that our method performs much better
than state-of-the-art methods in terms of dice score and sensitivity.

2 The Proposed Cascaded U-Net Method

2.1 Our Cascaded U-Net Architecture

Our network is a novel end-to-end architecture mainly composed of two cas-
caded U-Nets with each for different task, as shown in Fig. 1. Such a cascaded
framework is inspired by the underlying hierarchical structure within the brain
tumor that the tumor comprises a tumor core, and the tumor core contains an
enhancing tumor.

Fig. 1. Our cascaded U-Net architecture (CU-Net or CUN) for brain tumor segmenta-
tion. The digital number on each block denotes the number of output channels. Before
every supervision, including 8 auxiliary supervisions and 2 branch supervisions, there
is a 1 × 1 convolution to squeeze the channels of output into the same quantity as
target. Besides, in each auxiliary supervision, a deconvolution is used to up-sample the
feature maps to the same resolution as input. All the arrows denote the operations.
(Color figure online)
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Given the input brain MRI images, we extract a non-brain mask firstly and
prevent the network from learning the masked areas by loss weight sampling.
Then the first-stage U-Net separates the whole tumor from background, and
sends the extracted features into the second-stage U-Net, which further segments
tumor substructures. Such a cascade structure is designed to take advantage
of the underlying physiological structure within the brain tumor. The cascade
structure will multiply the network depth, which on the one hand will enhance
the ability of a network to extract semantic features, but on the other hand
exacerbate the vanishing gradient problem. In our architecture, we design the
following three strategies to avoid the above problem and fulfill the coarse-to-fine
segmentation of brain tumor.

Firstly, inspired by the residual network, each basic unit in our network is
constructed by a residual block stacked by two 3×3 convolution blocks. Secondly,
the auxiliary supervisions are considered in our cascaded U-Net. Specifically, each
decoding layer in the network expands a branch composed by a deconvolution
and a 1 × 1 convolution to up-sample the feature maps to the same resolution
as input and squeeze the output channels. Then the training labels are added
for the supervised learning (see the thinner orange arrows in Fig. 1). This allows
the introduction of additional gradients during training and further alleviates
the vanishing gradient problem. In some extent, it can be also regarded as an
additional regulation for the network to avoid overfitting. Finally, the between-
net connections are designed. The features from the decoding layers of the first
U-Net are transmitted to the corresponding encoding layers in the second U-Net
by concatenation operation. These between-net connections enable the high-
resolution information in some shallow layers to be preserved and sent to the
deeper layers for a fine segmentation of tumor substructures.

2.2 Training with Loss Weighted Sampling

Our proposed network is an end-to-end architecture, in which the two cascaded
U-Nets are trained jointly, ensuring the efficiency of the data processing proce-
dure. To address the extremely imbalance of the positive and negative samples
in the brain tumor dataset, we present a loss weighted sampling scheme and
combine it with the cross entropy loss function. Specifically, the sampled loss
function is formulated as follows:

L =

b∑

n=1

l∑

i=1

w∑

j=1

[(

−
c∑

m=1
(L · log Y )

)

· W

]

b∑

n=1

l∑

i=1

w∑

j=1

W

(1)

where Y ∈ R
b×c×l×w denotes the predicted probability for the one-hot label

L ∈ R
b×c×l×w after softmax functions. b is the number of batches, c is the number

of channels, l and w are the length and width of the image, respectively. Sample
matrix W ∈R

b×l×w is computed according to specific tasks, and Wn,i,j ∈ {0, 1}
denotes the loss weight of the pixels at the spatial location (n, i, j).
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Fig. 2. A brain tumor training sample is divided into four regions according to the
input data and ground truth: (a) FLAIR. (b) T1ce. (c) Ground truth (Purple: Non-
tumor; Blue: Edema; Yellow: enhancing tumor; Green: necrosis.) (d) Four regions of
a training sample. S1: Black background; S2: Normal brain region; S3: Tumor region
obtained from (c); S4: Tumor contour region obtained by a contour detection algorithm.
(Color figure online)

The brain MRI image is divided into four regions: S1, S2, S3 and S4, which
represent the black background, normal brain region, tumor region, and tumor
contour region, respectively (see Fig. 2(d)). Then the sample matrix W can be
computed as follows:

W =
3∑

i=1

Sample (Si, pi) + αSample (S4, p4) (2)

where Sample(Si, pi) denotes a binary matrix obtained by random sampling
in Si with probability pi. The hyper-parameter α is greater than or equal to
1, which is introduced for adjusting the loss weight of contour regions and is
expected to enhance the ability of our network to recognize the tumor contour.
Note that α becomes α1 and α2 for the U-Net1 and U-Net2 in the proposed
cascaded U-Net, respectively.

For most of the MRI images, the black background S1, also referred as non-
brain mask in this paper, contains a large number of pixels but provides little
useful information for the segmentation task. According to this prior knowledge,
we let p1 be 0 and extract a non-brain mask in advance and merge it with the
prediction maps when testing.

To compute the branch loss function L1 and auxiliary loss function Lai

(i = 1, 2, . . . , 4) in U-Net1, we let p3 = 1, p4 = 1. Then p2 is calculated as
follows:

p2 · NS2 = β · p3 · NS3 (3)

where NSi
denotes the pixel number in region Si, and β, usually more than 1,

is for adjusting the proportion of positive and negative samples in a training
batch, thus eliminating the class imbalance problem [6]. Because Sample(Si, pi)
is a random sampling operation, as long as β ·p2 ·epoch ≥ 1 is guaranteed, where
epoch is the times of the network to traverse the whole training set, all pixels in



Cascaded U-Net with LWS for Brain Tumor Segmentation 107

the dataset are expected to participate in the calculation of loss for at least one
time so that no information from the brain tumor will be lost.

For the branch loss function L2 and auxiliary loss function Lai
(i=5, 6, . . . , 8)

in U-Net2, we let: p1 =0, p2 =0, p3 =1, p4 =1, α2 =1, which means that U-Net2
only learns the segmentation of tumor substructures. Thus, the loss function of
our network is

LTotal = L1 + L2 + ω

8∑

i=1

Lai + λψ (4)

where Lai is the auxiliary loss function (i = 1, 2, . . . , 8), ω is the weighted coeffi-
cient, and ψ is the regularization term with the hyper-parameter λ for tradeoff
with the other terms.

For the testing process, we extract the non-brain mask in advance and fuse
it with the outputs of branch1 and branch2 to get the final segmentation result.

3 Experimental Results

In this section, we apply the proposed cascaded U-Net for brain tumor seg-
mentation tasks. We also compare our cascaded U-Net with the state-of-the-art
methods: U-Net [8], BFCN [10] and DRN [7].

3.1 Datasets and Pre-processing

We evaluate our method on the training data of BraTS challenge 2017. It con-
sists of 210 cases of high-grade glioma and 75 cases of low-grade glioma. In
each case, four modal brain MRI scans: T1, T2, T1ce and FLAIR, are provided,
respectively. The resolution of MRI scans is 240 × 240 × 155. Pixel-level labels
provided by the radiologists are: 1 for necrotic (NCR) and the non-enhancing
tumor (NET), 2 for edema (ED), 4 for enhancing tumor (ET), and 0 for every-
thing else. In our experiments, 210 high-grade cases are divided into three subsets
at a ratio of 3:1:1, i.e., 126 training data, 42 validation data and 42 testing data
are attained. Low-grade cases are not used. Besides, about 30% scans that don’t
contain any tumor structure are discarded in the training process. All the input
images are processed by N4-ITK bias field correction and intensity normaliza-
tion. In addition, data augmentation including random rotation and random flip
is used in all the algorithms.

3.2 Implementation Details

All the algorithms were implemented on a computer with NVIDIA GeForce
GTX1060Ti (6 GB) GPU and Intel Core i5-7300HQ CPU @ 2.5 GHz (8GB),
together with the open-source deep learning framework pytorch. The contour
weight α1 is set to 2, and β is set to 1.5. The extracted tumor contour is about 10
pixels wide. In the training phase, we use stochastic gradient descent (SGD) with
momentum to optimize the loss function as in [11]. The momentum parameter
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is 0.9, and the initial learning rate is 10−3 and decreased by a factor of 10
every ten epochs until a minimum threshold of 10−7. The weight decay λ is
set to 5 × 10−5. The models are trained for about 50 iterations until there is
an obvious uptrend in the validation loss. The weighted coefficient ω is set to
0.1 initially and decreased by a factor of 10 every ten epochs until a minimum
threshold of 10−3.

For segmentation results, we evaluate the following three parts: (1) Whole
Tumor (WT); (2) Tumor Core (TC); and (3) Enhancing Tumor (ET). For each
part, dice score (called Dice), sensitivity (called Sens) and specificity (called
Spec) are defined as follows:

Dice(P, T ) =
2|P1 ∧ T1|
|P1| + |T1| , Sens(P, T ) =

|P1 ∧ T1|
|T1| ,

Spec =
|P0 ∧ T0|

|T0| ,

(5)

where P , T denote the segmentation results and labels, and P0, P1, T0, T1 denote
negatives in P , positives in P , negatives in T and positives in T , respectively.

3.3 Results and Analysis

To verify the effectiveness of our proposed network and loss weighted sampling
scheme, we compare our CUN method with several state-of-the-art deep learning
algorithms including U-Net [8], BFCN [10] and DRN [7].

Fig. 3. Segmentation results of different methods on the local testing data. From left to
right: Flair, T1ce, Ground Truth and results of U-Net, BFCN, DRN, CUN, CUN+LWS,
respectively. In ground truth and segmentation results, purple, blue, yellow, green
represent Non-tumor, Edema, Enhancing Tumor, and Necrosis, respectively. (Color
figure online)
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Fig. 4. Distributions of dice score and sensitivity of the five methods for whole tumor
(WT), tumor core (TC) and enhancing tumor (ET). The solid lines and dotted lines
in the boxes represent the median value and the average value, respectively.

The visual results are shown in Fig. 3. It can be seen that our proposed
CUN+LWS has the best segmentation sensitivity among the five methods, and
is better at segmenting the tiny sub-structures within a brain tumor. The distri-
butions of the obtained dice scores and sensitivities are presented in Fig. 4. The
quantitative results of the five models on the testing set are listed in Table 1.
As we can see, our CUN method outperforms the three state-of-the-art methods
by approximately 1.5% in dice score and 2% in sensitivity. Besides, when LWS

Table 1. Dice score, sensitivity and specificity of the five methods for Whole Tumor,
Tumor Core and Enhancing Tumor on the testing set.

Method Whole Tumor Tumor Core Enhance Tumor

Dice Sens Spec Dice Sens Spec Dice Sens Spec

U-Net [8] 0.872 0.885 0.996 0.779 0.811 0.999 0.751 0.829 0.999

BFCN [10] 0.874 0.857 0.997 0.788 0.850 0.998 0.757 0.851 0.998

DRN [7] 0.881 0.871 0.996 0.810 0.854 0.998 0.768 0.878 0.998

CUN 0.886 0.892 0.997 0.830 0.849 0.999 0.784 0.869 0.998

CUN+LWS 0.888 0.903 0.996 0.831 0.877 0.998 0.768 0.881 0.998



110 H. Liu et al.

is adopted, there is an additional average growth of 1.5% in sensitivity, which
indicates the effectiveness of LWS.

4 Conclusions

Inspired by the hierarchical structure of brain tumors, we proposed a novel cas-
caded U-Net for the segmentation of brain tumor. To make the network work
more effectively, three strategies were designed. The residual blocks and the
auxiliary supervision can help gradient flow more smoothly during training,
and alleviate the vanishing gradient problem caused by the increasing depth
of neural networks. The between-net connections can transmit the high reso-
lution information from the shallow layer to the deeper layer and help obtain
more refined segmentation results. Furthermore, we presented a loss weighted
sampling scheme to adjust the number of samples in different classes to solve
the severe class imbalance problem. Our experimental results demonstrated the
advantages of our network and the effectiveness of the loss weighted sampling
scheme.
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Abstract. We present BrainPainter, a software that automatically gen-
erates images of highlighted brain structures given a list of numbers corre-
sponding to the output colours of each region. Compared to existing visu-
alisation software (i.e. Freesurfer, SPM, 3D Slicer), BrainPainter has three
key advantages: (1) it does not require the input data to be in a specialised
format, allowing BrainPainter to be used in combination with any neu-
roimaging analysis tools, (2) it can visualise both cortical and subcorti-
cal structures and (3) it can be used to generate movies showing dynamic
processes, e.g. propagation of pathology on the brain. We highlight three
use cases where BrainPainter was used in existing neuroimaging studies:
(1) visualisation of the degree of atrophy through interpolation along a
user-defined gradient of colours, (2) visualisation of the progression of
pathology in Alzheimer’s disease as well as (3) visualisation of pathol-
ogy in subcortical regions in Huntington’s disease. Moreover, through the
design of BrainPainter we demonstrate the possibility of using a powerful
3D computer graphics engine such as Blender to generate brain visuali-
sations for the neuroscience community. Blender’s capabilities, e.g. par-
ticle simulations, motion graphics, UV unwrapping, raster graphics edit-
ing, raytracing and illumination effects, open a wealth of possibilities for
brain visualisation not available in current neuroimaging software. Brain-
Painter (Source code: https://github.com/mrazvan22/brain-coloring) is
customisable, easy to use, and can run straight from the web browser:
http://brainpainter.csail.mit.edu. It can be used to visualise biomarker
data from any brain imaging modality, or simply to highlight a particular
brain structure for e.g. anatomy courses.

1 Introduction

Efficient visualisation of brain structure, function and pathology is crucial for
understanding the mechanisms underlying neurodegenerative diseases and eases

D. C. Alexander and P. Golland—Joint senior authors with equal contribution.

c© Springer Nature Switzerland AG 2019
D. Zhu et al. (Eds.): MBIA 2019/MFCA 2019, LNCS 11846, pp. 112–120, 2019.
https://doi.org/10.1007/978-3-030-33226-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33226-6_13&domain=pdf
https://github.com/mrazvan22/brain-coloring
http://brainpainter.csail.mit.edu
https://doi.org/10.1007/978-3-030-33226-6_13


BrainPainter: A Software for the Visualisation 113

the interpretation of results in neuroimaging studies. This is especially impor-
tant in populations studies, where two or more populations are compared for
group differences in biomarkers derived from e.g. Magnetic Resonance Imaging,
Positron Emission Tomography (PET) or Computer Tomography (CT). The
results are best visualised as brain images, where regions-of-interest (ROIs) are
highlighted based on the magnitude of the difference between the two groups.
These visualisation are generally done by the same software that performs the
registration, segmentation and statistical analysis. However, for traumatic brain
injury or less common neurodegenerative diseases such as Parkinson’s disease
and Multiple Sclerosis, visualisations of statistical results is sometimes not per-
formed due to the inability to register images to a common template or lack of
robust registration software. Therefore, many studies such as [1,2] only report
differences between patients and controls in tables or as box plots. There is
therefore a lack of visualisation tools that can highlight neuroimaging findings
for these complex diseases.

When registration to a common population template is possible, e.g. in
Alzheimer’s disease (AD), excellent 3D visualisation software exists which allows
interactive visualisation of population differences – e.g. 3D Slicer [3], Freesurfer
[4] or SPM [5]. However, they have several inherent limitations. First, such
software – e.g. Freesurfer – generally require inputs in their proprietary data
format, which is usually difficult and time-consuming to create without using
their pipeline. While creating these proprietary data formats is necessary when
users need to display voxelwise visualisations, often users only need to highlight
entire ROIs – in this simpler case the user could only provide a list of RGB colors
for each ROI in a csv file, removing the need to create input data in a specialised
format. Another limitation of existing visualisation software is their difficulty in
highlighting complex patterns of pathology in a single slice of a 3D volumetric
image. To overcome this, some authors show multiple slices (sometimes up to
8 slices [6]), although this takes too much space on the academic paper being
published. While Freesurfer solves this problem using a cortical surface-based
representation that captures most of the complexity of pathology patterns in a
single image, this surface representation is not supported for subcortical struc-
tures such as the hippocampus. Third, current visualisation software cannot be
easily used to generate e.g. a movie showing a dynamic process, e.g. propaga-
tion of pathology within the human brain, as most of them have been intended
for interactive visualisation and have no application programming interface
(API) that allows automatic generation of hundreds of images using pre-defined
settings.

We present BrainPainter, a software for easy visualisation of structures,
pathology and biomarkers in the brain. As opposed to previous visualisation
software, the input data is very simple: a generic .csv file containing numbers
for each ROI, each number mapping to a different colour to be assigned to that
ROI – such a simple input allows BrainPainter to be used in conjunction with
any other neuroimaging analysis software. Secondly, BrainPainter can visualise
both cortical and subcortical structures using a surface representation, remov-
ing the need to show multiple slices of the same 3D scan. Third, the images are
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User-defined color gradient

0 1 2 3

INPUT

Biomarkers Hippocampus Inferior Superior ...
(.csv file) temporal parietal ...
Brain 1 0.6 2.3 1.3 ..
Brain 2 1.2 0.0 3.0 ..

... ...

OUTPUT

Brain 1

Brain 2

Fig. 1. Given a .csv file with region-of-interest (ROI) biomarkers and a user-
defined color gradient, BrainPainter can automatically generate brain images
with the cortical surface (left and middle) as well as with subcortical structures
(right). The input .csv file can contain multiple rows, one for each set of output
images. The color gradient is a list of RGB colours given by the user. Final
colours are interpolated using the numbers from the input .csv file based on the
color gradient – e.g. if the hippocampus has an associated value of 1.2, it’s final
color in the output image will be an interpolation of colors 1 and 2 from the
gradient. (Color figure online)
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generated automatically from pre-defined view-points, and can be easily used to
create a movie showing e.g. the propagation of pathology, without the need to
write any extra software code or interface with an API.

2 Design

BrainPainter has a very simple yet effective workflow. Given an input csv file
with biomarkers for each region, it produces high-quality visualisations of cortical
and subcortical structures. For this, it uses Blender as a rendering engine, and
loads 3D meshes from a template brain (one 3D mesh for each ROI), which are
then coloured according to the input numbers. Instead of providing a list of RGB
colours for each ROI, we choose a simpler interface of providing one number for
each ROI which maps to an RGB color using a user-defined color gradient. For
example, the gradient can range from white → yellow → orange → red, as in the
example from Fig. 1. In this case, the input numbers for each ROI need to be in
the range [0,3], where a value of 1.3 would interpolate between colour 1 (yellow)
and color 2 (orange).

BrianPainter uses open-source software Blender as the rendering engine. We
chose Blender for three reasons. First, it is open-source, allowing us to distribute
it already integrated with BrainPainter, thus requiring no further installation.
Secondly, Blender is a powerful 3D graphics software, which allowed us to create
realistic lightning conditions and handle transparency required for the glass-
brain. Third, it also supports creating movies of complex temporal processes
such as pathology spread along the brain. The software also supports a variety of
object formats for the brain template, including the popular .obj mesh format.
As BrainPainter is written in Python, it allows interfacing with any Blender
function.

The software is able to colour and visualise regions belonging to a pre-defined
atlas. Currently, we support three widely-used atlases: (i) the Desikan-Killiany
(DK) atlas [7], (ii) the Destrieux atlas [8] and (iii) the Tourville atlas [9]. How-
ever, a custom atlas can also be used by mapping those regions to any of the
three atlases currently supported, through the modification a simple mapping in
the main configuration file.1

3 Customisation

BrainPainter can be easily customised in several ways, as shown in Fig. 2. First
of all, the colours assigned to each region can be changed by modifying both the
control points of the color gradient and the input numbers selecting colors along
the gradient. The background colour and image resolution can also be changed.

The 3D structures being visualised can also be customised. We currently
support three atlases (Desikan-Killiany, Destrieux and Tourville) as well as two
types of brain surfaces: inflated, which is a brain surface that is smoothed out and

1 https://github.com/mrazvan22/brain-coloring/blob/master/config.py.

https://github.com/mrazvan22/brain-coloring/blob/master/config.py
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Fig. 2. BrainPainter website interface at http://brainpainter.csail.mit.edu,
showing how it can be easily customised. Here, the user selects the brain type,
colours and resolution, and finally uploads the input .csv file with ROI biomark-
ers. The server then generates the output images, which can be downloaded by
the user. More customisation features will be added in future versions.

where no gyri appear, and also pial, the standard brain surface with gyri. The
software allows one to remove some 3D structures – for example, Fig. 5 shows
the subcortical structures with the cerebellum removed from the visualisation –
contrast this with Fig. 4.

BrainPainter also support two types of surfaces, cortical and subcortical
structures. For the cortical surface, we only show the left hemisphere (although
the right hemisphere can also be added), and provide two default viewing
angles (front and back). For the subcortical structures, we show them for both
hemispheres and also show the right hemisphere as a glass brain, for reference.

More complex settings such as the viewing angle and luminosity can also be
customised, but currently require minor modifications to the source code. In the
future, we plan to enable these customisations from the main configuration file.

4 First Use Case: Visualising the Degree of Pathology

In the first use case, we want to visualise the degree of pathology in Alzheimer’s
disease. During the progression of Alzheimer’s disease, some regions of the brain
such as the hippocampus and temporal lobes will be more affected compared to
other regions of the brain such as the occipital lobe. Visualisation of pathology in
AD is important in order to understand its underlying mechanisms and generate
new hypotheses.

The notion of pathology here is abstract, and can refer to atrophy as mea-
sured by volume loss or cortical thinning, white matter degradation as measured

http://brainpainter.csail.mit.edu
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Fig. 3. Demonstration of BrainPainter for showing degree of pathology for three
subtypes of Alzheimer’s disease. The vertical bar on the right shows the degree
of atrophy as standard deviations from the control population. Image courtesy
of [10]. (Color figure online)

Fig. 4. Demonstration of BrainPainter for showing the temporal progression of
atrophy in two subtypes of Alzheimer’s disease, as a sequence of snapshots at
different disease stages. Image reproduced and adapted from [10]. (Color figure
online)

by diffusion tensor imaging (DTI) changes in fractional anisotropy (FA), or the
level of abnormal conformations of proteins such as amyloid-beta or tau as mea-
sured by Positron Emission Tomography. However, BrainPainter is agnostic to
the meaning of these biomarkers and can be used with any imaging modality,
including markers derived from several modalities together.
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Figure 3 shows an application of BrainPainter by [10] to highlight the degree
of atrophy in Alzheimer’s disease. Regions with no atrophy are coloured in white,
while regions with severe atrophy are coloured in blue. The gradient on the right
shows, for every color, the number of standard deviations away from controls.

5 Second Use Case: Visualising the Temporal Progression
of Neurodegenerative Diseases

In the second use case, we would like to visualise the temporal progression of
Alzheimer’s disease (AD). Alzheimer’s disease is characterised by a slow, contin-
uous progression – while it’s mechanisms are still not fully understood, it is cur-
rently believed that initial abnormalities in the amyloid and tau proteins cause
a cascade of events that eventually lead to axonal degradation, neural death
and cognitive decline [11]. Therefore, being able to visualise the progression of
these events, including their timing and speed, is crucial for understanding the
mechanisms of Alzheimer’s disease.

Figure 4, reproduced and adapted from [10], demonstrates the ability of
BrainPainter to visualise the evolution of atrophy in two subtypes of Alzheimer’s
disease – cortical and subcortical – characterised by prominent atrophy in the
cortical and subcortical regions respectively. This study done by [10] used data
from the Alzheimer’s disease Neuroimaging Initiative to disentangle the het-
erogeneity of AD into subtypes with different progression. Here, visualisations
provided by BrainPainter were able to characterise not only the degree of atro-
phy in each region (white/red to blue colors), but also the timing of atrophy
events. For example, even in the cortical subtype, the hippocampus becomes
affected by stage 13, while similarly, in the subcortical subtype the temporal
lobe becomes affected by stage 13.

6 Third Use Case: Visualising Pathology in Subcortical
Structures

The ability to visualise subcortical structures is crucial for neurodegenerative dis-
eases that cause damage to these regions. Apart from Alzheimer’s disease, Hunt-
ington’s disease (HD) is also known for targetting subcortical regions [12,13]. The
neurodegeneration in HD is believed to begin in the striatum and pallidum, and
later followed by other subcortical and cortical regions [12].

Figure 5, reproduced and adapted with permission from [13], shows visualisa-
tions generated by BrainPainter of atrophy progression in subcortical areas, for
Huntington’s disease. The images show early involvement of the putamen, cau-
date and pallidum in the progression of Huntington’s disease, and demonstrate
the potential of BrainPainter in visualising pathology dynamics in subcortical
regions using parsimonious glass-brain images.
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(a) Stage 0 (b) Stage 3 (c) Stage 7 (d) Stage 10

Fig. 5. Progression of pathology in Huntington’s disease, shown in subcortical
regions, using images generated with BrainPainter. Images adapted from [13].

7 Conclusion

We presented BrainPainter, an open-source software that can be used to visualise
structures, biomarkers and pathologies in the human brain. The visualisations
generated by BrainPainter can be used to significantly enhance the interpretation
of neuroimaging research and can be easily embedded by researchers into scien-
tific articles. While not demonstrated here, BrainPainter can also easily generate
movies showing dynamic processes, e.g. propagation of brain pathology.

Our software has several limitations that can be addressed in future versions.
First, it can currently only highlight entire regions-of-interest from an atlas.
However, this was a design choice, as it removes the need for users to create
specialised input files with voxelwise measurements, thus increasing usability.
Nevertheless, in future versions we might add the ability to highlight fine-grained
patterns of pathology. Yet another limitation of BrainPainter is that it cannot
visualise more complex structures such as white-matter tracts, although we plan
to add such functionality in future releases.

The use of the powerful Blender engine opens numerous avenues not possible
with current neuroimaging software: motion graphics can be used to generate
realistic movies showing e.g. the evolution of biomarkers, particle simulations
can be used to visualise toxic proteins accumulating in certain regions, soft-
body simulations can be used to model brain deformations due to head trauma,
while camera-based rendering allows the creation of educational videos.
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Abstract. Multimodal medical image fusion helps in combining con-
trasting features from two or more input imaging modalities to represent
fused information in a single image. One of the pivotal clinical appli-
cations of medical image fusion is the merging of anatomical and func-
tional modalities for fast diagnosis of malign tissues. In this paper, we
present a novel end-to-end unsupervised learning based Convolutional
neural network (CNN) for fusing the high and low frequency compo-
nents of MRI-PET grayscale image pairs publicly available at ADNI by
exploiting Structural Similarity Index (SSIM) as the loss function during
training. We then apply color coding for the visualization of the fused
image by quantifying the contribution of each input image in terms of
the partial derivatives of the fused image. We find that our fusion and
visualization approach results in better visual perception of the fused
image, while also comparing favorably to previous methods when apply-
ing various quantitative assessment metrics.

Keywords: Medical image fusion · MRI-PET · Convolutional neural
networks (CNN) · Structural similarity index (SSIM)

1 Introduction

A rapid advancement in sensor technology has improved medical prognosis, sur-
gical navigation and treatment. For example, anatomical modalities such as Mag-
netic resonance imaging (MRI) and Computed Tomography (CT) reveals the
structural information of the brain like the location of tumor as well as white
and gray matter while modalities such as Positron emission tomography (PET)
provides functional information like glucose metabolism. The hybrid blend of
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PET-CT acquisition hardware provides fast and accurate attenuation correc-
tion and helps in combining anatomical and functional information. However it
exposes patients to high level of X-Ray and ionizing radiation. The integrated
MRI-PET scanners results in high tissue contrast with significantly low radiation
dose. But the development of a robust hybrid MRI-PET hardware is challenging
due to compatibility issue of PET detectors in a high magnetic field environment
of MRI. The post-hoc fusion of MRI-PET image pairs overcomes the challenges
of fully integrated MRI-PET scanners and helps medical personnel to better
diagnose brain abnormalities such as glioma and Alzheimer’s disease [1,2].

Most of the past image fusion methods proposed a three step approach to
the fusion problem. First, the source images were transformed into a particular
domain using approaches such as multi-scale decomposition [3–7], sparse repre-
sentation [8,9], mixture of multi-scale decomposition and sparse representation
[10] and Intensity-Hue-Saturation [11] among others. Then, the transformed coef-
ficients are combined using a predefined coefficient grouping based fusion strat-
egy such as max selection and weighted-averaging. Finally, the fused image is
reconstructed by taking the inverse of the transformation strategy. However, the
intricacy of these methods leads to the computational inefficiency making them
unrealistic for the real time setup [12]. CNN based medical image fusion [13]
has been actively studied in the past. However, these methods train the net-
work on natural images due to the unavailability of large preregistered medical
image pairs. The acquisition method of natural images differ from PET images
since PET accumulates nuclear tracers depending on positron range, photon
collinearity or the width of the detector element that results in a smooth low
resolution acquisition without clear interfaces between certain tissues. The high
resolution MRI such as T1-MPRAGE on the other hand are acquired in spatial
frequency domain by varying the sequence of RF pulses. Hence, the aspects of
human visual system that are tuned to process natural images are not equally
useful for MRI-PET images due to which the selection of a proper objective
assessment metric is challenging [14]. Secondly, there are no ground truth in a
fusion problem due to which proper selection of the loss layer becomes critical.

Therefore, we propose a fast grayscale anatomical and functional medical
image fusion approach in an end-to-end unsupervised learning network trained
on publicly available medical image pairs. Additionally, the fusion result is visu-
alized based on the contribution of the input images to the fused output image.
The computational efficiency of our combined fusion and visualisation framework
has the potential of real time clinical application in future.

2 Methods

2.1 Fusion Framework

The fusion architecture in Fig. 1 takes two grayscale input images I1 and I2
and generates a grayscale fused image IF . The network consist of three different
strategies named feature extraction, fusion and reconstruction to preserve most
of the details from the input modalities. We train the parameters of the feature
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extraction and reconstruction layers by maximising the structural similarity and
minimising the euclidean distance between fused image and the input images.

LSSIM + (1- )L2

LSSIM + (1- )L2

LF

HF

HF

LF

∇

∇
Ω

st nd

1

2

Fig. 1. The proposed fusion and visualisation framework.

Feature Extraction: In the first feature extraction layer, we perform two
different convolution operations on each of the input images to decompose it
into high and low frequency feature maps. Since blurry PET images has higher
low frequency components than sharp MRI images, we define a kernel filter of
size 9 × 9 for the anatomical input I1 to capture low frequency (LF) features in
a larger window while we select a smaller kernel size of 7 × 7 to capture the LF
features of the functional input I2 efficiently. For the high frequency (HF) layer,
we define a kernel size of 3 × 3 for anatomical input I1 to capture the sharp
local features such as edges and corners better in smaller neighborhoods while
we choose a kernel size of 5 × 5 for functional input I2 due to less number of
edges. We add two more hidden HF layers with increasing number of channels
to preserve the deep high frequency features at the boundary regions.

Fusion and Reconstruction: HF features contain detailed information about
texture and edges that has direct impact on the edge distortion of the fused
image. Therefore, proper selection of the fusion strategy of HF features is crucial
for robust fusion results. Max pooling strategy extracts edges from the features
maps whereas average pooling is efficient in preserving textures. We utilise the
advantage of each of the methods and propose max-average pooling as 1st fusion
rule for the HF features. We implemented weighted averaging strategy as the 2nd

fusion rule for LF features containing global information of inputs. Our recon-
struction strategy contains three hidden layers and we define tanh activation
function at the last layer due to its steeper gradients than a sigmoid function
making backpropagation effective. Let H1(φ) and H2(φ) be the high frequency
features of I1 and I2 at channel φ in the third hidden HF layer, L1(τ) and L2(τ)
the low frequency features of I1 and I2 at channel τ in the first hidden LF layer
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and Ri(τ) the feature map generated from the second reconstruction layer, then
the outputs of first fusion layer Ho(φ) and the second fusion layer Ro(τ) are:

Ho(φ) =
max

(
H1(φ),H2(φ)

)

H1(φ) + H2(φ)
, Ro(τ) =

L1(τ) + L2(τ) + Ri(τ)
3

(1)

Loss Function: The fused image in medical domain is normally evaluated by
a human observer whose sensitivity to noise depends on local luminance, con-
trast and structural properties of the image. Therefore, we adopt the structural
similarity index (SSIM [15]) as the human perceptive loss function defined as:

SSIM(I, J) =
1
N

N∑
k=1

[l(ik, jk)]α · [c(ik, jk)]β · [s(ik, jk)]γ (2)

where I and J are the two input images and N is the number of local windows
in the image. In our paper, α =β = γ = 1 gives equal importance to luminance
l(ik, jk), structural s(ik, jk) and contrast c(ik, jk) comparisons of the image con-
tents ik and jk at kth local window with Cl, Cc, Cs as constants given as:

l(ik, jk) =
2μikμjk + Cl

μ2
ik

μ2
jk

+ Cl
, c(ik, jk) =

2σikσjk + Cc

σ2
ik

σ2
jk

+ Cc
, s(ik, jk) =

σikjk + Cs

σik + σjk + Cs

(3)
where μik , μjk are the mean and σik , σjk are the standard deviations of image
contents ik and jk computed using a Gaussian filter with standard deviation σg

and σikjk being the correlation coefficient. By empirically setting only SSIM as
the loss function, we observed a shift in brightness of the fused image since the
smaller σg preserves edges and contrast better than the luminance in the flat
areas of the image. Therefore, in addition to SSIM we employ pixel level loss �2
which preserves luminance better. With I1 and I2 as the two source images and
F as the final fused image, we express our steerable total loss function as:

Ltotal = λ ∗ LSSIM + (1 − λ) ∗ L�2 (4)

where LSSIM = (1−SSIM(I1, F ))+(1−SSIM(I2, F )) and L�2 = (||F −I1||2+
||F − I2||2) while λ controls the weightage of each of the sub-losses.

2.2 Visualization Framework

We visualised the functional and anatomical information in the fused grayscale
image by first calculating the partial derivative of each pixel of the fused image
with respect to each of the input images. Assuming n and m as the dimensions of
the anatomical input I1 and functional input I2 while k and l are the dimensions
of the fused image IF , so the gradients ∇FI1(n,m) and ∇FI2(n,m) will be:

∇FI1(n,m) =
k∑

i=0

l∑
j=0

∂F [i, j]
∂I1[n,m]

, ∇FI2(n,m) =
k∑

i=0

l∑
j=0

∂F [i, j]
∂I2[n,m]

(5)
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We then color coded the functional gradient image ∇FI2 and performed Hue
Saturation Value (HSV) transformation on both the images. The Hue and Sat-
uration channels of ∇FI2 and the Value channel from ∇FI1 were stacked and
inverse transformed to get the fused colored image. The factor Ω is multiplied
with the saturation channel of ∇FI2 to prevent the occlusion of anatomical infor-
mation.

Fig. 2. The three sets of images shows visual results of compared methods, proposed
fusion results based on λ and the visualisation results based on Ω. (Color figure online)

3 Experiments and Results

3.1 Training

Data Acquisition: We obtained 500 MRI-PET image pairs publicly available
at the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [16] with subject’s
age between 55–90 years among both genders. All images were analyzed as axial
slices with a voxel size of 1.0 × 1.0 × 1.0mm3. The MRI images were skull
stripped T1 weighted N3m MPRAGE sequences while PET-FDG images were
co-registered, averaged, standardized voxel sized with uniform resolution of the
same subject. We aligned the MRI-PET image pairs using the Affine transfor-
mation tool of 3D Slicer registration library.

Initialisation of Hyperparameters: The kernel filters of our fusion network
are initialised as truncated normal distributions with standard deviation of 0.01
while the bias is zero. The stride in each layer is 1 with no padding during
convolution since every down-sampling layer will erase detailed information in
the input images which is crucial for medical image fusion. We employ batch
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normalization and Leaky ReLU activation with slope 0.2 to avoid the issue of
vanishing gradient. The network is trained for 200 epochs with the batch size
of 1 and varied λ ∈ [0, 1] on a single GeForce GTX 1080 Ti GPU. The Adam
optimizer is used as the optimization function during backpropagation step with
learning rate of 0.002. Our approach has been implemented in Python 2.7 and
Tensorflow 1.10.1 on a Linux Ubuntu 17.10 x86 64 system with 12 Intel Core
i7-8700K CPU @ 3.70 GHz and 64-GB RAM.

(a) MRI LSSIM Loss (b) MRI + PET L�2 Loss (c) PET LSSIM Loss

Fig. 3. Training loss curves with 200 epochs and several λ′s.

Loss Curve Analysis: Figure 3 shows the loss curves LSSIM and L�2 for the
training data at different values of λ. The figures convey rapid convergence for
all λ values other than λ ≥ 0.9 where LSSIM plays more important role than
L�2 in the total loss function Ltotal. It is to be noted that LSSIM has higher
sensitivity to smaller errors such as luminance variations in flat texture-less
regions while L�2 is more sensitive to larger errors irrespective of the underlying
regions within the image. This property leads to delayed convergence of LSSIM

for visually perceptive results at edges as well as flat regions of the fused image.

3.2 Testing

We performed cross-validation on our trained model with a disjoint test dataset
that contain 100 MRI-PET image pairs of 100 unique subjects from ADNI and
Harvard Whole Brain Atlas [17] databases. 90 MR-T1 and PET-FDG image
pairs obtained from ADNI were mutually exclusive from training image pairs.
In order to test our method on datasets distinct from ADNI, the remaining 10
pre-registered image pairs were a combination of MR-T1 and PET-FDG or MR-
T2 and PET-FDG images obtained from Harvard Whole Brain Atlas [17] with
subjects suffering from either Glioma or Alzeihmer’s disease.

3.3 Evaluation Settings

The visualisation results of the test images were evaluated with 10 values of
λ,Ω ∈ [0, 1] on four objective assessment metrics namely nonlinear correla-
tion information entropy (QIE) [18], xydeas metric (QG) [19], feature mutual
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information (QFMI) [20], structural similarity metric (QSSIM ) [15] and human
perceptive visual information fidelity (QV IFF ) [21] with higher values means
better performances. The evaluation resulted in highest scores with λ = 0.8 and
Ω = 0.6 for three of the mentioned metrics. We then used six different med-
ical image fusion methods from recent past namely guided filtering (GF) [7],
nonsubsampled contourlet transform (NSCT-PCDC) [3] and (NSCT-RPCNN)
[22], combination of multi-scale transform and sparse representation (LP-SR)
[10], nonsubsampled shearlet transform (NSST-PAPCNN) [6] and convolutional
neural networks (LP-CNN) [13] for quantitative comparisons in a MATLAB
R2018a environment. Our code is publicly available at: https://github.com/
nish03/FunFuseAn/.

Table 1. Assessment of fusion methods based on objective metrics and runtime.

Metrics GF NSCT-PCDC LP-SR NSCT-RPCNN NSST-PAPCNN LP-CNN Proposed

QIE 0.8169 0.8080 0.8092 0.8132 0.8102 0.8076 0.8104

QG 0.7555 0.5457 0.6501 0.6702 0.6685 0.5665 0.5707

QFMI 0.9224 0.8754 0.8969 0.8941 0.8997 0.8958 0.8885

QSSIM 0.8260 0.7992 0.7837 0.8492 0.8318 0.7176 0.8610

QV IFF 0.2776 0.3415 0.5990 0.5430 0.6001 0.5326 0.6005

Time (s) 13.43 221.07 75.69 775.31 521.36 481.73 0.37

3.4 Comparison to the State of the Art

Visual Results: The first set of Fig. 2 conveys negligible contribution of PET
features in the fused image by GF while NSCT-PCDC, NSST-PAPCNN, LP-
SR and NSCT-RPCNN has uneven distribution of structural edges and contrast
leading to splotchy visual artifacts. The results from LP-CNN are better than
other methods but like other methods it fails to preserve the edges from func-
tional modality i.e. PET. Our method conserve structural information better in
both of the image pairs and is robust in preserving the edges (see PET features
in red box). The second set of Fig. 2 reveals that the luminance of the proposed
fusion results increases with greater λ values leading to brightness artifacts at
corner cases of λ = 0 and λ = 1. The third set of Fig. 2 shows proposed visual-
isation results at λ = 0.8 controlled by parameter Ω where a shift in occlusion
of the anatomical information with different values of Ω could be observed.

Objective Assessment: Table 1 summarizes the average scores of 100 test
image pairs computed for different fusion methods along with our proposed
method at λ = 0.8 and Ω = 0.6. A method with a higher score performs better
than a method with a lower score which is applicable for all the mentioned met-
rics. The results convey that our method performs better with the quality metric
QSSIM and QV IFF . This is assertive from the fact that the neural network opti-
mizes the loss function and subsequently improves the structural information in
the fused image. Overall, the competitive scores reflects the robustness of our
method for human perceptive fusion results.

https://github.com/nish03/FunFuseAn/
https://github.com/nish03/FunFuseAn/
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Computational Efficiency: We evaluated the total runtime of each of the
methods for 100 test images in the MATLAB R2018a environment. Table 1 con-
veys that our fusion and visualisation method achieved best timings since the
network parameters are optimized during the training phase and with a fixed
batch size it requires just one forward propagation through the fusion network to
generate the fused images. Therefore, our fusion network could also be utilized
in a real time neurosurgical intervention setup where a continuous feed of live
images in a form of time series will generate fused output video stream with very
low time delay.

4 Conclusion and Discussion

We presented a novel image fusion and visualisation framework which is highly
suitable for diagnosing malignant brain conditions. The end-to-end learning
based fusion model utilised the structural similarity loss to construct artifact
free fusion images and the gradient based visualisation delineated the anatom-
ical features of MRI from the functional features of PET in the fused image.
The extensive evaluation of our approach conveyed significant improvements in
human perceptive results compared to past methods. In future, our method could
further be extended to include other combination of anatomical and functional
imaging modalities by changing the fusion architecture especially the feature
extraction layers. Additionally, we plan to immersively visualise the proposed
results in an augmented reality based real time preoperative setup, thereby
enabling medical experts to make robust clinical decisions.

Acknowledgements. This work was supported by the European Social Fund (project
no. 100312752) and the Saxonian Ministry of Science and Art.
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Abstract. To address automatic segmentation of brain tumor from multi-modal
MRI volumes, a light-weight encoder-decoder network is presented. Exploring
effective way to trade off the range of spatial contexts and computational effi-
ciency is crucial to address challenges of 3D segmentation. To this end, we
introduce hierarchical separable convolution (HSC), an integration of view- and
group-wise separable convolution, which can simultaneously encode multi-scale
context in 3D and reduce memory overhead without sacrificing accuracy.
Specifically, typical 3D convolution is replaced with complementary 2D con-
volutions at multiple scales and thus multiple fields-of-view, which results in a
light-weight but stronger model. Moreover, thanks to the decomposed convo-
lutions, we ensemble 3D segmentations with different focal views to further
improve segmentation accuracy. Experiments on the BRATS 2017 benchmark
showed that our method achieved state-of-the-art performance in Dice, i.e.,
0.901, 0.809 and 0.762 for the whole tumor, tumor core and enhancing tumor
core, respectively.

Keywords: Brain tumor segmentation � Hierarchical separable convolution �
Contextual information

1 Introduction

Glioma, one of the most common types of brain tumors, are typically imaged using
multiple MRI sequences, i.e., T1-weighted (T1), contrast-enhanced T1-weighted
(T1ce), T2-weighted (T2), and Fluid-Attenuated Inversion Recovery (FLAIR) image.
However, manual delineation of brain tumors and their substructures is time-
consuming and also subjective due to the ambiguity of precise annotation. There-
fore, an automatic brain tumor segmentation method can not only improve the
diagnostic efficiency of brain tumors, but also has advantage to provide more repro-
ducible results.
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Convolutional Neural Networks (CNNs) have been widely used in multi-modal
brain tumor segmentation [2–6, 12]. Especially, the notable U-Net [1] with encoder-
decoder structure and 2D convolution has inspired many CNN models for brain
tumorsegmentation. For example, Marcinkiewicz et al. [11] proposed a modified U-Net
models with three encoders, which take three different modalities of images as inputs,
respectively, and are fused before inputting to the decoder. However, the 2D U-Net and
their variants [1, 11] are only able to process 3D medical images slice by slice, ignoring
inter-slice information. To cope with this issue, researches [4, 8] have tried to fuse
segmentations on multiple 2D views of a 3D volume.

Contextual cues are crucial for the success of accurate segmentation. To capture 3D
spatial context information, volumetric CNN including 3D variants of U-Net, such as V-
Net [9], were also investigated. For instance, Casamitjana et al. [10] used two cascades
V-Net [9] network to sequentially locate brain tumor and segment its sub-regions.

OutputMulti-
channel input

(a) Architecture of the proposed Encoder-Decoder Network.

(b) Hierarchical Separable Convolution (HSC) block.
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Fig. 1. Overall architecture of the proposed encoder-decoder with a novel HSC module.
(a) indicates the structure of proposed encoder-decoder, and (b) indicates the detailed structure of
the HSC module. Images from multiple sequences are concatenated, forming a 4-channel input to
the model.
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However, given the limited GPU memory, 3D CNNs for large amount of volume data
are computationally prohibitive due to the huge memory consumption. To take
advantage of both 3D and 2D convolution, Qiu et al. [15] and Wang et al. [3] replaced
the 3D convolution (such as 3 � 3 � 3) with depth-wise separable convolution, i.e., a
2D (3 � 3 � 1) convolution and a 1D (1 � 1 � 3) convolution, which can obviously
reduce computational cost and memory demand. However, the 3D spatial information
captured by the 1D convolution is limited.

In this paper, we introduce a light-weight encoder-decoder network to address
challenges in brain tumor segmentation. To encode multi-scale 3D spatial contexts with
low computation cost, hierarchical separable convolution (HSC) is introduced.
Specifically, (a) to improve the perception of spatial contextual cues, we introduce
view-wise separable convolution (VSC), that is decomposing a standard 3D convolu-
tion into two complementary types of 2D convolutions, which can obviously reduce
computation complexity; (b) inspired by Res2Net [2] and spatial pyramid pooling [16],
we encode cues from multiple fields-of-view by introducing group-wise separable
convolution (GSC), that is applying parallel convolutions of 2D on subgroups of feature
channels with hierarchical connections. In this way, our 3D segmentation model can
have focal view on a 3D volume, which is desirable for both isotropic and anisotropic
medical volumes. Thus, we further ensemble 3D segmentations focusing on different
2D views, which have widely used for 2D method to improve the segmentation
accuracy.

Segmentation ResultEnhancing Tumor 
Core Region

Whole Tumor
Region

Tumor Core
Region

Input

Axial View 
Segmentation

Fusion

Segmentation Result

Sagittal View 
Segmentation

Coronal View 
Segmentation

Fig. 2. Framework of the proposed method. We use three separate CNNs to segment
substructures of the brain tumor in the axial view, sagittal view and coronal view. The
segmentation process of whole tumor region is highlighted for illustration.
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2 Method

The proposed network consists of an encoder and a decoder with a novel HSC block,
which is shown in Fig. 1. The backbone of our network is a lightweight variant of
U-Net with reduced number of convolution channels (only 32 channels) and down-
sampling stages (3 down-sampling stages). Volume images from multiple modalities
are concatenated, forming a 4-channel input to the model. For the multi-label brain
tumor segmentation task, we decompose it into three binary segmentation subtasks to
mitigate interference between brain tissues, which is shown in Fig. 2. Ensemble of 3D
segmentations using different decompositions of 3D convolution is further employed.

2.1 Hierarchical Separable Convolution (HSC) Block

Compared with 2D convolution, 3D convolutional kernel allows the neural network to
extract 3D context information, but brings more memory burden. Although CNNs with
2D slices or 2.5D slices as input can reduce the memory consumption, they are limited
to capture the 3D spatial context information. In order to tackle these issues, we
propose an integration of view-wise and group-wise separable convolutions to incor-
porate multi-scale 3D contextual information with focal view.

View-wise Separable Convolution (VSC). For the sake of using 3D context infor-
mation more effectively while reducing the number of parameters, we spatially
decompose a 3D convolution kernel of 3 � 3 � 3 into two complementary 2D con-
volutions, i.e., a 3 � 3 � 1 convolution and a 1 � 3 � 3 convolution, which work on
different 2D views of a 3D volume. As the kernel decomposition is asymmetrical in
spatial view, the network with VSC is flexible to have focus on specific views.
Specifically, the first 2D convolution is used to capture inner-slice features on one view
and the second 2D convolution is to fuse spatial consistency and contexts on another
view. For our network, we use VSC that consists of four consecutive layers of three
3 � 3 � 1 convolutions and one 1 � 3 � 3 convolutions, which further lays different
emphasis on different spatial views.

Group-wise Separable Convolution (GSC). The capture of multi-scale information
is critical to the representation strength of the neural network model and the final
segmentation accuracy. Inspired by Res2Net [2] and depth-wise separable convolution,
we apply group-wise separable 2D convolutions (3 � 3 � 1) on subgroups of feature
channels with hierarchical connections, as shown in Fig. 1(b). After 1 � 1 � 1 con-
volution, HSC block groups the feature channels into s subgroups. Then, 3 � 3 � 1
convolution is hierarchically performed on s − 1 of the s groups with fusion connec-
tions; shortcut connections on the remaining subgroup of feature is to reformulate HSC
as learning residual function. After concatenating of all the output feature maps, a
1 � 3 � 3 convolution is performed to encode cues on an alternative view. By inte-
gration of group-wise separable convolutions, hierarchical connections and view-wise
separable convolutions, (1) semantic features from multiple fields-of-view can be
extracted, and multi-scale information can be exploited; (2) the ability of perception of
3D spatial contextual cues with focal views can be improved than that of 2D methods;
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(3) the model is asymmetrical in view and thus facilitates to use ensemble methods to
obtain better and robust predictive performance.

2.2 Ensemble of 3D Segmentations with Focal Views

Since the model is asymmetrical in view, we propose to ensemble several 3D seg-
mentations with different 2D focal views to obtain better predictive performance.
Specifically, we permute axes of a 3D volume and independently perform 3 times of
3D segmentation with inherent focus on axial view, sagittal view and coronal view,
respectively. During the test stage, the softmax outputs from the three views are
averaged as the final segmentation result.

3 Experiments and Results

3.1 Dataset and Implementation Details

The proposed model was evaluated on the data from the 2017 MICCAI BRATS
Challenge1. The BRATS 2017 training dataset consists of 285 cases and the validation
set contains 46 cases. The three measure regions are enhancing tumor core (ET), whole
tumor (WT), and tumor core (TC). The results of segmentation are reported from online
evaluation. All the data were skull-stripped and re-sampled to 1 mm3 resolution.
Thereafter, each sequence of the training dataset was normalized by the mean value and
standard deviation to cope with the inconsistency of image gray values.

Fig. 3. Dispersion of Dice Scores and Hausdorff95 Scores for segmentation results on the
BRATS 2017 validation dataset. ET, WT, TC denote enhancing tumor core, whole tumor and
tumor core, respectively.

1 http://www.med.upenn.edu/sbia/brats2017.html.
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The proposed network was implemented in Python 2.7, using the 1.4.0 version
Tensorflow framework2 and NiftyNet platform3. All the experiments were completed
on a standard workstation equipped with 120 GB of memory, an INTEL XEON E5-
2630V3 working at 2.4 GHz, and a Nvidia Tesla K40 GPU with 12 GB of video
memory. The

Adaptive Moment Estimation [17] was used with an initial learning rate 0.001 to
optimize the network, with a weight decay of 1e − 07. The maximum number of
iterations was 30k and the Dice coefficient was used as the cost function to deal with
the problem of label imbalance.

3.2 Results and Ablation Study

Following BRATS 2017 Challenge, the Dice scores and Hausdorff95 Scores were used
to assess the accuracy of segmentation results. On the BRATS 2017 validation dataset,
our method achieved average Dice scores of 0.762, 0.901, 0.809 for enhancing tumor
core, whole tumor, and tumor core, respectively. Boxplots with the distributional
characteristics of our segmentation scores are shown in Fig. 3.

To evaluate the effectiveness of our model, (1) we compared the performance of the
proposed method with two widely used models, i.e., 2D U-Net that performs seg-
mentation with slice-by-slice strategy, and V-Net that performs 3D segmentation using
3D convolutions; (2) we tested the proposed model using different building blocks and
their combinations. Note that in default, our model uses the combination of HSC (VSC
+GSC) and the Ensemble strategy. The backbone of our model is the one using only
VSC but without GSC and Ensemble.

As shown in Table 1, in comparison with 2D U-Net, V-Net achieved higher Dice
scores in all segmentation tasks, which confirmed the effectiveness of using 3D spatial
contextual cues. Although the backbone of our method is inferior to V-Net, our full

Table 1. Result of ablation study in terms of Dice score on the BRATS 2017 validation dataset.
ET, WT, TC denote enhancing tumor core, whole tumor and tumor core, respectively. The
number of parameters is in millions.

Methods ET WT TC Params

V-Net
2D U-Net

0.631
0.530

0.869
0.793

0.719
0.620

59.74M
31.03M

Our Model (Backbone)
Our Model without GSC
Our Model without Ensemble
Our Model using (3 � 3 � 1 and 1 � 1 � 3)
Our Model using (3 � 3 � 1 and 1 � 3 � 3)

0.620
0.730
0.674
0.749
0.762

0.828
0.884
0.855
0.891
0.901

0.609
0.786
0.633
0.788
0.809

0.46M
1.38M
0.26M
0.66M
0.78M

2 http://www.tensorflow.org.
3 http://niftynet.io.
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model gained significant improvement over 2D U-Net and V-Net. More specifically, the
backbone of our method with ensemble strategy (i.e., Our Model without GSC) can
obviously performed better than V-Net, which was further improved by using GSC. To
validate the effectiveness of VSC, we compared it with depth-wise separable convo-
lution, that is replacing the 2D convolution of 1 � 3 � 3 with 1D convolution of
1 � 1 � 3, which showed degenerated performance (see the second to last row of
Table 1). This indicates that the 3D spatial contextual information captured by 1D
1 � 1 � 3 convolution is limited, and the use of 2D convolution of 1 � 3 � 3 can take
advantage of contextual information in larger range to improve the segmentation result.

Meanwhile, we compared the parameters of our model and variants with baseline
models, i.e., V-Net and 2D U-Net. Since 2D U-Net and V-Net both have a large
number of feature channels with symmetric structure, and V-Net uses a large number of
3D convolution kernels, this causes 2D U-Net and V-Net to have significantly more
parameters than our model. As shown in the last column of Table 1, despite using
considerably fewer parameters than 2D U-Net (0.78M vs. 31.03M) and V-Net (0.78M
vs. 59.74M), our model performed better in the result of segmentation for enhancing
tumor core, whole tumor and tumor core, respectively.

3.3 Comparison with Other Methods

We compared the performance of our method with other recent methods on the BRATS
2017 validation dataset, which is summarized in Table 2. To be specific, we compared
our method with (1) the method of Li et al. [4], which fused 2D segmentations from
three views of 3D volumes; (2) the method of Isensee et al. [7], which used a 3D
version of U-Net and integrated different levels of segmentation layers in the local-
ization path and the final output; (3) the method of Casamitjana et al. [10], which used
a cascade of two V-Net networks, where the first network is to locate the brain tumor
area and the second network is to finely segment the tumor tissue; (4) the method of
Pereira et al. [12], which cascaded two CNN networks with the function similar to [10],
and used recombination and recalibration Seg-SE block in the second network; (5) the
method of Kamnitsas et al. [13], which integrated multiple 3D CNN models with

Table 2. Comparisons (in Dice score) with recent methods on the BRATS 2017 validation
dataset. ET, WT, TC denote enhancing tumor core, whole tumor and tumor core, respectively.

Methods ET WT TC

Li [4] 0.750 0.880 0.710
Isensee [7] 0.732 0.896 0.797
Casamitjana [10] 0.714 0.877 0.637
Pereira [12] 0.719 0.884 0.771
Kamnitsas [13] 0.738 0.901 0.797
Islam [14] 0.701 0.879 0.781
Our method 0.762 0.901 0.809
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different architectures and averaged the segmentation predictions from each model to
obtain the final result; (6) the method of Islam et al. [14], which used a class-balanced
PixelNet by randomly sampling a small number of pixels instead of the whole image.
As shown in Table 2, we obtained superior segmentation accuracy for all the three
segmentation tasks.

4 Conclusion

In this paper, we proposed an efficient Convolution Neural Networks model for the
challenging multi-modal brain tumor segmentation. Specifically, we proposed a hier-
archical separable convolution block consist of both view-wise and group-wise sepa-
rable convolutions to capture multi-scale 3D context information while reducing
memory consumption. Besides, thanks to the separated convolutions, we can ensemble
three 3D segmentations network with focal views to improve the segmentation accu-
racy and the robustness of the model. The experimental results showed that we
achieved state-of-the-art result on the BRATS 2017 validation dataset without com-
plicated post-processing techniques. In future work, we will investigate how to
incorporate spatial regularization [18] and adaptively feeding hard or easy image
sample [19] to enhance the label prediction.
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Abstract. We propose an innovative machine learning paradigm
enabling precision medicine for AD biomarker discovery. The paradigm
tailors the imaging biomarker discovery process to individual character-
istics of a given patient. We implement this paradigm using a newly
developed learning-to-rank method PLTR. The PLTR model seamlessly
integrates two objectives for joint optimization: pushing up relevant
biomarkers and ranking among relevant biomarkers. The empirical study
of PLTR conducted on the ADNI data yields promising results to identify
and prioritize individual-specific amyloid imaging biomarkers based on
the individual’s structural MRI data. The resulting top ranked imaging
biomarker has the potential to aid personalized diagnosis and disease
subtyping.

Keywords: Amyloid PET · Structural MRI · Imaging biomarker
prioritization · Learning to rank · Alzheimer’s disease

1 Introduction

Alzheimer’s disease (AD) is a national priority, with 5.5 million Americans
affected at an annual cost of $259 billion in 2017 and no available cure [1]. Brain
characteristics related to AD progression may be captured by multimodal mag-
netic resonance imaging (MRI) and positron emission tomography (PET) scans.
Thus, there is a large body of neuroimaging studies in AD, aiming to develop

Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (ad-ni.loni.usc.edu). As such, the investiga-
tors within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete
listing of ADNI investigators can be found at: https://adni.loni.usc.edu/wp-content/
uploads/how to apply/ADNI Acknowledgement List.pdf.
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image-based predictive machine learning models for early detection of AD as
well as identification of relevant imaging biomarkers (e.g., [8]). These models are
typically designed to accomplish learning tasks such as regression, classification
and/or survival analysis. As a result, the identified imaging biomarkers are at
the population level and not specific to an individual subject.

In this work, we propose a novel learning paradigm that embraces the con-
cept of precision medicine and tailors the imaging biomarker discovery process
to the individual characteristics of a given patient. Specifically, we perform an
innovative application of a newly developed learning-to-rank method, denoted
as PLTR [5], to the structural MRI and amyloid PET data of the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) cohort [9]. Using structural MRI as
the individual characteristics, our goal is to not only identify individual-specific
amyloid imaging biomarkers but also prioritize them according to AD-specific
abnormality. Compared with traditional biomarker studies at the population
level, the uniqueness of our study is twofold: (1) the identified biomarkers are
tailored to each individual patient; and (2) the identified biomarkers are priori-
tized based on the individual’s characteristics, which has the potential to enable
personalized diagnosis and disease subtyping.

2 Materials and Data Processing

To demonstrate the effectiveness of the learning-to-rank method for personalized
prioritization of the amyloid imaging biomarkers, we applied it to the ADNI
cohort [9]. The ADNI was launched in 2003 as a public-private partnership, led
by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial MRI, PET, other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression
of mild cognitive impairment (MCI, a prodromal stage of AD) and early AD.
For up-to-date information, see www.adni-info.org.

Data used in the preparation of this article were obtained from the 2017
ADNI TADPOLE grand challenge (tadpole.grand-challenge.org/), and was
downloaded from the ADNI website (adni.loni.usc.edu). The TADPOLE data
used in this study consists of structural MRI and AV45-PET (amyloid) imaging
data as well as diagnostic information. Both MRI and amyloid imaging data
have been pre-processed with standard ADNI pipelines as described previously
in [7].

In this study, we included all the regional MRI measures with field name
containing “UCSFFSX” in the TADPOLE D1 and D2 data sets. Specifically,
these are FreeSurfer regional volume and cortical thickness measures processed
by the ADNI UCSF team. We also included all the regional amyloid measures
with field name containing “UCBERKELEYAV45” in the TADPOLE D1 and
D2 data sets. These are cortical and subcortical amyloid deposition measures
processed by the ADNI UC Berkeley team.

Originally, there are totally 12,741 participant visit records with 103 amy-
loid features, 125 FreeSurfer features and diagnostic information corresponding

http://www.adni-info.org
http://tadpole.grand-challenge.org/
http://adni.loni.usc.edu
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to each visit. To convert this longitudinal data set into a cross-sectional one as
well as handle the missing data issue, we use the following procedure to generate
a clean set of cross-sectional data: (1) remove visit records that have more than
50% of null values across 103 amyloid features, with 10,623 records removed;
(2) extract the earliest AV45-PET visit for each participant, with 1,091 records
kept; (3) remove visit records that have more than 50% of null values across 125
FreeSurfer features, with 58 records removed; (4) remove features that have more
than 50% of null values across records, with 16 FreeSurfer features removed; (5)
remove 3 participants with no diagnostic information. Finally, 1,030 participants
with 103 amyloid and 109 FreeSurfer measures are studied, including 351 health
control (HC), 501 MCI and 178 AD participants. We treat both MCI and AD
subjects as patients, and so have a total of 679 cases and 351 controls.

3 Methods

We use the joint push and learning-to-rank method as developed in He et al. [5],
denoted as PLTR, for personalized patient feature prioritization. Our goal is to
prioritize amyloid features for each patient that are most relevant to his/her dis-
ease diagnosis using patients’ existing information. The underlying hypothesis is
that patients with similar FreeSurfer feature profiles would have similar ranking
structures among their amyloid features. In the context of AD feature prioriti-
zation, PLTR learns and uses latent vectors of patients and amyloid features to
score each amyloid feature for each patient, and ranks the features based on their
scores; patients with similar FreeSurfer feature profiles will have similar latent
vectors. During the learning process, PLTR explicitly pushes the most relevant
amyloid features on top of the less relevant ones for each patient, and therefrom
optimizes the latent patient and amyloid feature vectors so they will reproduce
the pushed ranking structures.

3.1 Overview of PLTR

In PLTR, the ranking of features in terms of their relatedness to MCI/AD in a
patient is determined by their latent scores on the patient. For a feature f i and
a patient Pp, f i’s latent score on Pp, denoted as sp(f i), is calculated as the dot
product of f i’s latent vector vi ∈ R

l×1 and Pp’s latent vector up ∈ R
l×1, where

l is the latent dimension, as follows,

sp(f i) = uT
pvi, (1)

where the latent vectors up and vi will be learned. All the features are then
sorted based on their scores on Pp, with the most relevant features having the
highest scores and ranked higher than irrelevant features.

Overall, PLTR seeks the patient latent vectors and feature latent vectors
that will be used in feature scoring function s (Eq. (1)) such that for each
patient, the relevant features will be ranked on top and in right orders using the
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latent vectors. In PLTR, such latent vectors are learned by solving the following
optimization problem:

min
U,V

Ls = (1 − α)P ↑
s + αO+

s +
β

2
Ruv +

γ

2
Rcsim, (2)

where Ls is the overall loss function; P ↑
s measures the number of irrelevant

features that are ranked on top of relevant features; O+
s measures the ranking

among relevant features. Ruv is a regularizer on U and V to prevent overfitting,
defined as

Ruv =
1
m

‖U‖2F +
1
n

‖V ‖2F , (3)

where m and n are the number of patients and the number of features, respec-
tively; ‖X‖F is the Frobenius norm of matrix X. Rcsim is a regularizer on patients
to constrain patient latent vectors, defined as

Rcsim =
1

m2

m∑

p=1

m∑

q=1

wpq‖up − uq‖22, (4)

where wpq is the similarity between Pp and Pq that is calculated using FreeSurfer
features of the patients. Details of these terms can be found in He et al. [5].

3.2 Patient Similarities from FreeSurfer Features

We consider 109 FreeSurfer features and represent each patient as a FreeSurfer
feature vector, denoted as rp = [rp1, rp2, · · · , rpnr

], where rpi (i = 1, · · · , nr)
is a FreeSurfer feature for patient p. Thus, for all the patients, we construct
a FreeSurfer feature matrix RAD = [r+1 ; r+2 ; · · · ; r+m+ ] ∈ R

m+×nr and for
all the health control subjects (HCs), a FreeSurfer feature matrix RHC =
[r−

1 ; r−
2 ; · · · ; r−

m− ] ∈ R
m−×nr , where m+ and m− are the numbers of AD/MCI

patients and HCs, respectively, and nr is the number of FreeSurfer features. We
scale RAD values into the unit interval by dividing each column of RAD (i.e.,
each FreeSurfer feature) using its maximum value. The normalized RAD matrix
is denoted as R̄AD, and the similarities between patients are calculated over R̄AD

using the radial basis function (RBF) kernel:

wpq = exp(−‖R̄AD(p, :) − R̄AD(q, :)‖2
2σ2

), (5)

where wpq is the patient similarity used in Eq. (4). This patient similarity mea-
surement is denoted as simU.

3.3 Patient Amyloid Features in Ground Truth

Similarly, each patient is also represented by an amyloid feature vector,
denoted as cp = [cp1, cp2, · · · , cpnc

], where cpi (i = 1, · · · , nc) is an amy-
loid feature for patient p. Thus, we construct an amyloid feature matrix
CAD = [c+1 ; c+2 ; · · · , c+m+ ] for AD/MCI patients, and an amyloid feature matrix
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CHC = [c−
1 ; c−

2 ; · · · , c−
m− ] for HC subjects. We normalize CAD by dividing each

column of CAD (i.e., each amyloid feature) by the mean value of the correspond-
ing column in CHC. Thus, the normalization results in CAD measure the extent
to which an amyloid feature in patients deviates from that in HCs. The nor-
malized matrix, denoted as C̄AD, is used as the ground truth of amyloid feature
ranking. That is, the optimization problem (2) tries to learn the latent vectors
that reconstruct the ordering structures in C̄AD, and prioritize amyloid features
that are most relevant to patients. The reason why we use FreeSurfer features to
quantitatively measure patients and prioritize amyloid features correspondingly
is that MRI imaging is non-invasive and relatively low-cost as compared to PET
imaging.

4 Experiments

4.1 Experimental Protocol

training patients testing patients

pa
ti
en
ts

features

P1
P2
P3
P4
P5

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Fig. 1. Data split

We split patients into training set and testing set, such that a certain patient
and all his/her features will be either in the training set or in the testing set.
We train the PLTR model using training patients and test its performance on
the testing patients. This corresponds to the use scenario in which we want to
identify the most potentially useful AD biomarkers for new patients, based on
the existing information of the patients, when such biomarkers have not been
tested on the new patients. Figure 1 demonstrates the data split process.

We define average hit at k, denoted as AH@k, to evaluate the ranking per-
formance. AH@k is defined as follows:

AH@k(τ, τ̃) =
k∑

i=1

I(τ̃i ∈ τ), (6)

where τ is the ground-truth ranking list, τ̃ is the predicted ranking list, and τ̃i is
the i-th ranked item in τ̃ . That is, AH@k calculates the number of items among
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top k in the predicted lists that are also in the ground truth (i.e., hits). Higher
AH@k values indicate better prioritization performance.

We define a second evaluation metric weighted average hit at k, denoted as
WAH@k as follows:

WAH@k(τ, τ̃) =
k∑

j=1

j∑

i=1

I(τ̃i ∈ τ)/j, (7)

that is, WAH@k is a weighted version of AH@k that calculates the average hit
up to top k. Higher WAH@k indicate more hits and those hits are ranked on top
in the ranking list. By default, the ground-truth τ has k items (i.e., the top-k
items among all the sorted items) in Eqs. (6) and (7).

4.2 Baseline Methods

We compare PLTR with another two methods: the Bayesian Multi-Task Multi-
Kernel Learning (BMTMKL) method [2] and the Kernelized Rank Learning (KRL)
method [4]. BMTMKL uses kernels over FreeSurfer features to predict amyloid fea-
ture values. KRL uses kernel regression with a ranking loss to predict amyloid
feature values. These two methods represent two strong baseline methods for the
biomarker feature prioritization problem. We use the patient similarity matrix 5
as the kernels for BMTMKL and KRL. We conducted parameter grid search to iden-
tify the best parameters for each model, and present the best performance of
the models.

5 Experimental Results

5.1 Overall Performance

We first hold out 35 and 163 patients as testing patients, respectively. These
testing patients are determined such that they have more than 10 similar patients
in the training set, and the corresponding patient similarities are higher than
0.75 and 0.65, respectively. Patient latent vectors and feature latent vectors are
learned on the training patients. The feature scores for the testing patients are
calculated as the weighted sum of the predicted feature scores from their top-10
most similar training patients, where the weights are the corresponding patient
similarities. The patient similarities are calculated using simU (Eq. (5), σ = 1).
The patient amyloid features are normalized as described in Sect. 3.3. Please
note that we only use patients (i.e., MCI and AD subjects) for model training
and testing, and only use controls (i.e., HC subjects) to set the standard for
patient data normalization, as feature prioritization for healthy controls has
limited clinical interests.

Table 1 presents the best performance of PLTR in terms of AH@5 for each
latent dimension. When 35 patients are hold out for testing, the best AH@5 is
1.886 when latent dimension d = 20, and the corresponding WAH@5 is 1.632.
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Table 1. Overall performance of PLTR (simU, σ = 1)

n Method Parameters AH@5 WAH@5 AH@10 WAH@10

α β γ d λ

35 PLTR 0.3 0.5 1.0 10 – 1.857 1.545 3.371 2.249

0.3 0.5 1.0 20 – 1.886 1.632 3.286 1.987

0.3 0.5 1.0 50 – 1.857 1.560 3.314 2.007

BMTMKL – – – – – 0.971 0.916 2.171 2.573

KRL – – – – 3.0 0.429 0.426 1.086 1.245

163 PLTR 0.5 1.0 1.0 10 – 1.343 0.930 3.080 2.497

0.5 1.0 1.0 20 – 1.429 1.067 3.074 2.402

0.5 1.0 1.0 50 – 1.429 1.012 3.110 2.437

BMTMKL – – – – – 0.282 0.288 0.957 0.929

KRL – – – – 0.1 0.356 0.389 1.025 1.054

The column “n” corresponds to the number of hold-out testing patients. Best
performance under each evaluation metric is in bold.

This performance is significantly better than those of the baseline methods. Note
that we use predicted feature scores to prioritize features for the testing patients.
Table 1 also shows that PLTR significantly outperforms the baseline methods in
terms of AH@10. PLTR is slightly worse than BMTMKL on WAH@10 (2.249 vs
2.573). This indicates that among top 10 drugs in the ranking list, PLTR is able
to rank more relevant features on top than BMTMKL, although the positions of
those hits are not as high as BMTMKL. When 163 patients are hold out for testing,
the best performance of PLTR (i.e., AH@5 1.429 when d = 20) is still better than
those of the baseline methods. This indicates that PLTR is able to capture the
signals that lead to accurate feature rankings among training data, potentially
correct the noise in the data and use the signals to prioritize features for new
patients.

Table 1 also shows that the best performance for the 35 testing patients
is better than that for the 163 testing patients (e.g., AH@5 = 1.886 for 35
testing patients vs AH@5 = 1.429 for 163 testing patients). This indicates that
when there are more similar patients for model training, PLTR is able to achieve
better performance. However, when there are more testing patients and thus the
similarities between training and testing patients are smaller, PLTR achieves more
significant improvement compared to the baseline methods (e.g., 1.429/0.356 =
4.01 for 163 testing patients vs 1.886/0.971 = 1.94 for 35 patients). This indicates
that when patient similarities are smaller, PLTR is able to achieve much better
improvement over the baseline methods.

Feature Prioritization on Population Level. We also investigate which fea-
tures are frequently prioritized for all the testing patients. We sort all the top-5
ranked features from all the testing patients, weighted by their aggregated rank-
ing positions among the patients, so that features that are frequently ranked high
among many patients will be sorted on top. Table 2 lists the top 10 frequently
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prioritized features by PLTR among the 163 testing patients. Among these 10
features, 8 of them are among the top 10 identified from the ground truth. Sim-
ilarly, for the 35 testing patients, 7 of the top 10 most frequently prioritized
features are among the top 10 identified from the ground truth. This indicates
the capability of PLTR to find common AD biomarkers on a population level.

Table 2. Top-10 frequent features by PLTR (simU, σ = 1)

Rank Features p-value GT

1 ctx-lh-frontal pole 8.67e−20 Y

2 ctx-rh-frontal pole 5.68e−20 Y

3 right-lateral ventricle 4.34e−04 Y

4 ctx-rh-medial orbitofrontal 4.79e−23 Y

5 left-lateral ventricle 1.09e−04 Y

6 ctx-lh-rostral middle frontal 5.12e−21 Y

7 right-choroid plexus 4.41e−05 N

8 ctx-rh-rostral middle frontal 3.68e−20 N

9 ctx-lh-precuneus 3.19e−19 Y

10 non-wm-hypointensities 8.75e−01 Y

The p-value measures whether the feature means are
statistically different between controls and patients.
Column “GT” indicates if the feature is in ground
truth (Y) or not (N). These features are frequently
prioritized by PLTR when 163 patients are hold out
for testing.

Most of the above top ranked amyloid features are related to AD or its
biomarkers. For example, frontal lobe, the region where frontal pole, rostral mid-
dle frontal gyrus and medial orbitofrontal cortex are located, shows significantly
higher amyloid deposition in AD/MCI patients than in controls [3]. Furthermore,
Huang et al. [6] report that both frontal lobe and precuneus show significantly
higher amyloid deposition in both MCI and AD compared to HC. Additionally,
they report the negative correlation between Mini-Mental State Examination
(MMSE) score with amyloid deposition in frontal lobe and precuneus, which
further validates increased amyloid deposition in these regions of MCI and AD
patients.

5.2 Study on Patient-Patient Similarities

Table 3 presents the best performance when a different patient similarity is
applied. In this case, the patient similarities are calculated using an RBF kernel
(σ = 5) on the FreeSurfer features of the patients, after the FreeSurfer fea-
tures are divided by the corresponding feature mean from normal patients. This
feature normalization measures how much the FreeSurfer features in patients
deviate from those in HCs. This similarity measurement is denoted as simN.
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Table 3. Overall performance of PLTR (simN, σ = 5)

n Method Parameters AH@5 WAH@5 AH@10 WAH@10

α β γ d λ

62 PLTR 0.5 1.0 1.0 10 – 1.371 1.161 3.129 2.295

0.5 1.0 1.0 20 – 1.387 1.186 3.081 2.162

0.5 1.0 1.0 50 – 1.403 1.165 3.113 2.117

BMTMKL – – – – – 0.790 0.670 1.871 1.982

KRL – – – – 0.5 0.306 0.299 0.968 1.046

The column “n” corresponds to the number of hold-out testing patients.
Best performance under each evaluation metric is in bold.

62 patients are hold out for testing, who have at least 10 training patients each
with patient similarities higher than 0.65. The feature ranking is done in the
same way as in Sect. 5.1. Table 3 shows that the PLTR substantially outperforms
BMTMKL and KRL. Tables 1 and 3 together demonstrate that regardless of simi-
lar functions used to measure patient similarities in FreeSurfer features, PLTR is
robust in outperforming baseline given that the testing patients have sufficient
similar training patients.

6 Conclusions and Discussions

We have proposed an innovative machine learning paradigm enabling precision
medicine for AD imaging biomarker prioritization. The paradigm tailors the
imaging biomarker discovery process to individual characteristics of a given
patient, and has been implemented based on a newly developed learning-to-
rank method PLTR. To the best of our knowledge, this learning-to-rank method
has never been applied to the AD imaging biomarker studies. It is a paradigm
shifting strategy to facilitate precision medicine research in brain imaging study
of AD. The PLTR model seamlessly integrates two objectives for joint optimiza-
tion: pushing up relevant biomarkers and ranking among relevant biomarkers.
The empirical study of PLTR has been performed on the ADNI data and yielded
promising results to identify and prioritize individual-specific amyloid imaging
biomarkers based on the individual’s structural MRI data.
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Abstract. We present a method for metric optimization and template
construction in the Large Deformation Diffeomorphic Metric Mapping
(LDDMM) framework. The construction treats the Riemannian met-
ric on the space of diffeomorphisms as a data-embedding kernel in the
context of predictive modeling, here Kernel Logistic Regression (KLR).
The task is then to optimize kernel parameters, including the LDDMM
metric parameters as well as the registration template, resulting in a
parameterized argminimum optimization. In practice, this leads to a
group-wise registration problem with the goal of improving predictive
performance, for example by focusing the metric and template on dis-
criminating patient and control populations. We validate our algorithm
using two discriminative problems on a synthetic data set as well as 3D
subcortical shapes from the SchizConnect cohort. Though secondary to
the template and kernel optimization, accuracy of schizophrenia classifi-
cation is improved by LDDMM-KLR compared to linear and RBF-KLR.

Keywords: Image registration · Machine learning · Subcortical
shape · Metric learning · LDDMM

1 Introduction

The problem of image registration arises in a number of medical imaging con-
texts. The process of registering images underlies concurrent use of spatially
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distributed information from multiple data sets, possibly collected at different
times or using different imaging modalities.

The practical goal of registration is spatial alignment. In addition, a subset of
registration algorithms has the benefit of establishing a formal distance between
images as a byproduct of spatial normalization. Of particular interest among
this class of methods is the Large Deformation Diffeomorphic Metric Mapping
(LDDMM) [1]. The distance between images defined by LDDMM derives from a
Riemannian metric on velocity fields. The distance is then a metric on diffeomor-
phisms, or the deformations themselves. The Riemannian structure implies the
possibility of using the metric as a kernel in a machine learning (ML) context.
Such a distance can be derived in a straightforward manner, as in [2] or as the
initial momentum “slope”. The latter approach is taken here. Yet, to date, little
effort in this direction has been undertaken, in part due to the computational
complexity of the task. Further, the fact that the LDDMM distance is defined
on diffeomorphisms means that in practice the metric in a group of images will
be heavily dependent on the choice of the template image. The parameters of
the metric itself also significantly influence the registration results [3]. In light of
this, applying the LDDMM Riemannian metric as a kernel in a predictive model
requires optimization of both the metric parameters and the template. This is
the problem we address here. Kernel optimization is an established ML problem.
Several canonical kernel forms exist [4], many of which have been studied in the
context of metric learning [5,6]. In line with this research, we extend previous
work on diffeomorphic metric learning in [2].

A related, though conceptually different notion of learning the LDDMM met-
ric focuses instead on spatially varying the kernel parameters [7] This method
allows to find more flexible metric representation, while still satisfying the metric
properties. However, the key difference lies in the cost function. In [7] and related
work, the metric is optimized with respect to standard registration costs, with
additional novel regularization on the LDDMM parameter distribution. Though
far more flexible than LDDMM with global parameters, the framework is still
conceptually similar to standard LDDMM in that it targets traditional pair-wise
registration problems. The metric is not learned in a predictive modeling (group-
wise) sense, and its inner product properties are not exploited in the sense of a
machine learning “kernel trick”.

Similarly to what we do here, the authors in [2] developed an automatic
method to find LDDMM metric parameters for optimal classification accu-
racy. However, there are two important distinctions: (1) rather than using the
LDDMM Riemannian product, a distance-derived image similarity measure was
used instead. The previous method would be more accurately described as a simi-
larity learning approach. (2) Because only pairwise image distances were used, no
template optimization was performed. In fact, the improved template construc-
tion, along with optimal registration parameters, potentially has greater practi-
cal value to the imaging researcher than the classification tool itself. By optimiz-
ing the template for a specific biological question, we enable a more meaningful
interpretation of traditional localized registration-based measures, e.g. Jacobian
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determinant or momentum operator maps, in neuroimaging studies. The focus
is thus not on classification accuracy, though it is indeed improved over simpler
models, but on template and parameter optimization. In this respect, this work
closely parallels the template construction and metric parameter optimization
in [8].

The remainder of the paper is organized as follows. Section 2 briefly describes
LDDMM. Section 3 builds the model and optimization specifics of LDDMM ker-
nel and template learning in the context of kernel logistic regression. Section 4
describes the synthetic and real brain MRI-based experiments, and 5 concludes
the paper.

2 Image Registration in the LDDMM Framework

Large Deformation Diffeomorphic Metric Mapping (LDDMM) was first intro-
duced and implemented in [1]. Since then, LDDMM has been extended into a
several methods. The main idea remains the same: to compute a matching diffeo-
morphism φ : [0, 1]×Ω → Ω, where Ω is the image domain and [0, 1] is the time
interval. The diffeomorphism φ can be seen from different points of view. In its
original definition, φ belonged to a large class of functions. For the purposes of
explicit computation, diffeomorphism φ can be considered as the flow generated
by the evolution equation:

∂φ(t, x)
∂t

= v(t, φ(t, x)),

φ(0, x) = x,
(1)

where v ∈ V is an element in the space of smooth vector fields.
Let I, J ∈ Ω be the source and target images, respectively. The optimization

problem for registering I, J is generally formulated as a cost function comprised
of a similarity measure between warped source and target images and a regular-
ization term:

E(v) =
1
σ2

d(I ◦ φ, J) + R(v) (2)

where σ2 is the normalization coefficient.
Here, we define similarity as the sum of squared differences (SSD) d(I◦φ, J) =

‖I ◦ φ − J‖2L2
, where I ◦ φ is the warped image.

The diffeomorphism space is a Lie Group with respect to (1) and it suggests
a right-invariance property, allowing to recall the adjoint representation and the
scalar product on the tangent space. Smoothness of the warp can be enforced
by defining an appropriate regularization term. As long as the tangent space
V has a well-defined inner product, regularization is defined by ‖·‖V through
a Riemannian metric L. The operator L should be naturally defined by the
geometric structure of the domain and implies smoothness. As it was in [1] L is
defined as an adjoint differential operator (3). Finally, regularization is defined
as the inner product integrated along the path of the diffeomorphism φv and
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shown in Eq. (3). Note that here the superscript of φ defines the dependence on
v; we omit this below:

R(v) =

1∫

0

‖vt‖2V dt =

1∫

0

<Lvt, vt> dt

L = (αΔ + γE)2,

(3)

where Δ is the laplacian operator and E is identity operator.
The regularization term can also be thought of as a distance between images,

i.e. the minimal length of diffeomorphic path required to transform the appear-
ance of I to be as similar as possible to J . Path length is defined as an integra-
tion of the velocity norm based on the corresponding Riemannian metric along
the path. Importantly, the velocity field is defined on vector space with all the
implicit properties.

The choice of the operator L is a trade-off between simplicity and expressivity.
We choose operator L as in the original paper [1]. It consists of two scalar
parameters, providing minimal flexibility for metric tuning. Parameters of the
operator (α, γ) correspond to convexity and normalization terms, respectively.
These parameters significantly affect the quality of the registration, as shown
in [3].

2.1 Kernel Construction

As was mentioned above, the LDDMM registration produces a properly defined
structure of interrelation between two images. One of several possible ways to
construct kernel matrix is to use the length of the path in the diffeomorphic
space. But since we consider registration to on a particular template, the inner
product of the vector space, where velocity fields defined, is a natural choice.
This accounts for diffeomorphic space geometry and employs the possible sim-
plification in the case of template-based registration.

The matrix of pairwise distances is considered as a kernel for the predictive
model and constructed as follows. Let xi ∈ D be an image, which after regis-
tration to on a particular template J produces a corresponding velocity field
and warping. The velocity field is constructed over time steps, denoted as vi

t =
vi(t, φ(t, x)) for each image xi, i = 1, . . . , n. Every vector field vi

1, i = 1, . . . , n
at time 1 is defined on the same tangent space at the identity transformation
i.e., at the template J . Since this tangent space admits an inner product, the
kernel is defined as k(xi, xj) = <Lvi

1, v
j
1>. From here on, the time subscript will

be omitted. As was mentioned above the meaning of such distance is a “slope”
from source image to target image.

3 Metric Learning

In our work, we use Kernel Logistic Regression (KLR) as the base classifier.
KLR is a flexible and tractable method that can be naturally used in the
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proposed method. Though a variety of classification and regression models admit
kernels, KLR is among the simplest and most robust, making minimal assump-
tions about data distribution.

Let D = {(xi, yi)}n
i=1 be a sample, where the target variable y ∈ {1, 0} is a

class label. KLR leads to the following optimization problem:

Loss(β) = −
n∑

i=0

(
yi · ln pi + (1 − yi) · ln(1 − pi)

)
+ C · ‖β‖2L2

pi =
1

1 + e−βT k(xi,x)
,

(4)

where k(xi, x) is a vector (k(xi, x1), . . . , k(xi, xn))T and C is a regularization
coefficient.

3.1 Optimization Strategy

To address the registration parameter selection problem, we provide a gradient
descent method as the strategy for optimizing the loss function (4) with respect
to registration parameters (α, γ, J). The pipeline is shown in (Fig. 1) and an
outline of the algorithm is given in Sect. 3.2. At the back propagation stage, we
consider the solution of LDDMM and the classifier to be fixed, denoting both
with a superscript (β∗, v∗).

Fig. 1. Schematic visualization of registration-based optimization algorithm (vi corre-
sponds to optimal solution of LDDMM for subject i).

Briefly, the KLR and LDDMM optimization pipeline can be describe as fol-
lows. We initialize α, γ, J , compute the kernel, and find optimal KLR coefficients
β. Next, we fix β∗, v∗ and update α, γ, J with the gradient step of the loss func-
tion (4). The parameters β∗ and v∗ are the solutions of the optimization problem
and depend on α, γ, J . Therefore the derivative of loss function (4) is a bi-level
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optimization problem. The solution of a general bi-level optimization problem
is given in [9]. Below we provide step-by-step derivatives with respect to α, and
explain the main differences in derivatives with respect to J .

Denoting the train and validation subsets of the data as Xtrain,Xval,
ytrain, yval, we compute β∗ as the argminimum of the loss function (4) on
{Xtrain, ytrain}. (Note that all unnecessary indices are again omitted.) The
resulting gradients are computed on the validation set based on the following
equations (yi, xi ∈ {Xval, yval}):

dLoss(β∗)
dα

= −
nval∑
i=1

(
yi · d ln pi

dα
+ (1 − yi) · d ln(1 − pi)

dα

)
+ 2Cβ∗ dβ∗

dα
(5)

Expanding the mixed partial derivatives, we write:

∂ ln pi

∂α
= −∂ ln(1 + e−<β∗,k(xi,xtrain)>)

∂α

=
e−<β∗,k(xi,xtrain)>

1 + e−<β∗,k(xi,xtrain)>
·
(

(β∗)T ∂xi

∂α
+

∂(β∗)T

∂α
xi

)

= (1 − pi)
(

(β∗)T ∂xi

∂α
+

∂(β∗)T

∂α
xi

)
;

∂ ln(1 − pi)
∂α

= −pi

(
(β∗)T ∂xi

∂α
+

∂(β∗)T

∂α
xi

)

(6)

∂k(xi, xtrain)
∂α

= [k(xi, xtrain) = <Lvi, vtrain>]

= <
∂L

∂α
vi, vtrain> + <L

∂vi

∂α
, vtrain> + <Lvi,

∂vtrain

∂α
>

(7)

The gradients below are also computed exclusively on {Xtrain, ytrain}:

∂β∗

∂α
=

[
β∗ = argmin

β
Loss(β), (4), use formulae from ([9])

]

∂2Loss
∂β2

= XT BX + 2E

∂

∂α

∂Loss
∂β

=
∂

∂α
(XT (p − y)) =

∂XT

∂α
(p − y) + XT ∂p

∂α
,

(8)

where p and y correspond to the KLR probability vector and training labels,
and the matrix B is diagonal with entries pi(1 − pi).

We can see that all derivatives above include dv∗
dα . To differentiate v∗ w.r.t.

the scalar parameters, we use the same bi-level optimization problem solution.
We use the finite difference approach rather than calculating ∂2E(v)

∂v2 for scalar
parameters such as α. In this work, we use the second order central finite dif-
ference. The same strategy can be used for γ. Also of note is that one of these
parameters in 2 is redundant. It is the ratio of α, γ, σ2 that is of import.
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One of the possible ways to find the derivative of the template image J is to
treat it like a scalar intensity function J(x, y) defined on Ω. Each voxel’s inten-
sity is treated as independent from the rest. We suggest a combined approach to
obtain the derivative dv∗

dJ as in the bi-level problem [9]. The derivative ∂2E(v)
dJdv is

derived from the closed form of the full derivative [1]. As only the second term of
∂E(v)

dv depends on the template image J and each voxel in J is independent, the
final form of the derivative is substantially simplifed. Below, we describe the opti-
mization strategy for 2-dimensional images. However, it can be easily expanded
to higher dimensions. To obtain ∂2E(v)

∂v2 we use a forth order central finite dif-
ference scheme for unmixed second derivative and for mixed second derivatives.
For computational reasons, this approximation uses two key assumptions: first,
only the voxel’s immediate neighbors are correlated; second, the entry vij

y does
not interact with the entry vkl

x if i �= k or j �= l, where the superscript refers
to the axis, i, j, k, l are the corresponding voxel coordinates, and vx, vy denote
components of the velocity field.

3.2 Optimization Algorithm

To summarize the previous section, We have two loss functions E(v) and Loss(β),
whose argminima v∗, β∗ parameterize the optimization of the registration param-
eters (α, γ, J). In practice, we find that (1) the LDDMM kernel multiplication
constant does not affect the solution of optimization task and only the ratio α/γ
has effect on the loss, we do omit the optimization of γ. The complete algo-
rithm consists of two main parts: the “forward pass” and “the backward pass”.

Result: (α∗, J∗)
α = α0, J = J0;
for i ← 0 to N do

with fixed αi, Ji forward pass:
{
calculate v∗

i = argmin E(v);
construct Kernels for train-val-test;
fit KLR on train;
evaluate metrics (ROC AUC) on val-test;
}
backward pass α, J :
{
calculate gradients (dLoss

dαi
, dLoss

dJi
) on val;

do gradient step:
αi+1 = αi − lr · dLoss

dα

Ji+1 = Ji − lr · dLoss
dJ}

end
Algorithm 1. Pipeline of the proposed algorithm

https://www.mech.kth.se/~ardeshir/courses/literature/fd.pdf
http://www.holoborodko.com/pavel/2014/11/04/computing-mixed-derivatives-by-finite-differences/


158 A. Mussabayeva et al.

4 Experiments

In our initial experiments, we used synthetic data to sanity-check our approach
and hippocampal shape data from the ShizConnect dataset [10]. In all experi-
ments, we fixed σ2 = 103 and γ = 1. As well as the step for finite differences
h = 0.1.

4.1 Synthetic Data

Fig. 2. Example of synthetic data: first row: train data, second row: test data (rectangle
is labeled as 1 and star - 0.)

Our initial experiments were based on 200 synthetic images with two balanced
classes: randomly rotated stars and rectangles (Fig. 2). This task is very simple
from the classification perspective. The primary interest here is to assess the
validity of our simplifying assumptions in computing the derivatives, especially
w.r.t to the template image J . Here, we used 10-fold cross-validation, fitting the
L2 regularization term in KLR independently.

Fig. 3. Kernel matrix for the synthetic data set. The first half of the elements corre-
sponds to data points labelled as stars, and the rest to rectangles

The result of template optimization is shown in (Fig. 4). First, we initialize
template J as the mean image of the training set. Next, we make a gradient step
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on template J and update its initial value. We initialize α = 0.4. As we can see,
the template begins to look like a star. In this task, the classification-optimal
template appears to be closer to one of the classes. After iteration step 4, the
optimal template fluctuate around the template on 4 step. The distribution of
distances is plotted in (Fig. 3). We note that the ROC area under the curve
(AUC) for this experiment is 1, achieving perfect classification.

Fig. 4. ‘MEAN TEMPLATE’ image correspond to initialization of template as mean
image of training set, ‘GRADIENT 2’ image is an example of derivative ∇JLoss(β∗)
on iteration step 2, ‘ITERATION i’ image is the template image Ji on at the i’th
iteration

4.2 Subcortical Shapes

Our 3D hippocampal shape sample was derived from the SchizConnect brain
MRI data set. We used right & left hippocampal segmentations extracted with
FreeSurfer [11] from 227 Schizophrenia (SCZ) patients and 496 controls (CTL).
All shapes were affinely registered to the ENIGMA hippocampal shape atlas
[12], and their binary masks were computed from the transformed mesh model
and used as the input data. Classes were balanced to reduce bias in classification
and template reconstruction. We used down sampled images in 4 time steps to
reduce computational time.

It’s worth to notice that the same pipeline can be applied to other subcortical
structures, such as amygdala or ventricles as well as the whole brain. Out method
produce individual optimal parameters for each structure since it depends on
geometry of image domain.

Our initial hippocampal experiments followed those for synthetic data, opti-
mizing only the template. We modified slightly the full optimization as described
above for (α, γ, J) as follows. First, we initialized all parameters. At each subse-
quent step, we optimized (α, γ) and every 5 steps we updated the template J .
Initialization was analogous to what was done in synthetic experiments. We show
the initial and final template in Fig. 5. To compare the results, we used a simple
Logistic Regression on vectorized images and KLR with Radial Basis Function
(RBF) kernel. RBF-KLR appears to overfit substantially, likely because the RBF
embedding space is infinite-dimensional and not in regularized in any domain-
specific sense. Though LDDMM embedding is also infinite-dimensional, the fact
that it is derived from image-based regularization likely explains the improved
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classification accuracy. Linear LR performs much better than RBF-KLR, but is
still inferior to LDDMM-KLR. ROC AUC scores of the models’ performance are
shown in Table 1.

Table 1. All results are rounded to 2 significant digits. The result is presented by the
best ROCAUC score, counted on the same test set. LR was performed with a grid
search to optimize the L2 regularization term weight. Registration-based model was
derived as described in the experiments section, for 11 iterations.

Left hippocampal Right hippocampal

Logistic Regression (LR) 0.77 0.74

Registration-based Optimized 0.81 0.83

Fig. 5. Hippocampal templates. (a) Mean initial template; (2) LDDMM-KLR opti-
mized template.

5 Conclusion

We have presented a novel method for diffeomorphic metric learning for image
registration and predictive modeling. The unique contribution of the paper is to
exploit the much-celebrated Riemannian structure of the LDDMM framework
in the essence concise representation of the geometry of objects. To show the
comprehensive view of our approach, we used a predictive task of practical utility.
Though we have focused here on 2-class classification problems, the framework is
general both with respect to the predictive modelling approach and the type of
target variable. For example, rather than using diagnosis and logistic regression,
we may as well have predicted the age of onset of Schizophrenia using kernel
Support Vector Regression. Our only requirement is that the ML model admit
kernels, and that the kernel optimization remains tractable for the given model.

A further improvement on previous work is the template optimization. Unlike
previous work on template optimization [8], which focused on intrinsic statistical
properties, we optimize a template with a specific predictive task in mind. In
this way, we learn a metric that highlights the most essential deformations with
respect to a specific biological question.
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Abstract. The neuroimaging field is moving toward micron scale and
molecular features in digital pathology and animal models. These require
mapping to common coordinates for annotation, statistical analysis, and
collaboration. An important example, the BRAIN Initiative Cell Census
Network, is generating 3D brain cell atlases in mouse, and ultimately
primate and human.

We aim to establish RNAseq profiles from single neurons and nuclei
across the mouse brain, mapped to Allen Common Coordinate Frame-
work (CCF). Imaging includes ∼500 tape-transfer cut 20µm thick Nissl-
stained slices per brain. In key areas 100µm thick slices with 0.5–2 mm
diameter circular regions punched out for snRNAseq are imaged. These
contain abnormalities including contrast changes and missing tissue, two
challenges not jointly addressed in diffeomorphic image registration.

Existing methods for mapping 3D images to histology require man-
ual steps unacceptable for high throughput, or are sensitive to dam-
aged tissue. Our approach jointly: registers 3D CCF to 2D slices, mod-
els contrast changes, estimates abnormality locations. Our registration
uses 4 unknown deformations: 3D diffeomorphism, 3D affine, 2D diffeo-
morphism per-slice, 2D rigid per-slice. Contrast changes are modeled
using unknown cubic polynomials per-slice. Abnormalities are estimated
using Gaussian mixture modeling. The Expectation Maximization algo-
rithm is used iteratively, with E step: compute posterior probabilities of
abnormality, M step: registration and intensity transformation minimiz-
ing posterior-weighted sum-of-square-error.

We produce per-slice anatomical labels using Allen Institute’s ontol-
ogy, and publicly distribute results online, with several typical and abnor-
mal slices shown here. This work has further applications in digital
pathology, and 3D brain mapping with stroke, multiple sclerosis, or other
abnormalities.
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1 Introduction

The neuroimaging field is moving toward the micron scale, accelerated by mod-
ern imaging methods [14,31], cell labeling techniques [36], and a desire to under-
stand the brain at the level of circuits [18]. This is impacting basic neuroscience
research involving animal model organisms, as well as human digital pathol-
ogy for understanding neurological disease. While some 3D modalities based on
tissue clearing are becoming available such as CLARITY or iDISCO , two dimen-
sional (2D) histological sections stained for relevant features and imaged with
light microscopy are a gold standard for identification of anatomical regions [10],
and making diagnoses in many neurodegenerative diseases [16]. To interpret this
data, mapping to the common coordinates of a well characterized 3D atlas is
required. This allows automatic labeling of anatomical regions for parsing exper-
imental results, as well as the ability to combine data from different experiments
or laboratories, facilitating a statistical understanding of neuroimaging.

The Brain Initiative Cell Census Network https://www.braininitiative.nih.
gov/brain-programs/cell-census-network-biccn was created with the goal of
mapping molecular, anatomical, and functional data into comprehensive brain
cell atlases. This project is beginning with mouse imaging data in the Allen
Common Coordinate Framework (CCF) [20], and building toward nonhuman
primates and ultimately humans. To understand cell diversity via gene expres-
sion throughout the brain, one important contribution is to perform single neu-
ron RNA sequencing (snRNA-seq) [21] at key locations throughout the mouse
brain. The data associated to this analysis includes coronal images of 20µm
thick serially sectioned Nissl stained tissue, allowing visualization of the location
and density of neuron cell bodies with a blue/violet color. At indicated loca-
tions, tissue is cut to 100µm thick, and 0.5–2 mm diameter circular regions are
punched out for RNA sequencing after slicing but before staining and imaging.
These heavily processed sections present variable contrast profiles, missing tissue,
and artifacts as seen in Fig. 1, posing serious challenges for existing registration
techniques.

Fig. 1. Several Nissl stained coronal sections of the mouse brain are shown from anterior
(top left) to posterior (bottom right).

https://www.braininitiative.nih.gov/brain-programs/cell-census-network-biccn
https://www.braininitiative.nih.gov/brain-programs/cell-census-network-biccn
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The goal of this work is to develop an image registration algorithm using
diffeomorphic techniques developed by the Computational Anatomy community,
to accurately map the Allen Institute’s CCF to our Nissl datasets. Because
this community has largely studied mappings between pairs of images that are
topologically equivalent, the fundamentally asymmetric nature of our 3D atlas
as compared to sparsely sectioned 2D data requires a non standard approach.

Several approaches to registration with missing data or artifacts have been
developed by the community. The simplest approach consists of manually defin-
ing binary masks that indicate data to be ignored by image similarity functions
[9,35] before registration. A slightly more involved method is to use inpainting,
where data in these regions is replaced by a specific image intensity or texture
[33], a method included in ANTs [6,44] for registration in the presence of mul-
tiple sclerosis lesions. Anomalous data such as excised tissue tumors or other
lesions [24–26,45] have been jointly estimated together with registration param-
eters using models for contrast changes. Others have used statistical approaches
[11,27,40] based on Expectation Maximization (EM) algorithms [12] which is the
approach we follow. In the presence of contrast differences this problem is more
challenging. Image similarity functions designed for cross-modality registration,
like normalized cross correlation [4,5,42], mutual information [22,23,30], or local
structural information [7,15,41] cannot be used in an EM setting because they
do not correspond to a data log likelihood.

The importance of mapping histology into 3D coordinates has long been rec-
ognized. A recent review [28] lists 30 different software packages attempting the
task. While the review acknowledges that artifacts such as folds, tears, cracks
and holes as important challenges, they are not adequately addressed by these
methods. Modern approaches to solve the problem (e.g. [1–3,43]) tend to involve
multiple preprocessing steps and stages of alignment, and carefully constructed
metrics of image similarity. Instead, our approach follows statistical estimation
within an intuitive generative model of the formation of 2D slice images from
3D atlases. Large 3D deformations of the atlas and 2D deformations of each slice
are modeled via unknown diffeomorphisms using established techniques devel-
oped by the Computational Anatomy community, the contrast profile of each
observed slice is estimated using an unknown polynomial transformation, and
observed images are modeled with additive (conditionally) Gaussian white noise
(conditioned on transformation parameters). Artifacts and missing tissue are
accommodated through Gaussian mixture modeling (GMM) at each observed
pixel. The final two parts, polynomial transformation and GMM, are the crit-
ical innovations necessary to handle contrast changes and missing tissue. Our
group has described this basic approach in the context of single digital pathology
images [39], and developed a simpler version for serial sections [19] (considering
deformations only in 3D, without contrast changes or artifacts). Here we extend
this problem to the serially sectioned mouse brain, enabling annotation of each
pixel, and mapping of slices into standard 3D coordinates.
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2 Algorithm

We first describe the generative model at the heart of our mapping algorithm,
and then discuss its optimization via EM and gradient descent.

2.1 Generative Model

The generative model which predicts the shape and appearance of each 2D slice
from our 3D atlas is shown schematically in Fig. 2, with transformation parame-
ters summarized in Table 1. In this model the role of our 3D atlas and observed
data are fundamentally asymmetric: slices can be generated from the atlas, but
not vice versa. The motivation for the order of this scheme is to mimic the imag-
ing process, where 3D transformations describe shape differences between an
observed brain and a canonical atlas, and 2D transformations describe distor-
tions that occur in the sectioning and imaging process. The steps below describe
transformations that are all estimated jointly using a single cost (weighted sum
of square error over all 2D slices), rather than simply connecting standard algo-
rithms one after another in a pipeline. The final two steps, polynomial intensity
transformation and posterior- weighted sum of square error using GMM, are
novel in this work and critical for handling contrast variability and missing tis-
sue. Below we describe each step in detail.

I. Atlas
image

II. 3D
Diffeomorphism

III. 3D
Affine

IV. 3D to 2D
Slicing

V.2D Diffeo-
morphism

VI. 2D
rigid

VII. Intensity
transform

VIII.Posterior-weighted
sum of square error

V.2D Diffeo-
morphism

VI. 2D
rigid

VII. Intensity
transform

VIII.Posterior-weighted
sum of square error

V.2D Diffeo-
morphism

VI. 2D
Rigid

VII. Intensity
Transform

VIII.Posterior-weighted
sum of square error

V.2D Diffeo-
morphism

VI. 2D
Rigid

VII. Intensity
Transform

VIII.Posterior-weighted
sum of square error

Fig. 2. A schematic of the transformations in our generative model are shown. The
top row shows 3D transformations that affect all slices, while the bottom row shows
transformations specific to each slice. Posterior weights estimate artifact and missing
tissue locations via EM.

I. Atlas Image: We use the Nissl Allen atlas [13], denoted I, at 50µm resolution
in our studies with the 2017 anatomical labels, which is available publicly in
nearly raw raster data (NRRD) format at http://download.alleninstitute.org/
informatics-archive/current-release/mouse ccf/. This is a grayscale image, which
we will align to red green blue (RGB) Nissl stained sections denoted J i for
i ∈ {1, · · · , N}.

http://download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/
http://download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/
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Table 1. Listed below are variables used in our transformation, as well as the number
of degrees of freedom to be estimated (on each slice if applicable).

Name Symbol Each slice Degrees of freedom

Atlas image I No 0

3D velocity field vt No ∼106

3D diffeomorphism ϕ1(x) = id +
∫ 1
0 vt(ϕt)dt No 0

3D affine transform A No 12

2D velocity field wi
t Yes ∼104

2D diffeomorphism ψi = id +
∫ 1
0 wi

t(ψ
i
t)dt Yes 0

2D rigid transform Ri Yes 3

Polynomial coefficients ci Yes 27

Polynomial function f i
c Yes 0

Predicted slice image Ĵi=fci (R
i ·ψi ·[A·ϕ·I]z=zi ) Yes 0

Observed slice image Ji Yes 0

Artifact mean μi
A Yes 3

Background data mean μi
B Yes 3

Atlas image posterior W i
M Yes ∼104

Artifact posterior W i
A Yes ∼104

Background posterior W i
B = 1 − W i

M − W i
A Yes 0

II. 3D Diffeomorphism: Diffeomorphisms are generated using the large deforma-
tion diffeomorphic metric mapping framework [8] by integrating smooth veloc-
ity fields numerically using the method of characteristics [34]. We denote our
3D smooth velocity field by vt, and our 3D diffeomorphism by ϕ = ϕ1 where
ϕ̇t = vt(ϕt) and ϕ0 = identity. Smoothness is enforced using regularization
penalty given by Ereg = 1

2σ2
R

∫ 1

0

∫ |Lvt(x)|2dxdt with L = (id − a2Δ)2 for id

identity, Δ Laplacian, a = 400µm a characteristic length scale, and σR = 5×104

a parameter to control tradeoffs between regularization and accuracy. This time-
integrated kinetic energy penalty is a standard approach to regularization in the
computational anatomy community [8].

III. 3D Affine: We include linear changes in location and scale through a 4 × 4
affine matrix A with 12 degrees of freedom (9 linear and 3 translation).

IV. 3D to 2D Slicing: 2D images are generated by slicing the transformed 3D
volume at N known locations zi. Each slice is separated by 20µm, with the
exception of thick slices which are separated by 100µm.

V. 2D Diffeomorphism: For each slice i a 2D diffeomorphism ψi is generated
from a smooth velocity field wi

t. This is generated using the same methods as
in 3D, with a regularization scale aS = 400µm and weight σRS

= 1 × 103, with
penalty Ei

reg.
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VI. 2D Rigid: For each slice a rigid transformation Ri is applied with 3 degrees
of freedom (1 rotation and 2 translation). For identifiability, translations and
rotations are constrained to be zero mean (averaged across each slice). We con-
strain the transformation to be rigid by parameterizing it as the exponential of
an antisymmetric matrix.

VII. Intensity Transform: On each slice a cubic polynomial intensity transforma-
tion is applied to predict the observed Nissl stained data in a minimum weighted
least squares sense. Since data consists of red-green-blue (RGB) images, this is
12 degrees of freedom, possibly nonmonotonic and flexible enough to permute
the brightness order of background, gray matter, and white matter. We refer to
the intensity transformed atlas corresponding to the ith slice as Ĵ i (the “hat”
notation is used to convey that this is an estimate of the shape and appearance
of the observed image J i).

VIII. Weighted Sum of Square Error: Each transformed atlas slice is com-
pared to our observed Nissl slice using weighted sum of square error Ei

match =∫
1

2σ2
M

|Ĵ i(x, y)−J i(x, y)|2W i
M (x, y)dx, where the weight W i

M corresponds to the
posterior probability that each pixel corresponds to some location in the atlas
(to be estimated via EM algorithm), as opposed to being artifact or missing
tissue. The constant σM represents the variance of Gaussian white noise in the
image and is set to 0.05 (for an RGB image in the range [0,1]).

2.2 Optimization via Expectation Maximization

M step: Given a weight at each pixel, the M step corresponds to estimating
unknown transformation parameters by minimizing the cost with a fixed W i

M :

CostWM
= Ereg +

∑N
i=1 Ei

reg + Ei
match

All unknown deformation parameters are computed iteratively by gradient
descent, with gradients backpropagated from each step to the previous. Rather
than posing this as a sequential pipeline, optimization over each parameter is
performed jointly. This mitigates negative effects in pipeline-based approaches
such as poor initial affine alignment, and is consistent with the interpretation as
joint maximum likelihood estimation.

Gradients for linear transformations are derived using standard calculus tech-
niques. Gradients with respect to velocity fields were described originally in [8].
As shown in [38], gradients are backpropagated from the endpoint of a 3D dif-
feomorphic flow to time t via

(vt gradient) = 1
σ2
R

vt − K ∗ [
(endpoint gradient) ◦ ϕ−1

1t |Dϕ−1
1t |∇(I ◦ ϕ−1

1t )
]

where K∗ is convolution with the Green’s kernel of L∗L, ∇ =
(

∂
∂x , ∂

∂x , ∂
∂x

)T
,

and ϕ1t = ϕt ◦ ϕ−1
1 (a transformation from the endpoint of the flow t = 1, to

time t). The backpropagation for 2D diffeomorphisms is similar.
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To simplify backpropagation of gradients from 3D to 2D, we interpret each
slice as a 3D volume at the appropriate plane, using J i(x, y, z) � Δ(z −
zi)J i(x, y), for Δ a triangle approximation to the Dirac δ with width given
by the slice spacing, modeling the process of physically sectioning the tissue at
known thickness. This allows our cost to be written entirely as an integral over
3D space, allowing the backpropagation with standard approaches.

All intensity transformation parameters are computed exactly at each itera-
tion of gradient descent by weighted least squares. This includes unknown poly-
nomial coefficients for the intensity transformations on each slice, and unknown
means for (B)ackground pixels (missing tissue) or (A)rtifact (μB , μA).

E Step: Given an estimate of each of the transformation parameters, the E step
corresponds to estimating the posterior probabilities that each pixel corresponds
to the atlas, to missing tissue, or to artifact. This is computed at each pixel via
Bayes theorem using a Gaussian model, by specifying a variance σ2

M = σ2
B =

σ2
A/100 for the image (M)atching, (B)ackground, and (A)rtifact. Additionally,

we include a spatial prior with a Gaussian shape of standard deviation 3 mm,
making missing tissue and artifacts more likely to occur near the edges of the
image, a common feature of this dataset (e.g. streaks near the bottom of images
in Fig. 1).

Fig. 3. Registration result for 3 typical slices i. Top: target image J i with annotations
overlayed. Middle: Transformed atlas image Ĵ i predicting RGB contrast of observed
Nissl images from grayscale atlas. Bottom: Posterior probabilities that each pixel corre-
sponds to the deformed atlas (red), an artifact (green), or missing tissue (blue). (Color
figure online)
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3 Results

We demonstrate our algorithm by mapping onto 484 tissue slices from one mouse
brain produced using a tape transfer technique [17,29,32]. Out of these, 460
were 20µm thick and produced using a standard Nissl staining technique, and
24 were 100µm thick for snRNA-seq analysis. On these slices, 2–12 punches of
roughly 1 mm diameter were removed before tissue staining. The images J i were
resampled to 45µm resolution, with a maximum size 864 × 1020 pixels, stored
as RGB tiffs with a bit depth of 24 bits per pixel, for a total of approximately
500 MB. While we show results here for one brain, on the order of 50 samples are
becoming available as part of the BICCN project. To avoid local minima, the
registration procedure is performed at 3 resolutions (downsampled by 4, then
2, then native resolution) and takes approximately 24 h total using 4 cores on
a Intel(R) Xeon(R) CPU E5-1650 v4 at 3.60 GHz. All our registered data is
made available through http://mousebrainarchitecture.org, and the accuracy of
our mapping techniques is verified by anatomists on each slice using a custom
designed web interface.

The mapping accuracy for three typical slices is shown in Fig. 3. The top row
shows our raw images with atlas labels superimposed. The second row shows
our predicted image Ĵ i for each corresponding slice, with a 1 mm grid overlayed
showing the distortion of the atlas. The bottom row shows our estimates of
missing tissue (blue) or artifact (green). Note that a large streak artifact in the
left column is detected (green), as well as missing or torn tissue (blue or green).

Fig. 4. Registration result for 3 thick cut slices. Layout as in Fig. 3.

http://mousebrainarchitecture.org
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Results for 3 nearby thick cut slices are shown in Fig. 4. Here we see that
missing tissue is easily detected (blue) and does not interfere with registra-
tion accuracy. Other artifacts including smudges on microscope slides are also
detected. In Fig. 5 we show registration results for the same slices, using a tradi-
tional approach without identifying abnormalities (W i

M =1,W i
A =W i

B =0). One
observes inaccurate registration and dramatic distortions of the atlas.

Fig. 5. Registration result on thick cut slices using a traditional algorithm (no EM).
Layout as in Fig. 3 (top two rows).

4 Discussion

In this work we described a new method for mapping a 3D atlas image onto
a series of 2D slices, based on a generative model of the image formation pro-
cess. This technique, which accommodates missing tissue and artifacts through
an EM algorithm, was essential for reconstructing the heavily processed tissue
necessary for snRNA-seq. We demonstrated the accuracy of our method with
several examples of typical and atypical slices, and illustrated its improvement
over standard approaches. This work is enabling the BICCN’s goal of quantifying
cell diversity throughout the mouse brain in standard 3D coordinates. While the
results presented here demonstrate a proof of concept, future work will quantify
accuracy on a larger sample in terms of distance between labeled landmarks and
overlap of manual segmentations.

This work departs from the standard random orbit model of Computational
Anatomy, in that our observed 2D slices do not lie in the orbit of our 3D template
under the action of the diffeomorphism group. This fundamental asymmetry
between atlas and target images is addressed by using a realistic sequence of
deformations that model the sectioning and tape transfer process.

While the results shown here were restricted to Nissl stained mouse sections,
this algorithm has potential for larger impact. A common criticism of using brain
mapping to understand medical neuroimages is its inability to function in the
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presence of abnormalities such as strokes, multiple sclerosis, or other lesions. This
algorithm can be applied in these situations, automatically classifying abnormal
regions and down-weighting the importance of intensity matching in these areas.
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Abstract. There has been considerable research effort into image reg-
istration and regression, which address the problem of determining cor-
respondence primarily through estimating models of structural change.
There has been far less focus into methods which model both structural
and intensity change. However, medical images often exhibit intensity
changes over time. Of particular interest is MRI of the early developing
brain, where such intensity change encodes rich information about devel-
opment, such as rapidly increasing white matter intensity during the first
years of life. In this paper, we develop a new spatiotemporal model which
takes into account both structural and appearance changes jointly. This
will not only lead to improved regression accuracy and data-matching
in the presence of longitudinal intensity changes, but also facilitate the
study of development by direct analysis of appearance change models.
We propose to combine a diffeomorphic model of structural change with
a Gompertz intensity model, which captures intensity trajectories with
3 intuitive parameters of asymptote, delay, and speed. We propose an
optimization scheme which allows to control the balance between struc-
tural and intensity change via two data-matching terms. We show that
Gompertz parameter maps show great promise to characterize regional
patterns of development.

1 Introduction

Time series imaging data are commonly acquired in medical imaging studies.
In the simplest form, changes are assessed between a baseline and follow-up
scan. To facilitate comparison, image registration establishes voxel-wise cor-
respondence so measurements can be directly compared between baseline and
follow-up, or the registration deformation field can itself be studied as a descrip-
tion of change. When more than two scans are available, registration naturally
gives way to regression, in order to model the inferred continuous image change.
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In either case, registration or regression, the problem is most often solved by a
deformation of image structure; appearance changes are not explicitly modeled.
Rather, differences in intensities between images are considered a hindrance to
the estimation of accurate deformation fields. However, image intensity and local
contrast may contain rich and valuable information. For example, the matura-
tion process in the early developing brain manifests as rapidly increasing white
matter intensity [1]. Recent work has demonstrated that MRI intensity and con-
trast measures quantify patterns of early brain development, showing a brain
maturation rate difference between males and females [2]. In this paper, we sim-
ilarly seek to quantify early brain development by explicitly modeling intensity
change over time as part of an image regression framework.

There has been tremendous research effort into accurate registration schemes
in the presence of appearance changes. However, as previously mentioned,
appearance changes are rarely handled explicitly. Rather, image similarity met-
rics such as mutual information or normalized cross correlation are used to
reduce sensitivity to intensity differences. In the case of appearance change due
to pathology, registration methods often involve masking, and thus require prior
segmentation to aid in registration [3].

An approach to image matching which combines structural and intensity
changes was proposed as image metamorphosis [4], and was later integrated into
a geodesic regression framework [5], though the baseline image was assumed to
be fixed to the earliest observations, and experimentation appeared limited to
2D. In the metamorphosis approach, image intensity change is smoothly interpo-
lated for exact matching. However, intensity change under the metamorphosis
model does not have a clear interpretation to answer clinical questions about
development. Importantly, the study of intensity change trajectories themselves
as a representation of development has not yet been explored.

For clear interpretation and straightforward statistical analysis, parametric
models of image intensity have been proposed. This includes linear intensity
models for registration [6] and atlas building [7], and a logistic image intensity
model for longitudinal registration [8]. However, the method [8] requires a tis-
sue segmentation which itself requires non-linear registration as a preprocessing
step. The method of [9] proposes a parametric pharmacokinetic intensity model
to improve accuracy in atlas building, for motion correction of dynamic contrast-
enhanced MRI. Ultimately, these methods are registration schemes, which are
inherently limited to estimating a discrete set of deformations, one for each
image, rather than a single time-varying flow of deformation which more nat-
urally captures longitudinal changes. Nevertheless, our work takes the spirit of
these previous methods when it comes to modeling appearance, as we favor the
parametric approach for the power to distill down complex patterns of develop-
ment into a small number of easy to understand parameters.

To summarize, there has been considerable work in addressing appearance
change for registration and atlas building, though there has been limited work
on image regression with appearance change. Furthermore, the study of the
intensity trajectories, either as curves or as parameters of functions, is a rela-
tively unexplored topic. In other words, modeling image appearance change is



176 J. Fishbaugh et al.

not only a mechanism to achieve more accurate registration; intensity trajecto-
ries themselves contain rich information about development and warrant further
study. In this paper, we propose a spatiotemporal model for image time series
which explicitly models both structural and appearance change. Image defor-
mations are modeled by diffeomorphic flow with a flexible and non-parametric
acceleration based method [10]. We favor this image deformation model for its
flexibility, however, one could instead choose from a variety of models, such
as geodesic [11] or higher order models [12,13]. Intensity changes are modeled
by a Gompertz function, which has three intuitive parameters of asymptote,
delay, and speed. The deformation and intensity change models are motivated
by the driving application of modeling brain development from birth, which is
characterized by early accelerated growth which saturates to an asymptote [14].
In contrast to previous work, our model requires no masking or prior segmen-
tation, and simultaneously estimates continuous structural deformations along
with parametric intensity change trajectories with a clear interpretation. Exper-
imental validation on a synthetic image sequence as well as longitudinal MR
images demonstrate that Gompertz parameter maps encode regional patterns of
development using natural terms of speed and delay.

2 Methods

In this section, we describe the two main components of our proposed spatiotem-
poral model: the structural deformation model and the intensity change model.
We then combine the two components and provide a least squares estimation
procedure.

2.1 Structural Deformation Model

Here, we introduce the structural deformation model, first proposed in [15] for
shape regression and more recently for image regression [10], with the main idea
of parameterizing diffeomorphic flow by a time-varying function of acceleration.
Acceleration is defined as

a(x, t) =
NC∑

i=1

KV (x, ci(t))αi(t) (1)

where an impulse vector field αi(t) is attached to a sparse set of NC control points
ci(t) and smooth kernel operator K defining the reproducing kernel Hilbert space
V (for example, a Gaussian with standard deviation σ2

V ). Given such a time-
varying acceleration field, a flow of diffemorphisms of the ambient space can be
computed by solving:

φ̈(x(t), t) = a(x(t), t) (2)

given initial position x0 = x(t0) and initial velocity v0 = v(t0). Solving Eq. 2
generates a flow of diffeomorphisms starting from identity φ(0) = Id, which
defines the trajectory of a point starting from x(t0) and ending at x(T ). Starting
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from a given distribution of control points ci(0), the continuous path of control
points ci(t) is computed by solving Eq. 2. Just as with control points, coordinates
of image voxels also evolve according to Eq. 2, starting from a baseline image
I0. Therefore, given αi(t), one can compute the continuous evolution of control
points, and compute acceleration at physical image coordinates. This shows that
the system can be parameterized by a finite number of parameters, given a time
discretization of αi(t).

From here on, let α(t), v0, and c0 be the concatenation of the αi(t)’s, vi(0)’s,
and ci(0)’s. Let a set of image observations in time range t0 to T be written
as Iti = (It1 , It2 , ...Itn). The acceleration controlled deformation model can be
leveraged for image regression by estimating impulse vectors α(t), control point
locations c0, and baseline image I0 which minimizes

E(α(t), c0, I0) =
N∑

i=1

d(φti ◦ I0, Iti)
2 + γA

∫ T

t0

||a(t)||2V dt (3)

where d is a distance metric between images, γA weights the regularity of the
time-varying acceleration a(t), and initial velocity v0 = 0.

2.2 Gompertz Intensity Change Model

Motivated by the study of early brain development, we propose to model image
appearance change with a Gompertz function. We believe the Gompertz func-
tion, which is a sigmoid curve, is a good fit for modeling early acceleration
growth which eventually tapers off, which has been observed in MRI intensity
of the developing brain [14]. The authors of [8] used similar reasoning to select a
logistic appearance model, while the work of [16] found the Gompertz function
to be an accurate model of diffusion measures during early development. The
Gompertz function is written as: g(t) = A exp(−B exp(−Ct)) where B > 0 and
C > 0.

One powerful feature of the Gompertz function is the straightforward inter-
pretability of it’s three parameters. The parameters A, B, and C, can be inter-
preted as asymptote, delay, and speed, respectively. This allows complex patterns
of change to be communicated in simple terms that are naturally used to discuss
development. We therefore propose the following Gompertz image appearance
model:

Î(x, t) = g(x, t) = A(x) exp(−B(x) exp(−C(x)t)) (4)

which describes continuous image appearance change over time t at location
x. Gompertz parameters A, B, and C vary spatially, and can be thought of as
parameter images. Later we will see how these parameter images can be analysed
to study regional patterns of development. We will denote the appearance model
at time t as Î(t).

2.3 Spatiotemporal Model with Appearance Change

We now propose a combined spatiotemporal model which simultaneously esti-
mates continuous structural image deformations along with appearance change.
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The main difficulty in designing such a model is the inherent non-uniqueness in
a solution which combines structural and appearance changes. As an example,
consider an image of a white circle which grows isotropically over time, but does
not change appearance. The progression could be described completed by image
deformations which capture the change in scale of the circle, or alternatively,
entirely by an appearance model which “paints” in additional pixels. To address
this issue, we allow for control over the contribution of the deformation and
appearance models. This is accomplished with two data-matching terms, one
measuring fit via deformation only, and one measuring fit by intensity change
only. While this doesn’t provide a globally optimal solution, it does allow the
user to control estimation based on domain knowledge or empirical observation.
Together with regularity terms, the model criterion is written

E(α(t), c0, A,B,C) =
[Nobs∑

i=1

λD d(φti (̂I(t0)), Iti)
2 + λA d(̂I(ti), Iti)

2

]

+ λR

∫ T

t0

||a(t)||2V dt + λTV TV(A,B,C)

(5)

where the first two terms are data-matching by deformation only and intensity
change only, the third term measures regularity of the time-varying deformation,
and the last term is a total variation regularizer on the Gompertz parameters.
We use an anisotropic version of total variation, which is differentiable. This
term may be used promote regional consistency in asymptote, delay, and speed
images, based on the assumption that tissue development is highly spatially
correlated. For measuring image similarity d, we use sum-of-squared intensity
difference. Weights λ allow to control the importance of each term in the overall
cost. The final image sequence is then computed as φt(̂I(t)) (Fig. 1).

Fig. 1. The Gompertz function g(t) = A exp(−B exp(−Ct)) is parameterized by three
intuitive values: asymptote, delay, and speed. In each plot, a range of values is plotted
for each parameter while holding the other two fixed.

Alternatively, the model may be expressed with a single data term measuring
fit between observations and the generative model as d(φt(̂I(t)), Iti)

2. In this
case, the relative contribution of the deformation and intensity model would
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be controlled entirely by regularity terms and weights λR and λTV . While this
model is not explored in this paper, research into this and other formulations
remains ongoing work with the goal of developing a robust and intuitive model
of structural and appearance change.

Model estimation consists in finding time varying impulse vectors α(t), loca-
tion of control points c0, and Gompertz appearance parameters A, B, and C
which minimize (5). The algorithm is initialized with α(t) = 0 (corresponding to
no deformation), control points c0 on a regular grid with user selected spacing,
and Gompertz appearance parameters A = B = C = 0. We implement a gradi-
ent descent scheme with gradients computed using autograd in PyTorch [17]. We
also use KeOps (http://www.kernel-operations.io), which provides memory effi-
ciency on the GPU, enabling the use of 3D image volumes on a TITAN Xp. Our
implementation is available at https://github.com/jamesfishbaugh/acceleration-
diffeos.

3 Experimental Validation

3.1 Synthetic Bull’s-Eye

We first validate our model on a synthetic image time series of a bull’s-eye
with both structural and appearance changes. The top row of Fig. 2 shows the
observations of the bull’s-eye images. The image sequence undergoes complex
structural change, with the outer ring increasing in size over time according to
an exponential, while the inner circle shrinks linearly. The outer ring is further
characterized by two distinct patterns of appearance change. First, the bottom
half shows a delay with respect to the top half. Second, intensity in the bottom
half increases faster than intensity in the top region. The trajectory of change
in the top half is given by a logistic function, while intensity in the bottom half
changes linearly. The inner circle does not undergo any appearance change.

Figure 2(B) shows the model estimated with our proposed method. Here
we show only several frames, though the model can alternatively be viewed
as a continuous animation for more intuitive understanding. The estimated
image sequence very closely matches the observations, effectively capturing com-
plex patterns of structural and appearance changes simultaneously. The aver-
age structural similarity was 0.99 while the average mean square error was
1.5 × 10−4. Furthermore, our method provides realistic trajectories between
observation time points, with smooth and continuous trajectories of both struc-
ture and appearance. For longitudinal data, this is a more natural representa-
tion of image change compared to a discrete set of diffeomorphisms, one for each
image, which must be cascaded as in longitudinal registration [8].

We also estimated an image trajectory with a deformation model only, shown
in Fig. 2(C). Here, we measured average structural similarity of 0.81 and average
mean square error of 0.05. Finally, we compare against a readily available baseline
method, a geodesic model using the software package Deformetrica [18], shown in
Fig. 2(C), with an average structural similarity of 0.83 and average mean square
error of 0.04.

http://www.kernel-operations.io
https://github.com/jamesfishbaugh/acceleration-diffeos
https://github.com/jamesfishbaugh/acceleration-diffeos
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Fig. 2. (Top) Synthetic observations representing the progression of a bull’s-eye under-
going both structural and appearance changes. The outer ring grows while the inner
circle shrinks. The bottom half of the outer ring shows a delay with respect to the
top half, along with a faster increase in intensity. The inner circle does not change in
appearance. (B) (C) (D) Several frames from estimated continuous image trajectories
under different models. Animation of our proposed method available at https://youtu.
be/5OqmLZOjalw.

We can explore a statistical representation of the appearance changes by
investigating the Gompertz parameter maps, which are themselves images of the
same dimension as the observations, shown in Fig. 3. The delayed and accelerated
intensity region in the lower half of the outer ring is well captured by the delay
and speed image, while the asymptote has similar characteristics to the final
image observation.

https://youtu.be/5OqmLZOjalw
https://youtu.be/5OqmLZOjalw
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Fig. 3. Gompertz parameter images of asymptote A, delay B, and speed C for the
synthetic bull’s-eye progression from Fig. 2. The asymptote image most closely resem-
bles the final image observation, representing intensity saturation. The lower half of
the outer ring shows a significant delay with respect to the top half, as well as faster
increase in intensity. The inner circle is not present in the delay and speed images,
since the inner circle only undergoes structural changes.

3.2 Early Brain Development from Birth

Next, we seek to model structural and appearance change of the developing brain
starting from birth. This is particularly challenging due to the rapid development
and appearance changes observed in MR images during the first year of life.
Imaging data consists of a longitudinal sequence of a healthy child scanned at
birth, 1, 2, 4, and 6 years of age in the form of 3D T1W images of dimension

Fig. 4. (Top) Observed T1W image sequence at birth, 1, 2, and 6 years of age. (Mid-
dle) Images estimated by the proposed spatiotemporal model of structural and appear-
ance change. Continuous evolution is better understood when viewed as an animation
here: https://youtu.be/AWsai9 dkhU. (Bottom) Image sequence estimated by a base-
line geodesic model with no appearance model, which results in a unrealistic sequence
which always maintains the appearance of a neonate.

https://youtu.be/AWsai9_dkhU
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196 × 233 × 159 with 1× 1 × 1 voxel size. Images were skull stripped and affine
aligned. Intensity values across the entire longitudinal sequence were normalized
to be between 0 and 1 based on min and max values across the longitudinal
sequence. This is a naive normalization procedure that doesn’t take into account
scanner differences or possible hyperintense areas such as blood vessels. Although
this procedure is suitable for proof of concept of our spatiotemporal model,
proper normalization will have to be addressed in future work, to deal with
the impact of non-calibrated scans acquired at different sites and even different
scanner generations. However, longitudinal normalization of MR images comes
with many challenges which are beyond the scope of this work.

Fig. 5. Coronal slice from the 4 year old observation that was left out during model
estimation, along with the image estimated by our model. The observed and estimated
image are overlaid, with yellow indicating similar intensities, while red and green indi-
cate intensity mismatch. (Color figure online)

To explore the impact of missing data, a model was estimated by excluding
the year 4 observation. Figure 4 shows the original observations (top) and the
estimated image sequence from our proposed model (middle). Qualitatively, the
model closely matches the observed image sequence, well capturing the observed
image progression. Figure 5 shows that the smooth and continuous trajectory
estimated by our method generates realistic images between observations, as the
estimated image at 4 years old closely resembles the true 4 year old observation,
which was not included in model estimation. We measured a structural similarity
index of 0.93 and a root-mean-square error of 0.004. We also note the added ben-
efit of a reduction in skull stripping artifacts in the estimated image compared to
the original observation. The bottom row of Fig. 4 shows an unrealistic trajectory
estimated with a geodesic model without considering appearance changes. It is
worth noting that the geodesic model may also be estimated backward in time
starting from 6 years old, or alternatively, estimated in both directions starting
in the middle. However, all such models appear artificial and unrealistic since
they all carry the appearance of their starting image.

Gompertz parameter images are shown in Fig. 6, which capture regional pat-
terns of development. There is a clear posterior to anterior pattern of devel-
opment captured in the delay and speed images. The anterior region shows
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Fig. 6. (Top) Gompertz delay and speed images capture a posterior to anterior pattern
of growth, with the posterior region developing earlier and faster. (Bottom) White
matter development in the temporal lobe is delayed and progresses slowly compared
to other regions.

Fig. 7. (Left) Selected regions of white and grey matter overlaid on estimated scan at
6 years old. Colored boxes are shown enlarged for illustration purposes, true regions
are slightly smaller homogeneous 3D regions. (Right) Regional averages of Gompertz
parameters are shown from 0 to 6 years. We observe posterior white matter shows
less delay than anterior white matter, but also undergoes accelerated development,
reaching a shared asymptote quicker. Grey matter shows a more gradual linear increase
in intensity over time.
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increased delay and lower speed, while the posterior region is characterized by
less delay and high speed. The temporal lobe also develops later, with relatively
slow speed. These are all findings previously reported in pediatric radiology [1].
This can also been seen in Fig. 7 for selected regions of anterior white matter,
posterior white matter, and also grey matter. It shows a pattern of delayed
and slower white matter development in the anterior compared to the posterior,
which starts at a higher value and also reaches the asymptote more quickly. Grey
matter, on the other hand, undergoes a slow, nearly linear, increase in intensity.

4 Discussion

Brain maturation can be observed as a change of intensity and contrast over
time in MR images. In this paper, we proposed a spatiotemporal model which
explicitly accounts for intensity change through a Gompertz appearance model.
Our method estimates continuous structural and appearance change jointly, for a
comprehensive description of early brain development. To overcome the problem
of solutions being non-unique, we introduced two data-matching terms to balance
the contribution of structural and appearance change. The problem could also
be approached with an alternative cost function formulation, which is currently
being explored as ongoing work. Another solution would be to limit appearance
changes to white matter regions via a segmentation mask, as in [8]. In addition
to estimating a continuous image sequence that closely matches observations,
we showed that Gompertz parameter images capture patterns of development in
intuitive terms of asymptote, delay, and speed. Since MRI intensity values are
uncalibrated, the most pressing future work is longitudinal as well as population
wide normalization, as in [19]. Longitudinal imaging studies face the challenge
of acquisitions from different technicians from a variety of physical locations,
as well as changes in scanner technology over the lifetime of a study, which
make direct comparison of MRI intensities an open challenge. Directly comparing
intensity across sites and scanner generation requires careful harmonization and
normalization procedures.
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Abstract. Brain morphometry plays a fundamental role in neuroimag-
ing research. In this work, we propose a novel method for brain surface
morphometry analysis based on surface foliation theory. Given brain cor-
tical surfaces with automatically extracted landmark curves, we first con-
struct finite foliations on surfaces. A set of admissible curves and a height
parameter for each loop are provided by users. The admissible curves cut
the surface into a set of pairs of pants. A pants decomposition graph is
then constructed. Strebel differential is obtained by computing a unique
harmonic map from surface to pants decomposition graph. The critical
trajectories of Strebel differential decompose the surface into topological
cylinders. After conformally mapping those topological cylinders to stan-
dard cylinders, parameters of standard cylinders (height, circumference)
are intrinsic geometric features of the original cortical surfaces and thus
can be used for morphometry analysis purpose. In this work, we propose
a set of novel surface features. To the best of our knowledge, this is the
first work to make use of surface foliation theory for brain morphom-
etry analysis. The features we computed are intrinsic and informative.
The proposed method is rigorous, geometric, and automatic. Experimen-
tal results on classifying brain cortical surfaces between patients with
Alzheimer’s disease and healthy control subjects demonstrate the effi-
ciency and efficacy of our method.

Keywords: Brain morphometry · Shape classification · Surface
foliation · Alzheimer disease

1 Introduction

MRI based brain morphometry analysis has gained extensive interest in the past
decades [17,20]. A lot of research works are focused on identifying very early signs
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of brain functional and structural changes for early identification and preven-
tion of neurodegenerative diseases. Alzheimer’s disease (AD), which is the sixth-
leading cause of death in the United States, and the fifth-leading cause of death
among those age 65 and older as reported by Alzheimer’s Association in 2018 [1],
has obtained much interest from researchers around the world. Early detection
and prevention of AD can significantly impact treatment options, improve qual-
ity of life, and save considerable health care costs. As a non-invasive method,
brain imaging study has great potentials that will powerfully track disease pro-
gression and therapeutic efficacy in AD. For example, whole brain morphometry,
hippocampal and entorhinal cortex volumes are among most promising candi-
date biomarkers in structural MRI analysis. However, missing at this time is a
widely available, highly objective brain imaging biomarker capable of identifying
abnormal degrees of cerebral atrophy and accelerated rate of atrophy progression
in preclinical individuals at high risk for AD in who early intervention is most
needed.

Computational geometric methods are widely used in medical imaging fields
including virtual colonoscopy and brain morphometry analysis. Rooted in deep
geometry analysis research, computational geometric methods may provide rig-
orous and accurate quantification of abnormal brain development and thus hold
a potential to detect preclinical AD in presymptomatic subjects. Specifically,
surface morphometry techniques, such as conformal mapping and area preserv-
ing mapping, have shown to be feasible and powerful tools in brain morphometry
research.

To the best of our knowledge, this is the first work to propose the use of the
surface foliation theory for brain morphometry analysis. We validate our method
by classifying brain surfaces of patients with Alzheimer disease and healthy
control subjects. Experimental results indicate the efficiency and efficacy of our
proposed method. The main contributions are summarized as follows:

– A novel brain surface morphometry analysis method is proposed based on
surface foliation theory.

– A set of new geometric features computed by pants decomposition and con-
formal mapping of topological cylinders are also proposed for surface indexing
and classification.

– The proposed method is rigorous, geometric and automatic.

2 Previous Works

Brain morphometry analysis plays a fundamental role in medical imaging [11,
22,24]. Many research works have investigated the brain morphometry analysis
and shape classification. Thompson et al. [17] analyzed brain morphometry using
thickness features. Winkler et al. [20] proposed that the surface area could serve
as an important morphometry feature to study brain structural MRI images.
Besides, numerous methods have been presented in order to describe shapes,
including statistical methods [14], topology based methods [6], and geometry
based methods [12]. To solve real 3D shape problems, researchers have also
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proposed many shape analysis and classification methods. Chaplot et al. [3]
employed wavelets and neural network for classification of brain MR images.
Zacharaki et al. [23] proposed the use of pattern classification methods for
classifying different types of brain tumors. Recently, Su et al. [16] presented
a shape classification method busing Wasserstein distance. The method com-
puted a unique optimal mass transport map between two measures, and used
Wasserstein distance to intrinsically measure the dissimilarities between shapes.

Foliation [15] is a generalization of vector field. In computer graphics field,
Zhang et al. [25] invented a vector field design system which could help users
create various vector fields with control over vector field topology. The tech-
nique can be used in some applications such as example-based texture synthesis,
painterly rendering of images, and pencil sketch illustrations of smooth surfaces.
Recently, Campen et al. [2] proposed a method for bijective parametrization
of 2D and 3D objects based on simplicial foliations. The method decomposed
a mesh into one-dimensional submanifolds, reducing the mapping problem to
parametrization of a lower-dimensional manifold. It was proved that the result-
ing maps are bijective and continuous. In isogeometric analysis field, Lei et al. [9]
presented a novel quadrilateral and hexahedral mesh generation method using
foliation theory. A colorable quad-mesh method was employed to generate the
quadrilateral mesh based on Strebel differentials, which then leads to the struc-
tured hexahedral mesh of the enclosed volume for high genus surfaces. Hsieh
et al. [7] studied an elasticity model for shape evolution where the control is
interpreted as the derivative of a body force density in the deforming volume,
and a special case of the model decomposes the shapes into a family of layers
called foliation.

3 Theoretic Foundation

We briefly review the basic concepts and theorems in conformal geometry.
Detailed treatments can be found in [4,5,15].

A complex function f : C → C, (x, y) → (u, v), satisfying the Cauchy-
Riemann equation

ux = vy, uy = −vx,

is called a holomorphic function. If f is invertible, and f−1 is also holomorphic,
then f is called a bi-holomorphic function. For a surface with a complex atlas
A, if all chart transition functions are bi-holomorphic, it is called a Riemann
surface, the atlas A is called a complex structure. All oriented metric surfaces
are Riemann surfaces.

Definition 1 (Holomorphic Quadratic Differentials). Assume S is a Rie-
mann surface. Let Φ be a complex differential form, such that on each local chart
with the local complex parameter {zα}, Φ = ϕα(zα)dz2α, in which ϕα(zα) is a
holomorphic function. Then Φ is called a holomorphic quadratic differential.

Based on the Riemann-Roch Theorem, the linear space of all holomorphic
quadratic differentials is 3g − 3 complex dimensional with the genus g > 1.
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A point zi ∈ S is called a zero of Φ, if ϕ(zi) vanishes. A holomorphic quadratic
differential has 4g − 4 zeros. For any point away from zero, a local coordinates
can be defined as follows:

ζ(p) :=
∫ p √

ϕ(z)dz. (1)

which are so-called natural coordinates induced by Φ. The curves with constant
real (imaginary) natural coordinates are called the vertical (horizontal) trajec-
tories, and the trajectories through the zeros are called the critical trajectories.

Definition 2 (Strebel [15]). If all of the horizontal trajectories of a holomor-
phic quadratic differential Φ on a Riemann surface S are finite, then Φ is called
a Strebel differential.

We say a holomorphic quadratic differential Φ is Strebel, if and only if its criti-
cal horizontal trajectories form a finite graph [15]. In the space of all holomorphic
quadratic differentials, the Strebel differentials are dense. Given a holomorphic
quadratic differential Φ, a flat metric with cone singularities (cone angles equal
to −π), denoted as |Φ|, is induced by the natural coordinates in Eq. 1. The fol-
lowing existence of a Strebel differential with prescribed type and heights was
proved by Hubbard and Masur.

Theorem 1 (Hubbard and Masur [8]). For non-intersecting simple loops
Γ = {γ1, γ2, · · · , γn}, and positive numbers {h1, h2, · · · , hn}, n ≤ 3g − 3, there
exists a unique holomorphic quadratic differential Φ, which satisfies the following:

1. A surface is partitioned by the critical graph of Φ into n cylinders which are
denoted by {C1, C2, · · · , Cn}, such that γk is the generator of Ck,

2. The height of each cylinder (Ck, |Φ|) is equal to hk, k = 1, 2, · · · , n.

We give the geometric interpretation of above theorem as follows: under the
flat metric |Φ|, each cylinder Ck becomes a canonical flat cylinder with height
hk. Strebel’s theorem allows for specifying the type of Φ and the height of each
cylinder Ck.

Harmonic Map. Assume G = 〈E,N〉 is a graph, and h : E → R
+ is an

edge weight function. p and q denote two points on the graph, and dh(p, q)
represents the shortest distance between them. Suppose (S,g) is a surface with
a Riemannian metric g. Given a map f : (S,g) → (G,h), we say a point p ∈ S
is a regular point, if its image is not any node of G, otherwise it is a critical
point. We denote the set of all critical points as Γ . For each regular point p ∈ S,
a neighborhood Up can be found and the restriction of the map on Up can be
treated as a normal function f : Up → R. An isothermal coordinates (x, y) are
selected on Up, such that the metric has a special form g = e2λ(x,y)(dx2 + dy2).
Then the harmonic energy is represented by E(f |Up

) :=
∫

Up
|∇gf |2dAg, where
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∇g = e−λ
(

∂
∂x , ∂

∂y

)T

, and the area element is dAg = e2λdxdy. The harmonic
energy of the whole map is given as

E(f) :=
∫

S\Γ

|∇gf |2dAg.

The critical point of the harmonic energy is called a harmonic map. Wolf [21]
proved the existence and the uniqueness of the harmonic map.

Theorem 2 (Wolf [21]). The harmonic map f : (S,g) → (G,h) exists and is
unique in each homotopy class. Moreover, as induced by the harmonic map, the
Hopf differential Φ = 〈fz, fz〉dz2 is a holomorphic quadratic differential, where
z = x + iy denotes the complex isothermal coordinates of (S,g).

Conformal Module. Let (S,g) be a surface of genus g > 1. Given 3g − 3 non-
intersecting simple loops Γ = {γi} and positive numbers {hi}, the unique Strebel
differential Φ based on Hubbard and Masur’s theorem induces a flat metric |Φ|
with cone singularities, and cylinders {Ci}3g−3

i=1 . The height and circumference
for each cylinder (Ck, |Φ|) are denoted by (hk, lk). The set of all (hk, lk) are the
conformal modules.

4 Algorithm

Pants Decomposition. Let S be a closed surface of genus g, represented by
triangular mesh. Let Γ = {γi, i = 1, 2, ..., 3g − 3} be a set of admissible curves,
which can be generated automatically or manually specified. User also specifies
a height parameter hi for each admissible curve γi. These admissible curves
decompose surface S to a set of pants P = {Pi, i = 1, 2, ..., 2g − 2}. The pants
decomposition graph G is then constructed in the following way:

– each pants Pi corresponds to a node in G;
– each admissible curve connecting two pants corresponds to an edge in G; two

pants may be the same, in that case, the edge becomes a loop.

Figure 1 illustrates pants decomposition and pants decomposition graph.

Discrete Harmonic Map to Graph. We compute a unique harmonic map f
from surface S to G. The harmonic energy is defined as

E(f) =
∑

i,j,eij∈S

wijd
2(f(vi), f(vj))

where vi are vertex on S, f(vi) on G, eij are edges, wij cotangent weight.
For each vi, by moving f(vi) to the barycenter of its neighbors on graph G,

the energy E will decrease monotonically, which is due to the following definition
of barycenter. By iteratively doing so, energy E will attain its minimum value,
at which point we obtain a harmonic map f : S → G. Theorem 2 guarantees this
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Fig. 1. Pants decomposition of surface (left) and pants decomposition graph (right)

Fig. 2. Harmonic map from human face to pants decomposition graph and induced
surface foliation

harmonic map we obtained is the unique one. Figure 2(a) illustrates harmonic
map from a human face surface to its pants decomposition graph (b), (c) shows
surface foliation, where color indicates vertices’ target position on graph G.

The initial map f0 should be specified in the same homotopy class as the
final harmonic map f . Subgraph at a node consists of the node and all edges
connecting to it. Then initial map can be obtained automatically in the following
way: each pants Pi be mapped to the subgraph Gi at node i of G, then all pants
maps are glued together to obtain f0.

Calculate Barycenter. For each f(vi), we move f(vi) to the barycenter of its
neighbors. Calculating barycenter is done by minimizing energy

f(vi)∗ = arg min
f(v)

∑
j,eij∈S

wijd
2(f(v), f(vj))

where the right are exactly the terms in E that involve f(vi). d(f(vi), f(vj))
can be calculated piecewisely. Then minimization of above energy boils down to
minimum calculation of a set of quadratic functions.
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Fig. 3. A left cortical surface with six landmark curves, which are automatically labeled
with Caret, showing in two different views on both the original and inflated surfaces.

Fig. 4. A brain surface and its foliation.

Surface with Boundaries. For surfaces with boundaries, we can either dou-
ble cover those surfaces to obtain a closed surface, or we can add boundaries
to the set of admissible curves, such curves correspond to open edges on G.
Computation of harmonic map remains same.

Extract Geometric Features. A holomorphic quadratic differential Φ can be
induced from the harmonic map we obtained. Tracing the critical trajectories of
Φ and slicing surface along them, we obtain a set of 3g − 3 topological cylinders,
each corresponds to an input admissible curve. The set of heights and circum-
ferences of those cylinders are topological invariants, which we propose to use as
geometric features for classification problems in next section.

5 Experiment

To evaluate the proposed method for brain morphometry study, we conducted
experiments on a dataset of 60 brain cortical surfaces. Triangle mesh of each
brain surface has around 100K triangles.

Data Preparation. The dataset used in our experiments includes images from
30 patients with Alzheimer disease and 30 healthy control subjects. The struc-
tural MRI images were from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [13]. The brain cortical surfaces were reconstructed from the MRI images
by FreeSurfer. Then, a set of ‘Core 6’ landmark curves, including the Central
Sulcus (CeS), Anterior Half of the Superior Temporal Gyrus (aSTG), Sylvian
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Fig. 5. Radar chart. (Color figure online)

Table 1. Classification accuracy comparison between our method and other methods.

Classification method Correctness rate

Our method 78.33%

Brain surface area 56.67%

Brain mean curvature 55.00%

Fissure (SF), Calcarine Sulcus (CaS), Medial Wall Ventral Segment, and Medial
Wall Dorsal Segment, are automatically traced on each cortical surface using the
Caret package [19]. In Caret software, the PALS-B12 atlas is used to delineate
the “core 6” landmarks, which are well-defined and geographically consistent,
when compared with other gyral and sulcal features on human cortex. The sta-
bility and consistency of the six landmarks was validated in [18]. An illustration
of the landmark curves on a left cortical surface is shown in Fig. 3 with two
views. We show the landmarks with both the original and inflated cortical sur-
faces for clarity. A brain surface and its foliation are shown in Fig. 4(a) and (b),
respectively.

Foliation Feature Visualization. We illustrate the difference of feature values
between a pair of subjects with AD and healthy control subject (CTL) using
radar chart. Radar chart displays multi-variate data in a two-dimensional chart
where multiple variables are represented on axes starting from the same point.
As shown in Fig. 5, six pairs of heights (H) and circumferences (C) corresponding
to “core 6” landmarks, i.e., twelve features (labeled by ‘H1’, ‘C1’,..., ‘H6’, ‘C6’)
are associated with twelve corners on the radar chart. We find that the pair of
the H4 height and C4 circumference features associated to landmark curve of
medial wall dorsal segment have the largest difference between these two subjects
radar charts represented by a blue color line and an orange color line respectively.
Although more validations are warranted, our research results may help discover
AD related brain atrophy patterns.
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Classification. We validated our method with brain surface classification on a
dataset of brain cortical surfaces from 30 patients with Alzheimer disease and 30
healthy control subjects. The SVM method was employed as the classifier with
10-fold cross validation in our experiments. For each image, the input feature
vector of the classifier includes 12 features. For comparison purpose, we also
compute cortical surface area and cortical surface mean curvatures, two cortical
surface features frequently adopted in prior structural MRI analyses [10]. We
also applied SVM as the classifiers for these two features. Experimental results
are shown in Table 1. Our proposed method achieved 78.33% correctness rate,
which is better than the correctness rate 56.67% in the brain surface area based
method and 55.00% in the brain surface mean curvature based method. Although
multi-subject studies are clearly necessary, this experiment demonstrates that
the foliation theory based geometric features may have the potential to quantify
and measure AD related cortical surface changes.

6 Conclusion

In this paper, a novel brain surface classification method is proposed based on
surface foliation theory. The method is rigorous, geometric, and automatic. In
order to validate our proposed method, we applied our method on classifying
brain cortical surfaces between patients with Alzheimer’s disease and healthy
control subjects, and the preliminary experimental results demonstrated the
efficiency and efficacy of our method. In the future, we will employ our method
to explore brain morphometry related to mild cognitive impairment (MCI) and
other applications in the medical imaging field.
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Abstract. Dimensionality reduction on Riemannian manifolds is chal-
lenging due to the complex nonlinear data structures. While probabilis-
tic principal geodesic analysis (PPGA) has been proposed to general-
ize conventional principal component analysis (PCA) onto manifolds, its
effectiveness is limited to data with a single modality. In this paper, we
present a novel Gaussian latent variable model that provides a unique
way to integrate multiple PGA models into a maximum-likelihood frame-
work. This leads to a well-defined mixture model of probabilistic principal
geodesic analysis (MPPGA) on sub-populations, where parameters of the
principal subspaces are automatically estimated by employing an Expec-
tation Maximization algorithm. We further develop a mixture Bayesian
PGA (MBPGA) model that automatically reduces data dimensionality
by suppressing irrelevant principal geodesics. We demonstrate the advan-
tages of our model in the contexts of clustering and statistical shape
analysis, using synthetic sphere data, real corpus callosum, and mandible
data from human brain magnetic resonance (MR) and CT images.

1 Introduction

PCA has been widely used to analyze high-dimensional data due to its effective-
ness in finding the most important principal modes for data representation [12].
Motivated by the nice properties of probabilistic modeling, a latent variable
model of PCA for factor analysis was presented [18,23]. Later, different vari-
ants of probabilistic PCA including Bayesian PCA [2] and mixture models of
PCA [4] were developed for automatic data dimensionality reduction and clus-
tering, respectively. It is important to extend all these models from flat Euclidean
spaces to general Riemannian manifolds, where the data is typically equipped
with smooth constraints. For instance, an appropriate representation of direc-
tional data, i.e., vectors of unit length in Rn, is the sphere Sn−1 [16]. Another
important example of manifold data is in shape analysis, where the definition of
the shape of an object should not depend on its position, orientation, or scale,
i.e., Kendall shape space [14]. Other examples of manifold data include geo-
metric transformations such as rotations and translations, symmetric positive-
definite tensors [10,25], Grassmannian manifolds (a set of m-dimensional linear
c© Springer Nature Switzerland AG 2019
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subspaces of Rn), and Stiefel manifolds (the set of orthonormal m-frames in
Rn) [24].

Data dimensionality reduction on manifolds is challenging due to the com-
monly used linear operations violate the natural constraints of manifold-valued
data. In addition, basic statistical terms such as distance metrics, or data distri-
butions vary on different types of manifolds [14,17,24]. A groundbreaking work,
known as principal geodesic analysis (PGA), was the first to generalize PCA
to nonlinear manifolds [10]. This method describes the geometric variability of
manifold data by finding lower-dimensional geodesic subspaces that minimize
the residual sum-of-squared geodesic distances to the data. Later on, an exact
solution to PGA [19,20] and a robust formulation for estimating the output
results [1] were developed. The probabilistic interpretation of PGA was firstly
introduced in [26], which paved a way for factor analysis on manifolds. Since
PPGA only defines a single projection of the data, the scope of its application
is limited to uni-modal distributions. A more natural and motivating solution
is to model the multi-modal data structure with a collection or mixture of local
sub-models. Current mixture models on a specific manifold generally employ
a two-stage procedure: a clustering of the data projected in Euclidean space
followed by performing PCA within each cluster [6]. None of these algorithms
define a probability density.

In this paper, we derive a mixture of PGA models as a natural extension of
PPGA [26], where all model parameters including the low-dimensional factors
for each data cluster is estimated through the maximization of a single likelihood
function. The theoretical foundation of developing generative models of princi-
pal geodesic analysis for multi-population studies on general manifolds is brand
new. In addition, the algorithmic inference of our proposed method is nontrivial
due to the complicated geometry of manifold-valued data and numerical issues.
Compared to previous methods, the major advantages of our model are: (i) it
leads to a unified algorithm that well integrates soft data clustering and principal
subspaces estimation on general Riemannian manifolds; (ii) in contrast to the
two-stage approach mentioned above, our model explicitly considers the recon-
struction error of principal modes as a criterion for clustering tasks; and (iii)
it provides a more powerful way to learn features from data in non-Euclidean
spaces with multiple subpopulations. We showcase our model advantages from
two distinct perspectives: automatic data clustering and dimensionality reduc-
tion for analyzing shape variability. In order to validate the effectiveness of the
proposed algorithm, we compare its performance with the state-of-the-art meth-
ods on both synthetic and real datasets. We also briefly discuss a Bayesian ver-
sion of our mixture PPGA model that equips with the functionality of automatic
dimensionality selection on general manifold data.

2 Background: Riemannian Geometry and PPGA

In this section, we briefly review PPGA [26] defined on a smooth Rieman-
nian manifold M , which is a generalization of PPCA [23] in Euclidean space.
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Before introducing the model, we first recap a few basic concepts of Riemannian
geometry (more details are provided in [7]).

Covariant Derivative. The covariant derivative is a generalization of the
Euclidean directional derivative to the manifold setting. Consider a curve
c(t) : [0, 1] → M and let ċ = dc/dt be its velocity. Given a vector field V (t)
defined along c, we can define the covariant derivative of V to be DV

dt = ∇ċV
that reflects the change of the vector field ċ in the V direction. A vector field is
called parallel if the covariant derivative along the curve c is zero. A curve c is
geodesic if it satisfies the equation ∇ċċ = 0.

Exponential Map. For any point p ∈ M and tangent vector v ∈ TpM (also
known as the tangent space of M at p), there exists a unique geodesic curve c
with initial conditions c(0) = p and ċ(0) = v. This geodesic is only guaranteed to
exist locally. The Riemannian exponential map at p is defined as Exp p(v) = c(1).
In other words, the exponential map takes a position and velocity as input and
returns the point at time t = 1 along the geodesic with certain initial conditions.
Notice that the exponential map is simply an addition in Euclidean space, i.e.,
Exp p(v) = p + v.

Logarithmic Map. The exponential map is locally diffeomorphic onto a neigh-
borhood of p. Let V (p) be the largest such neighborhood, the Riemannian
log map, Log p : V (p) → TpM , is an inverse of the exponential map within
V (p). For any point q ∈ V (p), the Riemannian distance function is given by
Dist (p, q) = ‖Log p(q)‖. Similar to the exponential map, this logarithmic map is
a subtraction in Euclidean space, i.e., Log p(q) = q − p.

2.1 PPGA

Given an d-dimensional random variable y ∈ M , the main idea of PPGA [26] is
to model y as

y = Exp (Exp (μ,Bx), ε ), B = WΛ, (1)

where μ is a base point on M , x ∈ R
q is a q-dimensional latent variable, with

x ∼ N(0, I), B is an d × q factor matrix that relates x and y, and ε represents
error. We will find it is convenient to model the factors as B = WΛ, where W is a
matrix with q columns of mutually orthogonal tangent vectors in TμM , Λ is a q×q
diagonal matrix of scale factors for the columns of W . This removes the rotation
ambiguity of the latent factors and makes them analagous to the eigenvectors
and eigenvalues of standard PCA (there is still of course an ambiguity of the
ordering of the factors).

The likelihood of PPGA is defined by a generalization of the normal dis-
tribution N (μ, τ−1), called Riemannian normal distribution, with its precision
parameter τ . Therefore, we have

p(y|μ, τ) =
1

C(μ, τ)
exp

(
−τ

2
Dist (y, μ)2

)
, with

C(μ, τ) =
∫

M

exp
(
−τ

2
Dist (y, μ)2

)
dy. (2)
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This distribution is applicable to any Riemannian manifold, and the value of
C in Eq. 2 does not depend on μ. It reduces to a multivariate normal distribution
with isotropic covariance when M = R

n (see [9] for details). Note that this noise
model could be replaced with other different distributions according to different
types of applications.

Now, the PPGA model for a random variable y in Eq. (1) can be defined as

y ∼ N (
Exp (μ, s), τ−1

)
, s = WΛx. (3)

3 Our Model: Mixture Probability Principal Geodesic
Analysis (MPPGA)

We now introduce a mixture model of PPGA (MPPGA) that provides a tempting
prospect of being able to model complex multi-modal data structures. This for-
mulation allows all model parameters to be estimated from maximum-likelihood,
where both an appropriate data clustering and the associated principal modes
are jointly optimized.

Consider observed data yn ∈ {y1, · · · , yN} generated from K clusters on M
(as shown in Fig. 1). We first introduce a K-dimensional binary random variable
zn with its k-th element znk ∈ {0, 1} as an indicator for n-th data point that
belongs to cluster k, where k ∈ {1, · · · ,K}. This indicates that znk = 1 with
other value being zero if the data yn is in cluster k. The probability of each
random variable zn is

p(zn) =
K∏

k=1

πznk

k , (4)

where πk ∈ [0, 1] is the model mixing coefficient that satisfies
K∑

k=1

πk = 1.

Analogous to PPGA in Eq. (1), the likelihood of each observed data yn is

p(yn | zn) =
K∏

k=1

N (yn |Exp (μk, snk), τ−1
k )znk , with

snk = WkΛkxnk, (5)

where xnk ∼ N (0, I) is a latent random variable in R
q, μk is a base point

for each cluster k, Wk is a matrix with each columns representing the mutually
orthogonal tangent vectors in Tμk

M , and Λk is a diagonal matrix of scale factors
for the columns of Wk.

Combining Eq. (4) with Eq. (5), we obtain the complete data likelihood

p(y, z) =
N∏

n=1

p(yn | zn)p(zn)p(xn)

=
N,K∏

n,k=1

[πkp(yn |Exp (μk, snk), τ−1
k )p(xnk)]znk . (6)
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Fig. 1. Example MPPGA model with four clusters.

The log of the data likelihood in Eq. (6) can be computed as

L � ln p(y, z) = −
N,K∑

n,k=1

znk ln{πkp(yn |Exp (μk, snk), τ−1
k )p(xnk)}. (7)

3.1 Inference

We employ a maximum likelihood expectation maximization (EM) method to
estimate model parameters θ = (πk, μk,Wk, Λk, τk, xnk) and latent variables znk.
This scheme includes two main steps:

E-step. To treat the binary indicator znk fully as latent random variables, we
integrate them out from the distribution defined in Eq. (6). Similar to typical
Gaussian mixture models, the expectation value of the complete-data log likeli-
hood function is

E[L] = −
N,K∑

n,k=1

E[znk] {ln p(yn |Exp (μk, snk), τ−1
k ) + ln p(xnk) + lnπk}. (8)

The expected value of the latent variable znk, also known as the responsi-
bility of component k for data point yn [3], is then computed by its posterior
distribution as

E[znk] = p(znk|yn) =
p(yn|znk)p(znk)∑K

k=1 p(yn|znk)p(znk)

=
πkp(yn|Exp (μk, znk), τ−1

k )∑K
k=1 πkp(yn|Exp (μk, znk), τ−1

k )
. (9)

Recall that the Rimannian distance function Dist (p, q) = ‖Log p(q)‖. We let
γnk � E[znk] and rewrite Eq. (8) as

E[L] = −
N,K∑

n,k=1

γnk{τk

2
Log (Exp (μk, snk), yn)2 + lnC + lnπk +

||xnk||2
2

}, (10)

where C is a normalizing constant.



MPPGA 201

M-step. We use gradient ascent to maximize the expectation function E[L] and
update parameters θ. Since the maximization of the mixing coefficient πk is the
same as Gaussian mixture model [3], we only give its final close-form update
here as π̃k =

∑N
n=1 γnk/N .

The computation of the gradient term requires we compute the derivative
operator (Jacobian matrix) of the exponential map, i.e., dμk

Exp (μk, snk), or
dsnk

Exp (μk, snk). Next, we briefly review the computations of derivatives w.r.t.
the mean point μ and the tangent vector s separately. Closed-form formulations
of these derivatives in the space of sphere, or 2D Kendall shape space are provided
in [11,26].

For Derivative w.r.t. μ. Consider a variation of geodesics, e.g., c(h, t) =
Exp (Exp (μ, hu), ts(h)), where u ∈ TμM and s(h) comes from parallel trans-
lating s along the geodesic Exp (μ, hu). The derivative of this variation results
in a Jacobi field: Jμ(t) = dc/dh(0, t). This gives an expression for the exponential
map derivative as dμExp (μ, s) = Jμ(1) (as shown on the left panel of Fig. 2).

For Derivative w.r.t. s. Consider a variation of geodesics, e.g., c(h, t) =
Exp (μ, hu + ts). Again, the derivative of the exponential map is given by a
Jacobi field satisfying Js(t) = dc/dh(0, t), and we have dsExp (μ, s)u = Js(1) (as
shown on the right panel of Fig. 2).

Fig. 2. Jacobi fields

Now we are ready to derive all gradient terms of E[L] in Eq. 10 w.r.t. the
parameters θ. For purpose of better readability, we simplify the notation by
defining Log (·) � Log (Exp (μk, snk), yn) in remaining sections.

Gradient for μk: the gradient of updating μk is

∇μk
E[L] =

N,K∑
n,k=1

γnk τk dμk
Exp (μk, snk)†Log (·), (11)

where † represents adjoint operator, i.e., for any tangent vectors û and v̂,

〈dμk
Exp (μk, snk)û, v̂〉 = 〈û, dμk

Exp (μk, snk)†v̂〉.
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Gradient for τk: the gradient of τk is computed as

∇τkE[L] =
N,K∑

n,k=1

γnk
1

C(τ)
An−1

∫ R

0

r2

2
Exp(−τ

2
r2)·

n∏
κ=2

κ−1/2
κ fκ(

√
κκr)dr − 1

2
Log (·)2dr, (12)

where An−1 is the surface area of n − 1 hypershpere. r is radius, κκ is the
sectional curvature. Here R = minvR(v), where R(v) is the maximum distance
of Exp(μk, rv) with v being a point of unit sphere Sn−1 ⊂ Tμk

M . While this
formula is only valid for simple connected symmetric spaces, other spaces should
be changed according to different definitions of the probability density function
in Eq. (2).

To derive the gradient w.r.t. Wk, Λk and xnk, we need to compute
d(Log (·)2)/dsnk first. Analogous to Eq. 11, we have

d(Log (·)2)
dsnk

= 2
(
dsnk

Exp (μk, snk)†Log (·)) . (13)

After applying chain rule, we finally get all gradient terms as following:

Gradient for Wk: the gradient term of Wk is

∇Wk
E[L] =

N,K∑
n,k=1

γnk
τk

2
· d(Log (·)2)

dsnk
· xT

nkΛk. (14)

To maintain the mutual orthogonality of each column of Wk, we consider Wk

as a point in Stiefel manifold Vq(TμM), i.e., the space of orthonormal q-frames
in TμM , and project the gradient of Eq. 14 into tangent space TWk

Vq(TμM).
We then update Wk by taking a small step along the geodesic in the projected
gradient direction. For details on Stiefel manifold, see [8].

Gradient for Λa
k: the gradient term of each a-th diagonal element of Λk is:

∇Λa
k
E[L] =

N,K∑
n,k=1

γnk τk(W a
k xa

nk)T · d(Log (·)2)
dsnk

, (15)

where W a
k is the ath column of Wk and xa

nk is the ath component of xnk.

Gradient for xnk: the gradient w.r.t. each xnk is

∇xnk
E[L] = −

N,K∑
n,k=1

γnk{xnk − τk

2
ΛkWT

k · d(Log (·)2)
dsnk

}. (16)

In this section, we further develop a Bayesian variant of MPPGA that equips
with the functionality of automatic data dimensionality reduction. A critical
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issue in maximum likelihood estimate of principal geodesic analysis is the choice
of the number of principal geodesic to be retained. This also could be problem-
atic in our proposed MPPGA model since we assume each cluster has different
dimensions of principal subspaces, and an exhaustive search over the parameter
space can become computationally intractable.

To address this issue, we develop a Bayesian mixture principal geodesic anal-
ysis (MBPGA) model that determines the number of principal modes automat-
ically to avoid adhoc parameter tuning. We carefully introduces an automatic
relevance determination (ARD) prior [3] on each ath diagonal element of the
eigenvalue matrix Λ as

p(Λ|β) =
d−1∏
i=1

(
βa

2π
)d/2e− 1

2βa‖Λa‖2
. (17)

Each hyper-parameter βa controls the inverse variance of its corresponding prin-
cipal geodesic W a, which is the ath column of W matrix. This indicates that if
βa is particularly large, the corresponding W a will tend to be small and will be
effectively eliminated.

Incorporating this ARD prior into our MPPGA model defined in Eq. 7, we
arrive at a log posterior distribution of Λ as

ln p(Λ|Y ) = L − 1
2

d−1∑
i=1

βa‖Λa‖2 + const.. (18)

Analogous to the EM algorithm introduced in Sect. 3.1, we maximize over
Λa in M-step by using the following gradient:

∇ΛaE[L] =
N,K∑

n,k=1

γnk τk(W a
k xa

nk)T · d(Log (·)2)
dsnk

− βaΛa. (19)

Similar to the ARD prior discussed in [2], the hyper-parameter βa can be effec-
tively estimated by βa = d/‖Λa‖2, where d is the dimension of the original data
space.

4 Evaluation

We demonstrate the effectiveness of our MPPGA and MBPGA model by using
both synthetic data and real data, and compare with two baseline methods
K-means-PCA [6] and MPPCA [22] designed for multimodal Euclidean data.
The geometry background of specific sphere and Kendall shape space including
the computations of Riemannian exponential map, log map, and Jacobi fields
can be found in [9,26].
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4.1 Data

Sphere. Using the generative model for PGA, we simulate a random sample of
764 data points on the unit sphere S2 with known parameters W,Λ, τ , and π
(see Table 1). All data points consist three clusters (Green: 200; Blue: 289; Black:
275). Note that our ground truth μ is generated from random uniform points on
the sphere. The W is generated from a random Gaussian matrix, to which we
then apply the Gram-Schmidt algorithm to ensure its columns are orthonormal.

Corpus Callosum Shape. The corpus callosum data are derived from public
released Open Access Series of Imaging Studies (OASIS) database www.oasis-
brains.org. It includes 32 magnetic resonance imaging scans of human brain sub-
jects, with age from 19 to 90. The corpus callosum is segmented in a midsagittal
slice using the ITK SNAP program www.itksnap.org. The boundaries of these
segmentations are sampled with 64 points. This algorithm generates a sampling
of a set of shape boundaries while enforcing correspondences between different
point models within the population.

Mandible Shape. The mandible data is extracted from a collection of CT scans
of human mandibles, with 77 subjects (36 female vs. 41 male) aged from 0 to
19. We sample 2 × 400 points on the boundaries.

4.2 Experiments

We first run our EM algorithm estimation of both MPPGA and MBPGA to test
whether we could recover the model parameters. To initialize the model param-
eters (e.g., the cluster mean μ, principal eigenvector matrix W , and eigenvalue
Λ), we use the output of K-means algorithm followed by performing linear PCA
within each cluster. We uniformly distribute the weight to each mixing coeffi-
cient, i.e., πk = 1/K. The initialization of all precision parameters {τk} is 0.01.
We compare our model with two existing algorithms - mixture probabilistic prin-
cipal components (MPPCA) [22] and K-means-PCA [6] performed in Euclidean
space. For fair comparison, we keep the number of clusters the same across all
algorithms.

To further investigate the applicability of our model MPPGA to real data,
we test on 2D shapes of corpus callosum to study brain degeneration. The idea
is to identify shape differences between two sub-populations: healthy vs. control
group by analyzing their shape variability. We also run the extended Bayesian
version of our model MBPGA to automatically select a compact set of principal
geodesics to represent data variability. We perform similar experiments on the
2D mandible shape data to study group differences across genders, as well as
within-group shape variability that reflects localized regions of growth.

4.3 Results

Figure 3 compares the estimated results of our model MPPGA/MBPGA with
two baseline methods K-means-PCA and MPPCA. For the purpose of visualiza-
tion, we project the estimated principle modes of K-means-PCA and MPPCA

www.oasis-brains.org
www.oasis-brains.org
www.itksnap.org
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model from Euclidean space onto the sphere. Our model automatically separates
the sphere data into three groups, which aligns fairly well with the ground truth
(Green: 200; Blue: 289; Black: 275). For geodesics in each cluster (ground truth
in yellow and model estimate in red), our results overlap better with the ground
truth than others. This also indicates that our model can recover the parameters
closer to the truth (as shown in Table 1). In particular, the MBPGA model is
able to automatically select an effective dimension of the principal subspaces to
represent data variability.

(a) K-means-PCA (b) MPPCA (c) MPPGA (d) MBPGA

Fig. 3. The comparison of our model MPPGA/MBPGA with K-means-PCA and
MPPCA (after being projected from Euclidean space onto the sphere). We have three
clusters marked in green, blue, and black. Yellow lines: ground truth geodesics; Red
lines: estimated geodesics. (Color figure online)

Table 1. Comparison between ground truth parameters {λk, πk, τk} and the estimation
of our model and baseline algorithms.

λk=1,2,3 πk=1,2,3 τk=1,2,3

Ground truth (0.2, 0.01, 0) (0.2618, 0.3783, 0.3599) (277.7778, 123.4568, 69.4444)

K-means-PCA (0.1843, 0.0177, 0) (0.2500, 0.3927, 0.3573) NA

MPPCA (0.5439, 0.0450, 0) (0.2585, 0.3586, 0.3829) (163.9344, 107.5269, 101.0101)

MPPGA (0.1901, 0.0099, 0) (0.2618, 0.3783, 0.3599) (211.8783, 137.7593, 94.8111)

MBPGA (0.1905, 0, 0) (0.2618, 0.3783, 0.3599) (212.4965, 140.0511, 96.1169)

Figure 4 demonstrates result of shape variations estimated by our model
MPPGA and MBPGA. The corpus callosum shapes are automatically clustered
into two different groups: healthy vs. control. An example of a segmented cor-
pus callosum from brain MRI is shown in Fig. 4(a). Figure 4(b)–(e) show shape
variations generated from points along the first principal geodesic: Exp (μ, αwa),
where α = −2,−1, 0, 1, 2 × √

λ), for a = 1. It is shown that the corpus callosum
from healthy group is significantly larger than control group. Meanwhile, the
anterior and posterior ends of the corpus callosum show larger variation than
the mid-caudate, which is consistent with previous studies.

Figure 5 shows fairly close eigenvalues estimated by MPPGA and MBPGA on
corpus callosum data. Since the ARD prior introduced in MBPGA automatically
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Fig. 4. Corpus callosum shape variations (healthy k1 vs. control k2) along the first
principal geodesic (−2, −1, 0, 1, 2)×√

λ estimated by our model MPPGA and MBPGA.

Fig. 5. Eigenvalues estimated by MPPGA/ MBPGA on corpus callosum data.

Fig. 6. 2D examples of mandible shape data and shape variations (male vs. female)
along the first principal geodesic (−2, −1, 0, 1, 2) × √

λ estimated by MBPGA model.
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suppresses irrelevant principal geodesics to zero, we have 15 selected out of 128
in total.

We validate our MBPGA model to analyze the the mandible shape data
(visualization of 2D examples are shown in Fig. 6(a)) since MBPGA produces
fairly close results as MPPGA, but with the functionality of automatic data
dimensionality reduction. The MBPGA model reduces the original data dimen-
sion from d = 800 to d = 70. Figure 6(b)(c) displays shape variations of
mandibles from both male and female group. It clearly shows that generally male
mandibles have larger variations than female mandibles, which is consistent with
previous studies [5]. In particular, male mandibles have a larger variation in the
temporal crest and the base of mandible.

5 Conclusion and Future Work

We presented a mixture model of PGA (MPPGA) on general Riemannian mani-
folds. We developed an Expectation Maximization for maximum likelihood esti-
mation of parameters including the underlying principal subspaces and auto-
matic data clustering results. This work takes the first step to generalize mixture
models of principal mode analysis to Riemannian manifolds. A Bayesian variant
of MPPGA (MBPGA) was also discussed in this paper for automatic dimen-
sionality reduction. This model is particularly useful, as it avoids singularities
that are associated with maximum likelihood estimations by suppressing the
irrelevant information, e.g., outliers or noises. Our proposed model also paves
a way for new tasks on manifolds such as hierarchical clustering and classifica-
tion. Notice that all experiments conducted in this paper are with the number
of clusters k being determined (e.g., healthy vs. control in corpus callosum data,
or male vs. female in mandible data). For datasets with completely unknown
clusters, current methods such as Elbow [15], Silhouhette [13], and Gap statistic
methods [21] can be performed to determine the optimal number of clusters.
This will be further investigated in our future work.
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Abstract. In many applications, geodesic hierarchical models are ade-
quate for the study of temporal observations. We employ such a model
derived for manifold-valued data to Kendall’s shape space. In particular,
instead of the Sasaki metric, we adapt a functional-based metric, which
increases the computational efficiency and does not require the imple-
mentation of the curvature tensor. We propose the corresponding vari-
ational time discretization of geodesics and apply the approach for the
estimation of group trends and statistical testing of 3D shapes derived
from an open access longitudinal imaging study on osteoarthritis.

Keywords: Longitudinal modeling · Shape trajectory · Riemannian
metric · Geodesic regression · Parallel transport · Kendall’s shape space

1 Introduction

Analysis of time-dependent shape data has become increasingly important for
a wide range of applications. For individual biological changes, subject-specific
smooth regression models are adequate. The obtained trajectories provide the
possibility to estimate data values at unobserved times and to compare trends
even with unbalanced data. Due to the non-linear structure of Kendall’s shape
space, common statistical tools derived for Euclidean spaces are not applica-
ble. Within the previous years, many novel approaches have been presented for
the statistical analysis of time-dependent manifold-valued data [2,8,11,15]. The
derived schemes benefit from a compact encoding of constraints and exhibit a
superior consistency as compared to their Euclidean counterparts.

In this work, we employ the generative hierarchical approach, based on
geodesic analysis, introduced in [3] and [11] with some modifications. In the first
stage, inner-individual changes are modeled as geodesic trends, which in the
second phase are considered as disturbances of a population-averaged geodesic
trend. For an introduction and overview over longitudinal analysis based on
mixed effects models we refer to [5].

We use the approach, to approximate the observed temporal shape data
by geodesics in the shape space and to estimate the overall trends within the
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groups on this basis. Geodesic models are attractive because they have a compact
representation and enable computational efficiency. Moreover inconsistencies,
e.g. due to acquisition noise and reconstruction errors, are minimized via geodesic
regression.

Analysis of geodesic trends requires a notion of distance that is consis-
tent with the Riemannian metric of shape space. State-of-the-art approaches
parametrize geodesics as points in the tangent bundle of the shape space [11].
While the Sasaki metric is a natural metric on the tangent bundle, its geodesic
computations require time-discrete approximation schemes involving the Rie-
mannian curvature tensor. This not only incurs high computational costs but
also impacts numerical stability. We consider a novel approach that overcomes
these shortcomings. To this end, we identify elements of the tangent bundle
with vector fields along the geodesic trend. This provides a notion of a canoni-
cal metric that is motivated from a functional view of parameterized curves in
the shape space [16]. Considering the space of the geodesics as a submanifold
in the space of shape trajectories, this allows in particular the use of a natu-
rally induced distance. The corresponding shortest path, log map and average
geodesic, can be computed by variational time-discretization. Remarkably, the
underlying energy function allows for fast and simple evaluation increasing com-
putational efficiency. In particular, it neither requires curvature computation nor
decomposition in horizontal and vertical components.

The main challenge in the first stage, viz. geodesic regression, is to deter-
mine parallel transport and Jacobi fields in Kendall’s shape space. While these
important geometric quantities are not given by closed form expressions, efficient
approximation schemes have been presented [9,10,12].

Using the derived metric for geodesic trends, we obtain a notion of mean,
covariance, and Mahalanobis distance. This allowed us to develop a statisti-
cal hypothesis test for comparing the group-wise mean trends. Non-parametric
permutation tests are applied to test for significance of estimated differences
in group trends. We perform this in terms of a manifold-valued Hotelling t2

statistic described in [3] by applying it to the tangent bundle. As example appli-
cation we demonstrate the methodology on the long term study of incident knee
osteoarthritis (OA).

This paper is organized as follows. In Sect. 2, after a short overview of
Kendall’s shape space, we present main mathematical tools corresponding to
the geometry of the shape space and its tangent bundle, particularly parallel
transport, geodesic regression and mean geodesic. Essential for these consider-
ations is to encode the geometry of the shape space via computations in the
pre-shape space. In Sect. 3 we present the application of our approach to femur
data from an epidemiological longitudinal study dealing with osteoarthritis and
discuss the numerical results.
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2 Kendall’s Shape Space

In the following we present a brief overview of Kendall’s shape space and its
tangent bundle as well as main quantities which will be employed for geodesic
analysis and statistics.

2.1 Preliminaries

For a comprehensive introduction to Kendall’s shape space and details on the
subjects of this section, we refer to [7] and [12]. For the relevant tools from
Riemannian geometry, we refer to [4] and [13].

Let M(m, k) denote the space of real m × k matrices endowed with its
canonical scalar product given by 〈x, y〉 = trace(xyt), and ‖ · ‖ the induced
Frobenius norm. We call the set of k-ad of landmarks in R

m after removing
translations and scaling the pre-shape space and identify it with Sk

m := {x ∈
M(m, k) :

∑k
i=1 xi = 0, ‖x‖ = 1} endowed with the spherical Procrustes metric

d(x, y) = arccos(〈x, y〉). A shape is a pre-shape with rotations removed. More
precisely, the left action of SOm on Sk

m given by (R, x) �→ Rx defines an equiva-
lence relation given by x ∼ y if and only if y = Rx for some R ∈ SOm. Kendall’s
shape space is defined as Σk

m = Sk
m/∼. Now, denoting the canonical projection

of ∼ by π, the induced distance between any two shapes π(x) and π(y) is given
by

dΣ(x, y) = min
R∈SOm

d(x,Ry) = arccos
m∑

i=1

λi,

where λ1 ≥ · · · ≥ λm−1 ≥ |λm| denote the pseudo-singular values of yxt. Note
that for simplicity of notation, we have identified shapes and their representing
pre-shapes in the definition of dΣ . Moreover, for k ≥ 3, the shape space Σk

1 (resp.
Σk

2 ) is isometric to the sphere (resp. projective space). We call x, y ∈ Sk
m well

positioned and write x
ω∼ y if and only if yxt is symmetric and d(x, y) = dΣ(x, y).

For each x, y ∈ Sk
m, there exists an optimal rotation R ∈ SOm such that x

ω∼ Ry.
Due to [7] the horizontal and vertical spaces at x ∈ Sk

m read

Horx = {u ∈ M(m, k − 1) : uxt = xut and 〈x, u〉 = 0},

Verx = {Ax : A + At = 0}.

A smooth curve is called horizontal if and only if its tangent field is horizontal.
Geodesics in the shape space are equivalence classes of horizontal geodesics. Now,
let exp and log denote the exponential and log map of the pre-shape sphere. For
x

ω∼ y the geodesic from x to y given by

Φ(x, y, t) := expx(t logx y) =
sin((1 − t)ϕ)

sinϕ
x +

sin(tϕ)
sinϕ

y (1)

with ϕ = arccos(〈x, y〉), 0 ≤ t ≤ 1, is horizontal. Hence Φ realizes the minimizing
geodesic from π(x) to π(y). We recall, that pre-shapes with rank ≥ m − 1,
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denoted by S, constitute an open and dense subset of Sk
m and the restriction

of the quotient map π to S is a Riemannian submersion with respect to the
metric induced by the ambient Euclidean space. Key quantities of the shape
space geometry such as parallel transport, Jacobi fields and Fréchet mean can
be computed by horizontal lifting to S (and extension to Sk

m). We refer the
reader to [12] for corresponding results.

2.2 Geodesic Regression

The first stage of the employed model is geodesic regression, which we summarize
below. We recall that diameter of Σk

m is π/2. Now, let Ωx be a neighborhood of
x ∈ Sk

m with radius smaller then π/4 and such that for any y ∈ Ωx, denoting the
pseudo-singular values of yxt by λi, λm−1 + λm > 0 holds. Then, due to [7, 6.6],
for y ∈ Ωx the optimal rotation R with x

ω∼ Ry is unique. Hence the function
Ωx � y �→ ω(x, y) := Ry is well-defined.

Now, consider scalars 0 = t1 < t2 < · · · < tN = 1 and distinct pre-shapes
q1, · · · , qN . Geodesic regression aims at finding a geodesic curve in shape space
that best fits the data π(qi) at ti in a least-squares sense. Computationally,
we employ the parametrization given by (1) to determine the corresponding
horizontal geodesic Φ(x∗, y∗, .), where (x∗, y∗) := arg minF and

F (x, y) :=
N∑

i=1

d2(qi, ω(qi, Φ(x, y, ti, ))), x
ω∼ y,

with (q1, ω(q1, qN )) as initial guess.
We recall that the significance of the regression model can be measured by

coefficient of determination denoted R2. To compute it, let Fmin := F (x∗, y∗)
and denote the minimum of G(x) :=

∑N
i=1 d2(qi, ω(x, qi)) by Gmin. Then R2 =

1 − Fmin

Gmin
.

2.3 Tangent Bundle and Mean Geodesic

Geodesic mixed effects models and particularly mean geodesic (group trend)
require a notion of distance for the tangent bundle consistent with the Rieman-
nian metric of the shape space. In the following, we present a brief introduction
to a natural choice for such a distance provided by the Sasaki metric employed in
[11]. Then, we propose an alternative L2-type approach and induced variational
time-discrete geodesics.

In the sequel, I := [0, 1]. Let (M, g) be an μ-dimensional Riemannian mani-
fold and δ a Riemannian metric on the tangent bundle TM with the canonical
projection τ . Identifying a geodesic γ with (γ(0), γ̇(0)), mean of geodesics is
determined by δ. A prominent natural choice for δ is the Sasaki metric. It is
uniquely determined by the following properties (cf. [14]): (a) τ becomes a Rie-
mannian submersion. (b) The restriction of δ to any tangent space coincides
with g. (c) Parallel vector fields along arbitrary curves in M are orthogonal to
their fibers, i.e., for any curve γ and parallel vector field v along it, γ̇ ⊥ TγM .
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Let η := (p, u) : I → TM be a curve. τ being a Riemannian submersion,
TηTM enjoys an orthogonal decomposition in vertical (viz. kernel of dητ) and
horizontal subspaces, both μ-dimensional. Identifying each of them with TpM ,
the Sasaki metric at η is induced by the quadratic form ‖v‖2 + ‖w‖2, where
v = p′ and w = u′. Denoting the covariant derivative and curvature tensor of g
by ∇ and R, Sasaki geodesics are given by

∇vv = −R(u,w, v),
∇vw = 0.

Algorithms for the computation of the exponential and log map as well as mean
geodesic with respect to Sasaki metric, and also an application to corpus callosum
longitudinal data as trajectories in Kendall’s shape space are given in [11]. In this
case m = 2 (planar shapes), the shape space can be identified with the complex
projective space and the Riemannian curvature tensor is explicitly given in terms
of the canonical complex structure and the curvature tensor of the pre-shape
space. For m ≥ 3, computation of R is more delicate.

Next, we present the proposed approach to employ a metric on the tangent
bundle. Fix s ∈ I and let γs : J → M be the geodesic emerging from p(s) with
initial velocity u(s) = γ̇s(0). Note that γs is horizontal. Now, let ξs be a vector
field along γs. Then by

∫
J

g(ξs(t), ξs(t)) dt a quadratic form at (p(s), u(s)) is
given, which in turn defines a metric, again denoted by δ in the space of geodesics.
Let H = H(s, t) be a path in TM with α := H(0, .) and β := H(1, .) arc length
parametrized geodesics. The energy of H induced by the above quadratic form
reads E(H) = 1

2

∫ 1

0

∫ 1

0
g(H ′(s, t),H ′(s, t))dtds (ξs = H ′(s, .)). Let H∗ denote the

minimizer of E restricted to paths through geodesics, i.e. H(s, .) geodesic for all
s ∈ I. Next, we construct time-discrete paths Hn to approximate H∗. E achieves
its minimum over all paths connecting α to β in M if H(., t) is a geodesic for all
t (for a proof, we refer the reader to [16, Theorem 3.2]). Now, suppose that α
and β are close enough, and let Φ denote the arc length parametrized geodesic
from x to y and (x∗

n, y∗
n) the minimizer of

E(x, y) :=
n−1∑

i=0

∫ 1

0

d2(Φ(xi, yi, t), Φ(xi+1, yi+1, t)) dt (2)

over Mn × Mn, where x0 = α(0), y0 = α(1), xn = β(0), yn = β(1). A natural
choice for the initial values x0 and y0 is given by the equidistant partition x0

i =
Φ(x0, xn, ti), y0

i = Φ(y0, yn, ti) with ti = i
n . Then, the desired discrete shortest

path reads Hn = (Φ(x∗
0, y

∗
0 , .), · · · , Φ(x∗

n, y∗
n, .)).

Notion and computation of the corresponding tangent bundle’s log map is
immediate and its linearization (n = 1) reads Logαβ. Similarly, the induced
mean of n dense enough geodesics γi : I → M is the geodesic with initial- and
endpoints x and y minimizing

E(x, y) =
n∑

i

∫ 1

0

d2(Φ(x, y, t), Φ(xi, yi, t)) dt (3)
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over M2, where xi = γ(0) and yi = γ(1). A natural choice for the initial value is
given by the point-wise mean, viz. (x0, y0) := mean of (xi, yi), i = 1, · · · , n. In
the sequel, we call δ the functional-based L2-metric.

Figure 1 shows a geodesic in TS2 as shortest path connecting two
S2-geodesics for the Sasaki- and the proposed functional-based metric. For none
of them footpoint curves constitute geodesics. However, the functional-based
one is closer to the more intuitive shortest path given by the simple point-wise
construction H(s, t) = Φ(α(t), β(t), s).

Fig. 1. Minimal geodesic in the tangent bundle identified as shortest path connecting
two geodesics (red) with respect to Sasaki (left) and functional-based L2-metric (right).
(Color figure online)

Note that computations of the log map and mean with respect to δ nei-
ther involve the curvature tensor nor decomposition in horizontal and vertical
components.

Figure 2 shows the result of an experiment with synthetic spherical data.
Geodesics were generated by randomly sampling endpoints following a normal
distribution. Computed Sasaki- and functional-mean geodesics consistently pro-
vide adequate approximations of the true mean geodesic.

Fig. 2. Red geodesics are generated by randomly perturbing the endpoints of the black
one. Their mean geodesic with respect to Sasaki (left) and functional-based L2-metric
(right) are blue. (Color figure online)
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3 Application

In this section, we present the input data, our approach for the estimation of
group-wise trends based on regression model, the Hotelling T 2 test for group
differences, and numerical results (Fig. 3).

3.1 Data Description

We apply the derived scheme to the analysis of group differences in longitudinal
femur shapes of subjects with incident and developing osteoarthritis (OA) versus
normal controls. The dataset is derived from the Osteoarthritis Initiative (OAI),
which is a longitudinal study of knee osteoarthritis maintaining (among others)
clinical evaluation data and radiological images from 4,796 men and women of
age 45–79. The data are available for public access at http://www.oai.ucsf.edu/.
From the OAI database, we determined three groups of shapes trajectories: HH
(healthy, i.e. no OA), HD (healthy to diseased, i.e. onset and progression to severe
OA), and DD (diseased, i.e. OA at baseline) according to the Kellgren–Lawrence
score [6] of grade 0 for all visits, an increase of at least 3 grades over the course of
the study, and grade 3 or 4 for all visits, respectively. We extracted surfaces of the
distal femora from the respective 3D weDESS MR images (0.37×0.37 mm matrix,
0.7 mm slice thickness) using a state-of-the-art automatic segmentation approach
[1]. For each group, we collected 22 trajectories (all available data for group DD
minus a record that exhibited inconsistencies, and the same number for groups
HD and HH, randomly selected), each of which comprises shapes of all acquired
MR images, i.e. at baseline, the 1-, 2-, 3-, 4- and 6-year visits. In a supervised
post-process, the quality of segmentations as well as the correspondence of the
resulting meshes (8,988 vertices) were ensured.

Fig. 3. Longitudinal femoral data are divided in groups based on Kellgren–Lawrence
score (right). Temporal observations are mapped to trajectories in the shape space
(left). An important task is to estimate overall trends within groups.

3.2 Numerical Results

We applied the geodesic regression approach to the femoral trajectories described
above and represented in Kendall’s shape space. For details and computational

http://www.oai.ucsf.edu/
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Fig. 4. Principal components for Group-wise trends estimated as means of fitted
geodesics.

aspects, we refer to [12]. Note that geodesic representation provides a less clut-
tered visualization of the trajectory population making it easier to identify trends
within as well as across groups. For the statistical testing of group differences,
we employ the manifold-valued Hotelling T 2 test described in [11] and present
the formulas used therein for the convenience of the reader. Let x = x1, · · · , xn1

and y = y1, · · · , yn2 two samples with corresponding Fréchet means x̄ and ȳ,
vx = logx̄ ȳ, vy = logȳ x̄. Then the individual group covariances are given by

Wx =
1
n1

n1∑

i=1

(logx̄ xi)(logx̄ xi)t

Wy =
1
n2

n2∑

i=1

(logȳ yi)(logȳ yi)t

and the sample T 2 statistic reads

t2 =
1
2
(vt

xW−1
x vx + vt

yW−1
y vy).

For the estimations of the log map and mean, we employed (2) and (3). We found
t2-values 0.0012, 0.000703 and 0.000591 for HH vs. DD, DD vs. HD and HH vs.
HD with corresponding p-values 0, 0.011 and 0.033. For the computation of the
statistical significance, i.e. p-values, we randomly permuted group memberships
of the subject-specific geodesic trends, each identified with its (initial-, end-
point), 1, 000 times. The results reveal clear differences between the group-wise
average geodesics demonstrating the descriptiveness of the proposed approach.
In particular, the results confirm the obvious differences in group-average trends
depicted in the low-dimensional visualization in Fig. 4.
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4 Conclusion

We presented a modification of the geodesic hierarchical model introduced in [3]
and [11] by employing a discrete geodesic for the tangent bundle of the shape
space instead of Sasaki geodesics. Our approach does not involve the Rieman-
nian curvature tensor and provides an efficient approximation. Moreover, we
estimated average geodesics and group trends for the example application of
femoral longitudinal data incorporating Kendall’s shape space. Furthermore, we
employed a manifold-valued Hotelling t2 test confirming that the model well dis-
tinguishes the group differences. There are several potential direction for future
work. First, it would be interesting to perform the computations utilizing the
Sasaki metric and to compare with our numerical result. Second, we would like
to extend our approach to independently test for systematic differences in inter-
cept and slope of the trends. Finally, an extension of the approach to higher-
dimensional parameters would allow to take further effects into account providing
more insight on more complex phenomena.
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Abstract. We describe a novel nonlinear statistical shape model based
on differential coordinates viewed as elements of GL+(3). We adopt an
as-invariant-as possible framework comprising a bi-invariant Lie group
mean and a tangent principal component analysis based on a unique
GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier
work that equips the coordinates with a specifically constructed group
structure, our method employs the inherent geometric structure of the
group-valued data and therefore features an improved statistical power
in identifying shape differences. We demonstrate this in experiments on
two anatomical datasets including comparison to the standard Euclidean
as well as recent state-of-the-art nonlinear approaches to statistical shape
modeling.

Keywords: Statistical shape analysis · Tangent principal component
analysis · Lie groups · Classification · Manifold valued statistics

1 Introduction

Changes in the shape of anatomies are often early indicators of specific diseases.
For example, musculoskeletal disorders affecting large proportions of the adult
population such as Osteoarthritis (OA) [17] are associated with morphological
changes. The overall socio-economic burden [6] associated with these diseases
provides a strong impetus to develop novel computational approaches for the
support of treatment and prevention strategies. Statistical models of shape have
been established as one of the most successful methods for understanding the
geometric variability of anatomical structures [1]. Given a set of samples from
an object class under study, statistical shape models estimate the distribution of
the underlying population in terms of a mean shape and a hierarchy of principle
modes encoding the variation of the samples around that mean. Moreover, rep-
resenting the samples within the basis of principle modes provides a concise and
highly discriminative description that is susceptible for analysis and inference
algorithms. In particular, descriptors based on statistical shape modeling have
proven effective for predicting the onset and progression of OA [5,20,22,23].
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While linear approaches like the point distribution model (PDM) [7] are still
the most widely used in applied morphometrics, they fail to fully capture the
inherent nonlinearity in biological shape variation [8]. Many exciting ideas to
account for this nonlinearity have been presented ranging from the large defor-
mation framework [19] based on diffeomorphisms of the ambient space to mod-
eling the variability of surfaces employing concepts from shell theory [4,14,25].
However, due to the inherent complexity of the involved nonlinear estimation
problems the practical applicability especially in time-critical applications is lim-
ited. To address this challenge, one line of work encodes shapes using differential
coordinates that provide a local description of the geometry rather than absolute
positions [3,10,12,13,24]. In particular, statistical shape models based on differ-
ential coordinates have recently been successfully employed for classification of
radiographic OA significantly outperforming the linear PDM [3,24]. Typically
differential coordinates are derived from the (deformation) gradient of the map
that encodes the shape relative to a reference and, hence, naturally belong to
the group of orientation preserving linear transformations GL+(3). However, to
the best of our knowledge, previous work does not account for the rich geometric
structure inherent to GL+(3). On the one hand, approaches like [27] based on the
Riemannian framework are not stable according to group operations (composi-
tion and inversion) due to the lack of bi-invariant metrics for GL+(3). Anyhow,
consistency with group operations is desirable as it provides invariance w.r.t.
changes of reference and data coordinate systems and, thus, prevents bias due to
arbitrary choices thereof. On the other hand, equipping GL+(3) with an alterna-
tive group structure as done for the differential coordinates model (DCM) in [24]
provides bi-invariance but ignores its original, canonical structure. Furthermore,
while Woods [26] proposes a similar approach for image deformation, he employs
a surface representation that is not group-valued.

In this work, we derive a novel statistical shape model based on linear differ-
ential coordinates that is as-invariant-as-possible and, hence, promises increased
consistency and reduced bias. To this end, we adapt the notion of bi-invariant
mean as proposed in [21] employing an affine connection structure on GL+(3).
Furthermore, we perform second-order statistics based on a family of Rieman-
nian metrics providing the most possible invariance, viz. GL+(3)-left-invariance
and O(3)-right-invariance. We evaluate the performance of the derived model in
terms of shape-based classification of pathological malformations of the human
knee demonstrating superior accuracy over state-of-the-art [3,24] approaches.

2 Differential Coordinates

In this section, we provide a concise introduction to linear differential coordi-
nates and refer the reader to [24] for further details. We consider shapes to be
instances of a class of anatomical objects that are topologically consistent, s.t.
they can be represented as a left-acting deformation φ of a common reference
S̄. We further, assume that S̄ is discretized as a simplicial surface mesh with k
vertices and m triangles. In order to perform analysis on local geometric details
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rather than absolute coordinates of a shape S = φ(S̄), we can employ a dif-
ferential representation given by the deformation gradient ∇φ, i.e. the 3 × 3
matrix of partial derivatives of φ. Let φ be orientation-preserving and affine on
each triangle T̄i ∈ S̄, then the derivatives are constant on each triangle with
∇φ|T̄i

≡ Di ∈ GL+(3). Note, that the deformation of a triangle fully specifies
an affine map of IR3 if we assume that triangle normals are mapped onto each
other (cf. Kirchhoff–Love kinematic assumptions). Accordingly, a representation
of a shape S in linear differential coordinates is given by ξ = (D1, . . . , Dm)T .

A key feature of this representation is that the inverse problem of mapping
differential coordinates back to a deformation φ leads to the well-known Poisson
equation

Δφ = ∇ · ξ, (1)

where Δ ∈ IRk×k and ∇· ∈ IRk×3m denote the discrete Laplacian and divergence
operator, respectively. Note, as (1) is a linear differential equation it can be solved
very efficiently. Furthermore, the solutions are unique up to translations of each
connected component of S̄.

3 Geometric Statistics in GL+(3)

In order to derive information of our geometric data we perform element-wise
geometric statistics on it. Let {ξj = (Dj

1, . . . , D
j
m)T }n

j=1 be the set of all input
shapes represented in differential coordinates. The essential components to set up
a statistical shape model are a mean value and a tangent Principal Component
Analysis (tPCA) [9] to analyze the input as deviations thereof.

3.1 Bi-Invariant Mean

Since GL+(3) does not admit a bi-invariant metric there can not exist a bi-
invariant Riemannian mean. Nevertheless, due to the Lie group structure there
exists a naturally bi-invariant candidate for the mean in terms of the group
exponential barycenter called bi-invariant mean. We follow hereby the work of
Pennec and Arsigny [21] who delivered a comprehensive characterization and
analysis on this topic. The bi-invariant mean Mi is defined through:

n∑

j=1

log
(
Dj

i · M−1
i

)
= 0, (2)

where log denotes the group logarithm. To solve for the unknown Mi we apply
an iterative fixed point scheme:

Mk+1
i = exp

⎛

⎝
n∑

j=1

log
(
Dj

i · (Mk
i )−1

)
⎞

⎠ · Mk
i , (3)
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where exp denotes the group exponential.
The local existence and uniqueness of the bi-invariant mean have been proven

for data with small enough dispersion, i.e. if the data lies within a sufficiently
small normal convex neighborhood of some point of the Lie group. Furthermore,
the algorithm given by Eq. (3) always converges to Mi at least with linear speed
provided that the initialization is chosen sufficiently close to the data.

From Eq. (3) we see that the group logarithm and exponential of GL+(3)
are essential operations required to determine the mean shape as well as for the
statistical analysis in its tangent space (Sect. 3.2). However, it should be empha-
sized that there does not exist a real logarithm for every element in GL+(3).
We can classify such elements by investigating the underlying eigenvalue struc-
ture. Let D be an arbitrary element in GL+(3). It is known that there always
exists a real Jordan-Decomposition [11] D = V · E · V −1 s.t. E belongs (modulo
permutation) to one of the following three types:

A:

⎛

⎝
λ1 0 0
0 λ2 0
0 0 λ3

⎞

⎠ , where λi ∈ R
+,

B:

⎛

⎝
−λ1 0 0
0 −λ2 0
0 0 λ3

⎞

⎠ , where λi ∈ R
+, λ1 �= λ2,

C:

⎛

⎝
λ1 μ 0
−μ λ1 0
0 0 λ2

⎞

⎠ , where λ1 + iμ ∈ C \ R
+
0 , λ2 ∈ R

+.

As the logarithm is compatible with a change of basis it is enough to consider
only matrices of the above form. Both cases A and C admit a real logarithm,
contrasting case B that does not allow for its existence. This raises the question
what deformation gradients could feature such an eigenvalue configuration and
whether it is likely to appear. If we take a closer look at case B we see that
it encodes an anisotropic scale with two negative weights. Since the respective
deformation is orientation preserving it must invert two edges of a triangle and
change their lengths in a non-uniform fashion. This seems to be a rather unlikely
deformation, if we consider data to be aligned and without artifacts such as local
overfolds. In particular, the two real word datasets we performed our experiments
on (Sect. 4) did not admit any element in any input shape that came across with
a deformation gradient of this structure. Neither during calculation of the mean
nor during analysis.

However, in order to do statistics in GL+(3) that are robust to such extreme
cases we require an alternative strategy. To this end, we propose to perform a
pseudo logarithm operation. Let D be an element of GL+(3) with no logarithm.
We define its pseudo logarithm plog employing polar decomposition as follows:

plog(D) = plog(RU) := log(R) + log(U)

In case a real log(D) exists this formula can be seen as first order (commutator
free) approximation in terms of the Baker–Campbell–Hausdorff formula and for
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commutating R,U this formula would be even exact. This can additionally be
interpreted as a fallback to the product structure of the DCM [24]. Contrary
to the logarithm, the matrix exponential always exists and can efficiently be
calculated using the scaling-and-squaring method together with Padé approxi-
mations [15].

3.2 Tangent Principal Component Analysis

In the previous section we were able to circumvent the absence of a bi-invariant
metric but this is no longer possible if we want to perform higher-order analysis
using tPCA. While there is no bi-GL+(3)-invariant metric, we are interested
in metrics that yield at least invariance under orthogonal transformations, i.e.
metrics that are invariant with respect to a change of coordinates obtained by
rotating or mirroring the data. Indeed, there exists exactly one family of metrics
that is GL+(3)-left-invariant and O(3)-right-invariant and uniquely determined
up to three positive real constants [18]. We define the metric as usual via the
inner product on the respective Lie algebra.

Let X,Y ∈ gl(3) = IR3×3 and μ, ν, κ ∈ IR+:

〈X,Y 〉μ,ν,κ := μ 〈dev sym X,dev sym Y 〉 + ν 〈skew X, skew Y 〉 +
κ

3
tr(X) tr(Y ),

where we have used the following notation:

〈X,Y 〉 = 〈X,Y 〉2 = tr (XT Y ) (standard inner product),

symX =
1
2
(X + XT ) (symmetric part of X),

skewX =
1
2
(X − XT ) (skew-symmetric part of X),

dev X = X − trX

3
I3 (deviator of X).

If we consider X as infinitesimal transformation the above terms admit cer-
tain geometric interpretations: skewX represents the rotational part and symX
the distortion part. While the trace tr quantifies volume changes, the deviator
dev represents the trace-free part and, hence, devsymX describes the shearing
(volume-preserving distortion) part of X. Furthermore, the above inner product
features two interesting properties:

〈X,Y 〉1,1,1 = 〈X,Y 〉 for all X,Y ∈ gl(3),

〈X,Y 〉μ,ν,κ = 0 X ∈ so(3), Y symmetric.

Hence, this family of metrics can be seen as natural generalization of the standard
metric arising from the standard inner product for matrices. Let us assume
to have n input shapes with m triangles each, then we perform tPCA in the
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tagent space TM (GL+(3))m at the differential coordinates of the mean shape
M = (M1, . . . ,Mm). The (p + 1)-th mode of variation is hereby given as:

vp+1 = arg max
gM

μ,ν,κ(v,v)=1

n∑

i=1

p∑

l=1

gM
μ,ν,κ(vl, log (Di))

2 + gM
μ,ν,κ(v, log (Di))

2
, (4)

where Di = (D1
i , . . . , Dm

i ), log is applied component-wise and gM
μ,ν,κ =

∑
gMj

μ,ν,κ

is the metric emerging from 〈·, ·〉μ,ν,κ.

4 Experiments and Results

The following experiments are performed utilizing (rounded) metric parameters
μ = 0.1, ν = 29.42, κ = 1.3 that have been found conducting hyper parameter
optimization (HPO) w.r.t. best performance in our classification experiment.
HPO was carried out within the Scikit-Optimize1 python framework performing
a sequential optimization using decision trees (forest minimize) on the cubical
domain [0.05, 1000]3.

Data. We employ two datasets:

(i) Distal femora (see Fig. 2) from the Osteoarthritis Initiative (OAI) for 58
severely diseased and 58 healthy subjects that were also used for evaluation
in [3,24] and are publicly available as segmentations2 [2]. For a detailed list
of the exact subjects that are included in the experiment as well as their
disease state we refer to the supplemental material of [3]. We used the surface
meshes as provided by the authors (in particular the correspondences) and
we refer to [24] for further details on the creation of the dataset.

(ii) Skeletal human hand (see Fig. 3) taken from the publicly available data3

of [16] that is based on data of the Large Geometric Models Archive from
the Georgia Institute of Technology.

Knee Osteoarthritis Classification. OA is i.a. characterized by changes of the
shape of bones composing the knee. With this experiment we want to investigate
the proposed GL+(3) model’s sensitivity w.r.t. pathological shape changes and
thus its ability to classify knee OA for the OAI dataset of distal femora. To
achieve this, we utilize a simple support vector machine (SVM) with linear kernel
directly on the 115-dimensional space of shape weights. These weights are the
vectors of coefficients w.r.t. the principal modes for each shape. The weights
serve as input features to the SVM. The classifier is trained on a balanced set
(healthy/diseased) of feature vectors for different shares of randomly chosen data
varying from 10% to 90% whereas the testing is performed on the respective

1 https://scikit-optimize.github.io.
2 https://doi.org/10.12752/4.ATEZ.1.0.
3 http://graphics.stanford.edu/∼niloy/research/shape space/shape space sig 07.

html.

https://scikit-optimize.github.io
https://doi.org/10.12752/4.ATEZ.1.0
http://graphics.stanford.edu/~niloy/research/shape_space/shape_space_sig_07.html
http://graphics.stanford.edu/~niloy/research/shape_space/shape_space_sig_07.html
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Fig. 1. OA classification experiment for the proposed GL+(3) model, PDM [7] and the
recent FCM [3] (left) and the related DCM [24] (right). The accuracy of the GL+(3)
model ranges from 91.6% (at 10% training) to 96.3% (at 90% training).

complement. Since we have some randomness in our experimental design we
carry out the experiment 10000 times for each partition and consider the mean
accuracy and the standard deviation. We compare our method to the PDM [7] as
well as to the in a way related DCM [24] and the recent fundamental coordinate
model (FCM) [3], which both achieved highly accurate classification results. To
this end, we employ the above outlined classifier setup using the respective model
specific shape weights.

Figure 1 shows the results in terms of average accuracy and standard devia-
tion. The accuracy of the GL+(3) model ranges from 91.6% (at 10% training) to
96.3% (at 90% training). Note that solely the proposed GL+(3) method achieves
an accuracy of over 91% in case of sparse (10%) training data.

Qualitative Evaluation. We perform two qualitative experiments.

(i) A comparison of the mean shape of the OAI dataset as determined by the
DCM as well as the proposed GL+(3) model. To achieve this we align both
shapes and calculate the surface distance between them. Both mean shapes
are highly similar as can be seen in Fig. 2.

(ii) An analysis of the skeletal hand dataset. We calculate the mean shape of
the two input poses, perform tPCA and (visually) investigate the result-
ing trajectory connecting the two input shapes through the mean w.r.t.
plausibility. As shown in Fig. 3 the principal mode shows natural nonlinear
deformation characteristics.
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Fig. 2. Deviations of mean distal femur shape as calculated with the proposed GL+(3)
model and the DCM [24]. Absolute values of the surface distance are plotted color-
coded on the DCM mean shape.

Fig. 3. Trajectory as calculated with the proposed GL+(3) model connecting the input
shapes (left, right) via the exponential mean (center) showing natural deformation
characteristics.

5 Conclusion and Future Work

In this work, we presented a novel nonlinear statistical shape model based on
GL+(3). The model utilized the bi-invariant Lie group mean and a tangent
principal component analysis employing a GL+(3)-left-invariant, O(3)-right-
invariant metric in GL+(3). It can thus be considered as as-invariant-as-possible
w.r.t. the canonical GL+(3) structure of the deformation gradient. We have
shown that the proposed model possesses a high descriptiveness w.r.t. natural
biological differences in shape. In order to determine the parameters of the met-
ric we applied a hyper parameter optimization targeting classification accuracy.
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In particular, we conducted experiments on OA classification achieving results
that are superior to those of the state-of-the-art models [3,24].

We consider it valuable and interesting to also investigate the purely Rie-
mannian perspective associated with the above metric and compare it to our
present work. Although geodesics can be evaluated in closed form for a given
direction and the existence of a shortest geodesic connecting two arbitrary points
is theoretically guaranteed, no closed form solution to determine the direction
of one (and not necessarily the shortest) connecting geodesic is known [18].
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